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Abstract. This paper introduces a new method, called the robust Bayesian estimator (RBE), to learn conditional

probability distributions from incomplete data sets. The intuition behind the RBE is that, when no information about

the pattern of missing data is available, an incomplete database constrains the set of all possible estimates and this

paper provides a characterization of these constraints. An experimental comparison with two popular methods to es-

timate conditional probability distributions from incomplete data—Gibbs sampling and the EM algorithm—shows

a gain in robustness. An application of the RBE to quantify a naive Bayesian classifier from an incomplete data set

illustrates its practical relevance.
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1. Introduction

The Bayesian estimation of conditional probabilities from a data is a task relevant to a

variety of machine learning applications, such as classification (Langley, Iba, & Thompson,

1992) and clustering (Cheeseman & Stutz, 1996). When no entry is missing in the database,

these conditional probabilities can be efficiently estimated using standard Bayesian analysis

(Good, 1968). Unfortunately, when the database is incomplete, i.e., some entries are reported

as unknown, the simplicity and efficiency of this analysis are lost. Exact Bayesian analysis

requires that one estimates the conditional probability distributions in each database that

can be completed by replacing the missing entries with some value and then computes their

average estimate. As the number of the completed databases increases exponentially with

the number of missing entries, this exact analysis is computationally intractable.

During the past few years, several methods have been proposed for learning conditional

probabilities from incomplete data sets. The two most popular methods are the expectation

maximization algorithm (Dempster, Laird, & Rubin, 1977) and Gibbs sampling (Geman

& Geman, 1984). Both methods make the simplifying assumption that data are missing at

random (Rubin, 1976). Under this assumption, the probability that an entry is not reported

is independent of the missing entries in the data set and, in this situation, the missing

values can be inferred from the available data. However, there is no way to verify this

assumption on a database and, when this assumption is violated, all these methods can

suffer of a dramatic decrease in accuracy (Spiegelhalter & Cowell, 1992). This situation
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motivated the recent development of a deterministic method, called Bound and Collapse

(Ramoni & Sebastiani, 1998), that does not rely, per se, on a particular assumption about the

missing data mechanism but allows the user to specify one, including the missing at random

assumption. However, it still requires the specification of a particular missing data pattern,

and this information may not be readily available. Approximate methods and simplifying

assumptions make the task of learning from incomplete data feasible, but they prompt one

to question the reliability of the estimates obtained in this way.

A typical solution to this problem is to measure this reliability by estimating the condi-

tional probabilities under different assumptions about the missing data mechanism and by

assessing the sensitivity of the estimates to these assumptions. A drawback of this approach

is that each missing data mechanism explored requires a new estimation process and the

choice of the mechanisms to consider in this sensitivity analysis is left entirely to the analyst.

The rationale behind the approach presented in this paper is closely related to this idea and

it can be regarded as an automated method for sensitivity analysis.

This paper introduces the robust Bayesian estimator (RBE) to learn conditional proba-

bility distributions from incomplete data sets without making any assumption about the

missing data mechanism. The major feature of the RBE is to produce probability estimates

that are robust with respect to different types of missing data. This robustness is achieved

by providing probability intervals containing the estimates that can be learned from all

completed data sets. The width of these intervals is a monotonically increasing function

of the information available in the data set and thus provides a measure of the information

conveyed by the data. We will focus on Bayesian networks, although the RBE can be used

for the general task of learning conditional probabilities. During the past few years, there

has been an increasing interest in algorithms that propagate probability intervals during

inference in Bayesian networks (Fertig & Breese, 1993; Ramoni, 1995) but, to our knowl-

edge, no effort has been made to apply the same interval-based approach to the task of

learning such networks. The method presented in this paper can be therefore regarded as

the learning counterpart of this research on reasoning methods, and we will show how the

networks learned with the RBE can be used for classification and inference by means of

these propagation methods.

The reminder of this paper describes our approach. Section 2 establishes some nota-

tion and reviews the background and motivation of the research. Section 3 describes the

theoretical framework of the RBE and the use of probability intervals for inference, while

Section 4 outlines the algorithms required for the implementation. Section 5 compares the

RBE to expectation and maximization and Gibbs sampling in a controlled experiment, and

Section 6 applies the RBE to an incomplete data set in a classification task.

2. Learning conditional probabilities

A Bayesian network is defined by a set of variables X = {X1, . . . , Xv} and a network

structure S represented by a graph of conditional dependencies among the variables in X .

A conditional dependency links a child variable X i to a set of parent variables �i and, since

we consider discrete variables only, is quantified by the table of conditional distributions

of the child variable given each combination πi j of values of the parent variables �i . As a
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Figure 1. The graphical structure of a Bayesian network with variables X1, X2, and X3, and the associated

conditional probability distributions.

shorthand, we denote a single variable value X i = xik as xik and a combination of values

�i = πi j of the parent variables �i as πi j . We denote the number of states of the variable

X i and the number of possible states of the parent variables �i by si and qi , respectively. We

also denote the conditional distribution of X i given the combination πi j of parent variables

by (p(xi1 | πi j ), . . . , p(xisi
| πi j )). Figure 1 shows an example in which X = {X1, X2, X3}

and each variable X i takes on one of the two values 0 and 1. The variables X1 and X2

have no parents, and they are both parents of X3 so that �3 = {X1, X2}. The three tables of

conditional probabilities give the distributions of X1 and X2 and the conditional distributions

of X3 given the four combinations of values of the parent variables.

Suppose we have a data set of n cases D= {c1, . . . , cn}, where one case is ck = {x1k, . . . ,

xuk}, and a graphical structure S over the set of variables {X1, . . . , Xv}. Our task is to

estimate the conditional probability tables quantifying the dependence of each variable X i

on its parent variables �i .

When the database is complete, that is, all entries are known, this estimation is straightfor-

ward. Let n(xik | πi j ) be the frequency of cases in which the variable X i appears in its state xik

together with the combination πi j of its parents �i . We denote by n(πi j ) =
∑

k n(xik | πi j )

the frequency of the parents’ combination πi j . Dividing each frequency n(xik | πi j ) by

n(πi j ), we obtain the “classical” estimate of the conditional probability p(xik | πi j ), which is

p̃(xik | πi j ) =
n(xik | πi j )

n(πi j )
· (1)

The set of estimates { p̃(xik | πi j )}, for all i , j and k, quantifies the Bayesian network. These

estimates maximize the joint probability of the data, �n
k=1 �v

i=1 p(xik | πi j ), also called

the likelihood function, where the quantity �v
i=1 p(xik | πi j ) is the joint probability of one

case ck .

The estimates { p̃(xik | πi j )} are only a function of the data, but in some situations we may

also want the estimation process to take into account some information, such as an expert’s

opinion. The Bayesian estimate of p(xik | πi j ) modifies the classical estimate p̃(xik | πi j )

by augmenting the observed frequencies n(xik | πi j ) by some quantities αi jk that encode

the external information in terms of imaginary frequencies of sample of size α, where αi j

is
∑

k αi jk . The Bayesian estimate of p(xik | πi j ) is computed by applying Eq. (1) to the
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frequencies n(xik | πi j ), augmented by the quantities αi jk , and is

p̂(xik | πi j ) =
αi jk + n(xik | πi j )

αi j + n(πi j )
· (2)

By writing Eq. (2) as

p̂(xik | πi j ) =
αi jk

αi j

·
αi j

αi j + n(πi j )
+

n(xik | πi j )

n(πi j )
·

n(πi j )

αi j + n(πi j )
,

we observe that p̂(xik | πi j ) is an average of the classical estimate p̃(xik | πi j ) and of the

quantity αi jk/αi j . The latter is the estimate of p(xik | πi j ) when the data set consists of the

imaginary counts αi jk only (i.e., n(xi jk | πi j ) = 0, for all i , j , and k) and it is therefore

called the prior probability of (xi jk | πi j ), while p̂(xik | πi j ) is called the posterior proba-

bility. Note that α is the size of the imaginary sample upon which we base the formulation

of the prior probability. As such, α represents a confidence measure of our prior prob-

abilities and, therefore, it is called prior precision (Good, 1968; Ramoni & Sebastiani,

1999).

Unfortunately, the simplicity and efficiency of this closed form solution are lost when the

database is incomplete, that is, some entries are reported as unknown. The issues involved

in the estimating the probabilities from an incomplete data set D are better explained if we

regard D as the result of a deletion process applied to a complete but unknown database

Dc. We define a consistent completion of D to be any complete database Dc from which we

can obtain D using some deletion process. The set of consistent completions {Dc} is given

by all databases in which the unknown entries are replaced by one of the possible values

of the unobserved variables. The exact analysis, in this case, consists of applying Eq. (2) to

each consistent completion Dc, to yield a consistent estimate of the probability p(xik | πi j ),

and then to average the consistent estimates. However, as the size of the set {Dc} grows

exponentially with the number of missing entries, the exact analysis is computationally

intractable. A typical solution is to make simplifying assumptions about the mechanism that

causes missing data and to invoke approximate methods. Rubin (1976) classifies missing

data mechanisms into three categories:

• missing completely at random (MCAR): the probability that an entry will be missing is

independent of both observed and unobserved values in the data set;

• missing at random (MAR): the probability that an entry will be missing is a function of

the observed values in the data set;

• informatively missing (IM): the probability that an entry will be missing depends on both

observed and unobserved values in the data set.

These models are characterized by associating a dummy variable Ri with each variable

X i . For each case in the data set, the variable Ri takes on one of the two values 0 and 1

denoting, respectively, that the entry xik is observed or not. The probability distribution for

each variable Ri specifies the missing data mechanism. Data are MCAR if the probability

distribution of each Ri is independent of {X1, . . . , Xv}. When the probability distribution of
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each Ri is a function of the observed values in the data set, data are MAR, whereas data are

IM when the probability distribution of each Ri is a function of the observed and unobserved

entries.

When data are either MCAR or MAR, the deletion mechanism is said to be ignorable

because we can infer the missing entries from the observed ones. The two most popular

solutions to handle incomplete data sets—the expectation maximization (EM) algorithm

(Dempster, Laird, & Rubin, 1977) and Gibbs sampling (Geman & Geman, 1984)—rely on

the assumption that data are MAR. The EM algorithm is an iterative method that approximates

the estimate in either Eqs. (1) or (2) when data are incomplete and the likelihood function,

as defined in the previous section, becomes a mixture of likelihood functions, one for

each consistent completion of the data set. EM alternates an expectation step, in which

unknown quantities depending on the missing entries are replaced by their expectation in

the likelihood function, with a maximization step, in which the likelihood is maximized

with respect to the set of unknown probabilities {p(xik | πi j )}. The estimates computed by

the maximization step are then used to replace unknown quantities by their expectation in

the next step, and the whole process is repeated until the difference between successive

estimates is smaller than a fixed threshold. The EM algorithm produces an approximation

of the estimate (αi jk + n(xik | πi j ) − 1)/(αi j + n(πi j ) − si ), the so called maximum a

posteriori (Heckerman, Geiger, & Chickering, 1995). However, by setting α′
i jk = αi jk + 1,

the estimate (α′
i jk + n(xik | πi j ) − 1)/(α′

i j + n(πi j ) − si ) becomes exactly that given in

Eq. (2). The convergence rate of this process can be slow and several modifications have

been proposed to increase it (Lauritzen, 1995; Zhang, 1996; Russell et al., 1995; Friedman,

1977).

In contrast to the EM algorithm, which is iterative but deterministic, Gibbs sampling is a

stochastic method that produces a sample of values for the probabilities {p(xik | πi j )} from

which one can compute { p̂(xik | πi j )} as sample means. The method works by generating

a Markov chain whose equilibrium distribution is the distribution generating the posterior

probabilities { p̂(xik | πi j )}. In practice, the algorithm iterates a number of times—called the

burn in—to reach stability and then takes a final sample from the equilibrium distribution

(Thomas, Spiegelhalter, & Gilks, 1992). The advantage of Gibbs sampling over EM is

that the simulated sample provides empirical estimates of the variance, as well as credible

intervals, that is, intervals that contain the p(xik | πi j ) values with a given probability. Gibbs

sampling treats missing data as unknown quantities to be estimated so that, as the number of

missing entries in the data set increases, the convergence rate of the method decreases very

rapidly.

When data are neither MAR nor MCAR, the accuracy of both the EM algorithm and Gibbs

sampling can dramatically decrease (Spiegelhalter & Cowell, 1992). This finding raises

questions about the reliability of the estimates produced under these assumptions. One

solution is to perform a sensitivity analysis to assess the robustness of the estimates with

respect to different missing data mechanisms. This consists of repeating the estimation

process under different assumptions about the missing data mechanism and evaluating the

changes in the estimates. The drawback of sensitivity analysis is that it requires a new

estimation process for each missing data mechanism, but it leads naturally to the idea of

the Robust Bayesian Estimator (RBE), which we introduce in the next section.
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3. Learning and reasoning with probability intervals

The solution we propose is based on the idea that, even with no information on the missing

data mechanism, an incomplete data setD constrains the set of estimates that can be induced

from its consistent completions. Following this principle, we introduce the Robust Bayesian

Estimator to learn the conditional probabilities {p(xik | πi j )} with no assumptions about the

missing data mechanism. The RBE returns, for each conditional probability p(xik | πi j ),

an interval containing all the consistent estimates of p(xik | πi j ) and proceeds by refining

this set as more information becomes available. This section shows how to estimate these

intervals from an incomplete database and how to reason on the basis of these intervals.

The first step of the estimation with the RBE is the definition of virtual frequencies that are

used to find the extreme points of the probability intervals.

3.1. Virtual frequencies

Suppose that we wish to estimate the conditional probability p(xik | πi j ) from an incomplete

database D in which some entries of the variable X i and of its parent variables �i are

unknown. These unknown entries give rise to three types of incomplete cases that are

relevant to the estimation of p(xik | πi j ):

• The variable X i takes value xik , the value of �i is not fully observed, and it can be

consistently completed as πi j (that is, the observed incomplete value of �i is obtained

from �i = πi j using some deletion process).

• The parent variables �i take value πi j and the value of X i is missing.

• Both values of X i and �i are unknown, and the value of �i can be consistently completed

as πi j .

We denote the frequency of these cases, respectively, by n(xik | ?), n(? | πi j ), and n(? | ?).

Consider, for example, the Bayesian network in figure 1 and suppose that we wish to estimate

the conditional probability of X3 = 0 (termed x31 in figure 1), given the parent variables

configurations �3 = (1, 0) (which we called π33 in figure 1), from the incomplete data

set in Table 1. The cases c1 and c6 are complete and determine n(x31 | π33) = 2. All cases

c3, c5, c7, c8, and c10 can be consistently completed as X3 = 0 | �3 = (1, 0). The case c3

determines n(? | π33) = 1. The cases c7 and c10 determines n(x31 | ?) = 2, while the two

cases c5 and c8 determine n(? | ?) = 2.

By completing the cases c3, c5, c7, c8, and c10 as X3 = 0 | �3 = (1, 0), we create

a particular consistent completion of the data set, in which the event X3 = 0 | �3 =

(1, 0) occurs the largest number of times. This idea is the intuition behind the definition

of the virtual frequency n̄(xik | πi j ). The quantity n̄(xik | πi j ) is the maximum number of

incomplete cases (X i , �i ) that can be consistently completed as (xik, πi j ) and is defined

by

n̄(xik | πi j ) = n(? | πi j ) + n(xik | ?) + n(? | ?). (3)
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Table 1. An incomplete data set used to describe the virtual frequencies.

Case X1 X2 X3

c1 1 0 0

c2 0 ? 1

c3 1 0 ?

c4 ? ? 1

c5 1 ? ?

c6 1 0 0

c7 ? 0 0

c8 ? ? ?

c9 ? 0 1

c10 ? 0 0

Now note that, if we complete the cases c3, c4, c5, c8, and c9 as X3 = 1 | �3 = (1, 0),

we create a consistent completion of the data set in which the event X3 = 0 | �3 = (1, 0)

occurs the minimum number of times. We then define the virtual frequency nxik | πi j as

the maximum number of incomplete cases (X i , �i ) that can be ascribed to πi j without

increasing the frequency n(xik | πi j ), which is equivalent to

n(xik | πi j ) = n(? | πi j ) +
∑

h �=k

n(xih | ?) + n(? | ?). (4)

In the next section, we use these virtual frequencies to find the minimum and maximum

estimate of the probability p(xik | πi j ).

3.2. The robust Bayesian estimator

We define the robust Bayesian estimator (RBE) as the estimator that returns the probability

interval [p(xik | πi j ) p̄(xik | πi j )] containing the set of consistent estimates of p(xik | πi j ).

The values p(xik | πi j ) and p̄(xik | πi j ) are, respectively, the minimum and the maximum

estimate of p(xik | πi j ) that can be found in the consistent completions Dc of D. Next,

Theorem 1 gives a closed form solution for the minimum and maximum value of p̂(xik | πi j ).

Theorem 1. Let D be an incomplete database. The minimum and maximum Bayesian

estimate of p(xik | πi j ) are, respectively,

p(xik | πi j ) =
αi jk + n(xik | πi j )

αi j + n(πi j ) + n(xik | πi j )
(5)

p̄(xik | πi j ) =
αi jk + n(xik | πi j ) + n̄(xik | πi j )

αi j + n(πi j ) + n̄(xik | πi j )
· (6)
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Proof: Let yi jk be the unknown frequency of (xik, πi j ), so that yi j = yi jk + yi j\k , where

yi j\k =
∑

h �=k yi jk is the known frequency of πi j . The Bayesian estimate of p(xik | πi j ) that

would be computed from the complete data set—if known—is

f (yi jk, yi j\k) =
αi jk + n(xik | πi j ) + yi jk

αi j + n(πi j ) + yi jk + yi j\k

·

The information conveyed by the incomplete cases impose three constraints on the variables

yi jk and yi j\k :

0 ≤ yi jk ≤ n̄(xik | πi j )

0 ≤ yi j\k ≤ n(xik | πi j )

n(? | πi j ) ≤ yi jk + yi j\k ≤ n(? | πi j ) +
∑

k

n(xik | ?) + n(? | ?).

This system of inequalities identifies the constraint region displayed in figure 2. One can

show that f (yi jk, yi j\k) is an increasing function of yi jk and a decreasing function of yi j\k ,

so that it is maximized when yi jk = n̄(xik | πi j ) and yi j\k = 0, and it is minimized when

yi jk = 0 and yi j\k = n(xik | πi j ). Since these points are both in the constraint region, the

proof is complete. �

When X i is a Boolean variable taking on one of the two values xi1 and xi2, then the

probability intervals returned by the RBE are such that

p̄(xi1 | πi j ) = 1 − p(xi2 | πi j )

p̄(xi2 | πi j ) = 1 − p(xi1 | πi j ).

The RBE does not make any assumption about the missing data model and thus provides a

framework for sensitivity analysis, as we will show in the next section.

Figure 2. Constraint region for the function f (yi jk , yi j \ k).
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3.3. Interval-based inference

The probability intervals computed with the RBE can be used, as they are, to perform

classification and inference, as well as to provide a form of sensitivity analysis for the

conclusions achieved by other methods. We first show that the RBE produces intervals that

can be used to evaluate the reliability of the estimates provided by the EM algorithm and

Gibbs sampling.

Both EM and Gibbs sampling compute Bayesian estimates of the conditional probabilities

p(xik | πi j ) under the assumption that data are MAR. However, they do not provide any

measure of the impact of the assumed model for the missing data on the estimates. Gibbs

sampling returns, for each estimate p̂(xik | πi j ), a credibility interval that represents the

uncertainty about the estimate. As these credibility intervals are computed assuming that

data are MAR, they do not tell us anything about the sensitivity of each estimate to the MAR

assumption.

It is straightforward to show that the width w(xik | πi j ) of the probability interval com-

puted by the RBE as an estimate of p(xik | πi j ) is a monotonic increasing function of the

number of incomplete cases. Thus, the wider the interval, the greater the uncertainty due to

the incompleteness of the data, and the less reliable the point estimate returned by either the

EM algorithm or Gibbs sampling. In this way, we can use the value 1−w(xik | πi j ) as a local

measure of reliability for each point estimate, to account for the missing data. The average

width w̄ of all interval estimates provides a global measure of reliability of the estimates

as 1 − w̄. Both values 1 − w(xik | πi j ) and 1 − w̄ vary between 0 and 1, with small values

denoting lack of reliability and values near 1 denoting high reliability.

Suppose now that we wish to use a Bayesian network, quantified with estimates computed

from an incomplete data set, to predict the value of the variable X i , given that we observe

the values of a subset of the other variables in the network. The set of variable values

observed is called evidence, which we denote by e. The solution is to compute the probability

distribution of X i given the evidence e—using some standard propagation algorithm (Pearl,

1988; Castillo, Gutierrez, & Hadi, 1997)—and then to select the value of X i with the largest

probability, given e. We can similarly propagate the probability intervals computed by the

RBE with one of the existing propagation algorithms for interval-based Bayesian networks

and calculate a probability interval [p(xik | e) p̄(xik | e)] for each value p(xik | e). Such

intervals can be used to make a prediction that does not rely on any particular assumption

about the model for the missing data. We accomplish this task by choosing a criterion upon

which to base the selection of the X i value. The stochastic dominance criterion (Kyburg,

1983) selects the value xik of X i if the minimum probability p(xik | e) is larger than the

maximum probability p̄(xih | e), for any h �= k. Stochastic dominance is the safest and most

conservative criterion since the prediction is independent of the distribution of missing

data.

When the probability intervals are overlapping, the stochastic dominance criterion is not

applicable and we face a situation of undecidability. In this case, we can rank the probability

intervals [p(xik | e) p̄(xik | e)] by assigning, to each of them, a predictive score, and the deci-

sion criterion is to select the value xik of X i associated with the interval [p(xik | e) p̄(xik | e)]

receiving the highest score. Let q(xik) be the probability that an unknown value of X i must
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be completed as xik . We define the predictive score of xik | e by

sq(xik | e) = p(xik | e)(1 − q(xik)) + p̄(xik | e)q(xik).

The score sq(xik | e) falls in the interval [p(xik | e) p̄(xik | e)] and approaches the maximum

when the missing values of X i are supposed to be all xik , while sq(xik | e) approaches the

minimum when the missing values of X i are supposed to be different from xik . If we do not

want to commit ourselves to any particular missing data mechanism, we can assume that

all mechanisms are equally likely, so that the probability that X i takes on one of the values

xik , when the entry in the data set is unknown, is the uniform probability 1/si , where si is

the number of states of X i and

su(xik | e) =
p(xik | e)(si − 1)

si

+
p̄(xik | e)

si

·

When we believe that data are MAR or MCAR, so that the probability that an entry is missing

is not a function of the unknown values, we can estimate the distribution q(xik) from the

data available as q(xik) = n(xik)/
∑si

k=1 n(xik).

Stochastic dominance is a special case of this criterion in which q(xik) = 0, and hence we

term this criterion, in which we summarize the prediction interval by the point sq(xik | e),

weak dominance.

4. Implementation of the robust Bayes estimator

This section outlines the algorithm that implements the method described in Section 3.

We first describe the estimation procedure in a Bayesian network, and then we analyze the

computational complexity of the algorithm.

4.1. Estimation procedure

The RBE can be regarded as a batch procedure that parses the data set, stores the observations

about the variables, and then computes the conditional probabilities needed to quantify a

Bayesian network from these observations. The procedure takes as input a data set D

and a network structure S, identified by a set of conditional dependencies {dX1
, . . . , dX I

}

associated with each variable in X . A dependency dX i
is an ordered tuple (X i , �i ), where

�i are parents of X i .

The learning procedure parses each case inD using the dependencies defining the network

structure S. Therefore, for each entry in the case, the procedure recalls the dependency

within which the variable appears as a child, and identifies the states of its parent variables

recorded in the case. For each combination of states (xik, πi j ), the procedure maintains the

two counters n(xik | πi j ) and n̄(xik | πi j ). For each child variable X i , it also keeps track of

the unobserved entries for X i in a third counter nmis(xi ). These three counters are sufficient

to compute the quantity n(xik | πi j ) by noting that, since the marginal frequency of cases in

which the value of X i is unknown is nmis(xi ) = n(? | πi j )+n(? | ?), the quantity n(xik | πi j )
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can be written as a function of nmis(xi ) and n̄(xik | πi j ), giving

n((xik | πi j )) =
ci∑

h �=k,h=1

n̄(xih | πi j ) − (ci − 2)nmis(xi ).

When the detected configuration does not contain any missing data, the first counter

n(xik | πi j ) is increased by one. When the value of one or more variables in the combi-

nation is missing, the procedure increases the second counter n̄(xik | πi j ) by one, for each

configuration of states of the variables with missing entries. When an observation is missing

for the child variable, the counter nmis(xi ) is also increased by one.

The procedure for storing the counters plays a crucial role in determining the efficiency of

the algorithm. The current implementation uses discrimination trees to store the counters,

following a slightly modified version of the method proposed by Ramoni et al. (1995) that

implements an idea originally due to Cooper and Herskovitz (1992). In this approach, the

states of each variable of the network are associated with a discrimination tree whose levels

are defined by the possible states of a parent variable. Each path in the discrimination tree

represents a possible value of parent variables for that state. In this way, each path is associ-

ated with a single conditional probability in the network. Each leaf of the discrimination tree

holds the pair of counters n(xik | πi j ) and n̄(xik | πi j ). For each observed entry, the procedure

just needs to follow a path in the discrimination tree to identify the counters to be updated.

In order to save memory, the discrimination trees are built incrementally: each branch in

the tree is created the first time the procedure needs to walk through it. Once the data set

has been parsed, the procedure has only to collect the counters n(xik | πi j ), n̄(xik | πi j ), and

nmis(xi ) for each variable and compute minimum and maximum using Eqs. (5) and (6).

4.2. Computational complexity

The RBE procedure takes advantage of the modular nature of Bayesian networks and par-

titions the search space using the dependencies in the network. The algorithm starts by

scanning the data set D and, for each element in a row, it scans the row again to identify

the patterns of the dependencies. If the data set D contains n rows, one for each case, and v

columns, corresponding to the v variables in the network, the upper bound of the execution

time for this part of the algorithm is O(gnv2), where g is the maximum number of parents

for a variable in the network. Finally, the procedure scans the generated discrimination

trees to compute the virtual counters. The number of such trees created during the learning

process is the total number of values that the variables X1, . . . , Xv take on. The number

of leaves of each discrimination tree associated with a state of each variable X i equals

to the number of combinations of parents states πi j , and this is the minimum number of

conditional distributions required to define a conditional dependency.

5. Experimental evaluation

This section reports the results of three experimental comparisons based on natural data. The

aim of these experiments was twofold: to evaluate the effectiveness of the RBE estimates
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Table 2. Description of variables of the network displayed in figure 3.

Name Description States

X1 Family anamnesis of coronary heart disease neg, pos

X2 Strenuous mental work no, yes

X3 Ratio of beta and alpha lipoproteins < 3, ≥ 3

X4 Strenuous physical work no, yes

X5 Smoking no, yes

X6 Systolic blood pressure < 140, ≥ 140

for inference and to show that the RBE returns probability intervals that provide a relia-

bility measure of the point estimates computed using either the EM algorithm or Gibbs

sampling. We begin by describing the data set used for the experiment and the proce-

dure that we used to remove data. The criteria used to evaluate the experimental re-

sults are described in Section 5.2, while the results of the experiments are discussed in

Section 5.3.

Whittaker (1990, p. 261) reports a data set that involves six Boolean risk factors

X1, . . . , X6 observed in a sample of 1841 employees of a Czech car factory. Table 2 de-

scribes the variables and their values. The data set is complete and we used the K2 algorithm

(Cooper & Herskovitz, 1992) to extract the most probable structure, reported in figure 3.

The K2 algorithm extracts the most probable network consistent with a partial order among

the variables in the data set. We chose X1 ≤ X2 ≤ X3 ≤ X4 ≤ X5 ≤ X6 as the initial

order, where X i ≤ X j means that X i cannot be a child of X j . We then estimated the fifteen

conditional probabilities that quantify this network using Eq. (2), with αi j = 8/qi and

αi jk = 8/(si qi ), where si and qi denote, respectively, the number of states of the variable

X i and its parent variables �i .

5.1. Procedures used to remove data

We generated three groups of experimental data sets by removing, in each group, values

using one of the three missing data mechanisms described in Section 2. In this way, we

created three sets of incomplete databases in which, respectively, at most 25%, 50%, and

75% of entries—of some or all the variables in the data set—are missing. We describe each

of the deletion procedures in turn.

Figure 3. The network structure extracted from the data set used for the experimental evaluation. The description

of variables is detailed in Table 2.
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Group 1: Missing completely at random. In this group, all variables in the data set were

subject to a deletion process. We associated each variable X i with a dummy variable Ri that

took on one of the two values 0 and 1 with some probability. The original network of figure 3

was augmented by the six variables R1, . . . , R6, marginally independent of X1, . . . , X6, as

shown in figure 4. For each case in the original data set, we generated a combination of

values of the six variables Ri and removed the entry of the variable X i if the value of Ri

was 1. Thus, data removed with this process were MCAR. To obtain data sets with different

proportions of missing data, this process was repeated with three different sets of probability

values (p(R1 = 1), . . . , p(R6 = 1)), independently generated from uniform distributions

in the intervals [0 0.25], [0.25 0.5] and [0.5 0.75]. For each set of probability values, we

generated ten incomplete data sets, so that this group consists of thirty data sets with an

average proportion of missing entries 15%, 36%, and 64%.

Group 2: Missing at random. In this group, only the variables X3, X5, and X6 were subject

to a deletion process. We associated these variables with dummy variables R3, R5, and R6

that took on one of the two values 0 and 1 and, for each case in the original data set, we

generated a combination of values for the three variables Ri and removed the entry of the

variable X i if the value of Ri was 1. The distribution for each of the variables R3, R5, and

R6 was a function of the variables X1, X2, and X4, as shown in figure 4. Thus, since X1,

X2, and X4 are fully observed and the distribution of R3, R5, and R6 is only dependent on

the values observed in the incomplete data set, data removed with this process are MAR.

We repeated this deletion process with three different sets of probability values that were

generated from uniform distributions in the intervals [0 0.25], [0.25 0.5], and [0.5 0.75].

Again, for each set of probability values, we generated ten data sets in which the average

proportion of missing entries were 10%, 20%, and 30%.

Figure 4. Graphical representation of the missing data mechanisms used in the experiments.
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Group 3: Informatively missing. In this group, only the variables X5 and X6 were subject

to a deletion process. We associated the variables X5 and X6 with a dummy variable R56 that

took on one of the two values 0 and 1 and, for each case in the original data set, we generated

a value of the variable R56 and removed the entry of both variables X5 and X6 if the value of

R56 was 1. The distribution of R56 is a function of X5 and X6 as follows. The probabilities

p(R56 = 1 | X5 = no, X6 < 140) and p(R56 = 1 | X5 = no, X6 ≥ 140) are both zero,

so that none of the pair of entries (X5 = no, X6 < 140) and (X5 = no, X6 ≥ 140) were

removed from the data set, while the probabilities p(R56 = 1 | X5 = yes, X6 < 140) and

p(R56 = 1 | X5 = yes, X6 ≥ 140) were both randomly generated. Figure 4 depicts the

missing data model. Since the distribution of R56 depends of the unobserved values in the

data set, values removed with this process are IM. The deletion process was repeated with

three different sets of probability values that were generated from uniform distributions in

the intervals [0 0.25], [0.25 0.5], and [0.5 0.75], and, for each set of probability values,

we generated ten incomplete data sets in which the average proportions of missing entries

were 1.5%, 5%, and 10%.

5.2. Evaluation criteria

The deletion procedures described in the previous section produced 90 data sets. From each

of these incomplete data sets, we estimated the conditional probability tables using EM (with

α′
i jk = 8 / (ci qi ) + 1), Gibbs sampling, and the RBE (both with αi jk = 8 / (ci qi )), and we

then evaluated the reliability of the estimates computed with the first two methods using the

measures of local and global reliability defined in Section 3.3. We then used the Bayesian

networks quantified with these estimates to compute the predictive probabilities of the

event X6 < 140 given the 43 relevant evidences in the five risk factors.1 We also computed

prediction intervals for the event X6 < 140 by exact propagation of the probability intervals

found with the RBE. We then compared both point-based and interval-based predictions to

the values predicted from the Bayesian network, quantified with the complete data set using

two performance measures that evaluate, respectively, the predictive accuracy and precision.

The first performance measure compares the number of correct predictions when the

criterion selects the value of X6 with the largest probability, given the evidence. For interval-

based predictions, we used both the stochastic dominance criterion, which selects the value

X6 < 140 if p(X6 < 140 | e) > p̄(X6 ≥ 140 | e), and the weak dominance criterion—

described in Section 3.3—which selects the value of X6 with the highest score. The two

scores for X6 | e were computed as

sq(X6 < 140 | e) = p(X6 < 140 | e)(1 − q(X6 < 140))

+ p̄(X6 < 140 | e)q(X6 < 140)

and

sq(X6 ≥ 140 | e) = p(X6 ≥ 140 | e)(1 − q(X6 ≥ 140))

+ p̄(X6 ≥ 140 | e)q(X6 ≥ 140),
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where q(X6 < 140) is the probability that an unknown value of X6 in the data set can

be ascribed to a value smaller than 140, and q(X6 ≥ 140) = 1 − q(X6 < 140). Since

both the EM algorithm and Gibbs sampling assume that data are MAR, we encoded the same

assumption by setting q(X6 < 140) = n(X6 < 140)/n. The average estimated probabilities

q(X6 < 140) were 0.57 in the first two groups of data sets and 0.57, 0.56, and 0.55 in the

last group, in which data were informatively missing.

The second performance measure compares the cumulative Kullback-Liebler distance

between the distributions of X6 | e j —conditional on the 43 evidences e j —computed from

the network quantified with complete data, and the conditional distribution of X6 | e j com-

puted from the network quantified with incomplete data using EM, Gibbs sampling, and

the RBE. Since the variable X6 is Boolean, one can easily show that sq(X6 < 140 | e j ) =

1−sq(X6 ≥ 140 | e j ), so the two scores define a conditional distribution for X6 | e j that was

used to evaluate the predictive precision of the RBE. Denote by p(x6k | e j ) the distribution

of X6, given the evidence e j , induced from the complete data, and by p̂(x6k | e j ) the dis-

tribution of X6, given e j , induced from the incomplete data set using the various methods.

This performance measure can be computed as

43∑

j=1

2∑

k=1

p(x6k | e j ) log
p(x6k | e j )

p̂(x6k | e j )
·

Note that this quantity is zero whenever p(x6k | e j ) = p̂(x6k | e j t) for all j = 1, . . . , 43, and

that it increases as the accuracy of the approximation decreases. We compared the results

obtained from the RBE estimates with the results obtained from an implementation of the

accelerated EM algorithm in GAMES (Thiesson, 1995) and the implementation of Gibbs

sampling called BUGS (Thomas, Spiegelhalter, & Gilks, 1992).

5.3. Results and discussion

We begin by describing the use of the probability intervals computed by the RBE as a measure

of global reliability for the estimates found with EM and Gibbs sampling. Figure 5 plots

the average lengths w̄ of the intervals computed with the RBE versus different proportions

of missing data in the three groups of incomplete data sets. The plot shows that w̄ is an

increasing function of the proportion of missing entries in the data set. From the plot, we

can deduce the global reliability 1 − w̄ of the estimates induced from the incomplete data

sets. When data are MCAR, the global reliability of the estimates is about 0.65 when 25% of

data are missing, but this decreases to less than 0.1 when 75% of data are missing. When

data are MAR, the reliability decreases to 0.45 when less than 75% of the entries of X3, X5,

and X6 are missing, but when data are IM, the reliability is 0.75 in the worst case, in which,

on average, 10% of the entries in the data set are missing.

The high uncertainty about the estimates must be taken into account when the network

induced from data is used for inference. Figure 6 displays the average lengths of the predic-

tion intervals computed by propagating the estimates returned by the RBE. The plot shows

that, when data are either MCAR or MAR, the reliability of the prediction can be as small

as 0.05—given by 1 − 0.95—when 75% of data are missing. We note that the average
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Figure 5. Average lengths of the probability intervals estimated with the RBE for different proportion of missing

entries and missing data mechanisms.

width of the prediction intervals depends on the amount of missing data per variable. For

example, when about 20% of data of all the variables are MCAR, the average width of the

prediction intervals is smaller than the average width of the same prediction intervals when

an equivalent amount of data is missing only for three variables.

The predictive accuracy of the networks quantified from the incomplete data sets is

affected by the increasing uncertainty. Table 3 reports the first performance measure, which,

as described in the previous section, is the average number of correct predictions in the nine

groups of data sets. Gibbs sampling and the EM algorithm lead to the same results, so we

report the common values under the heading GS-EM. RBEn is the average number of correct

predictions in the networks quantified with the RBE when one adopts the weak dominance

criterion with q(X6 < 140 | e) = n(X6 < 140) / n(X6). This criterion, when coupled

with the MAR assumption made by both EM and Gibbs sampling, has 100% of correct

predictions, which is superior to both methods. The stochastic dominance criterion leads to

undecidability in all cases in the first two groups of incomplete data sets. When 25% of the

entries of X5 and X6 are IM, the criterion yields the correct prediction in 30 cases, but the

other 13 are undecidable.

Figure 7 plots median values for the second performance measure, which evaluates the

precision of the predictive probabilities of X6 computed with the weak dominance criterion

and those induced by the networks quantified with EM and Gibbs sampling. When data are

MAR, both methods determine more accurate predictive distributions compared to the weak

dominance. However, this gain of accuracy is lost when data are MCAR and the proportion
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Figure 6. Average lengths of prediction intervals for different proportion of missing entries and different missing

data mechanisms.

of missing data is either small or large. The probabilities of X6, computed using the weak

dominance criterion, become more accurate when data are IM, and all methods work under

the assumption that data are MAR.

The experimental results point out the advantages and disadvantages of the RBE. When

data are MCAR or MAR, both the EM algorithm and Gibbs sampling can use the information

available in the data to compute accurate estimates of the conditional probabilities, while

the RBE—provided with the same information about the missing data mechanism—cannot

reach, in most cases, the same predictive precision, although its predictive accuracy appears

Table 3. Performance on the first measure for the three groups of conditions.

MCAR MAR IM
Proportion

missing GS-EM RBEn GS-EM RBEn GS-EM RBEn

25% 42.7 43.0 42.7 43.0 43.0 43.0

50% 41.1 43.0 40.3 43.0 43.0 43.0

75% 41.2 43.0 40.1 43.0 40.0 43.0

GS-EM is the average number of correct predictions in the networks quantified with

Gibbs sampling and EM. RBEn is average number of correct prediction in the networks

quantified with the RBE when one adopts the weak dominance criterion with q(X6 <

140 | e) = n(X6 < 140)/n(X6).
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Figure 7. Median values of the cumulative Kullback-Liebler distance between values predicted by the RBE, Gibbs

sampling, and EMA versus the average percentage of missing data.

to be superior. However, when data are IM and all methods make the same wrong assumption

about the missing data mechanism, the RBE performs better in terms of both predictive

accuracy and precision. The application that we describe in the next section will shed

further light on the properties and usefulness of the RBE.

6. An application to a classification task

This section illustrates an application of the RBE to a classification task to show the gain

of classification accuracy and coverage achieved by a classifier trained, with the RBE, on

a naturally incomplete data set, and tested using classification rules that do not rely on

assumptions about the missing data mechanism. The standard procedure, in this case, would

be to not update the counts when a value is missing (Domingos & Pazzani, 1997; Friedman,

Geiger, & Goldszmidt, 1997) or to assign the unknown entries to a dummy value (Quinlan,

1993). We describe, first, the data set and the statistical model used in this application, and

we then show the advantages of using the RBE in a supervised learning task.

6.1. The data set

We used data on Congressional Voting Records, available from the Machine Learning

Repository at the University of California, Irvine (Blake, Keogh, & Merz, 1998). The data
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set describes votes for each of the 435 member of the US House of Representative on

the 16 key issues during the 1984. Hence, the data set consists of 435 cases on 16 binary

attributes and two classes that represent the party affiliation. There are 289 values reported

as unknown. Although these missing entries amount to 4% of the data set, the number of

incomplete cases is 203, more than 45% of the total. A feature of this data set is that the

unknown entries, and hence what members of the US House of Representative did not vote

on, can be predictive. Therefore, it makes sense to treat the missing entries as real values.

6.2. The classification model

The classification model we used was the naive Bayesian classifier (Langley, Iba, &

Thompson, 1992), shown in figure 8, in which the 16 key votes are represented as Boolean

attributes {A1, . . . , A16} that take on values aik either yes or no. All attributes Ai are treated

as conditionally independent given the class variable C , which represents the party affili-

ation: either Republican or Democratic. With complete data, the training step consists of

estimating the conditional probability distributions for each attribute Ai , given the class

membership C = c j , using Eq. (2). As shorthand, we write Ai = aik as aik and C = c j

as c j . Once the classifier is trained, we can use it to classify new cases. In this example,

the classification step consists of the identification of the party affiliation of a Congressman

given the set of his/her votes on each of the 16 issues. A standard application of Bayes’

theorem lets us calculate the posterior probability of the party affiliation C = c j given the

set of attribute values ek = {A1 = a1k, . . . , A16 = a16k} as

p(c j | ek) =

∏16
k=1 p(aik | c j )p(c j )∑2

h=1

∏16
k=1 p(aik | ch)p(ch)

, (7)

and the case is assigned to the party with the highest posterior probability. Since the data set

contains unknown attributes values, we used the RBE to train the classifier. As the estimates of

Figure 8. Structure of the Bayesian classifier used on the “voting records” data set.
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the conditional probabilities p(aik | c j ) are the probability intervals [p(aik | c j ) p̄(aik | c j )],

we cannot simply apply Eq. (7) to compute the posterior probability p(c j | e). However,

we can still iteratively compute the probability interval [p(c j | ek) p̄(c j | ek)] containing

the posterior probability p(c j | ek). Since the class variable is Boolean, it is sufficient to

compute p̄(c1 | ek) and p̄(c2 | ek), from which we can compute p(c1 | ek) = 1 − p̄(c2 | ek)

and p(c2 | ek) = 1 − p̄(c1 | ek), as noted in Section 3.2. The initialization step sets

p̄(c j | a1k =
p̄(a1k | c j )p(c j )

p̄(a1k | c j )p(c j ) + p(a1k | ch)p(ch)
(8)

for h �= j . Thus, after the first incorporation of evidence, the point-valued probabilities

p(c j ) are replaced by interval probabilities and the next iteration steps set

p̄(c j | a1k, . . . , aik)

=
p̄(aik | c j ) p̄(c j | a1k, . . . , aik−1)

p̄(aik | c j ) p̄(c j | a1k, . . . , aik−1) + p(aik | ch)p(ch | a1k, . . . , aik−1)

for h �= j and each attribute value. Since Formula 8 can be applied iteratively, the classifier

retains the propagation properties of a standard Bayesian classifier and enjoys the same low

time and memory requirements. When attributes are not binary or more than two classes

are involved, however, more general methods must be used to apply Bayes’ theorem to

probability intervals (Fertig & Breese, 1993; Snow, 1991).

A further difference between a standard Bayesian classifier and one trained with the

RBE lies in the class assignment criterion. A standard scheme assigns a case to the class

with the highest posterior probability. A classifier trained using the RBE would assign,

unequivocally, a case to the class c j only when the stochastic dominance criterion is met,

and hence p(c j | ek) > p̄(ch | ek) for h �= j . When this condition does not hold, we can resort

to the weak dominance criterion described Section 3.3. In this case, we assign the score

sq(c j | ek) = p(c j | ek)(1 − q(c j )) + p̄(c j | ek)q(c j ) to c j | ek and then select the class with

the highest score. If we do not want to commit ourselves to any particular assumption about

the missing data mechanism, we can use the uniform distribution q(c1) = q(c2) = 0.5,

yielding the score su(c j | ek).

6.3. Evaluation of the method

We assessed the accuracy of the learned classifier by running 20 replicates of a five-fold

cross validation experiment. We divided the data set D in five mutually exclusive data

sets D1, . . . ,D5 of approximately the same size. For each data set Di , we trained the

classifier on D with the cases in Di removed, then tested it on Di . The test step was the

classification of cases in Di , in which the classifier returned the class selected, using either

the stochastic dominance criterion or the score su . We computed the classification accuracy

as the average number of cases that were classified correctly in the five test sets. We

calculated the classification coverage as the ratio between the number of cases classified

and the total number of cases. We used both measures were used to evaluate the gain of



ROBUST LEARNING WITH MISSING DATA 167

classification accuracy and coverage compared to the standard Bayesian classifier, in which

the missing entries are either ignored or assigned to a dummy value. We repeated the whole

procedure 20 times and averaged the outcomes.

6.4. Results and discussion

We measured the classification accuracy and coverage obtained by a classifier trained with

the RBE and tested using both the stochastic dominance criterion (NBCs) and the weak

dominance criterion (NBCw). For comparison, we collected the same measure of a classifier

trained by assigning the missing entries to dummy values (NBC∗) and by disregarding the

missing entries when updating the counts (NBCm). Table 4 summarizes the results. The

average width of conditional probability intervals estimated by the RBE is 0.053, which let

the stochastic dominance criterion achieve 95% coverage. The weak dominance criterion

left none of the cases unclassified, which raises the classification coverage to 100%. The

average classification accuracy of the classifier, under the stochastic dominance criterion,

is 92.05 ± 1.67%, and it is bounded by the two extreme situations in which the unclassified

cases are all regarded as predictive failures (87.56% accuracy) or success (93.09% accuracy).

If we use the classification score under the weak dominance criterion, the classifier reaches

90.21 ± 1.7% accuracy. This result is similar to the accuracy of the classifier trained by

assigning the missing entries to dummy values and it is slightly superior to the accuracy of

the classifier trained by disregarding the missing entries.

Strong dominance achieves the highest accuracy at the price of the lowest coverage and

identifies the group of 95% of cases on which there is no classification ambiguity due to the

missing values in the database. In particular, all other classifiers achieve the same accuracy

on this 95% of cases. The classification of the remaining 5% of cases, by using the weak

dominance criterion or the other two classifiers NBC∗ and NBCm, raises the coverage to

100% at the price of decreasing the accuracy. Now note that the classification accuracy θ

of the NBC∗, the NBCm, or the NBCw can be written as

θ = θsγs + θl(1 − γs),

where θs and γs are accuracy and coverage of the classifier NBCs and θl is the accuracy of

the other classifiers on the cases left unclassified by the NBCs. Thus, the quantity θl gives

Table 4. Classification coverage and accuracy of the naive Bayesian classifier on the Congressional voting data.

Classification NBCm NBC∗ NBCw NBCs

Accuracy 90.02 ± 1.05% 90.21 ± 1.04% 90.21 ± 1.04% 92.05 ± 1.67%

Coverage 100% 100% 100% 95%

NBCm is the classifier trained by disregarding the missing entries during the calculation of the counts.

NBC∗ is the classifier trained by assigning the missing entries to dummy values. NBCw and NBCs

are, respectively, the classifier trained with the RBE and tested using the weak dominance criterion

and stochastic dominance criterion.
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a measure of the classification accuracy achieved by the other classifiers when one relaxes

the strong dominance criterion to increase the classification coverage. By using the values

in Table 4, we compute θl = 0.55 for both the NBC∗ and the NBCw and θl = 0.51 for the

NBCm. Hence, disregarding the missing entries leads essentially to randomly classifying

those cases that were left unclassified by the NBCs, while both the NBC∗ and NBCw are

slightly more accurate than a simple random assignment to classes. This last finding would

suggest evidence of an informative pattern of missing data and discourage the enforcement

of an inappropriate assumption on the missing data mechanism to merely increase the

classification coverage. In summary, strong dominance identifies the subset of cases that

are unequivocally classified, independently of the missing data mechanism, and the subset of

cases whose classification is directly influenced by the assumed missing data mechanism.

One can then use the accuracy and coverage of the classification based on the strong

dominance criterion to derive an estimate of the classification accuracy obtained under the

assumed missing data mechanism and therefore evaluate the impact of this assumption on

classification.

7. Conclusions

Real-world data sets are often incomplete, and machine learning methods must be able to

handle incomplete data before they can be widely applied. A key issue for such learning

methods is the reliability of the knowledge they generate. This paper introduced a robust

method, the RBE, to estimate conditional probabilities. Compared to traditional Bayesian

estimation methods, the RBE relies on a new strategy: rather than guessing the value of

missing data on the basis of the available information, it bounds the set of all estimates con-

sistent with the data. The estimates computed by the RBE are, therefore, probability intervals

containing all possible estimates that could be computed from the consistent completions

of the database and, as such, they are robust with respect to the distribution of missing data.

Hence, one feature of the RBE is to provide an automated method to analytically perform

sensitivity analysis, at a low computational cost, with respect to different assumptions on

the missing data mechanism.

Efficient sensitivity analysis is not, however, the only feature of the RBE. The probability

intervals it computes can be used, as they are, to draw robust inferences. Furthermore, these

intervals provide a measure of the information conveyed by the data and can be used to

assess the reliability of the point-valued estimates computed by other learning methods,

like EM and Gibbs sampling, that are based on specific assumptions about the missing data

mechanism. The experimental evaluation presented in this paper showed that when data are

missing at random or completely at random, both EM and Gibbs sampling can exploit the

information provided by the observed data to return more precise inferences, although the

predictive accuracy of the RBE appears to be superior. However, when the deletion process

produces data that are informatively missing, the RBE is more reliable in terms of both

accuracy and precision.

The application described in Section 6 showed another potential use of the method

introduced in this paper. Interval-based classification breaks the database in two sets: the

set of those cases that can be classified independently of any assumption made about the
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missing data mechanism, and the set of cases that can be classified only by assuming a

particular mechanism. One can then use the accuracy and coverage of the interval-based

classification to derive an estimate of the classification accuracy obtained under the assumed

missing data mechanism and therefore evaluate the impact of this assumption on the overall

classification task. Interval-based classification seems to be a promising area of application

of the RBE, and a systematic investigation of this problem could lead to the development

of a robust Bayes classifier, able to couple the computational efficiency of standard naive

Bayes with the ability to handle incomplete databases with no assumption about the missing

data mechanism. A more ambitious avenue would involve applying the same interval-based

approach to other machine learning tasks, such as clustering, dependency discovery, and

the identification of hidden variables.
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tions of values of the variables X1, . . . , X5 that yield different conditional probabilities of X6 < 140.
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