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Missing data form a problem in every scientific discipline, yet the techniques 
required to handle them are complicated and often lacking. One of the 
great ideas in statistical science—multiple imputation—fills gaps in the data 
with plausible values, the uncertainty of which is coded in the data itself. 
It also solves other problems, many of which are missing data problems in 
disguise. 

Flexible Imputation of Missing Data is supported by many examples 
using real data taken from the author’s vast experience of collaborative 
research, and presents a practical guide for handling missing data under 
the framework of multiple imputation. Furthermore, detailed guidance of 
implementation in R using the author’s package MICE is included throughout 
the book.

Assuming familiarity with basic statistical concepts and multivariate methods, 
Flexible Imputation of Missing Data is intended for two audiences:
• (Bio)statisticians, epidemiologists, and methodologists in the social and 

health sciences
• Substantive researchers who do not call themselves statisticians, but 

who possess the necessary skills to understand the principles and to 
follow the recipes

This graduate-tested book avoids mathematical and technical details as 
much as possible: formulas are accompanied by a verbal statement that 
explains the formula in layperson terms. Readers less concerned with 
the theoretical underpinnings will be able to pick up the general idea, and 
technical material is available for those who desire deeper understanding. 
The analyses can be replicated in R using a dedicated package developed by 
the author.
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Foreword

I’m delighted to see this new book on multiple imputation by Stef van Buuren
for several reasons. First, to me at least, having another book devoted to multi-
ple imputation marks the maturing of the topic after an admittedly somewhat
shaky initiation. Stef is certainly correct when he states in Section 2.1.2: “The
idea to create multiple versions must have seemed outrageous at that time
[late 1970s]. Drawing imputations from a distribution, instead of estimating
the ‘best’ value, was a severe breach with everything that had been done be-
fore.” I remember how this idea of multiple imputation was even ridiculed
by some more traditional statisticians, sometimes for just being “silly” and
sometimes for being hopelessly inefficient with respect to storage demands
and outrageously expensive with respect to computational requirements.

Some others of us foresaw what was happening to both (a) computational
storage (I just acquired a 64 GB flash drive the size of a small finger for
under $60, whereas only a couple of decades ago I paid over $2500 for a
120 KB hard-drive larger than a shoe box weighing about 10 kilos), and (b)
computational speed and flexibility. To develop statistical methods for the
future while being bound by computational limitations of the past was clearly
inapposite. Multiple imputation’s early survival was clearly due to the insight
of a younger generation of statisticians, including many colleagues and former
students, who realized future possibilities.

A second reason for my delight at the publication of this book is more
personal and concerns the maturing of the author, Stef van Buuren. As he
mentions, we first met through Jan van Rijckevorsel at TNO. Stef was a
young and enthusiastic researcher there, who knew little about the kind of
statistics that I felt was essential for making progress on the topic of dealing
with missing data. But consider the progress over the decades starting with
his earlier work on MICE! Stef has matured into an independent researcher
making important and original contributions to the continued development of
multiple imputation.

This book represents a “no nonsense” straightforward approach to the ap-
plication of multiple imputation. I particularly like Stef’s use of graphical
displays, which are badly needed in practice to supplement the more theoret-
ical discussions of the general validity of multiple imputation methods. As I
have said elsewhere, and as implied by much of what is written by Stef, “It’s
not that multiple imputation is so good; it’s really that other methods for
addressing missing data are so bad.” It’s great to have Stef’s book on mul-
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tiple imputation, and I look forward to seeing more editions as this rapidly
developing methodology continues to become even more effective at handling
missing data problems in practice.

Finally, I would like to say that this book reinforces the pride of an aca-
demic father who has watched one of his children grow and develop. This book
is a step in the growing list of contributions that Stef has made, and, I am
confident, will continue to make, in methodology, computational approaches,
and application of multiple imputation.

Donald B. Rubin



Preface

We are surrounded by missing data. Problems created by missing data in
statistical analysis have long been swept under the carpet. These times are
now slowly coming to an end. The array of techniques for dealing with missing
data has expanded considerably during the last decades. This book is about
one such method: multiple imputation.

Multiple imputation is one of the great ideas in statistical science. The
technique is simple, elegant and powerful. It is simple because it fills the holes
in the data with plausible values. It is elegant because the uncertainty about
the unknown data is coded in the data itself. And it is powerful because it can
solve “other” problems that are actually missing data problems in disguise.

Over the last 20 years, I have applied multiple imputation in a wide variety
of projects. I believe the time is ripe for multiple imputation to enter main-
stream statistics. Computers and software are now potent enough to do the
required calculations with little effort. What is still missing is a book that ex-
plains the basic ideas and that shows how these ideas can be put into practice.
My hope is that this book can fill this gap.

The text assumes familiarity with basic statistical concepts and multivari-
ate methods. The book is intended for two audiences:

• (Bio)statisticians, epidemiologists and methodologists in the social and
health sciences

• Substantive researchers who do not call themselves statisticians, but who
possess the necessary skills to understand the principles and to follow
the recipes

In writing this text, I have tried to avoid mathematical and technical details
as much as possible. Formulas are accompanied by a verbal statement that
explains the formula in layperson terms. I hope that readers less concerned
with the theoretical underpinnings will be able to pick up the general idea.
The more technical material is marked by a club sign ♠, and can be skipped
on first reading.

I used various parts of the book to teach a graduate course on imputation
techniques at the University of Utrecht. The basics are in Chapters 1–4. Lec-
turing this material takes about 10 hours. The lectures were interspersed with
sessions in which the students worked out the exercises from the book.

This book owes much to the ideas of Donald Rubin, the originator of mul-
tiple imputation. I had the privilege of being able to talk, meet and work with
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him on many occasions. His clear vision and deceptively simple ideas have
been a tremendous source of inspiration. I am also indebted to Jan van Rijck-
evorsel for bringing me into contact with Donald Rubin, and for establishing
the scientific climate at TNO in which our work on missing data techniques
could prosper.

Many people have helped realize this project. I thank Nico van Meeteren
and Michael Holewijn of TNO for their trust and support. I thank Peter van
der Heijden of Utrecht University for his support. I thank Rob Calver and the
staff at Chapman & Hall/CRC for their help and advice. Many colleagues have
commented on part or all of the manuscript: Hendriek Boshuizen, Elise Dussel-
dorp, Karin Groothuis-Oudshoorn, Michael Hermanussen, Martijn Heymans,
Nicholas Horton, Shahab Jolani, Gerko Vink, Ian White and the research mas-
ter students of the Spring 2011 class. Their comments have been very valuable
for detecting and eliminating quite a few glitches. I happily take the blame
for the remaining errors and vagaries.

The major part of the manuscript was written during a six-month sab-
batical leave. I spent four months in Krukö, Sweden, a small village of just
eight houses. I thank Frank van den Nieuwenhuijzen and Ynske de Koning
for making their wonderful green house available to me. It was the perfect
tranquil environment that, apart from snowplowing, provided a minimum of
distractions. I also spent two months at the residence of Michael Hermanussen
and Beate Lohse-Hermanussen in Altenhof, Germany. I thank them for their
hospitality, creativity and wit. It was a wonderful time.

Finally, I thank my family, in particular my beloved wife Eveline, for their
warm and ongoing support, and for allowing me to devote time, often nights
and weekends, to work on this book. Eveline liked to tease me by telling people
that I was writing “a book that no one understands.” I fear that her statement
is accurate, at least for 99% of the people. My hope is that you, my dear
reader, will belong to the remaining 1%.

Stef van Buuren
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X n× q matrix of predictors, used
for various purposes (2.2.3)

Yobs observed sample data, values of
Y with R = 1 (2.2.3)
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of Y with R = 0 (2.2.3)
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(2.2.3)
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(2.2.4)
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timands (2.3.1)

Q̂ k × 1 vector, estimator of Q
calculated from a hypothetically
complete sample (2.3.1)
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Chapter 1

Introduction

1.1 The problem of missing data

1.1.1 Current practice

The mean of the numbers 1, 2 and 4 can be calculated in R as

> y <- c(1, 2, 4)

> mean(y)

[1] 2.3

where y is a vector containing three numbers, and where mean(y) is the R

expression that returns their mean. Now suppose that the last number is
missing. R indicates this by the symbol NA, which stands for “not available”:

> y <- c(1, 2, NA)

> mean(y)

[1] NA

The mean is now undefined, and R informs us about this outcome by setting
the mean to NA. It is possible to add an extra argument na.rm = TRUE to the
function call. This removes any missing data before calculating the mean:

> mean(y, na.rm = TRUE)

[1] 1.5

This makes it possible to calculate a result, but of course the set of observations
on which the calculations are based has changed. This may cause problems in
statistical inference and interpretation.

Similar problems occur in multivariate analysis. Many users of R will have
seen the following error message:

> lm(Ozone ~ Wind, data = airquality)

Error in na.fail.default(list(Ozone = c(41, 36, 12, 18, NA,

missing values in object

3
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This code calls function lm() to fit a linear regression to predict daily
ozone concentration (ppb) from wind speed (mph) using the built-in dataset
airquality. The program cannot continue because the value of Ozone is un-
known for some days. It is easy to omit any incomplete records by specifying
the na.action = na.omit argument to lm(). The regression weights can now
be obtained as

> fit <- lm(Ozone ~ Wind, data = airquality,

na.action = na.omit)

> coef(fit)

(Intercept) Wind

96.9 -5.6

The R object fit stores the results of the regression analysis, and the coef()

function extract the regression weights from it. In practice, it is cumbersome to
supply the na.action() function each time. We can change the factory-fresh
setting of the options as

> options(na.action = na.omit)

This command eliminates the error message once and for all. Users of other
software packages like SPSS, SAS and Stata enjoy the “luxury” that this dele-
tion option has already been set for them, so the calculations can progress
silently. The procedure is known as listwise deletion or complete case analy-
sis, and is widely used.

Though listwise deletion allows the calculations to proceed, it may cause
problems in interpretation. For example, we can find the number of deleted
cases in the fitted model as

> deleted <- na.action(fit)

> naprint(deleted)

[1] "37 observations deleted due to missingness"

The na.action() function finds the cases that are deleted from the fitted
model. The naprint() function echoes the number of deleted cases. Now
suppose we fit a better predictive model by including solar radiation (Solar.R)
in the model. We obtain

> fit2 <- lm(Ozone ~ Wind + Solar.R, data = airquality)

> naprint(na.action(fit2))

[1] "42 observations deleted due to missingness"

where the previous three separate statements have been combined into one
line. The number of deleted days increased from 37 to 42 since some of the
days had no value for Solar.R. Thus, changing the model altered the sample.

There are methodological and statistical issues associated with this proce-
dure. Some questions that come to mind are:
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• Can we compare the regression coefficients from both models?

• Should we attribute differences in the coefficients to changes in the model
or to changes in the subsample?

• Do the estimated coefficients generalize to the study population?

• Do we have enough cases to detect the effect of interest?

• Are we making the best use of the costly collected data?

Getting the software to run is one thing, but this alone does not address
the questions caused by the missing data. This book discusses techniques that
allow us to consider the type of questions raised above.

1.1.2 Changing perspective on missing data

The standard approach to missing data is to delete them. It is illustrative
to search for missing values in published data. Hand et al. (1994) published
a highly useful collection of small datasets across the statistical literature.
The collection covers an impressive variety of topics. Only 13 out of the 510
datasets in the collection actually had a code for the missing data. In many
cases, the missing data problem has probably been “solved” in some way,
usually without telling us how many missing values there were originally. It
is impossible to track down the original data for most datasets in Hand’s
book. However, we can easily do this for dataset number 357, a list of scores
of 34 athletes in 10 sport events at the 1988 Olympic decathlon in Seoul.
The table itself is complete, but a quick search on the Internet revealed that
initially 39 instead of 34 athletes participated. Five of them did not finish
for various reasons, including the dramatic disqualification of the German
favorite Jürgen Hingsen because of three false starts in the 100-meter sprint.
It is probably fair to assume that deletion occurred silently in many of the
other datasets.

The inclination to delete the missing data is understandable. Apart from
the technical difficulties imposed by the missing data, the occurrence of miss-
ing data has long been considered a sign of sloppy research. It is all too easy
for a referee to write:

This study is weak because of the large amount of missing data.

Publication chances are likely to improve if there is no hint of missingness.
Orchard and Woodbury (1972, p. 697) remarked:

Obviously the best way to treat missing data is not to have them.

Though there is a lot of truth in this statement, Orchard and Woodbury
realized the impossibility of attaining this ideal in practice.

The prevailing scientific practice is to downplay the missing data. Reviews
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on reporting practices are available in various fields: clinical trials (Wood
et al., 2004), cancer research (Burton and Altman, 2004), educational research
(Peugh and Enders, 2004), epidemiology (Klebanoff and Cole, 2008), develop-
mental psychology (Jeliĉić et al., 2009), general medicine (Mackinnon, 2010)
and developmental pediatrics (Aylward et al., 2010). The picture that emerges
from these studies is quite consistent:

• The presence of missing data is often not explicitly stated in the text;

• Default methods like listwise deletion are used without mentioning them;

• Different tables are based on different sample sizes;

• Model-based missing data methods, such as direct likelihood, full in-
formation maximum likelihood and multiple imputation, are notably
underutilized.

Missing data are there, whether we like it or not. In the social sciences, it is
nearly inevitable that some respondents will refuse to participate or to answer
certain questions. In medical studies, attrition of patients is very common.
Allison (2002, p. 1) begins by observing:

Sooner or later (usually sooner), anyone who does statistical anal-
ysis runs into problems with missing data.

Even the most carefully designed and executed studies produce missing values.
The really interesting question is how we deal with incomplete data.

The theory, methodology and software for handling incomplete data prob-
lems have been vastly expanded and refined over the last decades. The major
statistical analysis packages now have facilities for performing the appropri-
ate analyses. This book aims to contribute to a better understanding of the
issues involved, and provides a methodology for dealing with incomplete data
problems in practice.

1.2 Concepts of MCAR, MAR and MNAR

Before we review a number of simple fixes for the missing data in Sec-
tion 1.3 let us take a short look at the terms MCAR, MAR and MNAR. A
more detailed definition of these concepts will be given later in Section 2.2.3.
Rubin (1976) classified missing data problems into three categories. In his the-
ory every data point has some likelihood of being missing. The process that
governs these probabilities is called the missing data mechanism or response
mechanism. The model for the process is called the missing data model or
response model.
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If the probability of being missing is the same for all cases, then the data
are said to be missing completely at random (MCAR). This effectively implies
that causes of the missing data are unrelated to the data. We may consequently
ignore many of the complexities that arise because data are missing, apart from
the obvious loss of information. An example of MCAR is a weighing scale that
ran out of batteries. Some of the data will be missing simply because of bad
luck. Another example is when we take a random sample of a population,
where each member has the same chance of being included in the sample. The
(unobserved) data of members in the population that were not included in the
sample are MCAR. While convenient, MCAR is often unrealistic for the data
at hand.

If the probability of being missing is the same only within groups defined
by the observed data, then the data are missing at random (MAR). MAR is a
much broader class than MCAR. For example, when placed on a soft surface, a
weighing scale may produce more missing values than when placed on a hard
surface. Such data are thus not MCAR. If, however, we know surface type
and if we can assume MCAR within the type of surface, then the data are
MAR. Another example of MAR is when we take a sample from a population,
where the probability to be included depends on some known property. MAR
is more general and more realistic than MCAR. Modern missing data methods
generally start from the MAR assumption.

If neither MCAR nor MAR holds, then we speak of missing not at random
(MNAR). In the literature one can also find the term NMAR (not missing at
random) for the same concept. MNAR means that the probability of being
missing varies for reasons that are unknown to us. For example, the weighing
scale mechanism may wear out over time, producing more missing data as time
progresses, but we may fail to note this. If the heavier objects are measured
later in time, then we obtain a distribution of the measurements that will be
distorted. MNAR includes the possibility that the scale produces more missing
values for the heavier objects (as above), a situation that might be difficult to
recognize and handle. An example of MNAR in public opinion research occurs
if those with weaker opinions respond less often. MNAR is the most complex
case. Strategies to handle MNAR are to find more data about the causes for
the missingness, or to perform what-if analyses to see how sensitive the results
are under various scenarios.

Rubin’s distinction is important for understanding why some methods will
not work. His theory lays down the conditions under which a missing data
method can provide valid statistical inferences. Most simple fixes only work
under the restrictive and often unrealistic MCAR assumption. If MCAR is
implausible, such methods can provide biased estimates.
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1.3 Simple solutions that do not (always) work

1.3.1 Listwise deletion

Complete case analysis (listwise deletion) is the default way of handling
incomplete data in many statistical packages, including SPSS, SAS and Stata.
The function na.omit() does the same in S-PLUS and R. The procedure elim-
inates all cases with one or more missing values on the analysis variables.

The major advantage of complete case analysis is convenience. If the data
are MCAR, listwise deletion produces unbiased estimates of means, variances
and regression weights. Under MCAR, listwise deletion produces standard
errors and significance levels that are correct for the reduced subset of data,
but that are often larger relative to all available data.

A disadvantage of listwise deletion is that it is potentially wasteful. It is not
uncommon in real life applications that more than half of the original sample is
lost, especially if the number of variables is large. King et al. (2001) estimated
that the percentage of incomplete records in the political sciences exceeded
50% on average, with some studies having over 90% incomplete records. It
will be clear that a smaller subsample could seriously degrade the ability to
detect the effects of interest.

If the data are not MCAR, listwise deletion can severely bias estimates of
means, regression coefficients and correlations. Little and Rubin (2002, pp. 41–
44) showed that the bias in the estimated mean increases with the difference
between means of the observed and missing cases, and with the proportion of
the missing data. Schafer and Graham (2002) reported an elegant simulation
study that demonstrates the bias of listwise deletion under MAR and MNAR.
However, complete case analysis is not always bad. The implications of the
missing data are different depending on where they occur (outcomes or pre-
dictors), and the parameter and model form of the complete data analysis.
In the context of regression analysis, listwise deletion possesses some unique
properties that make it attractive in particular settings. There are cases in
which listwise deletion can provide better estimates than even the most so-
phisticated procedures. Since their discussion requires a bit more background
than can be given here, we defer the treatment to Section 2.6.

Listwise deletion can introduce inconsistencies in reporting. Since listwise
deletion is automatically applied to the active set of variables, different analy-
ses on the same data are often based on different subsamples. In principle, it is
possible to produce one global subsample using all active variables. In practice,
this is unattractive since the global subsample will always have fewer cases
than each of the local subsamples, so it is common to create different subsets
for different tables. It will be evident that this complicates their comparison
and generalization to the study population.

In some cases, listwise deletion can lead to nonsensical subsamples. For
example, the rows in the airquality dataset used in Section 1.1.1 correspond
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to 154 consecutive days between May 1, 1973 and September 30, 1973. Deleting
days affects the time basis. It would be much harder, if not impossible, to
perform analyses that involve time, e.g., to identify weekly patterns or to fit
autoregressive models that predict from previous days.

The opinions on the value of listwise deletion vary. Miettinen (1985, p. 231)
described listwise deletion as

. . . the only approach that assures that no bias is introduced under
any circumstances. . .

a bold statement, but incorrect. At the other end of the spectrum we find
Enders (2010, p. 39):

In most situations, the disadvantages of listwise deletion far out-
weigh its advantages.

Schafer and Graham (2002, p. 156) cover the middle ground:

If a missing data problem can be resolved by discarding only a
small part of the sample, then the method can be quite effective.

The leading authors in the field are, however, wary of providing advice
about the percentage of missing cases below which it is still acceptable to do
listwise deletion. Little and Rubin (2002) argue that it is difficult to formulate
rules of thumb since the consequences of using listwise deletion depend on
more than the missing data rate alone. Vach (1994, p. 113) expressed his
dislike for simplistic rules as follows:

It is often supposed that there exists something like a critical miss-
ing rate up to which missing values are not too dangerous. The
belief in such a global missing rate is rather stupid.

1.3.2 Pairwise deletion

Pairwise deletion, also known as available-case analysis, attempts to rem-
edy the data loss problem of listwise deletion. The method calculates the
means and (co)variances on all observed data. Thus, the mean of variable X
is based on all cases with observed data on X, the mean of variable Y uses all
cases with observed Y -values, and so on. For the correlation and covariance,
all data are taken on which both X and Y have non-missing scores. Subse-
quently, the matrix of summary statistics are fed into a program for regression
analysis, factor analysis or other modeling procedures.

We can calculate the mean, covariances and correlations of the airquality
data under pairwise deletion in R as:

> mean(airquality, na.rm = TRUE)

> cor(airquality, use = "pair")

> cov(airquality, use = "pair")
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SPSS, SAS and Stata contain many procedures with an option for pairwise
deletion. The method is simple, uses all available information and produces
consistent estimates of mean, correlations and covariances under MCAR (Lit-
tle and Rubin, 2002, p. 55). Nevertheless, when taken together these esti-
mates have major shortcomings. The estimates can be biased if the data are
not MCAR. Furthermore, there are computational problems. The correlation
matrix may not be positive definite, which is requirement for most multivari-
ate procedures. Correlations outside the range [−1,+1] can occur, a problem
that comes from different subsets used for the covariances and the variances.
Such problems are more severe for highly correlated variables (Little, 1992).
Another problem is that it is not clear which sample size should be used for
calculating standard errors. Taking the average sample size yields standard
errors that are too small (Little, 1992).

The idea behind pairwise deletion is to use all available information.
Though this idea is good, the proper analysis of the pairwise matrix requires
sophisticated optimization techniques and special formulas to calculate the
standard errors (Van Praag et al., 1985; Marsh, 1998). Pairwise deletion should
only be used if the procedure that follows it is specifically designed to take
deletion into account. The attractive simplicity of pairwise deletion as a gen-
eral missing data method is thereby lost.

1.3.3 Mean imputation

A quick fix for the missing data is to replace them by the mean. We may
use the mode for categorical data. Suppose we want to impute the mean in
Ozone and Solar.R of the airquality data. SPSS, SAS and Stata have pre-
built functions that substitute the mean. This book uses the R package mice

(Van Buuren and Groothuis-Oudshoorn, 2011). This software is a contributed
package that extends the functionality of R. Before mice can be used, it must
be installed. An easy way to do this is to type:

> install.packages("mice")

which searches the Comprehensive R Archive Network (CRAN), and installs
the requested package on the local computer. After successful installation, the
mice package can be loaded by

> library("mice")

Imputing the mean in each variable can now be done by

> imp <- mice(airquality, method = "mean", m = 1,

maxit = 1)

iter imp variable

1 1 Ozone Solar.R

The argument method="mean" specifies mean imputation, the argument m=1

requests a single imputed dataset, and maxit=1 sets the number of iterations
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Figure 1.1: Mean imputation of Ozone. Blue indicates the observed data, red
indicates the imputed values.

to 1 (no iteration). The latter two options options can be left to their defaults
with essentially the same result.

Mean imputation distorts the distribution in several ways. Figure 1.1 dis-
plays the distribution of Ozone after imputation. The mice package adopts
the Abayomi convention for the colors (Abayomi et al., 2008). Blue refers
to the observed part of the data, red to the synthetic part of the data (also
called the imputed values or imputations), and black to the combined data
(also called the imputed data or completed data). The printed version of this
book replaces blue by gray. In the figure on the left, the red bar at the mean
stands out. Imputing the mean here actually creates a bimodal distribution.
The standard deviation in the imputed data is equal to 28.7, much smaller
than from the observed data alone, which is 33. The figure on the right-hand
side shows that the relation between Ozone and Solar.R is distorted because
of the imputations. The correlation drops from 0.35 in the blue points to 0.3
in the combined data.

Mean imputation is a fast and simple fix for the missing data. However, it
will underestimate the variance, disturb the relations between variables, bias
almost any estimate other than the mean and bias the estimate of the mean
when data are not MCAR. Mean imputation should perhaps only be used as
a rapid fix when a handful of values are missing, and it should be avoided in
general.

1.3.4 Regression imputation

Regression imputation incorporates knowledge of other variables with the
idea of producing smarter imputations. The first step involves building a model
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Figure 1.2: Regression imputation: Imputing Ozone from the regression line.

from the observed data. Predictions for the incomplete cases are then calcu-
lated under the fitted model, and serve as replacements for the missing data.
Suppose that we model Ozone by the linear regression function of Solar.R.

> fit <- lm(Ozone ~ Solar.R, data = airquality)

> pred <- predict(fit, newdata = ic(airquality))

Figure 1.2 shows the result. The imputed values correspond to the most
likely values under the model. However, the ensemble of imputed values vary
less than the observed values. It may be that each of the individual points is
the best under the model, but it is very unlikely that the real (but unobserved)
values of Ozone would have had this distribution. Imputing predicted values
also has an effect on the correlation. The red points have a correlation of 1
since they are located on a line. If the red and blue dots are combined, then
the correlation increases from 0.35 to 0.39.

Regression imputation yields unbiased estimates of the means under
MCAR, just like mean imputation, and of the regression weights of the imputa-
tion model if the explanatory variables are complete. Moreover, the regression
weights are unbiased under MAR if the factors that influence the missingness
are part of the regression model. In the example this corresponds to the sit-
uation where Solar.R would explain any differences in the probability that
Ozone is missing. On the other hand, the variability of the imputed data is
systematically underestimated. The degree of underestimation depends on the
explained variance and on the proportion of missing cases (Little and Rubin,
2002, p. 64).

Imputing predicted values can yield realistic imputations if the prediction
is close to perfection. If so, the method reconstructs the missing parts from
the available data. In essence, there was not really any information missing
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Figure 1.3: Stochastic regression imputation of Ozone.

in the first place, it was only coded in a different form. This type of missing
data is unlikely to surface in most applications.

1.3.5 Stochastic regression imputation

Stochastic regression imputation is a refinement of regression imputation
that adds noise to the predictions. This will have a downward effect on the
correlation. We can impute Ozone by stochastic regression imputation as:

> imp <- mice(airquality[, 1:2], method = "norm.nob",

m = 1, maxit = 1, seed = 1)

iter imp variable

1 1 Ozone Solar.R

The method="norm.nob" argument requests a plain, non-Bayesian,
stochastic regression method. This method first estimates the intercept, slope
and residual variance under the linear model, then generates imputed value ac-
cording to these specification. We will come back to the details in Section 3.2.
The seed argument makes the solution reproducible. Figure 1.3 shows the
results. The addition of noise to the predictions opens up the distribution of
the imputed values, as intended.

Note that some new complexities arise. There are several imputations with
negative values. Such values are implausible since negative Ozone concentra-
tions do not exist in the real world. Also, the high end of the distribution is
not well covered. The cause of this is that the relation in the observed data
is somewhat heteroscedastic. The variability of Ozone seems to increase up to
the solar radiation level of 250 langleys, and decreases after that. Though it is
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Figure 1.4: Imputation of Ozone by last observation carried forward (LOCF).

unclear whether this is a genuine meteorological phenomenon, the imputation
model did not account for this feature.

Stochastic regression imputation is an important step forward. In par-
ticular it preserves not only the regression weights, but also the correlation
between variables (cf. Exercise 3). Stochastic regression imputation does not
solve all problems, and there are many subtleties that need to be addressed.
However, the main idea to draw from the residuals is very powerful, and forms
the basis of more advanced imputation techniques.

1.3.6 LOCF and BOFC

Last observation carried forward (LOCF) and baseline observation carried
forward (BOCF) require longitudinal data. The idea is to take the last ob-
served value as a replacement for the missing data. Figure 1.4 illustrates the
method applied to the first 80 days of the Ozone series. The stretches of red
dots indicate the imputations.

LOCF is convenient because it generates a complete dataset. The method
is used in clinical trials. The U.S. Food and Drug Administration (FDA) has
traditionally viewed LOCF as the preferred method of analysis, considering
it conservative and less prone to selection than listwise deletion. However,
Molenberghs and Kenward (2007, pp. 47–50) show that the bias can operate
in both directions, and that LOCF can yield biased estimates even under
MCAR. LOCF needs to be followed by a proper statistical analysis method
that distinguishes between the real and imputed data. This is typically not
done, however. Additional concerns about a reversal of the time direction are
given in Kenward and Molenberghs (2009).
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The Panel on Handling Missing Data in Clinical Trials recommends that
LOCF and BOCF should not be used as the primary approach for handling
missing data unless the assumptions that underlie them are scientifically jus-
tified (National Research Council, 2010, p. 77).

1.3.7 Indicator method

Suppose that we want to fit a regression, but there are missing values in one
of the explanatory variables. The indicator method (Miettinen, 1985, p. 232)
replaces each missing value by a zero and extends the regression model by the
response indicator. The procedure is applied to each incomplete variable. The
user analyzes the extended model instead of the original.

This method is popular in public health and epidemiology. An advantage is
that the indicator method retains the full dataset. Also, it allows for systematic
differences between the observed and the unobserved data by inclusion of the
response indicator. However, the method can yield severely biased regression
estimates, even under MCAR and for low amounts of missing data (Vach and
Blettner, 1991; Greenland and Finkle, 1995; Knol et al., 2010).

On the other hand, White and Thompson (2005) point out that the method
can be useful to estimate the treatment effect in randomized trials when a
baseline covariate is partially observed. If the missing data are restricted to
the covariate, if the interest is solely restricted to estimation of the treatment
effect, if compliance to the allocated treatment is perfect and if the model is
linear without interactions, then using the indicator method for that covariate
yields an unbiased estimate of the treatment effect. This is true even if the
missingness depends on the covariate itself.

The conditions under which the indicator method works are often difficult
to achieve in practice. The method does not allow for missing data in the
outcomes, both of which frequently occur in real data. While the indicator
method may be suitable in some special cases, it falls short as a general way
to treat missing data.

1.3.8 Summary

Table 1.1 provides a summary of the methods discussed in this section. The
table addresses two topics: whether the method yields the correct results on
average (unbiasedness), and whether it produces the correct standard error.
Unbiasedness is evaluated with respect to the mean, the regression weight (of
the regression with the incomplete variable as dependent) and the correlation.

The table identifies the assumptions on the missing data mechanism each
method must make in order to produce unbiased estimates. Both deletion
methods always require MCAR. In addition, for listwise deletion there are two
MNAR special cases (cf. Section 2.6). Regression imputation and stochastic
regression imputation can yield unbiased estimates under MAR. In order to
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Table 1.1: Overview of assumptions made by simple methods

Unbiased Standard Error
Mean Reg Weight Correlation

Listwise deletion MCAR MCAR MCAR Too large
Pairwise deletion MCAR MCAR MCAR Complicated
Mean imputation MCAR – – Too small
Regression imp MAR MAR – Too small
Stochastic imp MAR MAR MAR Too small
LOCF – – – Too small
Indicator – – – Too small

work, the model needs to be correctly specified. LOCF and the indicator
method are incapable of providing consistent estimates, even under MCAR.

Listwise deletion produces standard errors that are correct for the subset
of complete cases, but in general too large for the entire dataset. Calculation
of standard errors under pairwise deletion is complicated. The standard errors
after imputation are too small since the standard calculations make no dis-
tinction between the observed data and the imputed data. Correction factors
for some situations have been developed (Schafer and Schenker, 2000), but a
more convenient solution is multiple imputation.

1.4 Multiple imputation in a nutshell

1.4.1 Procedure

Multiple imputation creates m > 1 complete datasets. Each of these
datasets is analyzed by standard analysis software. The m results are pooled
into a final point estimate plus standard error by simple pooling rules (“Ru-
bin’s rules”). Figure 1.5 illustrates the three main steps in multiple imputation:
imputation, analysis and pooling.

The analysis starts with observed, incomplete data. Multiple imputation
creates several complete versions of the data by replacing the missing values
by plausible data values. These plausible values are drawn from a distribution
specifically modeled for each missing entry. Figure 1.5 portrays m = 3 imputed
datasets. In practice, m is often taken larger (cf. Section 2.7). The number
m = 3 is taken here just to make the point that the technique creates multiple
versions of the imputed data. The three imputed datasets are identical for
the observed data entries, but differ in the imputed values. The magnitude of
these difference reflects our uncertainty about what value to impute.

The second step is to estimate the parameters of interest from each imputed
dataset. This is typically done by applying the analytic method that we would
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Figure 1.5: Scheme of main steps in multiple imputation.

have used had the data been complete. The results will differ because their
input data differ. It is important to realize that these differences are caused
only because of the uncertainty about what value to impute.

The last step is to pool the m parameter estimates into one estimate, and
to estimate its variance. The variance combines the conventional sampling
variance (within-imputation variance) and the extra variance caused by the
missing data extra variance caused by the missing data (between-imputation
variance). Under the appropriate conditions, the pooled estimates are unbiased
and have the correct statistical properties.

1.4.2 Reasons to use multiple imputation

Multiple imputation (Rubin, 1987a, 1996) solves the problem of“too small”
standard errors in Table 1.1. Multiple imputation is unique in the sense that
it provides a mechanism for dealing with the inherent uncertainty of the im-
putations themselves.

Our level of confidence in a particular imputed value is expressed as the
variation across the m completed datasets. For example, in a disability survey,
suppose that the respondent answered the item whether he could walk, but
did not provide an answer to the item whether he could get up from a chair.
If the person can walk, then it is highly likely that the person will also be
able to get up from the chair. Thus, for persons who can walk, we can draw a
“yes” for missing “getting up from a chair” with a high probability, say 0.99,
and use the drawn value as the imputed value. In the extreme, if we are really
certain, we always impute the same value for that person. More generally, we
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are less confident about the true value. Suppose that, in a growth study, height
is missing for a subject. If we only know that this person is a woman, this
provides some information about likely values, but not so much. So the range of
plausible values from which we draw is much larger here. The imputations for
this woman will thus vary a lot over the different datasets. Multiple imputation
is able to deal with both high-confidence and low-confidence situations equally
well.

Another reason to use multiple imputation is that it separates the solution
of the missing data problem from the solution of the complete data problem.
The missing data problem is solved first, the complete data problem next.
Though these phases are not completely independent, the answer to the sci-
entifically interesting question is not obscured anymore by the missing data.
The ability to separate the two phases simplifies statistical modeling, and
hence contributes to a better insight into the phenomenon of scientific study.

1.4.3 Example of multiple imputation

Continuing with the airquality dataset, it is straightforward to apply
multiple imputation. The following code imputes the missing data five times,
fits a linear regression model to predict Ozone in each of the imputed datasets,
and pools the five sets of estimated parameters.

> imp <- mice(airquality, seed = 1, print = FALSE)

> fit <- with(imp, lm(Ozone ~ Wind + Temp + Solar.R))

> tab <- round(summary(pool(fit)), 3)

> tab[, c(1:3, 5)]

est se t Pr(>|t|)

(Intercept) -64.31 24.614 -2.6 0.015

Wind -3.11 0.828 -3.8 0.003

Temp 1.64 0.243 6.8 0.000

Solar.R 0.05 0.023 2.1 0.037

Fitting the same model to the complete cases can be done by:

> fit <- lm(Ozone ~ Wind + Temp + Solar.R, data = airquality,

na.action = na.omit)

> round(coef(summary(fit)), 3)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -64.34 23.055 -2.8 0.006

Wind -3.33 0.654 -5.1 0.000

Temp 1.65 0.254 6.5 0.000

Solar.R 0.06 0.023 2.6 0.011

The solutions are nearly identical here, which is due to the fact that most
missing values occur in the outcome variable. The standard errors of the multi-
ple imputation solution are slightly smaller than in the complete case analysis.
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Figure 1.6: Multiple imputation of Ozone. Plotted are the imputed values
from the first imputation.

It is often the case that multiple imputation is more efficient than complete
case analysis. Depending on the data and the model at hand, the differences
can be dramatic.

Figure 1.6 shows the distribution and scattergram for the observed and
imputed data combined. The imputations are taken from the first completed
dataset. The blue and red distributions are quite similar. Problems with the
negative values as in Figure 1.3 are now gone since the imputation method
used observed data as donors to fill the missing data. Section 3.4 describes
the method in detail. Note that the red points respect the heteroscedastic
nature of the relation between Ozone and Solar.R. All in all, the red points
look as if they could have been measured if they had not been missing. The
reader can easily recalculate the solution and inspect these plots for the other
imputations.

Figure 1.7 plots the completed Ozone data. The imputed data of all five
imputations are plotted for the days with missing Ozone scores. In order to
avoid clutter, the lines that connect the dots are not drawn for the imputed
values. Note that the pattern of imputed values varies substantially over the
days. At the beginning of the series, the values are low and the spread is small,
in particular for the cold and windy days 25–27. The small spread for days 25–
27 indicates that the model is quite sure of these values. High imputed values
are found around the hot and sunny days 35–42, whereas the imputations
during the moderate days 52–61 are consistently in the moderate range. Note
how the available information helps determine sensible imputed values that
respect the relations between wind, temperature, sunshine and ozone.
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Figure 1.7: Multiple imputation of Ozone. Plotted are the observed values
(in blue) and the multiply imputed values (in red). One red dot at (61,168) is
not plotted.

1.5 Goal of the book

The main goal of this book is to add multiple imputation to the tool chest
of practitioners. The text explains the ideas underlying multiple imputation,
discusses when multiple imputation is useful, how to do it in practice and how
to report the results of the steps taken.

The computations are done with the help of the R package mice, writ-
ten by Karin Groothuis-Oudshoorn and myself (Van Buuren and Groothuis-
Oudshoorn, 2011). The book thus also serves as an extended tutorial on the
practical application of mice. Online materials that accompany the book can
be found on www.multiple-imputation.com. My hope is that this hands-on ap-
proach will facilitate understanding of the key ideas in multiple imputation.

1.6 What the book does not cover

The field of missing data research is vast. This book focuses on multiple
imputation. The book does not attempt cover the enormous body of literature
on alternative approaches to incomplete data. This section briefly reviews
three of these approaches.
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1.6.1 Prevention

With the exception of McKnight et al. (2007, Chapter 4), books on missing
data do not mention prevention. Yet, prevention of the missing data is the most
direct attack on problems caused by the missing data. Prevention is fully in
spirit with the quote of Orchard and Woodbury given on p. 5. There is a
lot one could do to prevent missing data. The remainder of this section lists
point-wise advice.

Minimize the use of intrusive measures, like blood samples. Visit the sub-
ject at home. Use incentives to stimulate response, and try to match up the
interviewer and respondent on age and ethnicity. Adapt the mode of the study
(telephone, face to face, web questionnaire, and so on) to the study population.
Use a multi-mode design for different groups in your study. Quickly follow-up
for people that do not respond, and where possible try to retrieve any missing
data from other sources.

In experimental studies, try to minimize the treatment burden and inten-
sity where possible. Prepare a well-thought-out flyer that explains the purpose
and usefulness of your study. Try to organize data collection through an au-
thority, e.g., the patient’s own doctor. Conduct a pilot study to detect and
smooth out any problems.

Economize on the number of variables collected. Only collect the informa-
tion that is absolutely essential to your study. Use short forms of measure-
ment instruments where possible. Eliminate vague or ambivalent questionnaire
items. Use an attractive layout of the instruments. Refrain from using blocks
of items that force the respondent to stay on a particular page for a long time.
Use computerized adaptive testing where feasible. Do not allow other studies
to piggy-back on your data collection efforts.

Do not overdo it. Many Internet questionnaires are annoying because they
force the respondent to answer. Do not force your respondent. The result will
be an apparently complete dataset with mediocre data. Respect the wish of
your respondent to skip items. The end result will be more informative.

Use double coding in the data entry, and chase up any differences between
the versions. Devise nonresponse forms in which you try to find out why people
they did not respond, or why they dropped out.

Last but not least, consult experts. Many academic centers have depart-
ments that specialize in research methodology. Sound expert advice may turn
out to be extremely valuable for keeping your missing data rate under control.

Most of this advice can be found in books on research methodology and
data quality. Good books are Shadish et al. (2001), De Leeuw et al. (2008),
Dillman et al. (2008) and Groves et al. (2009).

1.6.2 Weighting procedures

Weighting is a method to reduce bias when the probability to be selected
in the survey differs between respondents. In sample surveys, the responders
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are weighted by design weights, which are inversely proportional to their prob-
ability of being selected in the survey. If there are missing data, the complete
cases are re-weighted according to design weights that are adjusted to counter
any selection effects produced by nonresponse. The method is widely used in
official statistics. Relevant pointers include Cochran (1977) and Särndal et al.
(1992) and Bethlehem (2002).

The method is relatively simple in that only one set of weights is needed
for all incomplete variables. On the other hand, it discards data by listwise
deletion, and it cannot handle partial response. Expressions for the variance
of regression weights or correlations tend to be complex, or do not exist. The
weights are estimated from the data, but are generally treated as fixed. The
implications for this are unclear (Little and Rubin, 2002, p. 53).

There has been interest recently in improved weighting procedures that
are “double robust” (Scharfstein et al., 1999; Bang and Robins, 2005). This
estimation method requires specification of three models: Model A is the sci-
entifically interesting model, Model B is the response model for the outcome
and model C is the joint model for the predictors and the outcome. The dual
robustness property states that: if either Model B or Model C is wrong (but
not both), the estimates under Model A are still consistent. This seems like
a useful property, but the issue is not free of controversy (Kang and Schafer,
2007).

1.6.3 Likelihood-based approaches

Likelihood-based approaches define a model for the observed data. Since
the model is specialized to the observed values, there is no need to impute
missing data or to discard incomplete cases. The inferences are based on the
likelihood or posterior distribution under the posited model. The parameters
are estimated by maximum likelihood, the EM algorithm, the sweep operator,
Newton–Raphson, Bayesian simulation and variants thereof. These methods
are smart ways to skip over the missing data, and are known as direct likeli-
hood and full information maximum likelihood (FIML).

Likelihood-based methods are, in some sense, the“royal way”to treat miss-
ing data problems. The estimated parameters nicely summarize the available
information under the assumed models for the complete data and the missing
data. The model assumptions can be displayed and evaluated, and in many
cases it is possible to estimate the standard error of the estimates.

Multiple imputation is an extension of likelihood-based methods. It adds
an extra step in which imputed data values are drawn. An advantage of this
is that it is generally easier to calculate the standard errors for a wider range
of parameters. Moreover, the imputed values created by multiple imputation
can be inspected and analyzed, which helps us to gauge the effect of the model
assumptions on the inferences.

The likelihood-based approach receives excellent treatment in the book
by Little and Rubin (2002). A less technical account that should appeal to
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social scientists can be found in Enders (2010, chapters 3–5). Molenberghs
and Kenward (2007) provide a hands-on approach of likelihood-based methods
geared toward clinical studies, including extensions to data that are MNAR.

1.7 Structure of the book

This book consists of three main parts: basics, case studies and extensions.
Chapter 2 reviews the history of multiple imputation and introduces the no-
tation and theory. Chapter 3 provides an overview of imputation methods
for univariate missing data. Chapter 4 distinguishes three approaches to at-
tack the problem of multivariate missing data. Chapter 5 discusses issues that
may arise when applying multiple imputation to multivariate missing data.
Chapter 6 reviews issues pertaining to the analysis of the imputed datasets.

Chapters 7–9 contain case studies of the techniques described in the previ-
ous chapters. Chapter 7 deals with “problems with the columns,” while Chap-
ter 8 addresses “problems with the rows.” Chapter 9 discusses studies on prob-
lems with both rows and columns.

Chapter 10 concludes the main text with a discussion of limitations and
pitfalls, reporting guidelines, alternative applications and future extensions.
The appendix discusses software options for multiple imputation.

1.8 Exercises

1. Reporting practice. What are the reporting practices in your field? Take
a random sample of articles that have appeared during the last 10 years
in the leading journal in your field. Select only those that present quan-
titative analyses, and address the following topics:

(a) Did the authors report that there were missing data?

(b) If not, can you infer from the text that there must have been missing
data?

(c) Did the authors discuss how they handled the missing data?

(d) Were the missing data properly addressed?

(e) Can you detect a trend over time in reporting practice?

(f) Would the editors of the journal be interested in your findings?

2. Loss of information. Suppose that a dataset consists of 100 cases and 10
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variables. Each variable contains 10% missing values. What is the largest
possible subsample under listwise deletion? What is the smallest? If each
variable is MCAR, how many cases will remain?

3. Stochastic regression imputation. The correlation of the data in Fig-
ure 1.3 is equal to 0.28. Note that this is the lowest of all correlations
reported in Section 1.3, which seems to contradict the statement that
stochastic regression imputation does not bias the correlation.

(a) Provide a hypothesis why this correlation is so low.

(b) Rerun the code with a different seed value. What is the correlation
now?

(c) Write a loop to apply apply stochastic regression imputation with
the seed increasing from 1 to 1000. Calculate the regression weight
and the correlation for each solution, and plot the histogram. What
are the mean, minimum and maximum values of the correlation?

(d) Do your results indicate that stochastic regression imputation alters
the correlation?

4. Stochastic regression imputation (continued). The largest correlation
found in the previous exercise exceeds the value found in Section 1.3.4.
This seems odd since the correlation of the imputed values under re-
gression imputation is equal to 1, and hence the imputed data have a
maximal contribution to the overall correlation.

(a) Can you explain why this could happen?

(b) Adapt the code from the previous exercise to test your explanation.
Was your explanation satisfactory?

(c) If not, can you think of another reason, and test that? Hint: Find
out what is special about the solutions with the largest correlations.

5. Nonlinear model. The model fitted to the airquality data in Sec-
tion 1.4.3 is a simple linear model. Inspection of the residuals reveals
that there is a slight curvature in the average of the residuals.

(a) Start from the completed cases, and use plot(fit) to obtain di-
agnostic plots. Can you explain why the curvature shows up?

(b) Experiment with solutions, e.g., by transforming Ozone or by
adding a quadratic term to the model. Can you make the curvature
disappear? Does the amount of explained variance increase?

(c) Does the curvature also show up in the imputed data? If so, does
the same solution work? Hint: You can assess the jth fitted model
by fit$analyses[[j]], where fit was created by with(imp,...).

(d) Advanced: Do you think your solution would necessitate drawing
new imputations?



Chapter 2

Multiple imputation

2.1 Historic overview

2.1.1 Imputation

The English verb “to impute” comes from the Latin imputo, which means
to reckon, attribute, make account of, charge, ascribe. In the Bible, the word
“impute” is a translation of the Hebrew verb hāshab, which appears about
120 times in the Old Testament in various meanings (Renn, 2005). The noun
“imputation” has a long history in taxation. The concept “imputed income”
was used in the 19th century to denote income derived from property, such
as land and housing. In the statistical literature, imputation means “filling in
the data.” Imputation in this sense is first mentioned in 1957 in the work of
the U.S. Census Bureau (US Bureau of the Census, 1957).

Allan and Wishart (1930) were the first to develop a statistical method
to replace a missing value. They provided two formulae for estimating the
value of a single missing observation, and advised filling in the estimate in the
data. They would then proceed as usual, but deduct one degree of freedom
to correct for the missing data. Yates (1933) generalized this work to more
than one missing observation, and thus planted the seeds via a long and fruitful
chain of intermediates that led up to the now classic EM algorithm (Dempster
et al., 1977). Interestingly, the term “imputation” was not used by Dempster
et al. or by any of their predecessors; it only gained widespread use after
the monumental work of the Panel on Incomplete Data in 1983. Volume 2
devoted about 150 pages to an overview of the state-of-the-art of imputation
technology (Madow et al., 1983). This work is not widely known, but it was
the predecessor to the first edition of Little and Rubin (1987), a book that
established the term firmly in the mainstream statistical literature.

2.1.2 Multiple imputation

Multiple imputation is now accepted as the best general method to deal
with incomplete data in many fields, but this was not always the case. Multiple
imputation was developed by Donald B. Rubin in the 1970’s. It is useful
to know a bit of its remarkable history, as some of the issues in multiple
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imputation may resurface in contemporary applications. This section details
historical observations that provide the necessary background.

The birth of multiple imputation has been documented by Fritz Scheuren
(Scheuren, 2005). Multiple imputation was developed as a solution to a practi-
cal problem with missing income data in the March Income Supplement to the
Current Population Survey (CPS). In 1977, Scheuren was working on a joint
project of the Social Security Administration and the US Census Bureau. The
Census Bureau was then using (and still does use) a hot deck imputation pro-
cedure. Scheuren signaled that the variance could not be properly calculated,
and asked Rubin what might be done instead. Rubin came up with the idea of
using multiple versions of the complete dataset, something he had already ex-
plored in the early 1970s (Rubin, 1994). The original 1977 report introducing
the idea was published in 2004 in the history corner of the American Statisti-
cian (Rubin, 2004). According to Scheuren: “The paper is the beginning point
of a truly revolutionary change in our thinking on the topic of missingness”
(Scheuren, 2004, p. 291).

Rubin observed that imputing one value (single imputation) for the miss-
ing value could not be correct in general. He needed a model to relate the
unobserved data to the observed data, and noted that even for a given model
the imputed values could not be calculated with certainty. His solution was
simple and brilliant: create multiple imputations that reflect the uncertainty
of the missing data. The 1977 report explains how to choose the models and
how to derive the imputations. A low number of imputations, say five, would
be enough.

The idea to create multiple versions of the data must have seemed out-
rageous at that time. Drawing imputations from a distribution, instead of
estimating the “best” value, was a drastic departure from everything that had
been done before. Rubin’s original proposal did not include formulae for calcu-
lating combined estimates, but instead stressed the study of variation because
of uncertainty in the imputed values. The idea was rooted in the Bayesian
framework for inference, quite different from the dominant randomization-
based framework in survey statistics. Moreover, there were practical issues
involved in the technique, the larger datasets, the extra works to create the
model and the repeated analysis, software issues, and so on. These issues have
all been addressed by now, but in 1983 Dempster and Rubin wrote: “Practi-
cal implementation is still in the developmental state” (Dempster and Rubin,
1983, p. 8).

Rubin (1987a) provided the methodological and statistical footing for the
method. Though several improvements have been made since 1987, the book
was really ahead of its time and discusses the essentials of modern imputation
technology. It provides the formulas needed to combine the repeated complete-
data estimates (now called Rubin’s rules), and outlines the conditions under
which statistical inference under multiple imputation will be valid. Further-
more, pp. 166–170 provide a description of Bayesian sampling algorithms that
could be used in practice.
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Tests for combinations of parameters were developed by Li et al. (1991a),
Li et al. (1991b) and Meng and Rubin (1992). Technical improvements for
the degrees of freedom were suggested by Barnard and Rubin (1999) and
Reiter (2007). Iterative algorithms for multivariate missing data with general
missing data patterns were proposed by Rubin (1987, p. 192) Schafer (1997),
Van Buuren et al. (1999), Raghunathan et al. (2001) and King et al. (2001).
Additional work on the choice of the number of imputations was done by
Royston et al. (2004), Graham et al. (2007) and Bodner (2008).

In the 1990s, multiple imputation came under fire from various sides. The
most severe criticism was voiced by Fay (1992). Fay pointed out that the valid-
ity of multiple imputation can depend on the form of subsequent analysis. He
produced “counterexamples” in which multiple imputation systematically un-
derstated the true covariance, and concluded that “multiple imputation is in-
appropriate as a general purpose methodology.” Meng (1994) pointed out that
Fay’s imputation models omitted important relations that were needed in the
analysis model, an undesirable situation that he labeled uncongenial . Related
issues on the interplay between the imputation model and the complete-data
model have been discussed by Rubin (1996) and Schafer (2003).

Several authors have shown that Rubin’s estimate of the variance is biased
(Wang and Robins, 1998; Robins and Wang, 2000; Nielsen, 2003; Kim et al.,
2006). If there is bias, the estimate is usually too large. In response, Rubin
(2003) emphasized that variance estimation is only an intermediate goal for
making confidence intervals, and that the observed bias does not seem to
affect the coverage of these intervals across a wide range of cases of practical
interest. He reasoned therefore that these findings do not invalidate multiple
imputation in general.

The tide turned around 2005. Reviews that criticize insufficient reporting
practice of missing data started to appear in diverse fields (cf. Section 1.1.2).
Nowadays multiple imputation is almost universally accepted, and in fact
acts as the benchmark against which newer methods are being compared.
The major statistical packages have all implemented modules for multiple
imputation, so effectively the technology is implemented, almost three decades
after Dempster and Rubin’s remark.

2.1.3 The expanding literature on multiple imputation

Figure 2.1 contains three time series with counts on the number of publica-
tions on multiple imputation during the period 1977–2010. Counts were made
in three ways. The rightmost series corresponds to the number of publications
per year that featured the search term “multiple imputation” in the title. The
search was done in Scopus on July 11, 2011. These are often methodologi-
cal articles in which new adaptations are being developed. The series in the
middle is the number of publication that featured “multiple imputation” in
the title, abstract or key words in Scopus on the same search data. This set
includes a growing group of papers that contain applications. Scopus does not
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Figure 2.1: Number of publications (log) on multiple imputation during
the period 1977–2010 according to three counting methods. Data source:
www.scopus.com.

go back further than 1988 on this topic. The leftmost series is the number of
publications in a collection of early publications available at www.multiple-
imputation.com. This collection covers essentially everything related to multi-
ple imputation from its inception in 1977 up to the year 2001. This group also
includes chapters in books, dissertations, conference proceedings, technical
reports and so on.

Note that the vertical axis is set in the logarithm. Perhaps the most in-
teresting series is the middle series counting the applications. The pattern is
approximately linear, meaning that the number of applications is growing at
an exponential rate.

2.2 Concepts in incomplete data

2.2.1 Incomplete data perspective

Many statistical techniques address some kind of incomplete data problem.
Suppose that we are interested in knowing the mean income Q in a given
population. If we take a sample from the population, then the units not in
the sample will have missing values because they will not be measured. It is
not possible to calculate the population mean right away since the mean is
undefined if one or more values are missing. The incomplete data perspective
is a conceptual framework for analyzing data as a missing data problem.
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Table 2.1: Examples of reasons for missingness for combinations of inten-
tional/unintentional missing data with item/unit nonresponse

Intentional Unintentional
Unit nonresponse Sampling Refusal

Self-selection
Item nonresponse Matrix sampling Skip question

Branching Coding error

Estimating a mean from a population is a well known problem that can
also be solved without a reference to missing data. It is nevertheless sometimes
useful to think what we would have done had the data been complete, and
what we could do to arrive at complete data. The incomplete data perspec-
tive is general, and covers the sampling problem, the counterfactual model of
causal inference, statistical modeling of the missing data, and statistical com-
putation techniques. The books by Gelman et al. (2004, ch. 7) and Gelman
and Meng (2004) provide in-depth discussions of the generality and richness
of the incomplete data perspective.

2.2.2 Causes of missing data

There is a broad distinction between two types of missing data: intentional
and unintentional missing data. Intentional missing data are planned by the
data collector. For example, the data of a unit can be missing because the
unit was excluded from the sample. Another form of intentional missing data
is the use of different versions of the same instrument for different subgroups,
an approach known as matrix sampling. See Gonzalez and Eltinge (2007)
for an overview. Also, missing data that occur because of the routing in a
questionnaire are intentional, as well as data (e.g., survival times) that are
censored data at some time because the event (e.g., death) has not yet taken
place.

Though often foreseen, unintentional missing data are unplanned and not
under the control of the data collector. Examples are: the respondent skipped
an item, there was an error in the data transmission causing data to be missing,
some of the objects dropped out before the study could be completed resulting
in partially complete data, and the respondent was sampled but refused to
cooperate.

Another important distinction is item nonresponse versus unit nonre-
sponse. Item nonresponse refers to the situation in which the respondent
skipped one or more items in the survey. Unit nonresponse occurs if the respon-
dent refused to participate, so all outcome data are missing for this respondent.
Historically, the methods for item and unit nonresponse have been rather dif-
ferent, with unit nonresponse primarily addressed by weighting methods, and
item nonresponse primarily addressed by edit and imputation techniques.
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Table 2.1 cross-classifies both distinctions, and provides some typical exam-
ples in each of the four cells. The distinction between intentional/unintentional
missing data is the more important one conceptually. The item/unit nonre-
sponse distinction says how much information is missing, while the distinction
between intentional and unintentional missing data says why some informa-
tion is missing. Knowing the reasons why data are incomplete is a first step
toward the solution.

2.2.3 Notation

The notation used in this book will be close to that of Rubin (1987a)
and Schafer (1997), but there are some exceptions. The symbol m is used to
indicate the number of multiple imputations. Compared to Rubin (1987a) the
subscript m is dropped from most of the symbols. In Rubin (1987a), Y and R
represent the data of the population, whereas in this book Y refers to data of
the sample, similar to Schafer (1997). Rubin (1987a) uses X to represent the
completely observed covariates in the population. Here we assume that the
covariates are possibly part of Y , so there is not always a symbolic distinction
between complete covariates and incomplete data. The symbol X is used to
indicate the set of predictors in various types of models.

Let Y denote the n × p matrix containing the data values on p variables
for all n units in the sample. We define the response indicator R as an n× p
0–1 matrix. The elements of Y and R are denoted by yij and rij , respectively,
where i = 1, . . . , n and j = 1, . . . , p. If yij is observed, then rij = 1, and if yij
is missing, then rij = 0. Note that R is completely observed in the sample.
The observed data are collectively denoted by Yobs. The missing data are
collectively denoted as Ymis, and contain all elements yij where rij = 0. When
taken together Y = (Yobs, Ymis) contain the complete data values. However,
the values of the part Ymis are unknown to us, and the observed data are thus
incomplete. R indicates the values that are masked.

If Y = Yobs (i.e., if the sample data are completely observed) and if we
know the mechanism of how the sample was created, then it is possible to make
a valid estimate of the population quantities of interest. For a simple random
sample, we could just take the sample mean Q̂ as an unbiased estimate of the
population mean Q. We will assume throughout this book that we know how
to do the correct statistical analysis on the complete data Y . If we cannot do
this, then there is little hope that we can solve the more complex problem of
analyzing Yobs. This book addresses the problem of what to do if Y is observed
incompletely. Incompleteness can incorporate intentional missing data, but
also unintentional forms like refusals, self-selection, skipped questions, missed
visits and so on.

Note that every unit in the sample has a row in Y . If no data have been
obtained for a unit i (presumably because of unit nonresponse), the ith record
will contain only the sample number and perhaps administrative data from
the sampling frame. The remainder of the record will be missing.
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2.2.4 MCAR, MAR and MNAR again

Section 1.2 introduced MCAR, MAR and MNAR. This section provides
more precise definitions.

The matrix R stores the locations of the missing data in Y . The distri-
bution of R may depend on Y = (Yobs, Ymis), either by design or by happen-
stance, and this relation is described by the missing data model. Let ψ contain
the parameters of the missing data model, then the general expression of the
missing data model is Pr(R|Yobs, Ymis, ψ).

The data are said to be MCAR if

Pr(R = 0|Yobs, Ymis, ψ) = Pr(R = 0|ψ) (2.1)

so the probability of being missing depends only on some parameters ψ, the
overall probability of being missing. The data are said to be MAR if

Pr(R = 0|Yobs, Ymis, ψ) = Pr(R = 0|Yobs, ψ) (2.2)

so the missingness probability may depend on observed information, including
any design factors. Finally, the data are MNAR if

Pr(R = 0|Yobs, Ymis, ψ) (2.3)

does not simplify, so here the probability to be missing also depends on un-
observed information, including Ymis itself.

As explained in Chapter 1, simple techniques usually only work under
MCAR, but this assumption is very restrictive and often unrealistic. Multiple
imputation can handle both MAR and MNAR.

Several tests have been proposed to test MCAR versus MAR. These tests
are not widely used, and their practical value is unclear. See Enders (2010,
pp. 17–21) for an evaluation of two procedures. It is not possible to test MAR
versus MNAR since the information that is needed for such a test is missing.

Numerical illustration. We simulate three archetypes of MCAR, MAR and
MNAR. The data Y = (Y1, Y2) are drawn from a standard bivariate normal
distribution with a correlation between Y1 and Y2 equal to 0.5. Missing data
are created in Y2 using the missing data model

Pr(R2 = 0) = ψ0 +
eY1

1 + eY1
ψ1 +

eY2

1 + eY2
ψ2 (2.4)

with different parameters settings for ψ = (ψ0, ψ1, ψ2). For MCAR we set
ψMCAR = (0.5, 0, 0), for MAR we set ψMAR = (0, 1, 0) and for MNAR we set
ψMNAR = (0, 0, 1). Thus, we obtain the following models:

MCAR : Pr(R2 = 0) = 0.5 (2.5)

MAR : logit(Pr(R2 = 0)) = Y1 (2.6)

MNAR : logit(Pr(R2 = 0)) = Y2 (2.7)
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Figure 2.2: Distribution of Yobs and Ymis under three missing data models.

where logit(p) = log(p/(1−p)) for any 0 < p < 1 is the logit function. In prac-
tice, it is more convenient to work with the inverse logit (or logistic) function
inverse logit−1(x) = exp(x)/(1 + exp(x)), which transforms a continuous x
to the interval 〈0, 1〉. In R, it is straightforward to draw random values under
these models as

> library(MASS)

> logistic <- function(x) exp(x)/(1 + exp(x))

> set.seed(80122)

> n <- 300

> y <- mvrnorm(n = n, mu = c(0, 0), Sigma = matrix(c(1,

0.5, 0.5, 1), nrow = 2))

> y1 <- y[, 1]

> y2 <- y[, 2]

> r2.mcar <- 1 - rbinom(n, 1, 0.5)

> r2.mar <- 1 - rbinom(n, 1, logistic(y1))

> r2.mnar <- 1 - rbinom(n, 1, logistic(y2))

Figure 2.2 displays the distribution of Yobs and Ymis under the three miss-
ing data models. As expected, these are similar under MCAR, but become
progressively more distinct as we move to the MNAR model.
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2.2.5 Ignorable and nonignorable ♠

The example in the preceding section specified parameters ψ for three
missing data models. The ψ-parameters have no intrinsic scientific value and
are generally unknown. It would simplify the analysis if we could just ignore
these parameters. The practical importance of the distinction between MCAR,
MAR and MNAR is that it clarifies the conditions under which we can accu-
rately estimate the scientifically interesting parameters without the need to
know ψ.

The actually observed data consist of Yobs and R. The joint density func-
tion f(Yobs, R|θ, ψ) of Yobs and R together depends on parameters θ for the
full data Y that are of scientific interest, and parameters ψ for the response
indicator R that are seldom of interest. The joint density is proportional to
the likelihood of θ and ψ, i.e.,

l(θ, ψ|Yobs, R) ∝ f(Yobs, R|θ, ψ) (2.8)

The question is: When can we determine θ without knowing ψ, or equivalently,
the mechanism that created the missing data? The answer is given in Little
and Rubin (2002, p. 119):

The missing data mechanism is ignorable for likelihood inference
if:

1. MAR: the missing data are missing at random; and

2. Distinctness: the parameters θ and ψ are distinct, in the sense
that the joint parameter space of (ψ, θ) is the product of the
parameter space of θ and the parameter space of ψ.

For valid Bayesian inference, the latter condition is slightly stricter: θ and ψ
should be a priori independent: p(θ, ψ) = p(θ)p(ψ) (Little and Rubin, 2002,
p. 120). The MAR requirement is generally considered to be the more impor-
tant condition. Schafer (1997, p. 11) says that in many situations the condition
on the parameters is “intuitively reasonable, as knowing θ will provide little
information about ψ and vice-versa.” We should perhaps be careful in situa-
tions where the scientific interest focuses on the missing data process itself.
For all practical purposes, the missing data model is said to be “ignorable” if
MAR holds.

Note that the label “ignorable” does not mean that we can be entirely
careless about the missing data. For inferences to be valid, we need to condition
on those factors that influence the missing data rate. For example, in the MAR
example of Section 2.2.4 the missingness in Y2 depends on Y1. A valid estimate
of the mean of Y2 cannot be made without Y1, so we should include Y1 somehow
into the calculations for the mean of Y2.
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2.2.6 Implications of ignorability

The concept of ignorability plays an important role in the construction of
imputation models. In imputation, we want to draw synthetic observations
from the posterior distribution of the missing data, given the observed data
and given the process that generated the missing data. The distribution is de-
noted as P (Ymis|Yobs, R). If the nonresponse is ignorable, then this distribution
does not depend on R (Rubin, 1987a, Result 2.3), i.e.,

P (Ymis|Yobs, R) = P (Ymis|Yobs) (2.9)

The implication is that

P (Y |Yobs, R = 1) = P (Y |Yobs, R = 0) (2.10)

so the distribution of the data Y is the same in the response and nonresponse
groups. Thus, if the missing data model is ignorable we can model the poste-
rior distribution P (Y |Yobs, R = 1) from the observed data, and use this model
to create imputations for the missing data. Vice versa, techniques that (im-
plicitly) assume equivalent distributions assume ignorability and thus MAR.
On the other hand, if the nonresponse is nonignorable, we find

P (Y |Yobs, R = 1) 6= P (Y |Yobs, R = 0) (2.11)

so then we should incorporate R into the model to create imputations.
The assumption of ignorability is often sensible in practice, and generally

provides a natural starting point. If, on the other hand, the assumption is not
reasonable (e.g., when data are censored), we may specify P (Y |Yobs, R = 0)
different from P (Y |Yobs, R = 1). The specification of P (Y |Yobs, R = 0) needs
assumptions external to the data since, by definition, the information needed
to estimate any regression weights for R is missing.

Example. Suppose that a growth study measures body weight in kg (Y2)
and gender (Y1: 1 = boy, 0 = girl) of 15-year-old children, and that some of the
body weights are missing. We can model the weight distribution for boys and
girls separately for those with observed weights, i.e., P (Y2|Y1 = 1, R2 = 1) and
P (Y2|Y1 = 0, R2 = 1). If we assume that the response mechanism is ignorable,
then imputations for a boy’s weight can be drawn from P (Y2|Y1 = 1, R2 = 1)
since it will equal P (Y2|Y1 = 1, R2 = 0). The same can be done for the girls.
This procedure leads to correct inferences on the combined sample of boys
and girls, even if boys have substantially more missing values, or if the body
weights of the boys and girls are very different.

The procedure outlined above is not appropriate if, within the boys or the
girls, the occurrence of the missing data is related to body weight. For example,
some of the heavier children may not want to be weighed, resulting in more
missing values for the obese. It will be clear that assuming P (Y2|Y1, R2 = 0) =
P (Y2|Y1, R2 = 1) will underestimate the prevalence of overweight and obesity.
In this case, it may be more realistic to specify P (Y2|Y1, R2 = 0) such that
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imputation accounts for the excess body weights in the children that were
not weighed. There are many ways to do this. In all these cases the response
mechanism will be nonignorable.

The assumption of ignorability is essentially the belief on the part of the
user that the available data are sufficient to correct for the effects of the
missing data. The assumption cannot be tested on the data itself, but it can
be checked against suitable external validation data.

There are two main strategies that we may pursue if the response mech-
anism is not ignorable. The first is to expand the data, and assume ignor-
ability on the expanded data (Collins et al., 2001). See also Section 5.2 for
more details. In the above example, overweight children may simply not want
anybody to know their weight, but perhaps have no objection if their waist
circumference Y3 is measured. As Y3 predicts Y2, R2 or both, the ignorability
assumption P (Y2|Y1, Y3, R2 = 0) = P (Y2|Y1, Y3, R2 = 1) is less stringent, and
hence more realistic.

The second strategy is to formulate the model for P (Y2|Y1, R2 = 0) differ-
ent from P (Y2|Y1, R2 = 1), describing which body weights would have been
observed if they had been measured. Such a model could simply add some
extra kilos, known as δ-adjustment, to the imputed values, but of course we
need to be able to justify our choice in light of what we know about the data.
See Section 3.9.1 for a more detailed discussion of the idea. In general, the
formulation of nonignorable models should be driven by knowledge about the
process that created the missing data. Any such methods need to be explained
and justified as part of the statistical analysis.

2.3 Why and when multiple imputation works

2.3.1 Goal of multiple imputation

A scientific estimand Q is a quantity of scientific interest that we can
calculate if we would observe the entire population. For example, we could
be interested in the mean income of the population. In general, Q can be
expressed as a known function of the population data. If we are interested in
more than one quantity, Q will be a vector. Note that Q is a property of the
population, so it does not depend on any design characteristics. Examples of
scientific estimands include the population mean, the population (co)variance
or correlation, and population factor loadings and regression coefficients, as
well as these quantities calculated within known strata of the population.
Examples of quantities that are not scientific estimands are sample means,
standard errors and test statistics.

We can only calculate Q if the population data are fully known, but this is
almost never the case. The goal of multiple imputation is to find an estimate Q̂
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that is unbiased and confidence valid (Rubin, 1996). We explain these concepts
below.

Unbiasedness means that the average Q̂ over all possible samples Y from
the population is equal to Q. The formula is

E(Q̂|Y ) = Q (2.12)

The explanation of confidence validity requires some additional symbols. Let U
be the estimated variance-covariance matrix of Q̂. This estimate is confidence
valid if the average of U over all possible samples is equal or larger than the
variance of Q̂. The formula is

E(U |Y ) ≥ V (Q̂|Y ) (2.13)

where the function V (Q̂|Y ) denotes the variance caused by the sampling pro-
cess. A statistical test with a stated nominal rejection rate of 5% should reject
the null hypothesis in at most 5% of the cases when in fact the null hypothesis
is true. A procedure is said to be confidence valid if this holds.

In summary, the goal of multiple imputation is to obtain estimates of the
scientific estimand in the population. This estimate should on average be equal
to the value of the population parameter. Moreover, the associated confidence
intervals and hypothesis tests should achieve at least the stated nominal value.

2.3.2 Three sources of variation ♠

The actual value of Q is unknown if some of the population data are
unknown. Suppose we make an estimate Q̂ of Q. The amount of uncertainty
in Q̂ about the true population value Q depends on what we know about Ymis.
If we would be able to re-create Ymis perfectly, then we can calculate Q with
certainty. However, such perfect re-creation is almost never unachievable. In
other cases, we need to summarize the distribution of Q under varying Ymis.

The possible values of Q given our knowledge of the data Yobs are cap-
tured by the posterior distribution P (Q|Yobs). In itself, P (Q|Yobs) is often
intractable, but it can be decomposed into two parts that are easier to solve
as follows:

P (Q|Yobs) =

∫
P (Q|Yobs, Ymis)P (Ymis|Yobs)dYmis (2.14)

Here, P (Q|Yobs) is the posterior distribution of Q given the observed data Yobs.
This is the distribution that we would like to know. P (Q|Yobs, Ymis) is the pos-
terior distribution of Q in the hypothetically complete data, and P (Ymis|Yobs)
is the posterior distribution of the missing data given the observed data.

The interpretation of Equation 2.14 is most conveniently done from right to
left. Suppose that we use P (Ymis|Yobs) to draw imputations for Ymis, denoted
as Ẏmis. We can then use P (Q|Yobs, Ẏmis) to calculate the quantity of interest Q
from the hypothetically complete data (Yobs,Ẏmis). We repeat these two steps
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with new draws Ẏmis, and so on. Equation 2.14 says that the actual posterior
distribution of Q is equal to the average over the repeated draws of Q. This
result is important since it expresses P (Q|Yobs), which is generally difficult,
as a combination of two simpler posteriors from which draws can be made.

It can be shown that the posterior mean of P (Q|Yobs) is equal to

E(Q|Yobs) = E(E[Q|Yobs, Ymis]|Yobs) (2.15)

the average of the posterior means of Q over the repeatedly imputed data.
This equation suggests the following procedure for combining the results of
repeated imputations. Suppose that Q̂l is the estimate of the `th repeated
imputation, then the combined estimate is equal to

Q̄ =
1

m

m∑
`=1

Q̂` (2.16)

where Q̂` contains k parameters and is represented as a k × 1 column vector.
The posterior variance of P (Q|Yobs) is the sum of two variance components:

V (Q|Yobs) = E[V (Q|Yobs, Ymis)|Yobs] + V [E(Q|Yobs, Ymis)|Yobs] (2.17)

This equation is well known in statistics, but can be difficult to grasp at first.
The first component is the average of the repeated complete data posterior
variances of Q. This is called the within-variance. The second component is the
variance between the complete data posterior means of Q. This is called the
between variance. Let Ū∞ and B∞ denote the estimated within and between
components for an infinitely large number of imputations m =∞. Then T∞ =
Ū∞ +B∞ is the posterior variance of Q.

Equation 2.17 suggests the following procedure to estimate T∞ for finite
m. We calculate the average of the complete-data variances as

Ū =
1

m

m∑
`=1

Ū` (2.18)

where the term Ū` is the variance-covariance matrix of Q̂` obtained for the
`th imputation. The standard unbiased estimate of the variance between the
m complete data estimates is given by

B =
1

m− 1

m∑
`=1

(Q̂` − Q̄)(Q̂` − Q̄)′ (2.19)

where Q̄ is calculated by Equation 2.16.
It is tempting to conclude that the total variance T is equal to the sum of

Ū and B, but that would be incorrect. We need to incorporate the fact that
Q̄ itself is estimated using finite m, and thus only approximates Q̄∞. Rubin
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(1987a, eq. 3.3.5) shows that the contribution to the variance of this factor is
systematic and equal to B∞/m. Since B approximates B∞, we may write

T = Ū +B +B/m

= Ū +

(
1 +

1

m

)
B (2.20)

for the total variance of Q̄, and hence of (Q−Q̄) if Q̄ is unbiased. The procedure
to combine the repeated-imputation results by Equations 2.16 and 2.20 is
referred to as Rubin’s rules.

In summary, the total variance T stems from three sources:

1. Ū , the variance caused by the fact that we are taking a sample rather
than observing the entire population. This is the conventional statistical
measure of variability;

2. B, the extra variance caused by the fact that there are missing values
in the sample;

3. B/m, the extra simulation variance caused by the fact that Q̄ itself is
estimated for finite m.

The addition of the latter term is critical to make multiple imputation
work at low values of m. Not including it would result in p-values that are too
low, or confidence intervals that are too short.

Traditional choices for m are m = 3, m = 5 and m = 10. The current
advice is to set m higher, e.g., m = 50 (cf. Section 2.7). The larger m gets,
the smaller the effect of simulation error on the total variance.

2.3.3 Proper imputation

In order to yield valid statistical inferences, the imputed values should pos-
sess certain characteristics. Procedures that yield such imputations are called
proper (Rubin, 1987a, pp. 118–128). Section 2.3.1 described two conditions
needed for a valid estimate of Q. These requirements apply simultaneously
to both the sampling and the nonresponse model. An analogous set of re-
quirements exists if we zoom in on procedures that deal exclusively with the
response model. The important theoretical result is: If the imputation method
is proper and if the complete data analysis is valid in the sense of Section 2.3.1,
the whole procedure is valid (Rubin, 1987a, p. 119).

Recall from Section 2.3.1 that the goal of multiple imputation is to find
an estimate Q̂ of Q with correct statistical properties. At the level of the
sample, there is uncertainty about Q. This uncertainty is captured by U , the
estimated variance-covariance of Q̂ in the sample. If we have no missing data
in the sample, the pair (Q̂, U) contains everything we know about Q.

If we have incomplete data, we can distinguish three analytic levels: the
population, the sample and the incomplete sample. The problem of estimating



Multiple imputation 39

Table 2.2: Role of symbols at three analytic levels and the relations between
them. The relation =⇒ means “is an estimate of.” The relation

.
= means “is

asymptotically equal to.”

Incomplete Sample Complete Sample Population
Yobs Y = (Yobs, Ymis)

Q̄ =⇒ Q̂ =⇒ Q

Ū =⇒ U
.
= V (Q̂)

B
.
= V (Q̄)

Q in the population by Q̂ from the sample is a traditional statistical problem.
The key idea of the solution is to accompany Q̂ by an estimate of its variability
under repeated sampling U according to the sampling model.

Now suppose that we want to go from the incomplete sample to the com-
plete sample. At the sample level we can distinguish two estimands, instead of
one: Q̂ and U . Thus, the role of the single estimand Q at the population level
is taken over by the estimand pair (Q̂, U) at the sample level. Table 2.2 pro-
vides an overview of the three different analytic levels involved, the quantities
defined at each level and their relations. Note that Q̂ is both an estimate (of
Q) as well as an estimand (of Q̄). Also, U has two roles.

Imputation is the act of converting an incomplete sample into a complete
sample. Imputation of data should, at the very least, lead to adequate es-
timates of both Q̂ and U . Three conditions define whether an imputation
procedure is considered proper. We use the slightly simplified version given by
Brand (1999, p. 89) combined with Rubin (1987a). An imputation procedure
is said to be confidence proper for complete data statistics (Q̂, U) if at large
m all of the following conditions hold approximately:

E(Q̄|Y ) = Q̂ (2.21)

E(Ū |Y ) = U (2.22)(
1 +

1

m

)
E(B|Y ) ≥ V (Q̄) (2.23)

The hypothetically complete sample data Y is now held fixed, and the response
indicator R varies according to a specified model.

The first requirement is that Q̄ is an unbiased estimate of Q̂. This means
that, when averaged over the response indicators R sampled under the as-
sumed response model, the multiple imputation estimate Q̄ is equal to Q̂, the
estimate calculated from the hypothetically complete data.

The second requirement is that Ū is an unbiased estimate of U . This means
that, when averaged over the response indicator R sampled under the assumed
response model, the estimate Ū of the sampling variance of Q̂ is equal to U ,
the sampling variance estimate calculated from the hypothetically complete
data.



40 Flexible Imputation of Missing Data

The third requirement is that B is a confidence valid estimate of the vari-
ance due to missing data. Equation 2.23 implies that the extra inferential
uncertainty about Q̂ due to missing data is correctly reflected. On average,
the estimate B of the variance due to missing data should be equal to V (Q̄),
the variance observed in the multiple imputation estimator Q̄ over differ-
ent realizations of the response mechanism. This requirement is analogous to
Equation 2.13 for confidence valid estimates of U .

If we replace ≥ in Equation 2.23 by >, then the procedure is said to be
proper, a stricter version. In practice, being confidence proper is enough to
obtain valid inferences.

Note a procedure may be proper for the estimand pair (Q̂, U), while being
improper for another pair (Q̂′, U ′). Also, a procedure may be proper with
respect to one response mechanism P (R), but improper for an alternative
mechanism P (R′).

It is not always easy to check whether a certain procedure is proper. Sec-
tion 2.5 describes simulation-based tools for checking the adequacy of impu-
tations for valid statistical inference. Chapter 3 provides examples of proper
and improper procedures.

2.3.4 Scope of the imputation model

Imputation models vary in their scope. Models with a narrow scope are
proper with respect to specific estimand (Q̂, U) and particular response mech-
anism, e.g., a particular proportion of nonresponse. Models with a broad scope
are proper with respect to a wide range of estimates Q̂, e.g., subgroup means,
correlations, ratios and so on, and under a large variety of response mecha-
nisms.

The scope is related to the setting in which the data are collected. The
following list distinguishes three typical situations:

• Broad. Create one set of imputations to be used for all projects and
analyses. A broad scope is appropriate for publicly released data, co-
hort data and registers, where different people use the data for different
purposes.

• Intermediate. Create one set of imputations per project and use this set
for all analyses. An intermediate scope is appropriate for analyses that
estimate relatively similar quantities. The imputer and analyst can be
different persons.

• Narrow. A separate imputed dataset is created for each analysis. The
imputer and analyst are typically the same person. A narrow scope is
appropriate if the imputed data are used only to estimate the same
quantity. Different analyses require different imputations.

In general, imputations created under a broad scope can be applied more
widely, and are hence preferable. On the other hand, if we are reasonably
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certain of the correct model for the data, and if the imputed data are only
used to fit that model, then using a narrow scope can be more efficient. As
the correct model is typically unknown, the techniques discussed in this book
will generally attempt to create imputations with a broader scope. Whatever
is chosen, it is the responsibility of the imputer to indicate the scope of the
generated imputations.

2.3.5 Variance ratios ♠

For scalar Q, the ratio

λ =
B +B/m

T
(2.24)

can be interpreted as the proportion of the variation attributable to the miss-
ing data. It is equal to zero if the missing data do not add extra variation
to the sampling variance, an exceptional situation that can occur only if we
can perfectly re-create the missing data. The maximum value is equal to 1,
which occurs only if all variation is caused by the missing data. This is equally
unlikely to occur in practice since it means that there is no information at all.
If λ is high, say λ > 0.5, the influence of the imputation model on the final
result is larger than that of the complete data model.

The ratio

r =
B +B/m

Ū
(2.25)

is called the relative increase in variance due to nonresponse (Rubin, 1987a,
eq. 3.1.7). The quantity is related to λ by r = λ/(1− λ).

Another related measure is the fraction of information about Q missing
due to nonresponse (Rubin, 1987a, eq. 3.1.10). This measure is defined by

γ =
r + 2/(ν + 3)

1 + r
(2.26)

This measure needs an estimate of the degrees of freedom ν, and will be
discussed in Section 2.3.6. The interpretations of γ and λ are similar, but γ is
adjusted for the finite number of imputations. Both statistics are related by

γ =
ν + 1

ν + 3
λ+

2

ν + 3
(2.27)

The literature often confuses γ and λ, and erroneously labels λ as the fraction
of missing information. The values of λ and γ are almost identical for large ν,
but they could notably differ for low ν.

If Q is a vector, it is sometimes useful to calculate a compromise λ over
all elements in Q̄ as

λ̄ =

(
1 +

1

m

)
tr(BT−1)/k (2.28)
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where k is the dimension of Q̄, and where B and T are now k × k matrices.
The compromise expression for r is equal to

r̄ =

(
1 +

1

m

)
tr(BŪ−1)/k (2.29)

the average relative increase in variance.
The quantities λ, r and γ as well as their multivariate analogues λ̄ and r̄

are indicators of the severity of the missing data problem. Fractions of missing
information up to 0.2 can be interpreted as“modest,”0.3 as“moderately large”
and 0.5 as “high” (Li et al., 1991b). High values indicate a difficult problem
in which the final statistical inferences are highly dependent on the way in
which the missing data were handled. Note that estimates of λ, r and γ may
be quite variable for low m (cf. Section 2.7).

2.3.6 Degrees of freedom ♠

The calculation of the degrees of freedom for statistical tests needs some
attention since part of the data is missing. The “old” formula (Rubin, 1987a,
eq. 3.1.6) for the degrees of freedom can be written concisely as

νold = (m− 1)

(
1 +

1

r2

)
=

m− 1

λ2
(2.30)

with r and λ defined as in Section 2.3.5. The lowest possible value is νold = m−
1, which occurs if essentially all variation is attributable to the nonresponse.
The highest value νold =∞ indicates that all variation is sampling variation,
either because there were no missing data, or because we could re-create them
perfectly.

Barnard and Rubin (1999) noted that Equation 2.30 can produce values
that are larger than the degrees of freedom in the complete data, a situation
they considered“clearly inappropriate.”They developed an adapted version for
small samples that is free of the problem. Let νcom be the degrees of freedom
of Q̄ in the hypothetically complete data. In models that fit k parameters on
data with a sample size of n we may set νcom = n−k. The estimated observed
data degrees of freedom that accounts for the missing information is

νobs =
νcom + 1

νcom + 3
νcom(1− λ) (2.31)

The adjusted degrees of freedom to be used for testing in multiple imputation
can be written concisely as

ν =
νoldνobs

νold + νobs
(2.32)
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The quantity ν is always less than or equal to νcom. If νcom =∞, then Equa-
tion 2.32 reduces to 2.30. If λ = 0 then ν = νcom, and if λ = 1 we find ν = 0.
Distributions with zero degrees of freedom are nonsensical, so for ν < 1 we
should refrain from any testing due to lack of information.

2.3.7 Numerical example

Many quantities introduced in the previous sections can be obtained by
the pool() function in mice. The following code imputes the nhanes dataset,
fits a simple linear model and pools the results:

> library("mice")

> options(digits = 3)

> imp <- mice(nhanes, print = FALSE, m = 10, seed = 24415)

> fit <- with(imp, lm(bmi ~ age))

> est <- pool(fit)

The statistics are stored as components of the est object. We obtain the
names of the components by

> names(est)

[1] "call" "call1" "call2" "nmis" "m" "qhat"

[7] "u" "qbar" "ubar" "b" "t" "r"

[13] "dfcom" "df" "fmi" "lambda"

It should be obvious from the name to which quantity each refers, but if
not, type ?pool for help. Individual components are obtained by, for example,
est$df, or by using attach(). As an illustration, we recalculate the fraction
of missing information γ according to Equations 2.26 and 2.27 as

> attach(est)

> (r + 2/(df + 3))/(r + 1)

(Intercept) age

0.509 0.419

> (df + 1)/(df + 3) * lambda + 2/(df + 3)

(Intercept) age

0.509 0.419

> detach(est)
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2.4 Statistical intervals and tests

2.4.1 Scalar or multi-parameter inference?

The ultimate objective of multiple imputation is to provide valid statistical
estimates from incomplete data. For scalar Q, it is straightforward to calculate
confidence intervals and p-values from multiply imputed data, the primary
difficulty being the derivation of the appropriate degrees of freedom for the t-
and F -distributions. Section 2.4.2 provides the relevant statistical procedures.

If Q is a vector, we have two options for analysis. The first option is
to calculate confidence intervals and p-values for the individual elements in
Q, and do all statistical tests per element. Such repeated-scalar inference is
appropriate if we interpret each element as a separate, though perhaps related,
model parameter. In this case, the test uses the fraction of missing information
particular to each parameter.

The alternative option is to perform one statistical test that involves the
elements of Q at once. This is appropriate in the context of multi-parameter
or simultaneous inference, where we evaluate combinations of model param-
eters. Practical applications of such tests include the comparison of nested
models and the testing of model terms that involved multiple parameters like
regression estimates for dummy codings created from the same variable.

All methods assume that, under repeated sampling and with complete
data, the parameter estimates Q̂ are normally distributed around the popula-
tion value Q as

Q̂ ∼ N(Q,U) (2.33)

where U is the variance-covariance matrix of (Q − Q̂) (Rubin, 1987a, p. 75).
For scalar Q, the quantity U reduces to σ2

m, the variance of the estimate Q̂ over
repeated samples. Observe that U is not the variance of the measurements.

Several approaches for multiparameter inference are available: Wald test,
likelihood ratio test and χ2-test. These methods are more complex than single-
parameter inference, and their treatment is therefore deferred to Section 6.2.
The next section shows how confidence intervals and p-values for scalar pa-
rameters can be calculated from multiply imputed data.

2.4.2 Scalar inference

Single parameter inference applies if k = 1, or if k > 1 and the test is
repeated for each of the k components. Since the total variance of T is not
known a priori, Q̄ follows a t-distribution rather than the normal. Univariate
tests are based on the approximation

Q− Q̄√
T
∼ tν (2.34)
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where tν is the Student’s t-distribution with ν degrees of freedom, with ν
defined by Equation 2.32.

The 100(1− α)% confidence interval of a Q̄ is calculated as

Q̄± tν,1−α/2
√
T (2.35)

where tν,1−α/2 is the quantile corresponding to probability 1− α/2 of tν . For
example, use t10,0.975 = 2.23 for the 95% confidence interval with ν = 10.

Suppose we test the null hypothesis Q = Q0 for some specified value Q0.
We can find the p-value of the test as the probability

Ps = Pr

[
F1,ν >

(Q0 − Q̄)2

T

]
(2.36)

where F1,ν is an F -distribution with 1 and ν degrees of freedom.
Statistical intervals and tests based on scalar Q are used most widely, and

are typically available from multiple imputation software. In mice these tests
are standard output of the pool() and summary.mipo() functions. We have
already seen examples of this in Section 1.4.3.

2.5 Evaluation criteria

2.5.1 Imputation is not prediction

The goal of multiple imputation is to obtain statistically valid inferences
from incomplete data. Though ambitious, this goal is achievable. Many in-
vestigators new to the field of missing data are however trying to achieve an
even more ambitious goal: to re-create the lost data. This more ambitious goal
is often not stated as such, but it can be diagnosed easily from the simula-
tions presented. Simulations typically start from a complete dataset, generate
missing data in some way, and then fill in the missing data by the old and
new procedures. In the world of simulation we have access to both the true
and imputed values, so the obvious way to compare the old and new methods
would be to study how well they can recreate the true data. The method that
best recovers the true data “wins.”

There is however a big problem with this procedure. The method that best
recovers the true data may be nonsensical or may contain severe flaws. Let
us look at an example. Suppose we start from a complete dataset of adult
male heights, randomly delete 50% of the data, apply our favorite imputation
procedure and measure how well it recovers the true data. For example, let
the criterion for accuracy be the sum of squared differences

nmis∑
i=1

(ymis
i − ẏi)2 (2.37)



46 Flexible Imputation of Missing Data

where ymis
i represents the true (but usually unknown) height of person i, and

where ẏi is imputed height of person i. It is not difficult to show that the
method that yields the best recovery of the true values is mean imputation.
However, it makes little sense to impute the same height for everyone, since
the true missing heights ymis

i vary as much as those in the observed data.
As outlined in Section 1.3.3, mean imputation has severe shortcomings: It
distorts the height distribution and affect the variance in the imputed data.
Thus, an accuracy criterion like Equation 2.37 may look objective, but in fact
it promotes an intrinsically flawed imputation method as best. The conclusion
must be that minimizing discrepancy between the true data and the imputed
data is not a valid way to create imputed datasets.

The problem is this: Optimizing an imputed value with respect to a crite-
rion searches for its most probable value. However, the most likely value may
perhaps be observed in 20% of the cases, which means that in 80% of the cases
it will not be observed. Using the most probable value as an imputed value in
100% of the cases ignores the uncertainty associated with the missing data.
As a consequence, various distortions may result when the completed data are
analyzed. We may find an artificial increase in the strength of the relation-
ship between the variables. Also, confidence intervals may be too short. These
drawbacks result from treating the problem as a prediction (or optimization)
problem that searches for the best value.

The evaluation of accuracy is nevertheless deeply rooted within many
fields. Measures of accuracy include any statistic that is based on the dif-
ference between true and the imputed data. Examples abound in pattern
recognition and machine learning (e.g., Farhangfar et al. (2007) and Zhang
(2011)). Garćıa-Laencina et al. (2010, p. 280) even go as far as saying:

In classification tasks with missing values, the main objective of an
imputation method must be to help to enhance the classification
accuracy.

Though this advice may seem logical at first glance, it may actually favor
rather strange imputation methods. Let us consider a short example. Suppose
that we want to discriminate left-handed people from right-handed people
based on their ability to ride a bicycle. Since the relation between these two will
be weak, the classification accuracy in complete data will be close to zero. Now
suppose that we are missing most of the information on bicycle riding ability,
and that we impute the missing information. Depending in our imputation
method, we may obtain almost any classification accuracy between zero and
100%. Accuracy will be maximal if we impute missing bicycle-riding ability by
right- versus left-handedness. This is, of course, an absurd imputation method,
but one that is actually the best method according to Garćıa-Laencina et al.
(2010), as it provides us with the highest classification accuracy.

The main message is that we cannot evaluate imputation methods by their
ability to re-create the true data, or by their ability to optimize classification
accuracy. Imputation is not prediction.
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2.5.2 Simulation designs and performance measures

The advantageous properties of multiple imputation are only guaranteed
if the imputation method used to create the missing data is proper. Equa-
tions 2.21–2.23 describe the conditions needed for proper imputation.

Checking the validity of statistical procedures is often done by simulation.
There are generally two mechanisms that influence the observed data, the
sampling mechanism and the missing data mechanism. Simulation can address
sampling mechanism separately, the missing data mechanism separately, and
both mechanisms combined. This leads to three general simulation designs.

1. Sampling mechanism only. The basic simulation steps are: choose Q,
take samples Y (s), perform complete-data analysis, estimate Q̂(s) and
U (s) and calculate the outcomes aggregated over s.

2. Sampling and missing data mechanism combined. The basic simulation

steps are: choose Q, take samples Y (s), generate incomplete data Y
(s,t)
obs ,

impute, estimate Q̂(s,t) and T (s,t) and calculate outcomes aggregated
over s and t.

3. Missing data mechanism only. The basic simulation steps are: choose

(Q̂, U), generate incomplete data Y
(t)
obs, impute, estimate (Q̄, Ū)(t) and

B(t) and calculate outcomes aggregated over t.

A popular procedure for testing missing data applications is design 2 with
settings s = 1, . . . , 1000 and t = 1. As this design does not separate the two
mechanisms, any problems found may result from both the sampling and the
missing data mechanism. Design 1 does not address the missing data, and is
primarily of interest to study whether any problems are attributable to the
complete data analysis. Design 3 addresses the missing data mechanism only,
and thus allows for a more detailed assessment of any problem caused by the
imputation step. An advantage of this procedure is that no population model
is needed. Brand et al. (2003) describe this procedure in more detail.

Three outcomes are generally of interest:

1. Bias. The bias is calculated as the average difference between the value
of the estimand and the value of the estimate. The bias should be close
to zero.

2. Coverage. The 95% coverage is calculated as the percentage of cases
where the value of the estimand is located within the 95% confidence
interval around the estimate, called the hit rate. A more efficient al-
ternative is to average the Bayesian probability coverages (Rubin and
Schenker, 1986a). The 95% coverage should be 95% or higher. Coverages
below 90% are considered undesirable.

3. Confidence interval length. The length of the 95% confidence is an indi-
cator of statistical efficiency. The length should be as small as possible,
but not so small that coverage falls below 95%.
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Section 3.2.3 shows how these quantities can be calculated.

2.6 When to use multiple imputation

Should we always use multiple imputation for the missing data? We prob-
ably could, but there are good alternatives in some situations. Section 1.6
already discussed some approaches not covered in this book, each of which
has its merits. This section revisits complete case analysis. Apart from be-
ing simple to apply, it can be a viable alternative to multiple imputation in
particular situations.

Suppose that the complete data model is a regression with outcome Y
and predictors X. If the missing data occur in Y only, complete case analysis
and multiple imputation are equivalent, so then complete case analysis may be
preferred. Multiple imputation gains an advantage over complete case analysis
if additional predictors for Y are available that are not part of X.

Under MCAR, complete case analysis is unbiased. It is also efficient if the
missing data occur in Y only. Efficiency of complete case analysis declines if
X contains missing values, which may result in inflated type II error rates.
Complete case analysis can perform quite badly under MAR and some MNAR
cases (Schafer and Graham, 2002), but there are two special cases where it
can outperform multiple imputation.

The first special case occurs if the probability to be missing does not de-
pend on Y . Under the assumption that the complete data model is correct,
the regression coefficients are free of bias (Glynn and Laird, 1986; Little, 1992;
King et al., 2001). This holds for any type of regression analysis, and for miss-
ing data in both Y and X. Since the missing data rate may depend on X,
complete case analysis will in fact work in a relevant class of MNAR models.
White and Carlin (2010) confirmed the superiority of complete case analysis by
simulation. The differences were often small, and multiple imputation gained
the upper hand as more predictive variables were included. The property is
useful though in practice.

The second special case holds only if the complete data model is logistic
regression. Suppose that the missing data are confined to either a dichotomous
Y or to X, but not to both. Assuming that the model is correctly specified, the
regression coefficients (except the intercept) are unbiased if only the complete
cases are analyzed as long as the probability to be missing depends only on
Y and not on X (Vach, 1994). This property provides the statistical basis of
the estimation of the odds ratio from case-control studies in epidemiology. If
missing data occur in both Y and X the property does not hold.

At a minimum, application of listwise deletion should be a conscious de-
cision of the analyst, and should preferably be accompanied by an explicit
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statement that the missing data fit in one of the three categories described
above.

2.7 How many imputations?

One of the distinct advantages of multiple imputation is that it can produce
unbiased estimates with correct confidence intervals with a low number of
imputed datasets, even as low as m = 2. Multiple imputation is able to work
with low m since it enlarges the between-imputation variance B by a factor
1/m before calculating the total variance in T = Ū + (1 +m−1)B.

The classic advice is to use a low number of imputation, somewhere be-
tween 3 and 5 for moderate amounts of missing information. Several authors
have recently looked at the influence of m on various aspects of the results.
The picture emerging from this work is that it could be beneficial to set m
higher, somewhere in the range of 20–100 imputations. This section reviews
the relevant work in the area.

The advice for low m rests on the following argument. Multiple imputation
is a simulation technique, and hence Q̄ and its variance estimate T are subject
to simulation error. Setting m = ∞ causes all simulation error to disappear,
so T∞ < Tm if m < ∞. The question is when T∞ is close enough to Tm.
(Rubin, 1987a, p. 114) showed that the two variances are related by

Tm =
(

1 +
γ0

m

)
T∞ (2.38)

where γ0 is the (true) population fraction of missing information. This quantity
is equal to the expected fraction of observations missing if Y is a single variable
without covariates, and commonly less than this if there are covariates that
predict Y . For example, for γ0 = 0.3 (e.g., a single variable with 30% missing)
and m = 5 we find that the calculated variance Tm is 1 + 0.3/5 = 1.06 times
(i.e., 6%) larger than the ideal variance T∞. The corresponding confidence
interval would thus be

√
1.06 = 1.03 (i.e., 3%) longer than the ideal confidence

interval based onm =∞. Increasingm to 10 or 20 would bring the factor down
1.5% and 0.7%, respectively. The argument is that “the additional resources
that would be required to create and store more than a few imputations would
not be well spent” (Schafer, 1997, p. 107), and “in most situations there is
simply little advantage to producing and analyzing more than a few imputed
datasets” (Schafer and Olsen, 1998, p. 549).

Royston (2004) observed that the length of the confidence interval also
depends on ν, and thus on m (cf. Equation 2.30). He suggested to base the
criterion for m on the confidence coefficient tν

√
T , and proposed that the

coefficient of variation of ln(tν
√
T ) should be smaller than 0.05. This effectively
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constrains the range of uncertainty about the confidence interval to roughly
within 10%. This rule requires m to be “at least 20 and possibly more.”

Graham et al. (2007) investigated the effect of m on the statistical power of
a test for detecting a small effect size (<0.1). Their advice is to set m high in
applications where high statistical power is needed. For example, for γ0 = 0.3
and m = 5 the statistical power obtained is 73.1% instead of the theoretical
value of 78.4%. We need m = 20 to increase the power to 78.2%. In order to
have an attained power within 1% of the theoretical power, then for fractions
of missing information γ = (0.1, 0.3, 0.5, 0.7, 0.9) we need to set m = (20, 20,
40, 100, >100), respectively.

Bodner (2008) explored the variability of three quantities under various m:
the width of the 95% confidence interval, the p-value, and λ, the proportion
of variance attributable to the missing data. Bodner selected m such that the
width of the 95% confidence interval is within 10% of its true value 95% of the
time. For λ = (0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9), he recommends m = (3, 6, 12,
24, 59, 114, 258), respectively. Since the true λ is unknown, Bodner suggested
the proportion of complete cases as a conservative estimate of λ.

The starting point of White et al. (2011b) is that all essential quantities
in the analysis should be reproducible within some limit, including confidence
intervals, p-values and estimates of the fraction of missing information. They
take a quote from Von Hippel (2009) as a rule of thumb: the number of impu-
tations should be similar to the percentage of cases that are incomplete. This
rule applies to fractions of missing information of up to 0.5. If m ≈ 100λ, the
following properties will hold for a parameter β:

1. The Monte Carlo error of β̂ is approximately 10% of its standard error;

2. The Monte Carlo error of the test statistic β̂/se(β̂) is approximately 0.1;

3. The Monte Carlo error of the p-value is approximately 0.01 when the
true p-value is 0.05.

White et al. (2011b) suggest these criteria provide an adequate level of repro-
ducibility in practice.

The idea of reproducibility is sensible, the rule is simple to apply, so there
is much to commend it. One potential difficulty might be that the percentage
of complete cases is sensitive to the number of variables in the data. If we
extend the active dataset by adding more variables, then the percentage of
complete cases can only drop. An alternative would be to use the average
missing data rate as a less conservative estimate. More experience is needed
for how well rules like these work in practice.

Theoretically it is always better to use higher m, but this involves more
computation and storage. Setting m high may not be worth the extra wait.
Imputing a dataset in practice often involves trial and error to adapt and
refine the imputation model. Such initial explorations do not require large m.
It is convenient to set m = 5 during model building, and increase m only
after being satisfied with the model for the “final” round of imputation. So
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if calculation is not prohibitive, we may set m to the average percentage of
missing data. The substantive conclusions are unlikely to change as a result
of raising m beyond m = 5.

2.8 Exercises

1. Nomogram. Construct a graphic representation of Equation 2.27 that al-
lows the user to convert λ and γ for different values of ν. What influence
does ν have on the relation between λ and γ?

2. Models. Explain the difference between the response model and the im-
putation model.

3. Listwise deletion. In the airquality data, predict Ozone from Wind and
Temp. Now randomly delete the half of the wind data above 10 mph, and
randomly delete half of the temperature data above 80◦F.

(a) Are the data MCAR, MAR or MNAR?

(b) Refit the model under listwise deletion. Do you notice a change in
the estimates? What happens to the standard errors?

(c) Would you conclude that listwise deletion provides valid results
here?

(d) If you add a quadratic term to the model, would that alter your
conclusion?

4. Number of imputations. Consider the nhanes dataset in mice.

(a) Use the functions ccn() to calculate the number of complete cases.
What percentage of the cases is incomplete?

(b) Impute the data with mice using the defaults with seed=1, predict
bmi from age, hyp and chl by the normal linear regression model,
and pool the results. What are the proportions of variance due to
the missing data for each parameter? Which parameters appear to
be most affected by the nonresponse?

(c) Repeat the analysis for seed=2 and seed=3. Do the conclusions
remain the same?

(d) Repeat the analysis with m = 50 with the same seeds. Would you
prefer this analysis over those with m = 5? Explain why.

5. Number of imputations (continued). Continue with the data from the
previous exercise.
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(a) Write an R function that automates the calculations of the previ-
ous exercise. Let seed run from 1 to 100 and let m take on values
m=c(3,5,10,20,30,40,50,100, 200).

(b) Plot the estimated proportions of explained variance due to missing
data for the age-parameter against m. Based on this graph, how
many imputations would you advise?

(c) Check White’s conditions 1 and 2 (cf. Section 2.7). For which m do
these conditions true?

(d) Does this also hold for categorical data? Use the nhanes2 to study
this.

6. Automated choice of m. Write an R function that implements the meth-
ods discussed in Section 2.7.



Chapter 3

Univariate missing data

Chapter 2 described the theory of multiple imputation. This chapter looks
into ways of creating the actual imputations. In order to avoid unnecessary
complexities at this point, the text is restricted to univariate missing data. The
incomplete variable is called the target variable. Thus, in this chapter there is
only one variable with missing values. The consequences of the missing data
depend on the role of the target variables within the complete data model
that is applied to the imputed data.

There are many ways to create imputations, but only a few of those lead to
valid statistical inferences. This chapter outlines ways to check the correctness
of a procedure, and how this works out for selected procedures. Most of the
methods are designed to work under the assumption that the relations within
the missing parts are similar to those in the observed parts, or more technically,
the assumption of ignorability. The chapter closes with a description of some
alternatives of what we might do when that assumption is suspect.

3.1 How to generate multiple imputations

This section illustrates five ways to create imputations for a single incom-
plete continuous target variable. We use dataset number 88 in Hand et al.
(1994), which is also part of the MASS library under the name whiteside.
Mr. Whiteside of the UK Building Research Station recorded the weekly gas
consumption (in 1000 cubic feet) and average external temperature (in ◦C) at
his own house in south-east England for two heating seasons (1960 and 1961).
The house thermostat was set at 20◦C throughout.

Figure 3.1a plots the observed data. More gas is needed in colder weeks,
so there is an obvious relation in the data. The dataset is complete, but for
the sake of argument suppose that the gas consumption in row 47 of the data
is missing. The temperature at this deleted observation is equal to 5◦C. How
would we create multiple imputations for the missing gas consumption?

53



54 Flexible Imputation of Missing Data

0 2 4 6 8 10

2
3

4
5

6
7

Temperature (°C)

G
as

 c
on

su
m

pt
io

n 
(c

ub
ic

 fe
et

)

deleted observation

a

0 2 4 6 8 10

2
3

4
5

6
7

Temperature (°C)
G

as
 c

on
su

m
pt

io
n 

(c
ub

ic
 fe

et
)

b

0 2 4 6 8 10

2
3

4
5

6
7

Temperature (°C)

G
as

 c
on

su
m

pt
io

n 
(c

ub
ic

 fe
et

) c

0 2 4 6 8 10

2
3

4
5

6
7

Temperature (°C)

G
as

 c
on

su
m

pt
io

n 
(c

ub
ic

 fe
et

)

d

0 2 4 6 8 10

2
3

4
5

6
7

Temperature (°C)

G
as

 c
on

su
m

pt
io

n 
(c

ub
ic

 fe
et

)

before insulation
after insulation

e

0 2 4 6 8 10

2
3

4
5

6
7

Temperature (°C)

G
as

 c
on

su
m

pt
io

n 
(c

ub
ic

 fe
et

)

before insulation
after insulation

f

Figure 3.1: Five ways to impute missing gas consumption for a temperature
of 5◦C: (a) no imputation; (b) predict; (c) predict + noise; (d) predict + noise
+ parameter uncertainty; (e) two predictors; (f) drawing from observed data.
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3.1.1 Predict method

A first possibility is to calculate the regression line, and take the imputation
from the regression line. The estimated regression line is equal to y = 5.49−
0.29x, so the value at x = 5 is 5.49 − 0.29 × 5 = 4.04. Figure 3.1b shows
where the imputed value is. This is actually the “best” value in the sense that
it is the most likely one under the regression model. However, even the best
value may differ from the actual (unknown) value. In fact, we are uncertain
about the true gas consumption. Predicted values, however, do not portray
this uncertainty, and therefore cannot be used as multiple imputations.

3.1.2 Predict + noise method

We can improve upon the prediction method by adding an appropriate
amount of random noise to the predicted value. Let us assume that the ob-
served data are normally distributed around the regression line. The estimated
standard deviation in the Whiteside data is equal to 0.86 cubic feet. The idea
is now to draw a random value from a normal distribution with a mean of zero
and a standard deviation of 0.86, and add this value to the predicted value.
The underlying assumption is that the distribution of gas consumption of the
incomplete observation is identical to that in the complete cases.

We can repeat the draws to get multiple synthetic values around the re-
gression line. Figure 3.1c illustrates five such drawn values. On average, the
synthetic values will be equal to the predicted value. The variability in the
values reflects that fact that we cannot accurately predict gas consumption
from temperature.

3.1.3 Predict + noise + parameter uncertainty

Adding noise is a major step forward, but not quite right. The method in
the previous section requires that the intercept, the slope and the standard
deviation of the residuals are known. However, the values of these parameters
are typically unknown, and hence must be estimated from the data. If we had
drawn a different sample from the same population, then our estimates for the
intercept, slope and standard deviation would be different, perhaps slightly.
The amount of extra variability is strongly related to the sample size, with
smaller samples yielding more variable estimates.

The parameter uncertainty also needs to be included in the imputations.
There are two main methods for doing so. Bayesian methods draw the param-
eters directly from their posterior distributions, whereas bootstrap methods
resample the observed data and re-estimate the parameters from the resam-
pled data.

Figure 3.1d shows five sampled regression lines calculated by the Bayesian
method. Imputed values are now defined as the predicted value of the sampled
line added with noise, as in Section 3.1.2.
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3.1.4 A second predictor

The dataset actually contains a second predictor that indicates whether
the house was insulated or not. Incorporating this extra information reduces
the uncertainty of the imputed values.

Figure 3.1e shows the same data, but now flagged according to insulation
status. Two regression lines are shown, one for the insulated houses and the
other for the non-insulated houses. It is clear that less gas is needed after
insulation. Suppose we know that the external temperature is 5◦C and that
the house was insulated. How do we create multiple imputation given these
two predictors?

We apply the same method as in Section 3.1.3, but now using the regression
line for the insulated houses. Figure 3.1e shows the five values drawn for this
method. As expected, the distribution of the imputed gas consumption has
shifted downward. Moreover, its variability is lower, reflecting that fact that
gas consumption can be predicted more accurately as insulation status is also
known.

3.1.5 Drawing from the observed data

Figure 3.1f illustrates an alternative method to create imputations. As
before, we calculate the predicted value at 5◦C for an insulated house, but
now select a small number of candidate donors from the observed data. The
selection is done such that the predicted values are close. We then randomly
select one donor from the candidates, and use the observed gas consumption
that belongs to that donor as the synthetic value. The figure illustrates the
candidate donors, not the imputations.

This method is known as predictive mean matching, and always finds values
that have been actually observed in the data. The underlying assumption is
that within the group of candidate donors gas consumption has the same
distribution in donors and receivers. The variability between the imputations
over repeated draws is again a reflection of the uncertainty of the actual value.

3.1.6 Conclusion

In summary, prediction methods are not suitable to create multiple im-
putations. Both the inherent prediction error and the parameter uncertainty
should be incorporated into the imputations. Adding a relevant extra predic-
tor reduces the amount of uncertainty, and leads to more efficient estimates
later on. The text also highlights an alternative that draws imputations from
the observed data. The imputation methods discussed in this chapter are all
variations on this basic idea.
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3.2 Imputation under the normal linear normal

3.2.1 Overview

For univariate Y we write lowercase y for Y . Any predictors in the impu-
tation model are collected in X. Symbol Xobs indicates the subset of n1 rows
of X for which y is observed, and Xmis is the complementing subset of n0 rows
of X for which y is missing. The vector containing the n1 observed data in y
is denoted by yobs, and the vector of n0 imputed values in y is indicated by
ẏ. This section reviews four different ways of creating imputations under the
normal linear model. The four methods are:

1. Predict. ẏ = β̂0 + Xmisβ̂1, where β̂0 and β̂1 are least squares estimates
calculated from the observed data. Section 1.3.4 named this regression
imputation. In mice this method is available as "norm.predict".

2. Predict + noise. ẏ = β̂0+Xmisβ̂1+ε̇, where ε̇ is randomly drawn from the
normal distribution as ε̇ ∼ N(0, σ̂2). Section 1.3.5 named this stochastic
regression imputation. In mice this method is available as "norm.nob".

3. Bayesian multiple imputation. ẏ = β̇0 +Xmisβ̇1 + ε̇, where ε̇ ∼ N(0, σ̇2)
and β̇0, β̇1 and σ̇ are random draws from their posterior distribution,
given the data. Section 3.1.3 named this “predict + noise + parameters
uncertainty.” The method is available as "norm".

4. Bootstrap multiple imputation. ẏ = β̇0 +Xmisβ̇1 + ε̇, where ε̇ ∼ N(0, σ̇2),
and where β̇0, β̇1 and σ̇ are the least squares estimates calculated from
a bootstrap sample taken from the observed data. This is an alterna-
tive way to implement “predict + noise + parameters uncertainty.” The
method is available as "norm.boot".

3.2.2 Algorithms ♠

The calculations of the first two methods are straightforward and do not
need further explanation. This section describes the algorithms used to in-
troduce sampling variability into the parameters estimates of the imputation
model.

The Bayesian method draws β̇0, β̇1 and σ̇ from their respective posterior
distributions. Box and Tiao (1973, section 2.7) explains the Bayesian theory
behind the normal linear model. We use the method that draws imputations
under the normal linear model using the standard non-informative priors for
each of the parameters. Given these priors, the required inputs are:

• yobs, the n1 × 1 vector of observed data in the incomplete (or target)
variable y;
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Algorithm 3.1: Bayesian imputation under the normal linear model.♠

1. Calculate the cross-product matrix S = X ′obsXobs.

2. Calculate V = (S + diag(S)κ)−1, with some small κ.

3. Calculate regression weights β̂ = V X ′obsyobs.

4. Draw a random variable ġ ∼ χ2
ν with ν = n1 − q.

5. Calculate σ̇2 = (yobs −Xobsβ̂)′(yobs −Xobsβ̂)/ġ.

6. Draw q independent N(0, 1) variates in vector ż1.

7. Calculate V 1/2 by Cholesky decomposition.

8. Calculate β̇ = β̂ + σ̇ż1V
1/2.

9. Draw n0 independent N(0, 1) variates in vector ż2.

10. Calculate the n0 values ẏ = Xmisβ̇ + ż2σ̇.

• Xobs, the n1 × q matrix of predictors of rows with observed data in y;

• Xmis, the n0 × q matrix of predictors of rows with missing data in y.

The algorithm assumes that both Xobs and Xmis contain no missing values.
Chapter 4 deals with the case where Xobs and Xmis also could be incomplete.

Algorithm 3.1 is adapted from Rubin (1987a, p. 167), and is implemented
in the function mice.impute.norm() of the mice package. Any drawn values
are identified with a dot above the symbol, so β̇ is a value of β drawn from
the posterior distribution. The algorithm uses a ridge parameter κ to evade
problems with singular matrices. This number should be set to a positive
number close to zero, e.g., κ = 0.0001. For some data, larger κ may be needed.
High values of κ, e.g., κ = 0.1, may introduce a systematic bias toward the
null, and should thus be avoided.

The bootstrap is a general method for estimating sampling variability
through resampling the data (Efron and Tibshirani, 1993). Algorithm 3.2
calculates univariate imputations by drawing a bootstrap sample from the
complete part of the data, and subsequently takes the least squares estimates
given the bootstrap sample as a “draw” that incorporates sampling variability
into the parameters (Heitjan and Little, 1991). Compared to the Bayesian
method, the bootstrap method avoids the Choleski decomposition and does
not need to draw from the χ2-distribution.
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Algorithm 3.2: Imputation under the normal linear model with bootstrap.♠

1. Draw a bootstrap sample (ẏobs, Ẋobs) of size n1 from (yobs, Xobs).

2. Calculate the cross-product matrix Ṡ = Ẋ ′obsẊobs.

3. Calculate V̇ = (Ṡ + diag(Ṡ)κ)−1, with some small κ.

4. Calculate regression weights β̇ = V̇ Ẋ ′obsẏobs.

5. Calculate σ̇2 = (ẏobs − Ẋobsβ̇)′(ẏobs − Ẋobsβ̇)/(n1 − q − 1).

6. Draw n0 independent N(0, 1) variates in vector ż2.

7. Calculate the n0 values ẏ = Xmisβ̇ + ż2σ̇.

3.2.3 Performance

Which of these four imputation methods of Section 3.2 is best? In order
to find out we conduct a small simulation experiment in which we calculate
the bias, coverage and average confidence interval width for each method. We
keep close to the original data by assuming that β0 = 5.49, β1 = −0.29 and
σ = 0.86 are the population values. These values are used to generate artificial
data with known properties.

In R we create a small function createdata() that randomly draws arti-
ficial data from a linear model with given parameters:

> ### create data

> createdata <- function(beta0=5.49, beta1=-0.29, sigma=0.86,

n=50, mx=5, sdx=3) {

x <- round(rnorm(n,mean=mx,sd=sdx),1)

eps <- rnorm(n,mean=0,sd=sigma)

y <- round(beta0 + x * beta1 + eps, 1)

return(data.frame(x=x, y=y))

}

The values mx and sdx were chosen to mimic the variation in temperature
in the whiteside data. Rounding is applied to get close to the actual data,
but is not strictly needed.

The next step is to create missing data. Here we use a simple random
missing data mechanism (MCAR) to create approximately 50% of missing
random data. The percentage of missing data is set high to get a clear picture
of the properties of each method.

> ### make 50% random missing data

> makemissing <- function(data, p=0.5){
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rx <- rbinom(nrow(data), 1, p)

data[rx==0,"y"] <- NA

return(data)

}

A next piece is a small test function that calls mice() and calculates various
statistics of interest. We concentrate on the slope parameter β1 of the regres-
sion line, but we could have equally opted for β0 or σ. We specify ridge=0 to
set the ridge parameter κ to zero, and thus get an unbiased estimate, and set
the default number of imputations to m = 5.

> ### test function for three imputation functions

> test.impute <- function(data, m=5, method="norm", ...){

imp <- mice(data, method=method, m=m, print=FALSE,

ridge=0, ...)

fit <- with(imp, lm(y~x))

est <- pool(fit)

tab <- summary(est)

return(tab["x",c("est","se","lo 95","hi 95","fmi",

"lambda")])

}

The following function puts everything together:

> simulate <- function(nsim=10, seed=41872){

set.seed(seed)

res <- array(NA,dim=c(4, nsim, 6))

dimnames(res) <- list(c("predict","pred + noise",

"Bayes MI","boot MI"),

as.character(1:10000),

c("est","se","lo 95","hi 95","fmi",

"lambda"))

im <- c("norm.predict","norm.nob","norm","norm.boot")

for(i in 1:nsim){

data <- createdata()

data <- makemissing(data)

res[1,i,] <- test.impute(data, method=im[1], m=2)

res[2,i,] <- test.impute(data, method=im[2])

res[3,i,] <- test.impute(data, method=im[3])

res[4,i,] <- test.impute(data, method=im[4])

}

return(res)

}

Performing 10000 simulations is now done by calling simulate(), thus

> res <- simulate(10000)
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Some postprocessing of the results is needed to calculate the statistics of in-
terest. The means of the six outcomes per method are calculated as

> apply(res,c(1,3),mean,na.rm=TRUE)

est se lo 95 hi 95 fmi lambda

predict -0.289 0.0285 -0.346 -0.232 0.0407 0.000

pred + noise -0.289 0.0522 -0.402 -0.176 0.4086 0.343

Bayes MI -0.289 0.0646 -0.446 -0.133 0.5694 0.499

boot MI -0.289 0.0621 -0.442 -0.136 0.5636 0.494

This code uses the apply() function on the three-dimensional array res that
contains the simulation results. The bias of β1 per method is calculated as the
average deviation from the true value β1 = −0.29 by

> # bias of beta1

> true <- -0.29

> bias <- rowMeans(res[,,1] - true)

> bias

predict pred + noise Bayes MI boot MI

0.000809 0.000607 0.000462 0.001043

The coverage is calculated as the percentage that the true β1 is within the
95% confidence interval by

> isin <- res[,,3] < true & true < res[,,4]

> cov <- rowMeans(isin)

> cov

predict pred + noise Bayes MI boot MI

0.654 0.907 0.951 0.944

The average width of the 95% confidence interval for β1 is calculated by

> intwidth <- res[,,4] - res[,,3]

> aiw <- rowMeans(intwidth)

> aiw

predict pred + noise Bayes MI boot MI

0.115 0.226 0.313 0.306

Table 3.1 summarizes the results. The predict method produces an unbi-
ased estimate, but its confidence interval is much too short, leading to substan-
tial undercoverage and p-values that are “too significant.” This result clearly
illustrates the problems already noted in Section 2.5.1. The “predict + noise”
method performs better, but the coverage of 0.907 is too low. However, both
the Bayesian and bootstap methods are correct, with very few differences be-
tween them. Also, the λ parameter estimated by both is close to 0.50, which
is the correct result.
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Table 3.1: Missing y—properties of β1 under imputation of missing y by four
methods for the normal linear model (nsim = 10000)

Method Bias Coverage CI Width γ̂ λ̂
Predict .001 .654 .115 .041 .000
Predict+noise .001 .907 .226 .409 .343
Bayesian MI .000 .951 .313 .569 .499
Bootstrap MI .001 .944 .306 .564 .494

CCA .001 .951 .250

Table 3.2: Missing x—properties of β1 under imputation of missing x by four
methods for the normal linear model (nsim = 10000)

Method Bias Coverage CI Width γ̂ λ̂
Predict −.101 .361 .161 .041 .000
Predict+noise .001 .928 .202 .287 .230
Bayesian MI .008 .955 .254 .459 .391
Bootstrap MI −.001 .948 .238 .410 .345

CCA −.001 .951 .250

For comparison, the table also include the results of complete case analysis
(CCA). Complete case analysis is a correct analysis here (Little and Rubin,
2002). In fact, it is the most efficient choice for this problem as it yields the
shortest confidence interval (cf. Section 2.6). This result does not hold more
generally, however. In realistic situations involving more covariates multiple
imputation will rapidly catch up and pass complete case analysis.

While the “predict” method is simple and fast, the variance estimate is
too low. Various methods have been proposed to correct the variance (Lee
et al., 1994; Fay, 1996; Rao, 1996; Schafer and Schenker, 2000). Though such
methods require special adaptation of formulas to calculate the variance, they
may be useful when the missing data are restricted to the outcome.

It is straightforward to adapt the simulations to other, perhaps more inter-
esting situations. For example, we could investigate the effect of missing data
in the explanatory x instead of the outcome variable by changing the function
makemissing() and rerun the simulations. Table 3.2 displays the results. The
“predict” method is now severely biased, whereas the other methods remain
unbiased. The confidence interval of “predict+noise” is still too short, but less
than in Table 3.1. The Bayesian and bootstrap methods are both correct, in
the sense that they are unbiased and have appropriate coverage. It seems that
the bootstrap method is slightly more efficient, but a direct comparison is
difficult because the coverages differ.

We could increase the number of explanatory variables and the number of
imputations m to see how much the average confidence interval width would
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shrink. It is also easy to apply more interesting missing data mechanisms,
such as those discussed in Section 3.2.4. Data can be generated from skewed
distributions, the sample size n can be varied and so on. Much simulation
work is available (Rubin and Schenker, 1986b; Rubin, 1987a).

3.2.4 Generating MAR missing data

Just making random missing data is not always interesting. We obtain
more informative simulations if the missingness probability is a function of the
observed, and possibly of the unobserved, information. This section considers
some methods for creating univariate missing data. These could form building
blocks for missing data generation in a multivariate context by combining
them. See Van Buuren et al. (2006, appendix B) for details.

Let us first consider three methods to create missing data in artificial data.
The data are generated as 1000 draws from the bivariate normal distribution
P (Y1, Y2) with means µ1 = µ2 = 5, variances σ2

1 = σ2
2 = 1, and covariance

σ12 = 0.6. We assume that all values generated are positive. Missing data in
Y2 can be created in many ways. Let R2 be the response indicator for Y2. We
study three examples, each of which affects the distribution in different ways:

MARRIGHT : logit(Pr(R2 = 0)) = −5 + Y1 (3.1)

MARMID : logit(Pr(R2 = 0)) = 0.75− |Y1 − 5| (3.2)

MARTAIL : logit(Pr(R2 = 0)) = −0.75 + |Y1 − 5| (3.3)

where logit(p) = log(p) − log(1 − p) with 0 ≤ p ≤ 1 is the logit function. Its
inverse logit−1(x) = exp(x)/(1 + exp(x)) is known as the logistic function.

Generating missing data under these models in R can be done in three steps:
calculate the missingness probability of each data point, make a random draw
from the binomial distribution, and set the corresponding observations to NA.
The following script creates missing data according to MARRIGHT:

> logistic <- function(x) exp(x)/(1+exp(x))

> set.seed(32881)

> n <- 10000

> y <- mvrnorm(n=n,mu=c(5,5),Sigma=matrix(c(1,0.6,0.6,1),

nrow=2))

> p2.marright <- 1 - logistic(-5 + y[,1])

> r2.marright <- rbinom(n, 1, p2.marright)

> yobs <- y

> yobs[r2.marright==0, 2] <- NA

Figure 3.2 displays the probability of being missing under the three MAR
mechanisms. All mechanisms yield approximately 50% of missing data, but
do so in very different ways.
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Figure 3.2: Probability that Y2 is missing as a function of the values of Y1

under three models for the missing data.

Figure 3.3 displays the distributions of Y2 under the three models. MAR-
RIGHT deletes more high values, so the distribution of the observed data
shifts to the left. MARMID deletes more data in the center, so the variance of
the observed data grows, but the mean is not affected. MARTAIL shows the
reverse effect. The variance of observed data reduces because of the missing
data.

These mechanisms are more extreme than we are likely to see in practice.
Not only is there a strong relation between Y1 and R2, but the percentage of
missing data is also quite high (50%). On the other hand, if methods perform
well under these data deletion schemes, they will also do so in less extreme
situations that are more likely to be encountered in practice.

The objective of Exercise 3.1 is to study the behavior of the four imputation
methods under these missing data mechanisms.

3.2.5 Conclusion

Based on Tables 3.1 and 3.2 both the “predict” and “predict + noise”
methods fail in terms of underestimating the variance. If the missing data
occur in y only, then it is possible to correct the variance formulas of the
“predict” method. However, when the missing data occur in X, the “predict”
method is severely biased, so then variance correction is not useful. The two
methods that account for the uncertainty of the imputation model provide
statistically correct inferences. For missing y, the efficiency of these methods
is less than theoretically possible, presumably due to simulation error. If the
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Figure 3.3: Box plot of Y2 separated for the observed and missing parts under
three models for the missing data based on n = 10000.

missing data occur in X, multiple imputation may be more efficient than
complete case analysis (see also Section 2.6).

It is always better to include parameter uncertainty, either by the Bayesian
or the bootstrap method. The effect of doing so will diminish with increasing
sample size (Exercise 2), so for estimates based on a large sample one may opt
for the simpler “predict + noise” method. Note that in subgroup analyses, the
large-sample requirement applies to the subgroup size, and not to the total
sample size.

3.3 Imputation under non-normal distributions

3.3.1 Overview

The imputation methods discussed in Section 3.2 produce imputations
drawn from a normal distribution. In practice the data could be skewed, long
tailed, non-negative, bimodal or rounded, to name some deviations from nor-
mality. This creates an obvious mismatch between observed and imputed data
which could adversely affect the estimates of interest.

The effect of non-normality is generally small for measures that rely on
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the center of the distribution, like means or regression weights, but it could be
substantial for estimates like a variance or a percentile. In general, normal im-
putations appear to be robust against violations of normality. Demirtas et al.
(2008) found that flatness of the density, heavy tails, non-zero peakedness,
skewness and multimodality do not appear to hamper the good performance
of multiple imputation for the mean structure in samples n > 400, even for
high percentages (75%) of missing data in one variable. The variance param-
eter is more critical though, and could be off-target in smaller samples.

A sensible approach is to transform the data toward normality before im-
putation, and back-transform them after imputation. A beneficial side effect
of transformation is that the relation between x and y may become closer
to a linear relation. Sometimes applying a simple function to the data, like
the logarithmic or inverse transform, is all that is needed. More generally, the
transformation could be made to depend on known covariates like age and
sex, for example as done in the LMS model (Cole and Green, 1992) or the
GAMLSS model (Rigby and Stasinopoulos, 2005).

It is also possible to directly draw imputations from non-normal distri-
butions. Liu (1995) proposed methods for drawing imputations under the t-
distribution instead of the normal. He and Raghunathan (2006) created impu-
tations by drawing from Tukey’s gh-distribution, which can take many shapes.
Demirtas and Hedeker (2008a) investigated the behavior of methods for draw-
ing imputation from the Beta and Weibull distributions. Likewise, Demirtas
and Hedeker (2008b) took draws from Fleishman polynomials, which allows
for combinations of left and right skewness with platykurtic and leptokurtic
distributions.

3.3.2 Imputation from the t-distribution ♠

Though it is not standard functionality, some methods for non-normal data
can be used in mice by calling the gamlss() function. The gamlss package
(Stasinopoulos and Rigby, 2007) contains over 60 built-in distributions. Each
of these comes with a function to draw random variates. One may construct a
new univariate imputation function that calls gamlss() to do the fitting and
the imputation.

We illustrate this by creating a function with a residual t-distribution
instead of the normal. The t-distribution is favored for more robust statistical
modeling in a variety of settings (Lange et al., 1989). Extending to other
distributions than the t-distribution and building more complicated gamlss

imputation models can be done along the same lines.

> mice.impute.TF <- function(y, ry, x,

gamlss.trace = FALSE, ...)

{

require(gamlss)
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# prepare data

xobs <- x[ry, , drop = FALSE]

xmis <- x[!ry, , drop = FALSE]

yobs <- y[ry]

n1 <- sum(ry)

n0 <- sum(!ry)

# draw bootstrap sample

s <- sample(n1, n1, replace = TRUE)

dotxobs <- xobs[s, , drop = FALSE]

dotyobs <- yobs[s]

dotxy <- data.frame(dotxobs, y = dotyobs)

# fit the gamlss model

fit <- gamlss(y ~ ., data = dotxy, family = TF,

trace = gamlss.trace, ...)

yhat <- predict(fit, data=dotxy, newdata = xmis)

sigma <- exp(coef(fit, "sigma"))

nu <- exp(coef(fit, "nu"))

# draw the imputations

return(rTF(n0, yhat, sigma, nu))

}

>

3.3.3 Example ♠

Van Buuren and Fredriks (2001) observed unexplained kurtosis in the dis-
tribution of head circumference in children. Rigby and Stasinopoulos (2006)
fitted a t-distribution to these data, and observed a substantial improvement
of the fit.

Figure 3.4 plots the data for Dutch boys aged 1–2 years. Due to the pres-
ence of several outliers, the t distribution with 6.7 degrees of freedom fits the
data substantially better than the normal distribution (Akaike Information
Criterion (AIC): 2974.5 (normal model) versus 2904.3 (t-distribution). If the
outliers are genuine data, then the t-distribution should provide imputations
that are more realistic than the normal.

We create a synthetic dataset by imputing head circumference of the same
755 boys. Imputation is easily done with the following steps: append the data
with a duplicate, create missing data in hc and run mice() calling our newly
programmed TF method as follows:

> library(gamlss)

> data(db)

> data <- subset(db, age>1&age<2, c("age","head"))
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Figure 3.4: Measured head circumference of 755 Dutch boys aged 1–2 years
(Fredriks et al., 2000a).

> names(data) <- c("age","hc")

> synthetic <- rep(c(FALSE,TRUE), each=nrow(data))

> data2 <- rbind(data, data)

> data2[synthetic,"hc"] <- NA

> imp <- mice(data2, m=1, meth="TF", seed=36650, print=FALSE)

> syn <- subset(complete(imp), synthetic)

Figure 3.5 is the equivalent of Figure 3.4, but now calculated from the
synthetic data. Both configurations are similar. As expected, some outliers also
occur in the imputed data. There are some small differences. The estimated
degrees of freedom varies over replications, and hovers around the value of 6.7
estimated from the observed data. For this replication, it is somewhat lower
(4.4). Moreover, it appears that the distribution of the imputed data is slightly
more “well behaved” than in the observed data. The typical rounding patterns
seen in the real measurements are not present in the imputed data. Though
these are small differences, they may be of relevance in particular analyses.

3.4 Predictive mean matching

3.4.1 Overview

Predictive mean matching subsamples from the observed data. The method
calculates the predicted value of target variable Y according to the specified
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Figure 3.5: Fully synthetic data of head circumference of 755 Dutch boys
aged 1–2 years using a t-distribution.

imputation model. For each missing entry, the method forms a small set of
candidate donors (typically with 1, 3 or 10 members) from all complete cases
that have predicted values close to the predicted value for the missing entry.
A random draw is made among the candidates, and the observed value of
the donors is taken to replace the missing value. The assumption made is
that within each set, the receivers’ data follows the same distribution as the
candidates’ data.

Predictive mean matching is an easy-to-use and versatile method. It is
fairly robust to transformations of the target variable, so imputing log(Y )
often yields results similar to imputing exp(Y ). The method also allows for
discrete target variables. Imputations are based on values observed elsewhere,
so they are realistic. Imputations outside the observed data range will not
occur, thus evading problems with meaningless imputations (e.g., negative
body height). The model is implicit (Little and Rubin, 2002), which means
that there is no need to define an explicit model for the distribution of the
missing values. Because of this, predictive mean matching is less vulnerable
to model misspecification than the methods discussed in Sections 3.2 and 3.3.

Figure 3.6 illustrates the robustness of predictive mean matching relative to
the normal model. The figure displays the body mass index (BMI) of children
aged 0–2 years. BMI rapidly increases during the first half year of life, has
a peak around 1 year and then slowly drops at ages when the children start
to walk. The imputation model is, however, incorrectly specified, being linear
in age. Imputations created under the normal model display in an incorrect
slowly rising pattern, and contain several implausible values. In contrast, the
imputations created by predictive mean matching follow the data quite nicely,
even though the predictive mean itself is clearly off-target for some of the
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Figure 3.6: Robustness of predictive mean matching (right) relative to im-
putation under the linear normal model (left).

ages. This example shows that predictive mean matching is robust against
misspecification, where the normal model is not.

Predictive mean matching is an example of a hot deck method, where
values are imputed using values from the complete cases matched with respect
to some metric. The expression“hot deck” literally refers to a pack of computer
control cards containing the data of the cases that are in some sense close.
Reviews of hot deck methods can be found in Ford (1983), Brick and Kalton
(1996), Koller-Meinfelder (2009), Andridge and Little (2010) and De Waal
et al. (2011, pp. 249–255, 349–355).

3.4.2 Computational details ♠

Various metrics are possible to define the distance between the cases. The
predictive mean matching metric was proposed by Rubin (1986) and Little
(1988). It is particularly useful for missing data applications because it is
optimized for each target variable separately. The predicted value is generally
a convenient one-number summary of the important information that relates
to the target. Calculation is straightforward, and it is easy to include nominal
and ordinal variables.

Once the metric has been defined, there are various ways to select the
donor. Let ŷi denote the predicted value of the rows with an observed yi
where i = 1, . . . , n1. Likewise, let ŷj denote the predicted value of the rows
with missing yj where j = 1, . . . , n0. Andridge and Little (2010) distinguish
four methods:

1. Choose a threshold η, and take all i for which |ŷi− ŷj | < η as candidate
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donors for imputing j. Randomly sample one donor from the candidates,
and take its yi as replacement value.

2. Take the closest candidate, i.e., the case i for which |ŷi−ŷj | is minimal as
the donor. This is known as “nearest neighbor hot deck,”“deterministic
hot deck” or “closest predictor.”

3. Find the d candidates for which |ŷi − ŷj | is minimal, and sample one
of them. Usual values for d are 3, 5 and 10. There is also an adaptive
method to specify the number of donors (Schenker and Taylor, 1996).

4. Sample one donor with a probability that depends on |ŷi− ŷj | (Siddique
and Belin, 2008).

The obvious danger of predictive mean matching is the duplication of the
same donor value many times. This problem is more likely to occur if the
sample is small, or if there are many more missing data than observed data in
a particular region of the predicted value. Such unbalanced regions are more
likely if the proportion of incomplete cases is high, or if the imputation model
contains variables that are very strongly related to the missingness.

Some simulation work is available about the different strategies for defining
the set of candidate donors. Setting d = 1 is generally considered to be too
low, as it may reselect the same donor over and over again. Predictive mean
matching performs very badly when d is small and there are lots of ties for
the predictors among the individuals to be imputed. The reason is that the
tied individuals all get the same imputed value in each imputed dataset when
d = 1 (Ian White, personal communicaton). Setting d to a high value (say
n/10) alleviates the duplication problem, but may introduce bias since the
likelihood of bad matches increases. Schenker and Taylor (1996) evaluated
d = 3, d = 10 and an adaptive scheme. The adaptive method was slightly
better than using a fixed number of candidates, but the differences were small.
The authors note that there may also be situations where adaptive estimation
could be more beneficial, but further work on this issue is still lacking.

Another issue is that the traditional method does not work for a small
number of predictors. Heitjan and Little (1991) report that for just two pre-
dictors the results were “disastrous.” The problem has received little attention
over the years. The cause of the problem appears to be related to the type
of matching used. More precisely, it is useful to distinguish three types of
matching:

1. Type 0 : ŷ = Xobsβ̂ is matched to ŷj = Xmisβ̂;

2. Type 1 : ŷ = Xobsβ̂ is matched to ẏj = Xmisβ̇;

3. Type 2 : ẏ = Xobsβ̇ is matched to ẏj = Xmisβ̇.

Here β̂ is the estimate of β, while β̇ is a value randomly drawn from the
posterior distribution of β. Type 0 matching ignores the sampling variability
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Figure 3.7: Selection of candidate donors in predictive mean matching with
the stochastic matching distance.

in β̂, leading to improper imputations. Type 2 matching appears to solve this.
However, it is insensitive to the process of taking random draws of β if there are
only a few variables. In the extreme case, with a single X, the set of candidate
donors based on |ẏi − ẏj | remains unchanged under different values of β̇, so
the same donor(s) get selected too often. Type 1 matching is a small but
nifty adaptation of the matching distance that seems to alleviate the problem.
The difference with Type 0 and Type 2 matching is that in Type 1 matching
only Xmisβ̇ varies stochastically and does not cancel out anymore. As a result
η̇ incorporates between-imputation variation. In retrospect, it is interesting
to note that Type 1 matching was in fact already described by Little (1988,
eq. 4). Evidently it disappeared from the literature, only to reappear two
decades later in the works of Koller-Meinfelder (2009, p. 43) and White et al.
(2011b, p. 383).

Figure 3.7 is a graphic illustration of the method using the whiteside data.
The predictor is equal to 5◦C and we use η = 0.6. The thick blue line indicates
the area of the target variable where matches should be sought. The blue
parts of the figure are considered fixed. The red lines correspond to random
draws that incorporate the sampling uncertainty. The two light red “bands”
indicate the area where matches are permitted. In this particular instance,
five candidate donors are found, four from the subgroup “After insulation”
and one from the subgroup “Before insulation.” The last step is to make a
random draw among these five candidates. The red parts in the figure move
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Algorithm 3.3: Predictive mean matching with a Bayesian β and a stochastic
matching distance (Type 1 matching).♠

1. Calculate β̇ and β̂+ by Steps 1-8 of Algorithm 3.1.

2. Calculate η̇(i, j) = |Xobs,[i]β̂ − Xmis,[j]β̇| with i = 1, . . . , n1 and
j = 1, . . . , n0.

3. Construct n0 sets Zj , each containing d candidate donors, from
Yobs such that

∑
d η̇(i, j) is minimum for all j = 1, . . . , n0. Break

ties randomly.

4. Draw one donor ij from Zj randomly for j = 1, . . . , n0.

5. Calculate imputations ẏj = yij for j = 1, . . . , n0.

over different imputed datasets, and thus the set of candidates also varies over
the imputations.

The data point at coordinate (10.2, 2.6) is one of the candidate donors.
This point differs from the incomplete unit in both temperature and insula-
tion status, yet it is selected as a candidate donor. The advantage of including
the point is that closer matches in terms of the predicted values are possible.
As long as the distribution of the target in different bands can be consid-
ered similar, including points from different bands might be beneficial. It is
not known how robust the method is against violations of this assumption.
There is a considerable literature on matching methods in the context of ob-
servational studies and file matching where this problem is recognized (Rubin,
2006; D’Orazio et al., 2006). It is possible to rule out certain combinations.
We could also contemplate techniques for constrained matching that prohibit
candidates from being used more than once as a donor. These methods are
largely unknown for missing data applications, but might well merit further
exploration in practical applications.

3.4.3 Algorithm ♠

Algorithm 3.3 provides the steps used in predictive mean matching using
Bayesian parameter draws for β. We can create the bootstrap version of this
algorithm that will also evade the need to draw β along the same lines as
Algorithm 3.2. Given that the number of candidate donors and the model for
the mean is provided by the user, the algorithm does not need an explicit
specification of the distribution, and is fully automatic.

Table 3.3 repeats the simulation experiment done in Tables 3.1 and 3.2
for predictive mean matching for three different choices of the number d of
candidate donors. The results are as good as we can get, and are essentially
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Table 3.3: Properties of β1 under multiple imputation by predictive mean
matching and m = 5 (nsim = 10000)

Method Bias Coverage CI Width γ̂ λ̂
Missing y
PMM d = 1 −.001 .950 .309 .566 .496
PMM d = 3 −.001 .951 .313 .571 .501
PMM d = 10 −.001 .950 .313 .570 .500
Missing x
PMM d = 1 .006 .957 .253 .459 .391
PMM d = 3 .007 .954 .253 .459 .391
PMM d = 10 .007 .954 .250 .454 .386

CCA −.001 .951 .250

equivalent to the results obtained for the theoretically superior Bayesian and
bootstrap methods discussed earlier. The number of candidate donors does
not affect performance in this simulation, which is in line with the results of
Schenker and Taylor (1996).

3.4.4 Conclusion

Predictive mean matching with d = 3 is the default in mice() for contin-
uous data. The method is robust against misspecification of the imputation
model, yet performs as well as theoretically superior methods. In the context
of missing covariate data, Marshall et al. (2010a) concluded that predictive
mean matching “produced the least biased estimates and better model perfor-
mance measures.” Another simulation study that addressed skewed data con-
cluded that “MICE-PMM may be the preferred MI approach provided that
less than 50% of the cases have missing data and the missing data are not
MNAR” (Marshall et al., 2010b). The method works best with large samples,
and provides imputations that possess many characteristics of the complete
data. Predictive mean matching cannot be used to extrapolate beyond the
range of the data, or to interpolate within the range of the data if the data
at the interior are sparse. Also, it may not perform well with small datasets.
Bearing these points in mind, predictive mean matching is a great all-around
method with exceptional properties.
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3.5 Categorical data

3.5.1 Overview

Imputation of missing categorical data is possible under the broad class
of generalized linear models (McCullagh and Nelder, 1989). For incomplete
binary variables we use logistic regression, where the outcome probability is
modeled as

Pr(yi = 1|Xi, β) =
exp(Xiβ)

1 + exp(Xiβ)
(3.4)

A categorical variable withK unordered categories is imputed under the multi-
nomial logit model

Pr(yi = k|Xi, β) =
exp(Xiβk)∑K
k=1 exp(Xiβk)

(3.5)

for k = 1, . . . ,K, where βk varies over the categories and where β1 = 0
to identify the model. A categorical variable with K ordered categories is
imputed by the ordered logit model , or proportional odds model

Pr(yi ≤ k|Xi, β, τk) =
exp(τk −Xiβ)

1 + exp(τk −Xiβ)
(3.6)

with the slope β is identical across categories, but the intercepts τk differ.
For identification, we set τ1 = 0. The probability of observing category k is
written as

Pr(yi = k|Xi) = Pr(yi ≤ k|Xi)− Pr(yi ≤ k − 1|Xi) (3.7)

where the model parameters β, τk and τk−1 are suppressed for clarity. Scott
Long’s book provides an introduction to these methods. The practical appli-
cation of these techniques in R is treated in Aitkin et al. (2009).

The general idea is to estimate the probability model on the subset of the
observed data, and draw synthetic data according to the fitted probabilities to
impute the missing data. The parameters are typically estimated by iteratively
reweighted least squares. As before, the variability of the model parameters β
and τ2, . . . , τK introduces additional uncertainty that needs to be incorporated
into the imputations.

Algorithm 3.4 provides the steps for an approximate Bayesian imputation
method using logistic regression. The method assumes that the parameter
vector β follows a multivariate normal distribution. Although this is true in
large samples, the distribution can in fact be far from normal for modest
n1, for large q or for predicted probabilities close to 0 or 1. The procedure
is also approximate in the sense that it does not draw the estimated co-
variance V matrix. It is possible to define an explicit Bayesian method for
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Algorithm 3.4: Imputation of a binary variable by means of Bayesian logistic
regression.♠

1. Estimate regression weights β̂ from (yobs,Xobs) by iteratively
reweighted least squares.

2. Obtain V , the unscaled estimated covariance matrix of β̂.

3. Draw q independent N(0, 1) variates in vector ż1.

4. Calculate V 1/2 by Cholesky decomposition.

5. Calculate β̇ = β̂ + ż1V
1/2.

6. Calculate n0 predicted probabilities ṗ = 1/(1 + exp(−Xmisβ̇)).

7. Draw n0 random variates from the uniform distribution U(0, 1) in
the vector u.

8. Calculate imputations ẏj = 1 if uj ≤ ṗj , and ẏj = 0 otherwise,
where j = 1, . . . , n0.

drawing β and V from their exact posteriors. This method is theoretically
preferable, but as it requires more elaborate modeling, it does not easily ex-
tend to other regression situations. In mice the algorithm is implemented as
function mice.impute.logreg(), and is used as the default for binary data.

It is easy to construct a bootstrap version that avoids some of the diffi-
culties in Algorithm 3.4. Prior to estimating β̂, we include a step that draws
a bootstrap sample from Yobs and Xobs. Steps 2–5 can then be replaced by
equating β̇ = β̂.

The algorithms for imputation of variables with more than two categories
follow the same structure. In mice the multinomial logit model is estimated
by the multinom() function in the nnet package. The ordered logit model
is estimated by the polr() function of the MASS package. Even though the
ordered model uses fewer parameters, it is often more difficult to estimate. In
cases where polr() fails to converge, multinom() will take over its duties. See
Venables and Ripley (2002) for more details on both functions.

3.5.2 Perfect prediction ♠

There is a long-standing technical problem in models with categorical out-
comes, known as separation or perfect prediction (Albert and Anderson, 1984;
Lesaffre and Albert, 1989). The standard work by Hosmer and Lemeshow
(2000, pp. 138–141) discussed the problem, but provided no solution. The
problem occurs, for example, when predicting the presence of a disease from
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Table 3.4: Artificial data demonstrating complete separation. Adapted from
White et al. (2010).

Disease Symptom
Yes No

Yes 100 100
No 0 100
Unknown 100 100

a set of symptoms. If one of the symptoms (or a combination of symptoms)
always leads to the disease, then we can perfectly predict the disease for any
patient who has the symptom(s).

Table 3.4 contains an artificial numerical example. Having the symptom
always implies the disease, so knowing that the patient has the symptom will
allow perfect prediction of the disease status. When such data are analyzed,
most software will print out a warning message and produce unusually large
standard errors.

Now suppose that in a new group of 200 patients (100 in each symptom
group) we know only the symptom and impute disease status. Under MAR,
we should impute all 100 cases with the symptom to the diseased group, and
divide the 100 cases without the symptom randomly over the diseased and
non-diseased groups. However, this is not what happens in Algorithm 3.4. The
estimate of V will be very large as a result of separation. If we naively use this
V then β̇ in step 5 effectively covers both positive and negative values equally
likely. This results in either correctly 100 imputations in Yes or incorrectly
100 imputations in No, thereby resulting in bias in the disease probability.

The problem has recently gained attention. There are at least six different
approaches to perfect prediction:

1. Eliminate the variable that causes perfect prediction.

2. Take β̂ instead of β̇.

3. Use penalized regression with Jeffreys prior in step 2 of Algorithm 3.4
(Firth, 1993; Heinze and Schemper, 2002).

4. Use the bootstrap, and then apply method 1.

5. Use data augmentation, a method that concatenates pseudo-observations
with a small weight to the data, effectively prohibiting infinite estimates
(Clogg et al., 1991; White et al., 2010).

6. Apply the explicit Bayesian method with a suitable weak prior. Gelman
et al. (2008) recommend using independent Cauchy distributions on all
logistic regression coefficients.

Eliminating the most predictive variable is generally undesirable in the



78 Flexible Imputation of Missing Data

context of imputation, and may in fact bias the relation of interest. Option 2
does not yield proper imputations, and is therefore not recommended. Op-
tion 3 provides finite estimates, but has been criticized as not being well in-
terpretable in a regression context (Gelman et al., 2008) and computationally
inefficient (White et al., 2010). Option 4 corrects method 1, and is simple to
implement. Options 5 and 6 have been recommended by White et al. (2010)
and Gelman et al. (2008), respectively.

Methods 4, 5 and 6 all solve a major difficulty in the construction of
automatic imputation techniques. It is not yet clear whether one of these
methods is superior. Version 2.0 of mice implemented option 5.

3.6 Other data types

3.6.1 Count data

Examples of count data include the number of children in a family or the
number of crimes committed. The minimum value is zero. Imputing incomplete
count data should produce non-negative synthetic replacement values. Count
data can be imputed in various ways:

1. Predictive mean matching (cf. Section 3.4)

2. Ordered categorical imputation (cf. Section 3.5)

3. (Zero-inflated) Poisson regression (Raghunathan et al., 2001)

4. (Zero-inflated) negative binomial regression (Royston, 2009)

Poisson regression is a class of models that is widely applied in biostatistics.
The Poisson model can be thought of as the sum of the outcomes from a
series of independent flips of the coin. The negative binomial is a more flexible
model that is often applied an as alternative to account for overdispersion.
Zero-inflated versions of both models can be used if the number of zero values
is larger than expected. See Scott Long (1997) for an accessible description of
these models and Aitkin et al. (2009) for computational aspects. The models
are special cases of the generalized linear model, and do not bring new issues
compared to, say, logistic regression imputation. It is straightforward to adapt
the computer code in Section 3.3.2 to create an imputation function for Poisson
regression and the negative binomial model using the gamlss package.

It not yet clear whether one of the four methods consistently outperforms
the others. Until more detailed results become available, my advice is to use
predictive mean matching for count data.
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3.6.2 Semi-continuous data

Semi-continuous data have a high mass at one point (often zero) and a
continuous distribution over the remaining values. An example is the num-
ber of cigarettes smoked per day, which has a high mass at zero because of
the non-smokers, and an often highly skewed unimodal distribution for the
smokers. The difference with count data is gradual. Semi-continuous data are
typically treated as continuous data, whereas count data are generally consid-
ered discrete.

Imputation of semi-continuous variables needs to reproduce both the point
mass and continuously varying part of the data. One possibility is to apply a
general-purpose method that preserves distributional features, like predictive
mean matching (cf. Section 3.4).

An alternative is to model the data in two parts. The first step is to
determine whether the imputed value is zero or not. The second step is only
done for those with a nonzero value, and consists of drawing a value from the
continuous part. Olsen and Schafer (2001) developed an imputation technique
by combining a logistic model for the discrete part, and a normal model for the
continuous part, possibly after a normalizing transformation. A more general
two-part model was developed by Javaras and Van Dyk (2003), who extended
the standard general location model (Olkin and Tate, 1961) to impute partially
observed semi-continuous data.

Yu et al. (2007) evaluated nine different procedures. They found that pre-
dictive mean matching performs well, provided that a sufficient number of
data points in the neighborhood of the incomplete data are available. So care
is required for small samples and/or rare events. It is not known whether
predictive mean matching outperforms two-part models in general.

3.6.3 Censored, truncated and rounded data

An observation yi is censored if its value is only partly known. In right-
censored data we only know that yi > ai for a censoring point ai. In left-
censored data we only know that yi ≤ bi for some known censoring point bi,
and in interval censoring we know ai ≤ yi ≤ bi. Right-censored data arise
when the true value is beyond the maximum scale value, for example, when
body weight exceeds the scale maximum, say 150 kg. When yi is interpreted
as time taken to some event (e.g., death), right-censored data occur when
the observation period ends before the event has taken place. Left and right
censoring may cause floor and ceiling effects. Rounding data to fewer decimal
places results in interval-censored data.

Truncation is related to censoring, but differs from it in the sense that
value below (left truncation) or above (right truncation) the truncation point
is not recorded at all. For example, if persons with a weight in excess of
150 kg are removed from the sample, we speak of truncation. The fact that
observations are entirely missing turns the truncation problem into a missing
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data problem. Truncated data are less informative than censored data, and
consequently truncation has a larger potential to distort the inferences of
interest.

The usual approach for dealing with missing values in censored and trun-
cated data is to delete the incomplete records, i.e., complete case analysis.
In the event that time is the censored variable, consider the following two
problems:

• Censored event times. What would have been the uncensored event time
if no censoring had taken place?

• Missing event times. What would have been the event time and the
censoring status if these had been observed?

The problem of censored event times has been studied extensively. There
are many statistical methods that can analyze left- or right-censored data di-
rectly, collectively known as survival analysis. Kleinbaum and Klein (2005),
Hosmer et al. (2008) and Allison (2010) provide useful introductions into the
field. Survival analysis is the method of choice if censoring is restricted to the
single outcomes. The approach is, however, less suited for censored predictors
or for multiple interdependent censored outcomes. Van Wouwe et al. (2009)
discuss an empirical example of such a problem. The authors are interested in
knowing time interval between resuming contraception and cessation of lac-
tation in young mothers who gave birth in the last 6 months. As the sample
was cross-sectional, both contraception and lactation were subject to censor-
ing. Imputation could be used to impute the hypothetically uncensored event
times in both durations, and this allowed a study of the association between
the uncensored event times.

The problem of missing event times is relevant if the event time is un-
observed. The censoring status is typically also unknown if the event time is
missing. Missing event times may be due to happenstance, for example, re-
sulting from a technical failure of the instrument that measures event times.
Alternatively, the missing data could have been caused by truncation, where
all event times beyond the truncation point are set to missing. It will be clear
that the optimal way to deal with the missing events data depends on the
reasons for the missingness. Analysis of the complete cases will systematically
distort the analysis of the event times if the data are truncated.

Imputation of right-censored data has received most attention to date. In
general, the method aims to find new (longer) event times that would have
been observed had the data not been censored. Let n1 denote the number of
observed failure times, let n0 = n − n1 denote the number of censored event
times and let t1, . . . , tn be the ordered set of failure and censored times. For
some time point t, the risk set R(t) = ti > t for i = 1, . . . , n is the set of event
and censored times that is longer than t. Taylor et al. (2002) proposed two
imputation strategies for right-censored data:

1. Risk set imputation. For a given censored value t construct the risk set
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R(t), and randomly draw one case from this set. Both the failure time
and censoring status from the selected case are used to impute the data.

2. Kaplan–Meier imputation. For a given censored value t construct the risk
set R(t) and estimate the Kaplan–Meier curve from this set. A randomly
drawn failure time from the Kaplan–Meier curve is used for imputation.

Both methods are asymptotically equivalent to the Kaplan–Meier estimator
after multiple imputation with large m. The adequacy of imputation proce-
dures will depend on the availability of possible donor observations, which
diminishes in the tails of the survival distribution. The Kaplan–Meier method
has the advantage that nearly all censored observations are replaced by im-
puted failure times. In principle, both Bayesian and bootstrap methods can
be used to incorporate model uncertainty, but in practice only the bootstrap
has been used.

Hsu et al. (2006) extended both methods to include covariates. The authors
fitted a proportional hazards model and calculated a risk score as a linear
combination of the covariates. The key adaptation is to restrict the risk set to
those cases that have a risk score that is similar to the risk score of censored
case, an idea similar to predictive mean matching. A donor group size with
d = 10 was found to perform well, and Kaplan–Meier imputation was superior
to risk set imputation across a wide range of situations.

Algorithm 3.5 is based on the KIMB method proposed by Hsu et al. (2006).
The method assumes that censoring status is known, and aims to impute
plausible event times for censored observations. Hsu et al. (2006) actually
suggested fitting two proportional hazards models, one with survival time as
outcome and one with censoring status as outcome, but in order to keep in
line with the rest of this chapter, here we only fit the model for survival time.
The way in which predictive mean matching is done differs slightly from Hsu
et al. (2006).

The literature on imputation methods for censored and rounded data is
rapidly evolving. Alternative methods for right-censored data have also been
proposed (Wei and Tanner, 1991; Geskus, 2001; Lam et al., 2005; Liu et al.,
2011). Lyles et al. (2001), Lynn (2001) and Hopke et al. (2001) concentrated
on left-censored data. Imputation of interval-censored data (rounded data) has
been discussed quite extensively (Heitjan and Rubin, 1990; Dorey et al., 1993;
James and Tanner, 1995; Pan, 2000; Bebchuk and Betensky, 2000; Glynn and
Rosner, 2004; Hsu, 2007; Royston, 2007; Chen and Sun, 2010). Imputation of
double-censored data, where both the initial and the final times are interval
censored, is treated by Pan (2001) and Zhang et al. (2009). By comparison,
very few methods have been developed to deal with truncation. Methods for
imputing a missing censoring indicator have been proposed by Subramanian
(2009, 2011) and Wang and Dinse (2010).
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Algorithm 3.5: Imputation of right-censored data using predictive mean
matching, Kaplan–Meier estimation and the bootstrap.♠

1. Estimate β̂ by a proportional hazards model of y given X, where
y = (t, φ) consists of time t and censoring indicator φ (φi = 0 if ti
is censored).

2. Draw a bootstrap sample (ẏ, Ẋ) of size n from (y,X).

3. Estimate β̇ by a proportional hazards model of ẏ given Ẋ.

4. Calculate η̇(i, j) = |X[i]β̂ − X[j]β̇| with i = 1, . . . , n and j =
1, . . . , n0, where [j] indexes the cases with censored times.

5. Construct n0 sets Zj , each containing d candidate donors such that
ti > tj and

∑
d η̇(i, j) is minimum for each j = 1, . . . , n0. Break

ties randomly.

6. For each Zj , estimate the Kaplan–Meier curve Ŝj(t).

7. Draw n0 uniform random variates uj , and take ṫj from the esti-

mated cumulative distribution function 1 − Ŝj(t) at uj for j =
1, . . . , n0.

8. Set φj = 0 if ṫj = tn and φtn = 0, else set φj = 1.

3.7 Classification and regression trees

3.7.1 Overview

Classification and regression trees (CART) (Breiman et al., 1984) are a
popular class of machine learning algorithms. CART models seek predictors
and cut points in the predictors that are used to split the sample. The cut
points divide the sample into more homogeneous subsamples. The splitting
process is repeated on both subsamples, so that a series of splits defines a bi-
nary tree. The target variable can be discrete (classification tree) or continuous
(regression tree).

Figure 3.8 illustrates a simple CART solution for the airquality data.
The left-hand figure contains the optimal binary tree for predicting gas con-
sumption from temperature and insulation status. The right-hand side shows
the scatterplot in which the five groups are labeled by their terminal nodes.
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Figure 3.8: Regression tree for predicting gas consumption. The left-hand
plot displays the binary tree, whereas the right-hand plot identifies the groups
at each end leaf in the data.

3.7.2 Imputation using CART models

CART methods have properties that make them attractive for imputation:
they are robust against outliers, can deal with multicollinearity and skewed
distributions, and are flexible enough to fit interactions and nonlinear rela-
tions. Furthermore, many aspects of model fitting have been automated, so
there is “little tuning needed by the imputer” (Burgette and Reiter, 2010).

The idea of using CART methods for imputation has been suggested by a
wide variety of authors in a variety of ways. See Saar-Tsechansky and Provost
(2007) for an introductory overview. Some investigators (He, 2006; Vateekul
and Sarinnapakorn, 2009) simply fill in the mean or mode. The majority of
tree-based imputation methods use some form of single imputation based on
prediction (Bárcena and Tusell, 2000; Conversano and Cappelli, 2003; Siciliano
et al., 2006; Creel and Krotki, 2006; Ishwaran et al., 2008; Conversano and
Siciliano, 2009). Multiple imputation methods have been developed by Harrell
(2001), who combined it with optimal scaling of the input variables, by Reiter
(2005b) and by Burgette and Reiter (2010). Wallace et al. (2010) present
a multiple imputation method that averages the imputations to produce a
single tree and that does not pool the variances. Parker (2010) investigates
multiple imputation methods for various unsupervised and supervised learning
algorithms.

To fix ideas, consider how imputations can be created using the tree in
Figure 3.8. For a given temperature and insulation status, traverse the tree
and find the appropriate terminal node. Form the donor group of all observed
cases at the terminal node, randomly draw a case from the donor group, and
take its reported gas consumption as the imputed value.



84 Flexible Imputation of Missing Data

Algorithm 3.6: Imputation under a tree model using the bootstrap.♠

1. Draw a bootstrap sample (ẏobs, Ẋobs) of size n1 from (yobs, Xobs).

2. Fit ẏobs by Ẋobs by a tree model f(X).

3. Predict the n0 terminal nodes gj from f(Xmis).

4. Construct n0 sets Zj of all cases at node gj , each containing dj
candidate donors.

5. Draw one donor ij from Zj randomly for j = 1, . . . , n0.

6. Calculate imputations ẏj = yij for j = 1, . . . , n0.

The idea is identical to predictive mean matching (cf. Section 3.4), where
the “predictive mean” is now calculated by a tree model instead of a regression
model. As before, the parameter uncertainty can be incorporated by fitting
the tree on a bootstrapped sample.

Algorithm 3.6 describes the major steps of an algorithm for creating impu-
tations using a classification or regression tree. There is considerable freedom
at step 2, where the tree model is fitted to the training data (ẏobs, Ẋobs).
It may be useful to fit the tree such that the number of cases at each node
is equal to some preset number, say 5 or 10. The composition of the donor
groups will vary over different bootstrap replications, which incorporates the
sampling uncertainty about the tree.

The studies done to date have concentrated on predictive accuracy, which
is not a useful criterion in the context of imputation (cf. Section 2.5.1). None of
the studies reported coverage statistics. The potential of tree-based methods
and other machine learning techniques (Hastie et al., 2009) for creating proper
multiple imputations has yet to be explored.

3.8 Multilevel data

3.8.1 Overview

The problem of missing values in the outcome variable in multilevel data
has received considerable attention. The multilevel model is actually “made
to solve” the problem of incomplete outcomes. There is an extensive literature
which often concentrates on the longitudinal case (Verbeke and Molenberghs,
2000; Molenberghs and Verbeke, 2005; Daniels and Hogan, 2008). For more
details, see the encyclopedic overview in Fitzmaurice et al. (2009). Most work
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concentrates on deriving valid estimates of the parameters of the model, and is
generally less concerned with deriving imputations under the multilevel model.

Multiple imputation of multilevel data is a problem that has not yet been
fully solved. The imputation literature up to the year 2008 is summarized
in Van Buuren (2011). Zhao and Yucel (2009) discuss methods for various
types of outcomes, where Andridge (2011) studies the impact of imputation
for cluster randomized trials.

Van Buuren (2011) studied the properties of a full Bayesian method for
creating imputations under heteroscedastic error variance, and compared it
to three ad hoc alternatives: analysis of the complete cases, imputation ignor-
ing the clustering structure and imputation using fixed effects for classes. The
Bayesian method recovers the intra-class correlation quite well, even for severe
MAR cases and high amounts of missing data in the outcome or the predic-
tor. Though the technique considerably improves upon standard practice, it
has been found that it fails to achieve nominal coverage for the fixed effects,
especially for small class sizes. More work is needed to solve these issues.

3.8.2 Two formulations of the linear multilevel model ♠

Let the data be divided in K classes or levels, and let yc denote the nc
vector containing outcomes on units i (i = 1, . . . , nc) within class c (c =
1, . . . ,K). The univariate linear mixed effects model (Laird and Ware, 1982)
is written as

yc = Xcβ + Zcuc + εc (3.8)

where Xc is a known nc × p design matrix in class c associated with the
common p × 1 fixed effects vector β, and where Zc is a known nc × q design
matrix in class c associated with the q × 1 random effect vectors uc. The
random effects uc are independently and interchangeably normally distributed
as uc ∼ N(0,Ω). The number of random effects q is typically smaller than the
number of fixed effects p. Symbol εc denotes the nc×1 vector of residuals, which
are independently normally distributed as εc ∼ N(0, σ2

cI(nc)) for c = 1, . . . ,K.
It is often assumed that the residual variance is equal for all classes: σ2

c = σ2.
In addition, εc and uc are assumed to be independent. Equation 3.8 separates
the fixed and random effects.

One may also conceptualize the mixed effects model in Equation 3.8 as a
two-level model. To see how this works, write the two-level linear model as

yc = Zcβc + εc level-1 equation (3.9)

where βc is a q × 1 vector of regression coefficients that vary between the K
classes. At level 2, we model βc by the linear regression model

βc = Wcβ + uc level-2 equation (3.10)

where Wc is a q× p matrix of a special structure (Van Buuren, 2011, p. 175),
and where uc can be interpreted as the q × 1 vector of level 2 residuals.
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Equations 3.9 and 3.10 are collectively called the slopes-as-outcome model
(Bryk and Raudenbush, 1992).

Note that the regression coefficient β is identical in all level-2 classes.
Substituting Equation 3.10 into Equation 3.9 yields

yc = ZcWcβ + Zcuc + εc (3.11)

which is a special case of the linear mixed model (Equation 3.8) with Xc =
ZcWc.

Equation 3.8 separates the fixed and random effects, but the same covari-
ates may appear in both Xc and Zc. This complicates imputation of those
covariates. To make matters more complex, Xc can also contain interactions
between covariates at level 1 and level 2. In contrast, the slopes-as-outcomes
model distinguishes the level 1 from the level 2 predictors. There is no overlap
in data between Wc and Zc. This is the more convenient parameterization in
a missing data context.

Missing data can occur in the outcome variable yc, the level-1 predictors
Zc, the level-2 predictors Wc and the class variable c. Here we concentrate on
missing data in yc or Zc, but not both. Multivariate missing data are treated
elsewhere (Van Buuren, 2011).

3.8.3 Computation ♠

We discuss two methods to impute multilevel data, a Bayesian method and
a bootstrap method. The Bayesian method first draws parameters randomly
from their appropriate posteriors distributions, and conditional on these draws
generates synthetic values. The idea is the same as in Algorithm 3.1.

Suppose that yobs represents the observed outcome data, and let Xobs and
Zobs be the fixed and random predictors for the complete cases, respectively.
Our model allows that the residual variances σ2

c vary over the classes. The
following parameters must be simulated from the data: β̇ (the coefficients
of the fixed effects), u̇c (the coefficients of the random effects), Ω̇ (common
covariance matrix of the random effects coefficients uc) and σ̇2

c (the variances
of the residuals εc). Compared to Algorithm 3.1, the parameters u̇c and Ω̇ are
new.

We use the Gibbs sampler defined by Kasim and Raudenbush (1998,
pp. 98–100) to create random draws from the parameters using a Markov
chain Monte Carlo (MCMC) algorithm. The procedure repeats the following
sampling steps:

β̇ ∼ p(β|uc, σ2) (3.12)

u̇c ∼ p(uc|β,Ω, σ2) (3.13)

Ω̇ ∼ p(Ω|uc) (3.14)

σ̇2
c ∼ p(σ2|β, uc) (3.15)

The exact specification of the prior and posterior distributions is fairly
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Algorithm 3.7: Multilevel imputation with bootstrap under the linear nor-
mal model with class-wise error variances.♠

1. Draw a bootstrap sample of the level-2 units.

2. Within each level-2 unit, draw a bootstrap sample of the level-1
units.

3. Update ẏobs and Ẋobs accordingly.

4. Estimate β̇, σ̇2
c , and Ω̇ from ẏobs and Ẋobs in the usual way, e.g.,

by lme() and varIdent() from the nlme package.

5. Sample u̇c ∼ p(uc|β̇, Ω̇, σ̇2) given the observed data yobs and Xobs.

6. Calculate the n0 total variances ṡ2 = (Z ′mis,[j]Ω̇Zmis,[j] + σ̇
2
c ), where

j = 1, . . . , n0 and c is the class to which j belongs.

7. Draw n0 independent N(0, 1) variates in vector ż.

8. Calculate the n0 values ẏ = Xmisβ̇ + Zmisu̇c + żṡ, where c is the
class to which j belongs.

complicated and will not be given here. The Bayesian method was imple-
mented in R by Roel de Jong and is available in mice as the function
mice.impute.2L.norm().

The bootstrap method first draws a bootstrap sample for the complete
data, fits the linear mixed effect model to it and calculates synthetic values
according to the model estimates. This principle follows Algorithm 3.2.

Algorithm 3.7 first draws a sample from the level-2 units, followed by a
second bootstrap sample of level-1 unit per drawn level-1 unit. One particular
difficulty in this setup is that no random effects uc are estimated for classes
that are not drawn at step 1. We remedy this situation by drawing u̇c from
the original data, while fixing β̇, Ω̇, σ̇2 at their estimates from the bootstrap
sample. Once this is done, calculation of the synthetic values is straightfor-
ward.

3.8.4 Conclusion

Imputation of multilevel data is an area where work still remains to be
done. In particular, we need faster algorithms and better coverage of and
extensions to categorical data. On the other hand, the methodology that is
currently available improves upon standard practice, and is therefore recom-
mended over ad hoc alternatives.
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3.9 Nonignorable missing data

3.9.1 Overview

All methods described thus far assume that the missing data mechanism is
ignorable. In this case, there is no need for an explicit model of the missing data
process (cf. Section 2.2.6). In reality, the mechanism may be nonignorable,
even after accounting for any measurable factors that govern the response
probability. In such cases, we can try to adapt the imputed data to make them
more realistic. Since such adaptations are based on unverifiable assumptions,
it is recommended to study carefully the impact of different possibilities on
the final inferences by means of sensitivity analysis.

When is the assumption of ignorability suspect? It is hard to provide cut-
and-dried criteria, but the following list illustrates some typical situations:

• If important variables that govern the missing data process are not avail-
able;

• If there is reason to believe that responders differ from non-responders,
even after accounting for the observed information;

• If the data are truncated.

If ignorability does not hold, we need to model the distribution P (Y,R) instead
of P (Y ). For nonignorable missing data mechanisms, P (Y,R) do not factorize
into independent parts. Two main strategies to decompose P (Y,R) are known
as the selection model (Heckman, 1976) and the pattern-mixture model (Glynn
et al., 1986). Little and Rubin (2002, ch. 15) and Little (2009) provide in-depth
discussions of these models.

Imputations are created most easily under the pattern-mixture model. Her-
zog and Rubin (1983, pp. 222–224) proposed a simple and general family of
nonignorable models that accounts for shift bias, scale bias and shape bias.
Suppose that we expect that the nonrespondent data are shifted relative to
the respondent data. Adding a simple shift parameter δ to the imputations
creates a difference in the means of a δ. In a similar vein, if we suspect that
the nonrespondents and respondents use different scales, we can multiply each
imputation by a scale parameter. Likewise, if we suspect that the shapes of
both distributions differ, we could redraw values from the candidate impu-
tations with a probability proportional to the dissimilarity between the two
distributions, a technique known as the SIR algorithm (Rubin, 1987b). We
only discuss the shift parameter δ.

In practice, it may be difficult to specify the distribution of the nonrespon-
dents, e.g., to provide a sensible specification of δ. One approach is to compare
the results under different values of δ by sensitivity analysis. Though helpful,
this puts the burden on the specification of realistic scenarios, i.e., a set of
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Table 3.5: Numerical example of an nonignorable nonresponse mechanism,
where more missing data occur in groups with lower blood pressures.

Y P (Y ) P (R = 1|Y ) P (Y |R = 1) P (Y |R = 0)
100 0.02 0.65 0.015 0.058
110 0.03 0.70 0.024 0.074
120 0.05 0.75 0.043 0.103
130 0.10 0.80 0.091 0.164
140 0.15 0.85 0.145 0.185
150 0.30 0.90 0.307 0.247
160 0.15 0.92 0.157 0.099
170 0.10 0.94 0.107 0.049
180 0.05 0.96 0.055 0.016
190 0.03 0.98 0.033 0.005
200 0.02 1.00 0.023 0.000

Ȳ 150.00 151.58 138.60

plausible δ-values. The next sections describe the selection model and pattern
mixture in more detail, as a way to evaluate the plausibility of δ.

3.9.2 Selection model

The selection model (Heckman, 1976) decomposes the joint distribution
P (Y,R) as

P (Y,R) = P (Y )P (R|Y ). (3.16)

The selection model weights the marginal distribution P (Y ) in the population
with the response weights P (R|Y ). Both P (Y ) and P (R|Y ) are unknown, and
must be specified by the user. The model where P (Y ) is normal and where
P (R|Y ) is a probit model is known as the Heckman model. This model is
widely used in economics to correct for selection bias.

Numerical example. The column labeled Y in Table 3.5 contains the mid-
points of 11 categories of systolic blood pressure. The column P (Y ) contains
a hypothetically complete distribution of systolic blood pressure. It is spec-
ified here as symmetric with a mean of 150 mmHg (millimeters mercury).
This distribution should be a realistic description of the combined observed
and missing blood pressure values in the population of interest. The col-
umn P (R = 1|Y ) specifies the probability that blood pressure is actually
observed at different levels of blood pressure. Thus, at a systolic blood pres-
sure of 100 mmHg we expect that 65% of the data is observed. On the other
hand, we expect that no missing data occur for those with a blood pressure of
200 mmHg. This specification produces 12.2% of missing data. The variability
in the missingness probability is large, and reflects an extreme scenario where
the missing data are created mostly at the lower blood pressures. Section 7.2.1
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discusses why more missing data in the lower levels are plausible. When taken
together, the columns P (Y ) and P (R = 1|Y ) specify a selection model.

3.9.3 Pattern-mixture model

The pattern-mixture model (Glynn et al., 1986; Little, 1993) decomposes
the joint distribution P (Y,R) as

P (Y,R) = P (Y |R)P (R) (3.17)

= P (Y |R = 1)P (R = 1) + P (Y |R = 0)P (R = 0) (3.18)

Compared to Equation 3.16 this model only reverses the roles of Y and R, but
the interpretation is quite different. The pattern-mixture model emphasizes
that the combined distribution is a mix of the distributions of Y in the respon-
ders and nonresponders. The model needs a specification of the distribution
P (Y |R = 1) of the responders (which can be conveniently modeled after the
data), and of the distribution P (Y |R = 0) of the nonresponders (for which we
have no data at all). The joint distribution is the mixture of these two distri-
butions, with mixing probabilities P (R = 1) and P (R = 0) = 1 − P (R = 1),
the overall proportions of observed and missing data, respectively.

Numerical example. The columns labeled P (Y |R = 1) and P (Y |R = 0) in
Table 3.5 contain the probability per blood pressure category for the respon-
dents and nonrespondents. Since more missing data are expected to occur at
lower blood pressures, the mass of the nonresponder distribution has shifted
toward the lower end of the scale. As a result, the mean of the nonresponder
distribution is equal to 138.6 mmHg, while the mean of the responder distri-
bution equals 151.58 mmHg.

3.9.4 Converting selection and pattern-mixture models

The pattern-mixture model and the selection model are connected via
Bayes rule. Suppose that we have a mixture model specified as the proba-
bility distributions P (Y |R = 0) and P (Y |R = 1) plus the overall response
probability P (R). The corresponding selection model can be calculated as

P (R = 1|Y = y) = P (Y = y|R = 1)P (R = 1)/P (Y = y) (3.19)

where the marginal distribution of Y is

P (Y = y) = P (Y = y|R = 1)P (R = 1) + P (Y = y|R = 0)P (R = 0) (3.20)

Reversely, the pattern-mixture model can be calculated from the selection
model as follows:

P (Y = y|R = r) = P (R = r|Y = y)P (Y = y)/P (R = r) (3.21)
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Figure 3.9: Graphic representation of the response mechanism for systolic
bloood pressure in Table 3.5. See text for explanation.

where the overall probability of observed (r = 1) or missing (r = 0) data is
equal to

P (R = r) =
∑
y

P (R = r|Y = y)P (Y = y) (3.22)

Numerical example. In Table 3.5 we calculate P (Y = 100) = 0.015×0.878+
0.058 × 0.122 = 0.02. Likewise, we find P (R = 1|Y ) = 0.015 × 0.878/0.02 =
0.65 and P (R = 0|Y ) = 0.058× 0.122/0.02 = 0.35. The reverse calculation is
left as an exercise to the reader.

Figure 3.9 is a graphic illustration of the posited missing data mechanism.
The left-hand figure displays the missingness probabilities P (R|Y ) of the se-
lection model. The right-hand plot provides the distributions P (Y |R) in the
observed (blue) and missing (red) data in the corresponding pattern-mixture
model. The hypothetically complete distribution is given by the black curve.
The distribution of blood pressure in the group with missing blood pressures is
quite different, both in form and location. At the same time, observe that the
effect of missingness on the combined distribution is only slight. The reason
is that 87% of the information is actually observed.

The mean of the distribution of the observed data remains almost un-
changed (151.6 mmHg instead of 150 mmHg), but the mean of the distribution
of the missing data is substantially lower at 138.6 mmHg. Thus, under the as-
sumed selection model we expect that the mean of the imputed data should
be 151.6− 138.6 = 13 mmHg lower than in the observed data.
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Table 3.6: Difference between the means of the blood pressure distributions
of the response and nonresponse groups, and its interpretation in the light of
what we know about the data.

δ Interpretation
0 mmHg MCAR, δ too small
−5 mmHg Small effect
−10 mmHg Large effect
−15 mmHg Extreme effect
−20 mmHg Too extreme effect

3.9.5 Sensitivity analysis

Sections 3.9.2–3.9.4 provide different, though related, views on the assumed
response model. A fairly extreme response model where the missingness prob-
ability increases from 0% to 35% in the outcome produces a mean difference of
13 mmHg. The effect in the combined distribution is much smaller: 1.6 mmHg.

Section 3.9.1 discussed the idea of adding some extra mmHg to the imputed
values, a method known as δ-adjustment. It is important to form an idea of
what reasonable values for δ could be. Under the posited model, δ = 0 mmHg
is clearly too small (as it assumes MCAR), whereas δ = −20 mmHg is too
extreme (as it can only occur if nearly all missing values occur in the lowest
blood pressures). Table 3.6 provides an interpretation of various values for δ.
The most likely scenarios would yield δ = −5 or δ = −10 mmHg.

In practice, part of δ may be realized through the predictors needed under
MAR. It is useful to decompose δ as δ = δMAR + δMNAR, where δMAR is the
mean difference caused by the predictors in the imputation models, and where
δMNAR is the mean difference caused by an additional nonignorable part of
the imputation model. If candidate imputations are produced under MAR, we
only need to add a constant δMNAR. Section 7.2 continues this application.

Adding a constant may seem overly simple, but it is actually quite pow-
erful. In cases where no one model will be obviously more realistic than any
other, Rubin (1987a, p. 203) stressed the need for easily communicated mod-
els, like a “20% increase over the ignorable value.” Little (2009, p. 49) warned
that it is easy to be enamored of complicated models for P (Y,R) so that we
may be “lulled into a false sense of complacency about the fundamental lack
of identification,” and suggested simple methods:

The idea of adding offsets is simple, transparent, and can be readily
accomplished with existing software.

Adding a constant or multiplying by a value are in fact the most direct ways
to specify nonignorable models.
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3.9.6 Role of sensitivity analysis

Nonignorable models are only useful after the possibilities to make the data
“more MAR” have been exhausted. A first step is always to create the best
possible imputation model based on the available data. Section 5.3.2 provides
specific advice on how to build imputation models.

The MAR assumption has been proven defensible for intentional missing
data. In general, however, we can never rule out the possibility that the data
are MNAR. In order to cater for this possibility, many advise performing a
sensitivity analysis on the final result. This is voiced most clearly in recommen-
dation 15 of the National Research Council’s advice on clinical trials (National
Research Council, 2010):

Recommendation 15: Sensitivity analysis should be part of the pri-
mary reporting of findings from clinical trials. Examining sensitiv-
ity to the assumptions about the missing data mechanism should
be a mandatory component of reporting.

While there is much to commend this rule, we should refrain from doing
sensitivity analysis just for the sake of it. The proper execution of a sensitivity
analysis requires us to specify plausible scenarios. An extreme scenario like
“suppose that all persons who leave the study die” can have a major impact
on the study result, yet it could be highly improbable and therefore of limited
interest.

Sensitivity analysis on factors that are already part of the imputation
model is superfluous. Preferably, before embarking on a sensitivity analysis,
there should be reasonable evidence that the MAR assumption is (still) inad-
equate after the available data have been taken into account. Such evidence is
also crucial in formulating plausible MNAR mechanisms. Any decisions about
scenarios for sensitivity analysis should be taken in discussion with subject-
matter specialists. There is no purely statistical solution to the problem of
nonignorable missing data. Sensitivity analysis can increase our insight into
the stability of the results, but in my opinion we should only use it if we have
a firm idea of which scenarios for the missingness would be reasonable.

In practice, we may lack such insights. In such instances, I would prefer a
carefully constructed imputation model (which is based on all available data)
over a poorly constructed sensitivity analysis.

3.10 Exercises

1. MAR. Reproduce Table 3.1 and Table 3.2 for MARRIGHT, MARMID
and MARTAIL missing data mechanisms of Section 3.2.4.

(a) Are there any choices that you need to make? If so, which?
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(b) Consider the six possibilities to combine the missing data mech-
anism and missingness in x or y. Do you expect complete case
analysis to perform well in each case?

(c) Do the Bayesian and bootstrap methods also work under the three
MAR mechanisms?

2. Parameter uncertainty . Repeat the simulations of Section 3.2 on the
whiteside data for different samples sizes.

(a) Use the method of Section 3.2.3 to generate an artificial population
of 10000 synthetic gas consumption observations. Re-estimate the
parameter from the artificial population. How close are they to the
“true” values?

(b) Draw random samples from the artificial population. Systemati-
cally vary sample size. Is there some sample size at which “predict
+ noise” is as good as the Bayesian and bootstrap methods?

(c) Is the result identical for missing y and missing x?

(d) Is the result the same after including insulation status in the model?

3. Tree imputation. ♠ Write a function mice.impute.tree() that im-
plements Algorithm 3.6 for a binary outcome. Use the function
rpart() from the rpart package to fit the tree. Use the function
mice.impute.TF() in Section 3.3.2 as a template. Provide an option
leavesize to regulate the size of the terminal node.

(a) Were there any decisions you needed to make in programming
mice.impute.tree(). If so, which?

(b) Do graphs demonstrate that the observed and imputed data match
up as expected?

(c) Conduct a small simulation study using a complete data model that
includes an interaction effect. Is your method unbiased?

(d) Is your method an improvement over predictive mean matching?



Chapter 4

Multivariate missing data

Chapter 3 dealt with univariate missing data. In practice, missing data may
occur anywhere. This chapter discusses potential problems created by multi-
variate missing data, and outlines several approaches to deal with these issues.

4.1 Missing data pattern

4.1.1 Overview

Let the data be represented by the n × p matrix Y . In the presence of
missing data Y is partially observed. Notation Yj is the jth column in Y , and
Y−j indicates the complement of Yj , that is, all columns in Y except Yj . The
missing data pattern of Y is the n × p binary response matrix R, as defined
in Section 2.2.3.

For both theoretical and practical reasons, it is useful to distinguish various
types of missing data patterns:

1. Univariate and multivariate. A missing data pattern is said to be uni-
variate if there is only one variable with missing data.

2. Monotone and non-monotone (or general). A missing data pattern is
said to be monotone if the variables Yj can be ordered such that if Yj is
missing then all variables Yk with k > j are also missing. This occurs,
for example, in longitudinal studies with drop-out. If the pattern is not
monotone, it is called non-monotone or general.

3. Connected and unconnected. A missing data pattern is said to be con-
nected if any observed data point can be reached from any other observed
data point through a sequence of horizontal or vertical moves (like the
rook in chess).

Figure 4.1 illustrates various data patterns in multivariate data. Monotone
patterns can occur as a result of drop-out in longitudinal studies. If a pattern is
monotone, the variables can be sorted conveniently according to the percent-
age of missing data. Univariate missing data form a special monotone pattern.
Important computational savings are possible if the data are monotone.

95
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Univariate Monotone File matching General

Figure 4.1: Some missing data patterns in multivariate data. Blue is observed,
red is missing.

All patterns displayed in Figure 4.1 are connected. The file matching pat-
tern is connected since it is possible to travel to all blue cells by horizontal or
vertical moves. This pattern will become unconnected if we remove the first
column. In contrast, after removing the first column from the general pattern
in Figure 4.1 it is still connected through the first two rows.

Connected patterns are needed to identify unknown parameters. For ex-
ample, in order to be able to estimate a correlation coefficient between two
variables, they need to be connected, either directly by a set of cases that
have scores on both, or indirectly through their relation with a third set of
connected data. Unconnected patterns may arise in particular data collection
designs, like data combination of different variables and samples, or potential
outcomes.

Missing data patterns of longitudinal data organized in the “long format”
(cf. Section 9.1) are more complex than the patterns in Figure 4.1. See Van Bu-
uren (2011, p. 179) for some examples.

4.1.2 Summary statistics

The missing data pattern influences the amount of information that can
be transferred between variables. Imputation can be more precise if other
variables are non-missing for those cases that are to be imputed. The reverse is
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also true. Predictors are potentially more powerful if they have are non-missing
in rows that are vastly incomplete. This section discusses various measures of
the missing data pattern.

The function md.pattern() in mice calculates the frequencies of the miss-
ing data patterns. For example, the frequency pattern of the dataset pattern4
in Figure 4.1 is

> md.pattern(pattern4)

A B C

2 1 1 1 0

1 1 0 1 1

3 1 1 0 1

2 0 0 1 2

2 3 3 8

The columns A, B and C are either 0 (missing) or 1 (observed). The first col-
umn provides the frequency of each pattern. The last column lists the num-
ber of missing entries per pattern. The bottom row provides the number of
missing entries per variable, and the total number of missing cells. In prac-
tice, md.pattern() is primarily useful for datasets with a small number of
columns.

Alternative measures start from pairs of variables. A pair of variables
(Yj , Yk) can have four missingness patterns:

1. both Yj and Yk are observed (pattern rr);

2. Yj is observed and Yk is missing (pattern rm);

3. Yj is missing and Yk is observed (pattern mr);

4. both Yj and Yk are missing (pattern mm).

For example, for the monotone pattern in Figure 4.1 the frequencies are:

> p <- md.pairs(pattern4)

> p

$rr

A B C

A 6 5 3

B 5 5 2

C 3 2 5

$rm

A B C

A 0 1 3

B 0 0 3

C 2 3 0
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$mr

A B C

A 0 0 2

B 1 0 3

C 3 3 0

$mm

A B C

A 2 2 0

B 2 3 0

C 0 0 3

Thus, for pair (A,B) there are five completely observed pairs (in rr), no pairs
in which A is observed and B missing (in rm), one pair in which A is missing
and B is observed (in mr) and two pairs with both missing A and B. Note that
these numbers add up to the total sample size.

The proportion of usable cases (Van Buuren et al., 1999) for imputing
variable Yj from variable Yk is defined as

Ijk =

∑n
i (1− rij)rik∑n
i 1− rij

(4.1)

This quantity can be interpreted as the number of pairs (Yj , Yk) with Yj
missing and Yk observed, divided by the total number of missing cases in
Yj . The proportion of usable cases Ijk equals 1 if variable Yk is observed in
all records where Yj is missing. The statistic can be used to quickly select
potential predictors Yk for imputing Yj based on the missing data pattern.
High values of Ijk are preferred. For example, we can calculate Ijk in the
dataset pattern4 in Figure 4.1 for all pairs (Yj , Yk) by

> p$mr/(p$mr + p$mm)

A B C

A 0.000 0 1

B 0.333 0 1

C 1.000 1 0

The first row contains IAA = 0, IAB = 0 and IAC = 1. This informs us that B
is not relevant for imputing A since there are no observed cases in B where A

is missing. However, C is observed for both missing entries in A, and may thus
be a relevant predictor. The Ijk statistic is an inbound statistic that measures
how well the missing entries in variable Yj are connected to the rest of the
data.

The outbound statistic Ojk measures how well observed data in variable
Yj connect to missing data in the rest of the data. The statistic is defined as

Ojk =

∑n
i rij(1− rik)∑n

i rij
(4.2)
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This quantity is the number of observed pairs (Yj , Yk) with Yj observed and
Yk missing, divided by the total number of observed cases in Yj . The quantity
Ojk equals 1 if variable Yj is observed in all records where Yk is missing.
The statistic can be used to evaluate whether Yj is a potential predictor for
imputing Yk. We can calculate Ojk in the dataset pattern4 in Figure 4.1 for
all pairs (Yj , Yk) by

> p$rm/(p$rm + p$rr)

A B C

A 0.0 0.167 0.5

B 0.0 0.000 0.6

C 0.4 0.600 0.0

Thus A is potentially more useful to impute C (3 out of 6) than B (1 out of 6).

4.1.3 Influx and outflux

The inbound and outbound statistics in the previous section are defined
for variable pairs (Yj , Yk). This section describes two overall measures of how
each variable connects to others: influx and outflux.

The influx coefficient Ij is defined as

Ij =

∑p
j

∑p
k

∑n
i (1− rij)rik∑p

k

∑n
i rik

(4.3)

The coefficient is equal to the number of variable pairs (Yj , Yk) with Yj missing
and Yk observed, divided by the total number of observed data cells. The
value of Ij depends on the proportion of missing data of the variable. Influx of
a completely observed variable is equal to 0, whereas for completely missing
variables we have Ij = 1. For two variables with the same proportion of missing
data, the variable with higher influx is better connected to the observed data,
and might thus be easier to impute.

The outflux coefficient Oj is defined in an analogous way as

Oj =

∑p
j

∑p
k

∑n
i rij(1− rik)∑p

k

∑n
i 1− rij

(4.4)

The quantity Oj is the number of variable pairs with Yj observed and Yk
missing, divided by the total number of incomplete data cells. Outflux is an
indicator of the potential usefulness of Yj for imputing other variables. Out-
flux depends on the proportion of missing data of the variable. Outflux of a
completely observed variable is equal to 1, whereas outflux of a completely
missing variable is equal to 0. For two variables having the same proportion
of missing data, the variable with higher outflux is better connected to the
missing data, and thus potentially more useful for imputing other variables.

The function flux() in mice calculates Ij and Oj for all variables. For
example, for pattern4 we obtain



100 Flexible Imputation of Missing Data

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Influx

O
ut

flu
x

AB

C

Univariate

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Influx
O

ut
flu

x

A

B

C

Monotone

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Influx

O
ut

flu
x

A

B

C

File matching

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Influx

O
ut

flu
x

A

B

C

General

Figure 4.2: Fluxplot: Outflux versus influx in the four missing data patterns
from Figure 4.1. The influx of a variable quantifies how well its missing data
connect to the observed data on other variables. The outflux of a variable
quantifies how well its observed data connect to the missing data on other
variables. In general, higher influx and outflux values are preferred.

> flux(pattern4)[, 1:3]

pobs influx outflux

A 0.750 0.125 0.500

B 0.625 0.250 0.375

C 0.625 0.375 0.625

The rows correspond to the variables. The columns contain the proportion
of observed data, Ij and Oj . Figure 4.2 shows the influx-outflux pattern of
the four patterns in Figure 4.1 produced by fluxplot(). In general, vari-
ables that are located higher up in the display are more complete and thus
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potentially more useful for imputation. It is often (but not always) true that
Ij + Oj ≤ 1, so in practice variables closer to the subdiagonal are typically
better connected than those farther away. The fluxplot can be used to spot
variables that clutter the imputation model. Variables that are located in the
lower regions (especially near the lower-left corner) and that are uninteresting
for later analysis are better removed from the data prior to imputation.

Influx and outflux are summaries of the missing data pattern intended
to aid in the construction of imputation models. Keeping everything else con-
stant, variables with high influx and outflux are preferred. Realize that outflux
indicates the potential (and not actual) contribution to impute other variables.
A variable with high Oj may turn out to be useless for imputation if it is unre-
lated to the incomplete variables. On the other hand, the usefulness of a highly
predictive variable is severely limited by a low Oj . More refined measures of
usefulness are conceivable, e.g., multiplying Oj by the average proportion of
explained variance. Also, we could specialize to one or a few key variables
to impute. Alternatively, analogous measures for Ij could be useful. The fur-
ther development of diagnostic summaries for the missing data pattern is a
promising area for further investigation.

4.2 Issues in multivariate imputation

Most imputation models for Yj use the remaining columns Y−j as predic-
tors. The rationale is that conditioning on Y−j preserves the relations among
the Yj in the imputed data. Van Buuren et al. (2006) identified various prac-
tical problems that can occur in multivariate missing data:

• The predictors Y−j themselves can contain missing values;

• “Circular”dependence can occur, where Y mis
j depends on Y mis

h and Y mis
h

depends on Y mis
j with h 6= j, because in general Yj and Yh are correlated,

even given other variables;

• Variables are often of different types (e.g., binary, unordered, ordered,
continuous), thereby making the application of theoretically convenient
models, such as the multivariate normal, theoretically inappropriate;

• Especially with large p and small n, collinearity or empty cells can occur;

• The ordering of the rows and columns can be meaningful, e.g., as in
longitudinal data;

• The relation between Yj and predictors Y−j can be complex, e.g., non-
linear, or subject to censoring processes;
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• Imputation can create impossible combinations, such as pregnant fa-
thers.

This list is by no means exhaustive, and other complexities may appear for
particular data. The next sections discuss three general strategies for imputing
multivariate data:

• Monotone data imputation. For monotone missing data patterns, impu-
tations are created by a sequence of univariate methods;

• Joint modeling . For general patterns, imputations are drawn from a
multivariate model fitted to the data;

• Fully conditional specification, also known as chained equations and se-
quential regressions. For general patterns, a multivariate model is im-
plicitly specified by a set of conditional univariate models. Imputations
are created by drawing from iterated conditional models.

4.3 Monotone data imputation

4.3.1 Overview

Imputations of monotone missing data can be generated by specifying a
sequence of univariate methods (one for each incomplete column), followed by
drawing sequentially synthetic observations under each method.

Suppose that variables Y1, . . . , Yp are ordered into a monotone missing
data pattern. The general recommended procedure is as follows (Rubin, 1987a,
p. 172). The missing values of Y1 are imputed from a (possibly empty) set of
complete covariates X ignoring Y2, . . . , Yp. Next, the missing values of Y2 are
imputed from (Y1, X) ignoring Y3, . . . , Yp, and so on. The procedure ends after
Yp is imputed from (X,Y1, . . . , Yp−1). The univariate imputation methods as
discussed in Chapter 3 can be used as building blocks. For example, Y1 can
be imputed by logistic regression, Y2 by predictive mean matching, and so on.

Numerical example. The first three columns of the data frame nhanes2 in
mice have a monotone missing data pattern. In terms of the above notation,
X contains the complete variable age, Y1 is the variable hyp, and Y2 is the
variable bmi. Monotone data imputation can be applied to generate m = 2
complete datasets by:

> data <- nhanes2[, 1:3]

> md.pattern(data)

age hyp bmi

16 1 1 1 0

1 1 1 0 1
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8 1 0 0 2

0 8 9 17

> imp <- mice(data, visit = "monotone", maxit = 1,

m = 2)

iter imp variable

1 1 hyp bmi

1 2 hyp bmi

The md.pattern() function outputs the three available data patterns in data.
There are 16 complete rows, one row with missing bmi, and eight rows where
both bmi and hyp are missing. The argument visit="monotone" specifies that
the visit sequence should be equal to the number of missing data per variable
(so first hyp and then bmi). Since one iteration is enough, we use maxit=1 to
limit the calculations. This code imputes hyp by logistic regression and bmi

by predictive mean matching, the default methods for binary and continuous
data, respectively.

Monotone data imputation requires that the missing data pattern is mono-
tone. In addition, there is a second, more technical requirement: the param-
eters of the imputation models should be distinct (Rubin, 1987a, pp. 174–
178). Let the jth imputation model be denoted by P (Y mis

j |X,Y1, . . . , Yp−1, φj),
where φj represents the unknown parameters of the imputation model. For
valid likelihood inferences, φ1, . . . , φp should be distinct in the sense that the
parameter space φ = (φ1, . . . , φp) in the multivariate model for the data is the
cross-product of the individual parameter spaces (Schafer, 1997, p. 219). For
Bayesian inference, it is required that the prior density of all parameters π(φ)
factors into p independent densities π(φ) = π1(φ1)π2(φ2), . . . , πp(φp) (Schafer,
1997, p. 224). In most applications these requirements are unlikely to limit the
practical usefulness of the method because the parameters are typically unre-
lated and allowed to vary freely. We need to be aware, however, that monotone
data imputation may fail if the parameters of imputation models for different
Yj somehow depend on each other.

4.3.2 Algorithm

Algorithm 4.1 provides the main steps of monotone data imputation. We
order the variables according to their missingness, and impute from left to
right. In practice, a pair of “draw-impute” steps is executed by one of the
univariate methods of Chapter 3. Both Bayesian and bootstrap imputation
methods can be used, and can in fact be mixed. There is no need to iterate, and
convergence is immediate. The algorithm is replicated m times from different
starting points to obtain m multiply imputed datasets.

Monotone data imputation is fast and flexible, but requires a monotone
pattern. In practice, a dataset may be near-monotone, and may become mono-
tone if a small fraction of the missing data were imputed. For example, some
subjects may drop out of the study resulting in a monotone pattern. There
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Algorithm 4.1: Monotone data imputation of multivariate missing data.♠

1. Sort the data Y obs
j with j = 1, . . . , p according to their missingness.

2. Draw φ̇1 ∼ P (Y obs
1 |X).

3. Impute Ẏ1 ∼ P (Y mis
1 |X, φ̇1).

4. Draw φ̇2 ∼ P (Y obs
2 |X, Ẏ1).

5. Impute Ẏ2 ∼ P (Y mis
2 |X, Ẏ1, φ̇2).

6.
...

7. Draw φ̇p ∼ P (Y obs
p |X, Ẏ1, . . . , Ẏp−1).

8. Impute Ẏp ∼ P (Y mis
p |X, Ẏ1, . . . , Ẏp−1, φ̇p).

could be some unplanned missing data that destroy the monotone pattern.
In such cases it can be computationally efficient to impute the data in two
steps. First, fill in the missing data in a small portion of the data to restore
the monotone pattern, and then apply the monotone data imputation (Li,
1988; Rubin and Schafer, 1990; Liu, 1993; Schafer, 1997; Rubin, 2003). There
are often more ways to impute toward monotonicity, so a choice is necessary.
Rubin and Schafer (1990) suggested ordering the variables according to the
missing data rate.

Numerical example. The nhanes2 data in mice contains 3 out of 27 missing
values that destroy the monotone pattern: one for hyp (in row 6) and two for
bmi (in rows 3 and 6). An approximate version of the above two-step algorithm
can be executed as

> ini <- mice(nhanes2, maxit = 0)

> pred <- ini$pred

> pred["bmi", "chl"] <- 0

> pred["hyp", c("chl", "bmi")] <- 0

> imp <- mice(nhanes2, vis = "monotone", pred = pred,

maxit = 1, m = 2)

iter imp variable

1 1 hyp bmi chl

1 2 hyp bmi chl

This code actually combines both steps by sequentially imputing hyp, bmi

and chl in one pass through the data. The first four statements change the
default predictor matrix of mice() to reflect the visit sequence. The code yields
valid imputations for the 24 missing values that belong to the monotone part.
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Observe that the imputed values for the missing hyp value in row 3 could also
depend on bmi and chl, but under monotone data imputation both variables
do not appear in the model for hyp. In principle, we can improve the method
by incorporating bmi and chl into the model and iterating. We explore this
technique in more detail in Section 4.5, but first we study an alternative.

4.4 Joint modeling

4.4.1 Overview

Joint modeling (JM) starts from the assumption that the data can be
described by a multivariate distribution. Assuming ignorability, imputations
are created as draws from the fitted distribution. The model can be based on
any multivariate distribution. The multivariate normal distribution is most
widely applied.

The general idea is as follows. For a general missing data pattern, missing
data can occur anywhere in Y , so in practice the distribution from which impu-
tations are to be drawn varies from row to row. For example, if the missingness
pattern of row i is r[i] = (0, 0, 1, 1), then we need to draw imputations from the
bivariate distribution Pi(Y

mis
1 , Y mis

2 |Y3, Y4, φ1,2), whereas if r[i′] = (0, 1, 1, 1)
we need draws from the univariate distribution Pi′(Y

mis
1 |Y1, Y3, Y4, φ1).

4.4.2 Continuous data ♠

Under the assumption of multivariate normality Y ∼ N(µ,Σ), the φ-
parameters of these imputation models are functions of θ = (µ,Σ) (Schafer,
1997, p. 157). The sweep operator transforms θ into φ by converting outcome
variables into predictors, while the reverse sweep operator allows for the in-
verse operation (Beaton, 1964). The sweep operators allow rapid calculation
of the φ parameters for imputation models that pertain to different missing
data patterns. For reasons of efficiency, rows can be grouped along the miss-
ing data pattern. See Little and Rubin (2002, pp. 148–156) and Schafer (1997,
p. 157–163) for computational details.

The θ-parameters are usually unknown. For non-monotone missing data,
however, it is generally difficult to estimate θ from Yobs directly. The solution
is to iterate imputation and parameter estimation using a general algorithm
known as data augmentation (Tanner and Wong, 1987). At step t, the algo-
rithm draws Ymis and θ by alternating the following steps:

Ẏ tmis ∼ P (Ymis|Yobs, θ̇
t−1) (4.5)

θ̇t ∼ P (θ|Yobs, Ẏ
t
mis) (4.6)
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Algorithm 4.2: Imputation of missing data by a joint model for multivariate
normal data.♠

1. Sort the rows of Y into S missing data patterns Y[s], s = 1, . . . , S.

2. Initialize θ0 = (µ0,Σ0) by a reasonable starting value.

3. Repeat for t = 1, . . . , T :

4. Repeat for s = 1, . . . , S:

5. Calculate parameters φ̇s = SWP(θ̇t−1, s) by sweeping the predic-
tors of pattern s out of θ̇t−1.

6. Calculate ps as the number missing data in pattern s. Calculate
os = p− ps.

7. Calculate the Choleski decomposition Cs of the ps × ps submatrix
of φ̇s corresponding to the missing data in pattern s.

8. Draw a random vector z ∼ N(0, 1) of length ps.

9. Take β̇s as the os × ps submatrix of φ̇s of regression weights.

10. Calculate imputations Ẏ t[s] = Y obs
[s] β̇s + C ′sz, where Y obs

[s] is the ob-
served data in pattern s.

11. End repeat s.

12. Draw θ̇t = (µ̇, Σ̇) from the normal inverted-Wishart distribution
according to Schafer (1997, p. 184).

13. End repeat t.

where imputations from P (Ymis|Yobs, θ̇
t−1) are drawn by the method as de-

scribed in the previous section, and where draws from the parameter distribu-
tion P (θ|Yobs, Ẏ

t
mis) are generated according to the method of Schafer (1997,

p. 184).
Algorithm 4.2 lists the major steps needed to impute multivariate miss-

ing data under the normal model. Additional background can be found in Li
(1988), Rubin and Schafer (1990) and Schafer (1997). Song and Belin (2004)
generated multiple imputations under the common factor model. The per-
formance of the method was found to be similar to that of the multivariate
normal distribution, the main pitfall being the danger of setting the numbers
of factors too low.

Schafer (1997, p. 211–218) reported simulations that showed that imputa-
tions generated under the multivariate normal model are robust to non-normal
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data. Demirtas et al. (2008) confirmed this claim in a more extensive simula-
tion study. The authors conclude that “imputation under the assumption of
normality is a fairly reasonable tool, even when the assumption of normal-
ity is clearly violated; the fraction of missing information is high, especially
when the sample size is relatively large.” It is often beneficial to transform
the data before imputation toward normality, especially if the scientifically
interesting parameters are difficult to estimate, like quantiles or variances.
For example, we could apply a logarithmic transformation before imputation
to remove skewness, and apply an exponential transformation after imputa-
tion to revert to the original scale. Some work on automatic transformation
methods for joint models is available. Van Buuren et al. (1993) developed an
iterative transformation-imputation algorithm that finds optimal transforma-
tions of the variables toward multivariate normality. The algorithm is iterative
because the multiply imputed values contribute to define the transformation,
and vice versa. Transformations toward normality have also been incorporated
in transcan() and aregImpute() of the Hmisc package in R (Harrell, 2001).

4.4.3 Categorical data

The multivariate normal model is often applied to categorical data. Schafer
(1997, p. 148) suggested rounding off continuous imputed values in categori-
cal data to the nearest category “to preserve the distributional properties as
fully as possible and to make them intelligible to the analyst.” This advice
was questioned by Horton et al. (2003), who showed that simple rounding
may introduce bias in the estimates of interest, in particular for binary vari-
ables. Allison (2005) found that it is usually better not to round the data,
and preferred methods specifically designed for categorical data, like logistic
regression imputation or discriminant analysis imputation. Bernaards et al.
(2007) confirmed the results of Horton et al. (2003) for simple rounding,
and proposed two improvements to simple rounding: coin flip and adaptive
rounding . Their simulations showed that “adaptive rounding seemed to pro-
vide the best performance, although its advantage over simple rounding was
sometimes slight.” Further work has been done by Yucel et al. (2008), who
proposed rounding such that the marginal distribution in the imputations is
similar to that of the observed data. Alternatively, Demirtas (2009) proposed
two rounding methods based on logistic regression and an additional draw-
ing step that makes rounding dependent on other variables in the imputation
model. A single best rounding rule for categorical data has yet to be iden-
tified. Demirtas (2010) encourages researchers to avoid rounding altogether,
and apply methods specifically designed for categorical data.

Several joint models for categorical variables have been proposed that do
not rely on rounding. Schafer (1997) proposed several techniques to impute
categorical data and mixed continuous-categorical data. Missing data in con-
tingency tables can be imputed under the log-linear model. The model pre-
serves higher-order interactions, and works best if the number of variables is
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small, say, up to six. Mixed continuous-categorical data can be imputed under
the general location model originally developed by Olkin and Tate (1961). This
model combines the log-linear and multivariate normal models by fitting a re-
stricted normal model to each cell of the contingency table. Further extensions
have been suggested by Liu and Rubin (1998) and Peng et al. (2004). Belin
et al. (1999) pointed out some limitations of the general location model for a
larger dataset with 16 binary and 18 continuous variables. Their study found
substantial differences between the imputed and follow-up data, especially for
the binary data.

Alternative imputation methods based on joint models have been devel-
oped. Van Buuren and Van Rijckevorsel (1992) maximized internal consistency
by the k-means clustering algorithm, and outlined methods to generate mul-
tiple imputations. Van Ginkel et al. (2007) proposed two-way imputation, a
technique for imputing incomplete categorical data by conditioning on the row
and column sum scores of the multivariate data. This method has applications
for imputing missing test item responses. Vermunt et al. (2008) developed an
imputation method based on latent class analysis. Latent class models can be
used to describe complex association structures, like in log-linear analysis, but
in addition they allow for larger and more flexible imputation models. Gold-
stein et al. (2009) described a joint model for mixed continuous-categorical
data with a multilevel structure. Chen et al. (2011) proposed a class of models
that specifies the conditional density by an odds ratio representation relative
to the center of the distribution. This allows for separate models of the odds
ratio function and the conditional density at the center.

4.5 Fully conditional specification

4.5.1 Overview

Fully conditional specification (FCS) (Van Buuren et al., 2006; Van Bu-
uren, 2007a) imputes multivariate missing data on a variable-by-variable basis.
The method requires a specification of an imputation model for each incom-
plete variable, and creates imputations per variable in an iterative fashion.

In contrast to joint modeling, FCS specifies the multivariate distribution
P (Y,X,R|θ) through a set of conditional densities P (Yj |X,Y−j , R, φj). This
conditional density is used to impute Yj given X, Y−j and R. Starting from
simple random draws from the marginal distribution, imputation under FCS
is done by iterating over the conditionally specified imputation models. The
methods of Chapter 3 may act as building blocks. FCS is a natural general-
ization of univariate imputation.

Rubin (1987a, pp. 160–166) subdivided the work needed to create imputa-
tions into three tasks. The modeling task chooses a specific model for the data,
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the estimation task formulates the posterior parameters distribution given the
model and the imputation task takes a random draws for the missing data
by drawing successively from parameter and data distributions. FCS directly
specifies the conditional distributions from which draws should be made, and
hence bypasses the need to specify a multivariate model for the data.

The idea of conditionally specified models is quite old. Conditional prob-
ability distributions follow naturally from the theory of stochastic Markov
chains (Bartlett, 1978, pp. 34–41, pp. 231–236). In the context of spatial data,
Besag preferred the use of conditional probability models over joint probabil-
ity models, since “the conditional probability approach has greater intuitive
appeal to the practising statistician” (Besag, 1974, p. 223).

In the context of missing data imputation, similar ideas have surfaced un-
der a variety of names: stochastic relaxation (Kennickell, 1991), variable-by-
variable imputation (Brand, 1999), switching regressions (Van Buuren et al.,
1999), sequential regressions (Raghunathan et al., 2001), ordered pseudo-
Gibbs sampler (Heckerman et al., 2001), partially incompatible MCMC (Ru-
bin, 2003), iterated univariate imputation (Gelman, 2004), chained equations
(Van Buuren and Groothuis-Oudshoorn, 2000) and fully conditional specifi-
cation (FCS) (Van Buuren et al., 2006).

4.5.2 The MICE algorithm

There are several ways to implement imputation under conditionally spec-
ified models. Algorithm 4.3 describes one particular instance: the MICE al-
gorithm (Van Buuren and Groothuis-Oudshoorn, 2000, 2011). The algorithm
starts with a random draw from the observed data, and imputes the incom-
plete data in a variable-by-variable fashion. One iteration consists of one cycle
through all Yj . The number of iterations T can often be low, say 5 or 10. The
MICE algorithm generates multiple imputations by executing Algorithm 4.3
in parallel m times.

The MICE algorithm is a Markov chain Monte Carlo (MCMC) method,
where the state space is the collection of all imputed values. More specifically,
if the conditionals are compatible (cf. Section 4.5.4), the MICE algorithm is
a Gibbs sampler, a Bayesian simulation technique that samples from the con-
ditional distributions in order to obtain samples from the joint distribution
(Gelfand and Smith, 1990; Casella and George, 1992). In conventional applica-
tions of the Gibbs sampler the full conditional distributions are derived from
the joint probability distribution (Gilks, 1996). In the MICE algorithm, the
conditional distributions are under direct control of the user, and so the joint
distribution is only implicitly known, and may not actually exist. While the
latter is clearly undesirable from a theoretical point of view (since we do not
know the joint distribution to which the algorithm converges), in practice it
does not seem to hinder useful applications of the method (cf. Section 4.5.4).

In order to converge to a stationary distribution, a Markov chain needs to
satisfy three important properties (Roberts, 1996; Tierney, 1996):
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Algorithm 4.3: MICE algorithm for imputation of multivariate missing
data.♠

1. Specify an imputation model P (Y mis
j |Y obs

j , Y−j , R) for variable Yj
with j = 1, . . . , p.

2. For each j, fill in starting imputations Ẏ 0
j by random draws from

Y obs
j .

3. Repeat for t = 1, . . . , T :

4. Repeat for j = 1, . . . , p:

5. Define Ẏ t−j = (Ẏ t1 , . . . , Ẏ
t
j−1, Ẏ

t−1
j+1 , . . . , Ẏ

t−1
p ) as the currently com-

plete data except Yj .

6. Draw φ̇tj ∼ P (φtj |Y obs
j , Ẏ t−j , R).

7. Draw imputations Ẏ tj ∼ P (Y mis
j |Y obs

j , Ẏ t−j , R, φ̇
t
j).

8. End repeat j.

9. End repeat t.

• irreducible, the chain must be able to reach all interesting parts of the
state space;

• aperiodic, the chain should not oscillate between different states;

• recurrence, all interesting parts can be reached infinitely often, at least
from almost all starting points.

Do these properties hold for the MICE algorithm? Irreducibility is generally
not a problem since the user has large control over the interesting parts of the
state space. This flexibility is actually the main rationale for FCS instead of
a joint model.

Periodicity is a potential problem, and can arise in the situation where
imputation models are clearly inconsistent. A rather artificial example of an
oscillatory behavior occurs when Y1 is imputed by Y2β+ ε1 and Y2 is imputed
by −Y1β + ε2 for some fixed, nonzero β. The sampler will oscillate between
two qualitatively different states, so the correlation between Y1 and Y2 after
imputing Y1 will differ from that after imputing Y2. In general, we would like
the statistical inferences to be independent of the stopping point. A way to
diagnose the ping-pong problem is to stop the chain at different points. The
stopping point should not affect the statistical inferences. The addition of
noise to create imputations is a safeguard against periodicity, and allows the
sampler to “break out” more easily.
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Non-recurrence may also be a potential difficulty, manifesting itself as
explosive or non-stationary behavior. For example, if imputations are made
through deterministic functions, the Markov chain may lock up. Such cases can
sometimes be diagnosed from the trace lines of the sampler. See Section 5.5.2
for an example. My experience is that as long as the parameters of imputation
models are estimated from the data, non-recurrence is mild or absent.

The required properties of the MCMC method can be translated into con-
ditions on the eigenvalues of the matrix of transition probabilities (MacKay,
2003, pp. 372–373). The development of practical tools that put these condi-
tions to work for multiple imputation is still an ongoing research problem.

4.5.3 Performance

Each conditional density has to be specified separately, so FCS requires
some modeling effort on the part of the user. Most software provides reasonable
defaults for standard situations, so the actual effort required may be small.

A number of simulation studies provide evidence that FCS generally yields
estimates that are unbiased and that possess appropriate coverage (Brand,
1999; Raghunathan et al., 2001; Brand et al., 2003; Tang et al., 2005; Van Bu-
uren et al., 2006; Horton and Kleinman, 2007; Yu et al., 2007).

4.5.4 Compatibility ♠

Gibbs sampling is based on the idea that knowledge of the conditional
distributions is sufficient to determine a joint distribution, if it exists. Two
conditional densities p(Y1|Y2) and p(Y2|Y1) are said to be compatible if a
joint distribution p(Y1, Y2) exists that has p(Y1|Y2) and p(Y2|Y1) as its condi-
tional densities. More precisely, the two conditional densities are compatible
if and only if their density ratio p(Y1|Y2)/p(Y2|Y1) factorizes into the product
u(Y1)v(Y2) for some integrable functions u and v (Besag, 1974). So, the joint
distribution either exists and is unique, or does not exist.

What happens when the joint distribution does not exist? The MICE al-
gorithm is ignorant of the non-existence of the joint distribution, and happily
produces imputations whether the joint distribution exists or not. However,
can the imputed data be trusted when we cannot find a joint distribution
p(Y1, Y2) that has p(Y1|Y2) and p(Y2|Y1) as its conditionals?

In practice, incompatibility issues may arise in MICE if deterministic func-
tions of the data are imputed along with their originals. For example, the im-
putation model may contain interaction terms, data summaries or nonlinear
functions of the data. Such terms may introduce feedback loops and impossible
combinations into the system, which can invalidate the imputations (Van Bu-
uren and Groothuis-Oudshoorn, 2011). It is important to diagnose this behav-
ior, and eliminate feedback loops from the system. Chapter 5 describes the
tools to do this.

Van Buuren et al. (2006) contains a small simulation study using strongly
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incompatible models. The adverse effects on the estimates after multiple impu-
tation were only minimal in the cases studied. Though FCS is only guaranteed
to work if the conditionals are compatible, in practice it appears that it is ro-
bust when this condition is not met. More work is needed to verify this claim
in more general and more realistic settings.

If the joint density itself is of genuine scientific interest, we should care-
fully evaluate the effect that imputations might have on the estimate of the
distribution. For example, incompatible conditionals could produce a ridge
(or spike) in an otherwise smooth density, and the location of the ridge may
actually depend on the stopping point. If such is the case, then we should have
a reason to favor a particular stopping point. Alternatively, we might try to
reformulate the imputation model so that the stopping point effect disappears.

In the majority of cases, however, scientific interest will focus on quantities
that are more remote to the joint density, such as regression weights, factor
loadings, prevalence estimates, and so on. In such cases, the joint distribution
is more like a nuisance factor that has no intrinsic value. MICE attempts to
produce synthetic values that look sensible and that preserve the relations in
the data. Gelman (2004) argues that

having a joint distribution in the imputation is less important than
incorporating information from other variables and unique features
of the dataset (e.g., zero/nonzero features in income components,
bounds, skip patterns, nonlinear relations, interactions).

Apart from potential feedback problems, it appears that incompatibility is
a relatively minor problem in practice, especially if the missing data rate is
modest.

Arnold and Press (1989) provide necessary and sufficient conditions for the
existence of a joint distribution given two conditional densities. See Arnold
et al. (1999) for multivariate extensions. Gelman and Speed (1993) concen-
trate on the question whether an arbitrary mix of conditional and marginal
distribution yields a unique joint distribution. Further theoretical work has
been done by Arnold et al. (2002). The field has recently become very active.
Several methods for identifying compatibility from actual data have been de-
veloped in the last few years (Tian et al., 2009; Ip and Wang, 2009; Tan et al.,
2010; Wang and Kuo, 2010; Kuo and Wang, 2011; Chen, 2011). It is not yet
known how well these methods will work in the context of missing data.

4.5.5 Number of iterations

When m sampling streams are calculated in parallel, monitoring conver-
gence is done by plotting one or more statistics of interest in each stream
against iteration number t. Common statistics to be plotted are the mean and
standard deviation of the synthetic data, as well as the correlation between dif-
ferent variables. The pattern should be free of trend, and the variance within
a chain should approximate the variance between chains.
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In practice, a low number of iterations appears to be enough. Brand (1999)
and (Van Buuren et al., 1999) set the number of iterations T quite low, usually
somewhere between 5 to 20 iterations. This number is much lower than in other
applications of MCMC methods, which often require thousands of iterations.

Why can the number of iterations in MICE be so low? First of all, realize
that the imputed data Ẏmis form the only memory in the MICE algorithm.
Chapter 3 explained that imputed data can have a considerable amount of
random noise, depending on the strength of the relations between the vari-
ables. Applications of MICE with lowly correlated data therefore inject a lot
of noise into the system. Hence, the autocorrelation over t will be low, and
convergence will be rapid, and in fact immediate if all variables are indepen-
dent. Thus, the incorporation of noise into the imputed data has the pleasant
side effect of speeding up convergence. Conversely, situations to watch out for
may occur if:

• the correlations between the Yjs are high;

• the missing data rates are high; or

• constraints on parameters across different variables exist.

The first two conditions directly affect the amount of autocorrelation in the
system. The latter condition becomes relevant for customized imputation mod-
els. We will see some examples in Section 5.5.2.

In the context of missing data imputation, our simulations have shown
that unbiased estimates and appropriate coverage usually require no more
than just five iterations. It is, however, important not to rely automatically
on this result as some applications can require considerably more iterations.

4.5.6 Example of slow convergence

Consider a small simulation experiment with three variables: one complete
covariate X and two incomplete variables Y1 and Y2. The data consist of
draws from the multivariate normal distribution with correlations ρ(X,Y1) =
ρ(X,Y2) = 0.9 and ρ(Y1, Y2) = 0.7. The variables are ordered as [X,Y1, Y2].
The complete pattern is R1 = (1, 1, 1). Missing data are randomly created in
two patterns: R2 = (1, 0, 1) and R3 = (1, 1, 0). Variables Y1 and Y2 are jointly
observed on n(1,1,1) complete cases. The following code defines the function to
generate the incomplete data.

> generate <- function(n = c(1000, 4500, 4500, 0),

cor = matrix(c(1, 0.9, 0.9, 0.9, 1, 0.7, 0.9,

0.7, 1), nrow = 3)) {

require(MASS)

nt <- sum(n)

cs <- cumsum(n)

data <- mvrnorm(nt, mu = rep(0, 3), Sigma = cor)
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dimnames(data) <- list(1:nt, c("X", "Y1",

"Y2"))

if (n[2] > 0)

data[(cs[1] + 1):cs[2], "Y1"] <- NA

if (n[3] > 0)

data[(cs[2] + 1):cs[3], "Y2"] <- NA

if (n[4] > 0)

data[(cs[3] + 1):cs[4], c("Y1", "Y2")] <- NA

return(data)

}

As an imputation model, we specified compatible linear regressions Y1 = β1,0+
β1,2Y2 + β1,3X + ε1 and Y2 = β2,0 + β2,1Y1 + β2,3X + ε2 to impute Y1 and Y2.
The following code defines the function used for imputation.

> impute <- function(data, m = 5, method = "norm",

print = FALSE, maxit = 10, ...) {

statistic <- matrix(NA, nrow = maxit, ncol = m)

for (iter in 1:maxit) {

if (iter == 1)

imp <- mice(data, m = m, method = method,

print = print, maxit = 1, ...)

else imp <- mice.mids(imp, maxit = 1,

print = print, ...)

statistic[iter, ] <- unlist(with(imp,

cor(Y1, Y2))$analyses)

}

return(list(imp = imp, statistic = statistic))

}

The difficulty in this particular problem is that the correlation ρ(Y1, Y2) under
the conditional independence of Y1 and Y2 given X is equal to 0.9×0.9 = 0.81,
whereas the true value equals 0.7. It is thus of interest to study how the
correlation ρ(Y1, Y2) develops over the iterations, but this is not a standard
function in mice(). As an alternative, the impute() function repeatedly calls
mice.mids() with maxit = 1, and calculates ρ(Y1, Y2) after each iteration
from the complete data.

The following code defines six scenarios where the number of complete
cases is varied as n(1,1,1) ∈ {1000, 500, 250, 100, 50, 0}, while holding the total
sample size constant at n = 10, 000. The proportion of complete rows thus
varies between 10% and 0%.

> simulate <- function(ns = matrix(c(1000, 500,

250, 100, 50, 0, rep(c(4500, 4750, 4875, 4950,

4975, 5000), 2), rep(0, 6)), nrow = 6),

m = 5, maxit = 10, seed = 1, ...) {

if (!missing(seed))
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Figure 4.3: Correlation between Y1 and Y2 in the imputed data per iteration
in five independent runs of the MICE algorithm for six levels of missing data.
The true value is 0.7. The figure illustrates that convergence can be slow for
high percentages of missing data.

set.seed(seed)

s <- cbind(rep(1:nrow(ns), each = maxit *

m), apply(ns, 2, rep, each = maxit * m),

rep(1:maxit, each = m), 1:m, NA)

colnames(s) <- c("k", "n111", "n101", "n110",

"n100", "iteration", "m", "rY1Y2")

for (k in 1:nrow(ns)) {

data <- generate(ns[k, ], ...)

r <- impute(data, m = m, maxit = maxit,

...)

s[s[, "k"] == k, "rY1Y2"] <- t(r$statistic)

}

return(data.frame(s))

}

The simulate() function code collects the correlations ρ(Y1, Y2) per iteration
in the data frame s. Now call the function with

> slow.demo <- simulate(maxit = 150, seed = 62771)
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Figure 4.3 shows the development of ρ(Y1, Y2) calculated on the completed
data after every iteration of the MICE algorithm. At iteration 1, ρ(Y1, Y2)
is approximately 0.81, the value expected under independence of Y1 and Y2,
conditional on X. The influence of the complete records with both Y1 and
Y2 observed percolates into the imputations, so that the chains slowly move
into the direction of the population value of 0.7. The speed of convergence
heavily depends on the number of missing cases. For 90–95% missing data,
the streams are essentially flat after about 15–20 iterations. As the percentage
of missing data increases, more and more iterations are needed before the true
correlation of 0.7 trickles through. In the extreme cases with 100% missing
data, the correlation ρ(Y1, Y2) cannot be estimated due to lack of information
in the data. In this case, the different streams do not converge at all, and
wander widely within the Cauchy–Schwarz bounds (0.6 to 1.0 here). But even
here we could argue that the sampler has essentially converged. We could stop
at iteration 200 and take the imputations from there. From a Bayesian per-
spective, this still would yield an essentially correct inference about ρ(Y1, Y2),
being that it could be anywhere within the Cauchy–Schwarz bounds. So even
in this pathological case with 100% missing data, the results look sensible as
long as we account for the wide variability.

The lesson we can learn from this simulation is that we should be careful
about convergence in missing data problems with high correlations and high
missing data rates. At the same time, observe that we really have to push the
MICE algorithm to its limits to see the effect. Over 99% of real data will have
lower correlations and lower missing data rates. Of course, it never hurts to do
a couple of extra iterations, but my experience is that good results can often
be obtained with a small number of iterations.

4.6 FCS and JM

4.6.1 Relations between FCS and JM

FCS is related to JM in some special cases. If P (X,Y ) has a multivariate
normal model distribution, then all conditional densities are linear regressions
with a constant normal error variance. So, if P (X,Y ) is multivariate normal
then P (Yj |X,Y−j) follows a linear regression model. The reverse is also true:
If the imputation models P (Yj |X,Y−j) are all linear with constant normal
error variance, then the joint distribution will be multivariate normal. See
Arnold et al. (1999, p. 186) for a description of the precise conditions. Thus,
imputation by FCS using all linear regressions is identical to imputation under
the multivariate normal model.

Another special case occurs for binary variables with only two-way inter-
actions in the log-linear model. For example, in the case p = 3 suppose that
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Y1, . . . , Y3 are modeled by the log-linear model that has the three-way inter-
action term set to zero. It is known that the corresponding conditional distri-
bution P (Y1|Y2, Y3) is the logistic regression model log(P (Y1)/1 − P (Y1)) =
β0+β2Y2+β3Y3 (Goodman, 1970). Analogous definitions exist for P (Y2|Y1, Y3)
and P (Y3|Y1, Y2). This means that if we use logistic regressions for Y1, Y2 and
Y3, we are effectively imputing under the multivariate “no three-way interac-
tion” log-linear model.

4.6.2 Comparison

FCS cannot use computational shortcuts like the sweep operator, so the
calculations per iterations are more intensive than under JM. Also, JM has
better theoretical underpinnings.

On the other hand, FCS allows tremendous flexibility in creating multi-
variate models. One can easily specify models that are outside any known
standard multivariate density P (X,Y,R|θ). FCS can use specialized imputa-
tion methods that are difficult to formulate as a part of a multivariate density
P (X,Y,R|θ). Imputation methods that preserve unique features in the data,
e.g., bounds, skip patterns, interactions, bracketed responses and so on can be
incorporated. It is possible to maintain constraints between different variables
in order to avoid logical inconsistencies in the imputed data that would be
difficult to do as part of a multivariate density P (X,Y,R|θ).

4.6.3 Illustration

The Fourth Dutch Growth Study by Fredriks et al. (2000a) collected data
on 14500 Dutch children between 0 and 21 years. The development of sec-
ondary pubertal characteristics was measured by the so-called Tanner stages,
which divides the continuous process of maturation into discrete stages for the
ages between 8 and 21 years. Pubertal stages of boys are defined for genital
development (gen: five ordered stages G1–G5), pubic hair development (phb:
six ordered stages P1–P6) and testicular volume (tv: 1–25 ml).

We analyze the subsample of 424 boys in the age range 8–21 years. There
were 180 boys (42%) for which scores for genital development were missing.
The missingness was strongly related to age, rising from about 20% at ages
9–11 years to 60% missing data at ages 17–20 years.

The data consist of three complete covariates: age (age), height (hgt) and
weight (wgt), and three incomplete outcomes measuring maturation. First,
the data are imputed m = 10 times under the multivariate normal model for
all variables as follows:

> select <- with(boys, age >= 8 & age <= 21)

> djm <- boys[select, -4]

> djm$gen <- as.integer(djm$gen)

> djm$phb <- as.integer(djm$phb)
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Figure 4.4: Joint modeling: Imputed data for genital development (Tanner
stages G1–G5) under the multivariate normal model. The panels are labeled
by the imputation numbers 0–5, where 0 is the observed data and 1–5 are five
multiply imputed datasets.

> djm$reg <- as.integer(djm$reg)

> jm.10 <- mice(djm, method = "norm", seed = 93005,

m = 10)

Figure 4.4 plots the results of the first five imputations. It was created by
the following statement:

> xyplot(jm.10, gen ~ age | .imp, subset = as.integer(.imp) <

7, ylab = "Genital stage")

The figure portrays how genital development depends on age for both the
observed and imputed data. The spread of the synthetic values in Figure 4.4
is larger than the observed data range. The observed data are categorical while
the synthetic data vary continuously. Note that there are some negative values
in the imputations. If we are to do categorical data analysis on the imputed
data, we need some form of rounding to make the synthetic values comparable
with the observed values.
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Figure 4.5: Fully conditional specification: Imputed data of genital develop-
ment (Tanner stages G1–G5) under the proportional odds model.

Multiple imputations by FCS for a combination of predictive mean match-
ing (for the continuous variables) and the proportional odds model (for the
ordered variables gen and phb) can be calculated and plotted as

> fcs.10 <- mice(dfcs, seed = 81420, m = 10)

> xyplot(fcs.10, gen ~ age | .imp, subset = as.integer(.imp) <

7, ylab = "Genital stage")

The imputations in Figure 4.5 differ markedly from those in Figure 4.4. The
proportonal odds model yields imputations that are categorical, and hence no
rounding is needed.

The complete data model describes the probability of achieving each Tan-
ner stage as a nonlinear function of age according to the model proposed
in Van Buuren and Ooms (2009). The calculations are done with gamlss

(Stasinopoulos and Rigby, 2007). Under the assumption of ignorability, anal-
ysis of the complete cases will not be biased, so the complete case analysis
provides a handle to the appropriate solution. The blue lines in Figure 4.6
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Figure 4.6: Probability of achieving stages G2–G5 of genital developmental
by age (in years) under four imputation methods (m = 10).

indicate the model fitted on the complete cases, whereas the thin black lines
correspond to the analyses of the 10 imputed datasets.

The different panels of Figure 4.6 corresponds to different imputation
methods. The panel labeled JM: multivariate normal contains the model fit-
ted to the unprocessed imputed data produced under the multivariate normal
model. There is a large discrepancy between the complete case analysis and
the models fitted to the imputed data, especially for the older boys. The fit
improves in the panel labeled JM: rounded, where imputed data are rounded
to the nearest category. There is considerable misfit, and the behavior of the
imputed data around the age of 10 years is a bit curious. The panel labeled
FCS: predictive mean matching applied Algorithm 3.3 within the MICE algo-
rithm. Though this technique improves upon the previous two methods, some
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discrepancies for the older boys remain. The panel labeled FCS: proportional
odds displays the results after applying the method for ordered categorical
data as discussed in Section 3.5. The imputed data essentially agree with the
complete case analysis, perhaps apart from some minor deviations around the
probability level of 0.9.

Figure 4.6 shows clear differences between FCS and JM when data are
categorical. Although rounding may provide reasonable results in particular
datasets, it seems that it does more harm than good here. There are many ways
to round, rounding may require unrealistic assumptions and it will attenuate
correlations. Horton et al. (2003), Ake (2005) and Allison (2005) recommend
against rounding when data are categorical. See Section 4.4.3. Horton et al.
(2003) expected that bias problems of rounding would taper off if variables
have more than two categories, but the analysis in this section suggests that
JM may also be biased for categorical data with more than two categories.
Even though it may sound a bit trivial, my recommendation is: Impute cate-
gorical data by methods for categorical data.

4.7 Conclusion

Multivariate missing data lead to analytic problems caused by mutual de-
pendencies between incomplete variables. The missing data pattern provides
important information for the imputation model. The influx and outflux meas-
ures are useful to sift out variables that cannot contribute to the imputations.
For general missing data patterns, both JM and FCS approaches can be used
to impute multivariate missing data. JM is the model of choice if the data
conform to the modeling assumptions because it has better theoretical prop-
erties. The FCS approach is much more flexible and allows for imputations
close to the data. Lee and Carlin (2010) provide a comparison between both
perspectives.

4.8 Exercises

1. MAR (continued). Repeat Exercise 3.1 for a multivariate missing data
mechanism.

2. Convergence. Figure 4.3 shows that convergence can take longer for very
high amounts of missing data. This exercise studies an even more ex-
treme situation.
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(a) The default argument ns of the simulate() function in Sec-
tion 4.5.6 defines six scenarios with different missing data patterns.
Define a 6× 4 matrix ns2, where patterns R2 and R3 are replaced
by pattern R4 = (1, 0, 0). How many more missing values are there
in each scenario?

(b) For the new scenarios, do you expect convergence to be slower or
faster? Explain.

(c) Change the scenario in which all data in Y1 and Y2 are missing so
that there are 20 complete cases. Then run

> slow2 <- simulate(ns = ns2, maxit = 50, seed = 62771)

and create a figure similar to Figure 4.3.

(d) Compare your figure with Figure 4.3. Are there any major differ-
ences? If so, which?

(e) Did the figure confirm your idea about convergence speed you had
formulated in (b)?

(f) How would you explain the behavior of the trace lines?

3. Binary data. Perform the simulations of Section 4.5.6 with binary Y1

and Y2. Use the odds ratio instead of the correlation to measure the
association between Y1 and Y2. Does the same conclusion hold?



Chapter 5

Imputation in practice

Chapters 3 and 4 describe methods to generate multiple imputations. The
application of these techniques in practice should be done with appropriate
care. This chapter focuses on practical issues that surround the methodology.
This chapter assumes that multiple imputations are created by means of the
MICE algorithm, as described in Section 4.5.2.

This chapter relies on the R package mice to implement the techniques.
Many of these have equivalents in other software, in particular the R packages
Hmisc, mi, miP and VIM, the Stata commands mi and ice, and the SAS callable
software application IVEware. See Appendix A for an overview of software for
multiple imputation.

5.1 Overview of modeling choices

The specification of the imputation model is the most challenging step in
multiple imputation. The imputation model should

• account for the process that created the missing data,

• preserve the relations in the data, and

• preserve the uncertainty about these relations.

The idea is that adherence to these principles will yield proper imputations
(cf. Section 2.3.3), and thus result in valid statistical inferences. What are the
choices that we need to make, and in what order? Van Buuren and Groothuis-
Oudshoorn (2011) list the following seven choices:

1. First, we should decide whether the MAR assumption is plausible. See
Sections 1.2 and 2.2.4 for an introduction to MAR and MNAR. Chained
equations can handle both MAR and MNAR. Multiple imputation un-
der MNAR requires additional modeling assumptions that influence the
generated imputations. There are many ways to do this. Section 3.9 de-
scribed one way to do so within the FCS framework. Section 5.2 deals
with this issue in more detail.

123
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2. The second choice refers to the form of the imputation model. The form
encompasses both the structural part and the assumed error distribu-
tion. In FCS the form needs to be specified for each incomplete column
in the data. The choice will be steered by the scale of the variable to
be imputed, and preferably incorporates knowledge about the relation
between the variables. Chapter 3 described many different methods for
creating univariate imputations.

3. A third choice concerns the set of variables to include as predictors in
the imputation model. The general advice is to include as many relevant
variables as possible, including their interactions (Collins et al., 2001).
This may, however, lead to unwieldy model specifications. Section 5.3 de-
scribes the facilities within the mice() function for setting the predictor
matrix.

4. The fourth choice is whether we should impute variables that are func-
tions of other (incomplete) variables. Many datasets contain derived
variables, sum scores, interaction variables, ratios and so on. It can be
useful to incorporate the transformed variables into the multiple im-
putation algorithm. Section 5.4 describes methods that we can use to
incorporate such additional knowledge about the data.

5. The fifth choice concerns the order in which variables should be imputed.
The visit sequence may affect the convergence of the algorithm and
the synchronization between derived variables. Section 5.5.1 discusses
relevant options.

6. The sixth choice concerns the setup of the starting imputations and the
number of iterations. The convergence of the MICE algorithm can be
monitored in many ways. Section 5.5.2 outlines some techniques that
assist in this task.

7. The seventh choice is m, the number of multiply imputed datasets. Set-
ting m too low may result in large simulation error and statistical in-
efficiency, especially if the fraction of missing information is high. Sec-
tion 2.7 provided guidelines for setting m.

Please realize that these choices are always needed. Imputation software
needs to make default choices. These choices are intended to be useful across
a wide range of applications. However, the default choices are not necessarily
the best for the data at hand. There is simply no magical setting that always
works, so often some tailoring is needed. Section 5.6 highlights some diagnostic
tools that aid in determining the choices.
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5.2 Ignorable or nonignorable?

Recall from Section 2.2.6 that the assumption of ignorability is essentially
the belief that the available data are sufficient to correct the missing data.
There are two main strategies that we might pursue if the response mechanism
is nonignorable:

• Expand the data in the imputation model in the hope of making the
missing data mechanism closer to MAR, or

• Formulate and fit a nonignorable imputation model and perform sensi-
tivity analysis on the critical parameters.

Collins et al. (2001) remarked that it is a “safe bet” there will be lurking
variables Z that are correlated both with the variables of interest Y and
with the missingness of Y . The important question is, however, whether these
correlations are strong enough to produce substantial bias if no measures are
taken. Collins et al. (2001) performed simulations that provided some answers
in the case of linear regression. If the missing data rate did not exceed 25%
and if the correlation between the Z and Y was 0.4, omitting Z from the
imputation model had a negligible effect. For more extreme situations, with
50% missing data and/or a correlation of 0.9, the effect depended strongly on
the form of the missing data mechanism. When the probability to be missing
was linear in Z (like MARRIGHT in Section 3.2.4), then omitting Z from the
imputation model only affected the intercept, whereas the regression weights
and variance estimates were unaffected. When more missing data were created
in the extremes (like MARTAIL), the reverse occurred: omitting Z affected the
regression coefficients and variance estimates, but the intercept was unbiased
with the correct confidence interval. In summary, all estimates under multiple
imputation were remarkably robust against MNAR in many instances. Beyond
a correlation of 0.4 or a missing data rate over 25% the form of the missing
data mechanism determines which parameters are affected.

Based on these results, we suggest the following guidelines. The MAR as-
sumption is often a suitable starting point. If the MAR assumption is suspect
for the data at hand, a next step is to find additional data that are strongly
predictive of the missingness, and include these into the imputation model. If
all possibilities for such data are exhausted and if the assumption is still sus-
pect, perform a concise simulation study as in Collins et al. (2001) customized
for the problem at hand with the goal of finding out how extreme the MNAR
mechanism needs to be to influence the parameters of scientific interest. Fi-
nally, use a nonignorable imputation model (cf. Section 3.9) to correct the
direction of imputations created under MAR. Vary the most critical parame-
ters, and study their influence on the final inferences. Section 7.2 contains an
example of how this can be done in practice.
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Table 5.1: Built-in univariate imputation techniques in the mice package.

Method Description Scale Type
pmm Predictive mean matching Numeric∗

norm Bayesian linear regression Numeric
norm.predict Predicted value Numeric
norm.nob Stochastic regression Numeric
norm.boot Normal imputation with bootstrap Numeric
mean Unconditional mean imputation Numeric
2L.norm Multilevel normal model Numeric
logreg Logistic regression Binary∗

logreg.boot Logistic regression with bootstrap Binary
polyreg Multinomial logit model Nominal∗

lda Discriminant analysis Nominal
polr Ordered logit model Ordinal∗

sample Simple random sample Any

∗ = default for scale type

5.3 Model form and predictors

5.3.1 Model form

The MICE algorithm requires a specification of a univariate imputation
method separately for each incomplete variable. Chapter 3 discussed many
possible methods. The measurement level largely determines the form of the
univariate imputation model. The mice() function distinguishes numerical,
binary, ordered and unordered categorical data, and sets the defaults accord-
ingly.

Table 5.1 lists the built-in univariate imputation method in the mice pack-
age. The defaults have been chosen to work well in a wide variety of situations,
but in particular cases different methods may be better. For example, if it is
known that the variable is close to normally distributed, using norm instead
of the default pmm may be more efficient. For large datasets where sampling
variance is not an issue, it could be useful to select norm.nob, which does not
draw regression parameters, and is thus simpler and faster. The norm.boot

method is a fast non-Bayesian alternative for norm. The norm methods are an
alternative to pmm in cases where pmm does not work well, e.g., when insufficient
nearby donors can be found.

The mean method is included for completeness and should not be generally
used. The 2L.norm is meant to impute two-level normal data. For very sparse
categorical data, it may be better to use pmm instead of logreg, polr or
polyreg. Method logreg.boot is a version of logreg that uses the bootstrap
to emulate sampling variance. Method lda is generally inferior to polyreg
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(Brand, 1999), and should be used only as a backup when all else fails. Finally,
sample is a quick method for creating starting imputations without the need
for covariates.

5.3.2 Predictors

A useful feature of the mice() function is the ability to specify the set
of predictors to be used for each incomplete variable. The basic specification
is made through the predictorMatrix argument, which is a square matrix
of size ncol(data) containing 0/1 data. Each row in predictorMatrix iden-
tifies which predictors are to be used for the variable in the row name. If
diagnostics=T (the default), then mice() returns a mids object containing
a predictorMatrix entry. For example, type

> imp <- mice(nhanes, print = FALSE)

> imp$predictorMatrix

age bmi hyp chl

age 0 0 0 0

bmi 1 0 1 1

hyp 1 1 0 1

chl 1 1 1 0

The rows correspond to incomplete target variables, in the sequence as
they appear in the data. A value of 1 indicates that the column variable is
a predictor to impute the target (row) variable, and a 0 means that it is not
used. Thus, in the above example, bmi is predicted from age, hyp and chl.
Note that the diagonal is 0 since a variable cannot predict itself. Since age

contains no missing data, mice() silently sets all values in the row to 0. The
default setting of the predictorMatrix specifies that every variable predicts
all others.

Conditioning on all other data is often reasonable for small to medium
datasets, containing up to, say, 20–30 variables, without derived variables, in-
teractions effects and other complexities. As a general rule, using every bit
of available information yields multiple imputations that have minimal bias
and maximal efficiency (Meng, 1994; Collins et al., 2001). It is often benefi-
cial to choose as large a number of predictors as possible. Including as many
predictors as possible tends to make the MAR assumption more plausible,
thus reducing the need to make special adjustments for MNAR mechanisms
(Schafer, 1997).

For datasets containing hundreds or thousands of variables, using all pre-
dictors may not be feasible (because of multicollinearity and computational
problems) to include all these variables. It is also not necessary. In my ex-
perience, the increase in explained variance in linear regression is typically
negligible after the best, say, 15 variables have been included. For imputation
purposes, it is expedient to select a suitable subset of data that contains no
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more than 15 to 25 variables. Van Buuren et al. (1999) provide the following
strategy for selecting predictor variables from a large database:

1. Include all variables that appear in the complete data model, i.e., the
model that will be applied to the data after imputation, including the
outcome (Little, 1992; Moons et al., 2006). Failure to do so may bias the
complete data analysis, especially if the complete data model contains
strong predictive relations. Note that this step is somewhat counter-
intuitive, as it may seem that imputation would artificially strengthen
the relations of the complete data model, which would be clearly unde-
sirable. If done properly however, this is not the case. On the contrary,
not including the complete data model variables will tend to bias the
results toward zero. Note that interactions of scientific interest also need
to be included in the imputation model.

2. In addition, include the variables that are related to the nonresponse.
Factors that are known to have influenced the occurrence of missing data
(stratification, reasons for nonresponse) are to be included on substan-
tive grounds. Other variables of interest are those for which the distri-
butions differ between the response and nonresponse groups. These can
be found by inspecting their correlations with the response indicator of
the variable to be imputed. If the magnitude of this correlation exceeds
a certain level, then the variable should be included.

3. In addition, include variables that explain a considerable amount of vari-
ance. Such predictors help reduce the uncertainty of the imputations.
They are basically identified by their correlation with the target vari-
able.

4. Remove from the variables selected in steps 2 and 3 those variables
that have too many missing values within the subgroup of incomplete
cases. A simple indicator is the percentage of observed cases within this
subgroup, the percentage of usable cases (cf. Section 4.1.2).

Most predictors used for imputation are incomplete themselves. In princi-
ple, one could apply the above modeling steps for each incomplete predictor
in turn, but this may lead to a cascade of auxiliary imputation problems. In
doing so, one runs the risk that every variable needs to be included after all.

In practice, there is often a small set of key variables, for which imputations
are needed, which suggests that steps 1 through 4 are to be performed for key
variables only. This was the approach taken in Van Buuren and Groothuis-
Oudshoorn (1999), but it may miss important predictors of predictors. A safer
and more efficient, though more laborious, strategy is to perform the modeling
steps also for the predictors of predictors of key variables. This is done in
Groothuis-Oudshoorn et al. (1999). I expect that it is rarely necessary to go
beyond predictors of predictors. At the terminal node, we can apply a simple
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method like mice.impute.sample() that does not need any predictors for
itself.

The mice package contains several tools that aid in automatic predictor
selection. The quickpred() function is a quick way to define the predictor
matrix using the strategy outlined above. The flux() was described in Sec-
tion 4.1.3. The mice() function detects multicollinearity, and solves the prob-
lem by removing one or more predictors for the matrix. Each removal is noted
in the loggedEvents element of the mids object. For example,

> imp <- mice(cbind(nhanes, chl2 = 2 * nhanes$chl),

print = FALSE)

> imp$loggedEvents

it im co dep meth out

1 0 0 0 collinear chl2

informs us that the duplicate variable chl2 was removed before iteration. The
algorithm also detects multicollinearity during iterations. Another measure to
control the algorithm is the ridge parameter, denoted by κ in Algorithm 3.1,
3.2 and 3.3. The ridge parameter is specified as an argument to mice().
Setting ridge=0.001 or ridge=0.01 makes the algorithm more robust at the
expense of bias.

There is some room for improvement by providing automatic variable se-
lection that selects the, say, 20 best variables from all data. It is, however,
difficult to fully automate model building since selection according to steps 1
and 2 cannot be mechanical.

Care is needed if the imputation model contains derived variables, like
transformations, recodes or interaction terms. The default specification may
lock up the MICE algorithm or produce erratic imputations. As a general,
rule, feedback between different versions of the same variable should be pre-
vented. The next section describes a number of techniques are useful in various
situations.

5.4 Derived variables

5.4.1 Ratio of two variables

In practice, there is often extra knowledge about the data that is not
modeled explicitly. For example, consider the weight/height ratio whr, defined
as wgt/hgt (kg/m). If any one of the triplet (hgt, wgt, whr) is missing, then the
missing value can be calculated with certainty by a simple deterministic rule.
Unless we specify otherwise, the imputation model is unaware of the relation
between the three variables, and will produce imputations that are inconsistent
with the rule. Inconsistent imputations are clearly undesirable since they yield
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combinations of data values that are impossible had the data been observed.
Including knowledge about derived data in the imputation model prevents
imputations from being inconsistent. Knowledge about the derived data can
take many forms, and includes data transformations, interactions, sum scores,
recoded versions, range restrictions, if-then relations and polynomials.

The easiest way to deal with the problem is to leave any derived data
outside the imputation process. For example, we may impute any missing
height and weight data, and append whr to the imputed data afterward. It is
simple to do that in mice by

> imp1 <- mice(boys)

> long <- complete(imp1, "long", inc = TRUE)

> long$whr <- with(long, wgt/(hgt/100))

> imp2 <- long2mids(long)

Another possibility is to create whr before imputation, and impute whr as
“just another variable,” an approach known as JAV (White et al., 2011b):

> boys$whr <- boys$wgt/(boys$hgt/100)

> imp.jav <- mice(boys, m = 1, seed = 32093, maxit = 10)

Although JAV may yield valid statistical inferences in particular cases, it may
easily produce absurd combinations of imputed values. For example, consider
the scatterplot of hgt and whr. The leftmost panel in Figure 5.1 alerts us that
something is wrong. The reason for this is twofold. First, we did not specify
that whr is actually a function of hgt and wgt. Second, adding whr to the
boys data introduced linear dependencies. The mice() function handled this
by removing one of the predictors for each imputation model. We can see
which variables are removed by inspecting the logged events:

> imp$loggedEvents

it im co dep meth out

1 1 1 10 whr pmm wgt

2 2 1 6 gen polr whr

3 2 1 7 phb polr whr

...

which informs us that whr or wgt are removed from some models. Also, observe
that JAV does not preserve the known deterministic relations in the data.

A solution for this problem is a special mechanism, called passive impu-
tation. Passive imputation maintains the consistency among different trans-
formations of the same data. The method can be used to ensure that the
transform always depends on the most recently generated imputations in the
original untransformed data.

In mice passive imputation is invoked by specifying “∼” as the first char-
acter of the imputation method. This provides a simple method for specifying
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a large variety of dependencies among the variables, such as transformed vari-
ables, recodes, interactions, sum scores and so on.

In the above example, we invoke passive imputation by

> ini <- mice(boys, m = 1, maxit = 0)

> meth <- ini$meth

> meth["whr"] <- "~I(wgt/(hgt/100))"

> meth["bmi"] <- "~I(wgt/(hgt/100)^2)"

> pred <- ini$pred

> pred[c("wgt", "hgt", "bmi"), "whr"] <- 0

> pred[c("wgt", "hgt", "whr"), "bmi"] <- 0

> pred

age hgt wgt bmi hc gen phb tv reg whr

age 0 0 0 0 0 0 0 0 0 0

hgt 1 0 1 0 1 1 1 1 1 0

wgt 1 1 0 0 1 1 1 1 1 0

bmi 1 1 1 0 1 1 1 1 1 0

hc 1 1 1 1 0 1 1 1 1 1

gen 1 1 1 1 1 0 1 1 1 1

phb 1 1 1 1 1 1 0 1 1 1

tv 1 1 1 1 1 1 1 0 1 1

reg 1 1 1 1 1 1 1 1 0 1

whr 1 1 1 0 1 1 1 1 1 0

> imp.pas <- mice(boys, m = 1, meth = meth, pred = pred,

seed = 32093, maxit = 10)

The I() operator in the meth definitions instructs R to interpret the argument
as literal. So I(wgt/(hgt/100)) calculates whr by dividing wgt by hgt (in
meters). A similar statement is given for bmi. The imputed values for the
variables whr and bmi are thus derived from hgt and wgt according to the
stated methods, and hence are consistent. The changes to the default predictor
matrix are needed to break any feedback loops between the derived variables
and their originals. It is important to do this. Using whr to impute hgt or wgt
would result in absurd imputations and problematic convergence.

The middle panel in Figure 5.1 shows that passive imputation represents
an improvement over JAV. Though some of the imputed data points appear
extreme, the values are generally similar to the real data. Moreover, the values
adhere to the derived rules. It is possible to create slightly better imputations
by preventing that bmi, whr and the pair (hgt, wgt) are simultaneous predic-
tors for any variable as follows:

> pred[c("wgt", "hgt", "hc", "reg"), "bmi"] <- 0

> pred[c("gen", "phb", "tv"), c("hgt", "wgt", "hc")] <- 0

> pred[, "whr"] <- 0
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Figure 5.1: Three different imputation models to impute weight/height ratio
(whr). The relation between whr and height (hgt) is not respected under “just
another variable” (JAV). Both passive methods yield imputations that are
close to the observed data. “Passive 2” does not allow for models in which whr

and bmi are simultaneous predictors.

> imp.pas2 <- mice(boys, m = 1, meth = meth, pred = pred,

seed = 32093, maxit = 10)

Passive imputation overrules the selection of variables in the predictor-

Matrix argument. Thus, in the above case, we might as well have set
pred["bmi",] <- 0 or pred["whr",] <- 0 and obtained identical results.

The usefulness of JAV depends somewhat on the nature of the complete-
data model. When the primary interest focuses exclusively on regression
weights and when the data are MCAR, JAV can yield valid inferences
(Von Hippel, 2009). JAV, however, ignores any deterministic relations in the
data, potentially leading to impossible combinations. When the ensuing analy-
ses require consistency of the data, JAV cannot be used. In such cases, passive
imputation can help obtain unbiased estimates from imputed data that are
consistent.

5.4.2 Sum scores

The sum score is undefined if one of the variables to be added is missing.
We can use sum scores of imputed variables within the MICE algorithm to
economize on the number of predictors. For example, suppose we create a sum-
mary maturation score of the pubertal measurements gen, phb and tv, and
use that score to impute the other variables instead of the three original pu-
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bertal measurements. This technique is also useful for calculating scale scores
from imputed questionnaire items (Van Buuren, 2010). It is easy to specify
such models in mice. See Van Buuren and Groothuis-Oudshoorn (2011) for
examples.

5.4.3 Interaction terms

The standard MICE algorithm only models main effects. Sometimes the
interaction between variables is of scientific interest. For example, in a longi-
tudinal study we could be interested in assessing whether the rate of change
differs between two treatment groups, in other words, the treatment-by-group
interaction. The standard algorithm does not take interactions into account,
so the interactions of interest should be added to the imputation model.

The usual type of interactions between two continuous variables is to sub-
tract the mean and take the product. The following code imputes the boys

data with an interaction term of wgt and hc in the imputation model:

> expr <- expression((wgt - 40) * (hc - 50))

> boys$wgt.hc <- with(boys, eval(expr))

> ini <- mice(boys, max = 0)

> meth <- ini$meth

> meth["wgt.hc"] <- paste("~I(", expr, ")", sep = "")

> meth["bmi"] <- ""

> pred <- ini$pred

> pred[c("wgt", "hc"), "wgt.hc"] <- 0

> imp.int <- mice(boys, m = 1, maxit = 10, meth = meth,

pred = pred, seed = 62587)

Figure 5.2 illustrates that the scatterplots of the real and synthetic val-
ues are similar. Furthermore, the imputations adhere to the stated recipe
(wgt-40)*(hc-50). Interactions involving categorical variables can be done
in similar ways (Van Buuren and Groothuis-Oudshoorn, 2011).

Another way to deal with interaction is to impute the data in separate
groups. One way of doing this in mice is to split the dataset into two or
more parts, run mice() on each part and combine the imputed datasets with
rbind().

5.4.4 Conditional imputation

In some cases it makes sense to restrict the imputations, possibly condi-
tional on other data. The method in Section 1.3.5 produced negative values
for the positive-valued variable Ozone. One way of dealing with this mismatch
between the imputed and observed values is to censor the values at some
specified minimum or maximum value. The mice() function has an argument
called post that takes a vector of strings of R commands. These commands
are parsed and evaluated just after the univariate imputation function returns,
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Figure 5.2: The relation between the interaction term wgt.hc (on the hori-
zontal axes) and its components wgt and hc (on the vertical axes).
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Figure 5.4: Genital development of Dutch boys by age. The “free” solution
does not constrain the imputations, whereas the “restricted” solution requires
all imputations below the age of 8 years to be at the lowest category.

and thus provide a way to post-process the imputed values. Note that post

only affects the synthetic values, and leaves the observed data untouched. The
squeeze() function in mice replaces values beyond the specified bounds by
the minimum and maximal scale values. One way to ensure positive imputa-
tions for Ozone under stochastic regression imputation is

> ini <- mice(airquality[, 1:2], maxit = 0)

> post <- ini$post

> post["Ozone"] <- "imp[[j]][,i] <- squeeze(imp[[j]][,i],

c(1,200))"

> imp <- mice(airquality[, 1:2], method = "norm.nob",

m = 1, maxit = 1, seed = 1, post = post)

Compare Figure 5.3 to Figure 1.3. The negative ozone value of −18.8 has
now been replaced by a value of 1. The previous syntax of the post argument
is a bit cumbersome. The same result can be achieved by neater code:

> post["Ozone"] <- "ifdo(c(Ozone<1, Ozone>200), c(1, 200))"

The ifdo() function is a convenient way to create conditional imputes.
For example, in the boys data puberty is measured only for boys older than
8 years. Before this age it is unlikely that puberty has started. It is a good
idea to bring this extra information into the imputation model to stabilize the
solution. More precisely, we may restrict any imputations of gen, phb and tv
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to the lowest possible category for those boys younger than 8 years. This can
be achieved by

> post <- mice(boys, m = 1, maxit = 0)$post

> post["gen"] <- "ifdo(age<8, levels(gen)[1])"

> post["phb"] <- "ifdo(age<8, levels(phb)[1])"

> post["tv"] <- "ifdo(age<8, 1)"

> free <- mice(boys, m = 1, seed = 85444)

> restricted <- mice(boys, m = 1, post = post, seed = 85444)

Figure 5.4 compares the scatterplot of genital development against age
for the free and restricted solutions. Around infancy and early childhood, the
imputation generated under the free solution are clearly unrealistic due to the
severe extrapolation of the data between the ages 0–8 years. The restricted
solution remedies this situation by requiring that pubertal development does
not start before the age of 8 years.

The post-processing facility provides almost limitless possibilities to cus-
tomize the imputed values. For example, we could reset the imputed value in
some subset of the missing data to NA, thus imputing only some of the vari-
ables. Of course, appropriate care is needed when using this partially imputed
variable later on as a predictor. Another possibility is to add or multiply the
imputed data by a given constant in the context of a sensitivity analysis for
nonignorable missing data mechanisms (see Section 3.9). More generally, we
might re-impute some entries in the dataset depending on their current value,
thus opening up possibilities to specify methods for nonignorable missing data.

5.4.5 Compositional data ♠

Sometimes we know that a set of variables should add up to a given to-
tal. If one of the additive terms is missing, we can directly calculate its value
with certainty by deducting the known terms from the total. This is known as
deductive imputation (De Waal et al., 2011). If two additive terms are miss-
ing, imputing one of these terms uses the available one degree of freedom,
and hence implicitly determines the other term. Data of this type are known
as compositional data, and they occur often in household and business sur-
veys. Imputation of compositional data has only recently received attention
(Tempelman, 2007; Hron et al., 2010; De Waal et al., 2011).

This section suggests a basic method for imputing compositional data. Let
Y123 = Y1 +Y2 +Y3 be the known total score of the three variables Y1, Y2 and
Y3. We assume that Y3 is complete and that Y1 and Y2 are jointly missing or
observed. The problem is to create multiple imputations in Y1 and Y2 such that
the sum of Y1, Y2 and Y3 equals a given total Y123, and such that parameters
estimated from the imputed data are unbiased and have appropriate coverage.

Since Y3 is known, we write Y12 = Y123−Y3 for the sum score Y1 +Y2. The
key to the solution is to find appropriate values for the ratio P1 = Y1/Y12,
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or equivalently for (1 − P1) = Y2/Y12. Let P (P1|Y obs
1 , Y obs

2 , Y3, X) denote
the posterior distribution of P1, which is possibly dependent on the observed
information. For each incomplete record, we make a random draw Ṗ1 from
this distribution, and calculate imputations for Y1 as Ẏ1 = Ṗ1Y12. Likewise,
imputations for Y2 are calculated by Ẏ2 = (1− Ṗ1)Y12. It is easy to show that
Ẏ1 + Ẏ2 = Y12, and hence Ẏ1 + Ẏ2 + Y3 = Y123, as required.

The way in which the posterior should be specified is still an open problem.
In this section we apply standard predictive mean matching. We study the
properties of the method by a small simulation study. The first step is to
create an artificial dataset with known properties as follows:

> set.seed(43112)

> n <- 400

> Y1 <- sample(1:10, size = n, replace = TRUE)

> Y2 <- sample(1:20, size = n, replace = TRUE)

> Y3 <- 10 + 2 * Y1 + 0.6 * Y2 + sample(-10:10,

size = n, replace = TRUE)

> Y <- data.frame(Y1, Y2, Y3)

> Y[1:100, 1:2] <- NA

> md.pattern(Y)

Y3 Y1 Y2

300 1 1 1 0

100 1 0 0 2

0 100 100 200

Thus, Y is a 400× 3 dataset with 300 complete records and with 100 records
in which both Y1 and Y2 are missing. Next, define three auxiliary variables
that are needed for imputation:

> Y123 <- Y1 + Y2 + Y3

> Y12 <- Y123 - Y[, 3]

> P1 <- Y[, 1]/Y12

> data <- data.frame(Y, Y123, Y12, P1)

where the naming of the variables corresponds to the total score Y123, the sum
score Y12 and the ratio P1.

The imputation model specifies how Y1 and Y2 depend on P1 and Y12 by
means of passive imputation. The predictor matrix specifies that only Y3 and
Y12 may be predictors of P1 in order to avoid linear dependencies.

> ini <- mice(data, maxit = 0, m = 10, print = FALSE,

seed = 21772)

> meth <- ini$meth

> meth["Y1"] <- "~I(P1*Y12)"

> meth["Y2"] <- "~I((1-P1)*Y12)"

> meth["Y12"] <- "~I(Y123-Y3)"

> pred <- ini$pred
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Figure 5.5: Distribution of P1 (relative contribution of Y1 to Y1 + Y2) in the
observed and imputed data at different levels of Y1+Y2. The strong geometrical
shape in the observed data is partially reproduced in the model that includes
Y3.

> pred["P1", ] <- 0

> pred[c("P1"), c("Y12", "Y3")] <- 1

> imp1 <- mice(data, meth = meth, pred = pred, m = 10,

print = FALSE)

The code I(P1*Y12) calculates Y1 as the product of P1 and Y12, and so on.
The pooled estimates are calculated as

> round(summary(pool(with(imp1, lm(Y3 ~ Y1 + Y2))))[,

1:2], 2)

est se

(Intercept) 9.58 1.00

Y1 2.00 0.11

Y2 0.61 0.05

The estimates are reasonably close to their true values of 10, 2 and 0.6, re-
spectively. A small simulation study with these data using 100 simulations
and m = 10 revealed average estimates of 9.94 (coverage 0.96), 1.95 (coverage
0.95) and 0.63 (coverage 0.91). Though not perfect, the estimates are close to
the truth, while the data adhere to the summation rule.

Figure 5.5 shows where the solution might be further improved. The dis-
tribution of P1 in the observed data is strongly patterned. This pattern is only
partially reflected in the imputed Ṗ1 after predictive mean matching on both
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Y12 and Y3. It is possible to imitate the pattern perfectly by removing Y3 as
a predictor for P1. However, this introduces bias in the parameter estimates.
Evidently, some sort of compromise between these two options might further
remove the remaining bias. This is an area for further research.

For a general missing data pattern, the procedure can be repeated for
all pairs (Yj , Yj′) that have missing data. First create a consistent starting
imputation that adheres to the rule of composition, then apply the above
method to pairs (Yj , Yj′) that belong to the composition. This algorithm is
a variation on the MICE algorithm with iterations occurring over pairs of
variables rather than separate variables. The properties of this method have
not yet been explored.

5.4.6 Quadratic relations ♠

One way to analyze nonlinear relations by a linear model is to include
quadratic or cubic versions of the explanatory variables into the model. Cre-
ating imputed values under such models poses some challenges. Current im-
putation methodology either preserves the quadratic relation in the data and
biases the estimates of interest, or provides unbiased estimates but does not
preserve the quadratic relation (Von Hippel, 2009). White et al. (2011b) de-
scribed three approaches:

1. Linear passive: Y is imputed under a linear model, and Y 2 is imputed
passively by taking the square of Y .

2. Improved passive: The method is identical to “linear passive,” with the
linear imputation model replaced by predictive mean matching.

3. Just another variable (JAV): The method imputes Y and Y 2 as separate
variables, ignoring the deterministic relation (cf. Section 5.4.1).

White et al. (2011b) observed that “linear passive” biases the regression co-
efficient of Y 2 toward zero. The imputation model wrongly assumes a linear
relation, and is thus uncongenial. The “improved passive” method is closer to
being congenial, and is therefore to be preferred over “linear passive.” JAV is
congenial, but highly misspecified.

Summing up, it seems that we either have a congenial but misspecified
model, or an uncongenial model that is specified correctly. The remainder of
the section describes a new approach that aims to resolve this problem.

The model of scientific interest is

X = α+ Y β1 + Y 2β2 + ε (5.1)

with ε ∼ N(0, σ2). We assume that X is complete, and that Y = (Yobs, Ymis) is
partially missing. The problem is to find imputations for Y such that estimates
of α, β1, β2 and σ2 based on the imputed data are unbiased, while ensuring
that the quadratic relation between Y and Y 2 will hold in the imputed data.
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Define the polynomial combination Z as Z = Y β1 +Y 2β2 for some β1 and
β2. The idea is to impute Z instead of Y and Y 2, followed by a decomposition
of the imputed data Z into components Y and Y 2. Imputing Z reduces the
multivariate imputation problem to a univariate problem, which is easier to
manage. Under the assumption that P (X,Z) is multivariate normal, we can
impute the missing part of Z by Algorithm 3.1. In cases where a normal
residual distribution is suspect, we replace the linear model by predictive mean
matching. The next step is to decompose Z into Y and Y 2. Under model 5.1
the value Y has two roots:

Y− = − 1
2β2

(√
4β2Z + β2

1 + β1

)
(5.2)

Y+ = 1
2β2

(√
4β2Z + β2

1 − β1

)
(5.3)

where we assume that the discriminant 4β2Z + β2
1 is larger than zero. For a

given Z, we can take either Y = Y− or Y = Y+, and square it to obtain Y 2.
Either root is consistent with Z = Y β1 + Y 2β2, but the choice among these
two options requires care. Suppose we choose Y− for all Z. Then all Y will
correspond to points located on the left arm of the parabolic function. The
minimum of the parabola is located at Ymin = −β1/2β2, so all imputations
will occur in the left-hand side of the parabola. This is probably not intended.

The choice between the roots is made by random sampling. Let V be a
binary random variable defined as 1 if Y > Ymin, and as 0 if Y ≤ Ymin. Let us
model the probability P (V = 1) by logistic regression as

logit(P (V = 1)) = XψX + ZψZ +XZψY Z (5.4)

where the ψs are parameters in the logistic regression model. Under the as-
sumption of ignorability, we calculate the predicted probability P (V = 1)
from Xmis and Zmis. As a final step, a random draw from the binomial distri-
bution is made, and the corresponding (negative or positive) root is selected
as the imputation. This is repeated for each missing value.

Algorithm 5.1 provides a detailed overview of all steps involved. The im-
putations Ż satisfy Ż = Ẏ β̂1 + Ẏ 2β̂2, as required. Work is under way to
investigate the properties of the method. It might be of interest to generalize
this method to polynomial bases of higher order.

5.5 Algorithmic options

5.5.1 Visit sequence

The default MICE algorithm imputes incomplete columns in the data from
left to right. Theoretically, the visit sequence of the MICE algorithm is irrel-
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Algorithm 5.1: Multiple imputation of quadratic terms.♠

1. Calculate Y 2
obs for the observed Y .

2. Multiply impute Ymis and Y 2
mis as if they were unrelated by linear

regression or predictive mean matching, resulting in imputations
Ẏ and Ẏ 2.

3. Estimate β̂1 and β̂2 by pooled linear regression of X given Y =
(Yobs, Ẏ ) and Y 2 = (Y 2

obs, Ẏ
2).

4. Calculate the polynomial combination Z = Y β̂1 + Y 2β̂2.

5. Multiply impute Zmis by linear regression or predictive mean
matching, resulting in imputed Ż.

6. Calculate roots Ẏ− and Ẏ+ given β̂1, β̂2 and Ż using Equations 5.2
and 5.3.

7. Calculate the value on the horizontal axis at the parabolic mini-
mum/maximum Ymin = −β̂1/2β̂2.

8. Calculate Vobs = 0 if Yobs ≤ Ymin, else Vobs = 1.

9. Impute Vmis by logistic regression of V given X, Z and XZ, re-
sulting in imputed V̇ .

10. If V̇ < 0 then assign Ẏ = Ẏ−, else set Ẏ = Ẏ+.

11. Calculate Ẏ 2.

evant as long as each column is visited often enough, though some schemes
are more efficient than others. In practice, there are small order effects of the
MICE algorithm, where the parameter estimates depend on the sequence of
the variables. To date, there is little evidence that this matters in practice,
even for clearly incompatible imputation models (Van Buuren et al., 2006).
For monotone missing data, convergence is immediate if variables are ordered
according to their missing data rate. Rather than reordering the data, it is
more convenient to change the visit sequence of the algorithm by the vis-

itSequence argument. In its basic form, the visitSequence argument is a
vector of integers in the range 1:ncol(data) of arbitrary length, specifying
the sequence of column numbers for one iteration of the algorithm. Any given
column may be visited more than once within the same iteration, which can
be useful to ensure proper synchronization among variables.

Consider the mids object imp.int created in Section 5.4.3. The visit se-
quence is
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> imp.int$vis

hgt wgt hc gen phb tv reg wgt.hc

2 3 5 6 7 8 9 10

If the visitSequence is not specified, the mice() function imputes the
data from left to right. Thus here wgt.hc is calculated after reg is imputed,
so at this point wgt.hc is synchronized with both wgt and hc. Note, however,
that wgt.hc is not synchronized with wgt and hc when imputing pub, gen,
tv or reg, so wgt.hc is not representing the current interaction effect. This
could result in wrong imputations. We can correct this by including an extra
visit to wgt.hc after wgt or hc has been imputed as follows:

> vis <- c(2, 3, 5, 10, 6:9)

> expr <- expression((wgt - 40) * (hc - 50))

> boys$wgt.hc <- with(boys, eval(expr))

> imp.int2 <- mice(boys, m = 1, max = 1, vis = vis,

meth = imp.int$meth, pred = imp.int$pred,

seed = 23390)

iter imp variable

1 1 hgt wgt hc wgt.hc gen phb tv reg

When the missing data pattern is close to monotone, convergence may be
speeded by visiting the columns in increasing order of the number of missing
data. We can specify this order by the "monotone" keyword as

> imp.int2 <- mice(boys, m = 1, max = 1, vis = "monotone",

meth = imp.int$meth, pred = imp.int$pred,

seed = 23390)

iter imp variable

1 1 reg wgt hgt bmi hc wgt.hc gen phb tv

5.5.2 Convergence

There is no clear-cut method for determining when the MICE algorithm
has converged. It is useful to plot one or more parameters against the iteration
number. The mean and variance of the imputations for each parallel stream
can be plotted by

> imp <- mice(nhanes, seed = 62006, maxit = 20,

print = FALSE)

> plot(imp)

which produces Figure 5.6. On convergence, the different streams should be
freely intermingled with one another, without showing any definite trends.
Convergence is diagnosed when the variance between different sequences is no
larger than the variance within each individual sequence.
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Figure 5.6: Mean and standard deviation of the synthetic values plotted
against iteration number for the imputed nhanes data.

Inspection of the streams may reveal particular problems of the imputation
model. A pathological case of non-convergence occurs with the following code:

> ini <- mice(boys, max = 0, print = FALSE)

> meth <- ini$meth

> meth["bmi"] <- "~I(wgt/(hgt/100)^2)"

> imp.bmi1 <- mice(boys, meth = meth, maxit = 20,

seed = 60109)

Convergence is problematic because imputations of bmi feed back into hgt

and wgt. Figure 5.7 shows that the streams hardly mix and slowly resolve into
a steady state. The problem is solved by breaking the feedback loop as follows:
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Figure 5.7: Non-convergence of the MICE algorithm caused by feedback of
bmi into hgt and wgt.

> pred <- ini$pred

> pred[c("hgt", "wgt"), "bmi"] <- 0

> imp.bmi2 <- mice(boys, meth = meth, pred = pred,

maxit = 20, seed = 60109)

Figure 5.8 is the resulting plot for the same three variables. There is little
trend and the streams mingle well.

The default plot() function for mids objects plots the mean and variance
of the imputations. While these parameters are informative for the behavior
of the MICE algorithm, they may not always be the parameter of greatest
interest. It is easy to replace the mean and variance by other parameters, and
monitor these. Schafer (1997, p. 129–131) suggested monitoring the “worst
linear function” of the model parameters, i.e., a combination of parameters
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Figure 5.8: Healthy convergence of the MICE algorithm for hgt, wgt and
bmi.

that will experience the most problematic convergence. If convergence can be
established for this parameter, then it is likely that convergence will also be
achieved for parameters that converge faster. Alternatively, we may monitor
some statistic of scientific interest, e.g., a correlation or a proportion. See
Section 7.4.3 for an example.

It is possible to use formal convergence statistics. Several expository re-
views are available that assess convergence diagnostics for MCMC methods
(Cowles and Carlin, 1996; Brooks and Gelman, 1998; El Adlouni et al., 2006).
Cowles and Carlin (1996) conclude that “automated convergence monitoring
(as by a machine) is unsafe and should be avoided.” No method works best in
all circumstances. The consensus is to assess convergence with a combination
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of tools. The added value of using a combination of convergence diagnostics
for missing data imputation has not yet been systematically studied.

5.6 Diagnostics

Diagnostics for statistical models are procedures to find departures from
the assumptions underlying the model. Model evaluation is a huge field in
which many special tools are available, e.g., Q-Q plots, residual and influence
statistics, formal statistical tests, information criteria and posterior predictive
checks. In principle, all these techniques can be applied to evaluate the impu-
tation model. Conventional model evaluation concentrates on the fit between
the data and the model. In imputation it is often more informative to focus on
distributional discrepancy , the difference between the observed and imputed
data. The next section illustrates this with an example.

5.6.1 Model fit versus distributional discrepancy

The MICE algorithm fits the imputation model to the records with ob-
served Yj (Y obs

j ), and applies the fitted model to generate imputations for the

records with unobserved Yj (Y mis
j ). The fit of the imputation model to the

data can thus be studied from Y obs
j .

The worm plot is a diagnostic tool to assess the fit of a nonlinear regression
(Van Buuren and Fredriks, 2001; Van Buuren, 2007b). In technical terms, the
worm plot is a detrended Q-Q plot conditional on a covariate. The model fits
the data if the worms are close to the horizontal axis.

Figure 5.9 is the worm plot calculated from imputed data after predic-
tive mean matching. The fit between the observed data and the imputation
model is bad. The blue points are far from the horizontal axis, especially for
the youngest children. The shapes indicate that the model variance is much
larger than the data variance. In contrast to this, the red and blue worms are
generally close, indicating that the distributions of the imputed and observed
body weights are similar. Thus, despite the fact that the model does not fit
the data, the distributions of the observed and imputed data are similar. This
distributional similarity is more relevant for the final inferences than model
fit per se.

5.6.2 Diagnostic graphs

One of the best tools to assess the plausibility of imputations is to study
the discrepancy between the observed and imputed data. The idea is that good
imputations have a distribution similar to the observed data. In other words,
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Figure 5.9: Worm plot of the predictive mean matching imputations for
body weight. Different panels correspond to different age ranges. Though the
imputation model has a bad fit in many age groups, the distributions of the
observed and imputed data often match up very well.

the imputations could have been real values had they been observed. Except
under MCAR, the distributions do not need to be identical, since strong MAR
mechanisms may induce systematic differences between the two distributions.
However, any dramatic differences between the imputed and observed data
should certainly alert us to the possibility that something is wrong.

This book contains many colored figures that emphasize the relevant con-
trasts. Graphs allow for a quick identification of discrepancies of various types:

• the points have different means (Figure 2.2);

• the points have different spreads (Figures 1.1, 1.2 and 1.4);

• the points have different scales (Figure 4.4);

• the points have different relations (Figure 5.1);

• the points do not overlap and they defy common sense (Figure 5.4).

Differences between the densities of the observed and imputed data may sug-
gest a problem that needs to be further checked. The mice package (V2.6 and
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Figure 5.10: A stripplot of the multiply imputed nhanes data with m = 5.

up) contains several graphic functions that can be used to gain insight into the
correspondence of the observed and imputed data: bwplot(), stripplot(),
densityplot() and xyplot().

The stripplot() function produces the individual points for numerical
variables per imputation as in Figure 5.10 by

> imp <- mice(nhanes, seed = 29981)

> stripplot(imp, pch = c(1, 20))

The stripplot is useful to study the distributions in datasets with a low
number of data points. For large datasets it is more appropriate to use the
function bwplot() that produces side-by-side box-and-whisker plots for the
observed and synthetic data.

The densityplot() function produces Figure 5.11 by

> densityplot(imp)

The figure shows kernel density estimates of the imputed and observed
data. In this case, the distributions match up well.

Interpretation is more difficult if there are discrepancies. Such discrepancies
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Figure 5.11: Kernel density estimates for the marginal distributions of the
observed data (blue) and the m = 5 densities per variable calculated from the
imputed data (thin red lines).

may be caused by a bad imputation model, by a missing data mechanism that
is not MCAR or by a combination of both. Raghunathan and Bondarenko
(2007) proposed a more refined diagnostic tool that aims to compare the
distributions of observed and imputed data conditional on the missingness
probability. The idea is that under MAR the conditional distributions should
be similar if the assumed model for creating multiple imputations has a good
fit. An example is created as follows:

> fit <- with(imp, glm(ici(imp) ~ age + bmi + hyp +

chl, family = binomial))

> ps <- rep(rowMeans(sapply(fit$analyses, fitted.values)),

imp$m)

> xyplot(imp, bmi ~ ps | .imp, xlab = "Response probability",

ylab = "BMI", pch = c(1, 19))

These statements first model the probability of each record being incomplete as
a function of all variables in each imputed dataset. The probabilities (propen-
sities) are then averaged over the imputed datasets to obtain stability. Fig-
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Figure 5.12: BMI against missingness probability for observed and imputed
values.

ure 5.12 plots BMI against the propensity score in each dataset. Observe that
the imputed data points are somewhat shifted to the right. In this case, the
distributions of the blue and red points are quite similar, as expected under
MAR.

Realize that the comparison is only as good as the propensity score. If
important predictors are omitted from the response model, then we may not
be able to see the potential misfit. In addition, it could be useful to investigate
the residuals of the regression of BMI on the propensity score. See Van Buuren
and Groothuis-Oudshoorn (2011) on a technique for how to calculate and plot
the relevant quantities.

Compared to conventional diagnostic methods, imputation comes with the
advantage that we can directly compare the observed and imputed values. The
marginal distributions of the observed and imputed data may differ because
the missing data are MAR or MNAR. The diagnostics tell us in what way
they differ, and hopefully also suggest whether these differences are expected
and sensible in light of what we know about the data. Under MAR, any
distributions that are conditional on the missing data process should be the
same. If our diagnostics suggest otherwise (e.g., the blue and red points are
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very different), there might be something wrong with the imputations that we
created. Alternatively, it could be the case that the observed differences are
justified, and that the missing data process is MNAR. The art of imputation
is to distinguish between these two explanations.

5.7 Conclusion

Multiple imputation is not a quick automatic fix. Creating good imputa-
tions requires substantive knowledge about the data paired with some healthy
statistical judgement. Impute close to the data. Real data are richer and more
complex than the statistical models applied to them. Ideally, the imputed val-
ues should look like real data in every respect, especially if multiple models
are to be fit on the imputed data. Keep the following points in mind:

• Plan time to create the imputed datasets. As a rule of thumb, reserve
for imputation 5% of the time needed to collect the data;

• Check the modeling choices in Section 5.1. Though the software defaults
are often reasonable, they may not work for the particular data;

• Use MAR as a starting point using the strategy outlined in Section 5.2;

• Choose the imputation methods and set the predictors using the strate-
gies outlined in Section 5.3;

• If the data contain derived variables that are not needed for imputation,
impute the originals and calculate the derived variables afterward;

• Use passive imputation if you need the derived variables during imputa-
tion. Carefully specify the predictor matrix to avoid feedback loops. See
Section 5.4;

• Monitor convergence of the MICE algorithm for aberrant patterns, es-
pecially if the rate of missing data is high or if there are dependencies
in the data. See Sections 4.5.5 and 5.5.2;

• Make liberal use of diagnostic graphs to compare the observed and the
imputed data. Convince yourself that the imputed values could have
been real data, had they not been missing. See Section 5.6.
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5.8 Exercises

1. Worm plot for normal model. Repeat the imputations in Section 5.6.1
using the linear normal model for the numerical variables. Draw the
worm plot.

• Does the imputation model for wgt fit the observed data? If not,
describe in which aspects they differ.

• Does the imputation model for wgt fit the imputed data? If not,
describe in which aspects they differ.

• Are there striking differences between your worm plot and Fig-
ure 5.9? If so, describe.

• Which imputation model do you prefer? Why?

2. Defaults. Select a real dataset that is familiar to you and that contains
at least 20% missing data. Impute the data with mice() under all the
default settings.

• Inspect the streams of the MICE algorithm. Does the sampler ap-
pear to converge?

• Extend the analysis with 20 extra iterations using mice.mids().
Does this affect your conclusion about convergence?

• Inspect the data with diagnostic plots for univariate data. Are the
univariate distributions of the observed and imputed data similar?
Do you have an explanation why they do (or do not) differ?

• Inspect the data with diagnostic plots for the most interesting bi-
variate relations. Are the relations similar in the observed and im-
puted data? Do you have an explanation why they do (or do not)
differ?

• Consider each of the seven default choices in turn. Do you think
the default is appropriate for your data? Explain why.

• Do you have particular suggestions for improved choices? Which?

• Implement one of your suggestions. Do the results now look more
plausible or realistic? Explain.



Chapter 6

Analysis of imputed data

Creating plausible imputations is the most challenging activity in multiple
imputation. Though the steps needed to derive the final statistical inferences
are relatively straightforward, they are not entirely without problems. This
chapter describes techniques to pool non-normal quantities. In addition, the
chapter reviews methods to deal with variable selection and model optimism
on multiply imputed data.

6.1 What to do with the imputed data?

6.1.1 Averaging and stacking the data

Novices at multiple imputation are sometimes tempted to average the mul-
tiply imputed data, and analyze the averaged data as if it were complete. This
method yields incorrect standard errors, confidence intervals, and p-values,
and thus should not be used. The reason is that the procedure ignores the
between-imputation variability, and hence the procedure shares all the draw-
backs of single imputation. See Section 1.3.

A variation on this theme is to stack the data, thus creating m×n complete
records. Each record is weighted by a factor 1/m, so that the total sample size
is equal to n. The statistical analysis amounts to performing a, for example,
weighted linear regression. Though this procedure yields unbiased point esti-
mates, the resulting inferences will be incorrect since the implied sample size
is too large if there are missing data.

We could consider alternatives to decrease the weights proportional to the
amount of missing data. Wood et al. (2008) suggested some possibilities in a
different context; however, the properties of the final inferences are unknown.
Kim and Fuller (2004) proposed a method called fractional imputation, in
which the imputed values are weighted explicitly by design-based weights.
While this method yields appropriate variance estimates in particular cases,
it is unclear how general this method is, or whether new complexities will arise
if the weights themselves are estimates.

If the scientific interest is solely restricted to the point estimate, then the
stacked imputed data can be validly used to obtain a quick unbiased estimate

153
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for linear models. Be aware that routine methods for calculating test statistics,
confidence intervals, or p-values will provide invalid answers if applied to the
stacked imputed data.

Creating and analyzing a stacked imputed dataset is easy to do:

> imp <- mice(nhanes, print = FALSE, seed = 55152)

> stacked <- complete(imp, "long")

> fit <- lm(chl ~ bmi + age, data = stacked)

> coef(fit)

(Intercept) bmi age

-6.15 5.41 31.70

Equal weights are needed to obtain appropriate point estimates. While the
estimated regression coefficients are unbiased, we cannot trust the standard
errors, t-values, and so on.

6.1.2 Repeated analyses

The appropriate way to analyze multiply imputed data is to perform the
complete data analysis on each imputed dataset separately. In mice we can
use the with() command for this purpose. This function takes two main ar-
guments. The first argument of the call is a mids object produced by mice().
The second argument is an expression that is to be applied to each completed
dataset. The with() function implements the following loop (` = 1, . . . ,m):

1. it creates the `-th imputed dataset

2. it runs the expression on the imputed dataset

3. it stores the result in the list fit$analyses

For example, we fit a regression model to each dataset and print out the
estimates from the first and second completed datasets by

> fit <- with(imp, lm(chl ~ bmi + age))

> coef(fit$analyses[[1]])

(Intercept) bmi age

-29.18 5.63 43.20

> coef(fit$analyses[[2]])

(Intercept) bmi age

-36.57 6.77 25.63

Note that the estimates differ from each other because of the uncertainty
created by the missing data. Applying the standard pooling rules is done by

> est <- pool(fit)

> summary(est)
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est se t df Pr(>|t|) lo 95 hi 95

(Intercept) -10.99 68.71 -0.16 6.62 0.8777 -175.359 153.4

bmi 5.55 2.24 2.47 6.87 0.0433 0.223 10.9

age 32.11 11.91 2.70 5.57 0.0385 2.415 61.8

nmis fmi lambda

(Intercept) NA 0.585 0.476

bmi 9 0.572 0.463

age 0 0.646 0.539

which shows that the estimates are fairly close to the estimates calculated in
the previous section.

Any R expression produced by expression() can be evaluated on the mul-
tiply imputed data. For example, suppose we want to calculate the difference
in frequencies between categories 1 and 2 of hyp. This is conveniently done by
the following statements:

> expr <- expression(freq <- table(hyp), freq[1] -

freq[2])

> fit <- with(imp, eval(expr))

> unlist(fit$analyses)

1 1 1 1 1

13 15 15 15 13

All the major software packages nowadays have ways to execute the m re-
peated analyses to the imputed data.

6.2 Parameter pooling

6.2.1 Scalar inference of normal quantities

Section 2.4 describes Rubin’s rules for pooling the results from the m
complete data analyses. These rules are based on the assumption that the
parameter estimates Q̂ are normally distributed around the population value
Q with a variance of U . Many types of estimates are approximately normally
distributed, e.g., means, standard deviations, regression coefficients, propor-
tions and linear predictors. Rubin’s pooling rules can be applied directly to
such quantities (Schafer, 1997; Marshall et al., 2009).

6.2.2 Scalar inference of non-normal quantities

How should we combine quantities with non-normal distributions: corre-
lation coefficients, odds ratios, relative risks, hazard ratios, measures of ex-
plained variance and so on? The quality of the pooled estimate and the confi-
dence intervals can be improved when pooling is done in a scale for which the
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Table 6.1: Suggested transformations toward normality for various types of
statistics. The transformed quantities can be pooled by Rubin’s rules.

Statistic Transformation Source
Correlation Fisher z Schafer (1997)
Odds ratio Logarithm Agresti (1990)
Relative risk Logarithm Agresti (1990)
Hazard ratio Logarithm Marshall et al. (2009)
Explained variance R2 Fisher z on root Harel (2009)
Survival probabilities Complementary log-log Marshall et al. (2009)
Survival distribution Logarithm Marshall et al. (2009)

distribution is close to normal. Thus, transformation toward normality and
back-transformation into the original scale improves statistical inference.

As an example, consider transforming a correlation coefficient ρ` for ` =
1, . . . ,m toward normality using the Fisher z transformation

z` =
1

2
ln

1 + ρ`
1− ρ`

(6.1)

For large samples, the distribution of z` is normal with variance σ2 = 1/(n−3).
It is straightforward to calculate the pooled correlation z̄ and its variance
by Rubin’s rules. The result can be back-transformed by the inverse Fisher
transformation

ρ̄ =
e2z̄ − 1

e2z̄ + 1
(6.2)

The confidence interval of ρ̄ is calculated in the z-scale as usual, and then
back-transformed by Equation 6.2.

Table 6.1 suggests transformations toward approximate normality for var-
ious types of statistics. There are quantities for which the distribution is com-
plex or unknown. Examples include the Cramér C statistic (Brand, 1999) and
the discrimination index (Marshall et al., 2009). Ideally, the entire sampling
distribution should be pooled in such cases, but the corresponding pooling
methods have yet to be developed. The current advice is to search for ad hoc
transformations to make the sampling distribution close to normality, and
then apply Rubin’s rules.

6.3 Statistical tests for multiple imputation

Special pooling procedures have been developed for several statistical tests
for multiply imputed data: the Wald test, the likelihood ratio test, and the χ2-
test. The next sections describe these tests. These sections are more technical
than the rest of the book, and are included primarily for completeness.
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6.3.1 Wald test ♠

The multivariate Wald test requires an estimate of the total k×k variance-
covariance matrix T . For small m the estimate of the between-imputation
variance B is unstable, and if m ≤ k, it is not even full rank. Thus T could
also be unreliable, especially if B makes up a substantial part of T .

Li et al. (1991b) proposed an estimate of T in which B and Ū are pro-
portional to each other. A more stable estimate of the total variance is
T̃ = (1 + r̄)Ū , which bypasses the need for B. The proportionality assump-
tion is equivalent to assuming equal fractions of missing information, so r̄ as
defined by Equation 2.29 is considered to be a good overall measure. The test
statistic is

Dw = (Q̄−Q0)′T̃−1(Q̄−Q0)/k (6.3)

where the p-value for Dw is

Pw = Pr[Fk,νw > Dw] (6.4)

where Fk,νw is the F distribution with k and νw degrees of freedom, with

νw =

{
4 + (t− 4)[1 + (1− 2t−1)r̄−1]2 if t = k(m− 1) > 4
t(1 + k−1)(1 + r̄−1)2/2 otherwise

(6.5)

Although the assumption of equal fractions of missing information may
seem limiting, Li et al. (1991b) provide very encouraging simulation results
for situations where this assumption is violated. Except for some extreme
cases, the level of the procedure was close to the nominal level. The loss of
power from such violations was modest, approximately 10%.

The work of Li et al. (1991b) is based on large samples. Reiter (2007)
developed a small-sample version for the degrees of freedom using ideas similar
to Barnard and Rubin (1999). Reiter’s νf spans several lines of text, and is
not given here. A small simulation study conducted by Reiter showed marked
improvement over the earlier formulation, especially in a smaller sample. It
would be useful to see work that could confirm these results in more general
settings.

In cases of practical interest, the test with m > 3 is insensitive to the
assumption of equal fractions of missing information. Moreover, it is well cal-
ibrated, and suffers only modest loss of power. The test is recommended for
application with low m, unless the fractions of information are large and vari-
able. Calculation of the test requires access to Q̄ and the variance-covariance
matrices B and Ū . These will typically be available in multiple imputation
software.

6.3.2 Likelihood ratio test ♠

In some cases one cannot obtain the covariance matrices of the complete
data estimates. This could be the case if the dimensionality of Q is high,
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which can occur with partially classified contingency tables. The likelihood
ratio test (Meng and Rubin, 1992) is designed to handle such situations. For
large n the procedure is equivalent to the method of Section 6.3.1, and only
requires calculation of the complete data log likelihood ratio statistic under
two sets of parameter estimates in each multiply imputed dataset.

Let the vector Q contain the parameters of interest. We wish to test the
hypothesis Q = Q0 for some given Q0. The usual scenario is that we have fit
two models, one where Q can vary freely and one more restrictive model that
constrains Q = Q0. Let the corresponding estimates be denoted by Q̄ and Q̄0.

In the `-th imputed dataset Y`, we calculate the value of the log-likelihood
functions l(Q̄|Y`) and l(Q̄0|Y`) with ` = 1, . . . ,m. The deviances between the
models are defined as

d̄` = 2(l(Q̄|Y`)− l(Q̄0|Y`)) for ` = 1, . . . ,m (6.6)

Likewise, for Q̂` and Q̂0,`, the estimates that are optimal with respect to the
`-th imputed data, we calculate the deviance

d` = 2(l(Q̂`|Y`)− l(Q̂0,`|Y`)) for ` = 1, . . . ,m (6.7)

The average deviances over the imputations are equal to d̄ = 1/m
∑m
`=1 d̄`

and d = 1/m
∑m
`=1 d`, respectively. The test statistic proposed by Meng and

Rubin (1992) is

Dl =
d̄

k(1 + rl)
(6.8)

where

r̄l =
m+ 1

k(m− 1)
(d− d̄) (6.9)

estimates the average relative increase in variance due to nonresponse. The
estimate r̄l is asymptotically equivalent to r̄w from Equation 2.29. The p-value
for Dl is equal to

Pl = Pr[Fk,νl > Dl] (6.10)

where νl = νw. Alternatively, one may use Reiter’s νf for small samples, using
r̄l as the estimate of the relative increase of the variance.

Schafer (1997, p. 118) argued that the best results will be obtained if the
distribution of Q̄ is approximately normal. One may transform the parameters
to achieve normality, provided that appropriate care is taken to infer that the
result is still within the allowable parameter space.

In complete data, the likelihood ratio test is often considered a better test
than the Wald. This superiority does not hold however for the likelihood ratio
test of this section. The likelihood ratio test as described here is asymptotically
equivalent to the Wald test, and thus both tests share the same favorable
properties. The choice between them is mostly a matter of convenience. If Ū
and B are available, then the Wald test is usually preferred as there is no need
for the likelihood function. The Dl statistic can be calculated without the need
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for Ū and B, but requires evaluation of the likelihood function. The likelihood
ratio test is a viable option if k is large (since Ū needs not be inverted), or
in situations in which it is easier to calculate the likelihood than to obtain Ū
and B.

6.3.3 χ2-test ♠

Rubin (1987a, p. 87) and Li et al. (1991a) describe a procedure for pooling
χ2-statistics and its associated p-values. Suppose that χ2

` are test statistics
obtained from the imputed data Y`, ` = 1, . . . ,m. Let

χ̄2 =
1

m

m∑
`=1

χ2
` (6.11)

be the average χ2-statistic. The test statistic is

Dx =

χ̄2

k −
m+1
m−1 r̄x

1 + r̄x
(6.12)

where the relative increase of the variance is calculated as

r̄x =

(
1 +

1

m

)
1

m− 1

m∑
`=1

(√
χ2
` −

√
χ̄2

)2

(6.13)

The p-value corresponding to Dx is obtained as

Px = Pr[Fk,νx > Dx] (6.14)

where

νx = k−3/m(m− 1)

(
1 +

1

r̄2
x

)
(6.15)

or Reiter’s νf for small samples, using r̄x as the estimate of the relative increase
in variation due to the missing data.

The pooled χ2-test can be used when k is large, if Ū and B cannot be
retrieved, or if only χ2-statistics are available. Compared to the other three
methods, however, the results from the χ2-test are considerably less reliable.
The results were optimized for m = 3 and, unlike the other tests, do not
necessarily improve for larger m. According to Li et al. (1991a) the true result
could be within a range of one half to twice the obtained p-value. This test
should only be used as a rough guide.

6.3.4 Custom hypothesis tests of model parameters ♠

Statistical intervals and tests based on scalar Q are used most widely, and
are typically standard in multiple imputation software. Custom hypotheses
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may be formulated and tested using linear contrasts of the model parameter
estimates Q̄.

Let C be an h×k matrix that specifies h linear combinations of the param-
eters in its rows, and let c be a specified column vector with h constants. The
null hypotheses CQ̄ = c can be tested on the multiply imputed data in the
usual way. We calculate the custom estimate as Q̄(c) = CQ̄ and its variance
T (c) = diag(CQ̄C ′). We find the p-value of the test as the probability

Ps = Pr

[
F1,ν >

(c− Q̄(c))2

T (c)

]
(6.16)

where F1,ν is an F -distribution with 1 and ν degrees of freedom. There seems
to be no literature on how to calculate the degrees of freedom. An obvious
choice would be to follow the method for the multivariate Wald statistic. It
is not yet clear how well this method performs. Also, we could potentially
improve by selecting only those parts of Ū , B and T that contribute to the
linear combination before calculating r̄.

6.3.5 Computation

The mice package contains several functions for pooling parameter esti-
mates. The standard function pool() extracts the fitted parameters from each
repeated model, and applies the repeated scalar procedure (Section 2.4.2) to
each parameter.

The multivariate Wald test and the likelihood ratio test are implemented
in the function pool.compare(). This function takes two mira objects, where
one model is nested within the other. We can apply the pooled Wald test
to evaluate the difference between the current model and the intercept-only
model by

> imp <- mice(nhanes2, seed = 23210, print = FALSE)

> fit <- with(imp, lm(bmi ~ age + chl))

> fit.restrict <- with(imp, lm(bmi ~ 1))

> res <- pool.compare(fit, fit.restrict)

> res$pvalue

[,1]

[1,] 0.0182

Alternatively, the function can be used to apply the pooled likelihood ratio
test, though currently only the likelihood function of the logistic regression
model is implemented.

Confidence intervals and tests other than those preprogrammed can be cal-
culated from the components of objects of class mira. To illustrate, we impute
nhanes2 and fit the linear model to predict bmi from the other variables. This
is done as follows:
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> est <- pool(fit)

> summary(est)

est se t df Pr(>|t|) lo 95

(Intercept) 17.7860 3.7542 4.74 10.68 0.000663 9.4933

age2 -4.3682 1.9134 -2.28 12.46 0.040709 -8.5202

age3 -5.7044 2.2716 -2.51 9.66 0.031600 -10.7900

chl 0.0593 0.0216 2.75 10.11 0.020223 0.0114

hi 95 nmis fmi lambda

(Intercept) 26.079 NA 0.392 0.288

age2 -0.216 NA 0.328 0.228

age3 -0.619 NA 0.432 0.326

chl 0.107 10 0.414 0.309

Note that age is coded in three groups, so there are two independent estimates,
both of which are relative to the first level. We illustrate the use of three
custom hypothesis tests on age. The first test assesses whether the difference
between the estimates for categories age2 and age3 is significant. The second
test assesses whether the difference between categories age2 and age3 is the
same as the difference between categories age1 and age2, which is the test for
linearity. The third one tests the null hypothesis that the regression weight of
chl is equal to 0.1.

> C <- matrix(c(c(0, 1, -1, 0), c(0, 2, -1, 0),

c(0, 0, 0, 1)), nrow = 3, ncol = 4, byrow = TRUE)

> c <- c(0, 0, 0.1)

> q <- C %*% est$qbar

> u <- diag(C %*% est$ubar %*% t(C))

> t <- diag(C %*% est$t %*% t(C))

> C1 <- C

> C1[C1 != 0] <- 1

> df <- C1 %*% est$df

> d <- (q - c)^2/t

> pvalue <- 1 - pf(d, 1, df)

> pvalue

[,1]

[1,] 0.6041

[2,] 0.4430

[3,] 0.0884

The interpretation is as follows. The difference between age2 and age3 is
not significant, there is insufficient evidence to reject the linearity hypothesis
for age and the average level of chl is not significantly different from 0.1.
Though there are still some issues for determining the appropriate degrees
of freedom, these types of custom tests enable advanced statistical inference
from multiply imputed data.
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6.4 Stepwise model selection

The standard multiple imputation scheme consists of three phases:

1. Imputation of the missing data m times;

2. Analysis of the m imputed datasets;

3. Pooling of the parameters across m analyses.

This scheme is difficult to apply if stepwise model selection is part of the
statistical analysis in phase 2. Application of stepwise variable selection meth-
ods may result in sets of variables that differ across the m datasets. It is not
obvious how phase 3 should be done.

6.4.1 Variable selection techniques

Brand (1999, chap. 7) was the first to recognize and treat the variable
selection problem. He proposed a solution in two steps. The first step involves
performing stepwise model selection separately on each imputed dataset, fol-
lowed by the construction of a new supermodel that contains all variables that
were present in at least half of the initial models. The idea is that this crite-
rion excludes variables that were selected accidentally. Moreover, it is a rough
correction for multiple testing. Second, a special procedure for backward elim-
ination is applied to all variables present in the supermodel. Each variable is
removed in turn, and the pooled likelihood ratio p-value (Equation 6.14) is
calculated. If the largest p-value is larger than 0.05, the corresponding vari-
able is removed, and the procedure is repeated on the smaller model. The
procedure stops if all p ≤ 0.05. The procedure was found to be a considerable
improvement over complete case analysis.

Yang et al. (2005) proposed variable selection techniques using Bayesian
model averaging. The authors studied two methods. The first method, called
“impute then select,” applies Bayesian variable selection methods on the im-
puted data. The second method, called “simultaneously impute and select”
combines selection and missing data imputation into one Gibbs sampler.
Though the latter slightly outperforms the first method, the first method is
more broadly applicable. Application of the second method seems to require
equivalent imputation and analysis models, thus defeating one of the main
advantages of multiple imputation.

Wood et al. (2008) and Vergouwe et al. (2010) studied several scenarios
for variable selection. We distinguish three general approaches:

1. Majority . A method that selects variables in the final that appear in at
least half of the models.
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2. Stack . Stack the imputed datasets into a single dataset, assign a fixed
weight to each record and apply the usual variable selection methods.

3. Wald . Stepwise model selection is based on the Wald statistic calculated
from the multiply imputed data.

The majority method is identical to step 1 of Brand (1999), whereas the Wald
test method is similar to Brand’s step 2, with the likelihood ratio test replaced
by the Wald test. The Wald test method is recommended since it is a well-
established approach that follows Rubin’s rules, whereas the majority and
stack methods fail to take into account the uncertainty caused by the missing
data. Indeed, Wood et al. (2008) found that the Wald test method is the only
procedure that preserved the type I error.

In practice, it may be useful to combine methods. The Wald test method
is computationally intensive. Stata implements the Wald test approach to
model selection by mim:stepwise. A strong point of the majority method is
that it gives insight into the variability between the imputed datasets. An ad-
vantage of the stack method is that only one dataset needs to be analyzed. The
discussion of Wood et al. (2008) contains additional simulations of a two-step
method, in which a preselection made by the majority and stack methods is
followed by the Wald test. This yielded a faster method with better theoretical
properties. In practice, a judicious combination of approaches might turn out
best.

6.4.2 Computation

The following steps implement a simple stepwise variable selection method
in mice:

> data <- boys[boys$age >= 8, -4]

> imp <- mice(data, seed = 28382, m = 10, print = FALSE)

> expr <- expression(f1 <- lm(tv ~ 1), f2 <- step(f1,

scope = list(upper = ~age + hgt + wgt + hc +

gen + phb + reg), lower = ~1))

> fit <- with(imp, expr)

> formulas <- lapply(fit$analyses, formula)

> terms <- lapply(formulas, terms)

> vars <- unlist(lapply(terms, labels))

> table(vars)

This code imputes the boys data m = 10 times, fits a stepwise linear model to
predict tv (testicular volume) in each of the imputed datasets and counts the
number of times each variable appears in the model. The lapply() function
is used three times. The first statement extracts the model formulas fitted
to the m imputed datasets. The second lapply() call decomposes the model
formulas into pieces, and the third call extracts the names of the variables
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included in all m models. The table() function counts the number of times
that each variable is selected as

> table(vars)

vars

age gen hgt phb reg wgt

10 10 7 10 10 2

Variables age, gen, phb and (surprisingly) reg are always included, whereas
hgt and wgt are selected 7 and 2 times, respectively. Variable hc is never
selected, and is thus missing from the summary.

Since hgt appears in more than 50% of the models, we can use the Wald
test to determine whether it should be in the final model.

> fit.without <- with(imp, lm(tv ~ age + gen + reg +

phb))

> fit.with <- with(imp, lm(tv ~ age + gen + reg +

phb + hgt))

> pool.compare(fit.with, fit.without)$pvalue

[,1]

[1,] 0.297

The p-value is equal to 0.297, so hgt is not needed in the model. If we go one
step further, and remove phb, we obtain

> fit.without <- with(imp, lm(tv ~ age + gen + reg))

> fit.with <- with(imp, lm(tv ~ age + gen + reg +

phb))

> pool.compare(fit.with, fit.without)$pvalue

[,1]

[1,] 0.0352

The significant difference (p = 0.0352) between the models implies that phb

should be retained. We obtain similar results for the other three variables, so
the final model contains age, gen, reg and phb.

6.4.3 Model optimism

The main danger of data-driven model building strategies is that the model
found may depend highly on the sample at hand. For example, Viallefont
et al. (2001) showed that of the variables declared to be “significant” with
p-values between 0.01 and 0.05 by stepwise variable selection, only 49% actu-
ally were true risk factors. Various solutions have been proposed to counter
such model optimism. A popular procedure is bootstrapping the model as de-
veloped in Sauerbrei and Schumacher (1992) and Harrell (2001). Although
Austin (2008) found it ineffective to identify true predictors, this method has
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often been found to work well for developing predictive models. The method
randomly draws multiple samples with replacement from the observed sam-
ple, thus mimicking the sampling variation in the population from which the
sample was drawn. Stepwise regression analyses are replayed in each bootstrap
sample. The proportion of times that each prognostic variable is retained in the
stepwise regression model is known as the inclusion frequency (Sauerbrei and
Schumacher, 1992). This proportion provides information about the strength
of the evidence that an indicator is an independent predictor. In addition,
each bootstrap model can be fitted to the original sample. The difference be-
tween the apparent performance and the bootstrap performance provides the
basis for performance measures that correct for model optimism. Steyerberg
(2009, p. 95) provides an easy-to-follow procedure to calculate such optimism-
corrected performance measures.

Clearly, the presence of missing data adds uncertainty to the model build-
ing process, so optimism can be expected to be more severe with missing data.
It is not yet clear what the best way is to estimate optimism from incomplete
data. Heymans et al. (2007) explored the combination of multiple imputation
and the bootstrap. There appear to be at least four general procedures:

1. Imputation. Multiple imputation generates 100 imputed datasets. Au-
tomatic backward selection is applied to each dataset. Any differences
found between the 100 fitted models are due to the missing data;

2. Bootstrap. 200 bootstrap samples are drawn from one singly imputed
completed data. Automatic backward selection is applied to each
dataset. Any differences found between the 200 fitted models are due
to sampling variation;

3. Nested Bootstrap. The bootstrap method is applied on each of the mul-
tiply imputed datasets. Automatic backward selection is applied to each
of the 100× 200 datasets. Differences between the fitted model portray
both sampling and missing data uncertainty;

4. Nested Imputation. The imputation method is applied on each of the
bootstrapped datasets.

Heymans et al. (2007) observed that the imputation method produced
a wider range of inclusion frequencies than the bootstrap method. This is
attractive since a better separation of strong and weak predictors may ease
model building. The area under the curve, or c-index, is an overall index of
predictive strength. Though the type of method had a substantial effect on
the apparent c-index estimate, the optimism-corrected c-index estimate was
quite similar. The optimism-corrected calibration slope estimates tended to be
lower in the methods involving imputation, thus necessitating more shrinkage.

Several applications of the method have now appeared (Heymans et al.,
2009, 2010; Vergouw et al., 2010). Though these are promising, not all method-
ological questions have yet been answered (e.g., whether “nested bootstrap”
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is better than “nested imputation”), so further research on this topic is nec-
essary.

6.5 Conclusion

The statistical analysis of the multiply imputed data involved repeated
analysis followed by parameter pooling. Rubin’s rules apply to a wide variety
of quantities, especially if these quantities are transformed toward normality.
Dedicated statistical tests and model selection technique are now available.
Although many techniques for complete data now have their analogues for
incomplete data, the present state-of-the-art does not cover all. As multiple
imputation becomes more familiar and more routine, we will see new post-
imputation methodology that will be progressively more refined.

6.6 Exercises

Allison and Cicchetti (1976) investigated the interrelationship between
sleep, ecological and constitutional variables. They assessed these variables
for 39 mammalian species. The authors concluded that slow-wave sleep is
negatively associated with a factor related to body size. This suggests that
large amounts of this sleep phase are disadvantageous in large species. Also,
paradoxical sleep was associated with a factor related to predatory danger,
suggesting that large amounts of this sleep phase are disadvantageous in prey
species.

Allison and Cicchetti (1976) performed their analyses under complete case
analysis. In this exercise we will recompute the regression equations for slow
wave (“nondreaming”) sleep (hrs/day) and paradoxical (“dreaming”) sleep
(hrs/day), as reported by the authors. Furthermore, we will evaluate the im-
putations.

1. Complete case analysis. Compute the regression equations (1) and (2)
from the paper of Allison and Cicchetti (1976) under complete case
analysis.

2. Imputation. The sleep data are part of the mice package. Impute the
data with mice() under all the default settings. Recalculate the regres-
sion equations (1) and (2) on the multiply imputed data.

3. Traces. Inspect the trace plot of the MICE algorithm. Does the algorithm
appear to converge?
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4. More iterations. Extend the analysis with 20 extra iterations using
mice.mids(). Does this affect your conclusion about convergence?

5. Distributions. Inspect the data with diagnostic plots for univariate data.
Are the univariate distributions of the observed and imputed data sim-
ilar? Can you explain why they do (or do not) differ?

6. Relations. Inspect the data with diagnostic plots for the most interesting
bivariate relations. Are the relations similar in the observed and imputed
data? Can you explain why they do (or do not) differ?

7. Defaults. Consider each of the seven default choices from Section 5.1 in
turn. Do you think the default is appropriate for your data? Explain
why.

8. Improvement. Do you have particular suggestions for improvement?
Which? Implement one (or more) of your suggestions. Do the results
now look more plausible or realistic? Explain. What happened to the
regression equations?

9. Multivariate analyses. Repeat the factor analysis and the stepwise re-
gression. Beware: There might be pooling problems.
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Part II

Case studies
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Chapter 7

Measurement issues

This chapter is the first with applications to real data. A common theme is
that all have “problems with the columns.” Section 7.1 illustrates a number of
useful steps to take when confronted with a dataset that has an overwhelming
number of variables. Section 7.2 continues with the same data, and shows how
a simple sensitivity analysis can be done. Section 7.3 illustrates how multiple
imputation can be used to estimate overweight prevalence from self-reported
data. Section 7.4 shows a way to do a sensible analysis on data that are
incomparable.

7.1 Too many columns

Suppose that your colleague has become enthusiastic about multiple im-
putation. She asked you to create a multiply imputed version of her data,
and forwarded you her entire database. As a first step, you use R to read it
into a data frame called data. After this is done, you type in the following
commands:

> library(mice)

> ## DO NOT DO THIS

> imp <- mice(data) # not recommended

The program will run and impute, but after a few minutes it becomes clear
that it takes a long time to finish. And after the wait is over, the imputations
turn out to be surprisingly bad. What has happened?

Some exploration of the data reveals that your colleague sent you a dataset
with 351 columns, essentially all the information that was sampled in the
study. By default, the mice() function uses all other variables as predictors,
so mice() will try to calculate regression analyses with 350 explanatory vari-
ables, and repeat that for every incomplete variable. Categorical variables are
internally represented as dummy variables, so the actual number of predictors
could easily double. This makes the algorithm extremely slow.

Some further exploration reveals some variables are free text fields, and
that some of the missing values were not marked as such in the data. As a
consequence, mice() treats impossible values such as “999” or “−1” as real
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data. Just one forgotten missing data mark may introduce large errors into
the imputations.

In order to evade such practical issues, it is necessary to spend some time
exploring the data first. Furthermore, it is helpful if you understand for which
scientific question the data are used. Both will help in creating sensible impu-
tations.

This section concentrates on what can be done based on the data val-
ues themselves. In practice, it is far more productive and preferable to work
together with someone who knows the data really well, and who knows the
questions of scientific interest that one could ask from the data. Sometimes
the possibilities for cooperation can be limited. This may occur, for example,
if the data have come from several external sources (as in meta analysis), or
if the dataset is so diverse that no one person can cover all of its contents.
It will be clear that this situation calls for a careful assessment of the data
quality, well before attempting imputation.

7.1.1 Scientific question

There is a paradoxical inverse relation between blood pressure (BP) and
mortality in persons over 85 years of age (Boshuizen et al., 1998; Van Bemmel
et al., 2006). Normally, people with a lower BP live longer, but the oldest old
with lower BP live a shorter time.

The goal of the study was to determine if the relation between BP and
mortality in the very old is due to frailty. A second goal was to know whether
high BP was a still risk factor for mortality after the effects of poor health
had been taken into account.

The study compared two models:

1. The relation between mortality and BP adjusted for age, sex and type
of residence.

2. The relation between mortality and BP adjusted for age, sex, type of
residence and health.

Health was measured by 28 different variables, including mental state,
handicaps, being dependent in activities of daily living, history of cancer and
others. Including health as a set of covariates in model 2 might explain the
relation between mortality and BP, which, in turn, has implications for the
treatment of hypertension in the very old.

7.1.2 Leiden 85+ Cohort

The data come from the 1236 citizens of Leiden who were 85 years or older
on December 1, 1986 (Lagaay et al., 1992; Izaks et al., 1997). These individuals
were visited by a physician between January 1987 and May 1989. A full med-
ical history, information on current use of drugs, a venous blood sample, and
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other health-related data were obtained. BP was routinely measured during
the visit. Apart from some individuals who were bedridden, BP was measured
while seated. An Hg manometer was used and BP was rounded to the near-
est 5 mmHg. Measurements were usually taken near the end of the interview.
The mortality status of each individual on March 1, 1994 was retrieved from
administrative sources.

Of the original cohort, a total of 218 persons died before they could be
visited, 59 persons did not want to participate (some because of health prob-
lems), 2 emigrated and 1 was erroneously not interviewed, so 956 individuals
were visited. Effects due to subsampling the visited persons from the entire
cohort were taken into account by defining the date of the home visit as the
start (Boshuizen et al., 1998). This type of selection will not be considered
further.

7.1.3 Data exploration

The data are stored as a SAS export file. The read.xport() function from
the foreign package can read the data.

> library(foreign)

> file.sas <- file.path(project, "original/master85.xport")

> original.sas <- read.xport(file.sas)

> names(original.sas) <- tolower(names(original.sas))

> dim(original.sas)

[1] 1236 351

The dataset contains 1236 rows and 351 columns. When I tracked down the
origin of the data, the former investigators informed me that the file was
composed during the early 1990s from several parts. The basic component
consisted of a Dbase file with many free text fields. A dedicated Fortran

program was used to separate free text fields. All fields with medical and
drug-related information were hand-checked against the original forms. The
information not needed for analysis was not cleaned. All information was kept,
so the file contains several versions of the same variable.

A first scan of the data makes clear that some variables are free text fields,
person codes and so on. Since these fields cannot be sensibly imputed, they
are removed from the data. In addition, only the 956 cases that were initially
visited are selected, as follows:

> all <- names(original.sas)

> drop <- c(3, 22, 58, 162:170, 206:208)

> keep <- !(1:length(all) %in% drop)

> leiden85 <- original.sas[original.sas$abr == "1",

keep]

> data <- leiden85
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The frequency distribution of the missing cases per variable can be ob-
tained as:

> ini <- mice(data, maxit=0) # recommended

> table(ini$nmis)

0 2 3 5 7 14 15 28 29 32 33 34 35 36 40

87 2 1 1 1 1 2 1 3 2 34 15 25 4 1

42 43 44 45 46 47 48 49 50 51 54 64 72 85 103

1 2 1 4 2 3 24 4 1 20 2 1 4 1 1

121 126 137 155 157 168 169 201 202 228 229 230 231 232 233

1 1 1 1 1 2 1 7 3 5 4 2 4 1 1

238 333 350 501 606 635 636 639 642 722 752 753 812 827 831

1 3 1 3 1 2 1 1 2 1 5 3 1 1 3

880 891 911 913 919 928 953 954 955

3 3 3 1 1 1 3 3 3

Thus, there are 87 variables that are complete. The set includes administrative
variables (e.g., person number), design factors, date of measurement, survival
indicators, selection variables and so on. The set also included some variables
for which the missing data were inadvertently not marked, containing values
such as “999” or “−1.” For example, the frequency distribution of the complete
variable ‘beroep1’ (occupation) is

> table(data$beroep1, useNA = "always")

-1 0 1 2 3 4 5 6 <NA>

42 1 576 125 104 47 44 17 0

There are no missing values, but a variable with just categories “−1” and “0” is
suspect. The category “−1” likely indicates that the information was missing
(this was the case indeed). One option is to leave this “as is,” so that mice()
treats it as complete information. All cases with a missing occupation are then
seen as a homogeneous group.

Two other variables without missing data markers are syst and diast, i.e.,
systolic and diastolic BP classified into six groups. The correlation (using the
observed pairs) between syst and rrsyst, the variable of primary interest,
is 0.97. Including syst into the imputation model for rrsyst will ruin the
imputations. The “as is” option is dangerous, and shares some of the same
perils of the indicator method (cf. Section 1.3.7). The message is that variables
that are 100% complete deserve appropriate attention.

After a first round of screening, I found that 57 of the 87 complete variables
were uninteresting or problematic in some sense. Their names were placed on
a list named outlist1 as follows:
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> v1 <- names(ini$nmis[ini$nmis == 0])

> outlist1 <- v1[c(1, 3:5, 7:10, 16:47, 51:60, 62,

64:65, 69:72)]

> length(outlist1)

[1] 57

7.1.4 Outflux

We should also scrutinize the variables at the other end. Variables with
high proportions of missing data generally create more problems than they
solve. Unless some of these variables are of genuine interest to the investiga-
tor, it is best to leave them out. Virtually every dataset contains some parts
that could better be removed before imputation. This includes, but is not
limited to, uninteresting variables with a high proportion of missing data,
variables without a code for the missing data, administrative variables, con-
stant variables, duplicated, recoded or standardized variables, and aggregates
and indices of other information.

Figure 7.1 is the influx-outflux pattern of Leiden 85+ Cohort data. The
influx of a variable quantifies how well its missing data connect to the observed
data on other variables. The outflux of a variable quantifies how well its ob-
served data connect to the missing data on other variables. See Section 4.1.3
for more details. Though the display could obviously benefit from a better
label-placing strategy, we can see three groups. All points are relatively close
to the diagonal, which indicates that influx and outflux are balanced.

The group at the left-upper corner has (almost) complete information, so
the number of missing data problems for this group is relatively small. The
intermediate group has an outflux between 0.5 and 0.8, which is small. Miss-
ing data problems are more severe, but potentially this group could contain
important variables. The third group has an outflux with 0.5 and lower, so
its predictive power is limited. Also, this group has a high influx, and is thus
highly dependent on the imputation model.

Note that there are two variables (hypert1 and aovar) in the third group
that are located above the diagonal. Closer inspection reveals that the missing
data mark had not been set for these two variables. Variables that might cause
problems later on in the imputations are located in the lower-right corner.
Under the assumption that this group does not contain variables of scientific
interest, I transferred 45 variables with an outflux < 0.5 to outlist2:

> outlist2 <- row.names(fx)[fx$outflux < 0.5]

> length(outlist2)

[1] 45

In these data, the set of selected variables is identical to the group with
more than 500 missing values, but this need not always be the case. I removed
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Figure 7.1: Global influx-outflux pattern of the Leiden 85+ Cohort data.
Variables with higher outflux are (potentially) the more powerful predictors.
Variables with higher influx depend stronger on the imputation model.

the 45 variables, recalculated influx and outflux on the smaller dataset and
selected 32 new variables with outflux < 0.5.

> data2 <- data[, !names(data) %in% outlist2]

> fx2 <- flux(data2)

> outlist3 <- row.names(fx2)[fx2$outflux < 0.5]

Variable outlist3 contains 32 variable names, among which are many lab-
oratory measurements. I prefer to keep these for imputation since they may
correlate well with BP and survival. Note that the outflux changed consider-
ably as I removed the 45 least observed variables. Influx remained nearly the
same.

7.1.5 Logged events

Another source of information is a list of logged events produced by
mice(). The logged events are a structured report that identify problems
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with the data, as well as corrective actions taken by mice(). It is a compo-
nent called loggedEvents of the mids object.

> ini$log[1:3, ]

it im co dep meth out

1 0 0 0 constant abr

2 0 0 0 constant vo7

3 0 0 0 constant vo9

The log contains variables with a problem. mice() silently removes prob-
lematic variables, but leaves an entry in the log. At initialization, a log entry
is made for the following actions:

• A variable that contains missing values, that is not imputed and that is
used as a predictor is removed;

• A constant variable is removed;

• A collinear variable is removed.

During execution of the algorithm log entries signal the following actions:

• One or more variables that are linearly dependent are removed;

• Proportional odds imputation did not converge and was replaced by the
multinomial model.

The log is a data frame with six columns. The columns it, im and co

stand for iteration, imputation number and column number, respectively. The
column dep contains the name of the active variable. The column meth entry
signals the type of problem. Finally, the column out contains the name(s) of
the removed variable(s). The log contains valuable information about methods
and variables that were difficult to fit. Closer examination of the data might
then reveal what the problem is.

Based on the initial analysis by mice(), I placed the names of all constant
and collinear variables on outlist4 by

> outlist4 <- as.character(ini$log[, "out"])

The outlist contains 28 variables.

7.1.6 Quick predictor selection for wide data

The mice package contains the function quickpred(), which implements
the predictor selection strategy of Section 5.3.2. In order to apply this strategy
to the Leiden 85+ Cohort data, I first deleted the variables on three of the
four outlists created in the previous sections.
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> outlist <- unique(c(outlist1, outlist2, outlist4))

> length(outlist)

[1] 108

There are 108 unique variables to be removed. Thus, before doing any im-
putations, I cleaned out about one third of the data that are likely to cause
problems. The downsized data are

> data2 <- data[, !names(data) %in% outlist]

The next step is to build the imputation model according to the strategy
outlined above. The function quickpred() is applied as follows:

> inlist <- c("sex", "lftanam", "rrsyst", "rrdiast")

> pred <- quickpred(data2, minpuc = 0.5, inc = inlist)

There are 198 incomplete variables in data2. The character vector inlist

specifies the names of the variables that should be included as covariates in
every imputation model. Here I specified age, sex and blood pressure. Blood
pressure is the variable of central interest, so I included it in all models. This
list could be longer if there are more outcome variables. The inlist could
also include design factors.

The quickpred() function creates a binary predictor matrix of 198 rows
and 198 columns. The rows correspond to the incomplete variables and the
columns report the same variables in their role as predictor. The number of
predictors varies per row. We can display the distribution of the number of
predictors by

> table(rowSums(pred))

0 7 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

30 1 2 1 1 2 5 2 13 8 16 9 13 7 5 6 10 6 3 6

29 30 31 32 33 34 35 36 37 38 39 40 41 42 44 45 46 49 50 57

4 8 3 6 9 2 4 6 2 5 2 4 2 3 4 3 3 3 1 1

59 60 61 68 79 83 85

1 1 1 1 1 1 1

The variability in model sizes is substantial. The 30 rows with no predictors
are complete. The mean number of predictors is equal to 24.8. It is possible
to influence the number of predictors by altering the values of mincor and
minpuc in quickpred(). A number of predictors of 15–25 is about right (cf.
Section 5.3.2), so I decided to accept this predictor matrix. The number of
predictors for systolic and diastolic BP are

> rowSums(pred[c("rrsyst", "rrdiast"), ])

rrsyst rrdiast

41 36
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The names of the predictors for rrsyst can be obtained by

> names(data2)[pred["rrsyst", ] == 1]

It is sometimes useful the inspect the correlations of the predictors selected
by quickpred(). Table 3 in Van Buuren et al. (1999) provides an example.
For a given variable, the correlations can be tabulated by

> vname <- "rrsyst"

> y <- cbind(data2[vname], r = !is.na(data2[, vname]))

> vdata <- data2[, pred[vname, ] == 1]

> round(cor(y = y, x = vdata, use = "pair"), 2)

7.1.7 Generating the imputations

Everything is now ready to impute the data as

> imp.qp <- mice(data2, pred = pred, seed = 29725)

Thanks to the smaller dataset and the more compact imputation model, this
code runs about 50 times faster than “blind imputation” as practiced in Sec-
tion 7.1. More importantly, the new solution is much better. To illustrate the
latter, take a look at Figure 7.2.

The figure is the scatterplot of rrsyst and rrdiast of the first imputed
dataset. The left-hand figure shows what can happen if the data are not prop-
erly screened. In this particular instance, a forgotten missing data mark of
“−1” was counted as a valid blood pressure value, and produced imputation
that are far off. In contrast, the imputations created with the help of quick-
pred() look reasonable.

The plot was created by the following code:

> vnames <- c("rrsyst", "rrdiast")

> cd1 <- complete(imp)[, vnames]

> cd2 <- complete(imp.qp)[, vnames]

> typ <- factor(rep(c("blind imputation", "quickpred"),

each = nrow(cd1)))

> mis <- ici(data2[, vnames])

> mis <- is.na(imp$data$rrsyst) | is.na(imp$data$rrdiast)

> cd <- data.frame(typ = typ, mis = mis, rbind(cd1,

cd2))

> xyplot(jitter(rrdiast, 10) ~ jitter(rrsyst, 10) |

typ, data = cd, groups = mis, col = c(mdc(1),

mdc(2)), xlab = "Systolic BP (mmHg)", type = c("g",

"p"), ylab = "Diastolic BP (mmHg)", pch = c(1,

19), strip = strip.custom(bg = "gray95"),

scales = list(alternating = 1, tck = c(1,

0)))
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Figure 7.2: Scatterplot of systolic and diastolic blood pressure from the first
imputation. The left-hand-side plot was obtained after just running mice()

on the data without any data screening. The right-hand-side plot is the result
after cleaning the data and setting up the predictor matrix with quickpred().
Leiden 85+ Cohort data.

7.1.8 A further improvement: Survival as predictor variable

If the complete-data model is a survival model, incorporating the cumu-
lative hazard to the survival time, H0(T ), as one of the predictors provide
slightly better imputations (White and Royston, 2009). In addition, the event
indicator should be included into the model. The Nelson-Aalen estimate of
H0(T ) in the Leiden 85+ Cohort can be calculated as

> dat <- cbind(data2, dead = 1 - data2$dwa)

> hazard <- nelsonaalen(dat, survda, dead)

where dead is coded such that “1” means death. The nelsonaalen() function
is part of mice. Table 7.1 lists the correlations beween several key variables.
The correlation between H0(T ) and T is almost equal to 1, so for these data it
matters little whether we take H0(T ) or T as the predictor. The high correla-
tion may be caused by the fact that nearly everyone in this cohort has died, so
the percentage of censoring is low. The correlation between H0(T ) and T could
be lower in other epidemiological studies, and thus it might matter whether
we take H0(T ) or T . Observe that the correlation between log(T ) and blood
pressure is higher than for H0(T ) or T , so it makes sense to add log(T ) as an
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Table 7.1: Pearson correlations between the cumulative death hazard H0(T ),
survival time T , log(T ), systolic and diastolic blood pressure.

H0(T ) T log(T ) SBP DBP
H0(T ) 1.000 0.997 0.830 0.169 0.137
T 0.997 1.000 0.862 0.176 0.141
log(T ) 0.830 0.862 1.000 0.205 0.151
SBP 0.169 0.176 0.205 1.000 0.592
DBP 0.137 0.141 0.151 0.592 1.000

additional predictor. This strong relation may have been a consequence of the
design, as the frail people were measured first.

7.1.9 Some guidance

Imputing data with many columns is challenging. Even the most carefully
designed and well-maintained data may contain information or errors that can
send the imputations awry. I conclude this section by summarizing advice for
imputation of data with “too many columns.”

1. Inspect all complete variables for forgotten missing data marks. Repair
or remove these variables. Even one forgotten mark may ruin the impu-
tation model. Remove outliers with improbable values.

2. Obtain insight into the strong and weak parts of the data by studying the
influx-outflux pattern. Unless they are scientifically important, remove
variables with low outflux, or with high fractions of missing data.

3. Perform a dry run with maxit=0 and inspect the logged events pro-
duced by mice(). Remove any constant and collinear variables before
imputation.

4. Find out what will happen after the data have been imputed. Deter-
mine a set of variables that are important in subsequent analyses, and
include these as predictors in all models. Transform variables to improve
predictability and coherence in the complete-data model.

5. Run quickpred(), and determine values of mincor and minpuc such
that the average number of predictors is around 25.

6. After imputation, determine whether the generated imputations are sen-
sible by comparing them to the observed information, and to knowledge
external to the data. Revise the model where needed.

7. Document your actions and decisions, and obtain feedback from the
owner of the data.
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It is most helpful to try out these techniques on data gathered within
your own institute. Some of these steps may not be relevant for other data.
Determine where you need to adapt the procedure to suit your needs.

7.2 Sensitivity analysis

The imputations created in Section 7.1 are based on the assumption that
the data are MAR (cf. Sections 1.2 and 2.2.4). While this is often a good start-
ing assumption, it may not be realistic for the data at hand. When the data
are not MAR, we can follow two strategies to obtain plausible imputations.
The first strategy is to make the data “more MAR.” In particular, this strat-
egy requires us to identify additional information that explains differences in
the probability to be missing. This information is then used to generate impu-
tations conditional on that information. The second strategy is to perform a
sensitivity analysis. The goal of the sensitivity analysis is to explore the result
of the analysis under alternative scenarios for the missing data. See Section 5.2
for a more elaborate discussion of these strategies.

This section explores sensitivity analysis for the Leiden 85+ Cohort data.
In sensitivity analysis, imputations are generated according to one or more
scenarios. The number of possible scenarios is infinite, but these are not equally
likely. A scenario could be very simple, like assuming that everyone with a
missing value had scored a “yes,” or assuming that those with missing blood
pressures have the minimum possible value. While easy to interpret, such
extreme scenarios are highly unlikely. Preferably, we should attempt to make
an educated guess about both the direction and the magnitude of the missing
data had they been observed. By definition, this guess needs to be based on
external information beyond the data.

7.2.1 Causes and consequences of missing data

We continue with the Leiden 85+ Cohort data described in Section 7.1.
The objective is to estimate the effect of blood pressure (BP) on mortality.
BP was not measured for 126 individuals (121 systolic, 126 diastolic).

The missingness is strongly related to survival. Figure 7.3 displays the
Kaplan-Meier survival curves for those with (n = 835) and without (n = 121)
a measurement of systolic BP (SBP). BP measurement was missing for a
variety of reasons. Sometimes there was a time constraint. In other cases the
investigator did not want to place an additional burden on the respondent.
Some subjects were too ill to be measured.

Table 7.2 indicates that BP was measured less frequently for very old
persons and for persons with health problems. Also, BP was measured more
often if the BP was too high, for example if the respondent indicated a previous
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Figure 7.3: Kaplan–Meier curves of the Leiden 85+ Cohort, stratified ac-
cording to missingness. The figure shows the survival probability since intake
for the group with observed BP measures (blue) and the group with missing
BP measures (red).

Table 7.2: Some variables that have different distributions in the response
(n = 835) and non-response groups (n = 121). Shown are rounded percent-
ages. Significance levels correspond to the χ2-test.

Variable Observed BP Missing BP
Age (year) p < 0.0001
85–89 63 48
90–94 32 34
95+ 6 18

Type of residence p < 0.0001
Independent 52 35
Home for elderly 35 54
Nursing home 13 12

Activities of daily living (ADL) p < 0.001
Independent 73 54
Dependent on help 27 46

History of hypertension p = 0.06
No 77 85
Yes 23 15
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Table 7.3: Proportion of persons for which no BP was measured, cross-
classified by three-year survival and previous hypertension history. Shown are
proportions per cell (number of cases with missing BP/total cell count).

Survived History of Previous Hypertension
No Yes

Yes 8.7% (34/390) 8.1% (10/124)
No 19.2% (69/360) 9.8% (8/82)

diagnosis of hypertension, or if the respondent used any medication against
hypertension. The missing data rate of BP also varied during the period of
data collection. The rate gradually increases during the first seven months
of the sampling period from 5 to 40 percent of the cases, and then suddenly
drops to a fairly constant level of 10–15 percent. A complicating factor here is
that the sequence in which the respondents were interviewed was not random.
High-risk groups, that is, elderly in hospitals and nursing homes and those
over 95, were visited first.

Table 7.3 contains the proportion of persons for which BP was not meas-
ured, cross-classified by three-year survival and history of hypertension as
measured during anamnesis. Of all persons who die within three years and
that have no history of hypertension, more than 19% have no BP score. The
rate for other categories is about 9%. This suggests that a relatively large
group of individuals without hypertension and with high mortality risk is
missing from the sample for which BP is known.

Using only the complete cases could lead to confounding by selection. The
complete case analysis might underestimate the mortality of the lower and
normal BP groups, thereby yielding a distorted impression of the influence of
BP on survival. This reasoning is somewhat tentative as it relies on the use of
hypertension history as a proxy for BP. If true, however, we would expect more
missing data from the lower BP measures. It is known that BP and mortality
are inversely related in this age group, that is, lower BP is associated with
higher mortality. If there are more missing data for those with low BP and
high mortality (as in Table 7.3), selection of the complete cases could blur the
effect of BP on mortality.

7.2.2 Scenarios

The previous section presented evidence that there might be more missing
data for the lower blood pressures. Imputing the data under MAR can only
account for nonresponse that is related to the observed data. However, the
missing data may also be caused by factors that have not been observed.
In order to study the influence of such factors on the final inferences, let us
conduct a sensitivity analysis.

Section 3.9 advocated the use of simple adjustments to the imputed data as
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Table 7.4: Realized difference in means of the observed and imputed SBP
(mmHg) data under various δ-adjustments. The number of multiple imputa-
tions is m = 5.

δ Difference
0 −8.2
−5 −12.3
−10 −20.7
−15 −26.1
−20 −31.5

a way to perform sensitivity analysis. Table 3.6 lists possible values for an offset
δ, together with an interpretation whether the value would be (too) small or
(too) large. The next section uses the following range for δ: 0 mmHg (MCAR,
too small), −5 mmHg (small), −10 mmHg (large), −15 mmHg (extreme) and
−20 mmHg (too extreme). The last value is unrealistically low, and is primarily
included to study the stability of the analysis in the extreme.

7.2.3 Generating imputations under the δ-adjustment

Subtracting a fixed amount from the imputed values is easily achieved by
the post processing facility in mice(). The following code first imputes under
δ = 0 mmHg (MAR), then under δ = −5 mmHg, and so on.

> delta <- c(0, -5, -10, -15, -20)

> post <- imp.qp$post

> imp.all.undamped <- vector("list", length(delta))

> for (i in 1:length(delta)) {

d <- delta[i]

cmd <- paste("imp[[j]][,i] <- imp[[j]][,i] +",

d)

post["rrsyst"] <- cmd

imp <- mice(data2, pred = pred, post = post,

maxit = 10, seed = i * 22)

imp.all.undamped[[i]] <- imp

}

Note that we specify an adjustment in SBP only. Since imputed SBP is
used to impute other incomplete variables, δ will also affect the imputations
in those. The strength of the effect depends on the correlation between SBP
and the variable. Thus, using a δ-adjustment for just one variable will affect
many.

The mean of the observed systolic blood pressures is equal to 152.9 mmHg.
Table 7.4 provides the differences in means between the imputed and observed
data as a function of δ. For δ = 0, i.e., under MAR, we find that the imputa-
tions are on average 8.2 mmHg lower than the observed blood pressure, which



186 Flexible Imputation of Missing Data

is in line with the expectations. As intended, the gap between observed and
imputed increases as δ decreases.

Note that for δ = −10 mmHg, the magnitude of the difference with the
MAR case (−20.7+8.2 = −12.5 mmHg) is somewhat larger in size than δ. The
same holds for δ = −15 mmHg and δ = −20 mmHg. This is due to feedback of
the δ-adjustment itself via third variables. It is possible to correct for this, for
example by multiplying δ by a damping factor

√
1− r2, with r2 the proportion

of explained variance of the imputation model for SBP. In R this can be done
by changing the expression for cmd as

> cmd <- paste("fit <- lm(y ~ as.matrix(x));

damp <- sqrt(1 - summary(fit)$r.squared);

imp[[j]][, i] <- imp[[j]][, i] + damp * ", d)

As the results of the complete-data analysis turned out to be very similar to
the “raw” δ, this route is not further explored.

7.2.4 Complete data analysis

Complete data analysis is a Cox regression with survival since intake as
the outcome, and with blood pressure groups as the main explanatory vari-
able. The analysis is stratified by sex and age group. The preliminary data
transformations needed for this analysis were performed as follows:

> cda <- expression(

sbpgp <- cut(rrsyst, breaks = c(50, 124,

144, 164, 184, 200, 500)),

agegp <- cut(lftanam, breaks = c(85, 90,

95, 110)),

dead <- 1 - dwa,

coxph(Surv(survda, dead)

~ C(sbpgp, contr.treatment(6, base = 3))

+ strata(sexe, agegp)))

> imp <- imp.all.damped[[1]]

> fit <- with(imp, cda)

The cda object is an expression vector containing several statements needed
for the complete data analysis. The cda object will be evaluated within the
environment of the imputed data, so (imputed) variables like rrsyst and
survda are available during execution. Derived variables like sbpgp and agegp

are temporary and disappear automatically. When evaluated, the expression
vector returns the value of the last expression, in this case the object produced
by coxph(). The expression vector provides a flexible way to apply R code to
the imputed data. Do not forget to include commas to separate the individual
expressions. The pooled hazard ratio per SBP group can be calculated by

> as.vector(exp(summary(pool(fit))[, 1]))
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Table 7.5: Hazard ratio estimates (with 95% confidence interval) of the classic
proportional hazards model. The estimates are relative to the reference group
(145–160 mmHg). Rows correspond to different scenarios in the δ-adjustment.
The row labeled “CCA” contains results of the complete case analysis.

δ <125 mmHg 125–140 mmHg >200 mmHg
0 1.76 (1.36–2.28) 1.43 (1.16–1.77) 0.86 (0.44–1.67)

-5 1.81 (1.42–2.30) 1.45 (1.18–1.79) 0.88 (0.50–1.55)
-10 1.89 (1.47–2.44) 1.50 (1.21–1.86) 0.90 (0.51–1.59)
-15 1.82 (1.39–2.40) 1.45 (1.14–1.83) 0.88 (0.49–1.57)
-20 1.80 (1.39–2.35) 1.46 (1.17–1.83) 0.85 (0.48–1.50)

CCA 1.76 (1.36–2.28) 1.48 (1.19–1.84) 0.89 (0.51–1.57)

[1] 1.758 1.433 1.065 1.108 0.861

Table 7.5 provides the hazard ratio estimates under the different scenarios
for three SBP groups. A risk ratio of 1.76 means that the mortality risk (after
correction for sex and age) in the group “SBP <125 mmHg” is 1.76 times
the risk of the reference group “145–160 mmHg.” The inverse relation relation
between mortality and blood pressure in this age group is consistent, where
even the group with the highest blood pressures have (nonsignificant) lower
risks.

Though the imputations differ dramatically under the various scenarios,
the hazard ratio estimates for different δ are close. Thus, the results are es-
sentially the same under all specified MNAR mechanisms. Also observe that
the results are close to those from the analysis of the complete cases.

7.2.5 Conclusion

Sensitivity analysis is an important tool for investigating the plausibility
of the MAR assumption. This section explored the use of an informal, simple
and direct method to create imputations under nonignorable models by simply
deducting some amount from the imputations.

Section 3.9.1 discussed shift, scale and shape parameters for nonignorable
models. We only used a shift parameter here, which suited our purposes in
the light of what we knew about the causes of the missing data. In other ap-
plications, scale or shape parameters could be more natural. The calculations
are easily adapted to such cases.
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Figure 7.4: Underestimation of obesity prevalence in self-reported data. Self-
reported BMI is on average 1–2 kg/m2 too low. Lines are fitted by lowess.

7.3 Correct prevalence estimates from self-reported data

7.3.1 Description of the problem

Prevalence estimates for overweight and obesity are preferably based on
standardized measured data of height and weight. However, obtaining such
measures is logistically challenging and costly. An alternative is to ask persons
to report their own height and weight. It is well known that such measures
are subject to systematic biases. People tend to overestimate their height and
underestimate their weight. A recent overview covering 64 studies can be found
in Gorber et al. (2007).

Body Mass Index (BMI) is calculated from height and weight as kg/m2.
For BMI both biases operate in the same direction, so any self-reporting biases
are amplified in BMI. Figure 7.4 is drawn from data of Krul et al. (2010). Self-
reported BMI is on average 1–2 kg/m2 lower than measured BMI.

BMI values can be categorized into underweight (BMI < 18.5), normal
(18.5 ≤ BMI < 25), overweight (25 ≤ BMI < 30), and obese (BMI ≥ 30).
Self-reported BMI may assign subjects to a category that is too low. In Fig-
ure 7.4 persons in the white area labeled “1” are obese according to both
self-reported and measured BMI. Persons in the white area labeled “3” are
non-obese. The shaded areas represent disagreement between measured and
self-reported obesity. The shaded area “4” are obese according to measured
BMI, but not to self-report. The reverse holds for the shaded area “2.” Due
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Figure 7.5: Illustration of the bias of predictive equations. In general, the
combined region 2 + 3b will have fewer cases than region 4a. This causes a
downward bias in the prevalence estimate.

to self-reporting bias, the number of persons located in area “4” is generally
larger than in area “2,” leading to underestimation.

There have been many attempts to correct measured height and weight
for bias using predictive equations. These attempts have generally not been
successful. The estimated prevalences were often still found to be too low after
correction. Moreover, there is substantial heterogeneity in the proposed pre-
dictive formulae, resulting in widely varying prevalence estimates. See Visscher
et al. (2006) for a summary of these issues. The current consensus is that it is
not possible to estimate overweight and obesity prevalence from self-reported
data. Dauphinot et al. (2008) even suggested to lower cut-off values for obesity
based on self-reported data.

The goal is to estimate obesity prevalence in the population from self-
reported data. This estimate should be unbiased in the sense that, on average,
it should be equal to the estimate that would have been obtained had data been
truly measured. Moreover, the estimate must be accompanied by a standard
error or a confidence interval.

7.3.2 Don’t count on predictions

Table 4 in Visscher et al. (2006) lists 36 predictive equations that have been
proposed over the years. Visscher et al. (2006) observed that these equations
predict too low. This section explains why this happens.
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Figure 7.5 plots the data of Figure 7.4 in a different way. The figure is
centered around the BMI of 30 kg/m2. The two dashed lines divide the area
into four quadrants. Quadrant 1 contains the cases that are obese according
to both BMI values. Quadrant 3 contains the cases that are classified as non-
obese according to both. Quadrant 2 holds the subjects that are classified as
obese according to self-report, but not according to measured BMI. Quad-
rant 4 has the opposite interpretation. The area and quadrant numbers used
in Figures 7.4 and 7.5 correspond to identical subdivisions in the data.

The“true obese”in Figure 7.5 lie in quadrants 1 and 4. The obese according
to self-report are located in quadrants 1 and 2. Observe that the number of
cases in quadrant 2 is smaller than in quadrant 4, a result of the systematic
bias that is observed in humans. Using uncorrected self-report thus leads to
an underestimate of the true prevalence.

The regression line that predicts measured BMI from self-reported BMI
is added to the display. This line intersects the horizontal line that separates
quadrant 3 from quadrant 4 at a (self-reported) BMI value of 29.4 kg/m2.
Note that using the regression line to predict obese versus non-obese is in fact
equivalent to classifying all cases with a self-report of 29.4 kg/m2 or higher as
obese. Thus, the use of the regression line as a predictive equation effectively
shifts the vertical dashed line from 30 kg/m2 to 29.4 kg/m2. Now we can make
the same type of comparison as before. We count the number of cases in
quadrant 2 + section 3b (n1), and compare it to the count in region 4a (n2).
The difference n2 − n1 is now much smaller, thanks to the correction by the
predictive equation.

However, there is still bias remaining. This comes from the fact that the
distribution on the left side is more dense. The number of subjects with a
BMI of 28 kg/m2 is typically larger than the number of subjects with a BMI of
32 kg/m2. Thus, even if a symmetric normal distribution around the regression
line is correct, n2 is on average larger than n1. This yields bias in the predictive
equation.

Observe that this effect will be stronger if the regression line becomes
more shallow, or equivalently, if the spread around the regression line in-
creases. Both are manifestation of less-than-perfect predictability. Thus, pre-
dictive equations only work well if the predictability is very high, but they are
systematically biased in general.

7.3.3 The main idea

Table 7.6 lists the six variable names needed in this application. Let us
assume that we have two data sources available:

• The calibration dataset contains nc subjects for which both self-reported
and measured data are available;

• The survey dataset contains ns subjects with only the self-reported data.
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Table 7.6: Basic variables needed to correct overweight/obesity prevalence
for self-reporting.

Name Description
age Age (years)
sex Sex (M/F)
hm Height measured (cm)
hr Height reported (cm)
wm Weight measured (kg)
wr Weight reported (kg)

Note: The survey data are representative for the population of interest, pos-
sibly after correction for design factors.

We assume that the common variables in these two datasets are comparable.
The idea is to stack the datasets, multiply impute the missing values for hm

and wm in the survey data and estimate the overweight and obesity prevalence
(and their standard errors) from the imputed survey data. See Schenker et al.
(2010) for more background.

7.3.4 Data

The calibration sample is taken from Krul et al. (2010). The dataset con-
tains of nc = 1257 Dutch subjects with both measured and self-reported data.
The survey sample consists of ns = 803 subjects of a representative sample of
Dutch adults aged 18–75 years. These data were collected in November 2007
either online or using paper-and-pencil methods. The missing data pattern in
the combined data is summarized as

> md.pattern(selfreport[, c("age", "sex", "hm",

"hr", "wm", "wr")])

age sex hr wr hm wm

1257 1 1 1 1 1 1 0

803 1 1 1 1 0 0 2

0 0 0 0 803 803 1606

The row containing all ones corresponds to the 1257 observations from the
calibration sample with complete data, whereas the rows with a zero on hm

and wm correspond to 803 observations from the survey sample (where hm and
wm were not measured).

We apply predictive mean matching (cf. Section 3.4) to impute hm and wm

in the 803 records from the survey data. The number of imputations m = 10.
The complete-data estimates are calculated on each imputed dataset and com-
bined using Rubin’s pooling rules to obtain prevalence rates and the associated
confidence intervals as in Sections 2.3.2 and 2.4.
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Figure 7.6: Relation between measured BMI and self-reported BMI in the
calibration (blue) and survey (red) data in the first imputed dataset.

7.3.5 Application

The mice() function can be used to create m = 10 multiply imputed
datasets. We imputed measured height, measured weight and and measured
BMI using the following code:

> bmi <- function(h, w) {

return(w/(h/100)^2)

}

> init <- mice(selfreport, maxit = 0)

> meth <- c(rep("", 5), "pmm", "pmm", rep("", 6),

"~bmi(hm,wm)", "")

> pred <- init$pred

> pred[, c("src", "id", "pop", "prg", "edu", "etn",

"web", "bm", "br")] <- 0

> imp <- mice(selfreport, pred = pred, meth = meth,

seed = 66573, maxit = 20, m = 10)

The code defines a bmi() function for use in passive imputation to calculate
bmi. The predictor matrix is set up so that only age, sex, hr and wr are
permitted to impute hm and wm.

Figure 7.6 is a diagnostic plot to check whether the imputations maintain
the relation between the measured and the self-reported data. The plot is
identical to Figure 7.4, except that the imputed data from the survey data (in
red) have been added. Imputations have been taken from the first imputed
dataset. The figure shows that the red and blue dots are similar in terms of
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Table 7.7: Obesity prevalence estimate (%) and standard error (se) in the
survey data (n = 803), reported (observed data) and corrected (imputed).

Reported Corrected
Sex Age n % se % se
Male 18–29 69 8.7 3.4 9.4 3.9

30–39 73 11.0 3.7 15.7 5.0
40–49 66 9.1 3.6 12.5 4.8
50–59 91 20.9 4.3 25.4 5.2
60–75 101 7.9 2.7 15.6 4.2
18–75 400 11.7 1.6 16.0 2.0

Female 18–29 68 14.7 4.3 16.3 5.7
30–39 69 26.1 5.3 28.4 6.6
40–49 68 19.1 4.8 25.4 6.1
50–59 81 25.9 4.9 32.8 6.0
60–75 117 11.1 2.9 17.1 4.6
18–75 403 18.6 1.9 23.0 2.4

M & F 18–75 803 15.2 1.3 19.5 1.5

location and spread. Observe that BMI in the survey data is slightly higher.
The very small difference between the smoothed lines across all measured
BMI values confirms this notion. We conclude that the relation between self-
reported and measured BMI as observed in the calibration data successfully
“migrated” to the survey data.

Table 7.7 contains the prevalence estimates based on the survey data given
for self-report and corrected for self-reporting bias. The estimates themselves
are variable and have large standard errors. It is easy to infer that the size
of the correction depends on age. Note that the standard errors of the cor-
rected estimates are always larger than for the self-report. This reflects the
information lost due to the correction. To obtain an equally precise estimate,
the sample size of the study with only self-reports needs to be larger than the
sample size of the study with direct measures.

7.3.6 Conclusion

Predictive equations to correct for self-reporting bias will only work if
the percentage of explained variance is very high. In the general case, they
have a systematic downward bias, which makes them unsuitable as correction
methods. The remedy is to explicitly account for the residual distribution. We
have done so by applying multiple imputation to impute measured height and
weight. In addition, multiple imputation produces the correct standard errors
of the prevalence estimates.
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7.4 Enhancing comparability

7.4.1 Description of the problem

Comparability of data is a key problem in international comparisons and
meta analysis. The problem of comparability has many sides. An overview
of the issues and methodologies can be found in Van Deth (1998), Harkness
et al. (2002), Salomon et al. (2004), King et al. (2004), Matsumoto and Van de
Vijver (2010) and Chevalier and Fielding (2011).

This section addresses just one aspect, incomparability of the data obtained
on survey items with different questions or response categories. This is a very
common problem that hampers many comparisons.

One of the tasks of the European Commission is to provide insight into
the level of disability of the populations in each of the 27 member states of
the European Union. Many member states conduct health surveys, but the
precise way in which disability is measured are very different. For example,
The U.K. Health Survey contains a question How far can you walk without
stopping/experiencing severe discomfort, on your own, with aid if normally
used? with response categories “can’t walk,” “a few steps only,” “more than
a few steps but less than 200 yards” and “200 yards or more.” The Dutch
Health Interview Survey contains the question Can you walk 400 metres with-
out resting (with walking stick if necessary)? with response categories “yes, no
difficulty,” “yes, with minor difficulty,” “yes, with major difficulty” and “no.”
Both items obviously intend to measure the ability to walk, but it is far from
clear how an answer on the U.K. item can be compared with one on the Dutch
item.

Response conversion (Van Buuren et al., 2005) is a way to solve this prob-
lem. The technique transforms responses obtained on different questions onto
a common scale. Where this can be done, comparisons can be made using the
common scale. The actual data transformation can be repeatedly done on a
routine basis as new information arrives. The construction of conversion keys
is only possible if enough overlapping information can be identified. Keys have
been constructed for dressing disability (Van Buuren et al., 2003), personal
care disability, sensory functioning and communication, physical well-being
(Van Buuren and Tennant, 2004), walking disability (Van Buuren et al., 2005)
and physical activity (Hopman-Rock et al., 2012).

This section presents an extension based on multiple imputation. The ap-
proach is more flexible and more general than response conversion. Multiple
imputation does not require a common unidimensional latent scale, thereby
increasing the range of applications.



Measurement issues 195

7.4.2 Full dependence: Simple equating

In principle, the comparability problem is easy to solve if all sources would
collect the same data. In practice, setting up and maintaining a centralized,
harmonized data collection is easier said than done. Moreover, even where
such efforts are successful, comparability is certainly not guaranteed (Harkness
et al., 2002). Many factors contribute to the incomparability of data, but we
will not go into details here.

In the remainder, we take an example of two bureaus that each collect
health data on its own population. The bureaus use survey items that are
similar, but not the same. The survey used by bureau A contains an item for
measuring walking disability (item A):

Are you able to walk outdoors on flat ground?

0: Without any difficulty

1: With some difficulty

2: With much difficulty

3: Unable to do

The frequencies observed in sample A are 242, 43, 15 and 0. There are six
missing values. Bureau A produces a yearly report containing an estimate of
the mean of the distribution of population A on item A. Assuming MCAR,
a simple random sample and equal inter-category distances, we find θ̂AA =
(242 ∗ 0 + 43 ∗ 1 + 15 ∗ 2)/300 = 0.243, the disability estimate for population
A using the method of bureau A.

The survey of bureau B contains item B:

Can you, fully independently, walk outdoors (if necessary, with a
cane)?

0: Yes, no difficulty

1: Yes, with some difficulty

2: Yes, with much difficulty

3: No, only with help from others

The frequencies observed in sample B are 145, 110, 29 and 8. There were
no missing values reported by bureau B. Bureau B publishes the proportion
of cases in category 0 as a yearly health measure. Assuming a simple ran-
dom sample, P (YB = 0) is estimated by θ̂BB = 145/292 = 0.497, the health
estimate for population B using the method of bureau B.

Note that θ̂AA and θ̂BB are different statistics calculated on different sam-
ples, and hence cannot be compared. On the surface, the problem is trivial
and can be solved by just equating the four categories. After that is done, and
we can apply the methods of bureau A or B, and compare the results. Such
recoding to “make data comparable” is widely practiced.
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Let us calculate the result using simple equating. To estimate walking
disability in population B using the method of bureau A we obtain θ̂BA =
(145∗0+110∗1+29∗2+8∗3)/292 = 0.658. Remember that the mean disability
estimate for population A was equal to 0.243, so population B appears to
have substantially more walking disability. The difference equals θ̂BA− θ̂AA =
0.658− 0.243 = 0.414 on a scale from 0 to 3.

Likewise, we may estimate bureau’s B health measure θAB in population
A as θ̂AB = 242/300 = 0.807. Thus, over 80% of population A scores in

category 0. This is substantially more than in population B, which was θ̂BB =
145/292 = 0.497.

So by equating categories both bureaus conclude that the healthier popu-
lation is A, and by a fairly large margin. As we will see, this result is however
highly dependent on assumptions that may not be realistic for these data.

7.4.3 Independence: Imputation without a bridge study

Let YA be the item of bureau A, and let YB be the item of bureau B.
The comparability problem can be seen as a missing data problem, where YA

is missing for population B, and where YB is missing for population A. This
formulation suggest that we can use imputation to solve the problem, and
calculate θ̂AB and θ̂BA from the imputed data.

Let’s see what happens if we put mice() to work to solve the problem. We
first create the dataset:

> fA <- c(242, 43, 15, 0, 6)

> fB <- c(145, 110, 29, 8)

> YA <- rep(ordered(c(0:3, NA)), fA)

> YB <- rep(ordered(c(0:3)), fB)

> Y <- rbind(data.frame(YA, YB = ordered(NA)), data.frame(YB,

YA = ordered(NA)))

The data Y is a data frame with 604 rows and 2 columns: YA and YB. The
missing data pattern is

> md.pattern(Y)

YA YB

292 0 1 1

300 1 0 1

6 0 0 2

298 306 604

The missing data pattern is unconnected (cf. Section 4.1.1), with no observa-
tions linking YA to YB. There are six records that contain no data at all.

For this problem, we monitor the behavior of a rank-order correlation,
Kendall’s τ , between YA and YB. This is not a standard facility in mice(), but
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we can easily write a small function micemill() that calculates Kendall’s τ
after each iteration as follows.

> micemill <- function(n) {

for (i in 1:n) {

imp <<- mice.mids(imp)

cors <- with(imp, cor(as.numeric(YA),

as.numeric(YB), method = "kendall"))

tau <<- rbind(tau, ra(cors, s = TRUE))

}

}

This function calls mice.mids() to perform just one iteration, calculates
Kendall’s τ , and stores the result. Note that the function contains two double
assignment operators. This allows the function to overwrite the current imp

and tau object in the global environment. This is a dangerous operation, and
not really an example of good programming in general. However, we may now
write

> tau <- NULL

> imp <- mice(Y, max = 0, m = 10, seed = 32662)

> micemill(10)

This code executes 10 iterations of the MICE algorithm. Normally, 10
iterations are enough, but—as we will see—that is not the case here. We can
ask for 40 additional iterations by typing micemill(40) at the prompt. After
any number of iterations, we may plot the trace lines of the MICE algorithm
by

> plotit <- function() matplot(x = 1:nrow(tau),

y = tau, ylab = expression(paste("Kendall's ",

tau)), xlab = "Iteration", type = "l",

lwd = 1, lty = 1:10, col = "black")

> plotit()

Figure 7.7 contains the trace plot of 50 iterations. The traces start near
zero, but then freely wander off over a substantial range of the correlation. In
principle, the traces could hit values close to +1 or−1, but that is an extremely
unlikely event. The MICE algorithm obviously does not know where to go, and
wanders pointlessly through parameter space. The reason that this occurs is
that the data contain no information about the relation between YA and YB.

Despite the absence of any information about the relation between YA and
YB, we can calculate θ̂AB and θ̂BA without a problem from the imputed data.
We find θ̂AB = 0.500 (SD: 0.031), which is very close to θ̂BB (0.497), and

far from the estimate under simple equating (0.807). Likewise, we find θ̂BA =

0.253 (SD: 0.034), very close to θ̂AA (0.243) and far from the estimate under
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Figure 7.7: The trace plot of Kendall’s τ for YA and YB using m = 10
multiple imputations and 50 iterations. The data contain no cases that have
observations on both YA and YB.

equating (0.658). Thus, if we perform the analysis without any information
that links the items, we consistently find no difference between the estimates
for populations A and B, despite the huge variation in Kendall’s τ .

We have now two estimates of θ̂AB and θ̂BA. In particular, in Section 7.4.2
we calculated θ̂BA = 0.658 and θ̂AB = 0.807, whereas in the present section
the results are θ̂BA = 0.253 and θ̂AB = 0.500, respectively. Thus, both health
measures are very dissimilar due to the assumptions made. The question is
which method yields results that are closer to the truth.

7.4.4 Fully dependent or independent?

Equating categories is equivalent to assuming that the pairs are 100%
concordant. In that case Kendall’s τ is equal to 1. Figure 7.7 illustrates that
it is extremely unlikely that τ = 1 will happen by chance. On the other hand,
the two items look very similar, so Kendall’s τ could be high on that basis. In
order to make progress, we need to look at the data, and estimate τ .

Suppose that item YA and YA had both been administered to an external
sample, called sample E. Table 7.8 contains the contingency table of YA and
YB in sample E, taken from Van Buuren et al. (2005). Although there is a
strong relation between YA and YB, the contingency table is far from diago-
nal. For example, category 1 of YB has 110 observations, whereas category 1
of YA contains only 68 persons. The table is also not symmetric, and suggests
that YA is more difficult than YB. In other words, a given score on YA corre-
sponds to more walking disability compare to the same score on YB. Kendall’s
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Table 7.8: Contingency table of responses on YA and YB in an external sample
E (n = 292).

YB

YA 0 1 2 3 Total
0 128 45 3 2 178
1 13 45 10 0 68
2 3 20 14 5 42
3 0 0 1 1 2
NA 1 0 1 0 2
Total 145 110 29 8 292

τ is equal to 0.57, so about 57% of the pairs are concordant. This is far bet-
ter than chance (0%), but also far worse than 100% concordance implied by
simple equating. Thus even though the four response categories of YA and
YB look similar, the information from sample E suggests that there are large
and systematic differences in the way the items work. Given these data, the
assumption of equal categories is in fact untenable. Likewise, the solution that
assumes independence is also unlikely.

The implication is that both estimates of θAB and θBA presented thus far
are doubtful. At this stage, we cannot yet tell which of the estimates is the
better one.

7.4.5 Imputation using a bridge study

We will now rerun the imputation, but with sample E appended to the data
from the sample for populations A and B. Sample E acts as a bridge study
that connects the missing data patterns from samples A and B. The combined
data are available in mice as the dataset walking. The missing data pattern
is

> md.pattern(walking)

sex age src YA YB

290 1 1 1 1 1 0

294 1 1 1 0 1 1

300 1 1 1 1 0 1

6 1 1 1 0 0 2

0 0 0 300 306 606

Observe that YA and YB are now connected by 290 records from the bridge
study on sample E. We assume that the data are missing at random. More
specifically, the conditional distributions of YA and YB given the other item is
equivalent across the three sources. Let S be an administrative variable taking
on values A, B and E for the three sources. The assumptions are

P (YA|YB, X, S = B) = P (YA|YB, X, S = E) (7.1)
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P (YB|YA, X, S = A) = P (YB|YA, X, S = E) (7.2)

where X contains any relevant covariates, like age and sex, and/or interaction
terms. In other words, the way in which YA depends on YB and X is the same
in sources B and E. Likewise, the way in which YB depends on YA and X
is the same in sources A and E. The inclusion of such covariates allows for
various forms of differential item functioning (Holland and Wainer, 1993).

The two assumptions need critical evaluation. For example, if the respon-
dents in source S = E answered the items in a different language than the
respondents in sources A or B, then the assumption may not be sensible un-
less one has great faith in the translation. It is perhaps better then to search
for a bridge study that is more comparable.

Note that it is only required that the conditional distributions are identi-
cal. The imputations remain valid when the samples have different marginal
distributions. For efficiency reasons and stability, it is generally advisable to
have match samples with similar distribution, but it is not a requirement.
The design is known as the common-item nonequivalent groups design (Kolen
and Brennan, 1995) or the non-equivalent group anchor test (NEAT) design
(Dorans, 2007).

Multiple imputation on the dataset walking is straightforward.

> tau <- NULL

> imp <- mice(walking, max = 0, m = 10, seed = 92786)

> pred <- imp$pred

> pred[, c("src", "age", "sex")] <- 0

> imp <- mice(walking, max = 0, m = 10, seed = 92786,

pred = pred)

> micemill(20)

> plotit()

The behavior of the trace plot is very different now (cf. Figure 7.8). Af-
ter the first few iterations, the trace lines consistently move around a value
of approximately 0.53, with a fairly small range. Thus, after five iterations,
the conditional distributions defined by sample E have percolated into the
imputations for item A (in sample B) and item B (in sample A).

The behavior of the samplers is dependent on the relative size of the bridge
study. In these data, the bridge study is about one third of the total data. If
the bridge study is small relative to the other two data sources, the sampler
may be slow to converge. As a rule of the thumb, the bridge study should be
at least 10% of the total sample size. Also, carefully monitor convergence of
the most critical linkages using association measures.

Note that we can also monitor the behavior of θ̂AB and θ̂BA. In order to
calculate θ̂AB after each iteration we add two statements to the micemill()

function:

> props <- with(imp, mean(YB[src == "A"] == "0"))

> thetaAB <<- rbind(thetaAB, ra(props, s = TRUE))
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Figure 7.8: The trace plot of Kendall’s τ for YA and YB using m = 10 multiple
imputations and 20 iterations. The data are linked by the bridge study.

The results are assembled in the variable thetaAB in the working directory.
This variable should be initialized as thetaAB <- NULL before milling.

It is possible that the relation between YA and YB depends on covariates,
like age and sex. If so, including covariates into the imputation model allows
for differential item functioning across the covariates. It is perfectly possible
to change the imputation model between iterations. For example, after the
first 20 iterations (where we impute YA from YB and vice versa) we add age
and sex as covariates, and do another 20 iterations. This goes as follows:

> tau <- NULL

> thetaAB <- NULL

> imp <- mice(walking, max = 0, m = 10, seed = 99786)

> oldpred <- pred <- imp$pred

> pred[, c("src", "age", "sex")] <- 0

> imp <- mice(walking, max = 0, m = 10, seed = 99786,

pred = pred)

> micemill(20)

> pred <- oldpred

> pred[, c("src")] <- 0

> imp <- mice(walking, max = 0, m = 10, pred = pred)

> micemill(20)
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Figure 7.9: Trace plot of θ̂AB (proportion of sample A that scores in category
0 of item B) after multiple imputation (m = 10), without covariates (itera-
tion 1–20), and with covariates age and sex as part of the imputation model
(iterations 21–40).

7.4.6 Interpretation

Figure 7.9 plots the traces of MICE algorithm, where we calculated θAB,
the proportion of sample A in category 0 of item B. Without covariates, the
proportion is approximately 0.58. Under equating, this proportion was found
to be equal to 0.807 (cf. Section 7.4.2). The difference between the old (0.807)
and the new (0.580) estimate is dramatic. After adding age and sex to the
imputation model, θAB drops further to about 0.510, close to θBB, the estimate
for population B (0.497).

Table 7.9 summarizes the estimates from the four analyses. Large differ-
ences are found between population A and B when we simply assume that
the four categories of both items are identical (simple equating). In this case,
population A appears much healthier by both measures. In constrast, if we
assume independence between YA and YB, all differences vanish, so now it ap-
pears that the populations A and B are equally healthy. The solutions based
on multiple imputation strike a balance between these extremes. Population
A is considerably healthier than B on the item mean statistic (0.243 versus
0.451). However, the difference is much smaller on the proportion in category
0, especially after taking age and sex into account. The solutions based on
multiple imputation are preferable over the first two because they have taken
the relation between items A and B into account.

Which of the four estimates is “best?” The method of choice is multiple
imputation including the covariates. This method not only accounts for the
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Table 7.9: Disability and health estimates for populations A and B under
four assumptions. θ̂AA and θ̂BA are the item means on item A for samples A
and B, respectively. θ̂AB and θ̂BB are the proportions of cases into category 0
of item B for samples A and B, respectively. MI-multiple imputation.

Assumption θ̂AA θ̂BA θ̂AB θ̂BB

Simple equating 0.243 0.658 0.807 0.497
Independence 0.243 0.253 0.500 0.497
MI (no covariate) 0.243 0.450 0.580 0.497
MI (covariate) 0.243 0.451 0.510 0.497

relation between YA and YB , but also incorporates the effects of age and sex.
Consequently, the method provides estimates with the lowest bias in θAB and
θBA.

7.4.7 Conclusion

Incomparability of data is a key problem in many fields. It is natural for
scientists to adapt, refine and tweak measurement procedures in the hope of
obtaining better data. Frequent changes, however, will hamper comparisons.

Equating categories is widely practiced to “make the data comparable.”
It is often not realized that recoding and equating data amplify differences.
The degree of exaggeration is inversely related to Kendall’s τ . For the item
mean statistic, the difference in mean walking disability after equating is about
twice the size of that under multiple imputation. Also, the estimate of 0.807
after simple equating is a gross overestimate. Overstated differences between
populations may spur inappropriate interventions, sometimes with substan-
tial financial consequences. Unless backed up by appropriate data, equating
categories is not a solution.

The section used multiple imputation as a natural and attractive alterna-
tive. The first major application of multiple imputation addressed issues of
comparability (Clogg et al., 1991). The advantage is that bureau A can inter-
pret the information of bureau B using the scale of bureau A, and vice versa.
The method provides possible contingency tables of items A and B that could
have been observed if both had been measured.

Dorans (2007) describes techniques for creating valid equating tables. Such
tables convert the score of instrument A into that of instrument B, and vice
versa. The requirements for constructing such tables are extremely high: the
measured constructs should be equal, the reliability should be equal, the con-
version of B to A should be the inverse of that from B to A (symmetry),
it should not matter whether A or B is measured and the table should be
independent of the population. Holland (2007) presents a logical sequence of
linking methods that progressively moves toward higher forms of equating.
Multiple imputation in general fails on the symmetry requirement, as it pro-
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duces m scores on B for one score of A, and thus cannot be invertible. The
method as presented here can be seen as a first step toward obtaining formal
equating of test items. It can be improved by correcting for the reliabilities of
both items. This is an area of future research.

For simplicity, the statistical analyses used only one bridge item. In general,
better strategies are possible. It is wise to include as many bridge items as
there are. Also, linking and equating at the sub-scale and scale levels could
be done (Dorans, 2007). The double-coded data could also comprise a series
of vignettes (Salomon et al., 2004). The use of such strategies in combination
with multiple imputation has yet to be explored.

7.5 Exercises

1. Contingency table. Adapt the micemill() function for the walking data
so that it prints out the contingency table of YA and YB of the first
imputation at each iteration. How many statements do you need?

2. Pool τ . Find out what the variance of Kendall’s τ is, and construct its
95% confidence intervals under multiple imputation. Use the auxiliary
function pool.scalar() for pooling.

3. Covariates. Calculate the correlation between age and the items A and
B under two imputation models: one without covariates, and one with
covariates. Which of the correlations is higher? Which solution do you
prefer? Why?

4. Heterogeneity. Kendall’s τ in the source E is 0.57 (cf. Section 7.4.4).
The average of the sampler is slightly lower (Figure 7.8). Adapt the
micemill() function to calculate the τ -values separately for the three
sources. Which population has the lowest τ -values?

5. Sample size. Repeat the previous exercise, but with the samples for A
and B taken 10 times as large. Does the sample size have an effect on
convergence? If so, can you come up with an explanation? (Hint: Think
of how τ is calculated.)

6. True values. For sample B, we do actually have the data on Item A
from sample E. Calculate the “true” value θBA, and compare it with the
simulated values. How do these values compare? Should these values be
the same? If they are different, what could be the explanations? How
could you reorganize the walking data so that no iteration is needed?



Chapter 8

Selection issues

Chapter 7 concentrated on problems with the columns of the data matrix.
Chapter 8 changes the perspective to the rows. An important consequence of
nonresponse and missing data is that the remaining sample may not be rep-
resentative anymore. Multiple imputation of entire blocks of variables (Sec-
tion 8.1) can be useful to adjust for selective loss of cases in panel and cohort
studies. Section 8.2 takes this idea a step further by appended and imput-
ing new synthetic records to the data. This can also work for cross-sectional
studies.

8.1 Correcting for selective drop-out

Panel attrition is a problem that plagues all studies in which the same
people are followed over time. People who leave the study are called drop-
outs. The persons who drop out may be systematically different from those
who remain, thus providing an opportunity for bias. This section assumes that
the drop-out mechanism is MAR and that the parameters of the complete-data
model and the response mechanism are distinct (cf. Section 2.2.5). Techniques
for nonignorable drop-outs are described by Little (1995), Diggle et al. (2002),
Daniels and Hogan (2008) and Wu (2010).

8.1.1 POPS study: 19 years follow-up

The Project on Preterm and Small for Gestational Age Infants (POPS) is
an ongoing collaborative study in the Netherlands on the long-term effect of
prematurity and dysmaturity on medical, psychological and social outcomes.
The cohort was started in 1983 and enrolled 1338 infants with a gestational
age below 32 weeks or with a birth weight of below 1500 grams (Verloove-
Vanhorick et al., 1986). Of this cohort, 312 infants died in the first 28 days,
and another 67 children died between the ages of 28 days and 19 years, leaving
959 survivors at the age of 19 years. Intermediate outcome measures from
earlier follow-ups were available for 89% of the survivors at age 14 (n = 854),
77% at age 10 (n = 712), 84% at age 9(n = 813), 96% at age 5 (n = 927) and
97% at age 2(n = 946).

205
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Table 8.1: Count (percentage) of various factors for three response groups.
Source: Hille et al. (2005).

All Full Postal Non-
responders responders responders responders

n 959 596 109 254
Sex

Boy 497 (51.8) 269 (45.1) 60 (55.0) 168 (66.1)
Girl 462 (48.2) 327 (54.9) 49 (45.0) 86 (33.9)

Origin
Dutch 812 (84.7) 524 (87.9) 96 (88.1) 192 (75.6)
Non-Dutch 147 (15.3) 72 (12.1) 13 (11.9) 62 (24.4)

Maternal education
Low 437 (49.9) 247 (43.0) 55 (52.9) 135 (68.2)
Medium 299 (34.1) 221 (38.5) 31 (29.8) 47 (23.7)
High 140 (16.0) 106 (18.5) 18 (17.3) 16 (8.1)

Social economic level
Low 398 (42.2) 210 (35.5) 48 (44.4) 140 (58.8)
Medium 290 (30.9) 193 (32.6) 31 (28.7) 66 (27.7)
High 250 (26.7) 189 (31.9) 29 (26.9) 32 (13.4)

Handicap status at age 14 years
Normal 480 (50.8) 308 (51.7) 42 (38.5) 130 (54.2)
Impairment 247 (26.1) 166 (27.9) 36 (33.0) 45 (18.8)
Mild 153 (16.2) 101 (16.9) 16 (14.7) 36 (15.0)
Severe 65 (6.9) 21 (3.5) 15 (13.8) 29 (12.1)

To study the effect of drop-out, Hille et al. (2005) divided the 959 survivors
into three response groups:

1. Full responders were examined at an outpatient clinic and completed
the questionnaires (n = 596);

2. Postal responders only completed the mailed questionnaires (n = 109);

3. Non-responders did not respond to any of the mailed requests or tele-
phone calls, or could not be traced (n = 254).

8.1.2 Characterization of the drop-out

Of the 254 non-responders, 38 children (15%) did not comply because they
were “physically or mentally unable to participate in the assessment.” About
half of the children (132, 52%) refused to participate. No reason for drop-out
was known for 84 children (33%).

Table 8.1 lists some of the major differences between the three response
groups. Compared to the postal and non-responders, the full response group
consists of more girls, contains more Dutch children, has higher educational
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and social economic levels and has fewer handicaps. Clearly, the responders
form a highly selective subgroup in the total cohort.

Differential drop-out from the less healthy children leads to an obvious
underestimate of disease prevalence. For example, the incidence of handicaps
would be severely underestimated if based on data from the full responders
only. In addition, selective drop-out could bias regression parameters in pre-
dictive models if the reason for drop-out is related to the outcome of interest.
This may happen, for example, if we try to predict handicaps at the age of
19 years from the full responders only. Thus, statistical parameters may be
difficult to interpret in the presence of selective drop-out.

8.1.3 Imputation model

The primary interest of the investigators focused on 14 different outcomes
at 19 years: cognition, hearing, vision, neuromotor functioning, ADHD, respi-
ratory symptoms, height, BMI, health status (Health Utilities Index Mark 3),
perceived health (London Handicap Scale), coping, self-efficacy, educational
attainment and occupational activities. Since it is inefficient to create a multi-
ply imputed dataset for each outcome separately, the goal is to construct one
set of imputed data that is used for all analyses.

For each outcome, the investigator created a list of potentially relevant pre-
dictors according to the predictor selection strategy set forth in Section 5.3.2.
In total, this resulted in a set of 85 unique variables. Only 4 of these were
completely observed for all 959 children. Moreover, the information provided
by the investigators was coded (in Microsoft Excel) as a 85 × 85 predictor
matrix that is used to define the imputation model.

Figure 8.1 shows a miniature version of the predictor matrix. The dark cell
indicates that the column variable is used to impute the row variable. Note
the four complete variables with rows containing only zeroes. There are three
blocks of variables. The first nine variables (Set 1: geslacht–sga) are potential
confounders that should be controlled for in all analyses. The second set of
variables (Set 2: grad.t–sch910r) are variables measured at intermediate
time points that appear in specific models. The third set of variables (Set 3:
iq–occrec) are the incomplete outcomes of primary interest collected at the
age of 19 years. The imputation model is defined such that:

1. All variables in Set 1 are used as predictors to impute Set 1, to preserve
relations between them;

2. All variables in Set 1 are used as predictors to impute Set 3, because all
variables in Set 1 appear in the complete-data models of Set 3;

3. All variables in Set 3 are used as predictors to impute Set 3, to preserve
the relation between the variables measured at age 19;

4. Selected variables in Set 2 that appear in complete-data models are used
as predictors to impute specific variables in Set 3;
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geslacht 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ras 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

opltot 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

sch14jr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

dish5r 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

mag 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

zwd 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

gebgew 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

sga 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

grad.t 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

grad.u 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

so5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

p12 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p13 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

dos 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

oq 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

spra14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

cogn14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

grad.a 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

hoor14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

grad.v 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

visus14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

neuro5j 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

grad.n 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

p10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

p11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

mobi14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 0

hand14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0

cp.ipr 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bpd 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

grad.r 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

attentpr 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

kalverbr 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

mbd 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

lengtemo 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

lengteva 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

l5.sd 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

l10.sd 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

l14.sd 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b5.sd 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b10.sd 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b14.sd 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

emo14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

pijn14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

totsas 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

totprob2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

ha.sv 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

ha.sa 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

ha.sp 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

ha.fy 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

ha.ro 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

ha.ged 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

ha.vr 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

ha.gz 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

var1663 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

sch910r 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

iq 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

min.avlr 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

a10u 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

e.tot 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

a10b 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

adhd 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

l19.sd 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

b19.sd 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

m3kpvisi 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

m3kphear 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

m3kpspra 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

m3kpemot1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

m3kppijn 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

m3kpambu1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

m3kpdext 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

m3kpcogn1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

vr1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

vr2 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

vr3 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

vr4 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

vr5 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

vr6 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

coping 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

seffz 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

opl19rec 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

occrec 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Figure 8.1: The 85× 85 predictor matrix used in the POPS study. The gray
parts signal the column variables that are used to impute the row variable.

5. Selected variables in Set 3 are “mirrored” to impute incomplete variables
in Set 2, so as to maintain consistency between Set 2 and Set 3 variables;

6. The variable geslacht (sex) is included in all imputation models.

This setup of the predictor matrix avoids fitting unwieldy imputation models,
while maintaining the relations of scientific interest.

8.1.4 A degenerate solution

The actual imputations can be produced by

> imp1 <- mice(data, pred = pred, maxit = 20, seed = 51121)
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Figure 8.2: Trace lines of the MICE algorithm for three binary variables
illustrating problematic convergence.

The number of iterations is set to 20 because the traces lines from MICE
algorithm show strong initial trends and slow mixing. Figure 8.2 plots the trace
lines of three binary variables a10u (visual disability), a10b (asthma, chronic
bronchitis and CARA) and adhd (Attention deficit hyperactivity disorder).
This figure is produced by

> plot(imp1, c("a10u", "a10b", "adhd"), col = mdc(5),

lty = 1:5)

The behavior of these trace lines looks suspect. The lines connect the means
(left side) of the synthetic values, and all converge to an asymptotic value
around 1.9. Since the categories are coded as 1=no problem and 2=problem,
a value of 1.9 actually implies that 90% of the nonresponders have a prob-
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Figure 8.3: Distributions (observed and imputed values) of six outcome vari-
ables at 19 years in the POPS study.

lem. The prevalence in the full responders is equal to 1.5%, 8.0% and 4.7%,
respectively. Although the nonresponse group is expected to have more health
problems, 90% is clearly beyond any reasonable value. What we see here is a
degenerate solution.

8.1.5 A better solution

The source of the problem is that all variables in Set 3 are used as predictors
to impute Set 3. The MICE algorithm tends to move the imputations into a
part of the parameter space where information is extremely sparse. A simple
way to alleviate the problem is to remove the dependencies from Set 3. This
can be done by adapting the predictor matrix as follows:
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Table 8.2: Estimated percentage (95% CI) of three health problems at 19
years in the POPS study, uncorrected and corrected for selective drop-out.

nobs Full responders n All children
Severe visual handicap 690 1.4 (0.5–2.3) 959 4.7 (1.0–10.9)
Asthma, bronchitis, CARA 690 8.0 (5.9–10.0) 959 9.2 (6.9–11.2)
ADHD 666 4.7 (3.1–6.3) 959 5.7 (3.8–10.8)

> pred2 <- pred

> pred2[61:86, 61:86] <- 0

> imp2 <- mice(data, pred = pred2, maxit = 20, seed = 51121)

These statements produce imputations with marginal distributions much
closer to the observed data. Also, the trace lines now show normal behav-
ior (not shown). Convergence occurs rapidly in about 5–10 iterations.

Figure 8.3 is produced by

> bwplot(imp2, iq + e_tot + l19_sd + b19_sd + coping +

seffz ~ .imp, layout = c(2, 3))

The figure displays the distributions of six numeric outcomes at 19 years.
Both observed and imputed data are plotted by means of box-and-whisker
plots. Observe that there are systematic differences for some outcomes. The
nonrespondents have lower IQ scores (iq), are slightly shorter (l19sd) and
have slightly lower self-efficacy scores (seffz).

8.1.6 Results

Table 8.2 provides estimates of the percentage of three health problems,
both uncorrected and corrected for selective drop-out. As expected, all es-
timates are adjusted upward. Note that the prevalence of visual problems
tripled to 4.7% after correction. While this increase is substantial, it is well
within the range of odds ratios of 2.6 and 4.4 reported by Hille et al. (2005).
The adjustment shows that prevalence estimates in the whole group can be
substantially higher than in the group of full responders. Hille et al. (2007)
provide additional and more detailed results.

8.1.7 Conclusion

Many studies are plagued by selective drop-out. Multiple imputation pro-
vides an intuitive way to adjust for drop-out, thus enabling estimation of
statistics relative to the entire cohort rather than the subgroup. The method
assumes MAR. The formulation of the imputation model requires some care.
Section 8.1.3 outlines a simple strategy to specify the predictor matrix to fit
an imputation model for multiple uses. This methodology is easily adapted to
other studies.
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Section 8.1.4 illustrates that multiple imputation is not without poten-
tial danger. The imputations produced by the initial model were far off. This
underlines the importance of diagnostic evaluation of the imputed data. Sec-
tion 8.1.5 described a solution for this problem. A disadvantage of this solution
is that it preserves the relations between the variables in Set 3 only insofar as
they are related through their common predictors. These relations may thus
be attenuated. Alternatives to counter this problem (e.g., by specifying a tri-
angular pattern in the predictor matrix) were not successful, as it appeared
that the results were highly dependent on the sequence of the variables in the
model. This is clearly an area that requires further investigation.

8.2 Correcting for nonresponse

This section describes how multiple imputation can be used to “make a
sample representative.” Weighting to known population totals is widely used
to correct for nonresponse (Bethlehem, 2002; Särndal and Lundström, 2005).
Imputation is an alternative to weighting. Imputation provides fine-grained
control over the correction process. Provided that the imputation method is
confidence proper, estimation of the correct standard errors can be done using
Rubin’s rules. Note however that this is not without controversy: Marker et al.
(2002, p. 332) criticize multiple imputation as “difficult to apply,”“to require
massive amounts of computation,” and question its performance for clustered
datasets and unplanned analyses. Weighting and multiple imputation can also
be combined, as was done in the NHANES III imputation project (Khare et al.,
1993; Schafer et al., 1996).

This section demonstrates an application in the situation where the nonre-
sponse is assumed to depend on known covariates, and where the distribution
of covariates in the population is known. The sample is augmented by a set of
artificial records, the outcomes in this set are multiply imputed and the whole
set is analyzed. Though the application assumes random sampling, it should
not be difficult to extend the basic ideas to more complex sampling designs.

8.2.1 Fifth Dutch Growth Study

The Fifth Dutch Growth Study is a cross-sectional nationwide study of
height, weight and other anthropometric measurements among children 0–21
years living in the Netherlands (Schönbeck et al., 2011). The goal of the study
is to provide updated growth charts that are representative for healthy chil-
dren. The study is an update of similar studies performed in the Netherlands
in 1955, 1965, 1980 and 1997. A strong secular trend in height has been ob-
served over the last 150 years, making the Dutch population the tallest in the
world (Fredriks et al., 2000a). The growth studies yield essential information
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needed to calibrate the growth charts for monitoring childhood growth and
development. One of the parameters of interest is final height, the mean height
of the population when fully grown around the age of 20 years.

The survey took place between May 2008 and October 2009. The sam-
ple was stratified into five regions: North (Groningen, Friesland, Drenthe),
East (Overijssel, Gelderland, Flevoland), West (Noord-Holland, Zuid-Holland,
Utrecht), South (Zeeland, Noord-Brabant, Limburg) and the four major cities
(Amsterdam, Rotterdam, The Hague, Utrecht City). The way in which the
children were sampled depended on age. Up to 8 years of age, measurements
were performed during regular periodical health examinations. Children older
than 9 years were sampled from the population register, and received a per-
sonal invitation from the local health care provider.

The total population was stratified into three ethnic subpopulations. Here
we consider only the subpopulation of Dutch descent. This group consists of
all children whose biological parents are born in the Netherlands. Children
with growth-related diseases were excluded. The planned sample size for the
Dutch subpopulation was equal to 14782.

8.2.2 Nonresponse

During data collection, it quickly became evident that the response in
children older than 15 years was extremely poor, and sometimes fell even below
20%. Though substantial nonresponse was caused by lack of perceived interest
by the children, we could not rule out the possibility of selective nonresponse.
For example, overweight children may have been less inclined to participate.
The data collection method was changed in November 2008 so that all children
with a school class were measured. Once a class was selected, nonresponse of
the pupils was very generally small. In addition, children were measured by
special teams at two high schools, two universities and a youth festival. The
sample was supplemented with data from two studies from Amsterdam and
Zwolle.

8.2.3 Comparison to known population totals

The realized sample size was n = 10030 children aged 0–21 years (4829
boys, 5201 girls). The nonresponse and the changes in the design may have
biased the sample. If the sample is to be representative for the Netherlands,
then the distribution of measured covariates like age, sex, region or educational
level should conform to known population totals. Such population totals are
based on administrative sources and are available in STATLINE, the online
publication system of Statistics Netherlands.

Table 8.3 compares the proportion of children within five geographical
regions in the Netherlands per January 1, 2010, with the proportions in the
sample. Geography is known to be related to height, with the 20-year-olds
in the North being about 3 cm taller in the North (Fredriks et al., 2000a).
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Table 8.3: Distribution of the population and the sample over five geograph-
ical regions by age. Numbers are column percentages. Source: Fifth Dutch
Growth Study (Schönbeck et al., 2011).

Region 0–9 Years 10–13 Years 14–21 Years
Population Sample Population Sample Population Sample

North 12 7 12 11 12 4
East 24 28 24 11 24 55
South 23 27 24 31 25 21
West 21 26 20 26 20 15
City 20 12 19 22 19 4

Table 8.4: Number of observed and imputed children in the sample by ge-
ographical regions and age. Source: Fifth Dutch Growth Study (Schönbeck
et al., 2011).

Region 0–9 Years 10–13 Years 14–21 Years
nobs nimp nobs nimp nobs nimp

North 389 400 200 75 143 200
East 1654 0 207 300 667 0
South 1591 0 573 0 767 0
West 1530 0 476 0 572 0
City 696 600 401 0 164 400
Total 5860 1000 1857 375 2313 600

There are three age groups. In the youngest children, the population and
sample proportions are reasonably close in the East, South and West, but
there are too few children from the North and the major cities. For children
aged 10–13 years, there are too few children from the North and East. In the
oldest children, the sample underrepresents the North and the major cities,
and overrepresents the East.

8.2.4 Augmenting the sample

The idea is to augment the sample in such a way that it will be nationally
representative, followed by multiple imputation of the outcomes of interest.
Table 8.4 lists the number of the measured children. The table also reports
the number of children needed to bring the sample close to the population
distribution.

In total 1975 records are appended to the 10030 records of children who
were measured. The appended data contain three complete covariates: region,
sex and age in years. For example, for the combination (North, 0-9 years)
nimp = 400 new records are created as follows. All 400 records have the region
category North. The first 200 records are boys and the last 200 records are
girls. Age is drawn uniformly from the range 0–9 years. The outcomes of
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interest, like height and weight, are set to missing. Similar blocks of records
are created for the other five categories of interest, resulting in a total of 1975
new records with complete covariates and missing outcomes.

The following R code creates a dataset of 1975 records, with four complete
covariates (id, reg, sex, age) and four missing outcomes (hgt, wgt, hgt.z,
wgt.z). The outcomes hgt.z and wgt.z are standard deviation scores (SDS),
or Z-scores, derived from hgt and wgt, respectively, standardized for age and
sex relative to the Dutch references (Fredriks et al., 2000a).

> nimp <- c(400, 600, 75, 300, 200, 400)

> regcat <- c("North", "City", "North", "East",

"North", "City")

> reg <- rep(regcat, nimp)

> nimp2 <- floor(rep(nimp, each = 2)/2)

> nimp2[5:6] <- c(38, 37)

> sex <- rep(rep(c("boy", "girl"), 6), nimp2)

> minage <- rep(c(0, 0, 10, 10, 14, 14), nimp)

> maxage <- rep(c(10, 10, 14, 14, 21, 21), nimp)

> set.seed(42444)

> age <- runif(length(minage), minage, maxage)

> id <- 600001:601975

> pad <- data.frame(id, reg, age, sex, hgt = NA,

wgt = NA, hgt.z = NA, wgt.z = NA)

> data2 <- rbind(data, pad)

8.2.5 Imputation model

Regional differences in height are not constant across age, and tend to be
more pronounced in older children. Figure 8.4 displays mean height standard
deviation scores by age and region. Children from the North are generally
the tallest, while those from the South are shortest, but the difference varies
somewhat with age. Children from the major cities are short at early ages,
but relatively tall in the oldest age groups. Imputation should preserve these
features in the data, so we need to include at least the age by region interaction
into the imputation model. In addition, we incorporate the interaction between
SDS and age, so that the relation between height and weight could differ across
age. In R, we create interaction by the model.matrix() function as follows:

> na.opt <- options(na.action = na.pass)

> int <- model.matrix(~I(age - 10) * hgt.z + I(age -

10) * wgt.z + age * reg, data = data2)[, -(1:9)]

> options(na.opt)

> data3 <- cbind(data2, int)

Since model.frame() uses listwise deletion, we need to temporarily change
the option na.action=na.pass. The interactions involving missing data in
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Figure 8.4: Height SDS by age and region of Dutch children. Source: Fifth
Dutch Growth Study (n = 10030).

hgt.z or wgt.z will thus be set to NA rather than being removed. The se-
lection operator [,-(1:9)] deletes the main effects. Height SDS and weight
SDS are imputed by normal imputation. Absolute values in centimeters (cm)
and kilograms (kg) are calculated after imputation from the imputed SDS.
The setup of the imputation model uses passive imputation to update the
interaction terms.

> ini <- mice(data3, maxit = 0)

> meth <- ini$meth

> meth["hgt"] <- ""

> meth["wgt"] <- ""

> meth["hgt.z"] <- "norm"

> meth["wgt.z"] <- "norm"

> meth["I(age - 10):hgt.z"] <- "~I(I(age-10)*hgt.z)"

> meth["I(age - 10):wgt.z"] <- "~I(I(age-10)*wgt.z)"

> pred <- ini$pred

> pred[, c("hgt", "wgt")] <- 0

> pred["hgt.z", c("id", "I(age - 10):hgt.z")] <- 0

> pred["wgt.z", c("id", "I(age - 10):wgt.z")] <- 0

> vis <- ini$vis[c(3, 5, 4, 6)]

> imp <- mice(data3, meth = meth, pred = pred, vis = vis,

m = 10, maxit = 20, seed = 28107)

The SDS is approximately normally distributed with a mean of zero and a
standard deviation of 1. We may thus use the linear normal model rather than
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Figure 8.5: Mean height SDS per year for region North (left) and region
City (right), for the original data (n = 10030) and 10 augmented datasets
that correct for the nonresponse (n = 12005).

predictive mean matching. With this sample size, the linear model is much
faster.

Figure 8.5 displays mean height SDS per year for regions North and City

in the original and augmented data. The 10 imputed datasets show patterns
in mean height SDS similar to those in the observed data. Because of the lower
sample size, the means for region North are more variable than City. Observe
also that the rising pattern in City is reproduced in the imputed data. No
imputations were generated for the ages 10–13 years, which explains that the
means of the imputed and observed data coincide. The imputations tend to
smooth out sharp peaks at higher ages due to the low number of data points.

8.2.6 Influence of nonresponse on final height

Figure 8.6 displays the mean of fitted height distribution of the original
and the 10 imputed datasets. Since children from the shorter population in
the South are overrepresented, the estimates of final height from the sample
(183.6 cm for boys, 170.6 cm for girls) are biased downward. The estimates
calculated from the imputed data vary from 183.6 to 184.1 cm (boys) and
170.6 to 171.1 cm (girls). Thus, correcting for the nonresponse leads to final
height estimates that are about 2 mm higher.
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Figure 8.6: Final height estimates in Dutch boys and girls from the original
sample (n = 10030) and 10 augmented samples (n = 12005) that correct for
the nonresponse.

8.2.7 Discussion

The application as described here only imputes height and weight in Dutch
children. It is straightforward to extend the method to impute additional
outcomes, like waist or hip circumference.

The method can only correct for covariates whose distributions are known
in both the sample and population. It does not work if nonresponse depends
on factors for which we have no population distribution. However, if we have
possession of nonresponse forms for a representative sample, we may use any
covariates common to the responders and nonresponders to correct for the
nonresponse using a similar methodology. The correction will be more suc-
cessful if these covariates are related to the reasons for the nonresponse.

There are no accepted methods yet to calculate the number of extra records
needed. Here we used 1975 new records to augment the existing 10030 records,
about 16% of the total. This number of artificial records brought the covari-
ate distribution in the augmented sample close to the population distribution
without the need to discard any of the existing records. When the imbalance
grows, we may need a higher percentage of augmentation. The estimates will
then be based on a larger fraction of missing information, and may thus be-
come unstable. Alternatively, we could sacrifice some of the existing records
by taking a random subsample of strata that are overrepresented. It is not
yet known whether this leads to more efficient estimates. More work is needed
to validate the method and to compare it to traditional approaches based on
weighting.
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8.3 Exercises

1. 90th centile. Repeat the analysis in Section 8.2.6 for final height. Study
the effect of omitting the interaction effect from the imputation model.
Are the effects on the 90th centile the same as for the mean?

2. How many records? Section 8.2.4 describes an application in which in-
complete records are appended to create a representative sample. De-
velop a general strategy to determine the number of records needed to
append.
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Chapter 9

Longitudinal data

9.1 Long and wide format

Longitudinal data can be coded into “long” and “wide” formats. A wide
dataset will have one record for each individual. The observations made at
different time points are coded as different columns. In the wide format every
measure that varies in time occupies a set of columns. In the long format there
will be multiple records for each individual. Some variables that do not vary
in time are identical in each record, whereas other variables vary across the
records. The long format also needs a “time” variable that records the time
in each record, and an “id” variable that groups the records from the same
person.

A simple example of the wide format is

id age Y1 Y2

1 14 28 22

2 12 34 16

3 ...

In the long format, this dataset looks like

id age Y

1 14 28

1 14 22

2 12 34

2 12 16

3 ...

Note that the concepts of long and wide are general, and also apply to
cross-sectional data. For example, we have seen the long format before in
Section 6.1.1, where it referred to stacked imputed data that was produced by
the complete() function. The basic idea is the same.

Both formats have their advantages. If the data are collected on the same
time points, the wide format has no redundancy or repetition. Elementary
statistical computations like calculating means, change scores, age-to-age cor-
relations between time points, or the t-test are easy to do in this format. The
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long format is better at handling irregular and missed visits. Also, the long
format has an explicit time variable available that can be used for analysis.
Graphs and statistical analyses are easier in the long format.

Applied researchers often collect, store and analyze their data in the wide
format. Classic ANOVA and MANOVA techniques for repeated measures and
structural equation models for longitudinal data assume the wide format.
Modern multilevel techniques and statistical graphs, however, work only from
the long format. The distinction between the two formats is a first stumbling
block for those new to longitudinal analysis.

Singer and Willett (2003) advise the data storing in both formats. The wide
and the long formats can be converted into each other by a database operation.
R and Stata have reshape() functions. In SPSS the wide-to-long conversion
is done by the VARSTOCASES commands, and the long-to-wide conversion by
CASESTOVARS. Both are available from the Data Restructure... menu. SAS
uses PROC TRANSPOSE for this purpose.

Multiple imputation of longitudinal data is conveniently done when data
are in the wide format. Apart from the fact that the columns are ordered in
time, there is nothing special about the imputation problem. We may thus ap-
ply the techniques from the earlier chapters to longitudinal data. Section 9.2
discusses an imputation technique in the wide format in a clinical trial applica-
tion with the goal of performing a statistical analysis according to the intention
to treat (ITT) principle. The longitudinal character of the data helped specify
the imputation model.

The wide-to-long conversion can usually be done without a problem. The
long-to-wide conversion can be difficult. If individuals are seen at different
times, direct conversion is impractical. The number of columns in the wide
format becomes overly large, and each column contains many missing values.
An ad hoc solution is to create homogeneous time groups, which then become
the new columns in the wide format. Such regrouping will lead to loss of
precision of the time variable. For some studies this need not be a problem,
but for others it will.

A more general approach is to impute data in the long format, which
requires some form of multilevel imputation. Section 9.3 discusses multiple
imputation in the long format. The application defines a common time raster
for all persons. Multiple imputations are drawn for each raster point. The
resulting imputed datasets can be converted to, and analyzed in, the wide
format if desired. This approach is a more principled way to deal with the
information loss problem discussed previously. The procedure aligns times to
a common raster, hence the name time raster imputation (cf. Section 9.3).
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9.2 SE Fireworks Disaster Study

On May 13, 2000, a catastrophic fireworks explosion occurred at SE Fire-
works in Enschede, the Netherlands. The explosion killed 23 people and injured
about 950. Around 500 houses were destroyed, leaving 1,250 people homeless.
Ten thousand residents were evacuated.

The disaster marked the starting point of a major operation to recover
from the consequences of the explosion. Over the years, the neighborhood has
been redesigned and rebuilt. Right after the disaster, the evacuees were relo-
cated to improvised housing. Those in need received urgent medical care. A
considerable number of residents showed signed of post-traumatic stress disor-
der (PTSD). This disorder is associated with flashback memories, avoidance of
behaviors, places, or people that might lead to distressing memories, sleeping
disorders and emotional numbing. When these symptoms persist and disrupt
normal daily functioning, professional treatment is indicated.

Amidst the turmoil in the aftermath, Mediant, the disaster health after-
care center, embedded a randomized controlled trial comparing two treatments
for anxiety-related disorders: Eye Movement Desensitization and Reprocessing
(EMDR) (Shapiro, 2001) and cognitive behavioral therapy (CBT) (Stallard,
2006). CBT is the standard therapy. The data collection started within one
year of the explosion, and lasted until the year 2004 (De Roos et al., 2011). The
study included n = 52 children 4–18 years, as well as their parents. Children
were randomized to EMDR or CBT by a flip of the coin. Each group contained
26 children.

The children received up to four individual sessions over a 4–8 week
period, along with up to four parent sessions. Blind assessment took
place pre-treatment (T1) and post-treatment (T2) and at 3 months follow-
up (T3). The primary outcomes were the UCLA PTSD Reaction Index
(PTSD-RI)(Steinberg et al., 2004), the Child Report of Post-traumatic
Symptoms (CROPS) and the Parent Report of Post-traumatic Symptoms
(PROPS)(Greenwald and Rubin, 1999). Treatment was stopped if children
were asymptomatic according to participant and parent verbal report (both
conditions), or if there was no remaining distress associated with the trauma
memory, as indicated by a self-reported Subjective Units of Disturbance Scale
(SUDS) of 0 (EMDR condition only).

The objective of the study was to answer the following questions:

• Is one of these treatments more effective in reducing PTSD symptoms
at T2 and T3?

• Does the number of sessions needed to produce the therapeutic effect
differ between the treatments?
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Table 9.1: SE Fireworks Disaster data. The UCLA PTSD Reaction Index of
52 subjects, children and parents, randomized to EMDR or CBT.

id trt pp Y c1 Y c2 Y c3 Y p1 Y p2 Y p3 id trt pp Y c1 Y c2 Y c3 Y p1 Y p2 Y p3
1 E Y – – – 36 35 38 32 E N 28 17 8 40 42 33
2 C N 45 – – – – – 33 E N – – – 38 22 25
3 E N – – – 13 19 13 34 E N – – – 17 – –
4 C Y – – – 33 27 20 35 E Y 50 20 – 19 1 5
5 E Y 26 6 4 27 16 11 37 C N 30 – 26 59 – 28
6 C Y 8 1 2 32 15 13 38 C Y – – – 35 24 27
7 C Y 41 26 31 – 39 39 39 E N – – – – – –
8 C N – – – 24 13 35 40 E Y 25 5 2 42 13 11

10 C Y 35 27 14 48 23 – 41 E Y 36 11 9 30 2 1
12 C Y 28 15 13 45 33 36 43 E N 17 – – – – –
13 E Y – – – 26 17 14 44 E N 27 – – 40 – –
14 C Y 33 8 9 37 7 3 45 C Y 31 12 29 34 28 29
15 E Y 43 – 7 25 27 1 46 C Y – – – 44 35 25
16 C Y 50 8 35 39 21 34 47 C Y – – – 30 18 14
17 C Y 31 21 10 32 21 19 48 E Y 25 18 – 18 17 2
18 E Y 30 17 16 47 28 34 49 C N 24 23 16 44 29 34
19 E Y 29 6 5 20 14 11 50 E Y 31 13 9 34 18 13
20 E Y 47 14 22 44 21 25 51 C Y – – – 52 13 13
21 C Y 39 12 12 39 5 19 52 C Y 30 35 28 – 44 50
23 C Y 14 12 5 29 9 4 53 C Y 19 33 21 36 21 21
24 E N 27 – – – – – 54 C N 43 – – 48 – –
25 E Y 6 10 5 25 16 16 55 E Y 64 42 35 44 31 16
28 C Y – 2 6 36 17 23 56 C Y – – – 37 6 9
29 E Y 23 23 28 23 25 13 57 C Y 31 12 – 32 26 –
30 E Y – – – 20 23 12 58 E Y – – – 49 28 25
31 C N 15 24 26 33 36 38 59 E Y 39 7 – 39 7 –

9.2.1 Intention to treat

Table 9.1 contains the outcome data of all subjects. The columns labeled
Y ct contain the child data, and the columns labeled Y pt contain the parent
data at time t = (1, 2, 3). Children under the age of 6 years did not fill in the
child form, so their scores are missing.

Of the 52 initial participants 14 children (8 EMDR, 6 CBT) did not follow
the protocol. The majority (11) of this group did not receive the therapy, but
still provided outcome measurements. The three others received therapy, but
failed to provide outcome measures. The combined group is labeled as “drop-
out,” where the other group is called the “completers” or “per-protocol” group.
The missing data patterns for both groups can be obtained as:

> yvars <- c("yc1", "yc2", "yc3", "yp1", "yp2",

"yp3")

> md.pattern(fdd[fdd$pp == "Y", yvars])
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yp2 yp1 yp3 yc1 yc2 yc3

19 1 1 1 1 1 1 0

1 1 1 1 0 1 1 1

1 1 1 1 1 0 1 1

2 1 1 1 1 1 0 1

2 1 0 1 1 1 1 1

1 1 1 0 1 1 1 1

2 1 1 0 1 1 0 2

10 1 1 1 0 0 0 3

0 2 3 11 11 14 41

> md.pattern(fdd[fdd$pp == "N", yvars])

yp1 yc1 yp3 yp2 yc3 yc2

3 1 1 1 1 1 1 0

1 1 1 1 0 1 0 2

3 1 0 1 1 0 0 3

2 1 1 0 0 0 0 4

1 1 0 0 0 0 0 5

3 0 1 0 0 0 0 5

1 0 0 0 0 0 0 6

4 5 7 8 10 11 45

The main reason given for dropping out was that the parents were overbur-
dened (8). Other reasons for dropping out were: refusing to talk (1), language
problems (1) and a new trauma rising to the forefront (2). One adolescent
refused treatment from a therapist not belonging to his own culture (1). One
child showed spontaneous recovery before treatment started (1).

Comparison between the 14 drop-outs and the 38 completers regarding
presentation at time of initial assessment yielded no significant differences in
any of the demographic characteristics or number of traumatic experiences.
On the symptom scales, only the mean score of the PROPS was marginally
significantly higher for the drop-out group than for the treatment completers
(t = 2.09, df = 48, p = .04).

Though these preliminary analyses are comforting, the best way to analyze
the data is to the compare participants in the groups to which they were
randomized, regardless of whether they received or adhered to the allocated
intervention. Formal statistical testing requires random assignment to groups.
The ITT principle is widely recommended as the preferred approach to the
analysis of clinical trials. DeMets et al. (2007) and White et al. (2011a) provide
a balanced discussions of pros and cons the ITT principle.

9.2.2 Imputation model

The major problem of the ITT principle is that some of the data that
are needed are missing. Multiple imputation is a natural way to solve this
problem, and thus to enable ITT analyses.
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A difficulty in setting up the imputation model in the Firework Disaster
Data is the large number of outcome variables relative to the number of cases.
Even though the analysis of the data in Table 9.1 is already challenging, the
real dataset is more complex than this. There are six additional outcome vari-
ables (e.g., the Child Behavior Checklist, or CBCL), each measured over time
and similarly structured as in Table 9.1. In addition, some of the outcome mea-
sures are to be analyzed on both the subscale level and the total score level. For
example, the PTSD-RI has three subscales (intrusiveness/numbing/avoidance,
fear/anxiety, and disturbances in sleep and concentration and two additional
summary measures (Full PTSD and Partial PTSD). All in all, there were 65
variables in data to be analyzed. Of these, 49 variables were incomplete. The
total number of cases was 52, so in order to avoid grossly overdetermined mod-
els, the predictors of the imputation model should be selected very carefully.

A first strategy for predictor reduction was to preserve all deterministic re-
lations columns in the incomplete data. This was done by passive imputation.
For example, let Y pa,1, Y pb,1 and Y pc,1 represent the scores on three subscales of
the PTSD parent form administered at T1. Each of these is imputed individ-
ually. The total variable Y p1 is then imputed by mice in a deterministic way
as the sum score.

A second strategy to reduce the number of predictors was to leave out
other outcomes, measured at other time points. To illustrate this, a subset of
the predictor matrix for imputing Y pa,1, Y pb,1 and Y pc,1 is:

> vars <- c("ypa1", "ypb1", "ypc1", "ypa2", "ypb2",

"ypc2", "ypa3", "ypb3", "ypc3")

> pred[vars[1:3], vars]

ypa1 ypb1 ypc1 ypa2 ypb2 ypc2 ypa3 ypb3 ypc3

ypa1 0 1 1 1 0 0 1 0 0

ypb1 1 0 1 0 1 0 0 1 0

ypc1 1 1 0 0 0 1 0 0 1

The conditional distribution P (Y pa,1|Y
p
b,1, Y

p
c,1, Y

p
a,2, Y

p
a,3) leaves out the

cross-lagged predictors Y pb,2, Y pc,2, Y pb,3 and Y pc,3. The assumption is the cross-
lagged predictors are represented by through their non-cross-lagged predictors.
Applying this idea consistently throughout the entire 65 × 65 predictor ma-
trix brings vast reductions of the number of predictors. The largest number
of predictors for any incomplete variable was 23, which still leaves degrees of
freedom for residual variation.

Specifying a 65× 65 predictor matrix by syntax in R is tedious and prone
to error. I copied the variable names to Microsoft Excel, defined a square
matrix of small cells containing zeroes, and used the menu option Conditional

formatting... to define a cell color if the cell contains a “1.” The option
Freeze Panes was helpful for keeping variable names visible at all times.
After filling in the matrix with the appropriate patterns of ones, I exported it
to R to be used as argument to the mice() function. Excel is convenient for
setting up large, patterned imputation models.
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The imputations were generated as

> dry <- mice(fdd, maxit = 0)

> method <- dry$method

> method["yc1"] <- "~I(yca1 + ycb1 + ycc1)"

> method["yc2"] <- "~I(yca2 + ycb2 + ycc2)"

> method["yc3"] <- "~I(yca3 + ycb3 + ycc3)"

> method["yp1"] <- "~I(ypa1 + ypb1 + ypc1)"

> method["yp2"] <- "~I(ypa2 + ypb2 + ypc2)"

> method["yp3"] <- "~I(ypa3 + ypb3 + ypc3)"

> imp <- mice(fdd, pred = pred, meth = method, maxit = 20,

seed = 54434)

9.2.3 Inspecting imputations

For plotting purposes we need to convert the imputed data into long form.
In R this can be done as follows:

> lowi <- complete(imp, "long", inc = TRUE)

> lowi <- data.frame(lowi, cbcl2 = NA, cbin2 = NA,

cbex2 = NA)

> lolo <- reshape(lowi, idvar = "id", varying = 11:ncol(lowi),

direction = "long", new.row.names = 1:(nrow(lowi) *

3), sep = "")

> lolo <- lolo[order(lolo$.imp, lolo$id, lolo$time),

]

> row.names(lolo) <- 1:nrow(lolo)

This code executes two wide-to-long transformations in succession. The data
are imputed in wide format. The call to complete() writes the m+1 imputed
stacked datasets to lowi, which stands for “long-wide.” The data.frame()

statement appends three columns to the data with missing CBCL-scores, since
the CBCL was not administered at time point 2. The reshape() statement
interprets everything from column 11 onward as time-varying variables. As
long as the variables are labeled consistently, reshape() will be smart enough
to identify groups of columns that belong together, and stack them in the
double-long format lolo. Finally, the result is sorted such that the original
data with lolo$.imp==0 are stored as the first block.

Figure 9.1 plots the profiles from 13 subjects with a missing score on Y p1 , Y p2
or Y p3 in Table 9.1. Some profiles are partially imputed. Examples are subjects
7 (missing T1) and 37 (missing T2). Other profiles are missing entirely, and
are thus completely imputed. Examples are subjects 2 and 43. Similar plots
can be made for other outcomes. In general, the imputed profiles look similar
to the completely observed profiles (not shown).
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Figure 9.1: Plot of the multiply imputed data of the 13 subjects with one or
more missing values on PTSD-RI Parent form.

9.2.4 Complete data analysis

In the absence of missing data, we would have liked to perform a classical
repeated measures MANOVA as in Potthoff and Roy (1964). This method
construct derived variables that represent time as polynomial contrasts that
can be tested. An appealing feature of the method is that the covariances
among the repeated measures can take any form.

Let yikt denote the measurement of individual i (i = 1, . . . , nk) in group
k (CBT or EMDR) at time point t (t = 1, . . . , nt). In the the SE Firework
Disaster Study data, we have nk = 26 and nt = 3. All subjects have been
measures at the same time points. The model represents the time trend in
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each group by a linear and quadratic trend as

yikt = βk0 + tβk1 + t2βk2 + eikt (9.1)

where the subject residual ei has an arbitrary covariance 3× 3 matrix Σ that
is common to both groups. This model has six β parameters, three for each
treatment group. To answer the first research question, we would be interested
in testing the null hypotheses β11 = β21 and β12 = β22, i.e., whether the linear
and quadratic trends are different between the treatment groups.

Potthoff and Roy (1964) showed how this model can be transformed into
the usual MANOVA model and be fitted by standard software. Suppose that
the repeated measures are collected in variables Y1, Y2 and Y3. In SPSS we can
use the GLM command to test for the hypothesis of linear and quadratic time
trends, and for the hypothesis that these trends are different between CBT
and EMDR groups. Though application of the method is straightforward for
complete data, it cannot be used directly for the SE Fireworks Disaster data,
because of the missing data.

The mids object created by mice() can be exported as a multiply imputed
dataset to SPSS by means of the mids2spss() function. If the data came origi-
nally from SPSS it is also possible to merge the imputed data with the original
data by means of the UPDATE command. SPSS will recognize an imported mul-
tiply imputed dataset, and execute the analysis m times in parallel. It can
also provide the pooled statistics. Note that pooling requires a license to the
Missing Values module.

Unfortunately, in SPSS 18.0 pooling is not implemented for GLM. As a solu-
tion, I stored the results by means of the OMS command in SPSS and shipped
the output back to R for further analysis. I then applied a yet unpublished
procedure for pooling F -tests to the datasets stored by the OMS command. In
this way, pooling procedures that are not built into SPSS can be done with
mice.

Of course, I could have saved myself the trouble of exporting the imputed
data to SPSS and performed all analyses in R. That would, however, lock out
the investigator from her own data. With the new pooling facilities investi-
gators can now do their own data analysis on multiply imputed data. Some
re-exporting is therefore worthwhile.

An alternative could have been to create the multiply imputed datasets
within SPSS. This option was not possible for these data because the MULTIPLE
IMPUTATION command in SPSS does not support predictor selection and pas-
sive imputation. With a bit of conversion between software packages, it is
possible to have best of both worlds.

9.2.5 Results from the complete data analysis

Figures 9.2 and 9.3 show the development of the mean level of PTSD
complaint according to the PTSD-RI. All curves display a strong downward
trend between start of treatment (T1) and end of treatment (T2), which is
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Figure 9.2: Mean levels of PTSD-RI Parent Form for the completely observed
profiles (blue) and all profiles (black) in the EMDR and CBT groups.

presumably caused by the EMDR and CBT therapies. The shape between
end of treatment (T2) and follow-up (T3) differs somewhat for the group,
suggesting that EMDR has better long-term effects, but this difference was
not statistically significant. Also note that the complete case analysis and the
analysis based on ITT are in close agreement with each other here.

We will not go into details here to answer the second research question as
stated on p. 223. It is of interest to note that EMDR needed fewer sessions to
achieve its effect. The original publication (De Roos et al., 2011) contains the
details.

9.3 Time raster imputation

Longitudinal analysis has become virtually synonymous with mixed ef-
fects modeling. Following the influential work of Laird and Ware (1982) and
Jennrich and Schluchter (1986), this approach characterizes individual growth
trajectories by a small number of random parameters. The differences between
individuals are expressed in terms of these parameters.

In some applications, it is natural to consider change scores. Change scores
are however rather awkward within the context of mixed effects models. This
section introduces time raster imputation, a new method to generate impu-
tations on a regular time raster from irregularly spaced longitudinal data.
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Figure 9.3: Mean levels of PTSD-RI Child Form for the completely observed
profiles (blue) and all profiles (black) in the EMDR and CBT groups.

The imputed data can then be used to calculate change scores or age-to-age
correlations, or apply quantitative techniques designed for repeated measures.

9.3.1 Change score

Let Y1 and Y2 represent repeated measurements of the same object at
times T1 and T2 where T1 < T2. The difference ∆ = Y2 − Y1 is the most
direct measure of change over time. Willett (1989, p. 588) characterized the
change score as an “intuitive, unbiased, and computationally-simple measure
of individual growth.”

One would expect that modern books on longitudinal data would take the
change score as their starting point. That is not the case. The change score is
fully absent from most current books on longitudinal analysis. For example,
there is no entry “change score” in the index of Verbeke and Molenberghs
(2000), Diggle et al. (2002), Walls and Schafer (2006) or Fitzmaurice et al.
(2009). Singer and Willett (2003, p. 10) do discuss the change score, but they
quickly dismiss it on the basis that a study with only two time points cannot
reveal the shape of a person’s growth trajectory.

The change score, once the centerpiece of longitudinal analysis, has disap-
peared from the methodological literature. I find this is somewhat unfortunate
as the parameters in the mixed effects model are more difficult to interpret
than the change score. Moreover, classic statistical techniques, like the paired
t-test or split-plot ANOVA, are built on the change score. There is a gap be-
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tween modern mixed effects models and classical linear techniques for change
scores and repeated measures data.

Calculating a mean change score is only sensible if different persons are
measured at the same time points. When the data are observed at irregular
times, there is no simple way to calculate change scores. Calculating change
scores from the person parameters of the mixed effects model is technically
trivial, but such scores are difficult to interpret. The person parameters are
fitted values that have been smoothed. Deriving a change score as the differ-
ence between the fitted curve of the person at T1 and T2 results in values that
are closer to zero than those derived from data that have been observed.

This section describes a technique that inserts pseudo time points to the
observed data of each person. The outcome data at these supplementary time
points are multiply imputed. The idea is that the imputed data can be ana-
lyzed subsequently by techniques for change scores and repeated measures.

The imputation procedure is akin to the process needed to print a photo
in a newspaper. The photo is coded as points on a predefined raster. At the
microlevel there could be information loss, but the scenery is essentially unaf-
fected. Hence the name time raster imputation. My hope is that this method
will help bridge the gap between modern and classic approaches to longitudi-
nal data.

9.3.2 Scientific question: Critical periods

The research was motivated by the question: At what ages do children
become overweight? Knowing the answer to this question may provide handles
for preventive interventions to counter obesity.

Dietz (1994) suggested the existence of three critical periods for obesity
at adult age: the prenatal period, the period of adiposity rebound (roughly
around the age of 5–6 years), and adolescence. Obesity that begins at these
periods is expected to increase the risk of persistent obesity and its compli-
cations. Overviews of studies on critical periods are given by Cameron and
Demerath (2002) and Lloyd et al. (2010).

In the sequel, we use the body mass index (BMI) as a measure of over-
weight. BMI will be analyzed in standard deviation scores (SDS) using the
relevant Dutch references (Fredriks et al., 2000a,b). Our criterion for being
overweight in adulthood is defined as BMI SDS ≥ 1.3.

As an example, imagine an 18-year old person with a BMI SDS equal to
+1.5 SD. How did this person end up at 1.5 SD? If we have the data, we can
plot the measurements against age, and study the individual track. The BMI
SDS trajectory may provide key insights into development of overweight and
obesity.

Figure 9.4 provides an overview of five theoretical BMI SDS trajectories
that the person might have followed. These are:

1. Long critical period. A small but persistent centile crossing across the
entire age range. In this case, everything (or nothing) is a critical period.
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Figure 9.4: Five theoretical BMI SDS trajectories for a person age 18 years
with a BMI SDS = 1.5 SD.

2. No critical period. The person is born with a BMI SDS of 1.5 SD and
this remains unaltered throughout age.

3. Short early. There is a large increase between ages 2y and 5y. We would
surely interpret the period 2y–5y is as a critical period for this person.

4. Short late. This is essentially the same as before, but shifted forward in
time.

5. Two critical periods. Here the total increase of 1.5 SD is spread over
two periods. The first occurs at 2y–5y with an increase of 1.0 SD. The
second at 12y–15y with an increase of 0.5 SD.

In practice, mixing between these and other forms will occur.
The objective is to identify any periods during childhood that contribute

to an increase in overweight at adult age. A period is “critical” if

1. change differs between those who are and are not later overweight; and

2. change is associated with the outcome after correction for the measure
at the end of the period.

Both need to hold. In order to solve the problem of irregular age spacing,
De Kroon et al. (2010) use the broken stick model , a piecewise linear growth
curve fitted, as a means to describe individual growth curves at fixed times.
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This section extends this methodology by generating imputations accord-
ing to the broken stick model. The multiply imputed values are then used
to estimate difference scores and regression models that throw light on the
question of scientific interest.

9.3.3 Broken stick model ♠

In a sample of n persons i = 1, . . . , n, we assume that there are ni mea-
surement occasions for person i. Let yi represent the ni × 1 vector containing
the SDS values obtained for person i. Let ti represent the ni × 1 vector with
the ages at which the measurements were made.

The broken stick model requires the user to specify an ordered set of k
break ages, collected in the vector κ = (κ1, . . . , κk). The set should cover the
entire range of the measured ages, so κ1 ≤ min(ti) and κk ≥ max(ti) for all i.
It is convenient to set κ1 and κk to rounded values just below and above the
minimum and maximum ages in the data, respectively. De Kroon et al. (2010)
specified nine break ages: birth (0d), 8 days (8d), 4 months (4m), 1 year (1y),
2 years (2y), 6 years (6y), 10 years (10y), 18 years (18y) and 29 years (29y).

Without loss of information, the time points ti of person i are represented
by a B-spline of degree 1, with knots specified by κ. More specifically, the
vector ti is recoded as the ni × k design matrix Xi = (x1i, . . . , xki). We refer
to Ruppert et al. (2003, p. 59) for further details. For the set of break ages
we calculate the B-splines matrix in R by the bs() function from the splines

package as follows:

> library(splines)

> data <- tbc

> brk <- c(0, 8/365, 1/3, 1, 2, 6, 10, 18, 29)

> k <- length(brk)

> X <- bs(data$age, knots = brk, B = c(brk[1], brk[k] +

1e-04), degree = 1)

> X <- X[, -(k + 1)]

> dimnames(X)[[2]] <- paste("x", 1:ncol(X), sep = "")

> data <- cbind(data, X)

> round(head(X, 3), 2)

x1 x2 x3 x4 x5 x6 x7 x8 x9

[1,] 1.00 0.00 0.00 0 0 0 0 0 0

[2,] 0.27 0.73 0.00 0 0 0 0 0 0

[3,] 0.00 0.83 0.17 0 0 0 0 0 0

Matrix X has only two nonzero elements in each row. Each row sums to
1. If an observed age coincides with a break age, the corresponding entry is
equal to 1, and all remaining elements are zero. In the data example, this
occurs in the first record, at birth. A small constant of 0.0001 was added to
the last break age. This was done to accomodate for a pseudo time point with
an exact age of 29 years, which will be inserted later in Section 9.3.6.
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The measurements yi for person i are modeled by the linear mixed effects
model

yi = Xi(β + βi) + εi (9.2)

= Xiγi + εi

where γi = β+βi. The k×1 column vector β contains k fixed-effect coefficients
common to all persons. The vector βi contains k subject-specific random effect
coefficients for person i. The vector εi contains ni subject-specific residuals.

We make the usual assumption that γi ∼ N(β,Ω), i.e., the random co-
efficients of the subjects have a multivariate normal distribution with global
mean β and an unstructured covariance Ω. We also assume that the residu-
als are independently and normally distributed as εi ∼ N(0, σ2I(ni)) where
σ2 is a common variance parameter. The covariances between βi and ei are
assumed to be zero.

Since the rows of the B-spline basis all sum to 1, the intercept is implicit.
In fact, one could interpret the model as a special form of the random intercept
model, where the intercept is represented by a B-spline rather than by the
usual column of ones.

The model prescribes that growth follows a straight line between the break
ages. In this application, we are not so much interested in what happens within
the age interval of each period. Rogosa and Willett (1985) contrasted the
analysis of individual differences based on change scores with the analysis of
individual differences based on multilevel parameters. They concluded that in
general the analysis of change scores is inferior to the parameter approach.
The exception is when growth is assumed to follow a straight line within the
interval of interest. In that case, the change score approach and the mixed
effects model are interchangeable (Rogosa and Willett, 1985, p. 225). The
straight line assumption is often reasonable in epidemiological studies if the
time interval is short (Hui and Berger, 1983). For extra detail, we could add
an extra break age within the interval.

The function lmer() from the lme4 package fits the model. Change scores
can be calculated from the fixed and random effects as follows:

> library(lme4)

> fit <- lmer(wgt.z~0+x1+x2+x3+x4+x5+x6+x7+x8+x9+

(0+x1+x2+x3+x4+x5+x6+x7+x8+x9|id),

data=data)

> ### calculate size and increment per person

> tsiz <- t(ranef(fit)$id) + fixef(fit)

> tinc <- diff(tsiz)

> round(head(t(tsiz)),2)

The γ̂i estimates are found in the variable tsiz. Let δ̂ik = γ̂i,j+1 − γ̂i,j
with j = 1, . . . , k − 1 denote the successive differences (or increments) of the
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elements in γ̂i. These are found in the variable tinc. We may interpret δ̂i as
the expected change scores for person i.

The first criterion for a critical period is that change differs between those
who are and are not later overweight. A simple analysis for this criterion is the
Student’s t-test applied to δ̂ik for every period k. The correlations between δ̂ik
at successive k were generally higher than 0.5, so we analyzed unconditional
change scores (Jones and Spiegelhalter, 2009). The second criterion for a criti-
cal period involves fitting two regression models, both of which have final BMI
SDS at adulthood, denoted by γadult

i , as their outcome. The two models are:

γadult
i = γ̂i,j+1ζj+1 + εi (9.3)

γadult
i = γ̂i,j+1ηj+1 + γ̂jηj + εi (9.4)

which are fitted for j = 1, . . . , k− 2. The parameter of scientific interest is the
added value of including ηj .

9.3.4 Terneuzen Birth Cohort

The Terneuzen Birth Cohort consists of all (n = 2604) newborns in
Terneuzen, the Netherlands, between 1977 and 1986. The most recent mea-
surements were made in the year 2005, so the data spans an age range of 0–29
years. Height and weight were measured throughout this age range. More de-
tails on the measurement procedures and the data can be found in De Kroon
et al. (2008, 2010).

Suppose the model is fitted to weight SDS. The parameters γi can be
interpreted as attained weight SDS relative to the reference population. This
allows us to represent the observed trajectory of each child in a condensed way
by k numbers. The values in γ̂i are the set of most likely weight SDS values at
each break age, given all true measurements we have of child i. This implies
that if the child has very few measurements, the estimates will be close to the
global mean. When taken together, the values γ̂i form the broken stick.

Figure 9.5 displays Weight SDS against age for six selected individuals.
Child 1259 has a fairly common pattern. This child starts off near the average,
but then steadily declines, apart from a blip around 10 months. Child 2447
is fairly constant, but had a major valley near the age of 4 months, perhaps
because of a temporary illness. Child 7019 is also typical. The pattern hovers
around the mean. Observe that no data beyond 10 years are available for
this child. Child 7460 experienced a substantial change in the height/weight
proportions during the first year. Child 7646 was born prematurely with a
gestational age of 32 weeks. This individual has an unusually large increase in
weight between birth and puberty. Child 8046 is aberrant with an unusually
large number of weight measurements around the age of 8 days, but was
subsequently not measured for about 1.5 years.

Figure 9.5 also displays the individual broken stick estimates for each out-
come as a line. Observe that the model follows the individual data points
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Figure 9.5: Broken stick trajectories for Weight SDS from six selected indi-
viduals from the Terneuzen cohort.

very well. De Kroon et al. (2010) analyzed these estimates by the methods
described at the end of Section 9.3.2, and found that the periods 2y–6y and
10y–18y were most relevant for developing later overweight.

9.3.5 Shrinkage and the change score ♠

Thus far we have looked at the problem from a prediction perspective.
This is a useful first step, but it does not address all aspects. The β̂i estimate
in the mixed effects model combines the person-specific ordinary least squares
(OLS) estimate of βi with the grand mean β̂. The amount of shrinkage toward
the grand mean depends on three factors: the number of data points ni, the
residual variance estimate σ̂2 around the fitted broken stick, and the variance



238 Flexible Imputation of Missing Data

estimate ω̂2
j for the jth random effect. If ni = σ2/ω̂2

j then β̂i is halfway between

β̂ and the OLS estimate of βi. If ni < σ̂2/ω2
j then β̂i is closer to the global

mean, while ni > σ̂2/ω̂2
j implies that β̂i is closer to the OLS-estimate. We

refer to Gelman and Hill (2007, p. 394) for more details.
Shrinkage will stabilize the estimates of persons with few data points.

Shrinkage also implies that the same γ̂i = β̂ + β̂i can correspond to quite
different data trajectories. Suppose profile A is an essentially flat and densely
measured trajectory just above the mean. Profile B, on the other hand, is a
sparse and highly variable trajectory far above the mean. Due to differential
shrinkage, profiles A and B can have the same γ̂i estimates. As a consequence,
shrinkage will affect the change scores δ̂i. For both profiles A and B the esti-
mated change scores δ̂i are approximately zero at every period. For profile A
this is reasonable since the profile itself is flat. In profile B we would expect
to see substantial variation in δ̂i if the data had been truly measured. Yet,
shrinkage has dampened γ̂i, and thus made δ̂i closer to zero than if calculated
from observed data.

It is not quite known whether this effect is a problem in this application. It
is likely that dampening of δ̂i will bias the result in the conservative direction,
and hence primarily affects statistical power. The next section explores an
alternative based on multiple imputation. The idea is to insert the break ages
into the data, and impute the corresponding outcome data.

9.3.6 Imputation

The measured outcomes are denoted by Yobs, e.g., weight SDS. For the
moment, we assume that the Yobs are coded in long format and complete,
though neither is an essential requirement. For each person i we append k
records, each of which corresponds to a break age. In R we use the following
statements:

> id <- unique(data$id)

> data2 <- appendbreak(data, brk, id = id,

warp.model = warp.model, typ = "sup")

> table(data2$typ)

obs sup pred

32845 15705 0

The function appendbreak() is a custom function of about 20 lines of R

code specific to the Terneuzen Birth Cohort data. It copies the first available
record of the ith person k times, updates administrative and age variables,
sets the outcome variables to NA, appends the result to the original data and
sorts the result with respect to id and age. The real data are thus mingled
with the supplementary records with missing outcomes. The first few records
of data2 look like this:
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> head(data2)

id occ nocc first typ age sex hgt.z wgt.z bmi.z ao

4 4 0 19 TRUE obs 0.000 1 0.33 0.195 0.666 0

42 4 NA 19 FALSE sup 0.000 1 NA NA NA 0

5 4 1 19 FALSE obs 0.016 1 NA -0.666 NA 0

4.1 4 NA 19 FALSE sup 0.022 1 NA NA NA 0

6 4 2 19 FALSE obs 0.076 1 0.71 0.020 -0.381 0

7 4 3 19 FALSE obs 0.104 1 0.18 0.073 0.075 0

x1 x2 x3 x4 x5 x6 x7 x8 x9 age2

4 1.00 0.00 0.00 0 0 0 0 0 0 0.0

42 1.00 0.00 0.00 0 0 0 0 0 0 0.0

5 0.27 0.73 0.00 0 0 0 0 0 0 2.6

4.1 0.00 1.00 0.00 0 0 0 0 0 0 3.6

6 0.00 0.83 0.17 0 0 0 0 0 0 4.3

7 0.00 0.74 0.26 0 0 0 0 0 0 4.6

Multiple imputation must take into account that the data are clustered
within persons. The setup for mice() requires some care, so we discuss each
step in detail.

> Y <- c("hgt.z", "wgt.z", "bmi.z")

> imp <- mice(data2, maxit = 0)

> meth <- imp$method

> meth[1:length(meth)] <- ""

> mice.impute.2l.norm.noint <- mice.impute.2l.norm

> meth[Y] <- "2l.norm.noint"

These statements specify that only hgt.z, wgt.z and bmi.z need to be im-
puted. For these three outcomes we request the elementary imputation func-
tion mice.impute.2l.norm(), which is designed to impute data with two
levels. See Section 3.8 for more details.

> pred <- imp$pred

> pred[1:nrow(pred), 1:ncol(pred)] <- 0

> pred[Y, "id"] <- (-2)

> pred[Y, "sex"] <- 1

> pred[Y, paste("x", 1:9, sep = "")] <- 2

> pred[Y[1], Y[2]] <- 2

> pred[Y[2], Y[1]] <- 2

> pred[Y[3], Y[1:2]] <- 2

The setup of the predictor matrix needs some care. We first empty all
entries from the variable pred. The statement pred[Y,"id"] <- (-2) defines
variable id as the class variable. The statement pred[Y,"sex"] <- 1 specifies
sex as a fixed effect, as usual, while pred[Y,paste("x",1:9,sep="")] <- 2

sets the B-spline basis as a random effect, as in Equation 9.2. The remaining
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three statement specify the Y2 is a random effects predictor of Y1 (and vice
versa), and both Y1 and Y2 are random effects predictors of Y3. Note that
Y3 (BMI SDS) is not a predictor of Y1 or Y2 in order to prevent the type
of convergence problems explained in Section 5.5.2. Note also that age is not
included in order to evade duplication with its B-spline coding. In summary,
there are 12 random effects (9 for age and 3 for the outcomes), one class
variable, and one fixed effect.

The actual imputations are produced by

> imp.1745.1 <- mice(data2, meth = meth, pred = pred,

m = 5, maxit = 10, seed = 52711)

> imp.1745.2 <- mice(data2, meth = meth, pred = pred,

m = 5, maxit = 10, seed = 88348)

> imp.1745 <- ibind(imp.1745.1, imp.1745.2)

> store(imp.1745)

When taken together, the calls to mice() take about 10 hours. This is much
longer than the other applications discussed in this book. The multilevel part
of the imputation algorithm runs 300 Gibbs samplers for multilevel analysis
on 1745 groups. The two solutions were combined with the ibind() function.

Figure 9.6 displays ten multiply imputed trajectories for the six persons
displayed in Figure 9.5. The general impression is that the imputed trajectory
follows the data quite well. At ages where the are many data points (e.g., in
period 0d–1y in person 1259 or in period 8d–1y in person 7460) the curves
are quite close, indicating a relatively large certainty. On the other hand, at
locations where data are sparse (e.g., the period 10y–29y in person 7019, or the
period 8d–2y in person 8046) the curves diverge, indicating a large amount
of uncertainty about the imputation. This effect is especially strong at the
edges of the age range. Incidentally, we noted that the end effects are less
pronounced for larger sample sizes.

It is also interesting to study whether imputation preserves the relation
between height, weight and BMI. Figure 9.7 is a scattergram of height SDS
and weight SDS split according to age that superposes the imputations on the
observed data in the period after the break point. In general the relation in
the observed data is preserved in the imputed data. Note that the imputations
become more variable for regions with fewer data. This is especially visible at
the panel in the upper-right corner at age 29y, where there were no data at
all. Similar plots can be made in combination with BMI SDS. In general, the
data in these plots all behave as one would expect.

9.3.7 Complete data analysis

Table 9.2 provides a comparison of the mean changes observed under the
broken stick model and under time raster imputation. The estimates are very
similar, so the mean change estimated under both methods is similar. The
p-values in the broken stick method are generally more optimistic relative to
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Figure 9.6: Ten multiply imputed trajectories of weight SDS for the same
persons as in Figure 9.5 (in red). Also shown are the data points (in blue).

multiple imputation, which is due to the fact that the broken stick model
ignores the uncertainty about the estimates.

There is also an effect on the correlations. In general, the age-to-age cor-
relations of the broken stick method are higher than the raster imputations.

Table 9.3 provides the age-to-age correlation matrix of BMI SDS estimated
from 1745 cases from the Terneuzen Birth Cohort. Apart from the peculiar
values for the age of 8 days, the correlations decrease as the period between
time points increases. The values for the broken stick method are higher be-
cause these do not incorporate the uncertainty of the estimates.
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Figure 9.7: The relation between height SDS and weight SDS in the observed
(blue) and imputed (red) longitudinal trajectories. The imputed data occur
exactly at the break ages. The observed data come from the period imme-
diately after the break age. No data beyond 29 years were observed, so the
upper-right panel contains no observed data.

9.4 Conclusion

This chapter described techniques for imputing longitudinal data in both
the wide and long formats. Some things are easier in the wide format, e.g.,
change scores or imputing data, while other procedures are easier in the long
format, e.g., graphics and advanced statistical modeling. It is therefore useful
to have both formats available.
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Table 9.2: Mean change per period, split according to adult overweight (AO)
(n = 124) and no adult overweight (NAO) (n = 486) for the broken stick
method and for multiple imputation of the time raster.

Period Broken stick p-value Time raster imputation p-value
NAO AO NAO AO

0d–8d −0.88 −0.80 0.214 −0.93 −0.82 0.335
8d–4m −0.32 −0.34 0.811 −0.07 −0.11 0.745
4m–1y 0.42 0.62 0.006 0.35 0.58 0.074
1y–2y 0.22 0.28 0.242 0.24 0.26 0.884
2y–6y −0.36 −0.10 <0.001 −0.35 −0.06 0.026
6y–10y 0.05 0.34 <0.001 −0.01 0.31 0.029
10y–18y 0.09 0.52 <0.001 0.17 0.68 0.009

Table 9.3: Age-to-age correlations of BMI SDS the broken stick estimates
(lower triangle) and raster imputations (upper triangle) for the Terneuzen
Birth Cohort (n = 1745).

Age 0d 8d 4m 1y 2y 6y 10y 18y
0d – 0.64 0.20 0.21 0.18 0.17 0.16 0.11
8d 0.75 – 0.30 0.17 0.20 0.20 0.15 0.13
4m 0.28 0.44 – 0.39 0.30 0.29 0.20 0.16
1y 0.28 0.23 0.65 – 0.55 0.40 0.31 0.23
2y 0.31 0.33 0.46 0.76 – 0.56 0.36 0.23
6y 0.31 0.36 0.46 0.59 0.79 – 0.62 0.42
10y 0.26 0.26 0.35 0.47 0.55 0.89 – 0.53
18y 0.23 0.26 0.29 0.37 0.40 0.72 0.89 –

The methodology for imputing data in the wide format is not really differ-
ent from that of cross-sectional data. When possible, always try to convert the
data into the wide format before imputation. If the data have been observed
at irregular time points, as in the Terneuzen Birth Cohort, conversion of the
data into the wide format is not possible, however, and imputation can be
done in the long format by multilevel imputation.

This chapter introduced time raster imputation, a technique for converting
data with an irregular age spacing into the wide format by means of imputa-
tion. Time rastering seems to work well in the sense that the generated tra-
jectories follow the individual trajectories. The technique is still experimental
and may need further refinement before it can be used routinely.

The current method inserts missing data at the full time grid, and thus
imputes data even at time points where there are real observations. One obvi-
ous improvement would be to strip such points from the grid so that they are
not imputed. For example, in the Terneuzen Birth Cohort this means that we
would always take observed birth weight when it is measured.

Another potential improvement is to use the OLS estimates within each
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cluster as the center of the posterior predictive distribution rather than their
shrunken versions. This would decrease within cluster variability in the im-
putations, and increase between cluster variability. It is not yet clear how to
deal with clusters with only a few time points, but this modification is likely
to produce age-to-age correlations that are most faithful to the data.

Finally, the selection of the data could be much stricter. The analysis of
the Terneuzen Birth Cohort data used a very liberal inclusion criterion that
requires a minimum of only three data points across the entire age range.
Sparse trajectories will have large imputation variances, and may thus bias
the age-to-age correlations toward zero. As a preliminary rule of thumb, there
should be at least one, and preferably two or more, measurements per period.

9.5 Exercises

1. Potthoff–Roy, wide format imputation. Potthoff and Roy (1964) pub-
lished classic data on a study in 16 boys and 11 girls, who at ages 8,
10, 12, and 14 had the distance (mm) from the center of the pituitary
gland to the pteryomaxillary fissure measured. Changes in pituitary-
pteryomaxillary distances during growth is important in orthodontic
therapy. The goals of the study were to describe the distance in boys and
girls as simple functions of age, and then to compare the functions for
boys and girls. The data have been reanalyzed by many authors includ-
ing Jennrich and Schluchter (1986), Little and Rubin (1987), Pinheiro
and Bates (2000), Verbeke and Molenberghs (2000) and Molenberghs
and Kenward (2007).

• Take the version from Little and Rubin (1987) in which nine entries
have been made missing. The missing data have been created such
that children with a low value at age 8 are more likely to have a
missing value at age 10. Use mice() to impute the missing entries
under the normal model using m = 100.

• For each missing entry, summarize the distribution of the 100 im-
putations. Determine the interquartile range of each distribution.
If the imputations fit the data, how many of the original values you
expect to fall within this range? How many actually do?

• Produce a lattice graph of the nine imputed trajectories that
clearly shows the range of the imputed values.

2. Potthoff–Roy comparison. Use the multiply imputed data from the previ-
ous exercise, and apply a linear mixed effects model with an unstructured
mean and an unstructured covariance. See Molenberghs and Kenward
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(2007, ch. 5) for a discussion of the setup. Discuss advantages and dis-
advantages of the analysis of the multiply imputed data compared to
direct likelihood.

3. Potthoff–Roy, long format imputation. Do this exercise with the com-
plete Potthoff–Roy data. Warning: This exercise requires good data han-
dling skills and some patience.

• Calculate the broken stick estimates for each child using 8, 10,
12 and 14 as the break ages. Make a graph like Figure 9.5. Each
data point has exactly one parameter, so the fit could be perfect in
principle. Why doesn’t that happen? Which two children show the
largest discrepancies between the data and the model?

• Compare the age-to-age correlation matrix of the broken stick es-
timates to the original data. Why are these correlation matrices
different?

• How would you adapt the analysis such that the age-to-age cor-
relation matrix of the broken stick estimates would reproduce the
age-to-age correlation matrix of the original data. Hint: Think of a
simpler form of multilevel analysis.

• Multiply impute the data according to the method used in Sec-
tion 9.3.6, and produce a display like Figure 9.6 for children 1, 7,
20, 21, 22 and 24.

• Compare the age-to-age correlation matrix from the imputed data
to that of the original data. Are these different? How? Calculate
the correlation matrix after deleting the data from the two children
who showed the largest discrepancy in the broken stick model. Did
this help?

• How would you adapt the imputation method for the longitudinal
data so that its correlation matrix is close to that of the original?
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Part III

Extensions
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Chapter 10

Conclusion

This closing chapter starts with a description of the limitations and pitfalls
of multiple imputation. Section 10.2 provides reporting guidelines for applica-
tions. Section 10.3 gives an overview of applications that were omitted from
the book. Section 10.4 contains some speculations about possible future de-
velopments.

10.1 Some dangers, some do’s and some don’ts

Any statistical technique has limitations and pitfalls, and multiple impu-
tation is no exception. This books emphasizes the virtues of being flexible,
but this comes at a price. The next sections outline some dangers, do’s and
don’ts.

10.1.1 Some dangers

The major danger of the technique is that it may provide nonsensical or
even misleading results if applied without appropriate care or insight. Multiple
imputation is not a simple technical fix for the missing data. Scientific and
statistical judgment comes into play at various stages: during diagnosis of
the missing data problem, in the setup of a good imputation model, during
validation of the quality of the generated synthetic data and in combining the
repeated analyses. While software producers attempt to set defaults that will
work in a large variety of cases, we cannot simply hand over our scientific
decisions to the software. We need to open the black box, and adjust the
process when appropriate.

The MICE algorithm is univariate optimal, but not necessarily multivari-
ate optimal. There is no clear theoretical rationale for convergence of the
multivariate algorithm. The main justification of the MICE algorithm rests
on simulation studies. The research on this topic is intensifying. Even though
the results obtained thus far are reassuring, at this moment it is not possible
to outline in advance the precise conditions that would guarantee convergence
for some set of conditionally specified models.

249
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Another danger occurs if the imputation model is uncongenial (Meng, 1994;
Schafer, 2003). Uncongeniality can occur if the imputation model is specified
as more restrictive than the complete data model, or if it fails to account for
important factors in the missing data mechanism. Both types of omissions
introduce biased and possibly inefficient estimates. The other side of the coin
is that multiple imputation can be more efficient if the imputer uses infor-
mation that is not accessible to the analyst. The statistical infererences may
become more precise than those in maximum likelihood, a property known as
superefficiency (Rubin, 1996).

There are many data-analytic situations for which we do not yet know the
appropriate way to generate imputations. For example, it is not yet clear how
design factors of a complex sampling design, e.g., a stratified cluster sample,
should be incorporated into the imputation model. Also, relatively little is
known about how to impute nested and hierarchical data, or autocorrelated
data that form time series. These problems are not inherent limitations of
multiple imputation, but of course they may impede the practical application
of the imputation techniques for certain types of data.

10.1.2 Some do’s

Constructing good imputation models requires analytic skills. The follow-
ing list of do’s summarizes some of the advice given in this book.

• Find out the reasons for the missing data;

• Include the outcome variable(s) in the imputation model;

• Include factors that govern the missingness in the imputation model;

• Impute categorical data by techniques for categorical data;

• Remove response indicators from the imputation model;

• Aim for a scope broad enough for all analyses;

• Set the random seed to enhance reproducible results;

• Break any direct feedback loops that arise in passive imputation;

• Inspect the trace lines for slow convergence;

• Inspect the imputed data;

• Evaluate whether the imputed data could have been real data if they
had not been missing;

• Take m = 5 for model building, and increase afterward if needed;

• Specify simple MNAR models for sensitivity analysis;
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• Impute by proper imputation methods;

• Impute by robust hot deck-like models like predictive mean matching;

• Reduce a large imputation model into smaller components;

• Transform statistics toward approximate normality before pooling;

• Assess critical assumptions about the missing data mechanism;

• Eliminate badly connected, uninteresting variables (low influx, low out-
flux) from the imputation model;

• Take obvious features like non-negativity, functional relations and
skewed distributions in the data into account in the imputation model;

• Use more flexible (e.g., nonlinear or nonparametric) imputation models;

• Perform and pool the repeated analyses per dataset;

• Describe potential departures from MAR;

• Report accurately and concisely.

10.1.3 Some don’ts

Do not:

• Use multiple imputation if simpler methods are valid;

• Take predictions as imputations;

• Impute blindly;

• Put too much faith in the defaults;

• Average the multiply imputed data;

• Create imputations using a model that is more restrictive than needed;

• Uncritically accept imputations that are very different from the observed
data.

10.2 Reporting

Section 1.1.2 noted that the attitude toward missing data is changing.
Many aspects related to missing data could potentially affect the conclusions
drawn for the statistical analysis, but not all aspects are equally important.



252 Flexible Imputation of Missing Data

This leads to the question: What should be reported from an analysis with
missing data?

Guidelines to report the results of a missing data analysis have been given
by Sterne et al. (2009), Enders (2010), National Research Council (2010) and
Mackinnon (2010). These sources vary in scope and comprehensiveness, but
they also exhibit a great deal of overlap and consensus. Section 10.2.1 combines
some of the material found in the three sources.

Reviewers or editors may be unfamiliar with, or suspicious of, newer ap-
proaches to handling missing data. Substantive researchers are therefore often
wary about using advanced statistical methods in their reports. Though this
concern is understandable,

. . . resorting to flawed procedures in order to avoid criticism from
an uninformed reviewer or editor is a poor reason for avoiding
sophisticated missing data methodology (Enders, 2010, p. 340)

Until reviewers and referees become more familiar with the newer methods,
a better approach is to add well-chosen and concise explanatory notes. On
the other hand, editors and reviewers are increasingly expecting applied re-
searchers to do multiple imputation, even when the authors had good reasons
for not doing it (e.g., less than 5% incomplete cases) (Ian White, personal
communication).

The natural place to report about the missing data in a manuscript is
the paragraph on the statistical methodology. As scientific articles are often
subject to severe space constraints, part of the report may need to go into
supplementary online materials instead of the main text. Since the addition
of explanatory notes increases the number of words, there needs to be some
balance between the material that goes into the main text and the supplemen-
tary material. In applications that requires novel methods, a separate paper
may need to be written by the team’s statistician. For example, Van Buuren
et al. (1999) explained the imputation methodology used in the substantive
paper by Boshuizen et al. (1998). In general, the severity of the missing data
problem and the method used to deal with the problem needs to be part of
the main paper, whereas the precise modeling details could be relegated to
the appendix or to a separate methodological paper.

10.2.1 Reporting guidelines

The following list contains questions that need to be answered when using
multiple imputation. Evaluate each question carefully, and report the answers.

1. Amount of missing data: What is the number of missing values for each
variable of interest? What is the number of cases with complete data for
the analyses of interest? If people drop out at various time points, break
down the number of participants per occasion.
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2. Reasons for missingness: What is known about the reasons for missing
data? Are the missing data intentional? Are the reasons possibly related
to the outcome measurements? Are the reasons related to other variables
in the study?

3. Consequences: Are there important differences between individuals with
complete and incomplete data? Do these groups differ in mean or spread
on the key variables? What are the consequences if complete case anal-
ysis is used?

4. Method: What method is used to account for missing data (e.g., com-
plete case analysis, multiple imputation)? Which assumptions were made
(e.g., missing at random)? How were multivariate missing data handled?

5. Software: What multiple imputation software is used? Which settings
differ from the default?

6. Number of imputed datasets: How many imputed datasets were created
and analyzed?

7. Imputation model: Which variables were included in the imputation
model? Was any form of automatic variable predictor used? How
were non-normally distributed and categorical variables imputed? How
were design features (e.g., hierarchical data, complex samples, sampling
weights) taken into account?

8. Derived variables: How were derived variables (transformations, recodes,
indices, interaction terms, and so on) taken into account?

9. Diagnostics: How has convergence been monitored? How do the observed
and imputed data compare? Are imputations plausible in the sense that
they could have been plausibly measured if they had not been missing?

10. Pooling: How have the repeated estimates been combined (pooled) into
the final estimates? Have any statistics been transformed for pooling?

11. Complete case analysis: Do multiple imputation and complete case anal-
ysis lead to similar similar conclusions? If not, what might explain the
difference?

12. Sensitivity analysis: Do the variables included in the imputation model
make the missing at random assumption plausible? Are the conclusions
affected if imputations are generated under a plausible nonignorable
model?

If space is limited, the main text can be restricted to a short summary of
points 1, 2, 4, 5, 6 and 11, whereas the remaining points are addressed in a
appendix or online supplement. Section 10.2.2 contains an example template.
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For clinical trials, reporting in the main text should be extended by
point 12, conform to recommendation 15 of National Research Council (2010).
Moreover, the study protocol should specify the statistical methods for han-
dling missing data in advance, and their associated assumptions should be
stated in a way that can be understood by clinicians (National Research Coun-
cil, 2010, recommendation 9).

10.2.2 Template

Enders (2010, pp. 340–343) provides four useful templates for reporting
the results of a missing data analysis. These templates include explanatory
notes for uninformed editors and reviewers. It is straightforward to adapt the
template text to other settings. Below I provide a template loosely styled
after Enders that I believe captures the essentials needed to report multiple
imputation in the statistical paragraph of the main text.

The percentage of missing values across the nine variables var-
ied between 0 and 34%. In total 1601 out of 3801 records (42%)
were incomplete. Many girls had no score because the nurse felt
that the measurement was “unnecessary,” or because the girl did
not give permission. Older girls had many more missing data. We
used multiple imputation (Rubin, 1987a) to create and analyze 40
multiply imputed datasets. Methodologists currently regard multi-
ple imputation as a state-of-the-art technique because it improves
accuracy and statistical power relative to other missing data tech-
niques. Incomplete variables were imputed under fully conditional
specification (Van Buuren et al., 2006). Calculations were done
in R 2.13.1 using the default settings of the mice 2.12 package
(Van Buuren and Groothuis-Oudshoorn, 2011). Model parameters
were estimated with multiple regression applied to each imputed
dataset separately. These estimates and their standard errors were
combined using Rubin’s rules. For comparison, we also performed
the analysis on the subset of complete cases.

This text is about 150 words. If this is too long, then the sentences that
begin with“Methodologists”and“For comparison”can be deleted. In the para-
graphs that describe the results we can add the following sentence:

Table 1 gives the missing data rates of each variable.

In addition, if complete case analysis is included, then we need to summarize
it. For example:

We obtained similar results when the analysis was restricted to
the complete cases only. Multiple imputation was generally more
efficient as can be seen from the shorter confidence intervals and
lower p-values in Table X.
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It is also possible that the two analyses lead to diametrically opposed conclu-
sions. Since a well-executed multiple imputation is theoretically superior to
complete case analysis, we should give multiple imputation more weight. It
would be comforting though to have an explanation of the discrepancy.

The template texts can be adapted as needed. In addition obtain inspi-
ration from good articles in your own field that apply multiple imputation.

10.3 Other applications

Chapters 7–9 illustrated several applications of multiple imputation. This
section briefly reviews some other applications. These underscore the general
nature and broad applicability of multiple imputation.

10.3.1 Synthetic datasets for data protection

Many governmental agencies make microdata available to the public. One
of the major practical issues is that the identity of anonymous respondents
can be disclosed through the data they provide. Rubin (1993) suggested pub-
lishing fully synthetic microdata instead of the real data, with the obvious
advantage of zero disclosure risk. The released synthetic data should repro-
duce the essential features of confidential microdata.

Raghunathan et al. (2003) and Reiter (2005a) have demonstrated the prac-
tical application of the idea. Real and synthetic records can be mixed, resulting
in partially synthetic data. Recent work is available as Reiter (2008), Reiter
(2009) and Templ (2009).

10.3.2 Imputation of potential outcomes

The effect of a treatment can be expressed as the difference between the
observed outcome and the potential outcome, i.e., the outcome that we would
have observed if the unit had been allocated to the alternative treatment. This
approach is broadly known as the counterfactual approach to causal inference
(Morgan and Winship, 2007), and more precisely as the Rubin causal model.
By definition, the outcome on the alternative treatment is always missing, so
we cannot calculate the treatment effect directly. This restriction is, however,
lifted if the missing potential outcomes are imputed. Jin and Rubin (2008)
have put this idea into practice to correct for noncompliance in randomized
experiments. Multiple imputation of missing potential outcomes can also be
useful to correct for imbalances in observational studies. No such studies seem
to have appeared yet.
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10.3.3 Analysis of coarsened data

Many datasets contain data that are partially missing. Heitjan and Rubin
(1991) proposed a general theory for data coarsening processes that includes
rounding, heaping, censoring and missing data as special cases. See also Gill
et al. (1997) for a slightly more extended model. Heitjan and Rubin (1990)
provided an application where age is misreported, where the amount of misre-
porting increases with age itself. Such problems with the data can be handled
by multiple imputation of true age, given reported age and other personal
factors. Heitjan (1993) discussed various other biomedical examples and an
application to data from the Stanford Heart Transplantation Program. The
use of multiple imputation to deal with coarsened data is attractive, but the
number of applications to real data (e.g., Heeringa et al. (2002)) has been
rather small to date.

10.3.4 File matching of multiple datasets

Statistical file matching, or data fusion, attempts to integrate two or
more datasets with different units observed on common variables. Rubin and
Schenker (1986a) considered file matching as a missing data problem, and
suggested multiple imputation as a solution. Moriarity and Scheuren (2003)
developed modifications that were found to improve the procedure. Further
relevant work can be found in the books by Rässler (2002), D’Orazio et al.
(2006) and Herzog et al. (2007).

The imputation techniques proposed to date were developed from the mul-
tivariate normal model. Application of the MICE algorithm under conditional
independence is straightforward. Rässler (2002) compared MICE to several
alternatives, and found MICE to work well under normality and conditional
independence. If the assumption of conditional independence does not hold,
we may bring prior information into MICE by appending a third data file that
contains records with data that embody the prior information. Sections 5.5.2
and 7.4.5 put this idea into practice in a different context. This techique can
perform file matching for mixed continuous-discrete data under any data coded
prior.

10.3.5 Planned missing data for efficient designs

Lengthy questionnaires increase the missing data rate and can make a
study expensive. An alternative is to cut up a long questionnaire into sepa-
rate forms, each of which is considerably shorter than the full version. The
split questionnaire design (Raghunathan and Grizzle, 1995) poses certain re-
strictions on the selection of the forms, thus enabling analysis by multiple
imputation. Gelman et al. (1998) provide additional techniques for the re-
lated problem of analysis of multiple surveys. The loss of efficiency depends
on the strengths of the relations between form and can be compensated for by
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a larger initial sample size. Graham et al. (2006) is an excellent introduction
to methods based on planned missing data. Additional results can be found
in Littvay (2009).

10.3.6 Adjusting for verification bias

Partial verification bias in diagnostic accuracy studies may occur if not
all patients are assessed by the reference test (golden standard). Bias occurs
if the group of patients is selective, e.g., when only those that score on a
previous test are measured. Multiple imputation has been suggested as a way
to correct for this bias (Harel and Zhou, 2006; De Groot et al., 2008). The
classic Begg-Greenes method may be used only if the missing data mechanism
is known and simple. For more complex situations De Groot et al. (2011)
“strongly recommended” the use of multiple imputation.

10.3.7 Correcting for measurement error

Various authors have suggested multiple imputation to correct for meas-
urement error (Brownstone and Valletta, 1996; Ghosh-Dastidar and Schafer,
2003; Yucel and Zaslavsky, 2005; Cole et al., 2006; Glickman et al., 2008).

10.4 Future developments

Multiple imputation is not a finished product or algorithm. New applica-
tions call for innovative ways to implement the key ideas. This section identifies
some areas where further research could be useful.

10.4.1 Derived variables

Section 5.4 describes techniques to generate imputations for interactions,
sum scores, quadratic terms and other derived variables. Many datasets con-
tain derived variables of some form. The relations between the variables need
to be maintained if imputations are to be plausible. There is, however, not yet
a lot of experience about how to ensure consistency, and software options are
still limited. New types of derived variables and imputation under constraints
will call for new techniques and more flexible software.

10.4.2 Convergence of MICE algorithm

A theoretical weakness of the MICE algorithm is that the conditions under
which it converges are unknown. In practice, conditionally specified imputa-
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tion models are nearly always incompatible. Yet, this fact does not seem to
preclude useful and statistically appropriate imputations, as judged by simu-
lation. This suggest that the conditions under which the Gibbs sampler can
provide proper imputations can be relaxed. It is unknown, however, how far
the conditions may be relaxed.

10.4.3 Algorithms for blocks and batches

In some applications it is useful to generalize the variable-by-variable
scheme of the MICE algorithm to blocks. A block can contain just one vari-
able, but also groups of variables. An imputation model is specified for each
block, and the algorithm iterates over the blocks. This enables easier spec-
ification of blocks of variables that are structurally related, such as dummy
variables, semi-continuous variables, bracketed responses, compositions, item
subsets, and so on.

Likewise, it may be useful to define batches, groups of records that form
logical entities. For example, batches could consist of different populations,
time points, classes, and so on. Imputation models can be defined per batch,
and iteration takes place over the batches.

The incorporation of blocks and batches will allow for tremendous flexibil-
ity in the specification of imputation models. Such techniques require a keen
database administration strategy to ensure that the predictors needed at any
point are completed. There is currently no imputation software that imple-
ments blocks and batches. Javaras and Van Dyk (2003) proposed algorithms
for blocks using joint modeling.

10.4.4 Parallel computation

Multiple imputation is a highly parallel technique. If there are m processors
available, it is possible to generate the m imputed datasets, estimate the m
complete-data statistics, and store the m results by m independent parallel
streams. The overhead needed is minimal since each stream requires the same
amount of processor time. If more than m processors are available, a better
alternative is to subdivide each stream into several substreams. Huge savings
can be obtained in this way (Beddo, 2002). It is possible to perform parallel
multiple imputation in R or Stata through macros. Support for multi-core
processing is likely to grow.

10.4.5 Nested imputation

In some applications it can be useful to generate different numbers of impu-
tations for different variables. Rubin (2003) described an application that used
fewer imputations for variables that were expensive to impute. Alternatively,
we may want to impute a dataset that has already been multiply imputed, for
example, to impute some additional variables while preserving the original im-
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putations. The technique of using different numbers of imputations is known
as nested multiple imputation (Shen, 2000). Nested multiple imputation also
has potential applications for modeling different types of missing data (Harel,
2009). There is currently no software that supports nested multiple imputa-
tion. Extensions to three-step methods have not yet been developed.

10.4.6 Machine learning for imputation

The last two decades have spawned an enormous flood in innovative al-
gorithms for data processing, classification and pattern recognition. See, for
example, MacKay (2003), Shawe-Taylor and Cristianni (2004) and Hastie et al.
(2009). Problems with missing data increasingly get attention (Parker, 2010).
Computational methods like Troyanskaya et al. (2001) typically impute a sin-
gle value that is “best” in some sense. Using the principles of multiple impu-
tation, it would be extremely valuable to extend data-driven computational
techniques to yield a series of plausible values. The evaluation of such gener-
alizations should be done according to the theory of randomization validity.

10.4.7 Incorporating expert knowledge

Honaker and King (2010) observed that imputations in time series are often
implausible in the sense that they are too far away from values that experts
would expect. One of their suggestions is to incorporate prior expert knowledge
about the missing entries, with the purpose of restricting the imputations to a
reasonable range. Each missing entry can even have its own prior. The idea is
to create imputations as draws from the combined expert prior and posterior
predictive distributions. One strategy would be to draw two random values,
one from each distribution, and combine these using a mixture model. The
statistical properties of the resulting imputations still have to be sorted out.

10.4.8 Distribution-free pooling rules

Rubin’s theory is based on a convenient summary of the sampling distribu-
tion by the mean and the variance. There seems to be no intrinsic limitation
in multiple imputation that would prevent it from working for more elaborate
summaries. Suppose that we summarize the distribution of the parameter es-
timates for each completed dataset by a dense set of quantiles. As before,
there will be within- and between-variability as a result of the sampling and
missing data mechanisms, respectively. The problem of how to combine these
two types of distribution into the appropriate total distribution has not yet
been solved. If we would be able to construct the total distribution, this would
permit precise distribution-free statistical inference from incomplete data.
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10.4.9 Improved diagnostic techniques

The key problem in multiple imputation is how to generate good impu-
tations. The ultimate criterion of a good imputation is that it is confidence
proper with respect to the scientific parameters of interest. Diagnostic methods
are intermediate tools to evaluate the plausibility of a set of imputations. Sec-
tion 5.6 discussed several techniques, but these may be laborious for datasets
involving many variables. It would be useful to have informative summary
measures that can signal whether “something is wrong” with the imputed
data. Multiple measures are likely to be needed, each of which can address a
specific aspect of the data.

10.4.10 Building block in modular statistics

Multiple imputation requires a well-defined function of the population
data, an adequate missing data mechanism, and an idea of the parameters
that will be estimated from the imputed data. The technique is an attempt
to separate the missing data problem from the complete-data problem, so
that both can be addressed independently. This helps in simplifying statisti-
cal analyses that are otherwise difficult to optimize or interpret.

The modular nature of multiple imputation helps our understanding.
Aided by the vast computational possibilities, statistical models are becoming
more and more complex nowadays, up to the point that the models outgrow
the capabilities of our minds. The modular approach to statistics starts from
a series of smaller models, each dedicated to a particular task. The main in-
tellectual task is to arrange these models in a sensible way, and to link up
the steps to provide an overall solution. Compared to the one-big-model-for-
everything approach, the modular strategy may sacrifice some optimality. On
the other hand, the analytic results are easier to track, as we can inspect what
happened after each step, and thus easier to understand. And that is what
matters in the end.

10.5 Exercises

1. Do’s: Take the list of do’s in Section 10.1.2. For each item on the list,
answer the following questions:

(a) Why is it on the list?

(b) Which is the most relevant section in the book?

(c) Can you order the list elements from most important to least im-
portant?

(d) What were your reasons for picking the top three?
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(e) And why did you pick these bottom three?

(f) Could you make suggestions for new items that should be on the
list?

2. Don’ts: Repeat the previous exercise for the list of don’ts in Sec-
tion 10.1.3.

3. Template: Adapt the template for the sleep data in mice. Be sure to
include your major assumptions and decisions.

4. Nesting: Develop an extension of the mids object in mice that allows for
nested multiple imputation. Try to build upon the existing mids object.
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Appendix A

Software

This appendix contains an overview of software for multiple imputation. This
list is current as of July 2011, but it is likely to become outdated as the
developments in this area are fast. Earlier overviews can be found in Horton
and Lipsitz (2001), Horton and Kleinman (2007), Harel and Zhou (2007), Yu
et al. (2007) and Drechsler (2011). Consult www.multiple-imputation.com for
updates.

A.1 R

The R language (R Development Core Team, 2011) is a public domain gen-
eral purpose statistical programming language. The following packages imple-
ment multiple imputation in R, and are freely available from the Comprehen-
sive R Archive Network (CRAN) at http://www.R-project.org/.

• Amelia 1.2-18 by James Honaker, Gary King and Matthew Blackwell
creates multiple imputations based on the multivariate normal model.
Specialities include overimputation (remove observed values and impute)
and time series imputation.

• BaBooN 0.1-6 by Florian Meinfelder generates multiple imputations by
chained equations. The package specializes in predictive mean matching
for categorical data, and in imputation in data fusion situations where
many records have the same missing data pattern.

• cat 0.0-6.2 by Joseph L. Schafer implements multiple imputation of cat-
egorical data according to the log-linear model as described in Chapters
7 and 8 of Schafer (1997).

• Hmisc 3.8-3 by Frank E. Harrell, Jr. contains several functions to diag-
nose, create and analyze multiple imputations. The major imputation
functions are transcan() and aregImpute(). These functions can au-
tomatically transform the data. The function fit.mult.impute() com-
bines analysis and pooling and can read mids objects created by mice.

263
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• kmi 0.3-4 by Arthur Allignol performs a Kaplan–Meier multiple impu-
tation, specifically designed to impute missing censoring times.

• mice 2.12 by Stef van Buuren and Karin Groothuis-Oudshoorn con-
tributes the chained equations, or MICE algorithm. The package allows
for a flexible setup of the imputation model using a predictor matrix
and passive imputation. Most of this book was done in mice.

• mi 0.09-14 by Andrew Gelman, Jennifer Hill, Yu-Sung Su, Masanao Ya-
jima and Maria Grazia Pittau implements a chained equations approach
based on Bayesian regression methods. The software allows detailed ex-
amination of the fitted imputation model.

• MImix 1.0 by Russell Steele, Naisyin Wang and Adrian Raftery imple-
ments a special pooling method using a mixture of normal distributions.

• mitools 2.0.1 by Thomas Lumley provides tools for analyzing and com-
bining results from multiply imputed data.

• MissingDataGUI 0.1-1 by Xiaoyue Cheng, Dianne Cook and Heike Hof-
mann provides numeric and graphical summaries for the missing values
from both discrete and continuous variables. The current version uses
norm and Hmisc to generate multiple imputations.

• missMDA 1.2 by Francois Husson and Julie Josse contains the function
MIPCA() that draws multiple imputations from principal components
analysis.

• miP 1.1 by Paul Brix can read imputed data created by Amelia, mi and
mice to visualize several aspects of the missing data.

• mirf 1.0 by Yimin Wu, B. Aletta, S. Nonyane and Andrea S. Foulkes
provides a function mirf() that creates multiple imputations using ran-
dom forests.

• mix 1.0-8 by Joseph L. Schafer implements the imputation methods
based on the general location model as described in Chapter 9 of Schafer
(1997).

• norm 1.0-9.2 by Joseph L. Schafer implements multiple imputation based
on the multivariate normal model as described in Chapters 5 and 6 of
Schafer (1997).

• pan 0.3 by Joseph L. Schafer implements multiple imputation for mul-
tivariate panel or clustered data using the linear mixed model (Schafer
and Yucel, 2002).

• VIM 2.0.2 by Matthias Templ, Andreas Alfons and Alexander Kowarik
introduces tools to visualize missing data before imputation. Imputa-
tion functions include hotdeck() and irmi(), both loosely based on a
chained equations approach.



Software 265

• Zelig 3.5 by Kosuke Imai, Gary King and Olivia Lau comes with a
general zelig() function that supports analysis and pooling of multiply
imputed data.

Apart from these, there are many package that contain single imputa-
tion methods: arrayImpute, ForImp, imputation, impute, imputeMDR, mtsdi,
missForest, robCompositions, rrcovNA, sbgcop, SeqKnn and yaImpute. The
functions in these packages typically estimate the missing values in some way,
rather than taking random draws.

A.2 S-PLUS

• The S-PLUS library S+MissingData by Schimert et al. (2001) is the most
extensive implementation of the techniques described in Schafer (1997).
The library has functions to fit the multivariate Gaussian, log-linear
and general location models using EM algorithm and data augmentation
(DA) algorithms. The DA algorithms also produce multiple imputations.
The library builds upon Schafer’s code, but in some cases uses different
algorithms. For example, the EM algorithm to fit the Gaussian model
uses a Cholesky decomposition of the covariance rather than sweeps as
in Schafer’s imp.norm() function.

• Hmisc by Frank E. Harrell Jr. is included as one of the standard libraries.
See R for the relevant functions.

Versions of norm, cat, mix, pan and mice for older versions of S-Plus

(versions 3.3 and 4.0) can still be found on the internet.

A.3 Stata

• The ice package by Patrick Royston is a user-contributed Stata pack-
age that provides an elegant implementation of multiple imputation by
chained equations (Royston, 2004, 2009).

• Stata 11 introduced the new multiple imputation command mi. This is
a rich implementation of multiple imputation, including useful options
for data manipulation.

• Stata 12 (StataCorp LP, 2011) extends the functionality of mi with the
mi impute chained command, which essentially brings the functional-
ity of the ice package in the Stata mi framework.
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A.4 SAS

• Since V8.2, PROC MI implements multiple imputation by the multivari-
ate normal model. V9.0 adds predictive mean matching and predictor
selection for monotone response patterns.

• Since V8.2, PROC MIANALYZE takes the results of the complete data
analysis per dataset (e.g., by PROC LOGISTIC; BY _IMPUTATION_;) and
pools the results. V9.0 adds specification of model effects and custom
hypotheses of the parameters.

• IVEware (Raghunathan et al., 2002) is an SAS-callable software applica-
tion that implements multiple imputation using chained equations called
sequential regressions in IVEware. The software allows for flexible im-
putation models, and includes the ability to specify bounds and data
transformations. It has a dedicated command for creating fully synthetic
datasets, and routines for regression under complex sampling designs.

A.5 SPSS

• Since SPSS17, MULTIPLE IMPUTATION, a part of the Missing Values mod-
ule, supports multiple imputations by chained equations. Imputation
and analysis can be done in a largely automatic fashion and are well
integrated with the software for complete data analysis.

• In AMOS V17 it is possible to generate multiple imputations under the
large array of models supported by AMOS.

• tw.sps is an SPSS macro by Joost van Ginkel that implements two-way
imputation. This macro can also generate multiple imputations, and is
geared toward imputing missing questionnaire items (Van Ginkel et al.,
2007).

A.6 Other software

• SOLAS 4.0 is a stand-alone package dedicated to multiple imputation.
SOLAS implements five univariate methods to generate multiple impu-
tations. SOLAS is the only software that implements propensity score
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matching. The software implements a noniterative chained equations
method. First, those cells that destroy the monotone pattern are im-
puted, followed by a second set of imputations of the missing data in
the monotone part. Automatic pooling is done for complete data statis-
tics. Several pre- and postimputation diagnostic plots are available.

• Mplus Version 6 implements routines to generate, analyze and pool mul-
tiply imputed data. Multivariate imputations can be created under a
joint model based on the variance-covariance matrix (default) or by a
form of conditional specification. Mplus embeds multiple imputation us-
ing an unrestricted imputation model that is specified behind the scenes
(called H1 imputation). It is possible to specify a custom imputation
model in conjunction with the Bayesian estimator (called H0 imputa-
tion).

• NORM is a freeware program by Joseph L. Schafer that imputes missing
data under the multivariate normal distribution. The latest version is
V2.03. The program contains routines to pool parameter estimates.

• REALCOM-IMPUTE is an MLwiN 2.15 macro that generate imputations for
data with two-level structures. The imputation model is an extension
of the joint modeling approach to mixed numerical and categorical data
with multilevel structure.

• WinMICE is a freeware program by Gert Jacobusse that implements mul-
tiple imputation under the linear mixed model for two-level data using
chained equations. It also contains some features from mice.
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Missing data form a problem in every scientific discipline, yet the techniques 
required to handle them are complicated and often lacking. One of the 
great ideas in statistical science—multiple imputation—fills gaps in the data 
with plausible values, the uncertainty of which is coded in the data itself. 
It also solves other problems, many of which are missing data problems in 
disguise. 

Flexible Imputation of Missing Data is supported by many examples 
using real data taken from the author’s vast experience of collaborative 
research, and presents a practical guide for handling missing data under 
the framework of multiple imputation. Furthermore, detailed guidance of 
implementation in R using the author’s package MICE is included throughout 
the book.

Assuming familiarity with basic statistical concepts and multivariate methods, 
Flexible Imputation of Missing Data is intended for two audiences:
• (Bio)statisticians, epidemiologists, and methodologists in the social and 

health sciences
• Substantive researchers who do not call themselves statisticians, but 

who possess the necessary skills to understand the principles and to 
follow the recipes

This graduate-tested book avoids mathematical and technical details as 
much as possible: formulas are accompanied by a verbal statement that 
explains the formula in layperson terms. Readers less concerned with 
the theoretical underpinnings will be able to pick up the general idea, and 
technical material is available for those who desire deeper understanding. 
The analyses can be replicated in R using a dedicated package developed by 
the author.
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