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Preface

Statistical power analysis has revolutionized the ways in which behavioral 
and social scientists plan, conduct, and evaluate their research. Similar 
developments in the statistical analysis of incomplete (missing) data are 
gaining more widespread applications as software catches up with theory. 
However, very little attention has been devoted to the ways in which miss‑
ing data affect statistical power. In fields such as psychology, sociology, 
human development, education, gerontology, nursing, and health sciences, 
the effects of missing data on statistical power are significant issues with 
the potential to influence how studies are designed and implemented.

Several factors make these issues (and this book) significant. First and 
foremost, data are expensive and difficult to collect. At the same time, data 
collection with some groups may be taxing. This is particularly true with 
today’s multidisciplinary studies where researchers often want to com‑
bine information across multiple (e.g., physiological, psychological, social, 
contextual) domains. If there are ways to economize and at the same time 
reduce expense and testing burden through application of missing data 
designs, then these should be identified and exploited in advance when‑
ever possible.

Second, missing data are a nearly inevitable aspect of social science 
research and this is particularly true in longitudinal and multi‑informant 
studies. Although one might expect that any missing data would simply 
reduce power, recent research suggests that not all missing data were cre‑
ated equal. In other words, some types of missing data may have greater 
implications for loss of statistical power than others. Ways to assess and 
anticipate the extent of loss in power with regard to the amount and type of 
missing data need to be more widely available, as do ways to moderate the 
effects of missing data on the loss of statistical power whenever possible.

Finally, some data are inherently missing. A number of “incomplete” 
designs have been considered for some time, including the Solomon 
four‑group design, Latin squares design, and Schaie’s most efficient design. 
However, they have not typically been analyzed as missing data designs. 
Planning a study with missing data may actually be a cost‑effective alter‑
native to collecting complete data on all individuals. For some applications, 
these “missing by design” methods of data collection may be the only prac‑
tical way to plan a study, such as with accelerated longitudinal designs. 
Knowing how best to plan a study of this type is increasingly important.
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x Preface

This volume brings statistical power and incomplete data together under 
a common framework. We aim to do so in a way that is readily accessible 
to social scientists and students who have some familiarity with struc‑
tural equation modeling. Our book is divided into three sections. The first 
presents some necessary fundamentals and includes an introduction and 
overview as well as chapters addressing the topics of the LISREL model, 
missing data, and estimating statistical power in the complete data con‑
text. Each of these chapters is designed to present all of the information 
necessary to work through all of the content of this book. Though a certain 
amount of familiarity with topics such as hypothesis testing or structural 
equation models (with any statistical package) is required, we have made 
every effort to ensure that this content is accessible to as wide a readership 
as possible. If you are not very familiar with structural equation model‑
ing or have not spent much time working with a software package that 
estimates these models, we strongly encourage you to work slowly and 
carefully through the Fundamentals section until you feel confident in 
your abilities. All of the subsequent materials covered in this book draw 
directly on the material covered in this first section. Even if you are very 
comfortable with your structural equation modeling skills, we still recom‑
mend that you review this material so that you will be familiar with the 
conventions we use in the remainder of this volume.

The second section of this book presents several applications. We con‑
sider a wide variety of fully worked examples, each building one step at a 
time beyond the preceding application or considering a different approach 
to an issue that has been considered earlier. In Chapter 5, we begin by con‑
sidering the effects of selection on means, variances, and covariances as 
a way of introducing data that are missing in a systematic fashion. This 
is the most intensive chapter of the book, in terms of the formulas and 
equations we introduce, so we try to make each of the steps build directly 
on what has been done earlier. Next, we consider how structural equation 
models can be used to estimate models with incomplete data. In a third 
application, we extend this approach to a model of considerable substan‑
tive interest, such as testing group differences in a growth curve model. 
Because of the realistic nature of this application, Chapter 8 is thus the 
most intensive chapter in terms of syntax. Again, we have made every 
effort to ensure that each piece builds slowly and incrementally on what 
has come before. Additional applications work through an example of a 
study with data missing by design and using a Monte Carlo approach 
(i.e., simulating and analyzing raw data) to estimate statistical power with 
incomplete data. In addition to the specific worked examples, these chap‑
ters provide results from a wider set of estimated models. These tables, 
and accompanying syntax, can be used to estimate statistical power or 
required sample size for similar problems under a wide range of condi‑
tions. We encourage all readers to run the accompanying syntax in the 
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Preface xi

software packages of their choice in order to ensure that your results 
agree with the ones we present in the text. If your results do not agree 
with our results, then something needs to be resolved before moving for‑
ward through the material. We have tried to indicate key points in the 
material where you should stop and test your understanding of the mate‑
rial (“Points of Reflection”) or your ability to apply it to a specific problem 
(“Try Me”), as well as “Troubleshooting Tips” that can help to remedy or 
prevent commonly encountered problems. Exercises at the end of each 
chapter are designed to reinforce content up to that point and, in places, 
to foreshadow content of the subsequent chapter. Try at least a few of them 
before moving on to the next chapter. We also provide a list of additional 
readings to help readers learn more about basic issues or delve more 
deeply into selected topics in as efficient a manner as possible.

The third section of this book presents a number of extensions to the 
approaches outlined here. Material covered in this section includes dis‑
cussion of a number of factors that can moderate the effects of missing 
data on loss of statistical power from a measurement, design, or analysis 
perspective and extends the discussion beyond testing of hypotheses for 
a specific model parameter to consider evaluation of model fit and effects 
of missing data on a variety of commonly used fit indices. Our conclud‑
ing chapter integrates much of the content of the book and points toward 
some useful directions for future research.

Every social scientist knows that missing data and statistical power are 
inherently associated, but currently almost no information is available 
about the precise relationship. The proposed book fills this large gap in the 
applied methodology literature while at the same time answering practi‑
cal and conceptual questions such as how missing data may have affected 
the statistical power in a specific study, how much power a researcher will 
have with different amounts and types of missing data, how to increase 
the power of a design in the presence or expectation of missing data, and 
how to identify the more statistically powerful design in the presence of 
missing data.

This volume selectively integrates material across a wide range of con‑
tent areas as it has developed over the past 50 (and particularly the past 
20) years, but no single volume can pretend to be complete or compre‑
hensive across such a wide content area. Rather, we set out to present an 
approach that combines a reasonable introduction to each issue, its poten‑
tial strengths and shortcomings, along with plenty of worked examples 
using a variety of popular software packages (SAS, SPSS, Stata, LISREL, 
AMOS, MPlus).

Where necessary, we provide sufficient material in the form of equa‑
tions and advanced readings to appeal to individuals in search of in‑depth 
knowledge in this area, while serving the primary audience of individu‑
als who need this kind of information in order to plan and evaluate their 
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xii Preface

own research. Skip anything that does not make sense on a first reading, 
with our blessing — just plan to return to it again after working through 
the examples further. Our writing style should be accessible to all indi‑
viduals with an introductory to intermediate familiarity with structural 
equation modeling.

We believe that nearly all students and researchers can successfully 
delve further into the methodological literature than they may currently be 
comfortable, and that Greek (i.e., the equations we have included through‑
out the text) only hurts until you have applied it to a specific example. 
There are locations in the text where even very large and unwieldy equa‑
tions reduce down to simple arithmetic that you can literally do by hand. 
Throughout this volume, we have tried to explain the meaning of each 
equation in words as well as provide syntax to help you to turn the equa‑
tions into numbers with more familiar meanings. This may sound like a 
strange thing to say in a book about statistics, but leave as little to chance 
as possible. Take our word for it that you will get considerably more ben‑
efit from this text if you stop and test out each example along the way than 
if you allow the mathematics and equations to remain abstract rather than 
applying them each step of the way. After all, what’s the worst thing that 
could happen?

We recognize that we cannot hope to please all of the people all of the 
time with a volume such as this one. As such, this book reflects a num‑
ber of compromises as well as a number of accommodations. In the text, 
we present syntax using a single software program to promote continu‑
ity of the material. We have strived to choose the software that provides 
answers most directly or that maps most closely onto the way in which 
the content is discussed. In each case, however, parallel syntax using the 
other packages is presented as an appendix to each chapter. Additionally, 
we include a link to Web resources with each of the routines, data sets, 
and syntax files referred to in the book, as well as links to additional mate‑
rial, such as student versions of each software package that can be used to 
estimate all examples included in this book.

As of the time of writing, each of the structural equation modeling 
syntax files has been tested on LISREL version 8.8, MPlus version 4.21, 
and AMOS version 7. Syntax in other statistical packages has been imple‑
mented with SPSS version 15, SAS version 9, and Stata version 10.

Finally, a great many people helped to make this book both possible and 
plausible. We wish to offer sincere thanks to our spouses, Maureen and 
Sital, for helping us to carve out the time necessary for an undertaking 
such as this one. We discovered that what started as a simple and straight‑
forward project would have to first be fermented and then distilled, and we 
appreciate your patience through this process. Zupei Luo joined our efforts 
early and made several solid contributions to our thinking. Many students 
and colleagues provided input and plenty of constructive criticism along 
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the way. These included presentations of some of our initial ideas at Miami 
University (Kevin R. Bush and Rose Marie Ward, Pete Peterson, and Aimin 
Wang were regular contributors) and Oregon State University (Alan Acock, 
Karen Hooker, Alexis Walker). Several of our students and colleagues, first 
through projects at the University of Georgia (Shayne Anderson, Steve 
Beach, Gene Brody, Rex Forehand, Xiaojia Ge, Megan Janke, Mark Lipsey, 
Velma Murry, Bob Vandenberg, Temple University (Michelle Bovin, Hanna 
Carpenter, Nicole Noll), and beyond (Anne Edwards, Scott Maitland, 
Larry Williams), helped us figure out what we were really trying to say. 
We also owe a significant debt of gratitude to four reviewers (Jim Deal, 
David MacKinnon, Jay Maddock, and Debbie Hahs‑Vaughn) who provided 
us with precisely the kind of candid feedback we needed to improve the 
quality of this book. Thank you for both making the time and for telling 
us what we needed to hear. We sincerely hope that we have successfully 
incorporated all of your suggestions. Finally, we wish to acknowledge the 
steady support and encouragement of Debra Riegert, Christopher Myron, 
and Erin Flaherty and the many others at Taylor and Francis who helped 
bring this project to fruition. All remaining deficiencies in this volume rest 
squarely on our shoulders.
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1

1
Introduction

Overview and Aims

Missing data are a nearly ubiquitous aspect of social science research. Data 
can be missing for a wide variety of reasons, some of which are at least 
partially controllable by the researcher and others that are not. Likewise, 
the ways in which missing data occur can vary in their implications for 
reaching valid inferences. This book is devoted to helping researchers 
consider the role of missing data in their research and to plan appro‑
priately for the implications of missing data. Recent years have seen an 
extremely rapid rise in the availability of methods for dealing with miss‑
ing data that are becoming increasingly accessible to non‑methodologists. 
As a result, their application and acceptance by the research community 
has expanded exponentially.

It was not so very long ago that even highly sophisticated researchers 
would, at best, acknowledge the extent of missing data and then proceed 
to present analyses based only on the subset of participants who provided 
complete data for the variables of interest. This “list‑wise deletion” treat‑
ment of missing values remains the default option in nearly every statisti‑
cal package available to social scientists.

Researchers who attempted to address issues of missing data in more 
sophisticated ways risked opening themselves to harsh criticism from 
reviewers and journal editors, often being accused of making up data or 
being treated as though their methods were nothing more than statisti‑
cal sleight of hand. In reality, it usually requires stronger assumptions to 
ignore missing data than to address them. For example, the assumptions 
required to reach valid conclusions based on list‑wise deletion actually 
require a much greater leap of faith than the use of more sophisticated 
approaches.

Fortunately, the times have changed quickly as statistical software 
developers have gone to greater lengths to incorporate appropriate tech‑
niques in their software. At the same time, many social scientists with 
sophisticated methodological skills have helped to facilitate a better con‑
ceptual understanding of missing data issues among non‑methodologists 
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2 Statistical Power Analysis with Missing Data

(e.g., Acock, 2005; Allison, 2001; Schafer & Graham, 2002). There is now 
the general expectation within the scientific community that researchers 
will provide more sophisticated treatment of missing data. However, the 
implications of missing data for social science research have not received 
widespread treatment to date, nor have they made their way into the plan‑
ning of sound research, being something to anticipate and perhaps even 
incorporate deliberately.

Statistical power is the probability that one will find an effect of a given 
magnitude if in fact one actually exists. Although statistical power has a 
long history in the social sciences (e.g., Cohen, 1969; Neyman & Pearson, 
1928a, 1928b), many studies remain underpowered to this day (Maxwell, 
2004; Maxwell, Kelly, & Rausch, 2008). Given that the success of publish‑
ing one’s results and obtaining funding typically rest upon reliably iden‑
tifying statistically significant associations (although there is a growing 
movement away from null hypothesis significance testing; see Harlow, 
Mulaik, & Steiger, 1997), there is considerable importance to learning how 
to design and conduct appropriate power analyses, in order to increase 
the chances that one’s research will be informative and in order to work 
toward building a cumulative body of knowledge (Lipsey, 1990). In addi‑
tion to determining whether means differ, assumptions (e.g., normality, 
homoscedasticity, etc.) are met, or a more parsimonious model performs 
as well as one that is more complex, there is greater recognition today that 
statistically significant results are not always meaningful, which places 
increased emphasis on the choice of alternative hypotheses.

We have several aims in this volume. First, we hope to provide social 
scientists with the skills to conduct a power analysis that can incorpo‑
rate the effects of missing data as they are expected to occur. A second 
aim is to help researchers move missing data considerations forward in 
their research process. At present, most researchers do not truly begin 
to consider the influence of missing data until the analysis stage (e.g., 
Molenberghs & Kenward, 2007). This volume can help researchers to 
carry the role of missing data forward to the planning stage, before any 
data are even collected or a grant proposal is even submitted.

Power analyses that consider missing data can provide more accurate 
estimates of the likelihood of success in a study. Several of the consider‑
ations we address in this book also have implications for ways to reduce 
the potential effects of missing data on loss of statistical power, many 
under the researcher’s control. Finally, we hope that this volume will pro‑
vide an initial framework in which issues of missing data and their asso‑
ciations with statistical power can become better explored, understood, 
and even exploited.

As resources to conduct research become more difficult to obtain, the 
importance of statistical power grows as well, along with demands on 
researchers to plan studies as efficiently as possible. At the same time, 
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Introduction 3

the increase in application of complex multivariate statistics and latent 
variable models afforded by greater computing power also places heavier 
demands on data and samples. In the context of structural equation mod‑
eling, there is generally also a greater theoretical burden on researchers 
prior to the conduct of their analyses. It is important for researchers to 
know quite a bit in advance about their constructs, measures, and models. 
The process of hypothesis testing has become multivariate and, particu‑
larly in nonexperimental contexts, subsequent stages of analysis are often 
predicated on the outcomes of previous stages. Fortunately, it is precisely 
these situations that lend themselves most directly to power analysis in 
the context of structural equation modeling.

History is also on our side. Designs that incorporate missing data 
(so‑called incomplete designs) have been a part of the social sciences for 
a very long time, although we do not often think of them in this way. 
Some of the classic examples include the Solomon four‑group design 
for evaluating testing by treatment interactions (Campbell & Stanley, 
1963; Solomon, 1949) and the Latin squares design. More recent exam‑
ples include cohort‑sequential, cross‑sequential, and accelerated longi‑
tudinal designs (cf. Bell, 1953; McArdle & Hamagami, 1991; Raudenbush 
& Chan, 1992; Schaie, 1965). However, with the exception of the latter 
example, these designs have not typically been analyzed as missing 
data designs but rather analyzed piecewise according to complete data 
principles.

In Solomon’s four‑group design (Table 1.1), for example, researchers 
are typically directed to test the pretest by intervention interaction using 
(only) posttest scores. Finding this to be nonsignificant, they are then 
advised either to pool across pretest and non‑pretest conditions for a 
more powerful posttest comparison or to consider the analysis of gain 
scores (posttest values controlling for pretest values). Each approach dis‑
cards potentially important information. In the former, pretest scores 
are discarded; in the latter, data from groups without pretest scores are 
discarded. It is very interesting to note that Solomon himself initially 
recommended replacing the two missing pretest scores with the aver‑
age scores obtained from O1 and O3 in Table 1.1, leading Campbell 
and Stanley (1963) to indicate that “Solomon’s suggestions concerning 

Table 1.1

Solomon’s Four‑Group Design

Pretest Intervention Posttest

R O1 X O2
R O3 O4
R ? X O5
R ? O6
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4 Statistical Power Analysis with Missing Data

these are judged unacceptable” (p. 25) and to suggest that pretest scores 
essentially be discarded from analysis. If you think about it, the random 
assignment to groups in this design suggests that the mean of O1 and 
O3 is likely to be the best estimate, on average, of the pretest means for 
the groups for which pretest scores were deliberately unobserved. How 
modern approaches differ from Solomon’s suggestion is that they cap‑
ture not just these point estimates, but they also factor in an appropriate 
degree of uncertainty regarding the unobserved pretest scores. In this 
design, randomization allows the researcher to make certain assump‑
tions about the data that are deliberately not observed.

In contrast, compare this approach with the accelerated longitudinal 
design, illustrated in Table 1.2. Here, one can deliberately sample three (or 
more) different cohorts on three (or more) different occasions and subse‑
quently reconstruct a trajectory of development over a substantially lon‑
ger period of development by simultaneously analyzing data from these 
incomplete trajectories. In this minimal example, just 2 years (with three 
waves of data collection) of longitudinal research yields information about 
4 years of development with, of course, longer periods possible through 
the addition of more waves and cohorts. Different assumptions, such as 
the absence of cohort differences, are required in order for this design to 
be valid. However, careful design can also allow for appropriate evalu‑
ation of these assumptions and remediation in cases where they are not 
met. In fact, testing of some hypotheses would not even be possible using 
a complete data design, as is the case with Solomon’s four‑group design.

On the other hand, an incomplete design means that it may not be pos‑
sible to estimate all parameters of a model. Because it is never observed, 
the correlation between variables at ages 12 and 16 cannot be estimated in 
the example above. Often, however, this has little bearing on the questions 
we wish to address, or else we can design the study in a way that allows 
us to capture the desired information.

This book has been designed with several goals in mind. First and fore‑
most, we hope that it will help researchers and students from a variety of 
disciplines, including psychology, sociology, education, communication, 

Table 1.2

Accelerated Longitudinal Design

Age

12 13 14 15 16

Cohort 1 O O O ? ?

Cohort 2 ? O O O ?
Cohort 3 ? ? O O O
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Introduction 5

management, nursing, and social work, to plan better, more informative 
studies by considering the effects that missing data are likely to have on 
their ability to reach valid and replicable inferences.

It seems rather obvious that whenever we are missing data, we are miss‑
ing information about the population parameters for which we wish to 
reach inferences, but learning more about the extent to which this is true 
and, more importantly, steps that researchers can take to reduce these 
effects, forms another important objective of this book. As we will see, all 
missing data were not created equal, and it is very often possible to con‑
duct a more effective study by purposefully incorporating missing data 
into its design (e.g., Graham, Hofer, & MacKinnon, 1996).

Even the statistical literature has devoted considerably more attention 
to ways in which researchers can improve statistical power over and 
above list‑wise deletion methods, rather than to consider how appropri‑
ate application of these techniques compares with availability of com‑
plete data. Under at least some circumstances, researchers may be able to 
achieve greater statistical power by incorporating missing data into their 
designs.

A third goal of this volume is to help researchers to anticipate and eval‑
uate contingencies before committing to a specific course of action and to 
be in a better position to evaluate one’s findings. In this sense, conducting 
rigorous power analyses appropriate to the range of missing data situa‑
tions and statistical analyses faced in a typical study is analogous to the 
role played by pilot research when one is developing measures, manipula‑
tions, and designs appropriate to testing hypotheses. As we shall see, the 
techniques presented in this book are appropriate to both experimental 
and nonexperimental contexts and to situations where data are missing 
either by default or by design. They can be used as well, with only minor 
modifications, in either an a priori or a posteriori fashion and with a single 
parameter of interest or in order to evaluate an entire model just as in the 
complete data case (e.g., Hancock, 2006; Kaplan, 1995).

Statistical Power

Because the practical aspects of statistical power do not always receive a 
great deal of attention in many statistics and research methods courses, 
before launching into consideration of statistical power, we begin by first 
reviewing some of the components and underlying logic associated with 
statistical power. The rest of this book elaborates on the importance of 
each of these elements in the examples presented.
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6 Statistical Power Analysis with Missing Data

Testing Hypotheses

One of the purposes of statistical inference is to test hypotheses about the 
(unknown) state of affairs in the world. How many people live in pov‑
erty? Do boys and girls differ in mathematical problem‑solving ability? 
Does smoking cause cancer? Will seat belts reduce the number of fatali‑
ties in automobile accidents? Is one drug more effective in reducing the 
symptoms of a specific disease than another? Our goal in these situations 
is almost always to reach valid inferences about a population of interest 
and to address our question. Setting aside for a moment that outcomes 
almost always result from multiple causes and that our measurement of 
both predictors and outcomes is typically fraught with at least some error 
or unreliability, it is almost never possible (or necessary or even advisable) 
to survey all members of that population. Instead, we rely on informa‑
tion gathered from a subsample of all individuals we could potentially 
include. However, adopting this approach, though certainly very sensible 
in the aggregate, also introduces an element of uncertainty into how we 
interpret and evaluate the results of any single study based on a sample.

In scientific decision‑making, our potential to reach an incorrect conclu‑
sion (i.e., commit an error) depends on the underlying (and unknown) true 
state of affairs. As anyone who has had even an elementary course in statis‑
tics will know, the logic of hypothesis testing is typically to evaluate a null 
hypothesis (H0) against the desired alternative hypothesis (Ha), the reality 
for which we usually hope to find support through our study. As shown in 
Table 1.3, if our null hypothesis is true, then we commit a Type I error (with 
probability α) if we mistakenly conclude that there is a significant relation 
when in fact no such relation exists in the population. Likewise, we commit 
a Type II error (with probability β) every time we mistakenly overlook a 
significant relation when one is actually present in the population.

Although most researchers pay greatest attention to the threat of a Type I 
error, there are two reasons why most studies are much more likely to result 
in a Type II error. A standard design might set α at 5%, suggesting that this 
error will only occur on 1 of 20 occasions on which a study is repeated and 
the null hypothesis is true. Studies are typically powered, however, such 
that a Type II error will not occur more than 20% of the time, or on 1 of 5 
occasions on which a study is repeated and the null hypothesis is false. 

Table 1.3

Decision Matrix for Research Studies

True State of Affairs

Decision H0 True H0 False

Do not reject H0 Correct (1 − α) Type II error (β)
Reject H0 Type I error (α) Correct (1 − β)

Y100315.indb   6 7/15/09   2:58:43 PM



Introduction 7

Of course, the other key piece of information is that both of these prob‑
abilities are conditional on the underlying true state of affairs. Because most 
researchers do not set out to find effects that they do not believe to exist, 
some researchers such as Murphy and Myors (2004) suggest that the null 
hypothesis is almost always false. This means that the Type II error and its 
corollary, statistical power (1 − β), should be the only practical consideration 
for most studies. In the sections of this chapter that follow, we hope to con‑
vey an intuitive sense of the considerations involved in statistical power, 
deferring the more technical considerations to subsequent chapters.

Choosing an alternative Hypothesis

As we noted earlier, one critique of standard power analyses is that effects 
are never exactly zero in practical settings (in other words, the null hypoth‑
esis is practically always false). However, though unrealistic, this is pre‑
cisely what most commonly used statistical tests evaluate. It might be more 
useful to know whether the effects of two interventions differ by a mean‑
ingful amount (say two points on a standardized instrument, or that one 
approach is at least 10% more effective than another). In acknowledgement 
that no effect is likely to be exactly zero, but that many are likely to be incon‑
sequential, researchers such as Murphy and Myors (2004) and others have 
advocated basing power analyses on an alternative hypothesis that reflects 
a trivial effect as opposed to a null effect. For example, a standard multiple 
regression model provides an F‑test of whether the squared multiple corre‑
lation (R2) is exactly zero (that is, our hypothesis is that our model explains 
absolutely nothing, even though that is almost never our expectation). A 
more appropriate test might be whether the R2 is at least as large as the least 
meaningful value (for example, a hypothesis that our model accounts for at 
least 1% of the variance). These more realistic tests are beginning to receive 
more widespread application in a variety of contexts, and a somewhat larger 
sample size is required to distinguish a meaningful effect from one that is 
nonexistent. The results of this comparison, however, are likely to be more 
informative than when the standard null hypothesis is used.

Central and Noncentral Distributions

Noncentral distributions lie at the center of statistical power analyses. 
Central distributions describe “reality” when the null hypothesis is true. 
One important characteristic of central distributions is that they can be 
standardized. For example, testing whether a parameter is zero typically 
involves constructing a 95% confidence interval around an estimate and 
determining whether that interval includes zero. We can describe a situa‑
tion like this one by a parameter’s estimated mean value plus or minus 1.96 
times (the values between which 95% of a standard normal curve lie) its 
standard error. Noncentral distributions, on the other hand, describe reality 
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8 Statistical Power Analysis with Missing Data

when the null hypothesis is false. Unlike standard (central) distributions, 
noncentral distributions are not standardized and can change shape as a 
function of the noncentrality parameter (NCP), the degree to which the null 
hypothesis is false. Figure 1.1 shows how the χ2 distribution with 5 degrees 
of freedom (df  ) changes as the NCP increases from 0 to 10. As the NCP 
increases, the entire distribution shifts to the right, meaning that a greater 
proportion of the distribution will lie above any specific cutoff value.

A central χ2 distribution with degrees of freedom df is generated as the 
sum of squares of df standard normal variates (i.e., each having a mean of 
0 and standard deviation of 1). If the variates have a non‑zero mean of m, 
however, then a noncentral χ2 distribution results with an NCP of λ, where 
m df= λ/ .  Below is a sample program that can be used to generate data 
according to noncentral chi‑square distributions with a given number of 
degrees of freedom (in this case, 5 variates generate a distribution with
5 df) and NCP (in this case, λ = 2, so m is 2 5  or approximately 0.63).

Try Me!

Before moving beyond this point, stop and try running the following pro‑
gram using the software you are most comfortable with. Experiment with 
different values of λ and df until you are sure you understand this point. 
Try plotting our distributions using histograms.
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Figure 1.1
Probability density function of noncentral chi‑square distributions.
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set seed 17881 ! (We discuss this in Chapter 9)
set obs 10000
generate ncp = 2
generate x1 = invnorm(uniform()) + sqrt(ncp/5)
generate x2 = invnorm(uniform()) + sqrt(ncp/5)
generate x3 = invnorm(uniform()) + sqrt(ncp/5)
generate x4 = invnorm(uniform()) + sqrt(ncp/5)
generate x5 = invnorm(uniform()) + sqrt(ncp/5)
generate nchia = x1*x1 + x2*x2 + x3*x3 + x4*x4 + x5*x5
generate nchib = invnchi2(5,ncp,uniform())
summarize nchia nchib
clear all

Factors important for Power

Despite being able to trace the origins of interest in statistical power back to the 
early part of the last century when Neyman and Pearson (1928a, 1928b) initiated 
the discussion, it is probably Jacob Cohen (e.g., 1969, 1988, 1992) whose work 
can in large part be credited with bringing statistical power to the attention 
of social and behavioral scientists. Today it occupies a central role in the plan‑
ning and design of studies and interpretation of research results.

Estimating statistical power involves four different parameters: the Type 
I error rate, the sample size, the effect size, and the power. When the power 
function is known, it can be solved for any of these parameters. In this way, 
power calculations are often used to determine a sample size appropriate 
for testing specific hypotheses in a study. Each of these factors has a pre‑
dictable association with power, although the precise relationships can dif‑
fer widely depending on the specific context. As always, then, the devil is 
in the details. First, all else equal, statistical power will be greater with a 
higher Type I error rate. In other words, you will have a greater chance of 
finding a significant difference when p = .05 (or .10) than when p = .01 (or 
.001), and one‑tailed tests are more powerful than two‑tailed tests. Often, 
scientific convention serves to specify the highest Type I error rate that is 
considered acceptable. Second, power increases with sample size. Because 
the precision of our estimates of population parameters increases with sam‑
ple size, this greater precision will be reflected in greater statistical power 
to detect effects of a given magnitude, but the association is nonlinear, and 
there is a law of diminishing returns. At some sample sizes, doubling your 
N may result in more than a doubling of your statistical power; at other 
sample sizes, doubling the N may result in a very modest increase in sta‑
tistical power. Finally, power will be greater to detect larger effects, rela‑
tive to smaller effects. None of these relationships is linear, and the exact 
power function rarely has a closed‑form solution and is often difficult to 
approximate.
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10 Statistical Power Analysis with Missing Data

effect Sizes

Different statistical analyses can be used to represent the same relation‑
ship. For example, it is possible to test, obtaining equivalent results in 
each case, a difference between two groups as a mean difference, a cor‑
relation, a regression coefficient, or a proportion of variance accounted 
for. (See the sample syntax on p. 243 of the Appendix for an illustration.) 
In much the same way, several different effect size measures have been 
developed to capture the magnitude of these associations. It is not our 
goal to present and review all of these; many excellent texts consider them 
in much greater detail than is possible here (see, for example, Cohen, 1988; 
Grissom & Kim, 2005; or Murphy & Myors, 2004, for good starting points). 
However, consideration of a few different effect size measures serves as a 
useful starting point and orientation to the issues that we will turn to in 
short order.

One of the earliest and most commonly used effect size measures is 
Cohen’s d, which is used to characterize differences between means. It is 
easy to understand and interpret.

 d = (mean difference)/(pooled standard deviation).

 The pooled standard deviation is s n s n s n n= − + − + −[( ) ( ) ] ( ) ,1 1
2

2 2
2

1 21 1 2  
where n1 and n2 are the number of observations in each group, and s1

2  and 
s2

2  are the variances in each group.

Troubleshooting Tip!

Before moving beyond this point, try calculating the pooled standard devi‑
ation for the following values. Use Excel, a calculator, or the statistics pack‑
age you are most comfortable with. If you can do this example, your math 
skills are sufficient for every other example in this book. If you come up 
with the wrong answer the first time you try it, make sure you are correctly 
following the order of operations. You should end up with 4.

n

n

s

s

1

2

1
2

2
2
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20

10

=

=
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=
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Introduction 11

Both the mean and the standard deviation are expressed in the same units, 
so the effect size is unit free. Likewise, the standard deviation is the same, 
regardless of sample size (for a sample, it is already standardized by the 
square root of n − 1). In other words, the larger the mean difference relative 
to the spread of observations, the larger is the effect in question. Beyond 
relative terms (i.e., larger or smaller effects) for comparing different effects, 
how we define a small, medium, or large effect is of course fairly arbitrary. 
Cohen provided guidelines in this regard, suggesting that small, medium, 
and large effects translated into values of d of .2, .5, and .8, respectively.

Additional commonly used effect size metrics include the correlation 
coefficient (r), proportion of variance accounted for (i.e., R2), and f2, where 
the latter is the ratio of explained to unexplained variance (i.e., R2/[1 − 
R2]). Though a number of formulas are available for moving from one met‑
ric to another, they are not always consistent and do not always translate 
directly. For example, an effect size of .2 corresponds with a correlation 
of approximately .1. In turn, this corresponds with an R2 value of .01. On 
the other hand, a large effect size of .8 corresponds with a correlation of 
approximately .37 and R2 of .14. Cohen, however, describes a large effect 
size as a correlation of .5 and thus R2 of .25.

Consider the four scatterplots in Figure 1.2. The two on the top represent 
data for which there is a zero (r = .00) and small effect (r = .18), respectively. 
The two on the bottom represent data for which there is a medium (r = 
.31) and large (r = .51) effect, respectively. As you can see, it is often easy to 
detect a large effect from a scatterplot, particularly when one has a large 
number of observations, such as the 1000 points represented in each of 
these plots. Even a medium‑sized effect shows some indication of the 
association. However, it should be fairly clear that there is relatively little 
difference apparent between a null and a small effect or even between a 
small and medium‑sized effect.

It is a different situation entirely, however, when one has a fairly small 
number of observations from which to generalize. Consider the four plots 
in Figure 1.3, which represent a random selection of 10 observations from 
the same data set. Again, the two plots on the top represent no effect 
and small effect, respectively, and the two plots on the bottom represent 
medium and large effects.

Relative to the situation with 1000 observations, clearly it is much less 
likely that one would be able to distinguish meaningful associations from 
any of these plots. In fact, it would be difficult even to rank order these 
plots by the strength of the association. Our situation is improved some‑
what by additional observations. The two plots in Figure 1.4, for example, 
illustrate small and large effects, respectively, with 100 observations from 
our original data set. In this case, it is already clear when the association 
is large but not yet convincing for a small effect.
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12 Statistical Power Analysis with Missing Data

In the kinds of situations researchers typically face, data are seldom 
generated strictly according to normal distributions or measured on com‑
pletely continuous scales, further masking our ability to identify mean‑
ingful relations among variables, especially when those associations are 
relatively modest. Statistical formulas prevent us from having to “eyeball” 
the data, but the importance of sample size is the same regardless.

Determining an effect Size

There are a number of ways in which researchers can determine the 
expected effect size for their research question. The best way is based upon 
previous research in your area. In areas where a considerable amount of 
research has already been conducted, you may be fortunate enough to 
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Figure 1.2
Scatterplots for zero, small, moderate, and large effects with N = 1000.
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Figure 1.3
Scatterplots for zero, small, moderate, and large effects with N = 10.
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Figure 1.4
Scatterplots for small and large effects with N = 100.
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14 Statistical Power Analysis with Missing Data

have a meta‑analysis you can consult (cf. Egger, Davey Smith, & Altman, 
2001; Lipsey & Wilson, 1993, 2001). These studies, which pool effects across 
a wide number of studies, provide an overall estimate of the effect sizes 
you may expect for your own study and can often provide design advice 
(e.g., differences in effect sizes between randomized and nonrandomized 
studies, or studies with high‑risk versus population‑based samples) as 
well. When available, these are usually the best single source for deter‑
mining effect sizes.

In the absence of meta‑analyses, a reasonable alternative is to consult 
available research on a similar topic area or using similar methodology in 
order to estimate expected effect sizes. Sometimes, if very little research 
is available in an area, it may be necessary to conduct pilot research in 
order to estimate effect sizes. Even when there is no information on the 
type of preventive intervention that a researcher is planning, data from 
other types of preventive intervention can provide reasonable expecta‑
tions about effect sizes for the current research.

Another alternative is to use generic considerations in order to decide 
whether an expected effect falls within the general range of a small, 
medium, or large effect size. Again, previous research and experience 
can be of value in deciding what size of effect is likely (or likely to be 
of interest to the researcher and to others). In many areas of research, 
such as clinical and educational settings, there may also be established 
effect sizes for the smallest effect size that is likely to be meaning‑
ful in practical or clinical terms within a particular context. Does an 
intervention really have a meaningful effect on employee retention if 
it changes staff turnover by less than 10%? Is an intervention of value 
with a population if it works as well as the current best practice (fine, if 
your intervention is easier or less expensive to administer, is likely to 
have lower risk of adverse effects, or represents an application to a new 
population, for example), or does it need to represent an improvement 
over the state of the art (and if so, by how much in order to represent a 
meaningful improvement)?

Point estimates and Confidence intervals

Suppose that we randomize 10 people each to our treatment and control 
groups, respectively. We administer our manipulation (drug versus pla‑
cebo, intervention versus psychoeducational control, and valid so forth) 
and then administer a scale that provides reliable and valid scores to eval‑
uate differences between the groups on our outcome variable. We find that 
our control group has a mean of 10 and our treatment group has a mean of 
11. What should we conclude about the efficacy of our treatment or inter‑
vention in the population? Obviously, we do not have enough information 
to reach any conclusion, based on just the group means alone. Though the 
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means provide us with information about point estimates, we also require 
information about how these scores are distributed (i.e., their variability) 
in order to be able to make an inference about whether the populations 
our groups represent differ from one another and, if so, how robust or 
replicable this difference is.

Consider the following scenario. We have two groups, and the true val‑
ues of their means differ by a small, but meaningful amount, say one fifth 
(d = .2), one half (d = .5), or four fifths (d = .8) of a standard deviation (equiv‑
alent to small, medium, and large effects as we discussed above). If we 
examine the distributions of the raw variables by group, we can see that 
the larger the difference between means, the easier it is to identify differ‑
ence between the two groups. You should notice, however, that there is also 
a considerable degree of overlap between the two distributions, regardless 
of the size of the effect. Many times, in fact, particularly with small effects, 
there is more overlap than difference between groups. The purpose of a 
carefully planned power analysis is nothing more than to ensure that, if 
difference or association does exist in the population, the researcher has 
an acceptable probability of detecting it. Given the difficulties in find‑
ings such effects even when they exist, such an analysis is definitely to 
the researcher’s advantage. For example, the distributions of the reference 
and small difference distributions in Figure 1.5 overlap fully 42%. For the 
medium and large effects, the overlaps are 31 and 21%, respectively.
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Figure 1.5
Distributions of variables illustrating small, medium, and large differences.
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16 Statistical Power Analysis with Missing Data

The second part of estimating population parameters from finite sam‑
ples, then, is an estimate of the range of values that the mean of each 
group is likely to lie within with some high degree of certainty (say 95% 
of the time). In the example above, the “true” mean in the control group 
might be 15, and the true mean of the treatment group might be 5. The 
likelihood of this situation occurring if the study was repeated a large 
number of times depends partly on the standard deviation of the values 
in our sample and partly on each group’s sample size. Assuming that the 
responses are normally distributed, we can define the standard error (SE) 
of the estimated mean as the standard deviation divided by N − 1 .

Figure 1.6 illustrates how much greater the precision of our estimated 
means is with sample sizes of 10, 100, and 1000, respectively. By the larg‑
est sample size, the plausible overlap in our range of means is negligible. 
What this means in terms of statistical power is that we will almost never 
overlook a mean difference this large by chance.

Figure 1.7 illustrates the association between the standard error of the 
mean as a function of sample size. At smaller sample sizes, we see that 
adding observations leads to a larger increase in our precision, but at 
larger sample sizes, the relative increase in precision is considerably less. 
This suggests that just as there is no point in conducting an underpow‑
ered study, at some point the value in terms of statistical power from the 
added labor involved in collecting additional observations is no longer 
likely to be worthwhile.
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Figure 1.6
Effects of sample size on precision with which differences are measured.
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reasons to estimate Statistical Power

Although the origins of statistical power date back more than 80 years to the 
seminal work of statisticians such as Neyman and Pearson (1928a, 1928b), 
studies with insufficient statistical power to provide robust answers per‑
sist to the present day. Particularly in today’s highly competitive research 
environment, social science studies are labor intensive to perform, data 
are difficult and expensive to conduct, and the time‑saving aspects of data 
entry and analysis afforded by modern computers are often more than 
offset by the concomitant expectations from journal editors (and gradu‑
ate committees) for multiple and complex analyses as well as sensitivity 
analyses of the data. In the chapters that follow, we build from first prin‑
ciples toward a powerful set of applications and tools that researchers can 
use to better understand the likely effects of missing data on their power 
to reach valid conclusions.

Conclusions

In this chapter, we provided a review and overview of some of the key 
concepts related to statistical power with an emphasis on more concep‑
tual and intuitive aspects. Each of the next three chapters provides back‑
ground in some fundamental principles that will be necessary in order to 
conduct a power analysis with incomplete data. The next chapter intro‑
duces the LISREL model and works through a number of complete exam‑
ples of how the same statistical model can be represented graphically, in 
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Figure 1.7
Effects of increasing sample size on precision of estimates.
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18 Statistical Power Analysis with Missing Data

terms of matrices and in terms of a set of equations. Chapter 3 provides 
information about missing data and some commonly used strategies to 
deal with it. Finally, Chapter 4 provides information about four methods 
for evaluating statistical power with complete data. Each of these chap‑
ters builds on the introductory material presented here. You may wish to 
consult one or more of the additional readings included at the end of each 
chapter along the way.

Further Readings

Abraham, W. T., & Russell, D. W. (2008). Statistical power analysis in psychological 
research. Social and Personality Psychology Compass, 2, 283–301.

Cohen, J. H. (1992). A power primer. Psychological Bulletin, 112, 115–159.
Grissom, R. J., & Kim, J. J. (2005). Effect sizes for research: A broad practical approach. 

Mahwah, NJ: Erlbaum.
Murphy, K. R., & Myors, B. (2004). Statistical power analysis: A simple and general 

model for traditional and modern hypothesis tests. Mahwah, NJ: Erlbaum.
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2
The LISREL Model

LISREL, short for linear structural relations, is both a proprietary software 
package for structural equation modeling and (in the way we intend it 
here) a general term for the relations among manifest (observed) and 
latent (unobserved variables). This very general statistical model encom‑
passes a variety of statistical methods such as regression, factor analysis, 
and path analysis. In this book, we assume that the reader has familiarity 
with this general class of models, along with at least one software pack‑
age for their estimation. Several excellent introductory volumes are avail‑
able for learning structural equation modeling, including Arbuckle (2006), 
Bollen (1989b), Byrne (1998), Hayduk (1987), Hoyle (1995), Kaplan (2009), 
Kelloway (1998), Raykov and Marcoulides (2006), and Schumacker and 
Lomax (2004), as well as several others.

Currently, there is a similar profusion of excellent software packages for 
the estimation of structural equation models, such as LISREL (K. Jöreskog 
& Sörbom, 2000), AMOS (Arbuckle, 2006), EQS (Bentler, 1995), MPlus 
(L. K. Muthén & Muthén, 2007), and Mx (Neale, Boker, Xie, & Maes, 2004). 
Most of these packages have student versions available that permit lim‑
ited modeling options, and any of them should be sufficient for nearly 
all of the examples presented in this volume. Mx is freely available and 
full featured but places slightly greater demands on the knowledge of the 
user than the commercial packages. Any statistical package with a reason‑
able complement of matrix utilities can also be used for structural equa‑
tion modeling, and there are examples in the literature of how they may 
be implemented in several of them. Fox (2006) illustrates how to estimate 
structural equation models (currently only for single group models) using 
the freely available R statistical package, for example, and Rabe‑Hesketh, 
Skrondal, and Pickles (2004) show how a wide variety of structural equa‑
tion models may be estimated using Stata.

Historically, each software package had its own strengths and weak‑
nesses, ranging from the generality of the language; whether it was 
designed for model specification through the use of matrices, equations, 
or graphical input; the scope of the estimation techniques it provided; and 
the range of options for output and data structures it could accommodate, 
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22 Statistical Power Analysis with Missing Data

such as sampling and design weights. Today, however, the similarities 
between these packages far outnumber their differences, and this means 
that a wide range of analytic specifications is available in nearly all of 
these programs. Originally intended for matrix specification, for exam‑
ple, the current version of LISREL also features the SIMPLIS language 
input in equation form, as well as direct modeling through a graphical 
interface.

Though we wish to highlight the considerable similarities among the 
various software packages, we adopt a matrix‑based approach to model 
specification for most of our examples for a variety of reasons. First, we 
believe that this approach represents the most direct link between the 
data structure and estimation methods. Second, it provides a straight‑
forward connection between the path diagrams, equations, and syntax. 
Finally, for the examples that we present, it is most often the simplest and 
most compact way to move from data to analysis. As a result, only a small 
amount of matrix algebra is all that is necessary to understand all of the 
concepts that are introduced in this book, and we review the relevant 
material here. Readers who have less experience with structural equa‑
tion modeling are referred to the sources listed above; those without at 
least some background in elementary matrix algebra may wish to consult 
introductory sources such as Fox (2009), Namboodiri (1984), Abadir and 
Magnus (2005), Searle (1982), or the useful appendices provided in Bollen 
(1989b) or Greene (2007). For each of the examples that we present in this 
chapter, we provide equivalent syntax in LISREL, SIMPLIS, AMOS, and 
MPlus.

Matrices and the LISREL Model

A matrix is a compact notation for sets of numbers (elements), arranged in 
rows and columns. In matrix terminology, a number all by itself is referred 
to as a scalar. The most common elements represented within matrices for 
our purposes will be data and the coefficients from systems of equations. 
Matrix algebra provides a succinct way of representing these equations 
and their relationships. For example, consider the following three equa‑
tions with three unknown quantities.

 

x y z

x y z

x y z

+ + =

+ + =

+ + =

2 3 1

4 5 6 4

7 8 9 9
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We can represent the coefficients of these equations in the following 
matrix, which we can name A.

 

A =
















1 2 3 1
4 5 6 4
7 8 9 9

Individual elements in a matrix are referred to by their row and column 
position. The element of the second row and the third column in matrix A 
above (in this case, the number 6) would be referred to as a23. By conven‑
tion, matrices are referred to with uppercase letters, whereas their ele‑
ments are referred to by lowercase letters.

Most of the operations familiar with scalar algebra (e.g., addition and 
subtraction, multiplication and division, and roots) have analogs in matrix 
algebra, allowing us to convey a complex set of associations and opera‑
tions compactly. The rows and columns of a matrix are referred to as its 
order. The matrix above, for example, has order 3 × 4. If we collected infor‑
mation from n individuals on p variables, our data matrix would have 
order n × p.

The order of two matrices must conform to the rules for specific matrix 
operations. Matrix addition, for example, requires that two matrices have 
the same order, whereas multiplication requires that the number of col‑
umns of the first matrix is the same as the number of rows of the second 
matrix. For this reason, multiplying matrix A by matrix B may not yield 
the same results (or even a matrix of the same order) as multiplying matrix 
B by matrix A, even if they are conformable for both operations. For exam‑
ple, if matrix A has order 2 × 3 and matrix B has order 3 × 2, then both AB 
and BA are possible, but the order of matrix AB would be 2 × 2, whereas 
the order of matrix BA would be 3 × 3.

Exchanging the order of columns and rows is referred to as transpos‑
ing a matrix. The transpose of a 2 × 3 matrix has order 3 × 2, for example. 
It is commonly used to make two matrices conformable for a particular 
operation and is usually indicated either with a prime symbol (′) or a 
superscript letter T. For a square matrix, the “trace” is defined as the sum 
of diagonal elements of the matrix. Other operations for square matrices 
include the inverse (the inverse of matrix A is written as A−1), which is the 
analog of taking the reciprocal of a scalar value because AA−1 = I. We will 
first make use of the inverse in Chapter 5 to perform operations similar to 
division using matrices.

The equivalent of taking the square root of a matrix involves finding a 
matrix L such that A = LL′ and is referred to as a Cholesky decomposition, 
which we consider in detail in Chapter 9. Also considered in greater detail 
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24 Statistical Power Analysis with Missing Data

in Chapter 9 are eigenvectors (V) and eigenvalues (L) that for a matrix A 
solve the equation ( )A LI V− = 0 . Finally, the determinant of a matrix (the 
determinant of matrix A is indicated as | |A ) is a scalar value akin to an 
“area” or “volume” that characterizes the degree of association among 
variables. When variables are perfectly associated, the area reduces to 
0. Matrices with positive determinants are said to be “positive definite,” 
a property important, for example, in order to calculate the inverse of a 
matrix. We will first see the determinant later in this chapter and begin 
using it in power calculations in Chapter 8.

Latent and Manifest Variables

The LISREL model itself has been around for quite some time (e.g., 
Jöreskog, 1969, 1970, 1978) and allows for estimating and testing a wide 
variety of models of interest to social scientists. LISREL defines two 
types of variables, manifest (observed, or y‑variables) and latent (unob‑
served, or eta‑variables, η), with various matrices used to link them. 
Additionally, LISREL distinguishes between exogenous (x‑side) and 
endogenous (y‑side) variables, a distinction that is not necessary for esti‑
mation of the models we consider here, because all models can be esti‑
mated using the endogenous (y‑side) of the LISREL model, allowing us 
to keep our notation slightly more compact. As a result, we will focus 
on a total of 6 matrices of the 13 matrices included in the full LISREL 
model (K. G. Jöreskog & Sörbom, 1996). Some authors (e.g., McArdle 
& McDonald, 1984) have devised an even more compact notation that 
requires using only 3 matrices (referred to as slings, arrows, and filters). 
However, a price must be paid for this simplicity in the form of greater 
computational time (because of increases in the order of the matrix that 
must be inverted) and greater difficulty in estimation unless good start‑
ing values are also provided.

Try Me!

If A =



















3 1
4 1
5 9
2 7

 and B =










2 7 1 8
2 8 1 8

,  what are the orders (r × c)

of A and B? What is element (2, 2) of A? Of B? What is the order of AB? What 
is the order of BA?
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The LISREL Model 25

We begin by introducing each of the matrices that we will consider, focus‑
ing on the associations they represent and their order. Next, we illustrate 
how the matrices correspond with the visual representations of these mod‑
els. Finally, we show how the matrices interrelate for the full LISREL model 
in parallel with a discussion of the different parameters of the model.

regression Coefficient Matrices

The lambda‑y matrix (Λy, or LY) represents the relations from latent con‑
structs to manifest variables. Its order is given by the number of y variables 
(ny) by the number of eta variables (ne). In LISREL notation, the columns 
(etas) “cause” (predict) the rows and are represented by single‑headed 
arrows from the latent to manifest variables. For example, a latent con‑
struct such as depressive symptoms might be measured by scores on a 
variety of scales, such as depressed affect, positive affect, somatic com‑
plaints, and interpersonal problems, as shown in Figure 2.1. The regres‑
sion coefficients of each indicator on the latent variable scores would be 
represented in the lambda‑y matrix. There is a corresponding matrix rep‑
resenting the regression coefficients of latent variables on one another, 
represented in the beta (B, or BE) matrix with order ne × ne. As with the 
lambda‑y matrix, columns are assumed to cause rows, and these relations 
are represented by single‑headed arrows.

Variance‑Covariance Matrices

Associations among the residuals (unpredicted component) of the latent 
variables are represented in the psi (Ψ, or PS) matrix. The psi matrix has 
order ne × ne. Because it is a variance‑covariance matrix, it represents dou‑
ble‑headed arrows between the associated latent variable residuals. For 
exogenous variables, all of the variance is “residual,” so it is equivalent to 
the variance of the latent variable itself, as indicated in Figure 2.2.

DA

e1

PA

e2

SO

e3

IN

e4

Depressive
Symptoms

Figure 2.1
Factor model for depressive symptoms.
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26 Statistical Power Analysis with Missing Data

There is also a corresponding variance‑covariance matrix among residu‑
als of the manifest variables, theta‑epsilon (Θε, or TE). The order of the the‑
ta‑epsilon matrix is ny × ny, and it represents double‑headed arrows between 
the associated residuals for the manifest variables, as shown in Figure 2.3.

Vectors of Means and intercepts

Because the scale of latent variables is arbitrary in most applications, it is 
necessary to define a common frame of reference on which to compare 
mean levels of the latent constructs for situations in which it is nonar‑
bitrary (e.g., T. D. Little, 1997). This necessitates including both latent 
intercepts and latent means. (For example, in a situation where it is nec‑
essary to define the meaning of a latent mean, it is necessary to define a 
latent intercept for each of the manifest indicators of that latent variable, 
which is comparable across groups or occasions.) The latent intercepts 
are defined in the tau‑y (τy or TY) matrix, which has order ny × 1, and the 
latent means are defined in the alpha (α or AL) matrix, which has order 
ne × 1. In very short order, we will say much more about the circumstances 
where these matrices become meaningful. In the context of missing data, 
these matrices assume particular importance and are used for almost all 
models, even those which would not require them with complete data. 
The matrices and relations they signify are summarized in Table 2.1.

Manifest
variable

(ny1)

te1

1

Manifest
variable

(ny2)

te2

1

Manifest
variable

(ny3)

te3

1

Figure 2.3
Covariances among manifest variable residuals.

Eta1 Eta2

Figure 2.2
Covariances among latent variables.
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The LISREL Model 27

Model Parameters

Within the LISREL framework, parameters of the model can be fixed (to 
a specific value, such as 0 or 1), freely estimated, or constrained (to some 
function of other parameters in the model). Consider the following model, 
presented in Figure 2.4. This model has two latent constructs (i.e., ne = 2), 
each represented by three manifest indicators (i.e., ny = 6). If, for example, 
our latent construct was “overweight” (eta), measured on two occasions (1 
and 2), our manifest indicators might include: y1 body mass index, y2 waist 
circumference, and y3 waist‑to‑hip ratio. Each latent construct is scaled by 
one of its manifest indicators through a fixed regression coefficient value 
of 1 (i.e., a one‑unit increase in the latent variable is associated with a 
one‑unit increase in that manifest indicator). The first construct is hypothe‑
sized to cause the second. This would translate into the following matrices, 
where letters indicate parameters that are freely estimated and numbers 
(e.g., 0s and 1s) indicate parameters that are fixed at specific values. For the 

Table 2.1

Summary of LISREL Matrices Used in This Book

Matrix Contents Manifest Latent

Regression Lambda‑y (Λy) Beta (B)
Coefficients ny × ne ne × ne
Variance‑covariance Theta‑epsilon (Θε) Psi (Ψ)
Matrices ny × ny ne × ne
Latent means and Tau‑y (τy) Alpha (α)
Intercepts ny × 1 ne × 1

Eta1

y11

e11

1

y12

e12

y13

e13

Eta2

y21

e12

y22

e22

y23

e32

1

u2

Figure 2.4
Structural equation model with causal paths among latent variables.
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28 Statistical Power Analysis with Missing Data

sake of this first example, we can safely ignore the vectors of intercepts 
and means, but we do show where they would appear in the matrices.

If our input data consist of six variables, then the sufficient statistics 
needed to estimate our model are in the observed variance‑covariance 
matrix (S) of these six (ny) variables, which contains ny × (ny + 1)/2 unique 
sample moments. In this case, with ny = 6, we have 21 unique elements, in 
addition to the 6 observed means for our variables.

We are estimating a total of 13 parameters in our model. Table 2.2 shows 
the four factor loadings estimated in lambda‑y.

This leaves (21 − 13) = 8 degrees of freedom with which to evaluate our 
model fit. The covariance matrix implied by our model, Σ, can be expressed 
as follows:

 
Σ Λ Ψ Λ Θ= − − ′ ′ +− −

y yI B I B( ) ( )1 1
ε

where I is an ne × ne identity matrix with 1s on the diagonals and 0s on 
the off‑diagonals (the matrix equivalent of a scalar). Tables 2.3, 2.4, and 
2.5 represent the parameters of the BE, PS, and TE matrices, respectively, 
for the model shown in Figure 2.4. When B = =0, Σ  Λ ΨΛ Θy y + ε ,  which 
will be the case for nearly all of the models we estimate in this book. Thus, 
we can link elements of S and Σ through a system of equations that con‑
nects our observed sample moments and the model parameters. A typi‑
cal LISREL model is overidentified, meaning that we have more equations 
than unknown parameters. As such, there is typically no exact solution to 
our model. We can identify a best model by defining what we mean by 

Table 2.2

Parameters in the Lambda‑y 
Matrix for Figure 2.4

LY Eta1 Eta2

Y11 1 0
Y21 a 0
Y31 b 0
Y12 0 1
Y22 0 c
Y32 0 d

Table 2.3

Parameters in the Beta Matrix 
for Figure 2.4

BE Eta1 Eta2

Eta1 0 0
Eta2 m 0
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best. In ordinary least squares (OLS) regression, for example, an assump‑
tion is made that there is some measurement error in the outcome, y, but 
that our predictors, or xs, are measured perfectly. As such, OLS regression 
minimizes the sum of squared vertical distances from the regression line 
(i.e., the observed values of y − the predicted values of y). To estimate our 
model parameters, we find values of the model parameters that minimize 
the discrepancy between the observed and implied elements of the cova‑
riance matrices. Although the details of each approach are not important 
here, there are many different functions that can be defined to minimize 
the discrepancy such as maximum likelihood, weighted least squares, or 
generalized least squares. Maximum likelihood estimation, for example, 
minimizes a fit function defined as F tr S S pMin = + − −−ln| | ( ) ln| |Σ Σ 1 . In 
this equation, all of the values are scalars. From left to right, the minimum 
value of the fit function is defined as the natural logarithm of the determi‑
nant of the covariance matrix implied by our model plus the sum of diago‑
nal elements of the inverse of the covariance matrix implied by our model 
multiplied by the observed covariance matrix minus the natural logarithm 
of the determinant of the observed covariance matrix minus p, where p  is 
the number of parameters estimated in our model. (That is, the minimum 
value of the fit function is equal to a number plus another number minus a 
number minus another number.) Bollen (1989b) provides a useful derivation 
of this discrepancy function for individuals interested in this level of detail. 
For our purposes, it is only important to know two things. First, that this 
minimum value of the fit function corresponds directly with the χ2 value, 
calculated as ( )N g FMin− ×  where N  is the sample size, and g  is the num‑
ber of groups in the model. Second, for every model we will discuss in this 

Table 2.4

Parameters in the Psi Matrix 
for Figure 2.4

PS Eta1 Eta2

Eta1 e 0
Eta2 0 f

Table 2.5

Parameters in the Theta‑Epsilon Matrix for Figure 2.4

TE Y11 Y21 Y31 Y12 Y22 Y32

Y11 g
Y21 0 h
Y31 0 0 i
Y12 0 0 0 j
Y22 0 0 0 0 k
Y32 0 0 0 0 0 l
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30 Statistical Power Analysis with Missing Data

book, you will know all of these values in advance or be able to calculate 
them fairly directly. At the end of this chapter, we consider the evaluation 
of model fit in greater detail.

In multiple regression (see Figure 2.5), where individual outcomes 
are defined as a function of the predictors plus a residual ( ˆ )y y ei i i= + ; 
every model fits perfectly, even when the R2 (the square of the correlation 
between y and ŷ) is low. In structural equation models, however, S − Σ is 
seldom zero in overidentified models. This is generally a positive aspect of 
structural equation modeling, however, because it provides us with a way 
of testing the lack of correspondence between our data and our model.

Models and Matrices

In this section, we present some simple examples of moving between 
models (path diagrams) and the parameters of the corresponding LISREL 
models. We consider a confirmatory factor analysis, a model with both 
measurement and structural components (full LISREL model), and an 
ordinary multiple regression model (only manifest indicators).

Returning to the model we presented in Figure 2.1, we have a confir‑
matory factor model (CFA) with one latent construct and four manifest 
indicators. Fixed non‑zero parameters are illustrated with their numeric 
values, and estimated parameters are indicated with asterisks. As men‑
tioned above, the CFA model includes the lambda‑y matrix, the psi matrix, 
and the theta‑epsilon matrix. With four observed variables and one latent 
variable, these matrices have orders of 4 × 1, 1 × 1, and 4 × 4, respectively. 
We can express this model in terms of the LISREL matrices as follows. 

Y

X2X1 X3

e

Figure 2.5
Regression model illustrated with a path diagram.
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For all symmetric matrices in this section, only the lower triangle is shown, 
in order to aid in counting the number of estimated model parameters.

 

Λ Ψ Θy =



















= =














1
0
0 0
0 0 0

*
*
*

, [*],

*
*

*
*

ε






.

To identify the scale of the latent variable, we fix one element of lambda‑y 
(in this case, element 1,1) equal to 1. This means that a one‑unit increase in 
the latent variable is associated with a one‑unit increase in this manifest 
indicator (in other words, they are evaluated on the same scale). Though 
the actual choice of scaling is arbitrary (that is, any appropriate element 
of lambda‑y will work), most people recommend using the most reliable 
indicator. In most cases, you should choose the indicator that makes inter‑
pretation of your results most convenient. The input covariance matrix is 
4 × 4, with 10 unique elements. The model estimates eight parameters, and 
so there are 2 degrees of freedom for testing model fit.

Instead of scaling the latent variable as a function of a manifest indicator, we 
could also fix the variance of the latent construct at some value, typically 1. This 
would result in just a small change to the model specifications, as follows.

 

Λ Ψ Θy =
















= =

















*
*
*
*

, [ ],

*
*

*
*

1 0
0 0
0 0 0

ε ..

This suggests that a one standard deviation increase in the latent variable 
is associated with a change in the manifest indicators equivalent to the ele‑
ments of lambda‑y. In regression terms, the first situation where scaling is 
done in lambda‑y is analogous to the unstandardized (b) regression coef‑
ficient. This second scaling is analogous to the standardized (β) regression 
coefficient. Although it is parameterized differently from the preceding 
model, it is equivalent in the sense that it also estimates eight parameters 
and provides an equivalent fit to the data. (Note, however, that depending 
on the software package used to estimate the models, although the over‑
all fit will be identical in both parameterizations, the estimated standard 
errors for individual model parameters may differ from one package to 
another. See Gonzalez & Griffin, 2001, for a full description of when this is 
an issue.) Each of the figures shown in this chapter illustrates the associa‑
tions among latent and manifest variables graphically in what is referred 
to as a path diagram or, less commonly, a reticular action model. Properly 
drawn, these figures can be used to estimate structural equation mod‑
els directly in a program such as AMOS, through matrices in a program 
such as LISREL or Mx, or in equation form in a program such as MPlus, 
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EQS, or SIMPLIS. Each program typically allows estimation of models 
using matrices, path diagrams, or equation form. The model expressed in 
matrix form above could be written in equation form as follows, assuming 
that the latent variable is called eta1, the observed variables are called y1 
through y4, and the manifest variable residuals are called e1 through e4.

 

y eta e

y eta e

y eta e

y eta e

1 1 1 1

2 1 2

3 1 3

4 1 4

= × +

= +

= +

= +

( )

*

*

*

Implicit in the equations above is that the values of the asterisked param‑
eters vary from equation to equation, and that variances are also going to be 
estimated for eta1 and each of e1 through e4. The next section illustrates how 
these matrices can be turned into LISREL syntax for estimating this model.

Figure 2.4 presents a model that includes two latent variables, each 
represented by three manifest indicators. One latent construct is hypoth‑
esized to cause (or predict) the other. Regression coefficients between the 
latent variables require that we also include the beta matrix in addition to 
lambda‑y, psi, and theta‑epsilon. Again, parameters with fixed non‑zero 
values are shown with those values, and freely estimated parameters are 
indicated with asterisks. In this model, because we have six observed 
variables and two latent variables, the order of the lambda‑y, beta, psi, and 
theta‑epsilon matrices would be 6 × 2, 2 × 2, 2 × 2, and 6 × 6, respectively. 
As diagrammed, model specification would look like the following:

 

Λ Β Ψy =























=






 =

1 0
0
0

0 1
0
0

0
0 0
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*
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0
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0 0 0
0 0 0 0
0 0 0 0 0









=



















Θε





.

A 6 × 6 covariance matrix has 21 unique elements, and our model estimates 
13 parameters. Note that the scale needs to be defined for each latent vari‑
able. In models that also estimate structural parameters (i.e., in the beta 
matrix), this is easiest to do in the lambda‑y matrix. (Diagonal elements of 
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the psi matrix for endogenous variables are residual variances of the latent 
variables. Variances of the endogenous latent variables themselves are dif‑
ficult to scale directly and involve imposing nonlinear constraints.) Thus, 
there are 8 degrees of freedom for evaluating model fit.

Software for structural equation modeling differs in terms of whether 
it allows associations among observed variables to be modeled directly. 
In AMOS, for example, this is straightforward. In LISREL, however, 
observed variables must be treated as latent variables in order to be mod‑
eled. Fortunately, this is also quite simple to accomplish. The path coefficient 
between the latent and observed variables is fixed to a value (usually 1), and 
the residual variance of the observed variable is fixed to a value (usually 0). 
Figure 2.6 shows two equivalent ways of modeling a linear regression model 
with two predictor variables and one outcome with the association between 
the three observed variables treated either as observed or latent constructs.

Matrices corresponding with this model are shown below. Again, 
with three observed variables (used to define three latent variables), the 
lambda‑y, beta, psi, and theta‑epsilon matrices would all have orders of 3 × 3.

 

Λ Β Ψy =
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1 0 0
0 1 0
0 0 1
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0 0 0
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Θε

x1

x2

y e

x1

x2

yY
1

X2
1

X1
1

e

Figure 2.6
Regression model expressed in terms of manifest (top) and latent (bottom) variables.
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34 Statistical Power Analysis with Missing Data

Our 3 × 3 input covariance matrix has six unique elements. The model 
estimates six parameters. Thus, the model fits the data perfectly, as we 
would expect for a multiple regression model, as discussed in the section 
above on model parameters.

Structure of a liSrel Program

This section of the chapter works through each of the lines of a typical 
LISREL program. From there, corresponding syntax for AMOS and MPlus 
is presented.

It is both good programming form and helpful for documenting each 
program to begin each program with one or more descriptive title lines. In 
LISREL, comments can be inserted alone on any line or at the end of any 
line by using an exclamation point. The first line of a program can also be 
listed explicitly with the TITLE command. Because it originally adopted 
FORTRAN conventions, LISREL only requires the first two letters of any 
command, so TI will also work well.

After the title line or lines, the next line of a LISREL program must spec‑
ify the characteristics of the data. The DATA (or DA) line specifies the total 
number of input variables (NI=), the number of observations (NO=), and 
the number of groups (NG=), which is needed only if there is more than 
one group. Two other commonly used options are the data line including 
the ability to specify a global missing value for list‑wise deletion (XM=) 
or for full information maximum likelihood (MI=), which we will dis‑
cuss in Chapter 3. In simulation studies, it is often useful to run the same 
model on multiple data sets within a single program, which we will dis‑
cuss in Chapter 9, and in this case the number of repetitions (RP=) can be 
indicated.

Next, variable labels (LA) can be assigned. They can either be read from 
an external file (FI), such as LA FI=labels.txt, or entered directly in the syn‑
tax. (In fact, LA=labels.txt will work just as well.) If they are specified within 
the program itself, all labels should begin on the line following the LA com‑
mand rather than on the same line. If labels are not specified, LISREL will 
assign them default labels, beginning with VAR1, VAR2, and so forth.

Troubleshooting Tip

Unless a filename or option follows immediately LISREL skips the rest of 
a line that indicates data will follow. This includes LA as well as lines dis‑
cussed below (including CM, LE, RA, etc.). If you accidentally include vari‑
able labels or any other input on the same line, it will not be read. Instead, 
LISREL will look to the following line for this information and your pro‑
gram will not be read correctly.
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Following the labels, the actual input data are specified. LISREL can 
read data in a variety of forms, most commonly including raw data (RA), 
covariance matrices (CM), correlation matrices (KM), standard deviations 
(SD), and means (ME). As with labels, if the data are to be read from an 
external file, then the file name is specified on the same line specifying the 
type of data (for example CM=covs.txt or RA=rawdata.dat). If data are to 
be specified within the program itself, then the command indicating the 
form of the data is placed on a line by itself, and the data follow beginning 
on the next line. If a symmetric matrix is being used as input, only the 
lower triangle is needed. If it is more convenient to specify your data as a 
full symmetric matrix, then you can add an option to specify that the full 
(FU) matrix is being provided.

Specifying a model in LISREL is fairly straightforward. It begins with 
a model (MO) line. This line specifies the number of manifest (NY=) and 
latent (NE=) variables in the model, and each of the LISREL matrices your 
model requires, along with the “form” and “mode” for each one. LISREL 
recognizes a number of common matrix forms, including full (FU, having 
all unique elements), symmetric (SY, such that element aij = element aji), diag‑
onal (DI, with non‑zero elements only on the diagonal), identity (ID, a diag‑
onal matrix with 1s on the diagonals), and zero (ZE, with all elements equal 
to 0) matrices. Several modes are also available. Most commonly, matrices 
can be specified as having elements that are fixed (FI, initially to a value of 
0 by default) or freely estimated (FR). In models with multiple groups, addi‑
tional modes include the same pattern of fixed and free elements (SP), the 
same pattern of fixed and free elements and same starting values (PS), the 
same starting values only (SS), or invariant (IN) with all elements held equal 
across groups. For some applications, it is more convenient to initially spec‑
ify some matrices as fixed and others as free. However, when first learning 
to program in LISREL, we recommend specifying all elements as fixed and 
then explicitly freeing them. Software programs vary considerably in terms 
of the default values they impose upon a model, so being explicit can help 
ensure that the model you specified is the one you intended to estimate. 
This is particularly true with the MPlus software, where the default initial 
values vary from one type of model to another.

In structural equation modeling, there are three different types of model 
parameters. A parameter may be fixed (FI) to a specific value (VA), typi‑
cally 0 or 1. It may also be freely (FR) estimated. For some models, such as 
multiple group models, or within a nested sequence of models, one or more 
parameters may be constrained. Most simply, one parameter may be con‑
strained to be equal (EQ) to another parameter. It is also possible to specify 
linear and nonlinear constraints (CO) such that they are equal to a function 
of one or more other model parameters. Following the initial model line, 
the mode of individual model parameters can be specified, provided that it 
is consistent with the form of the matrix as specified in the model line.
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In a confirmatory factor model with four manifest indicators and one 
latent construct, for example, as shown in Figure 2.1, the model line might 
be as follows:

MO NY=4 NE=1 LY=FU,FI PS=SY,FI TE=SY,FI

First, we would specify the scale of the latent variable, perhaps by using 
the first manifest indicator.
VA 1.0 LY(1,1)

Notice that the specific value appears before the parameter. It is also pos‑
sible to specify multiple parameters after this value. Be careful! If the 
parameter being assigned a value is actually freely estimated within the 
model, then this value serves only as a starting value, and the parameter 
will still be freely estimated. We would first have to specify the parameter 
as fixed with the following syntax:

FI LY(1,1)

To freely estimate the remaining three factor loadings, we would specify 
the following. (Remember that columns cause rows.)

FR LY(2,1) LY(3,1) LY(4,1)

We would do the same thing for the variance of the latent variable and the 
residual variances of the manifest indicators.

FR PS(1,1)
FR TE(1,1) TE(2,2) TE(3,3) TE(4,4)

We could also have specified it somewhat more efficiently with the follow‑
ing model line.

MO LY=FU,FI PS=SY,FR TE=DI,FR

Here we would only have had to free up the remaining three elements of 
the lambda‑y matrix as we did above. Equality constraints are specified in 
the same manner. Homoscedastic residuals, for example, can be specified 
with a single line.

EQ TE(1,1) TE(2,2) TE(3,3) TE(4,4)

In a model with multiple groups, which will often be the case in the situa‑
tions considered in this book, it is necessary to specify equality constraints 
across corresponding parameters in different groups. For example, the 

Troubleshooting Tip

We use the passive language that “Y is caused by X” to get the order of rows 
and columns correct.
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following syntax would equate residuals in the current group to be equal 
to the residuals in the first group. The first value refers to the group num‑
ber, and the second and third refer to the row and column, respectively.

EQ TE(1,1,1) TE(1,1)
EQ TE(1,2,2) TE(2,2)
EQ TE(1,3,3) TE(3,3)

Finally, the last line of our program specifies, believe it or not, that we 
want output (OU). Although a number of options are available with our 
output, the most important one for our purposes is to specify the number 
of decimal places we want in our output. For the purposes of power analy‑
sis, we usually recommend obtaining our results to at least five decimal 
places (ND = 5). Other commonly used options include specifying the 
number of iterations (IT=) and for some nonstandard models where it may 
be necessary to specify the number of iterations before the admissibility 
test is performed (AD=) or turn it off completely (AD=OFF). Sometimes, it 
is necessary to specify NS on the output line, as well. Although it is lightly 
documented, this tells LISREL to use a method called “steepest descent” to 
begin minimization instead of its usual approach. When estimating some 
nonstandard models such as those with missing data, steepest descent 
works better than LISREL’s default approach. Ordinarily, it is best not to 
tinker with the defaults unless you run into trouble when estimating your 
model. Finally, adding the PD command immediately before the output 
line produces a path diagram in addition to the text output.

Based on the information above, here is what the complete LISREL pro‑
gram would look like to estimate the model in Figure 2.4.

! ESTIMATE MODEL FROM FIGURE 2.4
DA NI=6 NO=100
LA
X1 X2 X3 Y1 Y2 Y3
CM
1.95
1.20 1.90
1.40 1.35 1.82
0.45 0.52 0.65 1.62
0.50 0.66 0.62 0.98 1.48
0.61 0.59 0.70 1.18 1.02 1.55
MO NY=6 NE=2 LY=FU,FI BE=FU,FI PS=SY,FI TE=DI,FI
VA 1.0 LY(1,1) LY(4,2)
FR LY(2,1) LY(3,1)
FR LY(5,2) LY(6,2)
FR BE(1,2)
FR PS(1,1) PS(2,2)
FR TE(1,1) TE(2,2) TE(3,3)
FR TE(4,4) TE(5,5) TE(6,6)
OU ND=5
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In order to maintain continuity, corresponding syntax for AMOS and 
MPlus is presented at the end of this chapter.

reading and interpreting liSrel Output

Having estimated the model, we next proceed to work through the output 
it generates. The beginning of the LISREL output includes several pieces 
of information to ensure that the model and data are being read correctly. 
The output contains, for example, information about the number of latent 
and observed variables, along with the sample size.

Number of Input Variables 6
Number of Y - Variables 6
Number of X - Variables 0
Number of ETA - Variables 2
Number of KSI - Variables 0
Number of Observations 100

Following this, the covariance matrix (and vector of means, if entered) is 
output. It is important to ensure that the data are being read correctly.

Covariance Matrix
   x1    x2    x3    y1    y2    y3
  ------- ------- ------- ------- ------- -------
x1 1.95000
x2 1.20000 1.90000
x3 1.40000 1.35000 1.82000
y1 0.45000 0.52000 0.65000 1.62000
y2 0.50000 0.66000 0.62000 0.98000 1.48000
y3 0.61000 0.59000 0.70000 1.18000 1.02000 1.55000

After this, the output contains information about the model matrices 
and which parameters within the matrices are fixed, freely estimated, or 

Troubleshooting Tip

Remember to save your syntax file before trying to estimate your model. 
LISREL simply will not estimate a model for the first time until the syntax 
file is saved. This is the most common reason why you will not be able to 
estimate a model in LISREL. Once the model has been saved once, how‑
ever, you will be able to estimate it without saving it again. This is the most 
common reason why you will lose your work when estimating a model in 
LISREL. Always save your model before trying to estimate it. Finally, we 
recommend saving your syntax files with the LS8 extension (or SPL if you 
choose to use the SIMPLIS language). This way LISREL will be sure to rec‑
ognize the file every time.
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constrained. LISREL indicates that a model is fixed by showing it as a 0. The 
actual values to which these parameters are fixed are shown in a separate 
section under the heading “LISREL Estimates.” Freely estimated parameters 
are indicated by non‑zero numbers, and parameters constrained to be equal 
are indicated by the same number. Notice as well that diagonal matrices, such 
as psi and theta‑epsilon in this example, show only the diagonal elements.

Parameter Specifications
 LAMBDA-Y
  ETA 1   ETA 2
 --------   --------
 x1 0      0
 x2 1      0
 x3 2      0
 y1 0      0
 y2 0      3
 y3 0      4
  BETA
   ETA 1 ETA 2
  --------   --------
 ETA 1 0 5
 ETA 2 0 0
 PSI
  ETA 1 ETA 2
   --------    --------
  6  7
  THETA-EPS
 x1 x2 x3   y1     y2  y3
-------- -------- -------- -------- -------- --------
 8 9 10   11     12  13

The next section of output presents the actual estimates obtained and the 
number of iterations needed for the estimates to converge. Always ensure 
that your model has converged before attempting to interpret the param‑
eter estimates.

Number of Iterations = 4
LISREL Estimates (Maximum Likelihood)
 LAMBDA-Y
  ETA 1     ETA 2
  --------    --------
 x1 1.00000 - -
 x2  0.96869 - -
  (0.11535)
  8.39777
 x3 1.13699 - -
  (0.12048)
  9.43690
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 y1 - -       1.00000
 y2     - -          0.87487
                 (0.10604)
   8.25030
 y3    - -             1.04995
    (0.11186)
    9.38667
  BETA
   ETA 1  ETA 2
  --------   --------
ETA 1    - -   0.52088
    (0.11932)
    4.36540
ETA 2         - -        - -
  Covariance Matrix of ETA
  ETA 1  ETA 2
    --------   --------
ETA 1   1.22973
ETA 2   0.58287  1.11900
   PSI
   Note: This matrix is diagonal.
  ETA 1         ETA 2
  --------  --------
  0.92613  1.11900
  (0.21020)  (0.23400)
  4.40599  4.78213
Squared Multiple Correlations for Structural Equations
  ETA 1  ETA 2
     --------      --------
  0.24689  - -
 THETA-EPS
   x1     x2                 x3     y1      y2        y3
-------- -------- --------  --------       --------  --------
 0.72027    0.74607      0.23028       0.50100   0.62352    0.31643
(0.13329)  (0.13321)(0.11208) (0.10898) (0.11013) (0.10026)
 5.40359    5.60062     2.05468        4.59697   5.66167    3.15609
 Squared Multiple Correlations for Y - Variables
  x1      x2  x3         y1           y2             y3
-------- -------- -------- --------   --------  --------
0.63063      0.60733    0.87347          0.69074          0.57870       0.79585

For each matrix in the model, fixed parameter values, estimated param‑
eter values, their standard errors, and the corresponding t‑values are 
listed. In the output above, for example, the residual variances of the latent 
variables, labeled as eta1 and eta2, are 0.92613 and 1.11900, respectively. 
Their standard errors are 0.21020 and 0.23400, which provides t‑values of 
4.40599 and 4.78213, respectively. LISREL does not provide p‑values associ‑
ated with t‑values (because most people simply use common values such 
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as ±1.96 to identify statistically significant parameters using a two‑tailed 
test or ±1.64 for a one‑tailed test). However, you can look up critical values 
(for your sample size if it is less than about 120) in a table or obtain the val‑
ues directly from Excel, SPSS, or some other program. AMOS and MPlus 
do provide these values automatically.

Additional information such as the squared multiple correlations for 
observed and latent variables and the covariance matrix of the latent vari‑
ables is also provided. In addition to this, LISREL provides a great deal of 
information concerning model fit, which is discussed in greater detail in 
the next section.

evaluating Model Fit

Assessment of model fit is one of the most controversial and difficult aspects 
of structural equation modeling. If there is any consensus in this regard, it 
is that multiple aspects of model fit need to be considered. This is because 
there are numerous empirical and philosophical ways in which a model 
can fit, or fail to fit, observed data. With this recognition, there has been an 
incredible proliferation in indexes for the assessment of fit. It is clear that no 
single method is appropriate to determine which model best fits an empirical 
data set (Gerbing & Anderson, 1993; Hu & Bentler, 1995; McDonald & Marsh, 
1990; Mulaik et al., 1989). Rather, it is only through the application of multiple 
indexes of fit, each with its own strengths and weaknesses, that the satis‑
factory fit of a particular model can be determined. Among the most com‑
monly applied measures of model fit are those of discrepancy from estimated 
population values, such as model chi‑square; incremental fit indexes, in 
which fit of a selected model is assessed against one or more alternative mod‑
els; parsimony‑based fit indexes; absolute fit indexes; and considerations of 
where a model fails to reproduce elements of the observed sample moments. 
Below, we briefly discuss the most widely used approaches to fitting struc‑
tural equation models, along with a discussion of their respective strengths 
and limitations. Some indexes of fit are based on the assumption that the 
model being tested is correct, whereas others are not. For this reason, we con‑
sider both models that are correct and models that are misspecified to assess 
performance of fit indexes under various conditions of incomplete data.

Try Me!

Once you get the file above running, rewrite it to scale the first latent variable 
to have a variance of 1 in psi, estimating all factor loadings for it in lambda‑y. 
Write the same model with correlated latent variables instead of a causal path 
in the beta matrix (i.e., PS=SY,FR and BE=ZE). We strongly recommend that 
you stop here to run this program in the software of your choice before mov‑
ing to the next section, which runs through the output provided by LISREL.
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Measures of Population Discrepancy

The chi‑square statistic (χ2) is by far the most universally reported index 
of fit in structural equation modeling. Tests of model fit, such as the χ2 
test, assess the “magnitude of the discrepancy” (Hu & Bentler, 1995, p.77) 
between the sampled and modeled or fitted covariance matrices (i.e., 
|S − Σ|, a test of exact fit). A nonsignificant χ2 with associated degrees of 
freedom indicates that the two matrices (the observed, S, and the implied, 
Σ) do not differ statistically and is generally indicative of a good model 
fit. The χ2 statistic is a linear function of sample size times the minimum 
value of the fit function. As sample size increases, even very minor mis‑
specifications can lead to poor model fit. Conversely, with small samples, 
models will tend to be accepted even in the face of considerable misspeci‑
fication (Schumacker & Lomax, 2004).

Incremental Fit Indices

Model comparison indexes use measures of population discrepancy 
between the model of interest and some baseline model to assess “rela‑
tive” model fit (La Du & Tanaka, 1995). The independence or null model 
is typically specified as the baseline model, in which there are no associa‑
tions being modeled among the variables. Thus, a model of interest can 
be tested against a poorly fitting independence model to gain perspective 
on the relative fit of a particular model (Bentler & Bonett, 1980; Tucker & 
Lewis, 1973).

There are three broad classes of fit indexes based upon comparison to 
a baseline model (in this case, an independence model). The normed fit 
index (NFI; Bentler & Bonett, 1980) is an example of a Type 1 (normed) 
incremental fit index (Hu & Bentler, 1995). It calculates the proportion 
reduction in chi‑square of the model of interest, relative to a model of 
no association. Despite being easily interpreted and standardized for all 
models to lie between 0 and 1, previous research has illustrated several 
shortcomings of the NFI, the most central of which is its dependence on 
sample size (Marsh, Balla, & Hau, 1996). All else equal, values of the NFI 
will be higher for larger sample sizes.

A second comparative fit index is the Tucker‑Lewis index (TLI; Tucker & 
Lewis, 1973), an example of a Type 2 (nonnormed) incremental fit index. It 
has been modified from its original use in factor analysis for application 
to structural equation modeling (Bentler & Bonett, 1980). Unlike the NFI, 
values of the TLI (also referred to as the NNFI and as ρ) can exceed 1.0. In 
such circumstances, they are simply truncated to a value of 1.0. The TLI is 
not associated with sample size.

Finally, Type 3 (noncentrality based) incremental fit indices such as the 
comparative fit index (CFI; Bentler, 1990) are normed between values of 0 
and 1 and are also independent of sample size.
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Absolute Fit Indices

Most researchers acknowledge that their models, at best, only approximate 
reality and that even models that are only approximately true can still have 
considerable value. Under this perspective, a model, like a horseshoe, may 
be “close enough.” As a measure of the lack of the fit of a model, the root 
mean square error of approximation (RMSEA) is judged by a value of 0.05 
or less as an indication of a close fit of the model in relation to the degrees 
of freedom; additionally, a value of 0.08 or less is indicative of a “reason‑
able” error of approximation such that a model should not be used if it 
has an RMSEA greater than 0.1 (Browne & Cudeck, 1993). More recently, 
Hu and Bentler (1995) suggested that values below .06 indicate good fit. 
LISREL also provides a test that the confidence interval around the RMSEA 
includes zero. It is worth noting that by default this test is set at a p‑value of 
.10 rather than the value of .05 more commonly used for other tests.

LISREL provides a wide array of indices of model fit. The one that will be 
most important in power analysis is the minimum value of the fit function 
(FMin). For the example estimated above, this value (to 5 digits) is 0.062315. 
It is related to the minimum fit function chi‑square value as a function of 
N − 1 (in this case 99). Because this value is independent of sample size, 
we can use it to estimate a quantity useful for power analyses, a topic we 
will consider in much greater detail in Chapter 4.

Conclusions

The LISREL model allows for estimation of a wide set of statistical mod‑
els including both manifest and latent variables. In this chapter, we have 
worked through the process of going from a diagrammed model to speci‑
fying the structure and content of LISREL matrices. We then discussed 
the process of turning these matrices into LISREL syntax files, along with 
a brief presentation of the key components of the output file and issues 
in assessing model fit. The subsequent appendix provides corresponding 
syntax for MPlus and AMOS. In the next chapter, we move on to consider 
issues presented by missing data.

Further Readings
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Exercises

1.  Write out the corresponding LISREL matrices for each of the fol‑
lowing path diagrams.

1

1b.

a.
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1 1 1 1

Hint: Remember that all variables in LISREL must be defined as latent 
variables.

c.

d.
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2. Draw a path diagram from the following matrices:
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3.  Write syntax for each of the models above using an identity matrix 
as the input covariance matrix.

d.

c.

b.

a.
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3
Missing Data
An Overview

Why Worry About Missing Data?

In many disciplines, missing data are relatively uncommon and often 
taken as an indicator of sloppy science or poor methodology, and as a 
result techniques for dealing with missing data when they occur are gen‑
erally frowned upon in these areas. In a conversation about dealing with 
missing data in a large interdisciplinary project, one of our colleagues, 
a geneticist, sarcastically remarked “All of our subjects had DNA.” Less 
than 2 weeks later, however, many of the laboratories at his institution 
were under several feet of water as a result of a hurricane. Fortunately, 
we had backup samples in multiple sites, his laboratory was on a higher 
floor of the building, and liquid nitrogen backup systems that required no 
external power source kept samples frozen until they could be rescued. 
Subsequent discussions regarding treatment of missing data have been 
better received.

In the social sciences, however, missing or incomplete data are a nearly 
ubiquitous aspect of research. Data collection from human beings in the real 
world poses considerably greater challenges than in the laboratory setting. 
Participants have other commitments, they move, they become sick or die, 
they may not wish to provide information of a sensitive nature, and any num‑
ber of random or systematic forces may prevent data from being observed.

There is growing recognition that failure to address issues of missing 
data can lead to biased parameter estimates and incorrect standard errors 
(Arbuckle, 1996; R. J. A. Little & Rubin, 1989; Schafer, 1997). Techniques 
for estimation of parameters and their standard errors under conditions 
of incomplete data have been reported in the structural equation mod‑
eling literature for more than two decades (Allison, 1987; B. O. Muthén, 
Kaplan, & Hollis, 1987). Likewise, the theoretical underpinnings of these 
approaches are 50 years old (T. W. Anderson, 1957). It is only recently, 
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however, that analyses that incorporate incomplete observations have 
become commonplace in the social sciences.

There are several reasons why researchers should be concerned with 
missing data. First, data are difficult to collect, and so researchers should 
use every piece of information they collect. Second, failing to adequately 
address issues of missing data can lead to biased results and incorrect 
conclusions. Finally, studies with missing data are more common than 
studies without them. Therefore, researchers should know what their best 
available options are in the very likely event that their study will involve 
missing data.

In this chapter, we consider several different ways in which data can 
be missing, along with the different implications this has for analysis 
of the observed data. We also consider and evaluate several of the avail‑
able approaches for handling incomplete data. Finally, we present some 
worked examples of how incomplete data can be analyzed using struc‑
tural equation modeling software.

Types of Missing Data

Missing Completely at random

In their seminal work on the analysis of incomplete data, R. J. A. Little and 
Rubin (2002) distinguished between three types of missing data. Data are 
said to be missing completely at random (MCAR) when the probability that 
an observation is missing (r) does not depend on either the observed (yobs) 
or the unobserved (ymiss) values. Mathematically, this can be expressed as 
Pr( | , ) Pr( )r y y robs miss = . In other words, the probability that an observa‑
tion is missing is not associated with any variables you have measured or 
with any variables that are not measured. For this reason, MCAR data are 
equivalent to a simple random sample of the full data set. It is what most 
people think of when they say that the data are randomly missing.

Under most circumstances, it is probably fairly unrealistic to assume 
that data are MCAR (for exceptions, see Graham, Taylor & Cumsille, 2001, 
and Chapter 8). Rather, under many circumstances, there may be selec‑
tive (i.e., systematic) processes that determine the probability that a par‑
ticular value will be observed or missing. For example, individuals with 
extremely high incomes may be less likely to report income information. 
Similarly, individuals who are geographically mobile may be more dif‑
ficult to track and thus more likely to drop out of a longitudinal study. 
Table 3.1 illustrates some examples of scenarios where data are known to 
be (or likely to be) MCAR.

Y100315.indb   48 7/15/09   2:59:05 PM



Missing Data 49

Missing at random

A more realistic assumption under these circumstances is that data 
are missing at random (MAR), that the probability that an observa‑
tion is missing depends only on the values of the observed data. In 
other words, Pr( | , ) Pr( | )r y y r yobs miss obs= . That is, the probability that an 
observation is missing is completely accounted for by variables that 
you have measured and nothing that you have not measured. Under 
circumstances where data are MCAR or MAR, the mechanism that 
determines whether a particular value is observed or missing is said 
to be ignorable.

Whereas it is possible to test whether data are MCAR, it is not typically 
possible to test whether the data are MAR because to do so would require 
further information about the unobserved data. Even when the data are not 
strictly MAR, this assumption will often represent a reasonable approxi‑
mation (see R. J. A. Little & Rubin, 2002; Molenberghs & Kenward, 2007; or 
Schafer, 1997, for a more thorough explication of data that are MAR) and is 
less stringent than the assumption that data are MCAR. Thus, any attempt 
to identify and correct for selective nonresponse will typically represent 
an improvement in the accuracy of results over making no attempt at all. 
Table 3.2 illustrates some examples of scenarios where data are known to 
be (or likely to be) MAR.

Missing Not at random

In situations where the probability that an observation is missing 
depends on the values of the unobserved variables, the data are said to be 
missing not at random (MNAR). Under these circumstances, the nonre‑
sponse is said to be informative. Mathematically, this can be expressed as 
Pr( | , ) Pr( | )r y y r yobs miss miss= . That is, the probability that an observation is 
missing depends on something that you have not measured (and perhaps 
things that you have measured as well). Though strategies for dealing with 

Table 3.1

Scenarios Where Data Are Likely (or Known) to Be Missing Completely at 
Random (MCAR)

Scenario Description

1 An investigator randomly assigns students to one of multiple forms of a test 
she is developing. Each form has some overlapping and some unique items

2 A researcher is collecting short‑term daily diary data from the residents of an 
island accessible only by a ferry that does not run in foggy weather

3 A printing error results in some pages of a testing booklet being missing for a 
subset of study participants

4 A subset of participants in a large survey are randomly selected to participate 
in an in‑depth testing module
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MNAR data are growing, their analysis always requires some explicit 
and untestable assumptions about the nature of the unobserved values 
and the processes underlying them (i.e., the probability that a response is 
missing depends on ymiss, which by definition is unobserved). In these sit‑
uations, many researchers recommend a series of sensitivity analyses in 
order to evaluate the extent to which results depend on the assumptions 
being made (cf. Hedeker & Gibbons, 1997; Molenberghs & Kenward, 2007; 
Schafer & Graham, 2002). Table 3.3 illustrates some examples of scenarios 
where data are known to be (or likely to be) MNAR.

Table 3.2

Scenarios Where Data Are Likely (or Known) to Be Missing at Random (MAR)

Scenario Description

1 Students with higher math and verbal performance scores, measured for all 
students, are more likely to be in class on the day of testing

2 Responses during the first part of a telephone survey are used to determine 
which follow‑up questions are asked

3 Individuals with lower household incomes as measured at baseline are more 
likely to be lost to follow‑up

4 Older adults who are initially more physically frail are more likely to have died 
between interviews

Table 3.3

Scenarios Where Data Are Likely (or Known) to Be Missing Not at Random (MNAR)

Scenario Description

1 Individuals with higher (or lower) household incomes are less likely to provide 
income data

2 Individuals who experience adverse effects of treatment between waves are 
more likely to be lost to follow‑up

3 Individuals are less likely to return for a follow‑up interview if they experience 
a depressive episode between visits

4 An interviewer works more vigorously to retain participants who appear to be 
gaining the most benefit from an intervention (or less vigorously to retain those 
who do not)

Point of Reflection

In addition to the examples of MCAR, MAR, and MNAR data provided, take 
a few moments to consider missing data within your own area of research. 
Can you think of examples of data that would fall into each category? What 
are some variables that are likely to be associated with the probability that 
an observation is missing? Are these variables typically measured in stud‑
ies in your area?
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Strategies for Dealing With Missing Data

Numerous methods are available for dealing with missing data, each 
with its own strengths and limitations. Following R. J. A. Little and Rubin 
(2002), we present the approaches according to whether they rely on anal‑
ysis of complete cases, available cases, or imputation approaches. Ideally, 
we seek parameter estimates that are both unbiased (i.e., neither consis‑
tently overestimated nor underestimated) and efficient (i.e., estimated as 
precisely as possible).

Complete Case Methods

As the name suggests, complete case methods make use of only cases hav‑
ing complete data on all variables of interest in the analysis. All informa‑
tion from cases with incomplete data is ignored.

list‑Wise Deletion

List‑wise deletion, the removal of cases that are missing one or more data 
points, is by far the most commonly employed method for dealing with 
missing data. This approach is valid for point estimates only when the 
data are MCAR but will otherwise lead to biased estimates. For confi‑
dence intervals, however, list‑wise deletion is always inefficient (i.e., your 
standard errors will always be larger), because information from par‑
tially observed cases is discarded. Thus, the list‑wise deletion approach 
to missing data is easy to implement but can yield seriously misleading 
estimates. Further, in the example we present later in this chapter, the use 
of list‑wise deletion would result in loss of more than half of the sample 
(some due to dropout, some due to nonresponse within survey waves), 
making methods for dealing with incomplete data preferable for reasons 
of both statistical power and correcting bias in parameter estimates and 
confidence intervals.

list‑Wise Deletion With Weighting

In addition to simply using all complete cases, there are numerous 
approaches that give some cases more “weight” than others in the analysis 
in an attempt to reduce bias due to systematic processes associated with 
nonresponse. If nonresponse is twice as likely among men as women, 
data from each man in the sample could receive a weight of 2 in order to 
make the data more representative. Another approach treats the probabil‑
ity of nonresponse as an omitted variable, which results in a specification 
error in the estimation model (e.g., Heckman, 1979). To adjust for this, the 
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predicted probability of nonresponse for each case is estimated, and the 
inverse of this variable is included as an additional variable in the model.

available Case Methods

In contrast to complete case methods, available case methods make use of 
information from both completely and partially observed cases. If a case 
provides information about pretest scores, but not follow‑up scores, the 
pretest information is incorporated into the analysis (remember our dis‑
cussion of Solomon’s four‑group design in Chapter 1). Because they typi‑
cally make use of more information than complete case methods, available 
case methods are generally better at correcting for bias as a function of 
selective nonresponse with MAR data than complete case methods.

Pair‑Wise Deletion

After list‑wise deletion, pair‑wise methods are next most commonly used. 
In pair‑wise deletion, all sample moments (i.e., means, variances, covari‑
ances) are calculated on the basis of all cases that are available for a pair of 
variables. Though this may seem like a good idea in principle, it is fraught 
with potential inconsistencies, and its use is rarely justified in practice. For 
example, if the covariance between two variables, X and Y, is given by the 
formula ∑ =

− −
−i

n X X Y Y
N

i i
1 1

( )( ), which means should be used for X  and Y ? Should 
the mean for all available cases of X be used, or should it be calculated as 
the mean of all cases for which both X and Y are observed? Thus, differ‑
ent means may be used to generate each correlation in a matrix. Currently, 
different statistical packages may calculate pair‑wise covariances using 
different formulas and so may yield different results for what is ostensibly 
the same correlation. In addition, it is unlikely that a pair‑wise approach 
will correctly adjust parameter estimates and standard errors. Without 
stronger statistical justification, this approach is probably best avoided in 
statistical analysis.

expectation Maximization algorithm

The expectation maximization (EM) algorithm (Dempster, Laird, & Rubin, 
1977) uses a two‑step iterative process to make use of information from all 
cases, complete and incomplete, in order to estimate sample moments such 
as means, variances, and covariances. In the first (expectation, or E) step, 
missing values are replaced with their expected values conditional on the 
other variables in the model. In the second (maximization, or M) step, 
maximum likelihood estimates of the means and covariances are obtained 
as though the expected values were the missing values. These new means 
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and covariances are used to generate the next iteration’s expected values 
and the cycle continues until it has converged to the desired degree of pre‑
cision (i.e., the difference in estimates between successive iterations is suf‑
ficiently small). Use of the EM‑generated covariance matrix can correct for 
the bias in parameter estimates when data are MAR, but it is impossible 
to know what (parameter‑ and model‑specific) sample size will yield the 
correct confidence intervals. In partial response to this limitation, Meng 
and Rubin (1991) have developed the supplemented EM (SEM) algorithm, 
which can provide estimates of the asymptotic variance‑covariance matrix, 
but this approach has not yet been widely implemented in statistical pack‑
ages. However, because the EM algorithm is model based, the results still 
depend in part on which variables are included in the model. R. J. A. Little 
and Rubin (2002) have also shown how the resampling technique of boot‑
strapping (e.g., Efron & Tibshirani, 1993) can be used to obtain standard 
errors for EM‑generated estimates.

Full information Maximum likelihood

The idea behind full information maximum likelihood (FIML) originates 
with T. W. Anderson (1957), who discovered that, under nested missing data 
structures (e.g., when individuals who are missing at one wave of data col‑
lection are missing at all subsequent waves), the resulting likelihood func‑
tion could be factored separately for each pattern of missing data. The EM 
algorithm above allowed for solving otherwise intractable problems (i.e., 
where no closed‑form solution exists or would be exceedingly difficult to 
specify or solve) via iterative methods and was largely responsible for the 
widespread application of Anderson’s methods. Initial estimates of model 
parameters (based, for example, on estimates from list‑wise or pair‑wise 
deletion) are optimized over all available information from complete and 
partial cases. These new estimates are then substituted back in for the 
model parameters, and the optimization process continues in this fash‑
ion until the parameter estimates converge. An extension of this approach, 
FIML, can recover correct parameter estimates and confidence intervals 
under both MCAR and MAR conditions. FIML maximizes the function 
χ µMin i

N
i mm i

N
i m i m i mmy2

1 1
1= ∑ + ∑ − ′= =

−log| | ( ) (, , , ,Σ Σ yyi m i m, , )− µ  on a case‑wise 
basis, where yi,m represents the observed data for case i, and μi,m and Σi,mm are 
the means and covariances of observed data for case i (e.g., Arbuckle, 1996; 
Jamshidian & Bentler, 1999). You should notice a strong similarity between 
the structure of this equation and the discrepancy function introduced in 
Chapter 2. In essence all model parameters that can be estimated from an 
observation are used to construct a weighted average across patterns of 
missing data, something that we will demonstrate, in simplified fashion, 
below. This approach has been incorporated into statistical software pack‑
ages such as AMOS (Arbuckle, 2006; Wothke, 1998), MPlus, Mx, and LISREL. 
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Even when data are only MAR, FIML makes use of all available data, even 
those from partially missing cases, and will provide valid point estimates 
and confidence intervals for population parameters. However, because it is 
also a model‑based technique, estimates of the same parameters and their 
confidence intervals may vary from analysis to analysis, depending on 
which other variables are included in the model.

Imputation Methods

One meaning of imputation is to assign an attribute based on similarity to 
something else. In contrast to the complete case methods, which use only 
cases with complete data, and available case methods, which use only data 
values actually observed, imputation methods involve the replacement of 
unobserved (i.e., missing) values with hypothetical data. Another mean‑
ing of imputation has to do with assignment of fault or responsibility. 
Perhaps for this reason, and perhaps also because of longstanding taboos 
against making up data, it has taken some time for imputation methods 
to gain general favor in the social sciences even though these methods are 
at least as sound as other approaches that have been more acceptable for 
a longer period of time.

Single imputation

Single imputation is another useful technique when data are MAR and 
involves replacing missing data with plausible values, which can be 
derived in any of a number of ways (e.g., substitution of values from a 
complete case with similar values on the observed variables, or more 
sophisticated Bayesian methods). The result is a rectangular data matrix 
that is amenable to analysis with standard statistical software and param‑
eter estimates will be consistent from one model to another.

There are a variety of methods to fill in missing values. Substitution 
of the mean for missing values is one approach that is used quite com‑
monly, but it will only result in unbiased parameter estimates if data are 
MCAR. Similarly, substitution of predicted values from a regression equa‑
tion is another commonly used approach that fares slightly better. Other 
approaches use values from completely observed cases with similar values 
on the variables that are observed for both cases. If the missing values are 
selected from a random sample of similar cases, the result is hot‑deck impu‑
tation. If instead the missing values are always filled in with the same new 
values, then the result is termed cold‑deck imputation (and variance will be 
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reduced similarly to the method of mean substitution). Bayesian methods 
are also available to generate the plausible values of missing data.

A single imputation will provide valid point estimates, but the associ‑
ated standard errors will be too small. The imputation process naturally 
involves some uncertainty about what the unobserved values were, but 
this uncertainty is not reflected anywhere in the data matrix. As a result, 
this technique, like mean or regression substitution, leads to an undesir‑
able overestimate of the precision of one’s results. Multiple imputation, 
discussed next, represents one way of correcting for the uncertainty 
inherent in the process of imputation.

Multiple imputation

For both MAR and MCAR data, multiple imputation (MI) combines 
the strengths of FIML and single imputation in that it provides valid 
point estimates and confidence intervals along with a collection of 
rectangular data matrices that can be used for the analysis of many 
different models. Additionally, the fact that missing data are replaced 
with multiple plausible values provides the analyst with valid confi‑
dence intervals in the following fashion. Within any data set, there 
will always be some uncertainty about population parameters due to 
sampling variability.

With incomplete data, some uncertainty is also introduced through the 
process of imputation. However, when multiple data sets are imputed, the 
only source of variability in parameter estimates across them is due to 
uncertainty from the imputation process (because the complete data com‑
ponents are identical across data sets). Thus, by decomposing the total 
variability in parameter estimates into within‑imputation variability and 
between‑imputation variability, the results can be accurately corrected for 
the uncertainty introduced through the imputation process.

Schafer has recently written a software package, NORM, to perform 
multiple imputation and form valid inferences (described in Schafer, 1997; 
see also Graham, Olchowski, & Gilreath, 2007) under a normal model, 
making this technique readily available to social scientists without the 
technical expertise to implement MI themselves (other imputation mod‑
els now becoming available are useful for categorical and mixed models). 
This is a highly generalized approach to missingness that can be used 
in conjunction with many statistical procedures, including, for example, 
structural equation models and logistic regression equations. Multiple 
imputation is statistically sound and empirically useful in a wide variety 
of contexts. Its application is slightly more complicated within a structural 
equation modeling framework, however (Davey, Savla, & Luo, 2005; Meng 
& Rubin, 1992), and so we do not consider this approach further here.
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Estimating Structural Equation Models 
With Incomplete Data

If your primary interest is in estimating a structural equation model with 
incomplete raw data, then you should use the best approach available 
in that package, typically full information maximum likelihood. This 
approach is typically implemented automatically or by specifying the 
appropriate estimation option and places no additional programming or 
statistical demands on the researcher.

In this section, we demonstrate a multiple group approach that can be 
used to estimate structural equation models with incomplete data that was 
first introduced in the literature more than 20 years ago (Allison, 1987; B. O. 
Muthén et al., 1987). Essentially, each pattern of missing data is treated as 
a separate “group.” Model parameters that are observed across groups are 
equated across those groups. Model parameters that are not observed in a 
group are factored out of our model using an easy and clever trick.

In order to account for any systematic differences across the patterns of 
missing data, all of these models include information about means. The 
results are basically the weighted average of model parameters across 
different patterns of missing data. If each case was conceptualized as its 
own group (i.e., if the analysis was performed on a case‑by‑case basis), 
the approach would be the same as full information maximum likelihood, 
and it yields equivalent results. An example will illustrate the approach. 
Consider the following confirmatory factor model, as shown in Figure 3.1.

This model has a single latent variable and three manifest indicators. 
The variance of the latent variable and factor loadings are all equal to 1, 

1

Eta

V1

.3

e1

1

V2

.3

e2

1

V3

.3

e3

1

Figure 3.1
Confirmatory factor model with three indicators.
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and the residual variances of the observed variables are all equal to .3. 
The covariance matrix implied by this model can be found by multiplying 

out the equation Σ = ΛyΨΛy′ + Θε. In this case, Λy =
















1
1
1

,  Ψ = [ ],1  and

Θε =
















0 3
0 0 3
0 0 0 3

.
.

.
,  and so Σ =

















1 3
1 0 1 3
1 0 1 0 1 3

.

. .

. . .
.  The model we

wish to estimate looks like the one in Figure 3.2. We will proceed to esti‑
mate this model in three different ways. First, we will estimate it as a 
single‑group complete data model. Next, we will estimate the same model 
as a two‑group complete data model. Finally, we will estimate the same 
model as though half of the sample had missing data on V3. For this 
example, we use a total sample size of 1000 and assume that V1, V2, and 
V3 all have means of 5.

To estimate this model in LISREL, our syntax would look like the 
following:

! ESTIMATE COMPLETE DATA MODEL (FIG 3.2) AS SINGLE GP
DA NI=3 NO=1000 NG=1
LA
V1 V2 V3
CM

*

Eta

V1

*

e1

1

V2

*

e2

*

V3

*

e3

*

Figure 3.2
Parameters estimated in the confirmatory factor model.
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1.3
1.0 1.3
1.0 1.0 1.3
ME
5 5 5
MO NY=3 NE=1 LY=FU,FI PS=SY,FI TE=SY,FI TY=FI AL=FI
LE
ETA
VA 1.0 LY(1,1)
FR LY(2,1) LY(3,1)
FR PS(1,1)
FR TE(1,1) TE(2,2) TE(3,3)
FR TY(1) TY(2) TY(3)
OU ND=5

  LAMBDA-Y
     ETA
  --------
 V1 1.00000
 V2 1.00000
  (0.02794)
  35.78784

 V3 1.00000
  (0.02794)
  35.78784

 PSI
       ETA
       --------
  1.00000
  (0.05894)
  16.96751

 THETA-EPS
  V1 V2 V3
  -------- -------- --------
 0.30000 0.30000 0.30000
 (0.02122) (0.02122) (0.02122)

Try Me!

Estimating this model gives us the correct parameter values and indi‑
cates that the data fit the model perfectly. Beginning in Chapter 6, we will 
encounter situations where this will not be the case (and how to adjust for 
it), even when the correct population parameters are recovered as a result of 
data that are missing in a systematic fashion.

Y100315.indb   58 7/15/09   2:59:08 PM



Missing Data 59

 14.13506 14.13506 14.13506
TAU-Y
  V1  V2  V3
 -------- -------- --------
 5.00000 5.00000 5.00000
 (0.03607) (0.03607) (0.03607)
 138.60569 138.60569 138.60569
Goodness of Fit Statistics
Degrees of Freedom = 0
Minimum Fit Function Chi-Square = 0.0 (P = 1.00000)
Normal Theory Weighted Least Squares Chi-Square = 0.00
The Model is Saturated, the Fit is Perfect!

It is a simple matter to estimate the same model as two separate groups of 
equal sizes, equating parameters across groups. Except for the data line, 
the syntax for the first group is identical to the syntax above.

DA NI=3 NO=500 NG=2

The syntax for the second group follows immediately after the output line 
for our first group and would look like the following:

DA NI=3 NO=500
LA
V1 V2 V3
CM
1.3
1.0 1.3
1.0 1.0 1.3
ME
5 5 5
MO NY=3 NE=1 LY=FU,FI PS=IN TE=SY,FI TY=FI AL=FI
LE
ETA
VA 1.0 LY(1,1)
FR LY(2,1) LY(3,1)
EQ LY(1,2,1) LY(2,1)
EQ LY(1,3,1) LY(3,1)
FR TE(1,1) TE(2,2) TE(3,3)
EQ TE(1,1,1) TE(1,1)

Try Me!

Stop and run the single group model to ensure that you obtain the same 
results. Then add the second group below. Remember to save your work 
before running the file.
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EQ TE(1,2,2) TE(2,2)
EQ TE(1,3,3) TE(3,3)
FR TY(1) TY(2) TY(3)
EQ TY(1,1) TY(1)
EQ TY(1,2) TY(2)
EQ TY(1,3) TY(3)
OU ND=5

The first difference between the groups is specified in the model line, 
where we indicate that the psi matrix is invariant across groups. After 
that, whenever a parameter is freed up in the second group (FR LY(2,1) 
LY(3,1)), it is set equal to the corresponding value of the parameter in the 
first group (EQ LY(1,2,1) LY(2,1)). We do this for the parameters in lamb‑
da‑y, theta‑epsilon, and tau‑y. The parameter estimates are identical in this 
two‑group approach as when the model is estimated as a single group. 
There are, however, two small differences. First, the standard errors of 
the parameter estimates are slightly larger in the two‑group model than 
in the one‑group model. This is because LISREL uses a denominator of 
N − g for calculating these values. A second difference is that the degrees 
of freedom in the single‑group model are 0, but the degrees of freedom in 
the two‑group model are 9. This is because the number of input sample 
moments was twice as high in the two‑group model, but we estimated the 
same number of parameters in both.

Now how would we estimate the same model if the observations in 
the second group were missing values for V3? If we had the raw data, 
and were only interested in estimating the model, we would proceed 
to use full information maximum likelihood. Alternatively, we could 
estimate the model using an almost identical setup. The first issue, how‑
ever, is how to represent the unobserved elements of the covariance 
matrix and vector of means. In the group with missing data, we do not 
know the mean or variance for V3 or the covariance between V3 and 

Troubleshooting Tip

It is normal to see small differences in values such as the minimum fit func‑
tion or other fit indices from one software package to another when esti‑
mating the same model from raw data versus covariance matrix output and 
even between two versions of the same software. Most of the time these 
differences will be very small, and you should never see large differences 
in these values, the values of parameter estimates, or any differences in 
degrees of freedom. If you do, something is wrong with your program or 
how the model is estimated, and you need to recheck your work.

Before continuing to the next section, run this model using the software 
of your choice. Compare your output with the output presented below.

Y100315.indb   60 7/15/09   2:59:08 PM



Missing Data 61

the other variables in our model. They are not estimable from the data 
observed for this group. As a result, our input data matrices might look 
like the following:

 

S X=
















=
















1 3
1 0 1 3

5
5

.

. .
? ? ? ?

.and

In order for LISREL to estimate a multiple‑group model, all groups 
must have the same order for their data structure. Allison (1987) came up 
with an easy convention to solve this first problem while ensuring that 
the input covariance matrix does not become non‑positive definite as a 
result of our convention. Variances for unobserved variables are fixed to 
values of 1 (so matrices involving missing data remain invertible), and 
unobserved covariances and means are fixed to values of 0. So now, our 
input covariance matrix and mean vector for the second group would be

entered as S =
















1 3
1 0 1 3
0 0 1

.

. .  and X =
















5
5
0

. Any parameters that

can be estimated in both groups are simply equated as we did above.
Here are the simple rules for estimating models with missing data. For 

any parameters involving unobserved variables, we do the following 
three things. First, we fix the corresponding elements of lambda‑y equal 
to 0 for those variables. This ensures that the model is not affected by 
our inclusion of the zeroes on the off‑diagonals in our input covariance 
matrix. Second, we remove the effects of putting a 1 on the diagonal for 
unobserved variables by fixing the corresponding element of theta‑ep‑
silon to 1. Finally, to remove the effects of the zeroes in our input vector 
of means, we fix the corresponding element of tau‑y to a value of 0.

For this example, our syntax for the first (complete) data group would be 
identical to the model above. Our syntax for the second (incomplete) data 
group would look like the following:

DA NI=3 NO=500
LA
V1 V2 V3
CM
1.3
1.0 1.3
0 0 1
ME
5 5 0
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MO NY=3 NE=1 LY=FU,FI PS=IN TE=SY,FI TY=FI AL=FI
LE
ETA
VA 1.0 LY(1,1)
FR LY(2,1)
EQ LY(1,2,1) LY(2,1)
FR TE(1,1) TE(2,2)
EQ TE(1,1,1) TE(1,1)
EQ TE(1,2,2) TE(2,2)
VA 1.0 TE(3,3)
FR TY(1) TY(2)
EQ TY(1,1) TY(1)
EQ TY(1,2) TY(2)
OU ND=5

Estimating this model returns the following estimates.

 LAMBDA-Y
    ETA
   --------
 V1 1.00000

 V2 1.00000
  (0.03225)
  31.00359

 V3 1.00000
  (0.03664)
 27.29502

PSI EQUALS PSI IN THE FOLLOWING GROUP

 THETA-EPS
   V1  V2  V3
  -------- -------- --------
 0.30000 0.30000 0.30000

Point of Reflection

Before proceeding to the next section, which presents the output from this 
model, stop and consider how you expect the results to be different from 
the complete data case. Will the parameter estimates be the same or differ‑
ent? What will be the effects on the standard errors of parameter estimates 
for parameters with and without missing data? How will the model fit and 
degrees of freedom be affected? When looking through the output, identify 
the most surprising difference from your expectations, if any.
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 (0.02664) (0.02664) (0.02926)
 11.26134 11.26134 10.25411

 TAU-Y
  V1 V2 V3
 -------- -------- --------
 5.00000  5.00000 5.00000
 (0.03609) (0.03609) (0.04164)
 138.53630 138.53630 120.07640

 LAMBDA-Y
  ETA
 --------
V1 1.00000

V2              1.00000
 (0.03225)
     31.00359

V3 - -

 PSI
  ETA
 --------
  1.00000
 (0.06112)
 16.36109

THETA-EPS
 V1 V2 V3
 -------- -------- --------
 0.30000 0.30000 1.00000
 (0.02664) (0.02664)
 11.26134 11.26134
TAU-Y
 V1 V2   V3
     --------   --------          --------
 5.00000 5.00000  - -
    (0.03609) (0.03609)
 138.53630   138.53630
Global Goodness of Fit Statistics
Degrees of Freedom = 9
Minimum Fit Function Chi-Square = 0.0 (P = 1.00000)
Normal Theory Weighted Least Squares Chi-Square = 0.00
The Fit is Perfect!

Notice that we obtain the same parameter estimates, although several of 
our standard errors will differ because they were estimated with differ‑
ent portions of the entire sample. There are also other small differences 

Y100315.indb   63 7/15/09   2:59:09 PM



64 Statistical Power Analysis with Missing Data

in standard errors even for parameters without any missing data. This is 
because the parameters of a structural equation model tend to be inter‑
related and changes in one part of the system of equations have impli‑
cations for other parts of the system. Likewise, the degrees of freedom 
and overall fit are not adversely affected by our conventions for input 
of unobserved variables. It takes some time to get comfortable with this 
approach for estimating structural equation models with incomplete 
data.

For estimation of a single model, it can also seem like a cumbersome 
way to proceed compared with FIML analysis of complete data. However, 
as we will see in subsequent chapters, this approach can be used with only 
minor modifications to estimate statistical power under an extremely wide 
range of conditions. In the next chapter, we continue laying the ground‑
work for this process by focusing on estimation of statistical power in 
structural equation modeling with complete data.

Conclusions

In this chapter, we reviewed the main classes of missing data and consid‑
ered several examples of each type. We also reviewed many of the most 
commonly used strategies to address (or ignore) missing data including 
complete case, available case, and imputation methods. This chapter also 
illustrated some simple principles that can permit analyses with missing 
data in a fashion analogous to full information maximum likelihood. It is 
this approach that forms the foundation of nearly all of the remainder of 
this book. After delving further into evaluation of statistical power with 
complete data, we will return to this method and slowly extend it step by 
step to estimation of statistical power with missing data.

Troubleshooting Tip

Estimating missing data models in this way can be tricky until you start 
to get the hang of process. Several suggestions can help you ensure that 
your models are set up correctly. Always start with the complete data group 
(NG=1). Run this model to ensure that you get the results you were expect‑
ing. Then begin adding missing data groups, one at a time, to ensure that you 
have the input matrices and equality constraints set up correctly. Proceed 
in this fashion until a group has been added for each of your observed pat‑
terns of data. Remember to adjust the number of groups (NG) and number 
of observations (NO) in each group.
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Exercises

1.  Estimate a two‑group model assuming that 50% of the sample is 
missing on V1 instead of V3.

2.  Estimate a three‑group model assuming that 50% of the sample 
has complete data, 25% of the sample is missing on V2, and 25% of 
the sample is missing on V3.

3.  Write the syntax to estimate the model from question 2c from 
Chapter 2 assuming that 50% missing data are missing both indi‑
cators of the second latent variable.

4.  Write the syntax to estimate the model from question 2c from 
Chapter 2 assuming that 25% of cases are missing the indicators 
of the third latent variable and that 25% of cases are missing the 
indicators of both the second and third latent variables.
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4
Estimating Statistical Power 
With Complete Data

Statistical Power in Structural Equation Modeling

Structural equation models pose particular challenges for power analy‑
ses. A typical model will involve a large number of parameters, poten‑
tially including means and intercepts, regression coefficients, variances, 
and covariances. Within a single model, each parameter may be esti‑
mated with a different degree of precision. Adding to this, parameters 
are typically not independent, and so the power to test one parameter 
may likely be influenced by the power to test other parameters being 
estimated in a given model. Several different approaches have been 
presented in the literature in order to evaluate statistical power with 
structural equation models, and we focus on four distinct approaches 
in this chapter.

Beginning in this chapter, we introduce slightly more of the mathemat‑
ics behind these methods. Though it is not imperative that you understand 
every aspect of every equation, the greater the effort you make to under‑
stand these equations, the clearer each step (and its rationale) is likely to 
be. Each time something new is introduced, stop and test out your under‑
standing of it. If we present a formula and some values, stop and calculate 
the value. If your results differ from ours, back up to the last point where 
you were following along and try it again.

Because we expect that most readers will learn by doing, our examples 
are all provided in a step‑by‑step fashion to help facilitate this process. One 
implication of this approach, however, is that information and concepts 
tend to cumulate rather quickly. Try to ensure that you are comfortable with 
each new concept before moving too far forward in the material. Finally, 
try to remember that this kind of learning tends to be iterative, and some‑
thing that may not be clear on one pass may suddenly make more sense 
the next time you encounter it, perhaps in a slightly different context.
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Power for Testing a Single Alternative Hypothesis

The earliest and most straightforward approach for testing statistical power 
in a structural equation modeling framework was presented by Satorra 
and Saris (1985). Their approach is quite simple to implement. Specifically, 
it involves estimating the alternative model with a known data structure. 
Referring back to Table 1.3, given that H0 is false, what proportion of the 
time would we correctly reject H0? In other words, they explicitly test their 
alternative hypothesis, given that the null hypothesis is true. For example, 
to evaluate the power to detect whether two standardized variables (means 
of 0 and variances of 1) correlated at some level (say .25), one would estimate 
a model specifying that the variables were uncorrelated on data where the 
variables really did correlate at .25. Figure 4.1 and Figure 4.2 show the path 
diagrams for the null and alternative hypotheses, respectively.

The minimum fit function chi‑square value obtained from fitting this 
model provides an estimate of the noncentrality parameter (NCP) for that 
effect. Statistical power is then obtained directly for a given Type I error 
rate (α) as Power = 1 − PrChi(c²Crit,a, df, NCP). In the example above, with 
a sample size of 123, the estimated noncentrality parameter would be 7.87. 
Using an a value of .05 and 1 degree of freedom for the single covariance 
parameter constrained to 0, the critical value of the chi‑square distribu‑
tion with 1 degree of freedom is 3.84. In SPSS, for example, executing the 
following single line of syntax returns a power of .8:

compute power = 1 - ncdf.chisq(3.84,1,7.87).

Try Me!

Start by trying this example in the software package you use. Once you rep‑
licate the values above, use the same noncentrality parameter to find the 
power with a = .01 (.59) and a = .001 (.31). Can you determine the noncentral‑
ity parameter in each case which would be required for power of .80? What 
would the corresponding values be for a test with 2 degrees of freedom?

1

V1

1

V2

0.25

Figure 4.1
Path diagram for the null hypothesis.
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Although this approach requires explicit formulation of the alternative 
hypothesis for each parameter of interest, after 20 years it still remains one 
of the most useful and widely applied methods for assessing statistical 
power in structural equation models. Saris and Satorra (1993) subsequently 
presented an alternative approach that makes use of isopower contours, 
representing sets of alternative parameter values at which power is con‑
stant. Though conceptually elegant, it has received relatively little direct 
application in the literature.

In the trivial case where we already know what the desired population 
covariance structure is, it can be entered directly into a LISREL program. The 
syntax to test the model above, for example, would look like the following:

! SATORRA AND SARIS (1985) EXAMPLE 1
DA NI=2 NO=123
LA
V1 V2
CM
1
.25 1
MO NY=2 NE=2 LY=ID PS=SY,FI TE=SY,FI
FR PS(1,1) PS(2,2)
OU ND=5

The situation where we know the model in advance, but not the popula‑
tion covariance matrix it implies, is also quite straightforward to deter‑
mine. Consider the model in Figure 4.3, for example, which is also drawn 
from Satorra and Saris (1985).

By fixing all of these parameters in a LISREL syntax file, using an 
identity matrix as the input data (it is always positive definite, which 
means that the matrix can be inverted and so the model will always 
run), and requesting residuals on the output line (OU RS), the fitted 
(in AMOS, implied) covariance matrix will be provided. The following 
syntax calculates the desired covariance matrix for the model above. 
Sample size is arbitrary because we are only interested in the fitted 
covariance matrix.

1

V1

1

V2

0

Figure 4.2
Path diagram for the alternative hypothesis.
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DA NI=5 NO=1000
LA
X Y1 Y2 Y3 Y4
CM
1
0 1
0 0 1
0 0 0 1
0 0 0 0 1
MO NY=5 NE=5 LY=ID PS=SY,FI BE=FU,FI TE=ZE
VA 1.0 PS(1,1)
VA 0.84 PS(2,2) PS(4,4)
VA 0.61 PS(3,3)
VA 0.27 PS(5,5)
VA 0.40 BE(2,1) BE(4,1) BE(5,2) BE(5,3) BE(5,4)
VA 0.50 BE(3,1)
VA 0.20 BE(3,2)
OU ND=5 RS

The above syntax generates the following “fitted covariance matrix,” 
which can then be used to test alternative hypotheses.

1

X

Y1

Y2

Y3

Y4
0.5

0.4

0.4

0.4

0.4

0.4

0.2

0.84
U1

0.61

U2

0.84

U3

0.27
U4

Figure 4.3
Model from “Power of the Likelihood Ratio Test in Covariance Structure Analysis,” by 
A. Satorra and W. E. Saris, 1985, Psychometrika, 50, 83–90.
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 X Y1 Y2 Y3 Y4
 ------- -------- -------- -------- --------
X1 1.00000
Y1 0.40000  1.00000
Y2 0.58000  0.40000  0.98000
Y3 0.40000  0.16000  0.23200   1.00000
Y4 0.55200  0.62400  0.64480    0.55680   1.00024

This same approach can be used for any model that you can conceive 
of, and it can also be obtained through matrix algebra. In practice, a 
researcher is unlikely to have complete knowledge of all model param‑
eters in advance, but key alternative hypotheses are likely to be well 
specified. In an approach such as this one, however, it is relatively easy to 
specify and evaluate a range of potential models. With this approach, it 
is also possible to specify a range of alternative hypotheses. For example, 
adding the line VA 0.1 PS(1,2) to the LISREL syntax used to estimate the 
model shown in Figure 4.2 will evaluate the hypothesis that the correla‑
tion is trivial (i.e., one variable accounts for only 1% of the variance in the 
other) rather than nil. This is the sense in which Murphy and Myors (2004) 
suggested researchers ought to consider power analyses.

The test outlined above, in which a pair of nested models is compared 
using the difference in model fit statistics, is referred to as a likelihood ratio 
(LR) test. It is worth noting that there are two other ways to estimate the 
noncentrality parameter that can also be used for a model that has been 
estimated. They are asymptotically equivalent, meaning that with an infi‑
nite sample size they will yield identical results. For any sample of fixed 
size, however, the results may differ but usually only slightly.

By requesting modification indices (adding MI to the OU line in LISREL, 
adding the statement Sem.Mods(0) in AMOS, or MODINDICES (0) in 
MPlus), the modification index associated with the parameter of interest is 
the estimated noncentrality parameter by a Lagrange multiplier (LM) test. 
Similarly, the squared t‑value associated with a parameter of interest is 
equivalent to a Wald test for the estimated noncentrality parameter. Both 
of these latter tests are sample size specific and intended for evaluating 
power associated with a single parameter. Simple algebra can be used to 

Point of Reflection

When the true value of the correlation between X and Y is .25, what is the 
power to detect a correlation of at least .1 with N = 123 and a = .05 in this 
model? What sample size would be needed to achieve power of at least .80 
for this test?
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solve for the sample size that would be required to obtain a desired value 
by either of these tests.

For the model in Figure 4.3, estimating a model with the population 
data in which the path from y1 to y2 (BE(3,2)) fixed to zero with a sample 
size of 100 gives an estimated noncentrality parameter of 5.30823 (implied 
power = .63) using the likelihood ratio method, a value of 5.16843 (implied 
power = .62) using the Lagrange multiplier method, and a value of 5.45311 
(implied power = .65) by the Wald method (see S. C. Duncan, Duncan, & 
Strycker, 2002, for another example).

Tests of exact, Close, and Not Close Fit

As we mentioned in Chapter 2, a reliance on the model c2 as an approach to 
testing model fit can have distinct disadvantages, particularly because the 
c2 value is a direct function of the sample size. Many times, a researcher 
may be less interested in whether a hypothesis is exactly true than that it 
is approximately true. One useful hypothesis, for example, is that a model 
is true within the range of sampling variability that would be expected for 
a given sample size.

MacCallum, Browne, and Sugawara (1996) presented a different and 
very useful framework for testing statistical power based on many of the 
same assumptions as Satorra and Saris (1985) that uses the root mean 
square error of approximation, RMSEA NCP N df= ( ) . Ordinarily, 
the NCP is defined as χ 2 − df  (or 0 if that value is negative). This defi‑
nition arises because the expected value of a chi‑square distribution with 
df degrees of freedom is equal to df. The method of MacCallum et al. can 
be used to evaluate the power to test exact (i.e., H0 is that the RMSEA = 0), 
close (i.e., H0 is that RMSEA ≤ .05), or not close (i.e., H0 is that RMSEA ≥ 
.05) fit. MacCallum et al. (1996) provide SAS routines for calculating both 
power (given sample size) and sample size (given power) in this way.

In contrast to the Satorra and Saris (1985) approach, where the null and 
alternative hypotheses are based on values of one or more specific param‑
eters in for a fully specified model, the approach used by MacCallum and 
colleagues (1996) specifies the null and alternative values of the RMSEA 
that are considered acceptable for a given comparison. In this way, it is fit 
specific rather than model specific. The researcher would select the desired 
null and alternative values of the RMSEA that should be compared, and 
power is estimated given the degrees of freedom for that model.

Although any values can be selected, MacCallum et al. (1996) used the 
values shown in Table 4.1 for the null and alternative hypotheses for their 
tests of close, not close, and exact fit.

For the model illustrated in Figure 4.2, for example, which has 1 degree 
of freedom, the following Stata syntax will estimate power to test exact 
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fit for our model; close and not close fit can be obtained by running the 
same syntax with different values from Table 4.1. MacCallum et al. (1996) 
include similar syntax to run in SAS.

set obs 1
generate alpha = 0.05
generate rmsea0 = 0.00
generate rmseaa = 0.05
generate d = 1
generate n = 123
generate ncp0 = (n - 1)*d*rmsea0*rmsea0
generate ncpa = (n - 1)*d*rmseaa*rmseaa
generate cval = invnchi2(d, ncp0, 1 - alpha) ///
 if rmsea0 < rmseaa
generate power = 1 - nchi2(d, ncpa, cval) ///
 if rmsea0 < rmseaa
replace cval = invnchi2(d, ncp0, alpha) ///
 if rmsea0 > rmseaa
replace power = nchi2(d, ncpa, cval) ///
 if rmsea0 > rmseaa
summarize

Running this syntax for each of these three hypotheses, we find that 
our power to detect exact, close, and not close fit is .086, .091, and .058, 
respectively, considerably lower than the power to detect whether the 
correlation of .25 was different from 0. In order to see why estimated sta‑
tistical power is so divergent between the two methods, and also to see 
the link between the Satorra and Saris (1985) and MacCallum et al. (1996) 
approaches, we will begin by returning to the output of our LISREL 
model estimating a zero correlation between the two variables. From that 
output, the estimated RMSEA was 0.23303. Our test was a comparison of 
this RMSEA (considerably higher than 0.05) against an alternative of 0.0. 
Substitution of these values into the Stata syntax above yields an esti‑
mated power of .73.

This value is much closer to what we would expect, but it is still low. 
This is true for two reasons. First, LISREL, unlike other structural equation 

Table 4.1

Commonly Used Null and Alternative Values of 
RMSEA for Tests of Close, Not Close, and Exact Fit
Test H0 Ha

Close 0.05 0.08
Not close 0.05 0.01
Exact 0.00 0.05

Y100315.indb   73 7/15/09   2:59:12 PM



74 Statistical Power with Missing Data

modeling software, calculates some aspects of fit, such as the NCP, RMSEA, 
and c2 for the independence model using a normal theory weighted c2 statis‑
tic but uses the minimum fit function value of the c2 for others. Differences 
between these two types of chi‑square statistics are usually small, but the 
distinction is something to be aware of. This is another reason we like to 
test everything and leave as little to chance as possible.

The second, most important reason is that the chi‑square value from our 
model actually is the estimated NCP and so does not need to be adjusted 
for the degrees of freedom. So in this case, the RMSEA already reflects 
the model’s departure from what would be expected in the population.
Thus, the corresponding RMSEA NCP N= −( )1 , in this case 0.25404. 
Substituting this value into our syntax gives us an estimated power of 
0.801, just as we would expect. These results highlight two important con‑
siderations with regard to statistical power in structural equation model‑
ing. First, the power for testing a specific parameter or hypothesis may be 
quite different from the power to evaluate overall model fit. Second, tests 
of close and not close fit are likely to be especially useful considerations 
when evaluating an overall model.

Thus, if you are using the RMSEA from a model estimated with real 
data, you will probably wish to calculate the RMSEA based on the mini‑
mum fit function chi‑square in order to ensure comparability across 
packages. (In practice, the results obtained from the minimum fit func‑
tion chi‑square statistics and the normal theory weighted least squares 
chi‑square statistic are usually quite comparable.) If you are using the 
Satorra and Saris (1985) approach, your obtained chi‑square value is the 
estimated NCP, which can be used to calculate the RMSEA directly, rather 
than the RMSEA listed in the output.

Troubleshooting Tip

LISREL (and most other packages) can estimate several different kinds of 
chi‑square values, and the default values may differ across software pack‑
ages, models (e.g., model of interest or independence model) or estima‑
tion method (e.g., complete data ML or full information ML). In LISREL, 
for example, you may end up with a minimum fit function value (C1), a 
normal theory weighted chi‑square (C2), a Satorra‑Bentler chi‑square (C3), 
or a chi‑square corrected for nonnormality (C4). Adding the option FT to 
the output line will save additional fit information calculated with each 
of the chi‑squared values available under a particular estimation method. 
If your LISREL file is called Test.LS8, the output file will be called Test.
FTB. Sadly, this option does not work with multiple‑group or missing data 
models.

Y100315.indb   74 7/15/09   2:59:12 PM



Estimating Statistical Power With Complete Data 75

Overall, then, one of the primary advantages of this approach is that it 
is not necessary to completely specify the null and alternative models in 
order for their framework to be valid. The MacCallum et al. (1996) approach 
is also consistent with the desire to use non‑nil alternative hypotheses, 
with its focus on confidence intervals over point estimates, and can be 
used for any pair of comparisons.

Tests of exact, Close, and Not Close Fit between Two Models

In a more recent paper, MacCallum, Browne, and Cai (2006) extend their 
approach to comparisons between nested models. When this is the case, 
the researcher typically has two (or more) models of interest. The models 
differ by 1 or more degrees of freedom, and the researcher tests the differ‑
ence in likelihood ratio chi‑squares between the two models as a function 
of the expected value for a chi‑square distribution with the difference in 
degrees of freedom. For this test, the degrees of freedom in each model are 
not important. Rather, it is the difference in the degrees of freedom that 
are used for an exact test of difference between the models.

When a researcher is interested in evaluating close fit, however, the 
results may differ depending on the degrees of freedom in each model. 
For a given difference in the chi‑square statistic, the power to detect 
differences will be greater when the models being compared have more 
degrees of freedom. For a given sample size, comparing two models 
with 42 and 40 degrees of freedom, respectively, will provide a more 
powerful test than a comparison of two models with 22 and 20 degrees 
of freedom.

MacCallum et al. (2006) define the effect size (d, delta) between a pair 
of nested models, A and B, as the difference between model discrepancy 
functions. Specifically, δ = −( )* *F FA B  where F* is the minimum value of the 
fit function for each model. In turn, delta can also be expressed in terms of 
the RMSEA, which MacCallum and colleagues refer to as epsilon (e), and 
the degrees of freedom for each model. In this case, δ ε ε= −( ).df dfA A B B

2 2  
This effect size is standardized in the sense that it is the same regard‑
less of sample size. The noncentrality parameter (λ, lambda) is simply the 
effect size multiplied by the sample size. In other words, λ δ= −( )N 1 .

A simple worked example serves to illustrate their approach. If we 
have two models with 22 and 20 degrees of freedom that are estimated 
using a sample size of 200, it is straightforward to estimate our power 
to detect a difference in RMSEA values of .06 and .04, respectively. 
We begin by calculating the effect size of the difference in fit between 
models as δ = × − × = − =( (. ) (. ) ) (. . ) .22 06 20 04 0792 0320 04722 2 . In other 
words, this is equivalent to testing that the difference between mini‑
mum values of the fit functions for the two models is .0472 versus 0. 
With a sample size of 200, our estimated noncentrality parameter is 
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λ = (200 − 1) × 0.0472 or 9.393. The critical value (with a = .05) of a 
chi‑square distribution with (22 − 20) = 2 degrees of freedom is 5.99. 
The power to detect these differences is approximately .79. If the mod‑
els we are comparing instead had only 12 and 10 degrees of freedom, 
respectively, the power to detect the same difference would be only .54, 
but it would be approximately .92 if the models had 32 and 30 degrees 
of freedom, respectively. Sample Stata syntax to estimate these differ‑
ences is presented below.

set obs 1
generate n = 200
generate alpha = .05
generate dfa = 22
generate ea = .06
generate dfb = 20
generate eb = .04
generate delta = (dfa*ea*ea - dfb*eb*eb)
generate lambda = (n-1)*delta
generate ddf = dfa - dfb
generate chicrit = invchi2tail(ddf,alpha)
generate power = 1 - nchi2(ddf,lambda,chicrit)

An Alternative Approach to Estimate Statistical Power

In a good recent introductory chapter, Hancock (2006) reviews the above 
approaches to estimating statistical power, as well as his own extension 
that incorporates a simplifying assumption about the measurement model. 
For each latent variable in a model, a single coefficient, which he labels as 
H, can be defined as a function of the factor loadings for that latent vari‑
able. This single value is then used to specify the factor loading (as H ) and 
residual variance (as 1 − H) for standardized latent variables. The entire 
structural equation model can then be estimated as a path model.

In other words, going through a little trouble up front to calculate values 
of H can save considerable work for models with large numbers of indicator 

Try Me!

Use the syntax above to replicate the values reported in the text for com‑
parisons of 10 vs. 12, 20 vs. 22, and 30 vs. 32 degrees of freedom. Once you 
have verified our results, find the sample sizes required for power of .80 for 
each pair of models. If you are comfortable to this point, repeat the exercise 
for different tests (e.g., close, not close, exact) by using different values of ea 
and e b.
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variables. This simplified approach can represent a convenient shorthand 
method for estimating statistical power. It also allows the researcher to 
consider how changes in model assumptions can affect statistical power 
through their effects on H, which ranges from 0 to 1, and reflects the propor‑
tion of variance in the latent variable that is accounted for by its indicators.

Consider the example we used to open this chapter, evaluating power to 
detect whether a correlation of .25 differed significantly from 0. Because 
it used observed (manifest) variables, this example could not adjust for 
unreliability of measurement and thus assumed that both variables were 
measured with perfect reliability. We can use Hancock’s (2006) approach 
to consider how power would be affected if instead the constructs were 
each measured with 3 indicators with a reliability of .7, for example.

Calculation of H is quite straightforward:
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where li  is the standardized factor loading for indicator i. Because they are 
based on standardized values, the factor loading, l is simply the square root 
of the reliability, in this case, . .7 837=  for each indicator. With three indi‑
cators, each with a reliability of .7, the numerator of this coefficient would
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overall ratio, then, simplifies to 7/8, or .875. This suggests that we should
fix our factor loadings at a value of .875  or .9354 and our residual vari‑
ances at ( . ) . .1 7 3− =

By substituting these values into our model, we can see their effects on 
the implied covariance matrix. It is easiest to consider in the form of the 
LISREL syntax to estimate the implied covariance matrix. Our input cova‑
riance matrix is an identify matrix, and all model parameters are fixed at 
their population values. To see the effects of reducing reliability on our 
implied covariance matrix, we request both the residual matrix and the 
standardized solution.

! HANCOCK (2006) EXAMPLE
DA NI=2 NO=123
LA
V1 V2
CM
1
0 1
MO NY=2 NE=2 LY=FU,FI PS=SY,FI TE=SY,FI
VA 1.0 PS(1,1) PS(2,2)
VA 0.25 PS(1,2)
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VA .9354 LY(1,1) LY(2,2)
VA .3 TE(1,1) TE(2,2)
!FR PS(1,1) PS(2,2)
OU ND=5 RS SS

Estimating this model gives us the following implied covariance matrix:

=








∑ 1.17497 0.21874

0.21874 1.17497
.

Using this matrix as input for the Satorra and Saris (1985) syntax at the 
beginning of this chapter returns an estimated noncentrality parameter of 
4.30, considerably smaller than the value of 7.87 obtained when the indica‑
tors are assumed to be perfectly reliable. This difference translates into 
substantially lower power: .55 instead of .80 with a sample size of 123. 
This same approach can be used to calculate different values of H that 
would be expected under a variety of assumptions relating to the number 
of indicators for each construct as well as their reliability. Table 4.2 pro‑
vides the values of H for all combinations of reliability from .1 to .9 and 
number of indicators per construct ranging from 1 to 10.

Estimating Required Sample Size for Given Power

In the first example we presented in this chapter, we found that with 
an input sample size of 123, our power to detect a correlation of .25 was 
approximately .8 and an alpha of .05. What if, instead, we wanted to solve 
for the sample size that would provide us with a power of .9 at the same 
alpha value? We could adopt a process of trial and error, picking progres‑
sively larger or smaller sample sizes until the desired power was obtained. 
An easier alternative involves using the model that we already estimated.

First, we find the value of the noncentral chi‑square distribution that 
corresponds with our degrees of freedom and desired values of alpha and 
power. Although SPSS does not have a function for the inverse noncentral 

Point of Reflection

Can you use the values of H to determine whether, for a particular problem, 
it makes more sense to add an additional indicator or simply to use a more 
reliable indicator? Try an example assuming that the overall degrees of 
freedom for a model remain constant. Next, consider the actual degrees of 
freedom for a model under the former and the latter circumstances. Under 
what circumstances does each of these conditions matter more or less?
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chi‑square distribution, both SAS and Stata do. Finding this value in Stata, 
for example, requires only the following line of syntax:

generate ncp = invnchi2(df,chicrit,power)

Version 9.2 of Stata/SE running on a Windows platform returns a value 
of 10.50774 with this syntax. Recall that the c2 value we obtained from 
our model is derived from the value of the minimum fit function, FMin, as 
c2 = (N − g) × FMin, where c2 is our estimated noncentrality parameter, N is 
the sample size we are seeking, and g is the number of groups in our model. 
The value of FMin obtained from LISREL when we estimated our zero‑corre‑
lation model was 0.064539, which would be the same regardless of our input 
sample size. All of this makes our required N a simple matter to solve for: 
N NCP F gMin= +( ) , which, rounded up to the next largest integer value 
gives us a sample size of 164. You can verify this result by estimating the 
LISREL model again using a sample size of 164. The minimum fit function 
c2 should be close to the expected value of the noncentrality parameter.

Similarly, if we estimate an alternative model that fixes the correlation 
between our two variables at .1 instead of 0, we obtain a considerably 
smaller FMin value of 0.023228. For a power of .8 to detect that our correla‑
tion is at least .1, our corresponding value of the noncentrality parameter 
would remain 7.87, and our new sample size would be 340 instead of the 
earlier value of 123. Armed only with the minimum value of the fit func‑
tion, then, it is possible to estimate power or solve for a required sample 

Troubleshooting Tip

Readers with access only to SPSS should see the Appendix for instructions on 
obtaining these values using the freely available G*Power software package 
described at the end of this chapter.

Table 4.2
Values of H by Reliability and Number of Indicators per Construct

Reliability

Items 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
1 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
2 0.18 0.33 0.46 0.57 0.67 0.75 0.82 0.89 0.95
3 0.25 0.43 0.56 0.67 0.75 0.82 0.88 0.92 0.96
4 0.31 0.50 0.63 0.73 0.80 0.86 0.90 0.94 0.97
5 0.36 0.56 0.68 0.77 0.83 0.88 0.92 0.95 0.98
6 0.40 0.60 0.72 0.80 0.86 0.90 0.93 0.96 0.98
7 0.44 0.64 0.75 0.82 0.88 0.91 0.94 0.97 0.98
8 0.47 0.67 0.77 0.84 0.89 0.92 0.95 0.97 0.99
9 0.50 0.69 0.79 0.86 0.90 0.93 0.95 0.97 0.99
10 0.53 0.71 0.81 0.87 0.91 0.94 0.96 0.98 0.99
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size under any desired combinations from estimating a single LISREL 
model, making this a very flexible and useful approach.

Conclusions

In this chapter, we presented the most commonly used approaches to 
evaluating statistical power with complete data within a structural equa‑
tion modeling framework. Each of the approaches we considered is appli‑
cable under a wide variety of circumstances. The Satorra and Saris (1985) 
approach remains the most widely used approach to statistical power, but 
the RMSEA‑based approach of MacCallum and colleagues (1996, 2006) has 
also received widespread use and may be preferable in many contexts 
because it explicitly permits the researcher to consider the desired null 
and alternative models. Hancock (2006) presents a useful way to summa‑
rize the measurement component of a structural model, which may save 
considerable time when primary interest lies with associations among 
latent variables or when the researcher is first deciding on indicators of 
each latent construct. In subsequent chapters, we will extend each of these 
approaches to a wide variety of situations involving missing data.
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Exercises

1.  Find the sample size needed to obtain power of .8 and .9 for cor‑
relations of .1, .3, and .5.

2. Repeat the process above using a = .01.
3.  Find the sample size required to test whether a correlation of .25 

differs from .1 instead of from 0. How would the required sample 
size change if the indicators had reliability of .8?
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4.  Find the sample size needed to obtain equivalent power values if half of 
the cases have missing data on one of the variables.

Obtaining and Using G*Power to Calculate Values 
of Inverse Noncentral Chi‑Square Distribution 

Obtaining values of the inverse noncentral chi‑square distribution 
(quantiles) using G*Power (Faul, Erdfelder, Lang, & Buchner, 2007). 
G*Power is an extremely useful program for performing a wide 
variety of power analyses. The G*Power software is free and can be 
downloaded from http://www.psycho.uni‑duesseldorf.de/abteilun‑
gen/aap/gpower3. G*Power can also be used to obtain values of the 
noncentral chi‑square distribution for readers who do not have access 
to software that allows for calculation of these values. SPSS, for exam‑
ple, does not provide these values.

After installing the G*Power software on your computer, double‑click 
the program icon. You should see a screen such as the following.
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Obtaining values of the noncentral chi‑square distribution is straight‑
forward. Under “Test family” select “c2 tests.” Under “Statistical 
test” select “Generic c2 test.” Under “Type of power analysis” select 
“Sensitivity: Compute non‑centrality parameter − given a, and 
power.” Your screen should now look something like this:

Select the values for a, power, and your degrees of freedom in the 
“Input Parameters” boxes and then click calculate. In Chapter 4, for 
example, we found that a noncentrality parameter of 7.87 gave us a 
power of .80 with a = .05 and 1 degree of freedom. We wanted to iden‑
tify the corresponding noncentrality parameter that would provide 
us with power of .90 under the same circumstances. Enter values of 
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.05, .90, and 1 as input parameters and click the “Calculate” button 
to find this value. Your screen should produce output similar to the 
following:

Consistent to three decimal places with what we found using Stata 
and SAS, the corresponding noncentrality parameter is 10.507. Note 
that we can also use G*Power to obtain noncentrality parameters 
across a range of values for power by clicking on the “X‑Y plot for a 
range of values” button. Doing so should provide you with a screen 
like the one below:
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We wish to plot the noncentrality parameter as a function of power 
and can select a range of values for power. Keeping the default values 
of .6 to .95, and changing the steps to be .05 instead of .01, we can also 
click to box to display the values in the plot. When you have done this, 
click the “Draw plot” button to obtain output like that below:
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These values can be obtained to the desired number of decimal places 
over any range desired. To extend the example from Chapter 4, we 
can use the values on this graph to determine that the sample sizes 
required to detect a correlation of .25 for each of the corresponding 
values of power is summarized in Table 4.A:

Table 4.a

Sample Size Required for 
Specified Power to Detect 
a Correlation of .25

Power Sample size

0.60 77
0.65 86
0.70 97
0.75 109
0.80 123
0.85 140
0.90 164
0.95 202
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5
Effects of Selection on Means, 
Variances, and Covariances

Compared with earlier chapters in this book, this chapter contains consid‑
erably more equations. In fact, it contains most of the math in this entire 
book. Partly this is because we have broken everything down step by step. 
If you are less than comfortable with mathematics and equations in gen‑
eral, plan to take your time and to work through each step and try every 
example and you will do just fine. In most cases, even the most gruesome 
equations boil down to a small number of actual calculations, many of 
which you could do by hand.

We will begin with an example. You have a complete data set with 200 
observations, and someone tells you to consider a cross‑validation study. On 
the basis of a coin toss, you create two new data sets (the first called Heads 
and the second called Tails, say). If a data set were sorted into two groups 
on a purely random basis such as this one, the data in each group would be 
expected to be quite comparable. If, on the other hand, the data were sorted 
on some systematic criterion (suppose you sorted the data set on the basis 
of one of your key variables and saved your data sets as Best and Worst), the 
data in each group would necessarily differ in some systematic ways. When 
the criteria for selection into one group or another are known, it is also pos‑
sible to know how the data in each group would be expected to differ from 
their corresponding population values as a result of this selection.

As another example, we can consider using an aptitude test adminis‑
tered on the first day of class to determine which classroom students will 
be assigned to based on their scores. If all the students who performed best 
were assigned to classroom A, and those scoring poorest were assigned 
to classroom B (or maybe better labeled as C, D, or F), we would hardly 
be surprised if aptitude scores differed between the classrooms at the 
end of the school year. Selection is the principle that underlies the differ‑
ence between data that are missing completely at random (MCAR; there 
is no selection on anything measured or unmeasured), missing at random 
(MAR; there is no selection on anything unmeasured), or missing not at 
random (MNAR; there is selection on something unmeasured). As such, 
the effects of selection on means and covariances are absolutely essential, 
and we devote this entire chapter to this issue.
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In this first application we begin by examining the role of selection or 
classification into groups (i.e., sorting the data in a systematic fashion) 
and its effects on the means and covariance matrices for the groups. The 
purpose of this application is to illustrate how we can go from a known 
covariance matrix and mean vector to calculating the same quantities in 
selected subsamples so we can start thinking about data that are MAR.

Defining the Population Model

Let us continue with a similar example from an educational context. An 
aptitude test is administered to students in two schools at the beginning 
of the academic year (y1). Within the first school (School A), students are 
randomized, say on the basis of a coin toss, to an intervention or con‑
trol condition and posttest aptitude scores (y2) are again assessed. Within 
the second school (School B), however, students’ pretest scores (y1) on the 
aptitude test are used to determine whether they are selected into the 
intervention program or not (control) and posttest aptitude scores (y2) are 
again assessed at the end of the intervention program. On the one hand, 
planning a study as was done in School B is probably not the smartest 
decision from a research methods perspective. On the other hand, how‑
ever, this is very similar to what is often done as students are streamed in 
one direction (i.e., based on high aptitude) or another (i.e., based on low 
aptitude). Likewise, students who are in class on a particular day probably 
have different characteristics than students who are absent from class on 
a particular day, and so forth. Selection is everywhere.

For the sake of simplicity, let us assume that, in the population, pretest 
and posttest scores on the aptitude test have a mean of 100 and a stan‑
dard deviation of 16 and correlate .25 over the time period considered 
(equivalent to a medium effect size). The first school, where students are 
randomly sorted into groups on a variable unrelated to the two observed 
variables, is basically a complete‑data equivalent of the MCAR condition. 
The second school, where students are systematically sorted into groups 
on a variable completely related to an observed variable, is akin to a com‑
plete‑data equivalent of the MAR condition.

For this example, if we wished to test whether the pretest and posttest 
scores were uncorrelated, our alternative model would specify that the 
correlation was zero, consistent with the example we estimated in Chapter 4. 
Alternatively, if we wished to test whether the means differed, our alter‑
native model would specify that they were identical (i.e., did not differ).

Simple LISREL syntax is provided below to go from population param‑
eters to the covariance matrix and vector of means implied by the parameters 
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provided earlier. As mentioned in Chapter 2, the basic y‑side of the LISREL 
model for a confirmatory factor model consists of three matrices, Λy (LY), which 
contains the regression coefficients of the observed variables on the latent vari‑
ables, Ψ (PS), a matrix of the latent variable residuals, and Θe (TE), a matrix 
of the observed variable residuals. (Remember that the I B−  portion of the 
full equation introduced in Chapter 2 simply drops out when all values of B 
are 0.) We will also include latent intercepts, ty (TY), and means, a (AL). The 
population covariance matrix among the observed variables implied by our 
model is calculated as Σ Λ ΨΛ Θyy y y= ′ + ε  and the expected vector of means is 
µ τ αy y= + Λ . We estimate a model with all parameters fixed at their popula‑
tion values and request the implied moments using the RS option on the output 
line, as we first did in Chapter 2.

For our example, we use an identity matrix as our input covariance 
matrix for the simple reason that it is always positive definite, and we 
arbitrarily set the means at zero, although any values will work. Although 
sample size should not affect the results, we find the actual results are 
more accurate in LISREL with a sample size of at least 1000.

DA NI=2 NO=1000
LA
Y1 Y2
CM
1
0 1
ME
0 0
MO NY=2 NE=2 LY=FU,FI PS=SY,FI TE=SY,FI TY=FI AL=FI
VA 1 LY(1,1) LY(2,2)
VA 256 PS(1,1) PS(2,2)
VA 64 PS(1,2)
VA 100 TY(1) TY(2)
OU RS ND=5

The implied covariance matrix and means can be located in the output 
under the sections “Fitted Covariance Matrix” and “Fitted Means,” respec‑
tively, as shown below. The rest of the output can safely be ignored.

 Fitted Covariance Matrix
 Y1  Y2
  -------- --------
 Y1 256.00000
 Y2 64.00000 256.00000
 Fitted Means
  Y1  Y2
  -------- --------
 100.00000 100.00000
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For this simple example, the above step is hardly needed. The implied

covariance matrix and fitted means are given by Σ =










256 64
64 256

 and 

µ =










100
100

.

In order to lay foundations necessary for extending this approach to miss‑
ing data situations, we first need to consider how selection affects means 
and covariance matrices. In the first school, because students were randomly 
assigned to the two groups, we would expect that the covariance matrix and 
means would be identical (plus or minus sampling variability) between the 
intervention and control groups. After all, group composition was decided 
only by a coin toss, a variable unrelated to anything observed or unobserved.

However, in the second school, the covariance matrix and means would 
necessarily differ between the intervention (selected) and control (unse‑
lected) groups. The covariance matrices would differ because their values 
are calculated within each group (i.e., deviations from the group means, not 
the grand mean). The means would differ because we selected them that 
way. Fortunately, the formulas for how the population covariance matrices 
and means will be deformed by this selection process have been known for a 
very long time (cf. Pearson, 1903, 1912), and they are straightforward to calcu‑
late, which we will do here. For Monte Carlo applications, a researcher could 
perform the same steps using raw data (Paxton, Curran, Bollen, Kirby, & 
Chen, 2001), which we will discuss in much greater detail in Chapter 9. What 
follows next is a simple example of how to use these formulas to calculate the 
population matrices and means in the subgroups of the two classrooms.

Defining the Selection Process

The first step is to define the method by which cases are selected into each 
condition. Individual observations can be selected probabilistically based 
on a weighted combination of their values on one or more observed vari‑
ables. We term this linear combination of these weights with the observed 
variables s. For the first classroom (MCAR case), the weights for both y1 
and y2 would be 0 because, by definition, selection does not depend on 

Point of Reflection

In order to ensure that you are comfortable thinking in terms of effect sizes 
and how they are used to generate data according to a specific population 
model, repeat the syntax above using different correlations and different 
means to correspond with small (r = .1 or d = .2), medium (r = .3 or d = .5), 
and large (r = .5, d = .8) effect sizes. Remember that effects can be specified 
in terms of covariances or means.
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any observed — or unobserved — values. As mentioned earlier, we expect 
the covariance matrix and means to be identical in the two subgroups.

However, for the second classroom (akin to MAR data), because we 
determined the method of selection based only on pretest scores, there 
is a one‑to‑one relation between s and the pretest scores, y1, and no asso‑
ciation between s and our posttest scores, y2, controlling for values of y1. 
In other words, we can think of a regression equation where s = 1 × y1 + 0 × 
y2. We can define w as a weight matrix containing the regression coef‑
ficients. In this case, w = [1 0]. Pearson’s selection formula indicates that 
the mean value on our selection variable is given as m s = wmy, where

µy =










100
100

. Algebraically, we can express the same associations as E(s) =

1 1 0 2 1× + × =E y E y E y( ) ( ) ( ),  where E stands for the expected value. In this 
case, then the overall mean for s is 100, which makes sense.

Similarly, we can calculate the variance of our selection process as

σ s w w2 = ′Σ ,  where Σ =










256 64
64 256

.  Again, algebraically V(s) = 12 × V(y1) +

0 2 2 1 0 1 2 12 × + × × × =V y Cov y y V y( ) ( , ) ( ),  where V is the variance, and Cov 
is the covariance. Thus, here we also find that the variance of s is identical 
to that of y1. Again, this should not surprise us because in this case we 
have defined them to be equivalent.

The values of s can be used to divide a sample at any point. If we wish 
to divide our sample in half, we can cut it at the mean. In this case, if you 
scored above the mean at pretest, you would be assigned to the interven‑
tion group. If you scored below the mean at pretest, you would be assigned 
to the control group. The segment of the sample with values above the 
mean on s would be selected into one group (intervention, say) and the 
segment of the sample with values below the mean on s would be selected 
into another group (control, for example). We can easily use other criteria; 
for instance, selecting the top 25%, the top 5%, or the bottom 10%.

an example of the effects of Selection

At this point, it is probably helpful to consider a simple example where we split 
the group into a top and bottom half at the mean. We could define a cut‑point, 
c, in terms of a z‑score metric (i.e., z c s s= −( )µ σ ). If we split the groups at the 
mean, then z = 0. Similarly, we could have selected the top 25% (z = 0.67), the 
top 5% (z = 1.65), or the bottom 10% (z = −1.28), and so forth. Our choice of a 
z‑score metric thus makes some computations easier, as well because we use 
the probability density function (PDF) and cumulative distribution function 
(CDF) for the selected and unselected portions of the distribution, and these 
formulas are easy to obtain from z‑scores. All that is needed to convert s into 
standardized z‑score metric is the mean and standard deviation of s.
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The formulas differ slightly for the selected (i.e., highest scores) and 
unselected (i.e., lowest scores) portions because PDF(−z) = PDF(z), but 
CDF(−z) = 1 − CDF(z). The means and standard deviations of our selection 
process, s, in the selected and unselected portions of our sample are given 
by the following formulas. Try not to be put off by these equations them‑
selves. We will simplify them by substituting in numeric values later in 
this section and let the computer do all of the heavy lifting from there.

 
µ µ σs s sselected

PDF z
CDF z

( )
( )

( )
,= +

−




1

 
µ µ σs s sunselected

PDF z
CDF z

( )
( )
( )

= −






  

σ σs sselected z
PDF z

CDF z
PDF z2 2 1

1
( )

( )
( )

( )= +
−







−
11

2

−
















CDF z( )

, and

 

σ σs sunselected z
PDF z
CDF z

PDF z2 2 1( )
( )
( )

( )= −






−
CCDF z( )

.


















2

Table 5.1 shows the values for z, PDF(z), and CDF(z) for increments from .05 
to .95. These values are accurate enough for hand calculations, and more 
precise values can be obtained from any statistical software package.

Table 5.1

Corresponding Values of z, PDF(z), and CDF(z)

z PDF(z) CDF(z)

−1.645 0.103 0.05
−1.282 0.175 0.10
−1.036 0.233 0.15
−0.842 0.280 0.20
−0.674 0.318 0.25
−0.524 0.348 0.30
−0.385 0.370 0.35
−0.253 0.386 0.40
−0.126 0.396 0.45

0.000 0.399 0.50
0.126 0.396 0.55
0.253 0.386 0.60
0.385 0.370 0.65
0.524 0.348 0.70
0.674 0.318 0.75
0.842 0.280 0.80
1.036 0.233 0.85
1.282 0.175 0.90
1.645 0.103 0.95
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For a z‑score of 0 (shown in bold in Table 5.1), the PDF is approximately 
0.40 and the CDF is 0.50. By using these values, the mean and variance of 
our selection process are approximately 112.8 and 92.16 for the selected 
portion (top half) of the sample. (You may obtain slightly different results 
with more precise estimates of the PDF and CDF.) Similarly, the mean and 
variance of our selection process are 87.2 and 92.16 for the unselected por‑
tion (bottom half) of the sample.

We use these means and variances to calculate two interim variables. 
In combination with the weights (w) above, w (omega) is an index of the 
difference between the selected and population variance on s divided by 
the squared variance of s and is used to calculate the effects of selection 
on the variances and covariances in the selected and unselected segments 
of our data. Also in combination with the weights, k (kappa) is an index 
of the difference between the selected and population mean on s divided 
by the variance of s and is used to calculate the effects of selection on the 
means in the selected and unselected segments of our data.

These variables are calculated for the selected and unselected groups, 
respectively, as:

 
ω σ σ

σ
( )

( )
,selected

selecteds s

s

= −
( )

2 2

2 2

 
ω σ σ

σ
( )

( )
,unselected

unselecteds s

s

= −
( )

2 2

2 2

 
κ µ µ

σ
κ( )

( )
, ( )selected

selected
unselecteds s

s

= −
2

and == −µ µ
σ

s s

s

unselected( )
.

2

Again, this gives us approximate values for w and k in the selected portion 
of our sample of −0.0025 and 0.05, respectively, and values for w and k in 
the unselected portion of our sample of −0.0025 and −0.05, respectively. 
These coefficients characterize the deformations of the means and vari‑
ances for the selected and unselected portions of the sample, relative to 
their population values.

Troubleshooting Tip

The calculations above only look daunting. Fill in the values for µs , σ s
2 , 

PDF( )0 , and CDF( )0  and the answers can be obtained directly. Try it for 
several values of z until you are comfortable before moving forward in the text 
if you are at all unsure about where these values come from.
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Armed with these values, we can now calculate the mean vectors and 
covariance matrices for the selected and unselected portions of our sam‑
ple using the following equations.

 Σ Σ Σ Σyy yy yy yyselected w selected w( ) ( ) ,= + ′ω

 Σ Σ Σ Σyy yy yy yyunselected w unselected w( ) ( ) ,= + ′ω

 µ µ κy y yyselected w selected( ) ( ),= + ′Σ and

 µ µ κy y yyunselected w unselected( ) ( ).= + ′Σ

Substituting the values of w and k from above, we obtain the following 
values for the means and covariance matrices in each group.

 
Σyy yselected se( ) , (=











93.03 23.26
23.26 245.81

µ llected) =










112.77
103.19

and

 

 
Σyy yunselected( ) , (=











93.03 23.26
23.26 245.81

µ uunselected) .=










87.23
96.81

 

Several things are noteworthy about these values. First, as we would expect 
the means of both y1 and y2 (since it is correlated with y1) are higher than 
their population values in the top half of the sample and lower than their 
population values in the bottom half of the sample. Also of note is that the 
variances are attenuated in the subsamples, and this is especially true for 
the variable that is directly related to the selection process. For this rea‑
son, the correlation between y1 and y2 is also attenuated (r = .15) within 
each group.

We can use the same approach to split the sample according to any cri‑
terion. For example, to calculate the means and covariance matrices in the 
top 5% and the bottom 95%, we could use the corresponding cut‑point 
of 1.64 and repeat the process. Although selection of individual cases is 
probabilistic, when we consider values for a particular population model, 
we can determine these values directly because the expected values of the 
stochastic components are all zero.

A sample program in SAS is provided below to calculate the implied 
matrices across the range of cut‑points from 5 to 95%.

/*SPECIFY THE POPULATION MODEL*/
 PROC IML;
 ly = {1 0,
  0 1};
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 ps = {256 64,
  64 256};
 te = {0 0,
  0 0};
 ty = {100, 100};
/*Specify Weight Matrix*/
 w = {1 0};
 sigma = ly*ps*ly` + te;
/*Mean of Selection Variable - Selection on Observed 
Variables*/
 mus = w*ty;
/*Variance of Selection Variable*/
 vars = w*sigma*w`;
/*Standard Deviation of Selection Variable*/
 sds = root(vars);
/*This syntax calculated from 5% to 95% cutpoints*/
do I = 0.05 to 1 by .05;
/*Mean and Variance in Selected Subsample (Greater Than or 
Equal to Cutpoint)*/
d=quantile(‘NORMAL’,I);
phis = PDF(‘NORMAL’,trace(d));
phiss = CDF(‘NORMAL’,trace(d));
xPHIs = I(1)-phiss;
/*Mean of Selection Variable (Selected and Unselected Groups*/
muss = mus + sds*phis*inv(xPHIs);
musu = mus - sds*phis*inv(phiss);
/*Variance of Selection Variable (Selected and Unselected 
Groups*/
varss = vars*(1 + (d*phis*inv(xPHIs)) - (phis*phis*inv(xPHIs
)*inv(xPHIs)));
varsu = vars*(1 - (d*phis*inv(phiss)) - (phis*phis*inv(phiss
)*inv(phiss)));
/*Omega (Selected and Unselected Groups)*/
omegas = inv(vars)*(varss - vars)*inv(vars);
omegau = inv(vars)*(varsu - vars)*inv(vars);
/*Sigma (Selected and Unselected Groups)*/
sigmas = sigma + omegas*(sigma*(w`*w)*sigma);
sigmau = sigma + omegau*(sigma*(w`*w)*sigma);
/*Kappa (Selected and Unselected Groups)*/
ks = inv(vars)*(muss - mus);
ku = inv(vars)*(musu - mus);
/*Means (Selected and Unselected Groups)*/
mues = ks*ps*ly`*w`;
mueu = ku*ps*ly`*w`;
tys = ty + ly*mues;
tyu = ty + ly*mueu;
print I sigma ty sigmas tys sigmau tyu;
end;
quit;
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Table 5.2 shows the differential effect of splitting the distribution at points 
from 5 to 95% on each of the five sample moments. The means for the pretest 
(y1) and posttest score (y2) increase as the proportion of sample increases in 
the selected group. On the other hand, variances of y1 and y2 both decrease 
as the proportion of sample increases in the selected group, more for y1 
than for y2. Finally, the covariance and correlation between y1 and y2 both 
decrease substantially as the selected group becomes more highly selected.

Try Me!

Run the syntax for program on the previous page in the software of your 
choice (see Chapter 5 Appendix) and compare your results with the entries 
in Table 5.2.

Table 5.2

Effects of Varying Degrees of Selection on Means, Variances, and Covariances

Means Variances Covariance Correlation

Selection Y1 Y2 Y1 Y2 Y1,Y2 Y1,Y2

Top 100% 100.00 100.00 256.00 256.00 64.00 0.25
Top 95% 101.74 100.43 207.27 252.95 51.82 0.23
Top 90% 103.12 100.78 182.29 251.39 45.57 0.21
Top 85% 104.39 101.10 163.96 250.25 40.99 0.20
Top 80% 105.60 101.40 149.25 249.33 37.31 0.19
Top 75% 106.78 101.69 136.88 248.56 34.22 0.19
Top 70% 107.95 101.99 126.16 247.89 31.54 0.18
Top 65% 109.12 102.28 116.66 247.29 29.17 0.17
Top 60% 110.30 102.58 108.10 246.76 27.02 0.17
Top 55% 111.51 102.88 100.27 246.27 25.07 0.16
Top 50% 112.77 103.19 93.03 245.81 23.26 0.15
Top 45% 114.07 103.52 86.24 245.39 21.56 0.15
Top 40% 115.45 103.86 79.83 244.99 19.96 0.14
Top 35% 116.93 104.23 73.68 244.61 18.42 0.14
Top 30% 118.54 104.64 67.72 244.23 16.93 0.13
Top 25% 120.34 105.08 61.86 243.87 15.46 0.13
Top 20% 122.40 105.60 55.97 243.50 13.99 0.12
Top 15% 124.87 106.22 49.89 243.12 12.47 0.11
Top 10% 128.08 107.02 43.30 242.71 10.82 0.11
Top 5% 133.00 108.25 35.35 242.21  8.84 0.10

Point of Reflection

All we have done through our selection process is to sort people into dif‑
ferent groups. The population parameters remain unchanged. For this rea‑
son, if we took the averages across the selected and unselected groups, we 
would recover our original population parameters.
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Selecting Data Into More Than Two Groups

We can also use the same approach to split a population matrix in three parts 
or more. Let us take the same example of students in a school. After adminis‑
tering an aptitude test (y1) in School C, students were split into three groups 
based on their aptitude test scores: above average, average, and below aver‑
age. Aptitude tests were administered again at the end of the school year (y2). 
The question is how we can determine how this sorting process will affect 
the means and covariances within each group constructed in this way.

Once again, we assume that in the population pretest and posttest scores 
on the aptitude test have a mean of 100 and a standard deviation of 16 
and correlate .25 over the time period considered (equivalent to a medium 
effect size). We already know how to get the covariance matrix for the top 
33% of the sample (selected = 33%; unselected = 67%), as well as the bottom 
33% of the sample (selected = 67%; unselected = 33%). In order to get the 
covariance matrix for the middle 33% of the sample simple modifications 
need to be made to the previous program.

In order to do this we must once again define the cut‑points in order to split 
the classroom into three groups. For the purposes of getting the middle por‑
tion of the sample, we will need to define two cut‑points, c1 and c2, in terms of 
a z‑score metric (i.e., z c s s= −( )µ σ ). Based on the above example, if we split 
the groups at 33% and 67%, then z1 = −0.44 and z2 = 0.44. The means and stan‑
dard deviations of our selection process, s, in the middle portion or selected 
portion of our sample can now be calculated using the following formulas:
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The PDF for a z‑score of −0.44 and 0.44 is approximately 0.36 for both, and 
the CDF is 0.33 and 0.67 correspondingly. By using these values, the mean 
and variance of our selection process are approximately 100 and 15.44 
for the middle portion of the sample. Once again, in combination with 
the weights (w) and the derived mean and variance we can now calculate 
the two interim variables, w and k, using the following equations:

 
ω σ σ
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The approximate values for w and k in the selected portion of our sample 
are −0.004 and 0, respectively. These values can now aid in calculating the 
mean vector and covariance matrix for the selected portion of our sample 
using the following equations:

 Σ Σ Σ Σyy yy yy yymiddle w middle w( ) ( ) ,= + ′ω and

 
µ µ κy y yymiddle w middle( ) ( ).= + ′Σ

Using the values of the PDF and CDF from above, we obtain the following 
values for the covariance matrix and the mean in middle group.

 
Σyy ymiddle middle( ) , (=











15.44 3.86
3.86 240.97

µ )) .=










100
100

Below is a sample program in STATA program that estimates the cova‑
riance matrix and mean for the middle or selected group (i.e., those who 
fall between the 33rd and 67th percentiles).

#delimit;
*SPECIFY THE POPULATION MODEL;
matrix ly = (1 , 0\ 0 , 1);
matrix ps = (256 , 64 \ 64, 256 );
matrix te = (0, 0 \ 0, 0);
matrix ty =(100\100);
matrix sigma = ly*ps*ly’ + te;
* SPECIFY WEIGHT MATRIX;
matrix w = (1\ 0);
* MEAN OF SELECTION VARAIBLE;
matrix mus = w’*ty;
* VARIANCE OF SELECTION VARIABLE;
matrix vars = w’*sigma*w;
* STANDARD DEVIATION OF SELECTION VARIABLE;
matrix sds = cholesky(vars);
* TO DIVIDE POPULATION IN THREE WE MUST DEFINE TWO
  CUTPOINTS USING Z-SCORES;
* Ranges are thus z=-infinity to -0.44, -0.44 to +0.44, and
  +0.44 to +infinity;
matrix z1 = invnormal(0.333333);
matrix z2 = invnormal(0.666667);
*PDF(z);
matrix phis1 = normalden(trace(z1));
matrix PHIs1 = normal(trace(z1));
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*CDF(z);
matrix phis2 = normalden(trace(z2));
matrix PHIs2 = normal(trace(z2));
*MEAN OF SELECTION VARIABLE IN MIDDLE PORTION OF SAMPLE;
matrix mm = mus - sds*(phis2-phis1)*inv(PHIs2-PHIs1);
*VARIANCE OF SELECTION VARIABLE IN MIDDLE PORTION OF SAMPLE;
matrix varsm = vars*(1 - ((z2*phis2-z1*phis1)*inv(PHIs2-
PHIs1)) - (phis2-phis1)*(phis2-phis1)*inv(PHIs2-
  PHIs1)*inv(PHIs2-PHIs1));
*STANDARD DEVIATION OF SELECTION VARIABLE IN SELECTED
  PORTION OF SAMPLE;
matrix sds3 = cholesky(varsm);
* OMEGA (Selected);
matrix omegas = inv(vars)*(varsm - vars)*inv(vars);
* KAPPA (Selected and Unselected);
matrix ks = inv(vars)*(mm - mus);
* SIGMA (Selected);
matrix sigmas = sigma + omegas*(sigma*(w*w’)*sigma);
* MUY (Selected);
matrix muys =ty + sigma*w*ks;
matrix list sigmas;
matrix list muys;

If the weight matrix used to select data into groups involves variables 
for which there are missing data, or that are not included in the analytic 
model, then the resulting data will be MNAR. In this way, researchers 
can test the effects of violating the assumptions that data are ignorably 
missing on factors such as power and bias in parameter estimates. This is 
also a potentially useful way to evaluate and compare the effectiveness of 
different strategies for dealing with situations where data are suspected 
to be MNAR.

Conclusions

The purpose of this chapter was to illustrate how to go from a known 
population covariance matrix and mean vector to calculating the same 
quantities in certain selected segments of the population. We use the 
approach outlined in this chapter as the foundation for constructing 
MAR data in the rest of this book. Millsap and Kwok (2004) have exam‑
ined the effects of selection in the context of partial measurement invari‑
ance. In the following chapter we extend this approach to situations with 
missing data.
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Exercises

1.  Calculate the covariance matrices and mean vectors for the following 
population parameters, splitting the data into the top 10% and the 
bottom 90% based on w.

      

Σ =

4 00 4 00 1 74 2 56
4 00 25 00 3 00 2 56
1 74 3 00 2 20

. . . .

. . . .

. . . 11 11
2 56 2 56 1 11 10 24

1 5
2 0
1 5.

. . . .
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0 5

1 1 0 0
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2.  Verify your results by estimating a single model with the matrices 
from the top and bottom segments and constraining all param‑
eters to be equal across groups.

3.  Calculate the covariance matrices and mean vectors for the follow‑
ing population parameters, splitting the data into the top 25%, the 
middle 50%, and the bottom 25% based on w. Again, verify your work 
by estimating a three‑group model with all parameters constrained 
across groups.

Σ =

5 5 4 0 0 5 0 5 1 2 1 2
4 0 5 5 0 5 0 5 1 2 1 2
0 5 0 5 4 5

. . . . . .

. . . . . .

. . . 33 0 2 0 2 0
0 5 0 5 3 0 4 5 2 0 2 0
1 2 1 2 2 0 2 0 6 5 5 0
1

. . .
. . . . . .
. . . . . .
.. . . . . .
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2 1 2 2 0 2 0 5 0 6 5

0
0
0
0
0
0
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= − −
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[ ]w 1 1 2 2 0 0
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6
Testing Covariances and Mean 
Differences With Missing Data

This chapter integrates material covered in Chapters 3, 4, and 5 under a single 
framework. We present a first complete example of how to estimate statisti‑
cal power to detect mean differences with incomplete data. We deliberately 
begin by extending the simple bivariate example first introduced in Chapter 4 
to focus on ignorably missing data that are either nonsystematic (missing 
completely at random, MCAR) or systematic (missing at random, MAR).

In Chapter 5, we examined the effects of selection on means, variances, 
and covariances for a hypothetical pretest–posttest design. Suppose that 
instead of following up on all individuals in a longitudinal study, only 
individuals meeting a specific criterion were administered posttests. Here, 
we would then have missing observations on the posttest for a portion of 
the sample. From Chapter 3, we saw that it is still possible to obtain valid 
parameter estimates of population values when the data mechanism is 
ignorable, either MCAR or MAR. We now extend this situation to estimate 
statistical power when data are ignorably missing.

The approach that we use is designed to be simple enough to implement 
that it encourages researchers to consider a wide variety of conditions. In 
this chapter, we compare the complete‑data situation with ones with 50% 
missing data on one variable under MCAR or MAR conditions. We consider 
this situation with three effect sizes (small, medium, or large correlations) 
for two different types of tests (mean difference or zero covariance).

The process of conducting a power analysis with missing data can be 
broken down into seven steps (Davey & Savla, 2009), each of which we have 
considered in the earlier chapters. First, we specify the population model 
(H0) based on theory or previous research. Second, we specify one or more 
alternative models (HA) for which one would like to assess statistical power. 
In the third step we generate complete data (either raw data or covariances 
and means) based on the population model. In the fourth step we select an 
incomplete data model. This is followed by the fifth step in which we apply 
the incomplete data model to the known data structure. In the sixth step we 
estimate the population and the alternative models using the incomplete 
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data. Finally, in the seventh step we use the results to calculate statistical 
power or required sample size to achieve a given power. These steps are 
summarized in Table 6.1, and we consider each one in turn.

Step 1: Specifying the Population Model

In order to illustrate these seven steps we will begin by considering 
how the example from the previous chapter would be analyzed using a 
two‑group structural equation model. Assessment of longitudinal change 
is often of interest. Suppose that in School A 1000 students were adminis‑
tered an aptitude test (y1) before participating in an enrichment program. 
At the end of the enrichment program all 1000 students were retested on 
the aptitude test (y2). For the sake of simplicity, pretest and posttest scores 
were assumed to have variances of 1.0, and their correlations reflected 
small (0.100), medium (0.300), or large (0.500) associations, depending on 
the condition. Mean differences reflected a small effect size (mean differ‑
ence of 0.2 between pretest and posttest scores).

Our LISREL matrices to specify the population covariance matrix for 
these models with complete data (shown only for the small effect size) 
would be as follows.

 

Λ Ψy =








 =











1 0
0 1

1 000 0 100
0 100 1 000

, . .
. .

,

  
Θε τ α=









 =









 =











0 0
0 0

0
0

1 0
1 2

, , .
.

.y and
 

Table 6.1

Steps in Conducting a Power Analysis With Incomplete Data

Steps in Conducting a Power Analysis with Incomplete Data

1 Specify the population model (null hypothesis, H0)
2 Specify the alternative model (alternative hypothesis, HA)
3 Generate data structure implied by the population model
4 Decide on the incomplete data model
5 Apply the incomplete data model to the population data
6 Estimate the population and alternative models with the missing data
7 Use the results to estimate power or required sample size
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Step 2: Specifying the Alternative Model

For this example, we select two very simple alternative models: (a) that y1 and 
y2 are uncorrelated, and (b) that the mean of y1 is equal to the mean of y2.

The corresponding matrices would be specified as follows to estimate 
these alternative models. For both alternative models, the Λy and Θe matri‑
ces are the same:

 
Λ Θy =









 =











1 0
0 1

0 0
0 0

and ε .

For the first alternative hypothesis,

 
Ψ =











*
*

,
0

whereas for the second alternative hypothesis

 
Ψ =











*
* *

.

For the first alternative hypothesis,

  
α =











*
*

,

whereas for the second alternative hypothesis,

 
α =











a
a

,

where use of the same letter for each parameter indicates that they are 
constrained to the same value.

In LISREL, the syntax to estimate these models would look like the 
following:

MO NY=2 NE=2 LY=FU,FI PS=SY,FI TE=SY,FI TY=FI AL=FI
VA 1.0 LY(1,1) LY(2,2)
FR PS(1,1) PS(2,2)
FR PS(1,2) ! Remove this line to specify uncorrelated
     variables
FR AL(1) AL(2)
EQ AL(1) AL(2) ! Add this line to specify equal means
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Step 3: Generate Data Structure Implied 
by the Population Model

The population covariance matrix among the observed variables implied 
by our model is calculated as Σ Λ ΨΛ Θyy y y= ′ + ε  and the expected vector 
of means is µ τ αy y= + Λ . For the examples with small effect sizes, these 
work out to be the following:

 
Σ =









 =











1 000 0 100
0 100 1 000

1 0
1 2

. .

. .
.
.

.and µy

 This population covariance and mean structure can be used as input to 
a LISREL analysis, or they may be used to generate raw data that has the 
same underlying parameters, as we will do in Chapter 9.

Step 4: Decide on the Incomplete Data Model

Now we can extend the example described above to a situation involving 
incomplete data. Suppose that instead of following up on all individuals, 
only some proportion of individuals (selected based on a coin toss — i.e., 
MCAR cases — or selected based on pretest scores — i.e., MAR cases) 
was administered the aptitude test following the intervention. Here, 
observations are missing for a portion of the sample. The weight matrix 
characterizing the incomplete data model would be represented either as
w = [ ]0 0  in the MCAR case or w = [ ]1 0  in the MAR case.

Step 5: Apply the Incomplete Data Model to Population Data

In this case, our matrices for the selected or complete‑data cases would 
be identical to those presented above in Step 1 for the MCAR data. As 
described in Chapter 3, following Allison (1987) and B. O. Muthén et al. 
(1987), for the incompletely observed group, we would substitute 1s in the 
input covariance matrix for the diagonal elements of variables that were 
not observed and 0s for the off‑diagonal elements of the covariance matrix 
and vector of means. These values serve as placeholders only and do not 
represent actual values in our models, and we will make adjustments to 
our model that effectively ignore these placeholders. Using 0s and 1s sim‑
ply allows us to give the matrices in both groups the same order across 
different patterns of missing and observed variables. Thus, the covariance 
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matrices and mean vectors for the complete and missing segments of the 
population would be as follows:

 

Σ

Σ

Complete Complete

Incom

a
b c

d
e
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 =









, µ and

pplete Incomplete
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 Specifically, the matrices for the complete data case would be as follows:
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and the corresponding matrices for the incompletely observed segment of 
the population would look like the following:

 
Λ Ψ Θy y=
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 =
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1 0
0 0 0 1

0 0
0 1

0
0
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, * .α

0

We would then modify our model syntax to fix element (2,2) of Λy, element 2 of 
ty to values of 0, and element (2,2) of Θe at a value of 1. So the model line would 
be identical to the example above for the complete‑data group, and would be 
specified slightly differently for the incomplete‑data group. Specifically,

mo ny=2 ne=2 ly=fu,fi ps=in te=sy,fi ty=fi al=fi.

To this, we would further specify the following constraints.

va 1.0 ly(1,1)   ! ly(2,2) is left fixed at 0
va 1.0 te(2,2)   ! This subtracts the placeholder of 1
eq al(1,1) al(1) ! Ensures grand mean used

Within rounding error, the population values are again recovered in both 
the complete and MCAR cases.

Thus, we now have a way to estimate a structural equation model with 
incomplete data where the complete and incomplete data groups are 
formed in a fashion that is consistent with either MCAR or MAR methods. 
In the former situation, the covariance matrices and mean vectors for the 
observed portions of the data are equivalent across groups; in the latter 
situation, the covariance matrices and mean vectors for the observed por‑
tions of the data can be easily calculated for any proportion of missing or 
complete data, as shown in Chapter 5. From here, it is a fairly straightfor‑
ward matter to estimate statistical power for this simple example.
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For this example, we have three different missing data conditions: (a) 
complete data at pretest and posttest, (b) complete data at pretest and 50% 
MCAR data at posttest, and (c) complete data at pretest and 50% MAR 
data at posttest. To generate the MAR situation with 50% missing data on 
y2, we simply split the data at their middle on the selection variable using 
the following syntax:

* Specify the population model;
matrix ly = (1 , 0 \ 0 , 1 );
* Replace Correlations with .3 and .5 for Moderate & Large
  Effect Sizes;
matrix ps = (1.000 , 0.100 \ 0.100 , 1.000 );
matrix te = (0 , 0 \ 0 , 0 );
matrix ty = (1.0 \ 1.2 );
matrix sigma = ly*ps*ly’ + te;
* Specify weight matrix;
matrix w = (1 \ 0); * Pr(Missing) = f(y1);
* Mean of Selection Variable;
matrix mus = w’*ty;
* Variance of Selection Variable;
matrix vars = w’*sigma*w;
* Standard Deviation of Selection Variable;
matrix sds = cholesky(vars);
* Mean and variance in selected subpopulation >= cutpoint, c);
matrix z = invnorm(.5);
matrix phis = normalden(trace(z)); * PDF(z);
matrix PHIs = normal(trace(z)); * CDF(z) and CDF(-z);
matrix xPHIs = I(1) - PHIs; * 1 - CDF(z), ie CDF(-z);
* Mean of Selection Variable (Selected and Unselected
  Subpopulations);
matrix muss = mus + sds*phis*inv(xPHIs);
matrix musu = mus - sds*phis*inv(PHIs);
* Variance of Selection Variable (Selected and Unselected
  Subpopulations);
matrix varss = vars*(1 + (z*phis*inv(xPHIs)) - (phis*phis*
  in v(xPHIs)*inv(xPHIs)));
matrix varsu = vars*(1 - (z*phis*inv(PHIs)) - (phis*phis*inv
  PHIs)*inv(PHIs)));
* Omega (Selected and Unselected);
matrix omegas = inv(vars)*(varss - vars)*inv(vars);
matrix omegau = inv(vars)*(varsu - vars)*inv(vars);
* Sigma (Selected and Unselected);
matrix sigmas = sigma + omegas*(sigma*(w*w’)*sigma);
matrix sigmau = sigma + omegau*(sigma*(w*w’)*sigma);
* Kappa (Selected and Unselected);
matrix ks = inv(vars)*(muss - mus);
matrix ku = inv(vars)*(musu - mus);
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* Muy (Selected and Unselected);
matrix muys =ty + sigma*w*ks;
matrix muyu = ty + sigma*w*ku;
matrix list PHIs;
matrix list sigmas;
matrix list muys;
matrix list sigmau;
matrix list muyu;

Step 6: Estimate Population and Alternative 
Models With Missing Data

The next step in the procedure is to estimate the alternative models using 
the population data. In this example, we consider the power to detect 
whether the correlation is zero and whether the means of y1 and y2 are 
equal. We could also evaluate our power to detect a nontrivial correla‑
tion (say that the correlation differs from .1, equivalent to an R2 of .01, 
rather than exactly 0) by fixing the model parameter at that value (i.e., at 
0.1, rather than 0). We estimate the population and the alternative models 
using the incomplete data through the LISREL syntax below for the 50% 
MCAR situation.

! Complete Data Group - Constrained Covariance Model
da ni=2 no=500 ng=2
la
y1 y2
cm
!Effect size ! Medium  Large
1.000         ! 1.000  1.000
0.100 1.000   ! 0.300 1.000  0.500 1.000
me
1 1.2
mo ny=2 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
va 1.0 ly(1,1) ly(2,2)
fi ps(1,2)
ou nd=5
! 50% Missing Data Group
da ni=2 no=500
la
y1 y2
cm
1
0 1
me
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1 0
mo ny=2 ne=2 ly=fu,fi ps=in te=sy,fi ty=fi al=fr
va 1.0 ly(1,1)
va 1.0 te(2,2)
eq al(1,1) al(1)
fi al(2)
ou nd=5

Step 7: Using the Results to Estimate 
Power or Required Sample Size

Running the syntax directly yields the following values. For the complete 
data case, we obtain values of the minimum fit function (FMin) of 0.01005 
with the covariance fixed at zero and 0 when estimating the model with 
the covariance freely estimated. For MCAR data with 50% missing, the 
corresponding values are .00503 and 0, and for MAR data the correspond‑
ing values are 1.01414 and 1.01231. The differences between our null and 
alternative models are thus 0.01005, 0.00503, and 0.00183 for complete, 
MCAR, and MAR data conditions. These entries are shown in bold type 
in Table 6.2.

We use the FMin values instead of the χ2 values because most statistical 
packages calculate χ2 as FMin × (N − g), where N is the sample size, and g 
is the number of groups. Thus, with complete data, we would get dif‑
ferent values of χ2 if we estimated the complete‑data case as one group 
with a sample size of 1000 or two groups of 500 each, but the value of 
FMin would be the same in both cases. Because we have to estimate the 
missing data conditions with one group for each pattern of missing data, 
only the FMin values are comparable across conditions. In addition, using 
this value allows us to calculate noncentrality parameters (NCPs) for any 
desired sample sizes without the need to run any additional models or to 

Troubleshooting Tip

One way to make sure that your models are set up correctly is to estimate 
the H0 model using H0 data and to estimate the HA model using HA data. 
In this case, your model can use the output to ensure that the population 
parameters are being correctly recovered. If they are not, there is most 
likely an error in your syntax. Once you have resolved the issue, substitute 
the appropriate data back into the syntax.
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stimulate additional data. This is all of the information we require to cal‑
culate either a required sample size or statistical power, and we provide 
examples of each. We retain a large number of decimal places for FMin to 
ensure greater accuracy when we multiply this value by (N − 1). Table 6.3 
shows the corresponding FMin values for a test that the means are equal 
under small, medium, or large correlations between variables.

Suppose that we now want to know what our statistical power would be 
under complete, MCAR, and MAR data conditions for any desired sample 
size. Our noncentrality parameter in each condition is (N − 1) × FMin. We 
only constrain the covariance between y1 and y2 to be zero, and so our 
models differ by a single degree of freedom. For an a value of .05, the 

Try Me!

Before proceeding further in the chapter, stop and make sure that you can 
reproduce the three entries shown in bold in Table 6.1. Once you have, try 
to replicate at least one more table entry to ensure that you have mastered 
this step.

Table 6.2

Minimum Value of the Fit Function for Test That Covariance is Zero

Small Medium Large

% Missing MCAR MAR MCAR MAR MCAR MAR

Test that covariance is zero
   0 0.01005 0.01005 0.06086 0.06086 0.14808 0.14808
    5 0.00955 0.00774 0.05783 0.04709 0.14069 0.11547
10 0.00905 0.00646 0.05478 0.03935 0.13329 0.09690
15 0.00854 0.00548 0.05174 0.03349 0.12588 0.08273
20 0.00804 0.00470 0.04870 0.02875 0.11848 0.07119
25 0.00754 0.00404 0.04565 0.02475 0.11107 0.06142
30 0.00704 0.00348 0.04261 0.02132 0.10366 0.05301
35 0.00653 0.00299 0.03956 0.01833 0.09626 0.04564
40 0.00603 0.00255 0.03652 0.01569 0.08885 0.03913
45 0.00553 0.00217 0.03348 0.01335 0.08145 0.03335
50 0.00503 0.00183 0.03043 0.01127 0.07404 0.02819
55 0.00452 0.00153 0.02739 0.00941 0.06664 0.02357
60 0.00402 0.00125 0.02434 0.00775 0.05923 0.01942
65 0.00352 0.00102 0.02130 0.00627 0.05183 0.01572
70 0.00301 0.00080 0.01826 0.00494 0.04442 0.01241
75 0.00251 0.00061 0.01521 0.00376 0.03701 0.00946
80 0.00201 0.00044 0.01217 0.00273 0.02961 0.00686
85 0.00151 0.00029 0.00913 0.00182 0.02220 0.00459
90 0.00100 0.00018 0.00608 0.00106 0.01480 0.00267
95 0.00050 0.00007 0.00304 0.00043 0.00739 0.00109
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corresponding critical value of the χ2(1) distribution is 3.84. We can now 
calculate power as ( ) Pr ( , , ),1 1 2− = −β χ αChi df NCPCrit . Below is SAS syn‑
tax to calculate statistical power for a given NCP, degrees of freedom, and 
alpha.

data power;
do obs = 1 to 20;
 FMin0 = 0.01005; *0% missing data;
 FMin1 = 0.00503; *MCAR with 50% missing;
 FMin2 = 0.00183; *MAR with 50% missing;
 n = 50*obs;
 *n = 250;
 ncp0 = (n-1)*FMin0;
 ncp1 = (n-1)*FMin1;
 ncp2 = (n-1)*FMin2;
 df = 1;
 alpha = 0.05;
 chicrit = quantile(‘chisquare’,1-alpha, 1);;
 power0 = 1- PROBCHI(chicrit,df,ncp0);
 power1 = 1- PROBCHI(chicrit,df,ncp1);
 power2 = 1- PROBCHI(chicrit,df,ncp2);

Table 6.3

Minimum Values of the Fit Function for Test of Equal Means

Small Medium Large

% Missing MCAR MAR MCAR MAR MCAR MAR

Test that means are equal

0 0.02198 0.02198 0.02608 0.02608 0.03130 0.03130
5 0.02137 0.02144 0.02526 0.02537 0.03022 0.03037
10 0.02072 0.02063 0.02440 0.02428 0.02910 0.02893
15 0.02004 0.01949 0.02351 0.02277 0.02794 0.02696
20 0.01933 0.01804 0.02258 0.02089 0.02674 0.02453
25 0.01858 0.01631 0.02162 0.01867 0.02550 0.02172
30 0.01780 0.01437 0.02061 0.01626 0.02421 0.01872
35 0.01697 0.01232 0.01955 0.01377 0.02288 0.01570
40 0.01609 0.01027 0.01845 0.01135 0.02150 0.01283
45 0.01517 0.00835 0.01729 0.00913 0.02006 0.01024
50 0.01419 0.00660 0.01609 0.00716 0.01858 0.00798
55 0.01315 0.00509 0.01482 0.00548 0.01703 0.00607
60 0.01204 0.00381 0.01349 0.00408 0.01543 0.00450
65 0.01087 0.00277 0.01210 0.00295 0.01376 0.00324
70 0.00961 0.00194 0.01063 0.00205 0.01203 0.00225
75 0.00828 0.00129 0.00909 0.00136 0.01022 0.00149
80 0.00685 0.00080 0.00746 0.00085 0.00834 0.00093
85 0.00532 0.00045 0.00574 0.00047 0.00638 0.00051
90 0.00367 0.00021 0.00393 0.00023 0.00434 0.00025
95 0.00190 0.00006 0.00202 0.00007 0.00222 0.00007
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output;
end;
proc Print;
  var n ncp0 power0 ncp1 power1 ncp2 power2;
run;

For this example, using a sample size of 250, we obtain NCP val‑
ues of 2.50250, 1.25247, and 0.45567 for the complete, MCAR, and MAR 
conditions, respectively. These translate into expected power values of 
0.35, 0.20, and 0.10, respectively. Power is low because the effect size 
is small. It is straightforward to extend this example to other propor‑
tions of missing data and other effect sizes. Figure 6.1 shows the power 
obtained for a sample size of 250 under the full range of missing data 
proportions for small, medium, and large correlations under MCAR 
and MAR data. The power for 50% missing data under each condition 
can be found by moving up from the x‑axis above the 50% point. With 
a sample size of 250, the power for MAR and MCAR with a small effect 
is approximately .10 and .20, respectively. For a medium effect, the cor‑
responding values are approximately .40 and .80. For a large effect, the 
corresponding values are .75 and .99. Corresponding complete data 
values can be obtained from moving up from the x‑axis above the 0% 
point and suggest the power is .35, .97, and .99 for small, medium, and 
large effects.
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Figure 6.1
Statistical power as a function of missing data and effect size (N = 250).
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114 Statistical Power Analysis with Missing Data

This approach can also be used to determine the sample size required 
for a specific power level. Suppose that we wanted to obtain the required 
sample size that would provide an 80% chance of detecting a correlation 
of .1 under each condition. First we solve for the required noncentrality 
parameter as NCP InvChi df PowerCrit= ( , , ),χ α

2 . We then calculate the re‑
quired sample size as N = NCP/FMin. With 1 degree of freedom, our NCP 
has to be at least 7.85 to yield a power of .8. This NCP translates into mini‑
mum sample sizes of 782, 1562, and 4290 for the complete data, MCAR, 
and MAR conditions. Again, the corresponding SAS syntax for this calcu‑
lation is provided below.

data ncp;
df = 1;
alpha = 0.05;
power = 0.80;
chicrit = quantile(‘chisquare’,1-alpha, df);
ncp = CINV(power, df, chicrit);
fmin0 = 0.01005;
fmin1 = 0.00503;
fmin2 = 0.00183;
n0=ncp/fmin0;
n1=ncp/fmin1;
n2=ncp/fmin2;
output;
proc print data=ncp;
 var df chicrit ncp n0 n1 n2;
run;

Figure 6.2 shows the required sample size for power of .8 to test whether 
the correlation is zero with small, medium, and large correlations as a 
function of missing data.

Several observations are noteworthy. As can be seen, the required 
sample size increases much more quickly when the effect size is smaller 
and also more quickly when data are missing at random than when they 
are missing completely at random. For this bivariate example, a larger 
sample size is required to detect a large correlation when data are MAR 
than is required to detect a medium correlation when data are MCAR 
once levels of missing data reach approximately 60%. In the bivariate 
case, it would not generally be wise to deliberately plan a missingness 
design because once there is more than a trivial amount of missing data, 
the total sample size to achieve the desired sample size will increase 
much more rapidly than the complete‑data sample size required to 
achieve the same statistical power. This is not always the case, however; 
many times MCAR and MAR designs both provide comparable statisti‑
cal power. Finally, it is also worth noting that, faced with incomplete 
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data, your power will always be greater if you include the partially 
observed cases in the analysis than if you exclude them, such as through 
list‑wise deletion.

In Table 6.3 we provide corresponding FMin values for tests that the means 
are equal with correlations between y1 and y2 of 0.100 (small effect), 0.300 
(medium effect), and 0.500 (large effect). In all cases, the mean difference 
was set at a small effect (means of 1.0 and 1.2 for variables with variances 
of 1.0), and data are either MCAR or MAR across a range of incomplete 
data from complete data to 95% missing.

Figure 6.3 shows the power to detect small mean differences when y1 
and y2 have a low, moderate, or strong correlation with a total sample size 
of 250. Note that, in contrast to the test of the correlation itself, the differ‑
ence in power between MCAR and MAR conditions is generally greater. 
We can trace upward from 50% missing data on the x‑axis to read the 
power values as .47 and .25 for MCAR and MAR data with a small cor‑
relation. Corresponding values for a medium correlation are .52 and .27, 
and they are .58 and .29 for a large correlation. Reading corresponding 
complete data values from above 0% missing gives powers of .65, .72, and 
.80 for small, medium, and large correlations.

Figure 6.4 shows the required sample sizes to achieve a power of .8 with 
50% missing data for the test of equality of means, respectively, under 
small, moderate, and strong correlations. As with the test of the correla‑
tions themselves, there is not much to recommend a missing data design 
for this bivariate example. However, power is always greater when all data 
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Figure 6.2
Sample size required for power of .8 by missing data and effect size.
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Power to detect small mean difference as a function of missing data and strength of cor‑
relation (N = 250).
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are used than when incomplete data are discarded. In most multivariate 
contexts, this is especially true as we will see in the next chapter.

Conclusions

The purpose of this chapter was to illustrate a simple bivariate example with 
incomplete data and provide a step‑by‑step guide to calculate statistical 
power for such a model. In the following chapter we will use a more com‑
plex longitudinal design with incomplete data to calculate statistical power.

Further Readings

Dolan, C., van der Sluis, S., & Grasman, R. (2005). A note on normal theory power 
calculation in SEM with data missing completely at random. Structural 
Equation Modeling, 12, 245–262.

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. 
Annual Review of Psychology, 60, 549–576.

Exercises

1.  Use the data from Table 6.2 to determine the sample size required 
to achieve power of .8 (using a = .05) under each condition with 
25% missing data.

2.  Use the data from Table 6.2 to calculate the power under each con‑
dition with 60% missing data and a sample size of 600.

3.  Use the data from Table 6.3 to determine the sample size required 
to achieve power of .9 (using a = .01) under each condition with 
50% missing data.

4.  Use the data from Table 6.3 to calculate the power under each con‑
dition with 15% missing data and a sample size of 300.
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7
Testing Group Differences 
in Longitudinal Change

The previous two applications involved testing covariances and mean dif‑
ferences in a test–retest design with data that were ignorably missing. In 
the present application, we build on these foundations in order to esti‑
mate the power to test differences between groups in longitudinal change 
under conditions involving both randomly (missing completely at random, 
MCAR) and systematically (missing at random, MAR) missing data.

The Application

Suppose we were interested in testing for gender differences in changes 
in adolescents’ tolerance of deviant behavior over time. Willett and Sayer 
(1994) presented an example like this one using a subset of data from the 
National Youth Survey (see also S. W. Raudenbush & Chan, 1992, for a 
fuller example that includes application to an accelerated longitudinal 
design). Data were collected from a sample of 168 boys and girls at ages 11, 
12, 13, 14, and 15, and (logged) reported tolerance of deviant behavior was 
examined, as shown in Table 7.1.

Although this is a quasi‑experimental design (gender cannot, of course, 
be randomized), the same design could apply equally well to evaluating 
the effectiveness of an intervention program for changing behavior or 
performance over time. For example, in order to determine whether an 
exercise training program increases muscle strength and gait speed or 
reduces the risk of falling for older adults, a randomized controlled trial 
design would have a very similar structure, as shown in Table 7.2.

We would begin by assessing strength and functional ability at pretest. 
Immediately following this, individuals would be randomly assigned 
to either the treatment (strength training) or the control (passively 
watching exercise videos) group. Over the course of administering the 
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intervention, we would repeatedly measure participants on four more 
equally spaced measurement occasions. We might expect that both 
groups will show some improvements over time (the intervention group 
due to the exercise, the control group due to motivational or other indi‑
rect influences), but we expect that the treatment group will show greater 
increases in muscle strength and gait speed over the 4‑month period of 
our study. See Curran and Muthén (1999) for a complete data application 
of this type of design.

There is growing awareness that change over time (or the benefits from 
an intervention) can vary systematically from one individual to another. 
Figure 7.1, for example, plots individual trajectories for 16 individuals from 
the Willett and Sayer (1994) study. Data for boys are shown with solid lines, 
and data for girls are shown with dashed lines. From this small selection of 
cases, it appears as though tolerance of deviant behavior generally increases 
with age. The extent to which there are differences in longitudinal change 
for boys and girls, however, is not clear. Individuals can vary in terms of 
where they start (or where they finish, which might be of greatest interest 
in an intervention study), as well as how they change over time. Some may 
even decrease while others increase. Similarly, the rate of change (or extent 
of benefit from our intervention) might differ systematically as a function of 
age, gender, initial strength, muscle mass, motivation, or any of a host of fac‑
tors. Growth curve models (GCM) are an increasingly common way to ana‑
lyze change in such longitudinal designs (T. E. Duncan, Duncan, Strycker, 
Li, & Alpert, 2006; McArdle, 1994; S. W. Raudenbush & Bryk, 2002).

Growth curve models allow researchers to estimate underlying devel‑
opmental trajectories, adjusting for measurement error. The parameters of 

Table 7.1

Gender Differences in a Five‑Wave Longitudinal Design

Age

Gender 11 12 13 14 15

Boys O O O O O
Girls O O O O O

Table 7.2

Intervention Effects in a Randomized Five‑Wave Longitudinal Design

Pretest R Month 1 Month 2 Month 3 Month 4

Treatment O X O O O O
Control O O O O O
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these underlying “true score” trajectories (such as the intercept and rate of 
change) can be predicted, in turn, by other characteristics of individuals. 
These inter‑individual differences in intra‑individual rates of change can 
identify characteristics of individuals who benefit the most from the inter‑
ventions and those who benefit less. Because growth curve models allow 
for the estimation of individual differences in change over time, researchers 
can examine the differential responses to treatment in order to identify fac‑
tors associated with stronger or weaker responsiveness to treatment. There 
is even a growing movement to use adaptive treatment strategies (Collins, 
Murphy, & Bierman, 2004) in order to enhance intervention efficacy.

For example, Figure 7.2 shows plots of the estimated regression lines 
through each individual’s data. Individuals have their own estimated 
intercept and rate of change. As can be seen, most individuals’ tolerance 
of deviant behavior is increasing, although there is considerable variabil‑
ity both in terms of where individuals are at age 11 and how quickly they 
change over time.

As an alternative to traditional methods of repeated measures analysis 
of variance or ANCOVA approaches, growth curve models allow for esti‑
mating true change over time, as well as for investigation of inter‑individ‑
ual differences in intra‑individual change. Under many circumstances, 
growth curve models may also be more powerful statistical techniques 
than the traditional alternatives mentioned above (cf. Cole, Maxwell, 
Arvey, & Salas, 1993; Maxwell, Cole, Arvey, & Salas, 1991).
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Figure 7.1
Plot of observed individual trajectories for 16 cases.
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Curran and Muthén (1999; B. O. Muthén & Curran, 1997) have estimated 
statistical power of growth curve models with complete data across a 
variety of different sample sizes, differing numbers of measurement occa‑
sions, and effect sizes. However, what if we expect some proportion of 
individuals to drop out of our study? What if the drop out is expected to 
be systematic? How would these situations affect the statistical power to 
evaluate longitudinal change due to the intervention?

In this application, we use data from Willett and Sayer (1994) to deter‑
mine statistical power for both detecting group differences in longitudinal 
change and for assessing the variability in rates of longitudinal change.

The Steps

In the previous chapter we worked through a very simple example to 
illustrate the effects of missing data on statistical power under a variety 
of different circumstances. In this chapter, we once again work through 
each of the seven steps in the process of conducting a power analysis with 
missing data using a slightly more complex model.
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Figure 7.2
Estimated individual trajectories for the same 16 cases.
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Step 1: Selecting a Population Model

Our model extends the five‑wave complete‑data example presented in 
Willett and Sayer (1994) to a situation with incomplete or missing data. In 
their example, data on tolerance of deviant behavior (logged to improve 
normality) were obtained from 168 eleven‑year‑old boys and girls. These 
students were assessed on five occasions over a 4‑year period (at ages 11, 
12, 13, 14, and 15) in order to observe the change in tolerance for devi‑
ant behavior over time. Willett and Sayer (1994) analyzed these data by 
including gender and reported exposure to deviant behavior at Wave 1 as 
potential predictors of change. Using the parameter estimates from their 
published data, we derived the implied covariance matrices and mean 
vectors for boys and girls. In this example, for simplicity, we assume equal 
numbers of boys and girls in the sample, because their sample was nearly 
equally divided on the basis of gender (48% boys). The model described 
above is presented graphically in Figure 7.3.

The basic y‑side of the LISREL model for a confirmatory factor model con‑
sists of three matrices: Λy (LY), which contains the regression coefficients of 
the observed variables on the latent variables; Ψ (PS), a matrix of the latent 
variable residuals; and Θe (TE), a matrix of the observed variable residuals. 
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Figure 7.3
Growth model. Data from “Using Covariance Structure Analysis to Detect Correlates and 
Predictors of Change,” by J. B. Willett and A. G. Sayer, 1994, Psychological Bulletin, 116, 363–381.
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We will also include latent intercepts, ty (TY), and latent means, a (AL). The 
estimated population parameters for this model can be specified as follows:
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Step 2: Selecting an alternative Model

Having defined our population model, a number of alternative models 
might be of interest. In this chapter, we focus on two of them. Our pri‑
mary interest might be in whether the extent of longitudinal latent change 
differs between boys and girls. An appropriate alternative hypothesis, 
then, is that the means do not differ from one another by gender; both 
groups change, on average, in the same way. The change parameter is rep‑
resented by a21 for boys and girls. Our first alternative hypothesis, then, is 
that a21Boys = a21Girls and will be evaluated with population data where the 
change parameters differ by (0.08314 − 0.06584), or 0.0173.

A second useful alternative hypothesis that is important in growth 
curve modeling is whether there is significant variability in how individ‑
uals change over time. In other words, is there evidence that individuals 
change in different ways from one another? Rather than testing whether 
the variance of the slope term is zero (i.e., everyone changes in an identi‑
cal fashion over time as assumed in repeated‑measures analysis of vari‑
ance), we compare it with a more realistic alternative that the variance of 
the latent slope term, represented by element ψ22, can be tested against 
an alternative hypothesis that it represents a trivial amount of variability, 
defined here as 50% of its true variability. For the purposes of this example, 
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we also simultaneously test that the covariance between the latent inter‑
cept and latent slope, represented by element ψ21, is equal to zero. Our 
second alternative hypothesis is multivariate and tests that the covariance 
between intercept and slope (equal to 0.00209 in the population) is equal 
to zero and that the variance of the latent slope (equal to 0.00292 in the 
population) is equal to 0.00146 and will have 2 degrees of freedom.

Step 3: generating Data according to the Population Model

Next we use the population parameters to generate data. In this case, 
the covariance matrix and means are sufficient to estimate our model. 
Expressed as a structural equation model, the implied population cova‑
riance matrix is Σ Λ ΨΛ Θ= ′ +y y ε  and the expected vector of means is 
µ τ αy y y= + Λ . SAS syntax to go from population parameters to the covari‑
ance matrix and vector of means implied by those parameters is provided 
below.

proc iml;
ly = {1 0, 1 1, 1 2, 1 3, 1 4};
ps = {0.01249 0.00209, 0.00209 0.00292};
te = {0.01863 0 0 0 0,
 0 0.02689 0 0 0,
 0 0 0.03398 0 0,
 0 0 0 0.02425 0,
 0 0 0 0 0.01779};
tyb = {0, 0,0,0,0};
tyg = {0, 0,0,0,0};
alb = {0.22062, 0.08314};
alg = {0.20252, 0.06584};
sigma = ly*ps*ly`+te;
mub = tyb + ly*alb;
mug = tyg + ly*alg;
print sigma mub mug;
quit;

By matrix arithmetic, we obtain the following population covariance 
matrix, which is identical for the boys and girls:

 

Σ =

0.03112 0.01458 0.01667 0.01876 0.02085
0.01458 0.044648 0.0246 0.02961 0.03462
0.01667 0.02460 0.06651 0..04046 0.04839
0.01876 0.02961 0.04046 0.07556 0.062116
0.02085 0.03462 0.04839 0.06216 0.09372























.
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Using the corresponding vectors of means for the boys and girls group the 
implied means are

 

µu Boys( ) =





 0.22062
0.30376
0.38690
0.47004
0.55318
















=and

0.20252
0.26836
0.33420
0

µy Girls( )
..40004

0.46588





















.

 

This is everything needed to begin considering missing data in the model.

Step 4: Selecting a Missing Data Model

For the sake of this example, suppose that some portion of our popula‑
tion had complete data and the rest of our population had data only for 
the first two occasions. If the data are MCAR, then the observed por‑
tions of each covariance matrix would be identical (in the population — 
in any selected subsample, there would be some variation around the 
overall population values). Under these circumstances the observed and 
missing portions of our data would correspond with the ones below.

 

Σyy Incomplete( )

. . ? ? ?

. .
=

0 03112 0 01458
0 01458 0 04648 ?? ? ?

? ? ? ? ?
? ? ? ? ?
? ? ? ? ?

,

( )

.





















=µy Boys

0 220062
0 30376

0 202
.

?
?
?

, ( )

.



















=and µy Girls

552
0 26836.

?
?
?

.





















Things are not quite so simple for MAR data where the nonresponse is selec‑
tive. In order for data to be MAR, the probability that data are missing must 
depend solely on observed data. Suppose that the probability that an obser‑
vation is missing depends on a weighted combination of their values on the 
first two occasions. This also allows for the possibility of missing data at 
waves 3 through 5 (ages 13 through 15). For this example, selection for MAR 
data was determined by the value of scores at age 11 and 12, with the former 
given twice the weight of the latter (i.e., s = 2 × t1 + 1 × t2). In other words, 
the scores at age 11 were twice as important in predicting the likelihood of 
missing data as the scores at age 12. In the missing data conditions, data 
were set as missing for the third through fifth occasions of measurement.
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Step 5: applying the Missing Data Model to Population Data

If we use this weight to determine the probability that data will be observed 
or unobserved, then both the covariance matrix and means would necessar‑
ily differ between the selected and unselected groups. The means would dif‑
fer because we selected them that way on a probabilistic basis. The covariance 
matrices would differ because their values are calculated within each group 
(i.e., deviations from the group means, not the grand mean). As we discussed in 
Chapter 5, the formulas for how the population covariance matrices and means 
will be deformed by this selection process have been known for a very long 
time (Pearson, 1903), and they are straightforward to calculate, which we will 
do here. For Monte Carlo applications, a researcher could perform the corre‑
sponding steps using raw data, which we will consider in detail in Chapter 9.

We can define w as a weight matrix containing the regression coeffi‑
cients linking the observed variables with nonresponse. In this case, 
w = [ ]2 1 0 0 0 . In the MCAR case, the weights for both t1 and 
t2 would be 0 because, by definition, selection does not depend on any 
observed — or unobserved — values. Pearson’s selection formula indi‑
cates that the mean value on our s is given as µ µs yw= . Algebraically, we 
can express the same associations as E(s) = 2 × E(t1) + 1 × E(t2) + 0 × E(t3) 
+ 0 × E(t4) + 0 × E(t5). For this example, the expected value of s would be 
0.74500 (2 × 0.22062 + 1 × 0.30376) in the boys group and 0.67340 (2 × 0.20252 
+ 1 × 0.26836) in the girls group. Similarly, we can calculate the variance 
of s as σ s w w2 = ′Σ . Algebraically V(s) = 4 × s11 + 4 × s12 + 1 × s22. So the 
variance of s is 0.22928 (4 × 0.03112 + 4 × 0.01458 + 1 × 0.04648) in both the 
boys and girls group (standard deviation = 0.47883).

As in Chapter 5, the values of s can be used to divide a population at 
any point. If we wish to divide our population in half, we can cut it at the 
mean. The segment of the population with values above the mean on s 
would be selected into one group (complete data) and the segment of the 
population with values below the mean on s would be in the unselected 
group (missing data).

As we saw in Chapter 5, for a z‑score of 0, the PDF is approximately 0.40, and 
the CDF is 0.50. Using these values, the means of s in the selected and unselected 
portion of the boys group are 1.127 and 0.363. The means of s in the selected 
and unselected portions of the girls group are 1.055 and 0.291. Similarly, the 
variance of s is approximately 0.0833 in both halves of each group.

We again use these means and variances to calculate ω and κ in the selected 
and unselected segments of our population. This gives us approximate val‑
ues for w of −2.777 for the selected and unselected portions of each group. 
Approximate values of k in the selected portion of our population are 1.666 for 
the boys and girls groups. Approximate values of κ for the unselected portion 
of our population for both the boys and girls group are −1.666. SAS syntax to 
calculate these quantities in 5% increments appears below.
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 proc iml;
 ly = {1 0, 1 1, 1 2, 1 3, 1 4};
 ps = {0.01249 0.00209, 0.00209 0.00292};
 te = {0.01863 0 0 0 0,
 0 0.02689 0 0 0,
 0 0 0.03398 0 0,
 0 0 0 0.02425 0,
 0 0 0 0 0.01779};
 al = {0.22062, 0.08314};
 ty = ly*al;
 sigma = ly*ps*ly +te;
 w = {2,1,0,0,0};
 mus = w*ty; * Use Boys or Girls Group Means;
 vars = w*sigma*w`;
 sds = root(vars);
 do p = 0.05 to .95 by .05;
 d=quantile('NORMAL',p);
 phis = PDF('NORMAL',trace(d));
 phiss = CDF('NORMAL',trace(d));
 xPHIs = I(1)-phiss;
 muss = mus + sds*phis*inv(xPHIs);
 musu = mus - sds*phis*inv(phiss);
 varss =
 vars*(1 + (d*phis*inv(xPHIs)) -
 (phis*phis*inv(xPHIs)*inv(xPHIs)));
 varsu =
 vars*(1 - (d*phis*inv(phiss)) -
 (phis*phis*inv(phiss)*inv(phiss)));
 omegas = inv(vars)*(varss - vars)*inv(vars);
 omegau = inv(vars)*(varsu - vars)*inv(vars);
 sigmas = sigma + omegas*(sigma*(w`*w)*sigma);
 sigmau = sigma + omegau*(sigma*(w`*w)*sigma);
 ks = inv(vars)*(muss - mus);
 ku = inv(vars)*(musu - mus);
 mues = ks*ps*ly`*w`;
 mueu = ku*ps*ly`*w`;
 tys = ty + ly*mues;
 tyu = ty + ly*mueu;
 print p, sigma ty sigmas tys sigmau tyu;
 end;

Step 6: estimating Population and alternative 
Models With incomplete Data

Using the syntax above, we obtain the following values for the means and 
covariance matrices for the selected (complete; top half) and unselected 
(missing; bottom half) portions of our boys and girls groups. Because we 
divided our population at the mean, the covariance matrix is the same in 
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both the selected and unselected portions. It is also identical for both boys 
and girls. However, the means differ between selected and unselected 
portions; they also differ between boys and girls.

 

( , )Boys Selected
yy∑ =

−.01473439 .00155392 .00431147 ..00444126 .00457104
.00155392 .03059391 .01243131− ..0155112 .0185911

.00431147 .01243131 .05718882 .029966036 .03611191

.00444126 .0155112 .02966036 .063044741 .04793445

.00457104 .0185911 .03611191 .047934445 .077547























 

( , )Girls Selected
yy

=

−

∑
.01473439 .00155392 .004311477 .00444126 .00457104
.00155392 .03059391 .0124313− 11 .0155112 .0185911

.00431147 .01243131 .05718882 .022966036 .03611191

.00444126 .0155112 .02966036 .063004741 .04793445

.00457104 .0185911 .03611191 .047934445 .077547























 

µy Boys Selected( , ) =

0.3486
0.4298
0.4834
0.5819
0.68044

0.0926
0.























=, ( , )µy Boys Unselected
11777

0.2904
0.3582
0.4260























,

 

 

µy Girls Selected( , ) =

0.3305
0.3944
0.4307
0.5119
0.59331

and

0.0





















=, ( , )µy Girls Unselected

7745
0.1423
0.2377
0.2882
0.3387























.

In the unselected portion of the population, all values associated with 
the last three measurement occasions would be unobserved. In order to 
reflect this uncertainty about their true values in our models, we use the 
conventions for estimating structural equation models with missing data 
that we presented in Chapter 3.

For our input data matrices, the conventions are very simple. Each different 
pattern of observed/missing data becomes its own group in our model. We 
replace every missing diagonal element of the covariance matrix with ones. 
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We replace every missing off‑diagonal element of the covariance and every 
missing element of the mean vector with 0s. For the missing data condition 
in the boys group, then, our input data would look like the following:

 

Σyy Boys Unselected( , ) =

−
−
.01473439 .00155392
.00

0 0 0
1155392 .03059391 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 1























=

and

.09261372

.17771997
µy Boys Unselected( , ) 0

0
00





















  

 Similarly, the incomplete data condition in the girls group would have the 
following input data:

 

Σyy Girls Unselected( , ) =

−
−
.01473439 .00155392
.0

0 0 0
00155392 .03059391 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 1 1























=

and

.07451372

.14231997
µy Girls Unselected( , ) 00

0
0























 
Remember that these substituted values for the missing data elements are 
only placeholders to give our input data matrices the same shape in the 
complete and missing data conditions. They do not figure into any aspect 
of the analyses, nor do the values influence our results.

Again, the effects of these placeholders are removed from our model 
in the following way. Elements of lambda‑y and tau‑y that correspond 
with missing observations are given values of zero to remove the effects 
of the off‑diagonal elements and means. Elements of theta‑epsilon that 
correspond with missing observations are given values of one to subtract 
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out the off‑diagonal elements. All other elements of our model are con‑
strained to be equal across complete and missing data groups.

The model constraints imposed in the complete and missing data 
groups are as follows:

 

Λ Λy yComplete Incomp( ) , (=





















1 0
1 1
1 2
1 3
1 4

llete

a
b c

)

( )
,

=























1 0
1 1
0 0
0 0
0 0

Ψ Complete






 =









, ( )

,
Ψ Incomplete a

b c

 

Θ Θε ε( ) ,Complete

d
e

f

g

h

=























0
0 0

0 0 0

0 0 0 0

(( )Incomplete

d
e

=























0
0 0 1
0 0 0 1
0 0 0 0 1

 

τ τy yComplete Incomplet( ) , (=























0
0
0
0
0

ee) ,=























0
0
0
0
0

and

 
α α( ) , ( )Complete

i
j

Incomplete
i
j

=












=












where identical letters represent equality constraints across missing and 
complete data groups. Parameters a through j are estimated freely across 
boys and girls groups. Power to test significant group differences in the rate 
of change over time is obtained by constraining j to be equal across boys 
and girls groups. Power to test trivial variance in rates of change is obtained 
by fixing parameter c at a value of 0.00146 and parameter b at a value of 0.

A number of different parameterizations are also possible for the test 

of trivial variance. Specifically, using Λy =

−
−























1 2
1 1
1 0
1 1
1 2

 will ensure that the
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intercept and rate of change are statistically uncorrelated (like orthogonal 
contrasts in repeated measures analysis of variance). Empirically, how‑
ever, the intercept and rate of change may still be correlated. In fact, for the 
current example, the correlation is considerably higher with this param‑
eterization (.81) than with the original parameterization (.35).

Mehta and West (2000) formalize the association between the intercept 
and rate of change. The time point where the covariance between the 
intercept and rate of change is at its minimum (t0) can be defined as fol‑
lows, where t* is the time point at which the intercept is centered:

 t t Cov Intercept Slope Var Slope0 = −* ( , ) ( ) .

In Willett and Sayer’s (1994) parameterization, t* is at age 11, the covari‑
ance between intercept and slope is .00209, and the variance of the slope 
is .00292. This suggests that the age at which the covariance reaches its 
minimum is (11 − .71575) or 10.28425 years of age. Though this value 
would be ideal for testing the variance of our slope term against a neg‑
ligible alternative, it falls outside of our range of observed values and is 
also inconsistent with how our overall model is parameterized. Thus, for 
the sake of this example, we continue with Willet and Sayer’s original 
parameterization. In general, it makes sense to estimate power under the 
circumstances that you expect for the actual model of interest (i.e., how 
you ultimately expect to parameterize the model for your own analyses).

In this next section, we use LISREL syntax with the MCAR data to illus‑
trate how the population and alternative models are estimated with missing 
data. A model with MAR data would use identical syntax substituting the 
MAR data matrix values. Our overall model has two groups: boys and girls. 
Within each one of them, however, we have a complete‑data group and a 
missing‑data group. So a total of four groups are needed to estimate our 
model. We begin with the syntax for the complete data segment of our boys 
group. Across all four groups, we use a total sample size of 2000 observa‑
tions divided up according to the design (in this case equal numbers in boys 
and girls, with 50% missing observations within each of boys and girls).

! SATURATED MODEL
! GCM BOYS COMPLETE DATA
DA NI=5 NO=500 NG=4
LA
T1 T2 T3 T4 T5
CM
0.03112
0.01458 0.04648
0.01667 0.02460 0.06651
0.01876 0.02961 0.04046 0.07556
0.02085 0.03462 0.04839 0.06216 0.09372
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ME
0.22062 0.30376 0.38690 0.47004 0.55318
MO NY=5 NE=2 LY=FU,FI PS=SY,FR TE=SY,FI TY=FI AL=FR
VA 1.0 LY(1,1) LY(2,1) LY(3,1) LY(4,1) LY(5,1)
VA 0.0 LY(1,2)
VA 1.0 LY(2,2)
VA 2.0 LY(3,2)
VA 3.0 LY(4,2)
VA 4.0 LY(5,2)
FR TE(1,1) TE(2,2) TE(3,3) TE(4,4) TE(5,5)
OU ND=5

The missing data segment of the boys group would be as follows. Our 
input covariance matrix has 1s on the diagonal for missing observations 
and 0s on the off‑diagonals for missing values and for means of missing 
observations.

! GCM BOYS MISSING DATA
DA NI=5 NO=500 NG=4
LA
T1 T2 T3 T4 T5
CM
0.03112
0.01458 0.04648
0.0000 0.0000 1.0000
0.0000 0.0000 0.0000 1.0000
0.0000 0.0000 0.0000 0.0000 1.0000
ME
0.22062 0.30376 0.000 0.000 0.000

In the model definition section, we fix elements of the LY and TY matri‑
ces associated with missing observations at 0, and the elements of the TE 
matrix associated with missing observations at 1. All other values in the 
model are constrained to be equal to the corresponding elements of the 
complete‑data group. Thus, the overall population parameters become a 
weighted average of the values in the complete‑ and missing‑data groups. 
Finally, we request output with a larger than default number of decimal 
places to improve the accuracy of our power estimates.

MO NY=5 NE=2 LY=FU,FI PS=IN TE=SY,FI TY=FI AL=FR
VA 1.0 LY(1,1) LY(2,1)
VA 0.0 LY(1,2)
VA 1.0 LY(2,2)
FR TE(1,1) TE(2,2)
EQ TE(1,1,1) TE(1,1)
EQ TE(1,2,2) TE(2,2)
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VA 1.0 TE(3,3) TE(4,4) TE(5,5)
EQ PS(1,1,1) PS(1,1)
EQ PS(1,2,2) PS(2,2)
EQ PS(1,1,2) PS(1,2)
EQ AL(1,1) AL(1)
EQ AL(1,2) AL(2)
OU ND=5

The syntax above defines our model for boys with incomplete data. We 
continue in a similar fashion for the complete‑data segment of our girls 
group. Notice that in the syntax below, all model parameters are freely 
estimated. There are no constraints across the boys group and girls group 
for this model, because we are only interested in testing that the covari‑
ance is zero (and have already specified that PS=IN, so the constraints are 
already in place). Of course, we could also test whether means, variances, 
or reliabilities differ, but these are different substantive questions.

! GCM GIRLS COMPLETE DATA
DA NI=5 NO=500 NG=4
LA
T1 T2 T3 T4 T5
CM
0.03112
0.01458 0.04648
0.01667 0.02460 0.06651
0.01876 0.02961 0.04046 0.07556
0.02085 0.03462 0.04839 0.06216 0.09372
ME
0.20252 0.26836 0.3342 0.40004 0.46588
MO NY=5 NE=2 LY=FU,FI PS=IN TE=SY,FI TY=FI AL=FR
VA 1.0 LY(1,1) LY(2,1) LY(3,1) LY(4,1) LY(5,1)
VA 0.0 LY(1,2)
VA 1.0 LY(2,2)
VA 2.0 LY(3,2)
VA 3.0 LY(4,2)
VA 4.0 LY(5,2)
FR TE(1,1) TE(2,2) TE(3,3) TE(4,4) TE(5,5)
OU ND=5

Finally, we include the syntax for the missing data segment for girls. Here, 
estimable parameters are constrained equal to their values in the com‑
plete data segment of the girls group by using the EQ syntax.

! GCM GIRLS MISSING DATA
DA NI=5 NO=500 NG=4
LA
T1 T2 T3 T4 T5
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CM
0.03112
0.01458 0.04648
0.0000 0.0000 1.0000
0.0000 0.0000 0.0000 1.0000
0.0000 0.0000 0.0000 0.0000 1.0000
ME
0.20252 0.26836 0.000 0.000 0.000
MO NY=5 NE=2 LY=FU,FI PS=IN TE=SY,FI TY=FI AL=FR
VA 1.0 LY(1,1) LY(2,1)
VA 0.0 LY(1,2)
VA 1.0 LY(2,2)
FR TE(1,1) TE(2,2)
EQ TE(3,1,1) TE(1,1)
EQ TE(3,2,2) TE(2,2)
VA 1.0 TE(3,3) TE(4,4) TE(5,5)
EQ PS(3,1,1) PS(1,1)
EQ PS(3,2,2) PS(2,2)
EQ PS(3,1,2) PS(1,2)
EQ AL(3,1) AL(1)
EQ AL(3,2) AL(2)
OU ND=5

Estimating this two‑group model with MCAR data should provide a 
perfect fit (with 63 degrees of freedom according to LISREL instead of the 
usual value of 0 for a saturated model because of the artificial way we had 
to structure the data). We are, after all, estimating the population model on 
the population data, so a perfect fit should be little surprise. However, the 
situation is slightly different for the MAR case. Here, the means and cova‑
riance matrices necessarily differ between the missing and complete data 
segments of the population. With MAR data, then the population model 
will not provide a perfect fit to the data (again with 63 degrees of free‑
dom), although it will reproduce the population parameters accurately.

Troubleshooting Tip

Your model should fit perfectly for MCAR data. If it does not, there is a 
problem with your syntax.

Check all parameters very carefully across your complete‑data and miss‑
ing‑data groups. Make sure that everything that should be held equivalent 
across groups is being help equivalent across groups.

If your model is set up correctly, you should obtain the same degrees of 
freedom with both MCAR and MAR data.

For this reason, start by setting up the MCAR case. Once you are satisfied 
that your syntax is correct, then move on to the MAR case.
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In order to run our alternative models, very few modifications to the 
population model are required. For example, to constrain the values of 
AL(2) equal across groups, we simply need to add the constraint

EQ AL(1,2) AL(2)

in the third group. No other changes are needed. Doing so for this spe‑
cific example gives us a chi‑square value of 16.81551 with 64 degrees of 
freedom. Our second alternative model involves fixing PS(2,2) at half its 
population value (0.00146) and PS(1,2) at zero. We can do this by adding

FI PS(1,2) PS(2,2)

and

VA 0.00146 PS(2,2)

on the model lines in the first group. Doing so produces a chi‑square value 
of 173.12133 with 65 degrees of freedom.

We can now turn to an illustration of how this output can be used to 
conduct a power analysis or calculate a required sample size.

Step 7: using the results to Calculate Power or required Sample Size

LISREL calculates the value of the chi‑square statistic as (N − g) × FMin, 
where N is the total sample size, and g is the number of groups. Our 
population model has two groups, boys and girls, but with missing 
data we are forced to estimate a four‑group model. Thus, though the 
chi‑square value we obtain for a particular model depends in part on 
the number of patterns of missing data we have (and our sample size), 
FMin (labeled as Minimum Fit Function Value in LISREL) is independent 
of both these factors. We can thus estimate a particular pair of models 
once and obtain estimated values of the NCP for any sample size by 
calculating the difference in FMin between the population and alterna‑
tive models and multiplying it by (N − g). For this example, with 50% 
missing data, the FMin values obtained for the test of equal means and 
trivial variance are 0.00842 and 0.08673, respectively. Table 7.3 shows the 

Try Me!

Run the model above with your syntax, and ensure that your results agree 
before proceeding to Step 7.
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FMin values obtained for estimating both of our alternative hypotheses 
with every combination of missing data from 5 to 95% under conditions 
where missing data are MCAR and MAR. The values above are shown 
in bold type in the table.

Two things are worth noting here. First, different proportions of missing 
data are easily implemented for MCAR data simply by changing the sample 
size in the missing and complete data conditions. Second, the FMin values fall 
along a straight line as a function of the proportion of missing data for the 
MCAR case. In principle, then, one could use two divergent missing data 
conditions (say complete data and 95% missing data) in order to interpolate 
the FMin values for any condition in between them with a reasonable degree 
of accuracy. For the MAR case, the association between FMin and the propor‑
tion of missing data is nonlinear so both the sample sizes and data matrices 
need to be estimated for every missing data condition of interest.

From here it is a straightforward matter to estimate power. SAS syntax 
appears below.

data power;
 do n = 50 to 1000 by 50;
  g = 2;
  alpha = 0.05;

Table 7.3

Minimum Value of the Fit Function for Growth Curve Model

Mean Difference Variance and Covariance

% Missing MCAR MAR MCAR MAR

0 0.01530 0.01530 0.16330 0.16330
5 0.01463 0.01461 0.15610 0.14838
10 0.01394 0.01389 0.14870 0.13702
15 0.01325 0.01316 0.14122 0.12707
20 0.01256 0.01244 0.13368 0.11795
25 0.01187 0.01172 0.12606 0.10939
30 0.01118 0.01100 0.11836 0.10126
35 0.01049 0.01027 0.11059 0.09345
40 0.00980 0.00956 0.10273 0.08594
45 0.00911 0.00886 0.09478 0.07867
50 0.00842 0.00817 0.08673 0.07163
55 0.00774 0.00748 0.07859 0.06479
60 0.00705 0.00680 0.07035 0.05814
65 0.00636 0.00613 0.06200 0.05168
70 0.00567 0.00547 0.05353 0.04540
75 0.00498 0.00481 0.04495 0.03929
80 0.00429 0.00416 0.03623 0.03333
85 0.00360 0.00350 0.02737 0.02746
90 0.00291 0.00286 0.01836 0.02149
95 0.00222 0.00220 0.00918 0.01459

Y100315.indb   137 7/15/09   2:59:45 PM



138 Statistical Power Analysis with Missing Data

   df = 1;
   fmin = 0.011093
   ncp = (n-g)*fmin;
   chicrit = quantile(‘chisquare’,1-alpha, 1);
   power = 1- PROBCHI(chicrit,df,ncp);
   output;
 end;
proc print data=power;
   var n alpha df ncp power;
run;

It is similarly straightforward to find a sample size required to yield the 
desired power for a given noncentrality parameter. We show how to do so 
simultaneously for degrees of freedom ranging from 1 to 10. Remember 
that the degrees of freedom for testing differences between latent slopes 
is tested with a single degree of freedom and that our simultaneous test of 
trivial slope variance and zero covariance with the intercept is tested with 
2 degrees of freedom.

data ncp;
 alpha = 0.05;
 power = 0.80;
 fmin = 0.011093
 do df = 1 to 10;
   chicrit = quantile(‘chisquare’,1-alpha, df);
   ncp = CINV(power, df, chicrit);
   output;
 end;
proc print data=ncp;
   var df chicrit ncp;
run;

We use the minimum values of the fit function shown in Table 7.3 to 
illustrate a sample result. Setting missing data on the last three waves of 
measurement at 50% we can plot the resulting statistical power for sample 
sizes from 100 to 1000 for each of our tests with the table entries shown in 
bold type. Figure 7.3 shows the estimated power for MCAR and MAR data 
to detect group differences (1 df test) and nontrivial variability in rates of 
change (2 df test) as a function of sample size.

As can be seen in Figure 7.4, which plots the results with 50% of obser‑
vations missing, statistical power is only slightly greater for most sample 
sizes in this example when data are MCAR than MAR. In fact, they essen‑
tially overlap for the test of mean differences. When the power is quite 
high, as it is for the test of the variance and covariance, adequate power 
can be achieved with fairly modest sample sizes and these rates of missing 
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data. In contrast, when the power is lower, a substantially larger sample 
size is required with half of the data missing.

In addition to plotting statistical power as a function of sample size for a 
given proportion of missing data, we can also graph the sample size required 
to achieve a given statistical power as a function of the proportion of cases 
with missing data. Figure 7.5 presents these results for our example.
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Sample size required for power of .8 as a function of missing data.
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Again, we find that there are ranges over which missing data can be 
increased considerably without requiring a substantially larger sample 
size to achieve the same statistical power, as indicated by the segments of 
each curve where the slope is quite low. Thus, the results we present are 
quite general and can be used for any combination of alpha, sample size, 
proportion missing data, and statistical power. Fixing two quantities at a 
desired value allows you to plot the other two against one another.

Conclusions

Using this approach and a given effect size, Type I error rate, and 
expected proportion of missing data, it is possible to estimate the statis‑
tical power for any comparisons desired. In principle, there may be as 
many as 2k − 1 different patterns of missing data, where k is the number 
of variables.

With real data, however, it is common that a small number of patterns 
typically predominate, and patterns represented by small numbers of 
cases typically contribute negligibly to statistical power (cf. Dolan et al., 
2005). Thus, the approach we outline here usually provides a sufficiently 
good first approximation for power calculations. In principle, as long as 
there are sufficient observations in a missing data pattern to calculate 
means, variances, and covariances, that pattern can be included in the 
model.

Even when this is not possible, many times these observations can be 
excluded without much additional loss of statistical power. Because it 
ensures that all model parameters are estimable, the number of cases in 
the complete data group is of single greatest importance. We recommend 
that researchers use caution with situations such as accelerated longitudi‑
nal designs where there is not necessarily a complete‑data group. Nested 
model comparisons are still possible for designs such as this one, even 
though it may not be possible to estimate the standard saturated model. 
Most times, another suitable model can usually be identified which esti‑
mates all possible moments, and this model can in turn serve as a baseline 
model for comparative purposes. In situations where a large number of 
different patterns of missing data is either expected or obtained, it usu‑
ally makes the most sense to simulate raw data under a narrower range of 
conditions and use FIML estimation (L. K. Muthén & Muthén, 2002). We 
consider this situation in much greater detail in Chapter 9.
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Exercises

1.  Using the population parameters from Figure 7.3 and the matrices 
that follow, calculate the power to detect a significant mean differ‑
ence and variance with complete data using three, four, and five 
waves of data.

2.  Using the same models, find the sample size required to achieve 
power of .8 with 25% MCAR missing data on the last wave in each 
case.

3.  Repeat the same process assuming that the probability of data 
being missing on the last observation is a function of the first 
observation (i.e., for the five‑wave model, w = [ ]).1 0 0 0 0
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8
Effects of Following Up via Different 
Patterns When Data Are Randomly 
or Systematically Missing

In this chapter, we consider several examples of statistical power in plan‑
ning a study with data missing by design. The empirical example is a 
slightly simplified version of the model presented in the previous chapter. 
Using three‑wave longitudinal data, we evaluate four different planned 
missingness designs. As with the preceding chapter, we consider both 
missing completely at random (MCAR) and missing at random (MAR) 
data as well as a wide range of sample sizes. We conclude the chapter 
with a general way to evaluate pattern missingness that can be useful in 
planning a study with data that are missing by design. We will revisit and 
extend several of these design issues again in Chapter 10.

Background

There are a number of situations where researchers set out in advance to 
collect only partial information from a portion of their sample. In surveys, 
for example, screening items may be used to determine the appropriate 
range of follow up questions. Many large‑scale national surveys such as the 
Health and Retirement Study (Juster & Suzman, 1995) include “modules” 
to which random subsamples of individuals from the entire survey are 
assigned. Likewise, we have already considered several historical “incom‑
plete” designs, such as Solomon’s four‑group design, Latin squares designs 
(Campbell & Stanley, 1963), the accelerated longitudinal design (Bell, 
1954), various “sequential” designs, and McArdle’s (1994) fractional blocks 
design. Other more modern incarnations of these intentionally incomplete 
approaches include adaptive testing (e.g., Weiss & Kingsbury, 1984), where 
responses on previous questions are used to determine the selection of 
subsequent items (see Collins et al., 2004, for an application of adaptive 
methods to the preventive intervention context). Used appropriately, this 
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approach can considerably reduce testing burden that would otherwise be 
associated with estimating ability to a desired level of accuracy.

Another area of research, however, actively sets out to collect partial 
data from some or all individuals. Graham et al. (1996), for example, intro‑
duced something they called the XABC design, which has several varia‑
tions. All individuals may get form X, for example, with one third also 
receiving forms A and B, one third receiving forms A and C, and one third 
receiving forms B and C. Because no participant receives all four forms, 
there is no guarantee that all parameters will be estimable, so it may be 
more desirable to divide the sample into quarters, with one quarter receiv‑
ing all four forms in addition to a quarter of participants being assigned to 
each of the other three incomplete conditions. If assignment is made on a 
purely random basis, then the data are, by definition, missing completely 
at random. Thus, they can be combined and analyzed using techniques 
such as full information maximum likelihood or multiple imputations 
without additional concern.

Graham, Taylor, and Cumsille (2001) elaborated upon this approach 
to extend it to longitudinal data, as well as considering the possibility 
of having a larger number of conditions, and circumstances that might 
be more amenable to less costly but also less rigorous designs (Graham, 
Taylor, Orchowski, & Cumsille, 2006). To date, although there has been 
little systematic research on the potential ways in which intentionally 
assigning individuals to different longitudinal data collection conditions 
might itself affect nonresponse (cf. Davey, 2001), the principles at least are 
sound. Graham and his colleagues (2001) considered a number of different 
designs and evaluated statistical power (as standard errors) with regard 
to considerations such as costs per measurement. Their approach suggests 
that some designs will be inherently more efficient than others, and so 
any potential design should be selected carefully as a result of an a priori 
power analysis using methods such as the ones we describe here.

The approach outlined in this volume may also be of particular use 
when planning for data that will be inherently missing, such as in acceler‑
ated longitudinal designs. T. E. Duncan, Duncan, and Hops (1996) pres‑
ent an especially clear example of this type of design in the context of 
structural equation modeling. In addition to estimating statistical power 
for the overall model parameters of primary interest (such as changes 
in latent means or inter‑individual variability in rates of change), our 
approach can (and should) be used to estimate power to test assumptions 
regarding appropriate use of the accelerated longitudinal design. Primary 
among these, for example, are tests of convergence (E. R. Anderson, 1993; 
Bell, 1953, 1954; T. E. Duncan et al., 1996), specifically that overlapping seg‑
ments of the overall trajectory can actually be equated across cohorts (or, 
in the context of power analysis, rejected when the assumption is indeed 
violated to varying degrees). Likewise, researchers can evaluate issues 
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such as: how power is affected by adding more occasions of measurement 
(or more cohorts), the potential effects of nonresponse within cohorts (in 
a random or systematic fashion), and the specific patterns of nonresponse 
that the researcher wishes to consider. By the end of this chapter, you 
should have a set of tools that can very quickly permit you to evaluate 
questions such as these across a wide variety of situations.

The Model

As in the preceding chapter, our empirical example represents a two‑group 
growth curve model, simplified to include only three waves of data rather 
than five in order to keep the number of missing data patterns to a mini‑
mum. Our data are drawn from Curran and Muthén’s (1999, but see also 
B. O. Muthén & Curran, 1997) example with a single additional simplifi‑
cation. Their model included a Group × Initial Status interaction that we 
ignore for the present example. This model is displayed graphically in 
Figure 8.1.
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Figure 8.1
Three‑wave growth curve model.
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This model can be represented by the following LISREL matrices 
where, as usual, the implied covariance matrix is Σ Λ ΨΛ Θ= ′ +y y ε . In this 

case, because we select every other wave, Λy =
















1 0
1 2
1 4

.  As before,

Ψ Θ=








 =1 00 0 1118

0 1118 0 20

1 00 0 0
0 2 27 0

. .
. .

,
.

.and ε

00 0 5 09.
.

















 
Similarly, the

implied means are given by µ τ αy y y= + Λ  where τ y =
















0
0
0

 in both the

treatment and control groups and α =










1 00
0 798

.
.

 in the control group and 

α =










1 00
0 981

.
.

 in the treatment group. Based on these population values,

the implied covariance matrix is Σ =
2 000 1 224 1 447
1 224 4 494 3 271
1 447 3 271 10 17

. . .

. . .

. . .

















 in both

groups and µy =
















1 000
2 596
4 192

.

.

.
 in the control group and µy =

















1 000
2 962
4 924

.

.

.
 in the

treatment group. As described in Curran and Muthén (1999), these param‑
eter values have been selected to reflect (a) a small effect size in terms of 
the group difference in rates of change (analogous to d of approximately 
.2), and (b) reliability of .5 such that half of each occasion’s variability can 
be attributed to true score variability. The covariance between the inter‑
cept and rate of change corresponds with a correlation of .25, which is at 
the lower end of a medium effect size (or the upper end of a small effect 
size). These assumptions can be easily changed by selecting different val‑
ues for the alpha or theta‑epsilon matrices.

Design

As we mentioned before, a study with k variables has the potential for 
2 1k −  different meaningful patterns of missing data. A five‑wave study 
with only a single variable thus has the potential for 31 different missing 
data patterns. In a three‑wave study, assuming that all participants have 
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a baseline measure, there are just four possible combinations, and this 
simplifies the situation considerably.

Four different patterns of missingness are evaluated and compared in 
this section of the chapter. In each model, 50% of the sample in each group 
has complete data on all waves.

Model A is a four‑group (two patterns of missing data in treatment 
and control groups) model with 50% data missing on Wave 3 in 
both the control and the treatment groups.

Model B is a four‑group model with 50% of cases missing on Wave 5 
in the control and the treatment group.

Model C is a six‑group model with 25% cases missing on Wave 3 
data and another 25% cases missing on Wave 5 in the control and 
treatment group.

Model D is an eight‑group model with 16.67% data missing on Wave 
3, 16.67% missing on Wave 5 and another 16.67% of cases missing 
on both Wave 3 and Wave 5.

Following the notation used by Graham et al. (2001), Table 8.1 shows 
the possible combinations we consider, each of which involves incom‑
plete data for 50% of cases. Consistent with the notation used in earlier 
chapters, in order to simulate MAR data, the following weight matrix was 
used: w = [ ].1 0 0  Within the incomplete segment of the MAR data, 
observations were assigned in the same way to each of the missing data 

Table 8.1

Distribution of Pattern Missingness for Four Models

Groups Time 1 Time 2 Time 3 N (%)

Model A
Group 1 Observed Observed Observed 50
Group 2 Observed Missing Observed 50

Model B
Group 1 Observed Observed Observed 50
Group 2 Observed Observed Missing 50

Model C
Group 1 Observed Observed Observed 50
Group 2 Observed Missing Observed 25
Group 3 Observed Observed Missing 25

Model D
Group 1 Observed Observed Observed 50
Group 2 Observed Missing Observed 16.67
Group 3 Observed Observed Missing 16.67
Group 4 Observed Missing Missing 16.67
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conditions by deleting the relevant portions of the covariance matrices 
and mean vectors (i.e., Time 2 only, Time 3 only, both Time 2 and Time 3).

Procedures

Estimating models with MCAR data was straightforward and only 
involved replacing values associated with unobserved values in the cova‑
riance matrix and mean vectors with zeros or ones as outlined in Chapter 3. 
For example, the covariance matrix and mean vector for the treatment 
group in Group 2 of Model A were as follows:

 

ΣA yA2 2

2 000 0 1 447
0 1 0

1 447 0 10 17
=

















=
. .

. .
and µ

11 000
0

4 924

.

.
.

















 

For each of the MAR models we estimated, the complete data matrices 
were the same. As well, because we split the data at their midpoint, the 
covariance matrices were the same for both missing and complete data 
segments of the data and for the treatment and control groups. Specifically,

Σ =
0 727 0 445 0 526
0 445 4 041 2 707
0 526 2 707 9 518

. . .

. . .

. . .
















. Means for the complete and missing seg‑

ments of the control group were µ µy y=
















=
1 564
3 286
5 008

0 436
1 906
3 3

.

.

.

.

.

.
and

776

















,  res‑

pectively. Likewise, means for the complete and missing segments of the

treatment group were µ µy y=
















=
1 564
3 652
5 740

0 436
2 272
4 1

.

.

.

.

.

.
and

008

















,  respectively. Incom‑

plete data matrices were constructed by replacing the missing elements 
with 0s and 1s using the standard conventions we first outlined in Chapter 
3. Thus, once the probability of data being missing was established, obser‑
vations were equally likely to be assigned to each of the missing data con‑
ditions, if there was more than one (Models C and D).

Try Me!

Use the syntax from the program above to replicate these results before 
moving forward in the chapter.
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Our first alternative model was that the latent means did not differ 
across groups. Each of the above mentioned multigroup LISREL mod‑
els was estimated with a total of 50% missing data (MCAR and MAR) in 
order to obtain the minimum value of the fit function associated with the 
alternative hypothesis, and these values are shown in Table 8.2.

In turn, the resulting FMin values were used to calculate estimated 
noncentrality parameters for sample sizes ranging from 100 to 1000 in 
increments of 50, and these values were used to estimate statistical power. 
Figure 8.2 shows the results for each pattern of missing data under MCAR 
conditions, and Figure 8.3 shows the corresponding results of missing data 
under MAR conditions.

Obviously, the complete data model has the most power for all sample 
sizes, but beyond that comparisons across the different patterns of missing 

Table 8.2

Minimum Fit Function 
Values by Missing Data Type 
and Pattern

FMin

Model MCAR MAR

Complete 0.0162 0.0162
Model A 0.0122 0.0147
Model B 0.0122 0.0097
Model C 0.0131 0.0135
Model D 0.0117 0.0110
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Figure 8.2
Power for MCAR designs as a function of sample size.
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data are informative. With MCAR data, Model C, in which one quarter of 
the data were missing at Time 2 and one quarter of the data were missing 
at Time 3, was the most powerful incomplete data design as it is closest 
to the complete data line. Model D, in which one sixth of the data were 
missing at each of Time 2 only, Time 3 only, and both Time 2 and Time 3, 
was the least powerful. The situation in Models A and B where half of the 
data were missing only at either Time 2 or Time 3 were intermediate to the 
other conditions and reflected essentially equivalent statistical power. For 
example, with 50% missing data and a sample size of 500, power for the 
complete data was .81. For Model C, it was .72, for Models A and B it was 
.69, and for Model D it was .67.

A different pattern emerged when data were MAR. Model A, in which 
data were missing only at Time 2, was the most powerful incomplete 
data design (and more powerful than the same design with MCAR data), 
whereas Model B, with data missing only at Time 3, was the least pow‑
erful design (and less powerful that the same design with MCAR data). 
Model C, in which data were missing at either Time 2 or Time 3, was 
more powerful than both the corresponding design with MCAR data and 
the situation in Model D where data could be missing at either of these 
occasions or on both occasions. Again, using 50% missing data and a 
sample size of 500, power for the complete data was (still) .81. For Model 
A it was .77, for Model C it was .74, for Model D it was .65, and for Model 
B it was .59.

As we mentioned in Chapter 1, the associations among the different fac‑
tors contributing to statistical power are typically related in a nonlinear 

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Po
w

er

Complete Model A Model B Model C Model D

Sample Size
100 200 300 400 500 600 700 800 900 1000

Figure 8.3
Power for MAR designs as a function of sample size.
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fashion. As such, the effects of a missing data pattern can vary as a func‑
tion of sample size. Figure 8.4 and Figure 8.5 represent the percentage 
difference between the complete data and pattern missing designs as 
a function of sample size for MCAR and MAR data respectively. Even 
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Figure 8.4
Relative difference in power between complete and MCAR missing designs by sample size.

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%
22%

Sample Size
100 200 300 400 500 600 700 800 900 1000

% 
D

iff
er

en
ce

Model C - Missing at T2 or T3

Model B - Missing at T3

Model A - Missing at T2

Model D - Missing at T2 or T3 or T2 & T3

Model A Model B Model C Model D

Figure 8.5
Relative difference in power between complete and MAR missing designs by sample size.
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though half the sample in each case has missing observations, the differ‑
ence between complete and missing data designs never exceeds 22% and for 
most sample sizes is less than 15%. Likewise, the proportional difference in 
power increases with sample sizes up to a sample size of — depending on 
the design — around 400, after which the proportional differences again 
decrease. Where this point occurs will vary as a function of the model and 
the effect size (as well as the mechanism underlying the missing data). 
If planning a large study, this suggests that the loss of statistical power 
as a result of incorporating a missing data design may be quite minimal 
for many purposes. In the next section, we consider ways to extend this 
approach to planning a missing data design.

evaluating Missing Data Patterns

The maximum likelihood formula we first introduced in Chapter 2 to 
calculate model noncentrality parameters and FMin values can be readily 
extended to include means. Specifically, to compare a null (F0) and  alter‑
native (FA) model, the likelihood ratio chi‑square test statistic can be cal‑
culated as 

χ µ µ2 1
0 0 0

1= × + ( ) ×( ) − − − −( )′ ×− −N Trace pA A A Aln lnΣ Σ Σ Σ Σ ×× −( )













µ µ0 A

 

where N (or N − 1) is the number of observations, and p is the number of 
observed variables. This equation looks intimidating, but taken one term 
at a time, every piece reduces down to a scalar value. As such, it amounts 
to nothing more than addition and subtraction of a series of numbers, 
multiplied by the sample size. Satorra and Saris (1985) showed how this 
value provided an estimate of the noncentrality parameter (λ) when esti‑
mating the alternative model, FA, with population data, F0. This equation 
can also be extended to multiple groups or patterns of data, which we will 
illustrate below.

C. Dolan, van der Sluis, and Grasman (2005) provided a useful exten‑
sion of the pattern missingness approach in the MCAR case. We will also 

Point of Reflection

Graham and colleagues (2001) considered the power of studies with planned 
missingness as a function of cost per observation. From this perspective, 
it is possible to construct costs for each pattern within a design in order 
to optimize power given costs. Given that not all observations are created 
equal in terms of time or money, you may wish to consider this approach 
when planning your own research.
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illustrate how a similar approach can be used with MAR data later in 
this chapter. Consider a model with three variables. If each of the three 
variables in our model independently has a tj probability of being missing, 
then it is possible to calculate the proportion of cases that can be expected 
in each of the eight possible patterns of missing or observed data. The 
probability of observing each pattern or combination of missing values, ri,

is given by Pr( | ) ( ) .ri j
j

p

j
r

j
rij ijτ τ τ= ∏ −

=

−

1

1 1  If each variable has a 20% probability 

of being missing (i.e., an 80% probability of being observed), then the pro‑
portion of cases that would be expected to have complete data would be 
. . . . . . .2 8 2 8 2 8 5120 1 0 1 0 1× × × × × = , or just over half of the cases, and the pro‑
portion of cases that would be expected to have no observed data, on the 
other hand, would be . . . . . . .2 8 2 8 2 8 0081 0 1 0 1 0× × × × × = , or just under 1%.

Each pattern of missing data, ri, can be represented as a vector. If observa‑
tions are made on occasions 1 and 3, but not on occasion 2, the correspond‑
ing vector would be ri = [ ]1 0 1 . This vector can be turned into what 
McArdle (1994) referred to as a filter matrix by first creating a diagonal

matrix with the elements of ri. In this case, diag ri( ) .=
















1 0 0
0 0 0
0 0 1

 Rows 

with 0s on the diagonal are then removed in order to create the filter

matrix, Fi. In this case, Fi =










1 0 0
0 0 1

.  With incomplete data, we

can make use of this filter matrix in order to see how each of m patterns of 
missing data contributes to the overall noncentrality parameter. Specifically,

 

λ ≈ ×

× × ′ +

× × ′



 × × × ′

−
N

F F

Trace F F F Fi

i A i

i A i i i

ln Σ

Σ Σ
1

0




 − × × ′





− + × − ×[ ]′ × ×

ln F F

p F F F

i i

i i i A i A

Σ

Σ

0

0µ µ ×× ′



 × × − ×[ ]
































−
F F Fi i i A

1

0µ µ























=
∑
i

m

1

.

As gruesome as it looks at first, the above equation is essentially the same 
as the one outlined at the beginning of this section, substituting in the fil‑
tered covariance matrices and mean vectors for their complete data coun‑
terparts. In fact, with complete data, the filter matrix is simply an identity 
matrix, which means that with complete data the filter can be omitted 
from the equation without affecting the results. In this case, the equation 
above reduces to the multiple group extension of the equation presented 
at the beginning of this section.
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Using a simple three‑variable example, C. Dolan et al. (2005) obtained 
the results shown in Table 8.3. Unsurprisingly, the single largest contri‑
bution to the overall noncentrality parameter comes from the complete 
data pattern, as would be expected. However, this table masks two 
other important considerations. First, the value of λi is a function of the 
group size, Ni, and so it makes sense that the larger groups contribute 
more to the overall estimate of λ than the smaller groups. Second, not 
all of the missing data patterns in which two of the three variables 
are observed (which do share the same sample size in this example 
and thus can be compared directly) contribute equally to the overall 
estimate of λ.

For this example, the group in which the first two variables are observed 
contributes much more highly to the overall noncentrality parameter (and 
thus to power) than either the group where the first and third or second 
and third variables are observed. To a much lesser extent, we can also see 
that the patterns with only one observed variable also contribute differ‑
entially to the overall noncentrality parameter, in this case with the third 
variable providing the greatest contribution.

With data that are missing by design, which patterns of missing data will 
be observed as well as the desired number of observations within each pat‑
tern of missing data are both under the control of the researcher. For a given 
alternative model, it might be beneficial to focus on only those groups that 
provide the greatest contribution to the overall noncentrality parameter. In 
the case where N is 1, the equation above provides an estimate of FMin, rather 
than the noncentrality parameter. We can use this fact to estimate the FMin 
value associated with each pattern of missing data, by treating the N as the 
proportion of observations in each pattern of missing data (so that they sum 
to 1 across all patterns). In turn, these values can then be combined in order 
to estimate what the overall noncentrality parameter would be with differ‑
ent representations of each missing data pattern in our sample.

Table 8.3

Contributions of Missing Data Patterns to 
Noncentrality Parameter

Pattern (ri) Ni λi % of Total λ
[1 1 1] 55      6.06 84.97
[1 1 0] 14       1.06 14.86
[1 0 1] 14      0.008    0.11
[1 0 0] 3 0.000001        0
[0 1 1] 14      0.004   0.06
[0 1 0]   3 0.000001        0
[0 0 1] 3         0.0002        0
[0 0 0]   < 1      0         0
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To illustrate how this approach might be used, let us simplify our model 
even further by focusing on a single_group model. As before, Λy, Ψ, Θe, and 
ty will be the same as in our original model. For this example, however,

we will use α =










0
0 197.

,  which is the difference between the two origi‑

nal groups and, by design, reflects a small effect size. Two simple alterna‑
tive hypotheses that can be tested are that the parameter associated with 
longitudinal change does not differ from 0 (i.e., the groups change in simi‑
lar ways), or that the intercept and rate of change are uncorrelated. In the 
population the correlation was equivalent to .25, which is at the low end 
of a medium effect size. We work through Stata syntax to evaluate these 
to estimate these values, presenting one section at a time. Syntax for other 
software packages can be found in the Appendix.

First, we specify the population covariance structure.

#delimit;
matrix ly0 = (1, 0 \
  1, 2 \
  1, 4 );
matrix ps0 = (1, .1118 \
  .1118, .2 );
matrix te0 = (1, 0, 0 \
  0, 2.27, 0 \
  0, 0, 5.09 );
matrix ty0 = (0 \ 0 \ 0 );
matrix al0 = (1 \ .197);
matrix sigma0 = ly0*ps0*ly0’ + te0;
matrix muy0 = ty0 + ly0*al0;

Next, we specify the alternative model. The following syntax would be 
used to test whether the change parameter differs from zero.

matrix ly1 = (1, 0 \
  1, 2 \
  1, 4 );
matrix ps1 = (1, .1118 \
  .1118, .2 );
matrix te1 = (1, 0, 0 \
  0, 2.27, 0 \
  0, 0, 5.09 );
matrix ty1 = (0 \ 0 \ 0 );
matrix al1 = (1 \ 0);
matrix sigma1 = ly1*ps1*ly1’ + te1;
matrix muy1 = ty1 + ly1*al1;
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Likewise, the following syntax can be used to specify the implied 
covariance matrix and vector of means if the intercept and slope are 
uncorrelated.

matrix ly1 = (1, 0 \
  1, 2 \
  1, 4 );
matrix ps1 = (1, 0 \
  0, .2 );
matrix te1 = (1, 0, 0 \
  0, 2.27, 0 \
  0, 0, 5.09 );
matrix ty1 = (0 \ 0 \ 0 );
matrix al1 = (1 \ .197);
matrix sigma1 = ly1*ps1*ly1’ + te1;
matrix muy1 = ty1 + ly1*al1;

With complete data, the minimum value of the fit function (FMin) can 
be estimated as follows. Here, all we have done is translate the equa‑
tion from the beginning of the chapter into some fairly straightforward 
arithmetic.

matrix p = rowsof(sigma0);
matrix n = (1);
matrix fmin = trace(n)*(ln(det(sigma1)) +

trace(inv(sigma1)*sigma0) - ln(det(sigma0)) –
trace(p) +
trace((muy0 - muy1)’*inv(sigma1)*(muy0 - muy1)));

Each pattern of missing data can be specified using a filter matrix. 
To specify each possible pattern of missing data where two of the three 
occasions are observed, the corresponding filter matrices would be F1,2 =

1 0 0
0 1 0

1 0 0
0 0 1

0 1 0
0 0 11 3 2 3









 =









 =




, ,, ,F Fand 




 .

 
To specify

each possible pattern of missing data where only one of the three occasions
was observed, the corresponding filter matrices would be F1 = [1 0 0],
F2 0 1 0= [ ],  and F3 0 0 1= [ ]. Estimating the corresponding  FMin val‑
ues for each pattern of incomplete data is then straightforward with syn‑
tax like the following.

matrix filter = (1, 0, 0 \
    0, 1, 0 );
matrix subsigma0 = filter*sigma0*filter’;
matrix submuy0 = filter*muy0;
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matrix subsigma1 = filter*sigma1*filter’;
matrix submuy1 = filter*muy1;
matrix subp = rowsof(subsigma0);
matrix subfmin = trace(n)*(ln(det(subsigma1)) +
 trace(inv(subsigma1)*subsigma0) –
 ln(det(subsigma0)) - trace(subp) +
 trace((submuy0 - submuy1)’*inv(subsigma1)*
 (submuy0 - submuy1)));

With multiple patterns of incomplete data, multiple filters can be 
applied to the data in order to reflect each condition represented in the 
data. Estimated values of FMin for each pattern of missing data under each 
alternative hypothesis are shown in Table 8.4. In contrast to the entries 
in Table 8.3, which reflected estimated noncentrality parameters, the val‑
ues of Table 8.4 are not weighted by their expected sample sizes. For this 
reason, the entries are directly comparable to one another within a given 
alternative model.

Obviously, the complete data condition provides the greatest contribu‑
tion per observation to the minimum value of the fit function. On aver‑
age, the groups with two of three variables observed reflect 74 and 64% 
of the complete data values for the test of zero mean and zero covariance, 
respectively. The corresponding averages for groups with just one of three 

Table 8.4

Minimum Fit Function Values (FMin) by Pattern of Missing Data

Mean Covariance

Pattern FMin % of FMin FMin % of FMin

[1 1 1] 0.07922 100.0 0.01613 100.0
[1 1 0] 0.04119 52.0 0.00849 52.7
[1 0 1] 0.06796 85.8 0.01214 75.2
[0 1 1] 0.06670 84.2 0.01023 63.4
[1 0 0] 0.00000 0.0 0.00000 0.0
[0 1 0] 0.03437 43.4 0.00563 34.9
[0 0 1] 0.06097 77.0 0.00436 27.0

Troubleshooting Tip

Automation of this process using syntax and loops is the best way to 
ensure that your results will be correct from one situation to another. The 
files we provide are templates that provide a good starting point for your 
own analyses. Learn to rely on syntax as heavily as possible.
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variables observed are 40 and 21% of their complete data values, respec‑
tively. However, presenting the results in this format serves to highlight 
that sometimes even groups with only a single variable observed such as 
[0 0 1] for the test of mean differences can still contribute substantially to 
the overall value of FMin (such as at the point where the mean differences 
are expected to be greatest) and thus the noncentrality parameter. In other 
circumstances, a particular pattern of missing data may not even contrib‑
ute at all to a parameter of interest.

More importantly, with MCAR data these values can be used to esti‑
mate the overall noncentrality parameter under any desired conditions. 
Table 8.5 shows the estimated values of FMin and sample size required 
to achieve power of .8 associated with each of the patterns of missing 
data.

Extensions to MAR Data

Earlier in this chapter, we illustrated how the pattern missingness approach 
could also be applied when data are MAR, and doing so involves compar‑
ing the difference in FMin values for both the model of interest and for a 
corresponding saturated model. In this section, we replicate and extend 
the above steps in order to accommodate the situation where data are 

Table 8.5

Weighted Values of FMin and Sample Size Required for Power of .8

Model

Pattern FMin A B C D

Mean
[1 1 1] 0.07922 50 50 50 50
[1 1 0] 0.04119 0 50 25 16.67
[1 0 1] 0.06796 50 0 25 16.67
[1 0 0] 0 0 0 0 16.67
Weighted FMin 0.07922 0.07359 0.06021 0.06690 0.05781
N for power = .8 101 108 132 119 137

Covariance

[1 1 1] 0.01613 50 50 50 50
[1 0 1] 0.00849 0 50 25 16.67
[1 1 0] 0.01214 50 0 25 16.67
[1 0 0] 0 0 0 0 16.67
Weighted FMin 0.01613 0.01414 0.01231 0.01322 0.01150
N for power = .8 488 557 639 595 684
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MAR instead of MCAR. Doing so is complicated somewhat further by 
the fact that selection affects both the observed and missing portions of 
the data as well as, by necessity, the proportions in each group. For this 
reason, we present fairly general syntax that can easily be modified very 
simply in order to consider different proportions of complete and incom‑
plete data, as well as various null and alternative models. Consideration 
of planned missing data under the MAR situation may be desirable in 
situations where, for example, testing burden is likely to be an issue (such 
as with frail older adults), when suggested by another aspect of the study 
design (such as where follow‑ups are planned on the basis of screening 
items or criterion scores) or where the costs associated with following up 
certain subgroups are likely to be prohibitive (such as for those moving 
out of state).

After defining the null and alternative models as in the MCAR case, the 
next step is to specify the selection process. Using the same three‑wave 
single‑group model, selection for MAR data is based upon data from the 
first occasion, which will be observed for all individuals. Sample syntax to 
define the variable associated with selection is straightforward.

* Create Selected and Unselected Matrices;
* Pr(Miss) = f(T1 Only);
matrix w = (1, 0, 0 );
* Mean of Selection Variable;
matrix mus0 = w*muy0;
* Variance of Selection Variable;
matrix vars0 = w*sigma0*w’;
* Standard Deviation of Selection Variable;
matrix sds0 = cholesky(vars0);

The next section calculates the required interim values associated with 
selection, which are needed to calculate the effects of the selection process 
on the means and covariance structure in the selected and unselected seg‑
ments of the population. Changing the proportion of missing or complete 
data can be accomplished by changing the value of probmiss or changing 
from a specific value to a loop over the range of interest.

* Mean and variance in selected subsample;
matrix probmiss = (.5);
matrix d = invnorm(trace(probmiss));
matrix phis = normalden(trace(d));
matrix PHIs = normal(trace(d));
matrix xPHIs = I(1) - PHIs;
matrix muss0 = mus0 + sds0*phis*inv(xPHIs);
matrix musu0 = mus0 - sds0*phis*inv(PHIs);
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matrix varss0 = vars0*(1 +
 (d*phis*inv(xPHIs)) –
 (phis*phis*inv(xPHIs)*inv(xPHIs)));
matrix varsu0 = vars0*(1 –
 (d*phis*inv(PHIs)) –
  (phis*phis*inv(PHIs)*inv(PHIs)));
matrix omegas0 = inv(vars0)*(varss0 –
 vars0)*inv(vars0);
matrix omegau0 = inv(vars0)*(varsu0 –
 vars0)*inv(vars0);
matrix sigmas0 = sigma0 +
 omegas0*(sigma0*(w’*w)*sigma0);
matrix sigmau0 = sigma0 +
 omegau0*(sigma0*(w’*w)*sigma0);
matrix ks0 = inv(vars0)*(muss0 - mus0);
matrix ku0 = inv(vars0)*(musu0 - mus0);
matrix muys0 = muy0 + sigma0*w’*ks0;
matrix muyu0 = muy0 + sigma0*w’*ku0;

As with the MCAR example, we define the filter variables associated with 
complete and missing data conditions. In this case, the syntax assumes 
that values in the incomplete data group are observed on the first two 
occasions but not at the third.

* Now Create Appropriate Comparisons;
* Original Data;
matrix p = rowsof(sigma0);
matrix n = (1);
matrix fmin= trace(n)*(ln(det(sigma1)) +
 trace(inv(sigma1)*sigma0) - ln(det(sigma0)) –
 trace(p) +
 trace((muy0 - muy1)’*inv(sigma1)*(muy0 - muy1)));
* Complete Data Filter;
matrix cfilter = (1, 0, 0 \
   0, 1, 0 \
  0, 0, 1 );
* Missing Data Filter;
matrix mfilter = (1, 0, 0 \
  0, 1, 0 );

The first comparison with MAR data is between the selected data matri‑
ces with the values implied by the alternative model, just as it would be 
with MCAR data. We create each of the (filtered) submatrices required for 
this comparison.

* First Compare Selected and Unselected with H1;
matrix subsigma0s = cfilter*sigmas0*cfilter’;
matrix submuy0s = cfilter*muys0;
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matrix subsigma1c = cfilter*sigma1*cfilter’;
matrix submuy1c = cfilter*muy1;
matrix subsigma0u = mfilter*sigmau0*mfilter’;
matrix submuy0u = mfilter*muyu0;
matrix subsigma1m = mfilter*sigma1*mfilter’;
matrix submuy1m = mfilter*muy1;
matrix subpc = rowsof(subsigma0s);
matrix nc = (I(1) - probmiss);
matrix subpm = rowsof(subsigma0u);
matrix nm = (probmiss);

Based on these values, the contribution to FMin values can be calculated 
separately for the complete and incomplete portions of the data. Notice 
that we define the sample size for the complete and missing components 
of the data in terms of probmiss. Changing its value will automatically 
change not only the matrices implied under the selection model but also 
the proportions of complete and missing observations in the model. In 
order to accommodate multiple patterns of incomplete data (or different 
cut‑points as described in Chapter 3), the proportion of incomplete obser‑
vations can also be modified. To replicate Model D, for example, nm could 
be divided by 3 for each of the three patterns of incomplete data, each of 
which would also have its own filter matrix. All other aspects of the esti‑
mation procedure would be the same.

matrix fminc1 = trace(nc)*(ln(det(subsigma1c)) +
 trace(inv(subsigma1c)*subsigma0s) –
 ln(det(subsigma0s)) –
 trace(subpc) +
 trace((submuy0s - submuy1c)’*inv(subsigma1c)*
 (submuy0s - submuy1c)));
matrix fminm1 = trace(nm)*(ln(det(subsigma1m)) +
 trace(inv(subsigma1m)*subsigma0u) –
 ln(det(subsigma0u)) - trace(subpm) +
 trace((submuy0u - submuy1m)’*inv(subsigma1m)*
 (submuy0u - submuy1m)));

In Chapter 3, we noted that for MAR data there were two sources of 
discrepancies between the population and alternative models. The first 
comes from the fact that the alternative model is false in the population, 
and the second comes from the selection process itself. The covariance 
matrices and mean vectors will always differ in the top and bottom seg‑
ments of the population whenever selection is systematic. To subtract out 
this second source of discrepancy, we also need to estimate the true popu‑
lation model on the selected and unselected segments of the population. 
The following syntax calculated the additional required quantities and 
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estimates the corresponding discrepancy between the observed values 
and what they would have been in the absence of selection.

* Next Compare Selected and Unselected with H0;
matrix subsigma0c = cfilter*sigma0*cfilter’;
matrix submuy0c = cfilter*muy0;
matrix subsigma0m = mfilter*sigma0*mfilter’;
matrix submuy0m = mfilter*muy0;
matrix fminc0 = trace(nc)*(ln(det(subsigma0c)) +
 trace(inv(subsigma0c)*subsigma0s) –
 ln(det(subsigma0s)) - trace(subpc) +
 trace((submuy0s - submuy0c)’*inv(subsigma0c)*
 (submuy0s - submuy0c)));
matrix fminm0 = trace(nm)*(ln(det(subsigma0m)) +
 trace(inv(subsigma0m)*subsigma0u) –
 ln(det(subsigma0u)) - trace(subpm) +
 trace((submuy0u - submuy0m)’*inv(subsigma0m)*
  (submuy0u - submuy0m)));

An overall estimate of the adjusted FMin value can now be obtained directly.

matrix fminall = (fminc1 + fminm1) –
  (fminc0 + fminm0);

It is also easy to calculate this value as a proportion of what the corre‑
sponding complete data value would have been, as the following state‑
ment does:

matrix pctfmin = 100*fminall*inv(fmin);

Table 8.6 shows the values of FMin across the range of incomplete data 
from 5 to 95% with Models A and B for tests of 0 mean and 0 covariance, 
respectively. Under all circumstances, statistical power is reduced with 
incomplete data, relative to the complete data condition. However, what 
is notable is that the rate of proportional rate of change in the FMin values 
is typically much less than the rate of change in missing data. Even when 
half of the sample has incomplete data on the third observation, the FMin 
is still at least three quarters of its complete data value. How important 
this difference is for statistical power is a function of the sample size and 
under many circumstances may be quite small. Considering a range of 
patterns of missing data and a range of hypotheses will convey a sense of 
the implications that missing data are likely to have for key hypotheses 
of interest and the circumstances where the effects of incomplete data are 
likely to be greater or smaller. For both of the alternative hypotheses con‑
sidered here, Model A provides larger values of FMin than does Model B 
and is thus the more powerful design.
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Table 8.6

Minimum Values of the Fit Function by Proportion of MAR Missing Data

Model A Model B

Zero Mean

% Incomplete FMin % Complete FMin % Complete

5 0.07866 99.3 0.07732 97.6
10 0.07810 98.6 0.07542 95.2
15 0.07754 97.9 0.07352 92.8
20 0.07697 97.2 0.07162 90.4
25 0.07641 96.4 0.06972 88.0
30 0.07585 95.7 0.06782 85.6
35 0.07528 95.0 0.06591 83.2
40 0.07472 94.3 0.06401 80.8
45 0.07416 93.6 0.06211 78.4
50 0.07359 92.9 0.06021 76.0
55 0.07303 92.2 0.05831 73.6
60 0.07247 91.5 0.05641 71.2
65 0.07190 90.8 0.05450 68.8
70 0.07134 90.0 0.05260 66.4
75 0.07077 89.3 0.05070 64.0
80 0.07021 88.6 0.04880 61.6
85 0.06965 87.9 0.04690 59.2
90 0.06908 87.2 0.04500 56.8
95 0.06852 86.5 0.04309 54.4

Zero Covariance
  5 0.01556 96.4 0.01463 90.7
10 0.01523 94.4 0.01389 86.1
15 0.01500 93.0 0.01339 83.0
20 0.01481 91.8 0.01305 80.9
25 0.01466 90.9 0.01281 79.4
30 0.01453 90.1 0.01264 78.3
35 0.01442 89.4 0.01252 77.6
40 0.01432 88.7 0.01243 77.1
45 0.01422 88.2 0.01237 76.7
50 0.01413 87.6 0.01231 76.3
55 0.01405 87.1 0.01226 76.0
60 0.01395 86.5 0.01220 75.6
65 0.01385 85.9 0.01211 75.1
70 0.01374 85.2 0.01199 74.3
75 0.01361 84.4 0.01182 73.2
80 0.01346 83.4 0.01158 71.8
85 0.01327 82.3 0.01123 69.6
90 0.01304 80.8 0.01074 66.6
95 0.01271 78.8 0.01000 62.0
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Conclusions

In this chapter, we focused attention on situations where data will be 
missing by design. These “managed missingness” situations are impor‑
tant because several large‑scale surveys now include incomplete data 
and also because of situations where it may be desirable to plan to col‑
lect incomplete data from the outset. There are many situations where 
time considerations require that partial data be collected from some or all 
individuals, and the strategies outlined in the current chapter provide a 
set of tools that can be used to evaluate missing data designs in terms of 
key study hypotheses. The strategies we outline can be applied across a 
variety of null and alternative models, a wide array of incomplete patterns 
of incomplete data, as well as data which are MCAR or MAR. Because 
the rate of decrease in the minimum value of the fit function is likely in 
many cases to be less than the rate of decrease in missing observations, 
with careful planning, the most efficient design may be one that includes 
data missing by design. In the next chapter, we extend these ideas to situ‑
ations where it may be desirable to simulate raw data, either to consider 
situations with a large number of patterns of missing data or in order to 
evaluate the effects of violating various assumptions on statistical power 
with incomplete data.

Further Readings

Graham, J. W., Hofer, S. M., & MacKinnon, D. P. (1996). Maximizing the useful‑
ness of data obtained with planned missing value patterns: An application 
of maximum likelihood procedures. Multivariate Behavioral Research, 31, 
197–218.

Graham, J. W., Taylor, B. J., & Cumsille, P. E. (2001). Planned missing data designs in 
analysis of change. In L. Collins & A. Sayer (Eds.), New methods for the analysis of 
change (pp. 335–353). Washington, DC: American Psychological Association.

Exercises

1.  Use the first three waves of the model from Figure 7.3 (and exer‑
cises from Chapter 7) to replicate the entries in Table 8.3.

2.  Use the entries from your version of Table 8.3 to replicate the 
entries in Table 8.4.

3.  How would these values differ if you used waves 1, 3, and 5 from 
Figure 7.3 for MCAR data?
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9
Using Monte Carlo Simulation 
Approaches to Study Statistical 
Power With Missing Data

To this point, we have concerned ourselves with the range of analytic 
contexts in which sufficient statistics such as means, variances, and 
covariances were all that was necessary to estimate statistical power. 
This approach, however, only begins to scratch the surface of situa‑
tions that may be of interest to the applied researcher. By extending our 
consideration of statistical power with missing data to include Monte 
Carlo simulation studies with raw data, the range of applications and 
situations that can be evaluated is greatly expanded. In this chapter, 
we begin by very briefly considering some guidelines for planning and 
implementing a Monte Carlo simulation study, along with references to 
more detailed sources. Next, we present some of the different ways of 
generating raw data for use in a Monte Carlo study. The latter part of this 
chapter is devoted to exploring some applications of Monte Carlo meth‑
ods with missing data, such as evaluating convergence rates, assessing 
model fit statistics, complex missing data patterns, and violations of 
model assumptions.

Planning and Implementing a Monte Carlo Study

Monte Carlo methods provide a probabilistic solution for problems where 
exact calculations are typically either not possible to obtain (or very diffi‑
cult to obtain) or are not necessary to obtain because they can more easily 
be well approximated. Consider the problem of trying to determine the 
area of one shape relative to another. In the case of Figure 9.1, we have a 
circle nested within a square. In this case, the edges of the circle exactly 
touch the edges of the square. Because both shapes have known formulas 
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for their areas and we have some way to relate those areas, we can solve the 
problem easily and exactly. The area of the square is A lSquare = 2 , where l 
is the length of its sides. The area of the square is ACircle

l= π( ) .2
2  With both

of these expressions, we can say that the proportion of the square that is
occupied by the circle is π

4  or a little more than 78%. The problems we have 
considered to this point are similar to this one.

In contrast, consider Figure 9.2. Solving the ratio of areas of these two 
shapes is much more difficult because we have little a priori information 
helping us relate one area to another and the area of the inner shape is 
highly irregular and would be difficult to characterize with a formula. 
A Monte Carlo approach to finding the ratio of the areas would be quite 
straightforward. We could print out a copy of the shapes, pin it to the wall, 
and then proceed to throw darts at the wall. We would count up the num‑
ber of darts that landed inside the lightning bolt, the number of shapes 
that landed in the square but outside the lightning bolt, and any darts that 
missed the square entirely either (a) would not be counted, or (b) would 
be thrown at the wall again until all of the darts were somewhere in the 
square.

The proportion of darts landing inside the lightning bolt would approx‑
imate the proportion of the square’s area occupied by the lightning bolt: 
Shazam! This approach would also work with the circle in Figure 9.1. One 
advantage of this approach is that it allows to us to solve even rather difficult 
problems quite simply. The downside, however, is that this can be a fairly 
labor‑intensive approach. To increase the accuracy of our approximate 

Figure 9.1
Example of a problem that can be solved exactly.
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solution, it is necessary to “throw more darts,” often 10,000 or more. As 
ever, there is no free lunch. The researcher is trading off between a small 
number of very difficult calculations versus a very large number of much 
simpler calculations. With a computer, we would use a random number 
generator to provide us with two uncorrelated variables (say x and y) that 
would uniformly cover the area of the square, which we could represent 
as all pairs of coordinates between 0 and 1 on the x‑axis and y‑axis.

Both structural equation modeling with incomplete data and statisti‑
cal power analysis are situations that are ideally suited for this kind of 
approach. In contrast to the situations that have been presented to this 
point in the volume, the Monte Carlo approach provides the opportunity 
to consider more complex situations (typically under a more limited set 
of conditions) as well as how a model is likely to perform in practice as 
opposed to in principle. As such, Monte Carlo methods can provide a very 
useful “brute force” complement to the broader approaches we have out‑
lined to this point. For other problems, they may represent the only cur‑
rently practical solution.

Researchers interested in learning about Monte Carlo methods will 
find no shortage of sources to consult for advice and examples and an 
article by Metropolis (1987) provides a very interesting history of the 
method. Fan, Felsővályi, Sivo, and Keenan (2001), for example, provide a 
readily accessible introduction to conducting basic Monte Carlo studies 
using SAS. Within a structural equation modeling framework, Bandalos 
(2006) provides a thoughtful introduction to Monte Carlo research that 
covers the most important considerations such as design and the range 

Figure 9.2
Example of a problem than can be solved only approximately.
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of outcomes that are most often considered. Paxton and colleagues (2001) 
outline a number of very useful guidelines for getting started with Monte 
Carlo research, and Skrondal (2000) provides additional considerations 
for increasing the potential external validity of results generated from a 
Monte Carlo study. As well, many empirical studies of different aspects of 
structural equation modeling rely on Monte Carlo methods and provide 
a good resource for researchers interested in implementing these meth‑
ods (e.g., Enders & Bandalos, 2001; Fan, 2003; Gerbing & Anderson, 1993; 
Hu & Bentler, 1999; L. K. Muthén & Muthén, 2002; Sivo & Willson, 2000;  
Arbuckle, 1996).

Paxton and colleagues (2001) provide some very specific guidelines for 
planning and conducting a Monte Carlo study within the structural equa‑
tion modeling framework, identifying nine key steps, as listed in Table 9.1. 
What follows in this section corresponds directly with the guidelines 
offered by Paxton and colleagues, because their recommendations are so 
generally applicable.

It is critical that every Monte Carlo study begin with a theoretically 
informed research question. If there is little compelling theoretical rea‑
son to investigate a phenomenon, then the results are unlikely to have 
much scientific value. This step also helps to guide the range of conditions 
that are worth investigation. External validity is also a key consideration 
in designing a Monte Carlo study. Ensuring that the model under inves‑
tigation has relevance to the kind of situations typically studied in the 
structural equation modeling framework increases the potential value of 
a Monte Carlo study. Using published research to guide the selection of 
models is a great place to start in this regard.

Selection of the specific conditions that will be manipulated by the 
researcher is also of critical importance. Typical choices to be considered 

Table 9.1

Paxton and Colleagues’ Steps in Planning a Monte 
Carlo Study

Step Task

1 Developing a research question derived from theory
2 Creating a valid model
3 Designing (selecting) experimental conditions
4 Selecting values of population parameters
5 Selecting an appropriate software package
6 Conducting the simulations
7 File storage
8 Troubleshooting and verification
9 Summarizing results
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include variables such as the sample size, number of latent and manifest 
indicators, method of estimation, type and extent of model misspecifi‑
cation, type and extent of missing data, and of course the distributions 
of the raw data. Once the conditions themselves have been selected, it 
is also necessary to select appropriate values of the population param‑
eters, such as factor loadings and structural coefficients. Given the facto‑
rial nature of most experimental designs, the number of factors grows 
geometrically, even before considering the desired number of replications 
for each condition. Again, theory and the empirical literature can help to 
guide the specific factors and their levels that should be considered in any 
simulation study. This trade‑off between the number of conditions under 
investigation and the number of replications considered was one of the 
factors that led Skrondal (2000) to question the “conventional wisdom” on 
designing Monte Carlo studies. His perspective is that researchers should 
consider a wider range of conditions using fewer replications under each 
condition in order to increase the potential external validity of any spe‑
cific study. Though most Monte Carlo studies consider fixed values (e.g., 
specific sample sizes) of study factors, there is generally no reason that 
they could not be treated as random factors, where generalizability is the 
primary concern.

Choice of an appropriate software package for conducting a simulation 
study is also an important consideration. Each program presents its own 
strengths and limitations, but the primary consideration should be ease 
and accuracy with which the researcher can conduct the actual study. 
Programs differ with regard to the ease with which they can accom‑
modate factors such as data generation, level of measurement, analysis 
of multiple replication, and storage and presentation of results. As of the 
time of this writing, for example, LISREL will allow analysis of replicated 
data with missing data using full information maximum likelihood esti‑
mation but is extremely limited in the output it allows researchers to save. 
AMOS provides an easy interface for Monte Carlo analyses through pro‑
gramming with Visual Basic. MPlus and EQS both provide quite flexible 
opportunities to generate and analyze both normal and nonnormal data 
internally. For any given application, and any given researcher, however, 
it may be just as convenient to generate the data using one software pack‑
age, estimate models in another, and analyze the results in still another. 
Ease of moving between different data formats also reduces potential bar‑
riers in this regard.

Next on the list of steps is the actual execution of the Monte Carlo study. 
Paxton et al. (2001) point to additional considerations at this stage, such as 
whether to include nonconverged replications in the results. (They recom‑
mend against it in order to keep the number of replications equal across 
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conditions unless rates of nonconvergence are of explicit interest, such as 
in the study by Enders & Bandalos, 2001.) Others have varied the number 
of replications across different sample size conditions in order to hold the 
total number of observations in each condition constant. If improper solu‑
tions are to be excluded, then additional data sets must be generated to 
allow for models that do not converge or that provide improper solutions. 
All of these analyses can place considerable demands on both computa‑
tion time and storage resources, and plans need to be made in advance for 
how data will be retained and archived. Fortunately, storage media have 
become quite economical, greatly reducing the burden of this aspect of 
conducting a Monte Carlo study.

The final two steps outlined by Paxton and colleagues (2001) are check‑
ing the results (we recommend doing this early and often) and summa‑
rizing the results. With regard to the former, we recommend routinely 
obtaining descriptive and bivariate statistics for the data under each of the 
study conditions in order to ensure that they have been appropriately gen‑
erated and read by the software packages. In our simulation studies we do 
so if possible in each of the software packages used. Ensure that the cor‑
rect number of observations and data sets have been read; verify that the 
model is correctly structured and estimated; leave nothing to chance. In 
terms of summarizing results, Paxton et al. recommend using a combina‑
tion of descriptive, graphical, and inferential approaches, and their advice 
is difficult to argue with. Because of the vast quantity of results generated 
within the typical simulation study, we particularly recommend learn‑
ing more about compact and effective ways to communicate information 
visually (e.g., Tufte, 2001), along with methods for exploratory data analy‑
sis (e.g., Tukey, 1977).

Simulating Raw Data Under a Population Model

In any computer simulation setting, it is important to recognize that (a) 
numbers generated by a computer are not truly random, (b) in order 
to be replicable, an initial “seed” value must be specified, and (c) over 

Point of Reflection

What are some important topics in your own area of research which might 
lend themselves to a Monte Carlo study? Can you find examples in the litera‑
ture of situations where a simulation approach has been used? What are some 
of the key outcomes and factors that might be important for such a study?
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extremely large sequences with large numbers of values, it is possible for 
these sequences to begin to repeat. In this section, we illustrate techniques 
for generating data under a variety of different conditions of increasing 
complexity. We move between generating normal and nonnormal data 
and between the univariate and multivariate cases, because the latter are 
extensions of the former.

generating Normally Distributed univariate Data

Underlying all Monte Carlo applications is the (continuous) uniform dis‑
tribution. The simplest example of a (discrete) uniform distribution is a 
coin toss, the outcome of which may be either heads or tails, with equal 
frequency for any “fair” coin. Another common discrete example would 
be the roll of a single die. Each outcome, values from 1 through 6, occurs 
with equal frequency. Uniform distributions may also be generated across 
continuous distributions, in which case every interval of equivalent length 
across the distribution is equally probable. In terms of the square back‑
ground in Figures 9.1 and 9.2 at the beginning of this chapter, we would 
want to make sure that every point from 0 to x and from 0 to y would be 
equally likely to be selected so that we cover the entire area completely 
and evenly. Otherwise, the results of our Monte Carlo study might be inac‑
curate or incorrect. One commonly used formula used for this purpose is 
called the congurential generator described in Fan et al. (2001) where values 
at a particular (the ith) step, Ri , over a range from 0 to m are a function 
of the value at the previous step Ri−1 , a multiplier, a, and an increment, 
c: R aR c mi i= +−( )(mod )1 . The advantage of a uniform distribution is that 
all values along its full range are equally likely to occur. This ensures, in 
turn, that all values calculated from a uniform generation can be expected 
to occur with the probability specified by their probability distribution 
function.

Every major statistical package has its own routines for generating 
uniform variables. In SAS, for example, the ranuni function generates 
values uniformly distributed between 0 and 1. In SPSS, the function is 
rv.uniform, and in Stata it is uniform. With each package, the steps are the 
same: (a) specify the desired number of observations, (b) specify a seed 
value to initiate the sequence of numbers and make the results replicable, 
and then (c) generate the total required number of values. Here is a simple 
routine in Stata to generate 1000 values uniformly distributed between 0 
and 1. Simple arithmetic can be used to generate uniform variables across 
a different scale.

set obs 1000
set seed 2047881
generate x = uniform()
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The choice of a seed is important only in that syntax run with the same 
seed will produce identical results every time it is run, whereas syntax 
run without a seed (or with a different seed) will produce different out‑
put. Although its importance depends on the type of random number gen‑
erator used in a specific software package, it is generally good practice to 
select an odd‑numbered value for the seed. Once we have our uniformly 
distributed variables, we can readily transform them or use them to cal‑
culate variables with other distributions. If a variable with a range from 
1 to 100 is desired, we can calculate it as 99*x + 1 for example. A normally 
distributed variable with a mean of 50 and standard deviation of 10 can be 
calculated in Stata as 50 + 10*invnorm(x).

generating Nonnormally Distributed univariate Data

Using linear transformations such as the one above, researchers can con‑
struct variables with any desired means and standard deviations, the 
first and second moments of a distribution. Often, researchers may wish 
to generate variables with nonnormal distributions, ones that also have 
known skewness and kurtosis. One of the most commonly used ways to 
accomplish this was outlined by Fleishman (1978). For desired values of 
skewness and kurtosis, his iterative method allows solving a set of equa‑
tions for three values that can be used to transform a normally distributed 
variable into one with the desired values. Although his method involves 
quite a bit of algebra and numerous calculations (all best left to comput‑
ers), the approach itself is not difficult to grasp.

Fleishman (1978) set out to find an approximation, using a polynomial 
transformation, of a normally distributed variable, X, into a nonnormally 
distributed variable, Y , with given skewness and kurtosis. In particular, 
Y a bX cX dX= + + +2 3, and the constants a , b , c , and d  are solved for 
in terms of the moments of a normal distribution, which are known. Two 
simplifying assumptions are used, specifically that the mean is 0 and the 
standard deviation is 1. Linear transformations can be used after the fact 
to create variables with the desired mean and standard deviations. Setting 
the mean equal to 0 implies that a c+ = 0  (or, equivalently, that a c= − ).  
Setting the variance equal to 1 implies that b bd c d2 2 26 2 15 1+ + + = .  The 
desired skewness (γ1) can be expressed in terms of the coefficients as 
γ 1

2 22 24 105 2= + + +c b bd d( ) . Similarly, the kurtosis (γ2) can be expre‑
ssed as γ 2

2 2 2 224 1 28 12 48 141 225= + + + + + + +[ ( ) (bd c b bd d bd c dd2 )] . Now 
all that has to be done is to solve these four equations for the constants a, 
b, c, and d. One fairly straightforward way to do this is to find a solution 
using iterative techniques such as Newton’s method. Newton’s method 

Y100315.indb   172 7/15/09   3:00:00 PM



Using Monte Carlo Simulation Approaches to Study Statistical Power 173

finds an approximate solution (within any desired level of accuracy) based 
on an initial starting value, x0 . The updated value at a given step is given
by x xn n

f x
f x

n

n+
( )
′( )= −1  where f xn( )  is the value of the function at the nth itera‑

tion, and ′f xn( )  is the value of the first derivative of the function at the 
nth iteration. This process continues until x xn n+ − <1  the desired level 
of accuracy (or until the maximum number of iterations is reached). In 
this case, the process is conducted simultaneously for b , c , and d  using 
matrix algebra by taking the partial derivatives of the equations above 
with respect to each unknown. A sample program that executes this pro‑
cess using Stata appears below. By default, it is set up to continue until 
none of the parameters changes by more than 0.000001 or until 500 itera‑
tions, whichever comes first.

/* Solving for Fleishman’s Coefficients */
#delimit;
mat maxiter = (500);
mat iter = (0);
* Skewness and Kurtosis;
mat skewkurt = (1, 5);
mat skew = skewkurt[1..rowsof(skewkurt),1];
mat kurt = skewkurt[1..rowsof(skewkurt),2];
mat output = J(rowsof(skewkurt),3,0);
mat coef = (1 \ 0 \ 0);
mat f = J(3,1,1);

while (trace(iter) <= trace(maxiter) &
max(abs(f[1,1]),abs(f[2,1]),abs(f[3,1])) > .000001 {;
mat b = coef[1,1];
mat c = coef[2,1];
mat d = coef[3,1];
* Matrix of Function (f);
mat f = (b*b+6*b*d+2*c*c+15*d*d - 1 \
 2*c*(b*b+24*b*d+105*d*d+2) - skew[4,1] \
 24*(b*d+c*c*(1+b*b+28*b*d)+d*d*(12+48*b*d+141*c*c+225*d*d))
 - kurt[4,1]);
    * Matrix of Partial Derivatives (df);
    mat df = (2*b+6*d, 4*c, 6*b+30*d \
     4*c*(b+12*d), 2*(b*b+24*b*d+105*d*d+2),
 4*c*(12*b+105*d) \
      24*(d+c*c*(2*b+28*d)+48*d*d),
      48*c*(1+b*b+28*b*d+141*d*d),

 24*(b+28*b*c*c+2*d*(12+48*b*d+141*c*c+225*d*d)+d*d)+d*d*(48
 *b+450*d));
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      mat delta = inv(df)*f;

      mat coef = coef - delta;
      mat iter=iter+I(1);
      };
      mat list iter;
      mat list coef;
      mat list delta;
      mat list f;
      mat list df;

Not all combinations of skewness and kurtosis can be generated using 
this method. Specifically, whenever γ γ1

2
2
20 0629576 0 0717247< × +. . , 

there is no solution. In these cases, approaches based on different meth‑
ods must be used (e.g., Burr, 1942; Headrick & Mugdadi, 2006; Ramberg & 
Schmeiser, 1974).

generating Normally Distributed Multivariate Data

It is a fairly straightforward matter to generate multivariate normally 
distributed data with a desired covariance structure. Two methods, 
Cholesky decomposition and the factor pattern matrix, are used most 
commonly, both of which create linear combinations of independent (i.e., 
uncorrelated) normally distributed variables to construct new variables 
with the desired covariance structure.

Cholesky decomposition of a square symmetric matrix, S, uses a form 
of Gaussian elimination to find a lower triangular matrix, L, such that 
S = LL′ . In this way, it is analogous to the square root function in scalar 
algebra. Statistical packages with matrix routines such as SPSS, SAS, and 
Stata all have Cholesky decomposition commands (called chol, root, and 
cholesky, respectively). The same solution may also be obtained in struc‑
tural equation modeling software such as LISREL very simply. Consider 
estimating the model in Figure 9.3.

We use the Cholesky‑decomposed matrix to take three uncorrelated 
variables (Old 1, Old 2, and Old 3) and estimate three new correlated vari‑
ables (New 1, New 2, and New 3). New 1 is a linear function of Old 1; New 
2 is a linear function of Old 1 and Old 2; New 3 is a linear function of Old 
1, Old 2, and Old 3. In the LISREL model, we can estimate the lower trian‑
gular matrix L using the following matrices.

 

Ψ Λ=
















=
















1 0 0
0 1 0
0 0 1

0 0
0,

*
* *
* * *

,y andd Θε =
















0 0 0
0 0 0
0 0 0
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This model can be estimated from our desired covariance matrix, S =
1 0 0 4 0 5
0 4 1 0 0 6
0 5 0 6 1 0

. . .

. . .

. . .
,

















 in order to solve for L. In this case, L y= Λ
 
because

LL S′ = .

da ni=3 no=1000
la
new1 new2 new3
cm
1
.4 1
.5 .6 1
mo ny=3 ne=3 ly=fu,fi be=fu,fi ps=sy,fi te=sy,fi
le
old1 old2 old3
va 1.0 ps(1,1) ps(2,2) ps(3,3)
fr ly(1,1) ly(2,2) ly(3,3)
fr ly(2,1) ly(3,1)
fr ly(3,2)
ou nd=4

Old 3Old 1 Old 2 

New 3New 1 New 2 

* * 

* * 
* * 

Figure 9.3
Graphical representation of the Cholesky decomposition to generate variables with desired 
covariance structure from uncorrelated variables.
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In this case, L y= =




Λ
1 0000 0 0
0 4000 0 9165 0
0 5000 0 4364 0 7480

.

. .

. . .











.  So beginning with

three uncorrelated normally distributed variables, it is possible to gener‑
ate three new normally distributed variables that will have the desired 
covariance structure using the following equations (remember that col‑
umns cause rows):

 New Old Old Old1 1 0000 1 0 0000 2 0 0000 3= × + × + ×. . .

 New Old Old Old2 0 4000 1 0 9165 2 0 0000 3= × + × + ×. . .

New Old Old Old3 0 5000 1 0 4364 2 0 7480 3= × + × + ×. . . .

A second commonly used method for generating normally distributed 
variables with a desired covariance structure uses the factor pattern matrix, 
which represents another way of “solving” the linear combination of uncor‑
related variables that result in data with the desired covariance structure. 
For a given covariance matrix, S, it is possible to find values for matrices 
V (eigenvectors) and L (eigenvalues) such that ( ) .S LI V− = 0  As with the 
Cholesky decomposition, most commonly used statistical packages have 
routines for finding eigenvectors and eigenvalues for square symmet‑
ric matrices. In Stata, for example, matrix symeigen V L = S provides the 
desired values. The eigenvalues and eigenvectors can be used to generate 
a matrix of weights, A (the factor pattern matrix), which can generate data 
with a desired covariance structure. In this case, A V Cholesky LI= ( ( )) . Two 
more lines of syntax are all that is required to generate this matrix in Stata.

matrix L = diag(L)
matrix A = V*cholesky(L)

Using the same input covariance matrix used with the Cholesky example,

we find that A =
−
− −

0.8427 0.4250 0.3306
0.9167 0.1248 0.3796
0.5932 00.7965 0.1169

















. Again, beginning with

three uncorrelated normally distributed variables, it is possible to gener‑
ate three new normally distributed variables with the desired covariance 
structure using the following equations:

 New Old Old Old1 1 2 3= × − × + ×0.8427 0.4250 0.3306

 New Old Old Old2 1 2 3= × − − × − ×0.9167 0.1248 0.3796

 New Old Old Old3 1 2 3= × + × + ×0.5932 0.7965 0.1169 .
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generating Nonnormally Distributed Multivariate Data

Unfortunately, the two processes of (a) generating nonnormally distrib‑
uted variables and (b) transforming the variables to have a desired covari‑
ance matrix interact with one another. First creating normally distributed 
variables with a given covariance structure and then transforming them 
to have specific values of skewness and kursosis will necessarily alter the 
original covariances. Likewise, beginning with uncorrelated nonnormally 
distributed variables and applying the method above to create a given 
covariance structure will necessarily alter the skewness and kurtosis of 
the original variables.

The method for solving both of these problems simultaneously is to 
find an intermediate covariance structure that counteracts the interaction 
between the nonnormality and the intervariable correlations. Consider 
two nonnormally distributed variables in terms of Fleishman’s coefficients 
used above, Y a b X c X d X1 1 1 1 1 1

2
1 1

3= + + +  and Y a b X c X d X2 2 2 2 2 2
2

2 2
3= + + + . 

Vale and Maurelli (1983) showed that the correlation between Y1  and Y2 , 
R b b b d d b d d c c dY Y1 2 1 2 1 2 1 2 1 2

2
1 2

33 3 9 2 6= + + + + +ρ ρ ρ( ) ( ) ( 11 2d ),  where ρ  is an 
“intermediate correlation.” Again, Newton’s method provides a straight‑
forward method of solving for ρ  to the desired level of accuracy. The 
syntax below finds the intermediate correlation required to provide a 
final correlation of 0.70 between two variables with (skew and kurtosis) of 
(0.75 and 0.80) and (−0.75 and 0.80), respectively. Note in the syntax below 
that to compute variables with positive or negative skew simply involve 
switching the signs of a and c.

/* This program calculates the intermediate correlation
needed to generate pairs of non-normal variates with
a specified target correlation
*/
#delimit;
set obs 1;
gen b1 = .978350485;
gen c1 = -.124833577;
gen d1 = .001976943;

gen b2 = .978350485;
gen c2 = .124833577;
gen d2 = .001976943;
gen target = .7;
gen r = .2;
gen f = 0;
gen df = 0;
gen rtemp = 0;
gen ratio = 0;
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quietly forvalues i=1/50 {;
replace f =

(r^3*6*d1*d2+r^2*2*c1*c2+r*(b1*b2+3*b1*d2+3*d1*b2+9*d1*
d2)-target);
replace df =

(3*r^2*6*d1*d2+2*r^2*c1*c2+(b1*b2+3*b1*d2+3*d1*b2+9*d1*d2));
replace ratio = f/df;
quietly replace rtemp = r - ratio;
quietly replace r = rtemp if abs(rtemp - ratio) > .00001;
};
tab r;

Another important topic, which we will not consider here, involves 
generating data from nonnormally distributed latent variables. The 
general approach, which allows researchers to manipulate the skew‑
ness and kurtosis of both latent and manifest variables, was outlined by 
Mattson (1997). A subsequent Monte Carlo study designed to compare his 
approach with two alternatives (Burr’s [1942] method and an approach 
based upon the generalized lambda distribution outlined in Ramberg & 
Schmeiser [1974]), suggested that Mattson’s approach appeared to per‑
form best. Other researchers, such as B. Muthén and Kaplan (1985), have 
examined the effects of “coarsening” variables, which is another strat‑
egy that can be used to generate models with nonnormal data, and of 
course it is also possible to generate manifest and observed variables 
based upon nonnormal parametric distributions such as uniform, beta, 
gamma, or chi‑square.

Evaluating Convergence Rates for a Given Model

Enders and Bandalos (2001) conducted a Monte Carlo study to compare four 
methods of missing data estimation (full information maximum likelihood, 
list‑wise deletion, pair‑wise deletion, and hot‑deck imputation). Their study 
considered a fairly simple three factor model (shown in Figure 9.4) under a 
wide variety of conditions. Specifically, they considered the effects of factor 
loadings (.4, .6, or .8), sample size (100, 250, 500, or 750), proportion of cases 
with missing data (2, 5, 10, 15, or 25%), and type of missing data mechanism 
(MCAR or MAR) for a total of 120 different conditions.

Each condition was replicated 250 times (requiring a total of 30,000 dif‑
ferent data sets and 12 million observations of nine variables apiece, each 
of which had to be analyzed separately). Based on their analyses, Enders 
and Bandalos (2001) were interested in four different outcome measures 
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including convergence rates, parameter bias, parameter efficiency (analo‑
gous to statistical power), and goodness of fit.

In a separate study, Davey et al. (2005) extended the Enders and Bandalos 
(2001) analyses to models that were incorrectly specified in the measure‑
ment model or structural model as shown in Figure 9.5 and Figure 9.6, 
respectively. In this follow‑up study, we used the methods outlined in our 
earlier chapters to precisely calculate the effects of model misspecification 
on various indices of model fit under a wide variety of missing data condi‑
tions, applicable for any sample size.

Here, we replicate part of our study using Monte Carlo methods. Because 
Enders and Bandalos (2001) performed their original simulation study 
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Figure 9.4
Structure of population model used in Monte Carlo simulation study.
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Figure 9.5
Model misspecified at the measurement level.
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using AMOS to estimate models and SAS to generate data and calculate 
results, we follow the same procedure here for a small subset of their orig‑
inal conditions, adding a few new conditions of our own. Following the 
outline from Paxton et al. (2001), we work through the steps of our small 
simulation study. The AMOS syntax is quite lengthy, and so we provide 
it in a separate section at the end of this chapter rather than in the text 
itself.

Step 1: Developing a research Question

Enders and Bandalos (2001) found that full information maximum likeli‑
hood estimation worked best under MCAR and MAR missing data con‑
ditions for a model which was correctly specified. They also found that 
convergence rates were low with very small [N = 100] sample sizes. How 
well does FIML estimation perform for models that are misspecified at 
either the measurement or structural level?

Step 2: Creating a Valid Model

In addition to the correctly specified model from Enders and Bandalos 
(Figure 9.4), we also estimated models that were misspecified at either 
the measurement or structural level, consistent with Davey et al. (2005) as 
shown in Figure 9.5 and Figure 9.6.

Step 3: Selecting experimental Conditions

For the purposes of this small‑scale simulation study, we focus on the 
situations that are likely to be most problematic in terms of model estima‑
tion. Specifically, we limit our analysis to the situations where data are 
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Figure 9.6
Model misspecified at the structural level.
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either complete or 25% missing, where factor loadings are limited to .4, 
sample size is set at N = 250, and data are either MCAR or MAR.

Step 4: Selecting Values of Population Parameters

Consistent with Enders and Bandalos (2001), we select values of the popu‑
lation parameters as
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The diagonal elements of Θε  are calculated as 1 4 2− (. ) . Matrix multiplica‑
tion gives us an implied covariance matrix of

S =

1 000 0 160 0 160 0 064 0 064 0 064 0 064 0 064 0 064. . . . . . . . .
00 160 1 000 0 160 0 064 0 064 0 064 0 064 0 064 0 064
0

. . . . . . . . .

.. . . . . . . . .

.
160 0 160 1 000 0 064 0 064 0 064 0 064 0 064 0 064

0 0064 0 064 0 064 1 000 0 160 0 160 0 064 0 064 0 064
0 0

. . . . . . . .
. 664 0 064 0 064 0 160 1 000 0 160 0 064 0 064 0 064

0 06
. . . . . . . .

. 44 0 064 0 064 0 160 0 160 1 000 0 064 0 064 0 064
0 064

. . . . . . . .
. 00 064 0 064 0 064 0 064 0 064 1 000 0 160 0 160

0 064 0
. . . . . . . .

. .. . . . . . . .

. .
064 0 064 0 064 0 064 0 064 0 160 1 000 0 160

0 064 0 0064 0 064 0 064 0 064 0 064 0 160 0 160 1 000. . . . . . .

































.

Step 5: Selecting an appropriate Software Package

Following Davey et al. (2005), Stata was used to estimate study data and 
AMOS was used to estimate the structural equation models. Results were 
output from AMOS as ASCII text files and analyzed within Stata.

Step 6: Conducting the Simulations

With the small number of conditions included in this sample simulation, 
the simulations can be run directly. Again, following Enders and Bandalos 
(2001), because the number of nonconverged replications was of interest, 
we estimated a fixed number of 250 replications under each condition. If 
we were interested in running a study with a large number of conditions, 
it makes the most sense to run a simulation as a series of batch or execut‑
able files. AMOS has a very convenient interface with VisualBasic, MPlus 
has internal simulation structures, and LISREL can easily be run in batch 
mode. For more complicated simulation studies, it is generally beneficial 
to invest more time on the programming side, whereas brute force works 
just fine with a simple simulation such as this one.

Step 7: File Storage

Our study required us to estimate 250 different data sets, each contain‑
ing 500 observations (125,000 observations, each with nine variables). The 
same data sets were then used to estimate models with complete, MCAR, or 
MAR data for the correct, measurement misspecified, or structurally mis‑
specified models. Ordinarily, separate data files would be estimated under 
each condition, requiring nine times as many observations. However, 
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the approach we use here reduces the sampling variability — condition 
becomes two repeated factors — for illustrative purposes. Data sets can be 
stored as ASCII text, Excel files, or as Microsoft Access database files.

AMOS syntax files, though long compared with what most researchers 
are accustomed to, do not require much hard drive space because they are 
stored as ASCII files, as are the Stata syntax files and all output. To avoid 
clutter, we stored all syntax, data, and output files in separate folders.

Step 8: Troubleshooting and Verification

It is a rare simulation study that runs successfully on the first attempt. 
As such, we initially wrote our simulation study to include a very small 
number of replications (one). Once we verified that the output generated 
by our program matched completely with the output generated by run‑
ning the same model manually, we proceeded to add a loop for a small 
number of replications (usually 3 to 5), followed by another period of veri‑
fication. Finally, after running the entire sequence of 250 replications, we 
compared output for a randomly selected replication manually. Similar 
checks were made to ensure that the output files were being read correctly 
prior to tabulating the results.

One final consideration for this small simulation study is that, because the 
unit of analysis is the replication (i.e., the same data set was analyzed under 
each of the study conditions), that is the way our data set was ultimately 
structured. This means that we had to create separate variable names for the 
model chi‑square values as calculated under each of the different model con‑
ditions. In turn, this required the use of a systematic naming convention.

For this study, the first letter of the variable name (most statistical pack‑
ages require that variable names begin with letters rather than numbers) 
indicated which model was being estimated (x = correct, y = structural mis‑
specification, z = measurement misspecification), followed by an abbrevi‑
ated name for the fit index (e.g., chi = chi‑squared, rms = RMSEA, etc.) and 
separate numerical codes reflecting each level of the various design factors: 
missing data type (0 = complete, 1 = MCAR, 2 = MAR), factor loading (1 = .4, 
2 = .6, and 3 = .8), sample size (1 = 100, 2 = 250, 3 = 500, 5 = 750), and proportion 
of cases with missing data (1 = 2%, 2 = 5%, 3 = 10%, 4 = 15%, 5 = 25%). Correct 
and complete documentation is essential to the successful management of 
a simulation study. Long (2008) has a number of very useful suggestions for 
managing most of the workflow tasks associated with a Monte Carlo study 
and we highly recommend this volume as a useful starting point.

Note that though not all conditions were estimated for this Monte Carlo 
study, we wrote our syntax in a more general format so that it can easily 
be extended to do so. Because we were interested in evaluating various 
fit indices, not all of which are calculated automatically with incomplete 
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data, it was also necessary to estimate both the saturated and indepen‑
dence models under each condition.

Step 9: Summarizing the results

One of the first things you will discover when conducting a Monte Carlo 
study is that it generates a tremendous volume of data, and it is not always 
easy to summarize these data values. In this simple case, we have three 
different models (correct, structural misspecification, and measurement 
misspecification) under three different data conditions (complete, 25% 
cases with MCAR data, and 25% cases with MAR data). For each of these 
nine combinations in turn we might be interested in knowing about the 
convergence rates and then a variety of summary statistics (say the mean, 
median, and the 5th and 95th percentile values) across several different fit 
indices (model chi‑square, independence chi‑square, RMSEA, TLI, etc.).

It probably makes the most sense to look at how estimation of each model 
differs across each type of condition. For that reason, our table of results 
should probably have condition nested within model. Table 9.2 presents 
the convergence rates for our small Monte Carlo study. As we can see, not 
all of our 250 replications in each condition provided proper solutions, 
even with complete data. Overall, however, convergence rates were high‑
est with complete data, followed by MCAR data and lowest when data 
were MAR. Similarly, estimation of the correct model most often led to a 
valid solution, followed by the structurally misspecified model and the 
measurement misspecification providing the lowest convergence rates at 
just 56% of models. (Under slightly different conditions however, specifi‑
cally when factor loadings were higher, nearly all models converged.)

Similarly, we can capture the results from our Monte Carlo study in 
terms of their effects on various aspects of model fit. Table 9.3 illustrates 
the model chi‑square statistic, the chi‑square statistic for the indepen‑
dence model, the RMSEA, and the Tucker‑Lewis Index (TLI). Because 
these statistics do not have normal distributions, we focus on the median 
values along with their 90% confidence interval as represented in the val‑
ues of the 5th and 95th percentiles. Using data from this table, Figure 9.7 
illustrates, for example, that whereas the median values of the RMSEA are 

Table 9.2

Convergence Rates for Monte Carlo Simulation

Converged Analyses (%)

Model Complete MCAR MAR

Correct 228 (91.2) 215 (86.0) 202 (80.8)
Structural misspecified 220 (88.0) 205 (82.0) 186 (74.4)
Measurement misspecified 177 (70.8) 170 (68.0) 140 (56.0)
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Figure 9.7
RMSEA values for correct, structural, and measurement misspecified models by data type.

Table 9.3
Results From Monte Carlo Simulation Study for Correct, Structural, and 
Measurement Misspecified Models

Mdn 5th Percentile 95th Percentile

Model Complete MCAR MAR Complete MCAR MAR Complete MCAR MAR

Chi‑square
Correct 23.03 22.56 22.66 13.79 14.50 14.34 36.61 37.09 35.64
Structural 28.57 27.56 27.81 17.71 18.15 16.86 47.85 45.02 42.82
Measurement 29.50 28.99 27.71 18.12 15.72 16.80 49.72 43.69 44.57

Independence chi‑square
Correct 103.58 96.11 94.87 76.45 68.56 67.57 143.03 132.08 128.92
Structural 103.27 96.86 94.12 75.09 68.14 68.03 143.30 131.26 127.48
Measurement 104.10 97.71 97.55 74.70 68.56 68.79 143.86 132.08 134.32

RMSEA
Correct 0.000 0.000 0.000 0.000 0.000 0.000 0.046 0.047 0.044
Structural 0.024 0.021 0.021 0.000 0.000 0.000 0.060 0.057 0.053
Measurement 0.030 0.029 0.025 0.000 0.000 0.000 0.065 0.057 0.059

TLI

Correct 1.000 1.000 1.000 0.751 0.744 0.759 1.000 1.000 1.000
Structural 0.919 0.944 0.930 0.603 0.652 0.648 1.000 1.000 1.000
Measurement 0.881 0.883 0.905 0.612 0.598 0.591 1.000 1.000 1.000
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equivalent when estimating the correct model, power to reject the mis‑
specified models is always highest with complete data. Power to reject 
structural misspecification is similar between the MCAR and MAR data 
conditions and is higher to reject the measurement misspecification with 
MCAR data compared with MAR data.

Similar plots can be constructed for other indices, and the data included 
in Table 9.3 can be used to calculate values of additional measures of fit 
such as the CFI as well. In the next chapter, we provide an illustration of 
how this approach can be extended to estimate indices such as the stan‑
dardized and unstandardized root mean square residuals.

Complex Missing Data Patterns

Another excellent example of Monte Carlo simulation with structural 
equation modeling is described by L. K. Muthén and Muthén (2002) and 
focuses on using this approach to determine statistical power or sample 
size for a variety of different models. Here, we focus on their confirmatory 
factor model with five observed indicators on each of two latent variables 
in order to compare the approach above using AMOS with the approach 
used here with MPlus. The population model is shown in Figure 9.8.
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Figure 9.8
Population model for CFA Monte Carlo simulation.
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In this model, each of the factor loadings is set at 0.8, variances of the 
latent variables are set at 1.0, residual variances are set at 0.36 (1 − 0.82), and 
the covariance between the latent variables is set at 0.25. In terms of the 
LISREL matrices, the model can be specified as

 

Λy =








0 8 0
0 8 0
0 8 0
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0 0 8
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.

To estimate the power to test whether the covariance between the two 
latent variables is equal to zero, this alternative model is estimated using 
data generated under the population model.

All observations have complete data on the indicators of the first latent 
variable (y1, y2, y3, y4, and y5), and 50% of the values of the indicators of 
the second latent variable (y6, y7, y8, y9, and y10) are missing. In this way, 
many different patterns of missing data can be generated across these last 
five variables. (This approach is similar to the method used by C. Dolan 
et al. [2005] described in Chapter 8. Alternatively, specific patterns of miss‑
ing values can be specified as classes within MPlus.)

The syntax below runs 10,000 replications of this model with a sample 
size of 175. In this case, there is a single “class” and each observation’s 
probability of membership in that class is 1. Within that class, the prob‑
ability of each variable y6 through y10 being missing is 0.5 and each of 
the 32 possible combinations of missing data across those five variables 
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may be generated (although the one missing on all five variables would be 
very uncommon). To generate data where 50% of cases were missing on 
all of y6 through y10, two classes would have to be generated, each with 
probability of membership equal to 0.5. In the first class, the probability of 
missing data on y6 through y10 would be 0; in the second class, the prob‑
ability of missing data on y6 through y10 would be 1.

TITLE: cfamodel.inp normal, missing
MONTECARLO:
  NAMES ARE y1-y10;
  NOBSERVATIONS = 175;
  NREPS = 10000;
  SEED = 53487;
  CLASSES = C(1);
  GENCLASSES = C(1);
  PATMISS = y6 (.5) y7 (.5) y8 (.5) y9 (.5) y10 (.5);
  PATPROB = 1;
  SAVE = cfamodel.sav;
ANALYSIS: TYPE = MIXTURE MISSING;
  ESTIMATOR = ML;
MODEL MONTECARLO:
  %OVERALL%
  f1 BY y1-y5*.8;
  f2 BY y6-y10*.8;
  f1@1 f2@1;
  y1-y10*.36;
  f1 WITH f2*.25;
MODEL:
  %OVERALL%
  f1 BY y1-y5*.8;
  f2 BY y6-y10*.8;
  f1@1 f2@1;
  y1-y10*.36;
  f1 WITH f2*.25;
OUTPUT: PATTERNS TECH9;

Troubleshooting Tip

We strongly recommend that, if you do not have a copy of MPlus, you 
download the student version of this software and try the syntax above. 
Use it as a starting point to make further modifications to the patterns of 
missing data. It is also a good idea to replicate results from earlier sections 
of this book using the Monte Carlo approach in order to see how closely 
the results agree in a specific context. Doing so can also help you to gain 
a better appreciation for the pros and cons of Monte Carlo versus popula‑
tion‑based approaches.
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Running this syntax generates a bit of output that is not found in the 
usual analysis. As shown in Table 9.4, MPlus provides information about 
each pattern of incomplete data in the first replication, which we have 
reorganized here in terms of each variable which may potentially be miss‑
ing. Notice that in this first replication, 31 of 32 possible missing data pat‑
terns are represented (only the pattern where y7 and y8 are observed and 
y6, y9, and y10 are missing does not occur).

Other useful components of the output include the number of successful 
replications (in this case, all 10,000 were successfully estimated) and infor‑
mation about model fit. The output then proceeds to provide information 

Table 9.4

Frequencies of Each Missing Data Pattern in First Data Set

y6 y7 y8 y9 y10
Number of 

Cases

1 1 1 1 1 4
1 1 1 1 0 7
1 1 1 0 1 4
1 1 1 0 0 11
1 1 0 1 1 5
1 1 0 1 0 5
1 1 0 0 1 7
1 1 0 0 0 4
1 0 1 1 1 5
1 0 1 1 0 6
1 0 1 0 1 4
1 0 1 0 0 8
1 0 0 1 1 5
1 0 0 1 0 6
1 0 0 0 1 8
1 0 0 0 0 10
0 1 1 1 1 5
0 1 1 1 0 5
0 1 1 0 1 5
0 1 0 1 1 9
0 1 0 1 0 5
0 1 0 0 1 5
0 1 0 0 0 6
0 0 1 1 1 5
0 0 1 1 0 6
0 0 1 0 1 5
0 0 1 0 0 5
0 0 0 1 1 2
0 0 0 1 0 2
0 0 0 0 1 7
0 0 0 0 0 4
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about estimates for each of the model parameters, including the covari‑
ance between the two latent variables. Along with the estimates, their 
standard errors, and a 95% confidence interval, MPlus provides informa‑
tion about the proportion of replications in which the model parameter 
was statistically significant, in this case 81.2% for a power of .812. Power 
for other model parameters can be obtained in the same way; power for 
other sample sizes may be obtained by rerunning the syntax with dif‑
ferent sample sizes. Likewise, power under different assumptions can be 
obtained by selecting different values for the population parameters, such 
as covariance of .5 between the latent variables or with different values 
of the factor loadings. MPlus has facilities for specifying a missingness 
mechanism in order to generate MAR data as well as for generating non‑
normally distributed variables.

Conclusions

Monte Carlo methods represent an extremely important set of tools for 
power analysis with missing data. Under situations where a specific 
model or small set of conditions is of interest, Monte Carlo methods may 
often be the easiest and most efficient way to estimate statistical power. 
Under other conditions, such as with a large number of missing data 
patterns, in real‑world situations such as when convergence rates are of 
primary interest, or when raw data are necessary such as with nonnor‑
mally distributed variables, the Monte Carlo approach may be the only 
practical way to address an applied research question. In this chapter, 
we have provided a set of tools useful for generating data as well as 
estimating statistical power with missing data that greatly extend the 
approaches that have been described in earlier chapters. The primary 
downsides to Monte Carlo methods are their time and storage intensive 
nature, as well as the fact that their results are typically only applicable 
to the specific circumstances under investigation. Estimating power for 
different sample sizes or for different population parameters generally 
requires generating completely new data sets and estimating the models 
of interest on each on. Following the procedures outlined by Paxton and 
colleagues (2001) is one way to help manage the complexity of conduct‑
ing a Monte Carlo study. Additional suggestions relevant to managing 
a Monte Carlo study can be found in the recent volume by Long (2008) 
on workflow.
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Exercises

1.  Generate data for 100 observations for each set of population 
parameters below using both the Cholesky and factor pattern 
matrix approaches.
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2.  Find Fleishman’s coefficients to generate nonnormally distributed 
variables with the following values of skewness and kurtosis.

a. Skewness −1.5, Kurtosis 6.0
b. Skewness 0.5, Kurtosis 2.0
c. Skewness 2.5, Kurtosis 11.0

3.  Generate univariate data for 1000 observations based on each set 
of coefficients you calculated for Exercise 9.2. Check your results 
using descriptive statistics.
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4.  Find the intermediate correlations corresponding to the following 
pairs of variables.

5.  Design a Monte Carlo study with at least three factors in it. Be sure 
to consider each of the nine steps outlined by Paxton et al. (2000).

6.  Replicate the Monte Carlo CFA study using a different seed. How 
do your results compare? Download the student version of MPlus 
to do so, if needed.

7. Write syntax to replicate the Monte Carlo CFA study:

a. To determine the power to detect a correlation of .4 using a 
sample size of 100.

b. To determine the sample size needed to detect a correlation of 
.25 with a power of .9.

AMOS Syntax Used for Our Simulation Study

Attribute VB_Name = "Module1"
Option Explicit

Sub Main()
 Dim infile As String
 Dim outfile As String
 Dim i As Integer
 Dim dbMain As DAO.Database
 Dim tblTemp As DAO.TableDef
 Dim tblName As String
 Dim strSQL As String
 Dim strSQLDelete As String
 Dim it As Integer
 Dim m As Integer

 Set dbMain = OpenDatabase("c:\nm750f80.mdb")
 tblName = "c:\nm750f80"
 strSQLDelete = "DROP TABLE Temp"
 ‘dbMain.Execute (strSQLDelete)

 Open "c:\cfr\methods\fiml\xnm750f80_indexes.txt" For 
Output As #1

Variable 1 Variable 2

Skewness Kurtosis Skewness Kurtosis Correlation

a −1.5 6.0 −1.5 6.0 .5
b 2.5 11 2.5 6.0 .7
c 2.5 11 −2.5 6.0 .7
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 Open "c:\cfr\methods\fiml\xnm750f80_satcov.txt" For 
Output As #2
 Open "c:\cfr\methods\fiml\xnm750f80_matrices.txt" For 
Output As #3

 For m = 1 To 5
    For it = 1 To 250
    strSQL = "SELECT * INTO Temp FROM nm750f80 WHERE IT 
= " & it & " and M = " & m

    'create Temp table and drop extra fields
    dbMain.Execute (strSQL)
    dbMain.Execute ("alter table Temp drop column it")
    dbMain.Execute ("alter table Temp drop column m")
    dbMain.Execute ("alter table Temp drop column s")
    dbMain.Execute ("alter table Temp drop column 
loading")

    Call FitAmosModel(m, it)
    'remove Temp table
    strSQLDelete = "DROP TABLE Temp"
    dbMain.Execute (strSQLDelete)

    Next it
 Next m
 Close #1
 Close #2
 Close #3
 dbMain.Close
End Sub

Sub FitAmosModel(m, it)
 'Attach Amos data file
 Dim ObsVars As Variant
 Dim ModelAdmissible As Boolean, ModelConverged As 
Boolean
 Dim SaturatedAdmissible As Boolean, SaturatedConverged 
As Boolean
 Dim IndepConverged As Boolean, IndepAdmissible As 
Boolean, IndepCmin As Double, IndepNparms As Integer
 Dim ModelCmin As Double, SaturatedCmin As Double, P As 
Double
 Dim Chi2 As Double
 Dim ModelNparms As Integer, SaturatedNparms As Integer, 
Df As Integer, N As Integer

 ObsVars = Array("x1", "x2", "x3", "x4", "x5", "x6", 
"x7", "x8", "x9")
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 Call FitSaturated(ObsVars, SaturatedConverged, 
SaturatedAdmissible, SaturatedCmin, SaturatedNparms, m, it)

 Call FitIndependent(ObsVars, IndepConverged, 
IndepAdmissible, IndepCmin, IndepNparms)

 Dim Sem As New AmosEngine
     Sem.TextOutput
     Sem.Standardized
     Sem.Smc
    ‘Sem.AllImpliedMoments
     Sem.ModelMeansAndIntercepts
     Sem.Iterations (1000)

 'Model specification starts here
 Sem.BeginGroup "c:\nm750f80.mdb", "Temp"
     Sem.Structure "f1 (load1)"
     Sem.Structure "f2 (load2)"
     Sem.Structure "f3 (load3)"
     Sem.Structure "x1 = (xbar1) + (1) f1 + (1) e1"
     Sem.Structure "x2 = (xbar2) + (load4) f1 + (1) e2"
     Sem.Structure "x3 = (xbar3) + (load5) f2 + (1) e3"
     Sem.Structure "x4 = (xbar4) + (1) f2 + (1) e4"
    Sem.Structure "x5 = (xbar5) + (load6) f2 + (1) e5"
    Sem.Structure "x6 = (xbar6) + (load7) f2 + (1) e6"
    Sem.Structure "x7 = (xbar7) + (1) f3 + (1) e7"
    Sem.Structure "x8 = (xbar8) + (load8) f3 + (1) e8"
    Sem.Structure "x9 = (xbar9) + (load9) f3 + (1) e9"
    Sem.Structure "e1 (e1)"
    Sem.Structure "e2 (e2)"
    Sem.Structure "e3 (e3)"
    Sem.Structure "e4 (e4)"
    Sem.Structure "e5 (e5)"
    Sem.Structure "e6 (e6)"
    Sem.Structure "e7 (e7)"
    Sem.Structure "e8 (e8)"
    Sem.Structure "e9 (e9)"
    Sem.Structure "f1<>f2 (cov1)"
    Sem.Structure "f2<>f3 (cov2)"
    Sem.Structure "f1<>f3 (cov3)"

    Dim load1 As Double
     Dim load2 As Double
     Dim load3 As Double
     Dim load4 As Double
     Dim load5 As Double
     Dim load6 As Double
     Dim load7 As Double
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     Dim load8 As Double
     Dim load9 As Double
     Dim err1 As Double
     Dim err2 As Double
     Dim err3 As Double
     Dim err4 As Double
     Dim err5 As Double
     Dim err6 As Double
     Dim err7 As Double
     Dim err8 As Double
     Dim err9 As Double
     Dim cov1 As Double
     Dim cov2 As Double
     Dim cov3 As Double
     Dim xbar1 As Double
     Dim xbar2 As Double
     Dim xbar3 As Double
     Dim xbar4 As Double
     Dim xbar5 As Double
     Dim xbar6 As Double
     Dim xbar7 As Double
     Dim xbar8 As Double
     Dim xbar9 As Double

     ‘GET PARAMETER ESTIMATES
     load1 = Sem.ParameterValue("load1")
     load2 = Sem.ParameterValue("load2")
     load3 = Sem.ParameterValue("load3")
     load4 = Sem.ParameterValue("load4")
    load5 = Sem.ParameterValue("load5")
    load6 = Sem.ParameterValue("load6")
    load7 = Sem.ParameterValue("load7")
    load8 = Sem.ParameterValue("load8")
    load9 = Sem.ParameterValue("load9")
    err1 = Sem.ParameterValue("e1")
    err2 = Sem.ParameterValue("e2")
    err3 = Sem.ParameterValue("e3")
    err4 = Sem.ParameterValue("e4")
    err5 = Sem.ParameterValue("e5")
    err6 = Sem.ParameterValue("e6")
    err7 = Sem.ParameterValue("e7")
    err8 = Sem.ParameterValue("e8")
    err9 = Sem.ParameterValue("e9")
    cov1 = Sem.ParameterValue("cov1")
    cov2 = Sem.ParameterValue("cov2")
    cov3 = Sem.ParameterValue("cov3")
    xbar1 = Sem.ParameterValue("xbar1")
    xbar2 = Sem.ParameterValue("xbar2")
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    xbar3 = Sem.ParameterValue("xbar3")
    xbar4 = Sem.ParameterValue("xbar4")
    xbar5 = Sem.ParameterValue("xbar5")
    xbar6 = Sem.ParameterValue("xbar6")
    xbar7 = Sem.ParameterValue("xbar7")
    xbar8 = Sem.ParameterValue("xbar8")
    xbar9 = Sem.ParameterValue("xbar9")

   Fit the model
   'Extract parameter estimates and admissibility 
status
   On Error GoTo 0 ' Turn off error trapping.
   On Error Resume Next ' Defer error trapping.

   ModelConverged = (Sem.FitModel = 0)
   ModelAdmissible = Sem.Admissible
   ModelCmin = Sem.Cmin
   ModelNparms = Sem.npar
   N = Sem.DataFileNCases
   Set Sem = Nothing 'Terminate AmosEngine objects
   DoEvents 'Let system unload AmosEngine objects 
before continuing
   Debug.Print "mc: "; ModelConverged
   Debug.Print "ma: "; ModelAdmissible
   Debug.Print "sc: "; SaturatedConverged
   Debug.Print "sa: "; SaturatedAdmissible
   Debug.Print "ic: "; IndepConverged
   Debug.Print "ia: "; IndepAdmissible

   'recover parameters from the saturated models
 If (ModelConverged And ModelAdmissible And 
SaturatedConverged And SaturatedAdmissible And 
IndepConverged And IndepAdmissible And (ModelNparms <> 
-1)) Then
   Chi2 = ModelCmin - SaturatedCmin
   Df = SaturatedNparms - ModelNparms
   Dim FitTest As New AmosEngine
   P = FitTest.ChiSquareProbability(Chi2, 
CDbl(Df))
   FitTest.Shutdown 'Suppresses benign 
error message

   Dim IndepChi As Double
   Dim IndepDf As Double
   Dim Prob As Double
   Dim NFI As Double
   Dim TLI As Double
   Dim Rmsea As Double
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   'CALCULATE FIT INDICES
   IndepChi = IndepCmin - SaturatedCmin
   IndepDf = SaturatedNparms - IndepNparms
   NFI = 1 - (Chi2 / IndepChi)
   TLI = ((IndepChi / IndepDf) - (Chi2 / 
Df)) / ((IndepChi / IndepDf) - 1)
   If Chi2 > Df Then
      Rmsea = Sqr((Chi2 - Df) / (N * Df))
   End If
   If Chi2 <= Df Then
      Rmsea = 0
   End If

   'TESTING
   Debug.Print "SaturatedCmin: "; 
Format$(SaturatedCmin, "0.00")
   Debug.Print "IndepChi: "; 
Format$(IndepChi, "0.00")
   Debug.Print "IndepDf: "; 
Format$(IndepDf, "0.00")
   Debug.Print " "
   Debug.Print "Fit of factor model:"
   Debug.Print "Chi Square: "; 
Format$(Chi2, "0.00")
   Debug.Print "Df: "; Df
   Debug.Print "P: "; Format$(P, "0.00")
   Debug.Print " "
   Debug.Print "NFI: "; Format$(NFI, 
"0.00")
   Debug.Print "TLI: "; Format$(TLI, 
"0.00")
   Debug.Print "RMSEA: "; Format$(Rmsea, 
"0.00")

   'write out the model fit indexes for 
further analyses
   Write #1, Round(Chi2, 5), Df, 
Round(IndepChi, 5), IndepDf, Round(NFI, 5), Round(TLI, 5), 
Round(Rmsea, 5), m, it
   Write #3, Round(load1, 5),
Round(load2, 5), Round(load3, 5), Round(load4, 5), 
Round(load5, 5), Round(load6, 5), _
    Round(load7, 5),
Round(load8, 5), Round(load9, 5), Round(err1, 5), 
Round(err2, 5), Round(err3, 5), _
    Round(err4, 5),
Round(err5, 5), Round(err6, 5), Round(err7, 5),
Round(err8, 5), Round(err9, 5), _
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    Round(xbar1, 5), Round(xbar2, 5), 
Round(xbar3, 5), Round(xbar4, 5), Round(xbar5, 5), 
Round(xbar6, 5), _
    Round(xbar7, 5), Round(xbar8, 5), 
Round(xbar9, 5), Round(cov1, 5), Round(cov2, 5), Round(cov3, 
5), _
    m, it
   Set FitTest = Nothing
   DoEvents
 Else
  'Debug.Print "Sorry, one or both models did 
not converge to an admissible solution."
  Write #1, -9, -9, -9, -9, -9, -9, -9, m, it
  Write #3, -9, -9, -9, -9, -9, -9, _
   -9, -9, -9, -9, -9, -9, _
   -9, -9, -9, -9, -9, -9, _
   -9, -9, -9, -9, -9, -9, _
   -9, -9, -9, -9, -9, -9, _
   m, it
 End If
End Sub
 Sub FitSaturated(VarName, Converged, Admissible, 
Cmin, Nparms, m, it)
    Dim FirstVar As Integer, LastVar As Integer, ivar 
As Integer
    Dim Saturated As New AmosEngine
    FirstVar = LBound(VarName)
    LastVar = UBound(VarName)
   'saturated models parameters
   Dim cov11 As Double
   Dim cov21 As Double
   Dim cov31 As Double
   Dim cov41 As Double
   Dim cov51 As Double
   Dim cov61 As Double
   Dim cov71 As Double
   Dim cov81 As Double
   Dim cov91 As Double
   Dim cov22 As Double
   Dim cov32 As Double
   Dim cov42 As Double
   Dim cov52 As Double
   Dim cov62 As Double
   Dim cov72 As Double
   Dim cov82 As Double
   Dim cov92 As Double
   Dim cov33 As Double
   Dim cov43 As Double
   Dim cov53 As Double
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   Dim cov63 As Double
   Dim cov73 As Double
   Dim cov83 As Double
   Dim cov93 As Double
   Dim cov44 As Double
   Dim cov54 As Double
   Dim cov64 As Double
   Dim cov74 As Double
   Dim cov84 As Double
   Dim cov94 As Double
   Dim cov55 As Double
   Dim cov65 As Double
   Dim cov75 As Double
   Dim cov85 As Double
   Dim cov95 As Double
   Dim cov66 As Double
   Dim cov76 As Double
   Dim cov86 As Double
   Dim cov96 As Double
   Dim cov77 As Double
   Dim cov87 As Double
   Dim cov97 As Double
   Dim cov88 As Double
   Dim cov98 As Double
   Dim cov99 As Double
   Dim xbar1 As Double
   Dim xbar2 As Double
   Dim xbar3 As Double
   Dim xbar4 As Double
   Dim xbar5 As Double
   Dim xbar6 As Double
   Dim xbar7 As Double
   Dim xbar8 As Double
   Dim xbar9 As Double

 With Saturated
  .ModelMeansAndIntercepts
  .BeginGroup "c:\nm750f80.mdb", "Temp"
  .Iterations (1000)
  .Structure "x1 = (xbar1)"
  .Structure "x2 = (xbar2)"
  .Structure "x3 = (xbar3)"
  .Structure "x4 = (xbar4)"
  .Structure "x5 = (xbar5)"
  .Structure "x6 = (xbar6)"
  .Structure "x7 = (xbar7)"
  .Structure "x8 = (xbar8)"
  .Structure "x9 = (xbar9)"
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  .Structure "x1<>x1(cov11)"
  .Structure "x1<>x2(cov21)"
  .Structure "x1<>x3(cov31)"
  .Structure "x1<>x4(cov41)"
  .Structure "x1<>x5(cov51)"
  .Structure "x1<>x6(cov61)"
  .Structure "x1<>x7(cov71)"
  .Structure "x1<>x8(cov81)"
  .Structure "x1<>x9(cov91)"
  .Structure "x2<>x2(cov22)"
  .Structure "x2<>x3(cov32)"
  .Structure "x2<>x4(cov42)"
  .Structure "x2<>x5(cov52)"
  .Structure "x2<>x6(cov62)"
  .Structure "x2<>x7(cov72)"
  .Structure "x2<>x8(cov82)"
  .Structure "x2<>x9(cov92)"
  .Structure "x3<>x4(cov43)"
  .Structure "x3<>x3(cov33)"
  .Structure "x3<>x5(cov53)"
  .Structure "x3<>x6(cov63)"
  .Structure "x3<>x7(cov73)"
  .Structure "x3<>x8(cov83)"
  .Structure "x3<>x9(cov93)"
  .Structure "x4<>x4(cov44)"
  .Structure "x4<>x5(cov54)"
  .Structure "x4<>x6(cov64)"
  .Structure "x4<>x7(cov74)"
  .Structure "x4<>x8(cov84)"
  .Structure "x4<>x9(cov94)"
  .Structure "x5<>x5(cov55)"
  .Structure "x5<>x6(cov65)"
  .Structure "x5<>x7(cov75)"
  .Structure "x5<>x8(cov85)"
  .Structure "x5<>x9(cov95)"
  .Structure "x6<>x6(cov66)"
  .Structure "x6<>x7(cov76)"
  .Structure "x6<>x8(cov86)"
  .Structure "x6<>x9(cov96)"
  .Structure "x7<>x7(cov77)"
  .Structure "x7<>x8(cov87)"
  .Structure "x7<>x9(cov97)"
  .Structure "x8<>x8(cov88)"
  .Structure "x8<>x9(cov98)"
  .Structure "x9<>x9(cov99)"

  cov11 = .ParameterValue("cov11")
  cov21 = .ParameterValue("cov21")
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  cov31 = .ParameterValue("cov31")
  cov41 = .ParameterValue("cov41")
  cov51 = .ParameterValue("cov51")
  cov61 = .ParameterValue("cov61")
  cov71 = .ParameterValue("cov71")
  cov81 = .ParameterValue("cov81")
  cov91 = .ParameterValue("cov91")
  cov22 = .ParameterValue("cov22")
  cov32 = .ParameterValue("cov32")
  cov42 = .ParameterValue("cov42")
  cov52 = .ParameterValue("cov52")
  cov62 = .ParameterValue("cov62")
  cov72 = .ParameterValue("cov72")
  cov82 = .ParameterValue("cov82")
  cov92 = .ParameterValue("cov92")
  cov33 = .ParameterValue("cov33")
  cov43 = .ParameterValue("cov43")
  cov53 = .ParameterValue("cov53")
  cov63 = .ParameterValue("cov63")
  cov73 = .ParameterValue("cov73")
  cov83 = .ParameterValue("cov83")
  cov93 = .ParameterValue("cov93")
  cov44 = .ParameterValue("cov44")
  cov54 = .ParameterValue("cov54")
  cov64 = .ParameterValue("cov64")
  cov74 = .ParameterValue("cov74")
  cov84 = .ParameterValue("cov84")
  cov94 = .ParameterValue("cov94")
  cov55 = .ParameterValue("cov55")
  cov65 = .ParameterValue("cov65")
  cov75 = .ParameterValue("cov75")
  cov85 = .ParameterValue("cov85")
  cov95 = .ParameterValue("cov95")
  cov66 = .ParameterValue("cov66")
  cov76 = .ParameterValue("cov76")
  cov86 = .ParameterValue("cov86")
  cov96 = .ParameterValue("cov96")
  cov77 = .ParameterValue("cov77")
  cov87 = .ParameterValue("cov87")
  cov97 = .ParameterValue("cov97")
  cov88 = .ParameterValue("cov88")
  cov98 = .ParameterValue("cov98")
  cov99 = .ParameterValue("cov99")
  xbar1 = .ParameterValue("xbar1")
  xbar2 = .ParameterValue("xbar2")
   xbar3 = .ParameterValue("xbar3")
   xbar4 = .ParameterValue("xbar4")
   xbar5 = .ParameterValue("xbar5")
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  xbar6 = .ParameterValue("xbar6")
  xbar7 = .ParameterValue("xbar7")
  xbar8 = .ParameterValue("xbar8")
  xbar9 = .ParameterValue("xbar9")

  On Error GoTo 0 ' Turn off error trapping.
  On Error Resume Next ' Defer error trapping.
  Converged = (.FitModel = 0)
  Admissible = .Admissible
  Cmin = .Cmin
  Nparms = .npar
  If (Converged And Admissible) Then
  'write out the model fit indexes for further 
analyses
  Write #2, Round(cov11, 5), Round(cov21, 5), 
Round(cov31, 5), Round(cov41, 5), Round(cov51, 5), 
Round(cov61, 5), _
   Round(cov71, 5), Round(cov81, 5), 
Round(cov91, 5), Round(cov22, 5), Round(cov32, 5), 
Round(cov42, 5), _
   Round(cov52, 5), Round(cov62, 5), 
Round(cov72, 5), Round(cov82, 5), Round(cov92, 5), 
Round(cov33, 5), _
   Round(cov43, 5), Round(cov53, 5), 
Round(cov63, 5), Round(cov73, 5), Round(cov83, 5), 
Round(cov93, 5), _
   Round(cov44, 5), Round(cov54, 5), 
Round(cov64, 5), Round(cov74, 5), Round(cov84, 5), 
Round(cov94, 5), _
   Round(cov55, 5), Round(cov65, 5), 
Round(cov75, 5), Round(cov85, 5), Round(cov95, 5), 
Round(cov66, 5), _
   Round(cov76, 5), Round(cov86, 5), 
Round(cov96, 5), Round(cov77, 5), Round(cov87, 5), 
Round(cov97, 5), _
   Round(cov88, 5), Round(cov98, 5), 
Round(cov99, 5), Round(xbar1, 5), Round(xbar2, 5), 
Round(xbar3, 5), _
   Round(xbar4, 5), Round(xbar5, 5), 
Round(xbar6, 5), Round(xbar7, 5), Round(xbar8, 5), 
Round(xbar9, 5), _

  m, it
 Else
 Write #2, -9, -9, -9, -9, -9, -9, _
  -9, -9, -9, -9, -9, -9, _
  -9, -9, -9, -9, -9, -9, _
  -9, -9, -9, -9, -9, -9, _
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  -9, -9, -9, -9, -9, -9, _
  -9, -9, -9, -9, -9, -9, _
  -9, -9, -9, -9, -9, -9, _
  -9, -9, -9, -9, -9, -9, _
  -9, -9, -9, -9, -9, -9, _
  m, it
 End If
 End With
 Set Saturated = Nothing
 DoEvents
 End Sub
 Sub FitIndependent(VarName, Converged, Admissible, 
Cmin, Nparms)
 Dim FirstVar As Integer, LastVar As Integer, ivar As 
Integer
 Dim vname1 As String, vname2 As String, i As Integer, 
vname3 As String
 Dim Independent As New AmosEngine
 FirstVar = LBound(VarName)
 LastVar = UBound(VarName)
 With Independent
  .TextOutput
  .ModelMeansAndIntercepts
  .BeginGroup "c:\nm750f80.mdb", "Temp"
  .Iterations (1000)
  i = FirstVar
  Do While i < LastVar
   For ivar = i + 1 To LastVar
   vname1 = Trim(VarName(i))
   vname2 = Trim(VarName(ivar))
   .Cov vname1, vname2, 0
   Next
  i = i + 1
 Loop
 For ivar = FirstVar To LastVar
  vname3 = Trim(VarName(ivar))
 .Mean vname3
 Next
 On Error GoTo 0 ' Turn off error trapping.
 On Error Resume Next ' Defer error trapping.
 Converged = (.FitModel = 0)
 Admissible = .Admissible
  Cmin = .Cmin
  Nparms = .npar
 End With
 Set Independent = Nothing
 DoEvents
End Sub
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10
Additional Issues With Missing Data 
in Structural Equation Models

In this chapter, we consider several important issues relevant to statistical 
power which arise in structural equation modeling with missing data. As 
we mentioned in Chapter 2, one of the most important and challenging 
aspects of structural equation modeling has to do with evaluation of model 
fit. To this point, we have generally considered only effects of missing data 
on statistical power according to the model chi‑square statistic and noncen‑
trality parameter. However, power is also an important consideration with 
regard to other fit indices, many of which are also affected by missing data.

We first illustrate the effects of missing data on a variety of commonly 
used fit indices. Next, we consider two ways to moderate the effects of 
missing data on loss of statistical power, focusing on scale reliability and 
the inclusion of auxiliary variables, both of which are at least partially 
under the researcher’s control. Careful planning of a study to take advan‑
tage of these issues can offer considerable protection against effects of 
incomplete data.

Effects of Missing Data on Model Fit

There is a growing body of literature to suggest that many commonly 
used fit indices are affected by the nature and extent of missing data. The 
paper by Davey et al. (2005) described in Chapter 9 considered the effects 
of missing data on models that were misspecified in either the structural 
or measurement model. In addition to the model chi‑square, these authors 
also considered the effects of missing data on a variety of model fit indi‑
ces including the chi‑square, RMSEA, NFI, TLI, CFI, gamma‑hat, and 
McDonald’s Centrality Index (McDonald, 1989). Effects of missing data 
varied as a function of the nature of the misspecification, as well as the 
extent of missing data and whether the data were MCAR or MAR. Much 
of the influence of missing data on these indices can be traced back to 
the lower statistical power to reject the independence model with missing 
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data, because the chi‑square value associated with the independence 
model forms the denominator of many indices.

Figure 10.1 and Figure 10.2 show the effects of missing data on the 
RMSEA and TLI, respectively, for structural and measurement misspecifi‑
cations. Each labeled line represents a combination of factor loadings (F: .4 
or .8) and factor covariances (C: .4 or .8). When a model is misspecified, val‑
ues of the RMSEA decrease as missing data increase, all else equal. Values 
of the TLI increase as missing data increase. In both cases, a model will 
appear to fit better as rates of missing data increase. However, the extent 
to which missing data affect these two fit indices differs as a function of 
the nature of the misspecification, as well as the magnitude of the factor 
loadings and the strength of the covariance between the latent variables.

Luo, Davey, and Savla (2005) extended these findings using a small sim‑
ulation study. Following the cutoff values for various fit statistics identi‑
fied by Hu and Bentler (1999), we considered rejection rates for models 
with missing data. Marsh, Hau, and Wen (2004) noted that some misspeci‑
fied models would still appear “acceptable” according to specific fit indi‑
ces, whereas other misspecified models would appear “unacceptable.” We 
used these criteria in our simulation to determine whether model fit was 
exact, close, or not close.
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Figure 10.1
Effects of MCAR and MAR data on RMSEA in models with structural or measurement mis‑
specifications. From “Issues in Evaluating Model Fit With Missing Data,” by A. Davey, J. S. 
Savla, and Z. Luo, 2005, Structural Equation Modeling, 12(4), 578–597, reprinted with permis‑
sion of the publisher (Taylor & Francis Ltd., http://www.tandf.co.uk/journals).

Y100315.indb   208 7/15/09   3:00:13 PM



Additional Issues With Missing Data in Structural Equation Models 209

When model misspecifications were unacceptable, power to reject these 
misspecifications was consistently high. Missing data rates only had small 
effects when rejection rates reached 25% and the effects were more prom‑
inent for MAR data. Missing data rates had more influence for accept‑
ably misspecified models and the patterns for missing data mechanisms 
diverged in incorrect structural models. Power to reject mildly misspeci‑
fied models declined with missing data, more so in incorrect structural 
models with MAR data.

Missing data led to significant loss of power in some unacceptable mis‑
specifications for tests of close fit. In tests of close fit, both missing data 
mechanisms and missing data rates played a more significant role. In tests 
of not‑close fit for unacceptable model misspecifications, missing data usu‑
ally led to higher rejection rates. MCAR and MAR had similar effects in mis‑
specified measurement models. However, the patterns were quite different 
in misspecified structural models, where the declining trend of power in 
MAR was greater and more systematic, particularly for tests of close fit. 
So in addition to the potential for missing data to affect mean levels of fit 
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Figure 10.2
Effects of MCAR and MAR data on TLI in models with structural or measurement mis‑
specifications. From “Issues in Evaluating Model Fit With Missing Data,” by A. Davey, J. S. 
Savla, and Z. Luo, 2005, Structural Equation Modeling, 12(4), 578–597, reprinted with permis‑
sion of the publisher (Taylor & Francis Ltd., http://www.tandf.co.uk/journals).
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indices in misspecified models, there are also implications for model accep‑
tance/rejection rates, making this an area worthy of further study.

It is also possible to use the output from a simulation study such as this 
one to construct additional fit indices that are not provided by most struc‑
tural equation modeling software programs when there are missing data, 
such as the standardized or unstandardized root mean square residual 
(Davey, Savla, & Luo, 2005). Whereas the overall model fit is evaluated in 
terms of ( )S − Σ , a comparison can also be made on an element‑by‑element 
basis. To construct this index, the individual elements of S (estimated 
sample moments) are estimated from the saturated model. The elements 
of Σ (implied sample moments) are generated from the parameter esti‑
mates of the model being estimated. Mathematically, it is calculated as 

RMR s p p
i

p

j

j i

ij ij= ∑ ∑ − +
= =

≤

1 1

2 1( ) / ( )σ  where p is the number of observed variables.

The unstandardized RMR is calculated from the estimated and implied 
covariance matrices and the standardized (SRMR) value is calculated from 
the estimated and implied correlation matrices, ignoring the diagonal ele‑
ments, which must always be zero; i.e., the denominator is p p( ).− 1  Smaller 
values indicate better model fit. The RMR (and SRMR) are also affected by 
the type and extent of missing data. Values are higher when estimating a 
correct model when factor loadings and sample sizes are smaller.

For the misspecified measurement model, SRMR values were higher than 
complete data with MAR data and higher still with MCAR data. The order‑
ing of MAR and MCAR data was reversed, however, with the structural 
misspecification. In each case, the discrepancy in RMR values increases 
as the proportion of missing data increase and are most pronounced with 
smaller sample sizes. In other words, the bias in the RMR works in the 
opposite direction to the model chi‑square. Sample syntax to calculate the 
RMR is provided in the Appendix but is too lengthy to include here.

There are several potential ways to resolve issues relating to missing 
data and model fit. One way, specified in Davey et al. (2005), is to estimate 
the model of interest and independence model using the EM‑generated 
covariance matrix. LISREL provides this automatically at the start of the 
output when the FIML option is specified. In LISREL, AMOS, or MPlus, 
it can also be obtained by requesting the implied covariance matrix. Fit 
indices generated from this matrix would approximate what their val‑
ues would have been in the complete data case. Another possibility is to 
report the value of a fit index obtained, along with a bootstrapped confi‑
dence interval around the value. Ultimately, however, there is simply less 
power to reject a misspecified model with incomplete data, but the extent 
to which this is the case can be quite variable depending on factors such 
as the nature and extent of missing data and the nature and extent of 

Y100315.indb   210 7/15/09   3:00:14 PM



Additional Issues With Missing Data in Structural Equation Models 211

the model misspecification. The next section considers how to evaluate 
this discrepancy at the population level.

Using the NCP to Estimate Power for a Given Index

Kim (2005) showed an important way that the methods described in this 
book can be extended to a variety of noncentrality based fit indices. By 
obtaining the minimum value of the fit function for both an alternative 
model λA  and an independence model λB, for example, the CFI, which 
was discussed in Chapter 2, can easily be calculated for any sample size 
as CFI N

N
A
B

= − −
−1 1

1
( )
( ) .λ

λ  In this way, it is possible to solve for a sample size that
will provide a CFI value that is above or below a desired cutoff value. 
Because the RMSEA is also a noncentrality based index, these methods also 
apply to the methods of MacCallum and colleagues (1996, 2006) discussed in 
Chapter 4 for evaluating close, not‑close, and exact fit.

Moderators of Loss of Statistical Power With Missing Data

In Chapter 8, we examined how the design of a study with missing data 
can affect statistical power by focusing on the specific patterns of data 
that were observed or unobserved and the proportion of cases observed 
in each pattern. In this section, we consider two more variables that can 
help reduce the effects of missing data on the loss of statistical power, both 
of which are at least partially under the researcher’s control. The first is 
reliability of the indicators in a study, and the second is the inclusion of 
an auxiliary variable.

reliability

Interest in increasing the power to detect a treatment effect by increas‑
ing the reliability of a dependent variable spans at least four decades (see 
Cleary & Linn, 1969; Fleiss, 1976; Humphreys & Drasgow, 1989; Nicewander 
& Price, 1978; Overall, 1989; Overall & Woodard, 1975; Sutcliffe, 1980). The 
extent to which reliability increases statistical power largely depends on 
how much it decreases the error variance. Maxwell and his colleagues 
(1991) noted that ANCOVA models had greater power with more reli‑
able indicators. On the other hand, in the presence of marginal reliability 
ANOVA models with larger gaps between the two measurement points 

Y100315.indb   211 7/15/09   3:00:15 PM



212 Statistical Power Analysis with Missing Data

were found to be more powerful and required fewer subjects. Similarly, 
S. C. Duncan et al. (2002) also emphasized in their study the relationship 
between the reliability of a study’s measures and simultaneous increases 
in power obtained within the SEM framework.

Although much research has looked at how reliability of instruments 
could increase statistical power by decreasing the error variance, research‑
ers have not considered how the reliability of indicators was associated 
with statistical power in the presence of missing data. In other words, 
to what extent can the reliability of indicators compensate for the loss of 
statistical power due to missing data?

To examine the moderating effect of indicator reliability on statistical 
power with missing data, we extend our earlier five‑wave growth curve 
model to include reliabilities of .3, .5, and .7. The matrices for the model 
under each condition are as follows:

 

Λ Ψy =





















=

1 0
1 1
1 2
1 3
1 4

1 000 0 118
0 118 0

, . .
. .2200









 , and

 

Θε (. )

.
.

.
.

3

2 3333 0 0 0 0
0 3 32176 0 0 0
0 0 5 24349 0 0
0 0 0 8 098

=
558 0

0 0 0 0 11 8870.

,























 

Θε (. )

.
.

.
.

5

1 00000 0 0 0 0
0 1 42361 0 0 0
0 0 2 24721 0 0
0 0 0 3 47

=
0082 0

0 0 0 0 5 09443.

,























and

 

Θε (. )

.
.

.
.

7

0 42857 0 0 0 0
0 0 61012 0 0 0
0 0 0 96309 0 0
0 0 0 1 48

=
7749 0

0 0 0 0 2 18333.
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for reliabilities of 0.3, 0.5, and 0.7, respectively. As before, the latent intercepts

are given by τ y =























0
0
0
0
0

 and the latent means are given by α =










1 000
0 981
.
.

.

In a single group, the minimum fit function values to test whether 
the covariance between the latent intercept and latent slope was zero 
are presented in Table 10.1 with MAR data using w = [ ].2 1 0 0 0  
Corresponding statistical power for this test with a sample size of 500 is 
shown in Figure 10.3.

With 50% missing data, the model with reliability of .7 has 92% of the statis‑
tical power to detect a significant correlation as the same model with complete 
data. With a reliability of .5, the model retains 79% of the statistical power of 
the model with complete data. However, when reliability is just .3, the model 
with 50% missing data has just 65% of its corresponding value with complete 
data. (In each case, you can obtain these values from Figure 10.3 by comparing 
the point on the line at 50% missing data with the point on the correspond‑
ing line at 0% missing data.) Not only is the overall statistical power lower in 

Table 10.1
Minimum Fit Function Values to Detect a 
Significant Correlation as a Function of 
Reliability and Proportion of Missing Data

Reliability

% Missing .30 .50 .70

 0 0.0115 0.0214 0.0336
 5 0.0096 0.0178 0.0283
10 0.0087 0.0160 0.0258
15 0.0080 0.0149 0.0241
20 0.0076 0.0141 0.0231
25 0.0073 0.0136 0.0224
30 0.0070 0.0132 0.0219
35 0.0068 0.0130 0.0216
40 0.0067 0.0129 0.0215
45 0.0066 0.0128 0.0214
50 0.0065 0.0128 0.0214
55 0.0064 0.0127 0.0214
60 0.0063 0.0127 0.0213
65 0.0062 0.0125 0.0212
70 0.0060 0.0123 0.0209
75 0.0058 0.0120 0.0204
80 0.0055 0.0115 0.0197
85 0.0050 0.0107 0.0186
90 0.0044 0.0096 0.0170
95 0.0034 0.0078 0.0145
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models with lower reliability, but they are also more sensitive to further loss 
of statistical power as rates of missing data increase.

Similar findings emerge when considering the power to detect differences 
in rates of longitudinal change. Minimum values of the fit function are 
shown for these models in Table 10.2 assuming MCAR data. Corresponding 
statistical power to detect a small (d = .2) effect size as difference in longitu‑
dinal change with a sample size of 500 is shown in Figure 10.4.

In terms of statistical power, models that have indicators with high reli‑
abilities seem to fare much better than those with low reliabilities in the 
face of missing data. Additionally, in the presence of missing data, models 

Table 10.2
Minimum Fit Function Values to Detect 
Differences in Longitudinal Change as a 
Function of Reliability and Proportion of 
Missing Data

Reliability

% Missing 0.3 0.5 0.7

0 0.0271 0.0196 0.0130
30 0.0238 0.0167 0.0108
50 0.0215 0.0146 0.0092
70 0.0192 0.0126 0.0077

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

% Missing Data
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w
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Figure 10.3
Statistical power to detect a significant correlation as a function of scale reliability and 
proportion of missing data (N = 500).
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with higher reliability and a large percentage of data missing seem to 
have as much statistical power as a model with no missing data but that 
uses a measure with low reliability. For this reason, researchers should 
take every step possible to increase reliability; especially when a moderate 
to large degree of missing data can be expected.

auxiliary Variables

Graham (2003) observed that when estimating structural equation mod‑
els with missing data, inclusion of an “auxiliary variable” could increase 
the precision of model parameters. Auxiliary variables were defined as 
those that are associated with model variables, regardless of whether they 
are also associated with the probability that an observation is missing. 
Potential auxiliary variables for most substantive contexts should be easy 
to identify.

In a study of children’s math or reading performance, variables such as 
grades, scores on standardized tests, teacher or parent ratings would eas‑
ily satisfy the criterion for an auxiliary variable. In longitudinal research, 
additional baseline measures can be helpful, such as also measuring 
baseline anxiety in a study of depressive symptoms. In a study of physi‑
cal performance, variables such as grip strength, limitations in activities 
of daily living, or even self‑rated health could serve this purpose. Even 
demographic variables routinely collected in research studies can help to 
reduce the information lost as a result of missing data. Including these 

1.0
0.9
0.8
0.7
0.6
0.5

Reliability

0.70
0.50
0.30

Po
w

er

0.4
0.3
0.2
0.1
0.0

0 30
% Missing Data

50 70

Figure 10.4
Power to detect differences in longitudinal change as a function of reliability and propor‑
tion of missing data (N = 500).
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auxiliary variables in models reduces the confidence intervals associated 
with model parameters.

To illustrate the effects of including an auxiliary variable on the rate of 
decrease in statistical power associated with missing data, we generated a 
variable that was associated with initial scores but unrelated to the missing 
data mechanism. This variable is added to the two‑group growth curve 
model described above. In order to examine the effects of the strength of 
association in moderating loss of statistical power, the auxiliary variable 
represented correlations ranging from .1 to .7 in increments of .2 for this 
study.

In Table 10.3 we show the minimum values of the fit function obtained 
for MCAR and MAR data under each condition. As can be seen, the results 
for MCAR and MAR data parallel each other fairly closely, typically dif‑
fering only at the third or fourth decimal place.

Another more informative way to present these data is to plot their 
values as a function of their corresponding values in a model where the 
auxiliary variable is not included. We do this in Figure 10.5, plotting 

Point of Reflection

In your area of research, there are likely to be quite a few variables that could 
serve as auxiliary variables. Take a few minutes to consider some possibili‑
ties for what might work well for the kind of research you do. If you were 
pressed to come up with a “gold standard” auxiliary variable for each of 
your key outcome variables, what would it be?

Troubleshooting Tip

Using full information maximum likelihood, inclusion of auxiliary vari‑
ables can very quickly convert even the most elegant path diagram into 
something more closely resembling spaghetti. Graham (2003) has several 
helpful suggestions for adding auxiliary variables to your models.

Try Me!

Use the values in Table 10.3 to determine what strength of auxiliary variable 
would be required to achieve power of .8 with 25% missing data with the 
sample sizes typical for your area of research.
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Table 10.3
Minimum Fit Function Values for MCAR and MAR Data as a Function of 
Strength of Correlation of Auxiliary Variable and Proportion Missing Data

MCAR MAR

Missing 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

 0 0.0199 0.0203 0.0215 0.0263 0.0199 0.0203 0.0215 0.0263
 5 0.0195 0.0199 0.0210 0.0258 0.0195 0.0198 0.0210 0.0257
10 0.0189 0.0193 0.0205 0.0252 0.0188 0.0191 0.0203 0.0249
15 0.0184 0.0188 0.0199 0.0245 0.0180 0.0184 0.0195 0.0239
20 0.0179 0.0183 0.0194 0.0239 0.0173 0.0176 0.0186 0.0229
25 0.0174 0.0178 0.0189 0.0232 0.0165 0.0168 0.0178 0.0219
30 0.0169 0.0172 0.0183 0.0226 0.0158 0.0161 0.0170 0.0209
35 0.0164 0.0167 0.0178 0.0220 0.0151 0.0153 0.0162 0.0200
40 0.0158 0.0162 0.0172 0.0213 0.0144 0.0147 0.0155 0.0191
45 0.0153 0.0157 0.0167 0.0207 0.0138 0.0140 0.0148 0.0183
50 0.0148 0.0151 0.0161 0.0201 0.0132 0.0135 0.0143 0.0176
55 0.0143 0.0146 0.0156 0.0194 0.0127 0.0129 0.0137 0.0170
60 0.0138 0.0141 0.0150 0.0188 0.0122 0.0125 0.0132 0.0165
65 0.0133 0.0136 0.0145 0.0182 0.0118 0.0121 0.0128 0.0160
70 0.0127 0.0130 0.0140 0.0175 0.0115 0.0117 0.0125 0.0156
75 0.0122 0.0125 0.0134 0.0169 0.0111 0.0114 0.0121 0.0152
80 0.0117 0.0120 0.0129 0.0162 0.0108 0.0111 0.0118 0.0149
85 0.0112 0.0115 0.0123 0.0156 0.0105 0.0108 0.0115 0.0146
90 0.0107 0.0110 0.0118 0.0150 0.0103 0.0105 0.0113 0.0143
95 0.0102 0.0104 0.0112 0.0143 0.0101 0.0103 0.0111 0.0140
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Figure 10.5
Proportional power compared with equivalent model excluding auxiliary variable (r = .1) as 
a function of sample size and proportion missing data.
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proportional power as a function of sample size and percent missing 
data. The associations are clearly nonlinear. Even with a very weak 
covariate (r = .1), there is considerable benefit to inclusion of an auxil‑
iary variable.

Differences are largest at smaller sample sizes, and there is a further 
interaction such that differences are greatest with either higher or lower 
amounts of missing data for smaller sample sizes, but differences are 
greater at higher levels of missing data for larger sample sizes. In other 
words, including an auxiliary variable nearly doubles the statistical power 
at small sample sizes, with somewhat less pronounced increases with mod‑
erate levels of missing data, whereas its effects at larger sample sizes tend 
to be more modest and limited to situations with higher levels of missing 
data. However, the former situation is one where it is most important to 
maximize statistical power, whereas the latter situation is one where ample 
statistical power is likely to exist, even with fairly extensive missing data.

There are many situations where it is easy to include useful auxiliary 
variables. For example, a researcher interested in depressive symptoms 
could include multiple measures of this construct or closely related con‑
structs in a baseline wave and continue to reap benefits of this auxil‑
iary variable in subsequent waves despite participant dropout. Likewise, 
inclusion of parent and teacher ratings in addition to self‑report measures 
obtained from children are likely to afford some protection against miss‑
ing data, and these benefits are greater when the auxiliary variables cor‑
relate more strongly with the variables of interest or on which missing 
data are expected. In general, Graham (2003) recommends inclusion of 
multiple auxiliary variables and presents straightforward ways to do so.

Conclusions

In this chapter, we extended consideration of statistical power with 
missing data to evaluation of model fit according to a wide variety of 
indices. Noncentrality‑based indices appear to show the greatest prom‑
ise with missing data because they are not affected by missing data 
when a model is correctly specified. Under the typical circumstances 
where models are at least slightly misspecified, however, fit indices 
such as the RMSEA and TLI are biased toward indicating better model 
fit (i.e., less statistical power) as missing data increase, all else equal. 
Statistical power to reject incorrectly specified models also varies in 
part as a function of whether the models are acceptable (i.e., fairly 
minor or within the range of sampling variability) or unacceptable. We 
also illustrated how additional types of fit indices such as the RMR can 
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be estimated when they are not provided by structural equation model‑
ing software.

The second part of this chapter focused on two ways to moderate the 
effects of missing data on loss of statistical power, namely, the reliability of 
measures and the inclusion of auxiliary variables in the model. In addition 
to the issue of pattern missingness considered in Chapter 8, it is clear that 
quite a lot can be done to maximize statistical power in the face of missing 
data. In fact, it is often possible to achieve highly comparable statistical 
power to the complete data case even with considerable missing data.

Further Readings

Davey, A., Savla, J., & Luo, Z. (2005). Issues in evaluating model fit with missing 
data. Structural Equation Modeling, 12, 578–597.

Graham, J. W. (2003). Adding missing‑data‑relevant variables to FIML‑based 
structural equation models. Structural Equation Modeling, 10, 80–100.

Kim, K. H. (2005). The relation among fit indexes, power, and sample size in struc‑
tural equation modeling. Structural Equation Modeling, 12, 368–390.

Exercises

1.  Figure 10.3 was plotted using the data in Table 10.1 with a sam‑
ple size of 500. Replot the data in Figure 10.2 for sample sizes of 
250 and 7500.

2.  Figure 10.4 was plotted using data in Table 10.2 with a sample 
size of 500. Replot the data in Figure 10.4 for sample sizes of 250 
and 7500.

3.  Using the CFA model in Figure 9.8, determine what sample size 
is needed for power of .8 under the following conditions.

4.  Add an auxiliary variable to the two least powerful models 
from 3a through 3f under the following conditions and determine 
what sample size is needed for power of .8 under the following 
conditions.

Reliability Correlation

a .4 .5
b .8 .5
c .4 .3
d .8 .3
e .4 .1
f .8 .1
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Syntax to Calculate RMR and SRMR

* RMR;
OPTIONS LINESIZE=132 PAGESIZE=200 NOCENTER;

data s;
 infile 'c: \satcov.txt' lrecl=1200 missover dlm=',';
 input#1 s11 s21 s31 s41 s51 s61 s71 s81 s91
  s22 s32 s42 s52 s62 s72 s82 s92
  s33 s43 s53 s63 s73 s83 s93
  s44 s54 s64 s74 s84 s94
  s55 s65 s75 s85 s95
  s66 s76 s86 s96
  s77 s87 s97
  s88 s98
  s99
  smean1 smean2 smean3 smean4 smean5 smean6 smean7 
smean8 smean9
 m it
 ;
 run;
proc sort; by it; run;

data sigma;
 infile 'c:\ matrices.txt' lrecl=1200 missover dlm=',';
 input#1 l1 l2 l3 l4 l5 l6 l7 l8 l9
  e1 e2 e3 e4 e5 e6 e7 e8 e9
  xbar1 xbar2 xbar3 xbar4 xbar5 xbar6 xbar7 xbar8 
xbar9
  cov1 cov2 cov3 m it
 ;
 run;

 data sigma2;
  set sigma;

  z11=l1+e1;
  z21=l4*l1;
  z31=l5*l1;
  z41=cov1;
  z51=l6*cov1;

Auxiliary Correlation

a .1
b .5
c .9
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  z61=l7*cov1;
  z71=cov3;
  z81=l8*cov3;
  z91=l9*cov3;

  z22=(l4*l1*l4)+e2;
  z32=l5*l1*l4;
  z42=cov1*l4;
  z52=l6*cov1*l4;
  z62=l7*cov1*l4;
  z72=cov3*l4;
  z82=l8*cov3*l4;
  z92=l9*cov3*l4;

  z33=(l5*l1*l5)+e3;
  z43=cov1*l5;
  z53=l6*cov1*l5;
  z63=l7*cov1*l5;
  z73=cov3*l5;
  z83=l8*cov3*l5;
  z93=l9*cov3*l5;

  z44=l2+e4;
  z54=l6*l2;
  z64=l7*l2;
  z74=cov2;
  z84=l8*cov2;
  z94=l9*cov2;

  z55=(l6*l2*l6)+e5;
  z65=l7*l2*l6;
  z75=cov2*l6;
  z85=l8*cov2*l6;
  z95=l9*cov2*l6;

  z66=(l7*l2*l7)+e6;
  z76=cov2*l7;
  z86=l8*cov2*l7;
  z96=l9*cov2*l7;

  z77=l3+e7;
  z87=l8*l3;
  z97=l9*l3;

  z88=(l8*l3*l8)+e8;
  z98=l9*l3*l8;

  z99=(l9*l3*l9)+e9;
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 run;

 proc sort; by it; run;

 data all;
  merge s sigma2;
  by it;
 run;

 data diff;
  set all;
  r11=s11-z11;
  r21=s21-z21;
  r31=s31-z31;
  r41=s41-z41;
  r51=s51-z51;
  r61=s61-z61;
  r71=s71-z71;
  r81=s81-z81;
  r91=s91-z91;

  r22=s22-z22;
  r32=s32-z32;
  r42=s42-z42;
  r52=s52-z52;
  r62=s62-z62;
  r72=s72-z72;
  r82=s82-z82;
  r92=s92-z92;

  r33=s33-z33;
  r43=s43-z43;
  r53=s53-z53;
  r63=s63-z63;
  r73=s73-z73;
  r83=s83-z83;
  r93=s93-z93;

  r44=s44-z44;
  r54=s54-z54;
  r64=s64-z64;
  r74=s74-z74;
  r84=s84-z84;
  r94=s94-z94;

  r55=s55-z55;
  r65=s65-z65;
  r75=s75-z75;
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  r85=s85-z85;
  r95=s95-z95;

  r66=s66-z66;
  r76=s76-z76;
  r86=s86-z86;
  r96=s96-z96;

  r77=s77-z77;
  r87=s87-z87;
  r97=s97-z97;

  r88=s88-z88;
  r98=s98-z98;
  r99=s99-z99;
   rmr = sqrt((r11*r11+r21*r21+r31*r31+r41*r41+r51*r51+r
61*r61+r71*r71+r81*r81+r91*r91+

  r22*r22+r32*r32+r42*r42+r52*r52+r62*r62+r72*r72+r82*r
82+r92*r92+

  r33*r33+r43*r43+r53*r53+r63*r63+r73*r73+r83*r83+r93*r
93+

  r44*r44+r54*r54+r64*r64+r74*r74+r84*r84+r94*r94+

  r55*r55+r65*r65+r75*r75+r85*r85+r95*r95+

  r66*r66+r76*r76+r86*r86+r96*r96+

  r77*r77+r87*r87+r97*r97+

   r88*r88+r98*r98+

     r99*r99)/45);
run;

proc print; var rmr; run;

* SRMR;
OPTIONS LINESIZE=132 PAGESIZE=200 NOCENTER;

data s;
 infile 'c:\satcov.txt' lrecl=1200 missover dlm=',';
 input#1 s11 s21 s31 s41 s51 s61 s71 s81 s91
  s22 s32 s42 s52 s62 s72 s82 s92
  s33 s43 s53 s63 s73 s83 s93
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 s44 s54 s64 s74 s84 s94
 s55 s65 s75 s85 s95
  s66 s76 s86 s96
  s77 s87 s97
  s88 s98
  s99
 smean1 smean2 smean3 smean4 smean5 smean6 smean7 
smean8 smean9
 m it
 ;
 run;

 data s2;
  set s;
 sd11=sqrt(s11);
 sd22=sqrt(s22);
 sd33=sqrt(s33);
 sd44=sqrt(s44);
 sd55=sqrt(s55);
 sd66=sqrt(s66);
 sd77=sqrt(s77);
 sd88=sqrt(s88);
 sd99=sqrt(s99);
 sd21=s21/sd11/sd22;
 sd31=s31/sd11/sd33;
 sd41=s41/sd11/sd44;
 sd51=s51/sd11/sd55;
 sd61=s61/sd11/sd66;
 sd71=s71/sd11/sd77;
 sd81=s81/sd11/sd88;
 sd91=s91/sd11/sd99;
 sd32=s32/sd22/sd33;
 sd42=s42/sd22/sd44;
 sd52=s52/sd22/sd55;
 sd62=s62/sd22/sd66;
 sd72=s72/sd22/sd77;
 sd82=s82/sd22/sd88;
 sd92=s92/sd22/sd99;
 sd43=s43/sd33/sd44;
 sd53=s53/sd33/sd55;
 sd63=s63/sd33/sd66;
 sd73=s73/sd33/sd77;
 sd83=s83/sd33/sd88;
 sd93=s93/sd33/sd99;
 sd54=s54/sd44/sd55;
 sd64=s64/sd44/sd66;
 sd74=s74/sd44/sd77;
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 sd84=s84/sd44/sd88;
 sd94=s94/sd44/sd99;
 sd65=s65/sd55/sd66;
 sd75=s75/sd55/sd77;
 sd85=s85/sd55/sd88;
 sd95=s95/sd55/sd99;
 sd76=s76/sd66/sd77;
 sd86=s86/sd66/sd88;
 sd96=s96/sd66/sd99;
 sd87=s87/sd77/sd88;
 sd97=s97/sd77/sd99;
 sd98=s98/sd88/sd99;
 run;

 proc sort; by it; run;

 data sigma;
  infile 'c:\matrices.txt' lrecl=1200 missover dlm=',';
  input#1 l1 l2 l3 l4 l5 l6 l7 l8 l9
  e1 e2 e3 e4 e5 e6 e7 e8 e9
  xbar1 xbar2 xbar3 xbar4 xbar5 xbar6 xbar7 xbar8 
xbar9
  cov1 cov2 cov3 m it
 ;
 run;

 data sigma2;
  set sigma;
  z11=l1+e1;
  z21=l4*l1;
  z31=l5*l1;
  z41=cov1;
  z51=l6*cov1;
  z61=l7*cov1;
  z71=cov3;
  z81=l8*cov3;
  z91=l9*cov3;

  z22=(l4*l1*l4)+e2;
  z32=l5*l1*l4;
  z42=cov1*l4;
  z52=l6*cov1*l4;
  z62=l7*cov1*l4;
  z72=cov3*l4;
  z82=l8*cov3*l4;
  z92=l9*cov3*l4;

  z33=(l5*l1*l5)+e3;
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  z43=cov1*l5;
  z53=l6*cov1*l5;
  z63=l7*cov1*l5;
  z73=cov3*l5;
  z83=l8*cov3*l5;
  z93=l9*cov3*l5;

  z44=l2+e4;
  z54=l6*l2;
  z64=l7*l2;
  z74=cov2;
  z84=l8*cov2;
  z94=l9*cov2;

  z55=(l6*l2*l6)+e5;
  z65=l7*l2*l6;
  z75=cov2*l6;
  z85=l8*cov2*l6;
  z95=l9*cov2*l6;

  z66=(l7*l2*l7)+e6;
  z76=cov2*l7;
  z86=l8*cov2*l7;
  z96=l9*cov2*l7;

  z77=l3+e7;
  z87=l8*l3;
  z97=l9*l3;

  z88=(l8*l3*l8)+e8;
  z98=l9*l3*l8;

  z99=(l9*l3*l9)+e9;

run;

data sigma3;
 set sigma2;
 zd11=sqrt(z11);
 zd22=sqrt(z22);
 zd33=sqrt(z33);
 zd44=sqrt(z44);
 zd55=sqrt(z55);
 zd66=sqrt(z66);
 zd77=sqrt(z77);
 zd88=sqrt(z88);
 zd99=sqrt(z99);
 zd21=z21/zd11/zd22;
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 zd31=z31/zd11/zd33;
 zd41=z41/zd11/zd44;
 zd51=z51/zd11/zd55;
 zd61=z61/zd11/zd66;
 zd71=z71/zd11/zd77;
 zd81=z81/zd11/zd88;
 zd91=z91/zd11/zd99;
 zd32=z32/zd22/zd33;
 zd42=z42/zd22/zd44;
 zd52=z52/zd22/zd55;
 zd62=z62/zd22/zd66;
 zd72=z72/zd22/zd77;
 zd82=z82/zd22/zd88;
 zd92=z92/zd22/zd99;
 zd43=z43/zd33/zd44;
 zd53=z53/zd33/zd55;
 zd63=z63/zd33/zd66;
 zd73=z73/zd33/zd77;
 zd83=z83/zd33/zd88;
 zd93=z93/zd33/zd99;
 zd54=z54/zd44/zd55;
 zd64=z64/zd44/zd66;
 zd74=z74/zd44/zd77;
 zd84=z84/zd44/zd88;
 zd94=z94/zd44/zd99;
 zd65=z65/zd55/zd66;
 zd75=z75/zd55/zd77;
 zd85=z85/zd55/zd88;
 zd95=z95/zd55/zd99;
 zd76=z76/zd66/zd77;
 zd86=z86/zd66/zd88;
 zd96=z96/zd66/zd99;
 zd87=z87/zd77/zd88;
 zd97=z97/zd77/zd99;
 zd98=z98/zd88/zd99;
run;

proc sort; by it; run;

data all;
 merge s2 sigma3;
 by it;
run;

data diff;
 set all;
 rd11=sd11-zd11;
 rd21=sd21-zd21;
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 rd31=sd31-zd31;
 rd41=sd41-zd41;
 rd51=sd51-zd51;
  rd71=sd71-zd71;
 rd81=sd81-zd81;
 rd91=sd91-zd91;

 rd22=sd22-zd22;
 rd32=sd32-zd32;
 rd42=sd42-zd42;
 rd52=sd52-zd52;
 rd62=sd62-zd62;
 rd72=sd72-zd72;
 rd82=sd82-zd82;
 rd92=sd92-zd92;

 rd33=sd33-zd33;
 rd43=sd43-zd43;
 rd53=sd53-zd53;
 rd63=sd63-zd63;
 rd73=sd73-zd73;
 rd83=sd83-zd83;
 rd93=sd93-zd93;

 rd44=sd44-zd44;
 rd54=sd54-zd54;
 rd64=sd64-zd64;
 rd74=sd74-zd74;
 rd84=sd84-zd84;
 rd94=sd94-zd94;

 rd55=sd55-zd55;
 rd65=sd65-zd65;
 rd75=sd75-zd75;
 rd85=sd85-zd85;
 rd95=sd95-zd95;

 rd66=sd66-zd66;
 rd76=sd76-zd76;
 rd86=sd86-zd86;
 rd96=sd96-zd96;

 rd77=sd77-zd77;
 rd87=sd87-zd87;
 rd97=sd97-zd97;

 rd88=sd88-zd88;
 rd98=sd98-zd98;
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 rd99=sd99-zd99;

 srmr = sqrt((rd11*rd11+rd21*rd21+rd31*rd31+rd41*rd41+
rd51*rd51+rd61*rd61+rd71*rd71+rd81*rd81+rd91*rd91+

rd22*rd22+rd32*rd32+rd42*rd42+rd52*rd52+rd62*rd62+rd72*rd72+
rd82*rd82+rd92*rd92+

rd33*rd33+rd43*rd43+rd53*rd53+rd63*rd63+rd73*rd73+rd83*rd83+
rd93*rd93+

rd44*rd44+rd54*rd54+rd64*rd64+rd74*rd74+rd84*rd84+rd94*rd94+

rd55*rd55+rd65*rd65+rd75*rd75+rd85*rd85+rd95*rd95+

rd66*rd66+rd76*rd76+rd86*rd86+rd96*rd96+
 rd77*rd77+rd87*rd87+rd97*rd97+

  rd88*rd88+rd98*rd98+

   rd99*rd99)/45);
 run;
 proc print; var srmr; run;
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11
Summary and Conclusions

In this book, we have tried to provide a step by step guide to planning, 
implementing, and interpreting a power analysis when the researcher 
expects missing data, focusing on a structural equation modeling per‑
spective. The broad set of tools that we have outlined can be applied to 
measurement models, structural models, or any combination thereof 
and work equally well whether data are missing completely at random 
(MCAR) or missing at random (MAR). Although beyond the scope of this 
volume because it also introduces issues related to bias in parameter esti‑
mates, the methods we describe can also quite easily be extended to situ‑
ations where data are missing not at random (MNAR) by generating a 
missing data mechanism that is not completely included in the analytic 
model itself.

Wrapping Up

In terms of fundamentals, taking stock of the wide set of skills and top‑
ics we considered, the reader should now have the ability to identify 
factors associated with statistical power, be fluent with the fundamen‑
tals of structural equation modeling, and have a broad understanding 
of different ways in which statistical power can be conceptualized and 
operationalized. In terms of applications, the reader should have a thor‑
ough understanding of the role of selection in affecting means, variances, 
and covariances in different segments of a population and the ability to 
apply principles of power analysis to a wide variety of models, missing 
data mechanisms, and with methods that are either population based or 
empirical, such as in the design and implementation of a full‑scale Monte 
Carlo study, with either normally or nonnormally distributed data.

We have also begun the process of considering several important exten‑
sions to these approaches. Particular attention was paid to the issue of 
evaluating model fit using indices beyond the global model chi‑square. 
Evaluating model fit is an important and complex topic in structural 

Y100315.indb   231 7/15/09   3:00:18 PM



232 Statistical Power Analysis with Missing Data

equation modeling generally, and we saw that many of these issues are 
compounded when some of the data are unobserved. We also saw that 
issues such as which patterns of data are observed, scale reliability, and 
inclusion of an auxiliary variable can have critical implications for the 
effects of missing data on the loss of statistical power. In particular, careful 
exploitation of these issues can ensure that power remains as high as pos‑
sible, even under circumstances that are less than ideal. All of the materi‑
als and methods described in this book just begin to scratch the surface of 
the work that remains ahead and the potential to elaborate and improve 
upon these techniques. Several promising directions remain relatively 
unexplored.

Future Directions

We noted in Chapter 2 of this book that many aspects of structural equa‑
tion modeling software have converged in recent years, such as the ability 
to handle missing data or to specify models in matrix, equation, or graphi‑
cal form. Another important area of emphasis that we did not consider 
in great detail is that there are many important extensions of structural 
equation models that are also becoming more commonly applied but are 
not yet consistently available across software packages. These include, 
for example, the ability to include sampling and design weights in anal‑
yses (both of which have implications for statistical power), the ability 
to analyze nested data structures (such as individuals within dyads or 
over time, or in larger social structures such as classrooms), the ability to 
include nominal, dichotomous, and ordinal manifest and latent variables, 
multiple latent and observed classes that are useful for mixture models, 
and even extensions of the estimation methods themselves.

There is growing interest, for example, in Bayesian methods for struc‑
tural equation modeling, and AMOS has implemented Bayesian estima‑
tion in its most recent version. Lee (e.g., 2007, Lee & Song, 2004; Lee & Tang, 
2006) has written extensively on this topic. Because by nature it involves 
Monte Carlo methods and can be readily extended to very complex situ‑
ations involving missing data, this is likely to be an increasingly impor‑
tant tool for researchers interested in power analysis within the structural 
equation modeling framework.

Similarly, progress has been made in terms of identifying robust esti‑
mators for structural equation models (Moustaki & Victoria‑Feser, 2006) 
that can provide very useful extensions with nonnormally distributed 
data. Likewise, there have been important extensions on the mathemati‑
cal side of power calculations with missing data. Brown, Indurkhya, and 
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Kellam (2000) “solved” the power equations for one set of models. Though 
the equations for the relatively simple set of models they consider span 
more than four manuscript pages, the approach itself is extremely useful 
for researchers who need to understand a specific design in considerable 
depth. In the case of their research, they were able to identify ways to pro‑
tect their data against nonignorably missing data in a longitudinal study 
on the effects of lead exposure.

Conclusions

In conclusion, we hope that this volume has provided readers with the 
tools they need to begin incorporating missing data into their power 
calculations to a greater extent than previously. Though no volume 
can hope to be all things to all readers, we hope that every reader is 
able to find something of value in their own research. In particular, we 
hope that by beginning simply from first principles, but without skimp‑
ing on the underlying mathematical elements, even readers without a 
strong background in statistics can very quickly increase their knowl‑
edge to the point where they become more comfortable staying abreast 
of developments in these areas with the ability to apply them in their 
own work.

Further Readings

Brown, C. H., Indurkhya, A., & Kellam, S. G. (2000). Power calculations for data 
missing by design: Applications to a follow‑up study of lead exposure and 
attention. Journal of the American Statistical Association, 95, 383–395.

Lee, S.‑Y. (2007). Structural equation modeling: A Bayesian approach. New York: Wiley.
Molenberghs, G., & Kenward, M. (2007). Missing data in clinical studies. New 

York: Wiley.
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Appendices

Chapter 1 Appendix

The example below uses the “GSS93 subset” data set distributed with 
SPSS, but you can use any combination of a dichotomous and continuous 
variable and obtain the same results across all three analytic methods.

T-TEST
 GROUPS = SEX(1 2)
 /MISSING = ANALYSIS
 /VARIABLES = AGEWED
 /CRITERIA = CI(.95).

CORRELATIONS
 /VARIABLES=AGEWED SEX
 /PRINT=TWOTAIL NOSIG
 /MISSING=PAIRWISE.

REGRESSION
 /MISSING LISTWISE
 /STATISTICS COEFF OUTS R ANOVA
 /CRITERIA=PIN(.05) POUT(.10)
 /NOORIGIN
 /DEPENDENT AGEWED
 /METHOD=ENTER SEX.

Chapter 2 Appendix

aMOS Syntax

#Region "Header"
Imports System
Imports System.Diagnostics
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Imports Microsoft.VisualBasic
Imports AmosEngineLib
Imports AmosGraphics
Imports AmosEngineLib.AmosEngine.TMatrixID
Imports PBayes
#End Region
Module MainModule
Sub Main()
Dim Sem As New AmosEngine
Try
Sem.TextOutput()
Sem.BeginGroup("Cov_Ch2.xls", "Sheet1")
'Factor Loadings
Sem.AStructure("x1 = (1)Eta1 + (1)ex1")
Sem.AStructure("x2 = Eta1 + (1)ex2")
Sem.AStructure("x3 = Eta1 + (1)ex3")
Sem.AStructure("y1 = (1)Eta2 + (1)ey1")
Sem.AStructure("y2 = Eta2 + (1)ey2")
Sem.AStructure("y3 = Eta2 + (1)ey3")
Sem.AStructure("Eta1= () Eta2 + (1)zeta")
Sem.FitModel()
Finally
Sem.Dispose()
End Try
End Sub
End Module

MPlus Syntax

!Ex2.6
TITLE: Example 2.6;
DATA:  FILE is Ex2_6.dat;
   TYPE IS COVARIANCE;
   NOBSERVATIONS = 100;
VARIABLE: NAMES are x1 x2 x3 y1 y2 y3;
!ANALYSIS: TYPE IS MEANSTRUCTURE;
MODEL: Factor loadings;
   Eta1 BY x1 @ 1;
   Eta2 BY y1 @ 1;
   Eta1 BY x2-x3;
   Eta2 BY y2-y3;
 !Factor variances;
   Eta1;
   Eta2;
 !Error variances;
   x1-y3;
 !Regression;
   Eta1 ON Eta2;
OUTPUT: TECH1;
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Chapter 3 Appendix

liSrel Syntax

! Example 3.1
LISREL (3.1)
DA NI=3 NO=1000 NG=1
LA
V1 V2 V3
CM
1.3
1.0 1.3
1.0 1.0 1.3
ME
5 5 5
MO NY=3 NE=1 LY=FU,FI PS=SY,FI TE=SY,FI TY=FI AL=FI
LE
ETA
VA 1.0 LY(1,1)
FR LY(2,1) LY(3,1)
FR PS(1,1)
FR TE(1,1) TE(2,2) TE(3,3)
FR TY(1) TY(2) TY(3)
OU ND=5

! Example 3.2
LISREL (3.2)
!First Group
DA NI=3 NO=1000 NG=2
LA
V1 V2 V3
CM
1.3
1.0 1.3
1.0 1.0 1.3
ME
5 5 5
MO NY=3 NE=1 LY=FU,FI PS=SY,FI TE=SY,FI TY=FI AL=FI
LE
ETA
VA 1.0 LY(1,1)
FR LY(2,1) LY(3,1)
FR PS(1,1)
FR TE(1,1) TE(2,2) TE(3,3)
FR TY(1) TY(2) TY(3)
OU ND=5
!Second Group
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DA NI=3 NO=500
LA
V1 V2 V3
CM
1.3
1.0 1.3
1.0 1.0 1.3
ME
5 5 5
MO NY=3 NE=1 LY=FU,FI PS=IN TE=SY,FI TY=FI AL=FI
LE
ETA
VA 1.0 LY(1,1)
FR LY(2,1) LY(3,1)
EQ LY(1,2,1) LY(2,1)
EQ LY(1,3,1) LY(3,1)
FR TE(1,1) TE(2,2) TE(3,3)
EQ TE(1,1,1) TE(1,1)
EQ TE(1,2,2) TE(2,2)
EQ TE(1,3,3) TE(3,3)
FR TY(1) TY(2) TY(3)
EQ TY(1,1) TY(1)
EQ TY(1,2) TY(2)
EQ TY(1,3) TY(3)
OU ND=5

! Example 3.3
LISREL (3.3)
!First Group
DA NI=3 NO=1000 NG=2
LA
V1 V2 V3
CM
1.3
1.0 1.3
1.0 1.0 1.3
ME
5 5 5
MO NY=3 NE=1 LY=FU,FI PS=SY,FI TE=SY,FI TY=FI AL=FI
LE
ETA
VA 1.0 LY(1,1)
FR LY(2,1) LY(3,1)
FR PS(1,1)
FR TE(1,1) TE(2,2) TE(3,3)
FR TY(1) TY(2) TY(3)
OU ND=5
!Second Group
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DA NI=3 NO=500
LA
V1 V2 V3
CM
1.3
1.0 1.3
0 0 1
ME
5 5 0
MO NY=3 NE=1 LY=FU,FI PS=IN TE=SY,FI TY=FI AL=FI
LE
ETA
VA 1.0 LY(1,1)
FR LY(2,1)
EQ LY(1,2,1) LY(2,1)
FR TE(1,1) TE(2,2)
EQ TE(1,1,1) TE(1,1)
EQ TE(1,2,2) TE(2,2)
VA 1.0 TE(3,3)
FR TY(1) TY(2)
EQ TY(1,1) TY(1)
EQ TY(1,2) TY(2)
OU ND=5

MPlus Syntax

!Complete Data
TITLE: Chapter 3 - Example 1;
DATA: FILE is C3_Complete data.dat;
 TYPE IS MEANS COVARIANCE;
   NOBSERVATION = 1000;
VARIABLE: NAMES are v1 v2 v3;
!ANALYSIS: TYPE IS MEANSTRUCTURE;
MODEL: !Factor Loadings set to 1;
 Eta BY v1 @ 1;
 Eta BY v2;
 Eta BY v3;
 !Error Variances;
 v1-v3;
 !Means for observed variables;
 [v1-v3];
OUTPUT: !For Fmin, see the last value from the function
  !column of TECH5;
 TECH1;

Data File
5 5 5
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1.3
1.0 1.3
1.0 1.0 1.3

!Complete Data
TITLE: Chapter 3 - Example 2;
DATA: FILE is C3_Completedata_TwoGroup.dat;
 TYPE IS MEANS COVARIANCE;
 NGROUPS=2;
 NOBSERVATION = 500 500;
VARIABLE: NAMES are v1 v2 v3;
!ANALYSIS: TYPE=MEANSTRUCTURE;
MODEL: !Factor Loadings set to 1;
 Eta BY v1 @ 1 (1);
 Eta BY v2 (2);
 Eta BY v3 (3);
 !Error Variances are Fixed at 0.3;
 v1 (4);
 v2 (5);
 v3 (6);
 !Means for observed variables are fixed;
 [v1] (7);
 [v2] (8);
 [v3] (9);
 [Eta @ 0] (10);
 !Variance;
 Eta (11);
MODEL g2: !Factor Loading for Group 2 equated with Group 1;
 Eta BY v1 @ 1 (1);
 Eta BY v2 (2);
 Eta BY v3 (3);
 !Error Variance are Equated with Group 1;
 v1 (4);
 v2 (5);
 v3 (6);
 !Means for observed variables are fixed;
 [v1] (7);
 [v2] (8);
 [v3] (9);
 [Eta @ 0] (10);
 !Variance;
 Eta (11)
OUTPUT: !For Fmin, see the last value from the function
  !column of TECH5;
 TECH1;

Data File
5 5 5
1.3
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1.0 1.3
1.0 1.0 1.3
5 5 5
1.3
1.0 1.3
1.0 1.0 1.3

MPlus (3.3)

TITLE: Chapter 3 - Example 3;
DATA: FILE is C3_Missingdata_TwoGroup.dat;
 TYPE IS MEANS COVARIANCE;
 NGROUPS=2;
 NOBSERVATION = 500 500;
VARIABLE: NAMES are v1 v2 v3;
!ANALYSIS: TYPE=MEANSTRUCTURE;
MODEL: !Factor Loadings set to 1;
 Eta BY v1 @ 1 (1);
 Eta BY v2 (2);
 Eta BY v3 (3);
 !Error Variances are Fixed at 0.3;
 v1 (4);
 v2 (5);
 v3 (6);
 !Means for observed variables are fixed;
 [v1] (7);
 [v2] (8);
 [v3] (9);
 [Eta @ 0] (10);
 !Variance;
 Eta (11);
MODEL g2: !Factor Loading for Group 2 equated with Group 1;
 !Factor Loading for v3 fixed at 0;
 !Eta BY v1 @ 1 (1);
 !Eta BY v2 (2);
 Eta BY v3 @ 0;
 !Error Variance are Equated with Group 1;
 !Error Variance for v3 fixed at 1.0;
 !v1 (4);
 !v2 (5);
 v3@1.0;
 !Means for observed variables are fixed;
 !Mean for v3 fixed at 0;
 ![v1] (7);
 ![v2] (8);
 [v3 @ 0];
 ![Eta @ 0] (10);
 !Variance;
 !Eta (11)
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OUTPUT: !For Fmin, see the last value from the function
  !column of TECH5;
 TECH1;
*Data file
5 5 5
1.3
1.0 1.3
1.0 1.0 1.3
5 5 0
1.3
1.0 1.3
0 0 1

aMOS Syntax

' Example 3.1
Module MainModule
 Sub Main()
  Dim Sem As New AmosEngine
  Try
   Sem.TextOutput()
   Sem.ModelMeansAndIntercepts()
   Sem.BeginGroup("Chapter3_complete data.
xls',
   "Sheet1")
   'Factor Loadings
   Sem.AStructure("v1 = (1)Eta1 + (1)ev1")
   Sem.AStructure("v2 = Eta1 + (1)ev2")
   Sem.AStructure("v3 = Eta1 + (1)ev3")
   'Factor Means
   Sem.Mean("v1")
   Sem.Mean("v2")
   Sem.Mean("v3")
   Sem.FitModel()
  Finally
   Sem.Dispose()
  End Try
 End Sub
End Module

' Example 3.2
#Region "Header"
Imports System
Imports System.Diagnostics
Imports Microsoft.VisualBasic
Imports AmosEngineLib
Imports AmosGraphics
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Imports AmosEngineLib.AmosEngine.TMatrixID
Imports PBayes
#End Region
Module MainModule
 Sub Main()
  Dim Sem As New AmosEngine
  Try
   Sem.TextOutput()
   Sem.ModelMeansAndIntercepts()
   Sem.BeginGroup("Ch3_AMOS.xls", "Sheet1")
   Sem.GroupName("Group 1")
   'Factor Loadings
    Sem.AStructure("v1 = (1)Eta1 + 
(1)err1_1")
    Sem.AStructure("v2 = (a1_1) Eta1 +
(1)err2_1")
    Sem.AStructure("v3 = (a2_2) Eta1 +
    (1)err3_1")
   ‘Factor Variances
    Sem.Var("err1_1", "err1")
    Sem.Var("err2_1", "err2")
    Sem.Var("err3_1", "err3")
    Sem.Var("Eta1", "Eta")
   ‘Mean ‘Intercept
    Sem.Mean ("v1", "vm1")
    Sem.Mean ("v2", "vm2")
    Sem.Mean ("v3", "vm3")
   
   Sem.BeginGroup("Ch3_AMOS2.xls", "Sheet1")
   Sem.GroupName("Group 2")
   'Factor Loadings
    Sem.AStructure("v1 = (1)Eta1 + 
(1)err1_2")
    Sem.AStructure("v2 = (a1_1) Eta1 +
    (1)err2_2")
    Sem.AStructure("v3 = (a2_2) Eta1 +
    (1)err3_2")
   'Factor Variances
    Sem.Var("err1_2", "err1")
    Sem.Var("err2_2", "err2")
    Sem.Var("err3_2", "err3")
    Sem.Var("Eta1", "Eta")
   'Mean 'Intercept
    Sem.Mean ("v1", "vm1")
    Sem.Mean ("v2", "vm2")
    Sem.Mean ("v3", "vm3")
         

   Sem.FitAllModels
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  Finally
   Sem.Dispose()
  End Try
 End Sub
End Module

' Example 3.3
#Region "Header"
Imports System
Imports System.Diagnostics
Imports Microsoft.VisualBasic
Imports AmosEngineLib
Imports AmosGraphics
Imports AmosEngineLib.AmosEngine.TMatrixID
Imports PBayes
#End Region
Module MainModule
 Sub Main()
  Dim Sem As New AmosEngine
  Try
   Sem.TextOutput()
   Sem.ModelMeansAndIntercepts()
   Sem.BeginGroup("Ch3_AMOS.xls", "Sheet1")
   Sem.GroupName("Complete Group")
   'Factor Loadings
    Sem.AStructure("v1 = (1)Eta1 + 
(1)err1_1")
    Sem.AStructure("v2 = (a1_1) Eta1 +
    (1)err2_1")
    Sem.AStructure("v3 = (a2_2) Eta1 +
    (1)err3_1")
   'Factor Variances
    Sem.Var("err1_1", "err1")
    Sem.Var("err2_1", "err2")
    Sem.Var("err3_1", "err3")
    Sem.Var("Eta1", "Eta")
   'Mean 'Intercept
    Sem.Mean ("v1", "vm1")
    Sem.Mean ("v2", "vm2")
    Sem.Mean ("v3", "vm3")
   
   Sem.BeginGroup("Ch3_AMOS_Missinggroup.
xls",
   "Sheet1")
   Sem.GroupName("Missing Group")
   'Factor Loadings
    Sem.AStructure("v1 = (1)Eta1 + 
(1)err1_2")
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    Sem.AStructure("v2 = (a1_1) Eta1 +
    (1)err2_2")
    Sem.AStructure("v3 = (0) Eta1 + 
(1)err3_2")
   'Factor Variances
    Sem.Var("err1_2", "err1")
    Sem.Var("err2_2", "err2")
    Sem.Var("err3_2", "1")
    Sem.Var("Eta1", "Eta")
   'Mean 'Intercept
    Sem.Mean ("v1", "vm1")
    Sem.Mean ("v2", "vm2")
    Sem.Mean ("v3", "0")
         
   Sem.FitAllModels
  Finally
   Sem.Dispose()
  End Try
 End Sub
End Module

Chapter 4 Appendix

liSrel Syntax

! SATORRA AND SARIS (1985) EXAMPLE
DA NI=2 NO=123
LA
V1 V2
CM
1.0
0.25 1.0
MO NY=2 NE=2 LY=ID PS=SY,FI TE=SY,FI
FR PS(1,1) PS(2,2)
pd
OU ND=5

! Chapter 4: Satorra & Saris _Figure 4.6 Example
LISREL
DA NI=5 NO=1000
LA
X Y1 Y2 Y3 Y4
CM
1
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0 1
0 0 1
0 0 0 1
0 0 0 0 1
MO NY=5 NE=5 LY=ID PS=SY,FI BE=FU,FI TE=ZE
VA 1.0 PS(1,1)
VA 0.84 PS(2,2)
VA 0.61 PS(3,3)
VA 0.84 PS(4,4)
VA 0.27 PS(5,5)
VA 0.4 BE(2,1)
VA 0.5 BE(3,1)
VA 0.4 BE(4,1)
VA 0.4 BE(5,2)
VA 0.4 BE(5,3)
VA 0.4 BE(5,4)
VA 0.2 BE(3,2)
OU ND=5 RS

! HANCOCK (2006) EXAMPLE
DA NI=2 NO=123
LA
V1 V2
CM
1
0 1
MO NY=2 NE=2 LY=FU,FI PS=SY,FI TE=SY,FI
VA 1.0 PS(1,1) PS(2,2)
VA 0.25 PS(1,2)
VA .9354 LY(1,1) LY(2,2)
VA .3 TE(1,1) TE(2,2)
FR PS(1,1) PS(2,2)
OU ND=5 RS SS

MPlus Syntax

!Complete Data
TITLE: Chapter 4 - Satorra and Saris;
DATA: FILE is C4_SatorraSaris.dat;
 TYPE IS COVARIANCE;
 NOBSERVATION = 123;
VARIABLE: NAMES are v1 v2;
MODEL: !Factor Loadings set to 1;
 Eta1 BY v1 @ 1;
 Eta2 BY v2@ 1;
 !Error Variances are Fixed at 0.3;
 v1-v2@0;
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 !Variance and Covariances;
 Eta1;
 Eta2;
 Eta1 with Eta2@0;
OUTPUT: !For Fmin, see the last value from the function
  column of TECH5;
 TECH1;
Data File
1.0
0.25 1.00

MPlus
TITLE: Chapter 4 - Satorra and Saris_Figure 4.6;
DATA: FILE is C4_SatorraSaris2.dat;
 TYPE IS COVARIANCE;
 NOBSERVATION = 1000;
VARIABLE: NAMES are X Y1 Y2 Y3 Y4;
MODEL: !Variance and Covariances;
 X@1.0;
 Y1@0.84;
 Y2@0.61;
 Y3@0.84;
 Y4@0.27;
 !Beta;
 Y1 ON X@0.4;
 Y2 ON X@0.5;
 Y3 ON X@0.4;
 Y2 ON Y1@0.2;
 Y4 ON Y1@0.4;
 Y4 ON Y2@0.4;
 Y4 ON Y3@0.4;
OUTPUT: RESIDUAL TECH1;

Data File
1
0 1
0 0 1
0 0 0 1
0 0 0 0 1

MPlus
TITLE: Chapter 4 - Satorra and Saris;
DATA: FILE is C4_Hancock.dat;
 TYPE IS COVARIANCE;
 NOBSERVATION = 123;
VARIABLE: NAMES are v1 v2;
MODEL: !Factor Loadings set to .9354;
 Eta1 BY v1 @ .9354;
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 Eta2 BY v2@ .9354;
 !Error Variances are Fixed at 0.3;
 v1-v2@0.3;
 !Variance and Covariances;
 Eta1@1.0 ;
 Eta2@1.0;
 Eta1 with Eta2@0.25;
OUTPUT: !For Fmin, see the last value from the function 
column of TECH5;
 RESIDUAL TECH1;

aMOS Syntax

Module MainModule
 Sub Main()
  Dim Sem As New AmosEngine
  Try
   Sem.TextOutput()
   Sem.BeginGroup("Chapter3_satorra_saris.
xls",
   "Sheet1")
   'Factor Loadings
   Sem.AStructure("v1 = (1)Eta1 + (1)ev1")
   Sem.AStructure("v2 = (1)Eta2 + (1)ev2")
   Sem.Var("Eta1")
   Sem.Var("Eta2")
   Sem.Var("ev1", "0")
   Sem.Var("ev2", "0")
   Sem.FitModel()
  Finally
   Sem.Dispose()
  End Try
 End Sub
End Module

#Region "Header"
Imports System
Imports System.Diagnostics
Imports Microsoft.VisualBasic
Imports AmosEngineLib
Imports AmosGraphics
Imports AmosEngineLib.AmosEngine.TMatrixID
Imports PBayes
#End Region
Module MainModule
 Sub Main()
  Dim Sem As New AmosEngine
  Try

Y100315.indb   256 7/15/09   3:00:20 PM



Appendices 257

   Sem.TextOutput()
   Sem.BeginGroup("Ch3_Satorra_
saris_4.6.xls",
   "Sheet1")
   'Factor Loadings
   Sem.AStructure("y1 = (.4)X + (1)u1")
   Sem.AStructure("y2 = (.5)X + (1)u2")
   Sem.AStructure("y3 = (.4)X + (1)u3")
   Sem.AStructure("y2 = (.2) y1 ")
   Sem.AStructure("y4 = (.4)y1 + (.4)y2 + 
(.4)y3
   + (1)u4")
   'Fixed Variances
   Sem.Var("X", "1.0")
   Sem.Var("u1", "0.84")
   Sem.Var("u2", "0.61")
   Sem.Var("u3", "0.84")
   Sem.Var("u4", "0.27")
   'Fixed Regression Weights
   'Sem.AStructure("y2<--y1")
   Sem.FitModel()
  Finally
   Sem.Dispose()
  End Try
 End Sub
End Module

#Region "Header"
Imports System
Imports System.Diagnostics
Imports Microsoft.VisualBasic
Imports AmosEngineLib
Imports AmosGraphics
Imports AmosEngineLib.AmosEngine.TMatrixID
Imports PBayes
#End Region
Module MainModule
 Sub Main()
  Dim Sem As New AmosEngine
  Try
   Sem.ImpliedMoments
   Sem.TextOutput()
   Sem.BeginGroup("Ch3_Hancock.xls", 
"Sheet1")
   'Factor Loadings
   Sem.AStructure("v1 = (.9354)Eta1 + (1)
ev1")
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   Sem.AStructure("v2 = (.9354)Eta2 + 
(1)ev2")
   Sem.Cov("Eta1", "Eta2", "0.25")
   Sem.Var("Eta1", "1")
   Sem.Var("Eta2", "1")
   Sem.Var("ev1", "0.3")
   Sem.Var("ev2", "0.3")
   Sem.FitModel()
  Finally
   Sem.Dispose()
  End Try
 End Sub
End Module

Stata Syntax

set obs 1
generate alpha = 0.05
generate rmsea0 = 0.00
generate rmseaa = 0.05
generate d = 1
generate n = 123
generate ncp0 = (n - 1)*d*rmsea0*rmsea0
generate ncpa = (n - 1)*d*rmseaa*rmseaa
generate cval = invnchi2(d, ncp0, 1 - alpha) if rmsea0 </// 
rmseaa
generate power = 1 - nchi2(d, ncpa, cval) if rmsea0 < rmseaa
replace cval = invnchi2(d, ncp0, alpha) if rmsea0 > rmseaa
replace power = nchi2(d, ncpa, cval) if rmsea0 > rmseaa
summarize

* Chapter 4_Chi-Crit and Power
STATA
set obs 1
generate n = 200
generate alpha = .05
generate dfa = 22
generate ea = .06
generate dfb = 20
generate eb = .04
generate delta = (dfa*ea*ea - dfb*eb*eb)
generate lambda = (n-1)*delta
generate ddf1 = dfa - dfb
generate chicrit = invchi2tail(ddf,alpha)
generate power = 1 - nchi2(ddf,lambda,chicrit)
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SPSS Syntax

**********************************************************.
*cval computed as invnchi2(d, ncp0, 1 - alpha) if 
*rmsea0<rmseaa.
*OR invnchi2(d, ncp0, alpha) if rmsea0 > rmseaa.
*Since invnchi2 function is not available in SPSS, compute 
*the.
*inverse of noncentral chi-squared distribution in STATTAB.
*http://odin.mdacc.tmc.edu/anonftp/
*or G*Power
* http://www.psycho.uni-duesseldorf.de/abteilungen/aap/
*gpower3/
***********************************************************.
DATA LIST LIST
/fit (A15) alpha rmsea0 rmseaa d n cval.

BEGIN DATA
"close" 0.05 0.05 0.08 1 123 4.947754
"not close" 0.05 0.05 0.01 1 123 0.005334
"exact" 0.05 0.00 0.05 1 123 3.8141459
END DATA.

COMPUTE ncp0 = (n-1)*d*rmsea0*rmsea0.
COMPUTE ncpa = (n-1)*d*rmseaa*rmseaa.
do if (rmsea0<rmseaa).
Compute power = 1- NCDF.CHISQ(cval, d, ncpa).
Else if (rmsea0>rmseaa).
 COMPUTE power = NCDF.CHISQ(cval, d, ncpa).
end if.
execute.

DATA LIST FREE / obs.
BEGIN DATA.
1
END DATA.
COMPUTE n = 200.
COMPUTE alpha = 0.05.
COMPUTE dfa = 22.
COMPUTE ea = 0.06.
COMPUTE dfb = 20.
COMPUTE eb = 0.04.
COMPUTE delta = (dfa*ea*ea - dfb*eb*eb).
COMPUTE lambda = (n-1)*delta.
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COMPUTE ddf = dfa - dfb.
COMPUTE chicrit = IDF.CHISQ(1-alpha,ddf) .
COMPUTE power = 1-NCDF.CHISQ(chicrit, ddf, lambda) .
execute.

SaS Syntax

data maccallum;
do obs=1;
alpha=0.05;
rmsea0=0.00;
rmseaa=0.05;
df=1;
n=123;
ncp0=(n-1)*df*rmsea0*rmsea0;
ncpa=(n-1)*df*rmseaa*rmseaa;
IF rmsea0<rmseaa THEN cval=cinv(1-alpha, df, ncp0);
IF rmsea0<rmseaa THEN power=1- PROBCHI(cval,df,ncpa);
IF rmsea0>rmseaa THEN cval=cinv(alpha, df, ncp0);
IF rmsea0>rmseaa THEN power=PROBCHI(cval,df,ncpa);
output;
end;
proc print data=maccallum;
var n rmsea0 rmseaa cval power;
run;

data chicrit;
do obs=1;
n=200;
alpha=0.05;
dfa = 22;
ea = .06;
dfb = 20;
eb = .04;
delta = (dfa*ea*ea - dfb*eb*eb);
lambda = (n-1)*delta;
ddf= dfa - dfb;
chicrit = quantile('chisquare', 1-alpha, ddf);
power=1-PROBCHI(chicrit,ddf,lambda);
output;
end;
proc print data=chicrit;
var n chicrit delta lambda power;
run;
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Chapter 5 Appendix

liSrel Syntax

! Example 5.1
DA NI=2 NO=1000
LA
Y1 Y2
CM
1
0 1
ME
0 0
MO NY=2 NE=2 LY=FU,FI PS=SY,FI TE=SY,FI TY=FI AL=FI
VA 1 LY(1,1) LY(2,2)
VA 256 PS(1,1) PS(2,2)
VA 64 PS(1,2)
VA 100 TY(1) TY(2)
OU RS ND=5

MPlus Syntax
TITLE: Chapter 5 - Example 1;
DATA: FILE is Ch5_example1.dat;
 TYPE is MEANS COVARIANCE;
 NOBSERVATIONS = 1000;
VARIABLE: NAMES are Y1 Y2;
MODEL: !Factor Loadings set to 1;
 Eta1 BY Y1 @ 1;
 Eta2 BY Y2 @ 1;
 !Error variances are fixed;
 Y1 @ 0;
 Y2 @ 0;
 !Variances for Psi;
 Eta1 @ 256;
 Eta2 @ 256;
 Eta1 with Eta2 @ 64;
 !Means for observed variables are fixed;
 [Y1-Y2@0];
 !Means for latent factors are fixed;
 [Eta1-Eta2@ 100];
OUTPUT: RESIDUAL TECH1;

aMOS Syntax

#Region "Header"
Imports System
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Imports System.Diagnostics
Imports Microsoft.VisualBasic
Imports AmosEngineLib
Imports AmosGraphics
Imports AmosEngineLib.AmosEngine.TMatrixID
Imports PBayes
#End Region
Module MainModule
 Sub Main()
  Dim Sem As New AmosEngine
  Try
   Sem.ImpliedMoments
   Sem.ModelMeansAndIntercepts
   Sem.TextOutput()
   Sem.BeginGroup("Ch5_Example1.xls", 
"Sheet1")
   'Factor Loadings
   Sem.AStructure("v1 = (1)Eta1 + (1)ev1")
   Sem.AStructure("v2 = (1)Eta2 + (1)ev2")
   Sem.Cov("Eta1", "Eta2", "64")
   Sem.Var("Eta1", "256")
   Sem.Var("Eta2", "256")
   Sem.Var("ev1", "0")
   Sem.Var("ev2", "0")
   Sem.Mean("Eta1", "100")
   Sem.Mean("Eta2", "100")
   Sem.FitModel()
  Finally
   Sem.Dispose()
  End Try
 End Sub
End Module

SaS Syntax

/* Selection syntax */
PROC IML;
 LY = {1 0,
  0 1};
 PS = {256 64,
  64 256};
 TE = {0 0,
  0 0};
 TY = {100, 100};
 W =  {1, 0};
 SIGMA = LY*PS*LY`+TE;
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/*Mean of Selection Variable - Selection on Observed 
Variables*/
 mus = w`*ty;

/*Variance of Selection Variable*/
 vars = w`*sigma*w;

/*Standard Deviation of Selection Variable*/
 sds = root(vars);
/*This syntax calculates from 5% to 95% cutpoints*/
do I = 0.05 to 1 by .05;

/*Mean and Variance in Selected Subsample (>= cutpoint)*/
d=quantile('NORMAL',I);
phis = PDF('NORMAL',trace(d));
phiss = CDF('NORMAL',trace(d));
xPHIs = I(1)-phiss;
/*Mean of Selection Variance (Selected and Unselected 
Groups)*/

muss = mus + sds*phis*inv(xPHIs);
musu = mus - sds*phis*inv(phiss);
/*Variance of Selection Variance (Selected and Unselected 
Groups)*/
varss = vars*(1 + (d*phis*inv(xPHIs)) -
(phis*phis*inv(xPHIs)*inv(xPHIs)));
varsu = vars*(1 - (d*phis*inv(phiss)) -

(phis*phis*inv(phiss)*inv(phiss)));

/*Omega (Selected and Unselected Groups)*/
omegas = inv(vars)*(varss - vars)*inv(vars);
omegau = inv(vars)*(varsu - vars)*inv(vars);

/*Sigma (Selected and Unselected Groups)*/
sigmas = sigma + omegas*(sigma*(w*w`)*sigma);
sigmau = sigma + omegau*(sigma*(w*w`)*sigma);

/*Kappa (Selected and Unselected Groups)*/
ks = inv(vars)*(muss - mus);
ku = inv(vars)*(musu - mus);

/*Means (Selected and Unselected Groups)*/
muys = ty + sigma*w*ks;
muyu = ty + sigma*w*ku;

print I;
print sigmas;
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print muys;
print sigmau;
print muyu;
end;
quit;

/* Selection in 3 parts */
/*SPECIFY THE POPULATION MODEL*/
PROC IML;
ly = {1 0,
0 1};
ps = {256 64,
64 256};
te = {0 0,
0 0};
ty = {100, 100};
/*Specify Weight Matrix*/
w = {1, 0};
sigma = ly*ps*ly` + te;
/*Mean of Selection Variable - Selection on Observed 
Variables*/
mus = w`*ty;
/*Variance of Selection Variable*/
vars = w`*sigma*w;
/*Standard Deviation of Selection Variable*/
sds = root(vars);
/*To divide population in three we must define two cutpoints 
using z scores*/;
/*Ranges are thus z=infinity to -0.97, -0.97 to +0.97, and 
+0.97 to +infinity*/;
z1 = PROBIT(0.333333);
z2 = PROBIT(0.666667);
phis1 = PDF('NORMAL',trace(z1));
phis2 = PDF('NORMAL',trace(z2));
phiss1 = CDF('NORMAL',trace(z1));
phiss2 = CDF('NORMAL',trace(z2));
/*Mean of Selection Variable in Selected Portion of Sample*/
m3 = mus - sds*(phis2-phis1)*inv(phiss2-phiss1);
/*Variance of Selection Variable in Selected Portion of 
Sample*/
vars3 = vars*(1 - ((z2*phis2-z1*phis1)*inv(phiss2-phiss1)) 
- (phis2-phis1)*(phis2-phis1)*inv(phiss2-phiss1)*inv(phiss2-
phiss1));
/*Omega (Selected)*/
omegas = inv(vars)*(vars3 - vars)*inv(vars);
/*Kappa (Selected)*/
ks =inv(vars)*(m3 - mus);
/*Sigma (Selected)*/
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sigmas = sigma + omegas*(sigma*(w*w`)*sigma);
/*Means (Selected)*/
muys = ty + sigma*w*ks;
print sigmas muys;
quit;

Stata Syntax

* Selection syntax
#delimit;
* First specify the population model;
matrix ly = (1 , 0 \
  0 , 1 );
matrix ps = (256 , 64 \
 64 , 256 );
matrix te = (0 , 0 \
  0 , 0 );
matrix ty = (100 \ 100 );

matrix sigma = ly*ps*ly’ + te;

* Next specify the weight matrix;
matrix w = (1 \ 0);

* Mean of Selection Variable -- Selection on Observed 
Variables;
matrix mus = w’*ty;

* Variance of Selection Variable;
matrix vars = w’*sigma*w;

* Standard Deviation of Selection Variable;
matrix sds = cholesky(vars);

* Mean and variance in selected subsample (greater than or 
equal to cutpoint);
forvalues prob=.05(.05) 1 {;

matrix z = invnorm(`prob');

* PDF(z);
matrix phis = normden(trace(z));

* CDF(z) and CDF(-z);
matrix PHIs = norm(trace(z));

* 1 - CDF(z), ie CDF(-z);
matrix xPHIs = I(1) - PHIs;
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* Mean of Selection Variable in Selected and Unselected 
Portions of Sample;
matrix muss = mus + sds*phis*inv(xPHIs);
matrix musu = mus - sds*phis*inv(PHIs);

* Variance of Selection Variable in Selected and Unselected 
Portions of Sample;
matrix varss = vars*(1 + (z*phis*inv(xPHIs)) - (phis*phis*in
v(xPHIs)*inv(xPHIs)));
matrix varsu = vars*(1 - (z*phis*inv(PHIs)) - (phis*phis*inv
(PHIs)*inv(PHIs)));
* Standard Deviation of Selection Variable in Selected and 
Unselected Portions of Sample;
matrix sdss = cholesky(varss);
matrix sdsu = cholesky(varsu);

* Calculate Omega (Selected and Unselected);
matrix omegas = inv(vars)*(varss - vars)*inv(vars);
matrix omegau = inv(vars)*(varsu - vars)*inv(vars);

* Calculate Sigma (Selected and Unselected);
matrix sigmas = sigma + omegas*(sigma*(w*w’)*sigma);
matrix sigmau = sigma + omegau*(sigma*(w*w’)*sigma);

* Calculate Kappa (Selected and Unselected);
matrix ks = inv(vars)*(muss - mus);
matrix ku = inv(vars)*(musu - mus);

* Calculate Muy (Selected and Unselected);
matrix muys =ty + sigma*w*ks;
matrix muyu = ty + sigma*w*ku;

matrix list PHIs;
matrix list sigmas;
matrix list muys;
matrix list sigmau;
matrix list muyu;
matrix list z;

};

* Can Use This Syntax to Generate Observations to Check Work;
*corr2data x y , n(1000) m(ty) cov(sigma);
*generate s = x;

*SPECIFY THE POPULATION MODEL;
matrix ly = (1 , 0\ 0 , 1);
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matrix ps = (256 , 64 \ 64, 256 );
matrix te = (0, 0 \ 0, 0);
matrix ty =(100\100);
matrix sigma = ly*ps*ly’ + te;

* SPECIFY WEIGHT MATRIX;
matrix w = (1\ 0);
* MEAN OF SELECTION VARAIBLE;
matrix mus = w’*ty;

* VARIANCE OF SELECTION VARIABLE;
matrix vars = w'*sigma*w;
* STANDARD DEVIATION OF SELECTION VARIABLE;
matrix sds = cholesky(vars);

* TO DIVIDE POPULATION IN THREE WE MUST DEFINE TWO CUTPOINTS 
USING Z-SCORES;
* Ranges are thus z=-infinity to -0.97, -0.97 to +0.97, and 
+0.97 to +infinity;

matrix z1 = invnorm(0.333333);
matrix z2 = invnorm(0.666667);

*PDF(z);
matrix phis1 = normden(trace(z1));
matrix PHIs1 = norm(trace(z1));

*CDF(z);
matrix phis2 = normden(trace(z2));
matrix PHIs2 = norm(trace(z2));

*MEAN OF SELECTION VARIABLE IN SELECTED PORTION OF SAMPLE;
matrix m3 = mus - sds*(phis2-phis1)*inv(PHIs2-PHIs1);

*VARIANCE OF SELECTION VARIABLE IN SELECTED PORTION OF SAMPLE;
matrix vars3 = vars*(1 - ((z2*phis2-z1*phis1)*inv(PHIs2-
PHIs1)) - (phis2-phis1)*(phis2-phis1)*inv(PHIs2-
PHIs1)*inv(PHIs2-PHIs1));

*STANDARD DEVIATION OF SELECTION VARIABLE IN SELECTED 
PORTION OF SAMPLE;
matrix sds3 = cholesky(vars3);

* OMEGA (Selected);
matrix omegas = inv(vars)*(vars3 - vars)*inv(vars);
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* KAPPA (Selected and Unselected);
matrix ks = inv(vars)*(m3 - mus);
* SIGMA (Selected);
matrix sigmas = sigma + omegas*(sigma*(w*w')*sigma);

* MUY (Selected);
matrix muys = ty + sigma*w*ks;

matrix list sigmas;
matrix list muys;

SPSS Syntax

* Selection syntax.

Input program.
Loop I = 0.05 to 1 by (.05).
 End case.
End Loop.
End File.
End Input Program.
Execute.

COMPUTE d = IDF.NORMAL(I, 0,1).
COMPUTE phis = PDF.NORMAL(d ,0,1).
Compute phiss = CDFNORM(d).
execute.

matrix.

Get D
/variables = d.

Get PHIS
/variables = phis.

Get PHISS
/variables = phiss.

compute ly = {
1,0;
0,1}.

compute ps = {
256, 64;
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64, 256}

compute te = {
0,0;
0,0}

compute ty = {
100;
100}

compute w = {
1;
0}

compute sigma = ly * ps * t(ly) + te.

* Mean of Selection variable -- Selection on Observed 
Variables.
compute mus = t(w)*ty.

* Variance of Selection Variable.
compute vars = t(w)*sigma*w.

* Standard Deviation of Selection Variable.
compute sds = chol(vars).

loop i=1 to 19.
compute missamt = 5*i.
compute xPHIs = ident(1) - phiss.

compute muss = mus + sds*phis(i)*inv(xphis(i)).
compute musu = mus - sds*phis(i)*inv(phiss(i)).

compute varss = vars *(1 + (d(i)*phis(i)*inv(xPHIs(i))) 
- (phis(i)*phis(i)*inv(xPHIs(i))*inv(xPHIs(i)))).
compute varsu = vars *(1 - (d(i)*phis(i)*inv(phiss(i))) 
- (phis(i)*phis(i)*inv(phiss(i))*inv(phiss(i)))).

compute omegas = inv(vars)*(varss - vars)*inv(vars).
compute omegau = inv(vars)*(varsu - vars)*inv(vars).

compute sigmas = sigma + omegas* (sigma*(w*t(w))*sigma).
compute sigmau = sigma + omegau* (sigma*(w*t(w))*sigma).

compute ks = inv(vars)*(muss - mus).
compute ku = inv(vars)*(musu - mus).
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compute muys = ty + sigma*w*ks.
compute muyu = ty + sigma*w*ku.

print missamt.
print sigmas.
print muys.
print sigmau.
print muyu.
end loop.
end matrix.
execute.

* Selection Syntax in 3 Parts.
DATA LIST FREE / I1 I2.
BEGIN DATA.
0.333333
0.666667
END DATA.

COMPUTE z1 = IDF.NORMAL(I1, 0, 1).
COMPUTE z2 = IDF.NORMAL(I2, 0, 1).
COMPUTE phis1 = PDF.NORMAL(z1 ,0,1).
COMPUTE phis2 = PDF.NORMAL(z2 ,0,1).
Compute phiss1 = CDFNORM(z1).
Compute phiss2 = CDFNORM(z2).
execute.

matrix.

Get z1
/variables = z1.

Get z2
/variables = z2.

Get phis1
/variables = phis1.

Get phis2
/variables = phis2.

Get phiss1
/variables = phiss1.

Get phiss2
/variables = phiss2.

compute ly = {
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1,0;
0,1}.

compute ps = {
256, 64;
64, 256}

compute te = {
0,0;
0,0}

compute ty = {
100;
100}
compute w = {
1,0}

compute sigma = ly * ps * t(ly) + te.

* Mean of Selection variable -- Selection on Observed 
Variables.
compute mus = w*ty.
* Variance of Selection Variable.
compute vars = w*sigma*t(w).

* Standard Deviation of Selection Variable.
compute sds = chol(vars).

*To Divide Population in Three we must Define Two Cutpoints 
Using Z-Scores;
*Ranges are thus z=-infinity to -0.97, -0.97 to +0.97, and 
+0.97 to +infinity;

compute m3 = mus - sds*(phis2-phis1)*inv(phiss2-phiss1).

compute vars3 = vars *(1 - ((z2*phis2 - 
z1*phis1)*inv(phiss2-phiss1)) - (phis2-phis1)*(phis2-
phis1)*inv(phiss2-phiss1)*inv(phiss2-phiss1)).

compute omegas = inv(vars)*(vars3 - vars)*inv(vars).

compute sigmas = sigma + omegas* (sigma*(t(w)*w)*sigma).

compute ks = inv(vars)*(m3 - mus).

compute mues = ks*ps*t(ly)*t(w).

compute tys = ty + ly*mues.
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print sigmas.
print tys.
end matrix.
execute.

Chapter 6 – appendix

liSrel Syntax

! Complete Data (Constrained Covariance)
da ni=2 no=10000 ng=2
la
x y
cm
1.000
0.100 1.000
me
1.0 1.2
mo ny=2 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
va 1.0 ly(1,1) ly(2,2)
ou nd=5

da ni=2 no=10000 ng=2
la
x y
cm
1.000
0.100 1.000
me
1.0 1.2
mo ny=2 ne=2 ly=in ps=in te=in ty=in al=in
ou nd=5

Example 2: 2 Group Missing Data
LISREL - EXAMPLE 2
! Complete Data (Constrained Covariance)
da ni=2 no=10000 ng=2
la
x y
cm
1.000
0.100 1.000
me
1.0 1.2
mo ny=2 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
va 1.0 ly(1,1) ly(2,2)
ou nd=5
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!Group 2
da ni=2 no=10000 ng=2
la
x y
cm
1.000
0 1.000
me
1.0 0
mo ny=2 ne=2 ly=fu,fi ps=in te=sy,fi ty=fi al=fi
va 1.0 ly(1,1)
va 1.0 te(2,2)
eq al(1,1) al(1)
ou nd=5
Example 4
LISREL
! Complete Data Group - Constrained Covariance Model
da ni=2 no=9500 ng=2
la
x y
cm
!Effect size ! Small Medium  Large
1.000  ! 1.000          1.000     1.000
0.100 1.000 ! 0.100 1.000 0.243 1.000  0.371 1.000
me
1 1.2
mo ny=2 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
va 1.0 ly(1,1) ly(2,2)
fi ps(1,2)
ou nd=5

! 5% Missing Data Group - Constrained Covariance Model
da ni=2 no=500
la
x y
cm
1
0 1
me
1 0
mo ny=2 ne=2 ly=fu,fi ps=in te=sy,fi ty=fi al=fr
va 1.0 ly(1,1)
va 1.0 te(2,2)
eq al(1,1) al(1)
fi al(2)
ou nd=5

Y100315.indb   273 7/15/09   3:00:21 PM



274 Appendices

MPlus Syntax

MPlus - Example 1
!Complete Data
TITLE: Chapter 6 - Example 1;
DATA: FILE is C6_Completedata_TwoGroup.dat;
 TYPE IS MEANS COVARIANCE;
 NGROUPS=2;
 NOBSERVATION = 10000 10000;
VARIABLE: NAMES are p1 p2;
ANALYSIS: TYPE=MEANSTRUCTURE;
MODEL: !Factor Loadings set to 1;
 Eta1 BY p1 @ 1.0 (1);
 Eta2 BY p2 @ 1.0 (2);
 !Error Variances are Fixed;
 p1 @ 0 (3);
 p2 @ 0 (4);
 !Means for observed variables are fixed;
 [p1] (5);
 [p2] (6);
 [Eta1@0] (7);
 [Eta2@0] (8);
 !Variance;
 Eta1 (9)
 Eta2 (10);
 Eta1 with Eta2 (11);
OUTPUT: !For Fmin, see the last value from the function 
column of TECH5;
 TECH1;

MPlus - Example 2
TITLE: Chapter 6 - Example 2;
DATA: FILE is C6_Missingdata_TwoGroup.dat;
 TYPE IS MEANS COVARIANCE;
 NGROUPS=2;
 NOBSERVATION = 10000 10000;
VARIABLE: NAMES are p1 p2;
ANALYSIS: TYPE=MEANSTRUCTURE;
MODEL: !Factor Loadings set to 1;
 Eta1 BY p1 @ 1.0 (1);
 Eta2 BY p2 @ 1.0 ;
 !Error Variances are Fixed;
 p1 @ 0 (2);
 p2 @ 0 (3);
 !Means for observed variables are fixed;
 [p1] (4);
 [p2];
 [Eta1@0] (5);

Y100315.indb   274 7/15/09   3:00:21 PM



Appendices 275

 [Eta2@0] (6);
 !Variance;
 Eta1 (7)
 Eta2 (8);
 Eta1 with Eta2 (9);
Model G2: Eta2 BY p2 @ 0;
 p2 @ 1;
 [p2@0]
OUTPUT: !For Fmin, see the last value from the function 
column of TECH5;
 RESIDUAL TECH1;

TITLE: Chapter 6 - Example 3;
DATA: FILE is C6_Missingdata_ConstrainCovariance.dat;
 TYPE IS MEANS COVARIANCE;
 NGROUPS=2;
 NOBSERVATION = 9500 500;
VARIABLE: NAMES are p1 p2;
ANALYSIS: TYPE=MEANSTRUCTURE;
MODEL: !Factor Loadings set to 1;
 Eta1 BY p1 @ 1.0 (1);
 Eta2 BY p2 @ 1.0 ;
 !Error Variances are Fixed;
 p1 @ 0 (2);
 p2 @ 0 (3);
 !Means for observed variables are fixed;
 [p1] (4);
 [p2];
 [Eta1@0] (5);
 [Eta2@0] (6);
 !Variance;
 Eta1 (7)
 Eta2 (8);
 Eta1 with Eta2 @0(9);
Model G2: Eta2 BY p2 @ 0;
 p2 @ 1;
 [p2@0]
OUTPUT: !For Fmin, see the last value from the function 
column of TECH5;
 RESIDUAL TECH1;

aMOS Syntax

Module MainModule
 Sub Main()
  Dim Sem As New AmosEngine
  Try

   Sem.TextOutput()
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   Sem.ModelMeansAndIntercepts()
   Sem.BeginGroup("Ex1_Completedata.xls", 
"Sheet1")
   Sem.GroupName("Group 1")
   'Factor Loadings
    Sem.AStructure("v1 = (1)Eta1 + 
(1)err1_1")
    Sem.AStructure("v2 = (1) Eta2 + 
(1)err2_1")
   'Factor Variances
    Sem.Var("err1_1", "0")
    Sem.Var("err2_1", "0")
    Sem.Var("Eta1", "ps1")
    Sem.Var("Eta2", "ps2")
    Sem.Cov("Eta1", "Eta2", "ps3")
   'Mean 'Intercept
    Sem.Mean ("v1")
    Sem.Mean ("v2")
    Sem.Mean ("Eta1","0")
    Sem.Mean ("Eta1","0")
       
   Sem.BeginGroup("Ex1_Completedata.xls", 
"Sheet1")
   Sem.GroupName("Group 2")
   'Factor Loadings
    Sem.AStructure("v1 = (1)Eta1 + 
(1)err1_1")
    Sem.AStructure("v2 = (1) Eta2 + 
(1)err2_1")
   'Factor Variances
    Sem.Var("err1_1", "0")
    Sem.Var("err2_1", "0")
    Sem.Var("Eta1", "ps1")
    Sem.Var("Eta2", "ps2")
    Sem.Cov("Eta1", "Eta2", "ps3")
   'Mean 'Intercept
    Sem.Mean ("v1", "v1")
    Sem.Mean ("v2", "v2")
    Sem.Mean ("Eta1","0")
    Sem.Mean ("Eta1","0")
         
   Sem.FitAllModels
  Finally
   Sem.Dispose()
  End Try
 End Sub

AMOS - Example 2
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#Region "Header"
Imports System
Imports System.Diagnostics
Imports Microsoft.VisualBasic
Imports AmosEngineLib
Imports AmosGraphics
Imports AmosEngineLib.AmosEngine.TMatrixID
Imports PBayes
#End Region
Module MainModule
 Sub Main()
  Dim Sem As New AmosEngine
  Try
   Sem.TextOutput()
   Sem.ModelMeansAndIntercepts()
   Sem.BeginGroup("Ex2_Completedata.xls", 
"Sheet1")
   Sem.GroupName("Group 1")
   'Factor Loadings
    Sem.AStructure("v1 = (1)Eta1 + 
(1)err1_1")
    Sem.AStructure("v2 = (1) Eta2 + 
(1)err2_1")
   'Factor Variances
    Sem.Var("err1_1", "0")
    Sem.Var("err2_1", "0")
    Sem.Var("Eta1", "ps1")
    Sem.Var("Eta2", "ps2")
    Sem.Cov("Eta1", "Eta2", "ps3")
   'Mean 'Intercept
    Sem.Mean ("v1", "v1")
    Sem.Mean ("v2")
    Sem.Mean ("Eta1","0")
    Sem.Mean ("Eta2","0")
       
   Sem.BeginGroup("Ex2_Missingdata.xls", 
"Sheet1")
   Sem.GroupName("Group 2")
   'Factor Loadings
    Sem.AStructure("v1 = (1)Eta1 + 
(1)err1_1")
    Sem.AStructure("v2 = (0) Eta2 + 
(1)err2_1")
    'Sem.Var ("v2<--Eta2", "0")
   'Factor Variances
    Sem.Var("err1_1", "0")
    Sem.Var("err2_1", "1")
    Sem.Var("Eta1", "ps1")
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    Sem.Var("Eta2", "ps2")
    Sem.Cov("Eta1", "Eta2", "ps3")
   'Mean 'Intercept
    Sem.Mean ("v1", "v1")
    Sem.Mean ("v2", "0")
    Sem.Mean ("Eta1","0")
    Sem.Mean ("Eta2","0")
         
   Sem.FitAllModels
  Finally
   Sem.Dispose()
  End Try
 End Sub
End Module
#Region "Header"
Imports System
Imports System.Diagnostics
Imports Microsoft.VisualBasic
Imports AmosEngineLib
Imports AmosGraphics
Imports AmosEngineLib.AmosEngine.TMatrixID
Imports PBayes
#End Region
Module MainModule
 Sub Main()
  Dim Sem As New AmosEngine
  Try
   Sem.TextOutput()
   Sem.ModelMeansAndIntercepts()
   Sem.BeginGroup("Ex3_Completedata.xls", 
"Sheet1")
   Sem.GroupName("Group 1")
   'Factor Loadings
    Sem.AStructure("v1 = (1)Eta1 + 
(1)err1_1")
    Sem.AStructure("v2 = (1) Eta2 + 
(1)err2_1")
   'Factor Variances
    Sem.Var("err1_1", "0")
    Sem.Var("err2_1", "0")
    Sem.Var("Eta1", "ps1")
    Sem.Var("Eta2", "ps2")
    Sem.Cov("Eta1", "Eta2", "0")
   'Mean 'Intercept
    Sem.Mean ("v1", "v1")
    Sem.Mean ("v2")
    Sem.Mean ("Eta1","0")
    Sem.Mean ("Eta2","0")
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   Sem.BeginGroup("Ex3_Missingdata.xls", 
"Sheet1")
   Sem.GroupName("Group 2")
   'Factor Loadings
    Sem.AStructure("v1 = (1)Eta1 + 
(1)err1_1")
    Sem.AStructure("v2 = (0) Eta2 + 
(1)err2_1")
    'Sem.Var ("v2<--Eta2", "0")
   'Factor Variances
    Sem.Var("err1_1", "0")
    Sem.Var("err2_1", "1")
    Sem.Var("Eta1", "ps1")
    Sem.Var("Eta2", "ps2")
    Sem.Cov("Eta1", "Eta2", "0")
   'Mean 'Intercept
    Sem.Mean ("v1", "v1")
    Sem.Mean ("v2", "0")
    Sem.Mean ("Eta1","0")
    Sem.Mean ("Eta2","0")
         
   Sem.FitAllModels
  Finally
   Sem.Dispose()
  End Try
 End Sub
End Module

Stata Syntax

STATA - Example 3: Selection Syntax
* Specify the population model;
matrix ly = (1 , 0 \ 0 , 1 );
* Replace Correlations with .243 and .371 for Moderate & 
Large Effect Sizes;
matrix ps = (1.000 , 0.100 \ 0.100 , 1.000 );
matrix te = (0 , 0 \ 0 , 0 );
matrix ty = (1.0 \ 1.2 );
matrix sigma = ly*ps*ly' + te;
* Specify weight matrix;
matrix w = (1 \ 0); * Missing data depend only on values of x;
* Mean of Selection Variable - Selection on Observed 
Variables;
matrix mus = w'*ty;
* Variance of Selection Variable;
matrix vars = w'*sigma*w;
* Standard Deviation of Selection Variable;
matrix sds = cholesky(vars);
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* Mean and variance in selected subpopulation >= cutpoint, c);
* This syntax calculates from 5% to 95% cutpoints;
forvalues prob=.05(.05) 1 {;
matrix z = invnorm(`prob');
matrix phis = normalden(trace(z)); * PDF(z);
matrix PHIs = normal(trace(z)); * CDF(z) and CDF(-z);
matrix xPHIs = I(1) - PHIs; * 1 - CDF(z), ie CDF(-z);
* Mean of Selection Variable (Selected and Unselected 
Subpopulations);
matrix muss = mus + sds*phis*inv(xPHIs);
matrix musu = mus - sds*phis*inv(PHIs);
* Variance of Selection Variable (Selected and Unselected 
Subpopulations);
matrix varss = vars*(1 + (z*phis*inv(xPHIs)) - (phis*phis*in
v(xPHIs)*inv(xPHIs)));
matrix varsu = vars*(1 - (z*phis*inv(PHIs)) - (phis*phis*inv
(PHIs)*inv(PHIs)));
* Omega (Selected and Unselected);
matrix omegas = inv(vars)*(varss - vars)*inv(vars);
matrix omegau = inv(vars)*(varsu - vars)*inv(vars);
* Sigma (Selected and Unselected);
matrix sigmas = sigma + omegas*(sigma*(w*w')*sigma);
matrix sigmau = sigma + omegau*(sigma*(w*w')*sigma);
* Kappa (Selected and Unselected);
matrix ks = inv(vars)*(muss - mus);
matrix ku = inv(vars)*(musu - mus);
* Muy (Selected and Unselected);
matrix muys =ty + sigma*w*ks;
matrix muyu = ty + sigma*w*ku;
matrix list PHIs;
matrix list sigmas;
matrix list muys;
matrix list sigmau;
matrix list muyu;
 };

#delimit;
set more off;
set obs 20;
gen FMin0 = 0.01005; *0% missing data;
gen FMin1 = 0.00955; *MCAR with 5% missing;
gen FMin2 = 0.00774; *MAR with 5% missing;
gen n = 50*_n;
gen ncp0 = (n-1)*FMin0;
gen ncp1 = (n-1)*FMin1;
gen ncp2 = (n-1)*FMin2;
gen df1 = 1;
gen alpha = 0.05;
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gen chicrit1 = invchi2tail(df1, alpha);
gen power0 = 1- nchi2(df1,ncp0,chicrit1);
gen power1 = 1- nchi2(df1,ncp1,chicrit1);
gen power2 = 1- nchi2(df1,ncp2,chicrit1);
list n ncp0 power0 ncp1 power1 ncp2 power2 , noobs clean 
table;

#delimit;
set more off;
set obs 10;
generate df = _n;
generate alpha = 0.05;
generate power =0.80;
gen chicrit = invchi2tail(df, alpha);
gen ncp = invnchi2(df,chicrit,power);
gen fmin0 = 0.01005;
gen fmin1 = 0.00955;
gen fmin2 = 0.00774;
gen n0=ncp/fmin0;
gen n1=ncp/fmin1;
gen n2=ncp/fmin2;
list df ncp n0 n1 n2, noobs clean table;

SaS Syntax

SAS: Example 3-Selection syntax.
PROC IML;
 LY = {1 0,
 0 1};
/*Replace Correlations with .3 and .5 for Moderate and Large 
Effect Sizes*/
 PS = {1 .10,
 .10 1};
 TE = {0 0,
        0 0};
 TY = {1.0, 1.2};
 W =  {1, 0};
 SIGMA = LY*PS*LY`+TE;

/*Mean of Selection Variable - Selection on Observed 
Variables*/
 mus = w`*ty;

/*Variance of Selection Variable*/
 vars = w`*sigma*w;
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/*Standard Deviation of Selection Variable*/
 sds = root(vars);
/*This syntax calculates from 5% to 95% cutpoints*/
do I = 0.05 to 1 by .05;

/*Mean and Variance in Selected Subsample (>= cutpoint)*/
d=quantile('NORMAL',I);
phis = PDF('NORMAL',trace(d));
phiss = CDF('NORMAL',trace(d));
xPHIs = I(1)-phiss;
/*Mean of Selection Variance (Selected and Unselected 
Groups)*/

muss = mus + sds*phis*inv(xPHIs);
musu = mus - sds*phis*inv(phiss);

/*Variance of Selection Variance (Selected and Unselected 
Groups)*/
varss = vars*(1 + (d*phis*inv(xPHIs)) -
(phis*phis*inv(xPHIs)*inv(xPHIs)));
varsu = vars*(1 - (d*phis*inv(phiss)) -
(phis*phis*inv(phiss)*inv(phiss)));

/*Omega (Selected and Unselected Groups)*/
omegas = inv(vars)*(varss - vars)*inv(vars);
omegau = inv(vars)*(varsu - vars)*inv(vars);

/*Sigma (Selected and Unselected Groups)*/
sigmas = sigma + omegas*(sigma*(w`*w)*sigma);
sigmau = sigma + omegau*(sigma*(w`*w)*sigma);

/*Kappa (Selected and Unselected Groups)*/
ks = inv(vars)*(muss - mus);
ku = inv(vars)*(musu - mus);

/*Means (Selected and Unselected Groups)*/
muys = ty + sigma*w*ks;
muyu = ty + sigma*w*ku;

print I;
print sigmas;
print muys;
print sigmau;
print muyu;
end;
quit;

Example 5: Power for a Given NCP, DF, Alpha
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SAS
Data power;
Do obs = 1 to 20;
FMin0 = 0.01005; *0% missing data;
FMin1 = 0.00955; *MCAR with 5% missing;
FMin2 = 0.00774; *MAR with 5% missing;
n = 50*obs;
*n = 200;
ncp0 = (n-1)*FMin0;
ncp1 = (n-1)*FMin1;
ncp2 = (n-1)*FMin2;
df = 1;
alpha = 0.05;
chicrit = quantile('chisquare',1-alpha, 1);;
power0 = 1- CDF('CHISQUARE', chicrit,df,ncp0);
power1 = 1- CDF('CHISQUARE', chicrit,df,ncp1);
power2 = 1- CDF('CHISQUARE', chicrit,df,ncp2);
Output;
End;
Proc Print;
Var n ncp0 power0 ncp1 power1 ncp2 power2;
Run;

Example 6: NCP and Sample Size for a Given DF, Alpha, Power
SAS
DATA ncp;
Do df = 1 to 10;
 alpha = 0.05;
 power = 0.80;
 chicrit = quantile('chisquare',1-alpha, df);
 ncp = CINV(power, df, chicrit);
 fmin0 = 0.01005;
 fmin1 = 0.00955;
 fmin2 = 0.00774;
 n0=ncp/fmin0;
 n1=ncp/fmin1;
 n2=ncp/fmin2;
Output;
End;
Proc Print data=ncp;
 Var df chicrit ncp n0 n1 n2;
Run;

SPSS Syntax

SPSS Selection syntax: Example 3
Input program.
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Loop I = 0.05 to 1 by (.05).
 End case.
End Loop.
End File.
End Input Program.
Execute.

COMPUTE d = IDF.NORMAL(I, 0,1).
COMPUTE phis = PDF.NORMAL(d ,0,1).
Compute phiss = CDFNORM(d).
execute.

matrix.

Get D
/variables = d.
Get PHIS
/variables = phis.

Get PHISS
/variables = phiss.

compute ly = {
1,0;
0,1}.

*Replace Correlation with .3 and .5 for Moderate and Large 
Effect Sizes.
compute ps = {
1.0, 0.1;
0.1, 1.0}

compute te = {
0,0;
0,0}

compute ty = {
1.0;
1.2}

compute w = {
1;
0}

compute sigma = ly * ps * t(ly) + te.

* Mean of Selection variable -- Selection on Observed 
Variables.
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compute mus = t(w)*ty.

* Variance of Selection Variable.
compute vars = t(w)*sigma*w.

* Standard Deviation of Selection Variable.
compute sds = chol(vars).

loop i=1 to 19.
compute missamt = 5*i.
compute xPHIs = ident(1) - phiss.

compute muss = mus + sds*phis(i)*inv(xphis(i)).
compute musu = mus - sds*phis(i)*inv(phiss(i)).
compute varss = vars *(1 + (d(i)*phis(i)*inv(xPHIs(i))) - 
(phis(i)*phis(i)*inv(xPHIs(i))*inv(xPHIs(i)))).
compute varsu = vars *(1 - (d(i)*phis(i)*inv(phiss(i))) - 
(phis(i)*phis(i)*inv(phiss(i))*inv(phiss(i)))).

compute omegas = inv(vars)*(varss - vars)*inv(vars).
compute omegau = inv(vars)*(varsu - vars)*inv(vars).

compute sigmas = sigma + omegas* (sigma*( w*t(w))*sigma).
compute sigmau = sigma + omegau* (sigma*( w*t(w))*sigma).

compute ks = inv(vars)*(muss - mus).
compute ku = inv(vars)*(musu - mus).

compute muys = ty + sigma*w*ks.
compute muyu = ty + sigma*w*ks.

print missamt.
print sigmas.
print muys.
print sigmau.
print muyu.
end loop.
end matrix.
execute.

DATA LIST FREE / obs.
BEGIN DATA.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
END DATA.

Compute FMin0 = 0.01005.
Compute FMin1 = 0.00955.
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Compute FMin2 = 0.00774.
compute n = 50*obs.
Compute ncp0 = (n-1)*FMin0.
Compute ncp1 = (n-1)*FMin1.
Compute ncp2 = (n-1)*FMin2.
compute df = 1.
compute alpha = 0.05.
Compute chicrit = IDF.CHISQ(1-alpha,df) .
Compute power0 = 1-NCDF.CHISQ(chicrit, df, ncp0) .
Compute power1 = 1-NCDF.CHISQ(chicrit, df, ncp1) .
Compute power2 = 1-NCDF.CHISQ(chicrit, df, ncp2) .
execute.

SPSS
DATA LIST FREE / obs.
BEGIN DATA.
1 2 3 4 5 6 7 8 9 10
END DATA.

Compute df = obs.
Compute alpha = 0.05.
Compute power = 0.80.
Compute chicrit = IDF.CHISQ(1-alpha,df) .
*Get NCP value using G*Power.

Compute fmin0 = 0.01005.
Compute fmin1 = 0.00955.
Compute fmin2 = 0.00774.
Compute n0=ncp/fmin0.
Compute n1=ncp/fmin1.
Compute n2=ncp/fmin2.
Execute.
list df chicrit ncp n0 n1 n2.
execute.

Chapter 7 Appendix

SAS

proc iml;
ly = {1 0, 1 1, 1 2, 1 3, 1 4};
ps = {0.01249 0.00209, 0.00209 0.00292};
te = {0.01863 0 0 0 0,
0 0.02689 0 0 0,
0 0 0.03398 0 0,
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0 0 0 0.02425 0,
0 0 0 0 0.01779};
tyb = {0, 0,0,0,0};
tyg = {0, 0,0,0,0};
alb = {0.22062, 0.08314};
alg = {0.20252, 0.06584};
sigma = ly*ps*ly`+te;
mub = tyb + ly*alb;
mug = tyg + ly*alg;
print sigma mub mug;
quit;

STATA

#delimit;
set more off;
* First specify the population model;
matrix ly = (1 , 0 \
 1 , 1 \
 1 , 2 \
 1 , 3 \
 1 , 4 );
matrix ps = (0.01249, 0.00209 \
 0.00209, 0.00292 );
matrix te = (0.01863, 0.00, 0.00, 0.00, 0.00 \
 0.00, 0.02689, 0.00, 0.00, 0.00 \
 0.00, 0.00, 0.03398, 0.00, 0.00 \
 0.00, 0.00, 0.00, 0.02425, 0.00 \
 0.00, 0.00, 0.00, 0.00, 0.01779 );
*Means for boys;
matrix tyb = (0\ 0\ 0\ 0\ 0);
matrix alb = (0.22062\ 0.08314);
*Means for girls;
matrix tyg = (0\ 0\ 0\ 0\ 0);
matrix alg = (0.20252\ 0.06584);
matrix sigma = ly*ps*ly' + te;
matrix mub = tyb + ly*alb;
matrix mug = tyg + ly*alg;
matrix list sigma;
matrix list mub;
matrix list mug;

SPSS

matrix.
compute ly = {1 , 0 ;
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 1 , 1 ;
 1 , 2 ;
 1 , 3 ;
 1 , 4 }.
compute ps = {0.01249, 0.00209 ;
 0.00209, 0.00292 }.
compute te = {0.01863, 0.00, 0.00, 0.00, 0.00 ;
 0.00, 0.02689, 0.00, 0.00, 0.00 ;
 0.00, 0.00, 0.03398, 0.00, 0.00 ;
 0.00, 0.00, 0.00, 0.02425, 0.00 ;
 0.00, 0.00, 0.00, 0.00, 0.01779 }.
compute tyb = {0; 0; 0; 0; 0}.
compute alb = {0.22062; 0.08314}.
*Means for girls.
compute tyg = {0; 0; 0; 0; 0}.
compute alg = {0.20252; 0.06584}.

compute sigma = ly * ps * t(ly) + te.
compute mub = tyb + ly*alb.
compute mug = tyg + ly*alg.
print sigma.
print mub.
print mug.
end matrix.

example 2: Selection syntax for gCM model

SAS

proc iml;
ly = {1 0, 1 1, 1 2, 1 3, 1 4};
ps = {0.01249 0.00209, 0.00209 0.00292};
te = {0.01863 0 0 0 0,
0 0.02689 0 0 0,
0 0 0.03398 0 0,
0 0 0 0.02425 0,
0 0 0 0 0.01779};
sigma = ly*ps*ly`+te;
w = {2 1 0 0 0};
ty = {0.22062, 0.30376, 0.3869, 0.47004, 0.55318};
mus = w*ty; * Use Boys or Girls Group Means;
vars = w*sigma*w`;
sds = root(vars);
do p = 0.05 to 1 by .05;
d=quantile('NORMAL',p);
phis = PDF('NORMAL',trace(d));
phiss = CDF('NORMAL',trace(d));
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xPHIs = I(1)-phiss;
muss = mus + sds*phis*inv(xPHIs);
musu = mus - sds*phis*inv(phiss);
varss = vars*(1 + (d*phis*inv(xPHIs)) -
(phis*phis*inv(xPHIs)*inv(xPHIs)));
varsu = vars*(1 - (d*phis*inv(phiss)) -
(phis*phis*inv(phiss)*inv(phiss)));
omegas = inv(vars)*(varss - vars)*inv(vars);
omegau = inv(vars)*(varsu - vars)*inv(vars);
sigmas = sigma + omegas*(sigma*(w`*w)*sigma);
sigmau = sigma + omegau*(sigma*(w`*w)*sigma);
ks = inv(vars)*(muss - mus);
ku = inv(vars)*(musu - mus);
muys = ty + sigma*w`*ks;
muyu = ty + sigma*w`*ku;
print p sigmas muys sigmau muyu;
end;

STATA

* First specify the population model;
matrix ly = (1 , 0 \
 1 , 1 \
 1 , 2 \
 1 , 3 \
 1 , 4 );
* Replace These Correlations with .100 and .243 for Low and 
Moderate Effect Sizes;
matrix ps = (0.01249, 0.00209 \
 0.00209, 0.00292 );
matrix te = (0.01863, 0.00, 0.00, 0.00, 0.00 \
 0.00, 0.02689, 0.00, 0.00, 0.00 \
 0.00, 0.00, 0.03398, 0.00, 0.00 \
 0.00, 0.00, 0.00, 0.02425, 0.00 \
 0.00, 0.00, 0.00, 0.00, 0.01779 );
*Means for boys;
matrix ty = (0.220620\ 0.303760\ 0.386900\ 0.470040\ 
0.553180);
*Means for girls;
*matrix ty = (0.202520\ 0.268360\ 0.334200\ 0.400040\ 
0.465880);
matrix sigma = ly*ps*ly' + te;

* Next specify the weight matrix;
matrix w = (2 \ 1 \ 0 \ 0 \ 0); * Missing data depend only 
on values of x;
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* Mean of Selection Variable -- Selection on Observed 
Variables;
matrix mus = w'*ty;

* Variance of Selection Variable;
matrix vars = w'*sigma*w;

* Standard Deviation of Selection Variable;
matrix sds = cholesky(vars);

* Mean and variance in selected subsample (greater than or 
equal to cutpoint);
* This syntax calculates from 5% to 95% cutpoints;
forvalues prob=.05(.05) 1 {;
matrix z = invnorm(`prob');

* PDF(z);
matrix phis = normalden(trace(z));

* CDF(z) and CDF(-z);
matrix PHIs = normal(trace(z));

* 1 - CDF(z), ie CDF(-z);
matrix xPHIs = I(1) - PHIs;

* Mean of Selection Variable in Selected and Unselected 
Portions of Sample;
matrix muss = mus + sds*phis*inv(xPHIs);
matrix musu = mus - sds*phis*inv(PHIs);

* Variance of Selection Variable in Selected and Unselected 
Portions of Sample;
matrix varss = vars*(1 + (z*phis*inv(xPHIs)) -
(phis*phis*inv(xPHIs)*inv(xPHIs)));
matrix varsu = vars*(1 - (z*phis*inv(PHIs)) -
(phis*phis*inv(PHIs)*inv(PHIs)));

* Standard Deviation of Selection Variable in Selected and 
Unselected Portions of Sample;
matrix sdss = cholesky(varss);
matrix sdsu = cholesky(varsu);

* Calculate Omega (Selected and Unselected);
matrix omegas = inv(vars)*(varss - vars)*inv(vars);
matrix omegau = inv(vars)*(varsu - vars)*inv(vars);
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* Calculate Simga (Selected and Unselected);
matrix sigmas = sigma + omegas*(sigma*(w*w')*sigma);
matrix sigmau = sigma + omegau*(sigma*(w*w')*sigma);

* Calculate Kappa (Selected and Unselected);
matrix ks = inv(vars)*(muss - mus);
matrix ku = inv(vars)*(musu - mus);

* Calculate Muy (Selected and Unselected);
matrix muys =ty + sigma*w*ks;
matrix muyu = ty + sigma*w*ku;

matrix list PHIs;
matrix list sigmas;
matrix list muys;
matrix list sigmau;
matrix list muyu;
matrix list sigma;
};

log close;

SPSS

Input program.
Loop I = 0.05 to 1 by (.05).
 End case.
End Loop.
End File.
End Input Program.
Execute.

COMPUTE d = IDF.NORMAL(I, 0,1).
COMPUTE phis = PDF.NORMAL(d ,0,1).
Compute phiss = CDFNORM(d).
execute.

matrix.

Get D
/variables = d.

Get PHIS
/variables = phis.

Get PHISS
/variables = phiss.
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compute ly = {
1,0;
1,1;
1,2;
1,3;
1,4}.

compute ps = {
0.01249, 0.00209;
0.00209, 0.00292}.

compute te ={0.01863, 0.00, 0.00, 0.00, 0.00 ;
 0.00, 0.02689, 0.00, 0.00, 0.00 ;
 0.00, 0.00, 0.03398, 0.00, 0.00 ;
 0.00, 0.00, 0.00, 0.02425, 0.00 ;
 0.00, 0.00, 0.00, 0.00, 0.01779 }.

compute ty ={0.220620; 0.303760; 0.386900; 0.470040; 
0.553180}.

compute w = {2, 1, 0, 0, 0}.

compute sigma = ly * ps * t(ly) + te.

* Mean of Selection variable -- Selection on Observed 
Variables.
compute mus = w*ty.

* Variance of Selection Variable.
compute vars = w*sigma*t(w).

* Standard Deviation of Selection Variable.
compute sds = chol(vars).

loop i=1 to 19.
compute missamt = 5*i.
compute xPHIs = ident(1) - phiss.

compute muss = mus + sds*phis(i)*inv(xphis(i)).
compute musu = mus - sds*phis(i)*inv(phiss(i)).

compute varss = vars *(1 + (d(i)*phis(i)*inv(xPHIs(i))) - 
(phis(i)*phis(i)*inv(xPHIs(i))*inv(xPHIs(i)))).
compute varsu = vars *(1 - (d(i)*phis(i)*inv(phiss(i))) -

(phis(i)*phis(i)*inv(phiss(i))*inv(phiss(i)))).
compute omegas = inv(vars)*(varss - vars)*inv(vars).
compute omegau = inv(vars)*(varsu - vars)*inv(vars).

compute sigmas = sigma + omegas* (sigma*(t(w)*w)*sigma).
compute sigmau = sigma + omegau* (sigma*(t(w)*w)*sigma).
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compute ks = inv(vars)*(muss - mus).
compute ku = inv(vars)*(musu - mus).

compute muys = ty + sigma*t(w)*ks.
compute muyu = ty + sigma*t(w)*ku.

print missamt.
print sigmas.
print muys.
print sigmau.
print muyu.
end loop.
end matrix.
execute.

gCM – Saturated

LISREL

! Saturated Model
! GCM Boys Complete Data
da ni=5 no=500 ng=4
la
t1 t2 t3 t4 t5
cm
0.03112
0.01458 0.04648
0.01667 0.02460 0.06651
0.01876 0.02961 0.04046 0.07556
0.02085 0.03462 0.04839 0.06216 0.09372
me
0.22062 0.30376 0.38690 0.47004 0.55318
mo ny=5 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
va 1.0 ly(1,1) ly(2,1) ly(3,1) ly(4,1) ly(5,1)
va 0.0 ly(1,2)
va 1.0 ly(2,2)
va 2.0 ly(3,2)
va 3.0 ly(4,2)
va 4.0 ly(5,2)
fr te(1,1) te(2,2) te(3,3) te(4,4) te(5,5)
ou nd=5
! GCM Boys Missing Data
da ni=5 no=500 ng=4
la
t1 t2 t3 t4 t5
cm
0.03112
0.01458 0.04648
0.0000 0.0000 1.0000
0.0000 0.0000 0.0000 1.0000
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0.0000 0.0000 0.0000 0.0000 1.0000
me
0.22062 0.30376 0.000 0.000 0.000
mo ny=5 ne=2 ly=fu,fi ps=in te=sy,fi ty=fi al=fr
va 1.0 ly(1,1) ly(2,1)
va 0.0 ly(1,2)
va 1.0 ly(2,2)
fr te(1,1) te(2,2)
eq te(1,1,1) te(1,1)
eq te(1,2,2) te(2,2)
va 1.0 te(3,3) te(4,4) te(5,5)
eq ps(1,1,1) ps(1,1)
eq ps(1,2,2) ps(2,2)
eq ps(1,1,2) ps(1,2)
eq al(1,1) al(1)
eq al(1,2) al(2)
ou nd=5
! GCM Girls Complete Data
da ni=5 no=500 ng=4
la
t1 t2 t3 t4 t5
cm
0.03112
0.01458 0.04648
0.01667 0.02460 0.06651
0.01876 0.02961 0.04046 0.07556
0.02085 0.03462 0.04839 0.06216 0.09372
me
0.20252 0.26836 0.3342 0.40004 0.46588
mo ny=5 ne=2 ly=fu,fi ps=in te=sy,fi ty=fi al=fr
va 1.0 ly(1,1) ly(2,1) ly(3,1) ly(4,1) ly(5,1)
va 0.0 ly(1,2)
va 1.0 ly(2,2)
va 2.0 ly(3,2)
va 3.0 ly(4,2)
va 4.0 ly(5,2)
fr te(1,1) te(2,2) te(3,3) te(4,4) te(5,5)
ou nd=5
! GCM Girls Missing Data
da ni=5 no=500 ng=4
la
t1 t2 t3 t4 t5
cm
0.03112
0.01458 0.04648
0.0000 0.0000 1.0000
0.0000 0.0000 0.0000 1.0000
0.0000 0.0000 0.0000 0.0000 1.0000
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me
0.20252 0.26836 0.000 0.000 0.000
mo ny=5 ne=2 ly=fu,fi ps=in te=sy,fi ty=fi al=fr
va 1.0 ly(1,1) ly(2,1)
va 0.0 ly(1,2)
va 1.0 ly(2,2)
fr te(1,1) te(2,2)
eq te(3,1,1) te(1,1)
eq te(3,2,2) te(2,2)
va 1.0 te(3,3) te(4,4) te(5,5)
eq ps(3,1,1) ps(1,1)
eq ps(3,2,2) ps(2,2)
eq ps(3,1,2) ps(1,2)
eq al(3,1) al(1)
eq al(3,2) al(2)
ou nd=5

MPLUS

TITLE: Chapter 7 - Saturated;
DATA: FILE is GCM_Saturated.dat;
 TYPE IS MEANS COVARIANCE;
 NGROUPS=4;
 NOBSERVATION = 500 500 500 500;
VARIABLE: NAMES are t1 t2 t3 t4 t5;
ANALYSIS: TYPE=MEANSTRUCTURE;
MODEL: !Intercept and Slope Loadings;
 i BY t1-t5@1;
 s BY t1@0.0 t2@1.0 t3@2.0 t4@3.0 t5@4.0;
 !Means for observed variables fixed to 0;
 [t1-t5@0];
 !Error Variance are estimated;
 t1(1);
 t2(2);
 t3-t5;
 !Covariance and variance of intercept and slope are 
estimated;
 i with s(3);
 i(4);
 s(5);

Model G1: !Means for intercept and slope free and equated to 
Group 2;
 [i](6);
 [s](7);
Model G2: !Intercept and Slope Loadings for Group 2;
 i BY t1-t2@1.0 t3-t5@0;
 s BY t1@0 t2@1.0 t3-t5@0;
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 !Error variance of t1 and t2 equated to Group 1;
 t1(1);
 t2(2);
 !Error variance of t3 through t5 fixed at 1;
 t3-t5@1;
 !Covariance and variance of intercept and slope 
equated to Group 1;
 i with s(3);
 i(4);
 s(5);
 !Means for intercept and slope equated to Group 1;
 [i](6);
 [s](7);
 !Means for observed variables fixed to 0;
 [t1-t5@0];

Model G3: !Intercept and Slope Loading for Group 3;
 i BY t1-t5@1;
 s BY t1@0 t2@1 t3@2 t4@3 t5@4;
 !Error variances are estimated;
 t1(8);
 t2(9);
 t3-t5;
 !Covaraince and variance of intercept and slope are 
estimated;
 i with s(3);
 i(4);
 s(5);
 !Means for intercept and slope free and equated to 
Group 2;
 [i](13);
 [s](14);
 !Means for observed variables fixed to 0;
 [t1-t5@0];

Model G4: i BY t1@1.0 t2@1.0 t3@0 t4@0 t5@0;
 s BY t1@0 t2@1.0 t3-t5@0;
 !Error Variance of t1 and t2 equated to Group 2;
 t1(8);
 t2(9);
 !Error variance of t3 through t5 fixed at 1;
 t3-t5@1;

 !Covariance and variance of intercept and slope 
equated to Group 1;
 i with s(3);
 i(4);
 s(5);
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 !Means for intercept and slope equated to Group 1;
 [i](13);
 [s](14);
 !Means for observed variables fixed to 0;
 [t1-t5@0];
OUTPUT: !For Fmin, see the last value from the function 
column of TECH5;
 RESIDUAL TECH1 TECH5;

AMOS

#Region "Header"
Imports System
Imports System.Diagnostics
Imports Microsoft.VisualBasic
Imports AmosEngineLib
Imports AmosGraphics
Imports AmosEngineLib.AmosEngine.TMatrixID
Imports PBayes
#End Region
Module MainModule
 Sub Main()
  Dim Sem As New AmosEngine
  Try
   Sem.TextOutput()
   Sem.ModelMeansAndIntercepts()
   Sem.BeginGroup("C:\Documents and 
Settings\Tina Salva\My Documents\LEA Book\Application 3\
GCM_Saturated_BoysComplete.xls", "Sheet1")
   Sem.GroupName("Boys Complete")
   'Factor Loadings
    Sem.AStructure("t1 = (0) + (1) 
LEVEL + (0) SLOPE + (1) E1")
    Sem.AStructure("t2 = (0) + (1) 
LEVEL + (1) SLOPE + (1) E2")
    Sem.AStructure("t3 = (0) + (1) 
LEVEL + (2) SLOPE + (1) E3")
    Sem.AStructure("t4 = (0) + (1) 
LEVEL + (3) SLOPE + (1) E4")
    Sem.AStructure("t5 = (0) + (1) 
LEVEL + (4) SLOPE + (1) E5")
   'Factor Variances
    Sem.Var("LEVEL", "var_level_boys")
    Sem.Var("SLOPE", "var_slope_boys")
    Sem.Cov("LEVEL", "SLOPE", "lscov_
boys")
   'Mean 'Intercept
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    Sem.Mean ("LEVEL", "mean_level_
boys")
    Sem.Mean ("SLOPE", "mean_slope_
boys")
   'Error Variances
    Sem.Var("E1", "e1_boys")
    Sem.Var("E2", "e2_boys")
    Sem.Var("E3", "e3_boys")
    Sem.Var("E4", "e4_boys")
    Sem.Var("E5", "e5_boys")
       
   Sem.BeginGroup("C:\Documents and 
Settings\Tina Salva\My Documents\LEA Book\Application 3\
GCM_Saturated_BoysMissing.xls", "Sheet1")
   Sem.GroupName("Boys Missing")
   'Factor Loadings
    Sem.AStructure("t1 = (0) + (1) 
LEVEL + (0) SLOPE + (1) E1")
    Sem.AStructure("t2 = (0) + (1) 
LEVEL + (1) SLOPE + (1) E2")
    Sem.AStructure("t3 = (0) + (0) 
LEVEL + (0) SLOPE + (1) E3")
    Sem.AStructure("t4 = (0) + (0) 
LEVEL + (0) SLOPE + (1) E4")
    Sem.AStructure("t5 = (0) + (0) 
LEVEL + (0) SLOPE + (1) E5")
   'Factor Variances
    Sem.Var("LEVEL", "var_level_boys")
    Sem.Var("SLOPE", "var_slope_boys")
    Sem.Cov("LEVEL", "SLOPE", "lscov_
boys")
   'Mean 'Intercept
    Sem.Mean ("LEVEL", "mean_level_
boys")
    Sem.Mean ("SLOPE", "mean_slope_
boys")
   'Error Variances
    Sem.Var("E1", "e1_boys")
    Sem.Var("E2", "e2_boys")
    Sem.Var("E3", "1")
    Sem.Var("E4", "1")
    Sem.Var("E5", "1")
    
   Sem.BeginGroup("C:\Documents and 
Settings\Tina Salva\My Documents\LEA Book\Application 3\
GCM_Saturated_GirlsComplete.xls", "Sheet1")
   Sem.GroupName("Girls Complete")
   'Factor Loadings
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    Sem.AStructure("t1 = (0) + (1) 
LEVEL + (0) SLOPE + (1) E1")
    Sem.AStructure("t2 = (0) + (1) 
LEVEL + (1) SLOPE + (1) E2")
    Sem.AStructure("t3 = (0) + (1) 
LEVEL + (2) SLOPE + (1) E3")
    Sem.AStructure("t4 = (0) + (1) 
LEVEL + (3) SLOPE + (1) E4")
    Sem.AStructure("t5 = (0) + (1) 
LEVEL + (4) SLOPE + (1) E5")
   'Factor Variances
    Sem.Var("LEVEL", "var_level_boys")
    Sem.Var("SLOPE", "var_slope_boys")
    Sem.Cov("LEVEL", "SLOPE", "lscov_
boys")
   'Mean 'Intercept
    Sem.Mean ("LEVEL", "mean_level_
girls")
    Sem.Mean ("SLOPE", "mean_slope_
girls")
   'Error Variances
    Sem.Var("E1", "e1_girls")
    Sem.Var("E2", "e2_girls")
    Sem.Var("E3", "e3_girls")
    Sem.Var("E4", "e4_girls")
    Sem.Var("E5", "e5_girls")
   Sem.BeginGroup("C:\Documents and 
Settings\Tina Salva\My Documents\LEA Book\Application 3\
GCM_Saturated_GirlsMissing.xls", "Sheet1")
   Sem.GroupName("Girls Missing")
   'Factor Loadings
    Sem.AStructure("t1 = (0) + (1) 
LEVEL + (0) SLOPE + (1) E1")
    Sem.AStructure("t2 = (0) + (1) 
LEVEL + (1) SLOPE + (1) E2")
    Sem.AStructure("t3 = (0) + (0) 
LEVEL + (0) SLOPE + (1) E3")
    Sem.AStructure("t4 = (0) + (0) 
LEVEL + (0) SLOPE + (1) E4")
    Sem.AStructure("t5 = (0) + (0) 
LEVEL + (0) SLOPE + (1) E5")
   'Factor Variances
    Sem.Var("LEVEL", "var_level_boys")
    Sem.Var("SLOPE", "var_slope_boys")
    Sem.Cov("LEVEL", "SLOPE", "lscov_
boys")
   'Mean 'Intercept
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    Sem.Mean ("LEVEL", "mean_level_
girls")
    Sem.Mean ("SLOPE", "mean_slope_
girls")
   'Error Variances
    Sem.Var("E1", "e1_girls")
    Sem.Var("E2", "e2_girls")
    Sem.Var("E3", "1")
    Sem.Var("E4", "1")
    Sem.Var("E5", "1")
        
   Sem.FitAllModels
  Finally
   Sem.Dispose()
  End Try
 End Sub
End Module

Power for a given NCP, DF, alPHa

SAS

data power;
 do n = 50 to 1000 by 50;
  g = 2;
  alpha = 0.05;
  df = 1;
  fmin = 0.011093
  ncp = (n-g)*fmin;
  chicrit = quantile('chisquare',1-alpha, 1);
 power = 1- PROBCHI(chicrit,df,ncp);
*power = 1-CDF('chisquare', chicrit, df, ncp) ;
 output;
 end;
proc print data=power;
 var n alpha df ncp power;
run;

STATA

#delimit;
set more off;
set obs 20;
gen FMin = 0.011093;
gen n = 50*_n;
gen ncp = (n-1)*FMin;
gen df = 1;
gen alpha = 0.05;
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gen chicrit = invchi2tail(df, alpha);
gen power = 1- nchi2(df,ncp,chicrit);
list n ncp power, noobs clean table;

SPSS

DATA LIST FREE / obs.
BEGIN DATA.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
END DATA.
Compute FMin = 0.011093.
compute n = 50*obs.
Compute ncp = (n-1)*FMin.
compute df = 1.
compute alpha = 0.05.
Compute chicrit = IDF.CHISQ(1-alpha,df) .
Compute power = 1-NCDF.CHISQ(chicrit, df, ncp) .
execute.
list n ncp power .

NCP & Sample Size for a given DF, alpha and Power

SAS

data ncp;
 alpha = 0.05;
 power = 0.80;
 fmin = 0.011093
 do df = 1 to 10;
  chicrit = quantile('chisquare',1-alpha, df);
  ncp = CINV(power, df, chicrit);
  n0=ncp/fmin;
  output;
 end;
proc print data=ncp;
 var df chicrit ncp n0;
run;

STATA

#delimit;
set more off;
set obs 10;
generate df = _n;
generate alpha = 0.05;
generate power =0.80;
gen chicrit = invchi2tail(df, alpha);
gen ncp = invnchi2(df,chicrit,power);
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gen fmin = 0.011093;
gen n=ncp/fmin;
list df ncp n, noobs clean table;

Chapter 8 Appendix

liSrel Syntax for Pattern Missingness for Models a, b, C and D

Complete Data
! Control Group - MCAR (Complete 0% missing)
da ni=3 no=25 ng=4
la
Time1 Time3 Time5
cm
2.0000000
1.2236068 4.4944272
1.4472136 3.2708204 10.188854
me
1.0000000 2.595996 4.191992
mo ny=3 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
le
Level Shape
va 1.0 ly(1,1) ly(2,1) ly(3,1)
va 0.0 ly(1,2)
va 1.0 ly(2,2)
va 2.0 ly(3,2)
fr te(1,1) te(2,2) te(3,3)
ou ad=off rs nd=7

!Group 1
da ni=3 no=25
la
Time1 Time3 Time5
cm
2.0000000
1.2236068 4.4944272
1.4472136 3.2708204 10.188854
me
1.0000000 2.595996 4.191992
mo ny=3 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
le
Level Shape
va 1.0 ly(1,1) ly(2,1) ly(3,1)
va 0.0 ly(1,2)
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va 1.0 ly(2,2)
va 2.0 ly(3,2)
fr te(1,1) te(2,2) te(3,3)
eq te(1,1,1) te(1,1)
eq te(1,2,2) te(2,2)
eq te(1,3,3) te(3,3)
eq ps(1,1,1) ps(1,1)
eq ps(1,1,2) ps(1,2)
eq ps(1,2,2) ps(2,2)
eq al(1,1) al(1)
eq al(1,2) al(2)
ou ad=off

!Treatment Group (Complete 0% missing)
da ni=3 no=25
la
Time1 Time3 Time5
cm
2.0000000
1.2236068 4.4944272
1.4472136 3.2708204 10.188854
me
1.0000000 2.9620000 4.9240000
mo ny=3 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
le
Level Shape
va 1.0 ly(1,1) ly(2,1) ly(3,1)
va 0.0 ly(1,2)
va 1.0 ly(2,2)
va 2.0 ly(3,2)
fr te(1,1) te(2,2) te(3,3)
eq al(1,2) al(2)
ou ad=off rs

!Treatment Group
da ni=3 no=25
la
Time1 Time3 Time5
cm
2.0000000
1.2236068 4.4944272
1.4472136 3.2708204 10.188854
me
1.0000000 2.9620000 4.9240000
mo ny=3 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
le
Level Shape
va 1.0 ly(1,1) ly(2,1) ly(3,1)
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va 0.0 ly(1,2)
va 1.0 ly(2,2)
va 2.0 ly(3,2)
fr te(1,1) te(2,2) te(3,3)
eq te(3,1,1) te(1,1)
eq te(3,2,2) te(2,2)
eq te(3,3,3) te(3,3)
eq ps(3,1,1) ps(1,1)
eq ps(3,1,2) ps(1,2)
eq ps(3,2,2) ps(2,2)
eq al(3,1) al(1)
eq al(3,2) al(2)
ou
Model A
! Control Group
da ni=3 no=25 ng=4
la
Time1 Time3 Time5
!For MCAR data use the below matrices
cm
2.0000000
1.2236068 4.4944272
1.4472136 3.2708204 10.188854
me
1.0000000 2.595996 4.191992

!For MAR data use the below matrices
!cm
!.72782576
!.44386668 4.0153131
!.52814765 2.7067135 9.5150251
!me
!-.12789905 1.9042704 3.3751633

mo ny=3 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
le
Level Shape
va 1.0 ly(1,1) ly(2,1) ly(3,1)
va 0.0 ly(1,2)
va 1.0 ly(2,2)
va 2.0 ly(3,2)
fr te(1,1) te(2,2) te(3,3)
ou ad=off nd=6

!Group 2
da ni=3 no=25
la
Time1 Time3 Time5
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!For MCAR data use the below matrices
cm
2.0000000
0 1
1.4472136 0 10.188854
me
1.0000000 0 4.191992

!For MAR data use the below matrices
!cm
!.72785764
!0 1
!.52367594 0 9.528244
!me
!2.1278991 0 5.0088208

mo ny=3 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
le
Level Shape
va 1.0 ly(1,1) ly(3,1)
va 0.0 ly(1,2)
va 2.0 ly(3,2)
fr te(1,1) te(3,3)
eq te(1,1,1) te(1,1)
eq te(1,3,3) te(3,3)
va 1.0 te(2,2)
eq ps(1,1,1) ps(1,1)
eq ps(1,1,2) ps(1,2)
eq ps(1,2,2) ps(2,2)
eq al(1,1) al(1)
eq al(1,2) al(2)
ou ad=off

!Treatment Group
da ni=3 no=25
la
Time1 Time3 Time5
!For MCAR data use the below matrices
cm
2.0000000
1.2236068 4.4944272
1.4472136 3.2708204 10.188854
me
1.0000000 2.9620000 4.9240000

!For MAR use the below matrices
!cm
!.72782576
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!.44386668 4.0153132
!.52814765 2.7067135 9.5150252
!me
!-.12789905 2.2701605 4.1069433

mo ny=3 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
le
Level Shape
va 1.0 ly(1,1) ly(2,1) ly(3,1)
va 0.0 ly(1,2)
va 1.0 ly(2,2)
va 2.0 ly(3,2)
fr te(1,1) te(2,2) te(3,3)
eq al(1,2) al(2)
ou ad=off

!Treatment Group
da ni=3 no=25
la
Time1 Time3 Time5
!For MCAR use the below matrices
cm
2.0000000
0 1
1.4472136 0 10.188854
me
1.0000000 0 4.191992
!For MAR use the below matrices
!cm
!.72785764
!0 1
!.52367594 0 9.5282441
!me
!2.1278991 0 5.7406008

mo ny=3 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
le
Level Shape
va 1.0 ly(1,1) ly(3,1)
va 0.0 ly(1,2)
va 2.0 ly(3,2)
fr te(1,1) te(3,3)
eq te(3,1,1) te(1,1)
eq te(3,3,3) te(3,3)
va 1.0 te(2,2)
eq ps(3,1,1) ps(1,1)
eq ps(3,1,2) ps(1,2)
eq ps(3,2,2) ps(2,2)
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eq al(3,1) al(1)
eq al(3,2) al(2)
ou

Model A - Saturated Model
! Control Group
da ni=3 no=25 ng=4
la
Time1 Time3 Time5
cm
.72782576
.44386668 4.0153131
.52814765 2.7067135 9.5150251
me
-.12789905 1.9042704 3.3751633
mo ny=3 ne=3 ly=fu,fi ps=sy,fr te=sy,fi ty=fr
va 1.0 ly(1,1)
va 1.0 ly(2,2)
va 1.0 ly(3,3)
ou ad=off nd=6

!Group 2
da ni=3 no=25
la
Time1 Time3 Time5
cm
.72785764
0 1
.52367594 0 9.528244
me
2.1278991 0 5.0088208
mo ny=3 ne=3 ly=fu,fi ps=in te=sy,fi ty=fr
va 1.0 ly(1,1)
va 1.0 ly(3,3)
fr ty(1) ty(3)
eq ty(1,1) ty(1)
eq ty(1,3) ty(3)
fi ty(2)
va 1.0 te(2,2)
ou ad=off

!Treatment Group
da ni=3 no=25
la
Time1 Time3 Time5
cm
.72782576
.44386668 4.0153132
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.52814765 2.7067135 9.5150252
me
-.12789905 2.2701605 4.1069433
mo ny=3 ne=3 ly=fu,fi ps=sy,fr te=sy,fi ty=fr
va 1.0 ly(1,1)
va 1.0 ly(2,2)
va 1.0 ly(3,3)
ou ad=off

!Treatment Group
da ni=3 no=25
la
Time1 Time3 Time5
cm
.72785764
0 1
.52367594 0 9.5282441
me
2.1278991 0 5.7406008
mo ny=3 ne=3 ly=fu,fi ps=sy,fr te=sy,fi ty=fr
va 1.0 ly(1,1)
va 1.0 ly(3,3)
eq ps(3,1,1) ps(1,1)
eq ps(3,2,1) ps(2,1)
eq ps(3,2,2) ps(2,2)
eq ps(3,3,1) ps(3,1)
eq ps(3,3,2) ps(3,2)
eq ps(3,3,3) ps(3,3)
fr ty(1) ty(3)
eq ty(3,1) ty(1)
eq ty(3,3) ty(3)
fi ty(2)
va 1.0 te(2,2)
ou ad=off

Model B
!Study 1 Control Group - MCAR (Complete 0% missing)
da ni=3 no=25 ng=4
la
Time1 Time3 Time5
!For MCAR use the below matrices
cm
2.0000000
1.2236068 4.4944272
1.4472136 3.2708204 10.188854
me
1.0000000 2.595996 4.191992

!For MAR use the below matrices
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cm
.72782576
.44386668 4.0153131
.52814765 2.7067135 9.5150251
me
-.12789905 1.9042704 3.3751633

mo ny=3 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
le
Level Shape
va 1.0 ly(1,1) ly(2,1) ly(3,1)
va 0.0 ly(1,2)
va 1.0 ly(2,2)
va 2.0 ly(3,2)
fr te(1,1) te(2,2) te(3,3)
ou ad=off nd=5

!Group 2 Miss Wave 3
da ni=3 no=25
la
Time1 Time3 Time5
!For MCAR use the below matrices
cm
2.0000000
1.2236068 4.4944272
0 0 1
me
1.0000000 2.595996 0
!For MAR use the below matrices
!cm
!.72785764
!.44295123 4.0165637
!0 0 1
!me
!2.1278991 3.2877216 0

mo ny=3 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
le
Level Shape
va 1.0 ly(1,1) ly(2,1)
va 0.0 ly(1,2)
va 1.0 ly(2,2)
fr te(1,1) te(2,2)
eq te(1,1,1) te(1,1)
eq te(1,2,2) te(2,2)
va 1.0 te(3,3)
eq ps(1,1,1) ps(1,1)
eq ps(1,1,2) ps(1,2)
eq ps(1,2,2) ps(2,2)
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eq al(1,1) al(1)
eq al(1,2) al(2)
ou ad=off

!Study 1 Treatment Group - MCAR (Complete 0% missing)
da ni=3 no=25
la
Time1 Time3 Time5
!For MCAR use the below matrices
cm
2.0000000
1.2236068 4.4944272
1.4472136 3.2708204 10.188854
me
1.0000000 2.9620000 4.9240000

!For MAR use the below matrices
!cm
!.72782576
!.44386668 4.0153132
!.52814765 2.7067135 9.5150252
!me
!-.12789905 2.2701605 4.1069433

mo ny=3 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
le
Level Shape
va 1.0 ly(1,1) ly(2,1) ly(3,1)
va 0.0 ly(1,2)
va 1.0 ly(2,2)
va 2.0 ly(3,2)
fr te(1,1) te(2,2) te(3,3)
eq al(1,2) al(2)
ou ad=off

!Treatment Group
da ni=3 no=25
la
Time1 Time3 Time5
!For MCAR use the below matrices
cm
2.0000000
1.2236068 4.4944272
0 0 1
me
1.0000000 2.9620000 0
!For MAR use the below matrices
!cm
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!.72785764
!.44295123 4.0165638
!0 0 1
!me
!2.1278991 3.6536116 0

mo ny=3 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
le
Level Shape
va 1.0 ly(1,1) ly(2,1)
va 0.0 ly(1,2)
va 1.0 ly(2,2)
fr te(1,1) te(2,2)
eq te(3,1,1) te(1,1)
eq te(3,2,2) te(2,2)
va 1.0 te(3,3)
eq ps(3,1,1) ps(1,1)
eq ps(3,1,2) ps(1,2)
eq ps(3,2,2) ps(2,2)
eq al(3,1) al(1)
eq al(3,2) al(2)
ou
Model B - Saturated Model
!Study 1 Control Group - MCAR (Complete 0% missing)
da ni=3 no=25 ng=4
la
Time1 Time3 Time5
cm
.72782576
.44386668 4.0153131
.52814765 2.7067135 9.5150251
me
-.12789905 1.9042704 3.3751633
mo ny=3 ne=3 ly=fu,fi ps=sy,fr te=sy,fi ty=fr
va 1.0 ly(1,1)
va 1.0 ly(2,2)
va 1.0 ly(3,3)
ou ad=off nd=6

!Group 2 Miss Wave 3
da ni=3 no=25
la
Time1 Time3 Time5
cm
.72785764
.44295123 4.0165637
0 0 1
me
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2.1278991 3.2877216 0
mo ny=3 ne=3 ly=fu,fi ps=in te=sy,fi ty=fr
va 1.0 ly(1,1)
va 1.0 ly(2,2)
fr ty(1) ty(2)
eq ty(1,1) ty(1)
eq ty(1,2) ty(2)
fi ty(3)
va 1.0 te(3,3)
ou ad=off

!Study 1 Treatment Group - MCAR (Complete 0% missing)
da ni=3 no=25
la
Time1 Time3 Time5
cm
.72782576
.44386668 4.0153132
.52814765 2.7067135 9.5150252
me
-.12789905 2.2701605 4.1069433
mo ny=3 ne=3 ly=fu,fi ps=sy,fr te=sy,fi ty=fr
va 1.0 ly(1,1)
va 1.0 ly(2,2)
va 1.0 ly(3,3)
ou ad=off

!Treatment Group
da ni=3 no=25
la
Time1 Time3 Time5
cm
.72785764
.44295123 4.0165638
0 0 1
me
2.1278991 3.6536116 0
mo ny=3 ne=3 ly=fu,fi ps=sy,fr te=sy,fi ty=fr
va 1.0 ly(1,1)
va 1.0 ly(2,2)
eq ps(3,1,1) ps(1,1)
eq ps(3,2,1) ps(2,1)
eq ps(3,2,2) ps(2,2)
eq ps(3,3,1) ps(3,1)
eq ps(3,3,2) ps(3,2)
eq ps(3,3,3) ps(3,3)
fr ty(1) ty(2)
eq ty(3,1) ty(1)
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eq ty(3,2) ty(2)
fi ty(3)
va 1.0 te(3,3)
ou ad=off

Model C
!Study 1 Control Group - MCAR (Complete 0% missing)
da ni=3 no=50 ng=6
la
Time1 Time3 Time5
!For MCAR data use the below matrices
cm
2.0000000
1.2236068 4.4944272
1.4472136 3.2708204 10.188854
me
1.0000000 2.595996 4.191992

!For MAR use the below matrices
!cm
!.72782576
!.44386668 4.0153131
!.52814765 2.7067135 9.5150251
!me
!.12789905 1.9042704 3.3751633

mo ny=3 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
le
Level Shape
va 1.0 ly(1,1) ly(2,1) ly(3,1)
va 0.0 ly(1,2)
va 1.0 ly(2,2)
va 2.0 ly(3,2)
fr te(1,1) te(2,2) te(3,3)
ou ad=off nd=5

!Group 2
da ni=3 no=25
la
Time1 Time3 Time5
!For MCAR use the below matrices
cm
2.0000000
0 1
1.4472136 0 10.188854
me
1.0000000 0 4.191992
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!For MAR use the below matrices
!cm
!.72785764
!0 1
!.52367594 0 9.528244
!me
!2.1278991 0 5.0088208

mo ny=3 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
le
Level Shape
va 1.0 ly(1,1) ly(3,1)
va 0.0 ly(1,2)
va 2.0 ly(3,2)
fr te(1,1) te(3,3)
eq te(1,1,1) te(1,1)
eq te(1,3,3) te(3,3)
va 1.0 te(2,2)
eq ps(1,1,1) ps(1,1)
eq ps(1,1,2) ps(1,2)
eq ps(1,2,2) ps(2,2)
eq al(1,1) al(1)
eq al(1,2) al(2)
ou ad=off

!Group 2 Miss Wave 3
da ni=3 no=25
la
Time1 Time3 Time5
!For MCAR use the below matrices
cm
2.0000000
1.2236068 4.4944272
0 0 1
me
1.0000000 2.595996 0

!For MAR use the below matrices
!cm
!.72785764
!.44295123 4.0165637
!0 0 1
!me
!2.1278991 3.2877216 0

mo ny=3 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
le
Level Shape
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va 1.0 ly(1,1) ly(2,1)
va 0.0 ly(1,2)
va 1.0 ly(2,2)
fr te(1,1) te(2,2)
eq te(1,1,1) te(1,1)
eq te(1,2,2) te(2,2)
va 1.0 te(3,3)
eq ps(1,1,1) ps(1,1)
eq ps(1,1,2) ps(1,2)
eq ps(1,2,2) ps(2,2)
eq al(1,1) al(1)
eq al(1,2) al(2)
ou ad=off

!Study 1 Treatment Group - MCAR (Complete 0% missing)
da ni=3 no=50
la
Time1 Time3 Time5
!For MCAR use the below matrices
cm
2.0000000
1.2236068 4.4944272
1.4472136 3.2708204 10.188854
me
1.0000000 2.9620000 4.9240000

!For MAR use the below matrices
!cm
!.72782576
!.44386668 4.0153132
!.52814765 2.7067135 9.5150252
!me
!-.12789905 2.2701605 4.1069433

mo ny=3 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
le
Level Shape
va 1.0 ly(1,1) ly(2,1) ly(3,1)
va 0.0 ly(1,2)
va 1.0 ly(2,2)
va 2.0 ly(3,2)
fr te(1,1) te(2,2) te(3,3)
eq al(1,2) al(2)
ou ad=off

!Treatment Group
da ni=3 no=25
la
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Time1 Time3 Time5
!For MCAR use the below matrices
cm
2.0000000
0 1
1.4472136 0 10.188854
me
1.0000000 0 4.191992

!For MAR use the below matrices
!cm
!.72785764
!0 1
!.52367594 0 9.5282441
!me
!2.1278991 0 5.7406008

mo ny=3 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
le
Level Shape
va 1.0 ly(1,1) ly(3,1)
va 0.0 ly(1,2)
va 2.0 ly(3,2)
fr te(1,1) te(3,3)
eq te(4,1,1) te(1,1)
eq te(4,3,3) te(3,3)
va 1.0 te(2,2)
eq ps(4,1,1) ps(1,1)
eq ps(4,1,2) ps(1,2)
eq ps(4,2,2) ps(2,2)
eq al(4,1) al(1)
eq al(4,2) al(2)
ou

!Group 3 Tx Miss @ W3
!Treatment Group
da ni=3 no=25
la
Time1 Time3 Time5
!For MCAR data use the below matrices
cm
2.0000000
1.2236068 4.4944272
0 0 1
me
1.0000000 2.9620000 0
!For MAR data use the below matrices
!cm
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!.72785764
!.44295123 4.0165638
!0 0 1
!me
!2.1278991 3.6536116 0

mo ny=3 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
le
Level Shape
va 1.0 ly(1,1) ly(2,1)
va 0.0 ly(1,2)
va 1.0 ly(2,2)
fr te(1,1) te(2,2)
eq te(4,1,1) te(1,1)
eq te(4,2,2) te(2,2)
va 1.0 te(3,3)
eq ps(4,1,1) ps(1,1)
eq ps(4,1,2) ps(1,2)
eq ps(4,2,2) ps(2,2)
eq al(4,1) al(1)
eq al(4,2) al(2)
ou

Model 3 (Saturated Model)
!Study 1 Control Group - MCAR (Complete 0% missing)
da ni=3 no=50 ng=6
la
Time1 Time3 Time5
cm
.72782576
.44386668 4.0153131
.52814765 2.7067135 9.5150251
me
-.12789905 1.9042704 3.3751633
mo ny=3 ne=3 ly=fu,fi ps=sy,fr te=sy,fi ty=fr
va 1.0 ly(1,1)
va 1.0 ly(2,2)
va 1.0 ly(3,3)
ou ad=off nd=6

!Group 2
da ni=3 no=25
la
Time1 Time3 Time5
cm
.72785764
0 1
.52367594 0 9.528244
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me
2.1278991 0 5.0088208
mo ny=3 ne=3 ly=fu,fi ps=in te=sy,fi ty=fr
va 1.0 ly(1,1)
va 1.0 ly(3,3)
fr ty(1) ty(3)
eq ty(1,1) ty(1)
eq ty(1,3) ty(3)
fi ty(2)
va 1.0 te(2,2)
ou ad=off

!Group 2 Miss Wave 3
da ni=3 no=25
la
Time1 Time3 Time5
cm
.72785764
.44295123 4.0165637
0 0 1
me
2.1278991 3.2877216 0
mo ny=3 ne=3 ly=fu,fi ps=in te=sy,fi ty=fr
va 1.0 ly(1,1)
va 1.0 ly(2,2)
fr ty(1) ty(2)
eq ty(1,1) ty(1)
eq ty(1,2) ty(2)
fi ty(3)
va 1.0 te(3,3)
ou ad=off

!Study 1 Treatment Group - MCAR (Complete 0% missing)
da ni=3 no=50
la
Time1 Time3 Time5
cm
.72782576
.44386668 4.0153132
.52814765 2.7067135 9.5150252
me
-.12789905 2.2701605 4.1069433
mo ny=3 ne=3 ly=fu,fi ps=sy,fr te=sy,fi ty=fr
va 1.0 ly(1,1)
va 1.0 ly(2,2)
va 1.0 ly(3,3)
ou ad=off
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!Treatment Group
da ni=3 no=25
la
Time1 Time3 Time5
cm
.72785764
0 1
.52367594 0 9.5282441
me
2.1278991 0 5.7406008
mo ny=3 ne=3 ly=fu,fi ps=sy,fr te=sy,fi ty=fr
va 1.0 ly(1,1)
va 1.0 ly(3,3)
eq ps(4,1,1) ps(1,1)
eq ps(4,2,1) ps(2,1)
eq ps(4,2,2) ps(2,2)
eq ps(4,3,1) ps(3,1)
eq ps(4,3,2) ps(3,2)
eq ps(4,3,3) ps(3,3)
fr ty(1) ty(3)
eq ty(4,1) ty(1)
eq ty(4,3) ty(3)
fi ty(2)
va 1.0 te(2,2)
ou ad=off

!Group 3 Tx Miss @ W3
!Treatment Group
da ni=3 no=25
la
Time1 Time3 Time5
cm
.72785764
.44295123 4.0165638
0 0 1
me
2.1278991 3.6536116 0
mo ny=3 ne=3 ly=fu,fi ps=sy,fr te=sy,fi ty=fr
va 1.0 ly(1,1)
va 1.0 ly(2,2)
eq ps(4,1,1) ps(1,1)
eq ps(4,2,1) ps(2,1)
eq ps(4,2,2) ps(2,2)
eq ps(4,3,1) ps(3,1)
eq ps(4,3,2) ps(3,2)
eq ps(4,3,3) ps(3,3)
fr ty(1) ty(2)
eq ty(4,1) ty(1)
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eq ty(4,2) ty(2)
fi ty(3)
va 1.0 te(3,3)
ou ad=off

Model 4 (with MCAR data)
!Study 1 Control Group - MCAR (Complete 0% missing)
da ni=3 no=75 ng=8
la
Time1 Time3 Time5
!For MCAR use the below matrices
cm
2.0000000
1.2236068 4.4944272
1.4472136 3.2708204 10.188854
me
1.0000000 2.595996 4.191992

!For MAR use the below matrices
!cm
!.72782576
!.44386668 4.0153131
!.52814765 2.7067135 9.5150251
!me
!-.12789905 1.9042704 3.3751633

mo ny=3 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
le
Level Shape
va 1.0 ly(1,1) ly(2,1) ly(3,1)
va 0.0 ly(1,2)
va 1.0 ly(2,2)
va 2.0 ly(3,2)
fr te(1,1) te(2,2) te(3,3)
ou ad=off nd=5

!Group 2
da ni=3 no=25
la
Time1 Time3 Time5
!For MCAR use the below matrices
cm
2.0000000
0 1
1.4472136 0 10.188854
me
1.0000000 0 4.191992
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!For MAR use the below matrices
!cm
!.72785764
!0 1
!.52367594 0 9.528244
!me
!2.1278991 0 5.0088208

mo ny=3 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
le
Level Shape
va 1.0 ly(1,1) ly(3,1)
va 0.0 ly(1,2)
va 2.0 ly(3,2)
fr te(1,1) te(3,3)
eq te(1,1,1) te(1,1)
eq te(1,3,3) te(3,3)
va 1.0 te(2,2)
eq ps(1,1,1) ps(1,1)
eq ps(1,1,2) ps(1,2)
eq ps(1,2,2) ps(2,2)
eq al(1,1) al(1)
eq al(1,2) al(2)
ou ad=off

!Group 3 Miss Wave 3
da ni=3 no=25
la
Time1 Time3 Time5
!For MCAR use the below matrices
cm
2.0000000
1.2236068 4.4944272
0 0 1
me
1.0000000 2.595996 0

!For MAR use the below matrices
!cm
!.72785764
!.44295123 4.0165637
!0 0 1
!me
!2.1278991 3.2877216 0

mo ny=3 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
le
Level Shape
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va 1.0 ly(1,1) ly(2,1)
va 0.0 ly(1,2)
va 1.0 ly(2,2)
fr te(1,1) te(2,2)
eq te(1,1,1) te(1,1)
eq te(1,2,2) te(2,2)
va 1.0 te(3,3)
eq ps(1,1,1) ps(1,1)
eq ps(1,1,2) ps(1,2)
eq ps(1,2,2) ps(2,2)
eq al(1,1) al(1)
eq al(1,2) al(2)
ou ad=off

!Group 4
da ni=3 no=25
la
Time1 Time3 Time5
!For MCAR use the below matrices
cm
2.0000000
0 1
0 0 1
me
1.0000000 0 0

!For MAR use the below matrices
!cm
!.72785764
!0 1
!0 0 1
!me
!2.1278991 0 0

mo ny=3 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
le
Level Shape
va 1.0 ly(1,1)
va 0.0 ly(1,2)
fr te(1,1)
eq te(1,1,1) te(1,1)
va 1.0 te(2,2)
va 1.0 te(3,3)
eq ps(1,1,1) ps(1,1)
eq ps(1,1,2) ps(1,2)
eq ps(1,2,2) ps(2,2)
eq al(1,1) al(1)
eq al(1,2) al(2)
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ou ad=off
!Study 1 Treatment Group - MCAR (Complete 0% missing)
da ni=3 no=75
la
Time1 Time3 Time5
!For MCAR use the below matrices
cm
2.0000000
1.2236068 4.4944272
1.4472136 3.2708204 10.188854
me
1.0000000 2.9620000 4.9240000

!For MAR use the below matrices
!cm
!.72782576
!.44386668 4.0153132
!.52814765 2.7067135 9.5150252
!me
!-.12789905 2.2701605 4.1069433

mo ny=3 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
le
Level Shape
va 1.0 ly(1,1) ly(2,1) ly(3,1)
va 0.0 ly(1,2)
va 1.0 ly(2,2)
va 2.0 ly(3,2)
fr te(1,1) te(2,2) te(3,3)
eq al(1,2) al(2)
ou ad=off

!Treatment Group
da ni=3 no=25
la
Time1 Time3 Time5
!For MCAR use the below matrices
cm
2.0000000
0 1
1.4472136 0 10.188854
me
1.0000000 0 4.191992

!For MAR use the below matrices
!cm
!.72785764
!0 1
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!.52367594 0 9.5282441
!me
!2.1278991 0 5.7406008

mo ny=3 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
le
Level Shape
va 1.0 ly(1,1) ly(3,1)
va 0.0 ly(1,2)
va 2.0 ly(3,2)
fr te(1,1) te(3,3)
eq te(5,1,1) te(1,1)
eq te(5,3,3) te(3,3)
va 1.0 te(2,2)
eq ps(5,1,1) ps(1,1)
eq ps(5,1,2) ps(1,2)
eq ps(5,2,2) ps(2,2)
eq al(5,1) al(1)
eq al(5,2) al(2)
ou

!Group 3 Tx Miss @ W3
!Treatment Group
da ni=3 no=25
la
Time1 Time3 Time5
!For MCAR use the below matrices
cm
2.0000000
1.2236068 4.4944272
0 0 1
me
1.0000000 2.9620000 0

!For MAR use the below matrices
!cm
!.72785764
!.44295123 4.0165638
!0 0 1
!me
!2.1278991 3.6536116 0

mo ny=3 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
le
Level Shape
va 1.0 ly(1,1) ly(2,1)
va 0.0 ly(1,2)
va 1.0 ly(2,2)
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fr te(1,1) te(2,2)
eq te(5,1,1) te(1,1)
eq te(5,2,2) te(2,2)
va 1.0 te(3,3)
eq ps(5,1,1) ps(1,1)
eq ps(5,1,2) ps(1,2)
eq ps(5,2,2) ps(2,2)
eq al(5,1) al(1)
eq al(5,2) al(2)
ou

!Group 8 Treatment Group
da ni=3 no=25
la
Time1 Time3 Time5
!For MCAR use the below matrices
cm
2.0000000
0 1
0 0 1
me
1.0000000 0 0
!For MAR use the below matrices
!cm
!.72785764
!0 1
!0 0 1
!me
!2.1278991 0 0
mo ny=3 ne=2 ly=fu,fi ps=sy,fr te=sy,fi ty=fi al=fr
le
Level Shape
va 1.0 ly(1,1)
va 0.0 ly(1,2)
fr te(1,1)
eq te(5,1,1) te(1,1)
va 1.0 te(2,2) te(3,3)
eq ps(5,1,1) ps(1,1)
eq ps(5,1,2) ps(1,2)
eq ps(5,2,2) ps(2,2)
eq al(5,1) al(1)
eq al(5,2) al(2)
ou

!Model D - Saturated Model
!Study 1 Control Group - MCAR (Complete 0% missing)
da ni=3 no=75 ng=8
la
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Time1 Time3 Time5
cm
.72782576
.44386668 4.0153131
.52814765 2.7067135 9.5150251
me
-.12789905 1.9042704 3.3751633
mo ny=3 ne=3 ly=fu,fi ps=sy,fr te=sy,fi ty=fr
va 1.0 ly(1,1)
va 1.0 ly(2,2)
va 1.0 ly(3,3)
ou ad=off nd=6

!Group 2
da ni=3 no=25
la
Time1 Time3 Time5
cm
.72785764
0 1
.52367594 0 9.528244
me
2.1278991 0 5.0088208
mo ny=3 ne=3 ly=fu,fi ps=in te=sy,fi ty=fr
va 1.0 ly(1,1)
va 1.0 ly(3,3)
fr ty(1) ty(3)
eq ty(1,1) ty(1)
eq ty(1,3) ty(3)
fi ty(2)
va 1.0 te(2,2)
ou ad=off

!Group 3 Miss Wave 3
da ni=3 no=25
la
Time1 Time3 Time5
cm
.72785764
.44295123 4.0165637
0 0 1
me
2.1278991 3.2877216 0
mo ny=3 ne=3 ly=fu,fi ps=in te=sy,fi ty=fr
va 1.0 ly(1,1)
va 1.0 ly(2,2)
fr ty(1) ty(2)
eq ty(1,1) ty(1)
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eq ty(1,2) ty(2)
fi ty(3)
va 1.0 te(3,3)
ou ad=off

!Group 4
da ni=3 no=25
la
Time1 Time3 Time5
cm
.72785764
0 1
0 0 1
me
2.1278991 0 0
mo ny=3 ne=3 ly=fu,fi ps=in te=sy,fi ty=fr
va 1.0 ly(1,1)
fr ty(1)
eq ty(1,1) ty(1)
fi ty(2) ty(3)
va 1.0 te(2,2) te(3,3)
ou ad=off

!Study 1 Treatment Group - MCAR (Complete 0% missing)
da ni=3 no=75
la
Time1 Time3 Time5
cm
.72782576
.44386668 4.0153132
.52814765 2.7067135 9.5150252
me
-.12789905 2.2701605 4.1069433
mo ny=3 ne=3 ly=fu,fi ps=sy,fr te=sy,fi ty=fr
va 1.0 ly(1,1)
va 1.0 ly(2,2)
va 1.0 ly(3,3)
ou ad=off
!Treatment Group
da ni=3 no=25
la
Time1 Time3 Time5
cm
.72785764
0 1
.52367594 0 9.5282441
me
2.1278991 0 5.7406008
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mo ny=3 ne=3 ly=fu,fi ps=sy,fr te=sy,fi ty=fr
va 1.0 ly(1,1)
va 1.0 ly(3,3)
eq ps(5,1,1) ps(1,1)
eq ps(5,2,1) ps(2,1)
eq ps(5,2,2) ps(2,2)
eq ps(5,3,1) ps(3,1)
eq ps(5,3,2) ps(3,2)
eq ps(5,3,3) ps(3,3)
fr ty(1) ty(3)
eq ty(5,1) ty(1)
eq ty(5,3) ty(3)
fi ty(2)
va 1.0 te(2,2)
ou ad=off

!Group 3 Tx Miss @ W3
!Treatment Group
da ni=3 no=25
la
Time1 Time3 Time5
cm
.72785764
.44295123 4.0165638
0 0 1
me
2.1278991 3.6536116 0
mo ny=3 ne=3 ly=fu,fi ps=sy,fr te=sy,fi ty=fr
va 1.0 ly(1,1)
va 1.0 ly(2,2)
eq ps(5,1,1) ps(1,1)
eq ps(5,2,1) ps(2,1)
eq ps(5,2,2) ps(2,2)
eq ps(5,3,1) ps(3,1)
eq ps(5,3,2) ps(3,2)
eq ps(5,3,3) ps(3,3)
fr ty(1) ty(2)
eq ty(5,1) ty(1)
eq ty(5,2) ty(2)
fi ty(3)
va 1.0 te(3,3)
ou ad=off

!Group 8 Treatment Group
da ni=3 no=25
la
Time1 Time3 Time5
cm
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.72785764
0 1
0 0 1
me
2.1278991 0 0
mo ny=3 ne=3 ly=fu,fi ps=sy,fr te=sy,fi ty=fr
va 1.0 ly(1,1)
eq ps(5,1,1) ps(1,1)
eq ps(5,2,1) ps(2,1)
eq ps(5,2,2) ps(2,2)
eq ps(5,3,1) ps(3,1)
eq ps(5,3,2) ps(3,2)
eq ps(5,3,3) ps(3,3)
fr ty(1)
eq ty(5,1) ty(1)
fi ty(2) ty(3)
va 1.0 te(2,2) te(3,3)
ou ad=off

MPluS

!Mplus syntax for Model A (MCAR data)
TITLE: Chapter 8 - Model A MCAR data;
DATA: FILE is GCM_ModelA_MCAR.dat;
 TYPE IS MEANS COVARIANCE;
 NGROUPS=4;
 NOBSERVATION = 25 25 25 25;
VARIABLE: NAMES are t1 t3 t5;
ANALYSIS: TYPE=MEANSTRUCTURE;
MODEL: !Intercept and Slope Loadings;
 i BY t1@1 t3@1 t5@1;
 s BY t1@0.0 t3@1.0 t5@2.0 ;
 !Means for observed variables fixed to 0;
 [t1-t5@0];
 !Error Variance are estimated;
 t1(1);
 t3(2);
 t5(3);
 !Covariance and variance of intercept and slope are 
estimated;
 i with s(4);
 i(5);
 s(6);
Model G1: !Means for intercept and slope free and equated;
 [i](7);
 [s](8);
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Model G2: !Intercept and Slope Loadings for Group 2;
 i BY t1@1.0 t3@0.0 t5@1.0;
 s BY t1@0.0 t3@0.0 t5@2.0;
 !Error variance of t1 and t5 equated to Group 1;
 t1(1);
 t5(3);
 !Error variance of t3 through t5 fixed at 1;
 t3@1;
 !Covariance and variance of intercept and slope 
equated to Group 1;
 i with s(4);
 i(5);
 s(6);
 !Means for intercept and slope equated to Group 1;
 [i](7);
 [s](8);
 !Means for observed variables fixed to 0;
 [t1-t5@0];

Model G3: !Intercept and Slope Loading for Group 3;
 i BY t1@1 t3@1 t5@1;
 s BY t1@0.0 t3@1.0 t5@2.0 ;
 !Error variances are estimated;
 t1(9);
 t3(10);
 t5(11);
 !Covaraince and variance of intercept and slope are 
estimated;
 i with s(12);
 i(13);
 s(14);
 !Means for slope is equated to Group 2;
 [i](15);
 [s](8);
 !Means for observed variables fixed to 0;
 [t1-t5@0];

Model G4: i BY t1@1.0 t3@0.0 t5@1.0;
 s BY t1@0.0 t3@0.0 t5@2.0;
 !Error Variance of t1 and t2 equated to Group 3;
 t1(9);
 t5(11);
 !Error variance of t3 fixed at 1;
 t3@1;
 !Covariance and variance of intercept and slope 
equated to Group 3;
 i with s(12);
 i(13);
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 s(14);
 !Means for intercept and slope equated to Group 3;
 [i](15);
 [s](8);
 !Means for observed variables fixed to 0;
 [t1-t5@0];
OUTPUT: !For Fmin, see the last value from the function 
column of TECH5;
 RESIDUAL TECH1 TECH5;

STaTa

STATA syntax to derive MAR matrices for Pattern 
Missingness Example
#delimit;

set more off;

matrix ly = (1 , 0 \
 1 , 2 \
 1 , 4 );

matrix ps = (1 , .1118 \
  .1118, .2 );

matrix te = (1.00 , 0 , 0 \
 0 , 2.27 , 0 \
 0 , 0 , 5.09 );
matrix ty = (0 \ 0 \ 0 );
*matrix al = (1 \ .798 );
matrix al = (1 \ .981 );

matrix w = (1, 0, 0 );

matrix sigma = ly*ps*ly' + te;
matrix muy = ty + ly*al;

* Mean of Selection Variable -- Selection on Observed 
Variables;
matrix mus = w*ty;

* Variance of Selection Variable;
matrix vars = w*sigma*w';

* Standard Deviation of Selection Variable;
matrix sds = cholesky(vars);
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* Mean and variance in selected subsample (greater than or 
equal to cutpoint);

matrix d = invnorm(.5);
matrix phis = normalden(trace(d));
matrix PHIs = normal(trace(d));
matrix xPHIs = I(1) - PHIs;

matrix muss = mus + sds*phis*inv(xPHIs);
matrix musu = mus - sds*phis*inv(PHIs);
matrix varss = vars*(1 + (d*phis*inv(xPHIs)) -
(phis*phis*inv(xPHIs)*inv(xPHIs)));
matrix varsu = vars*(1 - (d*phis*inv(PHIs)) -
(phis*phis*inv(PHIs)*inv(PHIs)));

matrix omegas = inv(vars)*(varss - vars)*inv(vars);
matrix omegau = inv(vars)*(varsu - vars)*inv(vars);

matrix sigmas = sigma + omegas*(sigma*(w'*w)*sigma);
matrix sigmau = sigma + omegau*(sigma*(w'*w)*sigma);

matrix ks = inv(vars)*(muss - mus);
matrix ku = inv(vars)*(musu - mus);

matrix mues = ks*ps*ly’*w';
matrix mueu = ku*ps*ly’*w';

matrix muys = muy + ly*mues;
matrix muyu = muy + ly*mueu;
matrix list sigma;
matrix list muy;
matrix list sigmas;
matrix list muys;
matrix list sigmau;
matrix list muyu;

STATA syntax for different missing data patterns with MAR 
data using filter matrix
#delimit;
* Population Parameters (H0);
matrix ly0 = (1, 0 \
 1, 2 \
 1, 4 );
matrix ps0 = (1, .1118 \
 .1118, .2 );
matrix te0 = (1, 0, 0 \
 0, 2.27, 0 \
 0, 0, 5.09 );
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matrix ty0 = (0 \ 0 \ 0 );
matrix al0 = (1 \ .197);

matrix sigma0 = ly0*ps0*ly0' + te0;
matrix muy0 = ty0 + ly0*al0;

matrix ly1 = (1, 0 \
 1, 2 \
 1, 4 );
matrix ps1 = (1, 0 \
 0, .2 );
matrix te1 = (1, 0, 0 \
 0, 2.27, 0 \
 0, 0, 5.09 );
matrix ty1 = (0 \ 0 \ 0 );
matrix al1 = (1 \ .197 );

matrix sigma1 = ly1*ps1*ly1' + te1;
matrix muy1 = ty1 + ly1*al1;

* Create Selected and Unselected Matrices;
* Pr(Miss) = f(T1 Only) -- same for both groups here;
matrix w = (1, 0, 0 );

* Mean of Selection Variable -- Selection on Observed 
Variables;
matrix mus0 = w*muy0;

* Variance of Selection Variable;
matrix vars0 = w*sigma0*w';
* Standard Deviation of Selection Variable;
matrix sds0 = cholesky(vars0);
* Mean and variance in selected subsample (greater than or 
equal to cutpoint);
forvalues probmiss=.05(.05) 1 {;
matrix d = invnorm(`probmiss');
matrix phis = normalden(trace(d));
matrix PHIs = normal(trace(d));
matrix xPHIs = I(1) - PHIs;

matrix muss0 = mus0 + sds0*phis*inv(xPHIs);
matrix musu0 = mus0 - sds0*phis*inv(PHIs);

matrix varss0 = vars0*(1 + (d*phis*inv(xPHIs)) -
(phis*phis*inv(xPHIs)*inv(xPHIs)));
matrix varsu0 = vars0*(1 - (d*phis*inv(PHIs)) - 
(phis*phis*inv(PHIs)*inv(PHIs)));
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matrix omegas0 = inv(vars0)*(varss0 - vars0)*inv(vars0);
matrix omegau0 = inv(vars0)*(varsu0 - vars0)*inv(vars0);

matrix sigmas0 = sigma0 + omegas0*(sigma0*(w'*w)*sigma0);
matrix sigmau0 = sigma0 + omegau0*(sigma0*(w'*w)*sigma0);

matrix ks0 = inv(vars0)*(muss0 - mus0);
matrix ku0 = inv(vars0)*(musu0 - mus0);

*matrix mues0 = ks0*ps0*ly0'*w';
*matrix mueu0 = ku0*ps0*ly0'*w';

*matrix muys0 = muy0 + ly0*mues0;
*matrix muyu0 = muy0 + ly0*mueu0;

matrix muys0 = muy0 + sigma0*w'*ks0;
matrix muyu0 = muy0 + sigma0*w'*ku0;

* Now Create Appropriate Comparisons;
* Original Data;
matrix p = rowsof(sigma0);
matrix n = (1);
matrix fmin= trace(n)*(ln(det(sigma1)) + 
trace(inv(sigma1)*sigma0) - ln(det(sigma0)) - trace(p) + 
trace((muy0 - muy1)'*inv(sigma1)*(muy0 - muy1)));

* Complete Data Filter;
matrix cfilter = (1, 0, 0 \
 0, 1, 0 \
 0, 0, 1 );
* Missing Data Filter;
matrix mfilter = (1, 0, 0 \
 0, 1, 0 );
* First Compare Selected and Unselected with H1;
matrix subsigma0s = cfilter*sigmas0*cfilter';
matrix submuy0s = cfilter*muys0;
matrix subsigma1c = cfilter*sigma1*cfilter';
matrix submuy1c = cfilter*muy1;
matrix subsigma0u = mfilter*sigmau0*mfilter';
matrix submuy0u = mfilter*muyu0;
matrix subsigma1m = mfilter*sigma1*mfilter';
matrix submuy1m = mfilter*muy1;
matrix subpc = rowsof(subsigma0s);
matrix nc = (1 - `probmiss');
matrix subpm = rowsof(subsigma0u);
matrix nm = (`probmiss');
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matrix fminc1 = trace(nc)*(ln(det(subsigma1c)) + trace(inv(s
ubsigma1c)*subsigma0s) - ln(det(subsigma0s))
 - trace(subpc) + trace((submuy0s - submuy1c)'*inv(sub
sigma1c)*(submuy0s - submuy1c)));

matrix fminm1 = trace(nm)*(ln(det(subsigma1m)) + trace(inv(s
ubsigma1m)*subsigma0u) - ln(det(subsigma0u))
 - trace(subpm) + trace((submuy0u - submuy1m)'*inv(sub
sigma1m)*(submuy0u - submuy1m)));

* Next Compare Selected and Unselected with H0 (0 under MCAR);
matrix subsigma0c = cfilter*sigma0*cfilter';
matrix submuy0c = cfilter*muy0;
matrix subsigma0m = mfilter*sigma0*mfilter';
matrix submuy0m = mfilter*muy0;

matrix fminc0 = trace(nc)*(ln(det(subsigma0c)) + trace(inv(s
ubsigma0c)*subsigma0s) - ln(det(subsigma0s))
 - trace(subpc) + trace((submuy0s - submuy0c)'*inv(sub
sigma0c)*(submuy0s - submuy0c)));

matrix fminm0 = trace(nm)*(ln(det(subsigma0m)) + trace(inv(s
ubsigma0m)*subsigma0u) - ln(det(subsigma0u))
 - trace(subpm) + trace((submuy0u - submuy0m)'*inv(sub
sigma0m)*(submuy0u - submuy0m)));

* Incomplete Data;
* Complete;
* Missing;
matrix fminall = (fminc1 + fminm1) - (fminc0 + fminm0);
matrix list fminc1;
matrix list fminc0;
matrix list fminm1;
matrix list fminm0;
matrix list fminall;

matrix pctfmin = 100*fminall*inv(fmin);
mat list pctfmin;
};

Chapter 9 Appendix

STaTa

/* Chapter 9 Example
      Generating Non-Normal Univariate Variables
*/
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#delimit;
capture log close;
log using "G:\Missing Data\LEA\Syntax\Example 9-A.log", 
replace;

* Make results replicable;
set seed 2047881;

* Define # of observations;
set obs 10000;

* Normally distributed variables;
generate r1 = invnorm(uniform());
generate r2 = invnorm(uniform());
generate r3 = invnorm(uniform());

/* Fleishman’s method uses coefficients a, b, c, and d (a=-c)
Var M SD Skew Kurt a b c d
x1 100 15 .75 3.80 -.124833577 .978350485 .124833577 
.001976943
x2 50 10 -.75 3.80 .124833577 .978350485 -.124833577 
.001976943
x3 0 1 .75 5.40 -.096435287 .843688891 .096435287 .046773413
Note: Kurtosis of a normal distribution is 3
Some packages automatically subtract 3
Stata does not
*/
generate a1 = -.124833577;
generate b1 = .978350485;
generate c1 = -1*a1;
generate d1 = .001976943;
generate a2 = .124833577;
generate b2 = .978350485;
generate c2 = -1*a2;
generate d2 = .001976943;
generate a3 = -.096435287;
generate b3 = .843688891;
generate c3 = -1*a3;
generate d3 = .046773413;

generate x1 = 100 + 15*(a1 + b1*r1 + c1*r1*r1 + d1*r1*r1*r1);
generate x2 = 50 + 10*(a2 + b2*r2 + c2*r2*r2 + d2*r2*r2*r2);
generate x3 = 0 + 1*(a3 + b3*r3 + c3*r3*r3 + d3*r3*r3*r3);

tabstat x1 x2 x3 , columns(s) format(%9.2f) statistics(mean 
sd skew kurt);

log close;
clear all;
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Solving for Fleishman’s Coefficients

/* Chapter 9 Example
       Solving for Fleishman’s Coefficients*/
#delimit;
capture log close;
*log using "G:\Missing Data\LEA\Syntax\Example 9-C.log", 
replace;
mat maxiter = (500);
mat iter = (0);
* Skewness and Kurtosis;
mat skewkurt = (1, 5 \ 2, 7 \ 0, 0 \ -2, 7); 
mat skew = skewkurt[1..rowsof(skewkurt),1];
mat kurt = skewkurt[1..rowsof(skewkurt),2];
mat output = J(rowsof(skewkurt),3,0);
mat coef = (1 \ 0 \ 0);
mat f = J(3,1,1);
while trace(iter) <= trace(maxiter) &
 max(abs(f[1,1]),abs(f[2,1]),abs(f[3,1])) > .000001 {;
mat x1 = coef[1,1];
mat x2 = coef[2,1];
mat x3 = coef[3,1];

mat f = (x1*x1+6*x1*x3+2*x2*x2+15*x3*x3 - 1 \
 2*x2*(x1*x1+24*x1*x3+105*x3*x3+2) - skew[4,1] \
 24*(x1*x3+x2*x2*(1+x1*x1+28*x1*x3)+x3*x3*(12+48*x1*x3
+141*x2*x2+225*x3*x3)) - kurt[4,1]);

mat j = (2*x1+6*x3, 4*x2, 6*x1+30*x3 \
 4*x2*(x1+12*x3), 2*(x1*x1+24*x1*x3+105*x3*x3+2), 
4*x2*(12*x1+105*x3) \
 24*(x3+x2*x2*(2*x1+28*x3)+48*x3*x3),
 48*x2*(1+x1*x1+28*x1*x3+141*x3*x3),

 24*(x1+28*x1*x2*x2+2*x3*(12+48*x1*x3+141*x2*x2+225*x3
*x3)+x3*x3)+x3*x3*(48*x1+450*x3));

mat delta = -1*inv(j)*f;
mat coef = coef + delta;
mat iter=iter+I(1);
};
mat list iter;
mat list coef;
mat list delta;
mat list f;
mat list j;

Y100315.indb   337 7/15/09   3:00:25 PM



338 Appendices

set obs 10000;
set seed 2047881;
gen u = invnorm(uniform());

gen x = .57256304 + .8489756*u -.57256304*u*u 
-.10867268*u*u*u;
gen y = -.2600226 -.76158527*u -.2600226*u*u -.05307227*u*u*u;

tabstat x y, columns(statistics) statistics (mean sd skew 
kurt);

generating Non‑Normally Distributed Multivariate Data

/* This program calculates the intermediate correlation
      needed to generate pairs of non-normal variates with
      a specified target correlation
*/
#delimit;
capture log close;
log using "G:\Missing Data\LEA\Syntax\Example 9-D.log", 
replace;

set obs 1;
gen b1 = .978350485;
gen c1 = -.124833577;
gen d1 = .001976943;

gen b2 = .978350485;
gen c2 = .124833577;
gen d2 = .001976943;

gen target = .7;
gen r = .2;
gen f = 0;
gen df = 0;
gen rtemp = 0;
gen ratio = 0;

quietly forvalues i=1/50 {;
replace f =
 (r^3*6*d1*d2+r^2*2*c1*c2+r*(b1*b2+3*b1*d2+3*d1*b2+9*d
1*d2)-target);
replace df =
 (3*r^2*6*d1*d2+2*r^2*c1*c2+(b1*b2+3*b1*d2+3*d1*b2+9*d
1*d2));
replace ratio = f/df;
quietly replace rtemp = r - ratio;
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quietly replace r = rtemp if abs(rtemp - ratio) > .00001;
};
tab r;
log close;
clear;

Chapter 10

STaTa

Generate Minimum Fit Function to Detect Significant 
Correlation as a Function of Reliability and Missing Data

#delimit;

*log using
 "C:\GTemp\Missing Data\LEA\Syntax\Example 10-Q (Rel 
3).log",
 replace;

set more off;
matrix ly0 = (1, 0 \
 1, 1 \
 1, 2 \
 1, 3 \
 1, 4 );

mat ly1 = ly0;
matrix ps0 = (1 , .1118 \
 .1118, .2 );

matrix ps1 = (1 , 0 \
 0, .2 );

matrix te3 = (2.33333 , 0 , 0 , 0 , 0 \
 0 , 3.321757 , 0 , 0 , 0 \
 0 , 0 , 5.24349 , 0 , 0 \
 0 , 0 , 0 , 8.09858 , 0 \
 0 , 0 , 0 , 0 , 11.88700 );

matrix te5 = (1.00 , 0 , 0 , 0 , 0 \
 0 , 1.423610 , 0 , 0 , 0 \
 0 , 0 , 2.24721 , 0 , 0 \
 0 , 0 , 0 , 3.47082 , 0 \
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 0 , 0 , 0 , 0 , 5.094430 );
matrix te7 = (0.42857 , 0 , 0 , 0 , 0 \
 0 , 0.610119 , 0 , 0 , 0 \
 0 , 0 , 0.96309 , 0 , 0 \
 0 , 0 , 0 , 1.48749 , 0 \
 0 , 0 , 0 , 0 , 2.183327 );

mat te0 = te3; *change to te5 or te7 depending on 
Reliability needed;
mat te1 = te0;

matrix ty0 = (0 \ 0 \ 0 \ 0 \ 0 );
matrix al0 = (1 \ .981 );

matrix ty1 = (0 \ 0 \ 0 \ 0 \ 0 );
matrix al1 = (1 \ .981 );

matrix sigma0 = ly0*ps0*ly0' + te0;
matrix muy0 = ty0 + ly0*al0;

matrix sigma1 = ly1*ps1*ly1' + te1;
matrix muy1 = ty1 + ly1*al1;

* Create Selected and Unselected Matrices;
* Pr(Miss) = f1 Only;
matrix w = (2, 1, 0, 0, 0);
* Mean of Selection Variable -- Selection on Observed 
Variables;
matrix mus0 = w*muy0;

* Variance of Selection Variable;
matrix vars0 = w*sigma0*w';

* Standard Deviation of Selection Variable;
matrix sds0 = cholesky(vars0);

* Mean and variance in selected subsample (greater than or 
equal to cutpoint);
forvalues probmiss=.05(.05) 1 {;
matrix d = invnorm(`probmiss');
matrix phis = normalden(trace(d));
matrix PHIs = normal(trace(d));
matrix xPHIs = I(1) - PHIs;
matrix muss0 = mus0 + sds0*phis*inv(xPHIs);
matrix musu0 = mus0 - sds0*phis*inv(PHIs);

matrix varss0 = vars0*(1 + (d*phis*inv(xPHIs)) -
(phis*phis*inv(xPHIs)*inv(xPHIs)));
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matrix varsu0 = vars0*(1 - (d*phis*inv(PHIs)) -
(phis*phis*inv(PHIs)*inv(PHIs)));

matrix omegas0 = inv(vars0)*(varss0 - vars0)*inv(vars0);
matrix omegau0 = inv(vars0)*(varsu0 - vars0)*inv(vars0);

matrix sigmas0 = sigma0 + omegas0*(sigma0*(w’*w)*sigma0);
matrix sigmau0 = sigma0 + omegau0*(sigma0*(w’*w)*sigma0);

matrix ks0 = inv(vars0)*(muss0 - mus0);
matrix ku0 = inv(vars0)*(musu0 - mus0);

*matrix mues0 = ks0*ps0*ly0'*w';
*matrix mueu0 = ku0*ps0*ly0'*w';

*matrix muys0 = muy0 + ly0*mues0;
*matrix muyu0 = muy0 + ly0*mueu0;

matrix muys0 = muy0 + sigma0*w’*ks0;
matrix muyu0 = muy0 + sigma0*w’*ku0;

* Now Create Appropriate Comparisons;
* Original Data;
matrix p = rowsof(sigma0);
matrix n = (1);
matrix fmin= trace(n)*(ln(det(sigma1)) + 
trace(inv(sigma1)*sigma0) - ln(det(sigma0)) - trace(p) + 
trace((muy0 - muy1)'*inv(sigma1)*(muy0 - muy1)));

* Complete Data Filter;
matrix cfilter = I(5);

* Missing Data Filter;
matrix mfilter = (1, 0, 0, 0, 0 \
 0, 1, 0, 0, 0 );

* First Compare Selected and Unselected with H1;
matrix subsigma0s = cfilter*sigmas0*cfilter';
matrix submuy0s = cfilter*muys0;
matrix subsigma1c = cfilter*sigma1*cfilter';
matrix submuy1c = cfilter*muy1;
matrix subsigma0u = mfilter*sigmau0*mfilter';
matrix submuy0u = mfilter*muyu0;
matrix subsigma1m = mfilter*sigma1*mfilter';
matrix submuy1m = mfilter*muy1;
matrix subpc = rowsof(subsigma0s);
matrix nc = (1 - `probmiss');
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matrix subpm = rowsof(subsigma0u);
matrix nm = (`probmiss');

matrix fminc1 = trace(nc)*(ln(det(subsigma1c)) + trace(inv(s
ubsigma1c)*subsigma0s) - ln(det(subsigma0s))
 - trace(subpc) + trace((submuy0s - submuy1c)’*inv(sub
sigma1c)*(submuy0s - submuy1c)));

matrix fminm1 = trace(nm)*(ln(det(subsigma1m)) + trace(inv(s
ubsigma1m)*subsigma0u) - ln(det(subsigma0u))
 - trace(subpm) + trace((submuy0u - submuy1m)'*inv(sub
sigma1m)*(submuy0u - submuy1m)));

* Next Compare Selected and Unselected with H0 (0 under MCAR);
matrix subsigma0c = cfilter*sigma0*cfilter';
matrix submuy0c = cfilter*muy0;
matrix subsigma0m = mfilter*sigma0*mfilter';
matrix submuy0m = mfilter*muy0;

matrix fminc0 = trace(nc)*(ln(det(subsigma0c)) + trace(inv(s
ubsigma0c)*subsigma0s) - ln(det(subsigma0s))
 - trace(subpc) + trace((submuy0s - submuy0c)'*inv(sub
sigma0c)*(submuy0s - submuy0c)));

matrix fminm0 = trace(nm)*(ln(det(subsigma0m)) + trace(inv(s
ubsigma0m)*subsigma0u) - ln(det(subsigma0u))
 - trace(subpm) + trace((submuy0u - submuy0m)'*inv(sub
sigma0m)*(submuy0u - submuy0m)));

* Incomplete Data;
* Complete;
* Missing;
matrix fminall = (fminc1 + fminm1) - (fminc0 + fminm0);

matrix list PHIs, noheader nonames;
*matrix list fminc1;
*matrix list fminc0;
*matrix list fminm1;
*matrix list fminm0;
matrix list fminall, noheader nonames;
*matrix pctfmin = 100*fminall*inv(fmin);
*mat list pctfmin;
};
mat list fmin, noheader nonames;

*log close;

Y100315.indb   342 7/15/09   3:00:25 PM



Appendices 343

Calculate Power for the Models as a Function of Reliability 
and Missing Data
#delimit;

capture drop df alpha n power*;

gen df=1;
gen alpha = .05;
gen n = 500;
gen power3 = 1 - nchi2(df,(n-1)*ncp3,invchi2tail(df,alpha));
gen power5 = 1 - nchi2(df,(n-1)*ncp5,invchi2tail(df,alpha));
gen power7 = 1 - nchi2(df,(n-1)*ncp7,invchi2tail(df,alpha));

STaTa

STATA Code to Generate the Covariance Matrices and Mean Vectors for 
MAR Data with Auxiliary Variable of 0.1 Correlation with Pre-test Data

For Control Group:

#delimit;
set mem 200m;
capture log close;

/*Save the output */
log using "c:\study2\covariates\control_0.1 covariate.
log", replace;
/*Define Covariance Matrix */
/*Curran & Muthen, 1999 */
/*Control Group Matrix*/

/*Auxiliary variable correlated at 0.1 with Time 1 Data*/
matrix S4 = (
2.0000000, 1.1118034, 1.2236068, 1.3354102, 1.4472136, 
0.1414200\
1.1118034, 2.8472136, 1.7354102, 2.0472136, 2.3590170, 
0.0000000\
1.2236068, 1.7354102, 4.4944272, 2.7590170, 3.2708204, 
0.0000000\
1.3354102, 2.0472136, 2.7590170, 6.9416408, 4.1826238, 
0.0000000\
1.4472136, 2.3590170, 3.2708204, 4.1826238, 10.188854, 
0.0000000\
0.1414200, 0.0000000, 0.0000000, 0.0000000, 00.000000, 
1.0000000);

matrix M4 = (
1.00000, 1.797998, 2.595996, 3.393994, 4.191992, 0.000000);
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/*Set Replicable See*/
set seed 1234567;

/*Generate a 1,000,000 Observation Dataset*/
/* 5 Waves of Data*/
corr2data t1-t5 cov, n(1000000) cov(S4) means(M4);

/*Establish a selection variable to make MAR data */
/*Weighted on Time1 (Pretest) score only */
generate scrit01 = -1*t1;

/*Sort Cases by values on selection variable */
/*Note that this is like the phenotypic (i.e., observed 
variable) sorting of Dolan */
sort scrit01;

/*Now determine extent of MAR missing data*/
/*First initialize variables*/
generate sel00 = 0;
generate sel05 = 0;
generate sel10 = 0;
generate sel15 = 0;
generate sel20 = 0;
generate sel25 = 0;
generate sel30 = 0;
generate sel35 = 0;
generate sel40 = 0;
generate sel45 = 0;
generate sel50 = 0;
generate sel55 = 0;
generate sel60 = 0;
generate sel65 = 0;
generate sel70 = 0;
generate sel75 = 0;
generate sel80 = 0;
generate sel85 = 0;
generate sel90 = 0;
generate sel95 = 0;

/*Then make groups representing different proportions of 
missing data */
replace sel05=1 if _n <= 50000;
replace sel10=1 if _n <= 100000;
replace sel15=1 if _n <= 150000;
replace sel20=1 if _n <= 200000;
replace sel25=1 if _n <= 250000;
replace sel30=1 if _n <= 300000;
replace sel35=1 if _n <= 350000;
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replace sel40=1 if _n <= 400000;
replace sel45=1 if _n <= 450000;
replace sel50=1 if _n <= 500000;
replace sel55=1 if _n <= 550000;
replace sel60=1 if _n <= 600000;
replace sel65=1 if _n <= 650000;
replace sel70=1 if _n <= 700000;
replace sel75=1 if _n <= 750000;
replace sel80=1 if _n <= 800000;
replace sel85=1 if _n <= 850000;
replace sel90=1 if _n <= 900000;
replace sel95=1 if _n <= 950000;

/*Now we make and store some matrices by group */
/* 5% Missing */
matrix accum c05 = t1-t5 cov if sel05==0, means(mc05) dev 
noconst;
matrix accum m05 = t1-t5 cov if sel05==1, means(mm05) dev 
noconst;

/* 10% Missing */
matrix accum c10 = t1-t5 cov if sel10==0, means(mc10) dev 
noconst;
matrix accum m10 = t1-t5 cov if sel10==1, means(mm10) dev 
noconst;

/* 15% Missing */
matrix accum c15 = t1-t5 cov if sel15==0, means(mc15) dev 
noconst;
matrix accum m15 = t1-t5 cov if sel15==1, means(mm15) dev 
noconst;

/* 20% Missing */
matrix accum c20 = t1-t5 cov if sel20==0, means(mc20) dev 
noconst;
matrix accum m20 = t1-t5 cov if sel20==1, means(mm20) dev 
noconst;

/* 25% Missing */
matrix accum c25 = t1-t5 cov if sel25==0, means(mc25) dev 
noconst;
matrix accum m25 = t1-t5 cov if sel25==1, means(mm25) dev 
noconst;

/* 30% Missing */
matrix accum c30 = t1-t5 cov if sel30==0, means(mc30) dev 
noconst;
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matrix accum m30 = t1-t5 cov if sel30==1, means(mm30) dev 
noconst;

/* 35% Missing */
matrix accum c35 = t1-t5 cov if sel35==0, means(mc35) dev 
noconst;
matrix accum m35 = t1-t5 cov if sel35==1, means(mm35) dev 
noconst;

/* 40% Missing */
matrix accum c40 = t1-t5 cov if sel40==0, means(mc40) dev 
noconst;
matrix accum m40 = t1-t5 cov if sel40==1, means(mm40) dev 
noconst;

/* 45% Missing */
matrix accum c45 = t1-t5 cov if sel45==0, means(mc45) dev 
noconst;
matrix accum m45 = t1-t5 cov if sel45==1, means(mm45) dev 
noconst;

/* 50% Missing */
matrix accum c50 = t1-t5 cov if sel50==0, means(mc50) dev 
noconst;
matrix accum m50 = t1-t5 cov if sel50==1, means(mm50) dev 
noconst;

/* 55% Missing */
matrix accum c55 = t1-t5 cov if sel55==0, means(mc55) dev 
noconst;
matrix accum m55 = t1-t5 cov if sel55==1, means(mm55) dev 
noconst;

/* 60% Missing */
matrix accum c60 = t1-t5 cov if sel60==0, means(mc60) dev 
noconst;
matrix accum m60 = t1-t5 cov if sel60==1, means(mm60) dev 
noconst;

/* 65% Missing */
matrix accum c65 = t1-t5 cov if sel65==0, means(mc65) dev 
noconst;
matrix accum m65 = t1-t5 cov if sel65==1, means(mm65) dev 
noconst;

/* 70% Missing */
matrix accum c70 = t1-t5 cov if sel70==0, means(mc70) dev 
noconst;
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matrix accum m70 = t1-t5 cov if sel70==1, means(mm70) dev 
noconst;

/* 75% Missing */
matrix accum c75 = t1-t5 cov if sel75==0, means(mc75) dev 
noconst;
matrix accum m75 = t1-t5 cov if sel75==1, means(mm75) dev 
noconst;

/* 80% Missing */
matrix accum c80 = t1-t5 cov if sel80==0, means(mc80) dev 
noconst;
matrix accum m80 = t1-t5 cov if sel80==1, means(mm80) dev 
noconst;

/* 85% Missing */
matrix accum c85 = t1-t5 cov if sel85==0, means(mc85) dev 
noconst;
matrix accum m85 = t1-t5 cov if sel85==1, means(mm85) dev 
noconst;

/* 90% Missing */
matrix accum c90 = t1-t5 cov if sel90==0, means(mc90) dev 
noconst;
matrix accum m90 = t1-t5 cov if sel90==1, means(mm90) dev 
noconst;

/* 95% Missing */
matrix accum c95 = t1-t5 cov if sel95==0, means(mc95) dev 
noconst;
matrix accum m95 = t1-t5 cov if sel95==1, means(mm95) dev 
noconst;

/*Make Covariance Matrix by Dividing by Sample Size */
matrix c05=c05/950000;
matrix m05=m05/50000;
matrix c10=c10/900000;
matrix m10=m10/100000;
matrix c15=c15/850000;
matrix m15=m15/150000;
matrix c20=c20/800000;
matrix m20=m20/200000;
matrix c25=c25/750000;
matrix m25=m25/250000;
matrix c30=c30/700000;
matrix m30=m30/300000;
matrix c35=c35/650000;
matrix m35=m35/350000;
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matrix c40=c40/600000;
matrix m40=m40/400000;
matrix c45=c45/550000;
matrix m45=m45/450000;
matrix c50=c50/500000;
matrix m50=m50/500000;
matrix c55=c55/450000;
matrix m55=m55/550000;
matrix c60=c60/400000;
matrix m60=m60/600000;
matrix c65=c65/350000;
matrix m65=m65/650000;
matrix c70=c70/300000;
matrix m70=m70/700000;
matrix c75=c75/250000;
matrix m75=m75/750000;
matrix c80=c80/200000;
matrix m80=m80/800000;
matrix c85=c85/150000;
matrix m85=m85/850000;
matrix c90=c90/100000;
matrix m90=m90/900000;
matrix c95=c95/50000;
matrix m95=m95/950000;

/*Print the Output*/
matrix list c05;
matrix list mc05;
matrix list m05;
matrix list mm05;
matrix list c10;
matrix list mc10;
matrix list m10;
matrix list mm10;
matrix list c15;
matrix list mc15;
matrix list m15;
matrix list mm15;
matrix list c20;
matrix list mc20;
matrix list m20;
matrix list mm20;
matrix list c25;
matrix list mc25;
matrix list m25;
matrix list mm25;
matrix list c30;
matrix list mc30;
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matrix list m30;
matrix list mm30;
matrix list c35;
matrix list mc35;
matrix list m35;
matrix list mm35;
matrix list c40;
matrix list mc40;
matrix list m40;
matrix list mm40;
matrix list c45;
matrix list mc45;
matrix list m45;
matrix list mm45;
matrix list c50;
matrix list mc50;
matrix list m50;
matrix list mm50;
matrix list c55;
matrix list mc55;
matrix list m55;
matrix list mm55;
matrix list c60;
matrix list mc60;
matrix list m60;
matrix list mm60;
matrix list c65;
matrix list mc65;
matrix list m65;
matrix list mm65;
matrix list c70;
matrix list mc70;
matrix list m70;
matrix list mm70;
matrix list c75;
matrix list mc75;
matrix list m75;
matrix list mm75;
matrix list c80;
matrix list mc80;
matrix list m80;
matrix list mm80;
matrix list c85;
matrix list mc85;
matrix list m85;
matrix list mm85;
matrix list c90;
matrix list mc90;

Y100315.indb   349 7/15/09   3:00:25 PM



350 Appendices

matrix list m90;
matrix list mm90;
matrix list c95;
matrix list mc95;
matrix list m95;
matrix list mm95;

corr t1 t2 t3 t4 t5 cov, m c;

log close;
clear;

For Treatment Group:

#delimit;
set mem 200m;
capture log close;

/*Save the output */
log using "c:\study2\covariates\Treatment_0.1 Covariate.
log", replace;

/*Define Covariance Matrix */
/*Curran & Muthen, 1999 */
/*Treatment Group Matrix*/

matrix S4 = (
2.0000000, 1.1118034, 1.2236068, 1.3354102, 1.4472136, 
0.1414200\
1.1118034, 2.8472136, 1.7354102, 2.0472136, 2.3590170, 
0.0000000\
1.2236068, 1.7354102, 4.4944272, 2.7590170, 3.2708204, 
0.0000000\
1.3354102, 2.0472136, 2.7590170, 6.9416408, 4.1826238, 
0.0000000\
1.4472136, 2.3590170, 3.2708204, 4.1826238, 10.188854, 
0.0000000\
0.1414200, 0.0000000, 0.0000000, 0.0000000, 00.000000, 
1.0000000);
matrix M4 = (
1.0000000, 1.9809430, 2.9618860, 3.9428290, 4.9237720, 
0.0000000);

/*Set Replicable Seed*/
set seed 1234567;

/*Generate a 1,000,000 Observation Dataset*/
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/* 5 Waves of Data & Covariance*/
corr2data t1-t5 cov, n(1000000) cov(S4) means(M4);

/*Establish a selection variable to make MAR data */
/*Weighted on Time1 (Pretest) score only */
generate scrit01 = -1*t1;

/*Sort Cases by values on selection variable */
/*Note that this is like the phenotypic (i.e., observed 
variable) sorting of Dolan */
sort scrit01;

/*Now determine extent of MAR missing data*/
/*First initialize variables*/
generate sel00 = 0;
generate sel05 = 0;
generate sel10 = 0;
generate sel15 = 0;
generate sel20 = 0;
generate sel25 = 0;
generate sel30 = 0;
generate sel35 = 0;
generate sel40 = 0;
generate sel45 = 0;
generate sel50 = 0;
generate sel55 = 0;
generate sel60 = 0;
generate sel65 = 0;
generate sel70 = 0;
generate sel75 = 0;
generate sel80 = 0;
generate sel85 = 0;
generate sel90 = 0;
generate sel95 = 0;

/*Then make groups representing different proportions of 
missing data */
replace sel05=1 if _n <= 50000;
replace sel10=1 if _n <= 100000;
replace sel15=1 if _n <= 150000;
replace sel20=1 if _n <= 200000;
replace sel25=1 if _n <= 250000;
replace sel30=1 if _n <= 300000;
replace sel35=1 if _n <= 350000;
replace sel40=1 if _n <= 400000;
replace sel45=1 if _n <= 450000;
replace sel50=1 if _n <= 500000;
replace sel55=1 if _n <= 550000;
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replace sel60=1 if _n <= 600000;
replace sel65=1 if _n <= 650000;
replace sel70=1 if _n <= 700000;
replace sel75=1 if _n <= 750000;
replace sel80=1 if _n <= 800000;
replace sel85=1 if _n <= 850000;
replace sel90=1 if _n <= 900000;
replace sel95=1 if _n <= 950000;

/*Now we make and store some matrices by group */
/* 5% Missing */
matrix accum c05 = t1-t5 cov if sel05==0, means(mc05) dev 
noconst;
matrix accum m05 = t1-t5 cov if sel05==1, means(mm05) dev 
noconst;

/* 10% Missing */
matrix accum c10 = t1-t5 cov if sel10==0, means(mc10) dev 
noconst;
matrix accum m10 = t1-t5 cov if sel10==1, means(mm10) dev 
noconst;

/* 15% Missing */
matrix accum c15 = t1-t5 cov if sel15==0, means(mc15) dev 
noconst;
matrix accum m15 = t1-t5 cov if sel15==1, means(mm15) dev 
noconst;

/* 20% Missing */
matrix accum c20 = t1-t5 cov if sel20==0, means(mc20) dev 
noconst;
matrix accum m20 = t1-t5 cov if sel20==1, means(mm20) dev 
noconst;

/* 25% Missing */
matrix accum c25 = t1-t5 cov if sel25==0, means(mc25) dev 
noconst;
matrix accum m25 = t1-t5 cov if sel25==1, means(mm25) dev 
noconst;

/* 30% Missing */
matrix accum c30 = t1-t5 cov if sel30==0, means(mc30) dev 
noconst;
matrix accum m30 = t1-t5 cov if sel30==1, means(mm30) dev 
noconst;
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/* 35% Missing */
matrix accum c35 = t1-t5 cov if sel35==0, means(mc35) dev 
noconst;
matrix accum m35 = t1-t5 cov if sel35==1, means(mm35) dev 
noconst;

/* 40% Missing */
matrix accum c40 = t1-t5 cov if sel40==0, means(mc40) dev 
noconst;
matrix accum m40 = t1-t5 cov if sel40==1, means(mm40) dev 
noconst;

/* 45% Missing */
matrix accum c45 = t1-t5 cov if sel45==0, means(mc45) dev 
noconst;
matrix accum m45 = t1-t5 cov if sel45==1, means(mm45) dev 
noconst;

/* 50% Missing */
matrix accum c50 = t1-t5 cov if sel50==0, means(mc50) dev 
noconst;
matrix accum m50 = t1-t5 cov if sel50==1, means(mm50) dev 
noconst;

/* 55% Missing */
matrix accum c55 = t1-t5 cov if sel55==0, means(mc55) dev 
noconst;
matrix accum m55 = t1-t5 cov if sel55==1, means(mm55) dev 
noconst;

/* 60% Missing */
matrix accum c60 = t1-t5 cov if sel60==0, means(mc60) dev 
noconst;
matrix accum m60 = t1-t5 cov if sel60==1, means(mm60) dev 
noconst;

/* 65% Missing */
matrix accum c65 = t1-t5 cov if sel65==0, means(mc65) dev 
noconst;
matrix accum m65 = t1-t5 cov if sel65==1, means(mm65) dev 
noconst;

/* 70% Missing */
matrix accum c70 = t1-t5 cov if sel70==0, means(mc70) dev 
noconst;
matrix accum m70 = t1-t5 cov if sel70==1, means(mm70) dev 
noconst;
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/* 75% Missing */
matrix accum c75 = t1-t5 cov if sel75==0, means(mc75) dev 
noconst;
matrix accum m75 = t1-t5 cov if sel75==1, means(mm75) dev 
noconst;

/* 80% Missing */
matrix accum c80 = t1-t5 cov if sel80==0, means(mc80) dev 
noconst;
matrix accum m80 = t1-t5 cov if sel80==1, means(mm80) dev 
noconst;

/* 85% Missing */
matrix accum c85 = t1-t5 cov if sel85==0, means(mc85) dev 
noconst;
matrix accum m85 = t1-t5 cov if sel85==1, means(mm85) dev 
noconst;

/* 90% Missing */
matrix accum c90 = t1-t5 cov if sel90==0, means(mc90) dev 
noconst;
matrix accum m90 = t1-t5 cov if sel90==1, means(mm90) dev 
noconst;

/* 95% Missing */
matrix accum c95 = t1-t5 cov if sel95==0, means(mc95) dev 
noconst;
matrix accum m95 = t1-t5 cov if sel95==1, means(mm95) dev 
noconst;

/*Make Covariance Matrix by Dividing by Sample Size */
matrix c05=c05/950000;
matrix m05=m05/50000;
matrix c10=c10/900000;
matrix m10=m10/100000;
matrix c15=c15/850000;
matrix m15=m15/150000;
matrix c20=c20/800000;
matrix m20=m20/200000;
matrix c25=c25/750000;
matrix m25=m25/250000;
matrix c30=c30/700000;
matrix m30=m30/300000;
matrix c35=c35/650000;
matrix m35=m35/350000;
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matrix c40=c40/600000;
matrix m40=m40/400000;
matrix c45=c45/550000;
matrix m45=m45/450000;
matrix c50=c50/500000;
matrix m50=m50/500000;
matrix c55=c55/450000;
matrix m55=m55/550000;
matrix c60=c60/400000;
matrix m60=m60/600000;
matrix c65=c65/350000;
matrix m65=m65/650000;
matrix c70=c70/300000;
matrix m70=m70/700000;
matrix c75=c75/250000;
matrix m75=m75/750000;
matrix c80=c80/200000;
matrix m80=m80/800000;
matrix c85=c85/150000;
matrix m85=m85/850000;
matrix c90=c90/100000;
matrix m90=m90/900000;
matrix c95=c95/50000;
matrix m95=m95/950000;

/*Print the Output*/
matrix list c05;
matrix list mc05;
matrix list m05;
matrix list mm05;
matrix list c10;
matrix list mc10;
matrix list m10;
matrix list mm10;
matrix list c15;
matrix list mc15;
matrix list m15;
matrix list mm15;
matrix list c20;
matrix list mc20;
matrix list m20;
matrix list mm20;
matrix list c25;
matrix list mc25;
matrix list m25;
matrix list mm25;
matrix list c30;
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matrix list mc30;
matrix list m30;
matrix list mm30;
matrix list c35;
matrix list mc35;
matrix list m35;
matrix list mm35;
matrix list c40;
matrix list mc40;
matrix list m40;
matrix list mm40;
matrix list c45;
matrix list mc45;
matrix list m45;
matrix list mm45;
matrix list c50;
matrix list mc50;
matrix list m50;
matrix list mm50;
matrix list c55;
matrix list mc55;
matrix list m55;
matrix list mm55;
matrix list c60;
matrix list mc60;
matrix list m60;
matrix list mm60;
matrix list c65;
matrix list mc65;
matrix list m65;
matrix list mm65;
matrix list c70;
matrix list mc70;
matrix list m70;
matrix list mm70;
matrix list c75;
matrix list mc75;
matrix list m75;
matrix list mm75;
matrix list c80;
matrix list mc80;
matrix list m80;
matrix list mm80;
matrix list c85;
matrix list mc85;
matrix list m85;
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matrix list mm85;
matrix list c90;
matrix list mc90;
matrix list m90;
matrix list mm90;
matrix list c95;
matrix list mc95;
matrix list m95;
matrix list mm95;

corr t1 t2 t3 t4 t5 cov, m c;
log close;
clear;
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