
http://www.cambridge.org/9780521493369

This page intentionally left blank

Recommender Systems

An Introduction

In this age of information overload, people use a variety of strategies to make choices
about what to buy, how to spend their leisure time, and even whom to date. Recom-
mender systems automate some of these strategies with the goal of providing afford-
able, personal, and high-quality recommendations. This book offers an overview of
approaches to developing state-of-the-art recommender systems. The authors present
current algorithmic approaches for generating personalized buying proposals, such as
collaborative and content-based filtering, as well as more interactive and knowledge-
based approaches. They also discuss how to measure the effectiveness of recommender
systems and illustrate the methods with practical case studies. The authors also cover
emerging topics such as recommender systems in the social web and consumer buying
behavior theory. Suitable for computer science researchers and students interested in
getting an overview of the field, this book will also be useful for professionals looking
for the right technology to build real-world recommender systems.

dietmar jannach is a Chaired Professor of computer science at Technische Uni-
versität Dortmund, Germany. The author of more than one hundred scientific papers,
he is a member of the editorial board of the Applied Intelligence journal and the review
board of the International Journal of Electronic Commerce.

markus zanker is an Assistant Professor in the Department for Applied Informatics
and the director of the study program Information Management at Alpen-Adria Uni-
versität Klagenfurt, Austria. He is an associate editor of the International Journal of
Human-Computer Studies and cofounder and director of ConfigWorks GmbH.

alexander felfernig is University Professor at Technische Universität Graz,
Austria. His research in recommender and configuration systems was honored in 2009
with the Heinz Zemanek Award. Felfernig has published more than 130 scientific papers,
is a review board member of the International Journal of Electronic Commerce, and is
a cofounder of ConfigWorks GmbH.

gerhard friedrich is a Chaired Professor at Alpen-Adria Universität Klagen-
furt, Austria, where he is head of the Institute of Applied Informatics and directs the
Intelligent Systems and Business Informatics research group. He is an editor of AI Com-
munications and an associate editor of the International Journal of Mass Customisation.

Recommender Systems
An Introduction

DIETMAR JANNACH
Technische Universität Dortmund

MARKUS ZANKER
Alpen-Adria Universität Klagenfurt

ALEXANDER FELFERNIG
Technische Universität Graz

GERHARD FRIEDRICH
Alpen-Adria Universität Klagenfurt

cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,

São Paulo, Delhi, Dubai, Tokyo, Mexico City

Cambridge University Press
32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org
Information on this title: www.cambridge.org/9780521493369

© Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard Friedrich 2011

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2011

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication data

Recommender systems : an introduction / Dietmar Jannach . . . [et al.].
p. cm.

Includes bibliographical references and index.
ISBN 978-0-521-49336-9 (hardback)

1. Personal communication service systems. 2. Recommender systems
(Information filtering) I. Jannach, Dietmar, 1973– II. Title.

TK5103.485.R43 2010
006.3′3 – dc22 2010021870

ISBN 978-0-521-49336-9 Hardback

Additional resources for this publication at http:www.recommenderbook.net/

Cambridge University Press has no responsibility for the persistence or accuracy of URLs
for external or third-party Internet web sites referred to in this publication and does not
guarantee that any content on such web sites is, or will remain, accurate or appropriate.

http://www.cambridge.org/9780521493369
http://www.cambridge.org

Contents

Foreword by Joseph A. Konstan page ix
Preface xiii

1 Introduction 1
1.1 Part I: Introduction to basic concepts 2
1.2 Part II: Recent developments 8

PART I: INTRODUCTION TO BASIC CONCEPTS

2 Collaborative recommendation 13
2.1 User-based nearest neighbor recommendation 13
2.2 Item-based nearest neighbor recommendation 18
2.3 About ratings 22
2.4 Further model-based and preprocessing-based approaches 26
2.5 Recent practical approaches and systems 40
2.6 Discussion and summary 47
2.7 Bibliographical notes 49

3 Content-based recommendation 51
3.1 Content representation and content similarity 52
3.2 Similarity-based retrieval 58
3.3 Other text classification methods 63
3.4 Discussion 74
3.5 Summary 77
3.6 Bibliographical notes 79

4 Knowledge-based recommendation 81
4.1 Introduction 81

v

vi Contents

4.2 Knowledge representation and reasoning 82
4.3 Interacting with constraint-based recommenders 87
4.4 Interacting with case-based recommenders 101
4.5 Example applications 113
4.6 Bibliographical notes 122

5 Hybrid recommendation approaches 124
5.1 Opportunities for hybridization 125
5.2 Monolithic hybridization design 129
5.3 Parallelized hybridization design 134
5.4 Pipelined hybridization design 138
5.5 Discussion and summary 141
5.6 Bibliographical notes 142

6 Explanations in recommender systems 143
6.1 Introduction 143
6.2 Explanations in constraint-based recommenders 147
6.3 Explanations in case-based recommenders 157
6.4 Explanations in collaborative filtering recommenders 161
6.5 Summary 165

7 Evaluating recommender systems 166
7.1 Introduction 166
7.2 General properties of evaluation research 167
7.3 Popular evaluation designs 175
7.4 Evaluation on historical datasets 177
7.5 Alternate evaluation designs 184
7.6 Summary 187
7.7 Bibliographical notes 188

8 Case study: Personalized game recommendations on the
mobile Internet 189

8.1 Application and personalization overview 191
8.2 Algorithms and ratings 193
8.3 Evaluation 194
8.4 Summary and conclusions 206

PART II: RECENT DEVELOPMENTS

9 Attacks on collaborative recommender systems 211
9.1 A first example 212

Contents vii

9.2 Attack dimensions 213
9.3 Attack types 214
9.4 Evaluation of effectiveness and countermeasures 219
9.5 Countermeasures 221
9.6 Privacy aspects – distributed collaborative filtering 225
9.7 Discussion 232

10 Online consumer decision making 234
10.1 Introduction 234
10.2 Context effects 236
10.3 Primacy/recency effects 240
10.4 Further effects 243
10.5 Personality and social psychology 245
10.6 Bibliographical notes 252

11 Recommender systems and the next-generation web 253
11.1 Trust-aware recommender systems 254
11.2 Folksonomies and more 262
11.3 Ontological filtering 279
11.4 Extracting semantics from the web 285
11.5 Summary 288

12 Recommendations in ubiquitous environments 289
12.1 Introduction 289
12.2 Context-aware recommendation 291
12.3 Application domains 294
12.4 Summary 297

13 Summary and outlook 299
13.1 Summary 299
13.2 Outlook 300

Bibliography 305
Index 333

Foreword

It was a seductively simple idea that emerged in the early 1990s – to harness
the opinions of millions of people online in an effort to help all of us find more
useful and interesting content. And, indeed, in various domains and in various
forms, this simple idea proved effective. The PARC Tapestry system (Goldberg
et al. 1992) introduced the idea (and terminology) of collaborative filtering and
showed how both explicit annotation data and implicit behavioral data could
be collected into a queryable database and tapped by users to produce personal
filters. Less than two years later, the GroupLens system (Resnick et al. 1994)
showed that the collaborative filtering approach could be both distributed across
a network and automated. Whereas GroupLens performed automated collab-
orative filtering to Usenet news messages, the Ringo system at Massachusetts
Institute of Technology (MIT) (Shardanand and Maes 1995) did the same for
music albums and artists and the Bellcore Video Recommender (Hill et al.
1995) did the same for movies. Each of these systems used similar automa-
tion techniques – algorithms that identified other users with similar tastes and
combined their ratings together into a personalized, weighted average. This
simple “k-nearest neighbor” algorithm proved so effective that it quickly be-
came the gold standard against which all collaborative filtering algorithms were
compared.

Systems-oriented exploration. With hindsight, it is now clear that these early
collaborative filtering systems were important examples from the first of four
overlapping phases of recommender systems advances. This systems-oriented
exploration stage – through not only collaborative filtering but also knowledge-
based systems such as the FindMe systems (Burke et al. 1996) – demonstrated
the feasibility and efficacy of recommender systems and generated substantial
excitement to move the field forward, in both research and commercial practice.
(I do not mean to imply that these early research efforts did not also explore

ix

x Foreword

algorithms and design alternatives, but to a great extent we were so excited that
“the dog sang” that we did not worry too much about whether it was perfectly
in tune.)

A key event in this phase was the Collaborative Filtering Workshop at
Berkeley in March 1996. This gathering helped coalesce the community, bring-
ing together people working on personalized and nonpersonalized systems,
on divergent algorithmic approaches (from statistical summaries to k-nearest
neighbor to Bayesian clustering), and on different domains. By the end of the
day, there was a consensus that these were all aspects of one larger problem –
a problem that quickly became known as recommender systems, thanks in part
to a special issue of Communications of the ACM that grew out of the workshop
(Resnick and Varian 1997).

Rapid commercialization – the challenges of scale and value. Recom-
mender systems emerged into a rapidly expanding Internet business climate, and
commercialization was almost immediate. Pattie Maes’s group at MIT founded
Agents, Inc., in 1995 (later renamed Firefly Networks). Our GroupLens group
at Minnesota founded Net Perceptions in 1996. Many other companies emerged
as well. Quickly, we started to face real-world challenges largely unknown in
the research lab. To succeed, companies had to move beyond demonstrating
accurate predictions. We had to show that we could provide valuable recom-
mendations – usually in the form of selecting a few particular products to
recommend that would yield additional purchases – and that we could do so
without slowing down existing web sites. These systems had to work at greater-
than-research scales – handling millions of users and items and hundreds or
thousands of transactions per second. It is perhaps no surprise that the first book
on recommender systems, John Riedl’s and my Word of Mouse, was targeted
not at researchers but at marketing professionals.

Research at the time moved forward to address many of these technological
challenges. New algorithms were developed to reduce online computation time,
including item-based correlation algorithms and dimensionality-reduction ap-
proaches, both of which are still used today. Researchers became more in-
terested in evaluating recommenders based on “top-n” recommendation list
metrics. A wide set of research explored issues related to implicit ratings,
startup issues for new users and new items, and issues related to user experi-
ence, including trust, explanation, and transparency.

Research explosion – recommenders go mainstream. Somewhere between
2000 and 2005, many of the recommender systems companies dried up,

Foreword xi

imploding with the Internet bubble or simply unable to compete with more
mainstream companies that integrated recommendation into a broader set of
business tools. As a technology, however, recommender systems were here to
stay, with wide usage in e-commerce, broader retail, and a variety of knowledge
management applications.

At the same time, research in recommender systems exploded with an infu-
sion of people and approaches from many disciplines. From across the spectrum
of artificial intelligence, information retrieval, data mining, security and privacy,
and business and marketing research emerged new analyses and approaches to
recommender systems. The algorithmic research was fueled by the availability
of large datasets and then ignited by the 2006 announcement of the $1 million
Netflix Prize for a 10 percent improvement in prediction accuracy.

Moving forward – recommenders in context. The excitement of the Netflix
Prize brought many researchers together in heroic efforts to improve predic-
tion accuracy. But even as these researchers closed in on success, a wave of
researchers and practitioners were arguing for a step back toward the values
of exploration and value. In 2006, MyStrands organized Recommenders06, a
summer school on the present and future of recommender systems. In 2007, I
organized the first ACM Recommender Systems Conference – a conference that
has grown from 120 people to more than 300 in 2009. A look at the programs
of these events shows increased interest in viewing recommendation in context,
retooling research to ground it in an understanding of how people interact with
organizations or businesses, and how recommendations can facilitate those in-
teractions. Indeed, even though the field was nearly unanimously excited by
the success of Netflix in bringing in new ideas, most of us also realized that an
elaborate algorithm that improved predictions of just how much a user would
dislike a set of bad movies did not help the user or Netflix. It is telling that the
2009 best-paper award went to a paper that demonstrated the flaws in the field’s
traditional “hold some data back” method of evaluating algorithms (Marlin and
Zemel 2009), and that the most cited recent research paper on recommender
systems is one that lays out how to match evaluation to user needs (Herlocker
et al. 2004).

That brings us to this book. Behind the modest subtitle of “an introduction”
lies the type of work the field needs to do to consolidate its learnings and move
forward to address new challenges. Across the chapters that follow lies both
a tour of what the field knows well – a diverse collection of algorithms and
approaches to recommendation – and a snapshot of where the field is today, as
new approaches derived from social computing and the semantic web find their

xii Foreword

place in the recommender systems toolbox. Let us all hope that this worthy
effort spurs yet more creativity and innovation to help recommender systems
move forward to new heights.

Joseph A. Konstan
Distinguished McKnight Professor
Department of Computer Science and Engineering
University of Minnesota

Preface

“Which digital camera should I buy? What is the best holiday for me and
my family? Which is the best investment for supporting the education of my
children? Which movie should I rent? Which web sites will I find interesting?
Which book should I buy for my next vacation? Which degree and university
are the best for my future?”

It is easy to expand this list with many examples in which people have to
make decisions about how they want to spend their money or, on a broader
level, about their future.

Traditionally, people have used a variety of strategies to solve such decision-
making problems: conversations with friends, obtaining information from a
trusted third party, hiring an expert team, consulting the Internet, using various
methods from decision theory (if one tries to be rational), making a gut decision,
or simply following the crowd.

However, almost everyone has experienced a situation in which the advice
of a friendly sales rep was not really useful, in which the gut decision to follow
the investments of our rich neighbor was not really in our interest, or in which
spending endless hours on the Internet led to confusion rather than to quick
and good decisions. To sum up, good advice is difficult to receive, is in most
cases time-consuming or costly, and even then is often of questionable quality.

Wouldn’t it be great to have an affordable personal advisor who helps us
make good decisions efficiently?

The construction of systems that support users in their (online) decision
making is the main goal of the field of recommender systems. In particular,
the goal of recommender systems is to provide easily accessible, high-quality
recommendations for a large user community.

This focus on volume and easy accessibility makes the technology very
powerful. Although recommender systems aim at the individual decisions of
users, these systems have a significant impact in a larger sense because of their

xiii

xiv Preface

mass application – as, for instance, Amazon.com’s recommendation engines.
Because of the far reach of the Internet market, this issue must not be under-
estimated, as the control of recommender systems allows markets themselves
to be controlled in a broader sense. Consider, for example, a department store
in which all the sales clerks follow orders to push only certain products.

One can argue that recommender systems are for the masses who cannot
afford or are not willing to pay for high-quality advice provided by experts.
This is partially true in some domains, such as financial services or medicine;
however, the goal of making good decisions includes the aim of outperforming
domain experts. Although this is clearly not possible and also not necessary in
all domains, there are many cases in which the wisdom of the crowds can be ex-
ploited to improve decisions. Thus, given the huge information bases available
on the Internet, can we develop systems that provide better recommendations
than humans?

The challenge of providing affordable, personal, and high-quality recom-
mendations is central to the field and generates many interesting follow-up
goals on both a technical and a psychological level. Although, on the technical
level, we are concerned with finding methods that exploit the available infor-
mation and knowledge as effectively and efficiently as possible, psychological
factors must be considered when designing the end-user interaction processes.
The design of these communication processes greatly influences the trust in
the subsequent recommendations and ultimately in the decisions themselves.
Users rarely act as rational agents who know exactly what they want. Even the
way a recommender agent asks for a customer’s preferences or which decision
options are presented will affect a customer’s choice. Therefore, recommender
systems cannot be reduced to simple decision theoretical concepts.

More than fifteen years have passed since the software systems that are now
called “recommender systems” were first developed. Since then, researchers
have continuously developed new approaches for implementing recommender
systems, and today most of us are used to being supported by recommendation
services such as the one found on Amazon.com. Historically, recommender
systems have gained much attention by applying methods from artificial intel-
ligence to information filtering – that is, to recommend web sites or to filter
and rank news items. In fact, recommendation methods such as case-based
or rule-based techniques have their roots in the expert systems of the 1980s.
However, the application areas of recommender systems go far beyond pure
information filtering methods, and nowadays recommendation technology is
providing solutions in domains as diverse as financial products, real estate,
electronic consumer products, movies, books, music, news, and web sites, just
to name a few.

Preface xv

This book provides an introduction to the broad field of recommender sys-
tems technology, as well as an overview of recent improvements. It is aimed at
both graduate students or new PhDs who are starting their own research in the
field and practitioners and IT experts who are looking for a starting point for
the design and implementation of real-world recommender applications. Addi-
tional advanced material can be found, for instance, in Recommender Systems
Handbook (Ricci et al. 2010), which contains a comprehensive collection of
contributions from leading researchers in the field.

This book is organized into two parts. In the first part, we start by summariz-
ing the basic approaches to implementing recommender systems and discuss
their individual advantages and shortcomings. In addition to describing how
such systems are built, we focus on methods for evaluating the accuracy of
recommenders and examining their effect on the behavior of online customers.
The second part of the book focuses on recent developments and covers issues
such as trust in recommender systems and emerging applications based on Web
2.0 and Semantic Web technologies. Teaching material to accompany the topics
presented in this book is provided at the site http://www.recommenderbook.net/.

We would like to thank everyone who contributed to this book, in partic-
ular, Heather Bergman and Lauren Cowles from Cambridge University Press,
who supported us throughout the editorial process. Particular thanks also go
to Arthur Pitman, Kostyantyn Shchekotykhin, Carla Delgado-Battenfeld, and
Fatih Gedikli for their great help in proofreading the manuscript, as well as
to several scholar colleagues for their effort in reviewing and giving helpful
feedback.

Dietmar Jannach
Markus Zanker
Alexander Felfernig
Gerhard Friedrich
Dortmund, Klagenfurt, and Graz, 2010

1

Introduction

Most Internet users have come across a recommender system in one way or
another. Imagine, for instance, that a friend recommended that you read a new
book and that you subsequently visit your favorite online bookstore. After
typing in the title of the book, it appears as just one of the results listed. In one
area of the web page possibly called “Customers Who Bought This Item Also
Bought,” a list is shown of additional books that are supposedly of interest to
you. If you are a regular user of the same online bookstore, such a personalized
list of recommendations will appear automatically as soon as you enter the
store. The software system that determines which books should be shown to a
particular visitor is a recommender system.

The online bookstore scenario is useful for discussing several aspects of
such software systems. First, notice that we are talking about personalized
recommendations – in other words, every visitor sees a different list depending
on his or her tastes. In contrast, many other online shops or news portals
may simply inform you of their top-selling items or their most read articles.
Theoretically, we could interpret this information as a sort of impersonal buying
or reading recommendation as well and, in fact, very popular books will suit
the interests and preferences of many users. Still, there will be also many
people who do not like to read Harry Potter despite its strong sales in 2007 –
in other words, for these people, recommending top-selling items is not very
helpful. In this book, we will focus on systems that generate personalized
recommendations.

The provision of personalized recommendations, however, requires that the
system knows something about every user. Every recommender system must
develop and maintain a user model or user profile that, for example, contains the
user’s preferences. In our bookstore example, the system could, for instance,
remember which books a visitor has viewed or bought in the past to predict
which other books might be of interest.

1

2 1 Introduction

Although the existence of a user model is central to every recommender
system, the way in which this information is acquired and exploited depends on
the particular recommendation technique. User preferences can, for instance, be
acquired implicitly by monitoring user behavior, but the recommender system
might also explicitly ask the visitor about his or her preferences.

The other question in this context is what kind of additional information the
system should exploit when it generates a list of personalized recommendations.
The most prominent approach, which is actually used by many real online
bookstores, is to take the behavior, opinions, and tastes of a large community
of other users into account. These systems are often referred to as community-
based or collaborative approaches.

This textbook is structured into two parts, reflecting the dynamic nature
of the research field. Part I summarizes the well-developed aspects of recom-
mendation systems research that have been widely accepted for several years.
Therefore, Part I is structured in a canonical manner and introduces the ba-
sic paradigms of collaborative (Chapter 2), content-based (Chapter 3), and
knowledge-based recommendation (Chapter 4), as well as hybridization meth-
ods (Chapter 5). Explaining the reasons for recommending an item (Chapter 6)
as well as evaluating the quality of recommendation systems (Chapter 7) are
also fundamental chapters. The first part concludes with an experimental eval-
uation (Chapter 8) that compares different recommendation algorithms in a
mobile environment that can serve as a practical reference for further inves-
tigations. In contrast, Part II discusses very recent research topics within the
field, such as how to cope with efforts to attack and manipulate a recommender
system from outside (Chapter 9), supporting consumer decision making and
potential persuasion strategies (Chapter 10), recommendation systems in the
context of the social and semantic webs (Chapter 11), and the application
of recommender systems to ubiquitous domains (Chapter 12). Consequently,
chapters of the second part should be seen as a reference point for ongoing
research.

1.1 Part I: Introduction to basic concepts

1.1.1 Collaborative recommendation

The basic idea of these systems is that if users shared the same interests in the
past – if they viewed or bought the same books, for instance – they will also
have similar tastes in the future. So, if, for example, user A and user B have a
purchase history that overlaps strongly and user A has recently bought a book

1.1 Part I: Introduction to basic concepts 3

that B has not yet seen, the basic rationale is to propose this book also to B.
Because this selection of hopefully interesting books involves filtering the most
promising ones from a large set and because the users implicitly collaborate
with one another, this technique is also called collaborative filtering (CF).

Today, systems of this kind are in wide use and have also been extensively
studied over the past fifteen years. We cover the underlying techniques and open
questions associated with collaborative filtering in detail in the next chapter of
this book. Typical questions that arise in the context of collaborative approaches
include the following:

� How do we find users with similar tastes to the user for whom we need a
recommendation?

� How do we measure similarity?
� What should we do with new users, for whom a buying history is not yet

available?
� How do we deal with new items that nobody has bought yet?
� What if we have only a few ratings that we can exploit?
� What other techniques besides looking for similar users can we use for

making a prediction about whether a certain user will like an item?

Pure CF approaches do not exploit or require any knowledge about the items
themselves. Continuing with the bookstore example, the recommender system,
for instance, does not need to know what a book is about, its genre, or who
wrote it. The obvious advantage of this strategy is that these data do not have
to be entered into the system or maintained. On the other hand, using such
characteristics to propose books that are actually similar to those the user liked
in the past might be more effective.

1.1.2 Content-based recommendation

In general, recommender systems may serve two different purposes. On one
hand, they can be used to stimulate users into doing something such as buying
a specific book or watching a specific movie. On the other hand, recommender
systems can also be seen as tools for dealing with information overload, as these
systems aim to select the most interesting items from a larger set. Thus, rec-
ommender systems research is also strongly rooted in the fields of information
retrieval and information filtering. In these areas, however, the focus lies mainly
on the problem of discriminating between relevant and irrelevant documents
(as opposed to the artifacts such as books or digital cameras recommended in
traditional e-commerce domains). Many of the techniques developed in these

4 1 Introduction

areas exploit information derived from the documents’ contents to rank them.
These techniques will be discussed in the chapter on content-based recommen-
dation1.

At its core, content-based recommendation is based on the availability of
(manually created or automatically extracted) item descriptions and a profile
that assigns importance to these characteristics. If we think again of the book-
store example, the possible characteristics of books might include the genre,
the specific topic, or the author. Similar to item descriptions, user profiles may
also be automatically derived and “learned” either by analyzing user behavior
and feedback or by asking explicitly about interests and preferences.

In the context of content-based recommendation, the following questions
must be answered:

� How can systems automatically acquire and continuously improve user
profiles?

� How do we determine which items match, or are at least similar to or com-
patible with, a user’s interests?

� What techniques can be used to automatically extract or learn the item
descriptions to reduce manual annotation?

When compared with the content-agnostic approaches described above,
content-based recommendation has two advantages. First, it does not require
large user groups to achieve reasonable recommendation accuracy. In addition,
new items can be immediately recommended once item attributes are available.
In some domains, such item descriptions can be automatically extracted (for
instance, from text documents) or are already available in an electronic catalog.
In many domains, however, the more subjective characteristics of an item –
such as “ease of use” or “elegance of design” – would be useful in the rec-
ommendation process. These characteristics are hard to acquire automatically,
however, meaning that such information must be manually entered into the
system in a potentially expensive and error-prone process.

1.1.3 Knowledge-based recommendation

If we turn our attention to other application domains, such as consumer elec-
tronics, many involve large numbers of one-time buyers. This means that we
cannot rely on the existence of a purchase history, a prerequisite for collab-
orative and content-based filtering approaches. However, more detailed and
structured content may be available, including technical and quality features.

1 Some authors use the term “content-based filtering” instead of content-based recommendation.

1.1 Part I: Introduction to basic concepts 5

Take, for instance, a recommender system for digital cameras that should
help the end user find a camera model that fits his or her particular require-
ments. Typical customers buy a new camera only once every few years, so the
recommender system cannot construct a user profile or propose cameras that
others liked, which – as a side note – would result in proposing only top-selling
items.

Thus, a system is needed that exploits additional and means–end knowledge
to generate recommendations. In such knowledge-based approaches, the rec-
ommender system typically makes use of additional, often manually provided,
information about both the current user and the available items. Constraint-
based recommenders are one example of such systems, which we will consider
in our discussion of the different aspects of knowledge-based approaches. In
the digital camera domain, a constraint-based system could use detailed knowl-
edge about the features of the cameras, such as resolution, weight, or price.
In addition, explicit constraints may be used to describe the context in which
certain features are relevant for the customer, such as, for example, that a high-
resolution camera is advantageous if the customer is interested in printing large
pictures. Simply presenting products that fulfill a given set of requested features
is not enough, as the aspect of personalization is missing, and every user (with
the same set of requested features) will get the same set of recommendations.
Thus, constraint-based recommender systems also need to maintain user pro-
files. In the digital camera scenario the system could, for instance, ask the user
about the relative importance of features, such as whether resolution is more
important than weight.

The other aspect covered in this chapter is “user interaction”, as in many
knowledge-based recommender systems, the user requirements must be elicited
interactively. Considering the bookstore example and collaborative recommen-
dation techniques once again, we see that users can interact with the system in
only a limited number of ways. In fact, in many applications the only possibility
for interaction is to rate the proposed items – for example, on a scale from 1
to 5 or in terms of a “like/dislike” statement. Think, however, about the digi-
tal camera recommender, which should also be able to serve first-time users.
Therefore, more complex types of interaction are required to determine the
user’s needs and preferences, mostly because no purchase history is available
that can be exploited. A simple approach would be to ask the user directly about
his or her requirements, such as the maximum price, the minimum resolution,
and so forth. Such an approach, however, not only requires detailed technical
understanding of the item’s features but also generates additional cognitive load
in scenarios with a large number of item features. More elaborate approaches,
therefore, try to implement more conversational interaction styles, in which the

6 1 Introduction

system tries to incrementally ascertain preferences within an interactive and
personalized dialog.

Overall, the questions that are addressed in the chapter on knowledge-based
recommender systems include the following:

� What kinds of domain knowledge can be represented in a knowledge base?
� What mechanisms can be used to select and rank the items based on the

user’s characteristics?
� How do we acquire the user profile in domains in which no purchase history

is available, and how can we take the customer’s explicit preferences into
account?

� Which interaction patterns can be used in interactive recommender
systems?

� Finally, in which dimensions can we personalize the dialog to maximize the
precision of the preference elicitation process?

1.1.4 Hybrid approaches

We have already seen that the different approaches discussed so far have certain
advantages and, of course, disadvantages depending on the problem setting.
One obvious solution is to combine different techniques to generate better or
more precise recommendations (we will discuss the question of what a “good”
recommendation is later). If, for instance, community knowledge exists and
detailed information about the individual items is available, a recommender
system could be enhanced by hybridizing collaborative or social filtering with
content-based techniques. In particular, such a design could be used to overcome
the described ramp-up problems of pure collaborative approaches and rely on
content analysis for new items or new users.

When combining different approaches within one recommender system, the
following questions have to be answered and will be covered in the chapter on
hybrid approaches:

� Which techniques can be combined, and what are the prerequisites for a
given combination?

� Should proposals be calculated for two or more systems sequentially, or do
other hybridization designs exist?

� How should the results of different techniques be weighted and can they be
determined dynamically?

1.1 Part I: Introduction to basic concepts 7

1.1.5 Explanations in recommender systems

Explanations aim to make a recommendation system’s line of reasoning trans-
parent to its users. This chapter outlines how the different recommendation
strategies can be extended to provide reasons for the recommendations they
propose to users. As knowledge-based recommendation systems have a long
tradition of providing reasons to support their computed results, this chapter
focuses on computing explanations for constraint-based and case-based rec-
ommender systems. In addition, efforts to explain collaborative filtering results
are described to address the following topics:

� How can a recommender system explain its proposals while increasing the
user’s confidence in the system?

� How does the recommendation strategy affect the way recommendations can
be explained?

� Can explanations be used to convince a user that the proposals made by the
system are “fair” or unbiased?

1.1.6 Evaluating recommender systems

Research in recommender systems is strongly driven by the goal of improving
the quality of the recommendations that are produced. The question that im-
mediately arises is, of course, how can we actually measure the quality of the
proposals made by a recommender system?

We start the chapter on evaluating recommender systems by reflecting on
the general principles of empirical research and discuss the current state of
practice in evaluating recommendation techniques. Based on the results of
a small survey, we focus in particular on empirical evaluations on historical
datasets and present different methodologies and metrics.

We also explore alternate evaluation approaches to address the necessity
of, for instance, better capturing user experience or system goals. Evaluation
approaches are classified into experimental, quasi-experimental, and nonexper-
imental research designs. Thus, the questions answered in the chapter include
the following:

� Which research designs are applicable for evaluating recommender systems?
� How can recommender systems be evaluated using experiments on historical

datasets?
� What metrics are applicable for different evaluation goals?

8 1 Introduction

� What are the limitations of existing evaluation techniques, in particular when
it comes to the conversational or business value aspects of recommender
systems?

1.1.7 Case study

The final chapter of the book’s first part is devoted to an experimental online
evaluation that compares different personalized and impersonalized recommen-
dation strategies on a mobile Internet portal. The purpose of this large-scale case
study of a commercial recommender system is to address questions such as

� What is the business value of recommender systems?
� Do they help to increase sales or turn more visitors into buyers?
� Are there differences in the effectiveness of different recommendation algo-

rithms? Which technique should be used in which situation?

1.2 Part II: Recent developments

Although many of the ideas and basic techniques that are used in today’s
recommender systems were developed more than a decade ago, the field is still
an area of active research, in particular because the web itself has become an
integral part of our everyday life and, at the same time, new technologies are
constantly emerging.

In the second part of the book we will therefore focus – in the form of
shorter chapters – on current research topics and recent advancements in the
field. Among others, the following questions will be addressed:

� Privacy and robustness. How can we prevent malicious users from manipu-
lating a recommender system – for instance, by inserting fake users or ratings
into the system’s database? How can we ensure the privacy of users?

� Online consumer decision making. Which consumer decision-making the-
ories are the most relevant? Can the insights gained in traditional sales
channels be transferred to the online channel, and in particular, how can
this knowledge be encoded in a recommender system? Are there additional
techniques or new models that can help us to improve the (business) value
or acceptance of a recommendation service?

� Recommender systems in the context of the social and the semantic web. How
can we exploit existing trust structures or social relationships between users to
improve the recommender’s accuracy? How do Semantic Web technologies

1.2 Part II: Recent developments 9

affect recommendation algorithms? What is the role of recommenders in
Web 2.0?

� Ubiquitous applications. How do current technological advances, for in-
stance in the area of mobile solutions, open new doors for building next-
generation recommender systems? How do ubiquitous application domains
affect recommendation algorithms – for instance, by placing more emphasis
on contextual and situational parameters?

PART I

Introduction to basic concepts

2

Collaborative recommendation

The main idea of collaborative recommendation approaches is to exploit infor-
mation about the past behavior or the opinions of an existing user community
for predicting which items the current user of the system will most probably
like or be interested in. These types of systems are in widespread industrial use
today, in particular as a tool in online retail sites to customize the content to
the needs of a particular customer and to thereby promote additional items and
increase sales.

From a research perspective, these types of systems have been explored for
many years, and their advantages, their performance, and their limitations are
nowadays well understood. Over the years, various algorithms and techniques
have been proposed and successfully evaluated on real-world and artificial test
data.

Pure collaborative approaches take a matrix of given user–item ratings as the
only input and typically produce the following types of output: (a) a (numerical)
prediction indicating to what degree the current user will like or dislike a certain
item and (b) a list of n recommended items. Such a top-N list should, of course,
not contain items that the current user has already bought.

2.1 User-based nearest neighbor recommendation

The first approach we discuss here is also one of the earliest methods, called
user-based nearest neighbor recommendation. The main idea is simply as
follows: given a ratings database and the ID of the current (active) user as
an input, identify other users (sometimes referred to as peer users or nearest
neighbors) that had similar preferences to those of the active user in the past.
Then, for every product p that the active user has not yet seen, a prediction is
computed based on the ratings for p made by the peer users. The underlying

13

14 2 Collaborative recommendation

Table 2.1. Ratings database for collaborative recommendation.

Item1 Item2 Item3 Item4 Item5

Alice 5 3 4 4 ?
User1 3 1 2 3 3
User2 4 3 4 3 5
User3 3 3 1 5 4
User4 1 5 5 2 1

assumptions of such methods are that (a) if users had similar tastes in the past
they will have similar tastes in the future and (b) user preferences remain stable
and consistent over time.

2.1.1 First example

Let us examine a first example. Table 2.1 shows a database of ratings of the
current user, Alice, and some other users. Alice has, for instance, rated “Item1”
with a “5” on a 1-to-5 scale, which means that she strongly liked this item. The
task of a recommender system in this simple example is to determine whether
Alice will like or dislike “Item5”, which Alice has not yet rated or seen. If
we can predict that Alice will like this item very strongly, we should include
it in Alice’s recommendation list. To this purpose, we search for users whose
taste is similar to Alice’s and then take the ratings of this group for “Item5” to
predict whether Alice will like this item.

Before we discuss the mathematical calculations required for these predic-
tions in more detail, let us introduce the following conventions and symbols.
We use U = {u1, . . . , un} to denote the set of users, P = {p1, . . . , pm} for
the set of products (items), and R as an n × m matrix of ratings ri,j , with
i ∈ 1 . . . n, j ∈ 1 . . . m. The possible rating values are defined on a numerical
scale from 1 (strongly dislike) to 5 (strongly like). If a certain user i has not
rated an item j , the corresponding matrix entry ri,j remains empty.

With respect to the determination of the set of similar users, one common
measure used in recommender systems is Pearson’s correlation coefficient. The
similarity sim(a, b) of users a and b, given the rating matrix R, is defined in
Formula 2.1. The symbol ra corresponds to the average rating of user a.

sim(a, b) =
∑

p∈P (ra,p − ra)(rb,p − rb)√∑
p∈P (ra,p − ra)2

√∑
p∈P (rb,p − rb)2

(2.1)

2.1 User-based nearest neighbor recommendation 15

Alice

User1

User4

6

5

4

3

2

1

0
Item1 Item2 Item3 Item4

Ratings

Figure 2.1. Comparing Alice with two other users.

The similarity of Alice to User1 is thus as follows (rAlice = ra = 4, rUser1 =
rb = 2.4):

(5 − ra) ∗ (3 − rb) + (3 − ra) ∗ (1 − rb) + · · · + (4 − ra) ∗ (3 − rb))√
(5 − ra)2 + (3 − ra)2 + · · ·

√
(3 − rb)2 + (1 − rb)2 + · · ·

= 0.85

(2.2)

The Pearson correlation coefficient takes values from +1 (strong positive
correlation) to −1 (strong negative correlation). The similarities to the other
users, User2 to User4, are 0.70, 0.00, and −0.79, respectively.

Based on these calculations, we observe that User1 and User2 were some-
how similar to Alice in their rating behavior in the past. We also see that
the Pearson measure considers the fact that users are different with respect to
how they interpret the rating scale. Some users tend to give only high ratings,
whereas others will never give a 5 to any item. The Pearson coefficient factors
these averages out in the calculation to make users comparable – that is, al-
though the absolute values of the ratings of Alice and User1 are quite different,
a rather clear linear correlation of the ratings and thus similarity of the users is
detected.

This fact can also be seen in the visual representation in Figure 2.1, which
both illustrates the similarity between Alice and User1 and the differences in
the ratings of Alice and User4.

To make a prediction for Item5, we now have to decide which of the neigh-
bors’ ratings we shall take into account and how strongly we shall value their
opinions. In this example, an obvious choice would be to take User1 and User2
as peer users to predict Alice’s rating. A possible formula for computing a pre-
diction for the rating of user a for item p that also factors the relative proximity

16 2 Collaborative recommendation

of the nearest neighbors N and a’s average rating ra is the following:

pred(a, p) = ra +
∑

b∈N sim(a, b) ∗ (rb,p − rb)∑
b∈N sim(a, b)

(2.3)

In the example, the prediction for Alice’s rating for Item5 based on the
ratings of near neighbors User1 and User2 will be

4 + 1/(0.85 + 0.7) ∗ (0.85 ∗ (3 − 2.4) + 0.70 ∗ (5 − 3.8)) = 4.87 (2.4)

Given these calculation schemes, we can now compute rating predictions
for Alice for all items she has not yet seen and include the ones with the
highest prediction values in the recommendation list. In the example, it will
most probably be a good choice to include Item5 in such a list.

The example rating database shown above is, of course, an idealization of
the real world. In real-world applications, rating databases are much larger and
can comprise thousands or even millions of users and items, which means that
we must think about computational complexity. In addition, the rating matrix is
typically very sparse, meaning that every user will rate only a very small subset
of the available items. Finally, it is unclear what we can recommend to new
users or how we deal with new items for which no ratings exist. We discuss
these aspects in the following sections.

2.1.2 Better similarity and weighting metrics

In the example, we used Pearson’s correlation coefficient to measure the sim-
ilarity among users. In the literature, other metrics, such as adjusted cosine
similarity (which will be discussed later in more detail), Spearman’s rank cor-
relation coefficient, or the mean squared difference measure have also been
proposed to determine the proximity between users. However, empirical anal-
yses show that for user-based recommender systems – and at least for the best
studied recommendation domains – the Pearson coefficient outperforms other
measures of comparing users (Herlocker et al. 1999). For the later-described
item-based recommendation techniques, however, it has been reported that
the cosine similarity measure consistently outperforms the Pearson correlation
metric.

Still, using the “pure” Pearson measure alone for finding neighbors and for
weighting the ratings of those neighbors may not be the best choice. Consider,
for instance, the fact that in most domains there will exist some items that are
liked by everyone. A similarity measure such as Pearson will not take into
account that an agreement by two users on a more controversial item has more
“value” than an agreement on a generally liked item. As a resolution to this,

2.1 User-based nearest neighbor recommendation 17

Breese et al. (1998) proposed applying a transformation function to the item
ratings, which reduces the relative importance of the agreement on universally
liked items. In analogy to the original technique, which was developed in the
information retrieval field, they called that factor the inverse user frequency.
Herlocker et al. (1999) address the same problem through a variance weighting
factor that increases the influence of items that have a high variance in the
ratings – that is, items on which controversial opinions exist.

Our basic similarity measure used in the example also does not take into
account whether two users have co-rated only a few items (on which they may
agree by chance) or whether there are many items on which they agree. In fact,
it has been shown that predictions based on the ratings of neighbors with which
the active user has rated only a very few items in common are a bad choice
and lead to poor predictions (Herlocker et al. 1999). Herlocker et al. (1999)
therefore propose using another weighting factor, which they call significance
weighting. Although the weighting scheme used in their experiments, reported
by Herlocker et al. (1999, 2002), is a rather simple one, based on a linear
reduction of the similarity weight when there are fewer than fifty co-rated
items, the increases in prediction accuracy are significant. The question remains
open, however, whether this weighting scheme and the heuristically determined
thresholds are also helpful in real-world settings, in which the ratings database is
smaller and we cannot expect to find many users who have co-rated fifty items.

Finally, another proposal for improving the accuracy of the recommenda-
tions by fine-tuning the prediction weights is termed case amplification (Breese
et al. 1998). Case amplification refers to an adjustment of the weights of the
neighbors in a way that values close to +1 and −1 are emphasized by multi-
plying the original weights by a constant factor ρ. Breese et al. (1998) used 2.5
for ρ in their experiments.

2.1.3 Neighborhood selection

In our example, we intuitively decided not to take all neighbors into account
(neighborhood selection). For the calculation of the predictions, we included
only those that had a positive correlation with the active user (and, of course,
had rated the item for which we are looking for a prediction). If we included
all users in the neighborhood, this would not only negatively influence the
performance with respect to the required calculation time, but it would also
have an effect on the accuracy of the recommendation, as the ratings of other
users who are not really comparable would be taken into account.

The common techniques for reducing the size of the neighborhood are to
define a specific minimum threshold of user similarity or to limit the size to

18 2 Collaborative recommendation

a fixed number and to take only the k nearest neighbors into account. The
potential problems of either technique are discussed by Anand and Mobasher
(2005) and by Herlocker et al. (1999): if the similarity threshold is too high,
the size of the neighborhood will be very small for many users, which in turn
means that for many items no predictions can be made (reduced coverage).
In contrast, when the threshold is too low, the neighborhood sizes are not
significantly reduced.

The value chosen for k – the size of the neighborhood – does not influence
coverage. However, the problem of finding a good value for k still exists:
When the number of neighbors k taken into account is too high, too many
neighbors with limited similarity bring additional “noise” into the predictions.
When k is too small – for example, below 10 in the experiments from Herlocker
et al. (1999) – the quality of the predictions may be negatively affected. An
analysis of the MovieLens dataset indicates that “in most real-world situations,
a neighborhood of 20 to 50 neighbors seems reasonable” (Herlocker et al.
2002).

A detailed analysis of the effects of using different weighting and similarity
schemes, as well as different neighborhood sizes, can be found in Herlocker
et al. (2002).

2.2 Item-based nearest neighbor recommendation

Although user-based CF approaches have been applied successfully in different
domains, some serious challenges remain when it comes to large e-commerce
sites, on which we must handle millions of users and millions of catalog items.
In particular, the need to scan a vast number of potential neighbors makes it
impossible to compute predictions in real time. Large-scale e-commerce sites,
therefore, often implement a different technique, item-based recommendation,
which is more apt for offline preprocessing1 and thus allows for the computation
of recommendations in real time even for a very large rating matrix (Sarwar
et al. 2001).

The main idea of item-based algorithms is to compute predictions using the
similarity between items and not the similarity between users. Let us examine
our ratings database again and make a prediction for Alice for Item5. We first
compare the rating vectors of the other items and look for items that have ratings
similar to Item5. In the example, we see that the ratings for Item5 (3, 5, 4, 1) are
similar to the ratings of Item1 (3, 4, 3, 1) and there is also a partial similarity

1 Details about data preprocessing for item-based filtering are given in Section 2.2.2.

2.2 Item-based nearest neighbor recommendation 19

with Item4 (3, 3, 5, 2). The idea of item-based recommendation is now to simply
look at Alice’s ratings for these similar items. Alice gave a “5” to Item1 and a
“4” to Item4. An item-based algorithm computes a weighted average of these
other ratings and will predict a rating for Item5 somewhere between 4 and 5.

2.2.1 The cosine similarity measure

To find similar items, a similarity measure must be defined. In item-based
recommendation approaches, cosine similarity is established as the standard
metric, as it has been shown that it produces the most accurate results. The
metric measures the similarity between two n-dimensional vectors based on
the angle between them. This measure is also commonly used in the fields of
information retrieval and text mining to compare two text documents, in which
documents are represented as vectors of terms.

The similarity between two items a and b – viewed as the corresponding
rating vectors �a and �b – is formally defined as follows:

sim(�a, �b) = �a · �b
| �a | ∗ | �b | (2.5)

The · symbol is the dot product of vectors. | �a | is the Euclidian length of
the vector, which is defined as the square root of the dot product of the vector
with itself.

The cosine similarity of Item5 and Item1 is therefore calculated as follows:

sim(I5, I1) = 3 ∗ 3 + 5 ∗ 4 + 4 ∗ 3 + 1 ∗ 1√
32 + 52 + 42 + 12 ∗ √

32 + 42 + 32 + 12
= 0.99 (2.6)

The possible similarity values are between 0 and 1, where values near to 1
indicate a strong similarity. The basic cosine measure does not take the differ-
ences in the average rating behavior of the users into account. This problem is
solved by using the adjusted cosine measure, which subtracts the user average
from the ratings. The values for the adjusted cosine measure correspondingly
range from −1 to +1, as in the Pearson measure.

Let U be the set of users that rated both items a and b. The adjusted cosine
measure is then calculated as follows:

sim(a, b) =
∑

u∈U (ru,a − ru)(ru,b − ru)√∑
u∈U (ru,a − ru)2

√∑
u∈U (ru,b − ru)2

(2.7)

We can therefore transform the original ratings database and replace the
original rating values with their deviation from the average ratings as shown in
Table 2.2.

20 2 Collaborative recommendation

Table 2.2. Mean-adjusted ratings database.

Item1 Item2 Item3 Item4 Item5

Alice 1.00 −1.00 0.00 0.00 ?
User1 0.60 −1.40 −0.40 0.60 0.60
User2 0.20 −0.80 0.20 −0.80 1.20
User3 −0.20 −0.20 −2.20 2.80 0.80
User4 −1.80 2.20 2.20 −0.80 −1.80

The adjusted cosine similarity value for Item5 and Item1 for the example is
thus:

0.6 ∗ 0.6+0.2 ∗ 1.2+ (−0.2) ∗ 0.80+ (−1.8) ∗ (−1.8)√
(0.62 +0.22 + (−0.2)2 + (−1.8)2 ∗

√
0.62 +1.22 +0.82 + (−1.8)2

= 0.80

(2.8)

After the similarities between the items are determined we can predict a
rating for Alice for Item5 by calculating a weighted sum of Alice’s ratings for
the items that are similar to Item5. Formally, we can predict the rating for user
u for a product p as follows:

pred(u, p) =
∑

i∈ratedItems(u) sim(i, p) ∗ ru,i∑
i∈ratedItems(a) sim(i, p)

(2.9)

As in the user-based approach, the size of the considered neighborhood is
typically also limited to a specific size – that is, not all neighbors are taken into
account for the prediction.

2.2.2 Preprocessing data for item-based filtering

Item-to-item collaborative filtering is the technique used by Amazon.com to
recommend books or CDs to their customers. Linden et al. (2003) report on
how this technique was implemented for Amazon’s online shop, which, in
2003, had 29 million users and millions of catalog items. The main problem
with traditional user-based CF is that the algorithm does not scale well for
such large numbers of users and catalog items. Given M customers and N

catalog items, in the worst case, all M records containing up to N items must
be evaluated. For realistic scenarios, Linden et al. (2003) argue that the actual
complexity is much lower because most of the customers have rated or bought
only a very small number of items. Still, when the number of customers M

is around several million, the calculation of predictions in real time is still

2.2 Item-based nearest neighbor recommendation 21

infeasible, given the short response times that must be obeyed in the online
environment.

For making item-based recommendation algorithms applicable also for large
scale e-commerce sites without sacrificing recommendation accuracy, an ap-
proach based on offline precomputation of the data is typically chosen. The idea
is to construct in advance the item similarity matrix that describes the pairwise
similarity of all catalog items. At run time, a prediction for a product p and user
u is made by determining the items that are most similar to i and by building the
weighted sum of u’s ratings for these items in the neighborhood. The number
of neighbors to be taken into account is limited to the number of items that the
active user has rated. As the number of such items is typically rather small, the
computation of the prediction can be easily accomplished within the short time
frame allowed in interactive online applications.

With respect to memory requirements, a full item similarity matrix for N

items can theoretically have up to N2 entries. In practice, however, the number
of entries is significantly lower, and further techniques can be applied to reduce
the complexity. The options are, for instance, to consider only items that have
a minimum number of co-ratings or to memorize only a limited neighborhood
for each item; this, however, increases the danger that no prediction can be
made for a given item (Sarwar et al. 2001).

In principle, such an offline precomputation of neighborhoods is also pos-
sible for user-based approaches. Still, in practical scenarios the number of
overlapping ratings for two users is relatively small, which means that a few
additional ratings may quickly influence the similarity value between users.
Compared with these user similarities, the item similarities are much more sta-
ble, such that precomputation does not affect the preciseness of the predictions
too much (Sarwar et al. 2001).

Besides different preprocessing techniques used in so-called model-based
approaches, it is an option to exploit only a certain fraction of the rating matrix
to reduce the computational complexity. Basic techniques include subsampling,
which can be accomplished by randomly choosing a subset of the data or by
ignoring customer records that have only a very small set of ratings or that
only contain very popular items. A more advanced and information-theoretic
technique for filtering out the most “relevant” customers was also proposed
by Yu et al. (2003). In general, although some computational speedup can
be achieved with such techniques, the capability of the system to generate
accurate predictions might deteriorate, as these recommendations are based on
less information.

Further model-based and preprocessing-based approaches for complexity
and dimensionality reduction will be discussed in Section 2.4.

22 2 Collaborative recommendation

2.3 About ratings

Before we discuss further techniques for reducing the computational com-
plexity and present additional algorithms that operate solely on the basis of
a user–item ratings matrix, we present a few general remarks on ratings in
collaborative recommendation approaches.

2.3.1 Implicit and explicit ratings

Among the existing alternatives for gathering users’ opinions, asking for ex-
plicit item ratings is probably the most precise one. In most cases, five-point or
seven-point Likert response scales ranging from “Strongly dislike” to “Strongly
like” are used; they are then internally transformed to numeric values so the
previously mentioned similarity measures can be applied. Some aspects of the
usage of different rating scales, such as how the users’ rating behavior changes
when different scales must be used and how the quality of recommendation
changes when the granularity is increased, are discussed by Cosley et al. (2003).
What has been observed is that in the movie domain, a five-point rating scale
may be too narrow for users to express their opinions, and a ten-point scale
was better accepted. An even more fine-grained scale was chosen in the joke
recommender discussed by Goldberg et al. (2001), where a continuous scale
(from −10 to +10) and a graphical input bar were used. The main arguments
for this approach are that there is no precision loss from the discretization,
user preferences can be captured at a finer granularity, and, finally, end users
actually “like” the graphical interaction method, which also lets them express
their rating more as a “gut reaction” on a visual level.

The question of how the recommendation accuracy is influenced and what
is the “optimal” number of levels in the scaling system is, however, still open,
as the results reported by Cosley et al. (2003) were developed on only a small
user basis and for a single domain.

The main problems with explicit ratings are that such ratings require addi-
tional efforts from the users of the recommender system and users might not
be willing to provide such ratings as long as the value cannot be easily seen.
Thus, the number of available ratings could be too small, which in turn results
in poor recommendation quality.

Still, Shafer et al. (2006) argue that the problem of gathering explicit ratings
is not as hard as one would expect because only a small group of “early
adopters” who provide ratings for many items is required in the beginning to
get the system working.

2.3 About ratings 23

Besides that, one can observe that in the last few years in particular, with
the emergence of what is called Web 2.0, the role of online communities has
changed and users are more willing to contribute actively to their community’s
knowledge. Still, in light of these recent developments, more research focusing
on the development of techniques and measures that can be used to persuade
the online user to provide more ratings is required.

Implicit ratings are typically collected by the web shop or application in
which the recommender system is embedded. When a customer buys an item,
for instance, many recommender systems interpret this behavior as a positive
rating. The system could also monitor the user’s browsing behavior. If the user
retrieves a page with detailed item information and remains at this page for a
longer period of time, for example, a recommender could interpret this behavior
as a positive orientation toward the item.

Although implicit ratings can be collected constantly and do not require
additional efforts from the side of the user, one cannot be sure whether the user
behavior is correctly interpreted. A user might not like all the books he or she
has bought; the user also might have bought a book for someone else. Still, if a
sufficient number of ratings is available, these particular cases will be factored
out by the high number of cases in which the interpretation of the behavior
was right. In fact, Shafer et al. (2006) report that in some domains (such as
personalized online radio stations) collecting the implicit feedback can even
result in more accurate user models than can be done with explicit ratings.

A further discussion of costs and benefits of implicit ratings can be found in
Nichols (1998).

2.3.2 Data sparsity and the cold-start problem

In the rating matrices used in the previous examples, ratings existed for all but
one user–item combination. In real-world applications, of course, the rating
matrices tend to be very sparse, as customers typically provide ratings for (or
have bought) only a small fraction of the catalog items.

In general, the challenge in that context is thus to compute good predictions
when there are relatively few ratings available. One straightforward option for
dealing with this problem is to exploit additional information about the users,
such as gender, age, education, interests, or other available information that
can help to classify the user. The set of similar users (neighbors) is thus based
not only on the analysis of the explicit and implicit ratings, but also on infor-
mation external to the ratings matrix. These systems – such as the hybrid one
mentioned by Pazzani (1999b), which exploits demographic information – are,

24 2 Collaborative recommendation

User1

Item1 Item2 Item3 Item4

User2 User3

Figure 2.2. Graphical representation of user–item relationships.

however, no longer “purely” collaborative, and new questions of how to acquire
the additional information and how to combine the different classifiers arise.
Still, to reach the critical mass of users needed in a collaborative approach,
such techniques might be helpful in the ramp-up phase of a newly installed
recommendation service.

Over the years, several approaches to deal with the cold-start and data spar-
sity problems have been proposed. Here, we discuss one graph-based method
proposed by Huang et al. (2004) as one example in more detail. The main idea
of their approach is to exploit the supposed “transitivity” of customer tastes
and thereby augment the matrix with additional information2.

Consider the user-item relationship graph in Figure 2.2, which can be in-
ferred from the binary ratings matrix in Table 2.3 (adapted from Huang et al.
(2004)).

A 0 in this matrix should not be interpreted as an explicit (poor) rating, but
rather as a missing rating. Assume that we are looking for a recommendation
for User1. When using a standard CF approach, User2 will be considered a
peer for User1 because they both bought Item2 and Item4. Thus Item3 will
be recommended to User1 because the nearest neighbor, User2, also bought
or liked it. Huang et al. (2004) view the recommendation problem as a graph
analysis problem, in which recommendations are determined by determining
paths between users and items. In a standard user-based or item-based CF
approach, paths of length 3 will be considered – that is, Item3 is relevant
for User1 because there exists a three-step path (User1–Item2–User2–Item3)
between them. Because the number of such paths of length 3 is small in sparse
rating databases, the idea is to also consider longer paths (indirect associations)
to compute recommendations. Using path length 5, for instance, would allow

2 A similar idea of exploiting the neighborhood relationships in a recursive way was proposed by
Zhang and Pu (2007).

2.3 About ratings 25

Table 2.3. Ratings database for spreading activation
approach.

Item1 Item2 Item3 Item4

User1 0 1 0 1
User2 0 1 1 1
User3 1 0 1 0

for the recommendation also of Item1, as two five-step paths exist that connect
User1 and Item1.

Because the computation of these distant relationships is computationally
expensive, Huang et al. (2004) propose transforming the rating matrix into a
bipartite graph of users and items. Then, a specific graph-exploring approach
called spreading activation is used to analyze the graph in an efficient manner.
A comparison with the standard user-based and item-based algorithms shows
that the quality of the recommendations can be significantly improved with
the proposed technique based on indirect relationships, in particular when the
ratings matrix is sparse. Also, for new users, the algorithm leads to measurable
performance increases when compared with standard collaborative filtering
techniques. When the rating matrix reaches a certain density, however, the
quality of recommendations can also decrease when compared with standard
algorithms. Still, the computation of distant relationships remains computa-
tionally expensive; it has not yet been shown how the approach can be applied
to large ratings databases.

Default voting, as described by Breese et al. (1998), is another technique
of dealing with sparse ratings databases. Remember that standard similarity
measures take into account only items for which both the active user and the
user to be compared will have submitted ratings. When this number is very
small, coincidental rating commonalities and differences influence the similar-
ity measure too much. The idea is therefore to assign default values to items
that only one of the two users has rated (and possibly also to some additional
items) to improve the prediction quality of sparse rating databases (Breese et al.
1998). These artificial default votes act as a sort of damping mechanism that
reduces the effects of individual and coincidental rating similarities.

More recently, another approach to deal with the data sparsity problem was
proposed by Wang et al. (2006). Based on the observation that most collabo-
rative recommenders use only a certain part of the information – either user
similarities or item similarities – in the ratings databases, they suggest com-
bining the two different similarity types to improve the prediction accuracy.

26 2 Collaborative recommendation

In addition, a third type of information (“similar item ratings made by similar
users”), which is not taken into account in previous approaches, is exploited in
their prediction function. The “fusion” and smoothing of the different predic-
tions from the different sources is accomplished in a probabilistic framework;
first experiments show that the prediction accuracy increases, particularly when
it comes to sparse rating databases.

The cold-start problem can be viewed as a special case of this sparsity
problem (Huang et al. 2004). The questions here are (a) how to make rec-
ommendations to new users that have not rated any item yet and (b) how to
deal with items that have not been rated or bought yet. Both problems can
be addressed with the help of hybrid approaches – that is, with the help of
additional, external information (Adomavicius and Tuzhilin 2005). For the
new-users problem, other strategies are also possible. One option could be to
ask the user for a minimum number of ratings before the service can be used.
In such situations the system could intelligently ask for ratings for items that,
from the viewpoint of information theory, carry the most information (Rashid
et al. 2002). A similar strategy of asking the user for a gauge set of ratings is
used for the Eigentaste algorithm presented by Goldberg et al. (2001).

2.4 Further model-based and preprocessing-based
approaches

Collaborative recommendation techniques are often classified as being either
memory-based or model-based. The traditional user-based technique is said to
be memory-based because the original rating database is held in memory and
used directly for generating the recommendations. In model-based approaches,
on the other hand, the raw data are first processed offline, as described for item-
based filtering or some dimensionality reduction techniques. At run time, only
the precomputed or “learned” model is required to make predictions. Although
memory-based approaches are theoretically more precise because full data
are available for generating recommendations, such systems face problems
of scalability if we think again of databases of tens of millions of users and
millions of items.

In the next sections, we discuss some more model-based recommendation
approaches before we conclude with a recent practical-oriented approach.

2.4.1 Matrix factorization/latent factor models

The Netflix Prize competition, which was completed in 2009, showed that
advanced matrix factorization methods, which were employed by many

2.4 Further model-based and preprocessing-based approaches 27

participating teams, can be particularly helpful to improve the predictive accu-
racy of recommender systems3.

Roughly speaking, matrix factorization methods can be used in recom-
mender systems to derive a set of latent (hidden) factors from the rating pat-
terns and characterize both users and items by such vectors of factors. In the
movie domain, such automatically identified factors can correspond to obvious
aspects of a movie such as the genre or the type (drama or action), but they
can also be uninterpretable. A recommendation for an item i is made when the
active user and the item i are similar with respect to these factors (Koren et al.
2009).

This general idea of exploiting latent “semantic” factors has been success-
fully applied in the context of information retrieval since the late 1980s. Specif-
ically, Deerwester et al. (1990) proposed using singular value decomposition
(SVD) as a method to discover the latent factors in documents; in information
retrieval settings, this latent semantic analysis (LSA) technique is also referred
to as latent semantic indexing (LSI).

In information retrieval scenarios, the problem usually consists of finding
a set of documents, given a query by a user. As described in more detail in
Chapter 3, both the existing documents and the user’s query are encoded as a
vector of terms. A basic retrieval method could simply measure the overlap of
terms in the documents and the query. However, such a retrieval method does
not work well when there are synonyms such as “car” and “automobile” and
polysemous words such as “chip” or “model” in the documents or the query.
With the help of SVD, the usually large matrix of document vectors can be
collapsed into a smaller-rank approximation in which highly correlated and
co-occurring terms are captured in a single factor. Thus, LSI-based retrieval
makes it possible to retrieve relevant documents even if it does not contain
(many) words of the user’s query.

The idea of exploiting latent relationships in the data and using matrix
factorization techniques such as SVD or principal component analysis was
relatively soon transferred to the domain of recommender systems (Sarwar
et al. 2000b; Goldberg et al. 2001; Canny 2002b). In the next section, we
will show an example of how SVD can be used to generate recommendations;
the example is adapted from the one given in the introduction to SVD-based
recommendation by Grigorik (2007).

3 The DVD rental company Netflix started this open competition in 2006. A $1 million prize was
awarded for the development of a CF algorithm that is better than Netflix’s own recommendation
system by 10 percent; see http://www.netflixprize.com.

28 2 Collaborative recommendation

Table 2.4. Ratings database for SVD-based
recommendation.

User1 User2 User3 User4

Item1 3 4 3 1
Item2 1 3 2 6
Item3 2 4 1 5
Item4 3 3 5 2

Example for SVD-based recommendation. Consider again our rating matrix
from Table 2.1, from which we remove Alice and that we transpose so we can
show the different operations more clearly (see Table 2.4).

Informally, the SVD theorem (Golub and Kahan 1965) states that a given
matrix M can be decomposed into a product of three matrices as follows, where
U and V are called left and right singular vectors and the values of the diagonal
of � are called the singular values.

M = U�V T (2.10)

Because the 4 × 4-matrix M in Table 2.4 is quadratic, U , �, and V are also
quadratic 4 × 4 matrices. The main point of this decomposition is that we can
approximate the full matrix by observing only the most important features –
those with the largest singular values. In the example, we calculate U , V , and
� (with the help of some linear algebra software) but retain only the two most
important features by taking only the first two columns of U and V T , see
Table 2.5.

The projection of U and V T in the two-dimensional space (U2, V T
2) is shown

in Figure 2.3. Matrix V corresponds to the users and matrix U to the catalog
items. Although in our particular example we cannot observe any clusters of
users, we see that the items from U build two groups (above and below the
x-axis). When looking at the original ratings, one can observe that Item1 and

Table 2.5. First two columns of decomposed matrix and singular values �.

U2

−0.4312452 0.4931501
−0.5327375 −0.5305257
−0.5237456 −0.4052007
−0.5058743 0.5578152

V2

−0.3593326 0.36767659
−0.5675075 0.08799758
−0.4428526 0.56862492
−0.5938829 −0.73057242

�2

12.2215 0
0 4.9282

2.4 Further model-based and preprocessing-based approaches 29

User 3

User 4

User 1

User 2

Item 2

Item 3

Item 4
Item 1

Alice

-0,7 -0,6 -0,5 -0,4 -0,3 -0,2 -0,1

-0,8

-0,6

-0,4

-0,2

0,0

0,0

0,2

0,4

0,6

0,8

U

V

Alice

Figure 2.3. SVD-based projection in two-dimensional space.

Item4 received somewhat similar ratings. The same holds for Item2 and Item3,
which are depicted below the x-axis. With respect to the users, we can at least
see that User4 is a bit far from the others.

Because our goal is to make a prediction for Alice’s ratings, we must first
find out where Alice would be positioned in this two-dimensional space.

To find out Alice’s datapoint, multiply Alice’s rating vector [5, 3, 4, 4] by
the two-column subset of U and the inverse of the two-column singular value
matrix �.

Alice2D = Alice × U2 × �−1
2 = [−0.64, 0.30] (2.11)

Given Alice’s datapoint, different strategies can be used to generate a recom-
mendation for her. One option could be to look for neighbors in the compressed
two-dimensional space and use their item ratings as predictors for Alice’s rat-
ing. If we rely again on cosine similarity to determine user similarity, User1
and User2 will be the best predictors for Alice in the example. Again, different
weighting schemes, similarity thresholds, and strategies for filling missing item
ratings (e.g., based on product averages) can be used to fine-tune the prediction.
Searching for neighbors in the compressed space is only one of the possible op-
tions to make a prediction for Alice. Alternatively, the interaction between user
and items in the latent factor space (measured with the cosine similarity metric)
can be used to approximate Alice’s rating for an item (Koren et al. 2009).

30 2 Collaborative recommendation

Principal component analysis – Eigentaste. A different approach to dimen-
sionality reduction was proposed by Goldberg et al. (2001) and initially applied
to the implementation of a joke recommender. The idea is to preprocess the rat-
ings database using principal component analysis (PCA) to filter out the “most
important” aspects of the data that account for most of the variance. The authors
call their method “Eigentaste,” because PCA is a standard statistical analysis
method based on the computation of the eigenvalue decomposition of a matrix.
After the PCA step, the original rating data are projected along the most rele-
vant of the principal eigenvectors. Then, based on this reduced dataset, users
are grouped into clusters of neighbors, and the mean rating for the items is
calculated. All these (computationally expensive) steps are done offline. At run
time, new users are asked to rate a set of jokes (gauge set) on a numerical scale.
These ratings are transformed based on the principal components, and the cor-
rect cluster is determined. The items with the highest ratings for this cluster are
simply retrieved by a look-up in the preprocessed data. Thus, the computational
complexity at run time is independent of the number of users, resulting in a
“constant time” algorithm. The empirical evaluation and comparison with a
basic nearest-neighborhood algorithm show that in some experiments, Eigen-
taste can provide comparable recommendation accuracy while the computation
time can be significantly reduced. The need for a gauge set of, for example,
ten ratings is one of the characteristics that may limit the practicality of the
approach in some domains.

Discussion. Sarwar et al. (2000a) have analyzed how SVD-based dimension-
ality reduction affects the quality of the recommendations. Their experiments
showed some interesting insights. In some cases, the prediction quality was
worse when compared with memory-based prediction techniques, which can
be interpreted as a consequence of not taking into account all the available infor-
mation. On the other hand, in some settings, the recommendation accuracy was
better, which can be accounted for by the fact that the dimensionality reduction
technique also filtered out some “noise” in the data and, in addition, is capable
of detecting nontrivial correlations in the data. To a great extent the quality of
the recommendations seems to depend on the right choice of the amount of data
reduction – that is, on the choice of the number of singular values to keep in an
SVD approach. In many cases, these parameters can, however, be determined
and fine-tuned only based on experiments in a certain domain. Koren et al.
(2009) talk about 20 to 100 factors that are derived from the rating patterns.

As with all preprocessing approaches, the problem of data updates – how
to integrate newly arriving ratings without recomputing the whole “model”

2.4 Further model-based and preprocessing-based approaches 31

again – also must be solved. Sarwar et al. (2002), for instance, proposed a
technique that allows for the incremental update for SVD-based approaches.
Similarly, George and Merugu (2005) proposed an approach based on co-
clustering for building scalable CF recommenders that also support the dynamic
update of the rating database.

Since the early experiments with matrix factorization techniques in recom-
mender systems, more elaborate and specialized methods have been developed.
For instance, Hofmann (2004; Hofmann and Puzicha 1999) proposed to ap-
ply probabilistic LSA (pLSA) a method to discover the (otherwise hidden)
user communities and interest patterns in the ratings database and showed that
good accuracy levels can be achieved based on that method. Hofmann’s pLSA
method is similar to LSA with respect to the goal of identifying hidden rela-
tionships; pLSA is, however, based not on linear algebra but rather on statistics
and represents a “more principled approach which has a solid foundation in
statistics” (Hofmann 1999).

An overview of recent and advanced topics in matrix factorization for rec-
ommender systems can be found in Koren et al. (2009). In this paper, Koren
et al. focus particularly on the flexibility of the model and show, for instance,
how additional information, such as demographic data, can be incorporated;
how temporal aspects, such as changing user preferences, can be dealt with; or
how existing rating bias can be taken into account. In addition, they also
propose more elaborate methods to deal with missing rating data and report
on some insights from applying these techniques in the Netflix prize com-
petition.

2.4.2 Association rule mining

Association rule mining is a common technique used to identify rulelike rela-
tionship patterns in large-scale sales transactions. A typical application of this
technique is the detection of pairs or groups of products in a supermarket that
are often purchased together. A typical rule could be, “If a customer purchases
baby food then he or she also buys diapers in 70 percent of the cases”. When
such relationships are known, this knowledge can, for instance, be exploited
for promotional and cross-selling purposes or for design decisions regarding
the layout of the shop.

This idea can be transferred to collaborative recommendation – in other
words, the goal will be to automatically detect rules such as “If user X liked both
item1 and item2, then X will most probably also like item5.” Recommendations
for the active user can be made by evaluating which of the detected rules

32 2 Collaborative recommendation

apply – in the example, checking whether the user liked item1 and item2 – and
then generating a ranked list of proposed items based on statistics about the
co-occurrence of items in the sales transactions.

We can describe the general problem more formally as follows, using the
notation from Sarwar et al. (2000b). A (sales) transaction T is a subset of the
set of available products P = {p1, . . . , pm} and describes a set of products that
have been purchased together. Association rules are often written in the form
X ⇒ Y , with X and Y being both subsets of P and X ∩ Y = ∅. An association
rule X ⇒ Y (e.g., baby-food ⇒ diapers) expresses that whenever the elements
of X (the rule body) are contained in a transaction T , it is very likely that the
elements in Y (the rule head) are elements of the same transaction.

The goal of rule-mining algorithms such as Apriori (Agrawal and Srikant
1994) is to automatically detect such rules and calculate a measure of quality
for those rules. The standard measures for association rules are support and
confidence. The support of a rule X ⇒ Y is calculated as the percentage of
transactions that contain all items of X ∪ Y with respect to the number of overall
transactions (i.e., the probability of co-occurrence of X and Y in a transaction).
Confidence is defined as the ratio of transactions that contain all items of X ∪ Y

to the number of transactions that contain only X – in other words, confidence
corresponds to the conditional probability of Y given X.

More formally,

support = number of transactions containing X ∪ Y

number of transactions
(2.12)

confidence = number of transactions containing X ∪ Y

number of transactions containing X
(2.13)

Let us consider again our small rating matrix from the previous section to
show how recommendations can be made with a rule-mining approach. For
demonstration purposes we will simplify the five-point ratings and use only a
binary “like/dislike” scale. Table 2.6 shows the corresponding rating matrix;
zeros correspond to “dislike” and ones to “like.” The matrix was derived from
Table 2.2 (showing the mean-adjusted ratings). It contains a 1 if a rating was
above a user’s average and a 0 otherwise.

Standard rule-mining algorithms can be used to analyze this database and
calculate a list of association rules and their corresponding confidence and
support values. To focus only on the relevant rules, minimum threshold values
for support and confidence are typically defined, for instance, through experi-
mentation.

2.4 Further model-based and preprocessing-based approaches 33

Table 2.6. Transformed ratings database for rule mining.

Item1 Item2 Item3 Item4 Item5

Alice 1 0 0 0 ?
User1 1 0 0 1 1
User2 1 0 1 0 1
User3 0 0 0 1 1
User4 0 1 1 0 0

In the context of collaborative recommendation, a transaction could be
viewed as the set of all previous (positive) ratings or purchases of a customer.
A typical association that should be analyzed is the question of how likely it is
that users who liked Item1 will also like Item5 (Item1⇒ Item5). In the example
database, the support value for this rule (without taking Alice’s ratings into
account) is 2/4; confidence is 2/2.

The calculation of the set of interesting association rules with a sufficiently
high value for confidence and support can be performed offline. At run time,
recommendations for user Alice can be efficiently computed based on the
following scheme described by Sarwar et al. (2000b):

(1) Determine the set of X ⇒ Y association rules that are relevant for Alice –
that is, where Alice has bought (or liked) all elements from X. Because
Alice has bought Item1, the aforementioned rule is relevant for Alice.

(2) Compute the union of items appearing in the consequent Y of these asso-
ciation rules that have not been purchased by Alice.

(3) Sort the products according to the confidence of the rule that predicted
them. If multiple rules suggested one product, take the rule with the highest
confidence.

(4) Return the first N elements of this ordered list as a recommendation.

In the approach described by Sarwar et al. (2000b), only the actual purchases
(“like” ratings) were taken into account – the system does not explicitly handle
“dislike” statements. Consequently, no rules are inferred that express that, for
example, whenever a user liked Item2 he or she would not like Item3, which
could be a plausible rule in our example.

Fortunately, association rule mining can be easily extended to also handle
categorical attributes so both “like” and “dislike” rules can be derived from the
data. Lin et al. (2002; Lin 2000), for instance, propose to transform the usual
numerical item ratings into two categories, as shown in the example, and then to

34 2 Collaborative recommendation

map ratings to “transactions” in the sense of standard association rule mining
techniques. The detection of rules describing relationships between articles
(“whenever item2 is liked . . .”) is only one of the options; the same mechanism
can be used to detect like and dislike relationships between users, such as
“90 percent of the articles liked by user A and user B are also liked by user C.”

For the task of detecting the recommendation rules, Lin et al. (2002) propose
a mining algorithm that takes the particularities of the domain into account and
specifically searches only for rules that have a certain target item (user or article)
in the rule head. Focusing the search for rules in that way not only improves the
algorithm’s efficiency but also allows for the detection of rules for infrequently
bought items, which could be filtered out in a global search because of their
limited support value. In addition, the algorithm can be parameterized with
lower and upper bounds on the number of rules it should try to identify.

Depending on the mining scenario, different strategies for determining the
set of recommended items can be used. Let us assume a scenario in which
associations between customers instead of items are mined. An example of a
detected rule would therefore be “If User1 likes an item, and User2 dislikes
the item, Alice (the target user) will like the item.”

To determine whether an item will be liked by Alice, we can check, for each
item, whether the rule “fires” for the item – that is, if User1 liked it and User2
disliked it. Based on confidence and support values of these rules, an overall
score can be computed for each item as follows (Lin et al. 2002):

scoreitemi
=

∑
rules recommending itemi

(supportrule ∗ confidencerule) (2.14)

If this overall item score surpasses a defined threshold value, the item will
be recommended to the target user. The determination of a suitable threshold
was done by Lin et al. (2002) based on experimentation.

When item (article) associations are used, an additional cutoff parameter
can be determined in advance that describes some minimal support value. This
cutoff not only reduces the computational complexity but also allows for the
detection of rules for articles that have only a very few ratings.

In the experiments reported by Lin et al. (2002), a mixed strategy was imple-
mented that, as a default, not only relies on the exploitation of user associations
but also switches to article associations whenever the support values of the
user association rules are below a defined threshold. The evaluation shows that
user associations generally yield better results than article associations; article
associations can, however, be computed more quickly. It can also be observed
from the experiments that a limited number of rules is sufficient for generating
good predictions and that increasing the number of rules does not contribute

2.4 Further model-based and preprocessing-based approaches 35

any more to the prediction accuracy. The first observation is interesting because
it contrasts the observation made in nearest-neighbor approaches described ear-
lier in which item-to-item correlation approaches have shown to lead to better
results.

A comparative evaluation finally shows that in the popular movie domain, the
rule-mining approach outperforms other algorithms, such as the one presented
by Billsus and Pazzani (1998a), with respect to recommendation quality. In
another domain – namely, the recommendation of interesting pages for web
users, Fu et al. (2000), also report promising results for using association rules
as a mechanism for predicting the relevance of individual pages. In contrast to
many other approaches, they do not rely on explicit user ratings for web pages
but rather aim to automatically store the navigation behavior of many users in
a central repository and then to learn which users are similar with respect to
their interests. More recent and elaborate works in that direction, such as those
by Mobasher et al. (2001) or Shyu et al. (2005), also rely on web usage data
and association rule mining as core mechanisms to predict the relevance of web
pages in the context of adaptive user interfaces and web page recommendations.

2.4.3 Probabilistic recommendation approaches

Another way of making a prediction about how a given user will rate a certain
item is to exploit existing formalisms of probability theory4.

A first, and very simple, way to implement collaborative filtering with a
probabilistic method is to view the prediction problem as a classification prob-
lem, which can generally be described as the task of “assigning an object to
one of several predefined categories” (Tan et al. 2006). As an example of a
classification problem, consider the task of classifying an incoming e-mail
message as spam or non-spam. In order to automate this task, a function has
to be developed that defines – based, for instance, on the words that occur in
the message header or content – whether the message is classified as a spam
e-mail or not. The classification task can therefore be seen as the problem of
learning this mapping function from training examples. Such a function is also
informally called the classification model.

One standard technique also used in the area of data mining is based on
Bayes classifiers. We show, with a simplified example, how a basic probabilistic
method can be used to calculate rating predictions. Consider a slightly different

4 Although the selection of association rules, based on support and confidence values, as described
in the previous section is also based on statistics, association rule mining is usually not classified
as a probabilistic recommendation method.

36 2 Collaborative recommendation

Table 2.7. Probabilistic models: the rating database.

Item1 Item2 Item3 Item4 Item5

Alice 1 3 3 2 ?
User1 2 4 2 2 4
User2 1 3 3 5 1
User3 4 5 2 3 3
User4 1 1 5 2 1

ratings database (see Table 2.7). Again, a prediction for Alice’s rating of Item5
is what we are interested in.

In our setting, we formulate the prediction task as the problem of calculating
the most probable rating value for Item5, given the set of Alice’s other ratings
and the ratings of the other users. In our method, we will calculate conditional
probabilities for each possible rating value given Alice’s other ratings, and then
select the one with the highest probability as a prediction5.

To predict the probability of rating value 1 for Item5 we must calculate the
conditional probability P (Item5 = 1|X), with X being Alice’s other ratings:
X = (Item1 = 1, Item2 = 3, Item3 = 3, Item4 = 2).

For the calculation of this probability, the Bayes theorem is used, which
allows us to compute this posterior probability P (Y |X) through the class-
conditional probability P (X|Y), the probability of Y (i.e., the probability of
a rating value 1 for Item5 in the example), and the probability of X, more
formally

P (Y |X) = P (X|Y) × P (Y)

P (X)
(2.15)

Under the assumption that the attributes (i.e., the ratings users) are condi-
tionally independent, we can compute the posterior probability for each value
of Y with a naive Bayes classifier as follows, d being the number of attributes
in each X:

P (Y |X) =
∏d

i=1 P (Xi|Y) × P (Y)

P (X)
(2.16)

In many domains in which naive Bayes classifiers are applied, the assump-
tion of conditional independence actually does not hold, but such classifiers
perform well despite this fact.

5 Again, a transformation of the ratings database into “like” and “dislike” statements is possible
(Miyahara and Pazzani 2000).

2.4 Further model-based and preprocessing-based approaches 37

As P (X) is a constant value, we can omit it in our calculations. P (Y) can be
estimated for each rating value based on the ratings database: P(Item5=1) =
2/4 (as two of four ratings for Item5 had the value 1), P(Item5=2)=0, and
so forth. What remains is the calculation of all class-conditional probabilities
P (Xi |Y):

P(X|Item5=1) = P(Item1=1|Item5=1) × P(Item2=3|Item5=1)
× P(Item3=3|Item5=1) × P(Item4=2|Item5=1)

= 2/2 × 1/2 × 1/2 × 1/2
= 0.125

P(X|Item5=2) = P(Item1=1|Item5=2) × P(Item2=3|Item5=2)
× P(Item3=3|Item5=2) × P(Item4=2|Item5=2)

= 0/0 × · · · × · · · × · · ·
= 0

Based on these calculations, given that P(Item5=1) = 2/4 and omitting
the constant factor P (X) in the Bayes classifier, the posterior probability of a
rating value 1 for Item5 is P (Item5 = 1|X) = 2/4 × 0.125 = 0.0625. In the
example ratings database, P(Item5=1) is higher than all other probabilities,
which means that the probabilistic rating prediction for Alice will be 1 for
Item5. One can see in the small example that when using this simple method
the estimates of the posterior probabilities are 0 if one of the factors is 0 and
that in the worst case, a rating vector cannot be classified. Techniques such
as using the m-estimate or Laplace smoothing are therefore used to smooth
conditional probabilities, in particular for sparse training sets. Of course, one
could also – as in the association rule mining approach – use a preprocessed
rating database and use “like” and “dislike” ratings and/or assign default ratings
only to missing values.

The simple method that we developed for illustration purposes is computa-
tionally complex, does not work well with small or sparse rating databases, and
will finally lead to probability values for each rating that differ only very slightly
from each other. More advanced probabilistic techniques are thus required.

The most popular approaches that rely on a probabilistic model are based
on the idea of grouping similar users (or items) into clusters, a technique
that, in general, also promises to help with the problems of data sparsity and
computational complexity.

The naı̈ve Bayes model described by Breese et al. (1998) therefore includes
an additional unobserved class variable C that can take a small number of
discrete values that correspond to the clusters of the user base. When, again,
conditional independence is assumed, the following formula expresses the

38 2 Collaborative recommendation

probability model (mixture model):

P (C = c, v1, . . . , vn) = P (C = c)
n∏

i=1

P (vi|C = c) (2.17)

where P (C = c, v1, . . . , vn) denotes the probability of observing a full set of
values for an individual of class c. What must be derived from the training
data are the probabilities of class membership, P (C = c), and the conditional
probabilities of seeing a certain rating value when the class is known, P (vi |C =
c). The problem that remains is to determine the parameters for a model and
estimate a good number of clusters to use. This information is not directly
contained in the ratings database but, fortunately, standard techniques in the
field, such as the expectation maximization algorithm (Dempster et al. 1977),
can be applied to determine the model parameters.

At run time, a prediction for a certain user u and an item i can be made based
on the probability of user u falling into a certain cluster and the probability
of liking item i when being in a certain cluster given the user’s ratings; see
Ungar and Foster (1998) for more details on model estimation for probabilistic
clustering for collaborative filtering.

Other methods for clustering can be applied in the recommendation domain
to for instance, reduce the complexity problem. Chee et al. (2001), for example,
propose to use a modified k-means clustering algorithm to partition the set of
users in homogeneous or cohesive groups (clusters) such that there is a high
similarity between users with respect to some similarity measure in one cluster
and the interpartition similarity is kept at a low level. When a rating prediction
has to be made for a user at run time, the system determines the group of the
user and then takes the ratings of only the small set of members of this group
into account when computing a weighted rating value. The performance of such
an algorithm depends, of course, on the number of groups and the respective
group size. Smaller groups are better with respect to run-time performance;
still, when groups are too small, the recommendation accuracy may degrade.
Despite the run-time savings that can be achieved with this technique, such
in-memory approaches do not scale for really large databases. A more recent
approach that also relies on clustering users with the same tastes into groups
with the help of k-means can be found in Xue et al. (2005).

Coming back to the probabilistic approaches, besides such naive Bayes
approaches, Breese et al. (1998) also propose another form of implementing
a Bayes classifier and modeling the class-conditional probabilities based on
Bayesian belief networks. These networks allow us to make existing depen-
dencies between variables explicit and encode these relationships in a directed

2.4 Further model-based and preprocessing-based approaches 39

acyclic graph. Model building thus first requires the system to learn the struc-
ture of the network (see Chickering et al. 1997) before the required conditional
probabilities can be estimated in a second step.

The comparison of the probabilistic methods with other approaches, such
as a user-based nearest-neighbor algorithm, shows that the technique based
on Bayesian networks slightly outperforms the other algorithms in some test
domains, although not in all. In a summary over all datasets and evaluation
protocols, the Bayesian network method also exhibits the best overall perfor-
mance (Breese et al. 1998). For some datasets, however – as in the popular
movie domain – the Bayesian approach performs significantly worse than a
user-based approach extended with default voting, inverse user frequency, and
case amplification.

In general, Bayesian classification methods have the advantages that indi-
vidual noise points in the data are averaged out and that irrelevant attributes
have little or no impact on the calculated posterior probabilities (Tan et al.
2006). Bayesian networks have no strong trend of overfitting the model – that
is, they can almost always learn appropriately generalized models, which leads
to good predictive accuracy. In addition, they can also be used when the data
are incomplete.

As a side issue, the run-time performance of the probabilistic approaches de-
scribed herein is typically much better than that for memory-based approaches,
as the model itself is learned offline and in advance. In parallel, Breese et al.
(1998) argue that probabilistic approaches are also favorable with respect to
memory requirements, partly owing to the fact that the resulting belief networks
remain rather small.

An approach similar to the naive Bayes method of Breese et al. (1998) is
described by Chen and George (1999), who also provide more details about the
treatment of missing ratings and how users can be clustered based on the in-
troduction of a hidden (latent) variable to model group membership. Miyahara
and Pazzani (2000), propose a comparably straightforward but effective collab-
orative filtering technique based on a simple Bayes classifier and, in particular,
also discuss the aspect of feature selection, a technique commonly used to
leave out irrelevant items (features), improve accuracy, and reduce computation
time.

A more recent statistical method that uses latent class variables to discover
groups of similar users and items is that proposed by Hofmann (2004; Hofmann
and Puzicha 1999), and it was shown that further quality improvements can be
achieved when compared with the results of Breese et al. (1998). This method
is also employed in Google’s news recommender, which will be discussed
in the next section. A recent comprehensive overview and comparison of

40 2 Collaborative recommendation

different probabilistic approaches and mixture models can be found in Jin
et al. (2006).

Further probabilistic approaches are described by Pennock et al. (2000) and
Yu et al. (2004), both aiming to combine the ideas and advantages of model-
based and memory-based recommendations in a probabilistic framework. Yu
et al. (2004) develop what they call a “memory-based probabilistic framework
for collaborative filtering”. As a framework, it is particularly designed to ac-
commodate extensions for particular challenges such as the new user problem
or the problem of selecting a set of peer users from the ratings database; all these
extensions are done in a principled, probabilistic way. The new user problem
can be addressed in this framework through an active learning approach – that
is, by asking a new user to rate a set of items as also proposed by Goldberg et al.
(2001). The critical task of choosing the items that the new user will hopefully
be able to rate is done on a decision-theoretic and probabilistic basis. Moreover,
it is also shown how the process of generating and updating the profile space,
which contains the most “informative” users in the user database and which is
constructed to reduce the computational complexity, can be embedded in the
same probabilistic framework. Although the main contribution, as the authors
state it, is the provision of a framework that allows for extensions on a sound
probabilistic basis, their experiments show that with the proposed techniques,
comparable or superior prediction accuracy can be achieved when compared,
for instance, with the results reported for probabilistic methods described by
Breese et al. (1998).

2.5 Recent practical approaches and systems

Our discussion so far has shown the broad spectrum of different techniques
that can, in principle, be used to generate predictions and recommendations
based on the information from a user–item rating matrix. We can observe that
these approaches differ not only with respect to their recommendation quality
(which is the main goal of most research efforts) but also in the complex-
ity of the algorithms themselves. Whereas the first memory-based algorithms
are also rather straightforward with respect to implementation aspects, oth-
ers are based on sophisticated (preprocessing and model-updating) techniques.
Although mathematical software libraries are available for many methods,
their usage requires in-depth mathematical expertise,6 which may hamper the

6 Such expertise is required, in particular, when the used approach is computationally complex
and the algorithms must be applied in an optimized way.

2.5 Recent practical approaches and systems 41

Table 2.8. Slope One prediction for
Alice and Item5 = 2 + (2 − 1) = 3.

Item1 Item5

Alice 2 ?
User1 1 2

practical usage of these approaches, in particular for small-sized businesses. In
a recent paper, Lemire and Maclachlan (2005) therefore proposed a new and
rather simple recommendation technique that, despite its simplicity, leads to
reasonable recommendation quality. In addition to the goal of easy implemen-
tation for “an average engineer”, their Slope One prediction schemes should
also support on-the-fly data updates and efficient run-time queries. We discuss
this method, which is in practical use on several web sites, in the next section.

In general, the number of publicly available reports on real-world commer-
cial recommender systems (large scale or not) is still limited. In a recent paper,
Das et al. (2007), report in some detail on the implementation of Google’s news
personalization engine that was designed to provide personalized recommen-
dations in real time. A summary of this approach concludes the section and
sheds light on practical aspects of implementing a large-scale recommender
system that has an item catalog consisting of several million news articles and
is used by millions of online users.

2.5.1 Slope One predictors

The original idea of “Slope One” predictors is simple and is based on what
the authors call a “popularity differential” between items for users. Consider
the following example (Table 2.8), which is based on a pairwise comparison of
how items are liked by different users.

In the example, User1 has rated Item1 with 1 and Item5 with 2. Alice has
rated Item1 with 2. The goal is to predict Alice’s rating for Item5. A simple
prediction would be to add to Alice’s rating for Item1 the relative difference
of User1’s ratings for these two items: p(Alice, Item5) = 2 + (2 − 1) = 3. The
ratings database, of course, consists of many such pairs, and one can take the
average of these differences to make the prediction.

In general, the problem consists of finding functions of the form f (x) =
x + b (that is why the name is “Slope One”) that predict, for a pair of items,
the rating for one item from the rating of the other one.

42 2 Collaborative recommendation

Table 2.9. Slope One prediction: a more
detailed example.

Item1 Item2 Item3

Alice 2 5 ?
User1 3 2 5
User2 4 3

Let us now look at the following slightly more complex example (Table 2.9)
in which we search for a prediction for Alice for Item3.7

There are two co-ratings of Item1 and Item3. One time Item3 is rated two
points higher (5 − 3 = 2), and the other time one point lower, than Item1 (3 −
4 = −1). The average distance between these items is thus (2 + (−1))/2 = 0.5.
There is only one co-rating of Item3 and Item2 and the distance is (5 − 2) = 3.
The prediction for Item3 based on Item1 and Alice’s rating of 2 would therefore
be 2 + 0.5 = 2.5. Based on Item2, the prediction is 5 + 3 = 8. An overall
prediction can now be made by taking the number of co-ratings into account to
give more weight to deviations that are based on more data:

pred(Alice, Item3) = 2 × 2.5 + 1 × 8

2 + 1
= 4.33 (2.18)

In detail, the approach can be described as follows, using a slightly different
notation (Lemire and Maclachlan 2005) that makes the description of the
calculations simpler. The whole ratings database shall be denoted R, as usual.
The ratings of a certain user are contained in an incomplete array u, ui being
u’s ratings for item i. Lemire and Maclachlan (2005) call such an array an
evaluation, and it corresponds to a line in the matrix R. Given two items j and
i, let Sj,i(R) denote the set of evaluations that contain both ratings for i and j –
that is, the lines that contain the co-ratings. The average deviation dev of two
items i and j is then calculated as follows:

devj,i =
∑

(uj ,ui)∈Sj,i (R)

uj − ui

|Sj,i(R)| (2.19)

As shown in the example, from every co-rated item i we can make a pre-
diction for item j and user u as devj,i + ui . A simple combination of these

7 Adapted from Wikipedia (2008).

2.5 Recent practical approaches and systems 43

individual predictions would be to compute the average over all co-rated items:

pred(u, j) =
∑

i∈Relevant(u,j)(devj,i + ui)

|Relevant(u, j)| (2.20)

The function Relevant(u, j) denotes the set of relevant items – those that
have at least one co-rating with j by user u. In other words, Relevant(u, j) =
{i|i ∈ S(u), i
= j, |Sj,i(R)| > 0}, where S(u) denotes the set of entries in u

that contain a rating. This formula can be simplified in realistic scenarios and
sufficiently dense datasets to Relevant(u, j) = S(u) − {j} when j ∈ S(u).

The intuitive problem of that basic scheme is that it does not take the number
of co-rated items into account, although it is obvious that a predictor will be
better if there is a high number of co-rated items. Thus, the scheme is extended
in such a way that it weights the individual deviations based on the number of
co-ratings as follows:

pred(u, j) =
∑

i∈S(u)−{j}(devj,i + ui) ∗ |Sj,i(R)|∑
i∈S(u)−{j} ∗|Sj,i(R)| (2.21)

Another way of enhancing the basic prediction scheme is to weight the
deviations based on the “like and dislike” patterns in the rating database
(bipolar scheme). To that purpose, when making a prediction for user j , the
relevant item ratings (and deviations) are divided into two groups, one group
containing the items that were liked by both users and one group containing
items both users disliked. A prediction is made by combining these deviations.
The overall effect is that the scheme takes only those ratings into account in
which the users agree on a positive or negative rating. Although this might
seem problematic with respect to already sparse ratings databases, the desired
effect is that the prediction scheme “predicts nothing from the fact that user A

likes item K and user B dislikes the same item K” (Lemire and Maclachlan
2005).

When splitting the ratings into like and dislike groups, one should also take
the particularities of real-world rating databases into account. In fact, when
given a five-point scale (1–5), it can be observed that in typical datasets around
70 percent of the ratings are above the theoretical average of 3. This indicates
that, in general, users either (a) tend to provide ratings for items that they like
or (b) simply have a tendency to give rather high ratings and interpret a value
of 3 to be a rather poor rating value. In the bipolar prediction scheme discussed
here, the threshold was thus set to the average rating value of a user instead of
using an overall threshold.

An evaluation of the Slope One predictors on popular test databases re-
vealed that the quality of recommendations (measured by the usual metrics; see

44 2 Collaborative recommendation

Section 7.4.2) is comparable with the performance of existing approaches, such
as collaborative filtering based on Pearson correlation and case amplification.
The extensions of the basic scheme (weighted predictors, bipolar scheme) also
result in a performance improvement, although these improvements remain
rather small (1% to 2%) and are thus hardly significant.

Overall, despite its simplicity, the proposed item-based and ratings-based
algorithm shows a reasonable performance on popular rating databases. In ad-
dition, the technique supports both dynamic updates of the predictions when
new ratings arrive and efficient querying at run time (in exchange for increased
memory requirements, of course). In the broader context, such rather simple
techniques and the availability of small, open-source libraries in different pop-
ular programming languages can help to increase the number of real-world
implementations of recommender systems.

From an scientific perspective, however, a better understanding and more
evaluations on different datasets are required to really understand the particular
characteristics of the proposed Slope One algorithms in different applications
and settings.

2.5.2 The Google News personalization engine

Google News is an online information portal that aggregates news articles from
several thousand sources and displays them (after grouping similar articles) to
signed-in users in a personalized way; see Figure 2.4. The recommendation
approach is a collaborative one and is based on the click history of the active
user and the history of the larger community – that is, a click on a story is inter-
preted as a positive rating. More elaborate rating acquisition and interpretation
techniques are possible, of course; see, for instance, the work of Joachims et al.
(2005).

On the news portal, the recommender system is used to fill one specific
section with a personalized list of news articles. The main challenges are that
(a) the goal is to generate the list in real time, allowing at most one second
for generating the content and (b) there are very frequent changes in the “item
catalog”, as there is a constant stream of new items, whereas at the same time
other articles may quickly become out of date. In addition, one of the goals
is to immediately react to user interaction and take the latest article reads into
account.

Because of the vast number of articles and users and the given response-
time requirements, a pure memory-based approach is not applicable and a
combination of model-based and memory-based techniques is used. The model-
based part is based on two clustering techniques, probabilistic latent semantic

2.5 Recent practical approaches and systems 45

Figure 2.4. Google News portal.

indexing (PLSI) as proposed by Hofmann (2004), and – as a new proposal –
MinHash as a hashing method used for putting two users in the same cluster
(hash bucket) based on the overlap of items that both users have viewed.
To make this hashing process scalable, both a particular method for finding
the neighbors and Google’s own MapReduce technique for distributing the
computation over several clusters of machines are employed.

The PLSI method can be seen as a “second generation” probabilistic tech-
nique for collaborative filtering that – similar to the idea of the probabilistic
clustering technique of Breese et al. (1998) discussed earlier – aims to identify
clusters of like-minded users and related items. In contrast to the work of Breese
et al. (1998), in which every user belongs to exactly one cluster, in Hofmann’s
approach hidden variables with a finite set of states for every user–item pair
are introduced. Thus, such models can also accommodate the fact that users
may have interests in various topics in parallel. The parameters of the result-
ing mixture model are determined with the standard expectation maximization
(EM) method (Dempster et al. 1977). As this process is computationally very
expensive, with respect to both the number of operations and the amount of
required main memory, an algorithm is proposed for parallelizing the EM com-
putation via MapReduce over several machines. Although this parallelization
can significantly speed up the process of learning the probability distributions,
it is clearly not sufficient to retrain the network in real time when new users or
items appear, because such modifications happen far too often in this domain.
Therefore, for new stories, an approximate version of PLSI is applied that can

46 2 Collaborative recommendation

be updated in real time. A recommendation score is computed based on cluster-
membership probabilities and per-cluster statistics of the number of clicks for
each story. The score is normalized in the interval [0 . . . 1].

For dealing with new users, the memory-based part of the recommender
that analyzes story “co-visits” is important. A co-visit means that an article has
been visited by the same user within a defined period of time. The rationale of
exploiting such information directly corresponds to an item-based recommen-
dation approach, as described in previous sections. The data, however, are not
preprocessed offline, but a special data structure resembling the adjacency of
clicks is constantly kept up to date. Predictions are made by iterating over the
recent history of the active user and retrieving the neighboring articles from
memory. For calculating the actual score, the weights stored in the adjacency
matrix are taken into account, and the result is normalized on a 0-to-1 interval.

At run time, the overall recommendation score for each item in a defined set
of candidate items is computed as a linear combination of all the scores obtained
by the three methods (MinHash, PLSI, and co-visits). The preselection of an
appropriate set of recommendation candidates can be done based on different
pieces of information, such as language preferences, story freshness, or other
user-specific personalization settings. Alternatively, the click history of other
users in the same cluster could be used to limit the set of candidate items.

The evaluation of this algorithm on different datasets (movies and news arti-
cles) revealed that, when evaluated individually, PLSI performs best, followed
by MinHash and the standard similarity-based recommendation. For live data,
an experiment was made in which the new technique was compared with a
nonpersonalized approach, in which articles were ranked according to their
recent popularity. To compare the approaches, recommendation lists were gen-
erated that interleaved items from one algorithm with the other. The experiment
then measured which items received more clicks by users. Not surprisingly, the
personalized approach did significantly better (around 38%) except for the not-
so-frequent situations in which there were extraordinarily popular stories. The
interesting question of how to weight the scores of the individual algorithms,
however, remains open to some extent.

In general, what can be learned from that report is that if we have a combi-
nation of massive datasets and frequent changes in the data, significant efforts
(with respect to algorithms, engineering, and parallelization) are required such
that existing techniques can be employed and real-time recommendations are
possible. Pure memory-based approaches are not directly applicable and for
model-based approaches, the problem of continuous model updates must be
solved.

2.6 Discussion and summary 47

What is not answered in the study is the question of whether an approach
that is not content-agnostic would yield better results. We will see in the next
chapter that content-based recommendation techniques – algorithms that base
their recommendations on the document content and explicit or learned user
interests – are particularly suited for problems of that type.

2.6 Discussion and summary

Of all the different approaches to building recommender systems discussed
in this book, CF is the best-researched technique – not only because the first
recommender systems built in the mid-1990s were based on user communities
that rated items, but also because most of today’s most successful online rec-
ommenders rely on these techniques. Early systems were built using memory-
based neighborhood and correlation-based algorithms. Later, more complex
and model-based approaches were developed that, for example, apply tech-
niques from various fields, such as machine learning, information retrieval, and
data mining, and often rely on algebraic methods such as SVD.

In recent years, significant research efforts went into the development of
more complex probabilistic models as discussed by Adomavicius and Tuzhilin
(2005), in particular because the earliest reports of these methods (as in Breese
et al. 1998) indicate that they lead to very accurate predictions.

The popularity of the collaborative filtering subfield of recommender sys-
tems has different reasons, most importantly the fact that real-world benchmark
problems are available and that the data to be analyzed for generating recom-
mendations have a very simple structure: a matrix of item ratings. Thus, the
evaluation of whether a newly developed recommendation technique, or the
application of existing methods to the recommendation problem, outperforms
previous approaches is straightforward, in particular because the evaluation
metrics are also more or less standardized. One can easily imagine that com-
paring different algorithms is not always as easy as with collaborative filtering,
in particular if more knowledge is available than just the simple rating matrix.
Think, for instance, of conversational recommender applications, in which the
user is interactively asked about his or her preferences and in which additional
domain knowledge is encoded.

However, the availability of test databases for CF in different domains
favored the further development of various and more complex CF techniques.
Still, this somehow also narrowed the range of domains on which CF techniques
are actually applied. The most popular datasets are about movies and books,

48 2 Collaborative recommendation

and many researchers aim to improve the accuracy of their algorithms only
on these datasets. Whether a certain CF technique performs particularly well
in one domain or another is unfortunately beyond the scope of many research
efforts.

In fact, given the rich number of different proposals, the question of which
recommendation algorithm to use under which circumstances is still open, even
if we limit our considerations to purely collaborative approaches. Moreover, the
accuracy results reported on the well-known test datasets do not convey a clear
picture. Many researchers compare their measurements with the already rather
old results from Breese et al. (1998) and report that they can achieve better
results in one or another setting and experiment. A newer basis of comparison
is required, given the dozens of different techniques that have been proposed
over the past decade. Based on such a comparison, a new set of “baseline”
algorithms could help to get a clearer picture.

Viewed from a practical perspective, one can see that item-based CF, as
reported by Linden et al. (2003) and used by Amazon.com, is scalable enough
to cope with very large rating databases and also produces recommendations
of reasonable quality. The number of reports on other commercial implemen-
tations and accompanying technical details (let alone datasets) is unfortunately
also limited, so an industry survey in that direction could help the research com-
munity validate whether and how new proposals make their way into industrial
practice.

In addition, we will see in Chapter 5, which covers hybrid recommendation
approaches, that recommendation algorithms that exploit additional informa-
tion about items or users and combine different techniques can achieve signifi-
cantly better recommendation results than purely collaborative approaches can.
When we observe the trends and developments in the recent past, we can expect
that in the next years more information, both about the catalog items and about
the users, will be available at very low cost, thus favoring combined or hybrid
approaches. The sources of such additional knowledge can be manifold: online
users share more and more information about themselves in social networks
and online communities; companies exchange item information in electronic
form only and increasingly adopt exchange standards including defined prod-
uct classification schemes. Finally, according to the promise of the “Semantic
Web,” such item and community information can easily be automatically ex-
tracted from existing web sources (see, e.g., Shchekotykhin et al. 2007 for an
example of such an approach).

Overall, today’s CF techniques are mature enough to be employed in practi-
cal applications, provided that moderate requirements are fulfilled. Collabora-
tive recommenders can not be applied in every domain: think of a recommender

2.7 Bibliographical notes 49

system for cars, a domain in which no buying history exists or for which the
system needs a more detailed picture of the users’ preferences. In parallel, CF
techniques require the existence of a user community of a certain size, meaning
that even for the book or movie domains one cannot apply these techniques if
there are not enough users or ratings available.

Alternative approaches to product recommendation that overcome these
limitations in one or the other dimension at the price of, for instance, increased
development and maintenance efforts will be discussed in the next chapters.

2.7 Bibliographical notes

The earliest reports on what we now call recommender systems were published
in the early 1990s. The most cited ones might be the papers on the Tapestry
(Goldberg et al. 1992) and the GroupLens (Resnick et al. 1994) systems, both
first published in 1992. Tapestry was developed at Xerox Parc for mail filtering
and was based on the then rather new idea of exploiting explicit feedback
(ratings and annotations) of other users. One of the first uses of the term
“collaborative filtering” can be found in this paper. The GroupLens8 system was
also developed for filtering text documents (i.e., news articles), but was designed
for use in an open community and introduced the basic idea of automatically
finding similar users in the database for making predictions. The Ringo system,
presented by Shardanand and Maes (1995) describes a music recommender
based on collaborative filtering using Pearson’s correlation measure and the
mean absolute error (MAE) evaluation metric.

As mentioned earlier, the evaluation of Breese et al. (1998) still serves as
an important reference point, in particular as the paper also introduces some
special techniques to the compared algorithms.

The first model-based version of the Jester joke recommender (Goldberg
et al. 2001) that relied on principal component analysis and clustering was
initially proposed around 1999 and is still being developed further (Nathanson
et al. 2007). Hofmann and Puzicha published their influential approach based on
latent class models for collaborative filtering in 1999. Dimensionality reduction
based on SVD was proposed by Sarwar et al. (2000a).

Item-based filtering was analyzed by Sarwar et al. (2001); a short report
about Amazon.com’s patented implementation and experiences are described
by Linden et al. (2003).

8 The homepage of the influential GroupLens research group can be found at http://www.grouplens.
org.

50 2 Collaborative recommendation

Excellent overview papers on CF, which partially inspired the structure of
this chapter and which can serve as a starting point for further readings, are those
by Schafer et al. (2006) and Anand and Mobasher (2005). Another overview
with an impressive list of references to recent techniques for collaborative
filtering can be found in the article by Adomavicius and Tuzhilin (2005).

Because recommender systems have their roots in various fields, research
papers on collaborative filtering techniques appear in different journals and
conferences. Special issues on recommender systems appeared, for instance,
in the Communications of the ACM (1999), ACM Transactions on Information
Systems (2004), and more recently in the Journal of Electronic Commerce
(2007), IEEE Intelligent Systems (2007), and AI Communications (2008). Many
papers also appear first at dedicated workshops series, such as the Intelligent
Techniques for Web Personalization Workshop and, more recently, at the ACM
Recommender Systems conference.

3

Content-based recommendation

From our discussion so far we see that for applying collaborative filtering
techniques, except for the user ratings, nothing has to be known about the items
to be recommended. The main advantage of this is, of course, that the costly task
of providing detailed and up-to-date item descriptions to the system is avoided.
The other side of the coin, however, is that with a pure collaborative filtering
approach, a very intuitive way of selecting recommendable products based on
their characteristics and the specific preferences of a user is not possible: in the
real world, it would be straightforward to recommend the new Harry Potter
book to Alice, if we know that (a) this book is a fantasy novel and (b) Alice has
always liked fantasy novels. An electronic recommender system can accomplish
this task only if two pieces of information are available: a description of the item
characteristics and a user profile that somehow describes the (past) interests of a
user, maybe in terms of preferred item characteristics. The recommendation task
then consists of determining the items that match the user’s preferences best.
This process is commonly called content-based recommendation. Although
such an approach must rely on additional information about items and user
preferences, it does not require the existence of a large user community or a
rating history – that is, recommendation lists can be generated even if there is
only one single user.

In practical settings, technical descriptions of the features and characteris-
tics of an item – such as the genre of a book or the list of actors in a movie – are
more often available in electronic form, as they are partially already provided
by the providers or manufacturers of the goods. What remains challenging,
however, is the acquisition of subjective, qualitative features. In domains of
quality and taste, for example, the reasons that someone likes something are
not always related to certain product characteristics and may be based on a sub-
jective impression of the item’s exterior design. One notable and exceptional

51

52 3 Content-based recommendation

endeavor in that context is the “Music Genome Project”1, whose data are used
by the music recommender on the popular Internet radio and music discovery
and commercial recommendation site Pandora.com. In that project, songs are
manually annotated by musicians with up to several hundred features such
as instrumentation, influences, or instruments. Such a manual acquisition pro-
cess – annotating a song takes about twenty to thirty minutes, as stated by the
service providers – is, however, often not affordable.

We will refer to the descriptions of the item characteristics as “content” in
this chapter, because most techniques described in the following sections were
originally developed to be applied to recommending interesting text documents,
such as newsgroup messages or web pages. In addition, in most of these ap-
proaches the basic assumption is that the characteristics of the items can be
automatically extracted from the document content itself or from unstructured
textual descriptions. Typical examples for content-based recommenders are,
therefore, systems that recommend news articles by comparing the main key-
words of an article in question with the keywords that appeared in other articles
that the user has rated highly in the past. Correspondingly, the recommendable
items will be often referred to as “documents”.

There is no exact border between content-based and knowledge-based sys-
tems in the literature; some authors even see content-based approaches as a
subset of knowledge-based approaches. In this book, we follow the traditional
classification scheme, in which content-based systems are characterized by
their focus on exploiting the information in the item descriptions, whereas in
knowledge-based systems there typically exists some sort of additional means–
end knowledge, such as a utility function, for producing recommendations.

In this chapter we discuss content-based recommendation, focusing par-
ticularly on algorithms that have been developed for recommending textually
described items and for “learning” the user profile automatically (instead of
explicitly asking the user for his or her interests, which is more common in
conversational, knowledge-based systems).

3.1 Content representation and content similarity

The simplest way to describe catalog items is to maintain an explicit list of
features for each item (also often called attributes, characteristics, or item
profiles). For a book recommender, one could, for instance, use the genre, the
author’s name, the publisher, or anything else that describes the item and store

1 http://www.pandora.com/mgp.shtml.

3.1 Content representation and content similarity 53

Table 3.1. Book knowledge base.

Title Genre Author Type Price Keywords

The Night
of the
Gun

Memoir David Carr Paperback 29.90 press and journalism,
drug addiction,
personal memoirs,
New York

The Lace
Reader

Fiction,
Mystery

Brunonia
Barry

Hardcover 49.90 American
contemporary
fiction, detective,
historical

Into the
Fire

Romance,
Suspense

Suzanne
Brockmann

Hardcover 45.90 American fiction,
murder,
neo-Nazism

. . .

this information in a relational database system. When the user’s preferences
are described in terms of his or her interests using exactly this set of features,
the recommendation task consists of matching item characteristics and user
preferences.

Consider the example in Table 3.1, in which books are described by char-
acteristics such as title, genre, author, type, price, or keywords. Let us further
assume that Alice’s preferences are captured in exactly the same dimensions
(Table 3.2).

A book recommender system can construct Alice’s profile in different ways.
The straightforward way is to explicitly ask Alice, for instance, for a desired
price range or a set of preferred genres. The other way is to ask Alice to rate a
set of items, either as a whole or along different dimensions. In the example,
the set of preferred genres could be defined manually by Alice, whereas the
system may automatically derive a set of keywords from those books that Alice
liked, along with their average price. In the simplest case, the set of keywords
corresponds to the set of all terms that appear in the document.

Table 3.2. Preference profile.

Title Genre Author Type Price Keywords

. . . Fiction,
Suspense

Brunonia Barry,
Ken Follett

Paperback 25.65 detective, murder,
New York

54 3 Content-based recommendation

To make recommendations, content-based systems typically work by evalu-
ating how strongly a not-yet-seen item is “similar” to items the active user has
liked in the past. Similarity can be measured in different ways in the example.
Given an unseen book B, the system could simply check whether the genre
of the book at hand is in the list of Alice’s preferred genres. Similarity in this
case is either 0 or 1. Another option is to calculate the similarity or overlap of
the involved keywords. As a typical similarity metric that is suitable for multi-
valued characteristics, we could, for example, rely on the Dice coefficient2 as
follows: If every book Bi is described by a set of keywords keywords(Bi), the
Dice coefficient measures the similarity between books bi and bj as

2 × |keywords(bi) ∩ keywords(bj)|
|keywords(bi)| + |keywords(bj)| (3.1)

In principle, depending on the problem at hand, various similarity measures
are possible. For instance, in Zanker et al. (2006) an approach is proposed in
which several similarity functions for the different item characteristics are used.
These functions are combined and weighted to calculate an overall similarity
measure for cases in which both structured and unstructured item descriptions
are available.

3.1.1 The vector space model and TF-IDF

Strictly speaking, the information about the publisher and the author are ac-
tually not the “content” of a book, but rather additional knowledge about it.
However, content-based systems have historically been developed to filter and
recommend text-based items such as e-mail messages or news. The standard
approach in content-based recommendation is, therefore, not to maintain a list
of “meta-information” features, as in the previous example, but to use a list of
relevant keywords that appear within the document. The main idea, of course,
is that such a list can be generated automatically from the document content
itself or from a free-text description thereof.

The content of a document can be encoded in such a keyword list in different
ways. In a first, and very naı̈ve, approach, one could set up a list of all words
that appear in all documents and describe each document by a Boolean vector,
where a 1 indicates that a word appears in a document and a 0 that the word does
not appear. If the user profile is described by a similar list (1 denoting interest

2 For other measures, see, e.g., Maimon and Rokach (2005) or Baeza-Yaks and Ribaro-Nato
(1999).

3.1 Content representation and content similarity 55

in a keyword), document matching can be done by measuring the overlap of
interest and document content.

The problems with such a simple approach are obvious. First, the simple
encoding is based on the assumption that every word has the same importance
within a document, although it seems intuitive that a word that appears more
often is better suited for characterizing the document. In addition, a larger
overlap of the user profile and a document will naturally be found when the
documents are longer. As a result, the recommender will tend to propose long
documents.

To solve the shortcomings of the simple Boolean approach, documents are
typically described using the TF-IDF encoding format (Salton et al. 1975).
TF-IDF is an established technique from the field of information retrieval and
stands for term frequency-inverse document frequency. Text documents can be
TF-IDF encoded as vectors in a multidimensional Euclidian space. The space
dimensions correspond to the keywords (also called terms or tokens) appearing
in the documents. The coordinates of a given document in each dimension (i.e.,
for each term) are calculated as a product of two submeasures: term frequency
and inverse document frequency.

Term frequency describes how often a certain term appears in a document
(assuming that important words appear more often). To take the document
length into account and to prevent longer documents from getting a higher
relevance weight, some normalization of the document length should be done.
Several schemes are possible (see Chakrabarti 2002, Pazzani and Billsus 2007,
or Salton and Buckley 1988). A relatively simple one relates the actual number
of term occurrences to the maximum frequency of the other keywords of the
document as follows (see also Adomavicius and Tuzhilin 2005).

We search for the normalized term frequency value TF(i, j) of keyword
i in document j . Let freq(i, j) be the absolute number of occurrences of i

in j . Given a keyword i, let OtherKeywords(i, j) denote the set of the other
keywords appearing in j . Compute the maximum frequency maxOthers(i, j)
as max(freq(z, j)), z ∈ OtherKeywords(i, j). Finally, calculate TF(i, j) as in
Chakrabarti (2002):

TF(i, j) = freq(i, j)

maxOthers(i, j)
(3.2)

Inverse document frequency is the second measure that is combined with
term frequency. It aims at reducing the weight of keywords that appear very
often in all documents. The idea is that those generally frequent words are
not very helpful to discriminate among documents, and more weight should

56 3 Content-based recommendation

therefore be given to words that appear in only a few documents. Let N be the
number of all recommendable documents and n(i) be the number of documents
from N in which keyword i appears. The inverse document frequency for i is
typically calculated as

IDF(i) = log
N

n(i)
(3.3)

The combined TF-IDF weight for a keyword i in document j is computed
as the product of these two measures:

TF-IDF(i, j) = TF(i, j) ∗ IDF(i) (3.4)

In the TF-IDF model, the document is, therefore, represented not as a vector
of Boolean values for each keyword but as a vector of the computed TF-IDF
weights.

3.1.2 Improving the vector space model/limitations

TF-IDF vectors are typically large and very sparse. To make them more compact
and to remove irrelevant information from the vector, additional techniques can
be applied.

Stop words and stemming. A straightforward method is to remove so-called
stop words. In the English language these are, for instance, prepositions and
articles such as “a”, “the”, or “on”, which can be removed from the document
vectors because they will appear in nearly all documents. Another commonly
used technique is called stemming or conflation, which aims to replace variants
of the same word by their common stem (root word). The word “stemming”
would, for instance, be replaced by “stem”, “went” by “go”, and so forth.

These techniques further reduce the vector size and at the same time, help to
improve the matching process in cases in which the word stems are also used in
the user profile. Stemming procedures are commonly implemented as a combi-
nation of morphological analysis using, for instance, Porter’s suffix-stripping
algorithm (Porter 1980) and word lookup in dictionaries such as WordNet.3 Al-
though this technique is a powerful one in principle, there are some pitfalls, as
stemming may also increase the danger of matching the profile with irrelevant
documents when purely syntactic suffix stripping is used. For example, both the
terms university and universal are stemmed to univers, which may lead to an
unintended match of a document with the user profile (Chakrabarti 2002). Other

3 http://wordnet.princeton.edu.

3.1 Content representation and content similarity 57

problems arise, in particular, when technical documents with many abbrevia-
tions are analyzed or when homonymous words (having multiple meanings)
are in the text.

Size cutoffs. Another straightforward method to reduce the size of the doc-
ument representation and hopefully remove “noise” from the data is to use
only the n most informative words. In the Syskill & Webert system (Pazzani
and Billsus 1997), for instance, the 128 most informative words (with respect
to the expected information gain) were chosen. Similarly, Fab (Balabanović
and Shoham 1997) used the top 100 words. The optimal number of words to
be used was determined experimentally for the Syskill & Webert system for
several domains. The evaluation showed that if too few keywords (say, fewer
than 50) were selected, some possibly important document features were not
covered. On the other hand, when including too many features (e.g., more than
300), keywords are used in the document model that have only limited impor-
tance and therefore represent noise that actually worsens the recommendation
accuracy. In principle, complex techniques for “feature selection” can also be
applied for determining the most informative keywords. However, besides an
increase in model complexity, it is argued that learning-based approaches will
tend to overfit the example representation to the training data (Pazzani and
Billsus 1997). Instead, the usage of external lexical knowledge is proposed to
remove words that are not relevant in the domain. Experiments show a con-
sistent accuracy gain when such lexical knowledge is used, in particular when
few training examples are available.

Phrases. A further possible improvement with respect to representation accu-
racy is to use “phrases as terms”, which are more descriptive for a text than
single words alone. Phrases, or composed words such as “United Nations”, can
be encoded as additional dimensions in the vector space. Detection of phrases
can be done by looking up manually defined lists or by applying statistical
analysis techniques (see Chakrabarti 2002 for more details).

Limitations. The described approach of extracting and weighting individual
keywords from the text has another important limitation: it does not take into
account the context of the keyword and, in some cases, may not capture the
“meaning” of the description correctly. Consider the following simple example
from Pazzani and Billsus (2007). A free-text description of a steakhouse used in
a corresponding recommender system might state that “there is nothing on the
menu that a vegetarian would like”. In this case, in an automatically generated
feature vector, the word vegetarian will most probably receive a higher weight

58 3 Content-based recommendation

than desired and produce an unintended match with a user interested in veg-
etarian restaurants. Note, however, that in general we may assume that terms
appearing in a document are usually well suited for characterizing documents
and that a “negative context” – as shown in the example – is less likely to be
encountered in documents.

3.2 Similarity-based retrieval

When the item selection problem in collaborative filtering can be described as
“recommend items that similar users liked”, content-based recommendation is
commonly described as “recommend items that are similar to those the user
liked in the past”. Therefore, the task for a recommender system is again –
based on a user profile – to predict, for the items that the current user has not
seen, whether he or she will like them. The most common techniques that rely
on the vector-space document representation model will be described in this
section.

3.2.1 Nearest neighbors

A first, straightforward, method for estimating to what extent a certain document
will be of interest to a user is simply to check whether the user liked similar
documents in the past. To do this, two pieces of information are required.
First, we need some history of “like/dislike” statements made by the user
about previous items. Similar to collaborative approaches, these ratings can
be provided either explicitly via the user interface or implicitly by monitoring
the user’s behavior. Second, a measure is needed that captures the similarity
of two documents. In most reported approaches, the cosine similarity measure
(already described in Section 2.2.1) is used to evaluate whether two document
vectors are similar.

The prediction for a not-yet-seen item d is based on letting the k most
similar items for which a rating exists “vote” for n (Allan et al. 1998). If, for
instance, four out of k = 5 of the most similar items were liked by the current
user, the system may guess that the chance that d will also be liked is relatively
high. Besides varying the neighborhood size k, several other variations are
possible, such as binarization of ratings, using a minimum similarity threshold,
or weighting of the votes based on the degree of similarity.

Such a k-nearest-neighbor method (kNN) has been implemented, for in-
stance, in the personalized and mobile news access system described by Billsus
et al. (2000). In this system, the kNN method was used to model the short-term

3.2 Similarity-based retrieval 59

interests of the users, which is of particular importance in the application do-
main of news recommendation. On arrival of a new message, the system looks
for similar items in the set of stories that were recently rated by the user. By
taking into account the last ratings only, the method is thus capable of adapting
quickly and focusing on the user’s short-term interests, which might be to read
follow-up stories to recent events. At the same time, when relying on nearest
neighbors, it is also possible to set an upper threshold for item similarity to
prevent the system from recommending items that the user most probably has
already seen.

In the described system, the kNN method was implemented as part of a
multistrategy user profile technique. The system maintained profiles of short-
term (ephemeral) and long-term interests. The short-term profile, as described
earlier, allows the system to provide the user with information on topics of
recent interest. For the long-term model, the system described by Billsus et al.
(2000) therefore collects information over a longer period of time (e.g., several
months) and also seeks to identify the most informative words in the documents
by determining the terms that consistently receive high TF-IDF scores in a larger
document collection. The prediction of whether an item is of interest with
respect to the long-term user model is based on a probabilistic classification
technique, which we describe in Section 3.3.1. Details on the threshold values
and algorithms used in the experimental systems are described by Billsus and
Pazzani (1999).

Given the interest predictions and recommendations for the short-term and
the long-term user models, the question remains how to combine them. In
the described system, a rather simple strategy is chosen. Neighbors in the
short-term model are searched; if no such neighbors exist, the long-term user
model is used. Other combinations are also possible. One option would be to
acquire the short-term preferences online – for example, by questioning topics
of interest and then sorting the matching items based on the information from
the long-term preferences.

In summary, kNN-based methods have the advantage of being relatively
simple to implement4, adapt quickly to recent changes, and have the advantage
that, when compared with other learning approaches, a relatively small number
of ratings is sufficient to make a prediction of reasonable quality. However, as
experiments show, the prediction accuracy of pure kNN methods can be lower
than those of other more sophisticated techniques.

4 Naive implementations of nearest-neighbor methods may, however, quickly become computa-
tionally intensive, so more advanced neighbor search methods may be required; see, e.g., Zezula
et al. (2006).

60 3 Content-based recommendation

3.2.2 Relevance feedback – Rocchio’s method

Another method that is based on the vector-space model and was developed in
the context of the pioneering information retrieval (IR) system SMART (Salton
1971) in the late 1960s is Rocchio’s relevance feedback method. A particular
aspect of SMART was that users could not only send (keyword-based) queries
to the system but could also give feedback on whether the retrieved items were
relevant. With the help of this feedback, the system could then internally extend
the query to improve retrieval results in the next round of retrieval.

The SMART system for information retrieval did not exploit such additional
information but rather allowed the user to interactively and explicitly rate the
retrieved documents – that is, to tell the system whether they were relevant.
This information is subsequently used to further refine the retrieval results. The
rationale of following this approach is that with pure query- and similarity-
based methods that do not provide any feedback mechanisms, the retrieval
quality depends too strongly on the individual user’s capability to formulate
queries that contain the right keywords. User-defined queries often consist only
of very few and probably polysemous words; a typical query on the web, for
instance, consists of only two keywords on average (Chakrabarti 2002).

The relevance feedback loop used in this method will help the system
improve and automatically extend the query as follows. The main idea is to
first split the already rated documents into two groups, D+ and D−, of liked
(interesting/relevant) and disliked documents and calculate a prototype (or
average) vector for these categories. This prototype can also be seen as a sort of
centroid of a cluster for relevant and nonrelevant document sets; see Figure 3.1.

The current query Qi , which is represented as a multidimensional term vec-
tor just like the documents, is then repeatedly refined to Qi+1 by a weighted
addition of the prototype vector of the relevant documents and weighted sub-
straction of the vector representing the nonrelevant documents. As an effect,
the query vector should consistently move toward the set of relevant documents
as depicted schematically in Figure 3.2.

The proposed formula for computing the modified query Qi+1 from Qi is
defined as follows:

Qi+1 = α ∗ Qi + β

(
1

|D+|
∑

d+∈D+
d+

)
− γ

(
1

|D−|
∑

d−∈D−
d−

)
(3.5)

The variables α, β, and γ are used to fine-tune the behavior of the “move”
toward the more relevant documents. The value of α describes how strongly
the last (or original) query should be weighted, and β and γ correspond-
ingly capture how strongly positive and negative feedback should be taken into

3.2 Similarity-based retrieval 61

D
+

D
-
average vector

Relevant documents

Nonrelevant documents

Centroids

Figure 3.1. Average vectors for relevant and nonrelevant documents.

account in the improvement step. According to the analysis by Buckley et al.
(1994), suitable parameter values are, for instance, 8, 16, and 4 (or 1, 2, and
0.25, respectively). These findings indicate that positive feedback is more valu-
able than negative feedback and it can be even better to take only positive
feedback into account.

At first sight, this formula seems intuitive and the algorithm is very simple,
but as stated by Pazzani and Billsus (2007), there is no theoretically motivated
basis for Formula (3.5), nor can performance or convergence be guaranteed.

Relevant
document

Nonrelevant
document

Query

All documents

Q1

Q0

Figure 3.2. Relevance feedback. After feedback, the original query is moved
toward the cluster of the relevant documents; see also Manning et al. (2008).

62 3 Content-based recommendation

However, empirical evaluations with various document sets showed that useful
retrieval performance can be improved, based on the feedback mechanism,
already after the first iteration. More feedback iterations show only marginal
improvements. An experimental evaluation using variations of this relevance
feedback scheme, including an analysis of the effects of different settings, can
be found in Salton and Buckley (1997) and Buckley et al. (1994). In practical
settings it is also a good idea not to include all terms from D+ and D− to
compute the new query (Chakrabarti 2002), as “one bad word may offset the
benefits of many good words”, but rather to use only the first 10 or 20 of the
most relevant words in terms of the IDF measure.

Overall, the relevance feedback retrieval method and its variations are used
in many application domains. It has been shown that the method, despite its
simplicity, can lead to good retrieval improvements in real-world settings; see
Koenemann and Belkin (1996) for a more detailed study. The main practical
challenges – as with most content-based methods – are (a) a certain number of
previous item ratings is needed to build a reasonable user model and (b) user
interaction is required during the retrieval phase.

The first point can be partially automated by trying to capture the user ratings
implicitly – for instance, by interpreting a click on a proposed document as a
positive rating. The question of whether such assumptions hold in general –
what to do when a user has read an article but was disappointed and what
other techniques for gathering implicit feedback can be used – remains open
(compare also the discussion on implicit ratings in Section 2.3.1).

Another technique for circumventing the problem of acquiring explicit user
feedback is to rely on pseudorelevance feedback (blind feedback). The basic
idea is to assume that the first n (say, 10) documents that match the query best
with respect to the vector similarity measure are considered relevant. The set
D− is not used (γ is set to 0) unless an explicit negative feedback exists.

The second point – that user interaction is required during the proposal
generation phase – at first glance appears to be a disadvantage over the fully
automated proposal generation process of CF approaches. In fact, interactive
query refinement also opens new opportunities for gathering information about
the user’s real preferences and may help the user to “learn” which vocabulary
to use to retrieve documents that satisfy his or her information needs. The
main assumption, of course, is that the user is capable of formulating a proper
initial query, an assumption that might not always hold if we think of terminol-
ogy aspects, multilanguage translation problems, or simply word misspellings
(Manning et al. 2008). Further aspects of interactivity in recommender systems
will be covered in more detail in Chapter 4.

Today’s web search engines do not provide mechanisms for explicit feed-
back, although, as various evaluations show, they can lead to improved retrieval

3.3 Other text classification methods 63

performance. Chakrabarti (2002) mentions two reasons for that. First, he
argues that today’s web users are impatient and are not willing to give explicit
feedback on the proposals. Second, second-round queries that include many
more terms than the initial query are more problematic from a performance
perspective and cannot be answered as quickly as the initial “two-term”
queries.

In general, however, query-based retrieval approaches are quite obviously
similar to modern web search engines, and the question may arise whether a
search engine is also a “content-based recommender”. Although until recently
popular search engine providers such as Google or Yahoo! did not personalize
their search results to particular users, it can be seen also from our news person-
alization example from the previous section (Das et al. 2007) that a trend toward
increased personalization of search results can now be observed. Today we also
see that the major players in the field have started to provide more features on
their service platforms, which typically include personalized start pages, access
to an e-mail service, online document manipulation, document management,
and so forth. As users access these features with the same identity, a broad
opportunity arises to also personalize the search results more precisely. How-
ever, reports on how personalized document rankings can be computed based
on these kinds of information and, in particular, how the different relevance
metrics, such as PageRank and document-query similarity, can be combined
are not yet available.

3.3 Other text classification methods

Another way of deciding whether or not a document will be of interest to a user
is to view the problem as a classification task, in which the possible classes are
“like” and “dislike”. Once the content-based recommendation task has been
formulated as a classification problem, various standard (supervised) machine
learning techniques can, in principle, be applied such that an intelligent sys-
tem can automatically decide whether a user will be interested in a certain
document. Supervised learning means that the algorithm relies on the exis-
tence of training data, in our case a set of (manually labeled) document-class
pairs.

3.3.1 Probabilistic methods

The most prominent classification methods developed in early text classification
systems are probabilistic ones. These approaches are based on the naive Bayes

64 3 Content-based recommendation

Table 3.3. Classification based on Boolean feature vector.

Doc-ID recommender intelligent learning school Label

1 1 1 1 0 1
2 0 0 1 1 0
3 1 1 0 0 1
4 1 0 1 1 1
5 0 0 0 1 0
6 1 1 0 0 ?

assumption of conditional independence (with respect to term occurrences) and
have also been successfully deployed in content-based recommenders.

Remember the basic formula to compute the posterior probability for docu-
ment classification from Section 2.4.3:

P (Y |X) =
∏d

i=1 P (Xi|Y) × P (Y)

P (X)
(3.6)

A straightforward application of this model to the classification task is de-
scribed by Pazzani and Billsus (1997). The possible classes are, of course, “like”
and “dislike” (named hot and cold in some articles). Documents are represented
by Boolean feature vectors that describe whether a certain term appeared in a
document; the feature vectors are limited to the 128 most informative words,
as already mentioned.

Thus, in that model, P (vi |C = c) expresses the probability of term vi ap-
pearing in a document labeled with class c. The conditional probabilities are
again estimated by using the observations in the training data.

Table 3.3 depicts a simple example setting. The training data consist of
five manually labeled training documents. Document 6 is a still-unlabeled
document. The problem is to decide whether the current user will be interested –
that is, whether to recommend the item. To determine the correct class, we
can compute the class-conditional probabilities for the feature vector X of
Document 6 again as follows:

P(X|Label=1) = P(recommender=1|Label=1) ×
P(intelligent=1|Label=1) ×
P(learning=0|Label=1) × P(school=0|Label=1)

= 3/3 × 2/3 × 1/3 × 2/3

≈ 0.149

3.3 Other text classification methods 65

The same can be done for the case Label = 0, and we see in the simple example
that it is more probable that the user is more interested in documents (for
instance, web pages) about intelligent recommender systems than in documents
about learning in school. In real applications some sort of smoothing must be
done for sparse datasets such that individual components of the calculation do
not zero out the probability values. Of course, the resulting probability values
can be used not only to decide whether a newly arriving document – in, for
instance, a news filtering system – is relevant but also to rank a set of not-yet-
seen documents. Remember that we also mentioned probabilistic techniques
as possible recommendation methods in CF in the previous chapter. In CF,
however, the classifier is commonly used to determine the membership of the
active user in a cluster of users with similar preferences (by means of a latent
class variable), whereas in content-based recommendation the classifier can
also be directly used to determine the interestingness of a document.

Obviously, the core assumption of the naive Bayes model that the individual
events are conditionally independent does not hold because there exist many
term co-occurrences that are far more likely than others – such as the terms Hong
and Kong or New and York. Nonetheless, the Bayes classifier has been shown to
lead to surprisingly good results and is broadly used for text classification. An
analysis of the reasons for this somewhat counterintuitive evidence can be found
in Domingos and Pazzani (1996, 1997), or Friedman (1997). McCallum and
Nigam (1998) summarize the findings as follows: “The paradox is explained
by the fact that classification estimation is only a function of the sign (in binary
case) of the function estimation; the function approximation can still be poor
while classification accuracy remains high.”

Besides the good accuracy that can be achieved with the naive Bayes clas-
sifier, a further advantage of the method – and, in particular, of the conditional
independence assumption – is that the components of the classifier can be
easily updated when new data are available and the learning time complexity
remains linear to the number of examples; the prediction time is independent
of the number of examples (Pazzani and Billsus 1997). However, as with most
learning techniques, to provide reasonably precise recommendations, a certain
amount of training data (past ratings) is required. The “cold-start” problem
also exists for content-based recommenders that require some sort of relevance
feedback. Possible ways of dealing with this are, for instance, to let the user
manually label a set of documents – although this cannot be done for hundreds
of documents – or to ask the user to provide a list of interesting words for each
topic category (Pazzani and Billsus 1997).

The Boolean representation of document features has the advantage of sim-
plicity but, of course, the possibly important information on how many times

66 3 Content-based recommendation

Table 3.4. Classification example with term counts.

DocID Words Label

1 recommender intelligent recommender 1
2 recommender recommender learning 1
3 recommender school 1
4 teacher homework recommender 0

5 recommender recommender recommender teacher homework ?

a term occurred in the document is lost at this point. In the Syskill & Webert
system, which relies on such a Boolean classifier for each topic category, the
relevance of words is taken into account only when the initial set of appropriate
keywords is determined. Afterward, the system cannot differentiate anymore
whether a keyword appeared only once or very often in the document. In ad-
dition, this model also assumes positional independence – that is, it does not
take into account where the term appeared in the document.

Other probabilistic modeling approaches overcome such limitations. Con-
sider for instance, the classification method (example adapted from Manning
et al. 2008) in Table 3.4, in which the number of term appearances shall also
be taken into account.

The conditional probability of a term vi appearing in a document of class C

shall be estimated by the relative frequency of vi in all documents of this class:

P (vi|C = c) = CountTerms(vi, docs(c))

AllTerms(docs(c))
(3.7)

where CountTerms(vi, docs(c)) returns the number of appearances of term vi in
documents labeled with c and AllTerms(docs(c)) returns the number of all terms
in these documents. To prevent zeros in the probabilities, Laplace (add-one)
smoothing shall be applied in the example:

P̂ (vi|C = c) = CountTerms(vi, docs(c)) + 1

AllTerms(docs(c)) + |V | (3.8)

where |V | is the number of different terms appearing in all documents (called the
“vocabulary”). We calculate the conditional probabilities for the relevant terms
appearing in the new document as follows: the total length of the documents
classified as “1” is 8, and the length of document 4 classified as “0” is 3. The

3.3 Other text classification methods 67

size of the vocabulary is 6.

P̂ (recommender|Label = 1) = (5 + 1)/(8 + 6) = 6/14

P̂ (homework|Label = 1) = (0 + 1)/(8 + 6) = 1/14

P̂ (teacher|Label = 1) = (0 + 1)/(8 + 6) = 1/14

P̂ (recommender|Label = 0) = (1 + 1)/(3 + 6) = 2/9

P̂ (homework|Label = 0) = (1 + 1)/(3 + 6) = 2/9

P̂ (teacher|Label = 0) = (1 + 1)/(3 + 6) = 2/9

The prior probabilities of a document falling into class 1 or class 0 are 3/4
and 1/4, respectively. The classifier would therefore calculate the posterior
probabilities as

P̂ (Label = 1|v1 . . . vn) = 3/4 × (3/7)3 × 1/14 × 1/14 ≈ 0.0003

P̂ (Label = 0|v1 . . . vn) = 1/4 × (2/9)3 × 2/9 × 2/9 ≈ 0.0001

and therefore classify the unlabeled document as being relevant for the user.
The classifier has taken the multiple evidence of the term “recommender”
into account appropriately. If only the Boolean representation had been used,
the classifier would have rejected the document, because two other terms that
appear in the document (“homework”, “teacher”) suggest that it is not relevant,
as they also appear in the rejected document 4.

Relation to text classification. The problem of labeling a document as rele-
vant or irrelevant in our document recommendation scenarios can be seen as
a special case of the more broader and older text classification (text catego-
rization or topic spotting) problem, which consists of assigning a document
to a set of predefined classes. Applications of these methods can be found in
information retrieval for solving problems such as personal e-mail sorting, de-
tection of spam pages, or sentiment detection (Manning et al. 2008). Different
techniques of “supervised learning”, such as the probabilistic one described
previously, have been proposed. The basis for all the learning techniques is
a set of manually annotated training documents and the assumption that the
unclassified (new) documents are somehow similar to the manually classified
ones. When compared with the described “like/dislike” document recommen-
dation problem, general text classification problems are not limited to only
two classes. Moreover, in some applications it is also desirable to assign one
document to more than one individual class.

68 3 Content-based recommendation

As noted earlier, probabilistic methods that are based on the naive Bayes
assumption have been shown to be particularly useful for text classification
problems. The idea is that both the training documents and the still unclassi-
fied documents are generated by the probability distributions. Basically, two
different ways of modeling the documents and their features have been pro-
posed: the multinomial model and the Bernoulli model. The main differences
between these models are the “event model” and, accordingly, how the proba-
bilities are estimated from the training data (see McCallum and Nigam 1998,
Manning et al. 2008, or Pazzani and Billsus 2007 for a detailed discussion). In
the multivariate Bernoulli model, a document is treated as a binary vector that
describes whether a certain term is contained in the document. In the multino-
mial model the number of times a term occurred in a document is also taken into
account, as in our earlier example. In both cases, the position of the terms in the
document is ignored. Empirical evaluations show that the multinomial model
leads to significantly better classification results than does the Bernoulli model
(McCallum and Nigam 1998), in particular when it comes to longer documents
and classification settings with a higher number of features. An illustrative
example for both approaches can be found in Manning et al. (2008).

Finally, another interesting finding in probabilistic text classification is that
not only can the manually labeled documents can be used to train the classifier,
but still-unlabeled documents can also help to improve classification (Nigam
et al. 1998). In the context of content-based recommendation this can be of
particular importance, as the training set of manually or implicitly labeled
documents is typically very small because every user has his or her personal
set of training examples.

3.3.2 Other linear classifiers and machine learning

When viewing the content-based recommendation problem as a classification
problem, various other machine learning techniques can be employed. At a
more abstract level, most learning methods aim to find coefficients of a linear
model to discriminate between relevant and nonrelevant documents.

Figure 3.3 sketches the basic idea in a simplified setting in which the avail-
able documents are characterized by only two dimensions. If there are only
two dimensions, the classifier can be represented by a line. The idea can,
however, also easily be generalized to the multidimensional space in which a
two-class classifier then corresponds to a hyperplane that represents the decision
boundary.

In two-dimensional space, the line that we search for has the form w1x1 +
w2x2 = b where x1 and x2 correspond to the vector representation of a document

3.3 Other text classification methods 69

Relevant
Documents

Nonrelevant
Documents

Figure 3.3. A linear classifier in two-dimensional space.

(using, e.g., TF-IDF weights) and w1, w2, and b are the parameters to be learned.
The classification of an individual document is based on checking whether for
a certain document w1x1 + w2x2 > b, which can be done very efficiently. In
n-dimensional space, a generalized equation using weight and feature vectors
instead of only two values is used, so the classification function is �wT �x = b.

Many text classification algorithms are actually linear classifiers, and it
can easily be shown that both the naive Bayes classifier and the Rocchio
method fall into this category (Manning et al. 2008). Other methods for learning
linear classifiers are, for instance, the Widrow-Hoff algorithm (see Widrow and
Stearns 1985) or support vector machines (SVM; Joachims 1998). The kNN
nearest-neighbor method, on the other hand, is not a linear classifier. In general,
infinitely many hyperplanes (or lines in Figure 3.3) exist that can be used
to separate the document space. The aforementioned learning methods will
typically identify different hyperplanes, which may in turn lead to differences
in classification accuracy. In other words, although all classifiers may separate
the training data perfectly, they may show differences in their error rates for
additional test data. Implementations based on SVM, for instance, try to identify
decision boundaries that maximize the distance (called margin) to the existing
datapoints, which leads to very good classification accuracy when compared
with other approaches.

Another challenge when using a linear classifier is to deal with noise in
the data. There can be noisy features that mislead the classifier if they are
included in the document representation. In addition, there might also be noise

70 3 Content-based recommendation

documents that, for whatever reason, are not near the cluster where they belong.
The identification of such noise in the data is, however, not trivial.

A comparative evaluation of different training techniques for text classifiers
can be found in Lewis et al. (1996) and in Yang and Liu (1999). Despite
the fact that in these experiments some algorithms, and in particular SVM-
based ones, performed better than others, there exists no strict guideline as to
which technique performs best in every situation. Moreover, it is not always
clear whether using a linear classifier is the right choice at all, as there are,
of course, many problem settings in which the classification borders cannot
be reasonably approximated by a line or hyperplane. Overall, “selecting an
appropriate learning method is therefore an unavoidable part of solving a text
classification problem” (Manning et al. 2008).

3.3.3 Explicit decision models

Two other learning techniques that have been used for building content-based
recommender systems are based on decision trees and rule induction. They
differ from the others insofar as they generate an explicit decision model in the
training phase.

Decision tree learning based on ID3 or the later C4.5 algorithms (see Quin-
lan 1993 for an overview) has been successfully applied to many practical
problems, such as data mining problems. When applied to the recommendation
problem, the inner nodes of the tree are labeled with item features (keywords),
and these nodes are used to partition the test examples based, for instance,
simply on the existence or nonexistence of a keyword in the document. In a
basic setting only two classes, interesting or not, might appear at the leaf nodes.
Figure 3.4 depicts an example of such a decision tree.

Determining whether a new document is relevant can be done very effi-
ciently with such a prebuilt classification tree, which can be automatically
constructed (learned) from training data without the need for formalizing do-
main knowledge. Further general advantages of decision trees are that they
are well understood, have been successfully applied in many domains, and
represent a model that can be interpreted relatively easily.

The main issue in the content-based recommendation problem setting is that
we have to work on relatively large feature sets using, for instance, a TF-IDF
document representation. Decision tree learners, however, work best when a
relatively small number of features exist, which would be the case if we do
not use a TF-IDF representation of a document but rather a list of “meta”-
features such as author name, genre, and so forth. An experimental evaluation
actually shows that decision trees can lead to comparably poor classification

3.3 Other text classification methods 71

Recommender

recommender=1 recommender=0

intelligent=0

intelligent irrelevant

relevant

relevant

irrelevant

intelligent=1

learning=1 learning=0

learning

Figure 3.4. Decision tree example.

performance (Pazzani and Billsus 1997). The main reason for this limited
performance on large feature sets lies in the typical splitting strategy based on
the information gain, which leads to a bias toward small decision trees (Pazzani
and Billsus 2007).

For these reasons, decision trees are seldom used for classical content-
based recommendation scenarios. One of the few exceptions is the work of
Kim et al. (2001), in which decision trees were used for personalizing the
set of advertisements appearing on a web page. Still, even though decision
trees might not be used directly as the core recommendation technique, they
can be used in recommender systems in combination with other techniques to
improve recommendation efficiency or accuracy. In Nikovski and Kulev (2006),
for example, decision trees are used to compress in-memory data structures for
a recommender system based on frequent itemset mining; Bellogı́n et al. (2010)
propose to use decision trees to determine which user model features are the
most relevant ones for providing accurate recommendations in a content-based
collaborative hybrid news recommender system. Thus, the learning task in this
work is to improve the recommendation model itself.

Rule induction is a similar method that is used to extract decision rules from
training data. Methods built on the RIPPER algorithm (Cohen 1995, 1996) have
been applied with some success for e-mail classification, which is, however, not
a core application area of recommender systems. As mentioned by Pazzani and
Billsus (2007), the relatively good performance when compared with other clas-
sification methods can be partially explained by the elaborate postpruning tech-
niques of RIPPER itself and a particular extension that was made for e-mail clas-
sification that takes the specific document structure of e-mails with a subject line
and a document body into account. A more recent evaluation and comparison of

72 3 Content-based recommendation

e-mail classification techniques can be found in Koprinska et al. (2007), which
shows that “random forests” (instead of simple trees) perform particularly well
on this problem.

In summary, both decision tree learning and rule induction have been suc-
cessfully applied to specific subproblems such as e-mail classification, ad-
vertisement personalization, or cases in which small feature sets are used
to describe the items (Bouza et al. 2008), which is a common situation in
knowledge-based recommenders. In these settings, two of the main advan-
tages of these learning techniques are that (a) the inferred decision rules can
serve as a basis for generating explanations for the system’s recommenda-
tions and (b) existing prior domain knowledge can be incorporated in the
models.

3.3.4 On feature selection

All the techniques described so far rely on the vector representation of doc-
uments and on TF-IDF weights. When used in a straightforward way, such
document vectors tend to be very long (there are typically thousands of words
appearing in the corpus) and very sparse (in every document only a fraction of
the words is used), even if stop words are removed and stemming is applied.
In practical applications, such long and sparse vectors not only cause prob-
lems with respect to performance and memory requirements, but also lead to
an effect called overfitting. Consider an example in which a very rare word
appears by pure chance only in documents that have been labeled as “hot”. In
the training phase, a classifier could therefore be misled in the direction that
this word (which can, in fact, be seen as some sort of noise) is a good indicator
of the interestingness of some document. Such overfitting can easily appear
when only a limited number of training documents is available.

Therefore, it is desirable to use only a subset of all the terms of the corpus
for classification. This process of choosing a subset of the available terms is
called feature selection. Different strategies for deciding which features to use
are possible. Feature selection in the Syskill & Webert recommender system
mentioned earlier (Pazzani and Billsus 1997), for instance, is based on domain
knowledge and lexical information from WordNet. The evaluation reported by
Pazzani and Billsus (1997) shows not only that the recommendation accuracy
is improved when irrelevant features are removed, but also that using around
100 “informative” features leads to the best results.

Another option is to apply frequency-based feature selection and use
domain- or task-specific heuristics to remove words that are “too rare” or
appear “too often” based on empirically chosen thresholds (Chakrabarti 2002).

3.3 Other text classification methods 73

Table 3.5. χ 2 contingency table.

Term t appeared Term t missing

Class “relevant” A B
Class “irrelevant” C D

For larger text corpora, such heuristics may not be appropriate, however, and
more elaborate, statistics-based methods are typically employed. In theory, one
could find the optimal feature subset by training a classifier on every possible
subset of features and evaluate its accuracy. Because such an approach is com-
putationally infeasible, the value of individual features (keywords) is rather
evaluated independently and a ranked list of “good” keywords, according to
some utility function, is constructed. The typical measures for determining the
utility of a keyword are the χ 2 test, the mutual information measure, or Fisher’s
discrimination index (see Chakrabarti 2002).

Consider, for example, the χ2 test, which is a standard statistical method to
check whether two events are independent. The idea in the context of feature
selection is to analyze, based on training data, whether certain classification
outcomes are connected to a specific term occurrence. When such a statistically
significant dependency for a term can be identified, we should include this term
in the feature vector used for classification.

In our problem setting, a 2 × 2 contingency table of classification outcomes
and occurrence of term t can be set up for every term as in Table 3.5 when we
assume a binary document model in which the actual number of occurrences
of a term in a document is not relevant.

The symbols A to D in the table can be directly taken from the training
data: Symbol A stands for the number of documents that contained term t

and were classified as relevant, and B is the number of documents that were
classified as relevant but did not contain the term. Symmetrically, C and D

count the documents that were classified as irrelevant. Based on these numbers,
the χ2 test measures the deviation of the given counts from those that we would
statistically expect when conditional independence is given. The χ2 value is
calculated as follows:

χ2 = (A + B + C + D)(AD − BC)2

(A + B)(A + C)(B + D)(C + D)
(3.9)

Higher values for χ2 indicate that the events of term occurrence and mem-
bership in a class are not independent.

74 3 Content-based recommendation

To select features based on the χ2 test, the terms are first ranked by decreas-
ing order of their χ2 values. The logic behind that is that we want to include
those features that help us to determine class membership (or nonmembership)
first – that is, those for which class membership and term occurrence are corre-
lated. After sorting the terms, according to the proposal by Chakrabarti (2002),
a number of experiments should be made to determine the optimal number of
features to use for the classifier.

As mentioned previously, other techniques for feature selection, such as
mutual information or Fisher’s discriminant, have also been proposed for use
in information retrieval scenarios. In many cases, however, these techniques
result more or less in the same set of keywords (maybe in different order) as
long as different document lengths are taken into account (Chakrabarti 2002,
Manning et al. 2008).

3.4 Discussion

3.4.1 Comparative evaluation

Pazzani and Billsus (1997) present a comparison of several learning-based tech-
niques for content-based recommendation. Experiments were made for several
relatively small and manually annotated document collections in different do-
mains. The experiments made with the Syskill & Webert system were set up in
a way in which a subset of documents was used to learn the user profile, which
was then used to predict whether the user would be interested in the unseen
documents.

The percentage of correctly classified documents was taken as an accuracy
measure. The accuracy of the different recommenders varied relatively strongly
in these experiments (from 60 percent to 80 percent). As with most learning
algorithms, the most important factor was the size of the training set (up to
fifty documents in these tests). For some example sets, the improvements were
substantial and an accuracy of more than 80 percent could be achieved. In some
domains, however, the classifier never significantly exceeded chance levels.

Overall, the detailed comparison of the algorithms (using twenty training
examples in each method) brought no clear winner. What could be seen is that
decision-tree learning algorithms, which we did not cover in detail, did not
perform particularly well in the given setting and that the “nearest neighbors”
method performed poorly in some domains. The Bayesian and Rocchio methods
performed consistently well in all domains, and no significant differences could
be found. In the experiments, a neural net method with a nonlinear activation

3.4 Discussion 75

function was also evaluated but did not lead to improvements in classification
accuracy.

In the Syskill & Webert system, a decision for a Bayes classifier was finally
chosen, as it not only worked well in all tested domains (even if the assumption
of conditional independence does not hold) but it also is relatively fast with
respect to learning and predicting. It also seemed that using only Boolean
document representation in the classifier – as opposed to TF-IDF weights –
does not significantly affect the recommendation accuracy (Pazzani and Billsus
1997).

Finally, Manning et al. (2008) also mention that Bayes classifiers seem to
work well in many domains and summarize several techniques that have been
developed to improve classifier performance, such as feature engineering (the
manual or automatic selection of “good” features), hierarchical classification
for large category taxonomies, or taking into account that different feature sets
could be used for the different zones of a document.

3.4.2 Limitations

Pure content-based recommender systems have known limitations, which rather
soon led to the development of hybrid systems that combine the advantages of
different recommendation techniques. The Fab system is an early example of
such a hybrid system; Balabanović and Shoham (1997) mention the following
limitations of content-based recommenders.

Shallow content analysis. Particularly when web pages are the items to be
recommended, capturing the quality or interestingness of a web page by look-
ing at the textual contents alone may not be enough. Other aspects, such as
aesthetics, usability, timeliness, or correctness of hyperlinks, also determine
the quality of a page. Shardanand and Maes (1995) also mention that when
keywords are used to characterize documents, a recommender cannot differen-
tiate between well-written articles and comparably poor papers that, naturally,
use the same set of keywords. Furthermore, in some application domains the
text items to be recommended may not be long enough to extract a good set
of discriminating features. A typical example is the recommendation of jokes
(Pazzani and Billsus 2007): Learning a good preference profile from a very
small set of features may be difficult by itself; at the same time it is nearly
impossible to distinguish, for instance, good lawyer jokes from bad ones.

Information in hypertext documents is also more and more contained in
multimedia elements, such as images, as well as audio and video sequences.
These contents are also not taken into account when only a shallow text analysis

76 3 Content-based recommendation

is done. Although some recent advances have been made in the area of feature
extraction from text documents, research in the extraction of features from
multimedia content is still at an early stage. Early results in the music domain
have been reported, for instance, by (Li et al. 2003; automated genre detection)
or (Shen et al. 2006; singer identification). More research can be expected in
that direction in the near future, as the web already now is established as a major
distribution channel for digital music, in which personalized music recom-
mendations play an important role. Similar things happen in the video domain,
where, in particular, the new opportunities of semantic annotation based
on the MPEG-7 standard (ISO/IEC 15938) also allow enhanced annotation
capabilities.

If no automatic extraction of descriptive features is possible, manual anno-
tation is a theoretical option. Many authors agree that in most domains manual
annotation is too costly. However, new opportunities arise in light of what is
called Web 2.0, in which Internet users more and more play the role of con-
tent providers. It can already be observed that today’s web users actively and
voluntarily annotate content such as images or videos on popular web portals
(collaborative tagging). Although these tags are mostly not taken from limited-
size ontologies and may be inconsistent, they could serve as a valuable resource
for determining further features of a resource. How such user-provided tags can
be exploited to recommend resources to users in social web platforms will be
discussed in more detail in Chapter 11.

Overspecialization. Learning-based methods quickly tend to propose more
of the same – that is, such recommenders can propose only items that are
somehow similar to the ones the current user has already (positively) rated.
This can lead to the undesirable effect that obvious recommendations are made
and the system, for instance, recommends items that are too similar to those
the user already knows. A typical example is a news filtering recommender
that proposes a newspaper article that covers the same story that the user has
already seen in another context. The system described by Billsus and Pazzani
(1999) therefore defines a threshold to filter out not only items that are too
different from the profile but also those that are too similar. A set of more
elaborate metrics for measuring novelty and redundancy has been analyzed by
Zhang et al. (2002).

A general goal therefore is to increase the serendipity of the recommenda-
tion lists – that is, to include “unexpected” items in which the user might be
interested, because expected items are of little value for the user. A simple way
of avoiding monotonous lists is to “inject a note of randomness” (Shardanand
and Maes 1995).

3.5 Summary 77

A discussion of this additional aspect of recommender system quality, which
also applies to systems that are based on other prediction techniques, can be
found, for instance, in McNee et al. (2006). Ziegler et al. (2005) propose a
technique for generating more diverse recommendation lists (“topic diversi-
fication”). A recent proposal for a metric to measure the serendipity of the
recommendation lists can be found in Satoh et al. (2007).

Acquiring ratings. The cold-start problem, which we discussed for collabo-
rative systems, also exists in a slightly different form for content-based recom-
mendation methods. Although content-based techniques do not require a large
user community, they require at least an initial set of ratings from the user, typ-
ically a set of explicit “like” and “dislike” statements. In all described filtering
techniques, recommendation accuracy improves with the number of ratings;
significant performance increases for the learning algorithms were reported by
Pazzani and Billsus (1997) when the number of ratings was between twenty
and fifty. However, in many domains, users might not be willing to rate so many
items before the recommender service can be used. In the initial phase, it could
be an option to ask the user to provide a list of keywords, either by selecting
from a list of topics or by entering free-text input.

Again, in the context of Web 2.0, it might be an option to “reuse” information
that the user may have provided or that was collected in the context of another
personalized (web) application and take such information as a starting point to
incrementally improve the user profile.

3.5 Summary

In this chapter we have discussed different methods that are commonly referred
to as content-based recommendation techniques. The roots of most approaches
can be found in the field of information retrieval (IR), as the typical IR tasks
of information filtering or text classification can be seen as a sort of recom-
mendation exercise. The presented approaches have in common that they aim
to learn a model of the user’s interest preferences based on explicit or implicit
feedback. Practical evaluations show that a good recommendation accuracy can
be achieved with the help of various machine learning techniques. In contrast
to collaborative approaches, these techniques do not require a user community
in order to work.

However, challenges exist. The first one concerns user preference elicitation
and new users. Giving explicit feedback is onerous for the user, and deriving
implicit feedback from user behavior (such as viewing item details for a certain

78 3 Content-based recommendation

period of time) can be problematic. All learning techniques require a certain
amount of training data to achieve good results; some learning methods tend
to overfit the training data so the danger exists that the recommendation lists
contain too many similar items.

The border between content-based recommenders and other systems is not
strictly defined. Automatic text classification or information filtering are clas-
sical IR methods. In the context of recommender systems, perhaps the main
difference is that these classical IR tasks are personalized – in other words,
a general spam e-mail detector or a web search engine should not be viewed
as a recommender system. If we think of personal e-mail sorting (according
to different automatically detected document categories) or personalization of
search results, however, the border is no longer clear.

Another fuzzy border is between content-based recommenders and
knowledge-based ones. A typical difference between them is that content-
based recommenders generally work on text documents or other items for
which features can be automatically extracted and for which some sort of
learning technique is employed. In contrast, knowledge-based systems rely
mainly on externally provided information about the available items.

With respect to industrial adoption of content-based recommendation, one
can observe that pure content-based systems are rarely found in commer-
cial environments. Among the academic systems that were developed in the
mid-1990s, the following works are commonly cited as successful examples
demonstrating the general applicability of the proposed techniques.

Syskill & Webert (Pazzani et al. 1996, Pazzani and Billsus 1997) is probably
the most-cited system here and falls into the category of web browsing assistants
that use past ratings to predict whether the user will be interested in the links
on a web page (using “thumbs up” and “thumbs down” annotations). Personal
Web Watcher (Mladenic 1996) is a similar system and browsing assistant,
which, however, exploits document information in a slightly different way
than does Syskill & Webert; see also Mladenic 1999. The Information Finder
system (Krulwich and Burkey 1997) aims to achieve similar goals but is based
on a special phrase extraction technique and Bayesian networks. Newsweeder
(Lang 1995) is an early news filtering system based on a probabilistic method.
NewsRec (Bomhardt 2004) is a more recent system that is not limited to a
specific document type, such as news or web pages, and is based on SVM as a
learning technique.

As the aforementioned limitations of pure content-based recommenders
are critical in many domains, researchers relatively quickly began to combine
them with other techniques into hybrid systems. Fab (Balabanović and Shoham

3.6 Bibliographical notes 79

1997) is an early example of a collaborative/content-based hybrid that tries to
combine the advantages of both techniques. Many other hybrid approaches
have been proposed since then and will be discussed in Chapter 5. Reports
on pure content-based systems are relatively rare today. Examples of newer
systems can be found in domains in which recent advances have been made
with respect to automated feature extraction, such as music recommendation.
Even there, however, hybrids using collaborative filtering techniques are also
common; see, for instance, Logan (2004) or Yoshii et al. (2006).

3.6 Bibliographical notes

The roots of several techniques that are used in content-based recommenders
are in the fields of information retrieval and information filtering. An up-to-date
introduction on IR and its methods is given in the text book by Manning et al.
(2008). The work covers several techniques discussed in this chapter, such
as TF-IDF weighting, the vector-space document model, feature selection,
relevance feedback, and naive Bayes text classification. It describes additional
classification techniques based on SVM, linear regression, and clustering; it
also covers further specific information retrieval techniques, such as LSI, which
were also applied in the recommendation domain as described in Chapter 2,
and, finally, it discusses aspects of performance evaluation for retrieval and
filtering systems.

A similar array of methods is discussed in the textbook by Chakrabarti
(2002), which has a strong focus on web mining and practical aspects of
developing the technical infrastructure that is needed to, for instance, crawl
the web.

IR methods have a long history. A 1992 review of information filtering
techniques and, in particular, on the then newly developed LSI method can be
found in Foltz and Dumais (1992). Housman and Kaskela (1970) is an overview
paper on methods of “selective dissemination of information”, a concept that
early on implemented some of the features of modern filtering methods.

A recent overview of content-based recommendation techniques (in the
context of adaptive web applications and personalization) is given by Pazzani
and Billsus (2007). More details about the influential Syskill & Webert rec-
ommender system can be found in the original paper (Pazzani et al. 1996) by
the same authors. In Pazzani and Billsus (1997), a comparative evaluation of
different classification techniques from nearest neighbors over decision trees,
Bayes classifiers, and neural nets is given.

80 3 Content-based recommendation

Adomavicius and Tuzhilin (2005) give a compact overview on content-based
methods and show how such approaches fit into a more general framework of
recommendation methods. They also provide an extensive literature review
that can serve as a good starting point for further reading. The structure of this
chapter mainly follows the standard schemes developed by Adomavicius and
Tuzhilin (2005) and Pazzani and Billsus (2007).

4

Knowledge-based recommendation

4.1 Introduction

Most commercial recommender systems in practice are based on collaborative
filtering (CF) techniques, as described in Chapter 2. CF systems rely solely
on the user ratings (and sometimes on demographic information) as the only
knowledge sources for generating item proposals for their users. Thus, no
additional knowledge – such as information about the available movies and
their characteristics – has to be entered and maintained in the system.

Content-based recommendation techniques, as described in Chapter 3, use
different knowledge sources to make predictions whether a user will like an
item. The major knowledge sources exploited by content-based systems in-
clude category and genre information, as well as keywords that can often be
automatically extracted from textual item descriptions. Similar to CF, a major
advantage of content-based recommendation methods is the comparably low
cost for knowledge acquisition and maintenance.

Both collaborative and content-based recommender algorithms have their
advantages and strengths. However, there are many situations for which these
approaches are not the best choice. Typically, we do not buy a house, a car, or a
computer very frequently. In such a scenario, a pure CF system will not perform
well because of the low number of available ratings (Burke 2000). Furthermore,
time spans play an important role. For example, five-year-old ratings for com-
puters might be rather inappropriate for content-based recommendation. The
same is true for items such as cars or houses, as user preferences evolve over
time because of, for example, changes in lifestyles or family situations. Finally,
in more complex product domains such as cars, customers often want to define
their requirements explicitly – for example, “the maximum price of the car is x

and the color should be black”. The formulation of such requirements is not
typical for pure collaborative and content-based recommendation frameworks.

81

82 4 Knowledge-based recommendation

Knowledge-based recommender systems help us tackle the aforementioned
challenges. The advantage of these systems is that no ramp-up problems exist,
because no rating data are needed for the calculation of recommendations. Rec-
ommendations are calculated independently of individual user ratings: either
in the form of similarities between customer requirements and items or on
the basis of explicit recommendation rules. Traditional interpretations of what
a recommender system is focus on the information filtering aspect (Konstan
et al. 1997, Pazzani 1999a), in which items that are likely to be of interest for
a certain customer are filtered out. In contrast, the recommendation process
of knowledge-based recommender applications is highly interactive, a foun-
dational property that is a reason for their characterization as conversational
systems (Burke 2000). This interactivity aspect triggered a slight shift from the
interpretation as a filtering system toward a wider interpretation where recom-
menders are defined as systems that “guide a user in a personalized way to
interesting or useful objects in a large space of possible options or that produce
such objects as output” (Burke 2000). Recommenders that rely on knowledge
sources not exploited by collaborative and content-based approaches are by de-
fault defined as knowledge-based recommenders by Burke (2000) and Felfernig
and Burke (2008).

Two basic types of knowledge-based recommender systems are constraint-
based (Felfernig and Burke 2008, Felfernig et al. 2006–07, Zanker et al. 2010)
and case-based systems (Bridge et al. 2005, Burke 2000). Both approaches
are similar in terms of the recommendation process: the user must specify the
requirements, and the system tries to identify a solution. If no solution can be
found, the user must change the requirements. The system may also provide
explanations for the recommended items. These recommenders, however, differ
in the way they use the provided knowledge: case-based recommenders focus
on the retrieval of similar items on the basis of different types of similarity mea-
sures, whereas constraint-based recommenders rely on an explicitly defined set
of recommendation rules. In constraint-based systems, the set of recommended
items is determined by, for instance, searching for a set of items that fulfill the
recommendation rules. Case-based systems, on the other hand, use similarity
metrics to retrieve items that are similar (within a predefined threshold) to the
specified customer requirements. Constraint-based and case-based knowledge
representations will be discussed in the following subsections.

4.2 Knowledge representation and reasoning

In general, knowledge-based systems rely on detailed knowledge about item
characteristics. A snapshot of such an item catalog is shown in Table 4.1 for

4.2 Knowledge representation and reasoning 83

Table 4.1. Example product assortment: digital cameras (Felfernig et al.
2009).

id price(e) mpix opt-zoom LCD-size movies sound waterproof

p1 148 8.0 4× 2.5 no no yes
p2 182 8.0 5× 2.7 yes yes no
p3 189 8.0 10× 2.5 yes yes no
p4 196 10.0 12× 2.7 yes no yes
p5 151 7.1 3× 3.0 yes yes no
p6 199 9.0 3× 3.0 yes yes no
p7 259 10.0 3× 3.0 yes yes no
p8 278 9.1 10× 3.0 yes yes yes

the digital camera domain. Roughly speaking, the recommendation problem
consists of selecting items from this catalog that match the user’s needs, pref-
erences, or hard requirements. The user’s requirements can, for instance, be
expressed in terms of desired values or value ranges for an item feature, such
as “the price should be lower than 300e” or in terms of desired functionality,
such as “the camera should be suited for sports photography”.

Following the categorization from the previous section, we now discuss
how the required domain knowledge is encoded in typical knowledge-based
recommender systems. A constraint-based recommendation problem can, in
general, be represented as a constraint satisfaction problem (Felfernig and
Burke 2008, Zanker et al. 2010) that can be solved by a constraint solver or in
the form of a conjunctive query (Jannach 2006a) that is executed and solved
by a database engine. Case-based recommendation systems mostly exploit
similarity metrics for the retrieval of items from a catalog.

4.2.1 Constraints

A classical constraint satisfaction problem (CSP)1 can be described by a-tuple
(V,D,C) where

� V is a set of variables,
� D is a set of finite domains for these variables, and
� C is a set of constraints that describes the combinations of values the variables

can simultaneously take (Tsang 1993).

A solution to a CSP corresponds to an assignment of a value to each variable
in V in a way that all constraints are satisfied.

1 A discussion of different CSP algorithms can be found in Tsang (1993).

84 4 Knowledge-based recommendation

Table 4.2. Example recommendation task (VC , VPROD, CR , CF , CPROD,
REQ) and the corresponding recommendation result (RES).

VC {max-price(0 . . . 1000), usage(digital, small-print, large-print),
photography (sports, landscape, portrait, macro)}

VPROD {price(0 . . . 1000), mpix(3.0 . . . 12.0), opt-zoom(4× . . . 12×), lcd-size
(2.5 . . . 3.0), movies(yes, no), sound(yes, no), waterproof (yes, no)}

CF {usage = large-print → mpix > 5.0} (usage is a customer property and
mpix is a product property)

CR {usage = large-print → max-price > 200} (usage and max-price are
customer properties)

CPROD {(id=p1 ∧ price=148 ∧ mpix=8.0 ∧ opt-zoom=4× ∧ lcd-size=2.5 ∧
movies=no ∧ sound=no ∧ waterproof =no) ∨ · · · ∨ (id=p8 ∧
price=278 ∧ mpix=9.1 ∧ opt-zoom=10× ∧ lcd-size=3.0 ∧ movies=yes
∧ sound=yes ∧ waterproof =yes)}

REQ {max-price = 300, usage = large-print, photography = sports}

RES {max-price = 300, usage = large-print, photography = sports, id = p8,
price=278, mpix=9.1, opt-zoom=10×, lcd-size=3.0, movies=yes,
sound=yes, waterproof =yes}

Constraint-based recommender systems (Felfernig and Burke 2008, Felfer-
nig et al. 2006–07, Zanker et al. 2010) can build on this formalism and exploit
a recommender knowledge base that typically includes two different sets of
variables (V = VC ∪ VPROD), one describing potential customer requirements
and the other describing product properties. Three different sets of constraints
(C = CR ∪ CF ∪ CPROD) define which items should be recommended to a cus-
tomer in which situation. Examples for such variables and constraints for a
digital camera recommender, as described by Jannach (2004), and Felfernig
et al. (2006–07), are shown in Table 4.2.

� Customer properties (VC) describe the possible customer requirements (see
Table 4.2). The customer property max-price denotes the maximum price
acceptable for the customer, the property usage denotes the planned usage of
photos (print versus digital organization), and photography denotes the pre-
dominant type of photos to be taken; categories are, for example, sports or
portrait photos.

� Product properties (VPROD) describe the properties of products in an assort-
ment (see Table 4.2); for example, mpix denotes possible resolutions of a
digital camera.

4.2 Knowledge representation and reasoning 85

� Compatibility constraints (CR) define allowed instantiations of customer
properties – for example, if large-size photoprints are required, the maximal
accepted price must be higher than 200 (see Table 4.2).

� Filter conditions (CF) define under which conditions which products should
be selected – in other words, filter conditions define the relationships be-
tween customer properties and product properties. An example filter condi-
tion is large-size photoprints require resolutions greater than 5 mpix (see
Table 4.2).

� Product constraints (CPROD) define the currently available product assort-
ment. An example constraint defining such a product assortment is depicted
in Table 4.2. Each conjunction in this constraint completely defines a product
(item) – all product properties have a defined value.

The task of identifying a set of products matching a customer’s wishes and
needs is denoted as a recommendation task. The customer requirements REQ
can be encoded as unary constraints over the variables in VC and VPROD – for
example, max-price = 300.

Formally, each solution to the CSP (V = VC ∪ VPROD,D,C = CR ∪ CF ∪
CPROD ∪ REQ) corresponds to a consistent recommendation. In many practi-
cal settings, the variables in VC do not have to be instantiated, as the relevant
variables are already bound to values through the constraints in REQ. The task
of finding such valid instantiations for a given constraint problem can be ac-
complished by every standard constraint solver. A consistent recommendation
RES for our example recommendation task is depicted in Table 4.2.

Conjunctive queries. A slightly different way of constraint-based item re-
trieval for a given catalog, as shown in Table 4.1, is to view the item selection
problem as a data filtering task. The main task in such an approach, therefore, is
not to find valid variable instantiations for a CSP but rather to construct a con-
junctive database query that is executed against the item catalog. A conjunctive
query is a database query with a set of selection criteria that are connected
conjunctively.

For example, σ[mpix≥10,price<300](P) is such a conjunctive query on the
database table P, where σ represents the selection operator and [mpix ≥
10, price < 300] the corresponding selection criteria. If we exploit conjunc-
tive queries (database queries) for item selection purposes, VPROD and CPROD

are represented by a database table P. Table attributes represent the elements of
VPROD and the table entries represent the constraint(s) in CPROD. In our working
example, the set of available items is P = {p1, p2, p3, p4, p5, p6, p7, p8} (see
Table 4.1).

86 4 Knowledge-based recommendation

Queries can be defined that select different item subsets from P depending
on the requirements in REQ. Such queries are directly derived from the filter
conditions (CF) that define the relationship between customer requirements and
the corresponding item properties. For example, the filter condition usage =
large-print → mpix > 5.0 denotes the fact that if customers want to have large
photoprints, the resolution of the corresponding camera (mpix) must be > 5.0. If
a customer defines the requirement usage = large-print, the corresponding filter
condition is active, and the consequent part of the condition will be integrated
in a corresponding conjunctive query. The existence of a recommendation
for a given set REQ and a product assortment P is checked by querying P
with the derived conditions (consequents of filter conditions). Such queries are
defined in terms of selections on P formulated as σ[criteria](P), for example,
σ[mpix≥10](P) = {p4, p7}.2

4.2.2 Cases and similarities

In case-based recommendation approaches, items are retrieved using similarity
measures that describe to which extent item properties match some given user’s
requirements. The so-called distance similarity (McSherry 2003a) of an item
p to the requirements r ∈ REQ is often defined as shown in Formula 4.1.
In this context, sim(p, r) expresses for each item attribute value φr (p) its
distance to the customer requirement r ∈ REQ – for example, φmpix(p1) = 8.0.
Furthermore, wr is the importance weight for requirement r .3

similarity(p, REQ) =
∑

r∈REQ wr ∗ sim(p, r)∑
r∈REQ wr

(4.1)

In real-world scenarios, there are properties a customer would like to maxi-
mize – for example, the resolution of a digital camera. There are also properties
that customers want to minimize – for example, the price of a digital camera or
the risk level of a financial service. In the first case we are talking about “more-
is-better” (MIB) properties; in the second case the corresponding properties are
denoted with “less-is-better” (LIB).

To take those basic properties into account in our similarity calcula-
tions, we introduce the following formulae for calculating local similarities

2 For reasons of simplicity in the following sections we assume VC = VPROD – that is, customer
requirements are directly defined on the technical product properties. Queries on a product table
P will be then written as σ[REQ](P).

3 A detailed overview of different types of similarity measures can be found in Wilson and Martinez
1997. Basic approaches to determine the importance of requirements (w) are discussed in
Section 4.3.4.

4.3 Interacting with constraint-based recommenders 87

(McSherry 2003a). First, in the case of MIB properties, the local similarity
between p and r is calculated as follows:

sim(p, r) = φr(p) − min(r)

max(r) − min(r)
(4.2)

The local similarity between p and r in the case of LIB properties is calcu-
lated as follows:

sim(p, r) = max(r) − φr (p)

max(r) − min(r)
(4.3)

Finally, there are situations in which the similarity should be based solely on
the distance to the originally defined requirements. For example, if the user has
a certain run time of a financial service in mind or requires a certain monitor
size, the shortest run time as well as the largest monitor will not represent an
optimal solution. For such cases we have to introduce a third type of local
similarity function:

sim(p, r) = 1 − |φr (p) − r|
max(r) − min(r)

(4.4)

The similarity measures discussed in this section are often the basis for dif-
ferent case-based recommendation systems, which will be discussed in detail
in Section 4.4. Utility-based recommendation – as, for instance, mentioned by
Burke (2000) – can be interpreted as a specific type of knowledge-based rec-
ommendation. However, this approach is typically applied in combination with
constraint-based recommendation (Felfernig et al. 2006–07) and sometimes
as well, in combination with case-based recommenders (Reilly et al. 2007b).
Therefore, this approach will be discussed in Section 4.3.4 as a specific func-
tionality in the context of constraint-based recommendation.

4.3 Interacting with constraint-based recommenders

The general interaction flow of a knowledge-based, conversational recom-
mender can be summarized as follows.

� The user specifies his or her initial preferences – for example, by using a
web-based form. Such forms can be identical for all users or personalized to
the specific situation of the current user. Some systems use a question/answer
preference elicitation process, in which the questions can be asked either all
at once or incrementally in a wizard-style, interactive dialog, as described
by Felfernig et al. (2006–07).

88 4 Knowledge-based recommendation

� When enough information about the user’s requirements and preferences has
been collected, the user is presented with a set of matching items. Optionally,
the user can ask for an explanation as to why a certain item was recommended.

� The user might revise his or her requirements, for instance, to see alternative
solutions or narrow down the number of matching items.

Although this general user interaction scheme appears to be rather simple in
the first place, practical applications are typically required to implement more
elaborate interaction patterns to support the end user in the recommendation
process. Think, for instance, of situations in which none of the items in the
catalog satisfies all user requirements. In such situations, a conversational
recommender should intelligently support the end user in resolving the problem
and, for example, proactively propose some action alternatives.

In this section we analyze in detail different techniques to support users in
the interaction with constraint-based recommender applications. These tech-
niques help improve the usability of these applications and achieve higher user
acceptance in dimensions such as trust or satisfaction with the recommendation
process and the output quality (Felfernig et al. 2006–07).

4.3.1 Defaults

Proposing default values. Defaults are an important means to support cus-
tomers in the requirements specification process, especially in situations in
which they are unsure about which option to select or simply do not know
technical details (Huffman and Kahn 1998). Defaults can support customers in
choosing a reasonable alternative (an alternative that realistically fits the current
preferences). For example, if a customer is interested in printing large-format
pictures from digital images, the camera should support a resolution of more
than 5.0 megapixels (default). The negative side of the coin is that defaults
can also be abused to manipulate consumers to choose certain options. For
example, users can be stimulated to buy a park distance control functionality
in a car by presenting the corresponding default value (Herrmann et al. 2007).
Defaults can be specified in various ways:

� Static defaults: In this case, one default is specified per customer property –
for example, default(usage)=large-print, because typically users want to
generate posters from high-quality pictures.

� Dependent defaults: In this case a default is defined on different combinations
of potential customer requirements – for example, default(usage=small-
print, max-price) = 300.

4.3 Interacting with constraint-based recommenders 89

Table 4.3. Example of customer interaction data.

customer (user) price opt-zoom lcd-size

cu1 400 10× 3.0
cu2 300 10× 3.0
cu3 150 4× 2.5
cu4 200 5× 2.7
cu5 200 5× 2.7

� Derived defaults: When the first two default types are strictly based on a
declarative approach, this third type exploits existing interaction logs for the
automated derivation of default values.

The following example sketches the main idea and a basic scheme for derived
default values. Assume we are given the sample interaction log in Table 4.3.
The only currently known requirement of a new user should be price=400;
the task is to find a suitable default value for the customer requirement on the
optical zoom (opt-zoom). From the interaction log we see that there exists a
customer (cu1) who had similar requirements (price=400). Thus, we could
take cu1’s choice for the optical zoom as a default also for the new user.

Derived defaults can be determined based on various schemes; basic example
approaches to the determination of suitable default values are, for example,
1-nearest neighbor and weighted majority voter.

� 1-Nearest neighbor: The 1-nearest neighbor approach can be used for the
prediction of values for one or a set of properties in VC . The basic idea
is to determine the entry of the interaction log that is as close as possible
to the set of requirements (REQ) specified by the customer. The 1-nearest
neighbor is the entry in the example log in Table 4.3 that is most similar to the
customer requirements in REQ (see Formula 4.1). In our working example,
the nearest neighbor for the set of requirements REQ ={r1 : price = 400, r2 :
opt-zoom = 10×} would be the interaction log entry for customer cu1. If,
for example, the variable lcd-size is not specified by the current customer,
the recommender application could propose the value 3.0.

� Weighted majority voter: The weighted majority voter proposes customer
property values that are based on the voting of a set of neighbor items for a
specific property. It operates on a set of n-nearest neighbors, which can be
calculated on the basis of Formula 4.1. Let us assume that the three-nearest
neighbors for the requirements REQ = {r1 : price = 400} are the interaction

90 4 Knowledge-based recommendation

log entries for the customers {cu1, cu2, cu4} and we want to determine a
default for the property opt-zoom. The majority value for opt-zoom would
then be 10×, which, in this context, can be recommended as the default.

For weighted majority voters as well as for simple 1-nearest-neighbor-
based default recommendations, it is not possible to guarantee that the re-
quirements (including the defaults) allow the derivation of a recommen-
dation. For example, if REQ = {r1 : opt-zoom = 3×} then the weighted
majority voter approach would recommend lcd-size = 2.7, assuming that
the three-nearest neighbors are {cu3, cu4, cu5}; the corresponding query
σ[opt-zoom=3x,lcd-size=2.7](P) would result in the empty set ∅. The handling of
such situations will be discussed in Subsection 4.3.2.

Selecting the next question. Besides using defaults to support the user in the
requirements specification process, the interaction log and the default mecha-
nism can also be applied for identifying properties that may be interesting for
the user within the scope of a recommendation session. For example, if a user
has already specified requirements regarding the properties price and opt-zoom,
defaults could propose properties that the user could be interested to specify
next. Concepts supporting such a functionality are discussed in the following
paragraphs.

Proposing defaults for properties to be presented next is an important
functionality, as most users are not interested in specifying values for all
properties – they rather want to specify the conditions that are important for
them, but then immediately move on to see the recommended items. Different
approaches to the selection of interesting questions are discussed by Mahmood
and Ricci (2007). The precondition for such approaches is the availability of
user interaction logs (see Table 4.4). One basic approach to the determination
of defaults for the presentation of selectable customer properties is discussed
by Mahmood and Ricci (2007), in which question recommendation is based on
the principle of frequent usage (popularity). Such a popularity value can be cal-
culated using Formula 4.5, in which the recommendation of a question depends
strictly on the number of previous selections of other users – see, for exam-
ple, Table 4.4. By analyzing the interaction log of Table 4.4, popularity(price,
pos : 1) = 0.6, whereas popularity(mpix, pos : 1) = 0.4. Consequently, for the
first question, the property price would be selected.

popularity(attribute, pos) = #selections(attribute, pos)

#sessions
(4.5)

Another approach for supporting question selection is to apply weighted-
majority voters (Felfernig and Burke 2008). If, for example, a user has already

4.3 Interacting with constraint-based recommenders 91

Table 4.4. Order of selected customer properties; for example, in session 4
(ID = 4) mpix has been selected as first customer property to be specified.

ID pos:1 pos:2 pos:3 pos:4 pos:5 pos:6 · · ·
1 price opt-zoom mpix movies LCD-size sound · · ·
2 price opt-zoom mpix movies LCD-size – · · ·
3 price mpix opt-zoom lcd-size movies sound · · ·
4 mpix price opt-zoom lcd-size movies – · · ·
5 mpix price lcd-size opt-zoom movies sound · · ·

selected the properties price and opt-zoom, the weighted majority voter would
identify the sessions with ID {1, 2} as nearest neighbors (see Table 4.4) for
the given set of requirements and then propose mpix as the next interesting
question.

4.3.2 Dealing with unsatisfiable requirements
and empty result sets

In our example, a given set of requirements REQ = {r1 : price <= 150, r2 :
opt-zoom = 5x, r3 : sound = yes, r4 : waterproof = yes} cannot be fulfilled
by any of the products in P = {p1, p2, p3, p4, p5, p6, p7, p8} because
σ[price<=150,opt-zoom=5x,sound=yes,waterproof=yes](P) = ∅.

Many recommender systems are not able to propose a way out of such
a “no solution could be found” dilemma. One option to help the user out is
to incrementally and automatically relax constraints of the recommendation
problem until a corresponding solution has been found. Different approaches
to deal with this problem have been proposed in the literature. All of them share
the same basic goal of identifying relaxations to the original set of constraints
(Jannach 2006a, O’Sullivan et al. 2007, Felfernig et al. 2004, Felfernig et al.
2009). For the sake of better understandability, we assume that the user’s
requirements are directly related to item properties VPROD.

In this section we discuss one basic approach in more detail. This approach is
based on the idea of identifying and resolving requirements-immanent conflicts
induced by the set of products in P. In such situations users ask for help that can
be provided, for example, by the indication of a minimal set of requirements
that should be changed in order to find a solution. In addition to a point to such
unsatisfiable requirements, users could also be interested in repair proposals –
that is, in adaptations of the initial requirements in such a way that the recom-
mender is able to calculate a solution (Felfernig et al. 2009).

92 4 Knowledge-based recommendation

The calculation of such repairs can be based on the concepts of model-based
diagnosis (MBD; Reiter 1987) – the basis for the automated identification and
repair of minimal sets of faulty requirements (Felfernig et al. 2004). MBD
starts with a description of a system that is, in the case of recommender ap-
plications, a predefined set of products pi ∈ P. If the actual system behavior
is in contradiction to the intended system behavior (the unintended behavior
is reflected by the fact that no solution could be found), the diagnosis task is
to identify the system components (in our context represented by the user
requirements in REQ) that, when we assume that they function abnormally,
explain the discrepancy between the actual and the intended behavior of the
system under consideration.

In the context of our problem setting, a diagnosis is a minimal set of user
requirements whose repair (adaptation) will allow the retrieval of a recom-
mendation. Given P = {p1, p2, . . . , pn} and REQ = {r1, r2, . . . , rm} where
σ [REQ](P) = ∅, a knowledge-based recommender system would calculate a set
of diagnoses � = {d1, d2, . . . , dk} where σ[REQ−di](P)
= ∅ ∀di ∈ �. A diagnosis
is a minimal set of elements {r1, r2, . . . , rk} = d ⊆ REQ that have to be repaired
in order to restore consistency with the given product assortment so at least
one solution can be found: σ[REQ−d](P)
= ∅. Following the basic principles of
MBD, the calculation of diagnoses di ∈ � is based on the determination and
resolution of conflict sets. A conflict set CS (Junker 2004) is defined as a subset
{r1, r2, . . . , rl} ⊆ REQ, such that σ[CS](P) = ∅. A conflict set CS is minimal if
and only if (iff) there does not exist a CS′ with CS′ ⊂ CS.

As mentioned, no item in P completely fulfills the requirements REQ = {r1 :
price <= 150, r2 : opt-zoom = 5×, r3 : sound=yes, r4 : waterproof=yes}:
σ[price<=150,opt-zoom=5x,sound=yes,waterproof=yes] (P) = ∅. The corresponding con-
flict sets are CS1 = {r1, r2}, CS2 = {r2, r4}, and CS3 = {r1, r3}, as σ [CS1](P) =
∅, σ [CS2](P) = ∅, and σ [CS3](P) = ∅. The identified conflict sets are minimal,
as ¬∃CS′

1: CS ′
1⊂CS1 ∧ σ [CS1′](P) = ∅, ¬∃CS ′

2: CS′
2⊂CS2 ∧ σ [CS2′](P) = ∅,

and ¬∃CS ′
3: CS′

3⊂CS3 ∧ σ [CS3′](P) = ∅.
Diagnoses di ∈ � can be calculated by resolving conflicts in the given set

of requirements. Because of its minimality, one conflict can be easily resolved
by deleting one of the elements from the conflict set. After having deleted
at least one element from each of the identified conflict sets, we are able to
present a corresponding diagnosis. The diagnoses derived from the conflict
sets {CS1, CS2, CS3} in our working example are � = {d1:{r1, r2}, d2:{r1, r4},
d3:{r2, r3}}. The calculation of such diagnoses (see Figure 4.1) starts with the
first identified conflict set (CS1) (1). CS1 can be resolved in two alternative
ways: by deleting either r1 or r2. Both of these alternatives are explored follow-
ing a breadth-first search regime. After deleting r1 from REQ, the next conflict

4.3 Interacting with constraint-based recommenders 93

(1) CS1={r1, r2}

(2) CS2={r2, r4} (3) CS3={r1, r3}

d1={r1,r2} d2={r1,r4} d3={r2,r3}

{r3}

≠

{r1}
{r4}

{r2}

{r1} {r2}

Figure 4.1. Calculating diagnoses for unsatisfiable requirements.

set is CS2 (2), which also allows two different relaxations, namely r2 and r4.
Deleting the elements of CS2 leads to the diagnoses d1 and d2. After deleting
r2 from CS1, the next returned conflict set is CS3 (3). Both alternative deletions
for CS3, in principle, lead to a diagnosis. However, the diagnosis {r1, r2} is
already contained in d1; consequently, this path is not expanded further, and
the third and final diagnosis is d3.

Calculating conflict sets. A recent and general method for the calculation
of conflict sets is QuickXPlain (Algorithm 4.1), an algorithm that calculates
one conflict set at a time for a given set of constraints. Its divide-and-conquer
strategy helps to significantly accelerate the performance compared to other
approaches (for details see, e.g., Junker 2004).

QuickXPlain has two input parameters: first, P is the given product as-
sortment P = {p1, p2, . . . , pm}. Second, REQ = {r1, r2, . . . , rn} is a set of
requirements analyzed by the conflict detection algorithm.

QuickXPlain is based on a recursive divide-and-conquer strategy that di-
vides the set of requirements into the subsets REQ1 and REQ2. If both subsets
contain about 50 percent of the requirements (the splitting factor is n

2), all
the requirements contained in REQ2 can be deleted (ignored) after a single
consistency check if σ [REQ1](P) = ∅. The splitting factor of n

2 is generally
recommended; however, other factors can be defined. In the best case (e.g.,
all elements of the conflict belong to subset REQ1) the algorithm requires
log2

n
u

+ 2u consistency checks; in the worst case, the number of consistency
checks is 2u(log2

n
u

+ 1), where u is the number of elements contained in the
conflict set.

94 4 Knowledge-based recommendation

Algorithm 4.1 QuickXPlain(P, REQ)

Input: trusted knowledge (items) P ; Set of requirements REQ
Output: minimal conflict set CS

if σ[REQ](P)
= ∅ or REQ = ∅ then return ∅
else return QX′ (P , ∅, ∅, REQ);

Function QX′(P , B, 	, REQ)
if 	
= ∅ and σ [B](P) = ∅ then return ∅;
if REQ = {r} then return {r};
let {r1, . . . , rn} = REQ;
let k be n

2 ;
REQ1 ← r1, . . . , rk and REQ2 ← rk+1, . . . , rn;
	2 ← QX′(P , B ∪ REQ1, REQ1, REQ2);
	1 ← QX′(P , B ∪ 	2, 	2, REQ1);
return 	1 ∪ 	2;

To show how the algorithm QuickXPlain works, we will exemplify the cal-
culation of a conflict set on the basis of our working example (see Figure 4.2) –
that is, P = {p1, p2, . . . , p8} and REQ = {r1:price≤150, r2:opt-zoom=5x,
r3:sound=yes, r4:waterproof=yes}. First, the main routine is activated (1),
which checks whether σ [REQ](P)
= ∅. As this is not the case, the recursive
routine QX′ is activated (2). This call results in call (3) (to obtain 	2), which
itself results in ∅, as 	
= ∅ and σ [B](P) = ∅. To obtain 	1, call (4) directly
activates call (5) and call (6), and each those last calls identifies a correspond-
ing conflict element (r2 and r1). Thus, CS1:{r1, r2} is returned as the first
conflict set.

(1) QX(P, {r1, r2, r3, r4})

{r1, r2}

{r1, r2}

{r1}{r2}

{}

(2) QX‘(P, {}, {}, {r1, r2, r3, r4})

(4) QX‘(P, {}, {}, {r1, r2})

(5) QX‘(P, {r1}, {r1}, {r2}) (6) QX‘(P, {r2}, {r2}, {r1})

(3) QX‘(P, {r1, r2}, {r1, r2}, {r3, r4})

Figure 4.2. Example: calculation of conflict sets using QuickXPlain.

4.3 Interacting with constraint-based recommenders 95

Algorithm 4.2 MinRelax(P, REQ)

Input: Product assortment P ; set of requirements REQ
Output: Complete set of all minimal diagnoses 	

	 ← ∅;
forall pi ∈ P do

PSX ← product-specific-relaxation(pi , REQ);
SUB ← {r ∈ 	 − r ⊂ PSX};
if SUB
= ∅ then continue with next pi ;
SUPER ← {r ∈ 	 − PSX ⊂ r};
if SUPER
= ∅ then 	 ← 	 − SUPER;
	 ← 	 ∪ {PSX};

return 	;

Besides the usage within an MBD procedure, the conflicts computed with
QuickXPlain can also be used in interactive relaxation scenarios as described
by McSherry (2004), in which the user is presented with one or more remaining
conflicts and asked to choose one of the conflict elements to retract. For an
example of such an algorithm, see Jannach 2006b.

Fast in-memory computation of relaxations with MinRelax. As long as
the set of items is specified explicitly (as in Table 4.1), the calculation of
diagnoses can be achieved without the explicit determination and resolution of
conflict sets (Jannach 2006a). MinRelax (Algorithm 4.2) is such an algorithm
to determine the complete set of diagnoses. The previously discussed approach
based on the resolution of conflict sets is still indispensable in interactive
settings, in which users should be able to manually resolve conflicts, and in
settings in which items are not enumerated but described in the form of generic
product structures (Felfernig et al. 2004).

The MinRelax algorithm for determining the complete set of minimal
diagnoses has been introduced by Jannach (2006a). This algorithm calculates,
for each item pi ∈ P and the requirements in REQ, a corresponding product-
specific relaxation PSX. PSX is a minimal diagnosis d ∈ 	 (the set of all
minimal diagnoses) if there is no set r such that r ⊂ PSX. For example, the PSX
for item p1 and the requirements {r1, r2, r3, r4} is the ordered set {1, 0, 0, 1},
which corresponds to the first column of Table 4.5 (only the requirements r1

and r4 are satisfied by item p1).
The performance of MinRelax is (n * (n + 1))/2 subset checks in

the worst case, which can be conducted efficiently with in-memory bitset

96 4 Knowledge-based recommendation

Table 4.5. Intermediate representation: item-specific relaxations PSX for
pi ∈ P .

p1 p2 p3 p4 p5 p6 p7 p8

r1 : price ≤ 150 1 0 0 0 0 0 0 0
r2 : opt-zoom = 5× 0 1 0 0 0 0 0 0
r3 : sound = yes 0 1 1 0 1 1 1 1
r4 : waterproof = yes 1 0 0 1 0 0 0 1

operations (Jannach 2006a). Table 4.5 depicts the relationship between our ex-
ample requirements and each pi ∈ P. Because of the explicit enumeration of all
possible items in P, we can determine for each requirement/item combination
whether the requirement is supported by the corresponding item. Each column
of Table 4.5 represents a diagnosis; our goal is to identify the diagnoses that
are minimal.

4.3.3 Proposing repairs for unsatisfiable requirements

After having identified the set of possible diagnoses (�), we must propose repair
actions for each of those diagnoses – in other words, we must identify possible
adaptations for the existing set of requirements such that the user is able to find
a solution (Felfernig et al. 2009). Alternative repair actions can be derived by
querying the product table P with π[attributes(d)]σ [REQ−d](P). This query identifies
all possible repair alternatives for a single diagnosis d ∈ 	 where π[attributes(d)]

is a projection and σ [REQ−d](P) is a selection of -tuples from P that satisfy
the criteria in REQ–d. Executing this query for each of the identified diagnoses
produces a complete set of possible repair alternatives. For reasons of simplicity
we restrict our example to three different repair alternatives, each belonging to
exactly one diagnosis. Table 4.6 depicts the complete set of repair alternatives
REP = {rep1, rep2, rep3} for our working example, where

� π[attributes(d1)]σ [REQ−d1](P) = π [price,opt-zoom]σ [r3:sound=yes,r4:waterproof=yes](P) =
{price=278, opt-zoom=10×}

� π [attributes(d2)]σ [REQ−d2](P) = π [price,waterproof]σ [r2:opt-zoom=5x,r3:sound=yes](P) =
{price=182, waterproof =no}

� π [attributes(d3)]σ [REQ−d3](P) = π [opt-zoom,sound]σ [r1:price<=150,r4:waterproof=yes](P)
= {opt-zoom=4×, sound=no}

4.3 Interacting with constraint-based recommenders 97

Table 4.6. Repair alternatives for requirements in REQ.

repair price opt-zoom sound waterproof

rep1 278 10× √ √
rep2 182

√ √
no

rep3

√
4× no

√

4.3.4 Ranking the items/utility-based recommendation

It is important to rank recommended items according to their utility for the
customer. Because of primacy effects that induce customers to preferably look
at and select items at the beginning of a list, such rankings can significantly
increase the trust in the recommender application as well as the willingness to
buy (Chen and Pu 2005, Felfernig et al. 2007)

In knowledge-based conversational recommenders, the ranking of items
can be based on the multi-attribute utility theory (MAUT), which evaluates
each item with regard to its utility for the customer. Each item is evaluated
according to a predefined set of dimensions that provide an aggregated view on
the basic item properties. For example, quality and economy are dimensions in
the domain of digital cameras; availability, risk, and profit are such dimensions
in the financial services domain. Table 4.7 exemplifies the definition of scoring
rules that define the relationship between item properties and dimensions. For
example, a digital camera with a price lower than or equal to 250 is evaluated,
with Q score of 5 regarding the dimension quality and 10 regarding the
dimension economy.

We can determine the utility of each item p in P for a specific customer
(Table 4.8). The customer-specific item utility is calculated on the basis of
Formula 4.6, in which the index j iterates over the number of predefined
dimensions (in our example, #(dimensions)=2: quality and economy), inter-
est(j) denotes a user’s interest in dimension j , and contribution(p, j) denotes
the contribution of item p to the interest dimension j . The value for contri-
bution(p, j) can be calculated by the scoring rules defined in Table 4.7 – for
example, the contribution of item p1 to the dimension quality is 5 + 4 + 6 +
6 + 3 + 7 + 10 = 41, whereas its contribution to the dimension economy is
10 + 10 + 9 + 10 + 10 + 10 + 6 = 65.

To determine the overall utility of item p1 for a specific customer, we
must take into account the customer-specific interest in each of the given
dimensions – interest(j). For our example we assume the customer prefer-
ences depicted in Table 4.9. Following Formula 4.6, for customer cu1, the

98 4 Knowledge-based recommendation

Table 4.7. Example scoring rules regarding the
dimensions quality and economy.

value quality economy

price ≤250 5 10
>250 10 5

mpix ≤8 4 10
>8 10 6

opt-zoom ≤9 6 9
>9 10 6

LCD-size ≤2.7 6 10
>2.7 9 5

movies yes 10 7
no 3 10

sound yes 10 8
no 7 10

waterproof yes 10 6
no 8 10

utility of item p2 is 49∗0.8 + 64∗0.2 = 52.0 and the overall utility of item p8

would be 69∗0.8 + 43∗0.2 = 63.8. For customer cu2, item p2 has the utility
49∗0.4 + 64∗0.6 = 58.0 and item p8 has the utility 69∗0.4 + 43∗0.6 = 53.4.
Consequently, item p8 has a higher utility (and the highest utility) for cu1,
whereas item p2 has a higher utility (and the highest utility) for cu2. Formula
4.6 follows the principle of the similarity metrics introduced in Section 4.2:
interest(j) corresponds to the weighting of requirement rj and contribution(p,
j) corresponds to the local similarity function sim(p, r) (McSherry 2003a).

Table 4.8. Item utilities for customer cu1 and customer cu2.

quality economy cu1 cu2

p1
∑

(5,4,6,6,3,7,10) = 41
∑

(10,10,9,10,10,10,6) = 65 45.8 [8] 55.4 [6]
p2

∑
(5,4,6,6,10,10,8) = 49

∑
(10,10,9,10,7,8,10) = 64 52.0 [7] 58.0 [1]

p3
∑

(5,4,10,6,10,10,8) = 53
∑

(10,10,6,10,7,8,10) = 61 54.6 [5] 57.8 [2]
p4

∑
(5,10,10,6,10,7,10) = 58

∑
(10,6,6,10,7,10,6) = 55 57.4 [4] 56.2 [4]

p5
∑

(5,4,6,10,10,10,8) = 53
∑

(10,10,9,6,7,8,10) = 60 54.4 [6] 57.2 [3]
p6

∑
(5,10,6,9,10,10,8) = 58

∑
(10,6,9,5,7,8,10) = 55 57.4 [3] 56.2 [5]

p7
∑

(10,10,6,9,10,10,8) = 63
∑

(5,6,9,5,7,8,10) = 50 60.4 [2] 55.2 [7]
p8

∑
(10,10,10,9,10,10,10) = 69

∑
(5,6,6,5,7,8,6) = 43 63.8 [1] 53.4 [8]

4.3 Interacting with constraint-based recommenders 99

Table 4.9. Customer-specific preferences
represent the values for interest(j) in Formula 4.6.

customer (user) quality economy

cu1 80% 20%
cu2 40% 60%

The concepts discussed here support the calculation of personalized rankings
for a given set of items. However, such utility-based approaches can be applied
in other contexts as well – for example, the calculation of utilities of specific
repair alternatives (personalized repairs; Felfernig et al. 2006) or the calculation
of utilities of explanations (Felfernig et al. 2008b).

utility(p) =
#(dimensions)∑

j=1

interest(j) ∗ contribution(p, j) (4.6)

There exist different approaches to determining a customer’s degree of
interest in a certain dimension (interest(j) in Formula 4.6). Such preferences
can be explicitly defined by the user (user-defined preferences). Preferences
can also be predefined in the form of scoring rules (utility-based preferences)
derived by analyzing logs of previous user interactions (e.g., conjoint analysis).
These basic approaches will be exemplified in the following paragraphs.

User-defined preferences. The first and most straightforward approach is to
directly ask the customer for his or her preferences within the scope of a rec-
ommendation session. Clearly, this approach has the main disadvantage that
the overall interaction effort for the user is nearly doubled, as for many of
the customer properties the corresponding importance values must be speci-
fied. A second problem with this basic approach is that the recommender user
interface is obtrusive in the sense that customers are interrupted in their prefer-
ence construction process and are forced to explicitly specify their preferences
beforehand.

Utility-based preferences. A second possible approach to determining cus-
tomer preferences is to apply the scoring rules of Table 4.7. If we assume, for
example, that a customer has specified the requirements REQ = {r1 : price <=
200, r2 : mpix = 8.0, r3 : opt-zoom = 10×, r4 : lcd-size <= 2.7}, we can
directly derive the instantiations of the corresponding dimensions by ap-
plying the scoring rules in Table 4.7. In our case, the dimension quality

100 4 Knowledge-based recommendation

Table 4.10. Ranking of price/mpix stimuli: price1[100–159],
price2[160–199], price3[200–300], mpix1[5.0–8.0], and
mpix2[8.1–11.0].

price1 price2 price3 avg(mpixx)

mpix1 4 5 6 5
mpix2 2 1 3 2
avg(pricex) 3 3 4.5 3.5

would be 5 + 4 + 10 + 6 = 25 and the dimension economy would be
10 + 10 + 6 + 10 = 36. This would result in a relative importance for quality
with a value of 25

25+36 = 0.41 and a relative importance for economy with the
value 36

25+36 = 0.59.

Conjoint analysis. The following simple example should characterize the
basic principle of conjoint analysis (Belanger 2005). In this example, a user (test
person) is confronted with different price/mpix value combinations (stimuli).
The user’s task is to rank those combinations; for example, the combination
mpix2[8.1–11.0] / price2[160–199] gets the highest ranking (see Tables 4.10
and 4.11). The average values for the columns inform us about the average
ranking for the corresponding price interval (avg(pricex)). The average values
for the rows inform us about the average rankings for the corresponding mpix
interval avg(mpixx). The average value over all rankings is avg(ranking) = 3.5.

The information we can extract from Tables 4.10 and 4.11 is the
deviation from the average ranking for specific property values – for

Table 4.11. Effects of customer property changes on
overall utility: changes in mpix have a higher impact
on the overall utility than changes in price.

avg(ranking) − avg(mpixx)

avg(ranking) − avg(mpix1) −1.5
avg(ranking) − avg(mpix2) 1.5
avg(ranking) − avg(price1) 0.5
avg(ranking) − avg(price2) 0.5
avg(ranking) − avg(price3) −1.0

4.4 Interacting with case-based recommenders 101

example, avg(pricex) from avg(ranking): avg(ranking) − avg(price1) = 0.5,
avg(ranking) − avg(price2) = 0.5, avg(ranking) − avg(price3) = −1. Further-
more, avg(ranking) − avg(mpix1) = −1.5 and avg(ranking) − avg(mpix2) =
1.5. The avg(pricex) span is 1.5 (−1 . . . 0.5) whereas the span for avg(mpixx)
is 3.0 (−1.5 . . . 1.5). Following the ideas of conjoint analysis (Belanger 2005)
we are able to conclude that price changes have a lower effect on the overall
utility (for this customer) than changes in terms of megapixels. This result is
consistent with the idea behind the ranking in our example (Tables 4.10 and
4.11), as the highest ranking was given to the combination price2/mpix2, where
a higher price was accepted in order to ensure high quality of technical features
(here: mpix). Consequently, we can assign a higher importance to the technical
property mpix compared with the property price.

In this section we provided an overview of concepts that typically support
users in the interaction with a constraint-based recommender application. Di-
agnosis and repair concepts support users in situations in which no solution
could be found. Defaults provide support in the requirements specification
process by proposing reasonable alternatives – a negative connotation is that
defaults can be abused to manipulate users. Utility-based ranking mechanisms
support the ordering of information units such as items on a result page, repair
alternatives provided by a diagnosis and repair component, and the ranking
of explanations for recommended items. These concepts form a toolset use-
ful for the implementation of constraint-based recommender applications. A
commercial application built on the basis of those concepts is presented in
Section 4.5.

4.4 Interacting with case-based recommenders

Similar to constraint-based recommenders, earlier versions of case-based rec-
ommenders followed a pure query-based approach, in which users had to
specify (and often respecify) their requirements until a target item (an item
that fits the user’s wishes and needs) has been identified (Burke 2002a). Espe-
cially for nonexperts in the product domain, this type of requirement elicitation
process can lead to tedious recommendation sessions, as the interdependent
properties of items require a substantial domain knowledge to perform well
(Burke 2002a). This drawback of pure query-based approaches motivated the
development of browsing-based approaches to item retrieval, in which users –
maybe not knowing what they are seeking – are navigating in the item space
with the goal to find useful alternatives. Critiquing is an effective way to

102 4 Knowledge-based recommendation

entry item
(recommended item)

more
expensive

less
mpix

cheaper

most similar item

more
mpix

price

mpix
Figure 4.3. Critique-based navigation: items recommended to the user can be
critiqued regarding different item properties (e.g., price or mpix).

support such navigations and, in the meantime, it is one of the key concepts
of case-based recommendation; this concept will be discussed in detail in the
following subsections.

4.4.1 Critiquing

The idea of critiquing (Burke 2000, Burke et al. 1997) is that users specify their
change requests in the form of goals that are not satisfied by the item currently
under consideration (entry item or recommended item). If, for example, the
price of the currently displayed digital camera is too high, a critique cheaper
can be activated; if the user wants to have a camera with a higher resolution
(mpix), a corresponding critique more mpix can be selected (see Figure 4.3).

Further examples for critiques are “the hotel location should be nearer to
the sea” or “the apartment should be more modern-looking”. Thus, critiques
can be specified on the level of technical properties as well as on the level of
abstract dimensions.

State-of-the-art case-based recommenders are integrating query-based with
browsing-based item retrieval (Burke 2002a). On one hand, critiquing supports
an effective navigation in the item space; on the other hand, similarity-based
case retrieval supports the identification of the most similar items – that is, items
similar to those currently under consideration. Critiquing-based recommender

4.4 Interacting with case-based recommenders 103

Algorithm 4.3 SimpleCritiquing(q, CI)

Input: Initial user query q; Candidate items CI

procedure SimpleCritiquing(q, CI)
repeat
r ← ItemRecommend(q, CI);
q ← UserReview(r , CI);

until empty(q)
end procedure

procedure ItemRecommend(q, CI)
CI ← {ci ∈ CI : satisfies(ci, q)};
r ← mostsimilar(CI , q);
return r;

end procedure

procedure UserReview(r , CI)
q ← critique(r);
CI ← CI − r;
return q;

end procedure

systems allow users to easily articulate preferences without being forced to
specify concrete values for item properties (see the previous example). The
goal of critiquing is to achieve time savings in the item selection process and,
at the same time, achieve at least the same recommendation quality as standard
query-based approaches. The major steps of a critiquing-based recommender
application are the following (see Algorithm 4.3, SimpleCritiquing).

Item recommendation. The inputs for the algorithm SimpleCritiquing4 are
an initial user query q, which specifies an initial set of requirements, and a set of
candidate items CI that initially consists of all the available items (the product
assortment). The algorithm first activates the procedure ItemRecommend,
which is responsible for selecting an item r to be presented to the user. We
denote the item that is displayed in the first critiquing cycle as entry item and all
other items displayed thereafter as recommended items. In the first critiquing

4 The notation used in the algorithm is geared to Reilly et al. (2005a).

104 4 Knowledge-based recommendation

entry item
(recommended item)

most similar item

cheaper

price

mpix

threshold: items with
a lower price than the entry
item are considered further

Figure 4.4. Critique-based navigation: remaining candidate items (items with
bright background) after a critique on the entry item property price.

cycle, the retrieval of such items is based on a user query q that represents a
set of initial requirements. Entry items are typically determined by calculating
the similarity between the requirements and the candidate items. After the first
critiquing cycle has been completed, recommended items are determined by
the procedure ItemRecommend on the basis of the similarity between the
currently recommended item and those items that fulfill the criteria of the
critique specified by the user.

Item reviewing. The user reviews the recommended (entry) item and either
accepts the recommendation or selects another critique, which triggers a new
critiquing cycle (procedure UserReview). If a critique has been triggered, only
the items (the candidate items) that fulfill the criteria defined in the critique
are further taken into account – this reduction of CI is done in procedure
ItemRecommend. For example, if a user activates the critique cheaper, and
the price of the recommended (entry) camera is 300, the recommender excludes
cameras with a price greater than or equal to 300 in the following critiquing
cycle.

4.4.2 Compound critiquing

In our examples so far we primarily considered the concept of unit critiques;
such critiques allow the definition of change requests that are related to a single
item property. Unit critiques have a limited capability to effectively narrow
down the search space. For example, the unit critique on price in Figure 4.4
eliminates only about half the items.

4.4 Interacting with case-based recommenders 105

entry item
(recommended item)

threshold: items with
a higher mpix than the entry
item are considered further

threshold: items with
a lower price than the entry
item are considered further

new most similar item

mpix

price

Figure 4.5. Critique-based navigation: remaining candidate items (items with
bright background) after a compound critique on price and mpix.

Allowing the specification of critiques that operate over multiple proper-
ties can significantly improve the efficiency of recommendation dialogs, for
example, in terms of a reduced number of critiquing cycles. Such critiques
are denoted as compound critiques. The effect of compound critiques on the
number of eliminated items (items not fulfilling the criteria of the critique) is
shown in Figure 4.5. The compound critique cheaper and more mpix defines
additional goals on two properties that should be fulfilled by the next proposed
recommendation.

An important advantage of compound critiques is that they allow a faster
progression through the item space. However, compound critiques still have
disadvantages as long as they are formulated statically, as all critique alter-
natives are available for every item displayed. For example, in the context of
a high-end computer with the fastest CPU available on the market and the
maximum available storage capacity, a corresponding critique faster CPU and
more storage capacity (or more efficient) would be still proposed by a static
compound critiquing approach. In the following subsection we will present the
dynamic critiquing approach that helps to solve this problem.

4.4.3 Dynamic critiquing

Dynamic critiquing exploits patterns, which are generic descriptions of dif-
ferences between the recommended (entry) item and the candidate items –
these patterns are used for the derivation of compound critiques. Critiques are
denoted as dynamic because they are derived on the fly in each critiquing
cycle. Dynamic critiques (Reilly et al. 2007b) are calculated using the concept

106 4 Knowledge-based recommendation

Algorithm 4.4 DynamicCritiquing(q, CI)

Input: Initial user query q; Candidate items CI ;
number of compound critiques per cycle k;
minimum support for identified association rules σmin

procedure DynamicCritiquing(q, CI , k, σmin)
repeat
r ← ItemRecommend(q, CI);
CC ← CompoundCritiques(r , CI , k, σmin);
q ← UserReview(r , CI , CC);

until empty(q)
end procedure

procedure ItemRecommend(q, CI)
CI ← {ci ∈ CI : satisfies(ci, q)};
r ← mostsimilar(CI , q);
return r;

end procedure

procedure UserReview(r , CI , CC)
q ← critique(r , CC);
CI ← CI − r;
return q;

end procedure

procedure CompoundCritiques(r , CI , k, σmin)
CP ← CritiquePatterns(r , CI);
CC ← Apriori(CP , σmin);
SC ← SelectCritiques(CC, k);
return SC;

end procedure

of association rule mining (Agrawal and Srikant 1994). Such a rule can be,
for example, “42.9% of the remaining digital cameras have a higher zoom
and a lower price”. The critique that corresponds to this property combination
is “more zoom and lower price”. A dynamic critiquing cycle consists of the
following basic steps (see Algorithm 4.4, DynamicCritiquing5).

5 The algorithm has been developed by Reilly et al. (2005a).

4.4 Interacting with case-based recommenders 107

The inputs for the algorithm are an initial user query q, which specifies the
initial set of requirements, a set of candidate items CI that initially consists
of all the available items, k as the maximum number of compound critiques to
be shown to the user in one critiquing cycle, and σmin as the minimum support
value for calculated association rules.

Item recommendation. Similar to the SimpleCritiquing algorithm dis-
cussed in Section 4.4.1, the DynamicCritiquing algorithm first activates the
procedure ItemRecommend, which is responsible for returning one recom-
mended item r (respectively, entry item in the first critiquing cycle). On the
basis of this item, the algorithm starts the calculation of compound critiques
cci ∈ CC by activating the procedure CompoundCritiques, which itself ac-
tivates the procedures CritiquePatterns (identification of critique patterns),
APriori (mining compound critiques from critique patterns), and SelectCri-
tiques (ranking compound critiques). These functionalities will be discussed
and exemplified in the following paragraphs. The identified compound critiques
in CC are then shown to the user in UserReview. If the user selects a critique –
which could be a unit critique on a specific item property as well as a compound
critique – this forms the criterion of the new user query q. If the resulting query
q is empty, the critiquing cycle can be stopped.

Identification of critique patterns. Critique patterns are a generic represen-
tation of the differences between the currently recommended item (entry item)
and the candidate items. Table 4.12 depicts a simple example for the derivation
of critique patterns, where item ei8 is assumed to be the entry item and the items
{ci1, . . . , ci7} are the candidate items. On the basis of this example, critique
patterns can be easily generated by comparing the properties of item ei8 with
the properties of {ci1, . . . , ci7}. For example, compared with item ei8, item ci1

is cheaper, has less mpix, a lower opt-zoom, a smaller lcd-size, and does not
have a movie functionality. The corresponding critique pattern for item ci1 is
(<,<,<,<,
=). A complete set of critiquing patterns in our example setting
is shown in Table 4.12. These patterns are the result of calculating the type of
difference for each combination of recommended (entry) and candidate item.
In the algorithm DynamicCritiquing, critique patterns are determined on the
basis of the procedure CritiquingPatterns.

Mining compound critiques from critique patterns. The next step is to iden-
tify compound critiques that frequently co-occur in the set of critique patterns.
This approach is based on the assumption that critiques correspond to feature
combinations of interest to the user – that is, a user would like to adapt the

108 4 Knowledge-based recommendation

Table 4.12. Critique patterns (CP) are generated by analyzing the differences
between the recommended item (the entry item, EI) and the candidate items
(CI). In this example, item ei8 is assumed to be the entry item, {ci1, . . . , ci7}
are assumed to be the candidate items, and {cp1, . . . , cp7} are the critique
patterns.

id price mpix opt-zoom LCD-size movies

entry item (EI) ei8 278 9.1 9× 3.0 yes

ci1 148 8.0 4× 2.5 no
ci2 182 8.0 5× 2.7 yes
ci3 189 8.0 10× 2.5 yes

candidate items (CI) ci4 196 10.0 12× 2.7 yes
ci5 151 7.1 3× 3.0 yes
ci6 199 9.0 3× 3.0 yes
ci7 259 10.0 10× 3.0 yes

cp1 < < < <
=
cp2 < < < < =
cp3 < < > < =

critique patterns (CP) cp4 < > > < =
cp5 < < < = =
cp6 < < < = =
cp7 < > > = =

requirements in exactly the proposed combination (Reilly et al. 2007b). For
critique calculation, Reilly et al. (2007b) propose applying the Apriori algo-
rithm (Agrawal and Srikant 1994). The output of this algorithm is a set of
association rules p ⇒ q, which describe relationships between elements in the
set of critique patterns. An example is >zoom ⇒<price, which can be derived
from the critique patterns of Table 4.12. This rule denotes the fact that given
>zoom as part of a critique pattern, <price is contained in the same critique pat-
tern. Examples for association rules and the corresponding compound critiques
that can be derived from the critique patterns in Table 4.12 are depicted in
Table 4.13.

Each association rule is additionally characterized by support and confidence
values. Support (SUPP) denotes the number of critique patterns that include all
the elements of the antecedent and consequent of the association rule (expressed
in terms of the percentage of the number of critique patterns). For example,
the support of association rule ar1 in Table 4.13 is 28.6 percent; of the seven
critique patterns, exactly two include the antecedent and consequent part of
association rule ar1. Confidence (CONF) denotes the ratio between critique

4.4 Interacting with case-based recommenders 109

Table 4.13. Example association rules (AR) and the compound
critiques (CC) derived from CP in Table 4.12.

association rules (AR) compound critiques (CC) SUPP CONF

ar1: >mpix ⇒>zoom cc1: >mpix(9.1), >zoom(9x) 28.6 100.0
ar2: >zoom ⇒<price cc2: >zoom(9x), <price(278) 42.9 100.0
ar3: =movies ⇒<price cc3: = movie(yes), <price(278) 85.7 100.0

patterns containing all the elements of the antecedent and consequent of the
association rule and those containing only the antecedent part. For all the
association rules in Table 4.13 the confidence level is 100.0 percent – that is,
if the antecedent part of the association rule is confirmed by the pattern, the
consequent part is confirmed as well. In the algorithm DynamicCritiquing,
compound critiques are determined on the basis of the procedure APriori
that represents a basic implementation of the Apriori algorithm (Agrawal and
Srikant 1994).

Ranking of compound critiques. The number of compound critiques can
become very large, which makes it important to filter out the most relevant
critiques for the user in each critiquing cycle. Critiques with low support have
the advantage of significantly reducing the set of candidate items, but at the
same time they decrease the probability of identifying the target item. Critiques
with high support can significantly increase the probability of finding the target
item. However, these critiques eliminate a low number of candidate cases, which
leads to a larger number of critiquing cycles in recommendation sessions. Many
existing recommendation approaches rank compound critiques according to
the support values of association rules, because the lower the support of the
corresponding association rules, the more candidate items can be eliminated. In
our working example, such a ranking of compound critiques {cc1, cc2, cc3} is
cc1, cc2, and cc3. Alternative approaches to the ranking of compound critiques
are discussed, for example, by Reilly et al. (2004), where low support, high
support, and random critique selection have been compared. This study reports
a lower number of interaction cycles in the case that compound critiques are
sorted ascending based on their support value. The issue of critique selection is
in need of additional empirical studies focusing on the optimal balance between
a low number of interaction cycles and the number of excluded candidate items.
In the algorithm DynamicCritiquing, compound critiques are selected on the
basis of the procedure SelectCritiques.

110 4 Knowledge-based recommendation

Item reviewing. At this stage of a recommendation cycle all the relevant
information for deciding about the next action is available for the user: the
recommended (entry) item and the corresponding set of compound critiques.
The user reviews the recommended item and either accepts the recommendation
or selects a critique (unit or compound), in which case a new critiquing cycle
is started. In the algorithm DynamicCritiquing, item reviews are conducted
by the user in UserReview.

4.4.4 Advanced item recommendation

After a critique has been selected by the user, the next item must be proposed
(recommended item for the next critiquing cycle). An approach to doing this –
besides the application of simple similarity measures (see Section 4.2) – is
described by Reilly et al. (2007b), where a compatibility score is introduced
that represents the percentage of compound critiques cci ∈ CCU that already
have been selected by the user and are consistent with the candidate item
ci. This compatibility-based approach to item selection is implemented in
Formula 4.7.

compatibility(ci, CCU) = |{cci ∈ CCU : satisfies(cci, ci)}|
|CCU | (4.7)

CCU represents a set of (compound) critiques already selected by the user;
satisfies(cci, ci) = 1 indicates that critique cci is consistent with candidate item
ci and satisfies(cci, ci) = 0 indicates that critique cci is inconsistent with ci.
On the basis of this compatibility measure, Reilly et al. (2007b) introduce a
new quality measure for a certain candidate item ci (see Formula 4.8). This
formula assigns the highest values to candidate items ci that are as compatible
as possible with the already selected compound critiques and also as similar as
possible to the currently recommended item ri.

quality(ci, ri, CCU) = compatibility(ci, CCU) ∗ similarity(ci, ri) (4.8)

Table 4.14 exemplifies the application of Formula 4.8. Let us assume that
CCU = {cc2: >zoom(9x),<price(278)} is the set of critiques that have been se-
lected by the user in UserReview – in other words, only one critique has
been selected up to now. Furthermore, we assume that ri = ei8. Then the re-
sulting set of new candidate items CI = {ci3, ci4, ci7}. In this case, item ci4

has by far the highest quality value and thus would be the item r returned by
ItemRecommend – quality(ci4, ei8, cc2:>zoom(9x),<price(278)= 0.61). This item
selection approach helps take into account already selected critiques – that is,
preferences already specified are not ignored in future critiquing cycles. Further

4.4 Interacting with case-based recommenders 111

Table 4.14. Dynamic critiquing: quality of candidate items CI = {ci3, ci4,
ci7} with regard to ri = ei8 and CCU = {cc2 :>zoom(9x), <price(278)}.

candidate item ci compatibility(ci, CCU) similarity(ci, ri) quality

ci3 1.0 0.40 0.40
ci4 1.0 0.61 0.61
ci7 1.0 0.41 0.41

related item recommendation approaches are discussed by Reilly et al. (2004),
who focus especially on the issue of consistency in histories of already selected
critiques. For example, if the user has initially specified the upper bound for the
price with <price(150) and later specifies >price(300), one of those critiques must
be removed from the critique history to still have available candidate items for
the next critiquing cycle.

4.4.5 Critique diversity

Compound critiques are a powerful mechanism for effective item search in large
assortments – especially for users who are nonexperts in the corresponding
product domain. All the aforementioned critiquing approaches perform well as
long as there are no “hot spots,” in which many similar items are concentrated
in one area of the item space. In such a situation a navigation to other areas of
the item space can be very slow. Figure 4.6 depicts such a situation, in which
a compound critique on price and mpix leads to recommended items that are
quite similar to the current one.

An approach to avoid such situations is presented by McCarthy et al. (2005),
who introduce a quality function (see Formula 4.9) that prefers compound
critiques (cc) with low support values (many items can be eliminated) that
are at the same time diversified from critiques CCCurr already selected for
presentation in the current critiquing cycle.

quality(cc, CCCurr) = support(cc) ∗ overlap(cc, CCCurr) (4.9)

The support for a compound critique cc corresponds to the support of the
corresponding association rule – for example, support(ar3) = support(cc3) =
85.7 (see Table 4.13). The overlap between the currently investigated compound
critique cc and CCCurr can be calculated on the basis of Formula 4.10. This
formula determines the overlap between items supported by cc and items
supported by critiques of CCCurr – that is, items(CCCurr) denotes the items

112 4 Knowledge-based recommendation

entry item
(recommended item)

slow navigation
in item space

mpix

price

Figure 4.6. Critique-based navigation: slow navigation in dense item spaces.

accepted by the critiques in CCCurr.

overlap(c, CP) = |items({cc}) ∩ items(CCCurr)|
|items({cc}) ∪ items(CCCurr)| (4.10)

The lower the value of the function quality (preferred are low support and
low overlap to already presented critiques), the higher the probability for a
certain critique to be presented in the next critiquing cycle. Table 4.15 depicts
the result of applying Formula 4.9 to CCCurr = {cc2: >zoom(9×), <price(278)}
and two candidate association rules {ar2, ar3} (see Table 4.13). Conforming to
this formula, the quality of compound critique cc1 is higher than the quality
of cc3.

Table 4.15. Dynamic critiquing: quality of compound critiques
CC = {cc1, cc3} derived from association rules AR = {ar1, ar3}
assuming that CCCurr = {cc2: >zoom(9×), <price(278)}.

compound critiques (CC) support(cc) overlap(cc, CP) quality

cc1: >mpix(9.1), >zoom(9×) 28.6 66.7 0.19
cc3: =movies(yes), <price(278) 85.7 50.0 0.43

4.5 Example applications 113

4.5 Example applications

In the final part of this chapter we take a more detailed look at two commer-
cial recommender applications: a constraint-based recommender application
developed for a Hungarian financial service provider and a case-based recom-
mendation environment developed for recommending restaurants located in
Chicago.

4.5.1 The VITA constraint-based recommender

We now move from our working example (digital camera recommender) to the
domain of financial services. Concretely, we take a detailed look at the VITA
financial services recommender application, which was built for the Funda-
menta loan association in Hungary (Felfernig et al. 2007b). VITA supports
sales representatives in sales dialogs with customers. It has been developed on
the basis of the CWAdvisor recommender environment presented by Felfernig
et al. (2006)

Scenario. Sales representatives in the financial services domain are challenged
by the increased complexity of service solutions. In many cases, representatives
do not know which services should be recommended in which contexts, and how
those services should be explained. In this context, the major goal of financial
service providers is to improve the overall productivity of sales representatives
(e.g., in terms of the number of sales dialogs within a certain time period
or number of products sold within a certain time period) and to increase the
advisory quality in sales dialogs. Achieving these goals is strongly correlated
to both an increase in the overall productivity and a customer’s interest in
long-term business connections with the financial service provider.

Software developers must deal with highly complex and frequently changing
recommendation knowledge bases. Knowledge-based recommender technolo-
gies can improve this situation because they allow effective knowledge base
development and maintenance processes.

The Fundamenta loan association in Hungary decided to establish
knowledge-based recommender technologies to improve the performance of
sales representatives and to reduce the overall costs of developing and main-
taining related software components. In line with this decision, Fundamenta
defined the following major goals:

� Improved sales performance: within the same time period, sales representa-
tives should be able to increase the number of products sold.

114 4 Knowledge-based recommendation

VITA Development and Maintenance

VITA Extranet /
Intranet

VITA
Offline

VITA
Recommender

Knowledge Base

VITA
Recommender

Knowledge Base

VITA
Recommender

Knowledge Base

Knowledge
Acquisition

Environment

Debugging
and Test

Environment

VITA
Recommender

VITA
Recommender

Recommen-
dation
Engine

Recommen-
dation
Engine

Synchronization
Component

ru
n

tim
e

de
si

gn
 ti

m
e

Figure 4.7. Architecture of the VITA sales support environment (Felfernig
et al. 2007).

� Effective software development and maintenance: the new technologies
should ease the development of sales knowledge bases.

Application description. The resulting VITA sales support environment
(Figure 4.7) supports two basic (and similar) advisory scenarios. On one hand,
VITA is a web server application used by Fundamenta sales representatives and
external sales agents for the preparation and conducting of sales dialogs. On the
other hand, the same functionality is provided for sales representatives using
their own laptops. In this case, new versions of sales dialogs and knowledge
bases are automatically installed when the sales representative is connected
with the Fundamenta intranet.

For both scenarios, a knowledge acquisition environment supports the au-
tomated testing and debugging of knowledge bases. Such a knowledge base
consists of the following elements (see Section 4.3):

� Customer properties: each customer must articulate his or her requirements,
which are the elementary precondition for reasonable recommendations.
Examples for customer properties in the financial services domain are age,
intended run time of the service, existing loans in the portfolio, and the
like.

4.5 Example applications 115

run time of
loan?

personal
data? intended

purpose?

loan
amount?

owner?

existing
loans?

monthly
rate?

[true]

[true]

[true]

existing
real

estate?

product
advisory and

selection

credit-
worthiness

check

Producta

Productn

Producta

detailed
calculation and

result
presentation

requirements
elicitation

(loan)

(loan)

(loan)

Figure 4.8. Example of advisory process definition (loan advisory) (Felfernig
et al. 2007b).

� Product properties and instances: each product is described in terms of
a set of predefined properties such as recommended run time, predicted
performance, expected risk, and so on.

� Constraints: restrictions that define which products should be recommended
in which context. A simple example of such a constraint is customers with a
low preparedness to take risks should receive recommendations that do not
include high-risk products.

� Advisory process definition: explicit definitions of sales dialogs are rep-
resented in the form of state charts (Felfernig and Shchekotykhin 2006)
that basically define the context in which questions should be posed to
the user (an example of a simple advisory process definition is depicted in
Figure 4.8).

116 4 Knowledge-based recommendation

In Fundamenta applications, recommendation calculations are based on the
execution of conjunctive queries (for an example, see Section 4.3). Conjunctive
queries are generated directly from requirements elicited within the scope of
a recommendation session. The recommendation process follows the advisory
process definition.

A loan recommendation process is structured in different phases (require-
ments elicitation, creditworthiness check, product advisory/selection, and de-
tailed calculation/result presentation). In the first phase, basic information
regarding the customer (personal data) and the major purpose of and require-
ments regarding the loan (e.g., loan amount, run time of loan) are elicited. The
next task in the recommendation process is to check the customer’s creditwor-
thiness on the basis of detailed information regarding the customer’s current
financial situation and available financial securities. At this time, the applica-
tion checks whether a solution can be found for the current requirements. If
no such solution is available (e.g., too high an amount of requested money for
the available financial securities), the application tries to determine alternatives
that restore the consistency between the requirements and the available set of
products. After the successful completion of the phase creditworthiness check,
the recommender application proposes different available loan alternatives (re-
demption alternatives are also taken into account). After selecting one of those
alternatives, the recommendation process continues with a detailed calculation
of specific product properties, such as the monthly redemption rates of the cur-
rently selected alternative. A screen shot of the VITA environment is depicted
in Figure 4.9.

Knowledge acquisition. In many commercial recommender projects, gener-
alists who possess deep domain knowledge as well as technical knowledge
about recommender technologies are lacking. On one hand, knowledge engi-
neers know how to create recommender applications; on the other hand, domain
experts know the details of the product domain but do not have detailed techni-
cal knowledge of recommenders. This results in a situation in which technical
experts have the responsibility for application development and domain ex-
perts are solely responsible for providing the relevant product, marketing, and
sales knowledge. This type of process is error-prone and creates unsatisfactory
results for all project members.

Consequently, the overall goal is to further improve knowledge-based rec-
ommender technologies by providing tools that allow a shift of knowledge
base development competencies from knowledge engineers to domain experts.
The knowledge acquisition environment (CWAdvisor [Felfernig et al. (2006)])
that is used in the context of VITA supports the development of recommender

4.5 Example applications 117

Figure 4.9. Screen shot of VITA sales support environment (Felfernig et al.
2007b).

knowledge bases and recommender process definitions on a graphic level. A
glimpse of the basic functionalities of this acquisition is given in Figure 4.10.
Different recommender applications can be maintained in parallel – for exam-
ple, investment and financing recommenders in the financial services domain.
Each of those recommenders is defined by a number of product properties, cus-
tomer properties, and constraints that are responsible for detecting inconsistent
customer requirements and for calculating recommendations.

A simple example of the definition of constraints in the financial services
domain is given in Figure 4.11. This constraint indicates that high rates of return
require a willingness to take risks. The CWAdvisor environment (Felfernig
et al. 2006) supports rapid prototyping processes by automatically translating
recommender knowledge bases and process definitions into a corresponding
executable application. Thus customers and engineers are able to immediately
detect the consequences of changes introduced into the knowledge base and
the corresponding process definition.

Ninety percent of the changes in the VITA knowledge base are associated
with the underlying product assortment because of new products and changing

118 4 Knowledge-based recommendation

Figure 4.10. Knowledge acquisition environment (Felfernig et al. 2006).

Figure 4.11. Example of incompatibility constraint: high return rates are in-
compatible with low preparedness to take risks (Felfernig et al. 2006).

4.5 Example applications 119

interest rates (Felfernig et al. 2007b). Change requests are collected centrally
and integrated into the VITA recommender knowledge base once a month.
The remaining 10 percent of the changes are related to the graphical user
interface and to the explanation and visualization of products. These changes
are taken into account in new versions of the recommender application, which
are published quarterly.

4.5.2 The Entree case-based recommender

A well-known example of a critiquing-based commercial recommender appli-
cation is Entree, a system developed for the recommendation of restaurants in
Chicago (Burke 2000, Burke et al. 1997). The initial goal was to guide partici-
pants in the 1996 Democratic National Convention in Chicago, but its success
prolonged its usage for several years.

Scenario. Restaurant recommendation is a domain with a potentially large set
of items that are described by a predefined set of properties. The domain is
complex because users are often unable to fully define their requirements. This
provides a clear justification for the application of recommendation technolo-
gies (Burke et al. 1997). Users interact with Entree via a web-based interface
with the goal of identifying a restaurant that fits their wishes and needs; as op-
posed to the financial services scenario discussed in Section 4.5.1, no experts
are available in this context who support users in the item retrieval process.
FindMe technologies introduced by Burke et al. (1997) were the major techno-
logical basis for the Entree recommender. These technologies implement the
idea of critique-based recommendation that allows an intuitive navigation in
complex item spaces, especially for users who are not experts in the application
domain.

Application description. A screenshot of an Entree-type system is shown in
Figure 4.12.

There are two entry points to the system: on one hand, the recommender can
use a specific reference restaurant as a starting point (preselected on the basis of
textual input and a text-based retrieval (Burke et al. 1997)); on the other hand,
the user is able to specify the requirements in terms of typical restaurant proper-
ties such as price, cuisine type, or noise level or in terms of high-level properties
such as restaurant with a nice atmosphere (Burke et al. 1997). High-level prop-
erties (e.g., nice atmosphere) are translated to low-level item properties – for
example, restaurant with wine cellar and quiet location. High-level properties

120 4 Knowledge-based recommendation

Figure 4.12. Example critiquing-based restaurant recommender.

can be interpreted as a specific type of compound critique, as they refer to a col-
lection of basic properties. The Entree system strictly follows a static critiquing
approach, in which a predefined set of critiques is available in each critique
cycle. In each cycle, Entree retrieves a set of candidate items from the item
database that fulfill the criteria defined by the user (Burke 2002a). Those items
are then sorted according to their similarity to the currently recommended item,
and the most similar items are returned. Entree does not maintain profiles of
users; consequently, a recommendation is determined solely on the basis of the

4.5 Example applications 121

Figure 4.13. Example of critiquing-based restaurant recommender: result dis-
play after one critiquing cycle.

currently displayed item and the critique specified by the user. A simple sce-
nario of interacting with Entree-type recommender applications follows (see
Figure 4.13).

The user starts the interaction with searching for a known restaurant, for
example, the Biergasthof in Vienna. As shown in Figure 4.12, the recommender
manages to identify a similar restaurant named Brauhof that is located in the
city of Graz. The user, in principle, likes the recommended restaurant but

122 4 Knowledge-based recommendation

would prefer a less expensive one and triggers the Less $$ critique. The result
of this query is the Brau Stüberl restaurant in city of Graz, which has similar
characteristics to Brauhof but is less expensive and is now acceptable for the
user.

Knowledge acquisition. The quality of a recommender application depends
on the quality of the underlying knowledge base. When implementing a case-
based recommender application, different types of knowledge must be taken
into account. A detailed description of the cases in terms of a high number
of item attributes requires investing more time into the development of the
underlying similarity measures (Burke 2002a). In Entree, for each item a cor-
responding local similarity measure is defined that explains item similarity in
the context of one specific attribute. For example, two restaurants may be very
similar in the dimension cuisine (e.g., both are Italian restaurants) but may be
completely different in the dimension price. The global similarity metric is
then the result of combining the different local similarity metrics. An important
aspect in this context is that similarity metrics must reflect a user’s understand-
ing of the item space, because otherwise the application will not be successful
(Burke 2002a). Another important aspect to be taken into account is the quality
of the underlying item database. It must be correct, complete, and up to date to
be able to generate recommendations of high quality. In the restaurant domain,
item knowledge changes frequently, and the information in many cases has to
be kept up to date by humans, which can be costly and error-prone.

4.6 Bibliographical notes

Applications of knowledge-based recommendation technologies have been de-
veloped by a number of groups. For example, Ricci and Nguyen (2007) demon-
strate the application of critique-based recommender technologies in mobile
environments, and Felfernig and Burke (2008) and Felfernig et al. (2006–07)
present successfully deployed applications in the domains of financial services
and consumer electronics. Burke (2000) and Burke et al. (1997) provide a
detailed overview of knowledge-based recommendation approaches in appli-
cation domains such as restaurants, cars, movies, and consumer electronics.
Further well-known scientific contributions to the field of critiquing-based rec-
ommender applications can be found in Lorenzi and Ricci (2005), McGinty
and Smyth (2003), Salamo et al. (2005), Reilly et al. (2007a), and Pu et al.
(2008). Felfernig and Burke (2008) introduce a categorization of principal rec-
ommendation approaches and provide a detailed overview of constraint-based

4.6 Bibliographical notes 123

recommendation technologies and their applications. Zanker et al. (2010) for-
malize different variants of constraint-based recommendation problems and
empirically compare the performance of the solving mechanisms. Jiang et al.
(2005) introduce an approach to multimedia-enhanced recommendation of dig-
ital cameras, in which changes in customer requirements not only result in a
changed set of recommendations, but those changes are also animated. For
example, a change in the personal goal from portrait pictures to sports pho-
tography would result in a lens exchange from a standard lens to a fast lens
designed especially for the high-speed movements typical in sports scenes.
Thompson et al. (2004) present a knowledge-based recommender based on a
combination of knowledge-based approaches with a natural language interface
that helps reduce the overall interaction effort.

5

Hybrid recommendation approaches

The three most prominent recommendation approaches discussed in the pre-
vious chapters exploit different sources of information and follow different
paradigms to make recommendations. Although they produce results that are
considered to be personalized based on the assumed interests of their recip-
ients, they perform with varying degrees of success in different application
domains. Collaborative filtering exploits a specific type of information (i.e.,
item ratings) from a user model together with community data to derive recom-
mendations, whereas content-based approaches rely on product features and
textual descriptions. Knowledge-based algorithms, on the other hand, reason on
explicit knowledge models from the domain. Each of these basic approaches
has its pros and cons – for instance, the ability to handle data sparsity and
cold-start problems or considerable ramp-up efforts for knowledge acquisi-
tion and engineering. These have been discussed in the previous chapters.
Figure 5.1 sketches a recommendation system as a black box that transforms
input data into a ranked list of items as output. User models and contextual
information, community and product data, and knowledge models constitute
the potential types of recommendation input. However, none of the basic ap-
proaches is able to fully exploit all of these. Consequently, building hybrid
systems that combine the strengths of different algorithms and models to over-
come some of the aforementioned shortcomings and problems has become
the target of recent research. From a linguistic point of view, the term hybrid
derives from the Latin noun hybrida (of mixed origin) and denotes an object
made by combining two different elements. Analogously, hybrid recommender
systems are technical approaches that combine several algorithm implemen-
tations or recommendation components. The following section introduces op-
portunities for hybridizing algorithm variants and illustrates them with several
examples.

124

5.1 Opportunities for hybridization 125

Input: Output:

User profile and
contextual parameters

Community data

Product features

Knowledge models

Recommendation
component

Recommendation
list

item score

i1
i2
i3
...

0.9
1

0.3
...

Title Genre Actors ...

Figure 5.1. Recommender system as a black box.

5.1 Opportunities for hybridization

Although many recommender applications are actually hybrids, little theoret-
ical work has focused on how to hybridize algorithms and in which situa-
tions one can expect to benefit from hybridization. An excellent example for
combining different recommendation algorithm variants is the Netflix Prize
competition1, in which hundreds of students and researchers teamed up to
improve a collaborative movie recommender by hybridizing hundreds of dif-
ferent collaborative filtering techniques and approaches to improve the overall
accuracy. Robin Burke’s article, “Hybrid Recommender Systems: Survey and
Experiments” (2002b) is a well-known survey of the design space of different
hybrid recommendation algorithms. It proposes a taxonomy of different classes
of recommendation algorithms. Collaborative filtering and content-based and
knowledge-based recommender systems are the three base approaches covered
in this chapter. Furthermore, Burke (2002b) investigates utility-based recom-
mendation that can be considered as a specific subset of knowledge-based
recommender systems, because a utility scheme can be seen as another specific
encoding of explicit personalization knowledge. Demographic recommender
systems make collaborative propositions based on demographic user profiles.

1 See http://www.netflixprize.com for reference.

126 5 Hybrid recommendation approaches

As mentioned in Chapter 2, demographic information can be seen as just an
additional piece of user knowledge that can be exploited to determine similar
peers on the web and is therefore a variant of a collaborative approach. For
instance, in the case that few user ratings are available, demographic data can be
used to bootstrap a recommender system as demonstrated by Pazzani (1999b).
Thus, the basic recommendation paradigm is one dimension of the problem
space and will be discussed further in the following subsection.

The second characterizing dimension is the system’s hybridization design –
the method used to combine two or more algorithms. Recommendation com-
ponents can work in parallel before combining their results, or two or more
single recommender systems may be connected in a pipelining architecture in
which the output of one recommender serves as input for the next one.

5.1.1 Recommendation paradigms

In general, a recommendation problem can be treated as a utility function rec
that predicts the usefulness of an item i in a set of items I for a specific
user u from the universe of all users U . Adomavicius and Tuzhilin (2005)
thus formalized rec as a function U × I �→ R. In most applications, R is the
interval [0 . . . 1] representing the possible utility scores of a recommended
item. An item’s utility must always be seen in the microeconomic context of a
specific user and the sales situation he or she is currently in. Utility therefore
denotes an item’s capability to fulfill an abstract goal, such as best satisfying
the assumed needs of the user or maximizing the retailer’s conversion rate.
Consequently, the prediction task of a recommender algorithm is to presume
this utility score for a given user and item. Utility-based or knowledge-based
recommendation systems, for instance, derive the score values directly from
a priori known utility schemes; collaborative filtering methods estimate them
from community ratings. In contrast, the selection task of any recommender
system RS is to identify those n items from a catalog I that achieve the highest
utility scores for a given user u:

RS(u, n) = {i1, . . . , ik, . . . , in}, where (5.1)

i1, . . . , in ∈ I and

∀k rec(u, ik) > 0 ∧ rec(u, ik) > rec(u, ik+1)

Thus, a recommendation system RS will output a ranked list of the top n items
that are presumably of highest utility for the given user. We will come back to

5.1 Opportunities for hybridization 127

this formalization in the following sections to specify the different hybridization
designs.

As already mentioned, we focus on the three base recommendation
paradigms: collaborative, content-based and knowledge-based. The collabo-
rative principle assumes that there are clusters of users who behave in a similar
way and have comparable needs and preferences. The task of a collaborative
recommender is thus to determine similar peers and derive recommendations
from the set of their favorite items. Whereas the content-based paradigm fol-
lows a “more of the same” approach by recommending items that are similar to
those the user liked in the past, knowledge-based recommendation assumes an
additional source of information: explicit personalization knowledge. As de-
scribed in Chapter 4, this knowledge can, for instance, take the form of logical
constraints that map the user’s requirements onto item properties. Multiattribute
utility schemes and specific similarity measures are alternate knowledge repre-
sentation mechanisms. These knowledge models can be acquired from a third
party, such as domain experts; be learned from past transaction data; or use a
combination of both. Depending on the representation of the personalization
knowledge, some form of reasoning must take place to identify the items to
recommend.

Consequently, the choice of the recommendation paradigm determines the
type of input data that is required. As outlined in Figure 5.1, four different types
exist. The user model and contextual parameters represent the user and the spe-
cific situation he or she is currently in. For instance, the items the user has rated
so far; the answers the user has given in a requirements elicitation dialogue;
demographic background information such as address, age, or education; and
contextual parameters such as the season of the year, the people who will ac-
company the user when he or she buys or consumes the item (e.g., watching a
movie), or the current location of the user. The latter contextual parameters are
of particular interest and are therefore extensively studied in mobile or more
generally pervasive application domains; in Chapter 12 we will specifically
focus on personalization strategies applied in physical environments.

It can be assumed that all these user- and situation-specific data are stored in
the user’s profile. Consequently, all recommendation paradigms require access
to this user model to personalize the recommendations. However, depending
on the application domain and the usage scenario, only limited parts of the user
model may be available. Therefore, not all hybridization variants are possible
or advisable in every field of application.

As depicted in Table 5.1, recommendation paradigms selectively require
community data, product features, or knowledge models. Collaborative filter-
ing, for example, works solely on community data and the current user profile.

128 5 Hybrid recommendation approaches

Table 5.1. Input data requirements of recommendation algorithms.

User profile and Community Product Knowledge
Paradigm contextual parameters data features models

Collaborative Yes Yes No No
Content-based Yes No Yes No
Knowledge-based Yes No Yes Yes

5.1.2 Hybridization designs

The second dimension that characterizes hybrid algorithms is their design.
Burke’s taxonomy (2002b) distinguishes among seven different hybridization
strategies that we will refer to in this book. Seen from a more general per-
spective, however, the seven variants can be abstracted into only three base
designs: monolithic, parallelized, and pipelined hybrids. Monolithic denotes
a hybridization design that incorporates aspects of several recommendation
strategies in one algorithm implementation. As depicted in Figure 5.2, several
recommenders contribute virtually because the hybrid uses additional input data
that are specific to another recommendation algorithm, or the input data are
augmented by one technique and factually exploited by the other. For instance,
a content-based recommender that also exploits community data to determine
item similarities falls into this category.

The two remaining hybridization designs require at least two separate rec-
ommender implementations, which are consequently combined. Based on their
input, parallelized hybrid recommender systems operate independently of one
another and produce separate recommendation lists, as sketched in Figure 5.3.
In a subsequent hybridization step, their output is combined into a final set
of recommendations. Following Burke’s taxonomy, the weighted, mixed, and
switching strategies require recommendation components to work in parallel.

Hybrid
Recommender

Recommender 1 Recommender n

OutputInput

Figure 5.2. Monolithic hybridization design.

5.2 Monolithic hybridization design 129

When several recommender systems are joined together in a pipeline archi-
tecture, as depicted in Figure 5.4, the output of one recommender becomes part
of the input of the subsequent one. Optionally, the subsequent recommender
components may use parts of the original input data, too. The Cascade and
meta-level hybrids, as defined by Burke (2002b), are examples of such pipeline
architectures.

The following sections examine each of the three base hybridization designs
in more detail.

5.2 Monolithic hybridization design

Whereas the other two designs for hybrid recommender systems consist of
two or more components whose results are combined, monolithic hybrids con-
sist of a single recommender component that integrates multiple approaches
by preprocessing and combining several knowledge sources. Hybridization is
thus achieved by a built-in modification of the algorithm behavior to exploit
different types of input data. Typically, data-specific preprocessing steps are
used to transform the input data into a representation that can be exploited
by a specific algorithm paradigm. Following Burke’s taxonomy (2002b), both
feature combination and feature augmentation strategies can be assigned to this
category.

Input

Recommender 1

Recommender n

Hybridization step Output...

Figure 5.3. Parallelized hybridization design.

Input Recommender 1 ... Recommender n Output

Figure 5.4. Pipelined hybridization design.

130 5 Hybrid recommendation approaches

Table 5.2. Community and product knowledge.

User Item1 Item2 Item3 Item4 Item5

Alice 1 1
User1 1 1 1
User2 1 1 1
User3 1 1
User4 1

Item Genre

Item1 romance
Item2 mystery
Item3 mystery
Item4 mystery
Item5 fiction

5.2.1 Feature combination hybrids

A feature combination hybrid is a monolithic recommendation component that
uses a diverse range of input data. For instance, Basu et al. (1998) proposed
a feature combination hybrid that combines collaborative features, such as a
user’s likes and dislikes, with content features of catalog items. The following
example illustrates this technique in the book domain.

Table 5.2 presents several users’ unary ratings of a product catalog. Rat-
ings constitute implicitly observed user feedback, such as purchases. Product
knowledge is restricted to an item’s genre. Obviously, in a pure collaborative ap-
proach, without considering any product features, both User1 and User2 would
be judged as being equally similar to Alice. However, the feature-combination
approach of Basu et al. identifies new hybrid features based on community and
product data. This reflects “the common human-engineering effort that involves
inventing good features to enable successful learning” (Basu et al. 1998).

Table 5.3 thus provides a hybrid encoding of the information contained in
Table 5.2. These features are derived by the following rules. If a user bought
mainly books of genre X (i.e., two-thirds of the total purchases and at least
two books) we set the user characteristic User likes many X books to true.

Table 5.3. Hybrid input features.

Feature Alice User1 User2 User3 User4

User likes many mystery books true true
User likes some mystery books true true
User likes many romance books
User likes some romance books true true
User likes many fiction books
User likes some fiction books true true true

5.2 Monolithic hybridization design 131

Table 5.4. Different types of user feedback.

User Rnav Rview Rctx Rbuy

Alice n3, n4 i5 k5 ∅
User1 n1, n5 i3, i5 k5 i1
User2 n3, n4 i3, i5, i7 ∅ i3
User3 n2, n3, n4 i2, i4, i5 k2, k4 i4

Analogously, we also set User likes some X books to true, requiring one-third
of the user’s purchases, or at least one item in absolute numbers. Although
the transformation seems to be quite trivial at first glance, it nevertheless re-
flects that some knowledge, such as an item’s genre, can lead to considerable
improvements. Initially Alice seems to possess similar interests to User1 and
User2, but the picture changes after transforming the user/item matrix. It ac-
tually turns out that User2 behaves in a very indeterminate manner by buying
some books of all three genres. In contrast, User1 seems to focus specifically
on mystery books, as Alice does. For this example we determine similar peers
by simply matching user characteristics, whereas Basu et al. (1998) used set-
valued user characteristics and the inductive rule learner Ripper (Cohen 1996)
in their original experiments.

Another approach for feature combination was proposed by Zanker and
Jessenitschnig (2009b), who exploit different types of rating feedback based
on their predictive accuracy and availability.

Table 5.4 depicts a scenario in which several types of implicitly or explicitly
collected user feedback are available as unary ratings, such as navigation actions
Rnav, click-throughs on items’ detail pages Rview, contextual user requirements
Rctx , or actual purchases Rbuy. These categories differentiate themselves by their
availability and their aptness for making predictions. For instance, navigation
actions and page views of online users occur frequently, whereas purchases
are less common. In addition, information about the user’s context, such as the
keywords used for searching or input to a conversational requirements elicita-
tion dialog, is typically a very useful source for computing recommendations
(Zanker and Jessenitschnig 2009a). In contrast, navigation actions typically
contain more noise, particularly when users randomly surf and explore a shop.
Therefore, rating categories may be prioritized – for example (Rbuy, Rctx) ≺
Rview ≺ Rnav, where priority decreases from left to right.

Thus, when interpreting all rating data in Table 5.4 in a uniform man-
ner, User2 and User3 seem to have the most in common with Alice, as both
share at least three similar ratings. However, the algorithm for neighborhood

132 5 Hybrid recommendation approaches

determination by Zanker and Jessenitschnig (2009b) uses the given precedence
rules and thus initially uses Rbuy and Rctx as rating inputs to find similar peers.
In this highly simplified example, User1 would be identified as being most sim-
ilar to Alice. In the case that not enough similar peers can be determined with
satisfactory confidence, the feature combination algorithm includes additional,
lower-ranked rating input. A similar principle for feature combination was also
exploited by Pazzani (1999b), who used demographic user characteristics to
bootstrap a collaborative recommender system when not enough item ratings
were known.

Because of the simplicity of feature combination approaches, many cur-
rent recommender systems combine collaborative and/or content-based fea-
tures in one way or another. However, the combination of input features using
knowledge-based approaches, such as constraints, with content-based or col-
laborative knowledge sources has remained largely unexplored. We suggest
that critique-based systems that elicit user feedback in the form of constraints
on a specific item, such as price should be less than the price for item a, could
be a suitable starting point for future research.

5.2.2 Feature augmentation hybrids

Feature augmentation is another monolithic hybridization design that may be
used to integrate several recommendation algorithms. In contrast with feature
combination, this hybrid does not simply combine and preprocess several types
of input, but rather applies more complex transformation steps. In fact, the out-
put of a contributing recommender system augments the feature space of the
actual recommender by preprocessing its knowledge sources. However, this
must not be mistaken for a pipelined design, as we will discuss in the follow-
ing section, because the implementation of the contributing recommender is
strongly interwoven with the main component for reasons of performance and
functionality.

Content-boosted collaborative filtering is an actual example of this variant
(Melville et al. 2002). It predicts a user’s assumed rating based on a collaborative
mechanism that includes content-based predictions.

Table 5.5 presents an example user/item matrix, together with rating values
for Item5 (vUser,Item5) as well as the Pearson correlation coefficient PAlice,User

signifying the similarity between Alice and the respective users. Furthermore,
it denotes the number of user ratings (nUser) and the number of overlapping
ratings between Alice and the other users (nAlice,User). The rating matrix for
this example is complete, because it consists not only of users’ actual ratings
ru,i , but also of content-based predictions cu,i in the case that a user rating

5.2 Monolithic hybridization design 133

Table 5.5. Hybrid input features.

User vUser,Item5 PAlice,User nUser nAlice,User

Alice ? 40
User1 4 0.8 14 6
User2 2.2 0.7 55 28

is missing. Melville et al. (2002) therefore first create a pseudo-user-ratings
vector vu,i :

vu,i =
{

ru,i : if user u rated item i

cu,i : else content-based prediction

Based on these pseudo ratings, the algorithm computes predictions in a second
step. However, depending on the number of rated items and the number of
co-rated items between two users, weighting factors may be used to adjust the
predicted rating value for a specific user–item pair a, i, as illustrated by the
following equation for a content-boosted collaborative recommender.

reccbcf (a, i) =

⎛
⎜⎝swaca,i +

n∑
u=1
u
=a

hwa,uPa,uvu,i

⎞
⎟⎠

/ ⎛
⎜⎝swa +

n∑
u=1
u
=a

hwa,uPa,u

⎞
⎟⎠

(5.2)
hwa,u is the hybrid correlation weight that is defined as follows:

hwa,u = sga,u + hma,u, where

sga,u =
{

na,u

50 : if na,u < 50

1 : else

hma,u = 2mamu

ma + mu

with

mi =
{

ni

50 : if ni < 50

1 : else

The hybrid correlation weight (hwa,u) adjusts the computed Pearson correlation
based on a significance weighting factor sga,u (Herlocker et al. 1999) that favors
peers with more co-rated items. When the number of co-rated items is greater
than 50, the effect tends to level off. In addition, the harmonic mean weighting
factor (hma,u) reduces the influence of peers with a low number of user ratings,

134 5 Hybrid recommendation approaches

as content-based pseudo-ratings are less reliable if derived from a small number
of user ratings.

Similarly, the self-weighting factor swi reflects the confidence in the algo-
rithm’s content-based prediction, which obviously also depends on the number
of original rating values of any user i. The constant max was set to 2 by Melville
et al. (2002).

swi =
{

ni

50 × max : if ni < 50

max : else

Thus, assuming that the content-based prediction for Item5 is cAlice, Item5 = 3,
reccbcf (Alice, Item5) is computed as follows:

1.6 × 3 + (0.535 × 0.8 × 4 + 1.45 × 0.7 × 2.2)

1.6 + (0.535 × 0.8 + 1.45 × 0.7)
= 8.745

3.043
= 2.87

Consequently, the predicted value (on a 1–5 Likert scale) indicates that Alice
will not be euphoric about Item5, although the most similar peer, User1, rated it
with a 4. However, the weighting and adjustment factors place more emphasis
on User 2 and the content-based prediction. Also note that we ignored rating
adjustments based on users’ rating averages as outlined in Chapter 2 and defined
in Formula 2.3 for reasons of simplicity.

Additional applications of feature augmentation hybrids are presented in
Mooney and Roy’s (1999) discussion of a content-based book recommender and
in Torres et al.’s (2004) recommendation of research papers. The latter employs,
among other hybrid algorithm variants, a feature augmentation algorithm that
interprets article citations as collaborative recommendations.

5.3 Parallelized hybridization design

Parallelized hybridization designs employ several recommenders side by side
and employ a specific hybridization mechanism to aggregate their outputs.
Burke (2002b) elaborates on the mixed, weighted, and switching strategies.
However, additional combination strategies for multiple recommendation lists,
such as majority voting schemes, may also be applicable.

5.3.1 Mixed hybrids

A mixed hybridization strategy combines the results of different recommender
systems at the level of the user interface, in which results from different tech-
niques are presented together. Therefore the recommendation result for user u

5.3 Parallelized hybridization design 135

and item i of a mixed hybrid strategy is the set of -tuples 〈score, k〉 for each of
its n constituting recommenders reck :

recmixed(u, i) =
n⋃

k=1

〈reck(u, i), k〉 (5.3)

The top-scoring items for each recommender are then displayed to the user
next to each other, as in Burke et al. (1997) and Wasfi (1999). However, when
composing the different results into a single entity, such as a television viewing
schedule, some form of conflict resolution is required. In the personalized televi-
sion application domain, Cotter and Smyth (2000) apply predefined precedence
rules between different recommender functions. Zanker et al. (2007) describe
another form of a mixed hybrid, which merges the results of several recom-
mendation systems. It proposes bundles of recommendations from different
product categories in the tourism domain, in which for each category a separate
recommender is employed. A recommended bundle consists, for instance, of
accommodations, as well as sport and leisure activities, that are derived by sep-
arate recommender systems. A Constraint Satisfaction Problem (CSP) solver is
employed to resolve conflicts, thus ensuring that only consistent sets of items
are bundled together according to domain constraints such as “activities and
accommodations must be within 50 km of each other”.

5.3.2 Weighted hybrids

A weighted hybridization strategy combines the recommendations of two or
more recommendation systems by computing weighted sums of their scores.
Thus, given n different recommendation functions reck with associated relative
weights βk:

recweighted(u, i) =
n∑

k=1

βk × reck(u, i) (5.4)

where item scores need to be restricted to the same range for all recommenders
and

∑n
k=1 βk = 1. Obviously, this technique is quite straightforward and is thus

a popular strategy for combining the predictive power of different recommen-
dation techniques in a weighted manner. Consider an example in which two
recommender systems are used to suggest one of five items for a user Alice. As
can be easily seen from Table 5.6, these recommendation lists are hybridized by
using a uniform weighting scheme with β1 = β2 = 0.5. The weighted hybrid
recommender recw thus produces a new ranking by combining the scores from
rec1 and rec2. Items that are recommended by only one of the two users, such
as Item2, may still be ranked highly after the hybridization step.

136 5 Hybrid recommendation approaches

Table 5.6. Recommendations of weighted hybrid.

rec1 rec1 rec2 rec2 recw recw

item score rank score rank score rank

Item1 0.5 1 0.8 2 0.65 1
Item2 0 0.9 1 0.45 2
Item3 0.3 2 0.4 3 0.35 3
Item4 0.1 3 0 0.05
Item5 0 0 0

If the weighting scheme is to remain static, the involved recommenders must
also produce recommendations of the same relative quality for all user and item
combinations. To estimate weights, an empirical bootstrapping approach can be
taken. For instance, Zanker and Jessenitschnig (2009a) conducted a sensitivity
analysis between a collaborative and a knowledge-based recommender in the
cigar domain to identify the optimum weighting scheme. The P-Tango system
(Claypool et al. 1999) is another example of such a system, blending the output
of a content-based and a collaborative recommender in the news domain. This
approach uses a dynamic weighting scheme and will be explained in detail
in the following section. Starting from a uniform distribution, it dynamically
adjusts the relative weights for each user to minimize the predictive error in
cases in which user ratings are available. Furthermore, it adapts the weights
on a per-item basis to correctly reflect the relative strengths of each prediction
algorithm. For instance, the collaborative filtering gains weight if the item has
been rated by a higher number of users.

We explain such a dynamic weighting approach by returning to the initial
example. Let us assume that Alice purchased Item1 and Item4, which we will
interpret as positive unary ratings. We thus require a weighting that minimizes
a goal metric such as the mean absolute error (MAE) of predictions of a user
for her rated items R (see Chapter 2).

MAE =
∑

ri∈R

∑n
k=1 βk × |reck(u, i) − ri |

|R| (5.5)

If we interpret Alice’s purchases as very strong relevance feedback for her
interest in an item, then the set of Alice’s actual ratings R will contain r1 =
r4 = 1. Table 5.7 summarizes the absolute errors of rec1 and rec2’s predictions
(denoted in Table 5.6) for different weighting parameters. Table 5.7 shows
that the MAE improves as rec2 is weighted more strongly. However, when
examining the situation more closely, it is evident that the weight assigned to

5.3 Parallelized hybridization design 137

Table 5.7. Dynamic weighting parameters, absolute errors, and
MAEs for user Alice.

β1 β2 item ri rec1 rec2 error MAE

0.1 0.9 Item1 1 0.5 0.8 0.23
Item4 1 0.1 0 0.99 0.61

0.3 0.7 Item1 1 0.5 0.8 0.29
Item4 1 0.1 0 0.97 0.63

0.5 0.5 Item1 1 0.5 0.8 0.35
Item4 1 0.1 0 0.95 0.65

0.7 0.3 Item1 1 0.5 0.8 0.41
Item4 1 0.1 0 0.93 0.67

0.9 0.1 Item1 1 0.5 0.8 0.47
Item4 1 0.1 0 0.91 0.69

rec1 should be strengthened. Both rated items are ranked higher by rec1 than by
rec2 – Item1 is first instead of second and Item4 is third, whereas rec2 does not
recommend Item4 at all. Thus, when applying a weighted strategy, one must
ensure that the involved recommenders assign scores on comparable scales
or apply a transformation function beforehand. Obviously, the assignment of
dynamic weighting parameters stabilizes as more rated items are made available
by users. In addition, alternative error metrics, such as mean squared error or
rank metrics, can be explored. Mean squared error puts more emphasis on large
errors, whereas rank metrics focus not on recommendation scores but on ranks.

In the extreme case, dynamic weight adjustment could be implemented as
a switching hybrid. There, the weights of all but one dynamically selected
recommenders are set to 0, and the output of a single remaining recommender
is assigned the weight of 1.

5.3.3 Switching hybrids

Switching hybrids require an oracle that decides which recommender should
be used in a specific situation, depending on the user profile and/or the quality
of recommendation results. Such an evaluation could be carried out as follows:

∃1k : 1 . . . n recswitching(u, i) = reck(u, i) (5.6)

where k is determined by the switching condition. For instance, to overcome
the cold-start problem, a knowledge-based and collaborative switching hybrid

138 5 Hybrid recommendation approaches

could initially make knowledge-based recommendations until enough rating
data are available. When the collaborative filtering component can deliver rec-
ommendations with sufficient confidence, the recommendation strategy could
be switched. Furthermore, a switching strategy can be applied to optimize re-
sults in a similar fashion to the NewsDude system (Billsus and Pazzani 2000).
There, two content-based variants and a collaborative strategy are employed in
an ordered manner to recommend news articles. First, a content-based nearest
neighbor recommender is used. If it does not find any closely related articles,
a collaborative filtering system is invoked to make cross-genre propositions;
finally, a naive Bayes classifier finds articles matching the long-term interest
profile of the user. Zanker and Jessenitschnig (2009a) proposed a switching
strategy that actually switches between two hybrid variants of collaborative fil-
tering and knowledge-based recommendation. If the first algorithm, a cascade
hybrid, delivers fewer than n recommendations, the hybridization component
switches to a weighted variant as a fallback strategy. Even more adaptive switch-
ing criteria can be thought of that could even take contextual parameters such as
users’ intentions or expectations into consideration for algorithm selection. For
instance, van Setten (2005) proposed the domain-independent Duine frame-
work that generalizes the selection task of a prediction strategy and discusses
several machine learning techniques in that context. To summarize, the quality
of the switching mechanism is the most crucial aspect of this hybridization
variant.

5.4 Pipelined hybridization design

Pipelined hybrids implement a staged process in which several techniques
sequentially build on each other before the final one produces recommendations
for the user. The pipelined hybrid variants differentiate themselves mainly
according to the type of output they produce for the next stage. In other words,
a preceding component may either preprocess input data to build a model that
is exploited by the subsequent stage or deliver a recommendation list for further
refinement.

5.4.1 Cascade hybrids

Cascade hybrids are based on a sequenced order of techniques, in which each
succeeding recommender only refines the recommendations of its predecessor.
The recommendation list of the successor technique is thus restricted to items
that were also recommended by the preceding technique.

5.4 Pipelined hybridization design 139

Formally, assume a sequence of n techniques, where rec1 represents the
recommendation function of the first technique and recn the last one. Conse-
quently, the final recommendation score for an item is computed by the nth
technique. However, an item will be suggested by the kth technique only if
the (k − 1)th technique also assigned a nonzero score to it. This applies to all
k ≥ 2 by induction as defined in Formula (5.7).

reccascade(u, i) = recn(u, i) (5.7)

where ∀k ≥ 2 must hold:

reck(u, i) =
{

reck(u, i) : reck−1(u, i)
= 0

0 : else

Thus in a cascade hybrid all techniques, except the first one, can only change
the ordering of the list of recommended items from their predecessor or ex-
clude an item by setting its utility to 0. However, they may not introduce new
items – items that have already been excluded by one of the higher-priority
techniques – to the recommendation list. Thus cascading strategies do have
the unfavorable property of potentially reducing the size of the recommenda-
tion set as each additional technique is applied. As a consequence, situations
can arise in which cascade algorithms do not deliver the required number of
propositions, thus decreasing the system’s usefulness. Therefore cascade hy-
brids may be combined with a switching strategy to handle the case in which
the cascade strategy does not produce enough recommendations. One such
hybridization step that switches to weighted strategy was proposed by Zanker
and Jessenitschnig (2009a).

As knowledge-based recommenders produce recommendation lists that are
either unsorted or contain many ties among items’ scores, cascading them with
another technique to sort the results is a natural choice. EntreeC is a knowledge-
based restaurant recommender that is cascaded with a collaborative filtering
algorithm to recommend restaurants (Burke 2002b). However, in contrast to
the definition of cascade hybrid given here, EntreeC uses only the second
recommender to break ties. Advisor Suite is a domain independent knowledge-
based recommender shell discussed in Chapter 4 (Felfernig et al. 2006–07).
It includes an optional utility-based sorting scheme that can further refine
recommendations in a cascade design.

5.4.2 Meta-level hybrids

In a meta-level hybridization design, one recommender builds a model that is
exploited by the principal recommender to make recommendations. Formula

140 5 Hybrid recommendation approaches

(5.8) formalizes this behavior, wherein the nth recommender exploits a model
	 that has been built by its predecessor. However, in all reported systems so
far, n has always been 2.

recmeta–level(u, i) = recn(u, i,	recn−1) (5.8)

For instance, the Fab system (Balabanović and Shoham 1997) exploits a col-
laborative approach that builds on user models that have been built by a
content-based recommender. The application domain of Fab is online news.
Fab employs a content-based recommender that builds user models based on a
vector of term categories and the users’ degrees of interest in them. The rec-
ommendation step, however, does not propose items that are similar to the user
model, but employs a collaborative technique. The latter determines the user’s
nearest neighbors based on content models and recommends items that similar
peers have liked. Pazzani (1999b) referred to this approach as collaboration
via content and presented a small user study based on restaurant recommen-
dation. It showed that the hybrid variant performs better than base techniques,
especially when users have only a few items in common. Zanker (2008) eval-
uated a further variant of meta-level hybridization that combines collaborative
filtering with knowledge-based recommendation. The hybrid generates binary
user preferences of the form a → b, where a represents a user requirement
and b a product feature. If, for example, a user of the cigar advisor de-
scribed by Zanker (2008) were looking for a gift and finally bought a cigar
of the brand Montecristo, then the constraint for whom = “gift” → brand =
“Montecristo” becomes part of the user’s profile. When computing a recom-
mendation, a collaborative filtering step retrieves all such constraints from a
user’s peers. A knowledge-based recommender finally applies these restric-
tions to the product database and derives item propositions. An evaluation
showed that this approach produced more successful predictions than a manu-
ally crafted knowledge base or an impersonalized application of all generated
constraints.

Golovin and Rahm (2004) applied a reinforcement learning (RL) approach
for exploiting context-aware recommendation rules. The authors exploited dif-
ferent top-N recommendation procedures as well as sequence patterns and
frequent-item sets to generate weighted recommendation rules that are used by
a reinforcement learning component to make predictions. Rules specify which
item should be presented in which situation, where the latter is characterized by
the product content and the user model, including contextual parameters such
as daytime or season of the year. Thus, RL acts as a principal recommender

5.5 Discussion and summary 141

that adjusts the weights of the recommendation rule database based on user
feedback.

5.5 Discussion and summary

In this chapter we discussed the opportunities for combining different algorithm
variants and presented a taxonomy for hybridization designs. In summary, no
single hybridization variant is applicable in all circumstances, but it is well
accepted that all base algorithms can be improved by being hybridized with
other techniques. For instance, in the Netflix Prize competition, the winners
employed a weighted hybridization strategy in which weights were deter-
mined by regression analysis (Bell et al. 2007). Furthermore, they adapted
the weights based on particular user and item features, such as number of rated
items, that can be classified as a switching hybrid that changes between dif-
ferent weighted hybrids according to the presented taxonomy of hybridization
variants.

One of the main reasons that little research focuses on comparing different
recommendation strategies and especially their hybrids is the lack of appropri-
ate datasets. Although collaborative movie recommendations or content-based
news recommenders are comparably well researched application domains, other
application domains for recommender systems and algorithm paradigms re-
ceive less attention. Therefore, no empirically backed conclusions about the
advantages and disadvantages of different hybridization variants can be drawn,
but, depending on the application domain and problem type, different variants
should be explored and compared. Nevertheless, enhancing an existing recom-
mendation application by exploiting additional knowledge sources will nearly
always pay off. With respect to the required engineering effort, the following
can be said.

Monolithic designs are advantageous if little additional knowledge is avail-
able for inclusion on the feature level. They typically require only some ad-
ditional preprocessing steps or minor modifications in the principal algorithm
and its data structures.

Parallelized designs are the least invasive to existing implementations, as
they act as an additional postprocessing step. Nevertheless, they add some addi-
tional runtime complexity and require careful matching of the recommendation
scores computed by the different parallelized algorithms.

Pipelined designs are the most ambitious hybridization designs, because
they require deeper insight into algorithm’s functioning to ensure efficient run-
time computations. However, they typically perform well when two antithetic

142 5 Hybrid recommendation approaches

recommendation paradigms, such as collaborative and knowledge-based, are
combined.

5.6 Bibliographical notes

Only a few articles focus specifically on the hybridization of recommendation
algorithms in general. The most comprehensive work in this regard is Burke’s
article, “Hybrid recommender systems: Survey and experiments”, which ap-
peared in User Modeling and User-Adapted Interaction in 2002. It developed
the taxonomy of recommendation paradigms and hybridization designs that
guided this chapter, and is the most referenced article in this respect. A revised
version appeared as a chapter in the Springer state-of-the-art survey The Adap-
tive Web by the same author in 2007. It not only constitutes a comprehensive
source of reference for published works on hybrid algorithms, but also in-
cludes the most extensive comparative evaluation of different hybrid algorithm
variants. Burke (2007) compared forty one different algorithms based on the
Entree dataset (Burke 1999). In contrast to many earlier comparative studies
on the movie domain (Balabanović and Shoham 1997, Pazzani 1999b, Sarwar
et al. 2000b), the Entree dataset also allows the exploration of knowledge-based
algorithm variants.

Adomavicius and Tuzhilin (2005) provide an extensive state-of-the-art sur-
vey on current recommender systems’ literature that includes a taxonomy that
differentiates between collaborative and content-based recommenders and hy-
brid variants thereof; however, it lacks a discussion about knowledge-based
algorithms.

Zanker et al. (2007) present a recent evaluation of several algorithm variants
that compares knowledge-based variants with collaborative ones on a commer-
cial dataset from the cigar domain. These experiments were further developed
by Zanker and Jessenitschnig (2009a) with the focus being placed on explicit
user requirements, such as keywords and input, to conversational requirements
elicitation dialogs as the sole type of user feedback. They explored weighted,
switching, and cascade hybridization variants of knowledge-based and collab-
orative recommendation paradigms.

6

Explanations in recommender systems

6.1 Introduction

“The digital camera Profishot is a must-buy for you because . . .” “In fact, for
your requirements as a semiprofessional photographer, you should not use dig-
ital cameras of type Lowcheap because . . .” Such information is commonly
exchanged between a salesperson and a customer during in-store recommen-
dation processes and is usually termed an explanation (Brewer et al. 1998).

The concept of explanation is frequently exploited in human communication
and reasoning tasks. Consequently, research within artificial intelligence – in
particular, into the development of systems that mimic human behavior – has
shown great interest in the nature of explanations. Starting with the question,
“What is an explanation?”, we are confronted with an almost unlimited number
of possibilities.

Explanations such as (1) “The car type Jumbo-Family-Van of brand Rising-
Sun would be well suited to your family because you have four children and the
car has seven seats”; (2) “The light bulb shines because you turned it on”; (3) “I
washed the dishes because my brother did it last time”; or simply (4) “You have
to do your homework because your dad said so”, are examples of explanations
depending on circumstances and make the construction of a generic approach
for producing explanations difficult. The work of Brewer et al. (1998) dis-
tinguishes among functional, causal, intentional, and scientific explanations.
Functional explanations (such as explanation 1) deal with the functions of
systems. Causal explanations (such as explanation 2) provide causal relation-
ships between events. Intentional explanations (such as explanations 3 and 4)
give reasons for human behavior. Scientific explanations are exploited to ex-
press relations between the concepts formulated in various scientific fields and
are typically based on refutable theories. Unfortunately, there is no accepted

143

144 6 Explanations in recommender systems

unified theory describing the concept of explanation. Consequently, it is unclear
how to design a general method for generating explanations.

Facing such fundamental challenges, one might ask why recommender sys-
tems should deal with explanations at all. The answer is related to the two
parties providing and receiving recommendations. For example, a selling agent
may be interested in promoting particular products, whereas a buying agent
is concerned about making the right buying decision. Explanations are impor-
tant pieces of information that can be exploited by both agents throughout the
communication process to increase their performance. Different agents will
formulate explanations with different intentions – for example, a buying agent
looks for bargains and explanations that justify decisions, whereas a selling
agent tries to improve profits by providing convincing arguments to the buying
agent. We choose to analyze the phenomenon of explanations from a pragmatic
viewpoint. Despite the diversity of proposals for characterizing the concept of
explanation, almost all sources agree that an explanation is a piece of informa-
tion exchanged in a communication process. In the context of recommender
systems, these pieces of information supplement a recommendation with differ-
ent aims. Following a pragmatic view, the goals for providing explanations in a
recommendation process can be identified as follows (Tintarev 2007, Tintarev
and Masthoff 2007):

Transparency. Explanations supporting the transparency of recommendations
aim to provide information so the user can comprehend the reasoning used to
generate a specific recommendation. In particular, the explanation may provide
information as to why one item was preferred over another. For example,
consider the case in which you wonder why a film recommender assumes you
like Westerns, when in fact you do not. Transparency explanations may indicate,
for example, that you purchased country songs and that this information is being
exploited for recommending Western films, giving you the chance to change
false assumptions.

Validity. Explanations can be generated to allow a user to check the validity
of a recommendation. For example, “I recommend this type of car because you
have four children and the Jumbo-Family-Van of Rising-Sun has seven seats.
Because of the number of children, I cannot recommend the Dinki-coupe of
SpeedyGECars, as it has only four seats.” The ability to check validity is not
necessarily related to transparency. For instance, a neural network may have
decided that a product is an almost perfect match to a set of customer require-
ments. Transparency in the computation process, disclosing how the neural
network computed the recommendation, will not help a customer validate the

6.1 Introduction 145

recommendation. However, showing a comparison of the required and offered
product features allows the customer to validate the quality of the product
recommendation.

Trustworthiness. Following Grabner-Kräuter and Kaluscha (2003), trust
building can be viewed as a mechanism for reducing the complexity of hu-
man decision making in uncertain situations. Explanations aiming to build
trust in recommendations reduce the uncertainty about the quality of a recom-
mendation – for example, “The drug Kural cured thousands of people with your
disease; therefore, this drug will also help you.”1

Persuasiveness. Computing technology (Fogg 1999) is regarded as persuasive
if the system is intentionally designed to change a person’s attitude or behavior
in a predetermined way. In this sense, persuasive explanations for recommen-
dations aim to change the user’s buying behavior. For instance, a recommender
may intentionally dwell on a product’s positive aspects and keep quiet about
various negative aspects.

Effectiveness. In the context of recommender systems, the term effectiveness
refers to the support a user receives for making high-quality decisions. Expla-
nations for improving effectiveness typically help the customer discover his or
her preferences and make decisions that maximize satisfaction with respect to
the selected product. Effective recommenders help users make better decisions.

Efficiency. In the context of recommender systems, the term efficiency refers
to a system’s ability to support users to reduce the decision-making effort.
Thus explanations aiming to increase efficiency typically try to reduce the time
needed for decision making. However, a measure for efficiency might also be
the perceived cognitive effort, which could be different than efficiency based
on the time taken to make the recommendation and select a product.

Satisfaction. Explanations can attempt to improve the overall satisfaction
stemming from the use of a recommender system. This aim may not be linked
to any other explanation goals, such as persuasiveness. The motivation behind
this goal may be manifold – for instance, to increase the customer return rate.

Relevance. Additional information may be required in conversational recom-
menders. Explanations can be provided to justify why additional information
is needed from the user.

1 The recommender literature usually does not distinguish between trust and confidence.

146 6 Explanations in recommender systems

Comprehensibility. Recommenders can never be sure about the knowledge of
their users. Explanations targeting comprehension support the user by relating
the user’s known concepts to the concepts employed by the recommender.

Education. Explanations can aim to educate users to help them better under-
stand the product domain. Deep knowledge about the domain helps customers
rethink their preferences and evaluate the pros and cons of different solutions.
Eventually, as customers become more informed, they are able to make wiser
purchasing decisions.

The aforementioned aims for generating explanations can be interrelated.
For example, an explanation generated for improving the transparency of a
recommendation can have a positive effect on trust. Conversely, explanations
aimed at persuasiveness may result in a loss of trust. Consequently, the first
step in designing explanation generators is to define the goals of explanations.
To assess the utility of explanations, all effects on the various communication
aims of the recommendation process must be crosschecked.

As noted earlier, explanations are used in a communication process. There-
fore, the suitability of an explanation depends on the goals of both the explana-
tion sender and the receiver. As a consequence, the quality of explanations can
be improved by modeling the receiving agent. For instance, to make explana-
tions comprehensible, it is necessary to have information about the knowledge
level of the receiver. Generally, the better the model of a receiving agent is,
the more effective the arguments generated by a persuasive sending agent
will be.

Furthermore, what is regarded as a valid (or good) explanation depends on
the communication process itself, a fact that was neglected in early explanation
generation attempts and that may lead to spurious explanations, as will be
shown later. To summarize, the following factors influence the generation of
explanations by a recommender agent communicating with an agent receiving
recommendations:

� The piece of information to be explained.
� The goals of the agent in providing (receiving) an explanation.
� The model of the receiving agent, including its behavior and knowledge.
� The state of communication – the exchanged information, including provided

recommendations.

How explanation goals can be achieved depends on the recommendation
method employed. In particular, if knowledge is available as to how a con-
clusion was derived, then this knowledge can be exploited for various expla-
nation goals – for example, to increase trust by providing a logically correct

6.2 Explanations in constraint-based recommenders 147

argument. However, if such knowledge is not available, then trust building
must be supported by other means, such as by referring the receiver to previous
high-quality recommendations.

In the next section, we explore the standard explanation approaches for
various recommendation methods, such as constraint-based recommenders,
case-based recommenders, and recommenders based on collaborative filtering.

6.2 Explanations in constraint-based recommenders

The generation of explanations has a long history in expert systems (Shortliffe
1974). Constraint-based recommenders can be seen as a descendant of expert
systems in general, and therefore can draw on established methods. However,
we show how these methods have to be extended to work properly for constraint-
based recommenders.

For example, in the area of sales support systems (Jannach 2004), constraint-
based software applications have been developed to help customers find the
right product (configuration) for their needs in domains as diverse as financial
products and digital cameras. Constraint-based methods have become a key
technology for the implementation of knowledge-based recommender systems
because they offer enough expressive power to represent the relevant knowl-
edge. In addition, extensive research has provided a huge library of concepts
and algorithms for efficiently solving the various reasoning tasks.

In such applications a solution represents a product or a service a customer
can purchase. Explanations are generated to give feedback about the process
used to derive the conclusions – for example, “Because you, as a customer,
told us that simple handling of a car is important to you, we included a special
sensor system in our offer that will help you to park your car easily.” Such
explanations are exploited by customers in various ways – for instance, to
increase confidence in a solution or to facilitate trade-off decisions (Felfernig
et al. 2004).

In this section we focus on answering two typical questions a customer is
likely to pose. In the case that the recommendation process requires input from
the customer, the customer could ask why this information is needed. This cor-
responds to the classical why-explanations of expert systems (Buchanan and
Shortliffe 1984). Conversely, when a recommender proposes a set of solutions
(e.g., products) then a customer might ask for an explanation why a proposed
solution would be advantageous for him or her. Traditionally, this type of ex-
planation is called a how-explanation (Buchanan and Shortliffe 1984) because
classical expert systems exploited information as to how a conclusion was

148 6 Explanations in recommender systems

deduced – for example, the sequence of rules activated in the decision-making
process.

We now examine methods for answering these two types of questions by
exploiting the reasoning methods of constraint-based systems. We start with an
introductory example and subsequently elaborate on the basic principles.2

6.2.1 Example

Consider an example from the car domain. Assume two different packages are
available for a car; a business package and a recreation package. The customer
can decide if he or she wants one, both, or neither of these packages.

The recreation package includes a coupling device for towing trailers and
a video camera on the rear of the car, which allows the driver to ascertain
the distance to an obstacle behind the car. This camera supports the customer-
oriented product function easy parking. Customers may not be interested in the
technical details a priori but may request functions for describing the wanted
product features – for example, customers may not be interested in how the
function easy parking is implemented, but they are interested that the car gives
assistance for parking. Furthermore, functions are exploited to characterize
products in an abstract way to justify consumer confidence in a solution –
for instance, a sales rep can argue that a car supports easy parking because it
includes a video camera at the rear. Functions of products are used to describe
them in a more abstract way, which allows the hiding of technical details.
Communicating with nontechnical customers requires this abstraction.

The business package includes a sensor system in the back bumper, which
also supports easy parking. However, the sensor system is incompatible with
the recreation package for technical reasons (the coupling device of the recre-
ation package prevents the sensor system from being mounted). From the cus-
tomer’s point of view, the video camera and the sensor system provide the same
functionality. Therefore, if the customer orders the business package and the
recreation package, the car includes the video camera, which implements the
easy parking function. In this configuration, the sensors are not only forbidden
(because they are incompatible with the coupling device), but also dispensable.
In addition, the business package includes a radio with a GSM telephone (GSM
radio), which supports hands-free mobile communication.

2 Parts are reprinted from Proceedings of the 16th European Conference on Artificial Intelligence
(ECAI 2004), G. Friedrich, Elimination of Spurious Explanations, pp. 813–817. Copyright
(2004), with permission from IOS Press.

6.2 Explanations in constraint-based recommenders 149

Packages Configuration Functions

free-com
{y, n}

easy-parking
{y, n}

towing
{y, n}

coupling-
device
{y, n}

video
{y, n}

sensor
{y, n}

GSM radio
{y, n}

biz-pack
{y, n}

rec-pack
{y, n}

y
y

y

n
n

Cg,f

Cv,s,e

Cc,t

Cr,c

Cr,v

Cb,r,s

Cb,g

Figure 6.1. Constraint network of car example.

This domain can be modeled as a constraint satisfaction problem using the
following variables and constraints: The example constraint network is depicted
in Figure 6.1. The set of variables V is {biz-pack, rec-pack, GSM-radio, sensor,
video, coupling-device, free-com, easy-parking, towing}. Unary constraints
define the domains of the variables. For simplicity, it is assumed that for each
variable the domain is {y, n}.

Further constraints are specified by the following tables:
cr,v

3: If rec-pack is chosen, then video must also be included (and vice versa).
cb,r,s : If biz-pack is chosen and rec-pack is not chosen, then sensor is

included. rec-pack and sensor are incompatible.

cr,v :
rec-pack video

y y
n n

cb,r,s :
biz-pack rec-pack sensor

y y n
y n y
n y n
n n n
n n y

3 Variables are abbreviated by their first letter(s).

150 6 Explanations in recommender systems

cv,s,e : If video or sensor is included, then easy-parking is supported (and
vice versa).

cv,s,e :
video sensor easy-parking

n n n
y n y
n y y
y y y

The constraint connecting the variables biz-pack and GSM-radio is called
cb,g . cg,f connects GSM-radio and free-com. The constraint connecting the vari-
ables rec-pack and coupling-device is called cr,c · cc,t connects coupling-device
and towing. The tables for these four constraints are identical to the table
of cr,v .

To find out which packages are appropriate for a given customer, assume that
the recommender system asks the customer if he or she wants the car to be able
to tow trailers. In return, the customer may ask for the motivation behind this
question. In our example, the answer would be: “If you want the car to be able
to tow trailers, then the recreation package is appropriate for you.” Likewise,
the customer is asked if he or she wants hands-free mobile communication.

Assume that the customer wants both towing and hands-free communi-
cation. Consequently, the car would come with the business package and
the recreation package, including both a video camera and a GSM radio.
Functions supported by such a car would include easy parking, hands-free
mobile communication, and towing. More formally, if the customer sets
{free-com = y, towing = y}, then the solution to the constraints C = {cr,v,

cb,r,s , cv,s,e, cb,g, cg,f , cr,c, cc,t } representing the configured car would
be to assign {video = y, sensor = n, GSM-radio = y, coupling-device = y,
easy-parking = y, free-com = y, towing = y, biz-pack = y, rec-pack = y}.

Assume that this solution is presented to the customer. If the customer
asks which choices led to the parking capabilities of the specific configured
car, clearly the following answer must be provided: easy parking is supported
because the car comes with a video camera. This video camera is included
because it is included in the recreation package. The recreation package was
chosen because the car should support towing. The business package is not
suitable because the sensor system cannot be included.

In the following sections we present concepts and algorithms that are able to
compute such explanations automatically. In particular, those parts of the user
input and knowledge base must be identified that can be used to explain the

6.2 Explanations in constraint-based recommenders 151

features of a given solution. We also review the standard approach for generating
explanations and introduce the concept of well-founded explanations.

6.2.2 Generating explanations by abduction

Abduction is the widely accepted concept for generating explanations (Console
et al. 1991, Junker 2004). The basic idea of these proposals is to use entailment
(|=) to explain the outputs of a problem-solving process. Following Junker
(2004), the approach of Friedrich (2004) is based on the concept of constraint
satisfaction.

More formally, a constraint satisfaction problem (CSP) (C,V,D) (Junker
2004) is defined by a set of variables V , a set of constraints C, and a global
domain D. Each constraint has the form c(xi, . . . , xj), where xi, . . . , xj are
n variables in V and c is an n-ary constraint predicate. Each n-ary constraint
predicate has an associated n-ary relation R(c) ⊆ Dn. A mapping v : V → D of
variables to values represented by a set of values associated to variables {(xk =
vxk

)|xk ∈ V ∧ vxk
= v(xk)} satisfies a constraint c(xi, . . . , xj) if and only if (iff)

(vxi
, . . . , vxj

) ∈ R(c). Such a mapping v is a solution of the CSP iff it satisfies
all constraints in C.

A set of constraints C is satisfiable iff the CSP with variables V (C) and
constraints C has a solution. A CSP (C,V,D) is trivially satisfied if V or
C is empty. A mapping v : V → D is a solution of (C,V,D) iff C ∪ {(xk =
vxk

)|xk ∈ V (C) ∧ vxk
= v(xk)} is satisfied. Consequently, finding a solution to

a CSP can be mapped to the problem of checking the consistency of a set of
constraints.

Entailment is defined as usual:

Definition 1. (Junker) A constraint φ is a (logical) consequence of a set of
constraints C with variables V (C) iff all solutions of the CSP with variables
V (C ∪ φ) and constraints C also satisfy the constraint φ. We write C |= φ in
this case.

The following standard definition of an abductive explanation is based on
entailment:

Definition 2. Let (C,V,D) be a consistent CSP, and φ a constraint.
A subset C of C is called an explanation for φ in (C,V,D) iff C |= φ. C

is a minimal explanation for φ in (C,V,D) iff no proper subset of C is an
explanation for φ in (C,V,D) .

For the computation of minimal explanations, QuickXPlain Junker (2004)
can be applied, as introduced in Chapter 4. The required reasoning services,

152 6 Explanations in recommender systems

such as checking whether a set of constraints is satisfiable, generating a solu-
tion, and proving entailment, are supported by standard constraint satisfaction
problem solvers. Given a set of constraints C, which are a minimal explanation
for φ, then usually these constraints may be translated to natural language by ex-
ploiting the natural language descriptions of constraints C and φ and the values
of their variables. This method is termed the canned text approach and was orig-
inally applied in MYCIN-like expert systems (Buchanan and Shortliffe 1984).

Assume that the recommender asks questions to deduce which packages
are appropriate for the customer because cars are manufactured according to
selected packages. After a question is posed, the customer may ask for its
reason. We consider the case in which the recommender asks whether the fea-
ture towing is required. In this example, the explanation for rec-pack = y is
{towing = y, cc,t , cr,c} |= rec-pack = y. User inputs are considered to be addi-
tional constraints. This explanation serves as a justification for why a customer
should provide information about the need to tow trailers. In particular, if tow-
ing is required, then by constraint cc,t it can be deduced that a coupling device is
needed and by cr,c it may be deduced that the car must come with the recreation
package option.

To sum up, minimal explanations can be exploited to give reasons for ques-
tions asked by the recommender. If a question is posed to deduce the prod-
uct characteristics necessary to recommend products, then we can compute
minimal explanations for these product characteristics as justifications for the
questions posed by the recommender.

Now, assume that a solution (i.e., the recommended car) is presented to the
customer and advertised to support not only towing and hands-free communica-
tion, but also easy parking (remember, the customer requirements were towing
and hands-free communication). Suppose the customer wants to know why the
car supports easy parking and which input leads to the inclusion of this function.
If we follow strictly the definition of abductive explanations (Definition 2), then
there are two minimal explanations (arguments) for easy-parking = y:

EXP1: {towing = y, cc,t , cr,c, cr,v, cv,s,e} |= easy-parking = y, which is in-
tended. If the customer wants the feature towing, then the car needs a cou-
pling device. The need for a coupling device implies that the car will be fitted
with the recreation package. The recreation package includes a video camera
at the rear, which supports easy parking. Hence requiring towing includes a
video camera, which supports easy parking as a side effect. However, there is
a second minimal explanation:

EXP2: {free-com = y, cg,f , cb,g, cb,r,s, cr,v, cv,s,e} |= easy-parking = y. This
explanation states that hands-free communication implies the inclusion of a

6.2 Explanations in constraint-based recommenders 153

GSM telephone, which in turn implies the selection of the business package.
The business package then causes either the sensor or the video camera to be
included, depending on the choice regarding the recreation package. In both
variants of such a car, easy parking is supported.

The original solution (for which we are generating explanations) includes
a video camera. Clearly, the second abductive explanation is not correct with
respect to the original solution, as easy parking is provided by a video camera
and the video camera is included in the recreation package and not in the
business package. An explanation of the consequences of user inputs must be
based on the solution implied by these user inputs. The question is how such
spurious explanations can be avoided.

6.2.3 Analysis and outline of well-founded explanations

In this section we elaborate on the reasoning of Friedrich (2004) and outline the
basic ideas for eliminating spurious explanations. More specifically, the concept
of projection as defined in database relational algebra is applied. Let constraint
c have variables xi, . . . , xj (and possibly others). The projection of constraint
c on xi, . . . , xj (written as c{xi, . . . , xj }) is a constraint with variables derived
from the variables of c by removing all variables not mentioned in xi, . . . , xj ,
and the allowed-tuples of c are defined by a relation R(c{xi, . . . , xj }) consisting
of all tuples (vxi

, . . . , vxj
) such that a tuple appears in R(c) with xi = vxi

, . . . ,
xj = vxj

. A constraint with no variables is trivially satisfied.
Subsequently, the solutions of the original problem and those of the two

minimal explanations EXP1 and EXP2 are compared. The only solution of the
original CSP based on the set of all constraints C and all user inputs towing = y

and free-com = y is:

tow fre eas rec biz vid sen gsm cou
y y y y y y n y y

For the explanation of easy-parking = y where EXP1 is used (i.e., the user
input towing = y and cc,t , cr,c, cr,v, cv,s,e), the solutions implied for the original
variables V are

solution tow fre eas rec biz vid sen gsm cou
1 y y y y y y n y y
2 y n y y n y n n y

In both solutions easy-parking is y. Solution 1 is identical to the solution
of the original CSP. However, solution 2 differs in the variables {biz-pack,

154 6 Explanations in recommender systems

GSM-radio, free-com} from the original CSP. One might argue that an ex-
planation that possibly exploits variable values that are out of the scope of
the original solution might lead to a spurious explanation. However, to de-
rive easy-parking = y, we need only the constraints cc,t , cr,c, cr,v, cv,s,e. Con-
sequently, variables {biz-pack, GSM-radio, free-com} are superfluous in the
derivation of easy-parking = y. In addition, not all variables in cr,v, cv,s,e are
necessary for the derivation. If we analyze cv,s,e then we recognize that setting
video to y implies easy-parking = y, regardless of the value of sensor. Conse-
quently, the relevant variables in our case are towing, coupling-device, rec-pack,
video, and easy-parking. The solutions of {towing = y, cc,t , cr,c, cr,v, cv,s,e}
and the solutions of the original CSP projected on these relevant variables are
identical.

For the explanation of easy-parking = y where EXP2 is used (i.e., the
user input free-com = y and the constraints cg,f , cb,g, cb,r,s, cr,v, cv,s,e), the
solutions implied for the original variables V are

solution tow fre eas rec biz vid sen gsm cou
1 y y y y y y n y y
2 n y y n y n y y n

Because only cg,f , cb,g, cb,r,s , cr,v, and cv,s,e are needed for the ex-
planation, the variables not included in these constraints are irrelevant
for this explanation. All other variables in these five constraints (i.e.,
free-com, GSM-radio, biz-pack, rec-pack, video, sensor, easy-parking) are
needed. For example, if the variable video is deleted, then {free-com =
y, cg,f , cb,g, cb,r,s , cr,v{r}, cv,s,e{s, e}}
|= easy-parking = y because there are
solutions in which easy-parking = n.

The solutions with respect to these relevant variables are

solution fre eas rec biz vid sen gsm
1 y y y y y n y
2 y y n y n y y

The explanation for easy-parking = y must show that easy-parking = y is
contained in both solutions (in both logical models). In particular, the user input
free-com = y implies biz-pack = y. The constraints cb,r,s , and biz-pack = y

imply either sensor = y or rec-pack = y. rec-pack = y implies video = y.
In both cases, easy-parking = y is implied by cv,s,e. This explanation uses
variable assignments that are not contained in the original solution, such as the
car being supplied with video and not sensor equipment. Such an explanation is
considered to be spurious because the reasoning includes a scenario (also called
a possible world) that is apparently not possible given the current settings.

6.2 Explanations in constraint-based recommenders 155

The principal idea of well-founded explanations is that an explanation C

for a constraint φ and for a specific solution ∫ must imply φ (as required for
an abductive explanation); additionally, possible solutions of the explanation
must be consistent with the specific solution ∫ (with respect to the relevant
variables).

6.2.4 Well-founded explanations

The definitions of explanation presented in this section provide more con-
cise explanations compared with previous approaches (Junker 2004). Friedrich
(2004) not only considers the relevance of constraints but also investigates
the relevance of variables. The goal is to compute a minimal explanation
consisting of the constraints and variables needed to deduce a certain prop-
erty; these variables are exploited to construct an understandable chain of
argument for the user (Ardissono et al. 2003). To introduce the following con-
cepts, the projection operation on sets of constraints needs to be specified.
C{V } is defined by applying the projection on V ⊆ V to all c ∈ C – that
is, C{V } = {c{V ∩ V (c)}|c ∈ C}. V (c) are the variables of c.

Definition 3. Let (C,V,D) be a satisfiable CSP, φ a constraint.
A-tuple (C,V) where C ⊆ C and V ⊆ V is an explanation for φ in (C,V,D)

iff C{V } |= φ.
(C,V) is a minimal explanation for φ in (C,V,D) iff for all C ′ ⊂ C and all

V ′ ⊂ V it holds that neither (C ′, V) nor (C,V ′) nor (C ′, V ′) is an explanation
for φ in (C,V,D) .

({towing = y, cc,t , cr,c, cr,v, cv,s,e}, {towing, coupling-device, rec-pack,
video, easy-parking}) is a minimal explanation for easy-parking = y.

For the computation of minimal explanations, the following monotonicity
property is employed.

Remark 1. If C{V }
|= φ then for all V ′ ⊆ V it holds that C{V ′}
|= φ. The
same applies for deleting constraints. However, it could be the case that (C′, V)
and (C,V ′) are minimal explanations for φ in (C,V,D) and C ′ ⊂ C and
V ′ ⊂ V .

A CSP solver to find a solution for the user is employed. Such a solution
is described by a set of solution-relevant variables S which consists of all
or a subset of variables of the CSP. Friedrich (2004) makes the reasonable
assumption that sufficient information has been provided by the user (or about
the user) such that the CSP unambiguously defines the values of variables S.
More formally, ∫ = {(xk = vxk

)|xk ∈ S ∧ (C |= xk = vxk
)}. For example, in the

156 6 Explanations in recommender systems

presented car configuration case, the user has to provide enough information so
a car is well defined. Information gathering is the task of an elicitation process
(Pu et al. 2003, Ardissono et al. 2003). The approach of Friedrich (2004) deals
with the generation of explanations for the properties of a (possible) solution.
Consequently, a user is free to explore various solutions and can ask for an
explanation of the relation between user decisions and properties of a specific
solution.

Subsequently, the projection ∫{V } of a solution ∫ on variables V is defined
as {(xk = vxk

)|xk ∈ V ∧ (xk = vxk
) ∈ ∫}.

The definition of well-founded explanations for a property φ with respect to
a solution ∫ is based on the following idea. First, an explanation (C,V) for φ –
that is, C{V } |= φ – must show that every solution (also known as a logical
model or sometimes as a possible world model) of the set of constraints C{V }
is a solution (a model) of φ. This follows the standard definition of abductive
explanations. Second, if the explanation C{V } permits some possible world
models (i.e., solutions of C{V }) with value assignments of solution-relevant
variables S other than those assigned in ∫ (i.e., the solution of the unreduced
set of constraints C), then it follows that the explanation of φ is based on
possible world models that are in conflict with the original solution ∫ (which
was presented to the user). Therefore it must be ensured that every possible
world (solution) of C{V } is consistent with the variable assignment of ∫ .

Definition 4. Let (C,V,D) be a satisfiable CSP, ∫ the solution of (C,V,D) for
the solution relevant variables S, (C,V) an explanation for φ.

A-tuple (C,V) is a WF (WF) explanation for φ with respect to ∫ iff every
solution s{S} of (C{V }, V ,D) is a part of ∫ (i.e., s{S} ⊆ ∫).

(C,V) is a minimal WF (MWF) explanation for φ with respect to ∫ iff for
all C′ ⊂ C and for all V ′ ⊂ V it holds that neither (C ′, V) nor (C,V ′) nor
(C ′, V ′) is a WF explanation for φ in (C,V,D) with respect to ∫ .

Remark 2. Let (C,V,D) be a satisfiable CSP, (C,V) an explanation for φ and
∫ the solution of (C,V,D) for the solution relevant variables S.

(a) An explanation (C,V) is a WF explanation for (C,V,D) with respect to ∫
iff C{V } |= ∫{V }.

(b) If (C,V,D) is satisfiable and C |= φ then there exists a WF explanation
for φ.

(c) It could be the case that, for a satisfiable (C,V,D) and a φ such that C |= φ

and ∫ the solution of (C,V,D) for S, no minimal explanation of φ exists
that is also WF.

6.3 Explanations in case-based recommenders 157

By applying Definitions 3 and 4 and Remark 2, the subsequent corollary
follows immediately, which characterizes well-founded explanations based on
logical entailment:

Corollary 1. Let (C,V,D) be a satisfiable CSP and ∫ the solution of (C,V,D)
for the solution relevant variables S.

A-tuple (C,V) where C ⊆ C and V ⊆ V is a WF explanation for φ with
respect to ∫ iff C{V } |= φ ∧ ∫{V }.

Let a car be characterized by the solution-relevant variables coupling-device,
video, sensor, and GSM-radio, which describe the configuration requested by
the customer. ({towing = y, cc,t , cr,c, cr,v, cv,s,e}, {towing, coupling-device,
rec-pack, video, easy-parking}) is a MWF explanation for easy-parking =
y with respect to the solution (car configuration) coupling-device = y,

video = y, sensor = n, GSM-radio = y. It entails easy-parking = y as well
as coupling-device = y and video = y.

({free-com = y, cg,f , cb,g, cb,r,s , cr,v, cv,s,e}, {free-com, GSM-radio, biz-
pack, rec-pack, video, sensor, easy-parking}) is a minimal explanation for
easy-parking = y, but it is not WF because it does not entail video = y,

sensor = n.
The computation of MWF explanations is described by Friedrich (2004).

The basic idea follows Corollary 1. First the variables and then the constraints
are minimized so each further deletion of a constraint or variable will result in
the loss of entailment of φ or ∫{V }.

In this section we have shown how an improved version of abductive reason-
ing can be used to compute explanations in constraint-based recommenders. In
the next section, we review state-of-the-art explanation approaches for case-
based recommenders, which are typically classified as knowledge-based rec-
ommenders. However, because this type of knowledge relies on similarity
functions instead of logical descriptions, abduction cannot be exploited for
explanation generation.

6.3 Explanations in case-based recommenders

The generation of solutions in case-based recommenders is realized by iden-
tifying the products that best fit a customer’s query. Each item of a product
database corresponds to a case. Typically a customer query puts constraints on
the attributes of products – for example, a customer is interested only in digital
cameras that cost less than a certain amount of money. In particular, given a
query Q about a subset AQ of attributes A of a case (product) description, the

158 6 Explanations in recommender systems

Table 6.1. Example product assortment: digital cameras.

id price mpix opt-zoom LCD-size movies sound waterproof

p1 148 8.0 4× 2.5 no no yes
p2 182 8.0 5× 2.7 yes yes no
p3 189 8.0 10× 2.5 yes yes no
p4 196 10.0 12× 2.7 yes no yes
p5 151 7.1 3× 3.0 yes yes no
p6 199 9.0 3× 3.0 yes yes no
p7 259 10.0 3× 3.0 yes yes no
p8 278 9.1 10× 3.0 yes yes yes

similarity of a case C to Q is typically defined (see McSherry 2005) as

sim(C,Q) =
∑
a∈AQ

wa sima(C,Q) (6.1)

The function sima(C,Q) describes the similarity of the attribute values of
the query Q and the case C for the attribute a. This similarity is weighted by
wa , expressing the importance of the attribute to the customer.

A recommendation set is composed of all cases C that have a maximal
similarity to the query Q. Usually this recommendation set is presented directly
to the customer, who may subsequently request an explanation as to why
a product is recommended or why the requirements elicitation conversation
must be continued. The typical approach used to answer a why-question in
case-based recommenders is to compare the presented case with the customer
requirements and to highlight which constraints are fulfilled and which are
not (McSherry 2003b).

For example, if a customer is interested in digital cameras with a price less
than e150, then p1 is recommended out of the products depicted in Table 6.1.
Asking why results in the explanation that the price of camera p1 satisfies
the customer constraint. The definition of similarities between attributes and
requirements depends on the utility they provide for a customer. McSherry
(2003b) distinguishes between more-is-better, less-is-better, and nominal at-
tributes. Depending on the type of attribute, the answer to a why-question
could be refined by stating how suitable the attribute value of an item is com-
pared with the required one. Furthermore, the weights of the attributes can be
incorporated into the answers – for instance, if the customer requires a price less
than e160 and LCD size of more than 2.4 inches, where LCD size is weighted
much more than price, then p5 is recommended. The answer to a why-question
can reflect this by stating, “p5 is recommended because the price ise9 less and

6.3 Explanations in case-based recommenders 159

the LCD size is 0.6 inches greater than requested. Furthermore, emphasis was
placed on LCD size.” Of course, a graphical representation of the similarity be-
tween values and weights makes such recommendations easier to comprehend.

Basically, the similarity function can be viewed as a utility function over
the set of possible cases. Consequently, more elaborated utility functions can
be applied. Carenini and Moore (2001) expressed the utility function using an
additive multiattribute value function based on the multiattribute utility theory.
This function is exploited to generate customer-tailored arguments (explana-
tions) as to why a specific product is advantageous for a customer. A statistical
evaluation showed that arguments that are tailored to the preferences of cus-
tomers are more effective than nontailored arguments or no arguments at all.
Effectiveness in this context means that the user accepts the recommended
product as a good choice.

As discussed previously, the requirements of a customer might be too specific
to be fulfilled by any product. In this circumstance, why-explanations provide
information about the violated constraints (McSherry 2003b). For example, if
the customer requires a price less than e150 and a movie function, then no
product depicted in Table 6.1 fulfills these requirements. However, p1 and p5

can be considered as most similar products for a given similarity function,
although one of the user requirements is not satisfied. A why-explanation for
p1 would be, “p1 is within your price range but does not include your movie
requirement.” The techniques presented in Chapter 4 can be used to generate
minimal sets of customer requirements that explain why no products fit and,
moreover, to propose minimal changes to the set of requirements such that
matching products exist.

Conversational recommender systems help the customer to find the right
product by supporting a communication process. Within this process various
explanations can be provided. In ExpertClerk (Shimazu 2002), three sample
products are shown to a shopper while their positive and negative characteristics
are explained. Alternatives are then compared to the best product for a customer
query – for example, “Camera p4 is more expensive than p1, but p4 has a sensor
with greater resolution (mpix).”

The concept of conversational recommenders is further elaborated on by
McSherry (2005), while discussing the Top Case recommender, where a cus-
tomer is queried about his or her requirements until a single best-matching
product is identified, regardless of any additional requirements that may be
posed by the customer. For example, if a customer requires a camera to be wa-
terproof and to support movies and sound, but price and sensor resolution are
of little importance, then p8 is recommended regardless of any additional re-
quirements about other attributes such as LCD-size, opt-zoom, mpix, and price.
The systems described by McSherry (2005) take this into account by providing

160 6 Explanations in recommender systems

explanations of the form, “Case X differs from your query only in attribute-set-1
and is the best case no matter what attribute-set-2 you prefer.” In this template,
Case X is the recommended case, attribute-set-1 contains the attributes that
differ from the user’s query, and attribute-set-2 is the set of attributes for which
preferred values have not been elicited because they are of no consequence to
the recommendation.

Furthermore, Top Case can explain why a customer should answer a ques-
tion by considering two situations. First, questions are asked to eliminate in-
appropriate products. Second, a question is asked such that a single product is
confirmed as the final recommendation. A target case is always shown to the
customer along with a number of competing (but similar) cases during require-
ment elicitation. The target case is selected randomly from the cases that are
maximally similar to the customer requirements.

The explanation template used in the first situation (McSherry 2005) is:

If a = v this will increase the similarity of Case X from S1 to S2 {and eliminate N

cases [including Cases X1, X2, . . . Xr]}

where:

� a is the attribute whose preferred value the user is asked to specify,
� v is the value of a in the target case,
� Case X is the target case,
� S1 is the similarity of the target case to the current query,
� S2 is the similarity of the target case that will result if the preferred value of

a is v,
� N is the number of cases that will be eliminated if the preferred value of a is

v, and
� Cases X1, X2, . . . , Xr are the cases that the user was shown in the previous

recommendation cycle that will be eliminated if the preferred value of a

is v.

The part of the template enclosed in curly brackets is shown only if cases
are eliminated. The part enclosed in square brackets is used only if shown cases
of the previous recommendations are eliminated.

If a question can confirm the target case then following template is used:

If a = v this will confirm Case X as the recommended case.

where a, v, and Case X are defined as previously.
These approaches assume that a customer can formulate requirements about

the attributes of products. However, customers may have only a very rough idea
about the product they want to purchase. In particular, they may not have fixed
preferences if compromises must be made. For example, if the preferred product

6.4 Explanations in collaborative filtering recommenders 161

is too expensive, then it is not clear which features should be removed. Conse-
quently, help is required while exploring the product space. More generally, the
transparency goal applies not only to the reasoning process but also to the case
space itself (Sørmo et al. 2005). Transparency of suitable cases and the associ-
ated tradeoffs help the customer understand the options available and to reduce
uncertainty about the quality of the decision. Tweaking critiquing, as presented
in Chapter 4, provides a means exploring the case space effectively (Reilly
et al. 2005b). This work was further improved by Pu and Chen (2007), who
suggest a new method for ranking alternative products. The idea is to compare
potential gains and losses (the “exchange rate”) to the target candidate in order
to rank alternatives. Moreover, Pu and Chen (2007) show that interfaces based
on compound critiques help improve trust in recommender systems. Compared
with explanations that merely explain the differences between alternatives and
the target case, compound critiques improve the perceived competence and
cognitive effort, as well as the intention to return to the interface.

The generation of explanations for case-based recommenders assumes that
knowledge about products can be related to customer requirements. However,
collaborative filtering recommenders must follow different principles because
they generate suggestions by exploiting the product ratings of other customers.

6.4 Explanations in collaborative filtering recommenders

In contrast to the case with knowledge-based recommenders, explicit recom-
mendation knowledge is not available if the collaborative filtering (CF) ap-
proach is applied. Consequently, recommendations based on CF cannot provide
arguments as to why a product is appropriate for a customer or why a product
does not meet a customer’s requirements. The basic idea of CF is to mimic the
human word-of-mouth recommendation process. Therefore, one approach for
implementing explanations in CF recommenders is to give a comprehensible
account of how this word-of-mouth approach works. Clearly, this approach
aims to increase the transparency of recommendations but also has side effects
regarding persuasion, which we subsequently discuss.

In the following we highlight key data and steps in the generation of CF
outcomes and discuss their relevance to the construction of explanations. On a
highly abstract level there are three basic steps that characterize the operation
of CF, as presented in Chapter 2:

� Customers rate products.
� The CF locates customers with similar ratings (i.e., tastes), called neighbors.
� Products that are not rated by a customer are rated by combining the ratings

of the customer’s neighbors.

162 6 Explanations in recommender systems

In concrete CF systems, these steps are usually implemented by sophisticated
algorithms. In theory, the execution of these algorithms can serve as a profound
explanation of the outcome. However, such an explanation tends to contribute
to the confusion of customers and has negative impact on accepting the results
of a recommender, as we will report later on. The art of designing effective
explanation methods for CF is to provide the right abstraction level to customers.

Customers rate products. Transparency for this step of the collaborating
filtering process is supported by presenting the customer information about the
source of the ratings. Some recommenders are clear about the exploited ratings;
for example, in the film domain, a system could consider ratings only when the
customer explicitly rated a film, neglecting ratings based on other observations.
However, some recommenders explore additional information by observing the
customer and drawing conclusions based on these observations. For example,
if a customer is observed to order mostly science fiction literature, then a movie
recommender can exploit this information to hypothesize that the user would
rate science fiction films highly. Although explaining this functionality might
be an asset, in most cases this could lead to a severe drawback. For example,
someone who is not interested in science fiction buys some science fiction
books as presents. CF might conclude that the buyer likes this type of literature
and starts recommending it. To change this behavior, it is important for the
customer to understand the basis of recommendations.

Furthermore, as customers we may be interested in knowing how influential
some of our ratings are. For example, if we were to wonder about the frequency
of recommendations about science fiction films, we might discover that we had
unjustifiably good ratings for some of these films. In addition, the diversity of
rated products is essential. For example, if the majority of films rated positively
by a customer are science fiction movies, then CF could be misled because the
nearest neighbors would tend to be science fiction fans. Informing the customer
about the diversity of the rated products gives important feedback about the
quality of the customer’s ratings.

Locate customers (neighbors) with similar tastes. In the second step, CF
exploits the most similar customers to predict customer ratings. Clearly, the
quality of this step is tightly linked to the similarity function used to locate cus-
tomer ratings. From the customer’s point of view, the question is whether this
similarity function is acceptable – that is whether the selected neighbors have
similar tastes. For example, a Beatles fan might not accept pop music ratings
derived from other customers who do not like the Beatles themselves, al-
though their ratings on other types of music are almost identical. Consequently,

6.4 Explanations in collaborative filtering recommenders 163

providing information about potential neighbors helps the customer to assess
the quality of a prediction and to specify which neighbors are acceptable for
predicting ratings.

Compute ratings by combining ratings of neighbors. In the third step, CF
combines the ratings of a customer’s neighbors. This is usually implemented by
a weighted average. The reliability of this calculation is usually ascertained by
considering the number and the variance of individual ratings. A large number
of ratings of neighbors with a low variance can be regarded as more reliable than
a few ratings that strongly disagree. Consequently, providing this information to
customers may help them assess the quality of the recommendation, improving
their confidence in the system.

In line with these considerations, Herlocker et al. (2000) examined various
implementations of explanation interfaces in the domain of the “MovieLens”
system. Twenty-one variants were evaluated. In particular, potential customers
were asked, on a scale of 1 to 7, how likely they would be to go to see a
recommended movie after a recommendation for this movie was presented and
explained by one of the twenty-one different explanation approaches. In this
comparison, Herlocker et al. (2000) also included the base case in which no
additional explanation data were presented. In addition to the base case, an
explanation interface was designed that just output the past performance of
the recommendation system – for instance, “MovieLens has provided accurate
preductions for you 80% of the time in the past”.

The results of the study by Herlocker et al. (2000) were

� The best-performing explanation interfaces are based on the ratings of neigh-
bors, as shown in Figures 6.2 and 6.3. In these cases similar neighbors liked
the recommended film, and this was comprehensibly presented. The his-
togram performed better than the table.

� Recommenders using the simple statement about the past performance of
MovieLens were the second best performer.

� Content-related arguments mentioning the similarity to other highly rated
films or a favorite actor or actress were among the best performers.

� Poorly designed explanation interfaces decreased the willingness of cus-
tomers to follow the recommendation, even compared with the base case.

� Too much information has negative effects; poor performance was achieved
by enriching the data presented in histograms (Figure 6.2) with information
about the proximity of neighbors.

� Interestingly, supporting recommendations with ratings from domain author-
ities, such as movie critics, did not increase acceptance.

164 6 Explanations in recommender systems

Your Neighbors’ Ratings for this Movie

Movie: XYZ

Low Average High

Rating

6
8

29

N
um

be
r

of
 N

ei
gh

bo
rs

Figure 6.2. Histogram of neighbors’ ratings.

The study by Herlocker et al. (2000) showed that customers appreciate
explanations. In addition, the study analyzed the correctness of decisions by
asking the participants if the movie was worth seeing and how they would rate
it after seeing the recommended movie. Interestingly, there was no observable
difference between the base case (no explanation given) and the cases of the
customers who received explanations. Summing up, explanations in the de-
scribed setting helped persuade customers to watch certain movies but they did
not improve the effectiveness of decisions.

A further line of research (O’Donovan and Smyth 2005) deals with trust
and competence in the area of CF recommenders. The basic idea is to dis-
tinguish between producers and consumers of recommendations and to assess
the quality of the information provided by producers. In such scenarios, the
consumer of a recommendation is the customer; conversely, the neighbors of a
customer are the producers. The quality of a producer’s ratings is measured by

Rating Number of
Neighbors

2

4

8

9

20

Personalized Prediction: ****

Your Neighbors’ Ratings for This Movie

Movie: XYZ

Figure 6.3. Table of neighbors’ ratings (Herlocker et al. 2000).

6.5 Summary 165

the difference between the producer’s ratings and those of consumers. These
quality ratings offer additional explanation capabilities that help the customer
assess recommendations. Possible explanation forms include “Product Jumbo-
Family-Van was recommended by 20 users with a success rate of over 90% in
more than 100 cases”.

6.5 Summary

As outlined at the beginning of this chapter, there are many types of explanations
and various goals that an explanation can achieve. Which type of explanation
can be generated depends greatly on the recommender approach applied. A
single implementation may, however, contribute to different explanation goals.
For example, providing explanations could aim to improve both transparency
and persuasiveness of the recommendation process. Great care must be taken
to design explanation interfaces to achieve the planned effects.

Various forms of explanations for different approaches were described in this
chapter. Because the development of recommender techniques is a highly active
research area, many new proposals for supplementary explanation methods can
be expected. However, explanations and their effects are an important field in
their own right. From psychology it is known that customers do not have a stable
utility function. Explanations may be used to shape the wishes and desires of
customers but are a double-edged sword. On one hand, explanations can help
the customer to make wise buying decisions; on the other hand, explanations
can be abused to push a customer in a direction that is advantageous solely for
the seller. As a result, a deep understanding of explanations and their effects on
customers is of great interest.

7

Evaluating recommender systems

In previous chapters we introduced a variety of different recommendation tech-
niques and systems developed by researchers or already in use on commercial
platforms. In the future, many new techniques will claim to improve prediction
accuracy in specific settings or offer new ways for users to interact with each
other, as in social networks and Web 2.0 platforms.

Therefore, methods for choosing the best technique based on the specifics of
the application domain, identifying influential success factors behind different
techniques, or comparing several techniques based on an optimality criterion
are all required for effective evaluation research. Recommender systems have
traditionally been evaluated using offline experiments that try to estimate the
prediction error of recommendations using an existing dataset of transactions.
Some point out the limitations of such methods, whereas others argue that the
quality of a recommender system can never be directly measured because there
are too many different objective functions. Nevertheless, the widespread use of
recommender systems makes it crucial to develop methods to realistically and
accurately assess their true performance and effect on the users. This chapter
is therefore devoted to discussing existing evaluation approaches in the light of
empirical research methods from both the natural and social sciences, as well
as presenting different evaluation designs and measures that are well accepted
in the research community.

7.1 Introduction

Recommender systems require that users interact with computer systems as
well as with other users. Therefore, many methods used in social behavioral
research are applicable when answering research questions such as Do users
find interactions with a recommender system useful?, Are they satisfied with the

166

7.2 General properties of evaluation research 167

Table 7.1. Basic characteristics of evaluation designs.

Subject Online customers, students, historical user sessions,
simulated users, computers

Research method Experimental, quasi-experimental, or nonexperimental
Setting Real-world scenarios, lab

quality of the recommendations they receive?, What drives people to contribute
knowledge such as ratings and comments that boost the quality of a system’s
predictions? or What is it exactly that users like about receiving recommenda-
tions? Is it the degree of serendipity and novelty, or is it just the fact that they
are spared from having to search for them? Many more questions like these
could be formulated and researched to evaluate whether a technical system is
efficient with respect to a specified goal, such as increasing customer satisfac-
tion or ensuring the economic success of an e-commerce platform. In addition,
more technical aspects are relevant when evaluating recommendation systems,
related, for instance, to a system’s technical performance such as responsive-
ness to user requests, scalability, and peak load or reliability. Furthermore, goals
related to the system’s life cycle, such as ramp-up efforts, maintainability, and
extensibility, as well as lowering the cost of ownership, can be thought of and
are of interest for evaluation research.

Because of the diverse nature of possible evaluation exercises in the domain
of recommendation systems, we start with very basic properties of research
methodologies, as depicted in Table 7.1. The table differentiates empirical re-
search based on the units that are subjected to research methods, such as people
or computer hardware. Furthermore, it denotes the top-level taxonomy of em-
pirical research methods, namely experimental and nonexperimental research,
as well as the distinction between real-world and lab scenarios where evalua-
tions can be conducted. Each of these meta-level concepts will be explained in
more detail in the remainder of this chapter.

7.2 General properties of evaluation research

Empirical research itself has been subject to intense scrutiny from areas as
diverse as philosophy and statistics (Pedhazur and Schmelkin 1991). Rather
than repeating these principles, guidelines, and procedures here, we focus on
some particular aspects and discuss them in the context of evaluating recom-
mender systems. We begin with some general thoughts on rigor and validity of
empirical evaluations. Finally, we briefly discuss some selected general criteria

168 7 Evaluating recommender systems

that must be kept in mind when evaluating recommendation applications with
scientific rigor.

7.2.1 General remarks

Thoroughly describing the methodology, following a systematic procedure, and
documenting the decisions made during the course of the evaluation exercise
ensure that the research can be repeated and results verified. This answers
the question of how research has been done. Furthermore, criteria such as the
validity, reliability, and sensibility of the constructs used and measured relate
to the subject matter of the research itself, questioning what is done. Notably,
asking whether the right concepts are measured or whether the applied research
design is valid is necessary.

Internal validity refers to the extent to which the effects observed are due to
the controlled test conditions (e.g., the varying of a recommendation algorithm’s
parameters) instead of differences in the set of participants (predispositions) or
uncontrolled/unknown external effects. In contrast, External validity refers to
the extent to which results are generalizable to other user groups or situations
(Pedhazur and Schmelkin 1991). When using these criteria to evaluate recom-
mender systems, questions arise such as Is it valid to exploit users’ clicks on
pages displaying details of an item as an indicator of their opinion about an
item? External validity examines, for instance, whether the evaluated recom-
mendation scenario is representative of real-world situations in which the same
mechanism and user interface of the technique would be used, and whether the
findings of the evaluation exercise are transferrable to them. For example, will
an increase in users’ purchase rate of recommended items because of a new
hybrid computation mechanism also be observable when the system is put to
the field? Reliability is another postulate of rigorous empirical work, requiring
the absence of inconsistencies and errors in the data and measurements. Finally,
sensibility necessitates that different evaluations of observed aspects are also
reflected in a difference in measured numbers.

Furthermore, issues surrounding research findings include not only their
statistical significance but also information about the size of their effect and thus
their significance with respect to the potential impact on real-world scenarios.
For instance, what is the impact of a 10 percent increase in the accuracy of
predicted ratings? Will this lead to a measurable increase in customer loyalty
and lower churn rates of an e-commerce platform? Unfortunately, based on the
current state of practice, not all these fundamental questions can be answered,
but some guidance for designing evaluations is available, and researchers are
urged to critically reflect on their own work and on the work of others.

7.2 General properties of evaluation research 169

7.2.2 Subjects of evaluation design

People are typically the subjects of sociobehavioral research studies – that is,
the focus of observers. Obviously, in recommender systems research, the pop-
ulations of interest are primarily specific subgroups such as online customers,
web users, or students who receive adaptive and personalized item suggestions.

An experimental setup that is widespread in computer science and particu-
larly, for instance, in subfields such as machine learning (ML) or information
retrieval (IR) is datasets with synthetic or historical user interaction data. The
basic idea is to have a collection of user profiles containing preference infor-
mation such as ratings, purchase transactions, or click-through data that can be
split into training and testing partitions. Algorithms then exploit the training
data to make predictions with the hidden testing partition. The obvious advan-
tage of this approach is that it allows the performance of different algorithms to
be compared against each other. Simulating a dataset comes with the advantage
that parameters such as distribution of user properties, overall size, or rating
sparsity can be defined in advance and the test bed perfectly matches these
initial requirements. However, there is significant risk that synthetic datasets
are biased toward the design of a specific algorithm and that they therefore
treat other algorithms unfairly. For this reason synthetic datasets are advisable
only to test recommendation methods for obvious flaws or to measure technical
performance criteria such as average computation times – that is, the computer
itself becomes subject of the evaluation rather than users.

Natural datasets include historical interaction records of real users. They
can be categorized based on the type of user actions recorded. For example, the
most prominent datasets from the movie domain contain explicit user ratings
on a multipoint Likert scale. On the other hand, datasets that are extracted from
web server logs consist of implicit user feedback, such as purchases or add-to-
basket actions. The sparsity of a dataset is derived from the ratio of empty and
total entries in the user–item matrix and is computed as follows:

sparsity = 1 − |R|
|I | · |U | (7.1)

where

R = ratings

I = items

U = users

In Table 7.2 an incomplete list of popular datasets, along with their size
characteristics, is given. The well-known MovieLens dataset was derived from

170 7 Evaluating recommender systems

Table 7.2. Popular data sets.

Name Domain Users Items Ratings Sparsity

BX Books 278,858 271,379 1,149,780 0.9999
EachMovie Movies 72,916 1,628 2,811,983 0.9763
Entree Restaurants 50,672 4,160 N/A N/A
Jester Jokes 73,421 101 4.1M 0.4471
MovieLens 100K Movies 967 4,700 100K 0.978
MovieLens 1M Movies 6,040 3,900 1M 0.9575
MovieLens 10M Movies 71,567 10,681 10M 0.9869
Netflix Movies 480K 18K 100M 0.9999
Ta-Feng Retail 32,266 N/A 800K N/A

a movie recommendation platform developed and maintained by one of the
pioneers in the field, the GroupLens research group1 at the University of
Minnesota. The EachMovie dataset was published by HP/Compaq and, de-
spite not being publicly available for download since 2004, has still been used
by researchers since. One additional movie dataset that has recently been made
public is Netflix.2 Published in conjunction with the Netflix Prize,3 the com-
pany promised $1 million for the first team to provide a 10 percent improvement
in prediction accuracy compared with its in-house recommender system. This
competition stimulated much research in this direction. Finally, this threshold
was reached by the team BellKor’s Pragmatic Chaos in 2009. None of the
aforementioned movie datasets contain item descriptions such as the movies’
plots, actors, or directors. Instead, if algorithms require this additional content
information, it is usually extracted from online databases such as the Internet
Movie Database – IMDB.4

The BX dataset was gathered from a community platform for book lovers and
contains explicit and implicit ratings for a large number of books (Ziegler et al.
2005). In contrast, the rating data from the joke recommender Jester represents
a very dense dataset with only a few different items (Goldberg et al. 2001).
The Entree data collection contains historical sessions from a critique-based
recommender, as discussed in Chapter 4. Finally, the Ta-Feng dataset provides
a representative set of purchase transactions from the retail domain with a very

1 See http://www.grouplens.org/.
2 See http://archive.ics.uci.edu/ml/datasets/Netflix+Prize.
3 See http://www.netflixprize.com/.
4 See http://www.imdb.com/.

7.2 General properties of evaluation research 171

Correct
predictions

False
positives

Correct
omissions

False
negatives

NoYes

Proposed by recommender:

N
o

Ye
s

Li
ke

d
by

 u
se

r:

Figure 7.1. Types of errors.

low number of ratings per user. The dataset was exploited to evaluate the hybrid
Poisson aspect modeling technique presented by Hsu et al. (2004).

Additional stimuli in the field come from social web platforms that either
make their interaction data available to the public or allow researchers to extract
this information. From CiteULike5 and Bibsonomy,6 tagging annotations on
research papers are collected and public datasets can be downloaded from there.
The social bookmarking platform del.icio.us7 is another example for data from
the social web that is used for evaluation research.

Nevertheless, the results of evaluating recommender systems using historical
datasets cannot be compared directly to studies with real users and vice versa.
Consider the classification scheme depicted in Figure 7.1. If an item that was
proposed by the recommender is actually liked by a user, it is classified as a
correct prediction. If a recommender is evaluated using historical user data,
preference information is only known for those items that have been actually
rated by the users. No assumptions can be made for all unrated items because
users might not have been aware of the existence of these items. By default, these
unknown item preferences are interpreted as disliked items and can therefore
lead to false positives in evaluations – that is, the recommender is punished
for recommending items that are not in the list of positively rated items of the
historical user session, but that might have been welcomed by the actual user
if they were recommended in a live interaction.

In contrast, when recommending items to real users, they can be asked to
decide instantly if they like a proposed item. Therefore, both correct predictions
and false positives can be determined in this setting. However, one cannot assess
whether users would have liked items that were not proposed to them – that is,

5 See http://www.citeulike.org/.
6 See http://www.bibsonomy.org/.
7 See http://www.delicious.com/.

172 7 Evaluating recommender systems

the false negatives. Thus, one needs to be aware that evaluating recommender
systems using either online users or historical data has some shortcomings.
These shortcomings can be overcome only by providing a marketplace (i.e.,
the set of all recommendable items) that is completely transparent to users
who, therefore, rate all items. However, in markets with several hundreds or
even thousands of items, dense rating sets are both impossible and of ques-
tionable value, as no one would need recommendations if all items are already
known by users beforehand.

7.2.3 Research methods

Defining the goals of research and identifying which aspects of the users or
subjects of the scientific inquiry are relevant in the context of recommendation
systems lie at the starting point of any evaluation. These observed or measured
aspects are termed variables in empirical research; they can be assumed to be
either independent or dependent. A few variables are always independent be-
cause of their nature – for example, gender, income, education, or personality
traits – as they are, in principle, static throughout the course of the scientific in-
quiry. Further variables are independent if they are controlled by the evaluation
design, such as the type of recommendation algorithm that is applied to users
or the items that are recommended to them. Dependent variables are those that
are assumed to be influenced by the independent variables – for instance, user
satisfaction, perceived utility, or click-through rate can be measured.

In an experimental research design, one or more of the independent variables
are manipulated to ascertain their impact on the dependent variables:

An experiment is a study in which at least one variable is manip-
ulated and units are randomly assigned to the different levels or
categories of the manipulated variables (Pedhazur and Schmelkin
1991, page 251).

Figure 7.2 illustrates such an experiment design, in which subjects (i.e., units)
are randomly assigned to different treatments – for instance, different rec-
ommendation algorithms. Thus, the type of algorithm would constitute the
manipulated variable. The dependent variables (e.g., v1 and v2 in Figure 7.2)
are measured before and after the treatment – for instance, with the help of a
questionnaire or by implicitly observing user behavior. Environmental effects
from outside the experiment design, such as a user’s previous experience with
recommendation systems or the product domain, also need to be controlled –
for instance, by ensuring that only users that are sophisticated or novices in the

7.2 General properties of evaluation research 173

Random
assignment

Treatment 1

... Analysis

Post-
trial

Treatment n

Observations

Pre-
trial

Subjects

Control of
environmental

effects!?

Environment

Variables pre post
0.80.6
yesnov2

v1

.........

Variables pre post
0.90.7
nonov2

v1

.........

Figure 7.2. Example of experiment design.

product domain participate in the experiment (i.e., by elimination or inclusion)
or by factorization (i.e., ensuring that sophisticated and novice users have an
equal chance of being assigned to a treatment 1 ≤ i ≤ n). For a deeper dis-
cussion on conducting live-user experiments and alternate experiment designs,
the reader is referred to a textbook specifically focusing on empirical research
(Pedhazur and Schmelkin 1991).

When experimenting offline with datasets, units (i.e., historical user ses-
sions) do not need to be randomly assigned to different treatments. Instead, all
algorithms can be evaluated on all users in the dataset. Although sequentially
assigning real users to several treatments would lead to strongly biased results
from repeated measurements (e.g., users might remember their initial answers),
in offline experiments the historical user behavior will obviously remain static.

A quasi-experimental design distinguishes itself from a real experiment by
its lacking random assignments of subjects to different treatments – in other
words, subjects decide on their own about their treatment. This might introduce
uncontrollable bias because subjects may make the decision based on unknown
reasons. For instance, when comparing mortality rates between populations
being treated in hospitals and those staying at home, it is obvious that higher
mortality rates in hospitals do not allow us to conclude that these medical
treatments are a threat to people’s lives. However, when comparing purchase
rates of e-commerce users who used a recommender system with the purchase
rates of those who did not, a methodological flaw is less obvious. On one hand,
there could be unknown reasons (i.e., uncontrolled variables) that let users
who have a strong tendency to buy also use the recommender system, whereas

174 7 Evaluating recommender systems

on the other hand, a higher purchase rate of recommender users could really
be an indicator of the system’s effectiveness. Therefore, the effectiveness of
quasiexperimental designs is not undisputed and, as a consequence, their results
must be interpreted with utmost circumspection, and conclusions need to be
drawn very carefully (Pedhazur and Schmelkin 1991).

Nonexperimental designs include all other forms of quantitative research, as
well as qualitative research. Quantitative research relies on numerical measure-
ments of different aspects of objects, such as asking users different questions
about the perceived utility of a recommendation application with answers on a
seven-point Likert scale, requiring them to rate a recommended item or mea-
suring the viewing time of different web pages. In contrast, qualitative research
approaches would conduct interviews with open-ended questions, record think-
aloud protocols when users interact with a web site, or employ focus group
discussions to find out about users’ motives for using a recommender system.
For a more elaborate discussion of qualitative research designs, the reader is
referred to Miles and Huberman (1994) and Creswell (2009).

One nonexperimental research design that is quite interesting in the context
of evaluating recommender systems is longitudinal research, in which the
entity under investigation is observed repeatedly as it evolves over time. Such a
design allows criteria such as the impact of recommendations on the customer’s
lifetime value to be measured. Such research endeavors are very complex and
costly to carry out, however, as they involve observing subjects over a long
period of time. Zanker et al. (2006) conducted longitudinal research in which
the sales records of an online store for the periods before and after introducing
a recommendation system were analyzed and compared with each other. One
of the most interesting results was that the top-seller list (i.e., the items that
were most frequently sold) changed considerably and some items that were
rarely purchased in the period before the introduction of the recommendation
system became top-selling items afterward. Further analysis indicated that the
increase in the number of pieces sold for these items correlated positively with
the occurrence of these items in actual recommendations.

Cross-sectional research designs can also be very promising in the recom-
mender systems domain, analyzing relations among variables that are simul-
taneously measured in different groups, allowing generalizable findings from
different application domains to be identified.

Case studies (Stake 1995, Yin 2002) represent an additional way of collect-
ing and analyzing empirical evidence that can be applied to recommendation
systems research when researchers are interested in more principled questions.
They focus on answering research questions about how and why and combine
whichever types of quantitative and qualitative methods necessary to investigate

7.3 Popular evaluation designs 175

contemporary phenomena in their real-life contexts. Therefore, to answer the
question of how recommendation technology contributed to Amazon.com’s
becoming the world’s largest book retailer would require a case study research
design.

7.2.4 Evaluation settings

The evaluation setting is another basic characteristic of evaluation research.
In principle, we can differentiate between lab studies and field studies. A lab
situation is created expressly for the purpose of the study, whereas a field study
is conducted in an preexisting real-world environment.

Lab situations come with the major advantage that extraneous variables can
be controlled more easy by selecting study participants. However, doubts may
exist about study participants who are motivated to participate primarily by
money or prizes. Therefore, a study needs to be carefully designed to ensure
that participants behave as they would in a real-world environment. In contrast,
research that is conducted in the field comes with the advantage that users are
intrinsically motivated to use a system or even spend their own money when
trusting a recommendation system and purchasing the item that was proposed
to them. Nevertheless, researchers tend to have little control over the system,
as the commercial interests of the platform operator usually prevail. Typically,
one has little choice over the different settings, as other factors, such as the
availability of data or real-world platforms, will influence the decision.

7.3 Popular evaluation designs

Up to now, experiment designs that evaluate different algorithm variants on
historical user ratings derived from the movie domain form by far the most
popular evaluation design and state of practice. To substantiate this claim, we
conducted a survey of all research articles that appeared on the topic of recom-
mender systems in the reputed publication ACM Transactions on Information
Systems (ACM TOIS) over a period of five years (2004–2008). Twelve articles
appeared, as listed in Table 7.3 in chronological order. The first of them has
been the most influential with respect to evaluating recommender systems and,
in particular, collaborative filtering systems, as it focuses on comparing differ-
ent accuracy measures for collaborative filtering algorithm variants. As can be
seen from Table 7.3, in three-quarters of these articles, offline experiments on
historical user sessions were conducted, and more than half of authors chose
movie recommendations as their application domain. Adomavicius et al. (2005)

176 7 Evaluating recommender systems

Table 7.3. Evaluation designs in ACM TOIS 2004–2008.

Reference Approach Goal (Measures) Domain

Herlocker et al.
(2004)

Offline
experiments

Accuracy (MAE,a

ROCb curve)
MLc

Middleton et al.
(2004)

Experimental user
study

Accuracy (hit
rate)

Web pages, e-mails

Hofmann (2004) Offline
experiments

Accuracy (MAE,
RMSEd)

EMe

Huang et al. (2004) Offline
experiments

Accuracy
(Precision,
Recall, F1)

Bookstore

Deshpande and
Karypis (2004)

Offline
experiments

Accuracy (hit rate,
rank metric)

EM, ML, mail
order purchases

Miller et al. (2004) Offline
experiments

Accuracy (MAE,
Recall), catalog
coverage

ML

Adomavicius et al.
(2005)

Offline
experiments

Accuracy
(Precision,
Recall, F1)

Movie ratings

Wei et al. (2005) Offline
experiments
with simulated
users

Marketplace
efficiency

Synthetic datasets

Lee et al. (2006) Qualitative user
study

Usage analysis
and wish list for
improved
features

Broadcast news

Ma et al. (2007) Experimental user
study

Search efficiency
(mean log
search time,
questionnaire)

Web pages

Im and Hars (2007) Offline
experiments

Accuracy (MAE–
NMAEf)

Movie ratings,
research papers,
BX-Books, EM

Wang et al. (2008) Offline
experiments

Accuracy (MAE) EM, ML

a MAE: mean absolute error.
b ROC: receiver operating characteristic.
c ML: MovieLens dataset.
d RMSE: root mean square error.
e EM: EachMovie dataset.
f NMAE: normalized mean absolute error.

7.4 Evaluation on historical datasets 177

and Im and Hars (2007), collected these ratings from specifically designed plat-
forms that also collected situational parameters such as the occasion in which
the movie was consumed. The others worked on the then publicly available
datasets MovieLens and EachMovie (see Subsection 7.2.2). Experimental stud-
ies involving live users (under lab conditions) were done by Middleton et al.
(2004) and Ma et al. (2007), who measured the share of clickthroughs from
overall recommended items and search efficiency with respect to search time.
A qualitative research design was employed only by Lee et al. (2006), who
evaluated an automated content-based TV news delivery service and explored
the usage habits of a group of sixteen users. The study consisted of pre- and
post-trial questionnaires, diaries from each user during the one-month trial, and
interaction data. The outcome of the study was a wish list for feature improve-
ments and more insights into the usage patterns of the tool – for example, that
users mainly accessed the section on latest news and used the system’s search
functionality only very rarely.

7.4 Evaluation on historical datasets

Because of the paramount importance of experimental evaluations on historical
datasets for recommender systems research, we focus in this section on how they
are carried out. Based on a small example, we discuss popular methodologies
and metrics, as well as the interpretation of results.

7.4.1 Methodology

For illustrative purposes, we assume that an arbitrary historical user profile
contains ten fictitious movie ratings, as depicted in Table 7.4. When evaluating
a recommendation method, a group of user profiles is normally used as input
to train the algorithm and build a model that allows the system to compute
recommendations efficiently at run time. A second group of user profiles,
different from the first, is required for measuring or testing the algorithm’s
performance. To ensure that the measurements are reliable and not biased by
some user profiles, the random split, model building, and evaluation steps are
repeated several times to determine average results. N-fold cross-validation is a
stratified random selection technique in which one of N disjunct fractions of the
user profiles of size 1

N
is repeatedly selected and used for evaluation, leaving the

remaining N−1
N

user profiles to be exploited for building the algorithm’s model.
Consequently, each user profile is used exactly once to evaluate the algorithm
and N − 1 times to contribute to the algorithm’s model building step. In the

178 7 Evaluating recommender systems

Table 7.4. Example user ratings.

Row UserID MovieID Rating

1 234 110 5
2 234 151 5
3 234 260 3
4 234 376 5
5 234 539 4a

6 234 590 5
7 234 649 1
8 234 719 5a

9 234 734 3
10 234 736 2

a Randomly selected ratings for testing.

extreme case, in which N is equal to the total number of user profiles, the
splitting method is termed leave one out. From the computational point of view
this method is the most costly, as the model has to be rebuilt for each user.
At the same time, however, it allows the algorithm to exploit the maximum
amount of community data for learning. Therefore, in situations in which the
user base is only very small – a few hundred different profiles – a leave-one-out
strategy can make sense to use as much data as possible for learning a model.

In addition, during the testing step, the user profile must be split into two
groups, namely, user ratings to train and/or input the algorithm (i.e., determining
similar peers in case of collaborative filtering) and to evaluate the predictions.
In our example, we assume that the fifth and the eighth rows (see footnote in
Table 7.4) of user number 234 have been randomly selected for testing – that is,
they constitute the testing set and the other eight rows are part of the training
or learning set.

One of two popular variants may be applied to split the rating base of
the currently evaluated user into training and testing partitions. The all but
N method assigns a fixed number N to the testing set of each evaluated user,
whereas the given N method sets the size of the training partition to N elements.
Both methods have their strengths, especially when one varies N to evaluate the
sensitivity of an algorithm with respect to different testing or training set sizes.
A fixed training set size has the advantage that the algorithm has the same
amount of information from each tested user, which is advantageous when
measuring the predictive accuracy. In contrast, fixed testing set sizes establish
equal conditions for each user when applying classification metrics.

When evaluating algorithms, such as a simple nonpersonalized recommen-
dation mechanism, that suggest the same set of popular items to every user and

7.4 Evaluation on historical datasets 179

therefore do not need to identify similar peers or do not require a set of liked
items to query the product catalog for similar instances, the evaluation method
is effectively Given 0 – that is, the training set of past ratings of evaluated users
is empty and all ratings can be used for testing the algorithm’s predictions. Such
an evaluation approach also applies to the constraint-based recommendation
paradigm (see Chapter 4).

Based on the scale of historical ratings available – that is, unary (purchase)
transactions or ratings on Likert scales – an evaluation can examine the pre-
diction or the classification capability of a recommender system. A prediction
task is to compute a missing rating in the user/item matrix. The prediction task
requires Likert scale ratings that have been explicitly acquired from users, such
as the ones specified in Table 7.4. The classification task selects a ranked list
of n items (i.e., the recommendation set) that are deemed to be relevant for the
user. The recommendation set typically contains between three and ten items,
as users typically tend not to want to scroll through longer lists. To evaluate
the accuracy of an algorithm’s classifications, Likert scale ratings need to be
transformed into relevant and not-relevant items – for instance, classifying only
items rated 4 and above as relevant. This leads us back to the discussion in Sec-
tion 7.2.2 on how to treat items with unknown rating values. The current state
of practice assumes that these items are nonrelevant, and therefore evaluation
measures reward algorithms only for recommending relevant items from the
testing set, as is explained in the next subsection.

7.4.2 Metrics

Herlocker et al. (2004) provide a comprehensive discussion of accuracy metrics
together with alternate evaluation criteria, which is highly recommended for
reading. We therefore focus only on the most common measures for evaluations
based on historical datasets.

Accuracy of predictions. When evaluating the ability of a system to correctly
predict a user’s preference for a specific item, mean absolute error (MAE)
is undisputedly the most popular measure, as confirmed by the outcome of
the small survey in Section 7.3. The MAE metric was already discussed in
the context of collaborative filtering (see Chapter 2) and when dynamizing
a weighted hybridization strategy (Chapter 5). Nevertheless, we restate its
computation scheme for reasons of completeness.

MAE =
∑

u∈U

∑
i∈testsetu

|rec(u, i) − ru,i |∑
u∈U |testsetu| (7.2)

180 7 Evaluating recommender systems

MAE computes the average deviation between computed recommendation
scores (rec(u, i)) and actual rating values (ru,i) for all evaluated users u ∈ U

and all items in their testing sets (testsetu). Alternatively, some authors, such
as Sarwar et al. (2001), compute the root mean square error (RMSE) to put
more emphasis on larger deviations or, similar to Goldberg et al. (2001), create
a normalized MAE (NMAE) with respect to the range of rating values.

NMAE = MAE

rmax − rmin
(7.3)

rmax and rmin stand for the highest and lowest rating values to normalize NMAE
to the interval 0 . . . 1. Consequently, the normalized deviations should be com-
parable across different application scenarios using different rating scales. Im
and Hars (2007), for example, used NMAE to compare the effectiveness of
collaborative filtering across different domains.

Accuracy of classifications. The purpose of a classification task in the context
of product recommendation is to identify the n most relevant items for a given
user. Precision and Recall are the two best-known classification metrics; they
are also used for measuring the quality of information retrieval tasks in general.
Both are computed as fractions of hitsu, the number of correctly recommended
relevant items for user u. The Precision metric (P) relates the number of hits to
the total number of recommended items (|recsetu|).

Pu = |hitsu|
|recsetu| (7.4)

In contrast, the Recall (R) computes the ratio of hits to the theoretical maximum
number of hits owing to the testing set size (|testsetu|).

Ru = |hitsu|
|testsetu| (7.5)

According to McLaughlin and Herlocker (2004), measuring an algorithm’s
performance based on Precision and Recall reflects the real user experience
better than MAE does because, in most cases, users actually receive ranked
lists from a recommender instead of predictions for ratings of specific items.
They determined that algorithms that were quite successful in predicting MAEs
for rated items produced unsatisfactory results when analyzing their top-ranked
items. Carenini and Sharma (2004a) also argue that MAE is not a good indicator
from a theoretical perspective, as all deviations are equally weighted. From the
user’s perspective, however, the only fact that counts is whether an item is
recommended.

7.4 Evaluation on historical datasets 181

Assume that a recommender computes the following item/rating -tuples for
user 234, whose rating profile is presented in Table 7.4:

recset234 = {(912,4.8), (47,4.5), (263,4.4), (539,4.1), (348,4), . . . , (719,3.8)}
Although only a single item from the user’s test set is recommended among the
top five, an MAE-based evaluation would give favorable results, as the absolute
error is on average, 0.65. If the evaluation considered only the top three ranked
items, however, Precision and Recall would be 0, and if the recommendation
set is changed to contain only the five highest ranked items, P234 = 1

5 and
R234 = 1

2 .
By increasing the size of a recommendation set, the tradeoff between Preci-

sion and Recall metrics can be observed. Recall will typically improve as the
chance of hitting more elements from the test set increases with recommenda-
tion set size, at the expense of lower Precision. For instance, if item 719 was
recommended only on the twentieth and last position of the recommendation
list to user 234, Recall would jump to 100 percent, but Precision would drop to
10 percent.

Consequently, the F1 metric is used to produce evaluation results that are
more universally comparable:

F1 = 2 · P · R

P + R
(7.6)

The F1 metric effectively averages Precision and Recall with bias toward the
weaker value. Comparative studies on commercial datasets using P , F , and F1
have, for example, been conducted by Sarwar et al. (2000b) and Zanker et al.
(2007).

Some argue, however, that a classification measure should reflect the pro-
portion of users for which at least one item from the user’s test profile is
recommended. In other words, the hit rate should be defined as

hitrateu =
{

1 : if hitsu > 0

0 : else
(7.7)

Deshpande and Karypis (2004) used this measure to compare their item-based
collaborative filtering variant with a user-based one, whereas O’Sullivan et al.
(2004) employed it for measuring the quality of TV program guides. Nguyen
and Ricci (2007b) assessed different algorithm variants for a mobile critique-
based recommender, also based on hit rate. Interestingly, they presented a
simulation model that allows one to evaluate historical critiquing sessions by
replaying the query input. The logs were derived from user studies on the
mobile recommendation application presented by Nguyen and Ricci (2007a).

182 7 Evaluating recommender systems

Accuracy of ranks. Rank scores extend the results of classification metrics
with a finer level of granularity. They differentiate between successful hits
by also taking their relative position in recommendation lists into account.
Breese et al. (1998) propose a metric that assumes decreasing utilities based
on items’ rank. The parameter α sets the half-life of utilities, which means that
a successful hit at the first position of the recommendation list has twice as
much utility to the user than a hit at the α + 1 rank. The rationale behind this
weighting is that later positions have a higher chance of being overlooked by
the user, even though they might be useful recommendations.

rankscoreu =
∑

i∈hitsu

1

2
rank(i)−1

α

(7.8)

rankscoremax
u =

∑
i∈testsetu

1

2
idx(i)−1

α

(7.9)

rankscore′
u = rankscoreu

rankscoremax
u

(7.10)

The function rank(i) returns the position of item i in the user’s recommenda-
tion list. Rankscoremax

u is required for normalization and returns the maximum
achievable score if all the items in the user’s test set were assigned to the
lowest possible ranks, i.e. ranked according to a bijective index function idx()
assigning values 1, . . . , |testsetu| to the test set items. Thus, for our example
user 234, with twenty recommendations and hits on the fourth and twentieth
positions, the half-life utility rank score would be computed as:

rankscore234 = 1

2
4−1
10

+ 1

2
20−1

10

= 1.08

rankscoremax
234 = 1

2
1−1
10

+ 1

2
2−1
10

= 1.93

rankscore′
234 = 1.08

1.93
= 0.56

Another very simple rank accuracy measure is the lift index, first proposed by
Ling and Li (1998). It assumes that the ranked list is divided into ten equal
deciles and counts the number of hits in each decile as S1,u, S2,u, . . . , S10,u,
where

∑10
i=1 Si = hitsu.

liftindexu =
⎧⎨
⎩

1·S1,u+0.9·S2,u+···+0.1·S10,u∑10
i=1 Si,u

: if hitsu > 0

0 : else
(7.11)

7.4 Evaluation on historical datasets 183

Compared with the rank score of Breese et al. (1998), the lift index attributes
even less weight to successful hits in higher ranks. Consequently, for the ex-
ample user 234, the lift index is calculated as follows:

liftindex234 = 0.9 · 1 + 0.1 · 1

2
= 0.5 (7.12)

Finally, an example of using the lift index on recommendation results is pre-
sented by Hsu et al. (2004). For a discussion on additional rank accuracy
metrics, we refer readers to Herlocker et al. (2004).

Additional metrics. One metric that allows evaluators to compare different
techniques based on their capability to compute recommendations for a large
share of the population is user coverage (Ucov). It is of particular interest when
one wants to analyze an algorithm’s behavior with respect to new users with
few known ratings.

Ucov =
∑

u∈U ρu

|U | (7.13)

ρu =
{

1 : if |recsetu| > 0

0 : else
(7.14)

It measures the share of users to whom nonempty recommendation lists can be
provided. Obviously, it is sensible to measure user coverage only in conjunction
with an accuracy metric, as otherwise recommending arbitrary items to all users
would be considered as an acceptable strategy.

A similar coverage metric can be computed on the item universe.

Ccov = | ⋃u∈U recsetu|
|I | (7.15)

Catalog coverage (Ccov) reflects the total share of items that are recommended
to a user in all sessions (Herlocker et al. 2004) and can be used as an initial
indication for the diversity of an algorithm’s recommendations.

However, Ziegler et al. (2005) propose a more elaborate measure of the
diversity of recommendation lists, termed intra-list similarity (ILS).

ILSu =
∑

i∈recsetu

∑
j∈recsetu,i
=j sim(i, j)

2
(7.16)

For a given similarity function sim(i, j) that computes the similarity between
two recommended items, ILS aggregates the pairwise proximity between any
two items in the recommendation list. ILS is defined to be invariant for all
permutations of the recommendation list, and lower scores signify a higher

184 7 Evaluating recommender systems

diversity. Ziegler et al. (2005) employed this metric to compare a topic diver-
sification algorithm on the BX books dataset.

7.4.3 Analysis of results

Having applied different metrics as part of an experimental study, one must
question whether the differences are statistically meaningful or solely due to
chance. A standard procedure for checking the significance of two deviating
mean metrics is the application of a pairwise analysis of variance (ANOVA).
The different algorithm variants constitute the independent categorical variable
that was manipulated as part of the experiment. However, the null hypothesis H0

states that the observed differences have been due to chance. If the outcome of
the test statistics rejects H0 with some probability of error – typically p ≤ .05 –
significance of findings can be reported. For a more detailed discussion of the
application of test statistics readers are referred to Pedhazur and Schmelkin
(1991); textbooks on statistics, as well as articles discussing the application of
statistical procedures in empirical evaluation research, such as Demšar (2006)
or Garcı̀a and Herrera (2008).

In a second step, the question as to whether the observed difference is of
practical importance must be asked. When contemplating the substantive sig-
nificance of a fictitious finding, like a 5 percent increase in recommendation
list diversity caused by an algorithm modification, statistics cannot help. In-
stead, additional – and more complex – research is required to find out whether
users are able to notice this increase in diversity and whether they appreciate
it. The effect of higher recommendation list diversity on customer satisfaction
or actual purchase rates must be evaluated, a task that can be performed not
by experimenting with historical datasets but rather by conducting real user
studies. The next section will provide some examples of these.

7.5 Alternate evaluation designs

As outlined in the previous section, recommender systems are traditionally
evaluated using offline experiments to try to estimate the prediction error of the
recommendations based on historical user records. Although the availability of
well-known datasets such as MovieLens, EachMovie, or Netflix has stimulated
the interest of researchers in the field, it has also narrowed their creativity,
as newly developed techniques tend to be biased toward what can be readily
evaluated with available resources. In this section we therefore refer to selected
examples of evaluation exercises on recommender systems that adopt alternate

7.5 Alternate evaluation designs 185

evaluation designs and do not experiment on historical datasets. Furthermore,
we structure our discussion according to the taxonomy of research designs
presented in Section 7.2.3.

7.5.1 Experimental research designs

User studies use live user interaction sessions to examine the acceptance or
rejection of different hypotheses. Felfernig and Gula (2006) conducted an
experimental user study to evaluate the impact of different conversational rec-
ommender system functions, such as explanations, proposed repair actions,
or product comparisons. The study, involving 116 participants, randomly as-
signed users to different variants of the recommender system and applied pre-
and post-trial surveys to identify the effect of user characteristics such as the
level of domain knowledge, the user’s trust in the system, or the perceived
competence of the recommender. The results show that study participants ap-
preciate particular functionality, such as explanations or the opportunity to
compare products, as it tends to increase their perceived level of knowledge in
the domain and their trust in the system’s recommendations. A similar study
design was applied by Teppan and Felfernig (2009b), who reported on a line of
research investigating the effectiveness of psychological theories in explaining
users’ behavior in online choice situations; this will be examined in more detail
in Chapter 10.

An experimental user study was also conducted by Celma and Herrera
(2008), who were interested in comparing different recommendation variants
with respect to their novelty as perceived by users in the music domain. One in-
teresting aspect of this work is that it combines an item-centric network analysis
of track history with a user-centric study to explore novelty criteria to provide
recommendations from several perspectives. An intriguing finding of this study
is that both collaborative filtering and a content-based music recommender did
well in recommending familiar items to the users. However, the content-based
recommender was more successful in identifying music from the long tail of an
item catalog ranked by popularity (i.e., the less frequently accessed items) that
would be considered novel by the participants. As collaborative filtering focuses
on identifying items from similar peers, the recommended items from the long
tail are already familiar to the music enthusiasts, whereas content-based music
recommendation promises a higher chance to hit interesting similar items in
different portions of the long tail, according to this study.

Pu et al. (2008) compared the task completion times of users interact-
ing with two different critiquing-based search interfaces. They employed a
within-subjects experiment procedure, in which all twenty-two participants

186 7 Evaluating recommender systems

were required to interact with both interfaces. This is opposed to a between-
subjects test, in which users are randomly assigned to one interface variant.
However, to counterbalance bias from carryover effects from evaluating the
first interface prior to the second, the order of interfaces was alternated every
two consecutive users. Because of the small number of subjects, only a few dif-
ferences in measurements were statistically significant; nevertheless, the goal
of this study, namely, exploring the support for tradeoff decisions of different
critiquing-based recommendation interfaces, is of great interest.

In Chapter 8, an online evaluation exercise with real users is described
as a practical reference. It employs a between-subjects experiment design in
which users are randomly assigned to a specific personalized or impersonalized
recommendation algorithm variant and online conversion is measured. This
type of online experiment is also known as A/B testing.

7.5.2 Quasi-experimental research designs

A quasi-experimental evaluation of a knowledge-based recommender in the
tourism domain was conducted to examine conversion rates – that is, the share
of users who subsequently booked products (Zanker et al. 2008 and Jannach
et al. 2009). The study strongly confirmed that users who interacted with the
interactive travel advisor were more than twice as likely to issue a booking
request than those who did not. Furthermore, an interesting cultural difference
between Italian- and German-speaking users was detected, namely that Italian
users were twice as likely to use interactive search tools such as the travel
recommender.

7.5.3 Nonexperimental research designs

Swearingen and Sinha (2001) investigated the human-computer interaction
(HCI) perspective when evaluating recommender systems, adopting a mixed
approach that included quantitative and qualitative research methods. The sub-
jects were observed while they interacted with several commercial recommen-
dation systems, such as Amazon.com. Afterward they completed a satisfaction
and usability questionnaire and were interviewed with the aim of identifying
factors that can be used to predict the perceived usefulness of a recommendation
system to derive design suggestions for good practice from an HCI perspective.
Results of that study included that receiving very novel and unexpected items is
welcomed by users and that information on how recommendations are derived
by the system should be given.

Experiences from fielded applications are described by Felfernig et al.
(2006–07). The authors used a nonexperimental quantitative research design in

7.6 Summary 187

which they surveyed actual users from two commercial recommender systems
in the domains of financial services and electronic consumer goods. In the latter
domain, a conversational recommender for digital cameras was fielded. Based
on users’ replies to an online questionnaire, the hypothesis that interactive sales
recommenders help users to better orient themselves when being confronted
with large sets of choices was also confirmed. In the financial services do-
main, the installation of constraint-based recommenders was shown to support
sales agents during their interaction with prospective clients. Empirical surveys
determined that the time savings achieved by the sales representatives while
interacting with clients are a big advantage, which, in turn, allows sales staff to
identify additional sales opportunities (Felfernig et al. 2006–07).

Another interesting evaluation exercise with a nonexperimental quantitative
design is to compare predictions made by a recommendation system with those
made by traditional human advisors. Krishnan et al. (2008) conducted such
a study and compared the MovieLens recommender system with human sub-
jects. The results of their user study, involving fifty research subjects, indicated
that the MovieLens recommender typically produced more precise predictions
(based on MAE) than the group of humans, despite the fact that only experi-
enced MovieLens users with long rating records were invited to participate in
the survey. However, a subgroup of the human recommenders (i.e., research
subjects) produced consistently better results than the employed system, which
could, in turn, be used to further improve the algorithm’s ability to mimic the
human subjects’ problem-solving behavior. An additional aspect of this specific
evaluation design is that it supports the credibility of the system in the eyes of
its users, as it demonstrates its ability to provide better predictions than human
experts.

7.6 Summary

After reflecting on the general principles of empirical research, this chapter pre-
sented the current state of practice in evaluating recommendation techniques.
We discussed the meta-level characteristics of different research designs –
namely, subjects, research method, and setting – and consulted authoritative
literature for best research practices.

Furthermore, a small survey of highly reputed publications on recommen-
dation systems in the ACM TOIS was presented, which gave an overview of
research designs commonly used in practice. As a result, we focused in particu-
lar on how to perform empirical evaluations on historical datasets and discussed
different methodologies and metrics for measuring the accuracy or coverage of
recommendations.

188 7 Evaluating recommender systems

From a technical point of view, measuring the accuracy of predictions is a
well-accepted evaluation goal, but other aspects that may potentially affect the
overall effectiveness of a recommendation system remain largely underdevel-
oped. Therefore, Section 7.5 presented several examples of evaluation studies
that were based not on historical datasets but rather on real user studies. They
were grouped according the classification scheme presented in Section 7.2.3,
namely, into experimental, quasi-experimental, and nonexperimental research
methods. Although the works discussed in Section 7.5 do not cover the com-
plete range of study designs that have been explored so far, this selection
can undoubtedly serve as a helpful reference when designing new evaluation
exercises.

7.7 Bibliographical notes

Herlocker et al.’s (2004) article on evaluating collaborative filtering recom-
mender systems is the authority in the field and is therefore one of the most
frequently cited articles on recommendation systems. Since then, few works
have appeared on the topic of evaluating recommender systems in general. One
exception is the work of del Olmo and Gaudioso (2008), who criticize existing
accuracy and ranking metrics for being overparticularized and propose a new
category of metrics designed to measure the capacity of a recommender to make
successful decisions. For this reason they present a new general framework for
recommender systems that formalizes their recommendation process into sev-
eral temporal stages. The essence of their approach is that a recommender
system must be able to not only choose which items should be recommended,
but also decide when and how recommendations should be shown to ensure
that users are provided with useful and interesting recommendations in a timely
manner. One interesting aspect of this article is its consideration of the inter-
activity of a recommender system, a property that has not been evaluated in
existing approaches.

Furthermore, literature on empirical research in general, such as Pedhazur
and Schmelkin (1991), on the interleaved quantitative processes of measure-
ment, design, and analysis, or Creswell (2009), on mixed research designs
focusing on qualitative methods, are also relevant when assessing alternate
strategies for evaluating the quality and value of recommender systems.

8

Case study: Personalized game
recommendations on the mobile Internet

Although the interest in recommender systems technology has been increasing
in recent years in both industry and research, and although recommender ap-
plications can nowadays be found on many web sites of online retailers, almost
no studies about the actual business value of such systems have been published
that are based on real-world transaction data.

As described in Chapter 7, the performance of a recommender system is
measured mainly based on its accuracy with respect to predicting whether
a user will like a certain item. The implicit assumption is that the online
user – after establishing trust in the system’s recommendations or because of
curiosity – will more often buy these recommended items from the shop.

However, a shop owner’s key performance indicators related to a personal-
ized web application such as a recommender system are different ones. Estab-
lishing a trustful customer relationship, providing extra service to customers
by proposing interesting items, maintaining good recommendation accuracy,
and so on are only a means to an end. Although these aspects are undoubtedly
important for the long-term success of a business, for an online retailer, the im-
portant performance indicators are related to (a) the increase of the conversion
rate – that is, how web site visitors can be turned into buyers, and (b) questions
of how to influence the visitors in a way that they buy more or more profitable
items.

Unfortunately, only few real-world studies in that context are available be-
cause large online retailers do not publish their evaluations of the business value
of recommender systems. Only a few exceptions exist. Dias et al. (2008), for in-
stance, present the results of a twenty-one-month evaluation of an probabilistic
item-based recommender system running on a large Swiss e-grocer web por-
tal. Their measures include “shopper penetration”, “direct extra revenue”, and
“indirect extra revenue”. Their analysis showed several interesting points. First,
a relatively small (when compared with overall sales) extra revenue can be

189

190 8 Personalized game recommendations on the mobile Internet

generated directly by the recommender. The fact that direct revenues measur-
ably increased when the probabilistic model went through a periodic update
suggests that good recommendation accuracy is still important, despite some
legitimate criticism of simple accuracy measures (McNee et al. 2006). The
more important business value, however, comes from indirect revenues caused
by the recommender systems. Indirect revenues include the money spent on
repeated purchases of items initially recommended by the system and on items
sold from categories to which the customer was newly introduced to through
a recommended item. This, in turn, also supports the theory that diversity in
recommendation lists is a valuable property, as “unexpected” items in these
lists may help to direct users to other, possibly interesting, categories.

An earlier evaluation based on real-world data was presented by Shani
et al. (2002), in which the authors performed different experiments on an
online bookstore. During their experiment, visitors to the web shop received
buying proposals either from a “predictive” or a new Markov decision process
recommender. Thus, they were able to compare the respective profits that were
generated by different techniques during the observation period. In addition, at
least for a period of seven days, the recommendation functionality was fully
removed from the web shop. Although this sample is statistically too small
to be significant, the comparison of sales numbers of two consecutive weeks
(one with and one without the recommender) showed a 17 percent drop in the
recommender-free week.

Another initial study on how recommender systems influence the buying
behavior of web shop visitors is presented by Zanker et al. (2006). In this work,
it was shown that the recommendations of a virtual advisor for premium cigars
can stimulate visitors to buy cigars other than the well-known Cohibas and thus
increase sales diversity, which is interesting from up-selling and cross-selling
perspectives and could also create indirect revenue as described by Dias et al.
(2008); see also Fleder and Hosanagar (2007), for a discussion of the role of
sales diversity in recommender systems.

In Zanker et al. (2008) and Jannach et al. (2009), a different study using the
same recommendation technology was made in the tourism industry, in which
it could be observed that the number of accommodation availability enquiries
is measurably higher when web site visitors are guided by the virtual advisor.
Another evaluation of how different information types and recommendation
sources influence consumers can be found in Senecal and Nantel (2004).

Similar to these works, the case study presented in this chapter1 focuses on
evaluating the business value of recommender systems in a commercial context.

1 The work was also presented at the 7th Workshop on Intelligent Techniques for Web Personal-
ization and Recommender Systems at IJCAI’09 (Hegelich and Jannach 2009); a summary of the
results of the study can also be found in Jannach and Hegelich (2009).

8.1 Application and personalization overview 191

Figure 8.1. Catalog navigation and categories.

In addition, it aims to answer the question whether certain algorithms perform
better than others in a certain environment and application domain in the line
of the work of, for example, Breese et al. (1998) or Zanker et al. (2007).

8.1 Application and personalization overview

The study presented in this chapter was conducted in the context of a mobile
Internet portal of a large telecommunications provider in Germany. Customers
access this portal through their mobile devices and are offered a wide range
of applications and games, which they can purchase directly and download to
their cell phones.

Figure 8.1 shows the entry screen of the games area of the portal. Customers
explore the item catalog in the following ways:

� Through manually edited or nonpersonalized lists such as “New items” or
“Top 10 items” (top area of screen).

� Through direct text or image links (teasers) to certain items that are shown
on the middle area of the start screen.

192 8 Personalized game recommendations on the mobile Internet

� Through predefined standard categories (lower area) such as “A–Z”, “From
99 Cents”, or “Action & Shooter”.

� In addition, after a purchase, when the payment confirmation is displayed,
customers are presented with a list of other, possibly interesting items
(postsales recommendation).

Accordingly, the portal was extended with personalized content as follows:

(a) A new top-level link, “My Recommendations”, was introduced, which
leads to a personalized recommendation list (“Meine Empfehlungen” in
German).

(b) The games presented in the lower two of the four text teasers and the
first image teaser on the start page were personalized. Because of existing
contracts, the first two text links and the two lower image links were
manually predefined. The manually edited links remained the same during
the whole experiment, which made it possible to analyze the effects of
personalizing the other links independently.

(c) The lists in the standard categories such as “99 Cents” were personalized
except for categories such as “A–Z”, which have a “natural” ordering.

(d) The games presented on the postsales page were also personalized.

During the experiments, different algorithms were used to calculate the per-
sonalized recommendations. To measure the effect of personalization, members
of the control group were shown nonpersonalized or manually edited lists that
were based on the release date of the game.

Customers can immediately purchase and download games through the
portal by choosing items from the presented lists. The relation between their
navigation and buying behavior can therefore be easily determined, as all portal
visitors are always logged in. Several thousand games (across all categories)
are downloaded each day through the platform. The prices for the games range
from free evaluation versions (demos) to “99 Cent Games” to a few euros for
premium games; the amounts are directly charged to the customer’s monthly
invoice. In contrast to the study by Dias et al. (2008), in which users purchased
the same goods repeatedly, customers in this domain purchase the same item
only once – in other words, the domain is similar to popular recommender
systems application areas such as books and movies.

From the perspective of the application domain, the presented game portal
stands in the line of previous works in the area of recommender systems for
mobile users. Recent works in the field of mobile recommenders include, for
instance, Miller et al. (2003), Cho et al. (2004), van der Heijden et al. (2005),
Ricci and Nguyen (2007), Li et al. (2008), and Nguyen and Ricci (2008).

8.2 Algorithms and ratings 193

Content personalization approaches for the mobile Internet are presented also
by Pazzani (2002), Billsus and Pazzani (2007), and Smyth et al. (2007). In
Smyth and Cotter (2002), finally, the effects of personalizing the navigational
structure on a commercial Wireless Access Protocol (WAP) portal are reported.

Overall, it can be expected that this area will attract even more attention in
the future because of the rapid developments in the hardware sector and the
increasing availability of cheap and fast mobile Internet connections. In contrast
to some other approaches, the recommender system on this platform does not
exploit additionally available information such as the current geographical
position or demographic and other customer information known to the service
provider. Standard limitations of mobile Internet applications, such as relatively
small network capacity and limited display sizes, apply, however.

8.2 Algorithms and ratings

During the four-week evaluation period, customers were assigned to one of
seven different groups when they entered the games section of the portal. For
each group, the item lists were generated in a different way. For the first four
groups, the following recommendation algorithms were used:

� Item-based collaborative filtering (CF) (Sarwar et al. 2001) as also used by
Amazon.com (Linden et al. 2003).

� The recent and comparably simple Slope One algorithm (Lemire and
Maclachlan 2005).

� A content-based method using a TF-IDF representation of the item descrip-
tions and the cosine similarity measure.

� A “switching” hybrid algorithm (Burke 2002b) that uses the content-based
method when fewer than eight item ratings are available, and item-based
collaborative filtering otherwise.

Two groups received nonpersonalized item lists, one based on the average
item rating (“Top Rating”) and one based on the sales numbers (top sellers).
For the final group, the control group, the recommendation lists were manually
edited as they were before the personalization features were introduced. Within
most categories, the ordering was based on the release date of the game or
chosen based on existing contracts. The top-level link “My Recommendations”
was not available for the control group. During the entire evaluation period,
customers remained in their originally assigned groups.

From all customers who visited the games portal during the evaluation, a
representative sample of more than 155,000 was included in the experiment, so

194 8 Personalized game recommendations on the mobile Internet

each group consisted of around 22,300 customers. Only customers for which
all algorithms were able to produce a recommendation were chosen – that is,
users for whom a minimum number of ratings already existed. The catalog of
recommendable items consisted of about 1,000 games.

A five-point rating scale from−2 to+2 was used in the experiments. Because
the number of explicit item ratings was very low and only about 2 percent of
the customers issued at least one rating, implicit ratings were also taken into
account: both clicks on item details as well as actual purchases were interpreted
as implicit ratings. When no explicit rating was given, a view on item details
was interpreted as a rating of 0 (medium); several clicks on the same item were
not counted. An actual purchase was interpreted as a rating of 1 (good) for the
item. Explicit ratings overrode these implicit ratings.

To achieve the best possible recommendation accuracy, the item similari-
ties and the average differences for the collaborative filtering and the Slope
One techniques were computed using the full customer base and not only the
155,000-customer subsample.

8.3 Evaluation

The following hypotheses are in the center of the evaluation:

� H1: Personalized recommendations attract more customers to detailed prod-
uct information pages (item view conversion rate).

� H2: Personalized recommendations help turn more visitors into buyers (sales
conversion rate).

� H3: Personalized recommendations stimulate individual customers to view
more items.

� H4: Personalized recommendations stimulate individual customers to buy
more items.

The detailed evaluation will show that depending on the navigational situa-
tion of the portal visitor, different phenomena with respect to the effectiveness
of recommendation algorithms can be observed. Before considering the overall
effect of the use of recommendation technology on the portal, the individual
results obtained for these different situations will be discussed.

8.3.1 Measurement 1: “My Recommendations”

The following results are related to the personalized recommendation list that
is presented when the customer clicks on the “My Recommendations” link, as

8.3 Evaluation 195

70%

67% 57% 65% 66%
55%

64%

60%
50%
40%
30%
20%
10%
0%

CF -
Ite

m

Slop
e

One

Con
te

nt
-B

as
ed

Hyb
rid

To
p-

Rat
ing

To
ps

ell
er

Figure 8.2. Conversion rate: item views to “My Recommendations” visits.

shown in the top area of Figure 8.1. Throughout the evaluation, different levels
of gray will be used to highlight data rows in the charts that are significantly
different (p < 0.01) from each other.

The conversion rate measurements (hypotheses H1 and H2) are given in
Figure 8.2, which depicts the item view conversion rate for visitors to the “My
Recommendations” list, and Figure 8.3, which shows how many of the users
who visited the “My Recommendations” section actually purchased an item2.

In Figure 8.2 it can be seen that the different algorithms fall into two groups:
one in which about two-thirds of the customers actually click on at least one
of the presented items and one in which only 55 percent are interested in the
recommended items. Considering the actual numbers, the differences between
the two groups are significant (p < 0.01).

From the personalized methods, only the Slope One algorithm did not attract
significantly more visitors than the nonpersonalized list of top-rated items.
Interestingly, the nonpersonalized top-seller list also has a good item view
conversion rate – in other words, placing generally liked, top-selling items in a
recommendation list seems to work quite well in the domain.

When the sales conversion rate is considered, it can be observed from
Figure 8.3 that only the CF method helps to turn more visitors into buyers
(Hypothesis H2).

The evidence for our hypotheses H3 (more item views per customer) and
H4 (more purchases per customer) in the context of the “My Recommenda-
tions” section can be seen in Figures 8.4 and 8.5. Figure 8.4 shows that all
recommendation algorithms (except for Slope One) stimulate users to click on
more items. Compared with the findings with respect to the conversion rates,

2 In Figures 8.2 to 8.5, the control group is not depicted, because the “My Recommendations”
section, which was newly introduced for measuring the impact of personalization, was not
available for them.

196 8 Personalized game recommendations on the mobile Internet

35%

30%

25%

20%

15%

10%

5%

0%

29%
25% 24% 27%

22% 25%

CF -
Ite

m

Slop
e

One

Con
te

nt
-B

as
ed

Hyb
rid

To
p-

Rat
ing

To
ps

ell
er

Figure 8.3. Conversion rate: buyers to “My Recommendations” visits.

this can be interpreted that personalized lists seem to contain more items that
are interesting to a customer.

When it comes to actual purchases (game downloads), Figure 8.5 shows
that most personalized methods, and even the simple Slope One algorithm,
outperform the nonpersonalized approaches.

For some of the games provided on the mobile portal, free evaluation ver-
sions (demos) are available. If not mentioned otherwise, all numbers given with
respect to conversion rates and sales figures are related to all item downloads –
free demos plus actual game purchases. Figure 8.6 repeats the numbers of Fig-
ure 8.5, but also shows the fraction of demo downloads and purchased games.
Because of the nature of the algorithms and the particularities of the application
(see more details in Measurement 4), the recommendation lists produced by the
TopRating and Slope One methods contain a relatively high portion of demo
games. Given the high number of actual downloads, these demo recommenda-
tions seem to be well accepted, but unfortunately, these two techniques perform

1.80
1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00

1.65
1.25 1.43 1.59

1.20 1.25

CF -
Ite

m

Slop
e

One

Con
te

nt
-B

as
ed

Hyb
rid

To
p-

Rat
ing

To
ps

ell
er

Figure 8.4. Item views per “My Recommendations” visits.

8.3 Evaluation 197

0.60

0.53 0.47 0.40
0.50 0.44

0.35

0.50

0.40

0.30

0.20

0.10

0.00

CF -
Ite

m

Slop
e

One

Con
te

nt
-B

as
ed

Hyb
rid

To
p-

Rat
ing

To
ps

ell
er

Figure 8.5. Item purchases per “My Recommendations” visits.

particularly poorly when the games are not free. The item-based, content-based,
and hybrid techniques, on the other hand, not only help to sell as many items as
a simple top-seller promotion but also make users curious about demo games.
The TopRating method raises interest only in demo versions. The list of top-
selling items is generally dominated by non-free, mainstream games, which
explains the fact that nearly no demo games are chosen by the users.

8.3.2 Measurement 2: Post-sales recommendations

The next navigational situation in which product recommendations are made is
when a customer has purchased an item and the payment confirmation has just
finalized the transaction. About 90,000 customers who actually bought at least
one item during the evaluation period were involved in the experiment. Overall,
the evaluation sample contains more than 230,000 views of the post-sales

0.60

0.50

0.40

0.30

0.20

0.10

0.00

CF -
Ite

m

Slop
e

One

Con
te

nt
-B

as
ed

Hyb
rid

To
p-

Rat
ing

To
ps

ell
er

Demos

Purchases

Figure 8.6. Game purchases and demo downloads in “My Recommen-
dations” visits.

198 8 Personalized game recommendations on the mobile Internet

12.0%

10.0%

8.0%

6.0%
9.8%

7.3%
9.1% 9.6%

6.8% 6.9%
8.1%4.0%

2.0%

0.0%

CF -
Ite

m

Slop
e

One

Con
te

nt
-B

as
ed

Hyb
rid

To
p-

Rat
ing

To
ps

ell
er

Con
tro

l

Figure 8.7. Conversion rate: item views to post-sales list views.

five-item recommendation lists, meaning that, on average, customers bought
more than one item.

The experimental setup is nearly identical with that for Measurement 1;
customers received their recommendations based on different recommendation
algorithms. The recommendation list of the control group was manually edited
and ordered by game release date. Items that the current customer had already
purchased before were removed from these lists.

The same hypotheses were tested in this experiment – that is, to what extent
recommender systems stimulate customers to view and buy more items. The
results are shown in Figures 8.7 through 8.10.

With respect to the conversion rates, the following observations can be made.
First, the manually edited list of recent items (viewed by the control group)
worked quite well and raised more customer interest than the nonpersonalized
techniques and even the Slope One algorithm (Figure 8.7). When it comes to
actual purchases (Figure 8.8), however, the manually edited list did not help
turn more visitors into buyers. Interestingly, the relative improvement caused
by personalized recommendations with respect to this conversion rate is higher
on the post-sales recommendation page than in the “My Recommendations”

7.0%

5.8% 5.1% 4.9% 5.7% 4.6% 3.7% 4.1%

6.0%
5.0%
4.0%
3.0%
2.0%
1.0%
0.0%

CF -
Ite

m

Slop
e

One

Con
te

nt
-B

as
ed

Hyb
rid

To
p-

Rat
ing

To
ps

ell
er

Con
tro

l

Figure 8.8. Conversion rate: Buyers to post-sales list views.

8.3 Evaluation 199

0.25

0.20

0.15

0.10

0.05

0.00

CF -
Ite

m

Slop
e

One

Con
te

nt
-B

as
ed

Hyb
rid

To
ps

ell
er

To
p-

Rat
ing

Con
tro

l

0.22
0.19 0.17

0.22
0.17

0.13
0.10

Figure 8.9. Item visits per post-sales list views.

sections. Again, the CF algorithm worked best; in absolute numbers, the dif-
ferences between the various techniques are significant (p < 0.01).

With respect to the number of item visits and purchases per customer (Fig-
ures 8.9 and 8.10), it can again be observed that the different recommendation
techniques not only stimulated visitors to view more items but actually also
helped to increase sales. It can also be seen that displaying a list of top-selling
items after a purchase leads to a particularly poor effect with respect to the
overall number of downloads.

Another observation is that the items that are recommended by the Slope
One technique and the TopRating method are also downloaded very often (see
Figure 8.10), presumably because the recommendation lists again contain many
free demos. Figure 8.11 therefore shows the ratio of demo downloads to game
purchases, which is quite similar to the one from the “My Recommendations”
section – that is, recommending top-selling or newly released items does not
stimulate additional interest in free evaluation versions (demo games). The
trend toward interest in demo versions seems to be a bit more amplified than

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

CF -
Ite

m

Slop
e

One

Con
te

nt
-B

as
ed

Hyb
rid

To
p-

Rat
ing

To
ps

ell
er

Con
tro

l

0.14 0.13

0.09

0.13 0.12

0.060.05

Figure 8.10. Item purchases to post-sales list visits.

200 8 Personalized game recommendations on the mobile Internet

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

CF -
Ite

m

Slop
e

One

Con
te

nt
-B

as
ed

Hyb
rid

To
p-

Rat
ing

To
ps

ell
er

Con
tro

l

Demos

Purchases

Figure 8.11. Game purchases and demo downloads on post-sales page.

in the “My Recommendations” section, which indicates that after a purchase
transaction, customers first have a look at another, but free, game.

Finally, in this navigational context, the content-based method could raise
some initial customer interest (Figure 8.9), perhaps because games are rec-
ommended that are quite similar to previously downloaded ones. However,
although customers viewed some of the items, they had no strong tendency to
purchase them, probably because the games were – according to the general
tendency of content-based methods – too similar to games they already knew.
The list of top-selling items again contained mostly non-free games, which
explains the small fraction of demo games here; the same holds for the control
group.

8.3.3 Measurement 3: Start page recommendations

This measurement analyzes the effect of the personalized recommendations
on the start page, as shown in Figure 8.1. Remember that some elements in
these lists are edited manually but were static during the experiment. Thus,
item visits or purchases from these links (that could have been other banner
advertisements as well) were not included in the evaluation.

During the experiment, the personalized elements of the list – the last two text
teasers and the first image teaser – were determined based on the top-three list
of the individual recommendation algorithms or based on the nonpersonalized
lists of top-selling and top-rated items. Customers assigned to the control group
received manually determined recommendations that were ranked by release
date.

For this experiment, only the conversion rate figures for the different teaser
elements on the start page will be shown.

8.3 Evaluation 201

8.0
7.0

6.0
5.0

4.0
3.0
2.0

7.3

4.7
6.8 7.2

4.4 4.7
6.6

5.3
3.5

4.7 4.9
3.7

2.3
3.6 4.1

2.6
3.5

4.4
2.8 3.3 3.4

1.0
0.0

2nd text teaser1st text teaserImage teaser

CF - Item Slope One Content-Based Hybrid Top-Rating Topseller Control

[%
]

Figure 8.12. Conversion rate: item views to start page visits.

Figure 8.12 shows the percentage of portal visitors who followed one of the
personalized product links on the start page. On average, the image teaser was
clicked on by around 6 percent of the users. Although the image represents only
the third-ranked item of the recommendation algorithms and is also positioned
after the text links, its conversion rate is significantly higher than that for the text
links. As this also holds for the nonpersonalized methods, the attractiveness
of the third link can be attributed to its visual representation. Interestingly,
however, the image teaser leads to a good conversion rate with respect to
actual sales (Figure 8.13). With respect to these conversion rates, both the CF
method and the content-based method lead to a significant increase of item
detail clicks and purchases. It can also be observed that the conversion rates
of the first text teaser can even be better than the image teaser when the text
links are personalized. Thus, personalization can partially even outweigh the
disadvantages of the unflashy representation.

Another particularity of this measurement on the start page is that the manu-
ally selected items used for the control group lead to comparably good conver-
sion rates, especially with respect to item visits. A possible explanation could
be that customers have no special expectations with respect to the offers on the

4.0
3.5

3.0
2.5

2.0
1.5
1.0

3.7
2.8

3.5 3.7

2.3 2.1
2.9

2.5
2.0 2.3 2.4

1.8
1.0

1.6 1.9
1.3 1.5 2.0 1.6 1.7 1.40.5

0.0

2nd text teaser1st text teaserImage teaser

CF - Item Slope One Content-Based Hybrid Top-Rating Topseller Control

[%
]

Figure 8.13. Conversion rate: purchases from start page visits.

202 8 Personalized game recommendations on the mobile Internet

0.08

0.07

0.07

0.06

0.06 0.06 0.06

0.05

0.05

0.04

0.04 0.04 0.04 0.04 0.04

0.03

0.03 0.03
0.02 0.02 0.02 0.02

0.02
0.03 0.03 0.03 0.03

0.02

0.01

0.00

Image teaser 1. text teaser 2. text teaser

CF - Item Slope One Content-Based Hybrid Top-Rating Topseller Control

Figure 8.14. Purchases per start page visits.

start page. The fact that the manually selected items are newly released ones
might further contribute to the good acceptance.

Although recommending items based on their average customer rating (as
done by the Slope One and the TopRating techniques) worked well in the first
two experiments, this approach does not work particularly well on the start
page – customers seem to prefer either new items or items that are somehow
related to their previous buying history.

Finally, when it comes to the number of purchases induced by the recom-
mendation lists, the personalized techniques clearly outperformed the manually
defined lists, at least for the first two teaser elements (see Figure 8.14). The
item click and sales numbers of the other four, and statically defined image and
text teasers with the personalized ones, were also compared. It could be seen
that although the personalized items are partially placed lower on the screen
and are thus harder to select, they received significantly more clicks and led to
more sales than the nonpersonalized links.

8.3.4 Measurement 4: Overall effect on demo downloads

In Measurements 1 and 2, it could be seen that Slope One and the nonpersonal-
ized technique based on item ratings led to significantly more views and down-
loads of demo games. In this measurement, the goal was to analyze whether
this trend also exists when the entire platform is considered, including, for
instance, all other personalized and nonpersonalized navigation possibilities.

No explicit category in the navigation tree for “free demos” exists. Games
for which free evaluation versions exist can, however, appear in all other per-
sonalized and nonpersonalized item listings in the portal. In addition, customers
are pointed to demos in two additional ways: (a) through direct-access links
that are sent to them in sales promotions and (b) through pointers to other demo
games that are displayed after a demo has been downloaded.

The distribution of views and downloads of demo games during the four-
week evaluation period for the different recommendation groups is shown in

8.3 Evaluation 203

25

20

15

10

5

0

21.4
22.4 21.2

20.6

15.2
14.2

14.7
13.1

11.3
8.9

8.1 7.8
7.1

14

Views %

Downloads %

Slop
e

One

To
p-

Rat
ing

CF -
Ite

m

Hyb
rid

Con
te

nt
-B

as
ed

To
ps

ell
er

Con
tro

l

Figure 8.15. Distribution of demo game item views and downloads.

Figure 8.15. Overall, about 38,000 downloads were observed for the selected
subsets of customers. When considering the actual downloads, it can be seen
that the ranking of the algorithms remains the same; the differences are even
amplified.

As already briefly mentioned in previous sections, this result can be ex-
plained by different facts that are related to the particular application setting
and the nature of Slope One and the top-rating algorithm, which both tend to
rank demo games highly in the different categories described previously, for
the following reasons. First, as demo games can be downloaded at no cost and
user ratings are possible on the platform only after a download, more explicit
ratings are available for these games. Next, explicit ratings tend to be above
average also in this domain. A similar phenomenon can also be observed in
other datasets such as the MovieLens rating database. Finally, as customers
receive a nonpersonalized pointer to another demo after downloading a free
game, a reinforcement of the effect occurs.

An in-depth analysis of whether the downloads that were stimulated by
the different algorithms led to significantly different demo-download/purchase
conversion rates was not done in this case study. What could, however, be
observed in a first analysis is that the demo/purchase conversion rate was
significantly higher when the demo was promoted by a recommendation list
(as opposed to a banner advertisement).

8.3.5 Measurement 5: Overall effects

In the final measurement reported in this study, the overall effect of the per-
sonalized recommendations (as an add-on to the other navigational options)

204 8 Personalized game recommendations on the mobile Internet

was evaluated. Again, the interesting figures are related to item view and sales
conversion rates (H1 and H2) as well as to the question of whether more items
were viewed and purchased by individual customers (H3 and H4).

With respect to the conversion rates (hypotheses H1 and H2), no signifi-
cant differences between the personalized and nonpersonalized variants could
be observed on the platform as a whole. On average, about 80 percent of all
observed customers viewed at least one item, and around 57 percent bought
at least one game, independent of the recommendation algorithm group they
were assigned to. These figures are nearly identical for all seven test groups.
For the item view conversion rate, for instance, the numbers only range from
79.6 percent to 80.3 percent. Thus, although slight improvements could be ob-
served in individual (personalized) situations, as described earlier, the influence
on the overall conversion rate is too small, and thus the percentage of portal
visitors who view or purchase items could not be significantly increased by the
additional use of personalized recommendation lists.

There could be different reasons for this non-effect. First, besides the de-
scribed personalized lists, there are various other ways in which customers can
access the item catalogs. Many customers, for instance, use the built-in search
functionality of the portal; the ranking of search results is not personalized. The
list of new items (see Figure 8.1) is also one of the most popular ways of brows-
ing the catalog and is used by significantly more people than, for instance, the
new “My Recommendations” section. An analysis showed that personalizing
this particular list does not improve the conversion rates, as customers always
prefer to see the latest releases at the top of such a list. Second, in this evalu-
ation, only customers have been considered for whom a minimum number of
ratings already existed – that is, users who are in generally interested in games.
An evaluation of whether more new users can be tempted to purchase items
was not in the focus of the evaluation.

With respect to hypotheses H3 and H4 (increased number of item views
and sales per customer), the following observations can be made. Regarding
the average number of item views per customer (H3), it could be seen that all
personalized algorithms outperform the nonpersonalized top-seller list and the
control group. Similar to the effect of Measurement 4, Slope One and the simple
ranking based on average customer rating raised the most attention. Thus, H3
could be only partially validated at the global scale as the nonpersonalized
top-rating technique was also successful.

The observations made with respect to the number of purchased/downloaded
items per customer (H4) are shown in Figure 8.16.

The figure shows that the additional attention raised by Slope One and the
TopRating algorithm also leads to a measurably increased number of items

8.3 Evaluation 205

1.45

1.40

1.35

1.30 1.39
1.44

1.38 1.37
1.42

1.30 1.291.25

1.20

Item Based Slope One Content-Based Hybrid Top-Rating ControlTopseller

Figure 8.16. Average number of purchases, including free downloads, per
customer on entire platform.

purchased and downloaded per customer. Figure 8.17 shows the number of
downloaded items (including the demos) for the different algorithms. Finally,
if we look at the actual sales numbers for non-free games only (Figure 8.18),
it can be seen that although the Top-Rating list raised attention for free demos,
it did not lead to increased sales for non-free items. Overall, all personalized
techniques were more successful than the nonpersonalized one. On the global
scale, however, the difference was – a bit surprisingly – significant only for
the content-based method, which indicates that customers tend to spend money
on items that are similar to those they liked in the past. In fact, a closer look
on the performance of the algorithms in specific subcategories shows that the
content-based method often slightly outperforms other methods with respect to
non-free games. Although the differences were not significant in the individual
situations, these slightly higher sales numbers add up to a significant difference
on the global scale. Examples of categories in which the content-based method
worked slightly better with respect to non-free games are the “new games”,
“half-price”, or “erotic games” sections of the download portal.

Overall, the increase in actual sales that are directly stimulated by the rec-
ommender system is between 3.2 percent when compared to the Top-Rating

33,000

32,000

31,000

30,000

29,000

28,000

27,000

31,015

32,137

30,807
30,554

31,693

29,143 28,927

To
ps

ell
er

Con
tro

l

Hyb
rid

To
p-

Rat
ing

Con
te

nt
-B

as
ed

Slop
e

One

CF -
Ite

m

Figure 8.17. Total number of purchases and downloads.

206 8 Personalized game recommendations on the mobile Internet

27,000

26,800

26,600

26,400

26,200

26,000

25,800

25,600

25,400

25,200

26,428

26,121

26,835

26,071
25,997

25,784
25,889

Con
tro

l

To
ps

ell
er

To
p-

Rat
ing

Hyb
rid

Con
te

nt
-B

as
ed

Slop
e

One

CF -
Ite

m

Figure 8.18. Total number of purchases (without demos).

technique, and around 3.6 percent when no personalized recommendation is
available.

In general, these last observations suggest that in situations in which the
user has no strong expectations on a certain genre (such as the “My Recom-
mendations” section), collaborative methods – which also recommend items
in categories that the user has not seen before – work particularly well. In
many other situations, however, users tend to prefer recommendations of game
subcategories that they already know. One exception is the post-sales situation,
in which users are, not surprisingly, not interested in purchasing games that are
very similar to the ones they have just bought.

8.4 Summary and conclusions

In this study, the effects of personalized item recommendation in various nav-
igational contexts on a mobile Internet game portal were analyzed. Different
standard recommendation techniques were implemented on the portal and de-
ployed in parallel in a real-world setting for a period of four weeks. In addition,
nonpersonalized techniques based on top-selling or top-rated items were used
for comparison purposes.

The findings can be summarized as follows:

Ratings in the mobile Internet. The number of explicit item ratings was very
low on the considered mobile Internet portal, and only about 2 percent of the
users issued explicit ratings. Although no studies are available that compare the
willingness of customers to rate items in different settings, it can be suspected
that the relatively high effort for submitting an item vote using a mobile device
compared with a web browser discourages users from participating in this
community process.

8.4 Summary and conclusions 207

Recommending in a navigational context. The effects of personalized rec-
ommendations have been measured in different navigational situations, such as
the start page of the portal or the post-sales situation. In addition, a differenti-
ation was made between the interest that was raised by the recommendations
and the actual effect on the buying behavior of the customers.

With respect to the navigational context, customers seem to react slightly
differently to recommendations, probably because of different expectations.
In the dedicated “My Recommendations” section of the portal, classical CF
and the hybrid technique are particularly good at raising customer interest, as
customers view many of the recommended items. Although customers are also
easily stimulated to download free games by the comparably simple Slope One
and TopRating methods, these techniques do not lead to a significant increase in
non-free games. A similar effect can be observed in the post-sales situation; the
trend toward free demo downloads is even amplified in this situation. Thus, the
item-based, content-based, and hybrid techniques that lead to a good number of
purchases but also raise additional interest in demos seem to be a good choice
here.

On the portal entry page, the recommendation of top-rated (or top-selling)
items has a particularly poor effect, and the personalized methods lead to
significantly better results. A listing of newly released items on the start page,
however, also worked quite well.

In certain navigational situations, it could be observed that personalization
worsens the conversion rates and sales numbers. In the section on new items,
which contains games of the last three weeks, the strict chronological order,
with the newest items on top, works best. Most probably, the visitors to the
“New” category enter this section regularly and check only the first few lines
for new arrivals.

Finally, when measuring the number of game downloads, including the
demos, on the entire platform, it can be seen that naive approaches such as
TopRating and the comparably simple Slope One technique work sufficiently
well to raise the users’ interest in individual games. The important result, how-
ever, is that with respect to actual sales, the content-based and the item-based
methods were clearly better than all others. Overall, it could be demonstrated
that recommender systems are capable of stimulating a measurable increase in
overall sales by more than 3 percent on the entire platform.

PART II

Recent developments

9

Attacks on collaborative recommender systems

When we discussed collaborative filtering techniques in previous chapters of
this book, we made the implicit assumption that everyone in the user commu-
nity behaves honestly and is fair and benevolent. If this assumption holds, all
the participants profit: customers are receiving good buying proposals, well-
appreciated items get some extra promotion, and the recommendation service
itself will be appreciated by web site visitors if its proposals are of high quality
and correctly reflect the opinions of the user community.

In the real world, however, the assumption of having only honest and fair
users may not hold, in particular when we consider that the proposals of
a recommender system can influence the buying behavior of users and real
money comes into play. A malevolent user might, for instance, try to influence
the behavior of the recommender system in a such way that it includes a certain
item very often (or very seldom) in its recommendation list. We shall call this
an attack on the recommender system. When a person expresses his or her
genuine negative opinion – which can be based on any reasons – this is not seen
as an attack. An attack occurs when an agent tries to influence the functioning
of the system intentionally.

In general, attackers might have different goals, such as to increase the sales
of an item, to cause damage to a competitor, or to sabotage the system as
a whole so it is no longer able to produce helpful recommendations. In this
chapter we focus on situations in which the goal of the attacker is to promote
a certain item or bias the system not to recommend items of a competitor.
Note that the manipulation of the “Internet opinion” – for instance, in product
review forums – is not a new problem and is therefore not limited to automated
recommender systems as discussed in this book. Recent research in marketing
supplies evidence not only that consumers’ buying behavior can be influenced
by community reviews (Chevalier and Mayzlin 2006) but also that the strategic
manipulation of opinion forums has a measurable impact on customers and

211

212 9 Attacks on collaborative recommender systems

firms (Dellarocas 2006, Mayzlin 2006). Lam and Riedl (2004), report examples
of real-world manipulation attempts on such systems, including attacks on one
of Amazon.com’s buying tip features1 or eBay’s trust and reputation system2.

Technically, an “attacker” on a community-based recommender system
could try to bias the system’s behavior by creating several fake user accounts
(profiles) and give the target item of the attack a particularly good or bad rating
value. However, such a simple strategy will not work very well in most real
systems, which are based on nearest-neighbors methods. Profiles that consist
only of one particularly good or bad rating will not be similar to any other user’s
profile, meaning that their rating values for the target item will never have a
significant impact. An attacker therefore needs to find better ways to shill the
system (Lam and Riedl 2004) and to make sure that the opinions carried in the
fake profiles will take effect.

In the following sections, we discuss the different ways in which collab-
orative filtering systems can be attacked by malevolent users and summarize
recent research that analyzes the vulnerability of different recommendation
approaches. Afterward, possible countermeasures are discussed before we
briefly review the privacy aspects of recommender systems. Our discussion
will naturally be limited to community-based approaches, because since only
their behavior can be influenced by a manipulated set of user ratings. Content-
and knowledge-based systems can be manipulated only by those involved in
the setup of the system unless their knowledge sources are mined from public
sources.

9.1 A first example

In the following simple example, we sketch the general idea of a profile injection
attack; see Mobasher et al. (2007) for a more detailed example. In this simplified
scenario, we assume that a simplified version of a memory-based collaborative
filtering method is used, which uses Pearson correlation as a similarity measure
and a neighborhood size of 1 – that is, only the opinion of the most similar user
will be used to make a prediction. Without the fake profile in the last row of
the ratings matrix, User2 is the most similar user, and this user’s rating value
2 (dislike) for the target item will be taken as a prediction for Alice. However,
in the situation of a successful attack, as shown in Table 9.1, the fake profile
becomes the most similar one, which means that the particularly high rating
for the target item will be taken as a prediction for Alice.

1 news.com.com/2100-1023-976435.html.
2 http://www.auctionbytes.com/cab/abn/y03/m09/i17/s01.

9.2 Attack dimensions 213

Table 9.1. A profile injection attack.

Item1 Item2 Item3 Item4 Target Pearson

Alice 5 3 4 1 ?
User1 3 1 2 5 5 −0.54
User2 4 3 3 3 2 0.68
User3 3 3 1 5 4 −0.72
User4 1 5 5 2 1 −0.02

Attack 5 3 4 3 5 0.87

In realistic settings, however, attacking a recommender system by inserting
fake profiles to influence its predictions is not that easy. Consider only the
following two aspects of that point. First, to be taken into account in the
neighborhood formation process, a fake profile must be similar to an existing
profile. In general, however, an attacker has no access to the ratings database
when trying to determine good values for the selected items (see Table 9.1) that
are used to establish the similarity with existing profiles. On the other hand, one
single attack profile will not influence the prediction of the system very much
when a larger neighborhood size is used. Therefore, several fake profiles must
be inserted, which, however, might be also not so easy for two reasons: First,
the automatic insertion of profiles is prohibited by many commercial systems
(e.g., by using a so-called Captcha, see also Section 9.5 on countermeasures).
Second, attack situations, in which many user profiles are created in a relatively
short time, can easily be detected by an attack-aware recommender system.

In the following section, we discuss the different possible dimensions of
attacks according to Lam and Riedl (2004), as well as more elaborate attack
methods, and, finally, show how they influence the predictions of a recom-
mender system as discussed by Mobasher et al. (2007).

9.2 Attack dimensions

A first differentiation between possible attack types can be made with respect to
the goal of the attack – that is, whether the goal is to increase the prediction value
of a target item (push attack) or decrease it (called a nuke attack). Although
by intuition there seems to be no technical difference between these types of
goals, we will see later on that push and nuke attacks are actually not always
equally effective. Finally, one further possible intent of an attacker can simply
be to make the recommender system unusable as a whole.

214 9 Attacks on collaborative recommender systems

Another differentiation factor between attacks is whether they are focused
only on particular users and items. Targeting a subset of the items or users
might be less suspicious. Such more focused (segmented) attacks may also be
more effective, as the attack profiles can be more precisely defined in a way
that they will be taken into account for the system’s predictions with a higher
probability. Existing research on vulnerabilities of recommender systems has
therefore focused on attack models in single items.

Whether one is able to attack a recommender system in an effective way
also depends on the amount of knowledge the attacker has about the ratings
database. Although it is unrealistic to assume that the ratings database is pub-
licly available, a good estimate of the distribution of values or the density of
the database can be helpful in designing more effective attacks.

Finally, further classification criteria for recommender system attacks in-
clude

� Cost: How costly is it to insert new profiles? Can the profile injection task be
automated, or do we need manual interaction? How much knowledge about
the existing ratings in the database is required to launch an attack of a certain
type?

� Algorithm dependence: Is the attack designed for a specific algorithm, such
as a memory-based filtering technique, or is it independent of the underlying
algorithm?

� Detectability: How easily can the attack be detected by the system admin-
istrator, an automated monitoring tool, or the users of the system itself?

9.3 Attack types

Consider the most common profile injection attack models (for formal def-
initions, see Mobasher et al. 2007). The general form of an attack profile,
consisting of the target item, a (possibly empty) set of selected items that are
used in some attack models, a set of so-called filler items, and a set of unrated
items is shown in Table 9.2. The attack types discussed on the following pages
differ from each other basically in the way the different sections of the attack
profiles are filled.

Note that in the subsequent discussion, we follow the attack type classifi-
cation scheme by Mobasher et al. (2007); other attack types, which partially
also require detailed knowledge about the ratings database, are described by
O’Mahoney et al. (2005) and Hurley et al. (2007).

9.3 Attack types 215

Table 9.2. Structure of an attack profile.

Item1 . . . ItemK . . . ItemL . . . ItemN Target

r 1 . . . r k . . . r l . . . r n X

selected items filler items unrated items

9.3.1 The random attack

In the random attack, as introduced by Lam and Riedl (2004), all item ratings
of the injected profile (except the target item rating, of course) are filled with
random values drawn from a normal distribution that is determined by the mean
rating value and the standard deviation of all ratings in the database.

The intuitive idea of this approach is that the generated profiles should con-
tain “typical” ratings so they are considered as neighbors to many other real
profiles. The actual parameters of the normal distribution in the database might
not be known: still, these values can be determined empirically relatively easily.
In the well-known MovieLens data set, for example, the mean value is 3.6 on a
five-point scale (Lam and Riedl 2004). Thus, users tend to rate items rather pos-
itively. The standard deviation is 1.1. As these numbers are publicly available,
an attacker could base an attack on similar numbers, assuming that the rating be-
havior of users may be comparable across different domains. Although such an
attack is therefore relatively simple and can be launched with limited knowledge
about the ratings database, evaluations show that the method is less effective
than other, more knowledge-intensive, attack models (Lam and Riedl 2004).

9.3.2 The average attack

A bit more sophisticated than the random attack is the average attack. In this
method, the average rating per item is used to determine the rating values for
the profile to be injected. Intuitively, the profiles that are generated based on
this strategy should have more neighbors, as more details about the existing
rating datasets are taken into account.

In fact, experimental evaluations and a comparison with the random attack
show that this attack type is more effective when applied to memory-based
user-to-user collaborative filtering systems. The price for this is the additional
knowledge that is required to determine the values – that is, one needs to
estimate the average rating value for every item. In some recommender systems,

216 9 Attacks on collaborative recommender systems

these average rating values per item can be determined quite easily, as they
are explicitly provided when an item is displayed. In addition, it has also
been shown that such attacks can already cause significant harm to user-based
recommenders, even if only a smaller subset of item ratings is provided in the
injected profile – that is, when there are many unrated items (Burke et al. 2005).

9.3.3 The bandwagon attack

The bandwagon attack exploits additional, external knowledge about a rating
database in a domain to increase the chances that the injected profiles have
many neighbors. In nearly all domains in which recommenders are applied,
there are “blockbusters” – very popular items that are liked by a larger number
of users. The idea, therefore, is to inject profiles that – besides the high or low
rating for the target items – contain only high rating values for very popular
items. The chances of finding many neighbors with comparable mainstream
choices are relatively high, not only because the rating values are similar but
also because these popular items will also have many ratings. Injecting a profile
to a book recommender with high rating values for the Harry Potter series (in
the year 2007) would be a typical example of a bandwagon attack. Another
noteworthy feature of this attack type is that it is a low-cost attack, as the set of
top-selling items or current blockbuster movies can be easily determined.

In an attack profile as shown in Table 9.2, we therefore fill the slots for the
selected items with high rating values for the blockbuster items and add random
values to the filler items to ensure that a sufficient overlap with other users can be
reached. As discussed by Mobasher et al. (2007), the bandwagon attack seems to
be as similarly harmful as the average attack but does not require the additional
knowledge about mean item ratings that is the basis for the average attack.

9.3.4 The segment attack

The rationale for segment attack (Mobasher et al. 2005) is straightforwardly
derived from the well-known marketing insight that promotional activities can
be more effective when they are tailored to individual market segments. When
designing an attack that aims to push item A, the problem is thus to identify
a subset of the user community that is generally interested in items that are
similar to A. If, for example, item A is the new Harry Potter book, the attacker
will include positive ratings for other popular fantasy books in the injected
profile. This sort of attack will not only increase the chances of finding many
neighbors in the database, but it will also raise the chances that a typical fantasy
book reader will actually buy the book. If no segmentation is done, the new

9.3 Attack types 217

Harry Potter book will also be recommended to users who never rated or bought
a fantasy novel. Such an uncommon and suspicious promotion will not only be
less effective but may also be easier to detect; see Section 9.5 for an overview
of automated attack detection techniques.

For this type of attack, again, additional knowledge – for example, about
the genre of a book – is required. Once this knowledge is available, the attack
profiles can be filled with high ratings for the selected items and low filler
ratings. The segment attack was particularly designed to introduce bias toward
item-based collaborative filtering approaches, which – as experiments show
(Mobasher et al. 2007) – are, in general, less susceptible to attacks than their
user-based counterparts. In general, however, this type of attack also works for
user-based collaborative filtering.

9.3.5 Special nuke attacks

Although all of the aforementioned attack types are, in principle, suited to both
push and nuke individual items, experimental evaluations show that they are
more effective at pushing items. Mobasher et al. (2007) therefore also proposed
special nuke attack types and showed that these methods are particularly well
suited to bias a recommender negatively toward individual items.

� Love/hate attack: In the corresponding attack profiles, the target item is given
the minimum value, whereas some other randomly chosen items (those in
the filler set) are given the highest possible rating value. Interestingly, this
simple method has a serious effect on the system’s recommendations when
the goal is to nuke an item, at least for user-based recommenders. However,
it has been shown that if we use the method the other way around – to push an
item – it is not effective. A detailed analysis of the reasons for this asymmetry
has not been made yet, however.

� Reverse bandwagon: The idea of this nuke attack is to associate the target item
with other items that are disliked by many people. Therefore, the selected
item set in the attack profile is filled with minimum ratings for items that
already have very low ratings. Again, the amount of knowledge needed is
limited because the required small set of commonly low-rated items (such
as recent movie flops) can be identified quite easily.

9.3.6 Clickstream attacks and implicit feedback

The attack types described thus far are based on the assumption that a “standard”
recommender system is used that collects explicit ratings from registered users.

218 9 Attacks on collaborative recommender systems

Although most of today’s recommender systems fall into this category, we also
briefly discuss attacks on systems that base their recommendations on implicit
feedback, such as the user’s click behavior.

In the Amazon.com example, a clickstream-based recommender would
probably inform you that “users who viewed this book also viewed these items”.
In such scenarios, the personalization process is typically based on mining the
usage logs of the web site. In the context of attacks on recommender systems,
it is therefore interesting to know whether and how easily such systems can
be manipulated by a malevolent user. This question is discussed in detail by
Bhaumik et al. (2007), who describe two possible attack types and analyze how
two different recommendation algorithms react to such attacks.

Let us briefly sketch the basic idea of recommending web pages based on
nearest-neighbor collaborative filtering and usage logs. The required steps are
the following: first, the raw web log data is preprocessed and the individual
user sessions are extracted. A user session consists of a session ID and a set
of visited pages; time and ordering information are often neglected. Based on
these sessions, typical navigation patterns are identified in the mining step,
which is commonly based on algorithms such as clustering or rule mining. At
run time, a recommender system then compares the set of viewed pages of
the current user with these navigation patterns to predict the pages in which
the active user most probably will be interested. To calculate the predictions,
a procedure similar to the one commonly used for user-based collaborative
filtering with cosine similarity measure can be employed.

Attacks on such systems can be implemented by employing an automated
crawler that simulates web browsing sessions with the goal of associating a
target item (the page to be “pushed”) with other pages in such a way that the
target items appear on recommendation lists more often. Bhaumik et al. (2007)
devise and evaluate two attack types in their experiments. In the segment attack,
the target page is visited by the crawler, together with a specific subset of pages
that are of interest to a certain subcommunity of all site users. In the popular
page attack, which is a sort of bandwagon attack, the target page is visited
together with the most popular pages.

A first evaluation of these attack types and two recommendation algorithms
(kNN and one based on Markov models) showed that recommenders (or, more
generally, personalization techniques) based on usage logs are susceptible to
crawling attacks and also that – at least in this evaluation – small attack sizes
are sufficient to bias the systems. Until now, no advanced countermeasures
have been reported; further research in the broader context of usage-based web
personalization is required.

9.4 Evaluation of effectiveness and countermeasures 219

9.4 Evaluation of effectiveness and countermeasures

Mobasher et al. (2007) present the result of an in-depth analysis of the de-
scribed attack types on different recommender algorithms. To measure the
actual influence of an attack on the outcome of a recommender system, the
measures “robustness” and “stability” have been proposed by O’Mahony et al.
(2004). Robustness measures the shift in the overall accuracy before and after
an attack; the stability measure expresses the attack-induced change of the
ratings predicted for the attacked items. Mobasher et al. (2007) introduce two
additional measures. For the push attack, they propose to use the “hit ratio”,
which expresses how often an item appeared in a top-N list; see also the
ExpTopN metric of Lam and Riedl (2004). For nuke attacks, the change in the
predicted rank of an item is used as a measure of the attack’s effectiveness.

9.4.1 Push attacks

User-based collaborative recommenders. When applied to user-based col-
laborative systems, the evaluation of the different attacks on the MovieLens
data set shows that both the average and the bandwagon attacks can significantly
bias the outcome of the recommender system. In particular, it was shown that in
both these approaches, a relatively small number of well-designed item ratings
in the attack profiles (selected items or filler items) are required to achieve
a change in the bias of the recommender. In fact, having too many items in
the filler set in the average attack even decreases the achievable prediction
shift.

Besides a good selection of the item ratings in the profile, the size of the
attack is a main factor influencing the effectiveness of the attack. With an attack
size of 3 percent – that is, 3 percent of the profiles are faked after the attack – a
prediction shift of around 1.5 points (on a five-point scale) could be observed
for both attack types. The average attack is a bit more effective; however,
it requires more knowledge about average item ratings than the bandwagon
attack. Still, an average increase of 1.5 points in such a database is significant,
keeping in mind that an item with a “real” average rating of 3.6 will receive the
maximum rating value after the attack.

Although an attack size of only 3 percent seems small at first glance, this of
course means that one must inject 30,000 fake profiles into a one-million-profile
rating database to reach the desired effect, which is something that probably
will not remain unrecognized in a real-world setting. The same holds for the
3 percent filler size used in the experiments. Determining the average item

220 9 Attacks on collaborative recommender systems

ratings for 3 percent of the items in a several-million-item database may be a
problematic task as well.

A detailed analysis of the effects of different attacks on user-based col-
laborative filtering systems and parameterized versions, as well as augmented
variants thereof (using, e.g., significance weighting or different neighborhood
sizes), can be found in O’Mahony et al. (2004).

Model-based collaborative recommenders. When attacking a standard item-
based algorithm (such as the one proposed by Sarwar et al. (2001)) with the
same sets of manipulated profiles, it can be observed that such algorithms are
far more stable than their user-based counterparts. Using the same datasets, a
prediction shift of merely 0.15 points can be observed, even if 15 percent of
the database entries are faked profiles.

The only exception here is the segment attack, which was designed specifi-
cally for attacks on item-based methods. As mentioned previously, an attacker
will try to associate the item to be pushed with a smaller set of supposedly
very similar items – the target segment. Although the experiments of Mobasher
et al. (2007) show that the prediction shift for all users is only slightly affected
by such an attack, these types of attacks are very effective when we analyze the
prediction shift for the targeted users in the segment. Interestingly, the impacts
of a segment attack are even higher than those of an average attack, although
the segment attack requires less knowledge about the ratings database. Further-
more, although it is designed for item-based systems, the segment attack is also
effective when user-based collaborative filtering is employed.

The results of further experiments with additional model-based collabora-
tive filtering techniques are reported by Sandvig et al. (2007) and Mobasher
et al. (2006); a summary of the findings is given by Sandvig et al. (2008).
The effects of different attacks have been evaluated for a k-means clustering
method, for clustering based on probabilistic latent semantic analysis (pLSA)
(Hofmann and Puzicha 1999), for a feature reduction technique using princi-
pal component analysis (PCA), as well as for association rule mining based
on the Apriori method. The evaluation of different attacks showed that all
model-based approaches are more robust against attacks when compared with
a standard user-based collaborative filtering approach. Depending on the at-
tack type and the respective parameterizations, slight differences between the
various model-based algorithms can be observed.

Finally, Mobasher et al. (2007) also report on an attack experiment of a
hybrid recommender system based on item-based filtering and “semantic simi-
larity” (see Mobasher et al. 2004). Not surprisingly, it can be observed that such
combined approaches are even more stable against profile injection attacks,

9.5 Countermeasures 221

because the system’s predictions are determined by both the ratings of the user
community and some additional domain knowledge that cannot be influenced
by fake profiles.

9.4.2 Nuke attacks

Another observation that can be derived from the experiments by Mobasher
et al. (2007) is that most attack types are efficient at pushing items but have
a smaller impact when they are used to nuke items. The specifically designed
nuke methods are, however, quite effective. The very simple love/hate method
described previously, for instance, causes a higher negative prediction shift than
the knowledge-intensive average method, which was one of the most successful
ones for pushing items. Also, the bandwagon attack is more efficient than
other methods when the goal is to nuke items, which was not the case when
the purpose was to push items. A detailed explanation of the reasons of this
asymmetry of attack effectiveness has not yet been found.

Item-based methods are again more stable against attacks, although some
prediction shifts can also be observed. Interestingly, only the love/hate attack
type was not effective at all for nuking items in an item-based recommender;
the reverse bandwagon turns out to be a method with a good nuke effect.

Overall, the questions of possible attacks on recommender systems and the
effectiveness of different attack types have been raised only in recent years. A
definite list of attack models or a ranking with respect to effectiveness cannot be
made yet, as further experiments are required that go beyond the initial studies
presented, for example, by Mobasher et al. (2007).

9.5 Countermeasures

Now that we are aware of the vulnerabilities of current recommender system
technology, the question arises: how we can protect our systems against such
attacks?

Using model-based techniques and additional information. So far, our dis-
cussion shows that one line of defense can be to choose a recommendation tech-
nique that is more robust against profile injection attacks. Most model-based
approaches mentioned in the preceding sections not only provide recommen-
dation accuracy that is at least comparable with the accuracy of memory-based
kNN approaches, but they are also less vulnerable.

In addition, it may be advisable to use a recommender that does not rely
solely on rating information that can be manipulated with the help of fake

222 9 Attacks on collaborative recommender systems

Figure 9.1. Captcha to prevent automated profile creation.

profiles. Additional information, for instance, can be a semantics-based simi-
larity measure, as described above. Alternatively, the recommender could also
exploit information about the trust among the different participants in the com-
munity, as proposed by Massa and Avesani (2007). Such trust networks among
users can not only help to improve the recommendation accuracy, in particu-
lar for users who have only a few neighbors, but they could also be used to
increase the weights of the ratings of “trusted” friends, thus making it at least
harder to attack the recommender system because additional information must
be injected into the system’s database.

Increasing injection costs. A straightforward defense measure is to simply
make it harder to automatically inject profiles. The aforementioned experiments
show that a certain attack size must be chosen to achieve the desired push or nuke
effects. This typically means that the profile creation task must be automated
in realistic scenarios because thousands of profiles cannot easily be entered
by hand. Standard mechanisms to prevent the automatic creation of accounts
include the usage of a Captcha (Von Ahn et al. 2003), as shown in Figure 9.1.
A Captcha (Completely Automated Public Turing test to tell Computers and
Humans Apart) is a challenge-response test designed to find out whether the
user of a system is a computer or a human. A very common test is to present
the user with a distorted image showing a text, as in Figure 9.1, and asking the
user to type the letters that are shown in the image. Although such techniques
are relatively secure as of today, advances are also being made in the area of
automatic analysis of such graphical images (see, e.g., Chellapilla and Simard
2004). In addition, it is of course possible to have the Captchas solved by
low-cost outsourced labor. Given today’s labor cost in some regions, the cost
of resolving one Captcha by hand can be as low as one cent per piece.

As another relatively simple measure, the providers of the recommender
service can also increase the costs by simply limiting the number of allowed
profile creation actions for a single IP address within a certain time frame.
However, with the help of onion routing techniques or other source obfusca-
tion and privacy-enhancing protocols, this protection mechanism can also be
defeated.

9.5 Countermeasures 223

Automated attack detection. Defense measures of this type aim to auto-
matically detect suspicious profiles in the ratings database. Profiles can raise
suspicion for various reasons, such as because the given ratings are “unusual”
when compared with other ratings or because they have been entered into the
system in a short time, causing the prediction for a certain item to change
quickly. In this section, we briefly summarize different methods that have been
proposed to detect fake profiles.

Su et al. (2005) propose a method to detect group shilling attacks, in which
several existing users of the system cooperate to push or nuke certain items, an
attack type we have not discussed so far because it typically involves human
interaction and is not automated, as are the other attack types. Their approach
works by detecting clusters of users who have not only co-rated many items,
but also have given similar (and typically unusual) ratings to these items. After
such clusters are identified based on an empirically determined threshold value,
their recommendations can be removed from the database. In contrast to other
shilling attacks, the particular problem of “group shilling” is that it is not based
solely on the injection of fake profiles and ratings. Instead, in this scenario,
users with “normal” profiles (that also contain fair and honest ratings) cooperate
in a particular case, so that simple fake profile detection methods might miss
these ordinary-looking profiles.

Like other attack-prevention methods, the technique proposed by Su et al.
(2005) is designed to cope with a certain type of attack (i.e., group shilling).
In principle, we could try to develop specific countermeasures for all known
attack types. Because the attack methods will constantly improve, however,
the goal is to find detection methods that are more or less independent of the
specific attack types.

An approach to detect fake profiles, which is independent from the attack
type, is proposed by Chirita et al. (2005). Their work is based on the calcu-
lation and combination of existing and new rating metrics, such as the degree
of agreement with other users, degree of similarity with top neighbors, or rat-
ing deviation from mean agreement. Depending on an empirically determined
probability function, the ratings of users are classified as normal or faked. An
evaluation of the approach for both the random and average attacks on the
MovieLens dataset showed that it can detect fake “push” profiles quite accu-
rately, in particular, in situations in which items are pushed that had received
only few and relatively low ratings by other users in the past.

Zhang et al. (2006) take a different approach that is based on the idea that
every attack type (known or unknown) will influence the rating distribution
of some items over time. Therefore, instead of analyzing rating patterns stati-
cally, they propose to monitor the ratings for certain items over time to detect

224 9 Attacks on collaborative recommender systems

anomalies. In particular, time series for the following two properties are con-
structed and analyzed: sample average captures how the likability of an item
changes over time; sample entropy shows developments in the distribution of
the ratings for an item. To detect attacks more precisely, changes in these values
are observed within limited time windows. The optimal size of such time win-
dows is determined in a heuristic procedure. An experimental evaluation, based
again on the MovieLens dataset and simulated attacks, showed that a relatively
good detection rate can be achieved with this method and the number of false
alarms is limited. Again, however, certain assumptions must hold. In this case,
the assumptions are that (a) attack profiles are inserted in a relatively small time
window and (b) the rating distributions for an item do not significantly change
over time. If this second assumption does not hold, more advanced methods for
time series analysis are required. A knowledgeable attacker or group of attack-
ers will therefore be patient and distribute the insertion of false profiles over
time.

Finally, a general option for distinguishing real profiles from fake ones is
to use a supervised learning method and train a classifier based on a set of
manually labeled profiles. Realistic rating databases are too sparse and high-
dimensional, however, so standard learning methods are impractical (Mobasher
et al. 2007). Mobasher et al. therefore propose to train a classifier on an aggre-
gated and lower-dimensional data set (Bhaumik et al. 2006). In their approach,
the attributes of each profile entry do not contain actual item ratings, but rather
describe more general characteristics of the profile, which are derived from
different statistics of the data set. Similar to Chirita et al. (2005), one part
of this artificial profile contains statistics such as the rating deviation from
mean agreement. In addition, to better discriminate between false profiles and
real but “eccentric” ones, the training profiles contain attributes that capture
statistics that can be used to detect certain attack types (such as the random
attack). Finally, an additional intraprofile attribute, which will help to detect
the concentration of several profiles on a specific target item, is calculated and
included in the profile. The training dataset consists of both correct profiles (in
this case, taken from the MovieLens dataset) and fake profiles that are generated
according to the different attack types described previously. The evaluation of
attacks with varying attack sizes, attack models, and filler sizes shows that in
some situations, fake profiles can be detected in a relatively precise manner –
that is, with few authentic profiles being excluded from the database and most
of the false ones detected. For special attack types, however, such as the seg-
ment or love/hate attacks, which in particular do not require large attack sizes,
the achievable prediction shifts still seem to be too high, even if automated
detection of fake profiles is applied.

9.6 Privacy aspects – distributed collaborative filtering 225

9.6 Privacy aspects – distributed collaborative filtering

A different aspect of security and trustworthiness of recommender systems is
the question of user privacy. Rating databases of collaborative filtering recom-
mender systems contain detailed information about the individual tastes and
preferences of their users. Therefore, collaborative filtering recommenders –
as with many personalization systems – face the problem that they must store
and manage possibly sensitive customer information. Especially in the recom-
mender systems domain, this personal information is particularly valuable in
monetary terms, as detailed customer profiles are the basis for market intelli-
gence, such as for the segmentation of consumers. On the other hand, ensuring
customer privacy is extremely important for the success of a recommender
system. After a particular system’s potential privacy leaks are publicly known,
many users will refrain from using the application further or at least from pro-
viding additional personal details, which are, however, central to the success
of a community-based system.

The main architectural assumption of collaborative filtering recommender
systems up to now were that

� there is one central server holding the database, and
� the plain (unobfuscated and nonencrypted) ratings are stored.

Given such a system design, there naturally exists a central target point of
an attack; even more, once the attacker has achieved access to that system,
all information can be directly used. Privacy-preserving collaborative filtering
techniques therefore aim to prevent such privacy breaches by either distributing
the information or avoiding the exchange, transfer, or central storage of the raw
user ratings.

9.6.1 Centralized methods: Data perturbation

Privacy-preserving variants of CF algorithms that work on centralized, but
obfuscated, user data have been proposed for nearest-neighbor methods (Polat
and Du 2003), SVD-based recommendation (Polat and Du 2005) and, the
Eigentaste method (Yakut and Polat 2007).

The main idea of such approaches can be summarized as follows (Polat and
Du 2003). Instead of sending the raw ratings to the central server, a user (client)
first obfuscates (disguises) his ratings by applying random data perturbation
(RDP), a technique developed in the context of statistical databases to preserve
users’ privacy. The idea behind this approach is to scramble the original data in
such a way that the server – although it does not know the exact values of the

226 9 Attacks on collaborative recommender systems

customer ratings but only the range of the data – can still do some meaningful
computation based on the aggregation of a large number of such obfuscated
data sets. Zhang et al. (2006b) describe this process as preserving privacy
by “adding random noise while making sure that the random noise preserves
enough of the signal from the data so that accurate recommendations can still
be made”.

Consider the simple example from Polat and Du (2003) in which the server
must do some computation based on the sum of a vector of numbers A =
(a1, . . . , an) provided by the clients. Instead of sending A directly, A is first
disguised by adding a vector R = (r1, . . . , rn), where the ris are taken from a
uniform distribution in a domain [−α, α]. Only these perturbed vectors A′ =
(a1 + r1, . . . , an + rn) are sent to the server. The server therefore does not know
the original ratings but can make a good estimate of the sum of the vectors if
the range of the distribution is known and enough data are available, as in the
long run

�n
i=1(ai + ri) = �n

i=1(ai) + �n
i=1(ri) ≈ �n

i=1(ai) (9.1)

Similarly, such an estimate can be made for the scalar product, as again,
the contribution of the ris (taken from the uniform distribution [−α, α]) will
converge to zero. Based on the possibility of approximating the sum and the
scalar product of vectors, Polat and Du (2003) devised a nearest-neighbor
collaborative filtering scheme that uses z-scores for rating normalization. In the
scheme, the server first decides on the range [−α, α], which is communicated
to the clients. Clients compute z-scores for the items they have already rated and
disguise them by adding random numbers from the distribution to it. The server
aggregates this information based on the above observations for the sum and the
scalar product and returns – upon a request for the prediction of an unseen item –
the relevant parts of the aggregated information back to a client. The client can
then calculate the actual prediction based on the privately owned information
about the client’s past ratings and the aggregated information retrieved from
the server.

The main tradeoff of such an approach is naturally between the degree of
obfuscation and the accuracy of the generated recommendations. The more
“noise” is included in the data, the better users’ privacy is preserved. At the
same time, however, it becomes harder for the server to generate a precise
enough approximation of the real values. In Polat and Du (2003), results of
several experiments with varying problem sizes and parameterizations for the
random number generation process are reported. The experimental evaluations
show that for achieving good accuracy, when compared with a prediction based
on the original data, a certain number of users and item ratings are required,

9.6 Privacy aspects – distributed collaborative filtering 227

as the server needs a certain number of ratings to approximate the original
data. Given a sufficient number of ratings and a carefully selected distribution
function, highly precise recommendations can be generated with this method,
in which the original user’s ratings are never revealed to others.

Later research, however, showed that relatively simple randomization
schemes, such as the one by Polat and Du, may not be sufficiently robust
against privacy-breaching attacks, as much of the original information can be
derived by an attacker through advanced reconstruction methods; see Zhang
et al. (2006a).

Zhang et al. (2006b) therefore propose an extended privacy-preserving CF
scheme, in which the main idea is not to use the same perturbation level for all
items, as proposed by Polat and Du (2003). Instead, the client and the server
exchange more information than just a simple range for the random numbers.
In the proposed approach, the server sends the client a so-called perturbation
guidance, on which the client can intelligently compute a perturbation that takes
the relative importance of individual item ratings into account. The intuition
behind this method is that when using an equal perturbation range for all items,
this range might be too large for “important” items that are crucial for detecting
item similarities; at the same time, the range will be too small for items that are
not critical for generating good recommendations (thus causing unnecessary
rating disclosure). Technically, the perturbation guidance matrix that captures
the importance level for item similarities is a transformation matrix computed
by the server based on SVD.

The experiments by Zhang et al. (2006b) show that, with this method,
accuracy comparable to the simple randomization method can be achieved
even if much more overall “noise” is added to the data, meaning that less of the
private information has to be revealed.

9.6.2 Distributed collaborative filtering

Another way of making it harder for an attacker to gain access to private
information is to distribute the knowledge and avoid storing the information in
one central place. Agents participating in such a recommendation community
may then decide by themselves with whom they share their information and, in
addition, whether they provide the raw data or some randomized or obfuscated
version thereof.

Peer-to-peer CF. One of the first approaches in that direction was described by
Tveit (2001), who proposed to exchange rating information in a scalable peer-
to-peer (P2P) network such as Gnutella. In that context, the recommendation

228 9 Attacks on collaborative recommender systems

Neighbor Neighbor

Requester /
Active user

i1 i2 .. in
i1 i2 .. in

i1 i2 .. in
i1 i2 .. in

i1 i2 .. in

Figure 9.2. Collaborative filtering in P2P environment.

problem was viewed as a search problem, in which the active user broadcasts
a query (i.e., a vector of the user’s item ratings) to the P2P network. Peers who
receive a rating vector calculate the similarity of the received vector with the
other known (cached) vectors. If the similarity exceeds a certain threshold, the
known ratings are returned to the requester, who can use them to calculate a
prediction. Otherwise, the query is forwarded to the neighboring peers and thus
spread over the network. Figure 9.2 illustrates a P2P network, in which every
user maintains his or her private information and communicates it to his or her
neighbors on demand.

Tveit’s early approach to distributed CF was proposed in the context of the
then-evolving field of mobile commerce but did not include mechanisms for
data obfuscation; furthermore, other questions of scalability, cache consistency,
and fraudulent users remained open.

Distributed CF with obfuscation. In the work by Berkovsky et al. (2007),
therefore, an approach was proposed and evaluated that combines the idea of
P2P data exchange and data obfuscation. Instead of broadcasting to the network
the “raw” profile and the identification of the target item for which a recom-
mendation is sought, only an obfuscated version is published. Members of the
network who receive such a request compute the similarity of the published
profile with their own and return a prediction for the target item (if possible)
alongside a number expressing the degree of profile similarity. The request-
seeking user collects these answers and calculates a prediction using a standard
nearest-neighbor method.

In this protocol, disclosure of private profile data occurs in two situations.
When the requester sends out his or her profile, he or she inevitably needs to
include some personal rating information. On the other hand, the responding
agent’s privacy is also endangered when he or she returns a rating for the target

9.6 Privacy aspects – distributed collaborative filtering 229

item. Although this is merely one single rating, an attacker could use a series of
requests (probe attack) to incrementally reconstruct the profile of an individual
respondent. Obfuscation (e.g., through randomization) will help to preserve the
privacy of the participants. It is advisable, however, to perturb only the profiles
of the respondent agents to a significant extent, as obfuscation of the critical
requester profile quickly deteriorates recommendation accuracy.

Again, a tradeoff between privacy protection and recommendation accuracy
exists: the more the profiles are obfuscated, the more imprecise the results
are going to be. Berkovsky et al. (2007) analyze different obfuscation variants
and their effects on the recommendation accuracy on the MovieLens dataset.
The obfuscation schemes can be varied along different dimensions. First, when
replacing some of the original values with fake values, one can use different
value distributions. The options range from fixed and predefined values over
uniform random distributions to distributions that are similar to the original
rating (bell-curve) distributions. Another dimension is the question of whether
all ratings should be perturbed or whether it is better to obfuscate only the
extreme ratings (see also the earlier discussion of important ratings). Finally,
the returned predictions may or may not also be obfuscated.

The following effects of the different obfuscation strategies can be observed.
First, it does not seem to matter much whether the fake values are taken from
a random or bell-curve distribution or we replace original values with the
“neutral” value (e.g., 3 on a 1-to-5 scale). The only major influence factor on
the accuracy is the percentage of randomized values. With respect to the effects
of obfuscation on “moderate” and “extreme” ratings, the prediction accuracy
for extreme ratings (e.g., 1 and 5 on the 1-to-5 scale) quickly deteriorates
but remains rather stable for moderate ratings. Still, when the percentage of
obfuscated values increases too much, accuracy worsens nearly to the level of
unpersonalized recommendations. Overall, the experiments also underline the
assumption that obfuscating the extreme ratings, which intuitively carry more
information and are better suited to finding similar peers, can quickly degrade
recommendation accuracy. Perturbing moderate ratings in the data set does not
affect accuracy too much. Unfortunately, however, the unobfuscated extreme
ratings are those that are probably most interesting to an attacker.

Distributed CF with estimated concordance measures. Lathia et al. (2007)
pick up on this tradeoff problem of privacy versus accuracy in distributed
collaborative filtering. The main idea of their approach is not to use a stan-
dard similarity measure such as Pearson correlation or cosine similarity. In-
stead, a so-called concordance measure is used, which leads to accuracy results

230 9 Attacks on collaborative recommender systems

comparable to those of the Pearson measure but that can be calculated without
breaching the user’s privacy.

Given a set of items that have been rated by user A and user B, the idea is
to determine the number of items on which both users have the same opinion
(concordant), the number of items on which they disagree (discordant), and the
number of items for which their ratings are tied – that is, where they have the
same opinion or one of the users has not rated the item. In order to determine
the concordance, the deviation from the users’ average is used – that is, if two
users rate the same item above their average rating, they are concordant, as they
both like the item. Based on these numbers, the level of association between A

and B can be computed based on Somers’ d measure:

dA,B = NbConcordant − NbDiscordant

NbItemRatingsUsed − NbTied
(9.2)

One would intuitively assume that such an implicit simplification to three
rating levels (agree, disagree, no difference) would significantly reduce recom-
mendation accuracy, as no fine-grained comparison of users is done. Exper-
iments on the MovieLens dataset (Lathia et al. 2007), however, indicate that
no significant loss in recommendation precision (compared with the Pearson
measure) can be observed.

The problem of privacy, of course, is not solved when using this new mea-
sure, because its calculation requires knowledge about the user ratings. To
preserve privacy, Lathia et al. (2007) therefore propose to exploit the transitiv-
ity of concordance to determine the similarity between two users by comparing
their ratings to a third set of ratings. The underlying idea is that when user A

agrees with a third user C on item i and user B also agrees with C on i, it can
be concluded that A and B are concordant on this item. Discordant and tied
opinions between A and B can be determined in a similar way.

The proposed protocol for determining the similarity between users is as
follows:

� Generate a set of ratings r of size N using random numbers taken uniformly
from the rating scale. Ensure that all values are different from the mean of
the rating set r .

� Determine the number of concordant, discordant, and tied ratings of user A

and user B with respect to r .
� Use these value pairs to determine the upper and lower bounds of the real

concordance and discordance numbers between A and B.
� Use the bounds to approximate the value of Somers’ d measure.

9.6 Privacy aspects – distributed collaborative filtering 231

The calculations of the upper and lower bounds for the concordance and
discordance numbers are based on theoretical considerations of possible over-
laps in the item ratings. Consider the example for the calculation of the bounds
for the tied ratings. Let TA,r be the number of ties of A with r and TB,r be
the number of ties of B with r . The problem is that we do not know on which
items A and B were tied with r . We know, however, that if by chance A and
B tied with r on exactly the same items, the lower bound is max(TA,r , TB,r);
accordingly, the upper bound is (TA,r + TB,r) if they are tied on different items.
If (TA,r + TB,r) is higher than the number of items N , the value of N is, of
course, the upper bound. Similar considerations can be made for the bounds
for concordant and discordant pairs.

Given these bounds, an estimate of the similarity based on Somers’ d mea-
sure can be made by using the midpoint of the ranges and, in addition, weight-
ing the concordance measures higher than the discordance measure as follows
(midpoint values are denoted with an overline):

predicted(d(A,B)) = NbConcordant − 0.5 × NbDiscordant

NbItemRatingsUsed − NbTied
(9.3)

With respect to recommendation accuracy, first experiments reported by
Lathia et al. (2007) show that the privacy-preserving concordance measure
yields good accuracy results on both artificial and real-world data sets.

With respect to user privacy, although with the proposed calculation scheme
the actual user ratings are never revealed, there exist some theoretical worst-
case scenarios, in which an attacker can derive some information about other
users. Such situations are very unlikely, however, as they correspond to cases
in which a user has not only rated all items, but by chance there is also full
agreement of the random sets with the user’s ratings. The problem of probing
attacks, however, in which an attacker requests ratings for all items from one
particular user to learn the user model, cannot be avoided by the proposed
similarity measure alone.

Community-building and aggregates. Finally, we mention a relatively early
and a slightly different method to distribute the information and recommenda-
tion process for privacy purposes, which was proposed by Canny 2002a, 2002b.
In contrast to the pure P2P organization of users described earlier, Canny pro-
posed that the participants in the network form knowledge communities that
may share their information inside the community or with outsiders. The shared
information, from which the active user can derive predictions, is only an ag-
gregated one, however, based, for example, on SVD (Canny 2002a). Thus, the
individual user ratings are not visible to a user outside the community who

232 9 Attacks on collaborative recommender systems

requests information. In addition, Canny proposes the use of cryptographic
schemes to secure the communication between the participants in the net-
work, an idea that was also picked up by Miller et al. later on (2004) in their
PocketLens system.

Overall, Canny’s work represents one of the first general frameworks for
secure communication and distributed data storage for CF. The question of how
to organize the required community formation process – in particular, in the
context of the dynamic web environment – is not yet fully answered and can
be a severe limitation in practical settings (Berkovsky et al. 2007).

9.7 Discussion

Recommender systems are software applications that can be publicly accessed
over the Internet and are based on private user data. Thus, they are “natural”
targets of attacks by malicious users, particularly because in many cases real
monetary value can be achieved – for example, by manipulating the system’s
recommendation or gaining access to valuable customer data.

First, we discussed attacks on the correct functioning of the systems, in
which attackers inject fake profiles into the rating database to make a system
unusable or bias its recommendations. An analysis of different attack models
showed that, in particular, standard, memory-based techniques are very vulner-
able. For model-based methods, which are based, for instance, on item-to-item
correlation or association rules, no effective attack models have been developed
so far. Intuitively, one can assume that such systems are somehow harder to
attack, as their suggestions are based on aggregate information models rather
than on individual profiles.

Hybrid methods are even more stable, as they rely on additional knowledge
that cannot be influenced by injecting false profiles.

Besides the proper choice of the recommendation technique, other counter-
measures are possible. Aside from making it harder (or impossible) to inject a
sufficient number of profiles automatically, one option is to monitor the evolu-
tion of the ratings database and take a closer look when atypical rating patterns
with respect to the values or insertion time appear.

Unfortunately, no reports of attacks on real-world systems are yet pub-
licly available, as providers of recommendations services are, of course, not
interested in circulating information about attacks or privacy problems be-
cause there is money involved. It is very likely, however, that different attacks
have been launched on popular recommender systems, given the popularity of
such systems and the amounts of money involved. Future research will require

9.7 Discussion 233

cooperation from industry to crosscheck the plausibility of the research efforts
and to guide researchers in the right direction.

Gaining access to (individual) private and valuable user profiles is the other
possible goal of an attack on a recommender system discussed in this chapter.
Different countermeasures have been proposed to secure the privacy of users.
The first option is to obfuscate the profiles – for instance, by exchanging parts
of the profile with random data or “noise”. Although this increases privacy,
as the real ratings are never stored, it also reduces recommendation accuracy.
The other option is the avoidance of a central place of information storage
through the distribution of the information. Different P2P CF protocols have
therefore been developed; typically, they also support some sort of obfuscation
or additional measures that help to ensure the user’s privacy.

What has not been fully addressed in distributed CF systems is the ques-
tion of recommendation performance. Today’s centralized, memory-based, and
optimized recommendation services can provide recommendations in “near
real time.” How such short response times, which are crucial for the broad
acceptance of a recommender system, can be achieved in a distributed scenario
needs to be explored further in future work.

10

Online consumer decision making

10.1 Introduction

Customers who are searching for adequate products and services in bricks-
and-mortar stores are supported by human sales experts throughout the entire
process, from preference construction to product selection. In online sales
scenarios, such an advisory support is given by different types of recommender
systems (Häubl and Murray 2006, Xiao and Benbasat 2007). These systems
increasingly take over the role of a profitable marketing instrument, which can
help to increase a company’s turnover because of intelligent product and service
placements. Users of online sales environments have long been identified as a
market segment, and the understanding of their purchasing behavior is of high
importance for companies (Jarvenpaa and Todd 1996, Thompson and Yeong
2003, Torkzadeh and Dhillon 2002). This purchasing behavior can be explained
by different models of human decision making (Gigerenzer 2007, Payne et al.
1993, Simon 1955); we discuss selected models in the following sections.

Traditional models of human decision making are based on the assumption
that consumers are making optimal decisions on the basis of rational thinking
(Grether and Plott 1979, McFadden 1999). In those models, consumers would
make the optimal decision on the basis of a formal evaluation process. One
major assumption is that preferences remain consistent and unchangeable.
In contradiction to those economic models, research has clearly pointed out
that preference stability in decision processes does not exist. For instance, a
customer who purchases a digital camera could first define a strict upper limit
for the price of the camera, but because of additional technical information
about the camera, the customer could change his or her mind and significantly
increase the upper limit of the price. This simple example clearly indicates the
nonexistence of stable preferences, which led to the development of different

234

10.1 Introduction 235

alternative decision models (Gigerenzer 2007, Payne et al. 1993, Simon 1955).
The most important models are discussed here.

Effort accuracy framework. This model focuses on cost-benefit aspects, in
which a decision process is interpreted as a tradeoff between the decision-
making effort and the accuracy of the resulting decision. It is based on the idea
that human decision behavior is adaptive (Payne et al. 1993) and that consumers
dispose of a number of different decision heuristics that they apply in different
decision contexts. The selection of a heuristic depends on the decision context,
specifically on the tradeoff between decision quality (accuracy) and related
cognitive efforts. The effort accuracy framework clearly contradicts the afore-
mentioned economic models of decision making, in which optimality aspects
are predominant and cognitive efforts in decision processes are neglected. The
quality of consumer decision support in terms of perceived usefulness and ease
of use has an important impact on a consumer’s behavioral intentions – for
example, in terms of reusing the recommender system in the future. Explana-
tions regarding the interdependencies between usefulness and usability factors
and behavioral intentions are included in the so-called technology acceptance
model (TAM); for a related discussion see, for example, Xiao and Benbasat
(2007).

Preference construction. The idea of interpreting consumer choice processes
in the light of preference construction has been developed by Bettman et al.
(1998). Their work takes into account the fact that consumers are not able
to clearly identify and declare their preferences before starting a decision
process – decision making is more characterized by a process of preference
construction than a process of preference elicitation, which is still the predom-
inant interpretation of many recommender applications. As a consequence of
these findings, the way in which a recommender application presents itself to
the user has a major impact on the outcome of a decision process.

To make recommenders even more successful, we must integrate technical
designs for recommender applications with the deep knowledge about human
decision-making processes. In this chapter, we analyze existing theories of de-
cision, cognitive, personal, and social psychology with respect to their impacts
on preference construction processes. An overview of those psychological the-
ories and their role in recommender systems is given in Tables 10.1 and 10.2.
Table 10.1 enumerates cognitive and decision psychological phenomena that
have a major impact on the outcome of decision processes but are not explicitly
taken into account in existing recommender systems. Table 10.2 enumerates

236 10 Online consumer decision making

Table 10.1. Theories from cognition and decision psychology.

Theory Description

Context effects Additional irrelevant (inferior) items in an item set
significantly influence the selection behavior.

Primacy/recency effects Items at the beginning and the end of a list are analyzed
significantly more often than items in the middle of a
list.

Framing effects The way in which different decision alternatives are
presented influences the final decision taken.

Priming If specific decision properties are made more available in
memory, this influences a consumer’s item evaluations.

Defaults Preset options bias the decision process.

relevant phenomena from personality and social psychology that also play a
role in the construction of recommender applications. All these theories will
be discussed and analyzed in the following subsections.

10.2 Context effects

The way in which we present different item sets to a consumer can have an
enormous impact on the outcome of the overall decision process. A decision

Table 10.2. Theories from personality and social psychology.

Theory Description

Internal vs. external LOC Externally influenced users need more guidance;
internally controlled users want to actively and
selectively search for additional information.

Need for closure Describes the individual pursuit of making a decision as
soon as possible

Maximizer vs. satisficer Maximizers try to find an optimal solution; satisficers
search for solutions that fulfill their basic requirements.

Conformity A person’s behavior, attitudes, and beliefs are influenced
by other people.

Trust A person’s behavioral intention is related to factors such
as the willingness to buy.

Emotions Mental states triggered by an event of importance for a
person

Persuasion Changing attitudes or behaviors

10.2 Context effects 237

Table 10.3. Asymmetric dominance effect.

Product A B D

price per month 30 20 35
download limit 10GB 6GB 9GB

is always made depending on the context in which item alternatives are pre-
sented. Such context effects have been intensively investigated, for example,
by Huber et al. (1982), Simonson and Tversky (1992), and Yoon and Simonson
(2008). In the following sections we present different types of context effects
and then show how these context effects can influence decision behavior in
recommendation sessions. The important thing to note about context effects
is that additions of completely inferior item alternatives can trigger significant
changes in choice behaviors; this result provides strong evidence against tradi-
tional economic choice models that focus on optimal decisions. Superiority and
inferiority of items are measured by comparing the underlying item properties.
For example, in Table 10.3, item A dominates item D in both aspects (price
per month and download limit).

Compromise effect. Table 10.4 depicts an example of the compromise effect.
In this scenario, the addition of alternative D (the decoy alternative) increases
the attractiveness of alternative A because, compared with product D, A has
only a slightly lower download limit but a significantly lower price. Thus A

appears to be a compromise between the product alternatives B and D. If we
assume that the selection probability for A out of the set {A, B} is equal to the
selection probability of B out of {A, B}, – that is, P(A, {A, B}) = P(B, {A,
B}) – then the inclusion of an additional product D causes a preference shift
toward A: P(A, {A, B, D}) > P(B, {A, B, D}). In this context, product D is a
so-called decoy product, which represents a solution alternative with the lowest
attractiveness.

Table 10.4. Compromise effect.

Product A B D

price per month 30 25 50
download limit 10GB 3GB 12GB

238 10 Online consumer decision making

Table 10.5. Attraction effect.

Product A B D

price per month 30 250 28
download limit 10GB 36GB 7GB

Asymmetric dominance effect. Another type of context effect is asymmetric
dominance (see Table 10.4): in this case, product A dominates D in both di-
mensions (price and download limit), whereas product B dominates alternative
D in only one dimension (price). In this case, the additional inclusion of D into
the choice set could trigger an increase of the selection probability of A.

Attraction effect. Finally, the attraction effect occurs in situations in which
product A is a little bit more expensive but of significantly higher quality than
D (see Table 10.5). In this situation as well, the introduction of product D

would induce an increased selection probability for A.
Table 10.6 summarizes the major properties of the context effects we have

discussed so far. These effects can be exploited for different purposes within
the scope of recommendation sessions:

� Increased selection share of a target product. As already mentioned, the
selection probabilities change in the case that additional (inferior) items are
added to a result set. This effect has been shown in empirical studies in
a number of application domains such as financial services, e-tourism, or
consumer electronics.

� Increased confidence in a decision: context effects in recommendation result
sets can not only increase the selection probability for target items (also with
more than two items in result set) but also increase a consumer’s confidence
in her own decision.

� Increased willingness to buy: decision confidence is strongly correlated with
the willingness to buy (Chen and Pu 2005). Consequently, on the basis of an
increased decision confidence, context effects can be exploited for increasing
the purchase probability.

From a theoretical point of view these results are important, but the question
remains how to really exploit those effects in recommendation scenarios. To
predict selection behavior on a recommender result page, we must calculate
dominance relationships among different item alternatives. Models for the
prediction of item dominances have been introduced, for example, by Teppan

10.2 Context effects 239

Table 10.6. Summary of context effects: A is the target item, B represents the
competitor, and D is the decoy item.

Effect Description

Compromise effect Product A is of slightly lower quality but has a
significantly lower price.

Asymmetric dominance effect Product A dominates D in both dimensions (product
B does not).

Attraction effect Product A is a little more expensive but has a
significantly higher quality.

and Felfernig (2009a) and Roe et al. (2001). The major outcome of those models
are dominance relationships between the items of a consideration set (CSet).

Formula 10.11 allows the calculation of a dominance value for an item x in
the item set CSet: d(x, CSet). This value is calculated by a pairwise comparison
of the item property values of x with each y in CSet. When we apply For-
mula 10.1 to the item set depicted in Table 10.4, we receive the dominance
values that are depicted in Table 10.7. For example, item B is better than item
A regarding the property price; if we interpret x = A, then the corresponding
dominance value for the property price is −0.67 (the factor is negative if the
value of x is worse than the value of y). These values provide an estimation of
how dominant an item x appears in CSet. The values in Table 10.7 clearly show
the dominance of item A over the items B and D; furthermore, D is dominated
by the other alternatives.

d(x, CSet) =
∑

y∈CSet−x

∑
a∈properties

xa − ya

amax − amin
(10.1)

Such dominance relationships can be exploited for configuring result sets
(Felfernig et al. 2008c). If a recommendation session results, for example, in
n = 10 possible items (the candidate items, or consideration set) and a company
wants to increase the sales of specific items (the target items) in this set, this
can be achieved by an optimal result set configuration that is a subset of the
items (e.g., five items) retrieved by the recommender system. The optimization
criterion in this context is to maximize the dominance values for the target items.

A further potential application of the aforementioned dominance model is
the automated detection of context effects in result sets, with the goal to avoid
unintended biases in decision processes. If such item constellations are detected,

1 Simplified version of the dominance metric presented by Felfernig et al. (2008a).

240 10 Online consumer decision making

Table 10.7. Calculation of dominance values for x ∈ CSet (items
from Table 10.3).

x y1 y2 sum d(x, CSet)

A B D

price per month −0.67 0.33 −0.33
download limit 1.0 0.25 1.25

0.92

B A D

price per month 0.67 1.0 1.67
download limit −1.0 −0.75 −1.75

−0.08

D A B

−0.33 −1.0 −1.33
−0.25 0.75 0.5

−0.83

additional items (neutralizing items) must be added or identified decoy items
must be deleted – this can be interpreted as a type of result set configuration
problem (Teppan and Felfernig 2009b). Exploiting models of decision biases
for neutralizing purposes is extremely important for more customer-centered
recommendation environments that are aware of decision biases and try to avoid
those when otherwise suboptimal decisions would lead to unsatisfied customers
and sales churn. Currently, research focuses on understanding different effects
of decision biases but not on how to effectively avoid them. Initial results
of empirical studies regarding avoidance aspects are reported by Teppan and
Felfernig (2009a).

10.3 Primacy/recency effects

Primacy/recency effects as a cognitive phenomenon describe situations in
which information units at the beginning and at the end of a list of items
are more likely remembered than information units in the middle of the list2.

2 These effects are also called serial position effects (Gershberg and Shimamura 1994, Maylor
2002).

10.3 Primacy/recency effects 241

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1 2 3 4 5 6 7

familiar salient

unfamiliar salient

explanation position

re
ca

ll
in

 %

Figure 10.1. Primacy/recency effects in item explanations.

Thus, primacy/recency shows two recall patterns: on one hand, elements at
the beginning of a list (primacy) and, on the other hand, elements at the end
of a list (recency) are recalled more often than those positioned in the middle
of a list. Primacy/recency effects in recommendation dialogs must be taken
into account because different question sequences can potentially change the
selection behavior of consumers (Häubl and Murray 2003). The existence
of different types of serial position effects in knowledge-based recommender
applications is also analyzed by Felfernig et al. (2007a). This study indicates
that product explanations positioned at the beginning and at the end of a list of
explanations are remembered more often than those explanations positioned in
the middle of a list (see Figure 10.1). The two curves in Figure 10.1 represent
two different explanation lists. The first one is denoted as familiar salient, in
which explanations related to well-known item properties are positioned at the
beginning and the end of the list. The second one is denoted as unfamiliar
salient, in which explanations related to less familiar properties are positioned
at the beginning and the end of the list.

Primacy/recency effects as a decision phenomenon describe situations in
which items presented at the beginning and at the end of a list are evaluated
significantly more often compared with items in the middle of a list. Significant
shifts in selection behavior that are triggered by different element orderings on
a recommender result page are reported by Felfernig et al. (2007a). The same

242 10 Online consumer decision making

Table 10.8. Utility function for primacy/recency effects.

item position(i) 1 2 3 4 5
posutility(i) 5 3 1 3 5

phenomenon exists as well in the context of web search scenarios (Murphy et al.
2006): web links at the beginning and the end of a list are activated significantly
more often than those in the middle of the list. Typically, users are not interested
in evaluating large lists of items to identify those that best fit their wishes and
needs. Consequently, a recommender application must calculate rankings that
reduce the cognitive overheads of a user as much as possible.

An approach to take into account primacy/recency effects in the presen-
tation of items on product result pages was introduced by Felfernig et al.
(2008c). Assuming that we have n items in a result set, we have n! permuta-
tions of orders in which items can be presented. Typically, in knowledge-based
recommender applications, the utility of items is determined on the basis of
multiattribute utility theory (MAUT; Winterfeldt and Edwards 1986), which
calculates a ranking r for each item contained in the result set. MAUT-based
ranking does not take primacy/recency effects because items are presented in
the order of decreasing utility values. A way to take serial position effects in
MAUT-based rankings into account is presented in Formula 10.2 (Felfernig
et al. 2008c).

orderutility([p1, p2, . . . , pn]) =
n∑

i=1

utility(pi) ∗ posutility(i) (10.2)

In Formula 10.2, orderutility([p1, p2, . . . , pn]) specifies the overall utility
of the sequence [p1, p2, . . . , pn], utility(pi) specifies the MAUT-based utility
of a specific item contained in the result set, and posutility(i) specifies the
utility of a specific position i. To take primacy/recency effects into account,
the function posutility(i) could be specified as shown in Table 10.8: prominent
positions at the beginning and the end of the product list have a higher value
determined by posutility. Note that in this simple example we assume that every
recommendation result consists of exactly five items.

This principle of ranking items in the evaluation of result sets is also applied
in the context of automated explanation generation in the domain of buildings
(Carenini and Moore 2006). Such explanations include a set of arguments that
help a user understand why a certain item has been recommended.

10.4 Further effects 243

10.4 Further effects

Framing denotes the effect that the way a decision alternative is presented
influences the decision behavior of the user (see, e.g., Tversky and Kahneman
1986).

The way pricing information is presented to a user significantly influences
the way in which other attributes of a certain decision alternative are evaluated
(Levin et al. 1998). This specific phenomenon is denoted as price framing: if
price information is provided for subcomponents of a product (e.g., the memory
unit), then users put more focus on the evaluation of those subcomponents
because price information is provided on a more detailed level. Conversely, if
an all-inclusive price is presented (e.g., the price for the camera including the
memory unit), then users focus their evaluation on important item properties
(e.g., the resolution or zoom).

Attribute framing denotes the phenomenon that different but equivalent
descriptions of a decision task lead to different final decisions. For example, a
financial service described with 0.98 probability of no loss is evaluated better
than an equivalent service described with 0.02 probability of loss (valence
consistency shift [Levin et al. 1998]). As another example, consumers prefer
to buy meat that is 80 percent lean compared with meat that is 20 percent
fat. Consumers who are highly familiar with a specific type of product are
less amenable to framing effects, as they have clear preferences that should be
fulfilled by the recommended product (Xiao and Benbasat 2007).

Priming denotes the idea of making some properties of a decision alterna-
tive more accessible in memory, with the consequence that this setting will
directly influence the evaluations of a consumer (McNamara 1994; Yi 1990).
Background priming (Mandel and Johnson 1999) exploits the fact that differ-
ent page backgrounds can directly influence the decision-making process. An
example of background priming is provided by Mandel and Johnson (1999), in
which one version of an online furniture selling environment had a background
with coins and the second version had a cloudy background (cirrocumulus),
which triggered feelings such as comfort or silence. Users who interacted with
the first version chose significantly less expensive products compared with
those who interacted with the cloudy-background version.

Priming effects related to the inclusion or exclusion of certain product at-
tributes are discussed by Häubl and Murray (2003). Participants in a user study
had the task of selecting a backpacking tent in an online store. The partic-
ipants were supported by a recommendation agent that collected preference
information regarding different properties of tents. One group of participants

244 10 Online consumer decision making

was asked to specify importance values regarding the properties durability and
flynet; the other group had to specify importance values regarding the proper-
ties warranty and weight. The recommender application then ordered the set of
attributes to conform to the preferences specified by the participant (all avail-
able tents were visible for both groups). Finally, the participants had to select
their favorite item. The result of this study was that participants chose items
that outperformed other items in exactly those properties asked by the recom-
mender application. Consequently, human decision-making processes can be
influenced systematically by selective presentations of properties in the dialog.

An aspect related to priming is the reduction of questions in a recommen-
dation dialog with the goal to reduce factors such as the dissatisfaction with
a choice made or even the aversion to make a decision (Fasolo et al. 2007).
Furthermore, the systematic reduction of choice alternatives in choice sets can
lead to increased purchase rates (Hutchinson 2005).

Defaults play an important role in decision-making processes because people
often tend to favor the status quo compared with other potentially equally attrac-
tive decision alternatives (Ritov and Baron 1992, Samuelson and Zeckhauser
1988). This tendency to maintain decisions and being reluctant to change the
current state is also called status quo bias (Samuelson and Zeckhauser 1988).
Potential changes to the current state are always related to some kind of losses or
expected gains – and people are typically loss-averse (Tversky and Kahneman
1984, Ritov and Baron 1992). If default options are used in the presentation
of decision alternatives, users are reluctant to change this setting (the cur-
rent state). This phenomenon is able to trigger biases in decision processes
(Herrmann et al. 2007, Ritov and Baron 1992). Consumers tend to associate
a certain risk with changing a default, as defaults concerns are interpreted to
be a central part of a company’s product design. Thus a typical application
of defaults concerns properties with an associated risk if not selected (e.g.,
safety equipment in cars, investment protection, or warranties with electronic
equipment).

Besides triggering biasing effects, defaults can also reduce the overall inter-
action effort with the recommender application and actively support consumers
in the product selection process – especially in situations in which consumers
do not have a well-established knowledge about the underlying product assort-
ment. For example, when buying a digital camera, a default value regarding the
needed storage medium could be helpful. Furthermore, defaults can increase the
subjectively felt granularity of recommender knowledge bases, as consumers
will tend to think that companies really tried to do their best to explain and
present the product assortment. Finally, defaults could be used to manipulate

10.5 Personality and social psychology 245

the customer in the sense that options are recommended that are of very low or
no value for the customer but of value to the seller.

10.5 Personality and social psychology

Besides the cognitive and decision psychological phenomena discussed in the
previous sections, different personality properties pose specific requirements on
the design of recommender user interfaces. A detailed evaluation of personality
properties is possible but typically goes along with considerably efforts related
to the answering of large questionnaires. A widespread questionnaire used
for identification of personality properties is the NEO Five-Factor Inventory
(NEO-FFI; McCrae and Costa 1991), which requires the answering of sixty
different questions. There are few application scenarios in which users will
accept such an overhead. In this section, we focus on scenarios in which such
a detailed personality analysis is not needed.

Locus of control (LOC) can be defined as the amount a human being is able to
control occurring events (Duttweiler 1984; Kaplan et al. 2001). The relevance
of LOC for the design of recommender user interfaces is explained simply by
the fact that users should be able to decide on their own with which type of
interface they prefer to interact. Predefined and static dialogs better support
users without a special interest in controlling the recommendation process
(external LOC), whereas more flexible dialogs better support users with a
strong interest in controlling the recommendation process (internal LOC). More
flexible recommender user interfaces not only let the user select the parameters
they want to specify but also actively propose interesting parameters and feature
settings (Mahmood and Ricci 2007, Tiihonen and Felfernig 2008). Recent
research starts to differentiate among influence factors on LOC. For example,
the application domain has a major impact on the orientation of LOC – a user
could be an expert in the domain of digital cameras but be a nonexpert in the
domain of financial services. Such factors are systematically analyzed in the
attribution theory developed by Weiner (2000).

Need for closure (NFC) denotes the individual’s need to arrive at a decision
as soon as possible and to get feedback on how much effort is still needed to
successfully complete a decision task (Kruglanski et al. 1993). It also refers
to a tendency of people to prefer predictability and to narrow down the efforts
of an information search as much as possible. Recommender applications can
take into account the NFC, for example, by the inclusion of progress bars that

246 10 Online consumer decision making

inform about the current status of the overall process and the still open number
of questions. An example for such a progress indication is shown in Figure 4.9,
in which the user gets informed about the current status of the recommendation
process in terms of the currently active phase. Another concept that helps to take
into account the NFC is an immediate display of temporary recommendation
results such that the user has the flexibility to select an item for detailed
inspection whenever he or she wants. Finally, automated repair actions (see the
chapter on knowledge-based recommendation) also help to take into account
the NFC (immediate help to get out from the dead end).

Maximizer and satisficer (MaxSat) are two further basic behavioral patterns
(Kruglanski et al. 1993, Schwartz et al. 2002). Maximizers interacting with a
recommender application typically need a longer time span for completing a
session because they prefer to know many technical details about the product
and, in general, tend to identify an optimal solution that requires an exhaus-
tive search over the available decision alternatives. In contrast, satisficers are
searching for “good enough” solutions until one solution is found that is within
an acceptability threshold. A simple example for the behavioral pattern of max-
imizers and satisficers is the selection of TV channels (Iyengar et al. 2006).
Satisficers focus on the identification of a channel that offers the first acceptable
program, whereas maximizers spend most of the time on selection activities
such that, compared to satisficers, significantly less viewing time is available
for them.

Maximizer and satisficer personality properties can be derived directly by
analyzing the interaction behavior of the current user. For example, if a user
continually focuses on a detailed analysis of technical product properties, the
user can be categorized as a maximizer. Personality properties can then be used,
on one hand, when presenting recommendations on a result page by giving
more application-oriented or more technical explanations, and on the other
hand, throughout the dialog phase by giving more technical or nontechnical
explanations, hints, information about already given answers, or information
about open questions. Interestingly, Botti and Iyengar (2004) and Iyengar et al.
(2006) report results of studies in which maximizers have a tendency to more
negative subjective evaluations of decision outcomes (“post-decision regret”),
which makes the outcome of a decision process harder to enjoy. This could
be explained by the fact that maximizers tend to underestimate the affective
costs of evaluating as many options as possible, which contradicts with the
assumption of psychologists and economists that the provision of additional
alternatives always is beneficial for customers (Botti and Iyengar 2004, Iyengar
et al. 2006).

10.5 Personality and social psychology 247

Conformity is a process in which a person’s behaviors, attitudes, and beliefs
are influenced by other people (Aronson et al. 2007). In the line of this definition,
recommenders have the potential to affect users’ opinions of items (Cosley et al.
2003).

Empirical studies about conformity effects in a user’s rating behavior in CF
applications are presented by Cosley et al. (2003). The authors investigated
whether the display of item predictions affects a user’s rating behavior. The
outcome of this experiment was that users confronted with a prediction signif-
icantly changed (adapted) their rating behavior. The changed rating behavior
can be explained by the fact that the display of ratings simply influences peo-
ple’s beliefs. This occurs in situations in which item evaluations are positively
or negatively manipulated: in the case of higher ratings (compared with the
original ratings), users tend to provide higher ratings as well. The effect also
exists for lower ratings compared with the original ratings.

In summary, the recommender user interface can have a strong impact on a
user’s rating behavior. Currently, with a few exceptions (Beenen et al. 2004),
collaborative recommender systems research focuses on well-tuned algorithms,
but the question of user-centered interfaces that create the best experiences is
still an open research issue (Cosley et al. 2003). Another example for related
research is that by Beenen et al. (2004), who investigated the impact of positive
user feedback on the preparedness for providing item ratings. The result of
the study was significant: users who got positive feedback (ratings are really
needed in order to achieve the overall goal of high-quality recommendations)
on their ratings rated more frequently.

Trust is an important factor that influences a consumer’s decision whether to
buy a product. In online sales environments, a direct face-to-face interaction
between customer and sales agent is not possible. In this context, trust is very
hard to establish but easy to lose, which makes it one of the key issues to deal
with in online selling environments. Notions of trust concentrate mainly on
improvements in the dimensions of security of transactions, privacy preserving
applications, reputation of the online selling platform, and competence of the
recommendation agents (Chen and Pu 2005, Grabner-Kräuter and Kaluscha
2003). A customer’s willingness to buy or return to a web site are important
trust-induced benefits (Chen and Pu 2005, Jarvenpaa et al. 2000).

Trust-building processes in the context of recommender systems depend
strongly on the design of the recommender user interface and the underlying
recommendation algorithms (Chen and Pu 2005, Felfernig et al. 2006). Major
elements of a recommender user interface that support trust building are expla-
nations, product comparisons, and automated repair functionalities (Felfernig

248 10 Online consumer decision making

et al. 2006a). Explanation interfaces (Pu and Chen 2007) are an important means
to support recommender system transparency in terms of arguments as to why
a certain item has been recommended or why certain critiques3 have been
proposed. Significant increases in terms of trust in the recommender applica-
tion have been shown in various user studies – see, for example, Felfernig et al.
(2006a) and Pu and Chen (2007). Product comparisons also help a user establish
a higher level of trust in the recommender application. This can be explained
simply by the fact that comparison functionalities help to decrease the men-
tal workload of the user because differences and commonalities among items
are clearly summarized. Different types of product comparison functionalities
are available on many e-commerce sites – for example, www.amazon.com or
www.shopping.com (Häubl and Trifts 2000). Finally, repair actions are ex-
ploited by users with a low level of product domain knowledge; in this context,
repair actions help to increase the domain knowledge of the user because they
provide explanations why no recommendation could be found for certain com-
binations of requirements (Felfernig et al. 2006a). Repair actions are typically
supported by constraint-based recommender applications – an example for a
commercially available application is discussed by Felfernig et al. (2007b). The
second major factor that influences the perceived level of trust is the overall
quality of recommendations – the higher the conformity with the user’s real
preferences, the higher is the trust in the underlying recommender algorithm
(Herlocker et al. 2004).

Emotions. Although the importance of extending software applications with
knowledge about human emotions is agreed on (Picard 1997), most of the
existing recommender applications still do not take this aspect into account
(Gonzalez et al. 2002). User profiles typically do not include information about
human emotions, and as a consequence, recommender applications are, in many
cases, unable to adapt to the constantly changing and evolving preferential
states. An emotion can be defined as “a state usually caused by an event of
importance to the subject. It typically includes (a) a conscious mental state
with a recognizable quality of feeling and directed towards some object, (b) a
bodily perturbation of some kind, (c) recognizable expressions of the face, tone
of voice, and gesture [and] (d) a readiness for certain kinds of action” (Oatley
and Jenkins 1996). There are different, but not well agreed on, approaches
to categorizing emotional states (Parrot 2001). One categorization that is also
applied by the commercially available movie recommendation environment

3 Critiquing has been described earlier.

10.5 Personality and social psychology 249

Table 10.9. Emotion categories used in MovieProfiler (originally, this set of
emotions was developed by Plutchik and Hope [1997]).

Emotion Description

Fear A feeling of danger and/or risk independent of the fact of being real
or not

Anger Status of displeasure regarding an action and/or an idea of a person
or an organization

Sorrow Status of unhappiness and/or pain because of an unwanted
condition and the corresponding emotion

Joy Status of being happy
Disgust Associated with things and actions that appear “unclean”
Acceptance Related to believability, the degree to which something is accepted

as true
Anticipation Expectation that something “good” will happen
Surprise Emotion triggered by an unexpected event

MovieProfiler4 has been developed by Plutchick (see, e.g., Plutchik and Hope
1997) – the corresponding emotion types are explained in Table 10.9. The search
engine of MovieProfiler supports item search on the basis of an emotional
profile specified by the user (see Figure 10.2). The search engine follows
a case-based approach in which the most similar items are retrieved by the
application. The innovative aspect of MovieProfiler is the search criteria that
are represented as emotional preferences that define which expectations a user
has about a recommended movie. A user indicates on a five-point psychometric
scale which specific emotions should be activated by a film. In a similar way,
users are able to evaluate movies regarding the emotions fear, anger, sorrow,
joy, disgust, acceptance, anticipation, and surprise (see Figure 10.3).

Persuasion. Behavioral decision theory shows that human decision processes
are typically based on adaptive decision behavior (Payne et al. 1993). This
type of behavior can be explained by the effort-accuracy tradeoff, which states
that people typically have limited cognitive resources and prefer to identify
optimal choices with as little effort as possible. The aspect of the availability
of limited cognitive resources is also relevant in the theory of decision mak-
ing under bounded rationality (Simon 1955); bounded rationality can act as
a door opener for different nonconscious influences on the decision behav-
ior of a consumer. This way of explaining human decision processes has a

4 www.movieprofiler.com.

250 10 Online consumer decision making

Figure 10.2. MovieProfiler recommender – emotion-based search: the user
specifies requirements in terms of emotions (fear, anger, sorrow, joy, dis-
gust, acceptance, anticipation, and surprise) that should be activated when
watching the movie.

major impact on the perceived role of recommender applications, which now
moves from the traditional interpretation as tools for supporting preference
elicitation toward an interpretation of tools for preference construction. As
discussed in the previous sections, the design of a recommender application
can have a significant impact on the outcome of a decision process (Gretzel and

10.5 Personality and social psychology 251

Figure 10.3. MovieProfiler recommender – evaluation of movies: movies
can be evaluated regarding the emotions fear, anger, sorrow, joy, disgust,
acceptance, anticipation, and surprise.

252 10 Online consumer decision making

Fesenmaier 2006). Consequently, recommender technologies can be interpreted
as persuasive technologies in the sense of Fogg: “Persuasive technology is
broadly defined as technology that is designed to change attitudes or behaviors
of the users through persuasion and social influence, but not through coercion”
(Felfernig et al. 2008c, Fogg 2003). This interpretation is admissible primarily
if recommendation technologies are applied with the goal of supporting (not
manipulating) the customer in finding the product that fits his or her wishes
and needs. Obviously, persuasive applications raise ethical considerations, as
all of the effects mentioned here could be applied to stimulate the customer to
purchase items that are unnecessary or not suitable.

10.6 Bibliographical notes

Consumer buying behavior and decision making have been studied extensively
in different research areas, such as cognitive psychology (Gershberg and Shi-
mamura 1994, Maylor 2002), decision psychology (Huber et al. 1982, Yoon
and Simonson 2008), personality psychology (Duttweiler 1984, Weiner 2000),
social psychology (Beenen et al. 2004, Cosley et al. 2003), and marketing
and e-commerce (Simonson and Tversky 1992, Xiao and Benbasat 2007).
Predominantly, the reported results stem from experiments related to isolated
decision situations. In many cases, those results are not directly applicable to
recommendation scenarios without further empirical investigations that take
into account integrated recommendation processes. The exception to the rule
is Cosley et al. (2003), who analyze the impact of social-psychological effects
on user behavior in the interaction with collaborative filtering recommenders.
Furthermore, Felfernig et al. (2007, 2008a, 2008c), and Häubl and Murray
(2003, 2006) focus on the integration of research results from marketing and
decision psychology into the design of knowledge-based recommender appli-
cations. The investigation of culture-specific influences on the acceptance of
user interfaces has been the focus of a number of studies – see, for example,
Chau et al. (2002), Chen and Pu (2008), and Choi et al. (2005). From these
studies it becomes clear that different countries have different cultural back-
grounds that strongly influence individual preferences and criteria regarding
user-friendly interfaces. Significant differences exist between Western cultures
that are based on individualism and Eastern cultures that focus more on col-
lectivistic elements. A more detailed analysis of culture-specific influences
on the interaction with recommender applications has first been presented in
Chen and Pu (2008).

11

Recommender systems and the
next-generation web

In recent years, the way we use the web has changed. Today’s web surfers
are no longer mere consumers of static information or users of web-enabled
applications. Instead, they play a far more active role. Today’s web users con-
nect via social networks, they willingly publish information about their demo-
graphic characteristics and preferences, and they actively provide and annotate
resources such as images or videos or share their knowledge in community
platforms. This new way of using the web (including some minor technical
innovations) is often referred to as Web 2.0 (O’Reilly 2007).

A further popular idea to improve the web is to transform and enrich the
information stored in the web so that machines can easily interpret and process
the web content. The central part of this vision (called the Semantic Web)
is to provide defined meaning (semantics) for information and web services.
The Semantic Web is also vividly advertised, with slogans such as “enabling
computers to read the web” or “making the web readable for computers”.
This demand for semantics stems from the fact that web content is usually
designed to be interpreted by humans. However, the processing of this content
is extremely difficult for machines, especially if machines must capture the
intended semantics. Numerous techniques have been proposed to describe web
resources and to relate them by various description methods, such as how
to exchange data, how to describe taxonomies, or how to formulate complex
relations among resources.

These recent developments also open new opportunities in the area of rec-
ommender systems. One of the basic challenges in many domains is the sparsity
of the rating databases and the limited availability of user preference informa-
tion. In Web 2.0 times, these valuable pieces of information are increasingly
available through social networks, in which users not only exhibit their prefer-
ences to others but are also explicitly connected to possibly like-minded, trusted

253

254 11 Recommender systems and the next-generation web

users. One research question, therefore, consists of finding ways to exploit this
additional knowledge in the recommendation process.

Web 2.0 also brought up new types of public information spaces, such as web
logs (blogs), wikis, and platforms for sharing multimedia resources. Because
of the broad success and sheer size of many of those public platforms, finding
interesting content becomes increasingly challenging for the individual user.
Thus, these platforms represent an additional application area for recommender
systems technology.

Furthermore, in knowledge-based recommendation the acquisition and
maintenance of knowledge is an important precondition for a successful ap-
plication. Semantic information offered by the Semantic Web allows us to
apply knowledge-based recommender techniques more efficiently and to em-
ploy these techniques to new application areas. Semantic information about
users and items also allows us to improve classical filtering methods.

All these new capabilities of Web 2.0 and the Semantic Web greatly influence
the field of recommender systems. Although almost all areas of recommender
technologies are touched by the introduction of new web technologies and
the changed usage of the web, our goal in this chapter is to provide a central
overview about recent developments triggered by these innovations.

For example, we can exploit information provided by online communities to
build trust-aware recommender systems to avoid misuse or to improve recom-
mendations (Section 11.1). Furthermore, the (free) annotation of web resources
are forming so-called folksonomies (Section 11.2), which give additional valu-
able information to improve recommendations. If these annotations, which
can be considered as additional characterization of items, are interpreted more
formally (i.e., by a formal description of a taxonomy), then we receive some ad-
ditional means to enhance recommender systems, as described in Section 11.3.
On one hand, semantics are valuable for computing recommendations, but on
the other hand, semantic information must be acquired. In Section 11.4 we
discuss approaches as to how this task can be solved more efficiently in the
context of recommender systems.

11.1 Trust-aware recommender systems

When we talked about “user communities” – for instance, in the context of
collaborative filtering approaches – the assumption was that the community
simply consists of all users of the online shop (and its recommender system)
and that the members of the community are only implicitly related to each other
through their co-rated items. On modern consumer review and price comparison

11.1 Trust-aware recommender systems 255

platforms as well as in online shops, however, users are also given the oppor-
tunity to rate the reviews and ratings of other users. On the Epinions.com
consumer review platform, for instance, users may not only express that they
liked a particular item review, but they can also state that they generally trust
specific other users and their opinions. By this means, users are thus becoming
explicitly connected in a “web of trust”. In the following section, we show how
such trust networks can serve as a basis for a recommender system.

The phrase “trust in recommender systems” is interpreted in the research
community in three different ways: first, in the sense of getting users to believe
that the recommendations made by the system are correct and fair, such as with
the help of suitable explanations; second, that recommender systems assess
the “trustworthiness” of users to discover and avoid attacks on recommender
systems. These system-user and user-system trust relationships were discussed
in previous chapters. In this section, we focus on the third interpretation of
trust, which is based on trust relationships between users – users put more trust
in the recommendations of those users to which they are connected.

11.1.1 Exploiting explicit trust networks

In general, trust-enhanced nearest-neighbor recommender systems, such as the
one presented by Massa and Avesani (2007), aim to exploit the information from
trust networks to improve the systems “performance” in different dimensions.
The hope is that the accuracy of the recommendations can be increased – for
instance, by taking the opinions of explicitly trusted neighbors into account
instead of using peers that are chosen based only on a comparison of the rating
history. In particular, the goal here is also to alleviate the cold-start problem
and improve on the user coverage measure – in other words, if no sufficiently
large neighborhood can be determined based on co-rated items, the opinions of
trusted friends can serve as a starting point for making predictions. In addition,
one conjecture when using explicit trust networks is that they help make the
recommender system more robust against attacks, because desired “incoming”
trust relationships to a fake profile cannot easily be injected into a recommender
database.

Next, we briefly sketch the general architecture of the “trust-aware recom-
mender system” (TARS) proposed by Massa and Avesani (2007) as an example
and summarize their findings of an evaluation on real-world datasets.

There are two inputs to the proposed recommender system: a standard rating
database and the trust network, which can be thought of as a user-to-user matrix
T of trust statements. The possible values in the matrix range from 0 (no trust)

256 11 Recommender systems and the next-generation web

t=1

t=1

t=1

sim=0.9

sim=0.2

sim=-0.2

sim=0.8

A

B

E

C

D

Figure 11.1. Similarity and trust network.

to 1 (full trust). A special null value such as ⊥ (Massa and Avesani 2004) is
used to indicate that no trust statement is available.

In principle, the TARS system aims to embed the trust knowledge in a stan-
dard nearest-neighbor collaborative filtering method. Basically, the prediction
computation is the same as the usual nearest-neighbor weighting scheme from
Equation 11.1, which predicts the rating for a not-yet-seen item p based on the
active user’s average rating ra and the weighted opinions of the N most similar
neighbors.

pred(a, p) = ra +
∑

b∈N sim(a, b) ∗ (rb,p − rb)∑
b∈N sim(a, b)

(11.1)

In the TARS approach, the only difference to the original scheme is that the
similarity of the active user a and neighbor b, sim(a, b), is not calculated based
on Pearson’s correlation coefficient (or something similar). Instead, the trust
value Ta,b is used to determine the weights of the opinions of the neighbors.

Figure 11.1 shows an example of a situation in which the problem is to
generate a recommendation for user A (Alice). Both the standard similarity
measures (denoted as sim) and some trust statements (denoted as t) are shown
in the figure: A has issued two explicit trust statements: she trusts users B and
C, probably because in the past, she found the opinions of B and C valuable.
Assume that in this setting A’s actual rating history (similarity of 0.8 and 0.9)
is also quite similar to the ones of B and C, respectively.

Furthermore, assume that in this example we parameterize a nearest-
neighbor algorithm to make a prediction for A only if at least three peers

11.1 Trust-aware recommender systems 257

with a similarity above the 0.5 level can be identified. With these parameters
and the given trust network, no recommendation can be made. If we use the
trust values instead of Pearson’s similarity measure, the situation will not im-
prove, as A has issued only two trust statements. The key point of trust-aware
recommendation, however, is that we may assume that the trust-relationships
are transitive – that is, we assume that if A trusts B and B trusts E, A will
also trust E. Although A might not fully trust E, because of the missing direct
experience, we may assume that A trusts E at least to some extent. In the exam-
ple setting shown in Figure 11.1, a third peer, namely E, is therefore assumed
trustworthy and a recommendation can be made if we again assume a lower
bound of at least three neighbors.

It is relatively easy to see in the example how trust-aware recommenders can
help alleviate the cold-start problem. Although the matrix of trust statements
may also be sparse, as in a typical rating database, the transitivity of the trust
relationship allows us to derive an indirect measure of trust in neighbors not
directly known to the target user. In addition, if the trust matrix is very sparse,
it can be combined in one way or another with the standard similarity measure
and serve as an additional source of knowledge for the prediction.

An important property of trust relationships is that they are usually not
assumed to be symmetric – that is, the fact that A trusts the opinion of C

does not tell us that C also trusts A. This aspect helps us make trust networks
more robust against attacks: although it is easy to inject profiles that express
trust both to real users and other fake users, it is intuitively not easy to attract
trust statements from regular users – that is, to connect the fake network to the
network of the real users, which is important to propagate trust relationships
to fake users. To limit the propagation of false trust values, the number of
propagating steps can be limited or the trust values multiplied by some damping
factor.

11.1.2 Trust metrics and effectiveness

How indirect trust and distrust values should be calculated between users
that are not directly connected in a social network is a relatively new area
of research. One typical option is to use a multiplicative propagation of trust
values in combination with a maximum propagation distance and a minimum
trust threshold (Massa and Avesani 2007, Golbeck 2006); these parameters, for
instance, can be determined empirically. The algorithm implementations are
relatively straightforward (Massa and Avesani 2007) and may differ in the way
the graph formed by the social connections is explored.

258 11 Recommender systems and the next-generation web

These relatively simple metrics already lead to some measurable increase
in recommendation accuracy in special cases. Still, various other schemes
for trust calculation that, for instance, also take into account explicit distrust
statements differently than “low trust” have been proposed. A broader dis-
cussion of this topic and more complex propagation schemes are discussed,
for instance, by Guha et al. (2004), Ziegler and Lausen (2004, 2005), and
Victor et al. (2006); proposals based on subjective logic or in the context of
the Semantic Web are presented by Jøsang et al. (2006) and Richardson et al.
(2003).

Although the aforementioned metrics calculate an estimate of the “local”
trust between a source and a target user, it would be possible to use a “global”
trust metric as well. A very simple metric would be to average the trust values
received for every user to compute an overall user “reputation”. Such an ap-
proach often can be found, for example, on online auction platforms. Google’s
PageRank algorithm (Brin and Page 1998) can also be seen as an example of
a global trust metric, which, however, goes beyond simple averaging of the
number of links pointing to a page.

To what extent the information in the trust networks can really help to
improve the quality of recommendations has been evaluated by Massa and
Avesani (2004) on the basis of a dataset from the Epinions.com platform. On
this web site, users can not only review all types of items (such as cars, books, or
movies) but also rate the reviewers themselves by adding them to their personal
web of trust if they have the feeling that they “have consistently found [the
reviews] to be valuable”. Because no other information is available, adding a
user to the web of trust can be interpreted as a direct trust rating of 1. On this
platform, users may also put other users on a block list, which can be seen
as a trust rating of 0. More fine-grained ratings, however, are not possible on
Epinions.com.

Interestingly, the item rating behavior of Epinions.com users is reported
to be different from that of MovieLens users. Compared to MovieLens, not
only are the rating database and the trust matrix even sparser, but about half
the ratings had the highest possible value (5) and another 30 percent had the
second-highest value (4). Furthermore, more than half the users are cold starters
who have voted for fewer than five items. Standard accuracy metrics such as
mean absolute error do not reflect reality very well in such settings, because
every prediction error will be weighed in the same way, although significant
differences for heavy raters and cold starters are expected. Massa and Avesani
(2007) therefore propose to use the mean absolute user error (MAUE) to ensure
that all users have the same weight in the accuracy calculation. In addition, the
usage of a user coverage metric is recommended, which measures the number

11.1 Trust-aware recommender systems 259

of users for which a recommendation can be made – a problem that virtually
does not appear in the MovieLens dataset, because it is guaranteed that every
user has rated at least twenty items.

The results of an evaluation that used different algorithms (standard CF,
unpersonalized, and trust-based ones) and views on the dataset to measure
the impact on heavy raters, cold starters, niche items, and so forth can be
summarized as follows:

� Effectiveness of simple algorithms. Given such a specific, but probably in
practice not uncommon, distribution of ratings, simple algorithms such as
“always predict value 5” or “always predict the mean rating value of a user”
work quite well and are only slightly worse than standard CF algorithms
with respect to MAE.

Another simple technique is to predict the average item rating. In this ap-
plication scenario, this unpersonalized algorithm even outperforms standard
CF techniques, an effect that cannot be observed when using other datasets,
such as the MovieLens database. With respect to rating coverage, the simple
method is better, in particular, when it comes to the many cold-start users.
When the different slices of the rating database are analyzed, it can be ob-
served, however, that CF techniques are effective for controversial items for
which the standard deviation is relatively large and an averaging technique
does not help.

� Using direct trust only. In this setting, a trust-based technique is employed
that uses only the opinions of users for which an explicit trust statement is
available; no trust propagation over the network is done. Although the overall
MAE of this method is between that of standard CF and the simple average
technique, it works particularly well for cold-start users, niche items (items
for which only very few ratings exist), and opinionated users (users having a
high standard deviation in their ratings). When the MAUE measure is used,
the “direct-trust” method called MT1 achieves the highest overall accuracy
of all compared methods. With respect to coverage, it is finally observed that
“MT1 is able to predict fewer ratings than CF but the predictions are spread
more equally over the users (which can then be at least partially satisfied)”
(Massa and Avesani 2007).

� Trust propagation. The evaluations with propagation levels of 2, 3, and 4 lead
to the following observations: First, when the propagation level is increased,
the trust network quickly grows from around ten directly trusted neighbors
to nearly 400 in the second level, and several thousand in the third level. An
increase in the propagation distance thus leads directly to an increase in rating
coverage. At the same time, however, the prediction accuracy constantly

260 11 Recommender systems and the next-generation web

decreases, because the opinions of the faraway neighbors are not the best
predictors.

� Hybrids. In their final experiments, Massa and Avesani tried to calculate
predictions based on both a standard similarity measure and the trust mea-
sure and combine the results as follows: when only one method was able to
compute a weight, this value was taken. If both methods were applicable,
a weighted average was computed. Although such a combination quite in-
tuitively leads to increased coverage, the performance did not increase and
typically fall between the CF and the trust-based algorithms.

To determine whether global trust metrics (in which every user gets the same
trust value from everyone) work well, the performance of using an adapted
version of PageRank to determine global trust weights was also evaluated.
The experiments showed, however, that such nonpersonalized metrics cannot
compete with the personalized trust metrics described earlier.

In summary, the evaluation showed two major things. First, the exploitation
of existing trust relations between users can be very helpful for fighting the
cold-start problem. Second, there are still many open questions in the context
of the evaluation of recommender systems, most probably because research
evaluations are often made only on the MovieLens dataset.

11.1.3 Related approaches and recent developments

The concept of trust in social networks has raised increased interest during the
past few years. Among others, the following topics have also been covered in
the area of recommender systems.

� Similar approaches. Several approaches to exploiting and propagating trust
information have been proposed in the last years that are similar to the work
by Massa and Avesani (2007). Golbeck (2005) and Golbeck and Hendler
(2006), report on an evaluation of the trust-enhanced movie recommender
FilmTrust. Although the size of the rating database was very small (only about
500 users), observations could be made that were similar to those with the
larger Epinions.com dataset. The distribution of ratings in the database was
not very broad, so a “recommend the average” approach generally worked
quite well. Again, however, the trust-based method worked best for opin-
ionated users and controversial ratings and outperformed the baseline CF
method. The propagation method used in the FilmTrust system is similar to
the one used by Massa and Avesani (2007); however, the trust ratings can be
chosen from a scale of 1 to 10.

11.1 Trust-aware recommender systems 261

Another approach that exploits explicit trust statements and combines
them with another measure of item importance was recently proposed by
Hess et al. (2006). In their work, a trust network among scientific reviewers
is combined with standard visibility measures for scientific documents to
personalize the document visibility measure in a community. Although no
real-world evaluation of this approach has been made, it can be counted as
another interesting idea that shows how in the future trust information from
various sources might be combined to generate personalized information
services.

� Implicit trust. Although their paper is titled “Trust in Recommender Sys-
tems”, the trust concept used by O’Donovan and Smyth (2005) is not based
on direct trust statements as in the work described above. Instead, they pro-
pose new neighbor selection and weighting metrics that go beyond simple
partner similarity. The real-life analogy on which they base their work is that
one will typically ask friends who have similar overall tastes for a movie rec-
ommendation. However, not every one of those “general” neighbors might
be a good advisor for every type of item/movie. In their work, therefore,
trustworthiness is determined by measuring how often a user has been a
reliable predictor in the past – either on average or for a specific item. In
contrast to the work of Massa and Avesani, for instance, these trust values
can be automatically extracted from the rating database.

When these numbers are available, predictions can be computed in differ-
ent ways: by using a weighted mean of the standard Pearson similarity and
the trust measure, by using the trust value as a filter for neighbor selection, or
by a combination of both. O’Donovan and Smyth evaluated their approach
on the MovieLens dataset and showed that an accuracy improvement of more
than 20 percent can be achieved when compared with the early CF approach
of Resnick et al. Resnick et al. (1994).

The usage of the term trust for this approach is not undisputed. The
term competence or reputation would probably have been more suitable
for this approach. Further approaches that automatically infer such “trust”
relationships from existing rating data are those by Papagelis et al. (2005)
and Weng et al. (2006).

� Recommending new friends. Before statements in an explicit trust network
can be exploited, new users must be connected with a sufficient number of
other members of the community – in other words, we face another form
of cold-start problem here. Many of today’s social web platforms aim to
increase the connectivity of their members by suggesting other users as
friends. The suggestions are based, for example, on existing relationships
(friend-of-a-friend) or on a random selection.

262 11 Recommender systems and the next-generation web

However, because the number of other users a person will connect to is
limited, it might be a good idea for the system to automatically recommend
community members whose opinions are particularly valuable – the ones
who, in our setting, are good predictors. How such users are characterized and
how a good selection influences prediction quality is analyzed by Victor et al.
(2008a, 2008b). In their work, the authors differentiate among the following
particular user types (key figures): mavens, who write a lot of reviews;
frequent raters, who rate many items; and connectors, who issue many trust
statements and are trusted by many – that is, when trust is propagated over
them, many other users are reached. To measure the impact of the opinion
of one user on the other and to analyze the tradeoff between coverage and
accuracy, several measures, such as accuracy change or betweenness (from
the field of social network analysis; see Wasserman and Faust 1994), are
used. Overall, Victor et al. can show – based again on an evaluation of an
Epinions.com dataset – that the inclusion of key figures in the network leads
to better accuracy and coverage results when compared with a situation
in which users are initially connected to a randomly selected set of other
users.

In summary, recent research has already shown that the exploitation of
existing trust information can improve the accuracy of recommender systems.
We believe, however, that this is only the beginning of a more comprehensive
exploitation of all the different information available in today’s and tomorrow’s
online social networks.

11.2 Folksonomies and more

Besides social networks such as Facebook.com, on which user communities
willingly share many of their preferences and interests, platforms that support
collaborative tagging of multimedia items have also become popular in Web
2.0. In contrast to classical keyword-assignment schemes that superimpose
a defined classification hierarchy, so-called folksonomies (folk taxonomies)
represent a far more informal way of allowing users to annotate images or
movies with keywords. In these systems, users assign arbitrary tags to the
available items; tags can describe several dimensions or aspects of a resource
such as content, genre, or other metadata but also personal impressions such
as boring. When annotating such tags, users frequently express their opinions
about products and services. Therefore, it seems to be self-evident to exploit
this information to provide recommendations.

11.2 Folksonomies and more 263

The goals of the Semantic Web also include the semantic annotation of
resources. In contrast to tagging systems, however, Semantic Web approaches
postulate the usage of formal, defined, and machine-processible annotations.
Although folksonomies are sometimes referred to as “lightweight ontologies”,
they are actually at the opposite spectrum of annotation options: although
formal ontologies have the advantages of preciseness and definedness, they are
hard to acquire. Folksonomies, on the other hand, not only can be used by
everyone but also directly reflect the language and terms that are actually used
by the community.

Recommender systems and folksonomies can be related to each other in
different ways. First, in analogy to trust-enhanced approaches, one can try to
exploit the information of how items are tagged by the community for predicting
interesting items to a user. Second, because the arbitrary usage of tags also has
its problems, recommender system technology can be used to recommend tags
to users – for example, to narrow the range of used tags in the system. We will
shortly summarize example systems of each type in the following.

11.2.1 Using folksonomies for recommendations

In collaborative tagging systems, users annotate resources with tags. The ques-
tion in folksonomy-enhanced recommender approaches is how we can leverage
this information for recommending items or improving prediction accuracy.
Roughly speaking, there are two basic approaches to integrate tags in the
recommendation process. Tags can be viewed as information about the con-
tent of items. Consequently, standard content-based methods are the starting
point of extension. Tags can also be viewed as an additional dimension of the
classical user–item matrix, and collaborative techniques serve as a basis for
advancements.

In the following subsections, we introduce the basic ideas from both sides,
using some recent works that clearly show the underlying considerations.

11.2.1.1 Folksonomies and content-based methods
We start our introduction by the exploitation of so-called tag clouds. Then we
present two approaches to deal with the ambiguity and redundancy of free
formulated tags. One approach tries to overcome this problem by linguistic
methods, whereas the other direction is to exploit statistical information.

Recommendations based on tag clouds. Szomszor et al. (2007) exploits
folksonomies for recommendations in the movie domain by combining the
information from two data sources: the Netflix rating dataset and the Internet

264 11 Recommender systems and the next-generation web

Movie Database (IMDb). The Netflix database contains millions of ratings
for several thousand movies. The IMDb database is a large collection of
movie data and comprises nearly a million titles. In this experiment, only the
community-provided keywords (tags) in the IMDb have been used: typically,
several dozen keywords are associated with a popular movie. The two databases
can be relatively easily combined in a single schema by matching the movie
names.

Based on the ratings and keywords associated to films by various users,
the recommendation method tries to estimate the future ratings of users. The
central concept for tag-based recommendation by Szomszor et al. (2007) is
what the authors call the user’s rating tag cloud. The basic idea is to identify
the keywords typically selected to annotate films that the user u has assigned a
rating r . For instance, we might identify that users typically assign the keywords
“army,” “based-on-novel,” or “blockbuster” to movies a specific user u usually
rates with a rating value 5. Based on this information, we can search for
movies not rated by u but annotated with keywords “army,” “based-on-novel,”
or “blockbuster” and guess that these movies will also be rated 5 by the user u.

In particular, let a specific user be denoted by u ∈ U , where U is the set of
all users and m ∈ M is a movie, where M is the set of all available movies. A
rating value is denoted by r ∈ R, where R is the set of possible rating values –
for instance, R = {1, 2, 3, 4, 5}. The set of movies rated by user u is Mu. The
rating value for a user u ∈ U and a movie m ∈ Mu is denoted by fu(m) ∈ R.

K is the global set of keywords, and Km is the set of keywords associated
with movie m. Nk denotes the global frequency of occurrences of keyword
k ∈ K for all movies.

Based on this information, a rating tag-cloud Tu,r is introduced by Szomszor
et al. (2007) for a given user u and rating r . Tu,r is defined as the set of -tuples
〈k, nk(u, r)〉, where k ∈ K refers to a keyword and nk(u, r) is the frequency of
keyword k assigned to movies, which user u has rated with rating value r:

nk(u, r) = |{m|m ∈ Mu ∧ k ∈ Km ∧ fu(m) = r}| (11.2)

In other words, given a user u, a rating value r , and a keyword k, nk(u, r)
gives the number of movies annotated by keyword k that have been assigned
a rating r by user u. The tag-cloud Tu,r expresses the keywords assigned to
movies that have been rated with r by user u and how often these keywords
were used (which can be seen as a weight/significance factor).

In general, a tag cloud can serve as means of visually depicting the im-
portance of individual tags: more frequent terms are accentuated by a larger
font size (Figure 11.2). Figure 11.2 could, for instance, be the tag cloud of the
movies that user A has rated with “5.”

11.2 Folksonomies and more 265

Figure 11.2. Tag cloud.

Szomszor et al. (2007), use the rating tag clouds as the only basis for
recommending items according to the following two schemes.

� Simple tag cloud comparison. This metric makes a prediction for an unseen
movie m∗ by comparing the keywords Km∗ associated with m∗ with each of
the active user’s u rating tag clouds. In particular, for an unseen movie m∗,
the rating r∗ is guessed where the intersection of the tags of tag cloud Tu,r∗

and the tags associated to movie m∗ is maximal – that is, r∗ is assigned to
the r where σ (u,m∗, r) = |{(k, nk) ∈ Tu,r |k ∈ Km∗ }| is maximal.

� Weighted tag cloud comparison. This slightly more sophisticated metric
not only measures keyword overlap, but also takes the weight of the tags
in the clouds into account. This is done by defining a similarity measure,
which follows the idea of TF-IDF weighting – the relative frequency of term
occurrences and global keyword frequencies are considered when comparing
a tag cloud and a keyword set.

Given a user u, a movie m∗, and a rating r∗, the appropriateness of r∗ is
estimated by:

σ (u,m∗, r∗) =
∑

{〈k,nk(u,r∗)〉∈Tu,r∗ |k∈Km∗ }

nk(u, r∗)

log(Nk)
(11.3)

In this measure, Szomszor et al. (2007) sum the frequency of all keywords
Km∗ of movie m∗ where user u has used these keywords to rate movies with
rating value r∗. The frequencies are weighted by dividing them by the logarithm
of the global frequency Nk of keyword k, as commonly done in term-weighting
schemes. The weighted average for all possible rating values is defined by

σ (u,m∗) = 1

S(u,m∗)

∑
r∈R

r × σ (u,m∗, r) (11.4)

where S(u,m∗) = ∑
r∈R σ (u,m∗, r) is a normalization factor.

266 11 Recommender systems and the next-generation web

In the experiments conducted by Szomszor et al. (2007) the estimation of
r∗ is based on combining σ (u,m∗) with the average rating of movie m∗. The
average rating is simply defined as usual, where Um∗ is the set of users who
rated m∗:

r(m∗) = 1

|Um∗ |
∑

u∈Um∗

fu(m∗) (11.5)

Finally, the weighted estimated rating value of a movie m∗ for users u is
computed by

σ ∗(u,m∗) = 0.5 r(m∗) + 0.5 σ (u,m∗) (11.6)

In the experiments, the accuracy of these two metrics is compared with an
unpersonalized prediction method, which always predicts the average value of
all ratings an item in question has received. What is shown in these preliminary
evaluations is that recommendations can, in principle, be made solely based
on the tag clouds and that the weighted approach performs better than the
unweighted approach. For the Netflix dataset, a root mean squared error of
roughly 0.96 was achieved. The analysis of the experiments showed that the
proposed approach does pretty well for average ratings but has potential for
improvements for extreme ratings. The work of Szomszor et al. (2007) is a first
indication that the rating tag clouds can serve as an additional source of user
profile information in a hybrid system.

Linguistic methods for tag-based recommendation. The work of de Gemmis
et al. (2008) goes in a similar direction as the previously described approach;
however, the main difference is that sophisticated techniques are exploited to
identify the intended sense of a tag (keyword) associated with an item and to
apply a variant of a naive Bayesian text classifier.

Basically, de Gemmis et al. implemented a content-based recommender
system for recommending descriptions about paintings. They assumed that
such descriptions are structured in slots – there are slots for the title, the painter,
and a general painting description. These slots are called static slots because
they do not change over time. Compared with plain content-based methods, the
exploitation of slots is just an additional feature because the approach is also
applicable if the content of slots are merged in just one slot.

The idea of de Gemmis et al. (2008) is to merge tags assigned by users to
descriptions in special slots. These slots are called dynamic slots because they
change as users add tags. In particular, given item I , the set of tags provided
by all the users who rated I is called SocialTags(I) and set of tags provided by

11.2 Folksonomies and more 267

a specific user U for I is called PersonalTags(U, I). For each set of tags, slots
are added to the items.

Because tags may be formulated freely by users, the sense of tags can be
ambiguous or tags may be a synonym of other tags. This problem must be
addressed for content-based recommender systmes in general. To solve this
problem, de Gemmis et al. (2008) propose the application of semantic indexing
of documents. In particular, words in a slot are replaced by synsets using
WORDNET. A synset (synonym set) is a structure containing sets of words
with synonymous meanings, which represents a specific meaning of a word.
This addresses the problem of synonyms. The problem of an ambiguous word
sense is tackled by analyzing the semantic similarity of words in their context.
A detailed description of word sense disambiguation (WSD) is presented by
Semeraro et al. (2007). The result of applying WSD to the content of slots is
that every slot contains a set of synsets, which are called semantic tags.

Following the common practice of content-based recommendation, the user
classifies items he or she likes and items he or she dislikes. This classification
information is exploited to compute the parameters of a naive Bayesian classi-
fier – the conditional probability P (c|dj) is computed where c has the values
likes/dislikes and dj represents a specific item.

In order to apply Bayes’ rule, the specialty of de Gemmis et al. (2008) is to
compute the required conditional probability P (dj |c) by exploiting slots. Let
M be the number of slots, s a slot, and ds

j representing the slot s of document dj ;
then according to the naive assumption of conditional independence, P (dj |c)
is computed by

P (dj |c) =
M∏

s=1

P (ds
j |c) (11.7)

Furthermore, P (ds
j |c) is estimated by applying a multivariate Poisson model

in which the parameters of this model are determined by the average frequencies
of tokens in the slots and in the whole collection of items. The method does not
distinguish between various types of slots. Hence, static and dynamic slots –
the slots representing the social and personal tags – are processed equally.

The evaluation by Gemmis et al. (2008) is based, as usual, on a k-fold
cross-validation. Five configurations were explored: items were described (a)
only with social tags, (b) with personal tags, (c) with social tags and static
slots, (d) with personal tags and static slots, and (e) with static slots, neglecting
dynamic slots. The best-performing combinations with respect to an F-measure
are static slots combined with social or personal tags. However, it was observed
that if only a few training examples are available, social tags without static tags

268 11 Recommender systems and the next-generation web

performed best. The more examples that were available to assess the preferences
of an individual, the better was the performance of a combination of static and
dynamic slots.

Tag clustering. Although folksonomies provide many opportunities to im-
prove recommendations, the free formulation of tags leads to unique challenges.
Unsupervised tagging results in redundant, ambiguous, or very user-specific
tags. To overcome this problem, Shepitsen et al. (2008) propose the clustering
of tags.

The basic idea is to compute the interest of a user u in a resource r by the
following formula:

I (u, r) =
∑
c∈C

ucW(u, c) × rcW(r, c) (11.8)

C is the set of all tag clusters; ucW(u, c) is the user’s interest in cluster c,
calculated as the ratio of times user u annotated a resource with a tag from
that cluster over the total annotations by that user; rcW(r, c) determines the
closeness of a resource to a cluster c by the ratio of times the resource was
annotated with a tag from the cluster over the total number of times the resource
was annotated.

This user interest in a resource is exploited to weight the similarity (denoted
by S(q, r)) between a user query q and a resource r , where a user query
corresponds to a tag. S(q, r) is computed by the cosine similarity using term
frequencies. In particular, the tag frequency tf (t, r) for a tag t and a resource
r is the number of times the resource has been annotated with the tag. T is the
set of tags.

S(q, r) = cos(q, r) = tf (q, r)√∑
t∈T tf (t, r)2

(11.9)

This similarity S(q, r) between a query q and a tag t is personalized by the
interest of user u in a resource r resulting in similarities S ′(u, q, r) relating
users, queries, and resources: S′(u, q, r) = S(q, r) × I (u, r).

For the computation of clusters of tags, tags are represented as a vector of
weights over the set of resources. Both TF and TF-IDF can be applied; however,
TF-IDF showed better results. The idea of clustering is that similar terms, such
as web design and design, appear in similar clusters. Shepitsen et al. (2008)
experimented with various cluster methods, showing in their experiments that
agglomerative clustering leads to better improvements. Furthermore, Shepitsen
et al. (2008) they propose a query-dependent cluster method. The idea is that
given a query term (e.g., baseball), the clustering algorithm starts to build a
cluster of tags around the query term.

11.2 Folksonomies and more 269

In their evaluation, Shepitsen et al. (2008) showed the improvements com-
pared with a standard recommendation technique based on cosine similarity
exploiting test data from last.fm and del.icio.us; last.fm is a music community
web site; del.icio.us is a social bookmarking web service. Using a query-
dependent clustering technique showed higher improvements in the del.icio.us
test domain compared with last.fm. The authors assume that this comes from
the fact that the tags in last.fm have a higher density and are less ambiguous.

Comparison with classical collaborative methods. Sen et al. (2009) compare
various algorithms that explore tags for recommendation tasks. This compari-
son is based on the ratings of MovieLens users. The algorithms evaluated are
classified in two groups. Implicit-only algorithms do not explore an explicit
rating of items, but examine only feedback from the users, such as clicks or
searches. For example, if a user clicks on a movie, this could be interpreted as
a sign of interest. Explicit algorithms exploit the rating of items provided by
the user. Implicit-only methods are of special interest for domains in which the
users cannot provide ratings.

For the evaluation, the performance of the algorithms with respect to the so-
called recommendation task was measured. In particular, the task was to predict
the top-five rated movies for a user. All these movies should be top-rated (4
or 5 stars in the MovieLens domain) by the users in the test set. Precision is
applied as a metric. Twelve methods were compared, consisting of three naive
baseline approaches, three standard CF methods, and six tag-based algorithms.

With respect to the recommendation task, the conclusion of this evalua-
tion was that tag-based algorithms performed better than traditional methods
and explicit algorithms showed better results than implicit-only methods. The
best-performing approach was a combination of the best-performing explicit
tag-based algorithm with Funk’s value decomposition algorithm (described
by Koren et al. 2009).

In addition to the recommendation task, the so-called prediction task was
evaluated. In this task, the recommender system has to predict the rating of a
user. Sen et al. (2009) use the MAE to assess the quality of algorithms. Two
traditional CF methods, three baseline methods, and four tag-based algorithms
were compared. In this evaluation, the tag-based methods did not show an
improvement over the traditional CF methods. However, the evaluation was
conducted on one particular domain.

11.2.1.2 Folksonomies and collaborative filtering
We now present two approaches that extend collaborative filtering techniques by
tag information. The first one follows the memory-based method (Herlocker

270 11 Recommender systems and the next-generation web

et al. 1999), whereas the second one extends probabilistic matrix factoriza-
tion (Koren et al. 2009). Finally, we show how CF methods can be applied for
retrieving tagged items, given a query formulated as a set of tags.

Extensions of classical collaborative filtering methods. In contrast to a
content-based view of tags, recently some researchers viewed tags as addi-
tional information for discovering similarities between users and items in the
sense of CF.

In particular, Tso-Sutter et al. (2008) viewed tags as additional attributes
providing background knowledge. Although there is a reasonable amount of
work on integrating such additional information into CF, there are some im-
portant differences. Attributes in the classical sense are global descriptions
of items. However, when tags are provided by users for items, the usage of
tags may change from user to user. Consequently, tag information is local and
three-dimensional: tags, items, and users.

The basic idea of Tso-Sutter et al. (2008) is to combine user-based and
item-based CF. In user-based CF, usually the k most similar users are selected
to compute a recommendation. The similarity of users is based on their ratings
of items. Likewise, this similarity among users is influenced if users assign
the same (or similar) tags. Consequently, the tags are just viewed as additional
items. Therefore, the user–item rating matrix is extended by tags. The entries
of this matrix are just Boolean values indicating whether a user is interested in
an item or used a specific tag.

Similarly, item-based CF usually exploits the k most similar items rated by
a user. Tags are viewed as additional users and the user–item matrix is extended
by new users. The entries for these new users (i.e., the tags) are set to true if an
item was labeled by the tag.

The ratings of unrated items i for user u is computed by the following
formulas proposed by Tso-Sutter et al. (2008). The rating matrix Ox,y has entry
1 or 0 for users x and items y. The dimensions of this matrix differ, depending
on whether we apply user-based or item-based CF. Let Nu be the k most similar
neighbors based on some traditional CF method. The user-based prediction
value is computed by:

pucf(Ou,i = 1) := |{v ∈ Nu|Ov,i = 1}|
|Nu| (11.10)

For the computation of an item-based prediction value, the k most similar
items are exploited. Ni denotes these items, which are computed by applying
some standard CF similarity function. The similarity between items i and j is

11.2 Folksonomies and more 271

denoted by w(i, j). The item-based prediction value is computed by:

picf(Ou,i = 1) :=
∑

j∈Ni∩Ou,j =1

w(i, j) (11.11)

Because the ranges of pucf and picf are different, they are normalized in the
following combination formula. The parameter λ adjusts the significance of the
two predictions and must be adjusted for a specific application domain.

The combined prediction value is computed by

piucf(Ou,i = 1) := λ
pucf(Ou,i = 1)∑
i pucf(Ou,i = 1)

+ (1 − λ)
picf(Ou,i = 1)∑
i p

icf(Ou,i = 1)

(11.12)

Based on these combined prediction values, the unrated items of user u

can be ranked and the N top-ranked items are displayed to the user as a
recommendation.

Tso-Sutter et al. (2008) evaluated this method based on the data of last.fm.
Best results were achieved with λ = 0.4 and a neighborhood size of 20. The
evaluation showed a significant improvement when tag information was ex-
ploited. Interestingly, this improvement could be shown only if item-based and
user-based CF methods were combined.

The CF approach of Tso-Sutter et al. (2008) is a memory-based method. The
second main approach for CF is the so-called model-based method, which tries
to learn a model by employing statistical learning methods. Zhen et al. (2009)
extended probabilistic matrix factorization (PMF) to exploit tag information.
The key idea is to use tagging information to regularize the matrix factorization
procedure of PMF.

Tag-based collaborative filtering and item retrieval. In contrast to the pre-
viously described approaches, social ranking – as introduced by Zanardi and
Capra (2008) – is a method that aims to determine a list of potentially interest-
ing items in the context of a user query. This query can either consist of a list of
words provided by the user in a search engine scenario or be implicitly derived
in one way or another from the user profile in a more classical recommendation
scenario. Standard Web 2.0 search engines of this style use relatively simple
metrics that combine a measure of overlap of search keywords and resource
tags (ensuring accuracy) with a measure of how many users employed the par-
ticular tags for annotating the item (ensuring high confidence). Such measures,
however, are good at retrieving popular items but not the so-called long tail of
not-so-popular items.

272 11 Recommender systems and the next-generation web

In particular, we can distinguish between the long tail of tags and the long
tail of items. The long tail of tags refers to the phenomenon that most of the
tags are used only by a small subset of the user population. In the domain
studied by Zanardi and Capra (2008), roughly 70 percent of the tags were used
by twenty or fewer users, which represents roughly 0.08 percent of the whole
user set. This suggests that standard keyword search will fail because of the
small overlap of item tags and tags contained in a user query.

The long tail of items refers to the observation that most items are tagged
by a small portion of the user population – 85 percent of the items are tagged
by five or fewer users, as reported by Zanardi and Capra (2008). This suggests
that standard recommender techniques fall short because of the almost empty
overlap of user profiles.

Social ranking aims to overcome this problem by applying traditional CF
ideas in a new way – by using user and tag similarities to retrieve a ranked
list of items for a given user query. The similarity between users is determined
based on an analysis of their tagging behavior. A simple definition of similarity
is employed that states that users are considered similar if they have used the
same set of tags (ignoring on which resources these tags have been put). When
this information is encoded as a vector of tag usage counts, cosine similarity
can be used as a metric to quantify the similarity. Similarly, tag similarity is
calculated based on the co-occurrence of tags for a resource. Again, the cosine
similarity measure can be used.

The calculated similarities are then used in the subsequent, two-step query
phase as follows. To cope with the problem of free formulated tags, the original
query u is expanded with a set of similar tags to a larger query u∗. The main
idea here is to improve on the coverage measure, as users do not always use the
same set of keywords to describe items. An expansion based on tag similarity
will thus help to overcome this problem.

Next, all items that are tagged with at least one tag of u∗ are retrieved
and ranked. The ranking process is based on a function that consists of a
combination of (a) the relevance of the tags with respect to the query and (b)
the similarity of taggers to the active user who issued the query. The ranking
R(p) of item p is computed by summing up for every user ui the similarities
of the tags tx user ui used to tag p with the tags tj contained in the expanded
query q∗ posed by the active user u. This sum is amplified if the active user u

is similar to user ui :

R(p) =
∑
ui

⎛
⎝ ∑

{tx |ui tagged p with tx },tj ∈q∗
sim(tx, tj)

⎞
⎠ × (sim(u, ui) + 1) (11.13)

11.2 Folksonomies and more 273

The approach was evaluated on the CiteULike social bookmarking data.
Different views of the data have been used (compare with Massa and Avesani
2007), including heavy, medium, and low taggers, as well as popular and un-
popular items. As a baseline, a standard method was used, as described above.
It showed that social ranking consistently led to better results when it came to
the long tail – that is, when searches for medium- or low-taggers or unpopular
items were made. The query expansion method, quite intuitively, also helps
improve on the coverage measure and thereby reduces the number of unsuc-
cessful searches. Although the results are promising, further improvements
seem possible – for example, through the usage of other methods for finding
similar users or through the exploitation of external, semantic information (e.g.,
from WordNet) to make the query expansion more precise (Zanardi and Capra
2008).

As a side point, traditional recommender system algorithms (as well as
standard quality measures; see Huang et al. 2008 and Firan et al. 2007) have
been designed to work mostly on user-item matrices or content information. In
social web and Web 2.0 scenarios, additional sources of information (such as
trust relationships or tags) are available, however. Therefore, it can be expected
that additional ways of exploiting these knowledge sources in an integrated
way in Web 2.0 recommendation scenarios will be required in the future.

11.2.2 Recommending tags

As we see from these methods, one of the problems of folksonomies is that
users differ in the way they annotate resources, so some fuzziness is introduced
in the tags. This, in turn, hampers the computerized use of this information.

One way of alleviating this problem could be to enhance such a Web 2.0
system – such as a media-sharing platform – with an intelligent agent that
supports the user in selecting and assigning tags to resources. This could
not only help to align the sets of user tags but also serve as a motivator
for end users to annotate the resources. Some of today’s image and bookmark
sharing, as well as music, platforms already provide some user guidance and tag
recommendations. How these tagging suggestions are generated is, however,
not published. It can be assumed that tag usage frequencies are at the core of
these metrics.

The question arises of whether CF techniques can be a means for recom-
mending a set of tags. As mentioned earlier, the problem setting is a bit different
in folksonomies, as we do not have a two-dimensional user–item rating matrix
but rather ternary relationships among users, resources, and tags. Jäschke et al.
(2007) propose applying a nearest-neighbor approach, as follows: from the

274 11 Recommender systems and the next-generation web

original ternary relation (called Y), two different binary projections, the user
resource table πURY and the user-tag table πUTY , can be derived. The values in
these projections are binary. (πURY)u,r is, for instance, set to 1 if there exists
an element (u, t, r) in Y – that is, when the user u has rated resource r with an
arbitrary tag. Based on one of these projections, we can compute Nk

u , the set
of k most similar neighbors for a user u. The cosine similarity measure can be
used for comparing two rows of the matrix.

After the set of nearest neighbors Nk
u is determined, and given a resource r

and user u, we can compute the top n recommended tags T̃ (u, r) from the set
of all tags T for user u as follows:

T̃ (u, r) := argmaxn
t∈T

∑
v∈Nk

u

sim(�xu, �xv)δ(v, t, r) (11.14)

where δ(v, t, r) := 1 if (v, t, r) ∈ Y and 0 otherwise. �xu and �xv are the rows of
πUTY or πURY , depending on which of the possible projections was used.

As an alternative to this neighbor-based method, the same authors pro-
pose a recommendation technique based on FolkRank in Hotho et al. (2007).
FolkRank is a graph-based search and ranking method for folksonomies. As
the name suggests, it is inspired by PageRank, the underlying idea being that
when resources are annotated with “important” tags by “influential” users, the
resource will also become important and should be highly ranked in a search
result. Because a direct application of PageRank is not possible because of
the ternary nature of the relationships and the nondirectional relationships, an
alternative form of weight-spreading is proposed by Hotho et al. (2007).

Jäschke et al. (2007) report the results of an evaluation of different ap-
proaches based on datasets from the popular social bookmarking systems Bib-
sonomy and last.fm. To determine the prediction accuracy, a variant of the
standard leave-one-out method was chosen – that is, for a given resource the
system should predict the tags a certain user would assign. Besides the CF
variants and the graph-based FolkRank approach, an unpersonalized counting
metric (most popular tag by resource) was also evaluated. For this metric, it was
first counted how often every tag was associated with a certain resource. The
tags that occurred most often with a given resource r were then used as a rec-
ommendation. The evaluation showed that FolkRank led to the best results with
respect to both the recall and precision measure. The CF method performed
slightly better when the user-tag projection was used; when the user-rating
projection served as a basis, the performance of the CF algorithm was similar
to the most popular by resource metric. The baseline method recommend most
popular tags was outperformed by all other algorithms.

11.2 Folksonomies and more 275

In summary, it can be seen that better prediction accuracy can be achieved
with the computationally more expensive method based on FolkRank, and that
an unpersonalized and easy-to-compute popularity-based method can already
lead to relatively good results when compared with CF-based methods.

A new method that follows neither the PageRank nor the standard recom-
mendation approach is proposed by Krestel et al. (2009). The authors employ
the so-called latent Dirichlet allocation (LDA) to recommend tags. The basic
idea is that various topics (e.g., photography or how-to) are hidden in the set
of resources. Given a set of resources, tags, and users, LDA computes the
probability that a tag ti is related to a resource d by

P (ti |d) =
Z∑

j=1

P (ti|zi = j)P (zi = j |d) (11.15)

where zi represents a topic, P (ti|zi = j) is the conditional probability that tag ti

is related to topic j , and P (zi = j |d) is the conditional probability that topic j

is related to resource d. The number of topics Z is given as input. By exploiting
the Gibbs sampling method, these conditional probabilities are estimated. As
a result, by applying LDA, a numerical weight, expressing the association
between tags and resources, can be computed. This weight is subsequently
exploited to recommend tags for resources. Krestel et al. (2009) compare their
approach to methods based on mining of association rules showing better results
for LDA.

Krestel and Fankhauser (2009) extend this approach to tag recommendation
by also considering the content of resources and by using a mixture of the
unfactorized unigram language models with latent topic models. The evaluation
on the bibsonomy dataset, provided by the discovery challenge at European
Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML PKDD) (Buntine et al. 2009), showed that
on this dataset, language models slightly outperform latent topic models, but
the mixture of both models achieves the best accuracy. Moreover, combining
content with tags also yielded significant improvements.

A different method for generating tag recommendations on the popular
image-sharing platform Flickr.com is proposed by Sigurbjörnsson and van Zwol
(2008). In contrast to the aforementioned work, their recommendation system
is strongly based on “tag co-occurrence” and different aggregation/ranking
strategies. The method starts with a small set of given user-defined tags for an
image and bases the recommendation on the aggregation of tags that are most
frequently used together with the start set. Instead of simply using the “raw”
frequencies, some normalization is required (similar to the TF-IDF method) to

276 11 Recommender systems and the next-generation web

take the overall frequency of tag usages into account. The candidate tags are
then ranked (different strategies are possible) and a top-n list is presented to
the user.

Besides this ranking technique, Sigurbjörnsson and van Zwol (2008) also
introduce the idea of tag “promotion”. An analysis of “how users tag photos”
in the Flickr.com dataset showed that the tag frequency distribution follows the
power law and that this distribution can be used to determine a set of the most
promising candidates for recommendation. Very popular tags are too general
to be useful; rarely used words, on the other hand, are unstable predictors. The
evaluation of different promotion techniques based on a large extract of the
Flickr.com dataset showed that good improvements with respect to precision
can be achieved.

In contrast to the FolkRank method described above, the work of Sig-
urbjörnsson and van Zwol (2008) is based solely on data of an image-sharing
platform. To what extent their findings can also be transferred to other social
web platforms and other types of resources has not been analyzed so far. Ex-
amples for other recent collaborative, content-based, or probabilistic methods
for tag recommendation can be found in the work of Xu et al. (2006), Basile
et al. (2007), Byde et al. (2007), and Mishne (2006).

11.2.3 Recommending content in participatory media

Besides resource tagging and participation in social networks, a third aspect of
the second-generation web is the phenomenon of the increasing importance of
participatory media, in which users contribute the content – for instance, in the
form of blog messages.

On such media platforms – and in particular, on popular ones that have a
broad community of contributors – the problem of filtering out the interesting
messages quickly arises. At first glance, this problem is very similar to the
classical news filtering problem discussed in Chapters 2 and 3. This time,
however, we can hope to have more information available than just the active
user’s reading history and preference statements; we can additionally try to
exploit the information in the social network to judge whether the message is
important. Messages can, for instance, be judged to be important because other
users rated them highly, which is the standard CF setting. We have also seen
that explicit trust statements can help improve the accuracy of such estimates
of interest. Being allowed to issue only one trust statement per person might,
however, be too simplistic. In reality, we typically do not trust the opinion of a
friend on every topic. Moreover, we are often embedded in a social environment,

11.2 Folksonomies and more 277

in which there are particularly important persons whose opinions we generally
believe.

Given that more of this social information is available in Web 2.0, it would
be desirable to take these pieces of information properly into account when
recommending messages to a user. A first approach to incorporating such
phenomena that appear in real-world social relationships into a computerized
system has been made by Seth et al. (2008). In their work, they aim to develop a
metric of credibility that takes into account various factors that should implicitly
help to determine whether a recently posted message is credible (i.e., possibly
relevant and important) to a user.

One of the basic ideas of their approach is that their multidimensional credi-
bility measure is subjective – that is, different users may judge the credibility of
a posting differently, possibly depending on their context and their community.
In addition, Seth et al. postulate that credibility must be topic-specific – that
is, one can be a trusted expert in one field and not trusted when it comes to a
different subject area.

The proposed metric is based on various insights from the fields of media
studies, political science, and social networks and combines different aspects
that contribute to a person’s credibility. These aspects range from direct expe-
riences to the credibility we attribute to someone because of his or her role or
local community, and including, finally, the general opinion of the public about
a certain user. In Seth et al.’s model, each of the individual credibility measures
are captured in a real number [0 . . . 1] and combined in a Bayesian network to
an overall credibility estimate.

The Bayesian model is trained based on stochastic methods using the fol-
lowing data, which are assumed to be available:

� Messages are labeled with their authors (or posters) and a set of ratings that
describe the supposed credibility of the message. These ratings are, as usual,
provided by the users of the community.

� Users are explicitly connected with their “friends”.
� Every user can declare a list of topics in which he or she is interested. Based

on this, a set of topic-specific social network graphs can be derived, in which
clusters of users and links can be identified with the help of community
identification algorithms. From this, strong and weak ties between users can
be identified.

On arrival of a new message, the learned model can be used to make a
probabilistic prediction as to whether a user will find this message credible.

For evaluation purposes, a prepared data set from the digg.com knowledge
sharing platform was used. The digg.com web site allows users to post articles,

278 11 Recommender systems and the next-generation web

rate other items and also to connect to other users. Unfortunately, the first
reported measurements by Seth et al. (2008) are not yet fully conclusive. Still,
one can see this work as a further step toward the more extensive and integrated
usage of information in social web platforms, with the ultimate goal of filtering
interesting items more precisely in the future.

The idea to differentiate between users is also followed by Guy et al. (2009).
Basically, the authors build on the insight to distinguish between people who
are similar to a user and people who are familiar with a user.

The computation of a familiarity score between users is based on organiza-
tional charts, direct connections in a social network system, tagging of persons,
and coauthorship of various items, such as papers, wikis, and patents. The
computation of a similarity score is based on the co-usage of the same tag,
co-bookmarking of the same web page, and co-commenting on the same blog
entry. All these pieces of information are exploited to compute an overall score.
Based on these scores, information items such as web pages, blog entries, and
communities are recommended to users.

Furthermore, for a recommendation of an item, the names of the most
related persons are displayed, serving as a kind of explanation why this item is
recommended.

Guy et al. (2009) compared recommendations based exclusively on either
the familiarity, similarity, or overall score. Test persons were asked to classify
recommended items as interesting, not interesting, and already known. The
evaluation showed that recommendations based on the familiarity score were
classified as significantly more interesting than recommendations based on
the similarity score. In addition, it was shown that providing explanations as
described here results in a significant increase in the number of items classified
as interesting.

The study was conducted in a work environment and did not ask the utility
of the presented information objects for the users’ tasks. Therefore, it is open
whether the observed effect contributes rather to a persuasion or leads to the
discovery of information objects that indeed support the work process.

The problem of filtering information in Web 2.0 collaborative media plat-
forms is already in the focus of providers of commercial portal software. Nauerz
et al. (2008), for instance, report on the implementation of a “recommender of
background information” in the IBM WebSphere portal system. In their work,
the selection of similar documents is based on automatically extracted or man-
ually assigned meta-tags. Although details of the recommendation algorithms
are not given and a straightforward method can be assumed, this example shows
the practical relevance of providing additional support in Web 2.0 collaborative
systems.

11.3 Ontological filtering 279

11.3 Ontological filtering

As mentioned earlier, a fundamental building block of the Semantic Web is the
description of web resources by languages that can be interpreted by software
systems. In particular, the idea is to better locate information on the web by
such descriptions. Indeed, parts of the Semantic Web community deal with the
classification of web content that best matches the information need of users
by exploiting machine interpretable information – for example, web content is
annotated and a formal description language (e.g., OWL) is applied to deduce
classifications. This task shares many similarities with recommender systems
that aim at the classification of items that best fulfill some user needs.

In particular, one central idea of the Semantic Web is to formulate a domain
ontology (i.e., a logical theory) that is exploited to describe web resources
and to reason about the properties of these resources by inference systems.
Consequently, various researchers have applied ontologies to improve filtering
techniques of recommender systems. Of course, one can argue that, in fact,
long-known knowledge-based techniques have been applied, such as simple
inheritance taxonomies and other forms of logical description of items and their
relations. Therefore, these recommender systems are actually hybrid systems
leveraging their capabilities by knowledge-based methods.

Most of the research in this area, however, was published in the context of
the Semantic Web umbrella, and therefore we prefer to mirror this originally
intended classification.

11.3.1 Augmentation of filtering by taxonomies

Assume that there is an ontology describing the domain by a super-/subconcept
taxonomy with the meaning that every member of the subconcept is also a mem-
ber of the superconcept, but not necessarily vice versa. For example, news can
be classified by such an ontology, saying that news about “world soccer tourna-
ments” is more specific than news about “soccer”, which is more specific than
news about “sport”. In addition, news about “baseball” is different from news
about “soccer” but more specific than “sport”. In the following, we distinguish
between parent relations (e.g., “sport” is a parent of “soccer”) and grandparent
relations (e.g., “sport” is a grandparent of “world soccer tournaments”).

Based on this hierarchical ontology, items (e.g., pieces of information on
the web) can be associated with such concepts. The set of concepts associated
to an item is called the item profile. For example, a news item can be annotated
by the label “soccer”. Conversely, information about the interests of users can
be provided by associating concepts to individual users and annotating these

280 11 Recommender systems and the next-generation web

associations by the strength of their interests. The set of concepts associated
to a user is called the user profile. For example, a user is strongly interested
in “soccer” but not in “baseball”. Information about the interests of users can
be either provided directly by the users or acquired by indirect means, such as
observing which items are clicked. By such observations, the interests of users
can be continuously enhanced.

Given these three pieces of information (item profile, user profile, and the
domain taxonomy) Maidel et al. (2008) propose a similarity function between
items and user interests, in which the taxonomy is exploited.

Five different cases of matches were considered, in which each concept
ci in the item profile is assigned to a matching score depending on the user
profile.

Case a: The perfect match. The item concept ci is also contained in the user
profile – for example, both the user and item profiles contain “soccer”.

Case b: The item concept ci is a parent of a concept contained in the user
profile – for instance, the item concept is “sport” and the user profile
contains “soccer”.

Case c: The item concept ci is a child of a concept contained in the user
profile – for example, the item concept is “soccer” and the user profile
contains “sport”.

Case d: The item concept ci is a grandparent of a concept contained in the
user profile – for instance, the item concept is “sport” and the user profile
contains “world soccer tournaments”.

Case e: The item concept ci is a grandchild of a concept contained in the user
profile – for example, the item concept is “world soccer tournaments”
and the user profile contains “sport”.

For all the these cases, matching scores must be determined. Whereas the
matching score of case a (the perfect match) is 1 (the maximum), the score
values of the other cases must be determined. Intuitively, matching scores for
cases d and e, which are defined by grandparent/grandchild relations, are lower
than scores for cases b and c, which are specified by parent/child relations.

The degree of similarity between an item and a user is based on the profiles,
matching scores of the concepts in the two profiles, and on the weights of the
concepts in the user profile. The overall similarity score between item and user
is defined by

IS =
∑

ci∈I Nci
Sci∑

cj ∈U Ncj

(11.16)

11.3 Ontological filtering 281

where I is the item profile, U is the user profile, ci is a concept in the item
profile, cj is a concept in the user profile, Sci

is the matching score of concept
ci , and Ncj

is the number of clicks on items containing concept cj , representing
the weight of concept cj for the user. This weight of concepts for a user may
be given implicitly by monitoring the user or may be specified explicitly by the
user.

Formula 11.13 may be extended by weights representing the importance of
concepts in items (concept/item weights). In particular, the matching scores
Sci

can be multiplied by the weight of ci in the item. However, the evaluation
by Maidel et al. (2008) showed no significant improvements if concept/item
weights are considered. Furthermore, Maidel et al. (2008) experimented sys-
tematically with different settings of matching scores. It turned out that the best
choice is around a = 1, b = 0.8, c = 0.4, d = 0, and e = 0.2. Consequently,
after the perfect match, the next important parameter is b, representing the
match in which the item’s concept is a more general parent concept of a user’s
concept. The next important parameter is c, in which a user’s concept is a more
general parent concept of an item’s concept. The different weights depend on
the direction of the generalization. The parameters d and e, in which item and
user concepts are in a grandparent/grandchild relation, turned out to be less
important.

The extensive evaluation presented by Maidel et al. (2008) showed that
if weights of concepts representing the interests of users are given explicitly,
much better recommendation results can be achieved compared with the case in
which the interest of users is acquired during a session. Moreover, it was shown
that if the taxonomy is not considered in the overall similarity score IS (i.e.,
only perfect matches are counted), the recommendation quality significantly
drops. Consequently, the utility of exploiting taxonomies in matching user and
item profiles for improving the error in this type of recommender systems was
shown.

The approach of Maidel et al. (2008) was applied to recommend news, and
follows the idea of Middleton et al. (2004) to take advantage of the information
contained in taxonomies. Unfortunately, a comparison with Middleton et al.
(2004) is missing.

The underlying recommendation method of Middleton et al. (2004) is a com-
bination of content-based and collaborative techniques. The goal of the system
is to recommend “interesting” research papers to computer scientists. The in-
terests of a computer scientist are described by a set of computer science topics
(such as hypermedia, artificial intelligence, or agents); each topic is weighted
by a numerical value. These topics are organized in a subconcept-superconcept

282 11 Recommender systems and the next-generation web

hierarchy, forming a simple ontology of research fields and their subfields. For
example, papers in the field of recommender agents are papers in the agents
field, which are papers in the artificial intelligence field. Computer scientists in
a department read articles, and these articles form an article repository.

The idea of the Foxtrot system is based on the following information pieces;
given that we know the topics in which a researcher is interested and the topic
for each research paper, then we can estimate the interest a researcher possibly
has in a particular paper. To estimate the topics of research papers, the Foxtrot
system starts with a set of manually classified documents (the training set),
in which their topic is known. The topic of unclassified research papers is
estimated by classical content-based techniques. In particular, a research paper
is represented by its term frequency, in which the set of terms is reduced by
standard techniques, such as stemming and the application of a stop list to
remove common words.

The interests of researchers are determined by various data sources. Re-
searchers can explicitly declare in which topics they are interested. In addition,
the Foxtrot system monitors which papers a researcher browsed. Because the
topic of papers is known, it is assumed that the researcher is interested in this
topic. Based on this information, a topic interest value is computed. This topic
interest value is a summation of various single interest values. Given a user u

and a specific topic t , the topic interest value i(u, t) is increased for each paper
browsed by user u if the paper’s topic is classified to be t . Browsing papers
that are recommended by the system is given a higher weight. Furthermore,
the interest values of papers are weighted by time. The more recently a paper
was browsed, the higher its weight. In addition, the topic interest value is in-
creased or decreased by a certain amount if the user explicitly declared his or
her interest or disinterest. The most important fact of the computation of the
topic interest value is that the topic interest value of topic t is increased by 50
percent of the topic interest values of its subtopics.

Papers are ranked for a specific user by their recommendation value. The
recommendation value for a paper p and a user u is computed, as usual, by
summing over all topics t and multiplying the classification confidence (i.e., a
measure of how confident we are that paper p deals with topic t) and the topic
interest value of the user u in that topic t .

In an experimental evaluation, it was shown that the association of topics
to users is more accurate if the ontology of topics is employed compared to
the case in which only a flat list of topics was exploited. In addition, the
recommendation accuracy could be improved by using an ontology.

The cold-start problem is addressed by Middleton et al. (2004) by us-
ing previously published papers of researchers. These unclassified papers are

11.3 Ontological filtering 283

compared with the classified papers of the repository to estimate their topic
classification. The interest values of a user are computed based on the topics of
his or her published papers, weighting previously published papers higher. In
addition, the ontology of topics is exploited as described – the interest in a topic
is increased by some fraction depending on the interest values of the subtopics.
Furthermore, if the system is up and running and a new user is added, this new
user is compared with already participating users. The interest values of a new
user are adjusted depending on the interest values of similar users.

In contrast to the work of Middleton et al. (2004), the work of Ziegler et al.
(2004) follows a different strategy of propagated interests in a topic along the
taxonomy. Furthermore, a different strategy for computing recommendations
is developed that also addresses the problem of topic diversification – rec-
ommending not always more of the same, but pinpointing different but still
interesting items.

The basic idea of Ziegler et al. (2004) for incorporating taxonomic informa-
tion is to base the recommendation algorithm on the user’s interest in categories
of products. Consequently, user similarity is determined by common interests
in categories and not by common interests in items. The goal of this approach is
to reduce problems of collaborative filtering methods if user ratings are sparse.
The rationale is that although users have not rated the same item, they may show
common interest in a category – for instance, even though different books were
bought, these books can belong to the same topic.

In particular, Ziegler et al. (2004) assume a set of products B = {b1, . . . , bm}
and a set of user ratings Ri for every user ui where Ri ⊆ B. In this approach,
a user is either interested in a product if this product is in Ri , or we have
no information about his or her interest in a product if this product is not in
Ri . This is the typical case of e-commerce applications, in which interests in
products are implicitly rated by purchase data or product mentions. In addition,
a set of product categories D = {d1, . . . , dl} is given, representing topics into
which products may fall. These product topics are organized in a tree repre-
senting subconcept-superconcept relations between them. For every product, a
descriptor assignment function is defined that associates to each product bk a
subset Dk ⊆ D of topics. Product bk is a member of each topic in Dk .

Instead of representing a user’s interest by a vector of dimension |B| (i.e., for
each product the vector contains an entry), the user’s interests are characterized
by a vector of dimension |D|, in which each entry represents the interest of a
user in a topic.

Based on the user rating Ri , the set of products in which the user is interested
can be determined. By the descriptor assignment function, the topics can be
computed in which a user is interested. The interest in a topic is propagated

284 11 Recommender systems and the next-generation web

from the subtopics to the supertopics. The propagating depends on the number
of siblings a topic has. The fewer siblings a topic possesses, the more interest
is assigned to its supertopic. The results of this computation are user interest
vectors containing scores for topics. These user interest vectors are exploited
to compute the similarities of users based on Pearson correlation. Finally, as
usual, for each user the k nearest neighbors are determined.

The generation of recommendations combines two proximity values. User
proximity takes into account how similar two users are. If user uj recommends
an item to user ui , this recommendation receives more weight the closer the
interest profiles of ui and uj are. The second proximity exploited is called prod-
uct proximity. Here the idea is that the closer the topics of a product are to the
topics in which a user is interested, the higher the weight for recommending this
product. Based on these proximity values, weights for products are computed,
and the ordered set of the top N products represents the recommendation.

Finally, Ziegler et al. (2004) propose a method for topic diversification to
avoid the phenomenon that only products of the most interesting topic are
recommended. Here the idea is that the recommendation list is incrementally
expanded. The topics that have not been covered in the recommendation list so
far receive higher weights. These weights are increased for a topic dj depending
on the length of the list – the longer the list that does not contain an item of dj ,
the higher the weights.

Evaluations show the advantage of this approach compared with standard CF
approaches and hybrid approaches combining content-based and collaborative
filtering.

11.3.2 Augmentation of filtering by attributes

Mobasher et al. (2004) exploited semantic information to enhance item-based
CF. The basic idea is to use semantic information about items to compute
similarities between them. These semantic similarities are combined with sim-
ilarities based on past user ratings to estimate future user ratings. In particular, it
is assumed that an ontology describes a domain, such as movies. This ontology
describes the attributes used to characterize items. For example, in the movie
domain, these attributes are genre, actors, director, and name. In a further step,
the method assumes the instantiation of the ontology by items. Mobasher et al.
(2004) accomplished this instantiation process by web mining techniques.

To support the computation of item similarities, the instances are converted
into a vector representation. This conversion includes normalization and dis-
cretization of continuous attributes. The process also results in the addition of
new attributes, such as representing different intervals in a continuous range or

11.4 Extracting semantics from the web 285

representing each unique discrete value for categorial attributes. The outcome
of this process is a n × d matrix Sn×d , where n is the number of items and d

is the number of unique semantic attributes. Matrix S is called the semantic
attribute matrix.

In a further step, singular value decomposition (SVD) is applied to reduce
the number of attributes of the matrix. SVD is a well-known technique of latent
semantic indexing (Deerwester et al. 1990), which has been shown to improve
accuracy of information retrieval. Each dimension in the reduced space is a
latent variable representing groups of highly correlated attributes. Reducing
the dimensionality of the original matrix reduces noise of the data and its
sparsity, thus addressing inherent problems of filtering techniques.

Based on the semantic attribute matrix similarities, SemSim(ip, iq) for all
pairs of items ip and iq are computed. For this computation the standard
vector-based cosine similarity is applied. In addition, the usual item similarities
RateSim(ip, iq) are computed based on the ratings of users. Finally, these two
similarities are combined by a linear function: CombinedSim(ip, iq) = α ·
SemSim(ip, iq) + (1 − α) · RateSim(ip, iq). The best value for α depends on the
domain and is determined by a sensitivity analysis. The predictions of ratings for
a user ua regarding item it is realized by a weighted sum approach exploiting the
combined similarity values of k nearest neighbors (see Section 2.1). Mobasher
et al. (2004) reported results of an evaluation that show that the proposed
approach improves the prediction accuracy and that the application of SVD
results in further enhancements. Furthermore, the experiments show that the
approach produces reasonably accurate predictions of user ratings for new
items, thus alleviating the “new item problem” of CF techniques.

11.4 Extracting semantics from the web

Semantic information can provide valuable means for improving recommen-
dations. However, where does this information come from, and how costly and
reliable is the acquisition process?

To address this problem, we can distinguish two approaches to generate
semantic information. The first approach assumes that humans are provid-
ing semantics by annotating content and by declaring logical sentences. The
second approach is to develop software systems that are able to generate se-
mantics with little or no human intervention. Given the lessons learned in
applying knowledge-based systems, this second path is particularly attractive,
as it reduces the needed development and maintenance efforts.

In the work described by Shani et al. (2008), the basic idea is to generate the
information needed for CF systems through web mining. They developed two

286 11 Recommender systems and the next-generation web

different methods, WebCount and WebCrawl. WebCount is based on the cosine
score cosine(i1, i2) for binary ratings (i.e., the user expresses only that he or
she likes or does not like an item) where i1 and i2 are items, and count(i1, i2)
is the number of users who liked both item i1 and i2. count(i) is the number of
users who just liked i.

cosine(i1, i2) = count(i1, i2)

count(i1)count(i2)
(11.17)

Based on these scores, item-based recommendations can be computed as
described in Section 2.2. Shani et al. (2008) propose to use the number of pages
that list an item i as an approximation of the count of i. Similarly, count(i1, i2)
is estimated by the number of pages that mention both items. The simplest way
to acquire these numbers is to input the names of items into a web search engine
and to approximate the count by the number of hits returned – for instance, in
the movie domain, the movie names are exploited.

Obviously, this approach gives a rough estimation, which could be improved
by more sophisticated query and mining techniques. For the movie domain, a
simple improvement extends the query with additional keywords and filters,
such as “movie recommendations” OR “recommended movies” OR “related
movies” (Shani et al. 2008).

The WebCrawl method applies a more sophisticated strategy that, how-
ever, may not be generally applicable. The idea is that in web systems, which
host a web community, the members of such a community provide data for
item ratings in their profiles. In particular, in some web communities (such as
MySpace), members declare the list of movies or musicians they like. Each
page in WebCrawl is treated as a user, and the items recognized on this web
page are counted as a positive rating. Obviously, such a method could be easily
enhanced by more sophisticated web crawling techniques such as detecting if
the item is really a positive rating or rather negative.

Shani et al. (2008) describe a comparison of WebCount and WebCrawl
with a standard approach. This approach exploits the Netflix dataset, in which
users explicitly rated movies. This comparison showed that WebCrawl provided
the best recommendations. Ratings based on Netflix were close behind, with
WebCount somewhat worse. Given that the methods for mining the web could
be easily enhanced for both WebCount and WebCrawl, it seems reasonable
that web mining techniques will play an important role in improving the data
collection for CF techniques. The results suggest that in the movie domain,
the user–item matrix generated by crawling MySpace has similar or better
quality compared with the one derived from the Netflix ratings. In addition, the
results of the simple WebCount method were surprisingly good, as more than

11.4 Extracting semantics from the web 287

ClusteringxCrawl

Fact extraction

Internet
(search engine)

Search for related
web sites and

pages

Identification of
pages, attributes,

values

Clustering of
descriptions,
extraction of

names

Domain ontology

6: Pages with
descriptions

1: Keywords
3: URLs

2: Queries

4: Validation, recognition,
and feedback

7: Groups of descriptions5: Ontology

Extraction of
attribute/value

pairs

8: Ontology instances

Recommender
system

Export/import

Figure 11.3. Workflow of the AllRight ontology instantiation system.

70 percent of the recommendation lists computed by WebCount were classified
as reasonable by the users.

As shown by the contribution of Shani et al. (2008), CF systems can take
advantage of the huge amount of information on the web. However, the ex-
ploitation of the web to enhance recommendation technology is not limited to
collaborative methods. In fact, web mining techniques have a high potential to
reduce the efforts for implementing and maintaining the knowledge bases of
knowledge-based recommender systems.

In particular, knowledge-based recommenders require a description of all
available products and their attributes. Acquiring and maintaining this data
could be a costly and error-prone task. Jannach et al. (2009) describe the
AllRight system, which instantiates an ontology by exploiting tabular web
sources.

The basic idea of the AllRight system is to search the web for tables de-
scribing products (e.g., digital cameras), which are the information sources to
populate product ontologies. For this task, numerous problems must be solved,
as the web content is designed to be easily comprehended by humans, but not
by machines. Figure 11.3 depicts the workflow of the AllRight system, which
also shows the major challenges.

In a first step, the knowledge engineer must specify the set of attributes that
describe the products of a domain (e.g., digital cameras). This description in-
cludes the domains of the attributes and their units. In addition, the knowledge
engineer can associate keywords to attributes and units reflecting the fact that

288 11 Recommender systems and the next-generation web

various names are used to name attributes and units. As shown in Figure 11.3,
the system exploits these keywords (1) to crawl the web by xCrawl, by post-
ing queries (2) and downloads (3) all web pages that describe products of the
domain. The downloaded pages are analyzed by the Identification component
(4) to check if the pages contain the desired product descriptions. This is sup-
ported by the domain ontology, which provides constraints exploited by the
validation. To correct errors, it is desirable to have many redundant descrip-
tions of products, as this allows us to clean data by statistical methods. The
identified pages containing product information are forwarded to a module that
clusters the pages so each cluster describes one product (7). In a further step,
attribute/value pairs are extracted from these clusters, which serve as an input
to create instances of the domain ontology (8). The result is a fact extraction
system that achieves an F-measure between 0.8 and 0.9 for digital cameras and
laptops, which served as test domains.

11.5 Summary

In this chapter we have shown the opportunities, current methods, and realiza-
tions of Web 2.0 and the Semantic Web for the field of recommender systems.
With these new developments of the web, we are able to exploit additional in-
formation so users can be better served by recommender technology. We have
shown how this information can contribute to more trustworthy and qualita-
tive enhanced recommendations satisfying information needs. In particular, we
started with approaches exploiting very little semantics (lightweight ontolo-
gies) and moved to semantically richer domains. Finally, we pointed out how
semantics can be extracted from the web.

We must acknowledge, however, that the advancements of the web are still
tremendously fast. Consequently, we have provided the current state, which
outlines the fundamental development paths of web-based recommender tech-
nology. Both Web 2.0 and the Semantic Web in combination not only drive new
technologies but, maybe even more important, also have huge impacts on soci-
ety regarding the communication and interaction patterns of humans. This can
be impressively observed through the success and growth rate of various web-
based service and communication platforms. Technological as well as social
developments provide, on one hand, new means to improve recommendation
methods, but on the other hand, generate new demands for supporting humans
with advice in a more complex and faster moving world. Consequently, we will
see many new developments and high-impact applications of recommender
technology in the context of Web 2.0 and the Semantic Web, boosted by a
growing interest of major Internet players.

12

Recommendations in ubiquitous environments

In previous sections we restricted our discussion of the application and use of
recommender systems to the context of traditional websites. When information
systems extend their reach to offer access and interaction opportunities virtually
anywhere, however, the so-called ubiquitous environments become application
domains for recommender systems.

In this chapter, we therefore discuss the idiosyncrasies of recommending
in ubiquitous environments compared with traditional web applications. First
we reflect on the evolution of mobile systems and the associated technological
issues in a short introductory statement. Second, we focus on the challenges and
proposed algorithms for introducing additional context data, such as location.
Finally, we provide an overview of selected application domains and related
work.

12.1 Introduction

Mobile applications have always been a domain for recommendation because
small display sizes and space limitations naturally require access to personal-
ized information, on one hand, and location provides an additional exploitable
source of user feedback, on the other hand. Since the end of the 1990s, research
into mobile applications has focused heavily on adaptivity with regards to het-
erogenous hardware and software standards (see Miller et al. 2003). Therefore,
most proposed mobile applications have remained in a prototypical state and
have been evaluated only in small field trials with a limited scope for usage.
One exception in this respect is the ClixSmart system (Smyth and Cotter 2002),
which personalizes users’ navigation on mobile portals and has been evaluated
and fielded in real-world scenarios. For most scientific prototypes, however,

289

290 12 Recommendations in ubiquitous environments

wider productive use has been hindered for reasons such as restrictive hardware
requirements or client-side software installations.

Nevertheless, some of these limitative circumstances are now starting to
disappear. For instance, the latest generation of smart phones (and also net-
books) not only has more powerful CPUs and better displays than previous
generations, but many of these devices also come with built-in GPS modules
that can be used to determine geographical position, which can, in turn, be used
as contextual knowledge. In addition, modern wireless broadband data trans-
fer standards and low network access prices make this technology affordable
for a broader user community. Therefore, location-aware mobile applications,
such as Google Maps, have already become common among early technol-
ogy adopters. Subsequently, research is beginning to focus on user experience
and interaction design. In a current study conducted by Jannach and Hegelich
(2009), the impact of different algorithms recommending games were com-
pared. However, only 2 percent of all mobile users participating in this field
experiment actually rated at least one of the proposed items explicitly. Thus,
sparsity of user feedback in particular must be addressed when building rec-
ommender systems in the mobile context. Further research questions that come
up in ubiquitous application domains are, for instance

� What are the specific goals of recommender systems in a mobile context?
Do users expect serendipitous recommendations, or is it more important to
be pointed to things that are close to one’s current position?

� What are the implications of contextual parameters such as localization for
the design of recommendation algorithms? Is location just another prefer-
ence, a requirement that is always strictly enforced, or something in between?

� Is there something such as a mobile application domain, or are there plenty
of different scenarios that only partially share common characteristics, such
as city and museum guides, recommender systems for tourists and visitors,
or ad-hoc work networks, to name a few?

� What role does the modality of interaction play when addressing users “on
the go”? Pushing information can be useful to draw recipients’ attention to
“windows of opportunity” close to them, but the users’ permission is surely
needed. Comparable to permission-based marketing, how should permission
protocols for “push” recommendations function?

Although these questions remain essentially unanswered because of the lack
of results from case studies and surveys, we discuss current research into the
context awareness of recommendation algorithms, present selected examples
of pilot systems in different application domains (in Subsection 12.3), and
conclude with a short summary.

12.2 Context-aware recommendation 291

12.2 Context-aware recommendation

Context awareness is a requirement for recommender systems that is partic-
ularly relevant in ubiquitous domains. Whereas some researchers denote vir-
tually any domain aspect as context, we will denote as context only situation
parameters that can be known by the system and may have an impact on the
selection and ranking of recommendation results. Shilit et al. (1994) name the
most important aspects of context as where you are, who you are with, and
what resources are nearby. Exploiting the current location of the user, his or
her companions, and the availability of resources in his or her surroundings can
considerably increase the perceived usefulness of a mobile application. Dix
et al. (2000) discuss awareness of space and location with respect to inter-
active mobile systems from a design perspective that also includes virtual
worlds, although we will focus only on physical worlds in our discussion.
Ranganathan and Campbell (2003) see context as “any information about the
circumstances, objects or conditions surrounding a user that is considered
relevant to the interaction between the user and the ubiquitous computing
environment”. Thus, context denotes additional information to what is tra-
ditionally represented in a user model, such as demographics or interests,
and refers to “physical contexts (e.g., location, time), environmental contexts
(weather, light and sound levels), informational contexts (stock quotes, sports
scores), personal contexts (health, mood, schedule, activity), social contexts
(group activity, social activity, whom one is in a room with), application con-
texts (emails, websites visited) and system contexts (network traffic, status of
printers)” (Ranganathan and Campbell 2003). As becomes obvious from this
enumeration, the border between user model and context is not well defined.
In particular, differentiating between ephemeral and short-term user interests,
with the latter constituting largely what is also considered as personal or appli-
cation context, has always been the focus of user modeling and personalization
research.

A context-aware user model for personalization is also sketched by Anand
and Mobasher (2007). A person buying and rating books might do this in
different situations. Sometimes the person buys fiction books for himself or
herself, but sometimes books are work related or for children. Thus, Anand and
Mobasher (2007) argue that aggregating all the information in a simple, not
context-aware, user profile is suboptimal, and they propose a recommendation
method that can take this contextual information better into account. Their
approach relies on a more complex user model that has both long-term and
short-term memories, supporting the automated generation of “contextual cues”
from the short-term memory.

292 12 Recommendations in ubiquitous environments

Thus, even early recommendation systems such as Fab (Balabanović and
Shoham 1997) that differentiated between short- and long-term interest profiles
can be seen as implementing some form of context awareness. However, here
we denote only approaches that focus on impersonal context parameters, such
as location, as context-aware.

Schwinger et al. (2005) give an overview of the different levels of context
awareness implemented by mobile tourism guides, and Höpken et al. (2008)
present a two-dimensional framework that matches contextual dimensions with
the adaptation space of a mobile tourist guide. They argue that a mobile guide
possesses several dimensions according to which its functionality and appear-
ance can be adapted, such as content elements (e.g., topic, textual content,
images); interface design issues such as modality, layout and structure, or navi-
gation options, and behavioral and interactivity aspects. Therefore, they propose
that a change in a specific context dimension such as the client technology of the
device can have implications for several of the adaptation dimensions. Whereas
Höpken et al. (2008) address adaptation aspects in general of ubiquitous appli-
cations with web interfaces, in this section we focus only on the implications
of context-awareness for the function of recommendation systems themselves.

At a minimum, most systems filter the presented information content ac-
cording to users’ current location and consider additional preferences (e.g.,
“display only objects from category A”). However, such approaches are quite
static and do not include machine learning aspects such as content-based or col-
laborative filtering. Lee et al. (2006), for instance, first mine relevant personal
factors from historic data that seem to influence users’ choice for restaurants
and produce a recommendation list based on the user’s personal preferences.
Second, restaurant recommendations considering only their proximity to the
user’s current location are computed, and finally a weighted list of both is
presented to the requestor.

Adomavicius et al. (2005) consider the notion of context in recommen-
dation by proposing a multidimensional approach. They formalize contextual
information in a general way by encompassing additional data dimensions.
Adomavicius and Tuzhilin (2005) traditionally understand recommendation as
a two-dimensional function rec : U × I �→ R that maps a user (U) and an item
dimension (I) onto a utility score R, as already discussed in Chapter 5. Conse-
quently, the multidimensional approach defines the rating function recmd over
an arbitrary n-dimensional space D1 × · · · × Dn:

recmd : D1 × · · · × Dn �→ R (12.1)

The domain space Di can, for instance, be location, time, or companion. To
derive predictions from such multidimensional ratings data, a reduction-based

12.2 Context-aware recommendation 293

approach can be employed that restricts the ratings matrix to entries that con-
form to the context criteria. For instance, when one wants to compute whether a
user will like a specific restaurant that is situated in a city, only ratings of restau-
rants in the city and none located in the countryside will be considered. Such an
approach makes sense only if the quality of recommendations is improved when
the ratings input is reduced by a specific situational context such as location.
In addition, exploiting only a limited segment of ratings data based on some
contextual parameters sharply aggravates the cold-start problems mentioned in
Chapter 2. In particular, reduction-based approaches that consider several con-
textual dimensions in parallel become rather impractical for applications with
a relatively small-scale user base. Adomavicius et al. (2005) therefore propose
additional enhancements such as aggregating several contextual segments and
combining the approach with traditional two-dimensional recommendation as
a fallback scenario. An obvious example is the aggregation of ratings from
Monday to Friday as weekday ratings, in which an aggregation function such
as average is employed to resolve potential conflicts when the same item is
rated by the same user at different time points.

Adomavicius et al. (2005) experimentally evaluated their approach in the
movie domain, in which for instance they employed the place where the movie
was watched (home or theatre), the time (weekday or weekend), the type of
friends who were present, as well as release information about the movie in-
dicating its novelty as contextual data dimensions. Their approach was able to
outperform a traditional two-dimensional collaborative filtering recommender
system in terms of accuracy on an historical dataset. However, they observed
that not all contextual segments positively contribute to recommendation re-
sults, and therefore they employed a preselection mechanism that identifies
segments that reach significant improvements.

Another approach, presented by Bohnert et al. (2008), studied the sequence
patterns of visitor locations in museums and developed interest and transition
models to predict a visitor’s next locations. They collected a dataset from
tracking real visitors in a museum that contains the sequences of exhibitions
they observed, as well as their interest profiles. The latter were derived from
content descriptions of exhibits and by interpreting relative viewing times
of exhibits as implicit ratings. The interest model considers only the visitor’s
relative interest and does not take the order of visits into account. In contrast, the
transition model reflects the probabilities of transitions between two exhibitions
(i.e., locations) that allows the algorithm to predict the next locations by finding
a maximum probability sequence of k unvisited exhibitions. Although their
findings need to be considered preliminary because of the small size of the
dataset, they observed that the transition model significantly outperformed the

294 12 Recommendations in ubiquitous environments

interest model and that a hybrid exploiting both models could provide only
minor additional improvements. In any case, this is an additional argument
in favor of considering the location context in ubiquitous recommendation
applications.

Ranganathan and Campbell (2003) applied first-order predicate calculus to
ensure a transparent line of reasoning on context models. Contexts are thus
first-order predicates, and logical rules allow higher-level concepts to be de-
rived from low-level sensor information. Thus the proposed system represents
a deductive user model for context management that can be queried by recom-
mendation algorithms in order to receive input for personalization.

Having discussed the different viewpoints of context-awareness and hinted
at a few computation schemes that can reason on context, we now examine the
variety of different systems and prototypes that have been constructed.

12.3 Application domains

Mobile recommendation applications have been shown to be a very active
area, and applications have been fielded in domains such as tourism, cultural
heritage, or commerce in general.

M-Commerce. M-commerce refers to monetary transactions that are con-
ducted via wireless networks. The adoption of context awareness for m-
commerce applications is crucial for their success. Tarasewich (2003) distin-
guished between the context of the participant, the environment he or she is in,
and the activities currently being carried out. Ngai and Gunasekaran (2007) pro-
vide meta-research classifying published work on m-commerce. Both motivate
the necessity of information reduction and context sensitivity for this applica-
tion domain, although recommendation is not explicitly mentioned. However,
recommender system research is particularly active in the following subfield of
m-commerce.

Tourism and visitor guides. The tourism industry as one of the biggest eco-
nomic sectors worldwide, together with the fact that travelers have specific
information needs, makes this domain a natural choice for mobile information
systems. Kabassi (2010) provides a coherent overview of recommendation ap-
plications that also includes a comparative analysis with respect to contextual
aspects such as weather, season, or distance. Cyberguide, an experimental tour
guide that provides location-aware services (Abowd et al. 1997), was one of the
pioneers in this field. It requires, however, a specific personal digital assistant

12.3 Application domains 295

(PDA) hardware platform. In comparison, the GUIDE system (Cheverst et al.
2002b) is a context-aware mobile guide for visitors to the city of Lancaster,
requiring an end system with a touch screen and the ability to run Java appli-
cations. The system offers its users adaptive pull-based access to information
that builds on existing wireless networking infrastructure. In addition, Cheverst
et al. (2002a) explored the appropriateness of information push for this appli-
cation domain in a small field trial. One of the findings was that people showed
enthusiasm for push-based guidance information, but context-aware support
requires very fine-grained location information. For instance, users want to be
notified when they take a wrong turn, or an attraction should be announced
when it first comes into the visitor’s field of vision. However, such detailed
context information requires specific hardware that cannot be assumed to be
available in a usage scenario with a wider scope.

Ardissono et al. (2005) presented the interactive tourist information guide
INTRIGUE, which was developed on the basis of a multiagent infrastructure
for the personalization of web-based systems. It not only personalizes the
content presented by ranking items according to assumed user interest but
also customizes the information according to the display capabilities of the
user device (Ardissono et al. 2003). INTRIGUE incorporates a fuzzy utility-
based personalization approach for ranking results, and it also supports group
recommendation.

The Dynamic Tour Guide (DTG) is a mobile agent that supports visitors
in locating attractions of interest and proposes personalized tour plans for the
German city of Goerlitz-Zittau (Kramer et al. 2006). It implements a semantic
match algorithm to determine the user’s assumed interest for city attractions
and computes a personalized tour plan. Comparable to INTRIGUE, the DTG
system also needs initial acquisition of personalization knowledge. The system
is aware of the location and time context, for instance, and the description
of an attraction depends on the user’s position. The tour plan is rearranged
based on the progress made and the remaining time. However, the system is
not specifically a tour guide with detailed background knowledge about sights
and attractions; rather, the system focuses on offering a wide range of useful
information during a visit to the historic city.

The COMPASS application (van Setten et al. 2004) is a context-aware mo-
bile personal assistant based on 3G network services. It uses a recommendation
service to offer its users interactive maps with a set of nearby points of interest.
The system integrates different types of context awareness, such as location,
time, or weather, with recommendation functionality. Interestingly, one of the
findings of van Setten et al. (2004) is that a large share of users want to de-
cide for themselves which contextual factors should be taken into account and

296 12 Recommendations in ubiquitous environments

which should not. Nguyen and Ricci (2007a) developed a critique-based mo-
bile recommender system that recommends restaurants and enables its users
not only to specify their initial preferences but also to critique recommended
items. Thus users can not only reject a proposal but can also give reasons why.
Their user study showed that the additional constraints acquired from users
during the interactive process lead to more satisfied users.

Adaptation to technical restrictions such as display size and personalization
of presented content, as addressed by some of the aforementioned systems,
are provided by the innsbruck.mobile system (Höpken et al. 2006). Its fo-
cus lies on widespread and actual use among tourists, and therefore avoids
client-side installation requirements. One of its novelties is the support of two
different types of communication paradigms. First, information seekers have
personalized browsing access to categories such as events, sights, restaurants,
or accommodations. However, in addition to its web-based information pull
service, the system also supports context-aware information push (Beer et al.
2007) that regularly provides, for instance, weather and news messages as well
as security warnings. It is configured by event-condition-action rules, in which
events trigger the evaluation of the subsequent conditions. Examples of possi-
ble events are rapid weather changes, time points, or intervals, as well as users
entering specific location areas. An outstanding pecularity of innsbruck.mobile
is that prior to its development, substantial empirical research was performed
into the usage intentions of Tyrolean tourists. Rasinger et al. (2007) asked
tourists if they would use, for instance, a sightseeing or event guide, and what
type of features, such as search and browse functionality, recommendation, or
push services, would be most useful. Interestingly, users identified weather and
news, transport and navigation, and security to be the most important mobile
information services for tourists.

SPETA (Garcia-Crespo et al. 2009) is a recently proposed social perva-
sive e-tourism advisor that combines Semantic Web techniques, geographic
information system (GIS) functionality, social networks features, and context
awareness. Its recommendation functionality consists of of a hybridization
component that combines several filters that reduce the set of potential recom-
mendations based on context, domain knowledge, and collaborative filtering in
parallel.

Cultural heritage and museum guides. Mobile guides for archeological sites
or museums providing multimedia services, such as Archeoguide (Vlahakis
et al. 2002) or MobiDENK (Kroesche et al. 2004), typically impose specific
hardware requirements on their potential users. MobiDENK runs on a PDA and
is a location-aware information system for historic sites. It displays multimedia

12.4 Summary 297

background information on monuments of historic significance. Archeoguide
goes a step further and reconstructs ruined sites and simulates ancient life in
an augmented reality tour with a head-mounted display. As already outlined
in Section 12.2, Bohnert et al. (2008) analyzed the sequence patterns of mu-
seum visitors’ locations to predict their next locations. The museum guide
LISTEN, presented by Zimmermann et al. (2005), generates a personalized
three-dimensional audio experience based on the assumed interests of users
because of their walking patterns and their specific location. For determining
the latter, sensors of the ubiquitous environment provide input to the system,
and actuators display visual and acoustic objects. Pilot applications for such
ubiquitous technologies are also popular for the domain of home computing
and consumer electronics in general, as the reader will see next.

Home computing and entertainment. Nakajima and Satoh (2006) present,
for instance, software infrastructure that supports spontaneous and personal-
ized interaction in home computing. Their notion of “personalized” basically
means that users are able to personally configure and adapt smart devices in
their environment based on their preferences and on specific situations. In
this respect, “portable personalities” denotes the existence of distributed user
models for the same user, each of which holds only partial information. Thus
merging, harmonization, and reuse of these models becomes necessary when
personalization and recommendation are applied in scenarios such as those
discussed by Uhlmann and Lugmayr (2008).

12.4 Summary

Rapid technical advancements toward ever more powerful mobile devices and
their fast market penetration are reality. Therefore, mobile applications – and
ubiquitous applications in general – constitute a promising application domain
for different types of personalization and recommendation. The context aware-
ness of applications is thereby a necessity, as they have to coexist with activities
such as walking, driving, or communicating. This is the main difference from
traditional web applications that may assume the undivided attentiveness of
their users.

When analyzing the distribution of research work on recommendation in
mobile and ubiquitous environments, it is obvious that the tourism application
domain is by far the most active field. Despite this, not many applications
have been evaluated in broad field studies and involving not only students,
perhaps with the exceptions of Rasinger et al. (2007) and Jannach and Hegelich

298 12 Recommendations in ubiquitous environments

(2009), for instance. One of the challenges for wide-scale application of tourism
recommenders is the availability of extensive and accurate resource data. For
instance, a mobile restaurant recommender requires not only the positioning
coordinates of all restaurants within a specific region but also some additional
qualitative data, such as the type of food served, the atmosphere perceived
by guests, or the business hours. As acquisition and maintenance of product
data are quite cost-intensive, only widespread use and acceptance of mobile
recommendation applications by end users will justify the development effort.
An approach that partially addresses this problem by automated generation of
additional semantic knowledge from geocoded information objects is presented
by Zanker et al. (2009). It derives qualitative evidence for a given object, such as
proximity to beaches or aptness for specific sports activities, from the fact that
other geocoded objects that are known to be beach resorts or sports facilities are
nearby. They apply this approach to the tourism domain to help users identify
regions that match their holiday preferences and interests.

One even more fundamental bottleneck will have to be resolved before rec-
ommendation applications can become successful in ubiquitous environments:
technical interoperability between ubiquitous devices themselves (Shacham
et al. 2007) and the privacy concerns of users.

When seen only from the viewpoint of recommendation technology, in most
practical applications support of context basically denotes the filtering out of in-
appropriate items based on context parameters such as location. Consequently,
more research with respect to context awareness in recommender systems in
the sense of Adomavicius et al. (2005) will be needed.

13

Summary and outlook

13.1 Summary

Recommender systems have their roots in various research areas, such as in-
formation retrieval, information filtering, and text classification, and apply
methods from different fields, such as machine learning, data mining, and
knowledge-based systems. With this book, we aimed to give the reader a broad
overview and introduction to the area and to address the following main topics:

� Basic recommendation algorithms: We discussed collaborative and content-
based filtering as the most popular recommendation technologies. In addi-
tion, the basic recommendation schemes, as well as different optimizations,
limitations, and recent approaches, were presented.

� Knowledge-based and hybrid approaches: As the value of exploiting addi-
tional domain knowledge (in addition to user ratings or item “content”) for
improving a recommender system’s accuracy is undisputed, two chapters
were devoted to knowledge-based and hybrid recommender systems. We
discussed both knowledge-based recommendation schemes, such as con-
straint and utility-based recommendation, as well as possible hybridization
strategies.

� Evaluation of recommender systems and their business value: In most cases,
recommender systems are e-commerce applications. As such, their busi-
ness value and their impact on the user’s decision-making and purchasing
behavior must be analyzed. Therefore, this book summarized the standard
approaches and metrics for determining the predictive accuracy of such sys-
tems in the chapter on recommender systems evaluation. A further chapter
was devoted to the question of how recommender systems can influence
the decision-making processes of online users. Finally, a comprehensive

299

300 13 Summary and outlook

case study demonstrated that recommender systems can help to measurably
increase sales.

� Recent research topics: Further chapters of the book were devoted to re-
search areas at the forefront of the field. Topics included the opportunities
for employing recommendation technology in Web 2.0, ubiquity aspects for
recommendations, and the question of how to prevent attacks on recom-
mender systems.

Even though this book covered a broad range of topics, it cannot cover every
possible technique or algorithm optimization in detail owing to its introductory
nature and the speed of development within the field. Therefore, selections
and compromises had to be made, for instance, with respect to the presented
application domains. Examples were given for both classical domains, such as
books or movies, and less obvious application fields, such as financial products.
A discussion of further application domains, such as music recommendation or
recommenders for the tourism domain (see, e.g., Staab et al. 2002 or Jannach
et al. 2007), which also have their own peculiarities and may require specific
recommendation techniques, is beyond the scope of this book.

13.2 Outlook

We conclude the book with a subjective selection of current developments, as
well as emerging future problem settings in recommender systems research,
many of which were not or were only partially covered in this work.

Improved collaborative filtering techniques. Although a massive number of
algorithms and optimizations for the basic CF schemes have been developed
over the past fifteen years, new techniques or combinations of CF methods
are continually being proposed. A recent example for a rather simple ap-
proach is described by Zhang and Pu (2007), whose basic idea is to recursively
make predictions for neighbors of the active user u who are very similar to
u but have not rated the target item, to improve recommendation accuracy.
In addition to such improvements, the Netflix Prize (Bell et al. 2009) com-
petition1 gave CF research an additional boost recently: in 2006, the online
DVD rental company Netflix announced a US $1 million prize for the team
whose recommendation system could improve the accuracy of their existing
recommendation algorithm (measured in terms of the root mean square error
[RMSE]) by 10 percent. The competition was won in 2009 in a joint effort by

1 http://www.netflixprize.com.

13.2 Outlook 301

four different competitors. The accuracy improvements were reached by using
a combination of various techniques (Töscher et al. 2008). The main aspects
were the inclusion of the time aspect as a third aspect beside movies and users,
the calculation and combination of various predictors, new techniques such as
“neighborhood-aware matrix factorization”, and the automatic fine-tuning of
parameters.

Context awareness. Time aspects – as mentioned above – are only one of
many additional pieces of information that could be taken into account in
recommendation tasks. Recent works, for instance, have also tried to take
additional context aspects of the user into account. Under the term context,
various aspects of the user’s situation can be subsumed:

� A rather simple form of contextual information, which was discussed in
Chapter 12, is the user’s current geographical location, which might be
exploited not only for ubiquitous or mobile recommendation scenarios but
also in the context of the geospatial web in general.

� Time, in the sense of weekday or current time of the day, can also be seen as
contextual information. Users might, for instance, be interested in different
news topics at different times of the week.

� The emotional context of the user is another interesting dimension that will
surely have an impact in some domains. For instance, in the classic movie
domain, the user’s mood will obviously affect how much users like movies
of specific genres. González et al. (2007) present an approach that captures
this emotional context of users.

� Accompanying persons represent another context dimension that is surely
relevant for making recommendations. The term group recommendations
has become popular in this regard and is used, for instance, by McCarthy
et al. (2006).

When the context of the user’s decision process is captured explicitly, rec-
ommender systems may exploit multicriteria ratings containing this contextual
information as an additional source of knowledge for improving the accuracy
of recommendations. In contrast with classical settings, which allow each user
issues exactly one rating per item, multicriteria ratings would, for example,
permit the user to evaluate a movie along different dimensions, such as plot,
actors, and so forth. Initial promising methods for exploiting this additional
information are reported by Adomavicius and Kwon (2007) and Lee and Teng
(2007). One practical example for the use of multicriteria ratings is the e-tourism
platform tripadvisor.com. There, users can rate hotels along dimensions such
as value, price, or location. Unfortunately, however, no standard datasets for

302 13 Summary and outlook

multicriteria ratings are freely available yet, which makes the development and
comparison of different methods extremely difficult.

Recommendation on algorithms and techniques. Since the first algorithms
and systems that have now become known as recommender systems were de-
veloped, myriad new techniques and improvements have been proposed. Thus,
from the perspective of design science (Hevner et al. 2004) the research com-
munity was very productive in coming up with more scalable and more accurate
algorithms. From the viewpoint of behavioral science, however, more research
efforts are needed before we can develop an explanatory theory as to why
and how recommender systems affect users’ decision processes. In addition,
prescriptive theory is required to guide practitioners in terms of which domains
and situations are suitable for which recommendation algorithms. Some initial
thoughts toward recommending recommenders were made by Ramezani et al.
(2008), but clearly more research in this direction will take place.

User interaction issues/virtual advisors. More elaborate user interaction
models are relevant not only in mobile recommender systems but also in classi-
cal web-based systems, in particular where additional knowledge sources, such
as explicit user preferences, can be leveraged to improve the recommendation
process. The provision of better explanations or the use of “persuasive” tech-
nologies are examples of current research in the area. In addition, we believe
that more research is required in the area of conversational user interaction –
for example, into the development of dialog-based systems for interactive pref-
erence elicitation. Also, the use of natural language processing techniques, as
well as multimodal, multimedia-enhanced rich interfaces, is, in our opinion,
largely unexplored, although it is an important step in the transition between
classical recommender systems and “virtual advisors” (Jannach 2004).

Such next-generation recommenders might someday be able to simulate the
behavior of an experienced salesperson. Instead of only filtering and ranking
items from a given catalog, future advisory systems could, for instance, help
the user interactively explore the item space, conduct a dialog that takes the
customer’s skill level into account, help the user make compromises if no item
satisfies all of his or her requirements, give intuitive explanations why certain
items are recommended, or provide personalized arguments in favor of one
particular product.

Recommendation techniques will merge into other research fields. Over
the past few years, the research field has experienced considerable growth; the
annual ACM conference series on recommender systems attracted more than

13.2 Outlook 303

200 submissions in 2010. We expect that additional interest in the basic building
blocks of recommendation systems, such as user modeling and personalized
reasoning, will come from neighboring and related fields such as information
retrieval. The personalization of search results might transform search engines
into context-aware recommender systems in the future. Moreover, the enormous
growth of freely available user-generated multimedia content, thanks to Web
2.0, will lead to emphasis on personalized retrieval results (Sebe and Tian
2007). Analogously, recommending appropriate items could also be of interest
in other fast growing areas such as the “Internet of Things” or the “Web of
Services”. Thus the authors are convinced that knowledge of recommendation
techniques will be helpful for many application areas.

Bibliography

G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper, and M. Pinkerton, Cy-
berguide: A mobile context-aware tour guide, Wireless Networks 3 (1997), no. 5,
421–433.

G. Adomavicius and Y. O. Kwon, New recommendation techniques for multicriteria
rating systems, Intelligent Systems, IEEE 22 (2007), no. 3, 48–55.

G. Adomavicius, R. Sankaranarayanan, S. Sen, and A. Tuzhilin, Incorporating contex-
tual information in recommender systems using a multidimensional approach, ACM
Transactions on Information Systems 23 (2005), no. 1, 103–145.

G. Adomavicius and A. Tuzhilin, Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions, IEEE Transactions on
Knowledge and Data Engineering 17 (2005), no. 6, 734–749.

R. Agrawal and R. Srikant, Fast algorithms for mining association rules, Proceedings
of the 20th International Conference on Very Large Data Bases (VLDB’94), Morgan
Kaufmann, 1994, pp. 487–499.

J. Allan, J. Carbonell, G. Doddington, J. Yamron, and Y. Yang, Topic detection and track-
ing pilot study final report, Proceedings of the DARPA Broadcast News Transcription
and Understanding Workshop, 1998, pp. 194–218.

S. S. Anand and B. Mobasher, Intelligent techniques for web personalization, Lecture
Notes in Computer Science, vol. 3169, Springer, Acapulco, Mexico, 2005, pp. 1–36.

S. S. Anand and B. Mobasher, Contextual recommendation, From Web to Social Web:
Discovering and Deploying User and Content Profiles: Workshop on Web Mining
(Berlin, Germany), Springer, 2007, pp. 142–160.

L. Ardissono, A. Felfernig, G. Friedrich, A. Goy, D. Jannach, G. Petrone, R. Schäfer,
and M. Zanker, A Framework for the Development of Personalized, Distributed Web-
Based Configuration Systems, AI Magazine 24 (2003), no. 3, 93–110.

L. Ardissono, A. Goy, G. Petrone, and M. Segnan, A multi-agent infrastructure for de-
veloping personalized web-based systems, ACM Transactions on Internet Technology
5 (2005), no. 1, 47–69.

L. Ardissono, A. Goy, G. Petrone, M. Segnan, and P. Torasso, Intrigue: Personalized
recommendation of tourist attractions for desktop and handset devices, Applied
Artificial Intelligence 17 (2003), no. 8–9, 687–714.

E. Aronson, T. Wilson, and A. Akert, Social psychology, 6th ed., Pearson Prentice Hall,
2007.

305

306 Bibliography

R. Baeza-Yates and B. Ribeiro-Neto, Modern information retrieval, Addison-Wesley,
1999.

M. Balabanović and Y. Shoham, Fab: content-based, collaborative recommendation,
Communications of the ACM 40 (1997), no. 3, 66–72.

P. Basile, D. Gendarmi, F. Lanubile, and G. Semeraro, Recommending smart tags in a
social bookmarking system, Proceedings of the International Workshop Bridging the
Gap between Semantic Web and Web 2.0 at ESWC 2007 (Innsbruck, Austria), 2007,
pp. 22–29.

C. Basu, H. Hirsh, and W. Cohen, Recommendation as classification: using social and
content-based information in recommendation, in Proceedings of the 15th National
Conference on Artificial Intelligence (AAAI’98) (Madison, WI), American Associa-
tion for Artificial Intelligence, 1998, pp. 714–720.

G. Beenen, K. Ling, X. Wang, K. Chang, D. Frankowski, P. Resnick, and R. Kraut, Using
social psychology to motivate contributions to online communities, Proceedings of
the 2004 ACM Conference on Computer Supported Cooperative Work (CSCW ’04)
(Chicago), 2004, pp. 212–221.

T. Beer, M. Fuchs, W. Höpken, J. Rasinger, and H. Werthner, Caips: A context-aware
information push service in tourism, Proceedings of the 14th International Confer-
ence on Information and Communication Technologies in Tourism 2007 (ENTER)
(Ljubljana, Slovenia), Springer, January 2007, pp. 129–140.

F. Belanger, A conjoint analysis of online consumer satisfaction, Journal of Electronic
Commerce Research 6 (2005), 95–111.

R. Bell, J. Bennett, Y. Koren, and C. Volinsky, The million dollar programming prize,
IEEE Spectrum (2009), 28–33.

R. M. Bell, Y. Koren, and C. Volinsky, The BellKor solution to the Netflix Prize, Tech. Re-
port http://www.netflixprize.com/assets/ProgressPrize2007 KorBell.pdf, AT&T Labs
Research, 2007.

A. Bellogı́n, I. Cantador, P. Castells, and A. Ortigosa, Discerning relevant model fea-
tures in a content-based collaborative recommender system, Preference Learning
(J. Fürnkranz and E. Hüllermeier, eds.), Springer, 2010.

L. D. Bergman, A. Tuzhilin, R. Burke, A. Felfernig, and L. Schmidt-Thieme (eds.),
Proceedings of the 2009 ACM Conference on Recommender Systems (RecSys ’09),
New York, 2009.

S. Berkovsky, Y. Eytani, T. Kuflik, and F. Ricci, Enhancing privacy and preserving accu-
racy of a distributed collaborative filtering, Proceedings of the 2007 ACM Conference
on Recommender Systems (RecSys ’07) (Minneapolis), ACM, 2007, pp. 9–16.

J. Bettman, M. Luce, and J. Payne, Constructive consumer choice processes, Journal of
Consumer Research 25 (1998), no. 3, 187–217.

R. Bhaumik, R. D. Burke, and B. Mobasher, Crawling attacks against web-based
recommender systems, Proceedings of the 2007 International Conference on Data
Mining (DMIN ’07) (Las Vegas) (Robert Stahlbock, Sven F. Crone, and Stefan
Lessmann, eds.), June 2007, pp. 183–189.

R. Bhaumik, C. Williams, B. Mobasher, and R. Burke, Securing collaborative filtering
against malicious attacks through anomaly detection, Proceedings of the 4th Work-
shop on Intelligent Techniques for Web Personalization (ITWP ’06) (Boston), July
2006.

Bibliography 307

D. Billsus and M. Pazzani, User modeling for adaptive news access, User Modeling
and User-Adapted Interaction: The Journal of Personalization Research 10 (2000),
no. 2–3, 147–180.

D. Billsus and M. J. Pazzani, Learning collaborative information filters, Proceedings of
the 15th International Conference on Machine Learning (ICML’98), Morgan Kauf-
mann, San Francisco, 1998, pp. 46–54.

D. Billsus and M. J. Pazzani, A personal news agent that talks, learns and explains,
Proceedings of the 3rd Annual Conference on Autonomous Agents (AGENTS’99)
(Seattle), ACM, 1999, pp. 268–275.

D. Billsus and M. J. Pazzani, Adaptive news access, The Adaptive Web (Peter
Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl, eds.), Lecture Notes in Computer
Science, vol. 4321, Springer, 2007, pp. 550–570.

D. Billsus, M. J. Pazzani, and J. Chen, A learning agent for wireless news access,
Proceedings of the 5th International Conference on Intelligent User Interfaces (IUI
’00) (New Orleans), ACM, 2000, pp. 33–36.

F. Bohnert, I. Zukerman, S. Berkovsky, T. Baldwin, and L. Sonenberg, Using interest
and transition models to predict visitor locations in museums, AI Communications
21 (2008), no. 2–3, 195–202.

C. Bomhardt, NewsRec, a SVM-driven Personal Recommendation System for News
Websites, Proceedings of the 2004 IEEE/WIC/ACM International Conference on Web
Intelligence (WI ’04) (Washington, DC), IEEE Computer Society, 2004, pp. 545–548.

S. Botti and S. Iyengar, The psychological pleasure and pain of choosing: When people
prefer choosing at the cost of subsequent outcome satisfaction, Journal of Personality
and Social Psychology 87 (2004), no. 3, 312–326.

A. Bouza, G. Reif, A. Bernstein, and H. Gall, Semtree: Ontology-based decision tree
algorithm for recommender systems, International Semantic Web Conference (Posters
and Demos), CEUR Workshop Proceedings, vol. 401, CEUR-WS.org, 2008.

J. S. Breese, D. Heckerman, and C. M. Kadie, Empirical analysis of predictive algo-
rithms for collaborative filtering, Proceedings of the 14th Conference on Uncertainty
in Artificial Intelligence (Madison, WI) (Gregory F. Cooper and Serafı́n Moral, eds.),
Morgan Kaufmann, 1998, pp. 43–52.

W. F. Brewer, C. A. Chinn, and A. Samarapungavan, Explanation in scientists and
children, Minds and Machines 8 (1998), no. 1, 119–136.

D. Bridge, M. Göker, L. McGinty, and B. Smyth, Case-based recommender systems,
Knowledge Engineering Review 20 (2005), no. 3, 315–320.

S. Brin and L. Page, The anatomy of a large-scale hypertextual web search engine,
Computer Networks and ISDN Systems 30 (1998), no. 1–7, 107–117.

B. G. Buchanan and E. H. Shortliffe, Rule-based expert systems: The Mycin experiments
of the Stanford Heuristic Programming Project (the Addison-Wesley series in artificial
intelligence), Addison-Wesley Longman, Boston, 1984.

C. Buckley, G. Salton, and J. Allan, The effect of adding relevance information in
a relevance feedback environment, Proceedings of the 17th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR’94) (Dublin), Springer, 1994, pp. 292–300.

W. L. Buntine, M. Grobelnik, D. Mladenic, and J. Shawe-Taylor, European conference
on machine learning and principles and practice of knowledge discovery in databases,

308 Bibliography

ECML/PKDD (1) (Bled, Slovenia), Lecture Notes in Computer Science, vol. 5781,
Springer, September 2009.

R. Burke, Knowledge-based recommender systems, Encyclopedia of Library and Infor-
mation Science 69 (2000), no. 32, 180–200.

, Interactive critiquing for catalog navigation in e-commerce, Artificial Intelli-
gence Review 18 (2002a), no. 3–4, 245–267.

R. Burke, The wasabi personal shopper: A case-based recommender system, Proceed-
ings of the 16th National Conference on Artificial Intelligence and the 11th Innovative
Applications of Artificial Intelligence Conference Innovative Applications of Arti-
ficial Intelligence (AAAI’99/IAAI’99) (Orlando, FL), AAAI Press, 1999, pp. 844–
849.

, Hybrid recommender systems: Survey and experiments, User Modeling and
User-Adapted Interaction 12 (2002b), no. 4, 331–370.

R. Burke, P. Brusilovsky and A. Kobsa and W. Nejdl, Hybrid web recommender sys-
tems, The Adaptive Web: Methods and Strategies of Web Personalization, Springer,
Heidelberg, Germany, 2007, pp. 377–408.

R. Burke, K. Hammond, and B. Young, The findme approach to assisted browsing, IEEE
Expert 4 (1997), no. 12, 32–40.

R. Burke, K. J. Hammond, and B. C. Young, Knowledge-based navigation of com-
plex information spaces, Proceedings of the 13th National Conference on Artificial
Intelligence (AAAI ’96) (Portland, OR), AAAI Press, 1996, pp. 462–468.

R. Burke, B. Mobasher, and R. Bhaumik, Limited knowledge shilling attacks in col-
laborative filtering systems, in Proceedings of the 3rd IJCAI Workshop in Intelligent
Techniques for Personalization (Edinburgh, Scotland), 2005, pp. 17–24.

A. Byde, H. Wan, and S. Cayzer, Personalized tag recommendations via tagging and
content-based similarity metrics, Proceedings of the International Conference on
Weblogs and Social Media (ICWSM ’07), poster session (Boulder, CO), 2007.

J. Canny, Collaborative filtering with privacy, Proceedings of the 2002 IEEE Symposium
on Security and Privacy (SP ’02) (Washington, DC), IEEE Computer Society, 2002a,
pp. 45–57.

, Collaborative filtering with privacy via factor analysis, Proceedings of the
25th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’02) (Tampere, Finland), ACM, 2002b, pp. 238–245.

G. Carenini and J. Moore, Generating and evaluating evaluative arguments, Artificial
Intelligence 170 (2006), 925–952.

G. Carenini and J. D. Moore, An empirical study of the influence of user tailoring
on evaluative argument effectiveness, Proceedings of the 17th International Joint
Conference on Artificial Intelligence (IJCAI ’01) (Seattle) (Bernhard Nebel, ed.),
Morgan Kaufmann, August 2001, pp. 1307–1312.

G. Carenini and R. Sharma, Exploring more realistic evaluation measures for collabo-
rative filtering, Proceedings of the 19th National Conference on Artificial Intelligence
(AAAI) (San Jose, CA), AAAI Press, 2004, pp. 749–754.

O. Celma and P. Herrera, A new approach to evaluating novel recommendations, Pro-
ceedings of the 2008 ACM Conference on Recommender Systems (RecSys ’08)
(Lausanne, Switzerland), ACM Press, 2008, pp. 179–186.

S. Chakrabarti, Mining the web: Discovering knowledge from hypertext data, Science
and Technology Books, 2002.

Bibliography 309

P. Chau, M. Cole, A. Massey, M. Montoya-Weiss, and R. O’Keefe, Cultural differences
in the online behavior of consumers, Communications of the ACM 10 (2002), no. 45,
138–143.

S. H. S. Chee, J. Han, and K. Wang, Rectree: An efficient collaborative filtering method,
Proceedings of the 3rd International Conference on Data Warehousing and Knowledge
Discovery (Munich), 2001, pp. 141–151.

K. Chellapilla and P. Y. Simard, Using machine learning to break visual human interac-
tion proofs (HIPS), Proceedings of the 18th Annual Conference on Neural Information
Processing Systems (NIPS ’04), 2004, pp. 265–272.

L. Chen and P. Pu, Trust building in recommender agents, 1st International Work-
shop on Web Personalisation, Recommender Systems and Intelligent User Interfaces
(WPRSIUI ’05) (Reading, UK), 2005, pp. 135–145.

, A cross-cultural user evaluation of product recommender interfaces, Pro-
ceedings of the 2008 ACM Conference on Recommender Systems (RecSys ’08)
(Lausanne, Switzerland), ACM, 2008, pp. 75–82.

Y.-H. Chen and E. I. George, A Bayesian model for collaborative filtering, in Proceedings
of Uncertainty 99: The Seventh International Workshop on Artificial Intelligence and
Statistics (Fort Lauderdale, FL), January 1999.

J. A. Chevalier and D. Mayzlin, The effect of word of mouth on sales: Online book
reviews, Journal of Marketing Research 43 (2006), no. 9, 345–354.

K. Cheverst, K. Mitchel, and N. Davies, Exploring context-aware information push,
Personal and Ubiquitous Computing 6 (2002a), no. 4, 276–281.

, The role of adaptive hypermedia in an context-aware tourist guide, Commu-
nications of the ACM 45 (2002b), no. 5, 47–51.

D. Chickering, D. Heckerman, and C. Meek, A Bayesian approach to learning Bayesian
networks with local structure, Proceedings of the 13th Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI ’97) (San Francisco), Morgan Kaufmann, 1997,
pp. 80–89.

P.-A. Chirita, W. Nejdl, and C. Zamfir, Preventing shilling attacks in online recom-
mender systems, Proceedings of the 7th Annual ACM International Workshop on
Web Information and Data Management (WIDM ’05) (Bremen, Germany), ACM,
2005, pp. 67–74.

Y. H. Cho, C. Y. Kim, and D.-H. Kim, Personalized image recommendation in the
mobile internet, Proceedings of 8th Pacific Rim International Conference on Artificial
Intelligence (PRICAI ’04) (Auckland, New Zealand), Lecture Notes in Computer
Science, vol. 3157, Springer, 2004, pp. 963–964.

B. Choi, I. Lee, J. Kim, and Y. Jeon, A qualitative cross-national study of cultural
influences on mobile data, Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’05) (Portland, OR), ACM, 2005, pp. 661–
670.

M. Claypool, A. Gokhale, T. Miranda, P. Murnikov, D. Netes, and M. Sartin, Combin-
ing content-based and collaborative filters in an online newspaper, Proceedings of
the ACM SIGIR Workshop on Recommender Systems: Algorithms and Evaluation
(Berkeley, CA), 1999.

W. Cohen, Learning rules that classify e-mail, Proceedings of the AAAI Symposium
on Machine Learning in Information Access (Stanford, CA) (Marti Hearst and Haym
Hirsh, eds.), 1996, pp. 18–25.

310 Bibliography

W. W. Cohen, Fast effective rule induction, Proceedings of the 12th International Con-
ference on Machine Learning (ICML ’95) (Tahoe City, CA) (Armand Prieditis and
Stuart Russell, eds.), Morgan Kaufmann, July 1995, pp. 115–123.

L. Console, D. T. Dupre, and P. Torasso, On the relationship between abduction and
deduction, Journal of Logic and Computation 1 (1991), no. 5, 661–690.

D. Cosley, S. Lam, I. Albert, J. Konstan, and J. Riedl, Is seeing believing? How rec-
ommender system interfaces affect users’ opinions, Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (CHI ’03) (Fort Lauderdale, FL),
2003, pp. 585–592.

P. Cotter and B. Smyth, PTV: Intelligent personalised tv guides, Proceedings of the 17th
National Conference on Artificial Intelligence and 12th Conference on Innovative
Applications of Artificial Intelligence, AAAI Press/MIT Press, 2000, pp. 957–964.

J. W. Creswell, Research design: Qualitative, quantitative and mixed methods ap-
proaches, 3rd ed., SAGE Publications, 2009.

A. S. Das, M. Datar, A. Garg, and S. Rajaram, Google news personalization: scalable
online collaborative filtering, Proceedings of the 16th International Conference on
World Wide Web (WWW ’07) (New York), ACM Press, 2007, pp. 271–280.

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, Indexing
by latent semantic analysis, Journal of the American Society for Information Science
41 (1990), 391–407.

M. de Gemmis, P. Lops, G. Semeraro, and P. Basile, Integrating tags in a semantic
content-based recommender, Proceedings of the 2008 ACM Conference on Recom-
mender Systems (RecSys ’08), ACM, Lausanne, Switzerland, 2008, pp. 163–170.

C. Dellarocas, Strategic manipulation of internet opinion forums: Implications for con-
sumers and firms, Management Science 52 (2006), no. 10, 1577–1593.

F. H. del Olmo and E. Gaudioso, Evaluation of recommender systems: A new approach,
Expert Systems with Applications 35 (2008), no. 3, 790–804.

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete
data via the EM algorithm, Journal of the Royal Statistical Society, Series B 39
(1977), no. 1, 1–38.

J. Demšar, Statistical comparisons of classifiers over multiple data sets, Journal of
Machine Learning Research 7 (2006), 1–30.

M. Deshpande and G. Karypis, Item-based top-n recommendation algorithms, ACM
Transactions on Information Systems 22 (2004), no. 1, 143–177.

M. B. Dias, D. Locher, M. Li, W. El-Deredy, and P. J. G. Lisboa, The value of per-
sonalised recommender systems to e-business: a case study, Proceedings of the 2008
ACM Conference on Recommender Systems (RecSys ’08) (Lausanne, Switzerland),
2008, pp. 291–294.

A. Dix, T. Rodden, N. Davies, J. Trevor, A. Friday, and K. Palfreyman, Exploiting space
and location as a design framework for interactive mobile systems, ACM Transactions
on Computer-Human Interaction 7 (2000), no. 3, 285–321.

P. Domingos and M. J. Pazzani, Beyond independence: Conditions for the optimality of
the simple Bayesian classifier, Proceedings of the 13th International Conference on
Machine Learning (ICML ’96) (Bari, Italy), 1996, pp. 105–112.

, On the optimality of the simple Bayesian classifier under zero-one loss, Ma-
chine Learning 29 (1997), no. 2-3, 103–130.

P. Duttweiler, The internal control index: A newly developed measure of locus of control,
Educational and Psychological Measurement 44 (1984), 209–221.

Bibliography 311

B. Fasolo, G. McClelland, and P. Todd, Escaping the tyranny of choice: When fewer
attributes make choice easier, Marketing Theory 7 (2007), no. 1, 13–26.

A. Felfernig and R. Burke, Constraint-based recommender systems: technologies and
research issues, Proceedings of the 10th International Conference on Electronic Com-
merce (ICEC ’08) (Innsbruck, Austria), ACM, 2008, pp. 1–10.

A. Felfernig, G. Friedrich, B. Gula, M. Hitz, T. Kruggel, R. Melcher, D. Riepan,
S. Strauss, E. Teppan, and O. Vitouch, Persuasive recommendation: Exploring se-
rial position effects in knowledge-based recommender systems, Proceedings of the
2nd International Conference of Persuasive Technology (Persuasive ’07) (Stanford,
California), vol. 4744, Springer, 2007a, pp. 283–294.

A. Felfernig, G. Friedrich, M. Schubert, M. Mandl, M. Mairitsch, and E. Teppan.
Plausible Repairs for Inconsistent Requirements, Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI ’09), Pasadena, California, USA,
pp. 791–796, 2009.

A. Felfernig, G. Friedrich, D. Jannach, and M. Stumptner, Consistency-based diagnosis
of configuration knowledge bases, Artificial Intelligence 152 (2004), no. 2, 213–
234.

A. Felfernig, B. Gula, G. Leitner, M. Maier, R. Melcher, S. Schippel, and E. Teppan, A
dominance model for the calculation of decoy products in recommendation environ-
ments, Proceedings of the AISB Symposium on Persuasive Technologies (Aberdeen,
Scotland), vol. 3, University of Aberdeen, 2008a, pp. 43–50.

A. Felfernig, B. Gula, and E. Teppan, Knowledge-based recommender technologies
for marketing and sales, International Journal of Pattern Recognition and Artificial
Intelligence 21 (2006), no. 2, 1–22.

A. Felfernig, K. Isak, K. Szabo, and P. Zachar, The VITA financial services sales support
environment, Proceedings of the 22nd National Conference on Artificial Intelligence
(AAAI ’07), AAAI, 2007b, pp. 1692–1699.

A. Felfernig, M. Mairitsch, M. Mandl, M. Schubert, and E. Teppan, Utility-based
repair of inconsistent requirements, 22nd International Conference on Industrial, En-
gineering and Other Applications of Applied Intelligent Systems, IEA/AIE (Tainan,
Taiwan), 2009, pp. 162–171.

A. Felfernig and K. Shchekotykhin, Debugging user interface descriptions of
knowledge-based recommender applications, Proceedings of the 11th International
Conference on Intelligent User Interfaces (IUI ’06) (Sydney, Australia), ACM Press,
2006, pp. 234–241.

A. Felfernig and E. Teppan, The asymmetric dominance effect and its role in e-tourism
recommender applications, Proceedings of Wirtschaftsinformatik 2009, Austrian
Computer Society, 2009, pp. 791–800.

A. Felfernig, E. Teppan, G. Leitner, R. Melcher, B. Gula, and M. Maier, Persuasion in
knowledge-based recommendation, Proceedings of the 2nd International Conference
on Persuasive Technologies (Persuasive ’08) (Oulu, Finland), vol. 5033, Springer,
2008c, pp. 71–82.

A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker, An environment for the de-
velopment of knowledge-based recommender applications, International Journal of
Electronic Commerce 11 (2006), no. 2, 11–34.

A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker, An integrated environment for the
development of knowledge-based recommender applications, International Journal of
Electronic Commerce 11 (2006–07), no. 2, 11–34.

312 Bibliography

A. Felfernig and B. Gula, An empirical study on consumer behavior in the interaction
with knowledge-based recommender applications, Proceedings of the 8th IEEE Inter-
national Conference on E-Commerce Technology (CEC ’06)/3rd IEEE International
Conference on Enterprise Computing, E-Commerce and E-Services (EEE ’06) (Palo
Alto, CA), 2006, p. 37.

C. S. Firan, W. Nejdl, and R. Paiu, The benefit of using tag-based profiles, Proceedings
of the 2007 Latin American Web Conference (LA-WEB ’07) (Washington, DC),
IEEE Computer Society, 2007, pp. 32–41.

D. M. Fleder and K. Hosanagar, Recommender systems and their impact on sales
diversity, Proceedings of the 8th ACM Conference on Electronic Commerce (EC
’07) (San Diego, California, USA), 2007, pp. 192–199.

B. J. Fogg, Persuasive technologies, Communications of the ACM 42 (1999), no. 5,
26–29.

, Persuasive technology – using computers to change what we think and do,
Morgan Kaufmann, 2003.

P. W. Foltz and S. T. Dumais, Personalized information delivery: an analysis of infor-
mation filtering methods, Communications of the ACM 35 (1992), no. 12, 51–60.

J. H. Friedman, On bias, variance, 0/1–loss, and the curse-of-dimensionality, Data
Mining and Knowledge Discovery 1 (1997), no. 1, 55–77.

G. Friedrich, Elimination of spurious explanations, Proceedings of the 16th European
Conference on Artificial Intelligence (ECAI ’04), including Prestigious Applicants
of Intelligent Systems (PAIS ’04) (Valencia, Spain) (Ramon López de Mántaras and
Lorenza Saitta, eds.), IOS Press, August 2004, pp. 813–817.

X. Fu, J. Budzik, and K. J. Hammond, Mining navigation history for recommendation,
Proceedings of the 5th International Conference on Intelligent User Interfaces (IUI
’00) (New Orleans), ACM, 2000, pp. 106–112.

A. Garcia-Crespo, J. Chamizo, I. Rivera, M. Mencke, R. Colomo-Palacios, and J. M.
Gómez-Berbı́s, Personalizing recommendations for tourists, Telematics and Infor-
matics 26 (2009), no. 3, 306–315.

S. Garcı̀a and F. Herrera, An extension on “statistical comparisons of classifiers over
multiple data sets” for all pairwise comparisons, Journal of Machine Learning Re-
search 9 (2008), 2677–2694.

T. George and S. Merugu, A scalable collaborative filtering framework based on co-
clustering, Proceedings of the 5th IEEE International Conference on Data Mining
(ICDM ’05) (Washington, DC), IEEE Computer Society, 2005, pp. 625–628.

F. Gershberg and A. Shimamura, Serial position effects in implicit and explicit tests of
memory, Journal of Experimental Psychology: Learning, Memory, and Cognition 20
(1994), no. 6, 1370–1378.

G. Gigerenzer, Bauchentscheidungen, Bertelsmann Verlag, March 2007.
J. Golbeck, Semantic web interaction through trust network recommender systems, End

User Semantic Web Interaction Workshop at the 4th International Semantic Web
Conference, Galway, Ireland, 2005.

, Generating predictive movie recommendations from trust in social networks,
Proceedings of the 4th International Conference on Trust Management (iTrust ’06)
(Pisa, Italy), May 2006, pp. 93–104.

J. Golbeck and J. Hendler, Inferring binary trust relationships in web-based social
networks, ACM Transactions Internet Technology 6 (2006), no. 4, 497–529.

Bibliography 313

D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, Using collaborative filtering to weave
an information tapestry, Communications of the ACM 35 (1992), no. 12, 61–70.

K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, Eigentaste: A constant time collab-
orative filtering algorithm, Information Retrieval 4 (2001), no. 2, 133–151.

N. Golovin and E. Rahm, Reinforcement learning architecture for web recommen-
dations, Proceedings of the International Conference on Information Technology:
Coding and Computing (ITCC ’04) (Las Vegas), vol. 2, 2004, pp. 398–402.

G. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix,
Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical
Analysis 2 (1965), no. 2, 205–224.

G. Gonzalez, B. Lopez, and J. D. L. Rosa, The emotional factor: An innovative approach
to user modelling for recommender systems, Proceedings of AH2002 Workshop on
Recommendation and Personalization in e-Commerce (Malaga, Spain), 2002, pp. 90–
99.

G. González, J. L. de la Rosa, and M. Montaner, Embedding emotional context in recom-
mender systems, Proceedings of the 20th International Florida Artificial Intelligence
Research Society Conference (Key West, FL), AAAI Press, 2007, pp. 454–459.

S. Grabner-Kräuter and E. A. Kaluscha, Empirical research in on-line trust: a review
and critical assessment, International Journal of Human-Computer Studies 58 (2003),
no. 6, 783–812.

D. Grether and C. Plott, Economic theory of choice and the preference reversal phe-
nomenon, American Economic Review 69 (1979), no. 4, 623–638.

U. Gretzel and D. Fesenmaier, Persuasion in recommender systems, International Journal
of Electronic Commerce 11 (2006), no. 2, 81–100.

I. Grigorik, SVD recommendation system in ruby, web blog, 01 2007, http://
www.igvita.com/2007/01/15/svd-recommendation-system-in-ruby/ [accessed March
2009].

R. Guha, R. Kumar, P. Raghavan, and A. Tomkins, Propagation of trust and distrust,
Proceedings of the 13th International Conference on World Wide Web (WWW ’04)
(New York), ACM, 2004, pp. 403–412.

I. Guy, N. Zwerdling, D. Carmel, I. Ronen, E. Uziel, S. Yogev, and S. Ofek-Koifman,
Personalized recommendation of social software items based on social relations,
Proceedings of the 2009 ACM Conference on Recommender Systems (RecSys ’09),
New York, 2009, pp. 53–60.

G. Häubl and K. Murray, Preference construction and persistence in digital market-
places: The role of electronic recommendation agents, Journal of Consumer Psychol-
ogy 13 (2003), 75–91.

, Double agents, MIT Sloan Management Review 47 (2006), no. 3, 7–13.
G. Häubl and V. Trifts, Consumer decision making in online shopping environments:

The effects of interactive decision aids, Marketing Science 19 (2000), no. 1, 4–21.
K. Hegelich and D. Jannach, Effectiveness of different recommender algorithms in

the mobile internet: A case study, Proceedings of the 7th Workshop on Intelligent
Techniques for Web Personalization and Recommender Systems (ITWP) at IJCAI ’09
(Pasadena, CA), 2009, pp. 41–50.

J. Herlocker, J. A. Konstan, and J. Riedl, An empirical analysis of design choices
in neighborhood-based collaborative filtering algorithms, Information Retrieval 5
(2002), no. 4, 287–310.

314 Bibliography

J. L. Herlocker, J. A. Konstan, et al., An Algorithmic Framework for Performing Col-
laborative Filtering, Proceedings of the 22nd Annual International ACM SIGIR
Conference, ACM Press, 1999, pp. 230–237.

J. L. Herlocker, J. A. Konstan, and J. Riedl, Explaining collaborative filtering rec-
ommendations, Proceedings of the 2000 ACM Conference on Computer Supported
Cooperative Work (CSCW ’00) (Philadelphia), ACM, 2000, pp. 241–250.

J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, Evaluating collaborative
filtering recommender systems, ACM Transactions on Information Systems (TOIS)
22 (2004), no. 1, 5–53.

A. Herrmann, M. Heitmann, and B. Polak, The power of defaults, Absatzwirtschaft 6
(2007), 46–47.

C. Hess, K. Stein, and C. Schlieder, Trust-enhanced visibility for personalized document
recommendations, Proceedings of the 2006 ACM Symposium on Applied Computing
(SAC ’06) (Dijon, France) (Hisham Haddad, ed.), ACM, 2006, pp. 1865–1869.

A. R. Hevner, S. T. March, J. Park, and S. Ram, Design science in information systems
research, MIS Quarterly 28 (2004), no. 1, 75–105.

W. Hill, L. Stead, M. Rosenstein, and G. Furnas, Recommending and evaluating choices
in a virtual community of use, Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’95) (Denver), 1995, pp. 194–201.

W. Höpken, M. Fuchs, M. Zanker, T. Beer, A. Eybl, S. Flores, S. Gordea, M. Jessen-
itschnig, T. Kerner, D. Linke, J. Rasinger, and M. Schnabl, etPlanner: An IT frame-
work for comprehensive and integrative travel guidance, Proceedings of the 13th
International Conference on Information Technology and Travel and Tourism (EN-
TER) (Lausanne, Switzerland), 2006, pp. 125–134.

T. Hofmann, Probabilistic latent semantic indexing, Proceedings of the 22nd annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’99) (Berkeley, CA), 1999, pp. 50–57.

, Latent semantic models for collaborative filtering, ACM Transactions on In-
formation Systems 22 (2004), no. 1, 89–115.

T. Hofmann and J. Puzicha, Latent class models for collaborative filtering, Proceedings
of the 16th International Joint Conference on Artificial Intelligence (IJCAI ’99) (San
Francisco), 1999, pp. 688–693.

W. Höpken, M. Scheuringer, D. Linke, and M. Fuchs, Context-based adaptation of ubiq-
uitous web applications in tourism, Information and Communication Technologies
in Tourism (ENTER) (Innsbruck, Austria), 2008, pp. 533–544.

A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme, Information retrieval in folksonomies,
Proceedings of the European Semantic Web Conference 2006 (Budva, Montenegro),
Lecture Notes in Computer Science, vol. 4011, Springer, 2007, pp. 411–426.

E. M. Housman and E. D. Kaskela, State of the art in selective dissemination of in-
formation, IEEE Transactions on Engineering Writing and Speech 13 (1970), no. 2,
78–83.

C.-N. Hsu, H.-H. Chung, and H.-S. Huang, Mining skewed and sparse transaction data
for personalized shopping recommendation, Machine Learning 57 (2004), no. 1–2,
35–59.

Y.-C. Huang, J. Y. jen Hsu, and D. K.-C. Wu, Tag-based user profiling for social media
recommendation, Workshop on Intelligent Techniques for Web Personalization and

Bibliography 315

Recommender Systems (ITWP) at AAAI ’08 (Chicago), AAAI Press, 2008, pp. 49–
55.

Z. Huang, H. Chen, and D. Zeng, Applying associative retrieval techniques to alleviate
the sparsity problem in collaborative filtering, ACM Transactions on Information
Systems 22 (2004), no. 1, 116–142.

J. Huber, W. Payne, and C. Puto, Adding asymmetrically dominated alternatives: Vio-
lations of regularity and the similarity hypothesis, Journal of Consumer Research 9
(1982), 90–98.

C. Huffman and B. Kahn, Variety for sale: Mass customization or mass confusion,
Journal of Retailing 74 (1998), no. 4, 491–513.

N. J. Hurley, M. P. O’Mahony, and G. C. M. Silvestre, Attacking recommender systems:
A cost-benefit analysis, IEEE Intelligent Systems 22 (2007), no. 3, 64–68.

J. Hutchinson, Is more choice always desirable? Evidence and arguments from leks,
food, selection, and environmental enrichment, Biological Reviews 80 (2005), 73–92.

I. Im and A. Hars, Does a one-size recommendation system fit all? the effectiveness of
collaborative filtering based recommendation systems across different domains and
search modes, ACM Transactions on Information Systems 26 (2007), no. 1, 4.

S. Iyengar, R. Wells, and B. Schwartz, Doing better but feeling worse: Looking for the
best job undermines satisfaction, Psychological Science 17 (2006), no. 2, 143–150.

D. Jannach, Advisor suite – a knowledge-based sales advisory system, Proceedings
of European Conference on Artificial Intelligence (Valencia, Spain) (R. Lopez de
Mantaras and L. Saitta, eds.), IOS Press, 2004, pp. 720–724.

, Finding preferred query relaxations in content-based recommenders, Proceed-
ings of IEEE Intelligent Systems Conference (IS ’2006) (Westminster, UK), IEEE
Press, 2006a, pp. 355–360.

, Techniques for fast query relaxation in content-based recommender systems,
Proceedings of the 29th German Conference on Artificial Intelligence (KI ’06)
(Bremen, Germany) (C. Freksa, M. Kohlhase, and K. Schill, eds.), Lecture Notes
in Artificial Intelligence, vol. 4314, Springer, 2006b, pp. 49–63.

D. Jannach and K. Hegelich, A case study on the effectiveness of recommendations in
the mobile internet, Proceedings of the 2009 ACM Conference on Recommender
Systems (RecSys ’09) (New York), 2009, pp. 41–50.

D. Jannach, K. Shchekotykhin, and G. Friedrich, Automated ontology instantiation
from tabular web sources – the Allright system, Web Semantics: Science, Services
and Agents on the World Wide Web 7 (2009a), no. 3, 136–153.

D. Jannach, M. Zanker, and M. Fuchs, Constraint-based recommendation in tourism: A
multi-perspective case study, Information Technology and Tourism 11 (2009b), no. 2,
139–156.

D. Jannach, M. Zanker, M. Jessenitschnig, and O. Seidler, Developing a Conversational
Travel Advisor with ADVISOR SUITE, Information and Communication Technologies
in Tourism (ENTER ’07) (Ljubljana, Slovenia) (Marianna Sigala, Luisa Mich, and
Jamie Murphy, eds.), Springer, 2007, pp. 43–52.

S. Jarvenpaa and P. Todd, Consumer reactions to electronic shopping on the world wide
web, International Journal of Electronic Commerce 1 (1996), no. 2, 59–88.

S. Jarvenpaa, N. Tractinsky, and M. Vitale, Consumer trust in an internet store, Infor-
mation Technology and Management 1 (2000), no. 1–2, 45–71.

316 Bibliography

R. Jäschke, L. Marinho, A. Hotho, L. Schmidt-Thieme, and G. Stumme, Tag recommen-
dations in folksonomies, Knowledge Discovery in Databases: PKDD 2007 (Warsaw),
Lecture Notes in Computer Science, vol. 4702, Springer, 2007, pp. 506–514.

Z. Jiang, W., and I. Benbasat, Multimedia-based interactive advising technology for
online consumer decision support, Communications of the ACM 48 (2005), no. 9,
92–98.

R. Jin, L. Si, and C. Zhai, A study of mixture models for collaborative filtering, Infor-
mation Retrieval 9 (2006), no. 3, 357–382.

T. Joachims, Text categorization with support vector machines: learning with many
relevant features, Proceedings of the 10th European Conference on Machine Learning
(ECML-98) (Chemnitz, Germany) (Claire Nédellec and Céline Rouveirol, eds.), no.
1398, Springer Verlag, Heidelberg, Germany, 1998, pp. 137–142.

T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay, Accurately interpreting
clickthrough data as implicit feedback, Proceedings of the 28th Annual Interna-
tional ACM SIGIR Conference (SIGIR ’05) (Salvador, Brazil), ACM, 2005, pp. 154–
161.

A. Jøsang, S. Marsh, and S. Pope, Exploring different types of trust propagation, Pro-
ceedings of the 4th International Conference on Trust Management (iTrust ’06) (Pisa,
Italy), Lecture Notes in Computer Science, vol. 3986, Springer, 2006, pp. 179–
192.

U. Junker, QUICKXPLAIN: Preferred explanations and relaxations for over-
constrained problems, Proceedings of the 19th National Conference on Artificial
Intelligence (AAAI ’04) (San Jose, CA), AAAI, 2004, pp. 167–172.

K. Kabassi, Personalizing recommendations for tourists, Telematics and Informatics 27
(2010), no. 1, 51–66.

S. Kaplan, H. Reneau, and S. Whitecotton, The effects of predictive ability information,
locus of control, and decision maker involvement on decision aid reliance, Journal of
Behavioral Decision Making 14 (2001), 35–50.

J. W. Kim, B. H. Lee, M. J. Shaw, H.-L. Chang, and M. Nelson, Application of decision-
tree induction techniques to personalized advertisements on internet storefronts, In-
ternational Journal of Electronic Commerce 5 (2001), no. 3, 45–62.

J. Koenemann and N. J. Belkin, A case for interaction: a study of interactive infor-
mation retrieval behavior and effectiveness, Proceedings of the SIGCHI conference
on Human Factors in Computing Systems (CHI ’96) (Vancouver, BC), ACM, 1996,
pp. 205–212.

J. Konstan, B. Miller, D. Maltz, J., L. Gordon, and J. Riedl, Grouplens: applying
collaborative filtering to usenet news, Communications of the ACM 40 (1997), no. 3,
77–87.

I. Koprinska, J. Poon, J. Clark, and J. Chan, Learning to classify e-mail, Information
Sciences 177 (2007), no. 10, 2167–2187.

Y. Koren, R. Bell, and C. Volinsky, Matrix factorization techniques for recommender
systems, Computer 42 (2009), no. 8, 30–37.

R. Kramer, M. Modsching, and K. ten Hagen, A city guide agent creating and adapt-
ing individual sightseeing tours based on field trial results, International Journal of
Computational Intelligence Research 2 (2006), no. 2, 191–206.

R. Krestel and P. Fankhauser, Tag recommendation using probabilistic topic models,
ECML/PKDD Discovery Challenge (DC ’09), Workshop at ECML/PKDD 2009)

Bibliography 317

(Bled, Slovenia) (Folke Eisterlehner, Andreas Hotho, and Robert Jäschke, eds.),
September 2009, pp. 131–141.

R. Krestel, P. Fankhauser, and W. Nejdl, Latent dirichlet allocation for tag recommenda-
tion, Proceedings of the 2009 ACM Conference on Recommender Systems (RecSys
’09) (New York), 2009, pp. 61–68.

V. Krishnan, P. K. Narayanashetty, M. Nathan, R. T. Davies, and J. A. Konstan,
Who predicts better?: Results from an online study comparing humans and an
online recommender system, Proceedings of the 2008 ACM Conference on Rec-
ommender Systems (RecSys ’08) (Lausanne, Switzerland), ACM, 2008, pp. 211–
218.

J. Krösche, J. Baldzer, and S. Boll, MobiDENK – mobile multimedia in monument
conservation, IEEE Multimedia 11 (2004), no. 2, 72–77.

A. Kruglanski, D. Webster, and A. Klem, Motivated resistance and openness to per-
suasion in the presence or absence of prior information, Journal of Personality and
Social Psychology 65 (1993), no. 5, 861–876.

B. Krulwich and C. Burkey, The infofinder agent: Learning user interests through
heuristic phrase extraction, IEEE Expert: Intelligent Systems and Their Applications
12 (1997), no. 5, 22–27.

S. K. Lam and J. Riedl, Shilling recommender systems for fun and profit, Proceedings
of the 13th International Conference on World Wide Web (WWW ’04) (New York),
ACM, 2004, pp. 393–402.

K. Lang, Newsweeder: learning to filter netnews, Proceedings of the 12th International
Conference on Machine Learning (ICML ’95) (Tahoe City, CA), 1995, pp. 331–
339.

N. Lathia, S. Hailes, and L. Capra, Private distributed collaborative filtering using
estimated concordance measures, Proceedings of the 2007 ACM Conference on
Recommender Systems (RecSys ’07) (Minneapolis), ACM, 2007, pp. 1–8.

B.-H. Lee, H.-N. Kim, J.-G. Jung, and G.-S. Jo, Location-based service with context data
for a restaurant recommendation, Proceedings of the 17th International Conference
on Database and Expert Systems Applications (DEXA ’06) (Krakow, Poland), 2006,
pp. 430–438.

H.-H. Lee and W.-G. Teng, Incorporating multi-criteria ratings in recommendation
systems, Proceedings of IEEE International Conference on Information Reuse and
Integration (IRI ’07) (Las Vegas), 2007, pp. 273–278.

H. Lee, A. F. Smeaton, N. E. O’Connor, and B. Smyth, User evaluation of fı́schlár-news:
An automatic broadcast news delivery system, ACM Transactions on Information
Systems 24 (2006), no. 2, 145–189.

D. Lemire and A. Maclachlan, Slope one predictors for online rating-based collaborative
filtering, Proceedings of the 5th SIAM International Conference on Data Mining
(SDM ’05) (Newport Beach, CA), 2005, pp. 471–480.

I. Levin, S. Schneider, and G. Gaeth, All frames are not created equal: A typology and
critical analysis of framing effects, Organizational Behavior and Human Decision
Processes 76 (1998), 90–98.

D. D. Lewis, R. E. Schapire, J. P. Callan, and R. Papka, Training algorithms for linear
text classifiers, Proceedings of the 19th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval (SIGIR ’96) (Zurich,
Switzerland), ACM, 1996, pp. 298–306.

318 Bibliography

Q. Li, C. Wang, and G. Geng, Improving personalized services in mobile commerce by a
novel multicriteria rating approach, Proceedings of the 17th International Conference
on World Wide Web (WWW ’08) (Beijing), 2008, pp. 1235–1236.

T. Li, M. Ogihara, and Q. Li, A comparative study on content-based music genre
classification, Proceedings of the 26th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR ’03) (Toronto), ACM,
2003, pp. 282–289.

W. Lin, Association rule mining for collaborative recommender systems, Master’s thesis,
Worcester Polytechnic Institute, May 2000.

W. Lin, S. A. Alvarez, and C. Ruiz, Efficient adaptive-support association rule mining
for recommender systems, Data Mining and Knowledge Discovery 6 (2002), no. 1,
83–105.

G. Linden, B. Smith, and J. York, Amazon.com recommendations: item-to-item collab-
orative filtering, Internet Computing, IEEE 7 (2003), no. 1, 76–80.

C. Ling and C. Li, Data mining for direct marketing: Problems and solutions, Proceed-
ings of the 4th International Conference on Knowledge Discovery and Data Mining
(KDD ’98) (New York), 1998, pp. 73–79.

B. Logan, Music recommendation from song sets, Proceedings of 5th International
Conference on Music Information Retrieval (ISMIR ’04) (Barcelona, Spain), 2004,
pp. 425–428.

F. Lorenzi and F. Ricci, Case-based recommender systems: A unifying view, Intelli-
gent Techniques for Web Personalisation, Lecture Notes in Artificial Intelligence,
vol. 3169, Springer, 2005, pp. 89–113.

Z. Ma, G. Pant, and O. R. L. Sheng, Interest-based personalized search, ACM Transac-
tions on Information Systems 25 (2007), no. 1, 5.

T. Mahmood and F. Ricci, Learning and adaptivity in interactive recommender systems,
Proceedings of the 9th International Conference on Electronic Commerce (ICEC
’07), ACM, 2007, pp. 75–84.

V. Maidel, P. Shoval, B. Shapira, and M. Taieb-Maimon, Evaluation of an ontology-
content based filtering method for a personalized newspaper, Proceedings of the 2008
ACM Conference on Recommender Systems (RecSys ’08) Lawsanne, Switzerland)
(Pearl Pu, Derek Bridge, Bamshad Mobasher, and Francisco Ricci, eds.), ACM, 2008,
pp. 91–98.

O. Maimon and L. Rokach (eds.), The data mining and knowledge discovery handbook,
Springer, 2005.

N. Mandel and E. Johnson, Constructing preferences online: can web pages change what
you want?, Unpublished manuscript (Wharton School, University of Pennsylvania),
1999.

C. D. Manning, P. Raghavan, and H. Schütze, Introduction to information retrieval,
Cambridge University Press, 2008.

B. M. Marlin and R. S. Zemel, Collaborative prediction and ranking with non-random
missing data, Proceedings of the 3rd ACM Conference on Recommender Systems
(RecSys ’09) (New York), ACM, 2009, pp. 5–12.

P. Massa and P. Avesani, Trust-aware collaborative filtering for recommender systems,
Springer, Lecture Notes in Computer Science, vol. 3290, 2004, pp. 492–508.

, Trust-aware recommender systems, Proceedings of the 2007 ACM Confer-
ence on Recommender Systems (RecSys ’07) (Minneapolis, MN), ACM, 2007,
pp. 17–24.

Bibliography 319

E. Maylor, Serial position effects in semantic memory: reconstructing the order of verses
of hymns, Psychonomic Bulletin and Review 9 (2002), no. 4, 816–820.

D. Mayzlin, Promotional chat on the internet, Marketing Science 25 (2006), no. 2,
155–163.

A. McCallum and K. Nigam, A comparison of event models for naive bayes text classi-
fication, In AAAI-98 Workshop on Learning for Text Categorization (Madison, WI),
1998.

K. McCarthy, J. Reilly, B. Smyth, and L. McGinty, Generating diverse compound
critiques, Artificial Intelligence Review 24 (2005), no. 3–4, 339–357.

K. McCarthy, M. Salamó, L. Coyle, L. McGinty, B. Smyth, and P. Nixon, Group recom-
mender systems: a critiquing based approach, Proceedings of the 11th International
Conference on Intelligent User Interfaces (IUI ’06) (Sydney, Australia), ACM, 2006,
pp. 267–269.

P. McCrae and P. Costa, The neo personality inventory: Using the five-factor model in
counseling, Journal of Counseling and Development 69 (1991), 367–372.

D. McFadden, Rationality for economists?, Journal of Risk and Uncertainty 19 (1999),
no. 1, 73–105.

L. McGinty and B. Smyth, On the role of diversity in conversational recommender
systems, Proceedings of the International Conference on Case-Based Reasoning Re-
search and Development (ICCBR ’03), 2003, pp. 276–290.

M. R. McLaughlin and J. L. Herlocker, A collaborative filtering algorithm and evalua-
tion metric that accurately model the user experience, Proceedings of the 27th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’04) (Sheffield, OK), ACM, 2004, pp. 329–336.

T. McNamara, Theories of priming II: Types of primes, Journal of Experimental Psy-
chology: Learning, Memory, and Cognition 20 (1994), no. 3, 507–520.

S. M. McNee, J. Riedl, and J. A. Konstan, Being accurate is not enough: how accuracy
metrics have hurt recommender systems, Extended Abstracts on Human Factors in
Computing Systems (CHI ’06) (Montréal), ACM, 2006, pp. 1097–1101.

D. McSherry, Similarity and compromise, Proceedings of the 5th International Con-
ference on Case-Based Reasoning (ICCBR ’03) (Trondheim, Norway), 2003a,
pp. 291–305.

, Incremental relaxation of unsuccessful queries, Proceedings of the European
Conference on Case-based Reasoning (P. Funk and P. A. Gonzalez Calero, eds.),
Lecture Notes in Artificial Intelligence, vol. 3155, Springer, 2004, pp. 331–345.

D. McSherry, Similarity and compromise, Proceedings of the 5th International Confer-
ence on Case-Based Reasoning (ICCBR ’03) (Trondheim, Norway) (Kevin D. Ashley
and Derek G. Bridge, eds.), LNCS, vol. 2689, Springer, June 2003b, pp. 291–305.

, Explanation in recommender systems, Artificial Intelligence Review 24 (2005),
no. 2, 179–197.

P. Melville, R. J. Mooney, and R. Nagarajan, Content-Boosted Collaborative Filtering
for Improved Recommendations, Proceedings of the 18th National Conference on
Artificial Intelligence (AAAI) (Edmonton, Alberta, Canada), 2002, pp. 187–192.

S. E. Middleton, N. R. Shadbolt, and D. C. De Roure, Ontological user profiling in
recommender systems, ACM Transactions on Information Systems 22 (2004), no. 1,
54–88.

M. B. Miles and A. M. Huberman, Qualitative data analysis – an expanded sourcebook,
2nd ed., SAGE Publications, 1994.

320 Bibliography

B. N. Miller, I. Albert, S. K. Lam, J. A. Konstan, and J. Riedl, MovieLens unplugged:
experiences with an occasionally connected recommender system, Proceedings of the
8th International Conference on Intelligent User Interfaces (IUI ’03) (Miami, FL),
2003, pp. 263–266.

B. N. Miller, J. A. Konstan, and J. Riedl, Pocketlens: Toward a personal recommender
system, ACM Transactions on Information Systems 22 (2004), no. 3, 437–476.

G. Mishne, Autotag: a collaborative approach to automated tag assignment for weblog
posts, Proceedings of the 15th International Conference on World Wide Web (WWW
’06) (Edinburgh, Scotland), ACM, 2006, pp. 953–954.

K. Miyahara and M. J. Pazzani, Collaborative filtering with the simple bayesian clas-
sifier, Pacific Rim International Conference on Artificial Intelligence (Melbourne,
Australia), 2000, pp. 679–689.

D. Mladenic, Personal webwatcher: Design and implementation, Technical Report
IJS-DP-7472 (Pittsburgh, PA), 1996.

D. Mladenic, Text-learning and related intelligent agents: A survey, IEEE Intelligent
Systems 14 (1999), no. 4, 44–54.

B. Mobasher, R. Bhamik, and C. Williams, Effective attack models for shilling
item-based collaborative filtering systems, Proceedings of the 2005 WebKDD
Workshop, held in Conjuction with ACM SIGKDD ’05 (Chicago, IL), 2005,
pp. 13–23.

B. Mobasher, R. Burke, R. Bhaumik, and C. Williams, Toward trustworthy recommender
systems: An analysis of attack models and algorithm robustness, ACM Transactions
on Internet Technology 7 (2007), no. 4, 23.

B. Mobasher, R. D. Burke, and J. J. Sandvig, Model-based collaborative filtering as
a defense against profile injection attacks, Proceedings of National Conference on
Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence
Conference (Boston), AAAI Press, 2006, pp. 1388–1393.

B. Mobasher, H. Dai, T. Luo, and M. Nakagawa, Effective personalization based on
association rule discovery from web usage data, Proceedings of the 3rd International
Workshop on Web Information and Data Management (WIDM ’01) (Atlanta), ACM,
2001, pp. 9–15.

B. Mobasher, X. Jin, and Y. Zhou, Semantically enhanced collaborative filtering on the
web, Web Mining: FromWeb to SemanticWeb (B. Berendt et al., ed.), Lecture Notes
in Computer Science, vol. 3209, Springer, 2004, pp. 57–76.

R. J. Mooney and L. Roy, Content-based book recommending using learning for text
categorization, Proceedings of the Fifth ACM Conference on Digital Libraries, San
Antonio, TX, pp. 195–204, June 2000.

J. Murphy, C. Hofacker, and R. Mizerski, Primacy and recency effects on clicking
behavior, Journal of Computer-Mediated Communication 11 (2006), no. 2, 522–
535.

T. Nakajima and I. Satoh, A software infrastructure for supporting spontaneous and per-
sonalized interaction in home computing environments, Personal Ubiquitous Com-
puting 10 (2006), no. 6, 379–391.

T. Nathanson, E. Bitton, and K. Goldberg, Eigentaste 5.0: constant-time adaptability in a
recommender system using item clustering, Proceedings of the 2007 ACM Conference
on Recommender Systems (RecSys ’07) (Minneapolis, MN), ACM, 2007, pp. 149–
152.

Bibliography 321

A. Nauerz, B. König-Ries, and M. Welsch, Recommending background information and
related content in web 2.0 portals, Proceedings Adaptive Hypermedia (Hannover,
Germany), Lecture Notes in Computer Science, vol. 5149, Springer, 2008, pp. 366–
69.

E. W. T. Ngai and A. Gunasekaran, A review for mobile commerce research and appli-
cations, Decision Support Systems 43 (2007), no. 1, 3–15.

Q. N. Nguyen and F. Ricci, Acquiring and revising preference in a critique-based mobile
recommender system, IEEE Intelligent Systems 22 (2007), May/Jun, 22–29.

, Replaying live-user interactions in the off-line evaluation of critique-based mo-
bile recommendations, Proceedings of the 2007 ACM Conference on Recommender
Systems (RecSys ’07) (Minneapolis, MN), ACM, 2007, pp. 81–88.

, Long-term and session-specific user preferences in a mobile recommender sys-
tem, Proceedings of the 13th International Conference on Intelligent User Interfaces
(IUI ’08) (Gran Canaria, Spain), 2008, pp. 381–384.

D. Nichols, Implicit rating and filtering, Proceedings of 5th DELOS Workshop on
Filtering and Collaborative Filtering (Budapest), ERCIM, 1998, pp. 31–36.

K. Nigam, A. K. McCallum, S. Thrun, and T. M. Mitchell, Learning to classify text
from labeled and unlabeled documents, Proceedings of the 15th Conference of the
American Association for Artificial Intelligence (AAAI ’98) (Madison, WI), 1998,
pp. 792–799.

D. Nikovski and V. Kulev, Induction of compact decision trees for personalized recom-
mendation, Proceedings of the 2006 ACM Symposium on Applied Computing (SAC
’06) (Dijon, France), 2006, pp. 575–581.

K. Oatley and J. Jenkins, Understanding emotions, Blackwell, 1996.
J. O’Donovan and B. Smyth, Trust in recommender systems, Proceedings of the 10th

International Conference on Intelligent User Interfaces (IUI ’05) (San Diego, CA),
ACM, 2005, pp. 167–174.

M. O’Mahony, N. Hurley, N. Kushmerick, and G. Silvestre, Collaborative recommen-
dation: A robustness analysis, ACM Transactions on Internet Technology 4 (2004),
no. 4, 344–377.

M. P. O’Mahony, N. J. Hurley, and G. C. M. Silvestre, Recommender systems: Attack
types and strategies, Proceedings of the 20th National Conference on Artificial In-
telligence and the 17th Innovative Applications of Artificial Intelligence Conference
(Pittsburgh, PA) (Manuela M. Veloso and Subbarao Kambhampati, eds.), July 2005,
pp. 334–339.

T. O’Reilly, What is Web 2.0: Design patterns and business models for the next gen-
eration of software, Communictions and Strategies, International Journal of Digital
Economics 65 (2007), 17–37.

B. O’Sullivan, A. Papadopoulos, B. Faltings, and P. Pu, Representative explanations for
over-constrained problems, Proceedings of the 22nd National Conference on Artifi-
cial Intelligence (AAAI ’07), Vancouver, British Columbia, Canada, 2007, pp. 323–
328.

D. O’Sullivan, B. Smyth, D. C. Wilson, K. McDonald, and A. Smeaton, Improving
the quality of the personalized electronic program guide, User Modeling and User-
Adapted Interaction 14 (2004), no. 1, 5–36.

M. Papagelis, D. Plexousakis, and T. Kutsuras, Alleviating the sparsity problem of
collaborative filtering using trust inferences, Proceedings of the 3rd International

322 Bibliography

Conference on Trust Management (iTrust ’05) (Paris), Lecture Notes in Computer
Science, vol. 3477, Springer, 2005, pp. 224–239.

W. Parrot, Emotions in social psychology, Taylor and Francis, 2001.
J. Payne, J. Bettman, and E. Johnson, The adaptive decision maker, Cambridge Univer-

sity Press, 1993.
M. Pazzani, A framework for collaborative, content-based and demographic filtering,

Artificial Intelligence Review 13 (1999), no. 5–6, 393–408.
M. J. Pazzani, A framework for collaborative, content-based and demographic filtering,

Artificial Intelligence Review 13 (1999), no. 5–6, 393–408.
, Commercial applications of machine learning for personalized wireless por-

tals, Proceedings of the 7th Pacific Rim International Conference on Artificial Intel-
ligence (PRICAI ’02) (Tokyo), 2002, pp. 1–5.

M. Pazzani, J. Muramatsu, and D. Billsus, Syskill & Webert: Identifying interesting
web sites, Proceedings of the 13th National Conference on Artificial Intelligence
(Portland, OR), 1996, pp. 54–61.

M. Pazzani and D. Billsus, Learning and revising user profiles: The identification of
interesting web sites, Machine Learning 27 (1997), no. 3, 313–331.

M. J. Pazzani and D. Billsus, Content-based recommendation systems, The Adaptive
Web (Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl, eds.), Lecture Notes in
Computer Science, vol. 4321, Springer, 2007, pp. 325–341.

E. J. Pedhazur and L. P. Schmelkin, Measurement, design and analysis: An integrated
approach, Lawrence Erlbaum Associates, 1991.

D. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles, Collaborative filtering by per-
sonality diagnosis: A hybrid memory- and model-based approach, Proceedings of the
16th Conference on Uncertainty in Artificial Intelligence (UAI ’00) (Stanford, CA),
2000, pp. 473–480.

R. Picard, Affective computing, MIT Press, Cambridge, 1997.
R. Plutchik and R. Hope, Circumplex models of personality and emotions, American

Psychological Association, 1997.
H. Polat and W. Du, Privacy-preserving collaborative filtering using randomized

perturbation techniques, Third IEEE International Conference on Data Mining
(ICDM ’03) (Melbourne, FL), November 2003, pp. 625–628.

H. Polat and W. Du, SVD-based collaborative filtering with privacy, Proceedings of the
2005 ACM Symposium on Applied Computing (SAC ’05) (Santa Fe, NM), ACM,
2005, pp. 791–795.

M. F. Porter, An algorithm for suffix stripping, Program 14 (1980), no. 3, 130–137.
P. Pu and L. Chen, Trust-inspiring explanation interfaces for recommender systems,

Knowledge-based Systems 20 (2007), no. 6, 542–556.
P. Pu, D. G. Bridge, B. Mobasher, and F. Ricci (eds.), Proceedings of the 2008 ACM

Conference on Recommender Systems (RecSys ’08), Lausanne, Switzerland, ACM,
October 2008.

P. Pu, L. Chen, and P. Kumar, Evaluating product search and recommender systems for
e-commerce environments, Electronic Commerce Research 8 (2008), no. 1–2, 1–27.

P. Pu, B. Faltings, and P. Kumar, User-involved tradeoff analysis in configuration tasks,
The 3rd International Workshop on User-Interaction in Constraint Satisfaction at
CP’2003 (Kinsale, Ireland), 2003, pp. 85–102.

J. R. Quinlan, C4.5: programs for machine learning, Morgan Kaufmann, San
Francisco, 1993.

Bibliography 323

M. Ramezani, L. Bergman, R. Thompson, R. Burke, and B. Mobasher, Selecting and
applying recommendation technology, Proceedings of International Workshop on
Recommendation and Collaboration, in conjunction with the 2008 International ACM
Conference on Intelligent User Interfaces (IUI ’08) (Gran Canaria, Spain), ACM,
January 2008.

A. Ranganathan and R. H. Campbell, An infrastructure for context-awareness based
on first order logic, Personal Ubiquitous Computing 7 (2003), no. 6, 353–
364.

A. Rashid, I. Albert, D. Cosley, S. Lam, S. McNee, J. Konstan, and J. Riedl, Getting
to know you: Learning new user preferences in recommender systems, Proceedings
of the 7th International Conference on Intelligent User Interfaces (IUI ’02) (San
Francisco), ACM, 2002, pp. 127–134.

J. Rasinger, M. Fuchs, W. Höpken, and T. Beer, Information search with mobile tourist
guides: A survey of usage intention, Information Technology and Tourism 9 (2007),
no. 3/4, 177–194.

J. Reilly, K. McCarthy, L. McGinty, and B. Smyth, Dynamic critiquing, Proceedings
of the 7th European Conference on Case-Based Reasoning (ECCBR ’04), 2004,
pp. 763–777.

, Incremental critiquing, Knowledge-Based Systems 18 (2005), no. 4–5, 143–
151.

J. Reilly, J. Zhang, L. McGinty, P. Pu, and B. Smyth, A comparison of two compound
critiquing systems, Proceedings of the 12th International Conference on Intelligent
User Interfaces (IUI ’07) (Honolulu), ACM, 2007, pp. 317–320.

, Evaluating compound critiquing recommenders: a real-user study, Proceed-
ings of the 8th ACM Conference on Electronic Commerce (EC ’07) (San Diego, CA),
ACM, 2007, pp. 114–123.

J. Reilly, K. McCarthy, L. McGinty, and B. Smyth, Explaining compound critiques,
Artificial Intelligence Review 24 (2005), no. 2, 199–220.

R. Reiter, A theory of diagnosis from first principles, Artificial Intelligence 32 (1987),
no. 1, 57–95.

P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and J. Riedl, Grouplens: An open
architecture for collaborative filtering of netnews, Proceedings of the 1994 ACM
Conference on Computer Supported Cooperative Work (CSCW’94) (Chapel Hill,
NC), ACM, 1994, pp. 175–186.

P. Resnick and H. R. Varian, Recommender systems, Communications of the ACM 40
(1997), no. 3, 56–58.

F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor (eds.), Recommender Systems Hand-
book, Springer, 2010.

F. Ricci and Q. Nguyen, Acquiring and revising preferences in a critique-based mobile
recommender system, IEEE Intelligent Systems 22 (2007), no. 3, 22–29.

M. Richardson, R. Agrawal, and P. Domingos, Trust management for the semantic web,
The SemanticWeb – ISWC 2003 (Sanibel Island, FL), Lecture Notes in Computer
Science, vol. 2870, Springer, 2003, pp. 351–368.

I. Ritov and J. Baron, Status-quo and omission biases, Journal of Risk and Uncertainty
5 (1992), no. 2, 49–61.

R. Roe, J. Busemeyer, and T. Townsend, Multialternative decision field theory: A dy-
namic connectionist model of decision making, Psychological Review 108 (2001),
no. 2, 370–392.

324 Bibliography

M. Salamo, J. Reilly, L. McGinty, and B. Smyth, Knowledge discovery from user pref-
erences in conversational recommendation, Proceedings of the 9th European Confer-
ence on Principles and Practice of Knowledge Discovery in Databases (PKDD ’05)
(Porto, Portugal), Lecture Notes in Computer Science, vol. 3721, Springer, 2005,
pp. 228–239.

G. Salton, The SMART retrieval system – experiments in automatic document processing,
Prentice-Hall, 1971.

G. Salton, A. Wong, and C.S. Yang, A vector space model for information retrieval,
Journal of the American Society for Information Science 18 (1975), no. 11, 613–
620.

G. Salton and C. Buckley, Improving retrieval performance by relevance feedback,
pp. 355–364, Morgan Kaufmann, San Francisco, 1997.

G. Salton and C. Buckley, Term-weighting approaches in automatic text retrieval, In-
formation Processing and Management 24 (1988), no. 5, 513–523.

W. Samuelson and R. Zeckhauser, Status quo bias in decision making, Journal of Risk
and Uncertainty 108 (1988), no. 2, 370–392.

J. J. Sandvig, B. Mobasher, and R. Burke, Robustness of collaborative recommendation
based on association rule mining, Proceedings of the 2007 ACM Conference on
Recommender Systems (RecSys ’07) (Minneapolis, MN), ACM, 2007, pp. 105–112.

J. J. Sandvig, B. Mobasher, and R. Burke, A survey of collaborative recommendation
and the robustness of model-based algorithms, IEEE Data Engineering Bulletin 31
(2008), no. 2, 3–13.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, Application of dimensionality reduction
in recommender systems – a case study, Proceedings of the ACM WebKDD Workshop
(Boston), 2000.

B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl, Incremental singular value
decomposition algorithms for highly scalable recommender systems, Proceedings
of the 5th International Conference on Computer and Information Technology
(ICCIT ’02), 2002, pp. 399–404.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, Analysis of recommendation algorithms
for e-commerce, Proceedings of the 2nd ACM Conference on Electronic Commerce
(EC ’00) (Minneapolis, MN), ACM, 2000, pp. 158–167.

, Item-based collaborative filtering recommendation algorithms, Proceedings
of the 10th International Conference on World Wide Web (WWW ’01) (Hong Kong),
ACM, 2001, pp. 285–295.

K. Satoh, A. Inokuchi, K. Nagao, and T. Kawamura (eds.), New Frontiers in Artificial
Intelligence, JSAI 2007 Conference and Workshops, Revised Selected Papers, Lecture
Notes in Computer Science, vol. 4914, Miyazaki, Japan, Springer, June 2007.

J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen, Collaborative filtering recom-
mender systems, The Adaptive Web: Methods and Strategies of Web Personalization
(P. Brusilovsky, A. Kobsa, and W. Nejdl, eds.), Lecture Notes in Computer Science,
vol. 4321, Springer, Berlin Heidelberg, 2006, pp. 291–324.

B. Schwartz, A. Ward, J. Monterosso, S. Lyubomirsky, W. White, K. White, and
R. Lehman, Maximizing versus satisficing: Happiness is a matter of choice, Jour-
nal of Personality and Social Psychology 83 (2002), no. 5, 1178–1197.

W. Schwinger, C. Grün, B. Pröll, W. Retschitzegger, and A. Schauerhuber, Context-
awareness in mobile tourism guides, Tech. Report TR-05-04, JKU Linz, Austria,
Institute of Bioinformatics, 2005.

Bibliography 325

N. Sebe and Q. Tian, Personalized multimedia retrieval: the new trend?, Proceedings of
the International Workshop on Multimedia Information Retrieval (MIR ’07) (Augs-
burg, Bavaria, Germany), ACM, 2007, pp. 299–306.

G. Semeraro, M. Degemmis, P. Lops, and P. Basile, Combining learning and word
sense disambiguation for intelligent user profiling, Proceedings of the 20th Inter-
national Joint Conference on Artifical Intelligence (IJCAI ’07) (Hyderabad, India)
(Manuela M. Veloso, ed.), January 2007, pp. 2856–2861.

S. Sen, J. Vig, and J. Riedl, Tagommenders: connecting users to items through tags,
Proceedings of the 18th International Conference on the World Wide Web (WWW
’09) (Madrid) (Juan Quemada, Gonzalo León, Yoëlle S. Maarek, and Wolfgang Nejdl,
eds.), 2009, pp. 671–680.

S. Senecal and J. Nantel, The influence of online product recommendations on con-
sumers’ online choices, Journal of Retailing 80 (2004), no. 2, 159–169.

A. Seth, J. Zhang, and R. Cohen, A subjective credibility model for participatory me-
dia, Workshop Intelligent Techniques for Web Personalization and Recommender
Systems (ITWP) at AAAI ’08 (Chicago), AAAI Press, 2008, pp. 66–77.

R. Shacham, H. Schulzrinne, S. Thakolsri, and W. Kellerer, Ubiquitous device per-
sonalization and use: The next generation of IP multimedia communications, ACM
Transactions on Multimedia Computing and Communication Applications 3 (2007),
no. 2, 12.

G. Shani, R. I. Brafman, and D. Heckerman, An MDP-based recommender system,
Journal of Machine Learning Research 6 (2002), 453–460.

G. Shani, D. M. Chickering, and C. Meek, Mining recommendations from the web,
Proceedings of the 2008 ACM Conference on Recommender Systems (Lawrence,
Switzerland) (Pearl Pu, Derek G. Bridge, Bamshad Mobasher, and Francesco Ricci,
eds.), ACM, 2008, pp. 35–42.

U. Shardanand and P. Maes, Social information filtering: Algorithms for automating
“word of mouth”, Proceedings of the ACM Conference on Human Factors in Com-
puting Systems (CHI ’95), vol. 1, 1995, pp. 210–217.

K. Shchekotykhin, D. Jannach, G. Friedrich, and O. Kozeruk, Allright: Automatic ontol-
ogy instantiation from tabular web documents, Proceedings of the 6th International
Conference on Semantic Web Conference (ISWC ’07) (Busan, South Korea), 2007,
pp. 466–479.

J. Shen, B. Cui, J. Shepherd, and K.-L. Tan, Towards efficient automated singer identifi-
cation in large music databases, Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR
’06) (Seattle), ACM, 2006, pp. 59–66.

A. Shepitsen, J. Gemmell, B. Mobasher, and R. D. Burke, Personalized recommendation
in social tagging systems using hierarchical clustering, Proceedings of the 2008 ACM
Conference on Recommender Systems (Lawrence, Switzerland) (Pearl Pu, Derek G.
Bridge, Bamshad Mobasher, and Francesco Ricci, eds.), ACM, 2008, pp. 259–266.

B. Shilit, N. Adams, and R. Want, Context-aware computing applications, Proceedings
of the 1994 First Workshop on Mobile Computing Systems and Applications (WM-
CSA ’94) (Santa Cruz, CA) (Maria Sigala et al., ed.), IEEE Computer Society, 1994,
pp. 85–90.

H. Shimazu, Expertclerk: A conversational case-based reasoning tool for developing
salesclerk agents in e-commerce webshops, Artificial Intelligence Review 18 (2002),
no. 3–4, 223–244.

326 Bibliography

E. H. Shortliffe, A rule-based computer program for advising physicians regarding
antimicrobial therapy selection, Proceedings of the 1974 annual ACM conference
(ACM’74) (New York), ACM, 1974, p. 739.

M.-L. Shyu, C. Haruechaiyasak, S.-C. Chen, and N. Zhao, Collaborative filtering by
mining association rules from user access sequences, Proceedings of the International
Workshop on Challenges in Web Information Retrieval and Integration (WIRI ’05)
(Washington, DC), IEEE Computer Society, 2005, pp. 128–135.

B. Sigurbjörnsson and R. van Zwol, Flickr tag recommendation based on collective
knowledge, Proceeding of the 17th International Conference on World Wide Web
(WWW ’08) (Beijing), ACM, 2008, pp. 327–336.

H. Simon, A behavioral model of choice, Quarterly Journal of Economics 69 (1955),
no. 1, 99–118.

I. Simonson and A. Tversky, Choice in context: Tradeoff contrast and extremeness
aversion, Journal of Marketing Research 29, (1992), no. 3, 281–295.

B. Smyth and P. Cotter, Personalized adaptive navigation for mobile portals, Proceed-
ings of the 15th European Conference on Artificial Intelligence (ECAI ’02) (Lyon,
France), 2002, pp. 608–612.

B. Smyth, P. Cotter, and S. Oman, Enabling intelligent content discovery on the mobile
internet, Proceedings of the 19th National Conference on Innovative Applications of
Artificial Intelligence (IAAI ’07) (Vancouver, BC), 2007, pp. 1744–1751.

F. Sørmo, J. Cassens, and A. Aamodt, Explanation in case-based reasoning-perspectives
and goals, Artificial Intelligence Review 24 (2005), no. 2, 109–143.

S. Staab, H. Werthner, F. Ricci, A. Zipf, U. Gretzel, D. R. Fesenmaier, C. Paris, and
C. A. Knoblock, Intelligent systems for tourism, IEEE Intelligent Systems 17 (2002),
no. 6, 53–64.

R. E. Stake, The art of case study research, SAGE Publications, 1995.
X.-F. Su, H.-J. Zeng, and Z. Chen, Finding group shilling in recommendation system,

Special Interest Tracks and Posters of the 14th International Conference on World
Wide Web (WWW ’05) (Chiba, Japan), ACM, 2005, pp. 960–961.

K. Swearingen and R. Sinha, Beyond algorithms: An HCI perspective on recommender
systems, Workshop on Recommender Systems held in Conjunction with SIGIR ’01
(New Orleans), 2001.

M. Szomszor, C. Cattuto, H. Alani, K. O’Hara, A. Baldassarri, V. Loreto, and V. D.P.
Servedio, Folksonomies, the semantic web, and movie recommendation, Workshop
on Bridging the Gap between Semantic Web and Web 2.0 at ESWC 2007 (Innsbruck,
Austria), 2007, pp. 71–84.

P.-N. Tan, M. Steinbach, V. Kumar, Introduction to data mining, Addison Wesley, 2006.
P. Tarasewich, Designing mobile commerce applications, Communications of the ACM

46 (2003), no. 12, 57–60.
E. Teppan and A. Felfernig, Minimization of product utility estimation errors in recom-

mender result set evaluations, Proceedings of the 2009 IEEE/WIC/ACM International
Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT ’09)
(Milano, Italy), 2009a, pp. 20–27.

E. Teppan and A. Felfernig, Asymmetric dominance and compromise effects in the
financial services domain, Proceedings of the 11th IEEE International Conference on
Commerce and Enterprise Computing (CEC ’09) (Vienna, Austria), 2009b, pp. 57–
64.

Bibliography 327

C. Thompson, M. Göker, and P. Langley, A personalized system for conversational
recommendations, Journal of Artificial Intelligence Research 21 (2004), 393–428.

T. Thompson and Y. Yeong, Assessing the consumer decision process in the digital
marketplace, Omega 31 (2003), no. 5, 349–363.

J. Tiihonen and A. Felfernig, Towards recommending configurable offerings, Workshop
on Configuration Systems (ECAI ’08) (Patras, Greece), 2008, pp. 29–34.

N. Tintarev, Explanations of recommendations, Proceedings of the 2007 ACM Con-
ference on Recommender Systems (RecSys ’07) (Minneapolis, MN), ACM, 2007,
pp. 203–206.

N. Tintarev and J. Masthoff, Effective explanations of recommendations: user-centered
design, Proceedings of the 2007 ACM Conference on Recommender Systems (RecSys
’07) (Minneapolis, MN), ACM, 2007, pp. 153–156.

G. Torkzadeh and G. Dhillon, Measuring factors that influence the success of internet
commerce, Information Systems Research 13 (2002), no. 2, 187–204.

R. Torres, S. M. McNee, M. Abel, J. A. Konstan, and J. Riedl, Enhancing digital
libraries with Techlens, International Joint Conference on Digital Libraries (JCDL
’04) (Tucson, AZ), 2004, pp. 228–236.

A. Töscher, M. Jahrer, and R. Legenstein, Improved neighborhood-based algorithms for
large-scale recommender systems, Proceedings of the ACM SIGKDD Workshop on
Large Scale Recommenders Systems and the Netflix Prize at KDD ’08 (Las Vegas),
2008.

E. Tsang, Foundations of constraint satisfaction, Academic Press, London and San
Diego, 1993.

K. H. L. Tso-Sutter, L. B. Marinho, and L. Schmidt-Thieme, Tag-aware recommender
systems by fusion of collaborative filtering algorithms, Proceedings of the 2008 ACM
Symposium on Applied Computing (SAC ’08) (Fortaleza, Ceara, Brazil), ACM, 2008,
pp. 1995–1999.

A. Tveit, Peer-to-peer based recommendations for mobile commerce, Proceedings of the
1st International Workshop on Mobile Commerce (WMC ’01) (Rome, Italy), ACM,
July 2001, pp. 26–29.

A. Tversky and D. Kahneman, Choices, values, and frames, American Psychologist 39
(1984), no. 4, 341–350.

, Rational choice and the framing of decisions, Journal of Business 59 (1986),
no. 4, 251–278.

S. Uhlmann and A. Lugmayr, Personalization algorithms for portable personality,
Proceedings of the 12th International Conference on Entertainment and Media in
the Ubiquitous Era (MindTrek ’08) (Tampere, Finland), ACM, 2008, pp. 117–
121.

L. Ungar and D. Foster, Clustering methods for collaborative filtering, Proceedings
of the Workshop on Recommendation Systems, AAAI Technical Report WS-98-08,
AAAI Press, Menlo Park, CA, 1998, pp. 114–129.

H. van der Heijden, G. Kotsis, and R. Kronsteiner, Mobile recommendation systems for
decision making “on the go”, Proceedings of the International Conference on Mobile
Business (ICMB ’05) (Sydney, Australia), 2005, pp. 137–143.

M. van Setten, Supporting people in finding information: Hybrid recommender systems
and goal-based structuring, PhD thesis, Telematica Instituut, University of Twente,
The Netherlands, 2005.

328 Bibliography

M. van Setten, S. Pokraev, and J. Koolwaaij, Context-aware recommendations in the
mobile tourist application compass, Proceedings of the 3rd International Conference
of Adaptive Hypermedia and Adaptive Web-Based Systems (AH ’04) (Eindhoven,
the Netherlands), Springer, 2004, pp. 235–244.

P. Victor, C. Cornelis, and M. D. Cock, Enhanced recommendations through propa-
gation of trust and distrust, Proceedings of the 2006 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT ’06)
(Hong Kong), 2006, pp. 263–266.

P. Victor, C. Cornelis, M. D. Cock, and A. M. Teredesai, Key figure impact in trust-
enhanced recommender systems, AI Communications 21 (2008a), no. 2, 127–143.

P. Victor, C. Cornelis, A. M. Teredesai, and M. D. Cock, Whom should I trust?: the
impact of key figures on cold start recommendations, Proceedings of the 2008 ACM
Symposium on Applied Computing (SAC ’08) (Fortaleza, Ceara, Brazil), ACM,
2008b, pp. 2014–2018.

V. Vlahakis, N. Ioannidis, J. Karigiannis, M. Tsotros, M. Gounaris, D. Stricker, T.
Gleue, P. Daehne, and L. Almeida, Archeoguide: An augmented reality guide for
archaeological sites, IEEE Computer Graphics and Applications 22 (2002), no. 5,
52–60.

L. V. Ahn, M. Blum, and J. Langford, Captcha: Using hard AI problems for security, in
Proceedings of Eurocrypt ’2003 (Warsaw, Poland), Springer, 2003, pp. 294–311.

J. Wang, A. P. de Vries, and M. J. T. Reinders, Unifying user-based and item-based col-
laborative filtering approaches by similarity fusion, Proceedings of the 29th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’06) (Seattle), ACM, 2006, pp. 501–508.

, Unified relevance models for rating prediction in collaborative filtering, ACM
Transactions on Information Systems 26 (2008), no. 3, 1–42.

A. M. A. Wasfi, Collecting user access patterns for building user profiles and collabo-
rative filtering, Proceedings of the 4th International Conference on Intelligent User
Interfaces (IUI ’99) (Los Angeles), ACM Press, 1999, pp. 57–64.

S. Wasserman and K. Faust, Social network analysis: Methods and applications, Cam-
bridge University Press, 1994.

Y. Z. Wei, L. Moreau, and N. R. Jennings, A market-based approach to recommender
systems, ACM Transactions on Information Systems 23 (2005), no. 3, 227–266.

B. Weiner, Attributional thoughts about consumer behavior, Journal of Consumer Re-
search 27 (2000), no. 3, 382–387.

J. Weng, C. Miao, and A. Goh, Improving collaborative filtering with trust-based met-
rics, Proceedings of the 2006 ACM Symposium on Applied Computing (SAC ’06)
(Dijon, France), ACM, 2006, pp. 1860–1864.

B. Widrow and S. D. Stearns, Adaptive signal processing, Prentice-Hall, 1985.
Wikipedia, Slope one – Wikipedia, the free encyclopedia, 2008, (Online; accessed June

4, 2008).
D. Wilson and T. Martinez, Improved heterogeneous distance functions, Journal of

Artificial Intelligence Research 6 (1997), 1–34.
D. Winterfeldt and W. Edwards, Decision analysis and behavioral research, Cambridge

University Press, 1986.
Workshop on collaborative filtering, online, March 1996, http://www2.sims.berkeley.

edu/resources/collab/conferences/berkeley96/agenda.html.

Bibliography 329

B. Xiao and I. Benbasat, E-commerce product recommendation agents: Use, character-
istics, and impact, MIS Quarterly 31 (2007), no. 1, 137–209.

Z. Xu, Y. Fu, J. Mao, and D. Su, Towards the semantic web: Collaborative tag sugges-
tions, Proceedings of the Collaborative Web Tagging Workshop at the 15th Interna-
tional World Wide Web Conference (WWW ’06) (Edinburgh, Scotland), 2006.

G.-R. Xue, C. Lin, Q. Yang, W. Xi, H.-J. Zeng, Y. Yu, and Z. Chen, Scalable collaborative
filtering using cluster-based smoothing, Proceedings of the 28th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR ’05) (Salvador, Brazil), ACM, 2005, pp. 114–121.

I. Yakut and H. Polat, Privacy-preserving eigentaste-based collaborative filtering, Pro-
ceedings of the International Workshop on Security (IWSEC ’07) (Nara, Japan) (At-
suko Miyaji, Hiroaki Kikuchi, and Kai Rannenberg, eds.), Lecture Notes in Computer
Science, vol. 4752, Springer, October 2007, pp. 169–184.

Y. Yang and X. Liu, A re-examination of text categorization methods, Proceedings of the
22nd Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR ’99) (Berkley, CA), ACM, August 1999, pp. 42–49.

Y. Yi, The effects of contextual priming in print advertisements, Journal of Consumer
Research 17 (1990), no. 2, 215–222.

R. K. Yin, Case study research – design and methods, 3rd ed., SAGE Publications,
2002.

S. Yoon and I. Simonson, Choice set configuration as a determinant of preference
attribution and strength, Journal of Consumer Research 35 (2008), no. 2, 324–336.

K. Yoshii, M. Goto, K. Komatani, T. Ogata, and H. G. Okuno, Hybrid collaborative and
content-based music recommendation using probabilistic model with latent user pref-
erences, Proceedings of 7th International Conference on Music Information Retrieval
(ISMIR ’06) (Victoria, BC, Canada), 2006, pp. 296–301.

K. Yu, A. Schwaighofer, V. Tresp, X. Xu, and H.-P. Kriegel, Probabilistic memory-based
collaborative filtering, IEEE Transactions on Knowledge and Data Engineering 16
(2004), no. 1, 56–69.

K. Yu, X. Xu, M. Ester, and H.-P. Kriegel, Feature weighting and instance selection for
collaborative filtering: An information-theoretic approach, Knowledge Information
Systems 5 (2003), no. 2, 201–224.

V. Zanardi and L. Capra, Social ranking: Uncovering relevant content using tag-based
recommender systems, Proceedings of the 2008 ACM Conference on Recommender
Systems (RecSys ’08) (Lausanne, Switzerland), ACM Press, 2008, pp. 51–58.

M. Zanker, A collaborative constraint-based meta-level recommender, Proceedings
of the 2008 ACM Conference on Recommender Systems (RecSys ’08) (Lausanne,
Switzerland), ACM Press, 2008, pp. 139–146.

M. Zanker, M. Aschinger, and M. Jessenitschnig, Development of a collaborative and
constraint-based web configuration system for personalized bundling of products
and services, Proceedings of the 8th International Conference on Web Informa-
tion Systems Engineering (WISE ’07) (Nancy, France), Springer, 2007, pp. 273–
284.

M. Zanker, M. Bricman, S. Gordea, D. Jannach, and M. Jessenitschnig, Persuasive
online-selling in quality & taste domains, Proceedings of the 7th International Con-
ference on Electronic Commerce and Web Technologies (EC-Web ’06) (Krakow,
Poland), Springer, 2006, pp. 51–60.

330 Bibliography

M. Zanker, M. Fuchs, W. Höpken, M. Tuta, and N. Müller, Evaluating Recommender
Systems in Tourism – A Case Study from Austria, Proceedings of the International
Conference on Information and Communication Technologies in Tourism (ENTER)
(Innsbruck, Austria), 2008, pp. 24–34.

M. Zanker, M. Jessenitschnig, and M. Fuchs, Automated semantic annotations of tourism
resources based on geospatial data, Information Technology & Tourism, 11 (2009),
no. 4, 341–354.

M. Zanker, S. Gordea, M. Jessenitschnig, and M. Schnabl, A hybrid similarity concept
for browsing semi-structured product items, E-Commerce and Web Technologies, 7th
International Conference (EC-Web 2006) (Krakow, Poland) (Kurt Bauknecht, Birgit
Pröll, and Hannes Werthner, eds.), Lecture Notes in Computer Science, vol. 4082,
Springer, 2006, pp. 21–30.

M. Zanker and M. Jessenitschnig, Case-studies on exploiting explicit customer require-
ments in recommender systems, User Modeling and User-Adapted Interaction 19
(2009), no. 1–2, 133–166.

M. Zanker and M. Jessenitschnig, Collaborative feature-combination recommender
exploiting explicit and implicit user feedback, Proceedings of the 2009 IEEE Confer-
ence on Commerce and Enterprise Computing (CEC ’09) (Vienna), IEEE Computer
Society, 2009, pp. 49–56.

M. Zanker, M. Jessenitschnig, and W. Schmid, Preference Reasoning with Soft
Constraints in Constraint-Based Recommender Systems, Constraints, Springer,
15 (2010), no. 4, 574–595.

M. Zanker, M. Jessenitschnig, D. Jannach, and S. Gordea, Comparing recommendation
strategies in a commercial context, IEEE Intelligent Systems 22 (2007), no. 3, 69–73.

P. Zezula, G. Amato, V. Dohnal, and M. Batko, Similarity search – the metric space
approach, Advances in Database Systems, vol. 32, Springer, 2006.

J. Zhang and P. Pu, A recursive prediction algorithm for collaborative filtering rec-
ommender systems, Proceedings of the 2007 ACM Conference on Recommender
Systems (RecSys ’07) (Minneapolis, MN), ACM, 2007, pp. 57–64.

S. Zhang, A. Chakrabarti, J. Ford, and F. Makedon, Attack detection in time series
for recommender systems, Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’06) (Philadelphia),
ACM, 2006, pp. 809–814.

S. Zhang, J. Ford, and F. Makedon, Deriving private information from randomly per-
turbed ratings, Proceedings of the 6th SIAM International Conference on Data Mining
(SDM ’06) (Bethesda, MD) (Joydeep Ghosh, Diane Lambert, David B. Skillicorn,
and Jaideep Srivastava, eds.), SIAM, April 2006, pp. 59–69.

, A privacy-preserving collaborative filtering scheme with two-way communi-
cation, Proceedings of the 7th ACM Conference on Electronic Commerce (EC ’06)
(Ann Arbor, MI), ACM, 2006, pp. 316–323.

Y. Zhang, J. Callan, and T. Minka, Novelty and redundancy detection in adaptive
filtering, Proceedings of the 25th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR ’02) (Tampere, Finland),
ACM, 2002, pp. 81–88.

Y. Zhen, W.-J. Li, and D.-Y. Yeung, TAGICOFI: tag informed collaborative filtering,
Proceedings of the 2009 ACM Conference on Recommender Systems (RecSys ’09)
(New York), 2009, pp. 69–76.

Bibliography 331

C.-N. Ziegler and G. Lausen, Spreading activation models for trust propagation, Pro-
ceedings of the 2004 IEEE International Conference on e-Technology, e-Commerce
and e-Service (EEE ’04) (Taipei), IEEE Computer Society, March 2004, pp. 83–97.

, Propagation models for trust and distrust in social networks, Information
Systems Frontiers 7 (2005), no. 4–5, 337–358.

C.-N. Ziegler, G. Lausen, and L. Schmidt-Thieme, Taxonomy-driven computation of
product recommendations, Proceedings of the 2004 ACM CIKM International Con-
ference on Information and Knowledge Management (CIKM ’04) (Washington, DC),
2004, pp. 406–415.

C.-N. Ziegler, S. M. Mcnee, J. A. Konstan, and G. Lausen, Improving recommendation
lists through topic diversification, Proceedings of the 14th International Conference
on World Wide Web (WWW ’05) (New York), ACM Press, 2005, pp. 22–32.

A. Zimmermann, M. Specht, and A. Lorenz, Personalization and context management,
User Modeling and User-Adapted Interaction 15 (2005), no. 3–4, 275–302.

Index

attacks, 211
countermeasures, 221
dimensions of, 213
effectiveness, 219
types of, 214

attack profile, 215
association rule mining, 31, 108

confidence, 33
support, 32

attributes, augmentation of filtering by,
284

Bayes, 36
Bayesian belief networks, 38
clustering, 37
naive Bayes, 138

case amplification, 17
case study, 44, 189
classification, 35

Bayes classification, 35
clickstream attacks, 218
collaborative filtering, 13, 81, 124, 127

attacks on, 211
distributed, 227
item-based, 18
memory-based, 26
model-based, 21
user-based, 13

cold start, 23, 124, 293
new user cold-start problem, 26

conjunctive queries, 85
constraints, 83

constraint satisfaction problem, 83, 135
constraint-based recommender, 84

constraint types, 84

compatibility constraints, 85
filtering conditions, 85
product constraints, 85

content-based recommendation, 51, 124, 127
comparison, 74
limitations, 75

context-aware recommendation, 140, 291,
301

contextual parameters, 127, 140, 292
cosine similarity, 19

adjusted cosine similarity, 19
coverage, 18
critiquing-based recommendation, 101, 296

compound critiquing, 104
critique diversity, 111
critique patterns, 107
dynamic critiquing, 105

customer requirements, 91
conflict sets, 93
diagnoses for unsatisfiable requirements,

93
MinRelax, 95
QuickXPlain, 94
repairing inconsistent requirements, 96

data preprocessing, 20
offline preprocessing, 21

dataset, historical, 176, 177
BX 170, 176
Eachmovie, 170, 176, 184
Entrée, 170
Jester, 170
MovieLens, 170, 176, 184
Netflix, 170, 184
Ta-Feng, 170

decision trees, 70

333

334 Index

decoy effects, 236
asymmetric dominance, 237
attraction effect, 238
compromise effect, 237

defaults, 88
dependent defaults, 88
derived defaults, 99
static defaults, 88

default voting, 25
demographic recommender systems, 125

demographic data, 23, 31, 127
Dice coefficient, 54
dimensionality reduction, 30
document classification, 63

linear classifiers, 68
machine learning, 68
probabilistic document classification,

63

evaluation design, 167, 175
experimental, 172, 185
field studies, 175
lab studies, 175
non-experimental, 186
quasi-experimental, 173, 186
subjects of, 169

evaluation methodology, 177
a/b testing, 186
all but n, 178
given n, 178
leave one out, 178
n-fold cross-validation, 177
testing set, 178
training set, learning set, 178
user study, 184

explanations, 143
abductive, 151
in case-based recommenders, 157
in collaborative filtering recommenders,

161
in constraint-based recommender, 147
goals, 144
well-founded, 153

feature selection, 39, 72
folksonomies, 262

and collaborative filtering, 269
and content-based methods, 263

graph-based recommendation, 24
spreading-activation, 25

hybrid recommender systems, 124
cascade hybrids, 138
feature augmentation hybrid, 132
feature combination hybrid, 130
hybridization designs, 128
meta-level hybrids, 139
mixed hybrid, 134
monolithic hybridization design, 128, 129
parallelized hybridization design, 129, 134
pipelined hybridization design, 129, 138
switching hybrids, 137
weighted hybrid, 135

inverse user frequency, 17

knowledge-based recommendation, 81, 124,
127

case-based recommendation, 101
constraint-based recommendation, 83
knowledge model, 124

long-term user model, 59

matrix factorization, 26
latent semantic analysis, 27
singular value decomposition, 27

metrics, 179
catalog coverage, 183
F1, 181
hitrate, 181
lift index, 182
mean absolute error (MAE), 49, 136, 176,

179
precision, 180
Rankscore, 182
recall, 180
root mean square error (RMSE), 176, 180,

300
user coverage, 183

nearest neighbors, 13, 58
Netflix prize, 26, 125, 300
news recommendation, 44, 58

obfuscation, 225
ontological filtering, 279
outlook, 300

participatory media, recommending content,
276

Pearson correlation coefficient, 14

Index 335

personality and social psychology, 245
conformity, 247
emotions, 248
persuasion, 249
trust, 247

principal component analysis, 29
privacy, 225
probabilistic latent semantic analysis, 31
probabilistic recommender systems, 35
profile injection, 212
psychological theories, 235

context effects, 236
decoy effects, 236
defaults, 88, 244
effort accuracy framework, 235
framing, 243
preference construction, 235
primacy/recency, 236, 240
priming, 243

query-based retrieval, 60, 101
question selection, 90

rating matrix, 14
rating prediction, 16
ratings, 22

explicit, 22
implicit, 23
rating scale, 22, 174, 179

relevance feedback, 60
result presentation, 96

conjoint analysis, 100
ranking results, 97, 126

Rocchio’s method, 60
rule induction, 70

Semantic Web, 253
semantics, extracting, 285
short-term user model, 58

significance weighting, 17
similarity-based retrieval, 58
similarity metrics, 86
similarity threshold, 18
Slope One, 41
social networks, 253
sparsity, 23, 170, 293
stemming, 56
stop words, 56
summary, 299

tag-based recommendation, linguistic
methods, 266

tag clouds, 263
tag clustering, 268
tag recommendation, 273
taxonomies, augmentation of filtering by,

279
text classification, 67
TF-IDF term frequency, in verse user

frequency, 54
top-n, 13
trust metrics, 257
trust networks, 255
trust-awareness, 254

user model, 127, 291
user profile, 125, 291

ubiquitous environments,
recommendations in, 289

utility-based recommendation, 87, 97, 126
multi-attribute utility scheme, 127
multi-attribute utility theory, 97

variance weighting, 17

Web 2.0, 253
web mining, 285
weighted majority voter, 89

	Half-title
	Title
	Copyright
	Contents
	Foreword
	Preface
	1 Introduction
	1.1 Part I: Introduction to basic concepts
	1.1.1 Collaborative recommendation
	1.1.2 Content-based recommendation
	1.1.3 Knowledge-based recommendation
	1.1.4 Hybrid approaches
	1.1.5 Explanations in recommender systems
	1.1.6 Evaluating recommender systems
	1.1.7 Case study

	1.2 Part II: Recent developments

	PART I: Introduction to basic concepts
	2 Collaborative recommendation
	2.1 User-based nearest neighbor recommendation
	2.1.1 First example
	2.1.2 Better similarity and weighting metrics
	2.1.3 Neighborhood selection

	2.2 Item-based nearest neighbor recommendation
	2.2.1 The cosine similarity measure
	2.2.2 Preprocessing data for item-based filtering

	2.3 About ratings
	2.3.1 Implicit and explicit ratings
	2.3.2 Data sparsity and the cold-start problem

	2.4 Further model-based and preprocessing-based approaches
	2.4.1 Matrix factorization/latent factor models
	2.4.2 Association rule mining
	2.4.3 Probabilistic recommendation approaches

	2.5 Recent practical approaches and systems
	2.5.1 Slope One predictors
	2.5.2 The Google News personalization engine

	2.6 Discussion and summary
	2.7 Bibliographical notes

	3 Content-based recommendation
	3.1 Content representation and content similarity
	3.1.1 The vector space model and TF-IDF
	3.1.2 Improving the vector space model/limitations

	3.2 Similarity-based retrieval
	3.2.1 Nearest neighbors
	3.2.2 Relevance feedback – Rocchio’s method

	3.3 Other text classification methods
	3.3.1 Probabilistic methods
	3.3.2 Other linear classifiers and machine learning
	3.3.3 Explicit decision models
	3.3.4 On feature selection

	3.4 Discussion
	3.4.1 Comparative evaluation
	3.4.2 Limitations

	3.5 Summary
	3.6 Bibliographical notes

	4 Knowledge-based recommendation
	4.1 Introduction
	4.2 Knowledge representation and reasoning
	4.2.1 Constraints
	4.2.2 Cases and similarities

	4.3 Interacting with constraint-based recommenders
	4.3.1 Defaults
	4.3.2 Dealing with unsatisfiable requirements and empty result sets
	4.3.3 Proposing repairs for unsatisfiable requirements
	4.3.4 Ranking the items/utility-based recommendation

	4.4 Interacting with case-based recommenders
	4.4.1 Critiquing
	4.4.2 Compound critiquing
	4.4.3 Dynamic critiquing
	4.4.4 Advanced item recommendation
	4.4.5 Critique diversity

	4.5 Example applications
	4.5.1 The VITA constraint-based recommender
	4.5.2 The Entree case-based recommender

	4.6 Bibliographical notes

	5 Hybrid recommendation approaches
	5.1 Opportunities for hybridization
	5.1.1 Recommendation paradigms
	5.1.2 Hybridization designs

	5.2 Monolithic hybridization design
	5.2.1 Feature combination hybrids
	5.2.2 Feature augmentation hybrids

	5.3 Parallelized hybridization design
	5.3.1 Mixed hybrids
	5.3.2 Weighted hybrids
	5.3.3 Switching hybrids

	5.4 Pipelined hybridization design
	5.4.1 Cascade hybrids
	5.4.2 Meta-level hybrids

	5.5 Discussion and summary
	5.6 Bibliographical notes

	6 Explanations in recommender systems
	6.1 Introduction
	6.2 Explanations in constraint-based recommenders
	6.2.1 Example
	6.2.2 Generating explanations by abduction
	6.2.3 Analysis and outline of well-founded explanations
	6.2.4 Well-founded explanations

	6.3 Explanations in case-based recommenders
	6.4 Explanations in collaborative filtering recommenders
	6.5 Summary

	7 Evaluating recommender systems
	7.1 Introduction
	7.2 General properties of evaluation research
	7.2.1 General remarks
	7.2.2 Subjects of evaluation design
	7.2.3 Research methods
	7.2.4 Evaluation settings

	7.3 Popular evaluation designs
	7.4 Evaluation on historical datasets
	7.4.1 Methodology
	7.4.2 Metrics
	7.4.3 Analysis of results

	7.5 Alternate evaluation designs
	7.5.1 Experimental research designs
	7.5.2 Quasi-experimental research designs
	7.5.3 Nonexperimental research designs

	7.6 Summary
	7.7 Bibliographical notes

	8 Case study: Personalized game recommendations on the mobile Internet
	8.1 Application and personalization overview
	8.2 Algorithms and ratings
	8.3 Evaluation
	8.3.1 Measurement 1: “My Recommendations”
	8.3.2 Measurement 2: Post-sales recommendations
	8.3.3 Measurement 3: Start page recommendations
	8.3.4 Measurement 4: Overall effect on demo downloads
	8.3.5 Measurement 5: Overall effects

	8.4 Summary and conclusions

	PART II: Recent developments
	9 Attacks on collaborative recommender systems
	9.1 A first example
	9.2 Attack dimensions
	9.3 Attack types
	9.3.1 The random attack
	9.3.2 The average attack
	9.3.3 The bandwagon attack
	9.3.4 The segment attack
	9.3.5 Special nuke attacks
	9.3.6 Clickstream attacks and implicit feedback

	9.4 Evaluation of effectiveness and countermeasures
	9.4.1 Push attacks
	9.4.2 Nuke attacks

	9.5 Countermeasures
	9.6 Privacy aspects -- distributed collaborative filtering
	9.6.1 Centralized methods: Data perturbation
	9.6.2 Distributed collaborative filtering

	9.7 Discussion

	10 Online consumer decision making
	10.1 Introduction
	10.2 Context effects
	10.3 Primacy/recency effects
	10.4 Further effects
	10.5 Personality and social psychology
	10.6 Bibliographical notes

	11 Recommender systems and the next-generation web
	11.1 Trust-aware recommender systems
	11.1.1 Exploiting explicit trust networks
	11.1.2 Trust metrics and effectiveness
	11.1.3 Related approaches and recent developments

	11.2 Folksonomies and more
	11.2.1 Using folksonomies for recommendations
	11.2.1.1 Folksonomies and content-based methods
	11.2.1.2 Folksonomies and collaborative filtering

	11.2.2 Recommending tags
	11.2.3 Recommending content in participatory media

	11.3 Ontological filtering
	11.3.1 Augmentation of filtering by taxonomies
	11.3.2 Augmentation of filtering by attributes

	11.4 Extracting semantics from the web
	11.5 Summary

	12 Recommendations in ubiquitous environments
	12.1 Introduction
	12.2 Context-aware recommendation
	12.3 Application domains
	12.4 Summary

	13 Summary and outlook
	13.1 Summary
	13.2 Outlook

	Bibliography
	Index

