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Series Editor’s Note

Missing data are a real bane to researchers across all social science disciplines. For most of 
our scientifi c history, we have approached missing data much like a doctor from the ancient 
world might use bloodletting to cure disease or amputation to stem infection (e.g, removing 
the infected parts of one’s data by using list-wise or pair-wise deletion). My metaphor should 
make you feel a bit squeamish, just as you should feel if you deal with missing data using 
the antediluvian and ill-advised approaches of old. Fortunately, Craig Enders is a gifted quan-
titative specialist who can clearly explain missing data procedures to diverse readers from 
beginners to seasoned veterans. He brings us into the age of modern missing data treatments 
by demystifying the arcane discussions of missing data mechanisms and their labels (e.g., 
MNAR) and the esoteric acronyms of the various techniques used to address them (e.g., FIML, 
MCMC, and the like).

Enders’s approachable treatise provides a comprehensive treatment of the causes of miss-
ing data and how best to address them. He clarifi es the principles by which various mecha-
nisms of missing data can be recovered, and he provides expert guidance on which method 
to implement and how to execute it, and what to report about the modern approach you 
have chosen. Enders’s deft balancing of practical guidance with expert insight is refreshing 
and enlightening. It is rare to fi nd a book on quantitative methods that you can read for its 
stated purpose (educating the reader about modern missing data procedures) and fi nd that 
it treats you to a level of insight on a topic that whole books dedicated to the topic cannot 
match. For example, Enders’s discussions of maximum likelihood and Bayesian estimation 
procedures are the clearest, most understandable, and instructive discussions I have read—
your inner geek will be delighted, really.

Enders successfully translates the state-of-the art technical missing data literature into 
an accessible reference that you can readily rely on and use. Among the treasures of Enders’s 
work are the pointed simulations that he has developed to show you exactly what the techni-
cal literature obtusely presents. Because he provides such careful guidance of the foundations 
and the step-by-step processes involved, you will quickly master the concepts and issues of 
this critical literature. Another treasure is his use of a common running example that he 
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builds upon as more complex issues are presented. And if these features are not enough, you 
can also visit the accompanying website (www.appliedmissingdata.com), where you will fi nd 
up-to-date program fi les for the examples presented, as well as additional examples of the 
different software programs available for handling missing data. 

What you will learn from this book is that missing data imputation is not cheating. In 
fact, you will learn why the egregious scientifi c error would be the business-as-usual ap-
proaches that still permeate our journals. You will learn that modern missing data procedures 
are so effective that intentionally missing data designs often can provide more valid and gen-
eralizable results than traditional data collection protocols. In addition, you will learn to re-
think how you collect data to maximize your ability to recover any missing data mechanisms 
and that many quandaries of design and analysis become resolvable when recast as a missing 
data problem. Bottom line—after you read this book you will have learned how to go forth 
and impute with impunity! 

TODD D. LITTLE

University of Kansas
Lawrence, Kansas
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Preface

Methodologists have been studying missing data problems for the better part of a century, 
and the number of published articles on this topic has increased dramatically in recent years. 
A great deal of recent methodological research has focused on two “state-of-the-art” missing 
data methods: maximum likelihood and multiple imputation. Accordingly, this book is de-
voted largely to these techniques. Quoted in the American Psychological Association’s Monitor 
on Psychology, Stephen G. West, former editor of Psychological Methods, stated that “routine 
implementation of these new methods of addressing missing data will be one of the major 
changes in research over the next decade” (Azar, 2002). Although researchers are using maxi-
mum likelihood and multiple imputation with greater frequency, reviews of published articles 
in substantive journals suggest that a gap still exists between the procedures that the meth-
odological literature recommends and those that are actually used in the applied research 
studies (Bodner, 2006; Peugh & Enders, 2004; Wood, White, & Thompson, 2004).

It is understandable that researchers routinely employ missing data handling techniques 
that are objectionable to methodologists. Software packages make old standby techniques 
(e.g., eliminating incomplete cases) very convenient to implement. The fact that software pro-
grams routinely implement default procedures that are prone to substantial bias, however, is 
troubling because such routines implicitly send the wrong message to researchers interested 
in using statistics without having to keep up with the latest advances in the missing data 
literature. The technical nature of the missing data literature is also a signifi cant barrier to the 
widespread adoption of maximum likelihood and multiple imputation. While many of the 
fl awed missing data handling techniques (e.g., excluding cases, replacing missing values with 
the mean) are very easy to understand, the newer approaches can seem like voodoo. For ex-
ample, researchers often appear perplexed by the possibility of conducting an analysis with-
out discarding cases and without fi lling in the missing values—and rightfully so. The seminal 
books on missing data analyses (Little & Rubin, 2002; Schafer, 1997) are rich sources of 
technical information, but these books can be a daunting read for substantive researchers 
and methodologists alike. In large part, the purpose of this book is to “translate” the techni-
cal missing data literature into an accessible reference text.
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Because missing data are a pervasive problem in virtually any discipline that employs 
quantitative research methods, my goal was to write a book that would be relevant and ac-
cessible to researchers from a wide range of disciplines, including psychology, education, 
sociology, business, and medicine. For me, it is important for the book to serve as an acces-
sible reference for substantive researchers who use quantitative methods in their work but do 
not consider themselves quantitative specialists. At the same time, many quantitative meth-
odologists are unfamiliar with the nuances of modern missing data handling techniques. 
Therefore, it was also important to provide a level of detail that could serve as a springboard 
for accessing technically oriented missing data books such as Little and Rubin (2002) and 
Schafer (1997). Most of the information in this book assumes that readers have taken 
 graduate-level courses in analysis of variance (ANOVA) and multiple regression. Some basic 
understanding of structural equation modeling (e.g., the interpretation of path diagrams) is 
also useful, as is cursory knowledge of matrix algebra and calculus. However, it is vitally im-
portant to me that this book be accessible to a broad range of readers, so I constantly strove 
to translate key mathematical concepts into plain English.

The chapters in this book roughly break down into four sections. The fi rst two chapters 
provide a backdrop for modern missing data handling methods by describing missing data 
theory and traditional analysis approaches. Given the emphasis that maximum likelihood 
estimation and multiple imputation have received in the methodological literature, the ma-
jority of the book is devoted to these topics; Chapters 3 through 5 address maximum like-
lihood, and Chapters 6 through 9 cover multiple imputation. Finally, Chapter 10 describes 
models for an especially problematic type of missingness known as “missing not at random 
data.” Throughout the book, I use small data sets to illustrate the underlying mechanics of 
the missing data handling procedures, and the chapters typically conclude with a number of 
analysis examples. 

The level with which to integrate specifi c software programs was an issue that presented 
me with a dilemma throughout the writing process. In the end, I chose to make the analysis 
examples independent of any program. In the 2 years that it took to write this book, soft-
ware programs have undergone dramatic improvements in the number of and type of miss-
ing data analyses they can perform. For example, structural equation modeling programs 
have greatly expanded their missing data handling options, and one of the major general-use 
statistical software programs—SPSS—implemented a multiple imputation routine. Because 
software programs are likely to evolve at a rapid pace in the coming years, I decided to use a 
website to maintain an up-to-date set of program fi les for the analysis examples that I present 
in the book at www.appliedmissingdata.com. Although I relegate a portion of the fi nal chapter 
to a brief description of software programs, I tend to make generic references to “software 
packages” throughout much of the book and do not mention specifi c programs by name.

Finally, I have a long list of people to thank. First, I would like to thank the baristas at 
the Coffee Plantation in North Scottsdale for allowing me to spend countless hours in their 
coffee shop working on the book. Second, I would like to thank the students in my 2008 
missing data course at Arizona State University for providing valuable feedback on draft chap-
ters, including Krista Adams, Margarita Olivera Aguilar, Amanda Baraldi, Iris Beltran, Matt 
DiDonato, Priscilla Goble, Amanda Gottschall, Caitlin O’Brien, Vanessa Ohlrich, Kassondra 
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Silva, Michael Sulik, Jodi Swanson, Ian Villalta, Katie Zeiders, and Argero Zerr. Third, I am 
also grateful to a number of other individuals who provided feedback on draft chapters, in-
cluding Carol Barry, Sara Finney, Megan France, Jeanne Horst, Mary Johnston, Abigail Lau, 
Levi Littvay, and James Peugh; and the Guilford reviewers: Julia McQuillan, Sociology, Univer-
sity of Nebraska, Lincoln; Ke-Hai Yuan, Psychology, University of Notre Dame; Alan Acock, 
Family Science, Oregon State University; David R. Johnson, Sociology, Pennsylvania State 
University; Kristopher J. Preacher, Psychology, University of Kansas; Zhiyong Johnny Zhang, 
University of Notre Dame; Hakan Demirtas, Biostatistics, University of Illinois, Chicago; 
Stephen DuToit, Scientifi c Software; and Scott Hofer, Psychology, University of Victoria. In 
particular, Roy Levy’s input on the Bayesian estimation chapter was a godsend. Thanks also 
to Tihomir Asparouhov, Bengt Muthén, and Linda Muthén for their feedback and assistance 
with Mplus. Fourth, I would like to thank my quantitative colleagues in the Psychology De-
partment at Arizona State University. Collectively, Leona Aiken, Sanford Braver, Dave Mac-
Kinnon, Roger Millsap, and Steve West are the best group of colleagues anyone could ask for, 
and their support and guidance has meant a great deal to me. Fifth, I want to express grati-
tude to Todd Little and C. Deborah Laughton for their guidance throughout the writing 
process. Todd’s expertise as a methodologist and as an editor was invaluable, and I am con-
vinced that C. Deborah is unmatched in her expertise. Sixth, I would like to thank all of my 
mentors from the University of Nebraska, including Cal Garbin, Jim Impara, Barbara Plake, 
Ellen Weissinger, and Steve Wise. I learned a great deal from each of these individuals, and 
their infl uences fl ow through this book. In particular, I owe an enormous debt of gratitude to 
my advisor, Deborah Bandalos. Debbi has had an enormous impact on my academic career, 
and her continued friendship and support mean a great deal to me. Finally, I would like to 
thank my mother, Billie Enders. Simply put, without her guidance, none of this would have 
been possible. 
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1

An Introduction to Missing Data

1.1 INTRODUCTION

Missing data are ubiquitous throughout the social, behavioral, and medical sciences. For 
decades, researchers have relied on a variety of ad hoc techniques that attempt to “fi x” the 
data by discarding incomplete cases or by fi lling in the missing values. Unfortunately, most 
of these techniques require a relatively strict assumption about the cause of missing data and 
are prone to substantial bias. These methods have increasingly fallen out of favor in the meth-
odological literature (Little & Rubin, 2002; Wilkinson & Task Force on Statistical Inference, 
1999), but they continue to enjoy widespread use in published research articles (Bodner, 
2006; Peugh & Enders, 2004).

Methodologists have been studying missing data problems for nearly a century, but the 
major breakthroughs came in the 1970s with the advent of maximum likelihood estimation 
routines and multiple imputation (Beale & Little, 1975; Dempster, Laird, & Rubin, 1977; 
Rubin, 1978b; Rubin, 1987). At about the same time, Rubin (1976) outlined a theoretical 
framework for missing data problems that remains in widespread use today. Maximum likeli-
hood and multiple imputation have received considerable attention in the methodological 
literature during the past 30 years, and researchers generally regard these approaches as the 
current “state of the art” (Schafer & Graham, 2002). Relative to traditional approaches, maxi-
mum likelihood and multiple imputation are theoretically appealing because they require 
weaker assumptions about the cause of missing data. From a practical standpoint, this means 
that these techniques will produce parameter estimates with less bias and greater power.

Researchers have been relatively slow to adopt maximum likelihood and multiple impu-
tation and still rely heavily on traditional missing data handling techniques (Bodner, 2006; 
Peugh & Enders, 2004). In part, this hesitancy may be due to a lack of software options, as 
maximum likelihood and multiple imputation did not become widely available in statistical 
packages until the late 1990s. However, the technical nature of the missing data literature 
probably represents another signifi cant barrier to the widespread adoption of these techniques. 
Consequently, the primary goal of this book is to provide an accessible and user-friendly 
introduction to missing data analyses, with a special emphasis on maximum likelihood and 
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multiple imputation. It is my hope that this book will help address the gap that currently 
exists between the analytic approaches that methodologists recommend and those that ap-
pear in published research articles.

1.2 CHAPTER OVERVIEW

This chapter describes some of the fundamental concepts that appear repeatedly throughout 
the book. In particular, the fi rst half of the chapter is devoted to missing data theory, as de-
scribed by Rubin (1976) and colleagues (Little & Rubin, 2002). Rubin is responsible for es-
tablishing a nearly universal classifi cation system for missing data problems. These so-called 
missing data mechanisms describe relationships between measured variables and the prob-
ability of missing data and essentially function as assumptions for missing data analyses. 
Rubin’s mechanisms serve as a vital foundation for the remainder of the book because they 
provide a basis for understanding why different missing data techniques succeed or fail.

The second half of this chapter introduces the idea of planned missing data. Researchers 
tend to believe that missing data are a nuisance to be avoided whenever possible. It is true 
that unplanned missing data are potentially damaging to the validity of a statistical analysis. 
However, Rubin’s (1976) theory describes situations where missing data are relatively be-
nign. Researchers have exploited this fact and have developed research designs that produce 
missing data as an intentional by-product of data collection. The idea of intentional missing 
data might seem odd at fi rst, but these research designs actually solve a number of practical 
problems (e.g., reducing respondent burden and reducing the cost of data collection). When 
used in conjunction with maximum likelihood and multiple imputation, these planned miss-
ing data designs provide a powerful tool for streamlining and reducing the cost of data 
collection.

I use the small data set in Table 1.1 to illustrate ideas throughout this chapter. I designed 
these data to mimic an employee selection scenario in which prospective employees com-
plete an IQ test and a psychological well-being questionnaire during their interview. The 
company subsequently hires the applicants who score in the upper half of the IQ distribu-
tion, and a supervisor rates their job performance following a 6-month probationary period. 
Note that the job performance scores are systematically missing as a function of IQ scores 
(i.e., individuals in the lower half of the IQ distribution were never hired, and thus have no 
performance rating). In addition, I randomly deleted three of the well-being scores in order 
to mimic a situation where the applicant’s well-being questionnaire is inadvertently lost.

1.3 MISSING DATA PATTERNS

As a starting point, it is useful to distinguish between missing data patterns and missing data 
mechanisms. These terms actually have very different meanings, but researchers sometimes 
use them interchangeably. A missing data pattern refers to the confi guration of observed and 
missing values in a data set, whereas missing data mechanisms describe possible relation-
ships between measured variables and the probability of missing data. Note that a missing 
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data pattern simply describes the location of the “holes” in the data and does not explain 
why the data are missing. Although the missing data mechanisms do not offer a causal expla-
nation for the missing data, they do represent generic mathematical relationships between 
the data and missingness (e.g., in a survey design, there may be a systematic relationship 
between education level and the propensity for missing data). Missing data mechanisms play 
a vital role in Rubin’s missing data theory.

Figure 1.1 shows six prototypical missing data patterns that you may encounter in the 
missing data literature, with the shaded areas representing the location of the missing values 
in the data set. The univariate pattern in panel A has missing values isolated to a single vari-
able. A univariate pattern is relatively rare in some disciplines but can arise in experimental 
studies. For example, suppose that Y1 through Y3 are manipulated variables (e.g., between-
subjects factors in an ANOVA design) and Y4 is the incomplete outcome variable. The uni-
variate pattern is one of the earliest missing data problems to receive attention in the statis-
tics literature, and a number of classic articles are devoted to this topic.

Panel B shows a confi guration of missing values known as a unit nonresponse pattern. 
This pattern often occurs in survey research, where Y1 and Y2 are characteristics that are avail-
able for every member of the sampling frame (e.g., census tract data), and Y3 and Y4 are sur-
veys that some respondents refuse to answer. Later in the book I describe a planned missing 
data design that yields a similar pattern of missing data. In the context of planned missing-
ness, this pattern can arise when a researcher administers two inexpensive measures to the 
entire sample (e.g., Y1 and Y2) and collects two expensive measures (e.g., Y3 and Y4) from a 
subset of cases.

TABLE 1.1. Employee Selection Data Set

 Psychological Job
IQ well-being performance

 78 13 —
 84  9 —
 84 10 —
 85 10 —
 87 — —
 91  3 —
 92 12 —
 94  3 —
 94 13 —
 96 — —
 99  6  7
105 12 10
105 14 11
106 10 15
108 — 10
112 10 10
113 14 12
115 14 14
118 12 16
134 11 12
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A monotone missing data pattern in panel C is typically associated with a longitudinal 
study where participants drop out and never return (the literature sometimes refers to this as 
attrition). For example, consider a clinical trial for a new medication in which participants 
quit the study because they are having adverse reactions to the drug. Visually, the monotone 
pattern resembles a staircase, such that the cases with missing data on a particular assess-
ment are always missing subsequent measurements. Monotone missing data patterns have 
received attention in the missing data literature because they greatly reduce the mathematical 
complexity of maximum likelihood and multiple imputation and can eliminate the need for 
iterative estimation algorithms (Schafer, 1997, pp. 218–238).

A general missing data pattern is perhaps the most common confi guration of missing 
values. As seen in panel D, a general pattern has missing values dispersed throughout the data 
matrix in a haphazard fashion. The seemingly random pattern is deceptive because the values 

(A) Univariate Pattern (B) Unit Nonresponse Pattern

(C) Monotone Pattern (D) General Pattern

(E) Planned Missing Pattern (F) Latent Variable Pattern

Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4

Y1 Y2 Y3 Y4Y1 Y2 Y3 Y4

Y1 Y2 Y3 Y4 ξ Y2 Y3 Y4

FIGURE 1.1. Six prototypical missing data patterns. The shaded areas represent the location of the 
missing values in the data set with four variables.
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can still be systematically missing (e.g., there may be a relationship between Y1 values and 
the propensity for missing data on Y2). Again, it is important to remember that the missing 
data pattern describes the location of the missing values and not the reasons for missingness. 
The data set in Table 1.1 is another example of a general missing data pattern, and you can 
further separate this general pattern into four unique missing data patterns: cases with only 
IQ scores (n = 2), cases with IQ and well-being scores (n = 8), cases with IQ and job perfor-
mance scores (n = 1), and cases with complete data on all three variables (n = 9).

Later in the chapter, I outline a number of designs that produce intentional missing 
data. The planned missing data pattern in panel E corresponds to the three-form question-
naire design outlined by Graham, Hofer, and MacKinnon (1996). The basic idea behind the 
three-form design is to distribute questionnaires across different forms and administer a 
subset of the forms to each respondent. For example, the design in panel E distributes the 
four questionnaires across three forms, such that each form includes Y1 but is missing Y2, Y3, 
or Y4. Planned missing data patterns are useful for collecting a large number of questionnaire 
items while simultaneously reducing respondent burden.

Finally, the latent variable pattern in panel F is unique to latent variable analyses such 
as structural equation models. This pattern is interesting because the values of the latent 
variables are missing for the entire sample. For example, a confi rmatory factor analysis model 
uses a latent factor to explain the associations among a set of manifest indicator variables 
(e.g., Y1 through Y3), but the factor scores themselves are completely missing. Although it is 
not necessary to view latent variable models as missing data problems, researchers have 
adapted missing data algorithms to estimate these models (e.g., multilevel models; Rauden-
bush & Bryk, 2002, pp. 440–444).

Historically, researchers have developed analytic techniques that address a particular 
missing data pattern. For example, Little and Rubin (2002) devote an entire chapter to older 
methods that were developed specifi cally for experimental studies with a univariate missing 
data pattern. Similarly, survey researchers have developed so-called hot-deck approaches to 
deal with unit nonresponse (Scheuren, 2005). From a practical standpoint, distinguishing 
among missing data patterns is no longer that important because maximum likelihood esti-
mation and multiple imputation are well suited for virtually any missing data pattern. This 
book focuses primarily on techniques that are applicable to general missing data patterns 
because these methods also work well with less complicated patterns.

1.4 A CONCEPTUAL OVERVIEW OF MISSING DATA THEORY

Rubin (1976) and colleagues introduced a classifi cation system for missing data problems 
that is widely used in the literature today. This work has generated three so-called missing 
data mechanisms that describe how the probability of a missing value relates to the data, if 
at all. Unfortunately, Rubin’s now-standard terminology is somewhat confusing, and re-
searchers often misuse his vernacular. This section gives a conceptual overview of missing 
data theory that uses hypothetical research examples to illustrate Rubin’s missing data mech-
anisms. In the next section, I delve into more detail and provide a more precise mathemati-
cal defi nition of the missing data mechanisms. Methodologists have proposed additions to 
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Rubin’s classifi cation scheme (e.g., Diggle & Kenward, 1994; Little, 1995), but I focus strictly 
on the three missing data mechanisms that are common in the literature. As an aside, I try to 
use a minimal number of acronyms throughout the book, but I nearly always refer to the miss-
ing data mechanisms by their abbreviation (MAR, MCAR, MNAR). You will encounter these 
acronyms repeatedly throughout the book, so it is worth committing them to memory.

Missing at Random Data

Data are missing at random (MAR) when the probability of missing data on a variable Y is 
related to some other measured variable (or variables) in the analysis model but not to the 
values of Y itself. Said differently, there is no relationship between the propensity for missing 
data on Y and the values of Y after partialling out other variables. The term missing at random 
is somewhat misleading because it implies that the data are missing in a haphazard fashion 
that resembles a coin toss. However, MAR actually means that a systematic relationship exists 
between one or more measured variables and the probability of missing data. To illustrate, 
consider the small data set in Table 1.2. I designed these data to mimic an employee selection 
scenario in which prospective employees complete an IQ test during their job interview and 
a supervisor subsequently evaluates their job performance following a 6-month probationary 
period. Suppose that the company used IQ scores as a selection measure and did not hire 
applicants that scored in the lower quartile of the IQ distribution. You can see that the job 
performance ratings in the MAR column of Table 1.2 are missing for the applicants with the 
lowest IQ scores. Consequently, the probability of a missing job performance rating is solely 
a function of IQ scores and is unrelated to an individual’s job performance.

There are many real-life situations in which a selection measure such as IQ determines 
whether data are missing, but it is easy to generate additional examples where the propensity 
for missing data is less deterministic. For example, suppose that an educational researcher is 
studying reading achievement and fi nds that Hispanic students have a higher rate of missing 
data than Caucasian students. As a second example, suppose that a psychologist is studying 
quality of life in a group of cancer patients and fi nds that elderly patients and patients with 
less education have a higher propensity to refuse the quality of life questionnaire. These ex-
amples qualify as MAR as long as there is no residual relationship between the propensity for 
missing data and the incomplete outcome variable (e.g., after partialling out age and educa-
tion, the probability of missingness is unrelated to quality of life).

The practical problem with the MAR mechanism is that there is no way to confi rm that 
the probability of missing data on Y is solely a function of other measured variables. Return-
ing to the education example, suppose that Hispanic children with poor reading skills have 
higher rates of missingness on the reading achievement test. This situation is inconsistent 
with an MAR mechanism because there is a relationship between reading achievement and 
missingness, even after controlling for ethnicity. However, the researcher would have no way 
of verifying the presence or absence of this relationship without knowing the values of the 
missing achievement scores. Consequently, there is no way to test the MAR mechanism or to 
verify that scores are MAR. This represents an important practical problem for missing data 
analyses because maximum likelihood estimation and multiple imputation (the two tech-
niques that methodologists currently recommend) assume an MAR mechanism.
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Missing Completely at Random Data

The missing completely at random (MCAR) mechanism is what researchers think of as 
purely haphazard missingness. The formal defi nition of MCAR requires that the probability 
of missing data on a variable Y is unrelated to other measured variables and is unrelated to 
the values of Y itself. Put differently, the observed data points are a simple random sample of 
the scores you would have analyzed had the data been complete. Notice that MCAR is a more 
restrictive condition than MAR because it assumes that missingness is completely unrelated 
to the data.

With regard to the job performance data in Table 1.2, I created the MCAR column by 
deleting scores based on the value of a random number. The random numbers were uncor-
related with IQ and job performance, so missingness is unrelated to the data. You can see 
that the missing values are not isolated to a particular location in the IQ and job performance 
distributions; thus the 15 complete cases are relatively representative of the entire applicant 
pool. It is easy to think of real-world situations where job performance ratings could be miss-
ing in a haphazard fashion. For example, an employee might take maternity leave prior to her 
6-month evaluation, the supervisor responsible for assigning the rating could be promoted to 
another division within the company, or an employee might quit because his spouse ac-
cepted a job in another state. Returning to the previous education example, note that children 
could have MCAR achievement scores because of unexpected personal events (e.g., an ill-
ness, a funeral, family vacation, relocation to another school district), scheduling diffi culties 

TABLE 1.2. Job Performance Ratings with MCAR, MAR, 
and MNAR Missing Values

 Job performance ratings

IQ Complete MCAR MAR MNAR

 78  9 — —  9
 84 13 13 — 13
 84 10 — — 10
 85  8  8 — —
 87  7  7 — —
 91  7  7  7 —
 92  9  9  9  9
 94  9  9  9  9
 94 11 11 11 11
 96  7 —  7 —
 99  7  7  7 —
105 10 10 10 10
105 11 11 11 11
106 15 15 15 15
108 10 10 10 10
112 10 — 10 10
113 12 12 12 12
115 14 14 14 14
118 16 16 16 16
134 12 — 12 12
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(e.g., the class was away at a fi eld trip when the researchers visited the school), or administra-
tive snafus (e.g., the researchers inadvertently misplaced the tests before the data could be 
entered). Similar types of issues could produce MCAR data in the quality of life study.

In principle, it is possible to verify that a set of scores are MCAR. I outline two MCAR 
tests in detail later in the chapter, but the basic logic behind these tests will be introduced 
here. For example, reconsider the data in Table 1.2. The defi nition of MCAR requires that the 
observed data are a simple random sample of the hypothetically complete data set. This im-
plies that the cases with observed job performance ratings should be no different from the 
cases that are missing their performance evaluations, on average. To test this idea, you can 
separate the missing and complete cases and examine group mean differences on the IQ vari-
able. If the missing data patterns are randomly equivalent (i.e., the data are MCAR), then the 
IQ means should be the same, within sampling error. To illustrate, I classifi ed the scores in 
the MCAR column as observed or missing and compared the IQ means for the two groups. 
The complete cases have an IQ mean of 99.73, and the missing cases have a mean of 100.80. 
This rather small mean difference suggests that the two groups are randomly equivalent, and 
it provides evidence that the job performance scores are MCAR. As a contrast, I used the 
performance ratings in the MAR column to form missing data groups. The complete cases 
now have an IQ mean of 105.47, and the missing cases have a mean of 83.60. This large 
disparity suggests that the two groups are systematically different on the IQ variable, so there 
is evidence against the MCAR mechanism. Comparing the missing and complete cases is a 
strategy that is common to the MCAR tests that I describe later in the chapter.

Missing Not at Random Data

Finally, data are missing not at random (MNAR) when the probability of missing data on a 
variable Y is related to the values of Y itself, even after controlling for other variables. To il-
lustrate, reconsider the job performance data in Table 1.2. Suppose that the company hired 
all 20 applicants and subsequently terminated a number of individuals for poor performance 
prior to their 6-month evaluation. You can see that the job performance ratings in the MNAR 
column are missing for the applicants with the lowest job performance ratings. Consequently, 
the probability of a missing job performance rating is dependent on one’s job performance, 
even after controlling for IQ.

It is relatively easy to generate additional examples where MNAR data could occur. Re-
turning to the previous education example, suppose that students with poor reading skills 
have missing test scores because they experienced reading comprehension diffi culties during 
the exam. Similarly, suppose that a number of patients in the cancer trial become so ill (e.g., 
their quality of life becomes so poor) that they can no longer participate in the study. In both 
examples, the data are MNAR because the probability of a missing value depends on the vari-
able that is missing. Like the MAR mechanism, there is no way to verify that scores are MNAR 
without knowing the values of the missing variables.
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1.5 A MORE FORMAL DESCRIPTION OF MISSING DATA THEORY

The previous section is conceptual in nature and omits the mathematical details behind Ru-
bin’s missing data theory. This section expands the previous ideas and gives a more precise 
description of the missing data mechanisms. As an aside, the notation and the terminology 
that I use in this section are somewhat different from Rubin’s original work, but they are 
consistent with the contemporary missing data literature (Little & Rubin, 2002; Schafer, 
1997; Schafer & Graham, 2002).

Preliminary Notation

Understanding Rubin’s (1976) missing data theory requires some basic notation and termi-
nology. The complete data consist of the scores that you would have obtained had there been 
no missing values. The complete data is partially a hypothetical entity because some of its 
values are missing. However, in principle, each case has a score on every variable. This idea 
is intuitive in some situations (e.g., a student’s reading comprehension score is missing be-
cause she was unexpectedly absent from school) but is somewhat unnatural in others (e.g., 
a cancer patient’s quality of life score is missing because he died). Nevertheless, you have to 
assume that a complete set of scores does exist, at least hypothetically. I denote the complete 
data as Ycom throughout the rest of this section.

In practice, some portion of the hypothetically complete data set is often missing. Con-
sequently, you can think of the complete data as consisting of two components, the observed 
data and the missing data (Yobs and Ymis, respectively). As the names imply, Yobs contains the 
observed scores, and Ymis contains the hypothetical scores that are missing. To illustrate, re-
consider the data set in Table 1.2. Suppose that the company used IQ scores as a selection 
measure and did not hire applicants that scored in the lower quartile of the IQ distribution. 
The fi rst two columns of the table contain the hypothetically complete data (i.e., Ycom), and 
the MAR column shows the job performance scores that the human resources offi ce actually 
collected. For a given individual with incomplete data, Yobs corresponds to the IQ variable 
and Ymis is the hypothetical job performance rating. As you will see in the next section, par-
titioning the hypothetically complete data set into its observed and missing components 
plays an integral role in missing data theory.

The Distribution of Missing Data

The key idea behind Rubin’s (1976) theory is that missingness is a variable that has a prob-
ability distribution. Specifi cally, Rubin defi nes a binary variable R that denotes whether a 
score on a particular variable is observed or missing (i.e., r = 1 if a score is observed, and r = 0 
if a value is missing). For example, Table 1.3 shows the MAR job performance ratings and the 
corresponding missing data indicator. A single indicator can summarize the distribution of 
missing data in this example because the IQ variable is complete. However, multivariate data 
sets tend to have a number of missing variables, in which case R becomes a matrix of missing 
data indicators. When every variable has missing values, this R matrix has the same number 
of rows and columns as the data matrix.
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Rubin’s (1976) theory essentially views individuals as having a pair of observations on 
each variable: a score value that may or may not be observed (i.e., Yobs or Ymis) and a corre-
sponding code on the missing data indicator, R. Defi ning the missing data as a variable im-
plies that there is a probability distribution that governs whether R takes on a value of zero 
or one (i.e., there is a function or equation that describes the probability of missingness). For 
example, reconsider the cancer study that I described earlier in the chapter. If the quality of 
life scores are missing as a function of other variables such as age or education, then the coef-
fi cients from a logistic regression equation might describe the distribution of R. In practice, 
we rarely know why the data are missing, so it is impossible to describe the distribution of R 
with any certainty. Nevertheless, the important point is that R has a probability distribution, 
and the probability of missing data may or may not be related to other variables in the data 
set. As you will see, the nature of the relationship between R and the data is what differenti-
ates the missing data mechanisms.

A More Precise Defi nition of the Missing Data Mechanisms

Having established some basic terminology, we can now revisit the missing data mechanisms 
in more detail. The formal defi nitions of the missing data mechanisms involve different prob-
ability distributions for the missing data indicator, R. These distributions essentially describe 
different relationships between R and the data. In practice, there is generally no way to specify 

TABLE 1.3. Missing Data Indicator 
for MAR Job Performance Ratings

 Job performance

Complete MAR Indicator

 9 — 0
13 — 0
10 — 0
 8 — 0
 7 — 0
 7  7 1
 9  9 1
 9  9 1
11 11 1
 7  7 1
 7  7 1
10 10 1
11 11 1
15 15 1
10 10 1
10 10 1
12 12 1
14 14 1
16 16 1
12 12 1
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the parameters of these distributions with any certainty. However, these details are not im-
portant because it is the presence or absence of certain associations that differentiates the 
missing data mechanisms.

The probability distribution for MNAR data is a useful starting point because it includes 
all possible associations between the data and missingness. You can write this distribution as

 p(R|Yobs, Ymis, φ) (1.1)

where p is a generic symbol for a probability distribution, R is the missing data indicator, Yobs 
and Ymis are the observed and missing parts of the data, respectively, and φ is a parameter (or 
set of parameters) that describes the relationship between R and the data. In words, Equation 
1.1 says that the probability that R takes on a value of zero or one can depend on both Yobs 
and Ymis. Said differently, the probability of missing data on Y can depend on other variables 
(i.e., Yobs) as well as on the underlying values of Y itself (i.e., Ymis).

To put Equation 1.1 into context, reconsider the data set in Table 1.2. Equation 1.1 
implies that the probability of missing data is related to an individual’s IQ or job perfor-
mance score (or both). Panel A of Figure 1.2 is a graphical depiction of these relationships 
that I adapted from a similar fi gure in Schafer and Graham (2002). Consistent with Equa-
tion1.1, the fi gure contains all possible associations (i.e., arrows) between R and the data. 
The box labeled Z represents a collection of unmeasured variables (e.g., motivation, health 
problems, turnover intentions, and job satisfaction) that may relate to the probability of 
missing data and to IQ and job performance. Rubin’s (1976) missing data mechanisms are 
only concerned with relationships between R and the data, so there is no need to include Z 
in Equation 1.1. However, correlations between measured and unmeasured variables can 
induce spurious associations between R and Y, which underscores the point that Rubin’s 
mechanisms are not real-world causal descriptions of the missing data.

An MAR mechanism occurs when the probability of missing data on a variable Y is re-
lated to another measured variable in the analysis model but not to the values of Y itself. This 
implies that R is dependent on Yobs but not on Ymis. Consequently, the distribution of missing 
data simplifi es to

 p(R|Yobs, φ) (1.2)

Equation 1.2 says that the probability of missingness depends on the observed portion of 
data via some parameter φ that relates Yobs to R. Returning to the small job performance data 
set, observe that Equation 1.2 implies that an individual’s propensity for missing data de-
pends only on his or her IQ score. Panel B of Figure 1.2 depicts an MAR mechanism. Notice 
that there is no longer an arrow between R and the job performance scores, but a linkage 
remains between R and IQ. The arrow between R and IQ could represent a direct relationship 
between these variables (e.g., the company uses IQ as a selection measure), or it could be a 
spurious relationship that occurs when R and IQ are mutually correlated with one of the 
unmeasured variables in Z. Both explanations satisfy Rubin’s (1976) defi nition of MAR, so 
the underlying causal process is unimportant.
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Finally, the MCAR mechanism requires that missingness is completely unrelated to the 
data. Consequently, both Yobs and Ymis are unrelated to R, and the distribution of missing data 
simplifi es even further to

 p(R|φ) (1.3)

Equation 1.3 says that some parameter still governs the probability that R takes on a value of 
zero or one, but missingness is no longer related to the data. Returning to the job perfor-
mance data set, note that Equation 1.3 implies that the missing data indicator is unrelated to 
both IQ and job performance. Panel C of Figure 1.2 depicts an MCAR mechanism. In this 
situation, the φ parameter describes possible associations between R and unmeasured vari-
ables, but there are no linkages between R and the data. Although it is not immediately obvi-
ous, panel C implies that the unmeasured variables in Z are uncorrelated with IQ and job 
performance because the presence of such a correlation could induce a spurious association 
between R and Y.

FIGURE 1.2. A graphical representation of Rubin’s missing data mechanisms. The fi gure depicts a 
bivariate scenario in which IQ scores are completely observed and the job performance scores (JP) are 
missing for some individuals. The double-headed arrows represent generic statistical associations and 
φ is a parameter that governs the probability of scoring a 0 or 1 on the missing data indicator, R. The 
box labeled Z represents a collection of unmeasured variables.

(C) MCAR Mechanism

IQ

JP

Z

R

(A) MNAR Mechanism

IQ

JP

Z

R

(B) MAR Mechanism

IQ

JP

Z

R
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1.6 WHY IS THE MISSING DATA MECHANISM IMPORTANT?

Rubin’s (1976) missing data theory involves two sets of parameters: the parameters that ad-
dress the substantive research questions (i.e., the parameters that you would have estimated 
had there been no missing data) and the parameters that describe the probability of missing 
data (i.e., φ). Researchers rarely know why the data are missing, so it is impossible to describe 
φ with any certainty. For example, reconsider the cancer study described in the previous sec-
tion. Quality of life scores could be missing as an additive function of age and education, as 
an interactive function of treatment group membership and baseline health status, or as a 
direct function of quality of life itself. The important point is that there is generally no way to 
determine or estimate the parameters that describe the propensity for missing data.

The parameters that describe the probability of missing data are a nuisance and have no 
substantive value (e.g., had the data been complete, there would be reason to worry about 
φ). However, in some situations these parameters may infl uence the estimation of the sub-
stantive parameters. For example, suppose that the goal of the cancer study is to estimate the 
mean quality of life score. Furthermore, imagine that a number of patients become so ill (i.e., 
their quality of life becomes so poor) that they can no longer participate in the study. In this 
scenario, φ is a set of parameters (e.g., logistic regression coeffi cients) that relates the prob-
ability of missing data to an individual’s quality of life score. At an intuitive level, it would be 
diffi cult to obtain an accurate mean estimate because scores are disproportionately missing 
from the lower tail of the distribution. However, if the researchers happened to know the 
parameter values in φ, it would be possible to correct for the positive bias in the mean. Of 
course, the problem with this scenario is that there is no way to estimate φ.

Rubin’s (1976) work is important because he clarifi ed the conditions that need to exist 
in order to accurately estimate the substantive parameters without also knowing the param-
eters of the missing data distribution (i.e., φ). It ends up that these conditions depend on 
how you analyze the data. Rubin showed that likelihood-based analyses such as maximum 
likelihood estimation and multiple imputation do not require information about φ if the data 
are MCAR or MAR. For this reason, the missing data literature often describes the MAR 
mechanism as ignorable missingness because there is no need to estimate the parameters of 
the missing data distribution when performing analyses. In contrast, Rubin showed that 
analysis techniques that rely on a sampling distribution are valid only when the data are 
MCAR. This latter set of procedures includes most of the ad hoc missing data techniques that 
researchers have been using for decades (e.g., discarding cases with missing data).

From a practical standpoint, Rubin’s (1976) missing data mechanisms are essentially 
assumptions that govern the performance of different analytic techniques. Chapter 2 outlines 
a number of missing data handling methods that have been mainstays in published research 
articles for many years. With few exceptions, these techniques assume an MCAR mechanism 
and will yield biased parameter estimates when the data are MAR or MNAR. Because these 
traditional methods require a restrictive assumption that is unlikely to hold in practice, they 
have increasingly fallen out of favor in recent years (Wilkinson & Task Force on Statistical 
Inference, 1999). In contrast, maximum likelihood estimation and multiple imputation yield 
unbiased parameter estimates with MCAR or MAR data. In some sense, maximum likelihood 
and multiple imputation are robust missing data handling procedures because they require 
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less stringent assumptions about the missing data mechanism. However, these methods are 
not a perfect solution because they too will produce bias with MNAR data. Methodologists 
have developed analysis methods for MNAR data, but these approaches require strict assump-
tions that limit their practical utility. Chapter 10 outlines models for MNAR data and shows 
how to use these models to conduct sensitivity analyses.

1.7 HOW PLAUSIBLE IS THE MISSING AT RANDOM MECHANISM?

The methodological literature recommends maximum likelihood and multiple imputation 
because these approaches require the less stringent MAR assumption. It is reasonable to 
question whether this assumption is plausible, given that there is no way to test it. Later in 
the chapter, I describe a number of planned missing data designs that automatically produce 
MAR or MCAR data, but these situations are unique because missingness is under the re-
searcher’s control. In the vast majority of studies, missing values are an unintentional by-
product of data collection, so the MAR mechanism becomes an unverifi able assumption that 
infl uences the accuracy of the maximum likelihood and multiple imputation analyses.

As is true for most statistical assumptions, it seems safe to assume that the MAR as-
sumption will not be completely satisfi ed. The important question is whether routine viola-
tions are actually problematic. The answer to this question is situation-dependent because 
not all violations of MAR are equally damaging. To illustrate, reconsider the job performance 
scenario I introduced earlier in the chapter. The defi nition of MNAR states that a relationship 
exists between the probability of missing data on Y and the values of Y itself. This association 
can occur for two reasons. First, it is possible that the probability of missing data is directly 
related to the incomplete outcome variable. For example, if the company terminates a num-
ber of individuals for poor performance prior to their 6-month evaluation, then there is a 
direct relationship between job performance and the propensity for missing data. However, 
an association between job performance and missingness can also occur because these vari-
ables are mutually correlated with an unmeasured variable. For example, suppose that indi-
viduals with low autonomy (an unmeasured variable) become frustrated and quit prior to 
their six-month evaluation. If low autonomy is also associated with poor job performance, 
then this unmeasured variable can induce a correlation between performance and missing-
ness, such that individuals with poor job performance have a higher probability of missing 
their six-month evaluation.

Figure 1.3 is a graphical depiction of the previous scenarios. Note that I use a straight 
arrow to specify a causal infl uence and a double-headed arrow to denote a generic associa-
tion. Although both diagrams are consistent with Rubin’s (1976) defi nition of MNAR, they 
are not equally capable of introducing bias. Collins, Schafer, and Kam (2001) showed that a 
direct relationship between the outcome and missingness (i.e., panel A) can introduce sub-
stantial bias, whereas MNAR data that results from an unmeasured variable is problematic 
only when correlation between the unmeasured variable and the missing outcome is rela-
tively strong (e.g., greater than .40). The situation in panel B seems even less severe when 
you consider that the IQ variable probably captures some of the variation that autonomy 
would have explained, had it been a measured variable that was included in the statistical 
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analysis. This means that an unmeasured cause of missingness is problematic only if it has a 
strong relationship with the missing outcome after partialling out other measured variables. 
Schafer and Graham (2002, p. 173) argue that this is unlikely in most situations.

Notice that the MNAR mechanism in Panel B of Figure 1.3 becomes an MAR mechanism 
if autonomy is a measured variable that is included in the statistical analysis (i.e., the spuri-
ous correlation between job performance and R disappears once autonomy is partialled out). 
This suggests that you should be proactive about satisfying the MAR assumption by measur-
ing variables that might explain missingness. For example, Graham, Taylor, Olchowski, and 
Cumsille (2006) suggest that variables such as reading speed and conscientiousness might 
explain why some respondents leave questionnaire items blank. In a longitudinal study, 
Schafer and Graham (2002) recommend using a survey question that asks respondents to 
report their likelihood of dropping out of the study prior to the next measurement occasion. 
As noted by Schafer and Graham (2002, p. 173), collecting data on the potential causes of 
missingness “may effectively convert an MNAR situation to MAR,” so you should strongly 
consider this strategy when designing a study.

Of course, not all MNAR data are a result of unmeasured variables. In truth, the likeli-
hood of the two scenarios in Figure 1.3 probably varies across research contexts. There is 
often a tendency to assume that data are missing for rather sinister reasons (e.g., a participant 
in a drug cessation study drops out, presumably because she started using again), and this 
presumption may be warranted in certain situations. For example, Hedeker and Gibbons 
(1997) describe data from a psychiatric clinical trial in which dropout was likely a function 
of response to treatment (e.g., participants in the placebo group were likely to leave the study 
because their symptoms were not improving, whereas dropouts in a drug condition experi-
enced rapid improvement prior to dropping out). Similarly, Foster and Fang (2004) describe 
an evaluation of a conduct disorder intervention in which highly aggressive boys were less 
likely to continue participating in the study. However, you should not discount the possibil-
ity that a substantial proportion of the missing observations are MAR or even MCAR. For 

FIGURE 1.3. A graphical representation of two causal processes that produce MNAR data. The 
fi gure depicts a bivariate scenario in which IQ scores are completely observed and the job performance 
scores (JP) are missing for some individuals. The double-headed arrows represent generic statistical 
associations, and the straight arrows specify a causal infl uences. Panel A corresponds to a situation in 
which the probability of missing data is directly related to the missing outcome variable (i.e., the straight 
arrow between JP and R). Panel B depicts a scenario in which the probability of missing data is indi-
rectly related to the missing outcome variable via the unmeasured cause of missingness in box Z.
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example, Graham, Hofer, Donaldson, MacKinnon, and Schafer (1997) and Enders, Dietz, 
Montague, and Dixon (2006) describe longitudinal studies that made systematic attempts to 
document the reasons for missing data. These studies had a substantial proportion of un-
planned missing data, yet intensive follow-up analyses suggested that the missing data were 
largely benign (e.g., the most common reason for missing data was that students moved out 
of the school where the study took place).

Some researchers have argued that serious violations of MAR are relatively rare (Graham 
et al., 1997, p. 354; Schafer & Graham, 2002, p. 152), but the only way to evaluate the MAR 
assumption is to collect follow-up data from the missing respondents. Of course, this is dif-
fi cult or impossible in many situations. Sensitivity analyses are also useful for assessing the 
potential impact of MNAR data. Graham et al. (1997, pp. 354–358) provide a good illustra-
tion of a sensitivity analysis; I discuss these procedures in Chapter 10.

1.8 AN INCLUSIVE ANALYSIS STRATEGY

The preceding section is overly simplistic because it suggests that the MAR assumption is 
automatically satisfi ed when the “cause” of missingness is a measured variable. In truth, the 
MAR mechanism is a characteristic of a specifi c analysis rather than a global characteristic of 
a data set. That is, some analyses from a given data set may satisfy the MAR assumption, 
whereas others are consistent with an MCAR or MNAR mechanism. To illustrate the subtle-
ties of the MAR mechanism, consider a study that examines a number of health-related be-
haviors (e.g., smoking, drinking, and sexual activity) in a teenage population. Because of its 
sensitive nature, researchers decide to administer the sexual behavior questionnaire to partici-
pants who are above the age of 15. At fi rst glance, this study may appear to satisfy the MAR 
assumption because a measured variable determines whether data are missing. However, this 
is not necessarily true.

Technically, MAR is satisfi ed only if the researchers incorporate age into the missing data 
handling procedure. For example, suppose that the researchers use a simple regression model 
to examine the infl uence of self-esteem on risky sexual behavior. Many software packages that 
implement maximum likelihood missing data handling methods can estimate a regression 
model with missing data, so this is a relatively straightforward analysis. However, the regres-
sion analysis is actually consistent with the MNAR mechanism and may produce biased pa-
rameter estimates, particularly if age and sexual activity are correlated. To understand the 
problem, consider Figure 1.4. This fi gure depicts an indirect MNAR mechanism that is simi-
lar to the one in Panel B of Figure 1.3. Age is not part of the regression model, so it effectively 
operates an unmeasured variable and induces an association between missingness and the 
sexual behavior scores; the fi gure denotes this spurious correlation as a dashed line. The bias 
that results from omitting age from the regression model may not be problematic and de-
pends on the correlation between age and sexual activity. Nevertheless, the regression analy-
sis violates the MAR assumption.

The challenge of satisfying the MAR assumption has prompted methodologists to rec-
ommend a so-called inclusive analysis strategy that incorporates a number of auxiliary 
variables into the analysis model or into the imputation process (Collins, Schafer, & Kam, 
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2001; Rubin, 1996; Schafer, 1997; Schafer & Graham, 2002). Auxiliary variables are vari-
ables you include in an analysis because they are either correlates of missingness or correlates 
of an incomplete variable. Auxiliary variables are not necessarily of substantive interest (i.e., 
you would not have included these variables in the analysis, had the data been complete), so 
their primary purpose is to fi ne-tune the missing data analysis by increasing power or reduc-
ing nonresponse bias. In the health study, age is an important auxiliary variable because it is 
a determinant of missingness, but other auxiliary variables may be correlates of the missing 
sexual behavior scores. For example, a survey question that asks teenagers to report whether 
they have a steady boyfriend or girlfriend is a good auxiliary variable because of its correlation 
with sexual activity. Theory and past research can help identify auxiliary variables, as can the 
MCAR tests described later in the chapter. Incorporating auxiliary variables into the missing 
data handling procedure does not guarantee that you will satisfy the MAR assumption, but it 
certainly improves the chances of doing so. I discuss auxiliary variables in detail in Chapter 5.

1.9 TESTING THE MISSING COMPLETELY AT RANDOM MECHANISM

MCAR is the only missing data mechanism that yields testable propositions. You might ques-
tion the utility of testing this mechanism given that the majority of this book is devoted to 
techniques that require the less stringent MAR assumption. In truth, testing whether an en-
tire collection of variables is consistent with MCAR is probably not that useful because some 
of the variables in a data set are likely to be missing in a systematic fashion. Furthermore, 
fi nding evidence for or against MCAR does not change the recommendation to use maxi-
mum likelihood or multiple imputation. However, identifying individual variables that are not 
MCAR is potentially useful because there may be a relationship between these variables and 
the probability of missingness. As I explained previously, methodologists recommend incor-
porating correlates of missingness into the missing data handling procedure because doing so 
can mitigate bias and improve the chances of satisfying the MAR assumption (Collins et al., 
2001; Rubin, 1996; Schafer, 1997; Schafer & Graham, 2002).

Esteem Age

Sex R

FIGURE 1.4. A graphical representation of an indirect MNAR mechanism. The fi gure depicts a bi-
variate scenario in which self-esteem scores are completely observed and sexual behavior questionnaire 
items are missing for respondents who are less than 15 years of age. If age (the “cause” of missingness) 
is excluded from the analysis model, it effectively acts as an unmeasured variable and induces an as-
sociation between the probability of missing data and the unobserved sexual activity scores. The dashed 
line represents this spurious correlation. Including age in the analysis model (e.g., as an auxiliary vari-
able) converts an MNAR analysis into an MAR analysis.
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To illustrate how you might use the information from an MCAR test, suppose that a 
psychologist is studying quality of life in a group of cancer patients and fi nds that patients 
who refused the quality of life questionnaire have a higher average age and a lower average 
education than the patients who completed the survey. These mean differences provide com-
pelling evidence that the data are not MCAR and suggest a possible relationship between the 
demographic variables and the probability of missing data. Incorporating the demographic 
characteristics into the missing data handling procedure (e.g., using the auxiliary variable 
procedures in Chapter 5) adjusts for age- and education-related bias in the quality of life 
scores and increases the chances of satisfying the MAR assumption. Consequently, using 
MCAR tests to identify potential correlates of missingness is often a useful starting point, 
even if you have no interest in assessing whether an entire set of variables is MCAR.

Rubin’s (1976) defi nition of MCAR requires that the observed data are a simple random 
sample of the hypothetically complete data set. This implies that the cases with missing data 
belong to the same population (and thus share the same mean vector and covariance matrix) 
as the cases with complete data. Kim and Bentler (2002) refer to this condition as homoge-
neity of means and covariances. One way to test for homogeneity of means is to separate the 
missing and the complete cases on a particular variable and examine group mean differences 
on other variables in the data set. Testing for homogeneity of covariances follows a similar 
logic and examines whether the missing data subgroups have different variances and covari-
ances. Finding that the missing data patterns share a common mean vector and a common 
covariance matrix provides evidence that the data are MCAR, whereas group differences in 
the means or the covariances provide evidence that the data are not MCAR.

Methodologists have proposed a number of methods for testing the MCAR mechanism 
(Chen & Little, 1999; Diggle, 1989; Dixon, 1988; Kim & Bentler, 2002; Little, 1988; Muthén, 
Kaplan, & Hollis, 1987; Park & Lee, 1997; Thoemmes & Enders, 2007). This section de-
scribes two procedures that evaluate mean differences across missing data patterns. I omit 
procedures that assess homogeneity of covariances because it seems unlikely that covariance 
differences would exist in the absence of mean differences. In addition, simulation studies 
offer confl icting evidence about the performance of covariance-based tests (Kim & Bentler, 
2002; Thoemmes & Enders, 2007). It therefore seems safe to view these procedures with 
caution until further research accumulates. Interested readers can consult Kim and Bentler 
(2002) for an overview of covariance-based tests.

Univariate t-Test Comparisons

The simplest method for assessing MCAR is to use a series of independent t tests to compare 
missing data subgroups (Dixon, 1988). This approach separates the missing and the com-
plete cases on a particular variable and uses a t test to examine group mean differences on 
other variables in the data set. The MCAR mechanism implies that the cases with observed 
data should be the same as the cases with missing values, on average. Consequently, a non-
signifi cant t test provides evidence that the data are MCAR, whereas a signifi cant t statistic 
(or alternatively, a large mean difference) suggests that the data are MAR or MNAR.

To illustrate the t-test approach, reconsider the data in Table 1.1. To begin, I used the job 
performance scores to create a binary missing data indicator and subsequently used indepen-
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dent t tests to assess group mean differences on IQ and psychological well-being. The miss-
ing and complete cases have IQ means of 88.50 and 111.50, respectively, and Welch’s t test 
indicated that this mean difference is statistically signifi cant, t(14.68) = 6.43, p < .001. Con-
sidering psychological well-being, the means for the missing and complete cases are 9.13 and 
11.44, respectively, and the t test was not signifi cant, t(11.70) = 1.39, p = .19. Collectively, 
these tests suggest that the job performance ratings are not MCAR because the missing and 
observed cases systematically differ with respect to IQ. This conclusion is correct because I 
deleted job performance scores for the cases in the lower half of the IQ distribution. Next, I 
repeated this procedure by forming a missing data indicator from the psychological well-
being scores and by testing whether the resulting groups had different IQ means (it was im-
possible to compare the job performance means because only one case from the missing data 
group had a job performance score). The t test indicated that the group means are equivalent, 
t(3.60) = .50, p = .65, which correctly provides support for the MCAR mechanism.

The t-test approach has a number of potential problems to consider. First, generating the 
test statistics can be very cumbersome unless you have a software package that automates 
the process (e.g., the SPSS Missing Values Analysis module). Second, the tests do not take 
the correlations among the variables into account, so it is possible for a missing data indica-
tor to produce mean differences on a number of variables, even if there is only a single cause 
of missingness in the data. Related to the previous points, the potential for a large number 
of statistical tests and the possibility of spurious associations seem to warrant some form of 
type I error control. The main reason for implementing the t-test approach is to identify aux-
iliary variables that you can later adjust for in the missing data handling procedure. I would 
argue against any type of error control procedure because there is ultimately no harm in using 
auxiliary variables that are unrelated to missingness (Collins et al., 2001). Another problem 
with the t-test approach is the possibility of very small group sizes (e.g., there are only three 
cases in Table 1.1 with missing well-being scores). This can decrease power and make it im-
possible to perform certain comparisons. To offset a potential loss of power, it might be useful 
to augment the t tests with a measure of effect size such as Cohen’s (1988) standardized 
mean difference. Finally, it is important to note that mean comparisons do not provide a 
conclusive test of MCAR because MAR and MNAR mechanisms can produce missing data 
subgroups with equal means.

Little’s MCAR Test

Little (1988) proposed a multivariate extension of the t-test approach that simultaneously 
evaluates mean differences on every variable in the data set. Unlike univariate t tests, Little’s 
procedure is a global test of MCAR that applies to the entire data set. Omnibus tests of the 
MCAR mechanism are probably not that useful because they provide no way to identify po-
tential correlates of missingness (i.e., auxiliary variables). Nevertheless, Little’s test is avail-
able in some statistical software packages (e.g., the SPSS Missing Values Analysis module), so 
the procedure warrants a description.

Like the t-test approach, Little’s test evaluates mean differences across subgroups of 
cases that share the same missing data pattern. The test statistic is a weighted sum of the 
standardized differences between the subgroup means and the grand means, as follows:
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 d2 = ∑
J

j=1 
nj(�̂j – �̂j

(ML))T

�̂j
–1(�̂j – �̂j

(ML)) (1.4)

where nj is the number of cases in missing data pattern j, �̂j contains the variable means for 
the cases in missing data pattern j, �̂j

(ML) contains maximum likelihood estimates of the grand 
means, and �̂j is the maximum likelihood estimate of the covariance matrix. The j subscript 
indicates that the number of elements in the parameter matrices vary across missing data 
patterns. The d2 statistic is essentially a weighted sum of J squared z scores. Specifi cally, the 
parentheses contain deviation scores that capture differences between pattern j’s means and 
the corresponding grand means. With MCAR data, the subgroup means should be within 
sampling error of the grand means, so small deviations are consistent with an MCAR mecha-
nism. In matrix algebra, multiplying by the matrix inverse is analogous to division, so the �̂j

–1 
term functions like the denominator of the z score formula by converting the raw deviation 
values to a standardized metric. Finally, multiplying the squared z values by nj weights each 
pattern’s contribution to the test statistic. When the null hypothesis is true (i.e., the data are 
MCAR), d2 is approximately distributed as a chi-square statistic with Σkj– k degrees of free-
dom, where kj is the number of complete variables for pattern j, and k is the total number of 
variables. Consistent with the univariate t-test approach, a signifi cant d2 statistic provides evi-
dence against MCAR.

To illustrate Little’s MCAR test, reconsider the small data set in Table 1.1. The data con-
tain four missing data patterns: cases with only IQ scores (nj = 2), cases with IQ and well-
being scores (nj = 8), cases with IQ and job performance scores (nj = 1), and cases with 
complete data on all three variables (nj = 9). The test statistic in Equation 1.4 compares the 
subgroup means to the maximum likelihood estimates of the grand means. I outline maxi-
mum likelihood missing data handling in Chapter 4, but for now, the necessary parameter 
estimates are as follows:

 μ̂IQ 100.00
 �̂ = [ μ̂JP ] = [ 10.23] μ̂WB 10.27

 σ̂2
IQ σ̂IQ,JP σ̂IQ,WB 189.60 22.31 12.21

 �̂ = [ σ̂JP,IQ   σ̂2
JP  σ̂JP,WB ] = [  22.31 8.68  5.61] σ̂WB,IQ σ̂WB,JP σ̂2

WB 12.21 6.50 11.04

To begin, consider the group of cases with data on only IQ (nj = 2). This pattern has an 
IQ mean of 91.50, so its contribution to the d2 statistic is as follows:

 d2
j = 2(91.50 – 100.00)(189.60–1)(91.50 – 100.00) = 0.762

Next, consider the subgroup of cases with complete data on IQ and well-being (nj = 8). The 
IQ and well-being means for this pattern are 87.75 and 9.13, respectively, and the contribu-
tion to the d2 statistic is

 
d2

j = 8([87.75] – [100.00])T[189.60 12.21]–1([87.75] – [100.00]) = 6.432
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In both of the previous examples, notice that �̂j and �̂j contain the maximum likelihood es-
timates that correspond to the observed variables for a particular pattern (i.e., the estimates 
that correspond to the missing variables do not appear in the matrices). Repeating the com-
putations for the remaining missing data patterns and summing the resulting d2

j  values yields 
d2 = 14.63, and referencing the test statistic to a chi-square distribution with 5 degrees of 
freedom returns a probability value of p = .01. The null hypothesis for Little’s test states that 
the data are MCAR, so a statistically signifi cant test statistic provides evidence against the 
MCAR mechanism.

Like the t-test approach, Little’s test has a number of problems to consider. First, the test 
does not identify the specifi c variables that violate MCAR, so it is only useful for testing an 
omnibus hypothesis that is unlikely to hold in the fi rst place. Second, the version of the test 
outlined above assumes that the missing data patterns share a common covariance matrix. 
MAR and MNAR mechanisms can produce missing data patterns with different variances and 
covariances, and the test statistic in Equation 1.4 would not necessarily detect covariance-
based deviations from MCAR. Third, simulation studies suggest that Little’s test suffers from 
low power, particularly when the number of variables that violate MCAR is small, the rela-
tionship between the data and missingness is weak, or the data are MNAR (Thoemmes & 
Enders, 2007). Consequently, the test has a propensity to produce Type II errors and can lead 
to a false sense of security about the missing data mechanism. Finally, mean comparisons do 
not provide a conclusive test of MCAR because MAR and MNAR mechanisms can produce 
missing data subgroups with equal means.

1.10 PLANNED MISSING DATA DESIGNS

The next few sections outline research designs that produce MCAR or MAR data as an inten-
tional by-product of data collection. The idea of intentional missing data might seem odd at 
fi rst, but you may already be familiar with a number of these designs. For example, in a ran-
domized study with two treatment conditions, each individual has a hypothetical score from 
both conditions, but participants only provide a response to their assigned treatment condi-
tion. The unobserved response to the other condition (i.e., the potential outcome or counter-
factual) is MCAR. Viewing randomized experiments as a missing data problem is popular in 
the statistics literature and is a key component of Rubin’s Causal Model (Rubin, 1974, 1978a; 
West & Thoemmes, in press). A fractional factorial design (Montgomery, 1997) is another 
research design that yields MCAR missing data. In a fractional factorial, you purposefully se-
lect a subset of experimental conditions from a full factorial design and randomly assign par-
ticipants to these conditions. A classic example of intentional MAR data occurs in selection 
designs where scores on one variable determine whether respondents provide data on a sec-
ond variable. For example, universities frequently use the Graduate Record Exam (GRE) as a 
selection tool for graduate school admissions, so fi rst-year grade point averages are subse-
quently missing for students who score below some GRE threshold. A related issue arises in 
survey designs where the answer to a screener question dictates a particular skip pattern. Se-
lection problems such as this have received considerable attention in the methodological lit-
erature (Sackett & Yang, 2000) and date back to Pearson’s (1903) work on range restriction.
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The previous designs are classic examples of intentional missing data that do not neces-
sarily require missing data techniques. The advent of maximum likelihood estimation and 
multiple imputation has prompted methodologists to develop specialized planned missing 
data designs that address a number of practical problems (Graham et al., 2006). For ex-
ample, researchers often face constraints on the number of questionnaire items that they can 
reasonably expect respondents to answer, and this problem becomes more acute in longitu-
dinal studies where respondents fi ll out questionnaire batteries on multiple occasions. Limit-
ing the number of variables is one obvious solution to this problem, but introducing planned 
missing data is another possibility. In a planned missing data design, you distribute the ques-
tionnaire items across different forms and administer a subset of the forms to each respon-
dent. This strategy allows you to collect data on the full set of questionnaire items while 
simultaneously reducing respondent burden.

Planned missingness is not limited to questionnaire data and has a number of other in-
teresting applications. For example, suppose that a researcher wants to use two data collection 
methods, one of which is very expensive. To illustrate, imagine a study in which a researcher 
is collecting brain image data. Ideally, she would like to collect her data using magnetic reso-
nance imaging (MRI), but the MRI is very expensive and she has diffi culty accessing it for 
extended periods. However, she can readily collect data using the less expensive computed 
tomography (CT) scan. Planned missingness is ideally suited for this situation because the 
researcher can collect CT data from every participant and restrict the MRI data to a subset of 
her sample. A similar example occurs with body fat measurements from an exercise physiol-
ogy study. A researcher can readily use a set of calipers to take skinfold measurements from 
all of his subjects but might use a more expensive technique (e.g., air displacement in a BOD 
POD) on a subset of the participants. Importantly, maximum likelihood and multiple impu-
tation allow researchers to analyze data from planned missingness designs without having to 
discard the incomplete cases. For example, the exercise physiologist can use the entire sample 
to estimate the associations between the expensive measure and other study variables, even 
though a subset of the cases has missing data on the expensive measure.

Planned missing data strategies have been available for many years and have a number 
of interesting applications (Johnson, 1992; Lord, 1962; Raghunathan & Grizzle, 1995; Shoe-
maker, 1973). I focus primarily on the planned missing data designs outlined by John Graham 
and his colleagues (Graham et al., 1996; Graham, Taylor, & Cumsille, 2001; Graham et al., 
2006). In particular, the subsequent sections describe a three-form design that is widely ap-
plicable to questionnaire data collection and planned missingness designs for longitudinal 
studies. Readers interested in additional details on planned missingness designs can consult 
Graham et al. (2006).

As an aside, my experience suggests that researchers tend to view the idea of planned 
missing data with some skepticism and are often reluctant to implement this strategy. This 
skepticism probably stems from a presumption that missing data can bias the analysis re-
sults. However, the planned data designs in this section produce MCAR data, so the only 
potential downside is a loss of statistical power. Planned missingness designs are very fl exible 
and allow you to address power concerns by restricting the missing data to certain variables. 
Every research study involves compromises, so you have to decide whether collecting addi-
tional variables offsets the resulting loss of power. Of course, increasing the sample size will 
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always improve power, but this may not be feasible. In any case, planned missing data de-
signs are highly useful and underutilized tools that will undoubtedly increase in popularity as 
researchers become familiar with their benefi ts.

1.11 THE THREE-FORM DESIGN

Researchers in many disciplines use multiple-item questionnaires to measure complex con-
structs. For example, psychologists routinely use several questionnaire items to measure 
depression, each of which taps into a different depressive symptom (e.g., sadness, lack of 
energy, sleep diffi culties, feelings of hopelessness). Using multiple-item questionnaires to 
measure even a relatively small number of variables can introduce a substantial respondent 
burden. Graham et al. (1996) addressed this problem with a three-form design that distrib-
utes a subset of questionnaire items to each respondent. The design divides the item pool 
into four sets (X, A, B, and C) and allocates these sets across three questionnaire forms, such 
that each form includes X and is missing A, B, or C. Table 1.4 shows the distribution of the 
item sets across the three questionnaire forms. Note that each item set can include multiple 
questionnaires or combinations of items from multiple questionnaires (e.g., item set X can 
include a depression questionnaire and a self-esteem questionnaire).

To illustrate the three-form design, suppose that a researcher plans to use eight question-
naires, each of which has 10 items. Concerned that her study participants will not have time 
to complete all 80 questions, she uses a three-form design to reduce respondent burden. 
Table 1.5 shows what the three-form design would look like if the researcher equally distrib-
uted her questionnaires across the four item sets (i.e., she assigns two questionnaires to set 
X, A, B, and C). Notice that the 3-form design allows the researcher to collect data on 80 
questionnaire items, even though any given respondent only answers 60 items. Importantly, 
maximum likelihood estimation and multiple imputation allow the researcher to analyze the 
data without discarding incomplete cases.

The three-form design is fl exible and does not require an equal number of questionnaire 
items in each item set. For example, the researcher could use the three-form design in Table 
1.6 if she wanted to increase the number of variables in the X set, although this would require 
each participant to answer 70 items. In addition, there is no need to group questionnaire 
items together in the same set (e.g., assign all Q1 items to set X), and it is possible to distrib-
ute questionnaire items across more than one item set (e.g., assign fi ve of the Q1 items to set 

TABLE 1.4. Missing Data Pattern for a 
Three-Form Design

 Item sets

Form X A B C

1 ✓ — ✓ ✓

2 ✓ ✓ — ✓

3 ✓ ✓ ✓ —

Note. A check mark denotes complete data.  
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X and the remaining fi ve items to set A). Graham et al. (1996) used a computer simulation 
study to investigate this issue and found that splitting the questionnaire across multiple item 
sets reduced the standard errors from a regression analysis. Despite this slight power advan-
tage, Graham et al. (2006) recommend grouping the questionnaire items together in the same 
item set because this strategy facilitates the statistical analyses, particularly with a large num-
ber of variables.

How Does the Three-Form Design Impact Power?

The main downside of planned data designs is a potential loss of statistical power. Fortu-
nately, you can mitigate this power loss by carefully aligning the questionnaire forms to your 
substantive goals. However, doing so requires an understanding of some of the subtleties of 
the three-form design and its infl uence on statistical power. This section describes a number 
of these subtleties and illustrates the infl uence of planned missing data on statistical power. 
For simplicity, I restrict the subsequent discussion to correlations, but the basic ideas gener-
alize to other analyses. Interested readers can fi nd a more thorough discussion of power in 
Graham et al. (2006).

There are essentially three tiers of power in the three-form design, and the power of a 
given statistical test depends on the particular combination of item sets that are involved. To 
illustrate, reconsider the three-form design in Table 1.5. Table 1.7 shows a covariance cover-
age matrix that gives the percentage of respondents with complete data on a given question-

TABLE 1.5. Missing Data Pattern for a Three-Form Design with Eight Questionnaires

 Item Sets

 X A B C

Form Q1 Q2  Q3 Q4  Q5 Q6  Q7 Q8

1 ✓ ✓ ✓ ✓ ✓ ✓ — —
2 ✓ ✓ ✓ ✓ — — ✓ ✓

3 ✓ ✓  — —  ✓ ✓  ✓ ✓

Items 10 10  10 10  10 10  10 10

Note. A check mark denotes complete data.

TABLE 1.6. Missing Data Pattern for a Three-Form Design with Unequal Item Sets

 Item sets

 X A B C

Form Q1 Q2 Q3 Q4 Q5  Q6  Q7  Q8

1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ —
2 ✓ ✓ ✓ ✓ ✓ ✓ — ✓

3 ✓ ✓ ✓ ✓ ✓  —  ✓ ✓

Items 10 10 10 10 10  10  10  10

Note. A check mark denotes complete data.
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naire (the diagonal elements) or pair of questionnaires (the off-diagonal elements). The entire 
sample has complete data on a single pair of questionnaires (i.e., Q1 and Q2), 15 of the ques-
tionnaire pairs have a 33% missing data rate (e.g., Q1 and Q3), and 12 pairs have 66% missing 
data (e.g., Q3 and Q5). Not surprisingly, the percentages in Table 1.7 have an impact on sta-
tistical power. Analyses that involve two variables from the X set (e.g., the correlation between 
Q1 and Q2) have the highest power because these variables have no missing data. A second 
tier of associations has somewhat less power and includes correlations between an X variable 
and a variable from item set A, B, or C (e.g., the correlation between Q1 and Q3) and relation-
ships between variables within set A, B, or C (e.g., the correlation between Q3 and Q4). Fi-
nally, any correlations between A, B, or C variables (e.g., the correlation between Q3 and Q5) 
will have the lowest power.

With such a large proportion of missing data, you might expect certain associations to 
produce abysmal power. However, this is not necessarily true. To illustrate, I performed two 
computer simulation studies that examined the infl uence of the three-form design on power. 
To mimic the previous research scenario, I generated 5,000 samples of N = 300, each with 
eight normally distributed variables. The fi rst simulation generated variables with a popula-
tion correlation of ρ = .30, and the second simulation generated data from a population with 
ρ = .10. These population correlations correspond to Cohen’s (1988) benchmarks for a 
medium and a small effect size, respectively. I subsequently deleted data according to the 
three-form design in Table 1.5 and then used maximum likelihood missing data handling to 
estimate the sample correlation matrix for each of the 5,000 replicates. Because I generated 
the data from a population with a nonzero correlation, the proportion of the 5,000 replica-
tions that produced a statistically signifi cant correlation is an estimate of power.

Table 1.8 gives the power estimates from the simulation studies. To begin, consider the 
power values from the ρ = .30 simulation. Notice that the correlation between Q1 and Q3 (the 
two X set variables) had a power of 1.00. These variables had complete data, so this power 
estimate serves as a useful benchmark for assessing the impact of planned missingness. It 
may be somewhat surprising and counterintuitive to fi nd that the decrease in power was not 

TABLE 1.7. Covariance Coverage Matrix for a Three-Form Design 

 Item set

 X A B C

Set Scale Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

X Q1 100%         
 Q2 100% 100%            

A Q3  66%  66% 66%          
 Q4  66%  66% 66% 66%        

B Q5  66%  66% 33% 33% 66%      
 Q6  66%  66% 33% 33% 66% 66%    

C Q7  66%  66% 33% 33% 33% 33% 66%
 Q8  66%  66% 33% 33% 33% 33% 66% 66%

Note. The percentages represent the amount of complete data for a variable or variable pair.
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commensurate with overall reduction in sample size. For example, consider the correlation 
between Q1 and Q3. A 33% missing data rate on Q3 produced a 1% drop in power. The cor-
relation between Q3 and Q5 is even more remarkable because one-third of the sample had 
complete data on this variable pair, yet power decreased by only 10%. The fact that power did 
not decrease dramatically is largely a by-product of maximum likelihood estimation. As you 
will see in Chapter 4, maximum likelihood uses the entire sample to estimate the parameters, 
so estimation effectively borrows information from the observed data to estimate the param-
eters of the incomplete variables (e.g., cases with missing Q3 scores have Q1 data that can 
help estimate the correlation between Q1 and Q3). Consequently, the loss of power from a 
planned missing data design is not necessarily as extreme as you might expect.

Next, consider the power estimates from the ρ = .10 simulation. In this situation, the 
correlation between the two complete variables (i.e., Q1 and Q2) had a power value of .41. 
Again, this power estimate serves as a useful benchmark for assessing the impact of planned 
missingness. Consistent with the previous simulation results, the decrease in power was not 
commensurate with overall reduction in sample size, although it was more nearly so. For 
example, the variable pairs with 33% missing data had an average power decrease of approxi-
mately 28%, while power dropped by roughly 55% for the variable pairs with a 66% missing 
data rate. In this simulation, relatively weak correlations limited the amount of information 
that maximum likelihood could borrow from the observed data, so the drop in power more 

TABLE 1.8. Correlation Power Estimates from a Three-Form Design

 Item set

 X A B C

ρ Set Scale Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

0.3 X Q1 —              
  Q2 1.00 —            

 A Q3  .99 .99 —          
  Q4  .99 .99 .99 —        

 B Q5  .99 .99 .90 .90 —      
  Q6  .99 .99 .90 .90 .99 —    

 C Q7  .99 .99 .91 .91 .90 .91 —
  Q8  .99 .99 .90 .91 .91 .90 .99 —

0.1 X Q1 —              
  Q2  .41 —            

 A Q3  .29 .30 —          
  Q4  .30 .30 .28 —        

 B Q5  .30 .30 .18 .18 —      
  Q6  .30 .30 .19 .18 .29 —    

 C Q7  .30 .31 .20 .19 .19 .18 —
  Q8  .29 .29 .18 .18 .18 .19 .29 —
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closely approximates the missing data rate. As a rule, the impact of missing data on power 
will diminish as the correlations among the variables increase in magnitude.

Increasing the number of variables in the X set is one way to improve the power of a 
planned missingness design because it will increase the number of hypotheses that you can 
test with the full sample. Fortunately, the three-form design is fl exible and does not require 
an equal distribution of questionnaire items across the four item sets. For example, the three-
form design in Table 1.6 assigns fi ve questionnaires to the X set and one questionnaire to 
each of the remaining sets. This design dramatically increases the number of variable pairs 
with complete data and decreases the number of tests with low power. Effect size is another 
factor that you can use to manipulate the power of a planned missing data design. For ex-
ample, variables that you expect to produce a large effect size are good candidates for the A, 
B, or C set because they have lower sample size requirements. Conversely, you should con-
sider placing a variable in the X set if you expect it to produce a small effect size because 
doing so will maximize power. Implementing a planned missingness design clearly requires 
some careful preparation, but these designs are very fl exible and allow you to balance sub-
stantive and power concerns. Graham et al. (2006) provide additional details on the power 
of a three-form design.

Estimating Interaction Effects from a Three-Form Design

There are a number of nuances to consider when deciding how to distribute questionnaires 
across the four item sets. The previous section clearly suggests that the placement of a ques-
tionnaire infl uences statistical power. Questionnaire placement becomes even more critical 
when the goal is to estimate interaction effects. Unlike some planned missing data designs, 
the three-form design allows you to estimate every zero-order association in the data. How-
ever, the design does have limitations for testing higher-order effects.

Returning to the three-form design in Table 1.5, suppose that the researcher wants to 
examine whether Q5 moderates the relationship between Q3 and Q7 (i.e., a B variable moder-
ates the association between an A variable and a C variable). One way to address this ques-
tion is to estimate a regression model with Q3, Q5, and the Q3Q5 product term as predictors 
of Q7 (Aiken & West, 1991). However, it is impossible to estimate this regression model from 
the three-form design in Table 1.5. To illustrate the problem, Table 1.9 shows the missing 
data patterns that result when you form a product term between an A variable and a B vari-
able (e.g., the Q3Q5 product term). Notice that one-third of the sample has complete data on 
both A and B (and thus the AB product term), but this subset of cases does not have data on 
the criterion variable from the C set. Consequently, there is no way to estimate the association 
between the outcome variable and the product term.

The three-form design does allow for two-way interactions, but one or more of the analy-
sis variables must be from the X set (it does not matter whether this variable is a predictor or 
the criterion). To illustrate, suppose that an X variable moderates the association between a 
B variable and a C variable (e.g., a regression model with X, B, and the XB product term as 
predictors of C). Table 1.9 shows the missing data patterns for this new confi guration of vari-
ables. Notice that every bivariate relationship among the regression model variables appears 
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in at least one questionnaire form, so it is now possible to estimate the model. Not surpris-
ingly, questionnaire placement becomes more complex with three-way interactions. The three-
form design does allow you to estimate certain three-way interactions, but the X set must 
include the criterion variable and at least one of the predictor variables.

1.12 PLANNED MISSING DATA FOR LONGITUDINAL DESIGNS

The problem of respondent burden can be particularly acute in longitudinal studies where 
participants fi ll out questionnaire batteries on multiple occasions. Graham et al. (2001) 
 applied the logic of the three-form design to longitudinal data and investigated the power 
of several planned missingness designs. The basic idea behind these designs is to split the 
sample into a number of random subgroups and impose planned missing data patterns on 
each subgroup. Table 1.10 is an example of one such design where the random subgroups 
have missing data at a single wave.

Graham et al. (2001) outlined a number of planned missing data designs and examined 
each design’s power to detect an intervention effect in a longitudinal analysis. The design in 
Table 1.10 was 94% as powerful as a complete-data analysis, but there were other designs 
that produced comparable power with fewer data points. For example, Table 1.11 shows a 
design that was 91% as powerful as a complete-data analysis but eliminated 44% of the total 
data points. (By data points, I mean the total number of observations in the data matrix.) The 
interesting thing about these results is that the planned missing data designs were actually 

TABLE 1.9. Missing Data Pattern for a Three-Form Design with 
Interaction Terms 

  Interaction
 Item sets terms

Form X A B C  AB XB

1 ✓ — ✓ ✓ — ✓

2 ✓ ✓ — ✓ — —
3 ✓ ✓ ✓ —  ✓ ✓

Note. A check mark denotes complete data.

TABLE 1.10. Planned Missing Data Pattern 1 for a Longitudinal Design

 Data collection wave

Group 1 2 3 4 5 % of N

1 ✓ ✓ ✓ ✓ ✓ 16.7
2 ✓ ✓ ✓ ✓ — 16.7
3 ✓ ✓ ✓ — ✓ 16.7
4 ✓ ✓ — ✓ ✓ 16.7
5 ✓ — ✓ ✓ ✓ 16.7
6 — ✓ ✓ ✓ ✓ 16.7

Note. A check mark denotes complete data.
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more powerful than a complete-data design that used the same number of data points. This 
has important implications for designing a longitudinal study. For example, suppose that 
each assessment (i.e., data point) costs $50 to administer and your grant budget allows you 
to collect 1,000 assessments. Graham et al.’s simulation results suggest that collecting com-
plete data from N participants will actually yield less power than collecting incomplete data 
from a larger number of respondents.

The Graham et al. (2001) designs are particularly useful for studies that examine change 
following an intervention or a treatment. However, many researchers are interested in devel-
opmental processes that involve age-related change (e.g., the development of reading skills in 
early elementary school, the development of religiousness throughout the life span, the de-
velopment of behavioral problems during the teenage years). The so-called cohort-sequential 
design (Duncan, Duncan, & Hops, 1996; Nesselroade & Baltes, 1979) is a common planned 
missing data design that is ideally suited for this type of research question.

The basic idea behind the cohort-sequential design is to combine a number of short-
term longitudinal studies into a single longitudinal data analysis. You do this by sampling 
different age cohorts at the initial data collection wave and following each cohort over the 
same period. Table 1.12 shows the cohort-sequential design from a 3-year study of teenage 
alcohol use (Duncan et al., 1996). Notice that each age cohort has three waves of intentional 
missing data (e.g., the 12-year-olds have missing data at ages 15, 16, and 17, the 13-year-olds 
have missing data at ages 12, 16, and 17, and so on). Maximum likelihood missing data 
handling allows you to combine data from multiple cohorts into a single data analysis, so you 
can examine change over a developmental span that exceeds the data collection period. For 
example, Duncan et al. (1996) used the design in Table 1.12 to examine the change in alco-
hol use over the 5-year period between ages 12 and 17. Like other planned missingness de-
signs, the cohort-sequential design yields MCAR data.

The cohort-sequential design is extremely useful for developmental research but has an 
important limitation. Unlike the other designs in this section, the cohort-sequential design 
includes variable pairs that are completely missing. For example, the design in Table 1.12 
yields missing data for six variable pairs: ages 12 and 15, 12 and 16, 12 and 17, 13 and 16, 
13 and 17, and 14 and 17. These missing data patterns pose no problem for a longitudinal 
growth curve analysis, but they limit your ability to estimate zero-order correlations. The only 
way to eliminate this problem is to collect data across the entire developmental span, but this 

TABLE 1.11. Planned Missing Data Pattern 2 for a Longitudinal Design

 Data collection wave

Group 1 2 3 4 5 % of N

1 ✓ ✓ ✓ ✓ ✓  9.1
2 ✓ ✓ ✓ — — 10.1
3 ✓ ✓ — ✓ — 10.1
4 ✓ — ✓ ✓ — 10.1
5 ✓ ✓ — — ✓ 20.2
6 ✓ — ✓ — ✓ 20.2
7 ✓ — — ✓ ✓ 20.2

Note. A check mark denotes complete data.
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defeats the purpose of the design. Despite this important limitation, the cohort-sequential 
design is a useful tool for examining age-related change that is quite common, particularly in 
psychological research. As an aside, the fact that certain correlations are inestimable rules out 
multiple imputation as a missing data handling technique for this design (the sample covari-
ance matrix plays an integral role in the imputation process). This problem is not a concern 
when using maximum likelihood to estimate a growth curve model.

1.13 CONDUCTING POWER ANALYSES FOR PLANNED MISSING 
DATA DESIGNS

Estimating power is one of the diffi culties associated with implementing a planned missing 
data design. The power loss in these designs is generally not proportional to the decrease in 
the sample size and depends on the magnitude of the correlations among the methods. This 
makes it very diffi cult to get accurate power estimates from standard analysis techniques. 
Researchers have outlined power analysis techniques that account for missing data, but these 
approaches are limited in scope (Hedeker, Gibbons, & Waternaux, 1999; Tu et al., 2007). 
Monte Carlo computer simulations are a useful alternative that you can use to estimate power 
for virtually any analysis. This section describes how to use computer simulations to estimate 
power for the three-form design, but the basic approach generalizes to any number of power 
analyses, with or without missing data. Paxton, Curran, Bollen, Kirby, and Chen (2001) give 
a more detailed overview of Monte Carlo methodology, and Muthén and Muthén (2002) il-
lustrate Monte Carlo power simulations.

A Monte Carlo simulation generates a large number of samples from a population with 
a hypothesized set of parameter values. Estimating a statistical model on each artifi cial sam-
ple and saving the resulting parameter estimates yield an empirical sampling distribution for 
each model parameter. The ultimate goal of a power simulation is to determine the propor-
tion of statistically signifi cant parameter estimates in this distribution. Many statistical soft-
ware packages have built-in data generation routines that do not require much programming, 
so it is relatively straightforward to perform power simulations. Structural equation modeling 
packages are particularly useful because they offer a variety of different data generation and 
analysis options. Some of these packages also have a number of built-in routines for simulat-
ing missing data.*

*Analysis syntax is available on the companion website, www.appliedmissingdata.com.

TABLE 1.12. Missing Data Pattern for a Cohort-Sequential Design

 Yearly data collection points

Cohort 12 13 14 15 16 17

12 ✓ ✓ ✓ — — —
13 — ✓ ✓ ✓ — —
14 — — ✓ ✓ ✓ —
15 — — — ✓ ✓ ✓

Note. A check mark denotes complete data.
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The fi rst step of a computer simulation is to specify the population parameters. In my 
previous power simulations, I specifi ed eight standardized variables from a normally distrib-
uted population with correlations of ρ = .10 and .30. This is a very straightforward data 
generation model, but specifying the population parameters is typically the most diffi cult 
aspect of a computer simulation. For example, a Monte Carlo power analysis for a regression 
model requires population values for all model parameters (i.e., the regression coeffi cients, 
correlations among predictors, and residual variance). This is not unique to Monte Carlo 
power simulations, and standard power analyses effectively require the same information 
expressed in the form of an effect size. For example, Cohen’s (1988) approach converts the 
regression model parameters into an f 2 effect size metric. The population correlations that I 
used are convenient because they align with Cohen’s small and medium effect size bench-
marks, but deriving parameter values from published research studies or meta-analyses is a 
much better approach.

The next step of the simulation process is to generate a large number of samples from 
the specifi ed population model. For example, my previous simulations generated 5,000 sam-
ples of N = 300 cases each. Software packages with built-in Monte Carlo routines typically 
require only a couple of key words or commands to specify the number of samples and the 
size of each sample. Simulating missing values can be a diffi cult aspect of a power simulation. 
Some software packages have built-in routines for generating missing data, whereas others 
do not. Again, structural equation modeling packages are particularly useful because some 
programs offer a number of options for simulating missing data. The availability of such a 
routine may be a factor to consider when choosing a software package.

The next step of the simulation is to estimate a statistical model on each artifi cial data 
set. In my previous power simulations, I used maximum likelihood missing data handling to 
estimate the correlation matrix for each of the 5,000 samples. As you will see in Chapter 4, 
maximum likelihood estimation is very easy to implement and typically requires only a single 
additional key word or line of code. Maximum likelihood missing data handling is imple-
mented in virtually every structural equation modeling program, and I rely heavily on these 
packages throughout the book.

Describing the empirical sampling distribution of the parameter estimates is the fi nal step 
of a computer simulation. For the purpose of a power analysis, you would always generate 
the data from a population where the null hypothesis is false (e.g., the population correlation 
is nonzero). Consequently, power is the proportion of samples that produce a statistically 
signifi cant parameter estimate. Programs that have built-in Monte Carlo facilities often report 
the proportion of signifi cant replications as part of their standard output, so obtaining the 
power estimates often requires no additional programming.

Using Monte Carlo simulations to estimate power sounds tedious, but software pack-
ages tend to automate the process. Generating the power estimates in Table 1.8 was actually 
quite easy and took just a few lines of code. Specifying reasonable values for the population 
parameters is by far the most time-consuming part of the process. Once you write the pro-
gram, the software package automatically generates the data, estimates the model, and sum-
marizes the simulation results. For many common statistical models, this entire process takes 
just a few minutes to complete.

As an aside, you can also use standard analysis techniques to estimate the power 
for planned missingness designs (Graham et al., 2006, p. 340), but this is a less accurate 
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approach. As an illustration, reconsider the three-form design in Table 1.5. Suppose that you 
were considering a total sample size of N = 300 and wanted to estimate power for the correla-
tion between Q3 and Q5 (an A variable and a B variable). This portion of the design has 66% 
missing data, so you could simply use N = 100 to estimate power. The power of a two-tailed 
signifi cance test with α = .05 and ρ = .30 is approximately .86 (Cohen, 1988, p. 93). Stan-
dard power analyses do not account for the fact that maximum likelihood estimation borrows 
strength from other analysis variables, so they underestimate the true power (e.g., the Monte 
Carlo power estimate in Table 1.8 is slightly higher at .90). Nevertheless, standard power 
analysis methods are a viable option for generating conservative power estimates.

1.14 DATA ANALYSIS EXAMPLE

This section presents a data analysis example that illustrates how to use MCAR tests to iden-
tify potential correlates of missingness.* The analyses use artifi cial data from a questionnaire 
on eating disorder risk. Briefl y, the data contain the responses from 400 college-aged women 
on 10 questions from the Eating Attitudes Test (EAT; Garner, Olmsted, Bohr, & Garfi nkel, 
1982), a widely used measure of eating disorder risk. The 10 questions measure two con-
structs, Drive for Thinness (e.g., “I avoid eating when I’m hungry”) and Food Preoccupation 
(e.g., “I fi nd myself preoccupied with food”), and mimic the two-factor structure proposed 
by Doninger, Enders, and Burnett (2005). Figure 4.3 shows a graphic of the EAT factor struc-
ture and abbreviated descriptions of the item stems. The data set also contains an anxiety 
scale score, a variable that measures beliefs about Western standards of beauty (e.g., high 
scores indicate that respondents internalize a thin ideal of beauty), and body mass index 
(BMI) values.

Variables in the EAT data set are missing for a variety of reasons. I simulated MCAR data 
by randomly deleting scores from the anxiety variable, the Western standards of beauty scale, 
and two of the EAT questions (EAT2 and EAT21). It seems reasonable to expect a relationship 
between body weight and missingness, so I created MAR data on fi ve variables (EAT1, EAT10, 
EAT12, EAT18, and EAT24) by deleting the EAT scores for a subset of cases in both tails of the 
BMI distribu  tion. These same EAT questions were also missing for individuals with elevated 
anxiety scores. Finally, I introduced a small amount of MNAR data by deleting a number of 
the high body mass index scores (e.g., to mimic a situation where females with high BMI 
values refuse to be weighed). The deletion process typically produced a missing data rate of 
5 to 10% on each variable.

I began the analysis by computing Little’s (1988) MCAR test. The test was statistically 
signifi cant, χ2(489) = 643.32, p < .001, which indicates that the missing data patterns pro-
duced mean differences that are inconsistent with the MCAR mechanism. This is an appro-
priate conclusion given that a number of variables in the data set are either MAR or MNAR. 
Little’s procedure is essentially an omnibus test that evaluates whether all of the missing data 
patterns in a data set are mutually consistent with the MCAR mechanism. Consequently, the 
test is not particularly useful for identifying individual variables that are potential correlates 
of missingness.

*Analysis syntax and data are available on the companion website, www.appliedmissingdata.com.
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A more focused approach for testing MCAR is to classify individuals as observed or miss-
ing on a particular variable and then test for group mean differences on other measured 
variables (Dixon, 1988). To illustrate, I created a missing data indicator for each of the seven 
incomplete EAT questionnaire items, such that r = 1 if an individual’s score was observed 
and r = 0 if the value was missing. I then used each indicator as the grouping variable in a 
series of independent t tests that compared the means of the remaining variables. Table 1.13 
shows the t statistics and the standardized mean difference values for these comparisons. 
The table lists the grouping variables (i.e., the missing data indicators) in the rows and uses 
bold typeface to denote the t statistics that exceed an approximate critical value of plus or 
minus two. I computed the standardized mean difference values by dividing the raw mean 
difference by the maximum likelihood estimate of the standard deviation. Cohen (1988) sug-
gested values of .20, .50, and .80 as thresholds for a small, medium, and large standardized 
mean difference, respectively.

Table 1.13 illustrates several important points. To begin, 20 of the 91 t statistics are 
statistically signifi cant, and several others are very nearly so. You would expect a collection of 
tests this large to produce about fi ve type I errors, so the sheer number of signifi cant com-
parisons provides compelling evidence that the EAT variables are not MCAR. Again, this is 
an appropriate conclusion given that fi ve of the questionnaire items are MAR. Although the 
t tests correctly rule out the MCAR mechanism, they do a poor job of identifying the cause 
of missing data. For example, notice that several pairs of EAT variables produced signifi cant 
t tests. In reality, the probability of missing data is solely a function of body mass index and 
anxiety, so these results are a spurious by-product of the mutual associations among the 
variables. Finally, notice that the t tests fail to identify body mass index as a cause of missing-
ness on the fi ve EAT variables with MAR data. Deleting the EAT scores for cases in both tails 
of body mass index distribution produced missing data groups with roughly equal BMI 
means. It is therefore not surprising that the t tests fail to identify the relationship between 
body mass index and missingness. Any test that evaluates homogeneity of means would fail 
to detect BMI as a correlate of missingness, so this underscores the fact that these procedures 
are not defi nitive tests of MCAR.

The primary benefi t of performing MCAR tests is to identify potential correlates of miss-
ingness (i.e., auxiliary variables) that you can subsequently incorporate into the missing data 
handling procedure. The t tests are useful in this regard because they identify specifi c vari-
ables that are not MCAR. To illustrate, suppose that the ultimate analysis goal is to fi t a 
confi rmatory factor analysis model to the EAT questionnaire data. The MAR assumption is 
automatically satisfi ed if missingness on an EAT variable is related to another questionnaire 
item in the factor model. Consequently, you can ignore any t test that has an EAT question 
as the outcome because these correlates of missingness are already in the analysis. The bigger 
concern is whether probability of missing data relates to variables outside of the analysis 
model because excluding these correlates of missingness violates the MAR assumption and 
can produce biased parameter estimates. For example, the t test results in the three right-
most columns of Table 1.13 suggest that body mass index, anxiety, and beliefs about Western 
standards of beauty are potential correlates of missingness because each variable is signifi -
cantly related to at least one of the EAT indicators. In truth, the Western standards of beauty 
variable is unrelated to missingness, but Collins et al. (2001) showed that mistakenly using an 
auxiliary variable that is unrelated to missingness has no negative impact on the subsequent 
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analysis results. This suggests that you can be liberal when using the t tests to identify poten-
tial correlates of missingness because there is ultimately no harm in committing a type I error. 
However, my experience suggests that there is little benefi t to using a large number of auxil-
iary variables. Consequently, you may want to identify a small set of variables that produce 
the largest standardized mean difference values.

1.15 SUMMARY

This chapter described some of the fundamental concepts that you will encounter repeatedly 
throughout the book. In particular, the fi rst half of the chapter outlined missing data theory. 
Rubin (1976) and colleagues (Little & Rubin, 2002) introduced a classifi cation system for 
missing data problems that is widely used in the literature today. This work has generated 
three so-called missing data mechanisms that describe how the probability of a missing value 
relates to the data, if at all. First, data are MAR when the probability of missing data on a 
variable Y is related to some other measured variable (or variables) but not to the values of 
Y itself. Second, the MCAR mechanism is stricter because it requires that the probability of 
missing data on a variable Y is unrelated to other measured variables and to the values of Y 
itself (i.e., the observed scores are a random sample of the hypothetically complete data set). 
Finally, the data are MNAR when the probability of missing data on a variable Y is related to 
the values of Y itself, even after controlling for other variables.

Rubin’s missing data mechanisms are important because they essentially operate as 
assumptions that govern the performance of different missing data handling methods. For 
example, most of the ad hoc missing data techniques that researchers have been using for 
decades (e.g., discarding cases with incomplete data) require MCAR data. In contrast, the 
two state-of-the-art techniques—maximum likelihood estimation and multiple imputation—
require the less stringent MAR assumption. Rubin’s mechanisms are of great practical impor-
tance because all missing data techniques produce biased parameter estimates when their 
requisite assumptions do not hold.

The second half of the chapter introduced the idea of planned missing data. Researchers 
have proposed a number of designs that produce MCAR or MAR data as an intentional by-
product of data collection. These so-called planned missingness designs use benign missing 
data to solve a number of practical problems. Among other things, planned missing data 
can reduce respondent burden in questionnaire designs, lower the cost associated with data 
collection, and diminish the data collection burden in longitudinal designs. Maximum like-
lihood and multiple imputation allow researchers to analyze data from planned missingness 
designs without having to discard the incomplete cases, and the power loss from the miss-
ing data is generally not proportional to the missing data rate. Planned missing data designs 
are highly useful and underutilized tools that will undoubtedly increase in popularity in the 
future.

Having established the basic theory behind missing data analyses, in the next chapter I 
describe a number of traditional missing data techniques that are still common in published 
research articles. These approaches typically assume an MCAR mechanism and yield biased 
parameter estimates with MAR and MNAR data. The methods in Chapter 2 have increasingly 
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fallen out of favor in recent years, but the widespread availability and use of these techniques 
make it important to understand when and why they fail.

1.16 RECOMMENDED READINGS
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Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581–592.
Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 

7, 147–177.
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2

Traditional Methods for Dealing 
with Missing Data

2.1 CHAPTER OVERVIEW

Methodologists have been studying missing data for decades and have proposed dozens of 
techniques to address the problem. Many of these approaches have enjoyed widespread use, 
while others are now little more than a historical footnote. This chapter describes a few of the 
more common “traditional” missing data handling methods that you are likely to encounter 
in published research articles or in statistical software packages. Despite their widespread 
use, these traditional approaches have increasingly fallen out of favor in the methodological 
literature (Little & Rubin, 2002; Wilkinson & Task Force on Statistical Inference, 1999), so 
it is important to understand when and why they fail.

The methods in this chapter deal with missing data by removing the cases with incom-
plete data or by fi lling in the missing values (i.e., imputation). Deleting the missing data is a 
strategy that is fi rmly entrenched in statistical software packages and is exceedingly common 
in disciplines such as psychology and education (Peugh & Enders, 2004). Eliminating the 
missing cases requires the missing completely at random (MCAR) mechanism (i.e., missing-
ness is unrelated to any measured variables) and will produce biased parameter estimates 
when this assumption does not hold. The imputation methods are diverse in their approach 
and generally perform poorly, even when the data are MCAR. Only one of the methods in this 
chapter—stochastic regression imputation—gives unbiased parameter estimates with miss-
ing at random (MAR) data (i.e., missingness is related to other measured variables). Despite 
its more relaxed assumption, stochastic regression has problems that make it inferior to 
maximum likelihood and multiple imputation, the MAR-based approaches that I describe in 
subsequent chapters.

I use the small bivariate data set in Table 2.1 to illustrate ideas throughout this chapter. 
I designed these data to mimic an employee selection scenario in which prospective em-
ployees complete an IQ test and a psychological well-being questionnaire during their inter-
view. The company subsequently hires the applicants that score in the upper half of the IQ 
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distribution, and a supervisor rates their job performance following a 6-month probationary 
period. Note that the job performance scores are missing at random (MAR) because they are 
systematically missing as a function of IQ (i.e., individuals in the lower half of the IQ distri-
bution were never hired, and thus have no performance rating). Figure 2.1 shows a scatter-
plot of the hypothetically complete data set. I use the complete-data scatterplot throughout 

TABLE 2.1. Employee Selection Data Set

 Complete data Missing data

 Job Job
IQ performance Performance

 78  9 —
 84 13 —
 84 10 —
 85  8 —
 87  7 —
 91  7 —
 92  9 —
 94  9 —
 94 11 —
 96  7 —
 99  7  7
105 10 10
105 11 11
106 15 15
108 10 10
112 10 10
113 12 12
115 14 14
118 16 16
134 12 12
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FIGURE 2.1. Complete-data scatterplot of the IQ and job performance scores from Table 2.1.
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the chapter to visually illustrate the impact of applying certain traditional missing data han-
dling techniques.

2.2 AN OVERVIEW OF DELETION METHODS

Listwise and pairwise deletion are by far the most common missing data handling approaches 
in many areas of the social and behavioral sciences (Peugh & Enders, 2004). The primary 
advantage of these methods is that they are convenient to implement and are standard options 
in statistical software packages. However, deletion methods have serious limitations that 
preclude their use in most situations. Most importantly, these approaches assume MCAR 
data and can produce distorted parameter estimates when this assumption does not hold. 
Even if the MCAR assumption is plausible, eliminating data is wasteful and can dramatically 
reduce power. Consequently, there is little to recommend these techniques unless the pro-
portion of missing data is trivially small. A report by the American Psychological Association 
Task Force on Statistical Inference (Wilkinson & Task Force on Statistical Inference, 1999, 
p. 598) echoed this sentiment, stating that “The two popular methods for dealing with miss-
ing data that are found in basic statistical packages—listwise and pairwise deletion of miss-
ing values—are among the worst methods available for practical applications.” A relatively 
large number of empirical studies support the Task Force’s conclusion (Arbuckle, 1996; Azen, 
Van Guilder, & Hill, 1989; Brown, 1994; Enders, 2001; Enders & Bandalos, 2001; Hai-
tovsky, 1968; Kim & Curry, 1977; Kromrey & Hines, 1994; Wothke, 2000).

2.3 LISTWISE DELETION

Listwise deletion (also known as complete-case analysis) discards the data for any case that 
has one or more missing values. The primary benefi t of listwise deletion is convenience. Re-
stricting the analyses to the complete cases eliminates the need for specialized software and 
complex missing data handling techniques (in truth, some of the procedures in subsequent 
chapters are quite easy to implement). Relative to pairwise deletion, listwise deletion also has 
the advantage of producing a common set of cases for all analyses.

In most situations, the disadvantages of listwise deletion far outweigh its advantages. 
The primary problem with listwise deletion is that it requires MCAR data and can produce 
distorted parameter estimates when this assumption does not hold. To illustrate this propen-
sity for bias, Figure 2.2 shows the listwise deletion scatterplot of the data in Table 2.1. Recall 
that the data are MAR because the applicants in the lower half of the IQ distribution have 
missing job performance ratings. By virtue of this selection process, listwise deletion discards 
the entire lower half of the IQ distribution. Because IQ scores and job performance ratings 
are positively correlated, listwise deletion also excludes cases from the lower tail of the job 
performance distribution (i.e., the cases with low IQ scores). Not surprisingly, the remaining 
cases are unrepresentative of the hypothetically complete data set because they have system-
atically higher scores on both variables. Consequently, the listwise deletion mean estimates 
are too high. In addition, the restriction of range that results from discarding the lower tails 
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of the distributions restricts the variability of the data and reduces the magnitude of the cor-
relation. The scatterplot in Figure 2.2 clearly illustrates these biases.

Bias aside, listwise deletion is potentially very wasteful, particularly when the discarded 
cases have data on a large number of variables. Deleting the incomplete data records can 
produce a dramatic reduction in the total sample size, the magnitude of which increases as 
the missing data rate or number of variables increases. For example, consider a data set with 
10 variables, each of which has 2% of its observations missing in a completely random fash-
ion. Although the proportion of missing data on any single variable is relatively small, listwise 
deletion should eliminate approximately 18% of the data records, on average. With 20 vari-
ables, the expected percentage of complete cases drops to about 67%. Not surprisingly, this 
sample size reduction can dramatically reduce statistical power, especially with small to mod-
erate samples. This reduction in power is always a problem, even in the best case scenario 
where the data are MCAR.

Interestingly, listwise deletion can produce unbiased estimates of regression slopes un-
der any missing data mechanism, provided that missingness is a function of a predictor vari-
able and not the outcome variable (Little, 1992). This relatively esoteric scenario is the only 
situation in which listwise deletion is likely to outperform maximum likelihood estimation 
and multiple imputation with missing not at random (MNAR) data.

2.4 PAIRWISE DELETION

Pairwise deletion (also known as available-case analysis) attempts to mitigate the loss of 
data by eliminating cases on an analysis-by-analysis basis. The prototypical application of pair-
wise deletion occurs when a researcher uses a different subset of cases to compute each ele-
ment in a correlation matrix. However, pairwise deletion is not limited to correlations, and it 
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FIGURE 2.2. Listwise deletion scatterplot of the IQ and job performance data from Table 2.1. Be-
cause the variables are positively correlated, listwise deletion systematically discards cases from the 
lower tails of both distributions. This overestimates the means and attenuates the variability and the 
correlation.
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is common to fi nd published research articles that report varying sample sizes across a set of 
ANOVA or regression analyses (Peugh & Enders, 2004). Using as much of the data as pos-
sible is certainly a good idea, and it is true that pairwise deletion tends to be more powerful 
than listwise deletion, particularly when the variables in a data set have low to moderate cor-
relations (Glasser, 1964). However, the disadvantages of pairwise deletion limit its utility.

Consistent with listwise deletion, the primary problem with pairwise deletion is that it 
requires MCAR data and can produce distorted parameter estimates when this assumption 
does not hold. However, pairwise deletion also has a number of unique problems. For exam-
ple, using different subsets of cases poses subtle problems with measures of association. To 
illustrate, consider the following formula for the sample covariance.

 ∑(xi – μ̂X)(yi – μ̂Y) σ̂XY = ——————–— (2.1)
 N – 1

Pairwise deletion uses the subset of cases with complete data on both X and Y to compute the 
covariance. Most software packages use the same subsample to compute the variable means, 
but it is also possible to compute μ̂X  from the cases that have data on X and compute μ̂Y  from 
the cases that have data on Y. A similar issue arises when computing the denominator of the 
correlation coeffi cient.

 σ̂XY r = ——— (2.2)
  √σ̂2

Xσ̂2
Y

Software packages typically use the subset of cases with complete data on both X and Y 
to compute the variances, but another option is to compute σ̂2

X and σ̂2
Y from separate sub-

samples (e.g., compute σ̂2
X from the cases that have data on X alone). The latter approach is 

problematic because it can produce correlation values that exceed plus or minus 1.
A correlation that exceeds 1 is an example of a more general problem in which the ele-

ments within a correlation or covariance matrix are mutually inconsistent with one another. 
In the context of missing data, these so-called nonpositive defi nite matrices occur when the 
correlation or covariance matrix contains combinations of estimates that would have been 
mathematically impossible, had the data been complete. These matrices cause estimation 
problems for multivariate analyses that use a covariance matrix as input data (e.g., regression 
models and structural equation models). Although there are numerous causes of nonpositive 
defi nitive matrices, methodologists often associate pairwise deletion with this problem (Little, 
1992; Marsh, 1998; Wothke, 1993).

The lack of a consistent sample base also leads to problems in computing standard er-
rors. For example, consider a regression analysis that uses a pairwise deletion covariance 
matrix as input data. The sample size is a key component of any standard error, but no single 
value of N is applicable to the entire covariance matrix. Consequently, there is no straightfor-
ward way to compute standard errors. Some software packages use the average sample size 
per variable for these computations, but this approach is likely to underestimate the standard 
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errors for some variables and overestimate the standard errors for others (Little, 1992). This 
sample size issue becomes even more complex when using a pairwise deletion covariance 
matrix to estimate a structural equation model because no single value of N simultaneously 
maximizes the accuracy of standard errors and tests of model fi t (Marsh, 1998).

2.5 AN OVERVIEW OF SINGLE IMPUTATION METHODS

The rest of this chapter is devoted to so-called single imputation methods that impute (i.e., 
fi ll in) the data prior to analysis. The term single imputation stems from the fact that these 
approaches generate a single replacement value for each missing data point. This is in con-
trast to multiple imputation, which creates several copies of the data set and imputes each 
copy with different plausible estimates of the missing values.

Imputation is an attractive strategy because it yields a complete data set. Consequently, 
convenience is a major benefi t of any single imputation technique. At fi rst glance, imputation 
is also advantageous because it makes use of data that deletion approaches would otherwise 
discard. Despite these apparent advantages, single imputation techniques have potentially 
serious drawbacks. Most of the approaches in this chapter produce biased parameter esti-
mates, even in an ideal situation where the data are MCAR. Stochastic regression imputation 
is the sole exception because it is the only approach that produces unbiased parameter esti-
mates with MAR data. In addition, single imputation techniques attenuate standard errors. 
At an intuitive level, missing values should increase standard errors because they add another 
layer of noise to the parameter estimates. However, analyzing a single imputed data set ef-
fectively treats the fi lled-in values as real data, so even the best single imputation technique 
(e.g., stochastic regression imputation) will underestimate sampling error. As you will see in 
Chapter 8, multiple imputation does not suffer from this problem because it appropriately 
adjusts the standard errors for missing data. Given their important drawbacks, there is very 
little to recommend the single imputation techniques.

2.6 ARITHMETIC MEAN IMPUTATION

Arithmetic mean imputation (also referred to as mean substitution and unconditional mean 
imputation) takes the seemingly appealing tack of fi lling in the missing values with the arith-
metic mean of the available cases. The idea of replacing missing values with the mean is an 
old one that methodologists often attribute to Wilks (1932). Like other imputation tech-
niques, mean imputation is convenient because it produces a complete data set. However, 
convenience is not a compelling advantage because this approach severely distorts the result-
ing parameter estimates, even when the data are MCAR.

At an intuitive level, imputing values at the center of the distribution reduces the vari-
ability of the data. It therefore makes sense that mean imputation will attenuate the standard 
deviation and the variance. Restricting the variability of the data also attenuates the magni-
tude of covariances and correlations. To illustrate, reconsider the covariance formula in Equa-
tion 2.1. Cases with missing values on either X or Y attenuate the magnitude of the covariance 
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because they contribute a value of zero to the numerator of the formula. The covariance is a 
key component of Pearson’s r formula (see Equation 2.2), so the same is true for correlation 
coeffi cients. Little and Rubin (2002, pp. 61–62) give adjustment terms that produce unbiased 
estimates of variances and covariances with MCAR data, but these corrections end up pro-
ducing estimates that are identical to those of pairwise deletion.

To illustrate mean imputation, I replaced the missing job performance scores in Table 
2.1 with the average performance rating from the 10 complete cases. Figure 2.3 shows a scat-
terplot of the fi lled-in data. To begin, notice that the variability (i.e., the vertical spread) of the 
job performance scores is smaller than that of the complete-data scatterplot in Figure 2.1. 
Again, this is a consequence of imputing values at the center of the distribution. Second, 
notice that the imputed values fall directly on a horizontal line, which implies that the cor-
relation between IQ and job performance is zero for the subset of cases with imputed per-
formance ratings. Mean imputation attenuates measures of association (e.g., correlations 
and covariances) because it essentially infuses the data with scores that are uncorrelated with 
other variables in the data set. The biases in Figure 2.3 are present under any missing data 
mechanism, including MCAR. Not surprisingly, the bias increases as the missing data rate 
increases.

The biases in Figure 2.3 are consistent with the fi ndings from empirical research studies 
(Brown, 1994; Enders & Bandalos, 2001; Gleason & Staelin, 1975; Kim & Curry, 1975; 
Kromrey & Hines, 1994; Olinsky, Chen, & Harlow, 2003; Raymond & Roberts, 1987; Timm, 
1970; Wothke, 2000). In fact, simulation studies suggest that mean imputation is possibly 
the worst missing data handling method available. Consequently, in no situation is mean 
imputation defensible, and you should absolutely avoid this approach.
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FIGURE 2.3. Mean imputation scatterplot of the IQ and job performance data from Table 2.1. The 
imputed values fall on the dashed line. Because mean imputation imputes a constant value for the 
missing job performance scores, it effectively infuses the data with uncorrelated observations. This 
attenuates the variability and the correlation.
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2.7 REGRESSION IMPUTATION

Regression imputation (also known as conditional mean imputation) replaces missing 
values with predicted scores from a regression equation. Like arithmetic mean imputation, 
regression imputation has a long history that dates back nearly 50 years (Buck, 1960). The 
basic idea behind this approach is intuitively appealing: use information from the complete 
variables to fi ll in the incomplete variables. Variables tend to be correlated, so it makes good 
sense to generate imputations that borrow information from the observed data. In fact, bor-
rowing information from the observed data is a strategy that regression imputation shares 
with maximum likelihood and multiple imputation, although the latter approaches do so in 
a more sophisticated manner.

The fi rst step of the imputation process is to estimate a set of regression equations that 
predict the incomplete variables from the complete variables. A complete-case analysis usu-
ally generates these estimates. The second step is to generate predicted values for the incom-
plete variables. These predicted scores fi ll in the missing values and produce a complete data 
set. To illustrate the imputation process, reconsider the bivariate data set in Table 2.1. I used 
the 10 complete cases to estimate the regression of job performance ratings on IQ. The re-
sulting regression equation is

 JPi
* = β̂0 + β̂1(IQi) = –2.065 + 0.123(IQi) (2.3)

where JPi
* is the predicted job performance score for case i. The applicants that were never 

hired have no job performance ratings, so this equation generates predicted scores (i.e., im-
puted values) for these cases. For example, substituting the appropriate IQ scores into the 
equation yields the values in the Predicted Score column of Table 2.2. These predicted scores 
fi ll in the missing job performance ratings and serve as data for all subsequent analyses.

Regression imputation is largely the same with multivariate data sets but is somewhat 
more complicated to implement. To illustrate, consider a hypothetical data set with three 
variables, Y1, Y2, and Y3, all of which have missing data. Not including the complete cases, 
there are six possible missing data patterns: cases with missing data on (1) only Y1, (2) only 
Y2, (3) only Y3, (4) Y1 and Y2, (5) Y1 and Y3, and (6) Y2 and Y3. The presence of multiple miss-
ing data patterns complicates the imputation process somewhat because each missing data 
pattern requires a unique regression equation. To illustrate, Table 2.3 shows the regression 
equations for the six missing data patterns. An easy way to construct the equations is to start 
with an estimate of the mean vector and the covariance matrix because the elements in these 
matrices defi ne all of the necessary regression coeffi cients. Again, a complete-case analysis 
usually generates μ̂ and Σ̂. Substituting the observed scores into the relevant regression equa-
tions generates predicted values for the incomplete variables, and these predicted scores fi ll 
in the missing values and produce a complete data set. Although it sounds tedious to con-
struct a unique regression equation for each missing data pattern, a computational algorithm 
called the sweep operator can automate this process (Dempster, 1969; Goodnight, 1979; 
Little & Rubin, 2002).

Regression imputation is superior to mean imputation, but it too has predictable biases. 
To illustrate, I replaced the missing job performance scores in Table 2.1 with the predicted 
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scores from Table 2.2. Figure 2.4 shows a scatterplot of the fi lled-in data. First, notice that 
the imputed values fall directly on a regression line with a nonzero slope. This implies that 
the correlation between IQ and job performance is 1.00 in the subset of cases with imputed 
values. Regression imputation effectively suffers from the exact opposite problem as mean 
imputation because it imputes the data with perfectly correlated scores. In multivariate data 
sets, the imputed values will not have perfect correlations with other variables, but the cor-
relations will still be high. Consequently, regression imputation overestimates correlations 
and R2 statistics, even when the data are MCAR. The fact that the imputed values fall di-
rectly on a straight line (or a fl at surface, in the case of multiple regression) implies that the 
fi lled-in data lack variability that would have been present had the data been complete. Not 

TABLE 2.2. Regression Imputation of the Employee Selection Data

 Job Predicted Random Stochastic
IQ performance score residual imputation

 78 — 7.53 –0.35 7.18
 84 — 8.27 2.70 10.97
 84 — 8.27 –0.59 7.68
 85 — 8.39 2.39 10.78
 87 — 8.64 1.64 10.28
 91 — 9.13 5.77 14.90
 92 — 9.25 2.47 11.72
 94 — 9.50 –1.04 8.46
 94 — 9.50 1.69 11.19
 96 — 9.74 –3.58 6.16
 99  7 — — —
105 10 — — —
105 11 — — —
106 15 — — —
108 10 — — —
112 10 — — —
113 12 — — —
115 14 — — —
118 16 — — —
134 12 — — —

Note. The following regression equation generated the predicted scores: JPi = –2.025 + 
.123(IQi).

TABLE 2.3. Missing Data Patterns and 
Equations Used by Regression Imputation

Missing variables Regression equations

Y1 ŷ1 = B0 + B1 y2 + B2 y3

Y2 ŷ2 = B0 + B1 y2 + B2 y3

Y3 ŷ3 = B0 + B1 y2 + B2 y2

Y1 and Y2 ŷ1 = B0 + B1 y3 ŷ2 = B0 + B1 y3

Y1 and Y3 ŷ1 = B0 + B1 y2 ŷ2 = B0 + B1 y2

Y2 and Y3 ŷ2 = B0 + B1 y1 ŷ2 = B0 + B1 y1
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surprisingly, this attenuates variances and covariances, although not to the same extent as 
mean imputation.

A number of empirical studies have reported biases that are consistent with those in 
Figure 2.4 (Beale & Little, 1975; Gleason & Staelin, 1975; Kromrey & Hines, 1994; Olinsky 
et al., 2003; Raymond & Roberts, 1987; Timm, 1970). The magnitude of the bias in the vari-
ances and covariances is predictable, and methodologists have outlined corrective adjust-
ments for these parameters (Beale & Little, 1975; Buck, 1960). Under an MCAR mechanism, 
these corrections yield consistent estimates of the covariance matrix, meaning that the es-
timates get closer to their true population values as the sample size increases. Despite the 
intuitive appeal of regression imputation, there is no reason to go to the additional effort of 
applying these corrections because more sophisticated missing data techniques are readily 
available.

2.8 STOCHASTIC REGRESSION IMPUTATION

Despite its intuitive appeal, regression imputation can lead to substantial biases. Stochastic 
regression imputation also uses regression equations to predict the incomplete variables 
from the complete variables, but it takes the extra step of augmenting each predicted score 
with a normally distributed residual term. Adding residuals to the imputed values restores 
lost variability to the data and effectively eliminates the biases associated with standard re-
gression imputation schemes. In fact, stochastic regression imputation is the only procedure 
in this chapter that gives unbiased parameter estimates under an MAR missing data mecha-
nism. Consequently, this is the sole traditional method that arguably has some merit.

Consistent with standard regression imputation, stochastic regression begins by using 
a complete-case analysis to estimate a set of regression equations that predict the incomplete 
variables from the complete variables. Substituting the observed scores into these regression 
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FIGURE 2.4. Regression imputation scatterplot of the IQ and job performance data from Table 2.1. 
The imputed values fall on the dashed line. Because the imputed values fall directly on a regression 
line, regression imputation effectively infuses the data with perfectly correlated observations. This at-
tenuates the variability but overestimates the correlation and the R2 value.
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equations yields predicted values for the missing data. As a fi nal step, the procedure restores 
lost variability to the data by adding a normally distributed residual term to each predicted 
score. To illustrate the imputation process, reconsider the bivariate data set in Table 2.1. The 
imputation regression equation is as follows:

 JPi
* = β̂0 + β̂1(IQi) = –2.065 + 0.123(IQi) + zi (2.4)

Stochastic regression uses the same basic procedure as standard regression imputation, so 
the regression coeffi cients in Equation 2.4 are identical to those in Equation 2.3. However, 
the equation above has an additional zi term. This residual term is a random value from a 
normal distribution with a mean of zero and a variance equal to the residual variance from 
the regression of job performance on IQ. The complete-case regression analysis produced a 
residual variance estimate of σ̂2

JP|IQ = 6.650. Consequently, I used Monte Carlo simulation 
techniques to generate 10 scores from a normal distribution with a mean of zero and a vari-
ance equal to 6.650. The Random Residual column of Table 2.2 shows these values. Adding 
the residuals to the predicted scores gives the values in the Stochastic Imputation column of 
Table 2.2. These scores fi ll in the missing job performance ratings and produce a complete 
data set.

Figure 2.5 shows a scatterplot of the fi lled-in data from the stochastic regression proce-
dure. The dashed line in the fi gure represents the regression of job performance on IQ (i.e., 
the predicted job performance scores), and the arrows denote random residuals. Comparing 
Figure 2.5 to the complete-data scatterplot in Figure 2.1 illustrates that stochastic regression 
imputation preserves the variability of the data in a manner that other single imputation 
techniques do not. Furthermore, the close correspondence between the two fi gures suggests 
that stochastic regression yields unbiased parameter estimates with MAR data. Although a 
single small data set does not provide convincing evidence that the procedure is unbiased, 
other authors have used analytic methods to demonstrate that this is the case (Little & Rubin, 
2002). Furthermore, computer simulation studies suggest that stochastic regression produces 
parameter estimates that are similar to those of maximum likelihood and multiple imputa-
tion (Gold & Bentler, 2000; Newman, 2003). The fact that stochastic regression yields com-
parable estimates to other MAR-based missing data handling techniques is not a surprise 
because stochastic regression and multiple imputation actually share the same imputation 
routine. Conceptually, multiple imputation is just an iterative version of stochastic regression 
imputation. I describe the linkages between the two approaches in Chapter 7.

Extending stochastic regression imputation to multivariate data sets with several missing 
data patterns is typically more complex because each missing data pattern requires a unique 
regression equation (or set of equations). The process of constructing the regression equa-
tions is identical to standard regression imputation, so there is no need to revisit these steps. 
With multivariate data, the additional nuance is that each regression equation requires its 
own residual distribution. Each residual distribution is still a normal curve with a mean of 
zero, but the variances differ across missing data patterns. In patterns that have two or more 
variables that are missing, the residual distribution is multivariate normal with a mean vector 
of zero and a covariance matrix equal to the residual covariance matrix from the multivariate 
regression of the incomplete variables on the complete variables. For example, reconsider the 
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missing data pattern in Table 2.3 where both Y1 and Y2 are missing. This pattern requires 
residuals from a multivariate normal distribution with a covariance matrix equal to the re-
sidual covariance matrix from the multivariate regression of Y1 and Y2 on Y3.

At fi rst glance, stochastic regression may appear to be a viable alternative to maximum 
likelihood and multiple imputation because it produces unbiased parameter estimates with 
MAR data. However, like every single imputation technique, stochastic regression attenuates 
standard errors, leading to an increased risk of type I errors. It makes intuitive sense that a 
missing data analysis should produce larger standard errors than a hypothetical complete-
data analysis. However, standard analysis techniques treat the fi lled-in values as real data and 
effectively ignore the additional sampling error from the missing data. Consequently, the 
standard errors from a singly imputed data set will be inappropriately small. The bootstrap 
resampling approach that I describe in Chapter 5 can correct the bias in the stochastic re-
gression standard errors, but implementing the bootstrap usually requires more effort than a 
maximum likelihood or multiple imputation analysis.

As an aside, there has been some discussion in the missing data literature regarding the 
imputation of missing independent variables. To illustrate, consider a small data set with 
three variables, Y1, Y2, and Y3. Suppose that a researcher wants to perform a regression analy-
sis where Y1 and Y2 predict Y3. If either Y1 or Y2 has missing values, it may seem incorrect and 
somewhat circular to impute the missing explanatory variables using a regression equation 
that includes the dependent variable as a predictor. Standard regression imputation would 
not be appropriate in this situation because it would bias the estimates from the subsequent 
regression analysis (Little, 1992). However, this is not a concern with stochastic regression 
imputation because the random residual terms eliminate this source of bias. Consequently, 
there is no need to consider a variable’s role in the subsequent statistical analysis when speci-
fying an imputation model. This conclusion also applies to the multiple imputation procedure 
that I describe later in the book.
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FIGURE 2.5. Stochastic regression imputation scatterplot of the IQ and job performance data from 
Table 2.1. The dashed line denotes predicted values and the arrows depict residuals. Stochastic regres-
sion generates predicted values from a regression equation and augments each predicted score with 
a normally distributed residual term. This preserves the distributions of the variables and produces a 
scatterplot that closely resembles that of the complete data.
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2.9 HOT-DECK IMPUTATION

Hot-deck imputation is a collection of techniques that impute the missing values with scores 
from “similar” respondents. Statisticians at the Census Bureau originally developed the hot-
deck to deal with missing data in public-use data sets, and the procedure has a long history 
in survey applications (Scheuren, 2005). Researchers in the behavioral and social sciences 
rarely use hot-deck imputation, but the procedure has received a good deal of attention in 
the survey literature. This section gives a brief overview of hot-deck imputation; detailed de-
scriptions of the technique are available in other sources (Ford, 1983; Little & Rubin, 2002; 
Rubin, 1987).

Methodologists have proposed several variations of hot-deck imputation. The basic 
premise is to impute missing values with the scores of other respondents. In its simplest 
incarnation, a random draw from the observed data replaces each missing value. The more 
typical application of hot-deck imputation replaces each missing value with a random draw 
from a subsample of respondents that scored similarly on a set of matching variables. For 
example, consider a general population survey in which some respondents refuse to disclose 
their income. The hot-deck procedure classifi es respondents into cells based on demographic 
characteristics such as gender, age, race, and marital status. It then replaces the missing val-
ues with a random draw from the income distribution of respondents that shared the same 
constellation of demographic characteristics as the individual with missing data. Note that 
the background variables need not be categorical, and some hot-deck algorithms match indi-
viduals on continuous variables (e.g., nearest neighbor hot deck).

Hot-deck imputation generally preserves the univariate distributions of the data and does 
not attenuate the variability of the fi lled-in data to the same extent as other imputation meth-
ods. However, hot-deck approaches are not well suited for estimating measures of association 
and can produce substantially biased estimates of correlations and regression coeffi cients 
(Brown, 1994; Schafer & Graham, 2002). Like other imputation procedures, hot deck under-
estimates standard errors, although researchers have proposed corrective procedures (e.g., 
the jackknife) for estimating sampling error.

2.10 SIMILAR RESPONSE PATTERN IMPUTATION

Similar response pattern imputation is a technique that is available in the structural equation 
modeling software package LISREL (Jöreskog & Sörbom, 1993). The basic idea behind simi-
lar response pattern imputation is to impute each missing value with the score from another 
individual (i.e., a “donor” case) who has a similar score profi le on a set of matching variables. 
The similar response pattern approach closely resembles a variant of hot-deck imputation 
known as nearest neighbor hot deck. Researchers in the social and the behavioral sciences do 
not use this approach very frequently, but its availability in a popular software package makes 
it worthy of discussion. This section gives a brief description of similar response pattern im-
putation, and Jöreskog and Sörbom (1993) describe the procedure in more detail.

Similar response pattern imputation requires the user to specify a set of matching vari-
ables and a set of incomplete variables. I denote these variable sets as Z and Y, respectively. 
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Ideally, the variables in the matching set are complete and do not belong to the Y set, but 
this need not be the case. The imputation process begins by selecting a “recipient” case with 
missing values in Y and complete data in Z. The pool of potential donor cases has complete 
data on both Y and Z, and the goal is to locate the single donor whose response profi le on Z 
most closely resembles that of the recipient. The matching process standardizes the variables 
in Z and computes a distance measure for each potential donor that quantifi es the similarity 
between the donor’s response profi le and the recipient’s response profi le, as follows:

 D = ∑
k

j=1 
(zDj – zRj)2 (2.5)

where k is the number of matching variables, zDj is the donor’s score on matching variable j, 
and zRj is the recipient’s score on matching variable j. If a single donor minimizes D, that 
donor’s Y scores replace the recipient’s missing values. If multiple donors produce the same 
distance measure, the algorithm imputes each missing value with the average donor score.

Similar response pattern imputation does not necessarily produce a complete data set, 
and there are a number of nuances to implementing this approach. For example, identifying 
a set of matching variables with complete data may be a signifi cant obstacle in and of itself. 
Although it is possible for incomplete variables to serve as matching variables, imputation will 
fail if there are no donor cases with complete data on the matching variables. Consequently, 
using incomplete variables as matching variables can reduce the pool of donors to the point 
where imputation becomes impossible, at least for a subset of cases. In addition, the similar 
response pattern approach sequentially imputes the missing variables, so properly ordering 
the variables in the Y set can infl uence the success of imputation. For example, suppose that 
the set of matching variables includes a number of complete variables as well as two incom-
plete variables, Y1 and Y2. Specifying Y1 as the fi rst variable in the imputation list allows Y1 to 
function as a complete matching variable for Y2. If the goal is to maximize the number of 
successful imputations, the variables with the highest missing data rates should be the fi rst 
variables on the imputation list because this will maximize the size of the donor pool. Finally, 
Jöreskog and Sörbom (1993) suggest that the matching variables should not be part of the 
subsequent statistical analysis because this may negatively affect the resulting parameter es-
timates. No empirical studies have investigated this issue.

Similar response pattern imputation has no theoretical foundation, so it is diffi cult to 
predict the procedure’s performance. Computer simulation studies suggest that this ap-
proach can produce relatively accurate parameter estimates with MCAR data, but it is prone 
to substantial biases when the data are MAR (Brown, 1994; Enders, 2001; Enders & Ban-
dalos, 2001; Gold & Bentler, 2000). Given the widespread availability of MAR-based analysis 
methods, there appears to be little to recommend the use of similar response pattern imputa-
tion, particularly if the goal is to estimate the associations among a set of variables.

2.11 AVERAGING THE AVAILABLE ITEMS

Researchers in many disciplines use multiple-item questionnaires to measure complex con-
structs. For example, psychologists routinely use several questionnaire items to measure de-
pression, each of which taps into a different depressive symptom (e.g., sadness, lack of energy, 
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sleep diffi culties, feelings of hopelessness). Rather than analyzing the individual item re-
sponses, researchers typically compute a scale score by summing or averaging the items 
that measure a common theme. The resulting scale score refl ects each respondent’s overall 
standing on the construct of interest (e.g., a higher numeric value indicates more depressive 
symptoms).

It is often the case that respondents answer some, but not all, of the items on a ques-
tionnaire. Rather than discard the incomplete questionnaires, researchers frequently compute 
scale scores by averaging the available items. For example, if a respondent answered 8 out 
of 10 items on a depression questionnaire, his scale score would be the average of those 8 
items. Multiplying the resulting average by the total number of items (e.g., 10) expresses the 
scale score as a sum, but the choice between an average and a sum is completely arbitrary. The 
missing data literature sometimes describes this procedure as person mean imputation, but 
researchers in other disciplines sometimes refer to it as a prorated scale score (Keel, Mitchell, 
Davis, & Crow, 2002; Share, McCrady, & Epstein, 2002). It may not be immediately obvi-
ous, but averaging the available items is equivalent to imputing the missing values with the 
mean of a respondent’s complete items—thus the name “person mean imputation.”

Very few empirical studies have examined person mean imputation, so it is diffi cult to 
predict the procedure’s performance. Schafer and Graham (2002) point out a number of 
potential problems with the approach (e.g., the meaning of the scale scores varies across re-
spondents) and speculate that it might produce biased parameter estimates with MCAR data. 
To date, empirical studies have only investigated person mean imputation in the context of 
internal consistency reliability analyses (Downey & King, 1998; Enders, 2003). Coeffi cient 
alpha estimates are generally inaccurate, particularly when compared to those of maximum 
likelihood and deletion methods (Enders, 2003). Because coeffi cient alpha is largely a func-
tion of the item variances and covariances, biases may also be present in measures of varia-
tion and association. One factor that is likely to infl uence the performance of person mean 
imputation is the variability in item means and correlations. For example, averaging the avail-
able items might be reasonable when the item means are similar, but it could be problematic 
when the missing items have different means than the complete items. In a similar vein, the 
procedure probably works best when the item correlations are relatively uniform in magni-
tude (Graham, 2009; Schafer & Graham, 2002).

Averaging the available items is probably the most common approach for dealing with 
item-level missing data on questionnaires. Test manuals often give instructions for comput-
ing prorated scale scores with missing data, yet they offer no cautionary statements about the 
biases that can result from this procedure. Until more research accumulates, you should use 
person mean imputation with caution and should perhaps avoid it altogether, particularly if 
there are high rates of item nonresponse. Multiple imputation is a much better solution for 
imputing item-level missing data, and maximum likelihood can also address this problem for 
certain analyses.

2.12 LAST OBSERVATION CARRIED FORWARD

Last observation carried forward is a missing data technique that is specifi c to longitudinal 
designs. As its name implies, the procedure imputes missing repeated measures variables with 



52 APPLIED MISSING DATA ANALYSIS

the observation that immediately precedes dropout. For example, if a participant drops out 
after the fi fth week of an 8-week study, his week fi ve score fi lls in the remaining waves of data. 
To illustrate, Table 2.4 shows four waves of longitudinal data for a small sample of cases. No-
tice that the last complete observation for each case “carries forward” to subsequent missing 
data points. This strategy applies to the cases that permanently drop out as well as to the 
cases with intermittent missing data. Like other imputation approaches, the primary benefi t 
of last observation carried forward is convenience because it generates a complete data set.

Last observation carried forward is relatively rare in the behavioral and the social sci-
ences, but researchers routinely use this method in medical studies and clinical trials (Wood, 
White, & Thompson, 2004). This technique effectively assumes that scores do not change 
after the last observed measurement or during the intermittent period where scores are miss-
ing. The conventional wisdom is that last observation imputation yields a conservative esti-
mate of treatment group differences at the end of a study because it infuses the data with 
scores that do not change over time. However, empirical research has shown that this is not 
necessarily true. In fact, the imputation scheme can actually exaggerate group differences at 
the end of a study (Cook, Zeng, & Yi, 2004; Liu & Gould, 2002; Mallinckrodt, Clark, & 
David, 2001; Molenberghs et al., 2004). The direction and the magnitude of the bias are dif-
fi cult to predict and depend on specifi c characteristics of the data, but last observation car-
ried forward is likely to produce distorted parameter estimates, even when the data are MCAR 
(Molenberghs et al., 2004). Despite its frequent use in medical studies and clinical trials, a 
growing number of empirical studies suggest that this approach is poor strategy for dealing 
with longitudinal missing data (Cook et al., 2004; Liu & Gould, 2002; Mallinckrodt et al., 
2001; Molenberghs et al., 2004; Shao & Zhong, 2004). These same studies generally recom-
mend maximum likelihood or multiple imputation.

2.13 AN ILLUSTRATIVE COMPUTER SIMULATION STUDY

Throughout this chapter, I used scatterplots to demonstrate some of the popular traditional 
missing data techniques. Although these scatterplots are useful for illustration purposes, they 
do not offer compelling evidence about the performance of these methods. To better illus-
trate the properties of the traditional missing data techniques, I conducted a series of Monte 
Carlo computer simulations. A Monte Carlo simulation generates a large number of samples 

TABLE 2.4. Longitudinal Data Set Imputed with Last Observation Carried Forward

 Observed data Last observation carried forward

ID Wave 1 Wave 2 Wave 3 Wave 4 Wave 1 Wave 2 Wave 3 Wave 4

1 50 53 — — 50 53 53 53
2 47 46 49 51 47 46 49 51
3 43 — — — 43 43 43 43
4 55 — 56 59 55 55 56 59
5 45 45 47 46 45 45 47 46

Note. Bold typeface denotes imputed values.
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from a population with a specifi ed set of parameter values. Estimating a statistical model on 
each sample and saving the resulting parameter estimates create an empirical sampling dis-
tribution for each model parameter. The difference between the average parameter estimate 
and the true population parameter is particularly important because it quantifi es bias.

The simulation programs generated 1,000 samples of N = 250 from a population model 
that mimicked the IQ and job performance data in Table 2.1. The fi rst simulation created 
MCAR data by randomly deleting 50% of the job performance ratings. The second simulation 
modeled MAR data and eliminated job performance scores for the cases in the lower half of 
the IQ distribution. The fi nal simulation generated missing not at random (MNAR) by delet-
ing the job performance scores for the cases in the lower half of the job performance distri-
bution. After generating the artifi cial data sets, I used four different missing data techniques 
to estimate the mean vector and the covariance matrix from each sample: listwise deletion, 
arithmetic mean imputation, regression imputation, and stochastic regression imputation. 
Table 2.5 shows the average parameter estimates for each technique and uses bold typeface 
to highlight severely biased estimates.

As seen in the table, arithmetic mean imputation produced biased parameter estimates 
in all three simulations (i.e., the average estimate differed from the true population value) 
and was the least accurate missing data technique. Regression imputation produced biased 
estimates of the variance and the correlation in all three simulations, but its estimates of the 
mean and the covariance were relatively accurate in the MCAR and MAR simulations. Listwise 
deletion parameter estimates were unbiased in the MCAR simulation but were severely dis-
torted in the MAR and MNAR simulations. Finally, the stochastic regression produced un-
biased parameter estimates in the MCAR and MAR simulations, but its estimates were biased 
in the MNAR simulation.

Although these simulations were limited in scope, the results are consistent with miss-
ing data theory (Little & Rubin, 2002; Rubin, 1976) and with previous simulation studies. 
Among the procedures that I examined, stochastic regression imputation is clearly the best 
option because it produced unbiased estimates under MCAR and MAR mechanisms. In fact, 
the performance of stochastic regression is on a par with the maximum likelihood and mul-
tiple imputation approaches that I describe in subsequent chapters. The accuracy of this 
approach is even more remarkable when you consider that 50% of the scores were missing.

Although stochastic regression imputation appears to have some merit, it can severely 
attenuate standard errors. To illustrate, I computed the confi dence interval coverage rates 
from the MAR simulation. Confi dence interval coverage quantifi es the percentage of samples 
where the 95% confi dence interval contains the true population parameter. If standard errors 
are accurate, confi dence interval coverage should equal 95%. In contrast, if the standard er-
rors are too low, confi dence intervals will not capture the population parameter as frequently 
as they should, and coverage rates will drop below 95%. Confi dence interval coverage rates are 
a useful indicator of standard error bias because they directly relate to type I error rates (e.g., 
a confi dence interval coverage value of 90% suggests a twofold increase in type I errors).

Stochastic regression produced coverage rates that ranged between 60 and 70%. These 
low values suggest that the standard errors were far too small. For example, the average stan-
dard error for the job performance mean underestimated the true standard error by approxi-
mately 50%. From a practical standpoint, confi dence interval coverage values of 70% are 
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problematic because they represent a sixfold increase in the type I error rate (i.e., a type I 
error rate of approximately 30%). This simulation had a rather large proportion of missing 
data, but the confi dence interval coverage values clearly suggest that stochastic regression 
standard errors are prone to severe bias. This limits the utility of this method, particularly 
given the ease of implementing maximum likelihood estimation and multiple imputation.

2.14 SUMMARY

Methodologists have been studying missing data for decades and have proposed dozens of 
techniques to address the problem. Many of these approaches have enjoyed widespread use, 
while others are now little more than a historical footnote. This chapter described a few of 
the more common “traditional” missing data handling methods that you are likely to en-
counter in published research articles or in statistical software packages. The methods in this 

TABLE 2.5. Average Parameter Estimates from the Illustrative Computer Simulation

 
Population

 Missing data technique

Estimate parameter LD AMI RI SRI

MCAR simulation

IQ Mean 100.00 99.98 99.99 99.99 99.99
JP Mean 12.00 12.00 12.00 12.01 12.00
IQ Variance 169.00 170.29 169.64 169.64 169.64
JP Variance 9.00 8.99 4.47 5.62 8.99
IQ-JP Covariance 19.50 19.53 9.72 19.45 19.42
IQ-JP Correlation 0.50 0.50 0.35 0.63 0.50

MAR simulation

IQ Mean 100.00 110.35 100.04 100.04 100.04
JP Mean 12.00 13.21 13.21 12.00 12.01
IQ Variance 169.00 61.79 168.17 168.17 168.17
JP Variance 9.00 7.61 3.79 5.79 9.14
IQ-JP Covariance 19.50 7.22 3.60 19.64 19.60
IQ-JP Correlation 0.50 0.33 0.14 0.62 0.50

MNAR simulation

IQ Mean 100.00 105.15 100.02 100.02 100.02
JP Mean 12.00 14.40 14.40 14.14 14.14
IQ Variance 169.00 141.69 168.30 168.30 168.30
JP Variance 9.00 3.27 1.63 1.88 3.33
IQ-JP Covariance 19.50 6.97 3.47 8.29 8.27
IQ-JP Correlation 0.50 0.32 0.21 0.46 0.35

Note. JP = job performance; LD = listwise deletion; AMI = arithmetic mean imputation; RI = regression imputa-
tion, SRI = stochastic regression imputation.
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chapter address missing data by removing the incomplete cases or by imputing the missing 
values. In general, neither of these strategies works well in a wide range of situations.

Listwise and pairwise deletion are by far the most common missing data handling ap-
proaches in many areas of the social and behavioral sciences and are often the default miss-
ing data handling options in statistical software packages. These methods require an MCAR 
mechanism and produce biased parameter estimates with MAR and MNAR data. Even when 
the data are MCAR, eliminating incomplete cases can dramatically reduce power. The meth-
odological literature has been critical of deletion methods, so you should consider using 
these approaches only if the proportion of missing data is trivially small.

Single imputation methods generate a single replacement value for each missing data 
point. Imputation is an attractive idea because it produces a complete data set and makes 
use of data that deletion approaches would otherwise discard. Unfortunately, most single 
imputation methods produce biased parameter estimates, even with MCAR data. Stochastic 
regression imputation is the one exception and is the only traditional approach that yields 
unbiased estimates under an MAR mechanism. Unfortunately, stochastic regression under-
estimates standard errors, potentially by a substantial amount.

The next chapter takes a hiatus from missing data issues and describes the mechanics 
of maximum likelihood estimation with complete data. Missing data introduce relatively 
few unique nuances to the estimation process, so it is useful to gain some familiarity with 
maximum likelihood estimation in the context of a complete-data analysis. As you will see, 
maximum likelihood estimation plays a central role in missing data analyses and is one of 
two approaches that methodologists currently regard as state-of-the-art (Schafer & Graham, 
2002).
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3

An Introduction to Maximum 
Likelihood Estimation

3.1 CHAPTER OVERVIEW

Many modern statistical procedures in widespread use today rely on maximum likelihood 
estimation. Maximum likelihood also plays a central role in missing data analyses and is one 
of two approaches that methodologists currently regard as state of the art (Schafer & Gra-
ham, 2002). This chapter introduces the mechanics of maximum likelihood estimation in 
the context of a complete-data analysis. Although the basic estimation process is largely the 
same with missing data, understanding the basic estimation principles is made easier with-
out this additional complication.

The starting point for a maximum likelihood analysis is to specify a distribution for the 
population data. Researchers in the social and the behavioral sciences routinely assume that 
their variables are normally distributed in the population, so I describe maximum likelihood 
in the context of multivariate normal data. The normal distribution provides a familiar plat-
form for illustrating estimation principles, but it also offers the basis for the missing data 
handling procedure that I outline in Chapters 4 and 5. Although the normal distribution 
plays an integral role throughout the entire estimation process, the basic mechanics of esti-
mation are largely the same with other population distributions. For example, Chapter 6 
describes a maximum likelihood analysis that uses the binomial distribution for a binary 
outcome, and many of the key ideas from this chapter resurface in that example.

3.2 THE UNIVARIATE NORMAL DISTRIBUTION

Most applications of maximum likelihood estimation rely on the multivariate normal distribu-
tion. However, a univariate example is a useful starting point for illustrating basic estimation 
principles. As you will see, the estimation process is largely the same with multivariate data. 
The mathematical machinery behind maximum likelihood relies heavily on a probability 
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density function that describes the distribution of the population data. The density function 
for the univariate normal distribution is

 –.5(yi–μ)2

 1 ———— Li = ———e σ2 (3.1)
 √2πσ2

where yi is a score value, μ is the population mean, σ2 is the population variance, and Li is 
a likelihood value that describes the height of the normal curve at a particular score value. 
In words, the density function describes the relative probability of obtaining a score value 
from a normally distributed population with a particular mean and variance. Although the 
density function is complex, the driving force behind the equation is simply a squared z 
score, (yi–μ)2/σ2. This Mahalanobis distance term quantifi es the standardized distance be-
tween a score and the mean and largely determines the result of the equation. Density func-
tions typically contain a collection of scaling terms that make the area under the distribution 
sum (i.e., integrate) to one, and the portion of the equation to the left of the exponent symbol 
serves this purpose for the normal curve. These terms are not vital for understanding the 
estimation process.

To illustrate the probability density function, consider the IQ scores in Table 3.1. I de-
signed this small data set to mimic an employee selection scenario in which prospective 
employees complete an IQ test during their interview and a supervisor subsequently rates 
their job performance following a 6-month probationary period. Ultimately, maximum likeli-
hood uses the density function in Equation 3.1 to estimate the population parameters, but 

TABLE 3.1. IQ and Job Performance Data

  Job
 IQ performance

 78 9
 84 13
 84 10
 85 8
 87 7
 91 7
 92 9
 94 9
 94 11
 96 7
 99 7
 105 10
 105 11
 106 15
 108 10
 112 10
 113 12
 115 14
 118 16
 134 12
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understanding the basic estimation principles is easier when the parameter values are known. 
Consequently, I temporarily assume that the population mean is μ = 100 and the population 
variance is σ2 = 189.60.

The density function in Equation 3.1 describes the relative probability of obtaining a 
score value from a normally distributed population with a particular mean and variance. For 
example, consider two IQ scores, 99 and 87. Substituting yi = 99, μ = 100, and σ2 = 189.60 
into the density function yields a likelihood value of Li = .0289. Similarly, substituting an IQ 
score of 87 into Equation 3.1 returns a likelihood of Li = .0186. Although they resemble 
probabilities, it is more accurate to think of a likelihood value as the relative probability of 
drawing a particular IQ score from a normal distribution with a mean of 100 and a variance 
of 189.60. Consequently, it is incorrect to say that an IQ score of 99 has a probability of 
.0289, but it is true that an IQ score of 99 is more probable than a score of 87. (With a con-
tinuous score distribution, there are an infi nite number of yi values, so the probability of any 
single score is effectively zero.) Visually, the likelihood represents the height of the normal 
curve at a particular score value. To illustrate, Figure 3.1 presents a graphical depiction of the 
previous likelihood values. Notice that the elevation of the normal curve is higher at an IQ 
score of 99, which is consistent with the relative magnitude of the two likelihood values.

It is also useful to view the likelihood as a measure of “fi t” between a score and the 
population parameters. In Figure 3.1, the largest possible likelihood value (i.e., the highest 
point on the distribution) corresponds to the score that is exactly equal to the population 
mean, and the likelihood values decrease in magnitude as the distance from the mean in-
creases. Returning to Equation 3.1, this implies that smaller Mahalanobis distance values 
(i.e., smaller squared z scores) produce larger likelihood values, whereas larger Mahalanobis 
distance values yield smaller likelihoods. Consequently, a score that yields a high likelihood 
value also has a good fi t because it falls close to the population mean. As you will see, inter-
preting the likelihood as a measure of fi t becomes useful when the population parameters are 
unknown.

FIGURE 3.1. Univariate normal distribution with μ = 100 and σ2 = 189.60. The likelihood values 
represent the height of the distribution at score values of 99 and 87.
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3.3 THE SAMPLE LIKELIHOOD

The goal of maximum likelihood estimation is to identify the population parameter values 
that have the highest probability of producing a particular sample of data. Identifying the 
most likely parameter values requires a summary fi t measure for the entire sample, not just 
a single score. In probability theory, the joint probability for a set of independent events is 
the product of individual probabilities. For example, the probability of fl ipping a fair coin 
twice and getting two heads is .50 × .50 = .25. Although they are not exactly probabilities, 
the same rule applies to likelihood values. Consequently, the likelihood for a sample of cases 
is the product of N individual likelihood values.

More formally, the sample likelihood is

 –.5(yi–μ)2

 1 ———— L = ∏
N

i=1 {———e σ2 } (3.2)
 √2πσ2

where the braces contain the likelihood of a single score (i.e., Equation 3.1), and ∏ is the 
multiplication operator. In words, Equation 3.2 says to compute the likelihood for each 
member of a sample and multiply the resulting values. For example, Table 3.2 shows the 
likelihood values for the IQ scores in Table 3.1. Multiplying the 20 values gives the likelihood 
for the entire sample, L = 7.89E –36 (in scientifi c notation, E –36 means to move the decimal 
to the left by 36 places). The sample likelihood quantifi es the joint probability of drawing this 

TABLE 3.2. Individual Likelihood and 
Log-Likelihood Values

IQ Li logLi

 78 .008 –4.818
 84 .015 –4.217
 84 .015 –4.217
 85 .016 –4.135
 87 .019 –3.987
 91 .023 –3.755
 92 .024 –3.710
 94 .026 –3.636
 94 .026 –3.636
 96 .028 –3.584
 99 .029 –3.544
105 .027 –3.607
105 .027 –3.607
106 .026 –3.636
108 .024 –3.710
112 .020 –3.921
113 .019 –3.987
115 .016 –4.135
118 .012 –4.396
134 .001 –6.590
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collection of 20 scores from a normal distribution with a mean of 100 and a variance of 
189.60.

Because a number of factors infl uence the value of the sample likelihood (e.g., the 
sample size, the number of variables), there is no cutoff that determines good or bad fi t. 
Consistent with the interpretation of the individual likelihood values, it is best to view the 
sample likelihood as a measure of relative fi t. Ultimately, the likelihood (or more accurately, 
the log-likelihood) will provide a basis for choosing among a set of plausible population pa-
rameter values.

3.4 THE LOG-LIKELIHOOD

Because the sample likelihood is such a small number, it is diffi cult to work with and is prone 
to rounding error. Computing the natural logarithm of the individual likelihood values solves 
this problem and converts the likelihood to a more tractable metric. To illustrate, the right-
most column of Table 3.2 shows the log-likelihood value for each IQ score. Taking the natural 
logarithm of a number between zero and one yields a negative number, but the log-likelihood 
values serve the same role and have the same meaning as the individual likelihoods. For ex-
ample, reconsider the IQ scores of 99 and 87, the likelihood values for which are .0289 and 
.0186, respectively. The corresponding log-likelihood values are –3.544 versus –3.987, respec-
tively. Again, the IQ score of 99 has a higher likelihood than a score of 87 because it is closer 
to the mean. An IQ score of 99 also has a higher (i.e., “less negative”) log-likelihood value 
than a score of 87. The log-likelihood values still quantify relative probability, but they simply 
do so using a different metric. Consequently, values that are closer to zero refl ect a higher 
relative probability and a closer proximity to the population mean.

Working with logarithms simplifi es the computation of the sample log-likelihood. One 
of the basic logarithm rules states that log(AB) is equal to log(A) + log(B). Consequently, the 
sample log-likelihood is the sum of the individual log-likelihood values, as follows:

 .5(yi–μ)2

 1 ——–— logL = ∑
N

i=1 
log{———e σ2 } (3.3)

 √2πσ2

Returning to the data in Table 3.2, note that summing the log-likelihood values yields logL = 
–80.828. Consistent with the sample likelihood, the sample log-likelihood is a summary 
measure that quantifi es the joint probability of drawing the sample of 20 scores from a nor-
mal distribution with a mean of 100 and a variance of 189.60.

3.5 ESTIMATING UNKNOWN PARAMETERS

Thus far, I have assumed that the population parameters (i.e., μ and σ2) are known. These 
parameters typically need to be estimated from the data. Fortunately, switching to a situation 
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where the parameter values are unknown does change the previous computations. Concep-
tually, the estimation procedure is an iterative process that repeatedly “auditions” different 
values for μ and σ2 until it fi nds the estimates that are most likely to have produced the data. 
It does this by repeating the log-likelihood computations many times, each time with differ-
ent values of the population parameters. The sample log-likelihood gauges the relative fi t of 
the prospective estimates and provides a basis for choosing among a set of plausible param-
eter values. The ultimate goal of estimation is to identify the unique combination of estimates 
that maximize the log-likelihood and thus produce the best fi t to the data (i.e., the estimates 
that minimize the standardized distances between the scores and the mean).

To illustrate the estimation process, reconsider the IQ data in Table 3.1. Suppose that 
the company wants to use maximum likelihood to estimate the IQ mean. One way to identify 
the most likely value of the population mean is to substitute different values of μ into Equa-
tion 3.3 and compute the sample log-likelihood for each estimate. Table 3.3 gives the log-
likelihood values for fi ve different estimates of the population mean. (Substituting any non-
zero value of the variance into Equation 3.3 leads to the same estimate of the mean, so I 
continue to fi x σ2 at 189.60.) To begin, notice that each mean estimate yields a different set 
of individual log-likelihood values. For example, when μ = 98, an IQ score of 96 is close to 
the mean and has a higher log-likelihood (i.e., better fi t) than a score of 105. In contrast, 

TABLE 3.3. Individual and Sample Log-Likelihood Values for Five Different 
Estimates of the Population Mean

 Population mean

IQ μ = 98 μ = 99 μ = 100 μ = 101 μ = 102

 78 –4.596 –4.704 –4.818 –4.936 –5.060
 84 –4.058 –4.135 –4.217 –4.304 –4.396
 84 –4.058 –4.135 –4.217 –4.304 –4.396
 85 –3.987 –4.058 –4.135 –4.217 –4.304
 87 –3.860 –3.921 –3.987 –4.058 –4.135
 91 –3.671 –3.710 –3.755 –3.805 –3.860
 92 –3.636 –3.671 –3.710 –3.755 –3.805
 94 –3.584 –3.607 –3.636 –3.671 –3.710
 94 –3.584 –3.607 –3.636 –3.671 –3.710
 96 –3.552 –3.565 –3.584 –3.607 –3.636
 99 –3.544 –3.541 –3.544 –3.552 –3.565
105 –3.671 –3.636 –3.607 –3.584 –3.565
105 –3.671 –3.636 –3.607 –3.584 –3.565
106 –3.710 –3.671 –3.636 –3.607 –3.584
108 –3.805 –3.755 –3.710 –3.671 –3.636
112 –4.058 –3.987 –3.921 –3.860 –3.805
113 –4.135 –4.058 –3.987 –3.921 –3.860
115 –4.304 –4.217 –4.135 –4.058 –3.987
118 –4.596 –4.493 –4.396 –4.304 –4.217
134 –6.959 –6.772 –6.590 –6.413 –6.242

logL = –81.039 –80.881 –80.828 –80.881 –81.039
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substituting a value of μ = 102 into the equation reverses the relative fi t of these two data 
points because the IQ score of 105 is closer to the mean. The sample log-likelihood is the 
sum of the individual log-likelihood values, so changing the population mean affects its value 
as well. Comparing the relative fi t of the fi ve mean estimates, μ = 100 yields the highest log-
likelihood and thus provides the best fi t to the data.

The sample log-likelihood values in the bottom row of Table 3.3 suggest that μ = 100 is 
the best estimate of the mean, but thus far I have only considered fi ve possible values. I con-
ducted a more comprehensive search by computing the sample log-likelihood for mean val-
ues between 90 and 110. Figure 3.2 is a log-likelihood function that plots the resulting 
log-likelihood values against the corresponding estimates of the mean on the horizontal axis. 
The log-likelihood function resembles a hill, with the most likely parameter value located at 
its peak. Conceptually, the estimation process is akin to hiking to the top of the hill. Consis-
tent with Table 3.3, the peak of the log-likelihood function is located at μ = 100, and the 
sample log-likelihood values decrease as μ gets farther away from 100 in either direction. 
After thoroughly auditioning a range of plausible parameter values, the data provide the most 
evidence in support of μ = 100. Consequently, μ̂ = 100 is the maximum likelihood estimate 
of the mean, or the population parameter with the highest probability of producing this 
sample of IQ scores.

Next, I applied the same iterative search procedure to the population variance. Specifi -
cally, I fi xed the value of μ at 100 in Equation 3.3 and computed the sample log-likelihood 
for variance values between 50 and 450. Figure 3.3 shows a log-likelihood function that plots 
the resulting log-likelihood values against the corresponding estimates of σ2 on the horizon-
tal axis. The log-likelihood function of the variance looks very different from that of the 
mean, but it works in exactly the same way. Although it is diffi cult to determine graphically, 
the peak of the log-likelihood function is located at σ2 = 189.60. Consequently, σ̂2 = 189.60 
is the maximum likelihood estimate of the variance (i.e., the population variance that has the 
highest probability of producing the sample of IQ scores in Table 3.1).
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FIGURE 3.2. The log-likelihood function for the mean. The fi gure shows how the sample log-
likelihood values vary across a range of plausible values for the population mean. The maximum of 
the function occurs at μ = 100.
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3.6 THE ROLE OF FIRST DERIVATIVES

The random search process in the previous examples would become exceedingly tedious in 
most real-world estimation problems. In practice, software packages use calculus derivatives 
to identify the maximum of the log-likelihood function (i.e., the peak of the hill). Returning 
to Figure 3.2, the fi rst derivative is the slope of the log-likelihood function at a particular 
value of the population mean (or more accurately, the slope of a line that is tangent to a cer-
tain point on the function). To illustrate, imagine using a magnifying glass to zoom in on a 
very small section of the log-likelihood function located directly above μ = 95. Although the 
entire function has substantial curvature, the log-likelihood would begin to resemble a posi-
tively sloping straight line as the magnifying glass comes into sharper focus. The slope of this 
minute section of the log-likelihood function is the fi rst derivative (or more accurately, the 
fi rst derivative of the log-likelihood function with respect to the mean). Now imagine focus-
ing the magnifying glass on the highest point of the log-likelihood function, directly above 
μ = 100. Again, with a sharp enough focus, the log-likelihood would appear as a straight line, 
this time with a slope of zero. Figure 3.4 shows a tangent line at the maximum of the log-
likelihood function. The slope of this line is the fi rst derivative.

Obtaining the fi rst derivatives of the log-likelihood equation is tedious and involves a 
process known as differentiation. Illustrating the mechanics of differential calculus is beyond 
the scope of this chapter, but most introductory calculus texts contain the differentiation 
rules. The important point is that fi rst derivatives are equations that give the slope of each 
parameter’s log-likelihood at any given point along the function. More importantly, Figure 
3.4 suggests that substituting the maximum likelihood estimate into the derivative equation 
returns a slope of zero. This implies a relatively straightforward strategy: set the result of the 
derivative formula to zero and solve for the unknown parameter value.
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FIGURE 3.3. The log-likelihood function for the variance. The fi gure shows how the sample log-
likelihood values vary across a range of plausible values for the population variance. The maximum of 
the function occurs at σ2 = 189.60.
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To illustrate how derivatives simplify the estimation process, I used differential calculus 
to obtain the fi rst derivative of the log-likelihood function with respect to μ. The fi rst deriva-
tive equation for the population mean is as follows:

 ∂logL 1
 —–— = — (–Nμ + ∑

N

i=1
 yi) (3.4)

 ∂μ σ2

In words, the terms to the left of the equal sign read “the fi rst derivative of the log-likelihood 
function with respect to the population mean” (the ∂ symbol denotes a derivative), and the 
equation to the right of the equal sign defi nes the slope of the log-likelihood function at a 
particular value of μ. Substituting the maximum likelihood estimate of the mean into the 
equation returns a slope of zero, so the fi rst step is to set the slope equation equal zero. Next, 
multiplying both sides of the resulting equation by σ2 eliminates the variance from the for-
mula and leaves the collection of terms in parentheses equal to zero. Finally, using algebra to 
solve for μ gives the maximum likelihood estimate of the mean.

 μ̂ = ∑
N

i=1
yi/N (3.5)

Notice that Equation 3.5 is the usual formula for the sample mean.
The same differentiation process applies to the population variance. Applying differential 

calculus rules to the log-likelihood equation gives the derivative equation for the variance.

 ∂logL N 
 —–— = – —– + ∑

N

i=1
(yi – μ)2/2σ4 (3.6)

 ∂σ2 2σ2

Setting the right side of the equal to zero and solving for σ2 gives the maximum likelihood 
estimate of the variance, as follows:

 σ̂2 = ∑
N

i=1
(yi – μ)2/N (3.7)
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FIGURE 3.4. The log-likelihood function with a tangent line imposed at its maximum. The slope of 
this line is the fi rst derivative of the log-likelihood function at μ = 100.
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Notice that Equation 3.7 has N rather than N – 1 in the denominator, so it is identical to the 
usual formula for the population variance. The use of N in the denominator of the variance 
formula implies that maximum likelihood estimation yields negatively biased estimates of 
variances (and covariances). This is a well-known property of maximum likelihood that ex-
tends to more complex analyses (e.g., structural equation models, multilevel models). How-
ever, this bias is only a concern in small samples because it quickly becomes negligible as the 
sample size increases.

The previous examples are straightforward because familiar equations defi ne the maxi-
mum likelihood estimates. This is true in a limited number of situations (e.g., means, vari-
ances, covariances, regression coeffi cients), but more complex applications of maximum 
likelihood estimation (e.g., structural equation models, multilevel models, missing data 
estimation) generally require iterative optimization algorithms to identify the most likely set 
of parameter values. The expectation maximization (EM) algorithm is one such method that 
I discuss in the next chapter. Nevertheless, estimating the mean and the variance is a useful 
exercise because it provides a familiar platform from which to explore maximum likelihood.

3.7 ESTIMATING STANDARD ERRORS

The primary goal of a statistical analysis is to estimate a set of unknown model parameters, 
but obtaining standard errors for the resulting point estimates is an important secondary goal. 
The log-likelihood function provides a mechanism for estimating standard errors, and this 
too relies heavily on calculus derivatives. To illustrate, Figure 3.5 shows the log-likelihood 
functions for two data sets, both of which have a mean of 100. I used the data in Table 3.1 
to generate the top function, and the bottom function corresponds to a set of IQ scores with 
a variance that is exactly two and a half times larger than that of the data in Table 3.1. 
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FIGURE 3.5. Two log-likelihood functions for the mean. The steep function is from a sample of 20 
IQ scores with μ = 100 and σ2 = 189.60, and the fl at function corresponds to a data set with μ = 100 
and σ2 = 474.00. The two functions produce the same estimate of the mean (i.e., the maxima are lo-
cated at μ = 100), but they have very different curvatures. The steep function has a larger second de-
rivative (i.e., is more peaked) and a smaller standard error.
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Throughout this section, I refer to the top function as the “steep” log-likelihood and to the 
bottom function as the “fl at” log-likelihood. Although the two log-likelihood functions pro-
duce the same estimate of the mean (i.e., the maxima are located at μ = 100), they have a 
very different curvature. As you will see, the magnitude of this curvature largely determines 
the maximum likelihood standard error.

At an intuitive level, the curvature of the log-likelihood function provides important in-
formation about the uncertainty of an estimate. A fl at function makes it diffi cult to discrimi-
nate among competing estimates because the log-likelihood values are relatively similar across 
a range of plausible parameter estimates. In contrast, a steep log-likelihood function more 
clearly differentiates the maximum likelihood estimate from other possible parameter values. 
To illustrate, consider the log-likelihood functions in Figure 3.5. The fl at function yields log-
likelihood values of –84.518 and –83.991 at μ = 95 and μ = 100, respectively, which is a 
difference of 0.527. In contrast, the corresponding log-likelihood values for the steep func-
tion are –82.147 and –80.828, which is a difference of 1.319. Both functions yield the same 
estimate of the population mean, but the log-likelihood values from the steep function de-
crease more rapidly as μ gets farther away from 100. Consequently, the steep function better 
differentiates μ = 100 from other plausible parameter estimates. Not coincidentally, the steep 
function decreases at a rate that is two and a half times larger than that of the fl at function 
(i.e., 1.319 / 0.527 = 2.5). Recall that this is the same factor by which the variances differed.

The Role of Second Derivatives

Mathematically, the second derivative quantifi es the curvature of the log-likelihood function. 
Technically, a second derivative measures the rate at which the fi rst derivatives change across 
a function. For example, a steep log-likelihood function has rapidly changing fi rst derivatives 
(i.e., slopes), so its second derivative is large. In contrast, a fl at log-likelihood function has a 
small second derivative because its fi rst derivatives change slowly (i.e., the slopes are relatively 
fl at across the entire range of the function). To make this idea more concrete, Table 3.4 shows 
the fi rst derivatives of the two functions in Figure 3.5 (I obtained the derivatives by substitut-

TABLE 3.4. First Derivative Values for the 
Steep and Flat Log-Likelihood Functions

 Steep Flat
μ function Function

 95 0.527 0.211
 96 0.422 0.169
 97 0.316 0.127
 98 0.211 0.084
 99 0.105 0.042
100 0.000 0.000
101 –0.105 –0.042
102 –0.211 –0.084
103 –0.316 –0.127
104 –0.422 –0.169
105 –0.527 –0.211
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ing the appropriate values of μ and σ2 into Equation 3.4). Beginning at μ = 95, the fi rst de-
rivatives are positive (i.e., the slope of the log-likelihood function is positive) and decrease in 
magnitude until μ = 100, after which they become increasingly negative (i.e., the log-likelihood 
has a negative slope when μ is greater than 100). This trend is true for both functions, but 
the steep function’s derivatives change at a faster rate. Figure 3.6 shows these fi rst derivatives 
plotted against the values of the population mean on the horizontal axis. The two lines depict 
the rate of change in the fi rst derivatives, and the slopes of these lines are the second deriva-
tives. Again, the values of the second derivatives determine the magnitude of standard errors, 
such that larger second derivatives (i.e., more peaked functions) translate into smaller stan-
dard errors.

An Example: The Standard Error of the Mean

Having established some important background information, I now show how the second 
derivatives translate into standard errors. Computing a maximum likelihood standard involves 
four steps: (1) calculate the value of the second derivative, (2) multiply the second derivative 
by negative 1, (3) compute the inverse (i.e., reciprocal) of the previous product, and (4) take 
the square root of the resulting inverse. To keep things simple, I outline the computational 
steps for the standard error of the mean, but the process is identical for other parameters.

The fi rst step of the standard error computations requires the second derivative equa-
tions. Applying differential calculus rules to the fi rst derivative equations (e.g., Equation 3.4) 
produces the necessary formulas. As an example, differentiating Equation 3.4 yields the sec-
ond derivative equation for the mean, which is simply –N2/σ. As I explain later, the second 
derivative should always be a negative number, which it is in this case. The next step is to 
multiply the second derivative by negative 1. This operation yields a quantity called informa-
tion. Information quantifi es the curvature of the log-likelihood function, such that steeper 
functions produce larger (i.e., more positive) information values. The third step is to com-
pute the inverse (i.e., the reciprocal ) of the information. Taking the inverse of the information 
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FIGURE 3.6. First from two log-likelihood functions. The solid line plots the fi rst derivatives of the 
steep log-likelihood function in Figure 3.4, and the dashed line depicts the fi rst derivatives for the fl at 
log-likelihood function in Figure 3.4.
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gives the sampling variance (i.e., squared standard error) of the mean. Equation 3.8 sum-
marizes the fi rst three steps

 ∂2LogL –N σ2
 var( μ̂) = –[———]–1 = – [—–]–1 = — (3.8)
 ∂2μ σ2 N

where var( μ̂) denotes the sampling variance, and ∂2 symbolizes a second derivative. The right-
most term in Equation 3.8 may look familiar because it is the square of the standard error of 
the mean. Researchers typically report sampling error on the standard deviation metric rather 
than the variance metric, so the fi nal step is to take the square root of the sampling variance. 
Doing so yields σ/√⎯⎯N, which is the usual formula for the standard error of the mean.

To illustrate the computation of maximum likelihood standard errors, reconsider the 
log-likelihood functions in Figure 3.5. The steep function is from a sample of 20 IQ scores 
with μ = 100 and σ2 = 189.60, and the fl at function corresponds to a data set with μ = 100 
and σ2 = 474.00. Substituting the sample size and the variance into the second derivative 
formula yields derivative values of –0.105 and –0.042 for the steep and fl at functions, respec-
tively. Visually, these values are the slopes of the two lines in Figure 3.6. Multiplying the 
second derivative values by negative 1 gives the information. Again, peaked log-likelihood 
functions produce larger information values, so the relative magnitude of the two informa-
tion values (0.105 versus 0.042) refl ects the fact that the two functions have different curva-
ture. Computing the inverse of the information yields the sampling variance of the mean (i.e., 
squared standard error), the values of which are 9.48 and 23.70 for the steep and fl at func-
tions, respectively. Notice that the sampling variances differ by a ratio of 2.5, which is the 
same factor that differentiates the second derivatives and the score variances. Finally, taking 
the square root of the sampling variance yields the standard error. Not surprisingly, the steep 
function has a smaller standard error than the fl at function (3.08 versus 4.87, respectively), 
owing to the fact that its second derivative value is larger in absolute value.

Why Is the Second Derivative Value Negative?

It may not be immediately obvious, but the fact that the second derivative takes on a negative 
value is important. To understand why this is the case, imagine a U-shaped log-likelihood 
function that is a mirror image of the function in Figure 3.2. With a U-shaped log-likelihood, 
the fi rst derivative takes on a value of zero at the lowest point on the function (i.e., the bottom 
of the valley). Consequently, setting the fi rst derivative formula to zero and solving for the 
unknown parameter value yields an estimate with the lowest possible log-likelihood value. 
The fact that the peak and the valley of a function both have fi rst derivative values of zero is 
problematic because there is no way to differentiate the “best” and “worst” parameter values 
based on fi rst derivatives alone. From the perspective of the fi rst derivative formula, the top 
of the hill and the bottom of the valley look identical because both points on the function 
have a zero slope.

Fortunately, the sign of the second derivative provides a mechanism for differentiating 
the minimum and the maximum of a function. To illustrate, imagine climbing to the top of 
the log-likelihood function in Figure 3.2 beginning at a value of μ = 95. The fi rst derivatives 
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are positive during the ascent to the top of the function and become negative on the descent 
past μ = 100. This sequence of positive to negative derivatives produces the negative sloping 
line (i.e., negative second derivative) in Figure 3.6. In contrast, imagine traversing a U-shaped 
function beginning at a value of μ = 95. In this case, the fi rst derivatives are negative during 
the descent to the minimum of the function and turn positive during the ascent back up the 
hill. Unlike Figure 3.6, this sequence of negative to positive values yields a line with a posi-
tive slope (i.e., a positive second derivative). Consequently, a negative second derivative in-
dicates that the parameter estimate is located at the maximum, rather than the minimum, of 
the log-likelihood function.

3.8 MAXIMUM LIKELIHOOD ESTIMATION WITH MULTIVARIATE 
NORMAL DATA

A univariate example is useful for illustrating the mathematics behind maximum likelihood 
estimation, but most realistic applications of maximum likelihood (including maximum like-
lihood missing data handling) rely on the multivariate normal distribution. Applying maxi-
mum likelihood to multivariate data is typically more complex because the search process 
involves several parameters. In the subsequent sections, I use the IQ and job performance 
scores from Table 3.1 to extend the previous estimation principles to two variables. A bivari-
ate analysis is still relatively straightforward, but the underlying logic generalizes to data sets 
with any number of variables.

As its name implies, the multivariate normal distribution generalizes the normal curve 
to multiple variables. For example, Figure 3.7 shows a multivariate normal distribution with 
two variables. This bivariate normal distribution retains the familiar shape of the normal 
curve and looks like a bell-shaped mound in three-dimensional space. Consistent with the 
univariate normal curve, a probability density function defi nes the shape of the multivariate 
normal distribution:

 1 Li = ————— e–.5(Yi–�)T�–1(Yi–�) (3.9)
 (2π)k/2|�|1/2

The univariate density function has three primary components: a score value, the population 
mean, and the population variance. These quantities now appear as matrices in Equation 3.9. 
Specifi cally, each individual now has a set of k scores that are contained in the score vector Yi. 
Similarly, the equation replaces the mean and the variance with a mean vector and a covari-
ance matrix (i.e., � and �, respectively). The key portion of the formula is the Mahalanobis 
distance value to the right of the exponent, (Yi – �)T �–1(Yi – �). Despite the shift to matrices, 
this portion of the formula is still a squared z score that quantifi es the standardized distance 
between an individual’s data points and the center of the multivariate normal distribution. 
Consistent with the univariate normal density, small deviations between the score vector and 
the mean vector produce large likelihood (i.e., relative probability) values, whereas large de-
viations yield small likelihoods. Finally, the collection of terms to the left of the exponent 
symbol is a scaling factor that makes the area under the distribution sum (i.e., integrate) to 1.
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Computing Individual Likelihoods

The multivariate normal density describes the relative probability of drawing a set of scores 
from a multivariate normal distribution with a particular mean vector and covariance matrix. 
To illustrate the computations, consider the IQ and job performance scores in Table 3.1. For 
the sake of demonstration, assume that the population parameter values are as follows:

 
� = [μIQ] = [100.00] μJP 10.35

 
� = [ σ2

IQ
 
 σIQ,JP] = [189.60 19.50] σJP,IQ σ2

JP 19.50 6.83

To begin, consider the individual who has an IQ score of 99 and a job performance rat-
ing of 7. Substituting these scores into Equation 3.9 yields a likelihood value of .0018, as 
follows:

 –.5([99]–[100.00])T[189.60 19.50]–1([99]–[100.00]) 1 7 10.35 19.50 6.83 7 10.35
 Li = ——————————— e               = .0018
 

(2π)2/2|189.60 19.50|1/2

 19.50 6.83

In the context of a bivariate analysis, the likelihood is the relative probability of drawing 
scores of 99 and 7 from a bivariate normal distribution with the previous mean vector and 
covariance matrix. Visually, the likelihood is the height of the bivariate normal distribution at 
the point where scores of 99 and 7 intersect. Next, consider the case with IQ and job perfor-
mance scores of 87 and 7, respectively. Substituting these scores into the density function 
returns a likelihood value of 0.0022.

At fi rst glance, the previous likelihood values might seem counterintuitive because the 
pair of scores with the largest deviations from the mean (i.e., 87 and 7) produces the higher 
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FIGURE 3.7. A bivariate normal distribution. The population mean and variance of the IQ variable 
are 100 and 189.60, respectively, and the mean and variance of the job performance variable are 10.35 
and 6.83, respectively. The correlation between the variables is .55.
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likelihood value (i.e., better fi t). To illustrate why this is the case, Figure 3.8 shows the bivari-
ate normal distribution from an overhead perspective with contour rings that denote the el-
evation of the surface. The diagonal orientation of the contour rings follows from the fact that 
the two variables are positively correlated. This, in turn, puts the intersection of 87 and 7 at 
a slightly higher elevation (i.e., closer to the center of the distribution) than the intersection 
of 99 and 7. The Mahalanobis distance measure that quantifi es the standardized distance 
between the score vector and the mean vector accounts for the positive correlation, so the 
seemingly counterintuitive likelihood values are accurate. Interested readers can consult any 
number of multivariate statistics textbooks for additional details on Mahalanobis distance 
(e.g., Johnson & Wichern, 2007; Tabachnick & Fidell, 2007).

The Multivariate Normal Log-Likelihood

As I explained earlier in the chapter, computing the natural logarithm of the individual likeli-
hood values simplifi es the mathematics of maximum likelihood. The individual log-likelihood 
for multivariate normal data is

 1 logLi = log{————–—e–.5(Yi–�)T�–1(Yi–�)} (3.10)
 (2π)k/2|�|1/2

where the terms in the braces produce the likelihood value for case i. After distributing the 
logarithm, the individual log-likelihood becomes

 k 1 1 logLi = – —log(2π) – — log|�| – —(Yi–�)T�–1(Yi–�) (3.11)
 2 2 2
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FIGURE 3.8. The bivariate normal distribution shown from an overhead perspective. The center of 
the distribution (μ = 100, 10.35) is located in the middle of the ellipse. The location of two pairs 
of scores is marked by a •. The angle of the ellipse indicates a positive correlation between IQ and job 
performance. Because of the positive correlation, the intersection of 87 and 7 is actually at a slightly 
higher elevation (i.e., closer to the center of the distribution) than the intersection of 99 and 7.
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Although Equations 3.10 and 3.11 are equivalent, the missing data literature often uses Equa-
tion 3.11 to express an individual’s contribution to the sample log-likelihood. This formula 
will resurface in the next chapter, so it is worth mentioning at this point.

The log-likelihood values serve the same role and have the same meaning as the indi-
vidual likelihoods. For example, reconsider the individual with an IQ score of 99 and a job 
performance rating of 7. The likelihood for this case is 0.0018, and the corresponding log-
likelihood is –6.343. Next, the case with IQ and job performance scores of 87 and 7, respec-
tively, has a likelihood value of 0.0022 and a log-likelihood of –6.113. Notice that the case 
with the highest likelihood value also has the highest (i.e., least negative) log-likelihood. Again, 
the log-likelihood values still quantify relative probability, but they do so using a different 
metric. Consequently, the score values of 87 and 7 have a better relative fi t to the parameter 
values because they are closer to the center of the distribution.

Consistent with the univariate context, the sample log-likelihood is the sum of the indi-
vidual log-likelihood values, as follows:

 logL = ∑
N

i=1
 logLi (3.12)

As before, the sample log-likelihood is a summary measure that quantifi es the fi t of the 
sample data to the parameter estimates, such that higher values (i.e., values closer to zero) are 
indicative of better fi t. Again, the sample log-likelihood provides a basis for choosing among 
a set of plausible parameter values.

Identifying the Maximum Likelihood Estimates

Estimating the parameters of the multivariate normal distribution (i.e., the mean vector and 
the covariance matrix) follows the same logic as univariate estimation. Conceptually, the es-
timation routine repeats the log-likelihood computations many times, each time with differ-
ent estimates of � and �. Each unique combination of parameter estimates yields a different 
log-likelihood value, and the goal of estimation is to identify the particular constellation of 
estimates that produce the highest log-likelihood and thus the best fi t to the data. Again, 
model fi tting programs tend to use calculus derivatives to facilitate the estimation process.

Although the logic of estimation does not change much with multivariate data, identify-
ing the maximum likelihood estimates is more complex because the search process involves 
multiple parameters. As an illustration, consider a simple bivariate analysis where the goal is 
to estimate the IQ and job performance means from the data in Table 3.1. The log-likelihood 
equation now depends on fi ve parameters (i.e., two means and three unique covariance 
matrix elements), but fi xing the covariance matrix elements to their sample estimates simpli-
fi es the illustration and has no impact on the mean estimates. Fixing the covariance matrix 
elements leaves the variable means as the only unknown quantities in Equation 3.11. I con-
ducted a comprehensive search by computing the sample log-likelihood for many different 
combinations of the IQ and job performance means. Figure 3.9 shows the resulting log-
likelihood values plotted against the values of μIQ and μJP. The log-likelihood function is now 
a three-dimensional surface with the pair of maximum likelihood estimates located at its peak. 
The orientation of the graph makes it diffi cult to precisely determine the parameter values, 
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but the maximum of the function is approximately located at the intersection of μIQ = 100 
and μJP = 10.

3.9 A BIVARIATE ANALYSIS EXAMPLE

Figure 3.9 provides a rough estimate of the variable means, but a more precise solution re-
quires differential calculus. I described the role of fi rst derivatives earlier in the chapter, so 
there is no need to delve deeper into the calculus details. Instead, I use the analysis results 
from a statistical software package to illustrate the details of a bivariate analysis. The maxi-
mum likelihood estimates of the mean vector and covariance matrix from the data in Table 3.1 
are as follows:

 
�̂ = [μ̂IQ] = [100.00] μ̂JP 10.35

 
�̂ = [ σ̂2

IQ
 
 σ̂IQ,JP] = [189.60 19.50] σ̂JP,IQ σ̂2

JP 19.50 6.83

The maximum likelihood means are identical to the usual sample means, but the variances 
and covariances are somewhat different because they use N in the denominator rather than 
N – 1. For example, the standard formula for the sample variance yields σ̂2

IQ
 
= 199.58 and 

σ̂2
JP = 7.19. The negative bias in the maximum likelihood estimates is particularly evident in 

this example because of the small sample size. However, the bias quickly becomes negligible 
as the sample size increases, so it is usually not a major concern.

Recall from a previous section that maximum likelihood standard errors involve four 
computational steps: (1) calculate the value of the second derivative, (2) multiply the second 
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derivative by negative one, (3) compute the inverse (i.e., reciprocal) of the previous product, 
and (4) take the square root of the resulting inverse. With multivariate analyses, the basic 
steps remain the same, but the computations involve matrices. Because each parameter has 
a unique derivative formula, the standard error computations start with a matrix of second 
derivatives. This so-called Hessian matrix is a symmetric matrix that has the same number 
of rows and columns as the number of parameters. The top panel of Table 3.5 shows the 
Hessian matrix for the bivariate analysis example. As seen in the table, the Hessian is a 5 by 
5 symmetric matrix where each row and column corresponds to one of the estimated param-
eters. The diagonal elements contain the second derivatives, and the off-diagonal elements 
quantify the extent to which the log-likelihood functions for two parameters share similar 
curvature. Notice that the diagonal elements of the matrix are negative, which verifi es that 
the parameter estimates are located at the maximum of the log-likelihood function.

The elements of the Hessian have a visual interpretation that is similar to that of the 
previous univariate example. To illustrate, consider the block of derivative values that corre-
spond to the variable means (i.e., the elements in the upper left corner of the matrix). Return-
ing to Figure 3.9, imagine standing midway along the IQ axis at the base of the log-likelihood 
surface. From this perspective, the log-likelihood would appear as a two-dimensional hill, and 

TABLE 3.5. Hessian, Information, and Parameter Covariance Matrices from the 
Bivariate Analysis Example

Parameter 1 2 3 4 5

Hessian matrix

1: μIQ –0.149358
2: μJP 0.426582 –4.147689
3: μ2

IQ 0 0 –0.000558
4: μIQ,JP 0 0 0.003186 –0.040073
5: μ2

JP 0 0 –0.004549 0.088466 –0.430083

Information matrix

1: μIQ 0.149358
2: μJP –0.426582 4.147689
3: μ2

IQ 0 0 0.000558
4: μIQ,JP 0 0 –0.003186 0.040073
5: μ2

JP 0 0 0.004549 –0.088466 0.430083

Parameter covariance matrix

1: μIQ 9.480000
2: μjp 0.975000 0.341375
3: μ2

IQ 0 0 3594.816100
4: μIQ,JP 0 0 369.719890 83.737176
5: μ2

JP 0 0 38.024977 13.313618 4.661474

Note. Bold typeface denotes the sampling variance (i.e., squared standard error) of each parameter estimate.
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the derivative value of –0.149 quantifi es the curvature of that hill. Similarly, imagine viewing 
the log-likelihood surface from the midway point of the job performance axis. The derivative 
value of –4.148 quantifi es the curvature of the two-dimensional hill from this angle. Finally, 
the off-diagonal element of 0.427 essentially quantifi es the extent to which the two estimates 
have similar curvature (i.e., whether their fi rst derivatives are changing at a similar rate across 
the function).

The second computational step multiplies the second derivatives by negative 1. In the 
univariate example, this operation produced a quantity known as information. In a multi-
variate analysis, multiplying the Hessian matrix by negative 1 yields the so-called informa-
tion matrix (also known as Fisher’s information matrix). As seen in the middle panel of 
Table 3.5, this step simply reverses the sign of each element in the Hessian. The main diagonal 
of the information matrix contains the information for each parameter estimate. These values 
quantify the curvature of each parameter’s log-likelihood function, holding the other param-
eters constant.

With a single parameter, taking the reciprocal of information gives the sampling vari-
ance (i.e., squared standard error). There is no division in matrix algebra, but the inverse of 
a matrix is analogous to the reciprocal of a single number. Illustrating how to compute the 
inverse of a matrix is beyond the scope of this book, and there is typically no need to perform 
these computations by hand. The important point is that the inverse of the information ma-
trix is another symmetric matrix known as the parameter covariance matrix. The bottom 
panel of Table 3.5 shows the parameter covariance matrix for the bivariate analysis example. 
The diagonal elements of the parameter covariance matrix contain sampling variances (i.e., 
squared standard errors), and the off-diagonals contain covariances between pairs of esti-
mates. These co variances quantify the extent to which two estimates are dependent on one 
another. The diagonal elements of the parameter covariance matrix are particularly important 
because the square roots of these values are the maximum likelihood standard errors. For 
example, the standard error of the IQ mean is √⎯9⎯.⎯4⎯8⎯0 = 3.079, and the standard error of the 
covariance between IQ and job performance is √⎯8⎯3⎯.⎯7⎯3⎯7 = 9.151. As an aside, the block of 
zeros in the parameter covariance matrix follow from the fact that the mean and the covari-
ance structure of the data are independent (e.g., recall from the earlier univariate example 
that I was able to estimate the mean without worrying about the variance). This is a well-
established characteristic of maximum likelihood estimation with complete data.

3.10 ITERATIVE OPTIMIZATION ALGORITHMS

Estimating a mean vector and a covariance matrix is relatively straightforward because the 
fi rst derivatives of the log-likelihood function produce familiar equations that defi ne the maxi-
mum likelihood estimates. Maximum likelihood estimation is actually far more fl exible than 
my previous examples imply because the mean vector and the covariance matrix can be func-
tions of other model parameters. For example, a multiple regression analysis expresses the 
mean vector and the covariance matrix as a function of the regression coeffi cients and a re-
sidual variance estimate. Similarly, a confi rmatory factor analysis model defi nes � as a model-
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implied covariance matrix that depends on factor loadings, residual variances, and the latent 
variable covariance matrix, and it defi nes � as a model-implied mean vector, the values of 
which depend on factor means, factor loadings, and measurement intercepts (Bollen, 1989). 
Estimating one of these more complex models typically involves a collection of equations, 
each of which contains one or more unknown parameter values. Because solving for the un-
known parameter values in a set of equations can be complex, advanced applications of 
maximum likelihood estimation generally require iterative optimization algorithms. A detailed 
overview of optimization algorithms could easily fi ll an entire chapter, so I give a brief con-
ceptual explanation of the process. Eliason (1993) provides an accessible overview of a few 
common algorithms.

To understand how iterative algorithms work, imagine climbing to the top of the log-
likelihood surface in Figure 3.9. The fi rst step is to choose the starting coordinates for the 
hike. Starting the climb from a position that is close to the peak is advantageous because it 
reduces the number of steps required to get to the top. Iterative algorithms also require some 
initial coordinates, and these coordinates take the form of a set of starting values that pro-
vide an initial guess about the parameter estimates. Model fi tting programs generally default 
to a set of starting values that do not closely resemble the true parameter values (e.g., correla-
tion values of zero). However, many programs allow the user to specify starting values, and 
there are good reasons for doing so. For one, good starting values can reduce the number of 
steps to the peak of the log-likelihood function. In addition, some log-likelihood surfaces are 
diffi cult to climb because they are comprised of a number of smaller peaks and valleys. A 
good set of initial coordinates can improve the chances of locating the maximum of the func-
tion as opposed to the top of one of the smaller peaks (i.e., a local maximum).

After determining the initial coordinates, the rest of the climb consists of a series of steps 
toward the peak of the log-likelihood surface. Each step corresponds to a single iteration of the 
optimization process. Getting to the top requires a positioning device that keeps the climb 
going in a vertical direction, and the sample log-likelihood essentially serves as the algorithm’s 
altimeter. At the fi rst step, the algorithm substitutes the starting values into the density func-
tion and computes the log-likelihood. The goal of each subsequent step is to adjust the pa-
rameter values in a direction that increases the log-likelihood value. Algorithms differ in the 
numerical methods that they use to make these sequential improvements. For example, the 
EM algorithm I described in Chapter 4 uses a regression-based procedure, whereas other 
optimization routines (e.g., the scoring algorithm) use derivatives to adjust the parameters 
and improve the log-likelihood.

The log-likelihood keeps the algorithm climbing in a vertical direction, but it also de-
termines when the climb is fi nished. The fi rst few steps toward the peak often produce the 
largest changes in the log-likelihood (and thus the parameters), whereas the latter steps yield 
much smaller changes. In effect, the optimization algorithm traverses the steepest portion of 
the ascent at the beginning of the hike, and the climb becomes more gradual near the plateau. 
As the algorithm nears the peak of the function, each additional step produces a very small 
improvement in the log-likelihood value (i.e., a small change in altitude). Near the end of the 
climb, the adjustments to the parameter estimates are so small that the log-likelihood ef-
fectively remains the same between successive steps. At this point, the climb is over, and the 
algorithm has converged on the maximum likelihood estimates.
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3.11 SIGNIFICANCE TESTING USING THE WALD STATISTIC

Testing whether a parameter estimate is within sampling error of some hypothesized value is 
an important part of a statistical analysis. Maximum likelihood estimation provides two sig-
nifi cance testing mechanisms: the Wald statistic and the likelihood ratio test. This section 
outlines univariate and multivariate versions of the Wald statistic, and the next section de-
scribes the likelihood ratio test. The univariate Wald test is analogous to the t statistic from 
an ordinary least squares analysis, and its multivariate counterpart is akin to an omnibus F 
statistic.

The Univariate Wald Test

The univariate Wald statistic compares the difference between a point estimate and a hypoth-
esized value to the standard error, as follows:

 θ̂ – θ0 ω = —–— (3.13)
 SE

where θ̂ is a maximum likelihood parameter estimate, and θ0 is some hypothesized value. 
Researchers typically want to determine whether a parameter is signifi cantly different from 
zero, in which case the Wald test reduces to the ratio of the point estimate to its standard 
error. Maximum likelihood estimates are asymptotically (i.e., in very large samples) normally 
distributed, so the standard normal distribution generates a probability value for the Wald 
test. For this reason, the methodology literature sometimes refers to the test as the Wald z 
statistic.

Squaring Equation 3.13 gives an alternate formulation of the Wald test. This version of 
the test is

 (θ̂ – θ0)2

 ω = ——–— (3.14)
 var(θ̂)

where var(θ̂) is the sampling variance (i.e., squared standard error) of the parameter. Squar-
ing a standard normal z score yields a chi-square variable, so a central chi-square distribution 
with one degree of freedom generates a probability value for this version of the test. The chi-
square formulation of the Wald test is arguably more fl exible because it can accommodate 
multiple parameters.

To illustrate the Wald test, consider the covariance between IQ scores and job perfor-
mance ratings. The previous bivariate analysis produced a parameter estimate of σ̂JP,IQ = 
19.50 and a standard error of SE = 9.15. Using the Wald z test to determine whether the 
estimate is signifi cantly different from zero gives ω = (19.50—0) / 9.15 = 2.13, and referenc-
ing the test statistic to a unit normal table returns a two-tailed probability value of p = .03. 
Alternatively, Equation 3.14 yields a Wald test of ω = (19.50—0)2 / 9.152 = 4.54. Referencing 
this value against a chi-square distribution with one degree of freedom also yields p = .03, so 
the choice of test statistic makes no difference.
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The Multivariate Wald Test

In many situations it is of interest to determine whether a set of parameters is signifi cantly 
different from zero. For example, in a multiple regression analysis, researchers are often in-
terested in testing whether two or more regression slopes are mutually different from zero. 
In an ordinary least squares analysis with complete data, it is standard practice to use an 
omnibus F test for this purpose. In the context of maximum likelihood estimation, the multi-
variate Wald test is an analogous procedure.

The multivariate Wald test is

 ω = (�̂ – �0)Tvar(�̂)–1(�̂ – �0) (3.15)

where �̂ is a vector of parameter estimates, �0 is a vector of hypothesized values (typically 
zeros), and var(�̂) contains the elements from the parameter covariance matrix that correspond 
to the estimates in �̂. Equation 3.15 is fundamentally the same as its univariate counterpart, 
but it replaces each term in Equation 3.14 with a matrix (with a single parameter, Equation 
3.15 reduces to Equation 3.14). If the null hypothesis is true, the multivariate Wald test fol-
lows a central chi-square distribution with degrees of freedom equal to the number of param-
eters in �̂. I illustrate this test in one of the data analysis examples later in the chapter.

3.12 THE LIKELIHOOD RATIO TEST STATISTIC

The likelihood ratio test is a common alternative to the Wald statistic. Like the Wald statis-
tic, the likelihood ratio test is fl exible and can accommodate a single estimate or multiple 
estimates. However, the likelihood ratio test takes the very different tack of comparing the 
relative fi t of two nested models. Nested models can take on a variety of different forms, but 
a common example occurs when the parameters from one model are a subset of the param-
eters from a second model. For example, consider a multiple regression analysis in which a 
researcher is interested in testing whether two regression slopes are signifi cantly different 
from zero. In this situation, the regression analysis that includes both predictor variables 
serves as the full model, and a second regression analysis that constrains the regression 
slopes to zero during estimation is the restricted model. The difference between the log-
likelihood values from the two analyses provides the basis for a signifi cance test. The re-
stricted model can also differ from the full model by a set of complex parameter constraints. 
For example, in a confi rmatory factor analysis, the full model is a saturated model (e.g., a 
model that estimates the sample covariance matrix), and the restricted model is the factor 
model that expresses the population covariance matrix as a function of the factor model pa-
rameters. The so-called chi-square test of model fi t is a likelihood ratio test that compares the 
relative fi t of these two models.

The likelihood ratio test is

 LR = –2(logLRestricted – logLFull) (3.16)
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where logLRestricted and logLFull are the log-likelihood values from the restricted and the full 
models, respectively. The restricted model always has fewer parameters than the full model, 
so its log-likelihood must be less than or equal to that of the full model (i.e., because it uses 
fewer parameters to explain the data, the restricted model must have worse fi t than the full 
model). The question is whether the log-likelihood difference exceeds random chance. If the 
null hypothesis is true (i.e., the full and restricted models have the same fi t), the likelihood 
ratio follows a central chi-square distribution with degrees of freedom equal to the difference 
in the number of estimated parameters between the two models. A signifi cant likelihood ra-
tio test indicates that the restricted model does not fi t the data as well as the full model (e.g., 
the estimates in question are signifi cantly different from zero).

To illustrate the likelihood ratio test, reconsider the covariance between IQ scores and 
job performance ratings. To begin, I estimated the mean vector and the covariance matrix 
from the data in Table 3.1. This initial analysis estimated fi ve parameters (two means and 
three unique covariance matrix elements) and served as the full model for the likelihood ratio 
test. Next, I estimated a restricted model by constraining the covariance to a value of zero 
during estimation (statistical software packages routinely allow users to specify parameter 
constraints such as this). The two models produced log-likelihood values of logLFull = 
–124.939 and logLRestricted = –128.416. Notice that the log-likelihood for the restricted 
model is somewhat lower than that of the full model, which suggests that the restricted 
model has worse fi t to the data. Substituting the log-likelihood values into Equation 3.16 
gives a likelihood ratio statistic of LR = 6.96. The two models differ by a single parameter, so 
a chi-square distribution with one degree of freedom generates a probability value for the 
test, p = .008. The fact that the restricted model is signifi cantly worse than that of the full 
model suggests that the covariance between IQ and job performance is statistically different 
from zero (i.e., constraining the covariance to zero during estimation signifi cantly degrades 
model fi t).

3.13 SHOULD I USE THE WALD TEST OR THE LIKELIHOOD 
RATIO STATISTIC?

The Wald test and the likelihood ratio statistic can address identical hypotheses, so the natu-
ral question is, “Which test should I use?” The answer to this question largely depends on 
the sample size and the parameters that you are testing. The two tests are asymptotically (i.e., 
in very large samples) equivalent but can give markedly different answers in small to moder-
ate samples (Buse, 1982). The potential for different test results stems from the fact that 
some parameter estimates (e.g., variances, covariances, correlations) have skewed sampling 
distributions. These sampling distributions eventually normalize as the sample size gets very 
large, but they can be markedly nonnormal in small and moderate samples. This is a problem 
for the Wald test because it uses the normal distribution to generate probability values (Fears, 
Benichou, & Gail, 1996; Pawitan, 2000). The likelihood ratio test makes no assumptions 
about the shape of the sampling distribution, so it is generally superior to the Wald test in 
small samples.
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Statistical issues aside, there are practical considerations to examine when choosing 
between the Wald and likelihood ratio tests. First, Wald tests are easy to implement because 
most software packages produce these tests as part of their standard output. The likelihood 
ratio test is somewhat less convenient because it requires two analyses. In addition, it is often 
necessary to compute the likelihood ratio test by hand, although this is not a compelling 
disadvantage. Second, the Wald test is not invariant to changes in model parameterization 
(Fears, Benichou, & Gail, 1996). For example, researchers frequently estimate confi rmatory 
factor analysis models by fi xing either the factor variance or a factor loading to 1. These pa-
rameterizations are statistically equivalent (i.e., have the same degrees of freedom and pro-
duce the same model fi t) but are likely to produce different Wald statistics (Gonzalez & 
Griffi n, 2001). In contrast, the likelihood ratio statistic is invariant to model parameterization, 
so its value is unaffected by the choice of model specifi cation.

As a fi nal word of caution, non-normal data (particularly excessive kurtosis) can distort 
the values of the Wald test and the likelihood ratio statistic (e.g., Finney & DiStefano, 2006; 
West, Finch, & Curran, 1995). Methodological studies have repeatedly demonstrated that 
non-normal data can infl ate type I error rates, so you should interpret these tests with some 
caution. Fortunately, methodologists have developed corrective procedures for non-normal 
data, so it is relatively easy to obtain accurate inferences. I outline some of these corrective 
procedures in Chapter 5.

3.14 DATA ANALYSIS EXAMPLE 1

In the remainder of the chapter, I use two data analysis examples to illustrate maximum like-
lihood estimation. The fi rst analysis example uses maximum likelihood to estimate a mean 
vector, covariance matrix, and a correlation matrix.* The data for this analysis are comprised 
of scores from 480 employees on eight work-related variables: gender, age, job tenure, IQ, 
psychological well-being, job satisfaction, job performance, and turnover intentions. I gener-
ated these data to mimic the correlation structure of published research articles in the man-
agement and psychology literature (e.g., Wright & Bonett, 2007; Wright, Cropanzano, & 
Bonett, 2007).

Table 3.6 shows the maximum likelihood estimates along with the estimates from the 
usual sample formulas. Notice that the two sets of means are identical, but the maximum like-
lihood estimates of variances and covariances are slightly smaller in value. I previously ex-
plained that maximum likelihood estimates of variances and covariances are negatively biased 
because they use N rather than N – 1 in the denominator. However, with a sample size of 
480, the difference in the two sets of estimates is essentially trivial. As an aside, some software 
packages implement a restricted maximum likelihood estimator that effectively uses N – 1 
to compute variance components (e.g., see Raudenbush & Bryk, 2002, pp. 52–53).

*Analysis syntax and data are available on the companion website, www.appliedmissingdata.com. 
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3.15 DATA ANALYSIS EXAMPLE 2

The second analysis example applies maximum likelihood estimation to a multiple regres-
sion model.* The analysis uses the employee data set from the fi rst example to estimate the 
regression of job performance ratings on psychological well-being and job satisfaction, as 
follows:

 JPi = β0 + β1(WBi) + β2(SATi) + ε

Structural equation modeling software programs are a convenient platform for implement-
ing maximum likelihood estimation, with or without missing data. Figure 3.10 shows the 
path diagram of the regression model. Path diagrams use single-headed straight arrows to 
denote regression coeffi cients and double-headed curved arrows to represent correlations. In 
addition, the diagrams differentiate manifest variables and latent variables using rectangles 
and ellipses, respectively (Bollen, 1989; Kline, 2005). In Figure 3.10, the predictor variables 
and the outcome variable are manifest variables (e.g., scores from a questionnaire), and the 

* Analysis syntax and data are available on the companion website, www.appliedmissingdata.com.

TABLE 3.6. Mean, Covariance, and Correlation Estimates from Data Analysis 
Example 1

Variable 1. 2. 3. 4. 5. 6. 7. 8.

Maximum likelihood

1. Age 28.908 0.504 –0.010 0.182 0.111 –0.049 –0.150 0.015
2. Tenure 8.459 9.735 –0.034 0.173 0.157 0.016 0.011 0.001
3. Female –0.028 –0.052 0.248 0.097 0.038 –0.015 0.005 0.068
4. Well-being 1.208 0.667 0.060 1.518 0.348 0.447 –0.296 0.306
5. Satisfaction 0.697 0.576 0.022 0.503 1.377 0.176 –0.222 0.378
6. Performance –0.330 0.061 –0.009 0.690 0.259 1.570 –0.346 0.426
7. Turnover –0.377 0.016 0.001 –0.170 –0.122 –0.203 0.218 –0.180
8. IQ 0.674 0.026 0.284 3.172 3.730 4.496 –0.706 70.892
Means 37.948 10.054 0.542 6.271 5.990 6.021 0.321 100.102

Sample formulas

1. Age 28.968 0.504 –0.010 0.182 0.111 –0.049 –0.150 0.015
2. Tenure 8.477 9.755 –0.034 0.173 0.157 0.016 0.011 0.001
3. Female –0.028 –0.052 0.249 0.097 0.038 –0.015 0.005 0.068
4. Well-being 1.210 0.668 0.060 1.521 0.348 0.447 –0.296 0.306
5. Satisfaction 0.699 0.577 0.022 0.504 1.380 0.176 –0.222 0.378
6. Performance –0.331 0.062 –0.009 0.692 0.259 1.574 –0.346 0.426
7. Turnover –0.378 0.016 0.001 –0.171 –0.122 –0.203 0.218 –0.180
8. IQ 0.676 0.026 0.285 3.179 3.738 4.505 –0.707 71.040
Means 37.948 10.054 0.542 6.271 5.990 6.021 0.321 100.102

Note. Correlations are in the upper diagonal in bold typeface.
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residual term is a latent variable that captures a collection of unobserved infl uences on the 
outcome variable.

Researchers typically begin a regression analysis by examining the omnibus F test. As 
a baseline for comparison, a least squares analysis produced a signifi cant omnibus test, 
F(2, 247) = 60.87, p < .001. The likelihood ratio statistic and the multivariate Wald test are 
analogous procedures in a maximum likelihood analysis. To begin, consider the likelihood 
ratio test. The full model corresponds to the regression in Figure 3.10, and the restricted 
model is one that constrains both regression slopes to zero during estimation (the regression 
intercept is not part of the usual omnibus F test, so it appears in both models). Estimating 
the two models produced log-likelihood values of logLFull = –1130.977 and logLRestricted = 
–1181.065, respectively. Notice that log-likelihood for the restricted model is quite a bit 
lower than that of the full model, which suggests that fi xing the slopes to zero deteriorates 
model fi t. Substituting the log-likelihood values into Equation 3.16 yields a likelihood ratio 
statistic of LR = 100.18. The two models differ by two parameters (i.e., the restricted model 
constrains two coeffi cients two zero); therefore, referencing the test statistic to a chi-square 
distribution with two degrees of freedom returns a probability value of p < .001. The signifi -
cant likelihood ratio test indicates that the fi t of the restricted model is signifi cantly worse 
than that of the full model. Consistent with the interpretation of the F statistic, this suggests 
that at least one of the regression coeffi cients is signifi cantly different from zero.

For the purpose of illustration, I also used the multivariate Wald statistic to construct an 
omnibus test. Recall from Equation 3.15 that the Wald test requires elements from the pa-
rameter covariance matrix. Software packages that implement maximum likelihood estima-
tion typically offer the option to print this matrix, although it may not be part of the standard 
output. The regression model has four parameter estimates (i.e., the regression intercept, two 
slope coeffi cients, and a residual variance), so the full parameter covariance matrix has four 
rows and four columns. However, the Wald test only requires the covariance matrix elements 
for the two slope coeffi cients (i.e., the 2 by 2 submatrix that contains the sampling variance 
of each coeffi cient and the covariance between the two estimates). Substituting the regres-
sion coeffi cients (β̂ = 0.025 and 0.446) and the appropriate elements from the parameter 
covariance matrix into Equation 3.15 gives a Wald statistic of ω = 119.25, as follows:

 ω = [.025]T [–.002175 –.000720]–1[.025] = 
119.25

 .446 –.000720 .001973 .446

Job
Satisfaction

Job
Performance

Well-Being

ε

FIGURE 3.10. A path diagram for a multiple regression model. The single-headed straight lines 
represent regression coeffi cients, the double-headed curved arrow is a correlation, the rectangles are 
manifest variables, and the ellipse is a latent variable.
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Comparing the Wald test to a chi-square distribution with two degrees of freedom (i.e., there 
are two parameters under consideration) returns a probability value of p < .001. Consistent 
with the F test and the likelihood ratio statistic, the Wald test suggests that at least one of the 
regression slopes is different from zero.

Researchers typically follow up a signifi cant omnibus test by examining partial regres-
sion coeffi cients. Table 3.7 gives the maximum likelihood estimates along with those from an 
ordinary least squares analysis. As seen in the table, psychological well-being was a signifi -
cant predictor of job performance, β̂1 = 0.446, z = 10.08, p < .001, but job satisfaction was 
not, β̂2 = 0.025, z = 0.53, p = .59. The interpretation of the estimates is the same for both 
estimators. For example, holding job satisfaction constant, a one-point increase in psycho-
logical well-being yields a .446 increase in job performance ratings, on average. Notice that 
maximum likelihood and ordinary least squares produced identical regression coeffi cients but 
slightly different residual variance estimates. The two estimators share the same equations 
for the regression coeffi cients, so it makes sense that these estimates are identical. The slight 
difference between the residual variances owes to the fact that maximum likelihood variance 
estimates are negatively biased. Again, the discrepancy in this example is trivial, but the bias 
would be more apparent in small samples.

3.16 SUMMARY

Many modern statistical procedures that are in widespread use today rely on maximum likeli-
hood estimation. Maximum likelihood also plays a central role in missing data analyses and 
is one of two approaches that methodologists currently regard as the state of the art (Schafer 
& Graham, 2002). The purpose of this chapter was to introduce the mechanics of maximum 
likelihood estimation in the context of a complete-data analysis. Researchers in the social and 

TABLE 3.7. Regression Model Estimates from Data 
Analysis Example 2

Parameter Est. SE z

Maximum likelihood

β0 (Intercept) 6.021 0.051 117.705
β1 (Well-being) 0.446 0.044 10.083
β2 (Satisfaction) 0.025 0.046 0.533
σ2

e (Residual) 1.256
R2  .200

Ordinary least squares

β0 (Intercept) 6.021 0.051 117.337
β1 (Well-being) 0.446 0.044 10.050
β2 (Satisfaction) 0.025 0.047 0.531
σ2

e (Residual) 1.262
R2  .200    

Note. Ordinary least squares uses a t statistic.
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the behavioral sciences routinely assume that their variables are normally distributed in the 
population, so I described maximum likelihood in the context of multivariate normal data. 
The normal distribution supplies a familiar platform for illustrating estimation principles, 
but it also provides the basis for the missing data handling procedure outlined in subsequent 
chapters.

The goal of maximum likelihood estimation is to identify the population parameters that 
have the highest probability of producing the sample data. The sample log-likelihood is cen-
tral to this process because it quantifi es the relative probability of drawing a sample of scores 
from a normal distribution with a particular mean vector and covariance matrix. Substituting 
a score value (or a set of scores) into a probability density function returns the log-likelihood 
value for a single case, and the sample log-likelihood is the sum of the individual log-likelihood 
values. The sample log-likelihood quantifi es the fi t between the data and the parameter esti-
mates and provides a basis for choosing among a set of plausible parameter values.

Conceptually, estimation is an iterative process that repeatedly auditions different pa-
rameter values until it fi nds the estimates that are most likely to have produced the data. The 
estimation procedure essentially repeats the log-likelihood calculations many times, each 
time substituting different values of the population parameters into the log-likelihood equa-
tion. Each unique combination of parameter estimates yields a different log-likelihood value, 
and the goal of estimation is to identify the particular constellation of estimates that produce 
the highest log-likelihood and thus the best fi t to the data. In some situations, the fi rst deriva-
tives of the log-likelihood function produce familiar equations that defi ne the maximum 
likelihood estimates, but more complex applications of maximum likelihood estimation (in-
cluding missing data handling) require iterative optimization algorithms to identify the most 
likely parameter values.

The curvature of the log-likelihood function provides important information about the 
uncertainty of an estimate. A fl at log-likelihood function makes it diffi cult to discriminate 
among competing estimates because the log-likelihood values are relatively similar across a 
range of parameter estimates. In contrast, a steep log-likelihood function more clearly differ-
entiates the maximum likelihood estimate from other possible parameter values. Mathemati-
cally, the second derivative quantifi es the curvature of the log-likelihood function. Second 
derivatives largely determine the maximum likelihood standard errors, such that larger second 
derivatives (i.e., more peaked functions) translate into smaller standard errors and smaller 
second derivatives (i.e., fl atter functions) translate into larger standard errors.

Maximum likelihood analyses provide two signifi cance testing mechanisms, the Wald 
statistic and the likelihood ratio test. The univariate Wald test is the ratio of the point estimate 
to its standard error. The multivariate Wald test is similar to its univariate counterpart but 
uses matrices to determine whether a set of estimates is signifi cantly different from zero. The 
likelihood ratio test is procedurally different from the Wald statistic because it requires two 
analysis models: a full model that includes the parameters of substantive interest, and a re-
stricted model (i.e., nested model) that constrains one or more of the parameter values to 
zero during estimation. The difference between the log-likelihood values from the two mod-
els provides the basis for a signifi cance test. Like the Wald statistic, the likelihood ratio test 
is fl exible and can accommodate a single estimate or multiple estimates. The two test statis-
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tics are asymptotically equivalent, but the likelihood ratio test is generally superior in small 
samples.

Chapter 4 extends maximum likelihood estimation to missing data analyses. Concep-
tually, maximum likelihood estimation works the same way with or without missing data. 
Consistent with a complete-data analysis, the ultimate goal is to identify the parameter es-
timates that maximize the log-likelihood and produce the best fi t to the data. However, the 
incomplete data records require a slight alteration to the individual log-likelihood equation. 
Missing data also introduce some nuances to the standard error computations. I describe 
these changes in detail in the next chapter.

3.17 RECOMMENDED READINGS
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4

Maximum Likelihood Missing 
Data Handling

4.1 CHAPTER OVERVIEW

Having established some basic estimation principles with complete data, this chapter de-
scribes maximum likelihood missing data handling (the literature sometimes refers to this 
procedure as full information maximum likelihood and direct maximum likelihood). The 
idea of using maximum likelihood to deal with missing data is an old one that dates back 
more than 50 years (Anderson, 1957; Edgett, 1956; Hartley, 1958; Lord, 1955). These early 
maximum likelihood solutions were limited in scope and had relatively few practical applica-
tions (e.g., bivariate normal data with a single incomplete variable). Many of the important 
breakthroughs came in the 1970s when methodologists developed the underpinnings of 
modern missing data handling techniques (Beale & Little, 1975; Finkbeiner, 1979; Demp-
ster, Laird, & Rubin, 1977; Hartley & Hocking, 1971; Orchard & Woodbury, 1972). How-
ever, maximum likelihood routines have only recently become widely available in statistical 
software packages.

Recall from Chapter 3 that maximum likelihood estimation repeatedly auditions differ-
ent combinations of population parameter values until it identifi es the particular constellation 
of values that produces the highest log-likelihood value (i.e., the best fi t to the data). Con-
ceptually, the estimation process is the same with or without missing data. However, miss-
ing data introduce some additional nuances that are not relevant for complete-data analyses. 
For one, incomplete data records require a slight alteration to the individual log-likelihood 
computations to accommodate the fact that individuals no longer have the same number of 
observed data points. Missing data also necessitate a subtle, but important, adjustment to 
the standard error computations. Finally, with few exceptions, missing data analyses require 
iterative optimization algorithms, even for very simple estimation problems. This chapter 
describes one such algorithm that is particularly important for missing data analyses, the ex-
pectation maximization (EM) algorithm.
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Methodologists currently regard maximum likelihood as a state-of-the-art missing data 
technique (Schafer & Graham, 2002) because it yields unbiased parameter estimates under 
a missing at random (MAR) mechanism. From a practical standpoint, this means that maxi-
mum likelihood will produce accurate parameter estimates in situations where traditional 
approaches fail. Even when the data are missing completely at random (MCAR), maximum 
likelihood will still be superior to traditional techniques (e.g., deletion methods) because it 
maximizes statistical power by borrowing information from the observed data. Despite these 
desirable properties, maximum likelihood estimation is not a perfect solution and will yield 
biased parameter estimates under a missing not at random (MNAR) mechanism. However, 
this bias tends to be isolated to a subset of the analysis model parameters, whereas tradi-
tional techniques are more apt to propagate bias throughout the entire model. Consequently, 
maximum likelihood estimation is virtually always a better option than the traditional meth-
ods from Chapter 2. The fact that maximum likelihood is easy to implement and is widely 
available in statistical software packages makes it all the more attractive.

I use the small data set in Table 4.1 to illustrate ideas throughout this chapter. I designed 
these data to mimic an employee selection scenario in which prospective employees com-
plete an IQ test and a psychological well-being questionnaire during their interview. The 
company subsequently hires the applicants who score in the upper half of the IQ distribu-
tion, and a supervisor rates their job performance following a 6-month probationary period. 
Note that the job performance scores are MAR because they are systematically missing as a 
function of IQ scores (i.e., individuals in the lower half of the IQ distribution were never 

TABLE 4.1. Employee Selection Data Set

 Psychological Job
IQ well-being performance

 78 13 —
 84  9 —
 84 10 —
 85 10 —
 87 — —
 91  3 —
 92 12 —
 94 3 —
 94 13 —
 96 — —
 99  6  7
105 12 10
105 14 11
106 10 15
108 — 10
112 10 10
113 14 12
115 14 14
118 12 16
134 11 12
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hired and thus have no performance rating). In addition, I randomly deleted three of the 
well-being scores in order to mimic an MCAR mechanism (e.g., the human resources depart-
ment inadvertently loses an applicant’s well-being questionnaire). This data set is too small 
for a serious application of maximum likelihood estimation, but it is useful for illustrating the 
basic mechanics of the procedure.

4.2 THE MISSING DATA LOG-LIKELIHOOD

Recall from Chapter 3 that the starting point for a maximum likelihood analysis is to specify 
a distribution for the population data. To be consistent with the previous chapter, I describe 
maximum likelihood missing data handling in the context of multivariate normal data. The 
mathematical machinery behind maximum likelihood relies on a probability density func-
tion that describes the shape of the multivariate normal distribution. Substituting a score 
vector and a set of population parameter values into the density function returns a likelihood 
value that quantifi es the relative probability of drawing the scores from a normally distrib-
uted population. Because likelihood values tend to be very small numbers that are prone to 
rounding error, it is more typical to work with the natural logarithm of the likelihood values 
(i.e., the log-likelihood). Rather than rehash the computational details of the likelihood val-
ues, I use the individual log-likelihood as the starting point for this chapter. Readers who are 
interested in more information on the likelihood can review Chapter 3.

Assuming a multivariate normal distribution for the population, note that the complete-
data log-likelihood for a single case is

 k 1 1 logLi = – —log(2π) – — log|�| – —(Yi–�)T�–1(Yi–�) (4.1)
 2 2 2

where k is the number of variables, Yi is the score vector for case i, and � and � are the popu-
lation mean vector and covariance matrix, respectively. The key portion of the formula is the 
Mahalanobis distance value, (Yi–�)T�–1(Yi–�). Mahalanobis distance is a squared z score 
that quantifi es the standardized distance between an individual’s data points and the center 
of the multivariate normal distribution. This value largely determines the magnitude of the 
log-likelihood, such that small deviations between the score vector and the mean vector pro-
duce large (i.e., less negative) log-likelihood values, whereas large deviations yield small like-
lihoods. In simple terms, Equation 4.1 quantifi es the relative probability that an individual’s 
scores originate from a multivariate normal population with a particular mean vector and co-
variance matrix.

With missing data, the log-likelihood for case i is

 ki 1 1 logLi = – —log(2π) – — log|�i| – —(Yi–�i)T�i
–1(Yi–�i) (4.2)

 2 2 2

where ki is the number of complete data points for that case and the remaining terms have 
the same meaning as they did in Equation 4.1. At fi rst glance, the two log-likelihood formulas 
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look identical, except for the fact that the missing data log-likelihood has an i subscript next 
to the parameter matrices. This subscript is important and denotes the possibility that the 
size and the contents of the matrices can vary across individuals, such that the log-likelihood 
computations for case i depend only on the variables and the parameters for which that case 
has complete data.

To illustrate the missing data log-likelihood, suppose that the company wants to use the 
data in Table 4.1 to estimate the mean vector and the covariance matrix. Estimating these 
parameters is relatively straightforward with complete data but requires an iterative optimi-
zation algorithm when some of the data are missing. For the sake of demonstration, suppose 
that the population parameters at a particular iteration are as follows:

 μ̂IQ 100.00
 �̂ = [ μ̂JP ] = [ 10.23] μ̂WB 10.27

 σ̂2
IQ σ̂IQ,JP σ̂IQ,WB 189.60 22.31 12.21

 �̂ = [ σ̂JP,IQ   σ̂2
JP  σ̂JP,WB ] = [  22.31 8.68  5.61] σ̂WB,IQ σ̂WB,JP σ̂2

WB 12.21 5.60 11.04

The log-likelihood computations for each individual depend only on the variables and 
the parameters for which a case has complete data. This implies that the log-likelihood for-
mula looks slightly different for each missing data pattern. Returning to the data set in Table 
4.1, observe four unique missing data patterns: (1) cases with only IQ scores, (2) cases with 
IQ and well-being scores, (3) cases with IQ and job performance scores, and (4) cases with 
complete data on all three variables. To begin, consider the employee with an IQ score of 
105, a job performance rating of 10, and a well-being score of 12. Because this individual has 
complete data, the log-likelihood computations involve every element in the mean vector and 
the covariance matrix, as follows:

 
ki 1

 σ̂2
IQ σ̂IQ,JP σ̂IQ,WB

logLi = – —log(2π) – —log| σ̂JP,IQ   σ̂2
JP  σ̂JP,WB | 2 2 σ̂WB,IQ σ̂WB,JP σ̂2

WB

 
1

 IQi μ̂IQ σ̂2
IQ σ̂IQ,JP σ̂IQ,WB IQi μ̂IQ

 – —([ JPi ] – [ μ̂JP ])
T

[ σ̂JP,IQ   σ̂2
JP  σ̂JP,WB ]

–1

([ JPi ] – [ μ̂JP ]) 2 WBi μ̂WB σ̂WB,IQ σ̂WB,JP σ̂2
WB WBi μ̂WB

 
3 1

 189.60 22.31 12.21
 = – —log(2π) – —log| 22.31  8.68  5.61| 2 2 12.21 5.60 11.04

  
1

 105 100.00 189.60 22.31 12.21 105 100.00
 – —([ 10] – [ 10.23])

T

[ 22.31  8.68  5.61]
–1

([ 10] – [ 10.23]) = –7.66
  2 12 10.27 12.21 5.60 11.04 12 10.27
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Consistent with complete-data maximum likelihood estimation, –7.66 is the relative prob-
ability of drawing this set of three scores from a multivariate normal distribution with the 
previous parameter values. The log-likelihood computations for the remaining complete cases 
follow the same procedure, but use different score values.

Next, consider the subsample of cases with IQ and well-being scores. These individuals 
have missing job performance ratings, so it is no longer possible to use all three variables to 
compute the log-likelihood. The missing data log-likelihood accommodates this situation by 
ignoring the parameters that correspond to the missing job performance ratings. For exam-
ple, consider the individual with IQ and well-being scores of 94 and 3, respectively. Eliminat-
ing the job performance parameters from the mean vector and the covariance matrix leaves 
the following subset of parameter estimates.

 
�̂i =

 [ μ̂IQ ] = [100.00] μ̂WB 10.27

 
�̂i =

 [ σ̂2
IQ

 
 σ̂IQ,WB] = [189.60 12.21] σ̂WB,IQ σ̂2

WB 12.21 11.04

The log-likelihood computations use only these parameter values, as follows:

 ki 1 σ̂2
IQ σ̂IQ,WB logLi = – —log(2π) – —log|       | 2 2 σ̂WB,IQ σ̂2

WB

 1 IQi μ̂IQ σ̂2
IQ σ̂IQ,WB IQi μ̂IQ – —([   ]– [   ])T[      ]–1([   ]– [   ])  2 WBi μ̂WB σ̂WB,IQ σ̂2

WB WBi μ̂WB

 2 1 189.60 12.21
 = – —log(2π) – —log|       | 2 2 12.21 11.04

 1 94 100.00 189.60 12.21 94 100.00
 – —([  ] – [   ])T[       ]–1([  ] – [   ]) = –8.03
 2 3 10.27 12.21 11.04 3 10.27

Notice that the log-likelihood equation no longer contains any reference to the job perfor-
mance variable. Thus, the resulting log-likelihood value is the relative probability of drawing 
the two scores from a bivariate normal distribution with a mean vector and covariance matrix 
equal to �̂i and �̂i, respectively. Again, the log-likelihood computations for the remaining cases 
that share this missing data pattern follow the same approach.

As a fi nal example, consider the subsample of cases that have data on the IQ variable 
only. Consistent with the previous example, the log-likelihood computations ignore the pa-
rameters that correspond to the missing variables, leaving only the IQ parameters.

 �̂i = [μ̂IQ] = [100.00]

 �̂i = [σ̂2
IQ] = [189.60]
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To illustrate, the log-likelihood for the employee with an IQ score of 87 is as follows:

 ki 1 1
 logLi = – —log(2π) – —log|σ̂2

IQ| – —(IQi – μ̂IQ)T(σ̂2
IQ)–1(IQi – μ̂IQ)

 2 2 2

 1 1 1
 = – —log(2π) – —log|189.60| – —(87 – 100)T(189.60)–1(87 – 100)
 2 2 2

 = –3.99

The log-likelihood value is now the relative probability of drawing an IQ score of 87 from a 
univariate normal distribution with a mean of 100 and a variance of 189.60.

Table 4.2 shows the log-likelihood values for all 20 employees. Consistent with com-
plete-data estimation, the sample log-likelihood is the sum of the individual log-likelihood 
values. For example, summing the log-likelihood values in Table 4.2 gives logL = –146.443. 
Despite the missing values, the sample log-likelihood is still a summary measure that quanti-
fi es the joint probability of drawing the observed data from a normally distributed population 
with a particular mean vector and covariance matrix (e.g., the previous estimates of � and 
�). Furthermore, the estimation process follows the same logic as Chapter 3. Conceptually, 
an iterative optimization algorithm repeats the log-likelihood computations many times, each 
time with different estimates of the population parameters. Each unique combination of pa-
rameter estimates yields a different log-likelihood value. The goal of estimation is to identify 

TABLE 4.2. Individual Log-Likelihood Values

 Psychological Job
IQ well-being performance logLi

 78 13 — –7.73904
 84  9 — –6.30206
 84 10 — –6.32745
 85 10 — –6.24113
 87 — — –3.98707
 91  3 — –8.02047
 92 12 — –6.03874
 94  3 — –8.02968
 94 13 — –6.19267
 96 — — –3.58359
 99  6  7 –8.37010
105 12 10 –7.66375
105 14 11 –8.07781
106 10 15 –9.54606
108 — 10 –5.64284
112 10 10 –7.88229
113 14 12 –8.23350
115 14 14 –8.33434
118 12 16 –9.49084
134 11 12 –10.73921
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the particular constellation of estimates that produce the highest log-likelihood and thus the 
best fi t to the data. Importantly, the estimation algorithm does not need to impute or replace 
the missing values. Rather, it uses all of the available data to estimate the parameters and the 
standard errors.

As an aside, maximum likelihood missing data handling is far more fl exible than my 
previous examples imply because the mean vector and the covariance matrix can be func-
tions of other model parameters. For example, a multiple regression analysis expresses the 
mean vector and the covariance matrix as a function of the regression coeffi cients and a re-
sidual variance estimate. Similarly, a confi rmatory factor analysis model defi nes � as a model-
implied covariance matrix that depends on factor loadings, residual variances, and the latent 
variable covariance matrix. It defi nes � as a model-implied mean vector, the values of which 
depend on factor means, factor loadings, and measurement intercepts (Bollen, 1989). I illus-
trate some of these more advanced applications of maximum likelihood estimation later in 
the chapter.

4.3 HOW DO THE INCOMPLETE DATA RECORDS 
IMPROVE ESTIMATION?

Using all of the available data to estimate the parameters is an intuitively appealing approach, 
but it is not necessarily obvious why including the incomplete data records improves the ac-
curacy of the resulting parameter estimates. A bivariate analysis in which one of the variables 
has missing data may provide deeper insight into the estimation process. Returning to the 
data in Table 4.1, suppose that the company wants to estimate the IQ and job performance 
means. Table 4.3 shows the maximum likelihood estimates along with those of listwise dele-
tion. By virtue of the selection process, listwise deletion discards the entire lower half of the 
IQ distribution (the company only hires applicants with high IQ scores, so low-scoring ap-
plicants do not contribute to the analysis). Because IQ scores and job performance ratings 
are positively correlated, listwise deletion also excludes cases from the lower tail of the job 
performance distribution. Not surprisingly, the remaining cases are unrepresentative of the 
hypothetically complete data set because they have systematically higher scores on both vari-
ables. Consequently, the listwise deletion mean estimates are too high. In contrast, the maxi-
mum likelihood estimates are relatively similar to those of the complete data. An analysis 
based on a sample size of 20 does not provide compelling evidence in favor of maximum 

TABLE 4.3. IQ and Job Performance 
Means from the Employee Selection Data

Estimator μ̂IP μ̂JP

Complete data 100.00 10.35
Maximum likelihood 100.00 10.28
Listwise deletion 111.50 11.70

Note. The complete data estimates are from the data in 
Table 3.1.
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likelihood estimation, but the estimates in Table 4.3 are consistent with Rubin’s (1976) theo-
retical predictions for an MAR mechanism.

The log-likelihood equation can provide some insight into the differences between the 
maximum likelihood and listwise deletion parameter estimates. With missing data, the indi-
vidual log-likelihood computations depend only on the variables and the parameter estimates 
for which a case has data. Because the bivariate analysis has just two missing data patterns 
(i.e., cases with complete data and cases with data on IQ only), there are two log-likelihood 
formulas. The individual log-likelihood equation for the subsample of employees with com-
plete data is

 ki 1 σ2
IQ σJP,IQ logLi = – —log(2π) – —log|       | 2 2 σJP,IQ σ2

JP (4.3)

 1 IQi μIQ σ2
IQ σJP,IQ IQi μIQ – —([  ]– [  ])T[     ]–1([   ]– [  ])  2 JPi μJP σJP,IQ σ2

JP WBi μJP

and eliminating the job performance parameters gives the individual log-likelihood equation 
for the applicants with incomplete data, as follows:

 ki 1 (IQi – μIQ)2

 logLi = – —log(2π) – —log|σ2
IQ| – ——–—— (4.4)

 2 2 2σ2
IQ

Finally, summing the previous equations across the entire sample gives the sample log-
likelihood

 ki 1 1
 logL = {–nC(—log[2π] – —log|�|) – — ∑

i

nC

=1
(Yi–�)�–1(Yi–�)} 2 2 2

 ki 1 1
 –nM(—log[2π] – —log|σ2

IQ|) – —–– ∑
i=

nM

1
(IQi – μIQ)2 (4.5)

 2 2 2σ2
IQ

 = {logLComplete} + logLIncomplete

where nC is the number of complete cases, and nM is the number of incomplete cases. To 
make the equation more compact, I do not display the individual matrix elements from 
Equation 4.3 (e.g., � replaces the vector in Equation 4.3 that contains μIQ and μJP).

Equation 4.5 is useful because it partitions the sample log-likelihood into two compo-
nents. The bracketed terms refl ect the contribution of the complete cases to the sample log-
likelihood, and remaining terms contain the additional information from the incomplete data 
records. A maximum likelihood analysis based on the 10 complete cases (i.e., an analysis 
that uses only the bracketed terms) would produce the listwise estimates in Table 4.3. This 
implies that the incomplete data records are solely responsible for differences between the 
listwise deletion and maximum likelihood parameter estimates. In some sense, the portion of 
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the log-likelihood equation for the incomplete cases serves as a correction factor that steers 
the estimator to a more accurate set of parameter estimates.

The fact that maximum likelihood better estimates the IQ mean should come as no 
surprise because the variable is complete. The accuracy of the job performance mean is less 
intuitive when you consider that the incomplete cases have no job performance ratings. To 
illustrate how the incomplete data records affect estimation, Table 4.4 shows the sample log-
likelihood for different combinations of the IQ and job performance means. For simplicity, I 
limited the IQ estimates to values of 100.00 and 111.50 (these are the maximum likelihood 
and listwise deletion estimates, respectively). The column labeled logLComplete contains the 
sample log-likelihood values from a listwise deletion analysis (i.e., maximum likelihood esti-
mation based only on the bracketed terms in Equation 4.5); the column labeled logLIncomplete 
shows the log-likelihood contribution for the incomplete data records; and the logL column 
gives the sample log-likelihood values for maximum likelihood missing data handling (i.e., 
the sum of logLComplete and logLIncomplete).

Recall that the goal of estimation is to identify the constellation of parameter values that 
produces the highest log-likelihood and thus the best fi t to the data. As seen in the logLComplete 
column, a listwise deletion analysis would produce estimates of μ̂IQ = 111.50 and μ̂JP = 11.75 
because this combination of parameter values has the highest (i.e., least negative) log-likeli-
hood value. (Had I used smaller increments for the job performance mean, these estimates 
would exactly match the listwise estimates in Table 4.3.) Next, the logLIncomplete column gives 
the contribution of the 10 incomplete cases to the sample log-likelihood. Because these ap-
plicants do not have job performance ratings, the log-likelihood values are constant across 
different estimates of the job performance mean (i.e., Equation 4.4 depends only on the IQ 
parameters). However, the incomplete data records do carry information about the IQ mean, 
and the log-likelihood values suggest that μIQ = 100.00 is more plausible than μIQ = 111.50 
(i.e., the log-likelihood for μIQ = 100.00 is higher than that of μIQ = 111.50). Finally, the logL 
column gives the sample log-likelihood values for maximum likelihood missing data han-
dling. As you can see, μIQ = 100.00 and μJP = 10.25 provide the best fi t to the data because 
this combination of parameter values has the highest log-likelihood.

Mathematically, the goal of maximum likelihood estimation is to identify the parameter 
values that minimize the standardized distances between the data points and the center of a 
multivariate normal distribution. Whenever the estimation process involves a set of model 
parameters, fi ne-tuning one estimate can lead to changes in the other estimates. This is pre-
cisely what happened in the bivariate analysis example. Specifi cally, the log-likelihood values 
in the logLIncomplete column of Table 4.4 strongly favor a lower value for the IQ mean. Includ-
ing these incomplete data records in the analysis therefore pulls the IQ mean down to a value 
that is identical to that of the complete data. Higher values for the job performance mean 
(e.g., μJP = 11.75) are an unlikely match for an IQ mean of 100, so the downward adjustment 
to the IQ average effectively steers the estimator toward a job performance mean that more 
closely matches that of the complete data. In effect, maximum likelihood estimation improves 
the accuracy of the parameter estimates by “borrowing” information from the observed data 
(e.g., the IQ scores), some of which is contained in the incomplete data records. Although 
it is diffi cult to illustrate with equations, the same process applies to complex multivariate 
analyses with general missing data patterns.
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4.4 AN ILLUSTRATIVE COMPUTER SIMULATION STUDY

The preceding bivariate analysis is useful for illustration purposes, but it does not offer 
compelling evidence about the performance of maximum likelihood missing data handling. 
To better illustrate the properties of maximum likelihood estimation, I conducted a series 
of Monte Carlo computer simulations. The simulation programs generated 1,000 samples of 
N = 250 from a population model that mimicked the IQ and job performance data in Table 
4.1. The fi rst simulation created MCAR data by randomly deleting 50% of the job performance 
ratings. The second simulation modeled MAR data and eliminated job performance scores 
for the cases in the lower half of the IQ distribution. The fi nal simulation generated MNAR 
data by deleting the job performance scores for the cases in the lower half of the job perfor-
mance distribution. After generating each data set, the simulation programs used maximum 
likelihood missing data handling to estimate the mean vector and the covariance matrix.

Table 4.5 shows the average parameter estimates from the simulations and uses bold 
typeface to highlight severely biased estimates. For comparison purposes, the table also shows 
the corresponding estimates from listwise deletion. As seen in the table, maximum likelihood 
and listwise deletion produced unbiased estimates in the MCAR simulation, and both sets of 
estimates were virtually identical. Although not shown in the table, the listwise deletion 
standard errors were generally 7 to 40% larger than those of maximum likelihood estimation. 
Not surprisingly, this translates into a substantial power advantage for maximum likelihood. 
The MAR simulation produced dramatic differences between the two missing data techniques, 

TABLE 4.4. Sample Log-Likelihood Values for Different 
Combinations of the IQ and Job Performance Means

 Log-likelihood

μIQ μJP logLComplete logLIncomplete logL

100.00 10.00 –63.754 –39.694 –103.449
 10.25 –63.681 –39.694 –103.376
 10.50 –63.726 –39.694 –103.420
 10.75 –63.888 –39.694 –103.582
 11.00 –64.167 –39.694 –103.861
 11.25 –64.564 –39.694 –104.258
 11.50 –65.079 –39.694 –104.773
 11.75 –65.711 –39.694 –105.405
 12.00 –66.460 –39.694 –106.154

111.50 10.00 –62.909 –50.157 –113.066
 10.25 –62.169 –50.157 –112.326
 10.50 –61.547 –50.157 –111.703
 10.75 –61.041 –50.157 –111.198
 11.00 –60.654 –50.157 –110.810
 11.25 –60.383 –50.157 –110.540
 11.50 –60.231 –50.157 –110.387
 11.75 –60.195 –50.157 –110.352
 12.00 –60.278 –50.157 –110.434
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such that listwise deletion produced substantial bias, and the maximum likelihood estimates 
were quite accurate. Finally, both maximum likelihood and listwise deletion produced biased 
estimates in the MNAR simulation, although the bias in the maximum likelihood estimates 
was restricted to a subset of the parameter estimates. These simulation studies are limited 
in scope, but the results in Table 4.5 are predictable based on Rubin’s (1976) missing data 
theory and are consistent with a number of published computer simulation studies (e.g., 
Arbuckle, 1996; Enders, 2001; Enders & Bandalos, 2001; Gold & Bentler, 2000; Muthén 
et al., 1987; Olinsky, Chen, & Harlow, 2003; Wothke, 2000).

You might recall from Chapter 2 that stochastic regression imputation is the only tradi-
tional missing data handling technique that also produces unbiased parameter estimates 
under an MCAR or MAR mechanism (see Table 2.5). The downside of stochastic regression 
is that it underestimates standard errors, potentially by a substantial amount. If its assump-
tions (multivariate normality and an MAR mechanism) are met, maximum likelihood estima-
tion does not suffer from this same problem. To illustrate, I computed the confi dence interval 
coverage rates from the MAR simulation. Confi dence interval coverage quantifi es the percent-
age of samples where the 95% confi dence interval contains the true population parameter. 
If standard errors are accurate, confi dence interval coverage should equal 95%. In contrast, 
if the standard errors are too low, confi dence intervals will not capture the population param-

TABLE 4.5. Average Parameter Estimates from the 
Illustrative Computer Simulation

 Population Maximum Listwise
Parameter value likelihood deletion

MCAR simulation

μIQ 100.00 100.02 100.00
μJP 12.00 11.99 11.99
σ2

IQ 169.00 168.25 166.94
σ2

JP 9.00 8.96 8.94
σIQ,JP 19.50 19.48 19.31

MAR simulation

μIQ 100.00 100.01 110.35
μJP 12.00 12.01 13.18
σ2

IQ 169.00 168.50 61.37
σ2

JP 9.00 8.96 7.49
σIQ,JP 19.50 19.15 6.99

MNAR simulation

μIQ 100.00 100.00 105.19
μJP 12.00 14.12 14.38
σ2

IQ 169.00 169.11 141.41
σ2

JP 9.00 3.33 3.25
σIQ,JP 19.50 8.55 7.14
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eter as frequently as they should, and coverage rates will drop below 95%. Confi dence inter-
val coverage rates are a useful indicator of standard error bias because they directly relate to 
type I error rates (e.g., a confi dence interval coverage value of 90% suggests a twofold in-
crease in type I errors). The confi dence interval coverage values from the MAR simulation 
were quite close to the optimal 95% rate, which implies that the standard errors were rela-
tively free of bias. In contrast, using stochastic regression imputation to analyze the same 
simulation data produced coverage rates between 60 and 70% (i.e., on average, standard er-
rors were far too small). All things considered, the simulation results clearly favor maximum 
likelihood estimation, despite the fact that stochastic regression imputation requires identical 
assumptions.

4.5 ESTIMATING STANDARD ERRORS WITH MISSING DATA

Chapter 3 described the important role that second derivatives play in the computation of 
standard errors. Recall that the standard error computations begin with the matrix of second 
derivatives, the so-called Hessian matrix. Multiplying the Hessian by negative 1 yields the in-
formation matrix, and computing the inverse of the information gives the parameter covari-
ance matrix. The diagonal elements of the parameter covariance matrix contain the sampling 
variances of the parameter estimates, and taking the square root of these elements gives the 
standard errors. The computational steps are identical with missing data, except that it is 
necessary to distinguish between standard errors based on the observed information matrix 
versus those based on the expected information matrix.

Recall that the information matrix contains values that quantify the curvature of the log-
likelihood function. The magnitude of the curvature directly infl uences standard errors, such 
that peaked functions produce large information values and small standard errors, whereas 
fl at functions produce small information values and large standard errors. In a missing data 
analysis, two approaches can be used to convert second derivatives into information values, 
and thus two approaches have developed for computing standard errors (with complete 
data, the observed and the expected information matrices tend to yield the same standard 
errors). The distinction between the two computational approaches is important because the 
expected information matrix yields standard errors that require the MCAR assumption, 
whereas the observed information matrix gives standard errors that are appropriate with 
MAR data (Kenward & Molenberghs, 1998; Little & Rubin, 2002; Molenberghs & Kenward, 
2007). The next few sections describe the differences between these two procedures in more 
detail.

As an aside, some of the subsequent information is relatively technical in nature. For 
readers who are not interested in the mathematical details behind the two computational 
approaches, there is a simple take-home message: whenever possible, use the observed infor-
mation matrix to compute standard errors. Many (but not all) software packages implement 
this method, although it may not be the default analysis option. Later in the chapter I present 
some simulation results that strongly favor standard errors based on the observed informa-
tion matrix. It is therefore a good idea to consider this computational option when choosing 
a software package.
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4.6 OBSERVED VERSUS EXPECTED INFORMATION

The expected information matrix replaces certain terms in the second derivative formulas 
with their expected values (i.e., long-run averages), whereas the observed information uses 
the realized data values to compute these terms. Before describing how this process applies 
to missing data, it is useful to demonstrate the computational approaches in the context of a 
complete-data scenario. Efron and Hinkley (1978) use an intuitive example that involves the 
weighted mean to illustrate the distinction between the observed and the expected informa-
tion. In their example, one of two different measurement instruments generates a score for 
each case, and a coin toss determines which device generates each score. Because a coin toss 
dictates the use of each measurement instrument, the two instruments should generate the 
same number of scores over the long run, even though the observed frequency is likely to 
deviate from a 50/50 split in any given sample.

The standard error of the weighted mean relies on the score variance from each mea-
surement instrument (i.e., σ1

2 and σ2
2) as well as on the number of observations that each 

device generates (i.e., n1 and n2). There are two options for computing the standard error of 
the weighted mean. Because the two instruments should generate the same number of obser-
vations over the long run, one approach is to weight the variances equally in the standard 
error computations. Weighting the variances by the realized values of n1 and n2 is also ap-
propriate because the observed frequencies are unlikely to be exactly equal in any given 
sample. These two strategies are consistent with the notion of expected and observed informa-
tion, respectively.

Computing the information (and thus the standard error) requires the second deriva-
tive of the log-likelihood function. The second derivative formula for the weighted mean is 
–n1/σ1

2 – n2/σ2
2. Because a random process with a probability of .50 dictates the values of 

n1 and n2, the expectation (i.e., long-run average) of these two values is (n1 + n2)/2 = N/2. 
Substituting this expectation into the second derivative formula in place of n1 and n2 and 
multiplying the derivative by negative 1 yields the following equation for the expected 
information

 ∂2logL n1 n2 N/2 N/2 N/2 N/2
 IE = –E{———} = –E{– —– – —–} = – (– —— – ——) = —— + —— (4.6)
 ∂2μ σ1

2 σ2
2 σ1

2 σ2
2 σ1

2 σ2
2

where ∂2 denotes the second derivative, and E is the expectation symbol. In contrast, the ob-
served information relies on the realized values of n1 and n2, as follows:

 ∂2logL n1 n2 n1 n2 IO = –{———} = –{– —– – —–} = —– + —– (4.7)
 ∂2μ σ1

2 σ2
2 σ1

2 σ2
2

Following the procedures from Chapter 3, computing the inverse (i.e., reciprocal) of the infor-
mation gives the sampling variance of the mean, and taking the square root of the sampling 
variance returns the standard error. As you can see, the two information equations will yield 
the same standard error only if the observed data (i.e., the values of n1 and n2) match the long-
run expectation (i.e., N/2).



 Maximum Likelihood Missing Data Handling 99

How Does the Observed and Expected Information Apply to 
Missing Data?

The previous example is useful for understanding the conceptual difference between the 
observed and the expected information, but it does not illustrate how these concepts apply 
to missing data analyses. Applying the previous ideas to missing data, we fi nd that the real-
ized values of n1 are n2 are roughly analogous to the observed missing data pattern. In the 
weighted mean example, the expected information yields standard errors that do not depend 
on the values of n1 and n2, whereas the observed information uses the values of n1 and n2 to 
compute standard errors. In the context of a missing data analysis, the expected information 
produces standard errors that effectively ignore the pattern of missing values, whereas stan-
dard errors based on the observed information depend on the missing data pattern. This dis-
tinction has important practical implications because the two computational approaches 
make different assumptions about the missing data mechanism.

The missing data literature refers to the MAR mechanism as ignorable missingness be-
cause the distribution of missing data carries no information about the analysis model param-
eters. Interestingly, the realized missing data pattern does contain information that infl uences 
the information matrix, and thus the standard errors (Kenward & Molenberghs, 1998; Little, 
1976). Specifi cally, the expected information matrix yields standard errors that require the 
MCAR assumption, whereas the observed information matrix produces standard errors that 
are appropriate with MCAR and MAR data (Kenward & Molenberghs, 1998; Little & Rubin, 
2002; Molenberghs & Kenward, 2007). Kenward and Molenberghs (1998) provide a detailed 
discussion of this issue, and I summarize their main points in the next section.

4.7 A BIVARIATE ANALYSIS EXAMPLE

To illustrate the difference between the observed and expected information, suppose that it 
is of interest to use the IQ scores and job performance ratings from Table 4.1 to estimate the 
mean vector and the covariance matrix. The matrix of second derivatives (i.e., the Hessian) 
for this analysis is a 5 by 5 symmetric matrix in which each row and column corresponds to 
one of the estimated parameters (there are two means and three unique covariance matrix 
elements). Furthermore, the diagonal elements of the Hessian matrix contain the second de-
rivatives for each parameter, and the off-diagonal elements quantify the extent to which the 
log-likelihood functions for two parameters share similar curvature. Collectively, the elements 
in the Hessian matrix are the building blocks of maximum likelihood standard errors.

The observed and the expected information matrices differ in how they treat the devia-
tion scores (i.e., yi – μ) that appear in certain second derivative formulas. In particular, the 
two computational approaches produce different values for the off-diagonal elements of the 
Hessian that involve a mean parameter and a covariance matrix parameter. To illustrate, con-
sider the second derivative formula for the off-diagonal element that involves the mean and 
the variance of the IQ scores (i.e., μIQ and σ2

IQ, respectively). The second derivative formula is

 ∂2logL 1 0 IQi μIQ 1
 ———— = {–[1 0]�–1[ ]�–1 ∑

i

nC

=1
([  ] – [  ])} – —–— ∑

i=

nM

1
(IQi – μIQ) (4.8)

 ∂μIQ∂σ2
IQ 0 0 JPi μJP (σ2

IQ)2
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where ∂2 denotes a second derivative, nC is the number of complete cases, and nM is the 
number of incomplete cases. Note that the bracketed terms refl ect the contribution of the 
complete cases to the second derivative value, and the remaining terms contain the addi-
tional information from the incomplete cases. Although the derivative formula is relatively 
complex, the deviation scores and their sums are the key to understanding the distinction 
between the observed and the expected information.

Consider what happens to Equation 4.8 when the data are complete. In this situation, 
the bracketed terms alone generate the second derivative and the remaining terms vanish. 
The observed information uses the realized data values (i.e., IQi and JPi) to compute the sec-
ond derivative. By defi nition, the sum of the deviation scores equals zero, so the entire second 
derivative equation returns a value of zero. In contrast, the expected information replaces the 
observed scores with their expected values (i.e., long-run averages). The expected value of a 
random variable is the mean, and so the data values in Equation 4.8 get replaced by their 
respective averages. In this situation, the sum of the deviation scores also equals zero, as does 
the value of the second derivative. With complete data, all of the second derivative equations 
that involve a mean parameter and a covariance matrix parameter work in the same fashion 
and return a value of zero (i.e., the mean parameters are independent of the covariance ma-
trix parameters).

Thus far, using the observed data or the expected values to compute the second deriva-
tive formulas leads to the same answer. However, the two computational approaches diverge 
with missing data, and the second derivative values depend on the missing data mechanism. 
Consider what happens to Equation 4.8 when the job performance ratings are MCAR. If the 
values are missing in a purely random fashion, the observed job performance scores should 
be equally dispersed above and below the mean. Using the realized data values to compute 
the sums should therefore still produce a value of zero, on average. Consistent with the 
complete-data scenario, the expected information replaces the observed data values with 
their respective averages; thus, the deviation terms vanish and the entire equation returns a 
value of zero. Consequently, the observed and the expected information should produce the 
same second derivative value (and thus the same standard error), on average. Again, this re-
sult holds for any off-diagonal element of the Hessian that involves a mean parameter and a 
covariance matrix parameter.

The situation changes with MAR data. By virtue of the employee selection process, the 
job performance ratings in Table 4.1 are primarily missing from the lower tail of the score 
distribution. This implies that the observed data points are not equally dispersed above and 
below the mean. For example, a quick inspection of the data in Table 4.1 shows that the ma-
jority of the observed job performance ratings are above the maximum likelihood estimate of 
the mean, which is μ̂JP = 10.28. Consequently, the sum of the deviation scores (and thus the 
value of the second derivative) no longer equals zero. In contrast, because the expected infor-
mation replaces the observed data values with their respective averages, the second derivative 
formula will always return a value of zero, regardless of the missing data mechanism.

To numerically illustrate the differences between the observed and the expected infor-
mation, Table 4.6 shows the information matrices and the parameter covariance matrices 
from the bivariate analysis. First, notice that the expected information matrix contains values 
of zero for the off-diagonal elements that involve a mean parameter and a covariance matrix 
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parameter. Again, this is a consequence of replacing the observed data values with their ex-
pectations. In contrast, the observed information matrix has nonzero off-diagonal elements, 
which suggests that the mean parameters and the covariance matrix parameters are no longer 
independent. Computing the inverse of the information matrix gives the parameter covariance 
matrix, the diagonal elements of which contain sampling variances (i.e., squared standard 
errors). Notice that the expected information matrix produces smaller sampling variances for 
the parameters affected by missing data. Considering the job performance mean, the ob-
served information matrix gives a sampling variance of 1.508, whereas the expected informa-
tion matrix produces an estimate of .676. Not surprisingly, the disparity between these two 
values translates into a marked difference in the standard errors. For example, the observed 
information matrix yields a standard error of 1.228, whereas the expected information matrix 
yields a standard error of 0.822.

TABLE 4.6. Information and Parameter Covariance Matrices from the Bivariate 
Analysis Example

Parameter 1 2 3 4 5

Information matrix (observed)

1: μIQ 
0.134132

2: μJP 
–0.232050 1.879713

3: σ2
IQ 

0.001738 –0.014075 0.000492
4: σIQ,JP 

–0.014075 0.114012 –0.002065 0.022111
5: σ2

JP 
0.000000 0.000001 0.002692 –0.043618 0.176666

Parameter covariance matrix (observed)

1: μIQ 
9.479986

2: μJP 
1.170302 1.507618

3: σ2
IQ 

–0.000020 0.000059 3594.794000
4: σIQ,JP 

–0.000044 –13.703090 443.774440 280.705520
5: σ2

JP 
–0.000011 –3.383282 54.783599 62.542877 20.267296

Information matrix (expected)

1: μIQ 
0.134132

2: μJP 
–0.232050 1.879713

3: σ2
IQ 

0 0 0.000470
4: σIQ,JP 

0 0 –0.001889 0.020684
5: σ2

JP 
0 0 0.002692 –0.043619 0.176666

Parameter covariance matrix (expected)

1: μIQ 
9.479986

2: μJP 
1.170299 0.676469

3: σ2
IQ 

0 0 3594.805000
4: σIQ,JP 

0 0 443.776810 155.650330
5: σ2

JP 
0 0 54.784017 31.666846 12.644013

Note. Bold typeface denotes the sampling variance (i.e., squared standard error) of each parameter estimate.
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The sampling variances in Table 4.6 illustrate that the two computational approaches 
can produce very different standard errors, particularly with MAR data. At an intuitive level, 
using the observed information is desirable because the standard errors take into account the 
realized missing data pattern. The methodological literature clearly favors this approach be-
cause the resulting standard errors are accurate with MAR data. Referring to the observed 
information matrix, Kenward and Molenberghs (1998, p. 238) stated that “its use in missing 
data problems should be the rule rather than the exception.” Other authors have echoed this 
sentiment (Laird, 1988; Little & Rubin, 2002; Molenberghs & Kenward, 2007). Fortunately, 
many software packages can compute standard errors from the observed information matrix, 
although this may not be the default analysis option.

4.8 AN ILLUSTRATIVE COMPUTER SIMULATION STUDY

The results in Table 4.6 are useful for illustration purposes, but they do not provide strong 
evidence about the differences that can result from using the observed versus the expected 
information to compute standard errors. To better illustrate the performance of these compu-
tational approaches, I conducted a series of Monte Carlo computer simulations. The simula-
tion programs generated 1,000 samples of N = 250 from a population model that mimicked 
the IQ and job performance data in Table 4.1. The fi rst simulation created MCAR data by 
randomly deleting 50% of the job performance ratings, and the second simulation mimicked 
an MAR mechanism by eliminating the job performance scores for the cases in the lower half 
of the IQ distribution. After generating each data set, the simulation programs used maximum 
likelihood missing data handling to estimate the mean vector and the covariance matrix. 
They subsequently computed standard errors using both the observed and the expected in-
formation matrix.

Table 4.7 shows the average standard error for each parameter estimate. To gauge the 
accuracy of the standard errors, the table also gives the standard deviation of the parameter 
estimates across the 1,000 samples, along with the confi dence interval coverage values. The 
standard deviations quantify the actual sampling fl uctuation of the estimates and provide a 
benchmark for assessing the average standard errors. Confi dence interval coverage quantifi es 
the percentage of samples where the 95% confi dence interval contains the true population 
parameter. If standard errors are accurate, confi dence interval coverage should equal 95%. 
In contrast, if the standard errors are too low, confi dence intervals will not capture the popu-
lation parameter as frequently as they should, and coverage rates will drop below 95%. Con-
fi dence interval coverage rates are a useful indicator of standard error bias because they di-
rectly relate to type I error rates (e.g., a confi dence interval coverage value of 90% suggests a 
twofold increase in type I errors).

As seen in the table, the two computational approaches produced nearly identical re-
sults in the MCAR simulation, and the standard errors from both methods were quite accu-
rate (i.e., the average standard errors were quite close to the standard deviations, and the 
coverage values were roughly 95%). In the MAR simulation, the observed information matrix 
produced standard errors that closely resembled the standard deviation values (i.e., the true 
standard errors), and the corresponding confi dence interval coverage values were quite close 
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to the optimal 95% rate. In contrast, the expected information matrix produced inaccurate 
standard errors for the parameters affected by missing data. For example, the standard error 
of the job performance mean was too small, on average, and had a coverage value of approxi-
mately 80%. From a practical standpoint, a confi dence interval coverage value of 80% repre-
sents a type I error rate of approximately 20%, which is a fourfold increase over the nominal 
5% type I error rate.

It is diffi cult to say whether the simulation results in Table 4.7 are representative of real-
world analysis examples, but they clearly suggest that standard errors based on the expected 
information matrix are prone to severe bias and are only valid with MCAR data. Many (but 
not all) software programs can compute standard errors from the observed information ma-
trix, so you should consider this option when choosing a software package. If you do not have 
access to software that computes the observed information matrix, you can always use the 
likelihood ratio statistic to perform signifi cance tests (e.g., by fi tting two models, one of which 
constrains the parameter of interest to zero during estimation) because the likelihood ratio is 
unaffected by the choice of information matrix.

4.9 AN OVERVIEW OF THE EM ALGORITHM

Certain complete-data applications of maximum likelihood estimation (e.g., the estimation 
of means, variances, covariances, and regression coeffi cients) are straightforward because 
familiar equations defi ne the maximum likelihood parameter estimates. With few excep-
tions, missing data analyses require iterative optimization algorithms, even for very simple 
estimation problems. The EM algorithm is one such procedure that is particularly important 
for missing data analyses. The origins of EM date back to the 1970s (Beale & Little, 1975; 
Demp ster et al., 1977; Orchard & Woodbury, 1972), with Dempster et al. (1977) playing a 

TABLE 4.7. Simulation Results Comparing Observed and Expected Standard Errors

 Observed information Expected information

Parameter SD Average SE Coverage  Average SE Coverage

MCAR simulation

μIQ 0.791 0.820 0.963 0.820 0.963
μJP 0.247 0.250 0.951 0.250 0.951
σ2

IQ 14.777 15.049 0.948 15.049 0.948
σ2

JP 1.105 1.117 0.939 1.114 0.937
σIQ,JP 3.434 3.484 0.949 3.465 0.946

MAR simulation

μIQ 0.806 0.820 0.947 0.820 0.947
μJP 0.394 0.395 0.953 0.249 0.804
σ2

IQ 15.074 15.071 0.949 15.071 0.949
σ2

JP 1.490 1.439 0.920 1.112 0.851
σIQ,JP 5.275 5.283 0.959  3.463 0.795
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key role in developing the algorithm. The early applications of EM primarily focused on esti-
mating a mean vector and a covariance matrix with missing data, but methodologists have 
since extended the algorithm to address a variety of diffi cult complete-data estimation prob-
lems, including multilevel models, fi nite mixtures, and structural equation models, to name 
a few (Jamshidian & Bentler, 1999; Liang & Bentler, 2004; McLachlan & Krishnan, 1997; 
Muthén & Shedden, 1999; Raudenbush & Bryk, 2002). To keep things simple, I describe 
the estimation process for a mean vector and a covariance matrix, but the EM algorithm is 
readily suited for more complex missing data problems (e.g., structural equation models with 
missing data; Jamshidian & Bentler, 1999).

The EM algorithm is a two-step iterative procedure that consists of an E-step and an 
M-step (E and M stand for expectation and maximization, respectively). The iterative process 
starts with an initial estimate of the mean vector and the covariance matrix (e.g., a listwise 
deletion estimate of � and �). The E-step uses the elements in the mean vector and the co-
variance matrix to build a set of regression equations that predict the incomplete variables 
from the observed variables. The purpose of the E-step is to fi ll in the missing values in a 
manner that resembles stochastic regression imputation (I use the words “fi ll in” loosely 
here, because the algorithm does not actually impute the missing values). The M-step subse-
quently applies standard complete-data formulas to the fi lled-in data to generate updated 
estimates of the mean vector and the covariance matrix. The algorithm carries the updated 
parameter estimates forward to the next E-step, where it builds a new set of regression equa-
tions to predict the missing values. The subsequent M-step then re-estimates the mean vector 
and the covariance matrix. EM repeats these two steps until the elements in �̂ and �̂ no lon-
ger change between consecutive M-steps, at which point the algorithm has converged on the 
maximum likelihood estimates. These estimates might be of substantive interest in and of 
themselves, or they can serve as input data for other multivariate statistical procedures 
(Enders, 2003; Enders & Peugh, 2004; Yuan & Bentler, 2000). It is important to reiterate 
that the algorithm does not impute or replace the missing values. Rather, it uses all of the 
available data to estimate the mean vector and the covariance matrix.

In Chapter 3, I used a hill-climbing analogy to introduce iterative optimization algo-
rithms. In this analogy, the goal of estimation is to locate the peak of the log-likelihood func-
tion (i.e., climb to the top of a hill) where the maximum likelihood estimates are located. In 
an EM analysis, the initial estimates of the mean vector and the covariance matrix effectively 
serve as the starting coordinates for the climb, and a single iteration (i.e., one E- and one 
M-step) represents a step toward the top of the hill. Numerically, the goal of each iteration 
is to adjust the parameter values in a direction that increases the log-likelihood value (i.e., the 
algorithm should climb in a vertical direction). The regression-based procedure at each 
E-step does just that, and the updated parameter estimates at each M-step will produce a 
higher log-likelihood value than the estimates from the preceding M-step. As the climb nears 
the plateau, the adjustments to the parameter estimates are very small and the log-likelihood 
effectively remains the same across successive M-steps. When the difference between succes-
sive estimates of � and � falls below some very small threshold (software programs often 
refer to this threshold as the convergence criterion), the iterative process stops. At this 
point, the algorithm has located the peak of the log-likelihood function, and the values of the 



 Maximum Likelihood Missing Data Handling 105

mean vector and the covariance matrix from the fi nal M-step serve as the maximum likeli-
hood estimates.

4.10 A DETAILED DESCRIPTION OF THE EM ALGORITHM

The previous description of EM is conceptual in nature and omits many of the mathematical 
details of the procedure. This section expands the previous ideas and gives a more precise 
explanation of the E-step and the M-step. To illustrate the mechanics of EM, I use a bivariate 
analysis example where one of the variables is incomplete. Throughout this section, I use X 
to denote the complete variable (e.g., IQ scores) and Y to represent the incomplete variable 
(e.g., job performance ratings). This is a relatively simple estimation problem, but the basic 
ideas readily extend to multivariate analyses with general patterns of missing data.

With complete data, the following formulas generate the maximum likelihood estimates 
of the mean, the variance, and the covariance.

 1
 μ̂Y = —∑Y (4.9)
 N

 1 (∑Y)2

 σ̂2
Y = —(∑Y2 – —–—) (4.10)

 N N

 1 ∑X∑Y
 σ̂X,Y = —(∑XY – —––—) (4.11)
 N N

Notice that the sum of the scores (i.e., ∑X and ∑Y ), the sum of the squared scores (i.e., ∑X2 
and ∑Y2), and the sum of the cross product terms (i.e., ∑XY ) are the basic building blocks 
of the previous equations. Collectively, these quantities are known as suffi cient statistics 
because they contain all of the necessary information to estimate the mean vector and the 
covariance matrix. As you will see, these suffi cient statistics play an important role in the 
E-step.

The purpose of the E-step is to “fi ll in” the missing values so that the M-step can use 
Equations 4.9 through 4.11 to generate parameter estimates. More accurately, the E-step fi lls 
in each case’s contribution to the suffi cient statistics (Dempster et al., 1977). The E-step uses 
the elements in the mean vector and the covariance matrix to build a set of regression equa-
tions that predict the incomplete variables from the observed variables. In a bivariate data set 
with missing value on Y, the necessary equations are

 σ̂X,Y β̂1 = —— (4.12)
 σ̂2

X

 β̂0 = μ̂Y  – β̂1μ̂X (4.13)
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 σ̂2
Y|X = σ̂2

Y – β̂2
1σ̂2

X (4.14)

 Ŷi = β̂0 + β̂1Xi (4.15)

where β̂0 and β̂1 are the intercept and slope coeffi cients, respectively, σ̂2
Y|X is the residual vari-

ance from the regression of Y on X, and Ŷi is the predicted Y score for a given value of X. The 
means, variances, and covariances that appear on the right side of the equations are elements 
from the mean vector and the covariance matrix.

The missing data complicate an otherwise straightforward analysis because the incom-
plete cases have nothing to contribute to ∑Y, ∑Y2, and ∑XY. The E-step replaces the miss-
ing components of these suffi cient statistics with their expected values (i.e., long-run aver-
ages). EM borrows information from other variables, so the algorithm actually uses so-called 
conditional expectations to replace the missing components of the formulas. To illustrate, 
consider the sum of the scores and the sum of the cross product terms (i.e., ∑Y and ∑XY, 
respectively). The expected value of Y is the predicted score from Equation 4.15, so the 
E-step replaces the missing components of ∑Y and ∑XY with Ŷi. Next, consider the sum of 
the squared scores, ∑Y2. The expected value of a squared variable is Ŷi

2 + σ̂2
Y|X, where Ŷi

2 is the 
squared predicted score, and σ̂2

Y|X is the residual variance from the regression of Y on X. The 
E-step replaces the missing components of ∑Y2 with this expectation.

Notice that the E-step does not actually impute the raw data. Rather, it fi lls in the com-
putational building blocks for the mean, the variance, and the covariance (i.e., the suffi cient 
statistics). Once this process is complete, the M-step becomes a straightforward estimation 
problem that uses the fi lled-in suffi cient statistics to compute Equations 4.9 through 4.11. 
The resulting parameter estimates carry forward to the next E-step, where the process begins 
anew.

4.11 A BIVARIATE ANALYSIS EXAMPLE

Having outlined the necessary mathematical details, I use the IQ and job performance scores 
in Table 4.1 to illustrate a worked analysis example. Software programs that implement the EM 
algorithm fully automate the estimation procedure, so there is no need to perform the com-
putational steps manually. Nevertheless, examining what happens at each step of the process 
is instructive and gives some insight into the inner workings of the algorithm.

EM requires an initial estimate of the mean vector and the covariance matrix. A number 
of traditional missing data techniques can generate these starting values, including deletion 
methods and single imputation (Little & Rubin, 2002, p. 225). To be consistent with statisti-
cal software packages (e.g., the SAS MI procedure), I use pairwise deletion estimates of the 
means and the variances and set the covariance to zero, as follows:

 
�̂0 =

 [μ̂IQ] = [μ̂X] = [100.000] μ̂JP μ̂Y 11.700

 
�̂0 =

 [ σ̂2
IQ

 
 σ̂IQ,JP] = [ σ̂2

X  σ̂X,Y] = [199.579 0.000] σ̂JP,IQ σ̂2
JP σ̂Y,X σ̂2

Y 0 7.344
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Throughout the example, I use a numeric subscript to index each EM cycle, and a value of 
zero denotes the fact that these parameter values precede the fi rst E-step. Finally, to maintain 
consistency with the previous notation, I use X and Y to denote the IQ and job performance 
scores, respectively.

The fi rst E-step uses the elements in the mean vector and the covariance matrix to build 
a regression equation that predicts the incomplete variable (e.g., job performance) from the 
complete variable (e.g., IQ). Substituting the appropriate elements from �̂0 and �̂0 into 
Equations 4.12 through 4.14 yields the following estimates: β̂0 = 11.700, β̂1 = 0, and σ̂2

Y|X = 
7.344. Because the regression slope is zero, all of the predicted values happen to be the same, 
Ŷ1 = 11.700. The ultimate goal of the E-step is to fi ll in the missing components of ∑Y, ∑Y2, 
and ∑XY. Specifi cally, the predicted values fi ll in the missing components of ∑Y and ∑XY, 
and Ŷi

2 + σ̂2
Y|X = 11.7002 + 7.344 = 144.234 replaces the missing parts of ∑Y2. Table 4.8 

shows the computations for the fi rst E-step, and the resulting suffi cient statistics appear in 
the bottom row of the table.

Having dealt with the missing values in the E-step, the M-step uses standard complete-
data formulas to update the mean vector and the covariance matrix. Substituting the suffi cient 
statistics from Table 4.8 into Equations 4.9 through 4.11 updates the parameter estimates, 
as follows.

 
�̂1 =

 [μ̂IQ] = [μ̂X] = [100.000] μ̂JP μ̂Y 11.700

 
�̂1 =

 [ σ̂2
IQ

 
 σ̂IQ,JP] = [ σ̂2

X  σ̂X,Y] = [189.600 5.200] σ̂JP,IQ σ̂2
JP σ̂Y,X σ̂2

Y 5.200 6.977

Notice that the job performance mean did not change, even though this variable has missing 
values. Because the initial regression slope is zero, the intercept (i.e., the mean job perfor-
mance rating) replaces the missing Y values. Consequently, the mean does not change in the 
fi rst step, although it will in subsequent steps. In addition, notice that the IQ variance changed, 
even though this variable is complete. This change occurred because the maximum likelihood 
estimate uses N rather than N – 1 in the denominator (the usual formula for the sample vari-
ance generated the initial estimate).

With the fi rst cycle completed, the updated parameter estimates carry forward to the next 
E-step, where EM builds a new regression equation. Substituting the appropriate elements 
from �̂1 and �̂1 into Equations 4.12 through 4.14 yields the following estimates: β̂0 = 8.957, 
β̂1 = 0.027, and σ̂2

Y|X = 6.834. Consistent with the previous E-step, expected values replace 
the missing components of the suffi cient statistics. For example, the individual with an IQ 
score of 78 contributes a predicted job performance rating of Ŷi = 8.975 + 0.027(78) = 
11.063 to the computation of ∑Y and ∑XY. Similarly, this case’s contribution to ∑Y2 is 
11.0632 + 6.834 = 129.224. Table 4.9 shows the computations for the second E-step, with 
the suffi cient statistics in the bottom row of the table.

As before, the M-step uses the suffi cient statistics from the preceding E-step to update 
the mean vector and the covariance matrix. The suffi cient statistics in Table 4.9 produce the 
following estimates.
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�̂2 =

 [μ̂IQ] = [μ̂X] = [100.000] μ̂JP μ̂Y 11.523

 
�̂2 =

 [ σ̂2
IQ

 
 σ̂IQ,JP] = [ σ̂2

X  σ̂X,Y] = [189.600 7.663] σ̂JP,IQ σ̂2
JP σ̂Y,X σ̂2

Y 7.663 6.764

Notice that the IQ mean and variance do not change because these parameters immediately 
converge to the maximum likelihood estimates in the fi rst EM cycle. However, the parameters 
affected by missing data do change, and they continue to do so from one M-step to the next.

As you might have guessed, �̂2 and �̂2 carry forward to the next E-step, where the algo-
rithm generates a new set of regression estimates that fi ll in the missing components of the suf-
fi cient statistics. The following M-step then uses the suffi cient statistics to update the param-
eter values. EM repeats these two steps until the elements in the mean vector and the covariance 
matrix no longer change (or change by a trivially small amount) between consecutive M-steps, 
at which point the algorithm has converged on the maximum likelihood estimates. This ex-
ample requires 59 cycles to converge and yields the following parameter estimates.

 
�̂ = [μ̂IQ] = [100.000] μ̂JP 10.281

 
�̂ = [ σ̂2

IQ
 
 σ̂IQ,JP]  = [189.600 23.393] σ̂JP,IQ σ̂2

JP 23.393 8.206

TABLE 4.8. Computation of the Suffi cient Statistics for the First E-Step

 X X2 Y Y2 XY

  78 6084 11.700 11.7002 + 7.344 912.600
  84 7056 11.700 11.7002 + 7.344 982.800
  84 7056 11.700 11.7002 + 7.344 982.800
  85 7225 11.700 11.7002 + 7.344 994.500
  87 7569 11.700 11.7002 + 7.344 1017.900
  91 8281 11.700 11.7002 + 7.344 1064.700
  92 8464 11.700 11.7002 + 7.344 1076.400
  94 8836 11.700 11.7002 + 7.344 1099.800
  94 8836 11.700 11.7002 + 7.344 1099.800
  96 9216 11.700 11.7002 + 7.344 1123.200
  99 9801  7  49  693
 105 11025 10 100 1050
 105 11025 11 121 1155
 106 11236 15 225 1590
 108 11664 10 100 1080
 112 12544 10 100 1120
 113 12769 12 144 1356
 115 13225 14 196 1610
 118 13924 16 256 1888
 134 17956 12 144 1608

 ∑X = ∑X2 = ∑Y = ∑Y2 = ∑XY =
 2000.000 203792.000 234.000 2877.340 23504.500

Note. X = IQ and Y = job performance. Bold typeface denotes imputed values.
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The regression-based procedure that EM uses to update the parameters largely ob-
scures the fact that the estimates are incrementally improving from one step to the next. To 
illustrate how EM “climbs” to the top of the log-likelihood function, I used the parameter 
estimates from each iteration to compute the sample log-likelihood values. (EM does not 
actually manipulate the log-likelihood equation, so the log-likelihood values are not an auto-
matic by-product of the analysis.) For example, substituting the starting values (i.e., �̂0 and 
�̂0) and the observed data into Equation 4.2 yields an initial log-likelihood value of logL = 
–76.9318195. Similarly, substituting �̂1 and �̂1 into Equation 4.2 gives the log-likelihood 
for the fi rst EM cycle, and so on. Table 4.10 shows the log-likelihood values and the job per-
formance parameters from selected cycles of the bivariate EM analysis. As you can see, the 
fi rst few EM cycles produce the largest changes in the log-likelihood, whereas the latter 
steps yield much smaller changes. The same is also true for the parameter estimates. In ef-
fect, the optimization algorithm traverses the steepest portion of the ascent at the begin-
ning of the hike, and the climb becomes more gradual near the plateau. As the algorithm 
nears the peak of the log-likelihood function, each additional cycle produces a very small 
improvement in the log-likelihood value, and the adjustments to the parameters are so small 
that the estimates effectively remain the same between successive M-steps. For example, in 
the fi nal three EM cycles, the changes to the job performance mean occur in the fourth deci-
mal, and the changes to the sample log-likelihood occur past the seventh decimal. At this 
point, the hill climb is effectively over, and the algorithm has converged on the maximum like-
lihood estimates.

TABLE 4.9. Computation of the Suffi cient Statistics for the Second E-Step

 X X2 Y Y2 XY

  78 6084 11.063 11.0632 + 6.834 862.914
  84 7056 11.225 11.2252 + 6.834 942.900
  84 7056 11.225 11.2252 + 6.834 942.900
  85 7225 11.252 11.2522 + 6.834 956.420
  87 7569 11.306 11.3062 + 6.834 983.622
  91 8281 11.414 11.4142 + 6.834 1038.674
  92 8464 11.441 11.4412 + 6.834 1052.572
  94 8836 11.495 11.4952 + 6.834 1080.530
  94 8836 11.495 11.4952 + 6.834 1080.530
  96 9216 11.549 11.5492 + 6.834 1108.704
  99 9801  7  49  693
 105 11025 10 100 1050
 105 11025 11 121 1155
 106 11236 15 225 1590
 108 11664 10 100 1080
 112 12544 10 100 1120
 113 12769 12 144 1356
 115 13225 14 196 1610
 118 13924 16 256 1888
 134 17956 12 144 1608

 ∑X = ∑X2 = ∑Y = ∑Y2 = ∑XY =
 2000.000 203792.000 230.465 2790.990 23199.766

Note. X = IQ; Y = job performance. Bold typeface denotes imputed values. 
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As an aside, the EM differs from other optimization algorithms (e.g., the scoring algo-
rithm; Hartley & Hocking, 1971; Trawinski & Bargmann, 1964) because it does not require 
the computation of fi rst or second derivatives. Consequently, the EM algorithm does not 
automatically produce the basic building blocks of maximum likelihood standard errors. 
Methodologists have outlined approaches for generating standard errors in an EM analysis 
(Little & Rubin, 2002; Meng & Rubin, 1991), but these methods require additional compu-
tational steps that are not implemented in all software packages. Bootstrap resampling is a 
simulation-based approach that is particularly useful for estimating standard errors with non-
normal data, but it is also applicable to an EM analysis. I give a detailed description of boot-
strap in Chapter 5.

4.12 EXTENDING EM TO MULTIVARIATE DATA

The preceding bivariate analysis is relatively straightforward because the missing values are 
isolated to a single variable. Applying EM to multivariate data is typically more complex be-
cause the E-step requires a unique regression equation (or set of equations) for each missing 
data pattern. Despite this complication, the basic logic of EM remains the same and requires 
just a few additional details. To illustrate the changes to the E-step, I use the full data set in 
Table 4.1. EM with three variables is still relatively straightforward, but the logic of this ex-
ample generalizes to data sets with any number of variables. Finally, note that the procedural 
details of the M-step do not change because this step always uses the standard complete-data 

TABLE 4.10. Sample Log-Likelihood Values across EM Cycles

EM cycle Log-likelihood μ̂JP σ̂2
JP σ̂IQ,JP

 0 –76.9318195 11.7000000 7.3440000 0.0000000
 1 –76.5939005 11.7000000 6.9772220 5.2002527
 2 –76.4254785 11.5225410 6.7641355 7.6631331
 3 –76.2929150 11.3944910 6.6538592 9.3296347
 4 –76.1883350 11.2643060 6.6285983 10.9748205
 5 –76.1059020 11.1493190 6.6552569 12.4275358
 6 –76.0410225 11.0477700 6.7152964 13.7104777
 7 –75.9900400 10.9580870 6.7959299 14.8434952
 8 –75.9500360 10.8788850 6.8882473 15.8441088
 9 –75.9186850 10.8089380 6.9860245 16.7277910
10 –75.8941405 10.7471650 7.0849410 17.5082066
… … … … …
50 –75.8064920 10.2835690 8.1993288 23.3651099
51 –75.8064915 10.2831910 8.2005058 23.3698912
52 –75.8064905 10.2828570 8.2015456 23.3741137
53 –75.8064900 10.2825610 8.2024642 23.3778428
54 –75.8064895 10.2823010 8.2032757 23.3811362
55 –75.8064890 10.2820710 8.2039925 23.3840446
56 –75.8064890 10.2818670 8.2046257 23.3866132
57 –75.8064885 10.2816880 8.2051849 23.3888817
58 –75.8064885 10.2815290 8.2056789 23.3908850
59 –75.8064885 10.2813890 8.2061153 23.3926542
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formulas in Equations 4.9 through 4.11 to update the parameter estimates. Consequently, 
the following discussion focuses solely on the E-step. To maintain consistent notation, X 
denotes the IQ scores, Y represents the job performance ratings, and Z corresponds to the 
well-being scores.

Applying the E-step to the data in Table 4.1 requires the following set of suffi cient sta-
tistics: ∑X, ∑X2, ∑Y, ∑Y2, ∑Z, ∑Z2, ∑XY, ∑XZ, and ∑YZ. Notice that these quantities are 
the same as those from the previous bivariate example (i.e., the sum of the scores, the sum 
of the squared scores, and the sum of the cross product terms). As before, the purpose of the 
E-step is to replace the missing components of the suffi cient statistics with expectations, but 
this now requires a unique set of regression equations for missing data pattern. Returning to 
the data in Table 4.1, note that there are four missing data patterns: (1) cases with only IQ 
scores, (2) cases with IQ and well-being scores, (3) cases with IQ and job performance 
scores, and (4) cases with complete data on all three variables. The complete cases are not a 
concern, so the E-step only deals with the three patterns that have missing data. Table 4.11 
shows the missing suffi cient statistics and the relevant expectation terms for each missing 
data pattern.

Consider the subsample of cases with missing job performance ratings (i.e., missing Y 
values). These individuals have complete data on the IQ and psychological well-being variables 
(i.e., X and Z, respectively), so the problematic suffi cient statistics are ∑Y, ∑XY, ∑YZ, and ∑Y2. 
Following the logic from the bivariate example, predicted scores replace the missing compo-
nents of the variable sums and sums of products. This missing data pattern has two complete 
variables, so a multiple regression equation generates the predicted scores, as follows:

 Ŷi|X,Z = β̂0 + β̂1Xi + β̂2Zi (4.16)

where Ŷi|X,Z is the predicted Y value for case i (the vertical bar denotes the fact that the pre-
dicted score is conditional on both X and Z). Consistent with the bivariate analysis, the 
expectation for ∑Y2 involves a squared predicted score and a residual variance estimate. 

TABLE 4.11. Expectations for a Multivariate Application of the 
EM Algorithm

Missing variable Missing suffi cient statistics Imputed expectations

Y ∑Y, ∑XY, ∑YZ Ŷi|X,Z

(job performance) ∑Y2 Ŷ2
i|X,Z + σ̂2

Y|X,Z

Z ∑Z, ∑XZ, ∑YZ Ẑi|X,Y

(well-being) ∑Z2 Ẑ 2
i|X,Y + σ̂2

Z|X,Y

Y and Z ∑Y, ∑XY, ∑YZ Ŷi|X

(job performance ∑Y2 Ŷ2
i|X + σ̂2

Y|X

and well-being) ∑Z, ∑XY, ∑YZ Ẑi|X

 ∑Z2 Ẑ 2
i|X + σ̂2

Z|X

 ∑YZ (Ŷi|X)(Ẑi|X) + σ̂Y,Z|X
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Consequently, Ŷ2
i|X,Z + σ̂2

Y|X,Z replaces the missing components of ∑Y2, where σ̂2
Y|X,Z is the 

residual variance from the regression of Y on X and Z.
Next, consider the individual with a missing well-being score (i.e., missing Z value). 

Again, a multiple regression equation generates the predicted score

 Ẑi|X,Y = β̂0 + β̂1Xi + β̂2Yi, (4.17)

and this predicted value replaces the missing components of ∑Z, ∑XZ, and ∑YZ. As seen in 
Table 4.11, the expectation for the missing Z2 value is similar to the previous missing data 
pattern and equals the squared predicted score plus the residual variance from the regression 
of Z on X and Y.

Thus far, the E-step has not changed very much. Each missing data pattern requires a 
unique set of regression equations and expectations, but the underlying logic is the same as 
it was in the bivariate example. The only additional nuance occurs with patterns that have two 
or more missing variables. For example, consider the subsample of cases with missing job 
performance ratings and well-being scores (i.e., Y and Z, respectively). As before, regression 
equations generate predicted scores for each missing variable, as follows:

 Ŷi|X = β̂0 + β̂1Xi (4.18)

 Ẑi|X = β̂2 + β̂3Xi (4.19)

As seen in Table 4.11, the predicted scores and corresponding residual variances fi ll in all 
but one of the suffi cient statistics. The cross product term for the two missing variables (i.e., 
∑YZ) involves a new expectation, (Ŷi|X)(Ẑi|X) + σ̂Y,Z|X, where the terms in parentheses are the 
predicted values from previous regression equations, and σY,Z|X is the residual covariance 
between job performance and well-being, which is σ̂Y,Z|X = σ̂Y,Z – β̂1β̂3σ̂2

X.
Extending the E-step computations to complex multivariate analyses with general miss-

ing data patterns is straightforward because the relevant expectations are identical to those 
in Table 4.11. The main procedural diffi culty is the computation of regression equations for 
each missing data pattern. Not surprisingly, the number of missing data patterns (and thus 
the number of regression equations) can get quite large as the number of variables increases. 
Although it sounds tedious to construct a set of regressions for each missing data pattern, a 
computational algorithm called the sweep operator can automate this process. The sweep 
operator combines the mean vector and the covariance matrix into a single augmented ma-
trix and applies a series of transformations that produce the desired regression coeffi cients 
and residual variances. A number of sources give detailed descriptions of the sweep operator 
(Demp ster, 1969; Goodnight, 1979; Little & Rubin, 2002).

4.13 MAXIMUM LIKELIHOOD ESTIMATION SOFTWARE OPTIONS

Although the mathematical foundations of maximum likelihood missing data handling have 
been in the literature for many years, estimation routines have only recently become widely 
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available in statistical software packages. In the late 1980s, methodologists outlined tech-
niques that effectively tricked complete-data software packages into implementing maximum 
likelihood missing data handling by treating each missing data pattern as a subpopulation 
in a multiple group structural equation model (Allison, 1987; Muthén, Kaplan, and Hollis, 
1987). However, these approaches did not enjoy widespread use because they were compli-
cated to program and were unwieldy to implement with more than a small handful of miss-
ing data patterns. Fortunately, this approach is no longer necessary.

Many of the recent software innovations have occurred within the latent variable model-
ing framework, and virtually every structural equation modeling software package now im-
plements maximum likelihood missing data handling. (This approach is often referred to as 
full information maximum likelihood estimation, or simply FIML.) The latent variable mod-
eling framework encompasses a vast number of analytic methods that researchers use on a 
routine basis (e.g., correlation, regression, factor analysis, path analysis, structural equation 
models, mixture models, multilevel models). Structural equation modeling software is there-
fore an ideal tool for many missing data problems. Structural equation modeling programs 
have undergone dramatic improvements in the number of and type of missing data analyses 
that they are capable of performing, and these packages continue to evolve at a rapid pace. 
Because of their fl exibility and breadth, I rely heavily on structural equation programs to 
generate the analysis examples throughout the book. I discuss the capabilities of specifi c 
packages in more detail in Chapter 11.

As an aside, a word of caution is warranted concerning software programs that imple-
ment the EM algorithm. Some popular packages (e.g., LISREL and SPSS) offer the option of 
imputing the raw data after the fi nal EM cycle. This is somewhat unfortunate because it gives 
the impression that a maximum likelihood approach has properly handled the missing val-
ues. In reality, this imputation scheme is nothing more than regression imputation. The only 
difference between EM imputation and regression imputation is that the EM approach uses 
a maximum likelihood estimate of the mean vector and the covariance matrix to generate the 
regression equations, whereas standard regression imputation schemes tend to use listwise 
deletion estimates of � and � to build the regressions. Although it may sound appealing to 
base the imputation process on maximum likelihood estimates, doing so leads to the same 
negative outcomes described in Chapter 2, namely, biased parameter estimates and attenu-
ated standard errors (von Hippel, 2004). Consequently, it is a good idea to avoid EM-based 
single imputation routines. In situations that necessitate a fi lled-in data set, multiple imputa-
tion is a much better option.

4.14 DATA ANALYSIS EXAMPLE 1

This section describes a data analysis that uses the EM algorithm to generate maximum like-
lihood estimates of a mean vector, covariance matrix, and correlation matrix.* The data for 
this analysis consist of scores from 480 employees on eight work-related variables: gender, 
age, job tenure, IQ, psychological well-being, job satisfaction, job performance, and turnover 

*Analysis syntax and data are available on the companion website, www.appliedmissingdata.com.
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intentions. I generated these data to mimic the correlation structure of published research 
articles in the management and psychology literature (e.g., Wright & Bonett, 2007; Wright, 
Cropanzano, & Bonett, 2007). The data have three missing data patterns, each of which con-
tains one-third of the sample. The fi rst pattern consists of cases with complete data, and the 
remaining two patterns have missing data on either well-being or job satisfaction. These pat-
terns mimic a situation in which the data are missing by design (e.g., to reduce the cost of 
data collection).

Table 4.12 shows the maximum likelihood estimates, along with the corresponding es-
timates from the complete data. To facilitate comparison, a shaded box encloses the param-
eter estimates affected by the missing data. As seen in the table, the missing data estimates 
are quite similar to those of the complete data. For example, the two sets of correlation values 
typically differ by approximately .02, and the largest difference is .04 (the correlation be-
tween well-being and turnover intentions). The similarity of the two sets of estimates might 
seem somewhat remarkable given that 33% of the satisfaction and well-being scores are 
missing.

TABLE 4.12. Mean, Covariance, and Correlation Estimates from Data Analysis 
Example 1

Variable 1 2 3 4 5 6 7 8

Missing data maximum likelihood

1: Age 28.908 0.504 –0.010 0.182 0.136 –0.049 –0.150 0.015
2: Tenure 8.459 9.735 –0.034 0.155 0.154 0.016 0.011 0.001
3: Female –0.028 –0.052 0.248 0.115 0.047 –0.015 0.005 0.068
4: Well-being 1.148 0.569 0.067 1.382 0.322 0.456 –0.257 0.291
5: Satisfaction 0.861 0.565 0.028 0.446 1.386 0.184 –0.234 0.411
6: Performance –0.330 0.061 –0.009 0.671 0.271 1.570 –0.346 0.426
7: Turnover –0.377 0.016 0.001 –0.141 –0.129 –0.203 0.218 –0.180
8: IQ 0.674 0.026 0.284 2.876 4.074 4.496 –0.706 70.892
Means 37.948 10.054 0.542 6.288 5.950 6.021 0.321 100.102

Complete data maximum likelihood

1: Age 28.908 0.504 –0.010 0.182 0.111 –0.049 –0.150 0.015
2: Tenure 8.459 9.735 –0.034 0.173 0.157 0.016 0.011 0.001
3: Female –0.028 –0.052 0.248 0.097 0.038 –0.015 0.005 0.068
4: Well-being 1.208 0.667 0.060 1.518 0.348 0.447 –0.296 0.306
5: Satisfaction 0.697 0.576 0.022 0.503 1.377 0.176 –0.222 0.378
6: Performance –0.330 0.061 –0.009 0.690 0.259 1.570 –0.346 0.426
7: Turnover –0.377 0.016 0.001 –0.170 –0.122 –0.203 0.218 –0.180
8: IQ 0.674 0.026 0.284 3.172 3.730 4.496 –0.706 70.892
Means 37.948 10.054 0.542 6.271 5.990 6.021 0.321 100.102

Note. Correlations are shown in the upper diagonal in bold typeface. Elements affected by missing data are en-
closed in the shaded box.
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4.15 DATA ANALYSIS EXAMPLE 2

The second analysis example uses maximum likelihood to estimate a multiple regression 
model. The analysis uses the same employee data set as the fi rst example and involves the 
regression of job performance ratings on psychological well-being and job satisfaction, as 
follows:

 JPi = β0 + β1(WBi) + β2(SATi) + ε

The top panel of Figure 4.1 shows the path diagram of the regression model. I used a struc-
tural equation modeling program to estimate the regression model because these packages 
offer a convenient platform for implementing maximum likelihood estimation with missing 
data.* Finally, note that I requested standard errors based on the observed information 
matrix.

Researchers typically begin a regression analysis by examining the omnibus F test. The 
likelihood ratio statistic and the multivariate Wald test are analogous procedures in a maxi-
mum likelihood analysis. The procedural details of both tests are identical with or without 
missing data. Recall from Chapter 3 that the likelihood ratio test involves a pair of nested 
models. The full model corresponds to the multiple regression in the top panel of Figure 4.1, 
and the restricted model is one that constrains both regression slopes to zero during estima-
tion. (The regression intercept is not part of the usual omnibus F test, so it appears in both 
models.) Estimating the two models produced log-likelihood values of logLFull = –1753.093 
and logLRestricted = –1793.181, respectively. Notice that log-likelihood for the restricted model 
is quite a bit lower than that of the full model, which suggests that fi xing the slopes to zero 
deteriorates model fi t. Using the log-likelihood values to compute the likelihood ratio test 
(see Equation 3.16) yields LR = 80.18. The models differ by two parameters (i.e., the restricted 
model constrains two coeffi cients two zero), so referencing the test statistic to a chi-square 
distribution with two degrees of freedom returns a probability value of p < .001. The signifi -
cant likelihood ratio test indicates that the fi t of the restricted model is signifi cantly worse 
than that of the full model. Consistent with the interpretation of an F statistic, this suggests 
that at least one of the regression coeffi cients is signifi cantly different from zero.

Researchers typically follow up a signifi cant omnibus test by examining partial regres-
sion coeffi cients. Table 4.13 gives the regression model estimates along with those of the 
corresponding complete-data analysis from Chapter 3. As seen in the table, psychological 
well-being was a signifi cant predictor of job performance, β̂1 = 0.476, z = 8.66, p < .001, but 
job satisfaction was not, β̂2 = 0.027, z = 0.45, p = 0.66. Notice that the missing data esti-
mates are quite similar to those of the complete data, despite the fact that each predictor 
variable has a missing data rate of 33%. The missing data analysis produced somewhat larger 
standard errors, but this is to be expected. Finally, note that the interpretation of the regres-
sion coeffi cients is the same as it is in a complete-data regression analysis. For example, hold-
ing job satisfaction constant, a one-point increase in psychological well-being yields a .476 
increase in job satisfaction, on average.

*Analysis syntax and data are available on the companion website, www.appliedmissingdata.com.
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A Note on Missing Explanatory Variables

Before proceeding to the next analysis example, it is important to note that software packages 
are not uniform in their treatment of missing explanatory variables. Specifi cally, some software 
programs exclude cases that have incomplete data on explanatory variables, while others do 
not. To understand why this is the case, reconsider the log-likelihood formula in Equation 4.2. 
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FIGURE 4.1. A path diagram for the multiple regression model. The single-headed straight lines 
represent regression coeffi cients, the double-headed curved arrow is a correlation, the rectangles are 
manifest variables, and the ellipse is a latent variable. The top panel of the fi gure shows the manifest 
variable regression model. The bottom panel of the fi gure shows the regression model recast as a latent 
variable model, where the two latent variables have a single manifest indicator. The factor loadings are 
fi xed at values of one, and the residual variances (the doubled-headed curved arrows the manifest vari-
able residual terms to themselves) are constrained to zero.
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The log-likelihood quantifi es the standardized distance between the outcome variables (i.e., 
the Y vector) and the population mean. Depending on the software package and the underly-
ing statistical model, the explanatory variables may not be included in the score vector. For 
example, in a regression analysis, some software platforms specify the explanatory variables 
as part of the population mean vector, such that β0 + β1(X1) + β2(X2) replaces the � term in 
Equation 4.2. In these situations, the software program is likely to exclude the cases with the 
missing explanatory variables. To further complicate matters, a given software program may 
not be consistent in its treatment of missing explanatory variables across different analyses. 
For example, a package might include the incomplete cases in a regression model but exclude 
those data records in more complex models.

Structural equation modeling programs incorporate some fl exibility for dealing with in-
complete explanatory variables. Specifi cally, recasting an incomplete predictor variable as the 
sole manifest indicator of a latent variable effectively tricks the software program into treating 
the explanatory variable as an outcome, while still maintaining the variable’s exogenous sta-
tus in the model. For example, the bottom panel of Figure 4.1 shows the previous regression 
analysis as a latent variable model. In the latent variable specifi cation, the factor loadings are 
constrained to one (this equates the latent variable’s metric to the manifest variable’s metric) 
and the residual variances are constrained to zero (this equates the latent variable’s variance 
to the manifest variable’s variance). Because the latent variables predict the explanatory vari-
ables, the incomplete predictors become part of the Y vector in Equation 4.2. Importantly, 
this programming trick does not change the interpretation of the model parameters (e.g., the 
arrow that connects the latent job satisfaction variable to the job performance variable is still 
a partial regression coeffi cient). Readers interested in more details on single-indicator latent 
variables can consult any number of structural equation modeling textbooks (e.g., see Kline, 
2005, pp. 229–231).

TABLE 4.13. Regression Model Estimates from Data 
Analysis Example 2

Parameter Estimate SE z

Missing data maximum likelihood

β0 (intercept) 6.021 0.053 113.123
β1 (well-being) 0.476 0.055 8.664
β2 (satisfaction) 0.027 0.060 0.445
σ̂2

e (residual) 1.243 0.087 14.356
R2 0.208    

Complete data maximum likelihood

β0 (intercept) 6.021 0.051 117.705
β1 (well-being) 0.446 0.044 10.083
β2 (satisfaction) 0.025 0.046 0.533
σ̂2

e (residual) 1.256 0.081 15.492
R2 0.200    

Note. Predictors were centered at the maximum likelihood estimates of 
the mean.
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As an important aside, the single-indicator latent variable approach can have a bearing 
on the likelihood ratio test. As an illustration, reconsider the likelihood ratio test from the 
multiple regression analysis. I specifi ed the restricted model by constraining both regression 
slopes to zero during estimation. Had the data been complete, I could have specifi ed an 
equivalent restricted model by simply excluding the explanatory variables from the analysis. 
However, this approach would not produce a nested model if the manifest explanatory vari-
ables are both indicators of a latent variable, because the two models will have different sets 
of variables that contribute to the Y vector in the log-likelihood equation. Consequently, the 
only correct way to specify a nested model is to constrain parameters from the full model to 
zero. Returning to the latent variable model in the bottom panel of Figure 4.1, note that con-
straining the arrows that connect the latent variables to the job performance variable to zero 
during estimation produces an appropriate nested model, whereas excluding job satisfaction 
and well-being from the model does not.

4.16 DATA ANALYSIS EXAMPLE 3

The third analysis example uses maximum likelihood to estimate a multiple regression model 
with an interaction term. The analysis uses the employee data set from the previous examples 
and involves the regression of job performance on well-being, gender, and the interaction be-
tween well-being and gender. The goal of the analysis is to determine whether gender moder-
ates the association between psychological well-being and job performance. The multiple 
regression equation is as follows:

 JPi = β0 + β1(WBi) + β2(FEMALEi) + β3(WBi)(FEMALEi) + ε

and Figure 4.2 shows the corresponding path diagram of the model. Notice that the inter-
action term (i.e., the product of gender and well-being) simply serves as an additional ex-
planatory variable in the model. Using maximum likelihood to estimate a model with an 
interaction term is straightforward and follows the same procedure as any multiple regres-
sion analysis. I include this example as a point of contrast with multiple imputation. As you 
will see in Chapter 9, multiple imputation requires special procedures to deal with interac-
tive effects such as this. Consistent with the previous analysis example, I used structural 
equation software to estimate the regression model and requested standard errors based on 
the observed information matrix.*

Prior to conducting the analysis, I centered the psychological well-being scores at the 
maximum likelihood estimate of the grand mean from Table 4.12. Next, I created a product 
term by multiplying gender (0 = male, 1 = female) and the centered well-being scores. The 
resulting product term is missing for any case with a missing well-being score. Because males 
have a gender code of zero, their product terms should always equal zero, regardless of 
whether the well-being variable is complete. Consequently, I recoded the missing product 
terms to have a value of zero within the male subsample.

* Analysis syntax and data are available on the companion website, www.appliedmissingdata.com.
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Because the previous analysis illustrates the use of the likelihood ratio test, there is no 
need to demonstrate the procedure further. Table 4.14 gives the regression model estimates 
along with those of the corresponding complete-data analysis. The analysis results suggest 
that males and females do not differ with respect to their mean job performance ratings, 
β̂2 = –0.167, z = –1.59, p = .11, but the signifi cant interaction term indicates that the as-
sociation between well-being and performance is different for males and females, β̂3 = 0.362, 
z = 3.43, p < .001. Because the gender variable is coded such that female = 1 and male = 0, 
the sign of the interaction coeffi cient indicates that the relationship is stronger for females. 
Notice that the interpretation of the regression coeffi cients is identical to what it would have 
been had the data been complete. In addition, the computation of simple slopes is identical 
to that of a complete-data analysis. For example, the regression equation for the subsample 
of males (the group coded 0) is ŶM = β̂0 + β̂1(WB), and the corresponding equation for fe-
males (the group coded 1) is ŶF = (β̂0 + β̂2) + (β̂1 + β̂3)(WB). Finally, notice that the missing 
data estimates are quite similar to those of the complete data, but they have larger standard 
errors. The increase in the standard errors is not surprising given that the well-being variable 
and the interaction term have a substantial proportion of missing values.

4.17 DATA ANALYSIS EXAMPLE 4

This section presents a data analysis example that illustrates how to use an EM covariance 
matrix to conduct an exploratory factor analysis and an internal consistency reliability analy-
sis.* The analyses use artifi cial data from a questionnaire on eating disorder risk. Briefl y, the 
data contain the responses from 400 college-aged women on 10 questions from the Eating 
Attitudes Test (EAT; Garner, Olmsted, Bohr, & Garfi nkel, 1982), a widely used measure of eat-
ing disorder risk. The 10 questions measure two constructs: Drive for Thinness (e.g., “I avoid 

* Analysis syntax and data are available on the companion website, www.appliedmissingdata.com.
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FIGURE 4.2. A path diagram for the multiple regression model. The single-headed straight lines 
represent regression coeffi cients, the double-headed curved arrow is a correlation, the rectangles are 
manifest variables, and the ellipse is a latent variable.
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eating when I’m hungry”) and Food Preoccupation (e.g., “I fi nd myself preoccupied with 
food”), and they mimic the two-factor structure proposed by Doninger, Enders, and Burnett 
(2005). Figure 4.3 shows a graphic of the EAT factor structure and abbreviated descriptions 
of the item stems. The data set also contains an anxiety scale score, a variable that measures 
beliefs about Western standards of beauty (e.g., high scores indicate that respondents inter-
nalize a thin ideal of beauty), and body mass index (BMI) values.

Variables in the EAT data set are missing for a variety of reasons. I simulated MCAR data 
by randomly deleting scores from the anxiety variable, the Western standards of beauty scale, 
and two of the EAT questions (EAT2 and EAT21). It seems reasonable to expect a relationship 
between body weight and missingness, so I created MAR data on fi ve variables (EAT1, EAT10, 
EAT12, EAT18, and EAT24) by deleting the EAT scores f  or a subset of cases in both tails of the 
BMI distribution. These same EAT questions were also missing for individuals with elevated 
anxiety scores. Finally, I introduced a small amount of MNAR data by deleting a number of 
the high body mass index scores (e.g., to mimic a situation in which females with high BMI 
values refuse to be weighed). The deletion process typically produced a missing data rate of 
5 to 10% on each variable.

Most software packages use deletion methods to handle missing data in factor analyses 
and reliability analyses. The same software programs can usually accommodate a covariance 
matrix as input data, so you can effectively implement maximum likelihood by estimating the 
mean vector and the covariance matrix (e.g., using the EM algorithm) and using the resulting 
estimates as input data for the analysis. The problem with using an EM covariance matrix 
as input data is that no single value of N is applicable to the entire matrix (Enders & Peugh, 
2004). This poses a problem for standard error computations and requires corrective proce-

TABLE 4.14. Regression Model Estimates from Data 
Analysis Example 3

Parameter Estimate SE z

Missing data maximum likelihood

β0 (intercept) 6.091 0.076 79.755
β1 (well-being) 0.337 0.071 4.723
β2 (gender) –0.167 0.105 –1.587
β3 (interaction) 0.362 0.106 3.426
σ̂2

e (residual) 1.234 0.084 14.650
R2 .214    

Complete data maximum likelihood

β0 (intercept) 6.080 0.075 81.536
β1 (well-being) 0.304 0.057 5.339
β2 (gender) –0.146 0.101 –1.438
β3 (interaction) 0.326 0.082 3.975
σ̂2

e (residual) 1.211 0.078 15.492
R2 .229    

Note. Predictors were centered at the maximum likelihood estimates of 
the mean.
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dures such as bootstrap resampling. However, software programs typically do not report 
standard errors for exploratory factor analyses and reliability analyses. Therefore, specifying 
a sample size is not a concern for the analyses in this section.

Table 4.15 shows the maximum likelihood estimates of the variable means, covariances, 
and correlations for the EAT questionnaire items. Although the factor analysis and the reli-
ability analysis rely only on the 10 questionnaire items, I included all 13 variables in the 
initial EM analysis. Chapter 1 introduced the idea of an inclusive analysis strategy that utilizes 
auxiliary variables that are correlates of missingness or correlates of the analysis variables 
(Collins, Schafer, & Kam, 2001). The three additional variables effectively served as auxiliary 
variables in the initial EM analysis. Excluding these variables from the EM analysis would 
have been detrimental to the accuracy of the parameter estimates because body mass index 
and anxiety scores determine missingness. Adopting an inclusive analysis strategy is nearly 
always benefi cial because it can improve the chances of satisfying the MAR assumption and 
can fi ne-tune the resulting parameter estimates by decreasing bias or increasing power.

I used the correlations in Table 4.15 as input data for an exploratory factor analysis. The 
principal axis factor analysis produced two factors with eigenvalues greater than one, which 

EAT1: Am terrified about being overweight

EAT2: Avoid eating when I’m hungry

EAT10: Feel extremely guilty after eating

EAT11: Desire to be thinner

EAT12: Think about burning calories

EAT14: Am preoccupied with fat on my body

EAT24: Like stomach to be empty

EAT3: Find myself preoccupied with food

EAT18: Feel that food controls my life

EAT21: Give too much thought to food
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FIGURE 4.3. A path diagram for the two-factor confi rmatory factor analysis model. The single-headed 
straight lines represent regression coeffi cients, the double-headed curved arrow is a correlation, the 
rectangles are manifest variables, and the ellipses are latent variables.
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suggests the presence of two underlying dimensions. I subsequently used direct oblimin ro-
tation to examine the relationships between the factors and the questionnaire items; Table 
4.16 shows the resulting pattern weights and structure coeffi cients. The structure coeffi -
cients are correlations between the questionnaire items and the factors, whereas the pattern 
weights are partial regression coeffi cients that quantify the infl uence of a factor on an item 
after partialling out the infl uence of the other factor. Both the pattern weights and structure 
coeffi cients suggest a two-factor solution, although the structure coeffi cients are less clear 
owing to the strong correlation between the factors (r = .55). The fi rst factor consists of seven 
questions that measure a construct that the eating disorder literature refers to as Drive for 
Thinness, and the remaining three items form a Food Preoccupation factor. Finally, I used the 
EM correlations as input data for an internal consistency reliability analysis and computed 
the coeffi cient alpha for the two EAT subscales (Enders, 2003, 2004). The coeffi cient alpha 
reliability estimates for the Drive for Thinness and Food Preoccupation subscale scores are 
.893 and .834, respectively.

4.18 DATA ANALYSIS EXAMPLE 5

The fi nal data analysis example illustrates a confi rmatory factor analysis. I used structural 
equation modeling software to fi t the two-factor model in Figure 4.3 to the EAT questionnaire 
data set.* Estimating a confi rmatory factor analysis model with missing data is largely the 
same as it is with complete data, and software packages typically invoke maximum likelihood 
missing data handling with a single additional keyword or line of code. Consistent with the 
previous analyses, I requested standard errors based on the observed information matrix.

Researchers have traditionally used a covariance matrix as input data for structural equa-
tion modeling analyses. A complete data set simplifi es the estimation process because the 

* Analysis syntax and data are available on the companion website, www.appliedmissingdata.com.

TABLE 4.15. Mean, Covariance, and Correlation Estimates from Data Analysis 
Example 4

Variable 1 2 3 4 5 6 7 8 9 10

 1: EAT1 1.158 0.508 0.548 0.553 0.512 0.593 0.435 0.362 0.268 0.365
 2: EAT2 0.536 0.960 0.521 0.554 0.479 0.576 0.387 0.288 0.260 0.374
 3: EAT10 0.585 0.506 0.983 0.648 0.539 0.727 0.506 0.430 0.449 0.502
 4: EAT11 0.560 0.511 0.604 0.886 0.569 0.720 0.529 0.352 0.334 0.404
 5: EAT12 0.545 0.465 0.529 0.531 0.981 0.562 0.435 0.255 0.264 0.345
 6: EAT14 0.654 0.578 0.738 0.694 0.570 1.049 0.563 0.439 0.412 0.495
 7: EAT24 0.467 0.378 0.500 0.496 0.430 0.575 0.994 0.190 0.241 0.264
 8: EAT3 0.392 0.285 0.429 0.334 0.254 0.452 0.191 1.014 0.583 0.656
 9: EAT18 0.291 0.257 0.449 0.317 0.264 0.426 0.242 0.593 1.020 0.637
10: EAT21 0.395 0.368 0.500 0.382 0.344 0.510 0.265 0.664 0.647 1.011
Means 4.010 3.940 3.950 3.940 3.930 3.960 3.990 3.970 3.980 3.950

Note. Correlations are shown in the upper diagonal and are in bold typeface.
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sample log-likelihood is less complex and does not require raw data (Kaplan, 2000, pp. 25–
27). The missing data log-likelihood in Equation 4.2 necessitates the use of raw data, adding 
a mean structure that is not usually present in standard structural equation models. The key 
part of the missing data log-likelihood is the collection of terms that form Mahalanobis dis-
tance, (Yi – �i)T �i

–1(Yi – �i). A confi rmatory factor analysis expresses �i as a model-implied 
mean vector that depends on the measurement intercepts, factor loadings, and latent vari-
able means (i.e., � = � + ��, where � is the vector of measurement intercepts, � is the 
factor loading matrix, and � is the vector of latent variable means). The measurement inter-
cepts and the latent variable means are parameter estimates that you may not be accustomed 
to seeing on a confi rmatory factor analysis printout. These additional parameters are a tech-
nical nuance associated with the missing data handling procedure; they may or may not be 
of substantive interest. However, the mean structure does require its own identifi cation con-
straint, and constraining the latent variable means to zero during estimation is a straight-
forward way to achieve model identifi cation. Consistent with a complete-data analysis, fi xing 
the latent factor variance to unity or setting one of the factor loadings to one identifi es the 
covariance structure portion of the model (Bollen, 1989; Kline, 2005).

Table 4.17 shows the confi rmatory factor analysis parameter estimates along with those 
from a corresponding complete-data analysis. The factor loadings quantify the expected change 
in the questionnaire items for a one-standard-deviation increase in the latent construct, and 
the measurement intercepts are the expected scores for a case that has a value of zero on the 
latent factor (i.e., is at the mean of the latent variable). Because the factor means equal zero, 
the measurement intercepts estimate the item means. A complete-data confi rmatory factor 
analysis model would not ordinarily include the measurement intercepts, but I estimated these 
parameters for comparability.

The two-factor model fi ts the data well according to conventional standards (Hu & 
Bentler, 1998, 1999), χ2(34) = 47.10, p = .07, CFI = 0.993, RMSEA = 0.031, SRMR = 0.029, 
and all of the factor loadings are statistically signifi cant at p < .001. The missing data esti-
mates are quite similar to those of the complete data (the EAT18 loading is a notable exception) 

TABLE 4.16. Factor Analysis Estimates from Data 
Analysis Example 4

 Pattern weights Structure coeffi cients

Variable DT FP  DT FP

EAT1 0.684 0.030 0.701 0.409
EAT2 0.664 0.014 0.671 0.381
EAT10 0.691 0.190 0.796 0.572
EAT11 0.825 –0.008 0.820 0.448
EAT12 0.714 –0.042 0.690 0.353
EAT14 0.803 0.114 0.866 0.558
EAT24 0.686 –0.093 0.634 0.286
EAT3 –0.008 0.785 0.426 0.780
EAT18 –0.010 0.758 0.410 0.753
EAT21 0.061 0.807 0.508 0.841

Note. DT = drive for thinness; FP = food preoccupation.
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but have larger standard errors. It is important to point out that this analysis does not satisfy 
the MAR assumption because the “causes” of missing data (i.e., body mass index and anxi-
ety) do not appear in the model. Collins et al. (2001) show that omitting a cause of missing-
ness tends to be problematic if the correlation between the omitted variable and the analysis 
variables is relatively strong (e.g., r > .40) or if the missing data rate is greater than 25%. The 
body mass index and anxiety variables are not that highly correlated with the EAT question-
naire items, which probably explains why the missing data estimates are similar to those of 
the complete data. Chapter 5 illustrates how to incorporate correlates of missingness into 
a maximum likelihood analysis, and doing so would satisfy the MAR assumption for this 
analysis.

As a fi nal note, the model fi t statistics and the standard errors from this analysis are not 
entirely trustworthy because the data do not satisfy the multivariate normality assumption. 
(The EAT questionnaire items use a discrete Likert-type scale and are a somewhat positively 
skewed and kurtotic.) Methodological studies have repeatedly shown that normality violations 
can distort model fi t statistics and standard errors, with or without missing data (Enders, 
2001; Finney & DiStefano, 2006; West, Finch, & Curran, 1995). The next chapter describes 
corrective techniques that remedy these problems.

TABLE 4.17. Confi rmatory Factor Analysis Estimates from Data Analysis Example 5

 Loadings Intercepts Residuals

Variable Estimate SE Estimate SE Estimate SE

Missing data maximum likelihood

EAT1 0.741 0.050 4.002 0.055 0.602 0.048
EAT2 0.650 0.045 3.934 0.050 0.534 0.042
EAT10 0.807 0.043 3.955 0.050 0.329 0.030
EAT11 0.764 0.040 3.937 0.047 0.300 0.026
EAT12 0.662 0.047 3.926 0.051 0.538 0.043
EAT14 0.901 0.041 3.962 0.051 0.235 0.025
EAT24 0.623 0.048 3.980 0.051 0.597 0.047
EAT3 0.772 0.046 3.967 0.050 0.416 0.041
EAT18 0.749 0.048 3.974 0.052 0.453 0.044
EAT21 0.862 0.045 3.950 0.051 0.262 0.039

Complete data maximum likelihood

EAT1 0.731 0.048 3.995 0.053 0.600 0.046
EAT2 0.638 0.045 3.940 0.049 0.534 0.041
EAT10 0.797 0.042 3.943 0.049 0.344 0.029
EAT11 0.763 0.040 3.938 0.047 0.302 0.026
EAT12 0.692 0.047 3.965 0.051 0.570 0.044
EAT14 0.901 0.041 3.963 0.051 0.235 0.025
EAT24 0.630 0.046 3.995 0.050 0.603 0.045
EAT3 0.780 0.046 3.967 0.050 0.404 0.041
EAT18 0.700 0.047 3.970 0.050 0.494 0.043
EAT21 0.855 0.045 3.953 0.050 0.275 0.039
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4.19 SUMMARY

This chapter describes how maximum likelihood estimation applies to missing data problems. 
The methodological literature regards maximum likelihood estimation as a state-of-the-art 
missing data technique because it yields unbiased parameter estimates with MAR data. From 
a practical standpoint, this means that maximum likelihood will produce accurate parameter 
estimates when traditional approaches fail. Even if the data are MCAR, maximum likelihood 
is still superior to traditional techniques because it maximizes statistical power by borrowing 
information from the observed data. Despite these desirable properties, maximum likelihood 
estimation is not a perfect solution and will yield biased parameter estimates when the data 
are MNAR. However, this bias tends to be isolated to a subset of the analysis model param-
eters, whereas traditional techniques are more apt to propagate bias throughout the entire 
model.

Maximum likelihood estimation repeatedly auditions different combinations of popula-
tion parameter values until it identifi es the particular constellation of values that produce the 
highest log-likelihood value (i.e., the best fi t to the data). Conceptually, the estimation pro-
cess is the same with or without missing data. However, the incomplete data records require 
a slight alteration to the individual log-likelihood equation. The missing data log-likelihood 
does not require each case to have the same number of observed data points, and the com-
putation of the individual log-likelihood uses only the variables and parameters for which a 
case has complete data. Although the log-likelihood formula looks slightly different for each 
missing data pattern, the individual log-likelihood still quantifi es the relative probability that 
an individual’s scores originate from a multivariate normal distribution with a particular 
mean vector and covariance matrix. Consistent with a complete-data analysis, the sample 
log-likelihood is the sum of the individual log-likelihoods, and the goal of estimation is to 
identify the parameter estimates that maximize the sample log-likelihood.

The process of computing maximum likelihood standard errors does not change much 
with missing data, except that it is necessary to distinguish between standard errors that are 
based on the observed information matrix and the expected information matrix. The ex-
pected information matrix replaces certain terms in the second derivative formulas with their 
expected values (i.e., long-run averages), whereas the observed information uses the realized 
data values to compute these terms. This is an important distinction because the expected 
information matrix yields standard errors that require the MCAR assumption, whereas the 
observed information matrix gives standard errors that are appropriate with MAR data. Be-
cause they make less stringent assumptions, the missing data literature clearly favors stan-
dard errors based on the observed information matrix.

With few exceptions, missing data analyses require iterative optimization algorithms, 
even for very simple estimation problems. This chapter described one such algorithm that 
is particularly important for missing data analyses, the EM algorithm. The EM algorithm is a 
two-step iterative procedure that consists of an E-step and an M-step. The E-step uses the 
elements from the mean vector and the covariance matrix to derive regression equations that 
predict the incomplete variables from the complete variables, and the M-step subsequently 
uses standard complete-data formulas to generate updated estimates of the mean vector and 
the covariance matrix. The algorithm carries these updated parameter values forward to the 
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next E-step, where the process begins anew. EM repeats these two steps until the elements in 
the mean vector and the covariance matrix no longer change between consecutive M-steps, 
at which point the algorithm has converged on the maximum likelihood estimates.

With the basic principles of maximum likelihood estimation established in this chapter, 
the next chapter describes procedures useful for fi ne-tuning a maximum likelihood analysis. 
Specifi cally, the chapter outlines auxiliary variable models that incorporate correlates of 
missingness into a maximum likelihood analysis. Adopting this so-called inclusive analysis 
strategy can decrease bias, increase power, and improve the chances of satisfying the MAR as-
sumption. The chapter also outlines corrective procedures that remedy the negative effects of 
nonnormal data.
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5

Improving the Accuracy of Maximum 
Likelihood Analyses

5.1 CHAPTER OVERVIEW

Now that the basic mechanics of maximum likelihood estimation have been established, this 
chapter outlines a collection of procedures that can improve the accuracy of a maximum 
likelihood analysis. The fi rst half of the chapter focuses on the use of auxiliary variables—
potential correlates of missingness or correlates of the incomplete analysis model variables. 
These variables are not of substantive interest; the sole purpose of including them in an 
analysis is to increase power or reduce bias. The chapter describes a number of issues related 
to the use of auxiliary variables, including their potential benefi ts, the process of identifying 
auxiliary variables, and approaches to incorporating these variables into a maximum likeli-
hood analysis. Much of this discussion is very general and also applies to the use of auxiliary 
variables in multiple imputation analyses. However, the procedures for including auxiliary 
variables in a maximum likelihood analysis are unique and require a special model setup.

The second half of the chapter addresses problems related to non-normal data. Chapters 
3 and 4 described the important role of normal distribution in a maximum likelihood analy-
sis, but they did not discuss the ramifi cations of violating the normality assumption. The 
methodological literature shows that non-normal data tend to have a minimal impact on the 
parameter estimates themselves but can bias standard errors and distort the likelihood ratio 
test. Fortunately, methodologists have developed a number of corrective procedures for non-
normal data (e.g., rescaled test statistics, the bootstrap, and robust standard errors), several 
of which are available for missing data analyses. The limited research to date suggests that 
these methods work quite well.

5.2 THE RATIONALE FOR AN INCLUSIVE ANALYSIS STRATEGY

Methodologists regard maximum likelihood estimation as a state-of-the-art missing data 
technique (Schafer & Graham, 2002) because it yields unbiased parameter estimates under 
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the missing at random (MAR) mechanism. The MAR mechanism holds when the probability 
of missing data on a variable Y relates to some other measured variable (or variables) but not 
to the values of Y itself. This defi nition seems to imply that MAR is automatically satisfi ed 
when a correlate of missingness is a variable in the data set, but it is the variables in the analy-
sis model that dictate whether the MAR assumption is met.

To illustrate the subtleties of the MAR mechanism, consider a study that examines a 
number of health-related behaviors (e.g., smoking, drinking, and sexual activity) in a teenage 
population. Because of its sensitive nature, researchers decide to administer the sexual be-
havior questionnaire to participants who are above the age of 15. At fi rst glance, this example 
appears to satisfy the MAR assumption because a measured variable (i.e., age) determines 
whether data are missing. However, this is not necessarily true because the MAR assumption 
is only satisfi ed if the researchers incorporate age into their analysis model. For example, 
suppose that the researchers use maximum likelihood missing data handling to estimate a 
simple regression model where self-esteem predicts risky sexual behavior. Because the age 
variable is not in the model, this analysis is actually consistent with the missing not at ran-
dom (MNAR) mechanism and is likely to produce biased parameter estimates, particularly if 
age and sexual activity are correlated.

Understanding why the regression model is biased requires a brief review of Rubin’s 
(1976) missing data theory. In Rubin’s theory, a binary variable R denotes whether a variable 
is observed or missing (e.g., r = 1 if the sexual activity score is observed and r = 0 if it is miss-
ing). The MAR mechanism allows for an association between R and other measured variables 
such as age, but it stipulates that R is unrelated to sexual activity. Omitting age from the re-
gression model is likely to introduce bias because it induces a spurious association between 
R and the missing sexual activity scores. The magnitude of the bias may not be problematic 
and depends on the correlation between age and sexual activity, but the analysis is neverthe-
less consistent with an MNAR mechanism. Had the researchers incorporated age into the 
regression model, the spurious association between R and the sexual activity scores would 
disappear because the age variable fully explains the relationship (i.e., after controlling for 
age, there is no residual association between R and sexual activity).

The previous scenario illustrates that the variables in the analysis model dictate whether 
the MAR assumption is met. For this reason, methodologists recommend a so-called inclu-
sive analysis strategy that incorporates a number of auxiliary variables into the missing data 
handling procedure (Collins, Schafer, & Kam, 2001; Graham, 2003; Rubin, 1996; Schafer 
& Graham, 2002). An auxiliary variable is one that is ancillary to the substantive research 
questions but is a potential correlate of missingness or a correlate of the missing variable. 
Incorporating these variables into the missing data handling procedure can mitigate (or elim-
inate) bias and can improve power. For example, had the researchers in the health study in-
cluded age in their model, they would have converted the analysis from MNAR to MAR and 
would have completely eliminated bias. Omitting an important correlate of missingness from 
an analysis can produce an MNAR mechanism, but MNAR data can also result from a direct 
relationship between missingness and the scores on the incomplete variable (e.g., teenagers 
who are engaging in risky sexual behavior skip the questionnaire items that address this 
topic). In this situation, auxiliary variables can still reduce bias, but they cannot completely 
eliminate it. Finally, even if the analyses are consistent with an MCAR or MAR mechanism, 
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auxiliary variables can improve power by recapturing some of the lost information in the 
missing variable. Consequently, it is nearly always benefi cial to include auxiliary variables in 
the missing data handling procedure, and there appears to be no downside to an inclusive 
analysis strategy (Collins et al., 2001).

5.3 AN ILLUSTRATIVE COMPUTER SIMULATION STUDY

To illustrate the impact of auxiliary variables, I conducted a series of Monte Carlo computer 
simulations. The simulations mimicked a simple research scenario in which the goal is to 
estimate the mean vector and the covariance matrix for two variables, X and Y. The artifi cial 
data sets also included a third variable, A, that served as an auxiliary variable. The fi rst simu-
lation program generated 1,000 samples of N = 100 and subsequently produced a 30% miss-
ing data rate by deleting Y values for cases in the lower tail of an auxiliary variable’s distribu-
tion. This simulation mimics the previous health study example because a measured variable 
completely determines missingness. The impact of omitting a correlate of missingness from 
an analysis depends on its association with the incomplete variables, so the population cor-
relation between Y and the auxiliary variable varied between 0.10 and 0.80. For simplicity, 
the population correlation between the two analysis variables was always ρ = .30, as was the 
correlation between X and the auxiliary variable. After generating each data set, the simula-
tion program used maximum likelihood to estimate the mean vector and the covariance 
matrix for X and Y, but it did so by omitting the auxiliary variable (i.e., the “cause” of miss-
ingness) from the analysis.

The top panel of Table 5.1 shows the average parameter estimates across the 1,000 rep-
lications. The purpose of this simulation is to illustrate the impact of excluding a correlate of 
missingness from an analysis (i.e., performing an MNAR analysis when it would have been 
possible to perform an MAR analysis). The left-most column gives the population correlation 
between the auxiliary variable (i.e., the omitted cause of missingness) and the incomplete 
analysis model variable, Y. As you can see, omitting a correlate of missingness was not that 
detrimental when the correlation was weak (e.g., r ≤ .30), but the estimates became increas-
ingly biased as the correlation between the auxiliary variable and the incomplete analysis 
variable increased in magnitude. Because the auxiliary variable completely determined miss-
ingness, incorporating this variable into the maximum likelihood analysis would eliminate 
bias, regardless of the magnitude of the correlation between the auxiliary variable and Y.

An MNAR mechanism can also result from a direct relationship between missingness 
and the scores on the incomplete variable (e.g., teenagers who are engaging in risky sexual 
behavior skip the questionnaire items that address this topic). In this situation, auxiliary 
variables can reduce, but not eliminate, bias. To illustrate the impact of auxiliary variables in 
this context, I performed a second simulation study that produced a 30% missing data rate 
by deleting Y values for cases in the lower tail of the Y distribution. As before, I varied the 
magnitude of the correlation between Y and the auxiliary variable, but this time I included 
the auxiliary variable in the analysis.

The bottom panel of Table 5.1 shows the average parameter estimates from the second 
simulation. As you can see, the overall magnitude of the bias was greater than in the fi rst 
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simulation, and the auxiliary variable did not eliminate bias. Although the average parameter 
estimates did get closer to the true population values as the correlation increased, the bias 
was still noticeable, even when the correlation between the auxiliary variable and the miss-
ing analysis variable was 0.80. Finally, the table shows that the largest reductions in bias 
occurred when the auxiliary variable’s correlation with Y exceeded .50.

Auxiliary variables can also improve the power of maximum likelihood signifi cance tests, 
regardless of their impact on bias (Collins et al., 2001). For example, I performed a third 
simulation study in which 30% of the Y values were MCAR. With MCAR data, an auxiliary 
variable has no impact on bias, but it can improve power. Consistent with the previous simu-
lation, I varied the magnitude of the correlation between Y and the auxiliary variable and 
included the auxiliary variable in the analysis model. Because I generated the data from a 
population with a nonzero correlation, the proportion of the 1,000 replications that pro-
duced a statistically signifi cant parameter estimate serves as an empirical estimate of statisti-
cal power.

Figure 5.1 shows the power estimates for the correlation between X and Y expressed rela-
tive to the power values from a maximum likelihood analysis that omits the auxiliary variable. 

TABLE 5.1. Simulation Results Showing 
the Impact of an Auxiliary Variable on 
Parameter Estimate Bias

 Average parameter estimates

ρA,Y ρX,Y μY σ2
Y

MNAR due to omitted auxiliary variable

0.10 0.300 0.002 0.990
0.20 0.296 0.026 0.985
0.30 0.291 0.054 0.977
0.40 0.286 0.079 0.967
0.50 0.281 0.106 0.951
0.60 0.276 0.132 0.934
0.70 0.271 0.160 0.913
0.80 0.266 0.187 0.889

MNAR due to Y

0.10 0.257 0.243 0.835
0.20 0.258 0.240 0.835
0.30 0.259 0.232 0.837
0.40 0.262 0.219 0.840
0.50 0.265 0.200 0.845
0.60 0.270 0.175 0.854
0.70 0.275 0.144 0.869
0.80 0.282 0.106 0.893

True values 0.300 0 1.000

Note. ρA,Y is the population correlation between the auxiliary 
variable and the missing analysis variable, Y.
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For example, a correlation of 0.30 between Y and the auxiliary variable produced a relative 
power value of 1.023, which means that the auxiliary variable increased power by approxi-
mately 2.3%. As you can see, there is a nonlinear relationship between the auxiliary variable 
correlation and power, such that the largest gains occur when the correlation exceeds 0.40. 
Incorporating an auxiliary variable always produces some benefi t, but stronger correlations 
are clearly desirable.

Taken as a whole, the simulation results suggest that an auxiliary variable is most useful 
when it has a relatively strong correlation (e.g., r > .40) with the missing analysis variable. 
Conversely, omitting a correlate of missingness from the analysis has a minimal impact when 
the correlation is low (e.g., r < .40). Although there is no harm in using auxiliary variables 
with weak (or even zero) correlations (Collins et al., 2001), the benefi ts of an inclusive analy-
sis strategy become more evident as the correlations become greater. This suggests that se-
lecting auxiliary variables based on their correlation with the missing analysis variables is a 
useful strategy. The next section outlines additional strategies for selecting auxiliary variables.

5.4 IDENTIFYING A SET OF AUXILIARY VARIABLES

Given the benefi ts of incorporating auxiliary variables into a maximum likelihood analysis, it 
is useful to consider how to go about choosing these variables. As a rule, a useful auxiliary 
variable is a potential cause or correlate of missingness or a correlate of the incomplete vari-
ables in the analysis model (Collins et al., 2001; Schafer, 1997). For example, age is an im-
portant auxiliary variable in the health study because it directly infl uences missingness (i.e., 
researchers only administer the sexual behavior questionnaire to participants who are above 
the age of 15). Other useful auxiliary variables are correlates of the analysis model variables, 
regardless of whether they are also related to missingness. For example, a survey question 
that asks teenagers to report whether they have a steady boyfriend or girlfriend is a good aux-
iliary variable because it is likely correlated with the missing sexual activity scores.
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FIGURE 5.1. The fi gure shows how the correlation between an auxiliary variable and a missing 
analysis variable affects power. The largest gains in power occur after the auxiliary variable’s correlation 
exceeds 0.40.
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The health example is straightforward because the researchers know why the data are 
missing. In most situations, identifying correlates of missingness involves some educated 
guesswork. To illustrate the process, consider an educational study that examines the devel-
opment of self-report behavioral problems throughout the course of middle school and high 
school. Student mobility is a common cause of attrition in school-based research studies (En-
ders, Dietz, Montague, & Dixon, 2006; Graham, Hofer, Donaldson, MacKinnon, & Schafer, 
1997), so the researchers could administer a survey question that asks parents to report how 
likely they are to move during the course of the study. Socioeconomic status is another factor 
that can infl uence attrition in school- and community-based samples, so it would be useful 
to collect a measure of socioeconomic status or a suitable proxy (e.g., participation in a lunch 
assistance program). Finally, in states where students are required to pass a statewide assess-
ment in order to matriculate, students who fail to achieve the minimum passing score are at 
risk for dropping out of school. Consequently, the scores from a standardized achievement 
test might relate to subsequent attrition.

Identifying auxiliary variables that are correlates of the missing behavior reports is rela-
tively straightforward, and a literature review can facilitate this process, if necessary. For ex-
ample, objective measures of behavior such as disciplinary referrals, absenteeism, and inci-
dents with the juvenile justice system are variables that should be readily available from the 
school district’s database. In addition, measures of parental supervision and stability of the 
home environment might also serve as useful auxiliary variables because the educational 
literature suggests that these factors infl uence problem behavior. The previous examples are 
just a few ideas for auxiliary variables in an educational study, and it is easy to generate ad-
ditional examples.

In the absence of (or perhaps in addition to) other information, the MCAR tests from 
Chapter 1 can also identify potential auxiliary variables. Univariate t tests are particularly 
use ful in this regard because they can identify variables that are inconsistent with the MCAR 
mechanism. Recall that the t-test procedure separates the missing and complete cases on a 
variable and examines group mean differences on other variables in the data set. Variables 
that yield large mean differences are inconsistent with an MCAR mechanism and are po-
tential correlates of missingness. The problem with t tests is that they do a poor job of pin-
pointing the true cause of missingness and can produce a number of spurious associations. 
Although there is ultimately no harm in choosing the wrong auxiliary variable, focusing on 
the t tests that produce the largest mean differences can help limit the pool of candidate 
variables.

Finally, it is a good idea to be proactive about satisfying the MAR assumption by collect-
ing variables that are correlates of the analysis variables or correlates of missingness. For ex-
ample, Graham, Taylor, Olchowski, and Cumsille (2006) suggest that variables such as reading 
speed and conscientiousness might explain why some respondents leave questionnaire items 
blank. In a longitudinal study, Schafer and Graham (2002) recommend a survey question 
that asks respondents to report their likelihood of dropping out of the study prior to the next 
measurement occasion. Schafer and Graham (2002, p. 173) suggest that collecting data on 
potential causes of missingness “may effectively convert an MNAR situation to MAR.” You 
should therefore strongly consider this strategy when designing a study.
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Practical Considerations

In the context of a multiple imputation analysis, methodologists generally recommend using 
an extensive set of auxiliary variables. For example, Rubin (1996, p. 479) stated that “the ad-
vice has always been to include as many variables as possible when doing multiple imputa-
tion.” This suggestion is more diffi cult to implement in a maximum likelihood analysis be-
cause the auxiliary variables require a slightly awkward model specifi cation. From a practical 
standpoint, this means that you may have to limit the number of auxiliary variables in an 
analysis. It is diffi cult to establish a rule of thumb for the number of auxiliary variables, but 
the previous simulation results clearly show that the correlation between an auxiliary vari-
able and the incomplete analysis model variables largely determines the infl uence of an aux-
iliary variable. Consequently, a reasonable goal is to maximize the squared multiple correla-
tion between the auxiliary variables and the analysis model variables using as few auxiliary 
variables as possible. Although there is no harm in using auxiliary variables with low (or zero) 
correlations (Collins et al., 2001), the most useful auxiliary variables are those that have cor-
relations greater than ± 0.40 with the incomplete analysis variables.

5.5 INCORPORATING AUXILIARY VARIABLES INTO A MAXIMUM 
LIKELIHOOD ANALYSIS

Returning to the previous health study example, suppose that the researchers want to in-
clude age as an auxiliary variable in their regression model. One option is to add age as an 
additional predictor variable, but this is a bad solution because it accommodates the auxil-
iary variable by changing the substantive interpretation of the parameter estimates (i.e., the 
effect of self-esteem becomes a partial regression coeffi cient if age is a predictor in the model). 
Instead, the researchers need to incorporate the auxiliary variables in such a way that the 
interpretation of the parameter estimates is the same as it would have been had the data been 
complete. They can do this using a structural equation model (Graham, 2003) or a two-stage 
analysis approach (Savalei & Bentler, 2007; Yuan & Bentler, 2000).

Graham (2003) outlined two structural equation modeling strategies for incorporating 
auxiliary variables into a maximum likelihood analysis, the extra dependent variable model 
and the saturated correlates model. The basic goal of both approaches is to use a series of 
correlations to work the auxiliary variables into the analysis without altering the substantive 
interpretation of the parameters. Graham’s simulation results favored the saturated correlates 
model, and this approach is generally easier to implement than the extra dependent variable 
model. Consequently, I focus on the saturated correlates model in the next section. Interested 
readers can consult Graham (2003) for details on the extra dependent variable model.

The two-stage approach is an alternative method for incorporating auxiliary variables 
into a maximum likelihood analysis (Savalei & Bentler, 2007; Yuan & Bentler, 2000). As its 
name implies, the two-stage approach deals with missing data in two steps: the fi rst stage 
uses maximum likelihood missing data handling to estimate the mean vector and the covari-
ance matrix, and the second stage uses the resulting estimates as input data for a subsequent 
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analysis (an approach I used to perform an exploratory factor analysis in Chapter 4). The 
advantage of the two-stage approach is that it can readily incorporate any number of auxiliary 
variables into the fi rst step of the procedure. Because the mean vector and the covariance 
matrix refl ect the information from the auxiliary variables, there is no need to include the 
extra variables in the subsequent analysis stage.

Unfortunately, the two-stage approach has a serious drawback that limits its use. Using 
summary statistics as input data requires a sample size value. However, no single value of N 
accurately describes the precision of the estimates in the mean vector and the covariance 
matrix. Therefore, specifying a particular sample size value is likely to bias the standard errors 
from the analysis stage (Enders & Peugh, 2004). Yuan and Bentler (2000) and Savalei and 
Bentler (2007) describe a corrective procedure that combines the information matrices from 
both stages of the analysis, but software programs have yet to implement their approach. 
Because the two-stage standard errors currently require custom computer programming, I 
do not discuss the technique in this chapter. However, the two-stage method may become a 
viable alternative to Graham’s (2003) structural equation approach in the near future.

5.6 THE SATURATED CORRELATES MODEL

The saturated correlates model incorporates auxiliary variables via a series of correlations 
between the auxiliary variables and the analysis model variables (or their residual terms). As 
you will see, the name “saturated correlates” follows from the fact that the model includes all 
possible associations among the auxiliary variables as well as all possible associations be-
tween the auxiliary variables and the manifest analysis model variables (i.e., the auxiliary vari-
able portion of the model is saturated). Because the rules for incorporating auxiliary variables 
vary slightly depending on whether the analysis model includes latent variables, I describe 
these two situations separately.

Manifest Variable Models

To begin, consider an analysis that involves a set of manifest variables (i.e., a statistical model 
with no latent variables). Graham’s (2003) rules for specifying a saturated correlates model 
are as follows: correlate an auxiliary variable with (1) explanatory variables, (2) other auxil-
iary variables, and (3) the residual terms of the outcome variables. As an example, consider 
a multiple regression analysis in which X1 and X2 predict Y. Furthermore, suppose that it 
was of interest to incorporate two auxiliary variables, AV1 and AV2, into the regression model. 
Figure 5.2 shows a path model diagram of the saturated correlates model. Path diagrams use 
single-headed straight arrows to denote regression coeffi cients and double-headed curved 
arrows to represent correlations, and they differentiate manifest variables and latent variables 
using rectangles and ellipses, respectively (Bollen, 1989; Kline, 2005). The model in Figure 
5.2 illustrates all three of Graham’s (2003) rules. Specifi cally, the curved arrows that connect 
the AVs and the Xs are correlations between the auxiliary variables and the predictors, the 
curved arrow between AV1 and AV2 is the correlation between the auxiliary variables; and the 
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curved arrows that connect the AVs to the ellipse labeled ε are the correlations between the 
auxiliary variables and the residual term.

The important aspect of the saturated correlates model is that it transmits the informa-
tion from the auxiliary variables to the analysis model variables without affecting the interpre-
tation of the parameter estimates. Consequently, the interpretation of the regression coeffi -
cients is the same as it would have been had the data been complete. For example, the straight 
arrow that connects X1 to Y is a partial regression coeffi cient that quantifi es the expected 
change in Y for a unit increase in X1 after holding X2 constant. Adding the auxiliary variables 
to the model can change the estimated value of this coeffi cient (e.g., by removing bias or re-
ducing random error), but the interpretation of the slope is unaffected because X2 is still the 
only variable being partialled out of Y.

Latent Variable Models

The rules for specifying a latent variable model with auxiliary variables are as follows: corre-
late an auxiliary variable with (1) manifest predictor variables, (2) other auxiliary variables, 
and (3) the residual terms of the manifest indicator variables. Note that Graham’s (2003) rules 
describe the linkages between the auxiliary variables and the manifest variables in the model, 
so that the auxiliary variables never correlate with latent variables or with latent disturbance 
(i.e., residual) terms. This means that rule 1 applies strictly to models with manifest predic-
tor variables (e.g., so-called multiple indicators and multiple causes, or MIMIC models), and 
rule 3 applies only to manifest indicators of the latent variables.

To illustrate Graham’s (2003) rules, consider a latent variable regression analysis in 
which LX1 and LX2 predict LY. Furthermore, assume that the latent variables each have two 

X1

X2

AV1

AV2

Y ε

FIGURE 5.2. The saturated correlates version of a manifest variable regression model. The saturated 
correlates model requires that the auxiliary variables (i.e., AV1 and AV2) correlate with (1) one another, 
(2) the predictor variables, and (3) the residual term.
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manifest indicators (e.g., LY is measured by Y1 and Y2) and it is of interest to incorporate two 
auxiliary variables, AV1 and AV2, into the model. Figure 5.3 shows a path model diagram of 
the saturated correlates model for this analysis. To begin, notice that there are no associations 
(i.e., curved arrows) between the auxiliary variables and the latent factors. Instead, the curved 
arrows link the auxiliary variables to the residuals of the six manifest indicators. Like the 
manifest variable model in Figure 5.2, the curved arrow between AV1 and AV2 denotes the 
correlation between the auxiliary variables. Finally, because there are no manifest predictor 
variables, rule 1 does not apply to this analysis.

Two additional points are worth noting about the latent variable saturated correlates 
model. First, like its manifest variable counterpart, the inclusion of the auxiliary variables 
does not alter the interpretation of the latent variable model parameters. For example, the 
straight arrow that connects LX1 with LY is a partial regression coeffi cient that quantifi es 
the expected change in LY for a unit increase in LX1 after holding LX2 constant. Although 
the auxiliary variables can change the estimated value of this coeffi cient, the substantive in-
terpretation of the path is the same as it would have been in a complete-data analysis with 
no auxiliary variables. Second, the auxiliary variable portion of the path model includes all 
possible associations between the auxiliary variables and the manifest variables as well as 
all possible associations among the auxiliary variables (i.e., the auxiliary variable portion of 
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FIGURE 5.3. The saturated correlates version of a latent variable regression model. The saturated 
correlates model requires that the auxiliary variables (i.e., AV1 and AV2) correlate with (1) one another, 
(2) manifest predictor variables, and (3) the residual terms of the manifest variables. The auxiliary 
variables never correlate with a latent variable or with a latent variable residual term.
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the model is saturated). This means that the auxiliary variables do not affect the degrees of 
freedom or the fi t of the model.

What If the Auxiliary Variables Have Missing Data?

Including auxiliary variables in an analysis can improve the missing data handling procedure, 
either by reducing bias (i.e., better approximating the MAR assumption) or by increasing 
power (i.e., recapturing some of the missing information). Ideally, the auxiliary variables have 
no missing values, but this need not be the case. From a procedural standpoint, there is 
nothing special about applying Graham’s (2003) specifi cation rules to incomplete auxiliary 
variables. However, it is reasonable to ask whether it is benefi cial to include these variables 
in the analysis. Although little research has been done on this topic, but the answer appears 
to be yes.

Enders (2008) used Monte Carlo simulations to examine the impact of including an 
incomplete auxiliary variable in regression models similar to those in Figures 5.2 and 5.3. 
Because the auxiliary variable in this study determined missingness and had a strong correla-
tion with the incomplete outcome variable, excluding it from the model produced biased 
estimates. The simulation results indicated that including the auxiliary variable in the analy-
sis dramatically reduced bias, even when 50% of its scores were missing. Interestingly, the 
reduction in bias was virtually the same when the missing auxiliary variable was MCAR or 
MNAR. When the auxiliary variable was MNAR, the auxiliary variable portion of the model 
(e.g., the correlation between an auxiliary variable and a predictor) was severely biased, but 
the regression model parameter estimates were quite accurate. Fortunately, bias in the auxil-
iary variable portion of the model is no problem because these parameters are not of substan-
tive interest.

When deciding whether to use an incomplete auxiliary variable, it is important to ex-
amine the proportion of cases that have missing data on both the auxiliary variable and the 
analysis model variables. When this proportion is high, the amount of information that the 
auxiliary variable can contribute to the estimation process becomes limited. Establishing de-
fi nitive guidelines is diffi cult, but including an auxiliary variable appears to be of little benefi t 
when more than 10% of its observations are concurrently missing with one of the analysis 
model variables (Enders, 2008).

Computing Incremental Fit Indices

Assessing model fi t is an important part of a structural equation modeling analysis. The fact 
that the saturated correlates model does not change the degrees of freedom implies that the 
likelihood ratio statistic (i.e., the chi-square test of model fi t) and the RMSEA are unaffected 
by the auxiliary variables. However, the same is not true for incremental (i.e., comparative) 
fi t indices, and it is currently necessary to compute these indices by hand. The idea behind 
an incremental fi t index is to compare the relative fi t of a hypothesized model (e.g., the la-
tent variable regression model in Figure 5.3) to that of a baseline model. The most common 
choice of baseline model is a so-called null model or independence model that estimates the 
means and the variances of the manifest variables (Bollen, 1989; Kline, 2005).
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To illustrate how auxiliary variables affect incremental fi t indices, consider the Compara-
tive Fit Index (CFI; Bentler, 1990). The CFI is

 (LRI – dfI) – (LRM – dfM)
 CFI = —————————— (5.1)
 (LRI – dfI)

where LRM and LRI are the likelihood ratio tests from the hypothesized model and the inde-
pendence model, respectively, and dfM and dfI are the degrees of freedom for these two models. 
As I explained previously, the saturated correlates approach does not affect the likelihood 
ratio test for the hypothesized model because the degrees of freedom are the same with or 
without the auxiliary variables. However, the standard independence model constrains the 
auxiliary variable correlations to zero during estimation, which increases the values of the 
likelihood ratio test and its degrees of freedom. This effectively penalizes the independence 
model by making its fi t worse than it would have been without the auxiliary variables. Con-
sequently, the saturated correlates model artifi cially infl ates the CFI and makes the hypoth-
esized model appear to fi t better than it actually does (the same is true for other incremental 
fi t indices).

Fortunately, it is straightforward to compute the correct CFI value after fi tting a special 
independence model that estimates the auxiliary variable correlations and constrains the cor-
relations among the analysis model variables to zero. To illustrate, reconsider the saturated 
correlates model in Figure 5.3. The top panel of Figure 5.4 shows the standard independence 
model, and the bottom panel of the fi gure shows the correct independence model for this 
analysis. Notice that the correct independence model includes the same number of auxiliary 
variable correlations as the latent variable model in Figure 5.3, so the auxiliary variables exert 
a constant infl uence on the fi t of both models. Substituting the likelihood ratio test and the 
degrees of freedom from the modifi ed independence model into Equation 5.1 yields the cor-
rect CFI value. Structural equation modeling programs provide these quantities as part of 
their standard output; these computations are illustrated in an analysis example later in the 
chapter.

In general, applying the following steps to the manifest variables in the analysis yields 
an appropriate independence model: (1) estimate the variance of all variables, (2) estimate 
the correlations among the manifest predictors, (3) fi x the correlations between manifest 
predictors and the outcomes to zero, (4) fi x the correlations among the outcome variables to 
zero, (5) estimate the correlations between the auxiliary variables and all other variables, and 
(6) estimate the correlations among the auxiliary variables. These rules are applicable to situ-
ations in which the standard independence model would have been appropriate, had there 
been no auxiliary variables. However, the standard independence model is not appropriate 
for all circumstances (Widaman & Thompson, 2003), so you may need to modify these rules 
accordingly.

Limitations of the Saturated Correlates Model

The saturated correlates model has a number of practical limitations. In my experience, using 
a large set of auxiliary variables can lead to estimation problems and convergence failures. 
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Although it is not necessary for the auxiliary variables to have complete data, incomplete 
auxiliary variables can exacerbate these problems. Savalei and Bentler (2007) note that con-
vergence problems are also related to small residual variance terms. In some situations, res-
caling the variables to have a similar metric (e.g., by multiplying or dividing a variable by a 
constant) can alleviate these estimation problems, but reducing the number of auxiliary vari-
ables is often the best option. When you do have to reduce the number of auxiliary variables, 
it is a good idea to retain the variables that have the highest correlations with the incomplete 
variables in the analysis model.

Even when the saturated correlates model converges to a proper solution, some software 
programs issue a warning message indicating that the solution is invalid. Structural equation 
modeling programs use a set of parameter matrices to represent the analysis model, and the 
pattern of associations required by the saturated correlates approach can produce nonposi-
tive defi nite matrices. In particular, the correlations between the auxiliary variables and the 
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FIGURE 5.4. The top panel of the fi gure shows the standard independence model where all of the 
variables are uncorrelated. A double-headed curved arrow that connects a variable to itself denotes a 
variance. The bottom panel of the fi gure shows the modifi ed independence model that adds covari-
ances between the auxiliary variables and the analysis model variables.
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residual terms often lead to dire warning messages about the residual covariance matrix (i.e., 
the so-called psi matrix). Although computer programs tend to issue warning messages when 
a solution produces a nonpositive defi nite matrix, these messages are usually benign when 
they are caused by an auxiliary variable. If the model produces valid parameter estimates 
(e.g., parameter estimates that seem reasonable, no negative variance estimates) and con-
verges properly without the auxiliary variables, then you can generally ignore these warning 
messages and interpret your results.

5.7 THE IMPACT OF NON-NORMAL DATA

The multivariate normal distribution plays an integral role in every phase of a maximum likeli-
hood analysis (e.g., the log-likelihood provides a basis for identifying the most likely popula-
tion parameter values, and the second derivatives of the normal distribution are the building 
blocks for standard errors). In practice, non-normal data are relatively common, and some 
authors argue that normality is the exception rather than the rule (Micceri, 1989). Given the 
important role that the normal distribution plays in the estimation process, it is reasonable 
to ask whether normality violations are problematic for maximum likelihood analyses.

A good deal of research has examined the impact of non-normality on complete-data 
estimation (Chou, Benter, & Satorra, 1991; Curran, West, & Finch, 1996; Finch, West, & 
MacKinnon, 1997; Hu, Bentler, & Kano, 1992; Yuan, Bentler, & Zhang, 2005), and an in-
creasing number of studies have investigated the issue of non-normal missing data (Enders, 
2001, 2002; Gold & Bentler, 2000; Graham, Hofer, & MacKinnon, 1996; Savalei, 2008; 
Savalei & Bentler, 2005, 2007; Yuan, 2007; Yuan & Bentler, 2000). This literature suggests 
that non-normal data tend to have a minimal impact on the parameter estimates themselves 
but can bias standard errors and distort the likelihood ratio test. Yuan et al. (2005) showed 
that kurtosis largely dictates this bias, whereby leptokurtic data can attenuate standard errors 
and infl ate the likelihood ratio test, and platykurtic data can infl ate standard errors and re-
duce the magnitude of the likelihood ratio statistic. Simulation studies suggest that skewness 
can also exert a negative impact, particularly with sample sizes that are common in the be-
havioral and the social sciences. Interested readers can consult Finney and DiStefano (2006) 
and West, Finch, and Curran (1995) for a detailed review of the non-normality literature.

Corrective procedures for complete data have been available for some time (Bentler, 
1983; Bollen & Stine, 1992; Browne, 1984; Satorra & Bentler, 1988, 1994, 2001), and meth-
odologists have extended many of these procedures to missing data analyses (Arminger & 
Sobel, 1990; Enders, 2002; Savalei & Bentler, 2007; Yuan & Bentler, 2000). The subsequent 
sections illustrate some of these corrective procedures. In particular, I describe two approaches 
for estimating standard errors (“robust” standard   errors and bootstrap resampling) and two 
methods for correcting the bias in the likelihood ratio test (rescaling and bootstrap resam-
pling). I chose these procedures because they are readily available in software packages, but 
other techniques will likely become available in the near future (e.g., distribution-free test 
statistics that do not rely on the multivariate normality assumption; Yuan & Bentler, 2000; 
Savalei & Bentler, 2007).
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5.8 ROBUST STANDARD ERRORS

Recall from Chapter 3 that the curvature of the log-likelihood function dictates the magni-
tude of the maximum likelihood standard errors. In particular, the matrix of second derivatives 
(i.e., the Hessian matrix) plays an important role in the standard error computations. The 
second derivative formulas from the normal distribution are missing terms that depend on 
the skewness and the kurtosis of the population distribution. The absence of these terms 
can overestimate or underestimate the standard errors, depending on whether the population 
data are leptokurtic or platykurtic. The robust standard error formula combines information 
from the fi rst and the second derivatives into a single estimate of sampling error, such that 
the information from the fi rst derivatives effectively serves as an adjustment term that cor-
rects for normality violations.

To illustrate robust standard errors, I use a univariate example that involves the standard 
error of the mean. This is not an ideal example because normality violations only affect the 
standard errors for variance and covariance parameters (White, 1982; Yuan et al., 2005). 
However, an algebraic relationship between the fi rst and second derivative formulas plays an 
important role in the formulation of the robust standard errors, and illustrating this relation-
ship is more tedious with covariance matrix parameters. Nevertheless, the computations in 
the subsequent sections readily extend to covariance matrix parameters as well as to multi-
variate estimation problems. For simplicity, I use complete-data formulas throughout this 
section, but the underlying logic is the same with missing data. Some of the information in 
the subsequent sections is relatively technical, so readers who are not interested in the math-
ematical underpinnings of robust standard errors may want to skim this section.

First and Second Derivatives Revisited

Understanding the robust standard error computations requires some additional background 
information on derivatives. From Chapter 3, the equations for the fi rst and second derivatives 
of the sample log-likelihood function with respect to the mean are as follows:

 ∂logL 1
 —–— = — (–Nμ + ∑

N

i=1
yi) (5.2)

 ∂μ σ2

 ∂2logL –N
 —––— = —– (5.3)
 ∂2μ σ2

The fi rst derivative equation was useful for identifying the maximum of the log-likelihood 
function (e.g., by setting the formula to zero and solving for the population mean), and the 
second derivative equation quantifi ed the curvature of the function.

Recall from Chapters 3 and 4 that the sample log-likelihood is the sum of N individual 
log-likelihood equations. The individual log-likelihood equation (e.g., Equation 4.1) also has 
fi rst and second derivatives, and Equations 5.2 and 5.3 are actually sums of these casewise 
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derivative equations. Rewriting the previous equations as sums shows each case’s contribu-
tion to the derivative formulas, as follows:

 ∂logL 1 1 ∂logLi ——– = —–(–Nμ + ∑
N

i=1
yi) = ∑

N

i=1 [—–(yi – μ)] = ∑
N

i=1 [———] (5.4)
 ∂μ σ2 σ2 ∂μ

 ∂2logL –N –1 ∂2logLi ——–– = —– = ∑
N

i=1 [—–] = ∑
N

i=1 [———] (5.5)
 ∂2μ σ2 σ2 ∂2μ

where the bracketed terms contain the derivative formulas for the individual log-likelihood 
equation. In words, the right-most terms in the equations say that the derivatives of the sam-
ple log-likelihood function equal the sum of the derivatives of the individual log-likelihood 
equations. (In calculus, the derivative of a sum equals the sum of the derivatives.) The indi-
vidual contributions to the derivative equations play an important role in the formulation of 
robust standard errors.

Two Formulations of Information

Recall that the information matrix contains values that quantify the curvature of the log-
likelihood function (e.g., peaked functions produce large information values and small stan-
dard errors, whereas fl at functions produce small information values and large standard er-
rors). When the population data are multivariate normal, there are two equivalent methods 
for computing information. The method from previous chapters is based on second deriva-
tives, whereas the alternate approach uses fi rst derivatives. As an illustration, consider each 
case’s contribution to the fi rst derivative equation, (yi – μ)/σ2. This collection of terms is itself 
a variable, the value of which varies across cases. Applying expectation rules for variables, 
note that the variance of the casewise fi rst derivative is as follows.

 ∂logLi 1 1 1 1
 var(———) = var[—–(yi – μ)] = (—–)2

var(yi – μ) = —–(σ2) = —– (5.6)
 ∂μ σ2 σ2 σ4 σ2

Notice that the result of Equation 5.6 is virtually identical to the second derivative of the 
individual log-likelihood equation (i.e., the bracketed terms in Equation 5.5), but differs by 
a multiplicative constant of negative 1. Stated differently, computing the variance of the in-
dividual fi rst derivatives gives each case’s contribution to the second derivative equation, as 
follows:

 ∂logLi ∂2logLi var(———) = – (———) (5.7)
 ∂μ ∂2μ

The equality in Equation 5.7 leads to two equivalent expressions for information, one of 
which is based on fi rst derivatives (i.e., IF) and the other on second derivatives (i.e., IS).
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 ∂logLi 1
 IF = N[var(———)] = N(—–) (5.8)
 ∂μ σ2

 ∂2logLi ∂2logL N
 IS = –N[———] = – ——— = —– (5.9)
 ∂2μ ∂2μ σ2 

The information values provide the building blocks for maximum likelihood standard errors, 
such that the inverse (i.e., reciprocal) of information is the sampling variance, and the square 
root of the sampling variance is the standard error. When the population data are normally 
distributed, the two formulations of information are equivalent and should produce very 
similar standard errors.

The Sandwich Estimator

When the population data are non-normal, Equations 5.8 and 5.9 are no longer equivalent, 
and both formulas yield inaccurate standard errors. The problem is that the density function 
for the normal distribution generates the derivative equations, when some other non-normal 
distribution should have generated these formulas. From a practical standpoint, the deriva-
tive formulas are missing terms that depend on the skewness and kurtosis of the population 
distribution (White, 1982; Yuan et al., 2005). The absence of these terms can overestimate 
or underestimate the standard errors, depending on whether the population data are lepto-
kurtic or platykurtic (Yuan et al., 2005).

The robust standard error combines the two information equations into a single estimate 
of sampling error (Freedman, 2006; Huber, 1967; White, 1982). This so-called sandwich 
estimator of the sampling variance is

 var(θ̂) = IS
–1IFIS

–1 (5.10)

where IF and IS are information estimates based on the fi rst and second derivatives, respec-
tively, and var(θ̂) is the sampling variance. The methodological literature refers to Equation 
5.10 as the sandwich estimator because it resembles a piece of meat (i.e., IF) sitting between 
two slices of bread (i.e., IS). Consistent with previous chapters, taking the square root of the 
sampling variance gives the standard error.

How Does the Robust Standard Error Work?

The “meat” of the sandwich estimator is important because it effectively serves as a correction 
factor that increases or decreases the standard error, depending on the kurtosis of the data. 
Returning to Equation 5.4, notice that the fi rst derivative of the individual log-likelihood 
equation involves the deviation between a score and the mean (i.e., yi – μ). Because a lep-
tokurtic distribution has thicker tails (i.e., a higher proportion of large deviation values) than 
a normal curve, the presence of outliers increases the value of IF relative to that of a normal 
distribution. Consequently, multiplying by IF increases the magnitude of the standard error 
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and counteracts the negative bias that results from leptokurtic data. In contrast, a platykurtic 
distribution has fewer extreme scores than a normal curve and thus produces a smaller value 
of IF. In this situation, using IF as multiplier produces a downward adjustment that decreases 
the infl ation in the normal-theory standard errors. Finally, when the data are normally dis-
tributed, the sandwich estimator reduces to the usual maximum likelihood standard error 
because the fi rst two terms of Equation 5.10 cancel out when IF = IS. Although the fi rst de-
rivative formulas for the covariance matrix parameters are more complex than those of the 
mean parameters, they too contain deviation scores. Consequently, the basic operation of the 
sandwich estimator is the same for any parameter. Finally, note that the basic form of Equa-
tion 5.10 is the same in multivariate estimation problems. In the multivariate context, IF and 
IS are information matrices and var(θ̂) is the parameter covariance matrix, the diagonal of 
which contains the squared standard errors.

A Bivariate Example

To further illustrate the robust standard errors, I generated a single artifi cial data set with two 
variables and N = 500 cases. The purpose of this example is to illustrate the impact of non-
normal data, so I generated X to have a platykurtic distribution with kurtosis of –1.00 and Y 
to have a leptokurtic distribution with kurtosis of 4.00 (a normal distribution has kurtosis of 
zero). I used maximum likelihood to estimate the mean vector and the covariance matrix and 
obtained the normal-theory and robust standard errors for each parameter estimate.

Table 5.2 shows the parameter covariance matrices from the bivariate analysis. The pa-
rameter covariance matrix is a 5 by 5 symmetric matrix, where each row and column corre-
sponds to one of the estimated parameters (there are two means and three unique covariance 
matrix elements). The diagonals of the two matrices are particularly important because they 
contain the sampling variances (i.e., squared standard errors). The mean parameters are un-

TABLE 5.2. Parameter Covariance Matrices for the Kurtotic Data Analysis Example

Parameter 1 2 3 4 5

Parameter covariance matrix (normality assumed)

1: μX 0.002119
2: μY 0.000928 0.001864
3: σ2

X 0 0 0.004490
4: σX,Y 0 0 0.001967 0.002406
5: σ2

Y 0 0 0.000862 0.001730 0.003474

Parameter covariance matrix (robust)

1: μX 0.002119
2: μY 0.000928 0.001864
3: σ2

X 0.000036 –0.000096 0.002117
4: σX,Y –0.000096 –0.000091 0.001094 0.002388
5: σ2

Y –0.000091 –0.000111 0.000841 0.003494 0.010259

Note. X has a platykurtic distribution (K = 2) and Y has a leptokurtic distribution (K = 7). Bold typeface denotes 
the sampling variance (i.e., squared standard error) of each parameter estimate.
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affected by nonnormal data (White, 1982; Yuan et al., 2005), so these elements are identical 
in both matrices. However, the covariance matrix elements are quite different. For example, 
notice that the normal-theory standard error for σ2

X is larger than the corresponding robust 
standard error (i.e., √⎯.⎯0⎯0⎯4⎯4⎯9⎯0 = 0.067 versus √⎯.⎯0⎯0⎯2⎯1⎯1⎯7 = 0.046, respectively), whereas the 
standard error for σ2

Y is smaller than that of the robust estimator (i.e., √⎯.⎯0⎯0⎯3⎯4⎯7⎯4 = 0.059 
versus √⎯.⎯0⎯1⎯0⎯2⎯5⎯9 = 0.101, respectively). This pattern of differences is consistent with the 
notion that leptokurtic data can attenuate standard errors and platykurtic data can infl ate 
standard errors (Yuan et al., 1995). Of course, analyzing a single sample provides very little 
evidence about the relative accuracy of the two estimators, but published computer simula-
tion studies clearly favor robust standard errors (Chou & Bentler, 1995; Chou et al., 1991; 
Di Stefano, 2002; Yuan & Bentler, 1997).

Robust Standard Errors for Missing Data

The formulation of the sandwich estimator is identical with missing data (Arminger & Sobel, 
1990; Yuan & Bentler, 2000). However, missing data introduce one small nuance that is not 
necessarily an issue with complete data. You might recall from Chapter 4 that the observed 
information matrix produces standard errors that are valid with MAR data (Kenward & 
Molenberghs, 1998), whereas the expected information matrix requires MCAR data. This 
implies that the observed information matrix is the appropriate “bread” for the sandwich 
estimator in Equation 5.10. At the time of this writing, most software programs that imple-
ment robust standard errors for missing data use the observed information matrix for this 
purpose, and simulation studies suggest that this approach provides a substantial improve-
ment over normal-theory standard errors (Enders, 2001).

5.9 BOOTSTRAP STANDARD ERRORS

Bootstrap resampling is a second approach to generating standard errors with nonnormal 
data. The bootstrap is quite different from the sandwich estimator because it uses Monte 
Carlo simulation techniques to generate an empirical sampling distribution for each param-
eter, the standard deviation of which is the standard error. Because the bootstrap makes no 
distributional assumptions, the accuracy of the procedure is unaffected by normality viola-
tions. This section describes a so-called naïve bootstrap that is strictly limited to estimating 
standard errors. Later in the chapter, I describe an alternate bootstrap procedure (the Bollen-
Stine bootstrap) that can correct for bias in the likelihood ratio test. A number of detailed 
overviews of the bootstrap are available in the literature for readers interested in more details 
(e.g., Bollen & Stine, 1992; Efron & Tibshirani, 1993; Enders, 2002; Stine, 1989). The vast 
majority of the bootstrap literature deals with complete-data applications, but the procedural 
details are essentially the same with or without missing data.

The basic idea behind bootstrap resampling is to repeatedly draw samples of size N with 
replacement from a data set. In effect, the sample data serve as a miniature population for the 
Monte Carlo sampling procedure. Because the samples are drawn with replacement, some 
data records will appear more than once in a given sample, whereas others will not appear at 
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all. Table 5.3 shows a single bootstrap sample from the small employee selection data set that 
I have been using throughout the book. Notice that case 14 appears three times in the boot-
strap sample, whereas case 2 does not appear at all.

The ultimate goal of the bootstrap is to construct an empirical sampling distribution for 
each parameter estimate. Drawing a large number of bootstrap samples (e.g., B = 2000) and 
fi tting the analysis model to each sample yields a set of estimates for each parameter. The 
collection of B parameter estimates forms an empirical sampling distribution, the standard 
deviation of which is the bootstrap standard error

 1
 SEBootstrap = √——– ∑

B

b=1
(θ̂b – θ̄)2 (5.11)

 B – 1

where B is the number of bootstrap samples, θ̂b is the parameter estimate from one of the 
bootstrap samples, and θ̄ is the mean of the B parameter estimates. Notice that Equation 
5.11 is the usual formula for the sample standard deviation, where the B parameter estimates 
serve as data points. Although the process of repeatedly drawing samples and analyzing the 
data sounds tedious, software packages that implement the bootstrap completely automate 
the procedure. It is also relatively straightforward to implement the bootstrap in software 
packages that do not have built-in routines (Enders, 2005).

TABLE 5.3. Bootstrap Sample from an Employee Selection Data Set

 Sample data Bootstrap sample

ID IQ JP WB ID IQ JP WB

 1  78 — 13 18 115 14 14
 2  84 —  9 14 106 15 10
 3  84 — 10 17 113 12 14
 4  85 — 10  3  84 — 10
 5  87 — — 16 112 10 10
 6  91 —  3  7  92 — 12
 7  92 — 12  3  84 — 10
 8  94 —  3 15 108 10 —
 9  94 — 13 14 106 15 10
10  96 — — 10  96 — —
11  99  7  6  8  94 —  3
12 105 10 12 16 112 10 10
13 105 11 14 14 106 15 10
14 106 15 10 10  96 — —
15 108 10 —  9  94 — 13
16 112 10 10  1  78 — 13
17 113 12 14  4  85 — 10
18 115 14 14 16 112 10 10
19 118 16 12 10  96 — —
20 134 12 11 18 115 14 14

Note. JP = job performance; WB = well-being.
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A Bivariate Analysis Example

To illustrate the bootstrap, reconsider the artifi cial bivariate data set from the previous sec-
tion. Recall that X has platykurtic distribution with kurtosis equal to –1.00 and Y has a lep-
tokurtic distribution with kurtosis of 4.00. To begin, I drew 2,000 samples of N = 500 (the 
size of the original sample) with replacement from the data and subsequently used maximum 
likelihood to estimate the mean vector and the covariance matrix from each sample. This 
procedure produced 2,000 estimates of each mean and covariance parameter. Next, I gener-
ated standard errors by computing the standard deviation of each parameter across the 2,000 
bootstrap samples. The bootstrap produced standard errors that are nearly identical to those 
of the sandwich estimator. For example, the bootstrap standard errors for σ2

X and σ2
Y are 0.046 

and 0.099, respectively, and the corresponding robust standard errors are 0.046 and 0.101. 
It is not unusual for the two procedures to produce similar estimates, particularly when the 
sample size is relatively large. Consequently, convenience is often the only reason to prefer 
one approach to another.

Bootstrap Confi dence Intervals

There are two methods for constructing bootstrap confi dence intervals. Following the usual 
complete-data procedure, the fi rst approach is to multiply the bootstrap standard error by 
the appropriate critical value from the unit normal table:

 CIBootstrap = θ̂ + (z1–α/2)(SEBootstrap) (5.12)

where θ̂ is the parameter estimate from the initial maximum likelihood analysis, and z1–α/2 is 
the two-tailed critical value (e.g., z = 1.96 for an alpha level of .05). Alternatively, the param-
eter estimates that correspond to the 95th and the 5th percentiles of the bootstrap sampling 
distribution can defi ne the upper and lower confi dence interval limits, respectively. Little and 
Rubin (2002) suggest that the former approach is appropriate when the empirical sampling 
distribution is approximately normal, but they prefer the second method when the distribu-
tion is non-normal. You can readily ascertain the shape of the empirical sampling distribution 
and determine the appropriate percentiles by examining a frequency distribution of the B 
parameter estimates.

How Many Bootstrap Samples Should I Use?

It is diffi cult to establish a good rule of thumb for the number of bootstrap samples because 
any such recommendation is a bit arbitrary. In part, this decision depends on the shape of 
the empirical sampling distribution. When the sampling distribution approximates a normal 
curve, Little and Rubin (2002, p. 197) suggest that a relatively small number of bootstrap 
samples will suffi ce. In contrast, they recommend using a large number of samples (e.g., B > 
2000) when the empirical sampling distribution is non-normal. Of course, the problem with 
these recommendations is that you cannot determine the shape of the empirical sampling 
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distribution without fi rst running the bootstrap procedure. With many analysis models, im-
plementing the bootstrap takes very little time, so there is often no practical reason to avoid 
using a very large number of bootstrap samples.

Limitations of the Bootstrap

The bootstrap procedure is advantageous because it requires no distributional assumptions. 
However, treating the sample data as a miniature population effectively assumes that the 
sample is a representative surrogate for the entire population. This assumption is tenuous 
in its own right, particularly in small samples. Another issue to be aware of is that a subset 
of the bootstrap samples may produce analyses that fail to converge. Small samples and mis-
specifi ed models are common causes of convergence failures, and missing data only exacer-
bate the problem. Discarding the failed replicates is a common way to deal with convergence 
failures (Yung & Bentler, 1996), but methodologists have proposed other options (Yuan & 
Hayashi, 2003).

5.10 THE RESCALED LIKELIHOOD RATIO TEST

When the multivariate normality assumption is violated, the sampling distribution of the 
likelihood ratio test no longer follows the appropriate central chi-square distribution. With 
univariate population data, the likelihood ratio test is proportional to kurtosis, such that 
leptokurtic data infl ate the test statistic, and platykurtic data attenuate its value (Yuan et al., 
2005). Consequently, the likelihood ratio test can yield excessive type I or type II error rates, 
depending on the population kurtosis. The nature of the bias becomes more complex in 
multivariate analyses, but the underlying problem remains the same—the likelihood ratio test 
does not follow its theoretical sampling distribution. One solution to this problem is to res-
cale the likelihood ratio test so that it more closely approximates the appropriate chi-square 
distribution. This correction has been available for some time (Satorra & Bentler, 1988, 1994), 
although its application to missing data analyses is more recent (Yuan & Bentler, 2000). The 
limited research to date suggests that the rescaling procedure for missing data effectively 
controls the error rates of the likelihood ratio test (Enders, 2001; Savalei & Bentler, 2005). 
Because the logic of the rescaling process is the same with or without missing data, this sec-
tion gives a generic description of the procedure. Yuan and Bentler (2000) give additional 
technical details on the rescaling procedure for missing data.

The Satorra–Bentler Chi-Square

Readers who use structural equation modeling techniques may already be familiar with the 
rescaled likelihood ratio statistic. In this context, the so-called Satorra–Bentler chi-square 
(Satorra & Bentler, 1988, 1994) uses a correction factor to rescale the likelihood ratio test, as 
follows:

 LRRS = cLR (5.13)
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In a structural equation modeling analysis, LRRS is the rescaled (i.e., Satorra–Bentler) test 
statistic, LR is a likelihood ratio test that compares the relative fi t of the hypothesized model 
(e.g., a confi rmatory factor analysis model) to that of a saturated model (e.g., a model that 
estimates the sample covariance matrix), and c is a scaling factor that depends on the distri-
bution shape. With univariate data, Yuan et al. (2005) show that the scaling factor is related 
to kurtosis, such that c decreases the value of LR when the distribution is leptokurtic and 
increases the test statistic when the distribution is platykurtic. When the population data are 
normally distributed, the scaling factor equals one, and the rescaled statistic is identical to 
the usual likelihood ratio test.

A General Rescaling Procedure

Structural equation modeling applications of the rescaled test statistic are particularly straight-
forward to implement because software packages automatically perform the rescaling. The 
rescaling procedure is applicable to any likelihood ratio test, but implementing it requires 
special procedures (Satorra & Bentler, 2001). Recall from Chapter 3 that the likelihood ratio 
test is

 LR = –2(logLRestricted – logLFull) (5.14)

where logLFull and logLRestricted are the log-likelihood values from the full and restricted models, 
respectively. The scaling factor for the likelihood ratio test incorporates information from both 
models, as follows:

 (qRestricted)(cRestricted) – (qFull)(cFull) cLR = ————————————— (5.15)
 (qRestricted – qFull)

where qRestricted is the number of parameter estimates from the restricted model, cRestricted is the 
scaling factor for the restricted model, qFull is the number of estimated parameters in the full 
model, and cFull is the scaling factor for the full model. Computing cLR

 is straightforward be-
cause software packages that implement the rescaling procedure report all of the necessary 
terms. Finally, the rescaled test statistic divides the likelihood ratio test by the scaling factor, 
as follows:

 –2(logLRestricted – logLFull) LR
 LRRS = —————————— = —– (5.16)
 cLR cLR

I illustrate the rescaled likelihood ratio test in one of the analysis examples presented later in 
the chapter.
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5.11 BOOTSTRAPPING THE LIKELIHOOD RATIO STATISTIC

Bootstrap resampling is a second option for correcting bias in the likelihood ratio test statistic. 
Whereas the rescaling procedure attempts to adjust the value of the likelihood ratio test so 
that it more closely approximates its theoretical sampling distribution, the bootstrap leaves 
the test statistic intact and uses Monte Carlo simulation techniques to generate a new sam-
pling distribution. Rather than correcting the test statistic itself, the bootstrap corrects the 
probability value for the test by referencing the likelihood ratio statistic to the empirical sam-
pling distribution. Although the actual resampling procedure is identical to that of the naïve 
bootstrap, obtaining the correct empirical distribution requires a transformation of the data 
prior to drawing the samples.

The Problem with the Naïve Bootstrap

Using the naïve bootstrap to construct a sampling distribution for the likelihood ratio test is 
inappropriate because the resulting samples are inconsistent with the null hypothesis. For 
example, suppose that it was of interest to use the likelihood ratio to test the slope coeffi cient 
from a simple regression model. This test involves a comparison of the regression model (i.e., 
the full model) to a restricted model that constrains the regression coeffi cient to zero during 
estimation. The null hypothesis for this test states that the population regression coeffi cient 
is equal to zero (i.e., the restricted model is true), and the p-value quantifi es the probability 
of observing a likelihood ratio test that is equal to or greater than that of the sample data, 
given that the null hypothesis is true.

Fitting the two regression models to a large number of bootstrap samples and comput-
ing the likelihood ratio test for each sample would not produce an appropriate sampling 
distribution because the collection of test statistics is inconsistent with the null hypothesis. 
Even if the regression slope is truly zero in the population, the sample estimate is unlikely to 
exactly equal zero. Consequently, drawing bootstrap samples from data yields a distribution 
that refl ects natural sampling fl uctuation as well as model misfi t (i.e., the discrepancy be-
tween the data and the null hypothesis). The appropriate sampling distribution should refl ect 
sampling fl uctuation only.

The Bollen–Stine Bootstrap

Beran and Srivastava (1985) and Bollen and Stine (1992) modifi ed the bootstrap procedure 
by applying an algebraic transformation to the data prior to drawing samples. This transfor-
mation aligns the mean and the covariance structure of the data to the null hypothesis and 
produces a distribution that refl ects only the sampling fl uctuation of the likelihood ratio sta-
tistic. Because the transformation does not affect distribution shape, the bootstrap procedure 
effectively incorporates the infl uence of nonnormal data. Consequently, referencing the like-
lihood ratio test to the empirical sampling distribution of likelihood ratio statistics can gener-
ate an accurate probability value, even when the data are nonnormal. I refer to the modifi ed 
bootstrap procedure as the Bollen–Stine bootstrap throughout the remainder of the chapter 
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because the Bollen and Stine (1992) manuscript was largely responsible for popularizing the 
technique, particularly in structural equation modeling applications.

To align the data with the null hypotheses, Bollen and Stine transform the sample data 
to have the same mean and covariance structure as the restricted model. This transformation 
requires the mean vector and the covariance matrix from the sample data as well as the mean 
vector and the covariance matrix that would result if the null hypothesis were true (i.e., the 
model-implied mean vector and covariance matrix from the restricted model). Both sets of 
estimates are readily available from structural equation modeling programs.

The Bollen–Stine transformation is as follows:

 Zi = (Yi – �̂S)T�̂S
–½�̂R

½ + �̂T
R (5.17)

where Zi is the transformed data vector for case i, Yi is the raw data vector for case i, �̂S is the 
sample mean vector, �̂S is the sample covariance matrix, �̂R is the implied covariance matrix 
from the restricted model, and �̂R is the implied mean vector from restricted model. In words, 
the (Yi – �̂S)T�̂S

–½ portion of the formula essentially “erases” the mean and the covariance 
structure of the sample data and converts the variables to uncorrelated z scores. Next, mul-
tiplying the z scores by �̂R

½ transforms the data to have the same covariance matrix as the 
restricted model. Finally, adding �̂R equates the sample means to the predicted means from 
the restricted model.

The Bollen–Stine transformation produces a data set that is exactly consistent with the 
null hypothesis. After applying the transformation, the bootstrap procedure is the same as 
before. The specifi c steps are as follows: (1) draw B bootstrap samples with replacement from 
the transformed data set, (2) fi t the full model and the restricted model to each bootstrap 
sample, (3) compute the likelihood ratio statistic for each bootstrap sample, and (4) con-
struct a frequency distribution of the B likelihood ratio statistics. The proportion of bootstrap 
test statistics that exceed the value of the original likelihood ratio test serves as the corrected 
probability value.

A Bivariate Example

To illustrate the Bollen–Stine bootstrap, reconsider the bivariate data set from the previous 
sections. Recall that X has platykurtic distribution with kurtosis of –1.00 and Y has a lep-
tokurtic distribution with kurtosis of 4.00. Furthermore, suppose that it is of interest to use 
the likelihood ratio statistic to test the slope from the regression of Y on X. As I explained 
previously, this test involves a comparison of the regression model (i.e., the full model) to a 
restricted model that constrains the regression coeffi cient to zero during estimation. The fi rst 
step is to estimate the two regression models and compute the likelihood ratio test. Doing so 
yields a likelihood ratio statistic of LR = 123.05. Normally, a central chi-square distribution 
with one degree of freedom would generate the probability value for the test. However, the 
theoretical chi-square distribution is likely to produce an inaccurate probability value because 
the data are nonnormal. The purpose of the bootstrap is to generate an empirical sampling 
distribution that refl ects the infl uence of the nonnormal data.
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The null hypothesis for the likelihood ratio test states that the population regression 
coeffi cient is equal to zero (i.e., the restricted model is true). The left-most section of Table 
5.4 shows the mean vector and the covariance matrix for the sample data (i.e., �̂S and �̂S, 
respectively). Notice that the two variables have a positive covariance, so the data are not 
perfectly consistent with the null hypothesis. (If the population regression coeffi cient is zero, 
this covariance should also equal zero.) Transforming the data to have a perfect fi t to the null 
hypothesis requires the predicted mean vector and the predicted covariance matrix from the 
restricted model. I used a structural equation program to estimate the restricted model, and 
the middle section of Table 5.4 shows model-implied parameter estimates, �̂R and �̂R. Notice 
that the covariance is zero because the restricted model implies that there is no association 
between the variables. Next, I transformed the sample data by substituting the parameter 
estimates from the table into Equation 5.17. After applying the transformation, I estimated 
the mean vector and the covariance matrix of the transformed data, and the right-most sec-
tion of Table 5.4 shows the resulting estimates. As you can see, the transformed data have the 
same mean and covariance structure as the restricted model (within sampling error), so it is 
now appropriate to draw bootstrap samples from the data.

Having applied the Bollen–Stine transformation, I drew 2,000 bootstrap samples with 
replacement from the transformed data and subsequently fi t the two regression models to 
each bootstrap sample. Next, I computed the likelihood ratio test from each bootstrap sample 
and constructed a frequency distribution of the test statistics. Figure 5.5 shows the empirical 
sampling distribution of the likelihood ratio statistic as well as the theoretical chi-square 
distribution with one degree of freedom. For illustration purposes, I also drew 2,000 naïve 
bootstrap samples from the untransformed data and computed the likelihood ratio test from 
each of those samples. I previously explained that the naïve bootstrap is inappropriate because 
it yields a distribution that refl ects natural sampling fl uctuation as well as model misfi t. The 
fact that the naïve sampling distribution is shifted far to the right clearly illustrates this effect. 
In contrast, the Bollen–Stine sampling distribution is similar in shape to the theoretical chi-
square distribution, but has a thicker tail. Leptokurtic data tend to infl ate the likelihood ratio 
test, so the larger-than-expected proportion of statistics in the tail of the distribution makes 
intuitive sense.

Finally, I performed a signifi cance test by referencing the likelihood ratio statistic to the 
empirical sampling distribution rather than to the theoretical chi-square distribution. Recall 
that the initial analysis produced a likelihood ratio statistic of LR = 123.05. The bootstrap 
sampling distribution did not include any values that were this large, so it is impossible to 

TABLE 5.4. Mean Vectors and Covariance Matrices for the Bollen–Stine 
Transformation

Variable 1 2 1 2  1 2

 Sample data Restricted model Transformed data

1: X 1.060  1.060  1.060
2: Y 0.464 0.932 0 0.932 0 0.931
Means –0.030 0.045 –0.030 0.045 –0.030 0.046
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compute an exact probability. However, the 99th percentile of the distribution corresponds 
to a test statistic of 17.97, so it is conservative to describe the probability value as p < .01.

Applying the Bollen–Stine Bootstrap to Missing Data

The matrix computations in Equation 5.17 require complete data, but Enders (2002) pro-
posed the following transformation for missing data:

 Zi = (Yi – �̂Si)T(�̂Si)–½(�̂Ri)½ + �̂T
Ri (5.18)

The missing data transformation is nearly identical to that of the complete data, but the pa-
rameter matrices now have an i subscript. The basic idea behind Equation 5.18 is to apply 
the transformation using only those estimates for which a case has complete data. Conse-
quently, the i subscript denotes the fact that the size and the contents of the matrices can 
vary across individuals.

To illustrate the missing data transformation, reconsider the previous simple regression 
example. Furthermore, suppose that a subset of cases has missing Y values. Transforming the 
data effectively requires a unique transformation formula for each missing data pattern. For 
example, the transformation for the complete cases is

 
�i =

 ([Xi] – [μ̂XS])T[ σ̂2
XS

 σ̂XYS]–½[ σ̂2
XR

 σ̂XYR]½ + [μ̂XR]T

 Yi μ̂YS
 σ̂YXS

 σ̂2
YS

 σ̂YXR
 σ̂2

YR
 μ̂YR

0 20 40 60 80 100 120 140 160 180 200

Chi-Square

Bollen–Stine

Naive

Central Chi-Square

FIGURE 5.5. The theoretical central chi-square distribution and empirical sampling distributions of 
the likelihood ratio test generated from the Bollen–Stine bootstrap and naïve bootstrap. The naïve 
sampling distribution is centered on an inappropriately large chi-square value because it refl ects natu-
ral sampling fl uctuation as well as model misfi t. In contrast, the Bollen–Stine sampling distribution is 
unaffected by model misfi t and refl ects the sampling fl uctuation of the likelihood ratio test with non-
normal data. The Bollen–Stine distribution has a slightly thicker tail than the theoretical chi-square 
distribution, which is a result of the leptokurtic data.
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For the cases with missing Y values, the transformation eliminates the parameters that cor-
respond to Y and uses only those estimates that correspond to the complete variable, X. This 
transformation is as follows:

 Zi = (Xi – μ̂XS
)T[σ̂2

XS
]–½[σ̂2

XR
]½ + [μ̂XR

]T

Applying the transformation to each case’s observed data yields a transformed data matrix 
that has the same missing data patterns as the sample data. At that point, the bootstrap pro-
cedure follows the same steps as before: (1) draw a large number of samples with replacement 
from the transformed data, (2) use maximum likelihood missing data handling to estimate the 
full model and the restricted model, (3) compute the likelihood ratio statistic for each boot-
strap sample, and (4) generate a probability value by computing the proportion of bootstrap 
test statistics that exceed the value of the likelihood ratio test from the original analysis.

Some structural equation modeling programs (e.g., Mplus and EQS) implement the 
missing data bootstrap, and it is also relatively straightforward to implement the bootstrap 
in software packages that do not have built-in routines (Enders, 2005). The limited research 
to date suggests that the bootstrap yields relatively accurate type I error rates (Enders, 2001, 
2002). For example, computer simulation studies report type I error rates between .05 and 
.07, even with kurtosis values as high as K = 20. The bootstrap appears to yield conservative 
error rates in small samples (e.g., type I error rates of 1% with N = 100), which suggests that 
the likelihood ratio test may lack power. However, studies have yet to examine this issue.

5.12 DATA ANALYSIS EXAMPLE 1

Recall from Chapter 4 that the EM algorithm does not require the computation of fi rst or 
second derivatives, so many software packages do not report standard errors from an EM 
analysis. The fi rst analysis example illustrates how to use bootstrap resampling to generate 
standard errors for EM estimates of a mean vector, covariance matrix, and a correlation ma-
trix.* The data for this analysis are comprised of scores from 480 employees on eight work-
related variables: gender, age, job tenure, IQ, psychological well-being, job satisfaction, job 
performance, and turnover intentions. I generated these data to mimic the correlation struc-
ture of published research articles in the management and psychology literature (e.g., Wright 
& Bonett, 2007; Wright, Cropanzano, & Bonett, 2007). The data have three missing data 
patterns, each of which is consists of one-third of the sample. The fi rst pattern comprises 
cases with complete data, and the remaining two patterns have missing data on either well-
being or job satisfaction. These patterns mimic a situation in which the data are missing by 
design (e.g., to reduce the cost of data collection).

I previously reported the EM parameter estimates in Table 4.12. I implemented the 
bootstrap procedure by drawing 2,000 samples of N = 480 with replacement from the job 
performance data set. Next, I performed an EM analysis on each bootstrap sample and saved 
the parameter estimates to a data fi le for further analysis. Finally, I generated standard errors 

*Analysis syntax and data are available on the companion website, www.appliedmissingdata.com. 
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by computing the standard deviation of each parameter estimate across the 2,000 samples. 
This process sounds tedious and time consuming, but it took less than two minutes on a 
laptop computer. Table 5.5 shows the EM covariance matrix estimates from Chapter 4 along 
with the bootstrap standard errors. I computed test statistics for each covariance term by 
dividing the parameter estimate by its bootstrap standard error. If the empirical sampling 
distributions are relatively normal, it is reasonable to compare these tests to a critical z value 
from the unit normal table. The table denotes the statistically signifi cant estimates (i.e., the 
estimates for which the z test exceeded the two-tailed critical value of ± 1.96) in bold 
typeface.

5.13 DATA ANALYSIS EXAMPLE 2

The second analysis example uses maximum likelihood to estimate a multiple regression 
model with auxiliary variables.* The analysis uses the same employee data set as the fi rst 
example and involves the regression of job performance ratings on psychological well-being 
and job satisfaction, as follows:

 JPi = β̂0 + β̂1(WBi) + β̂2(SATi) + ε

*Analysis syntax and data are available on the companion website, www.appliedmissingdata.com. 

TABLE 5.5. EM Covariance Matrix and Bootstrap Standard Errors from Data 
Analysis Example 1

Variable 1 2 3 4 5 6 7 8

EM covariance matrix

1: Age 28.908
2: Tenure 8.459 9.735
3: Female –0.028 –0.052 0.248
4: Well-being 1.148 0.569 0.067 1.382
5: Satisfaction 0.861 0.565 0.028 0.446 1.386
6: Performance –0.330 0.061 –0.009 0.671 0.271 1.570
7: Turnover –0.377 0.016 0.001 –0.141 –0.129 –0.203 0.218
8: IQ 0.674 0.026 0.284 2.876 4.074 4.496 –0.706 70.892

Bootstrap standard errors

1: Age 1.828
2: Tenure 0.823 0.630
3: Female 0.121 0.070 0.002
4: Well-being 0.320 0.192 0.032 0.108
5: Satisfaction 0.307 0.198 0.032 0.092 0.099
6: Performance 0.302 0.170 0.028 0.084 0.079 0.100
7: Turnover 0.113 0.068 0.011 0.029 0.028 0.026 0.008
8: IQ 2.166 1.278 0.195 0.565 0.597 0.534 0.177 5.255

Note. Elements in bold typeface are statistically signifi cant at the .05 level because the estimated divided by its 
standard error exceeds ± 1.96.
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I used Graham’s (2003) saturated correlates approach to incorporate IQ and turnover inten-
tions (a binary variable) as auxiliary variables in the regression model. The path diagram for 
this analysis is identical to that in Figure 5.2. I chose IQ and turnover intentions as auxiliary 
variables because they had the strongest correlations with the regression model variables 
(correlations ranged between 0.30 and 0.40). In practice, stronger correlations would be 
better, but these were the strongest associations in the data. Because the data are MCAR, the 
auxiliary variables should have minimal impact on the parameter estimates, but they can 
provide a slight increase in power.

Researchers typically begin a regression analysis by examining the omnibus F test. In 
Chapter 4, I illustrated how to use the likelihood ratio statistic to perform a test of the regres-
sion coeffi cients. Because the addition of auxiliary variables does not affect this procedure, 
there is no need to illustrate the test here. Table 5.6 gives the regression model parameter 
estimates along with those from a maximum likelihood analysis with no auxiliary variables. 
I omit the estimates from the auxiliary variable portion of the model (e.g., the correlations 
between the auxiliary variables and the predictors) because they are not of substantive inter-
est. As seen in the table, the parameter estimates from the saturated correlates model are 
virtually identical to those from Chapter 4. The analysis results suggest that psychological 
well-being was a signifi cant predictor of job performance, β̂1 = 0.475, z = 8.798, p < .001, 
but job satisfaction was not, β̂2 = 0.035, z = 0.605, p = .55. Although the effect is subtle, 
the estimates from the saturated correlates model have slightly smaller standard errors and 
slightly larger z statistics, indicating that the auxiliary variables produced a slight increase 
in power. Auxiliary variables with stronger correlations would have produced more notice-
able gains.

TABLE 5.6. Regression Model Estimates from Data 
Analysis Example 2

Parameter Estimate SE z

Maximum likelihood (auxiliary variables)

β0 (Intercept) 6.020 0.053 114.642
β1 (Well-being) 0.475 0.054 8.798
β2 (Satisfaction) 0.035 0.058 0.605
σ̂2

e (Residual) 1.241 0.086 14.369
R2 .210    

Maximum likelihood (no auxiliary variables)

β0 (Intercept) 6.021 0.053 113.123
β1 (Well-being) 0.476 0.055 8.664
β2 (Satisfaction) 0.027 0.060 0.445
σ̂2

e (Residual) 1.243 0.087 14.356
R2 .208    
Note. Predictors were centered at the maximum likelihood estimates of 
the mean.
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5.14 DATA ANALYSIS EXAMPLE 3

The fi nal example is a confi rmatory factor analysis that illustrates the use of auxiliary vari-
ables and the corrective procedures for nonnormal data.* The analyses use artifi cial data 
from a questionnaire on eating disorder risk. Briefl y, the data contain the responses from 400 
college-aged women on 10 questions from the Eating Attitudes Test (EAT; Garner, Olmsted, 
Bohr, & Garfi nkel, 1982), a widely used measure of eating disorder risk. The 10 questions 
measure two constructs, Drive for Thinness (e.g., “I avoid eating when I’m hungry”) and 
Food Preoccupation (e.g., “I fi nd myself preoccupied with food”), and mimic the two-factor 
structure proposed by Doninger, Enders, and Burnett (2005). The data set also contains an 
anxiety scale score, a variable that measures beliefs about Western standards of beauty (e.g., 
high scores indicate that respondents internalize a thin ideal of beauty), and body mass index 
(BMI) values. I generated the EAT questionnaire items to have discrete 7-point scales with 
positive skewness and kurtosis (e.g., skewness values typically ranged between 0.50 and 1.00, 
and kurtosis values of 1.00 were the norm). Inasmuch as the methodological literature has 
established that nonnormal data can bias standard errors and distort the likelihood ratio test, 
one of the goals of this analysis example is to illustrate how to correct for these problems.

Variables in the EAT data set are missing for a variety of reasons. I simulated MCAR data 
by randomly deleting scores from the anxiety variable, the Western standards of beauty scale, 
and two of the EAT questions (EAT2 and EAT21). It seems reasonable to expect a relationship 
between body weight and missingness, so I created MAR data on fi ve variables (EAT1, EAT10, 
EAT12, EAT18, and EAT24) by deleting the EAT scores for a subset of cases in both tails of the 
BMI distribution. These same EAT questions were also missing for individuals with elevated 
anxiety scores. Finally, I introduced a small amount of MNAR data by deleting a number of 
the high body mass index scores (e.g., to mimic a situation where females with high BMI 
values refuse to be weighed). The deletion process typically produced a missing data rate of 
5 to 10% on each variable.

This analysis used the same two-factor model as the example in Chapter 4, but it in-
cluded three auxiliary variables: body mass index, anxiety, and beliefs about Western stan-
dards of beauty. Figure 5.6 shows a path diagram of the model. Notice that the saturated 
correlates model includes all possible correlations among the auxiliary variables as well as all 
possible correlations between the auxiliary variables and the manifest variable residuals (the 
auxiliary variables do not correlate with the latent factors). The two-factor model fi t the data 
reasonably well according to conventional standards (Hu & Bentler, 1998, 1999), χ2(34) = 
49.044, p = .046, RMSEA = 0.033, SRMR = 0.026. It is worth reiterating that the auxiliary 
variables do not affect the degrees of freedom for the model fi t statistic because the auxil-
iary variable portion of the model includes all possible associations between the auxiliary 
variables and the manifest indicators (i.e., the auxiliary variable portion of the model is 
saturated).

One consequence of non-normal data is that the likelihood ratio test no longer fol-
lows the appropriate central chi-square distribution. I used the rescaling procedure and the 

*Analysis syntax and data are available on the companion website, www.appliedmissingdata.com. 
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Bollen–Stine bootstrap to correct for bias in the likelihood ratio test (i.e., the chi-square test 
of model fi t). In practice, there is no reason to implement both procedures, but I do so here 
for illustration purposes. To begin, the rescaled likelihood ratio test requires a scaling factor 
that pools information from the factor analysis model (i.e., the restricted model) and a satu-
rated model that specifi es all possible associations among the manifest variables (i.e., the full 
model). The two-factor model with 70 parameters produced a log-likelihood value and a scal-
ing factor of logLRestricted = –6957.674 and cRestricted = 1.084, respectively. The corresponding 
values from the saturated model with 104 parameters were logLFull = –6933.152 and cFull = 
1.088, respectively. Substituting these values into Equation 5.15 yields a scaling factor of 
cLR = 1.095. Finally, dividing the likelihood ratio test by its scaling factor gives the rescaled 
test statistic, LRRS = 44.796, and referencing this test to a central chi-square distribution with 
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FIGURE 5.6. The Eating Attitudes Test CFA model with three auxiliary variables. Note that DRIVE = 
drive for thinness; FOODPRE = food preoccupation; BMI = body mass index; ANX = anxiety; WSB = 
Western standards of beauty. The saturated correlates model specifi es correlations among the auxil-
iary variables and correlations between the auxiliary variables and the residual terms of the manifest 
indicators.
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34 degrees of freedom produces a probability value of p = .102. Notice that the rescaled test 
statistic is somewhat smaller than the original likelihood ratio test (LR = 49.044, p = .046) 
and is no longer statistically signifi cant. Because the data are slightly leptokurtic, the down-
ward adjustment in the test statistic makes intuitive sense.

The rescaling procedure transforms the likelihood test to more closely approximate the 
appropriate theoretical chi-square distribution. In contrast, the Bollen–Stine bootstrap leaves 
the likelihood ratio statistic intact and constructs a new empirical reference distribution. The 
null hypothesis for the likelihood ratio test states that the restricted model (i.e., the factor 
model) is true in the population, so the Bollen–Stine procedure transforms the sample data 
to have a perfect fi t to the two-factor model. This transformation requires the mean vector 
and the covariance matrix from the sample data as well as the model-implied mean vector and 
covariance matrix from the factor analysis. These quantities are standard output in structural 
equation modeling packages. After applying the Bollen–Stine transformation, I drew 2,000 
samples of N = 400 (the original sample size) with replacement from the transformed data 
set. Next, I used maximum likelihood missing data handling to estimate both models and 
saved the likelihood ratio statistic from each bootstrap sample.

Figure 5.7 shows the empirical sampling distribution of the likelihood ratio test along 
with the theoretical sampling distribution of a chi-square statistic with 34 degrees of free-
dom. For comparison purposes, the fi gure also shows the empirical sampling distribution for 
2,000 naïve bootstrap samples. I previously explained that the naïve bootstrap is inappropri-
ate because it yields a distribution that refl ects natural sampling fl uctuation as well as model 
misfi t. The fact that the naïve sampling distribution is centered on an inappropriately large 
chi-square value illustrates this point. In contrast, the Bollen–Stine sampling distribution is 
unaffected by model misfi t and refl ects the sampling fl uctuation of the likelihood ratio test 

0 20 40 60 80 100 120 140 160

Naïve

Central Chi-Square

Bollen–Stine

FIGURE 5.7. The theoretical central chi-square distribution and empirical sampling distributions 
of the likelihood ratio test generated from the Bollen–Stine bootstrap and naïve bootstrap. The naïve 
sampling distribution is centered on an inappropriately large chi-square value because it refl ects natu-
ral sampling fl uctuation as well as model misfi t. In contrast, the Bollen–Stine sampling distribution is 
unaffected by model misfi t and refl ects the sampling fl uctuation of the likelihood ratio test with non-
normal data. The Bollen–Stine distribution has a slightly thicker tail than the theoretical chi-square 
distribution, which is a result of the leptokurtic data.
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with nonnormal data. The Bollen–Stine distribution has a slightly thicker tail than the theo-
retical chi-square distribution, which makes sense given that the data are slightly leptokurtic.

Next, I obtained an adjusted probability value for the likelihood ratio test by computing 
the proportion of test statistics from the Bollen–Stine sampling distribution that were equal 
to or greater than the value of the original likelihood ratio statistic. The Bollen–Stine prob-
ability value is p = .208, which means that 416 of the 2,000 bootstrap samples produced a 
test statistic that was equal to or greater than LR = 49.044. Visually, this probability value is 
the area under the Bollen–Stine sampling distribution that falls to the right of 49.044. You 
can see that this area is larger than that of the central chi-square distribution, which explains 
why the probability value increased from p = .046 to p = .208.

Incorporating auxiliary variables into a structural equation model yields invalid incre-
mental (i.e., comparative) fi t indices because the auxiliary variables inappropriately penalize 
the fi t of the independence model. Earlier in the chapter, I illustrated how to remedy this 
problem by estimating a special independence model. The correct independence model for 
this analysis estimates the variances of the manifest variables, constrains the covariances 
among the manifest variables to zero, estimates the covariances between the auxiliary vari-
ables and the manifest variables, and estimates the covariances among the auxiliary variables. 
Estimating the modifi ed independence model yields a likelihood ratio test of LRI = 1956.345 
with dfI = 45. Substituting these values into Equation 5.1 gives corrected CFI value of 0.993, 
as follows:

 (1956.345 – 45) – (49.044 –34)
 CFI = ——–——————————— = 0.993
 (1956.345 – 45)

The new CFI value is virtually identical to the incorrect value from the original analysis, but 
this will not always be the case. Although I only illustrate the correction to the CFI, the same 
corrective procedure applies to other incremental fi t indices (e.g., the TLI, NFI).

Turning to the parameter estimates, note that Table 5.7 gives the factor loadings from the 
saturated correlates model along with those from a corresponding analysis with no auxiliary 
variables. I constrained the factor variances to unity in order to identify the model, so that 
the loadings refl ect the expected change in the EAT item for a one-standard-deviation in-
crease in the latent factor. Unlike the factor analysis from Chapter 4, this analysis satisfi es the 
MAR assumption because the “causes” of missing data (i.e., body mass index and anxiety) 
appear as auxiliary variables in the model. Interestingly, the two sets of factor loadings in 
Table 5.7 are quite similar, so the addition of the auxiliary variables did little to change these 
estimates. Although not shown in the table, the auxiliary variable model did produce measure-
ment intercepts (i.e., item means) that more closely resembled those of the complete data. 
The body mass index and anxiety variables have relatively modest correlations with the EAT 
questionnaire items. The impact of these auxiliary variables would therefore have been more 
pronounced had these correlations been stronger in magnitude.

The standard errors are of particular interest because non-normal data can distort these 
values. Table 5.7 shows the normal-theory standard errors along with those of the sandwich 
estimator and the naïve bootstrap. As seen in the table, the normal-theory standard errors 
were generally lower than the robust standard errors and the bootstrap standard errors. Lep-
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tokurtic data tend to attenuate standard errors, so these differences make sense. The limited 
research to date suggests that signifi cance tests based on robust standard errors may be 
slightly conservative (i.e., standard errors are a bit too large), whereas bootstrap signifi cance 
tests may be slightly liberal (i.e., standard errors are a bit too small). However, the difference 
between the two procedures is often trivial, and both approaches provide a rather dramatic 
improvement over standard errors that assume normality (Enders, 2001).

5.15 SUMMARY

This chapter describes techniques that can improve the accuracy of maximum likelihood 
missing data handling. The fi rst half of the chapter is devoted to the use of auxiliary variables. 
The defi nition of MAR states that the probability of missing data on a variable Y can relate to 
some other measured variable (or variables) but not to the values of Y itself. Although this 
defi nition seems to be satisfi ed when a correlate of missingness is a variable in the data set, 
the variables in the analysis dictate the missing data mechanism. For this reason, methodolo-
gists recommend an inclusive analysis strategy that incorporates a number of auxiliary vari-
ables. An auxiliary variable is one that is ancillary to the substantive research questions but 
is a potential correlate of missingness or a correlate of the missing variable. Including auxil-
iary variables in a maximum likelihood analysis can reduce or eliminate bias (e.g., by making 
the MAR assumption more plausible) and can increase in power (e.g., by recapturing some 
of the lost information in the missing variable).

Two strategies can be used for implementing an inclusive analysis strategy: the saturated 
correlates model and the two-stage analysis procedure. The saturated correlates model uses 
structural equation modeling software to incorporate auxiliary variables as correlates of the 
analysis variables. A set of rules guide the specifi cation of the model, and the basic idea be-
hind these rules is to transmit the information from the auxiliary variables to the analysis 
model without affecting the interpretation of the parameters. The two-stage approach is an 

TABLE 5.7. Confi rmatory Factor Analysis Loading Estimates from Data Analysis 
Example 3

 No auxiliary Saturated correlates model

EAT Item Estimate SE Estimate SE SER SEBS

EAT1 0.741 0.050 0.741 0.050 0.049 0.048
EAT2 0.650 0.045 0.649 0.045 0.050 0.050
EAT10 0.807 0.043 0.808 0.043 0.052 0.053
EAT11 0.764 0.040 0.764 0.040 0.049 0.049
EAT12 0.662 0.047 0.662 0.047 0.055 0.056
EAT14 0.901 0.041 0.901 0.041 0.047 0.048
EAT24 0.623 0.048 0.622 0.048 0.053 0.053
EAT3 0.772 0.046 0.772 0.046 0.052 0.052
EAT18 0.749 0.048 0.751 0.048 0.056 0.056
EAT21 0.862 0.045 0.862 0.046 0.053 0.053

Note. SER = robust standard errors; SEBS = bootstrap standard errors.
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alternative to the saturated correlates model that deals with missing data in two steps: the 
fi rst stage uses maximum likelihood missing data handling to estimate the mean vector and 
covariance matrix, and the second stage uses the resulting estimates as input data for sub-
sequent analyses. The advantage of the two-stage approach is that it can readily incorporate 
any number of auxiliary variables into the fi rst step of the procedure, so there is no need to 
include the auxiliary variables in the subsequent analysis step. The problem with the two-
stage approach is that it requires complex standard error computations that have not yet been 
implemented in computer software programs. However, given the ease with which the two-
stage approach incorporates auxiliary variables, it will likely become a viable alternative to 
the saturated correlates model in the near future.

The second half of the chapter is devoted to corrective procedures for nonnormal data. 
Maximum likelihood estimation relies heavily on the multivariate normality assumption, 
both for identifying the most likely parameter values and for computing standard errors. The 
methodological literature shows that non-normal data tend to have a minimal impact on the 
parameter estimates themselves but can bias standard errors and distort the likelihood ratio 
test. This chapter outlined two strategies for correcting the bias in standard errors, the so-
called sandwich estimator (i.e., “robust” standard errors) and bootstrap resampling. With 
non-normal data, the second derivative formulas from the normal distribution are missing 
terms that depend on the skewness and kurtosis of the population distribution. The absence 
of these terms can overestimate or underestimate the standard errors, depending on whether 
the data are leptokurtic or platykurtic. Robust standard errors correct this problem by using 
a “sandwich” of terms that involve fi rst and second derivatives. In contrast, bootstrap re-
sampling uses Monte Carlo simulations to generate standard errors. The basic idea behind 
the bootstrap is to treat the sample data as a miniature population and draw repeated sam-
ples of size N from the sample data set. Estimating the analysis model from the bootstrap 
samples yields an empirical sampling distribution for each parameter, the standard deviation 
of which estimates the standard error.

Non-normal data can also distort the likelihood ratio test. The basic problem with the 
test is that its sampling distribution no longer follows the appropriate central chi-square 
distribution. One solution is to rescale the test statistic so that it more closely approximates 
its theoretical chi-square distribution. This rescaling procedure divides the normal-theory 
likelihood ratio test by a correction factor that depends on the kurtosis of the data. The scal-
ing factor can increase or decrease the value of the likelihood ratio test, depending on the 
distribution shape of the data. The Bollen–Stine bootstrap is a second method that can cor-
rect the bias in the likelihood ratio test. Whereas the rescaling procedure attempts to adjust 
the value of the likelihood ratio test so that it more closely approximates its theoretical sam-
pling distribution, the bootstrap leaves the test statistic intact and uses Monte Carlo simula-
tion to generate a new sampling distribution. The bootstrap corrects the probability value 
for the test by referencing the likelihood ratio statistic to the empirical sampling distribution 
rather than to the theoretical chi-square distribution. Although the Bollen–Stine bootstrap 
follows the same procedure as the naïve bootstrap, it applies an algebraic transformation to 
the sample data prior to drawing the samples. This transformation aligns the mean and co-
variance structure of the data to the null hypothesis and produces an empirical distribution 
that refl ects only the sampling fl uctuation of the likelihood ratio test.
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The next chapter takes a break from missing data issues and provides an introduction 
to Bayesian estimation. Chapters 7 through 9 focus on a second “modern” missing data 
technique, multiple imputation. The mathematical machinery behind multiple imputation is 
heavily entrenched in Bayesian methodology. At one level, you can effectively implement 
multiple imputation in your own research without fully understanding its Bayesian under-
pinnings. However, understanding multiple imputation at a deeper level requires a back-
ground in Bayesian statistics; accessing the seminal missing data work can be diffi cult with-
out this knowledge. The purpose of Chapter 6 is to provide a user-friendly introduction to 
Bayesian statistics, while still providing a level of detail that will serve as a springboard for 
accessing the technically oriented missing data literature.
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6

An Introduction to Bayesian Estimation

6.1 CHAPTER OVERVIEW

Chapter 7 introduces a second “modern” missing data approach, multiple imputation. Mul-
tiple imputation generates several copies of the data set and fi lls in (i.e., imputes) each copy 
with different estimates of the missing values. The imputation process is conceptually straight-
forward because it closely resembles the stochastic regression procedure from Chapter 2 (i.e., 
impute missing values with predicted scores and add a random residual to each imputed 
value). However, the mathematical machinery behind multiple imputation is heavily en-
trenched in Bayesian methodology. At one level, it is possible to effectively implement mul-
tiple imputation in a research study without fully understanding its Bayesian underpinnings. 
For example, multiple imputation software packages employ default settings that make Baye-
sian aspects of the analysis transparent to the user, and many multiple imputation primers 
make little to no reference to Bayesian methodology (Allison, 2002; Enders, 2006; Schafer & 
Graham, 2001; Schafer & Olsen, 1998; Sinharay, Stern, & Russell, 2001). However, under-
standing multiple imputation at a deeper level requires a background in Bayesian statistics, 
and accessing the seminal missing data work (Little & Rubin, 2002; Rubin, 1987; Schafer, 
1997) can be diffi cult without this knowledge.

This chapter takes a hiatus from missing data issues to focus on Bayesian estimation. 
The goal of the chapter is to provide a user-friendly introduction to Bayesian statistics, while 
still providing a level of detail that will serve as a springboard for accessing the technically 
oriented missing data literature. The chapter is far from comprehensive, and I focus on aspects 
of Bayesian estimation that are particularly relevant to a multiple imputation analysis. A 
number of comprehensive resources are available in the literature (e.g., Bolstad, 2007; Gel-
man, Carlin, Stern, & Rubin, 1995), as are additional primer articles (e.g., Lee & Wagen-
makers, 2005; Pruzek, 1997; Rupp, Dey, & Zumbo, 2004; Stephenson & Stern, 1998).
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6.2 WHAT MAKES BAYESIAN STATISTICS DIFFERENT?

The defi nition of a parameter is a key distinction between Bayesian estimation and the so-
called frequentist paradigm that is the predominant approach to estimation and signifi cance 
testing in many disciplines (e.g., psychology, education, business). The frequentist approach 
defi nes a parameter as a fi xed characteristic of the population. The goal of a frequentist analy-
sis is to estimate the true value of the parameter and establish a confi dence interval around 
that estimate. The standard error is integral to this process and estimates the variability of 
the estimate across repeated samples. Defi ning a parameter as a fi xed quantity leads to some 
important subtleties. For example, consider the interpretation of a 95% confi dence interval. 
It is incorrect to say that there is a 95% probability that the parameter falls between values of 
A and B because the confi dence interval from any single sample contains the parameter or it 
does not. Instead, the confi dence interval describes the expected performance of the interval 
across repeated samples. For example, if you drew 100 samples from a population and con-
structed a 95% confi dence interval around the parameter estimate from each sample, you 
would expect 95 of the intervals to include the population parameter. In a similar vein, the 
probability value from a frequentist signifi cance test describes the proportion of repeated 
samples that would yield a test statistic equal to or greater than that of the data. In both situ-
ations, the probability statement applies to the data, not to the parameter.

In contrast, the Bayesian paradigm views a parameter as a random variable that has a 
distribution. One of the goals of a Bayesian analysis is to describe the shape of this distri-
bution. For example, the mean and the standard deviation describe the distribution’s center 
and spread, respectively. The mean quantifi es the parameter’s most likely value (assuming 
that the distribution is symmetric) and is similar to a frequentist point estimate. The stan-
dard deviation (or alternatively, the variance) is analogous to a frequentist standard error, but 
it describes the degree of uncertainty about the parameter after observing the data. The 
Bayesian notion of uncertainty does not involve repeated sampling. Viewing the parameter as 
a random variable contrasts the frequentist approach in other ways. For example, a Bayesian 
credible interval (the analog to a frequentist confi dence interval) allows you to say that there 
is a 95% probability that the parameter falls between values of A and B. This interpretation 
is very different from that of the frequentist approach because it attaches the probability 
statement to the parameter, not to the data.

6.3 A CONCEPTUAL OVERVIEW OF BAYESIAN ESTIMATION

A Bayesian analysis consists of three major steps: (1) specify a prior distribution for the 
parameter of interest, (2) use a likelihood function to summarize the data’s evidence about 
different parameter values, and (3) combine information from the prior distribution and the 
likelihood to generate a posterior distribution that describes the relative probability of dif-
ferent parameter values. Describing the shape of the posterior distribution is a key goal of a 
Bayesian analysis, and familiar statistics such as the mean and the variance summarize the 
location (i.e., the center of) and the spread of the posterior, respectively. This section gives a 
conceptual description of these three steps. Because the goal is to introduce the underlying 
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logic behind Bayesian estimation, I am purposefully vague about many of the mathematical 
details. For now, I use a straightforward univariate analysis example where the goal is to esti-
mate the proportion of clinically depressed individuals in a population. Subsequent sections, 
however, give a more thorough description of the mathematics and illustrate the application 
of Bayesian estimation to a mean vector and a covariance matrix (the key parameters in a 
multiple imputation analysis). As you will see, multivariate analyses use the same three-step 
procedure described in this section.

The Prior Distribution

The fi rst step in a Bayesian analysis is to specify a prior distribution for the parameter of inter-
est. The prior distribution describes your subjective beliefs about the relative probability of 
different parameter values before collecting any data. To illustrate, suppose that two research-
ers want to use Bayesian methodology to estimate the proportion of clinically depressed in-
dividuals in a population, π. The prior distribution specifi es the relative probability of every 
possible population proportion. After conducting a literature review, Researcher A believes 
that depression rates between 0.10 and 0.15 are very likely, and she feels that the relative 
probability rapidly decreases as the proportion approaches zero or one. The dashed curve in 
Figure 6.1 depicts this researcher’s prior beliefs. Notice that the highest point of the distribu-
tion is located at π = 0.13, and the relative probability (i.e., the height of the curve) quickly 
decreases as π approaches zero or one. In contrast, Researcher B is uncomfortable speculat-
ing about different parameter values, so he assigns an equal weight to every proportion be-
tween zero and one. The fl at line in Figure 6.1 depicts this researcher’s prior beliefs. The 
Bayesian literature often refers to Researcher B’s prior distribution as a noninformative prior 
because it represents a lack of knowledge about the population parameter.

The Likelihood Function

The second step of a Bayesian analysis is to collect data and use a likelihood function to sum-
marize the data’s evidence about different parameter values. This step applies the maximum 
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FIGURE 6.1. The prior distributions from the depression example. Researcher A’s prior is the dashed 
curve that assigns higher probabilities to population proportions between 0.10 and 0.15. Researcher 
B’s prior distribution is the solid line that assigns an equal weight to every parameter value.
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likelihood principles that I outlined in Chapter 3, but uses the likelihood rather than the log-
likelihood. Recall from Chapter 3 that substituting the data and a parameter value into a 
probability density function (e.g., the equation that defi nes the normal curve) returns the 
likelihood (i.e., relative probability) of the data, given that particular parameter value. Repeat-
ing this process for different parameter values yields a likelihood function that describes the 
relative probability of the data across a range of parameter values.

For example, suppose that the two researchers drew a sample and found that 7 out of the 
100 individuals whom they assessed met their criteria for clinical depression. The binomial 
density function is the appropriate likelihood for a binary outcome variable. The binomial den-
sity function is quite different from that of the normal curve in Chapter 3, but it works in the 
same way. Specifi cally, you substitute the data (e.g., 7 out of 100 diagnosed cases) and a 
population proportion (e.g., π = 0.15) into the density function, and the equation returns the 
likelihood of observing the sample data from a population with that particular prevalence 
rate. Repeating the computations using different population proportions yields a likelihood 
function that shows how the probability of the data varies as a function of π. For example, 
Figure 6.2 shows the binomial likelihood function for the depression data. Notice that the 
maximum likelihood estimate (i.e., the highest point on the function) is the sample propor-
tion, π̂ = .07.

The Posterior Distribution

The fi nal step of a Bayesian analysis is to defi ne the posterior distribution of the parameter. 
The posterior distribution is a composite distribution that combines information from the 
prior and the likelihood to generate an updated set of relative probabilities. I describe the pos-
terior in more detail later in the chapter, but the basic idea is to weight each point on the 
likelihood function by the magnitude of your prior beliefs. For example, if you attached a 
high prior probability to a particular parameter value, the posterior would increase the height 
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FIGURE 6.2. The binomial likelihood function from the depression example. The height of the 
likelihood function gives the relative probability that the population on the horizontal axis would pro-
duce a sample where 7 out of 100 individuals are diagnosed with depression. The maximum of the 
function (i.e., the maximum likelihood estimate) corresponds with π = 0.07, which is the sample 
proportion.
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of the likelihood function at that point on the horizontal axis. Conversely, if you assigned a 
low prior probability to a particular parameter value, the posterior would decrease the height 
of the likelihood function at that point.

To illustrate, reconsider the depression scenario. Prior to collecting data, Researcher A 
assigned a high probability to depression rates between 0.10 and 0.15. The data supported 
somewhat lower values and indicated that π = 0.07 is the most likely population proportion. 
Figure 6.3 shows Researcher A’s posterior distribution as a dashed line. The effect is subtle, 
but her posterior distribution is a blend of her prior and the likelihood function. For reasons 
that I explain later, the solid line in Figure 6.3 (Researcher B’s posterior distribution) is iden-
tical to the likelihood function. Comparing the relative height of the two curves at π = 0.05, 
you can see that Researcher A’s posterior distribution is less elevated than the likelihood 
function. Researcher A assigned a very low prior probability to π = 0.05, which effectively 
downweights the likelihood function at that point. Next, compare the relative height of the 
two distributions at π = .15. Researcher A assigned a high prior probability to this parameter 
value, so her posterior distribution is slightly elevated relative to the likelihood function (i.e., 
the prior probability boosts this point on the likelihood function). In contrast, Researcher B 
specifi ed a prior distribution where every parameter value has the same probability. Conse-
quently, his posterior distribution weights every point on the likelihood function by the same 
amount and is identical to the likelihood function in Figure 6.2.

Summarizing the shape of the posterior distribution is an important part of a Bayesian 
analysis. Without delving into any equations, Researcher A’s posterior distribution has a 
mean of 0.095, a mode of 0.090, and a standard deviation of 0.024. In contrast, Researcher 
B’s posterior has a mean of 0.078, a mode of 0.070, and a standard deviation of 0.026. The 
fact that Researcher A’s distribution has somewhat higher measures of central tendency fol-
lows from the fact that she assigned high prior probabilities to proportions between 0.10 and 
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FIGURE 6.3. The posterior distributions from the depression example. Researcher A’s posterior 
distribution is the dashed curve. She specifi ed a prior distribution that assigns higher weights to popu-
lation proportions between 0.10 and 0.15. Consequently, her posterior distribution has shifted slightly 
to the right of the likelihood function in Figure 6.2. Researcher B’s posterior distribution is the solid 
curve. He specifi ed a prior distribution where every parameter value has the same probability, so his 
posterior distribution is identical to the likelihood.
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0.15. Nevertheless, the relative similarity of the two sets of summary statistics is noteworthy, 
particularly given that the researchers adopted radically different prior distributions.

For comparison purposes, a frequentist analysis of the depression data yields a point 
estimate and standard error of π̂ = 0.07 and SE = 0.026, respectively. Notice that these esti-
mates are identical to Researcher B’s posterior mode and posterior standard deviation. Al-
though the Bayesian and frequentist analyses give the same numeric results, they have very 
different interpretations. For example, π̂ estimates the true population proportion, and the 
standard error quantifi es the variability of the point estimate across repeated samples. In con-
trast, the posterior mode is the most likely value from a distribution of proportions, and the 
posterior standard deviation quantifi es the spread of the parameter distribution.

More on the Prior Distribution

A Bayesian analysis uses the prior distribution to incorporate subjective beliefs as a data source. 
This may be troublesome to researchers who are accustomed to the frequentist paradigm, 
but the idea of using prior information actually makes good intuitive sense. For example, 
suppose that a researcher had access to a meta-analysis prior to designing a study. Meta-
analyses estimate the average effect size in a body of research and often summarize the vari-
ability of the effect across different design characteristics (e.g., Ioannidis et al., 2001; Lipsey 
& Wilson, 1993; Rubin, 1992). The Bayesian approach provides a mechanism for incorpo-
rating prior knowledge into an analysis (e.g., by using the meta-analysis to formulate a prior 
distribution), whereas frequentist estimation essentially ignores the fact that previous studies 
even exist. In the frequentist paradigm, the benefi t of having a meta-analysis is limited to 
estimating power, determining sample size, and formulating a directional hypothesis.

If the notion of using prior information as a data source still feels uncomfortable, there 
is one fi nal consideration. The depression example did not illustrate this point, but it ends 
up that you can specify the amount of infl uence that the prior exerts on the analysis results. 
Specifying a prior distribution generally requires three pieces of information: the location of 
the distribution (e.g., its mean), the spread of the distribution (e.g., its standard deviation), 
and the number of “hypothetical data points” associated with the prior. Collectively, Bayes-
ian texts sometimes refer to these characteristics as the distribution’s hyperparameters. Im-
portantly, you can use the sample size metric to quantify the prior distribution’s infl uence. 
For example, if you have relatively little confi dence in the prior distribution, you can assign 
a small number of imaginary data points to the prior. In contrast, you can assign a large num-
ber of data points to the distribution if you are very confi dent in your prior beliefs.

Returning to the depression example, note that the researchers’ prior distributions have 
very different hyperparameters. The two distributions in Figure 6.1 are shaped quite differ-
ently, which implies that they differ with respect to their location and spread. However, the 
fact that the prior distributions imply different sample sizes is not so obvious. Without going 
into the mathematical details, Researcher A’s prior distribution (i.e., the dashed curve) as-
signs a weight that is equivalent to approximately 45 imaginary data points. Because the prior 
is contributing roughly half as much information as the data, the resulting posterior distri-
bution is a blend of the prior and the likelihood function. In contrast, Researcher B’s non-
informative prior distribution contributes nothing to the estimation process, so his posterior 
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distribution has the same shape as the likelihood function, and his posterior mode is identi-
cal to the sample proportion. In general, adopting a noninformative prior yields a posterior 
distribution that is defi ned solely by the data. This is an important point that will be revisited 
in this chapter and the next.

6.4 BAYES’ THEOREM

This section fi lls in some of the mathematical details omitted from the previous depression 
example. As you will see, Bayes’ theorem is the mathematical machinery behind a Bayesian 
analysis and plays a key role in defi ning the shape of the posterior distribution. In fact, the 
three steps in a Bayesian analysis (i.e., specify a prior, estimate the likelihood, defi ne the pos-
terior) are terms in the theorem equation.

Bayes’ theorem describes the relationship between two conditional probabilities. For two 
random events, A and B, the theorem is

 p(B)p(A|B)
 p(B|A) = ————— (6.1)
 p(A)

where p(B|A) is the conditional probability of observing event B, given that event A has al-
ready occurred, p(A|B) is the conditional probability of A given B, p(B) is the probability of 
B alone, and p(A) is the marginal probability of A.

The generic notation in Equation 6.1 offers little insight into the application of Bayes’ 
theorem to statistics, but the linkage becomes slightly clearer if you replace A with the sample 
data and B with a parameter, as follows.

 p(θ)p(Y|θ)
 p(θ|Y ) = ————— (6.2)
 p(Y )

The terms in Equation 6.2 now align with the concepts that I introduced in the previous sec-
tion. Specifi cally, θ is the parameter of interest (e.g., the proportion of clinically depressed 
individuals), Y is the sample data, p(θ) is the parameter’s prior distribution, p(Y|θ) is the 
likelihood (i.e., the conditional probability of the data, given some assumed value of θ), p(Y ) 
is the marginal distribution of the data, and p(θ|Y ) is the posterior distribution (i.e., the 
conditional probability of the parameter, given the data).

In words, Bayes’ theorem is

 Prior × Likelihood
 Posterior = ———–———— (6.3)
 Scaling factor

I previously described the posterior distribution as a weighted likelihood function, where 
the basic idea is to adjust each point on the likelihood function by the magnitude of the cor-
responding prior probability. This is accomplished in the numerator of Bayes’ theorem by 
multiplying the likelihood function by the corresponding prior probabilities. As I explain 
later, the denominator of the theorem is simply a scaling constant that makes the area under 
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the posterior distribution sum (i.e., integrate) to one. Dividing by a constant does not change 
the basic shape of the posterior distribution, so ignoring the denominator yields the follow-
ing simplifi ed expression.

 Posterior ∝ Prior × Likelihood (6.4)

Equation 6.4 says that the posterior distribution is proportional to the prior distribution times the 
likelihood. This is the fundamental idea behind Bayesian estimation and is a point that will 
resurface throughout the rest of the chapter.

6.5 AN ANALYSIS EXAMPLE

Having fi lled in some of the mathematical details, I return to the depression example and 
illustrate how Bayes’ theorem applies to a statistical analysis. Again, the basic procedure that 
I describe in this section generalizes to multivariate estimation problems and to a multiple 
imputation analysis.

The Prior Distribution

The fi rst step of a Bayesian analysis is to specify a prior distribution. The prior distributions 
in Figure 6.1 belong to the beta distribution family (by family of distributions, I mean a collec-
tion of distributions that share the same basic shape or function, much like the t-distribution 
family). Like the normal curve, a probability density function defi nes the shape of the beta 
distribution. The beta density function is

 p(π) ∝ πa–1(1 – π)b–1 (6.5)

where p(π) is the height of the curve at a particular value of π, and a and b are constants that 
defi ne the shape of the distribution (e.g., larger values of a and b produce a distribution with 
greater spread, and the distribution becomes asymmetric when a ≠ b). Density functions 
typically contain a collection of scaling terms that make the area under the distribution sum 
to one. Excluding these terms has no bearing on the distribution’s shape, so I omit the scal-
ing factor from Equation 6.5 and use the “proportional to” symbol (i.e., ∝) to indicate that 
the two sides of the equation differ by a multiplicative constant. To simplify things, I use this 
convention throughout the chapter.

Returning to the depression example, note that Table 6.1 gives the height of the prior 
distributions at integer values of π between 0.05 and 0.20. To begin, consider the height of 
Researcher A’s prior distribution at π = 0.05 and π = 0.10. Her prior is a beta distribution 
with a = 7 and b = 40, so substituting π = 0.05 and π = 0.10 into the beta density function 
yields values of 0.792 and 6.153, respectively (note that I used the previously omitted scaling 
constant in these calculations). Visually, 0.792 and 6.153 represent the height of the prior 
distribution at parameter values of π = 0.05 and π = 0.10, respectively. Similar to the likelihood 
values from Chapter 3, you can think of these quantities as relative probabilities. The relative 
magnitude of the prior probabilities refl ects Researcher A’s belief that π = 0.10 was a more 
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plausible parameter value than π = 0.05. Next, consider Researcher B’s prior, which is a beta 
distribution with a = 1 and b = 1. In this situation, the beta density function in Equation 6.5 
always returns a value of 1.00, so Researcher B is assigning the same weight to every possible 
value of π.

The Likelihood Function

The second step of a Bayesian analysis is to collect data and use a likelihood function to sum-
marize the data’s evidence about different parameter values. This step applies the maximum 
likelihood principles outlined in Chapter 3. Specifi cally, substituting the sample data and a 
parameter value (i.e., π) into a density function yields the likelihood (i.e., relative probability) 
of the data, given that parameter value. Repeating this process for different parameter values 
yields a likelihood function that describes the relative probability of the data across a range 
of parameter values. The binomial density function is the appropriate likelihood for a binary 
outcome variable (i.e., each individual is classifi ed as depressed or not depressed). The bino-
mial density function is

 p(y|π) ∝ πy(1 – π)N–y (6.6)

where p(y|π) is the height of the curve at a particular value of π, y is the number of “suc-
cesses” (e.g., the number of depressed individuals), and N is the total number of “trials” (e.g., 
the sample size). Again, I omit the scaling constant from the equation to simplify things.

TABLE 6.1. Prior Distributions, Likelihood, and Posterior Distributions from the 
Depression Example

 Researcher A Researcher B

   Prior × Scaled   Prior × Scaled
π Prior Likelihood Likelihood posterior Prior Likelihood Likelihood posterior

0.05 0.7919 0.1060 0.0840 0.0036 1.0000 0.1060 0.1060 0.1169
0.06 1.5651 0.1420 0.2222 0.0190 1.0000 0.1420 0.1420 0.1565
0.07 2.6006 0.1545 0.4018 0.0570 1.0000 0.1545 0.1545 0.1703
0.08 3.8012 0.1440 0.5472 0.1134 1.0000 0.1440 0.1440 0.1587
0.09 5.0318 0.1188 0.5979 0.1640 1.0000 0.1188 0.1188 0.1310
0.10 6.1533 0.0889 0.5470 0.1835 1.0000 0.0889 0.0889 0.0980
0.11 7.0505 0.0613 0.4321 0.1661 1.0000 0.0613 0.0613 0.0675
0.12 7.6483 0.0394 0.3013 0.1257 1.0000 0.0394 0.0394 0.0434
0.13 7.9170 0.0238 0.1887 0.0815 1.0000 0.0238 0.0238 0.0263
0.14 7.8679 0.0137 0.1075 0.0461 1.0000 0.0137 0.0137 0.0151
0.15 7.5429 0.0075 0.0563 0.0232 1.0000 0.0075 0.0075 0.0082
0.16 7.0027 0.0039 0.0273 0.0104 1.0000 0.0039 0.0039 0.0043
0.17 6.3153 0.0020 0.0124 0.0043 1.0000 0.0020 0.0020 0.0022
0.18 5.5466 0.0009 0.0052 0.0016 1.0000 0.0009 0.0009 0.0010
0.19 4.7543 0.0004 0.0021 0.0005 1.0000 0.0004 0.0004 0.0005
0.20 3.9842 0.0002 0.0008 0.0002 1.0000 0.0002 0.0002 0.0002

  Sums = 3.5338 1.0000   0.9073 1.0000



 An Introduction to Bayesian Estimation 173

Returning to the depression example, the researchers assessed a sample of 100 individu-
als and found that seven people met their criteria for clinical depression. Substituting y = 7 
and N = 100 into Equation 6.6 yields the binomial likelihood function in Figure 6.2. The 
height of the likelihood function gives the relative probability of observing 7 depressed cases 
in a sample of 100 individuals, given the population parameter value on the horizontal axis 
(i.e., the conditional probability of the data, given some assumed value of π). Table 6.1 gives 
the numeric value of the likelihood for parameter values between π = 0.05 and 0.20 (again, 
I used the previously omitted scaling constant for these calculations in order to avoid exces-
sive decimals). Consider the likelihood associated with π = 0.05 and π = 0.10, the values of 
which are 0.106 and 0.089, respectively. Consistent with the interpretation of the likelihood 
in Chapter 3, 0.106 and 0.089 are the relative probabilities of observing the data (i.e., 7 out 
of 100 diagnosed individuals) from a population with π = 0.05 and π = 0.10, respectively. 
Visually, these numeric values correspond with the height of the curve at π = 0.05 and π = 
0.10. Because π = 0.05 returns a higher relative probability than π = 0.10, the data provide 
slightly more evidence in favor of π = 0.05.

Before proceeding, you may have noticed that Equations 6.5 and 6.6 are identical with 
the exception of their exponents. Specifi cally, the beta distribution has exponents of a – 1 
and b – 1, whereas the binomial distribution has corresponding exponents of y (i.e., the 
number of successes) and N – y (i.e., the number of nonsuccesses). This similarity is not 
coincidental, because the binomial and beta densities actually belong to the same distribu-
tion family (i.e., the same function describes the shape of the distributions). Specifi cally, the 
binomial distribution is a beta distribution in which a = y + 1 and b = N – y + 1. Research-
ers frequently adopt priors that belong to the same distribution family as the likelihood func-
tion, and this is true of the depression example. These so-called conjugate distributions are 
advantageous because they produce a posterior distribution that also belongs to the same 
family.

In a previous section, I explained that assigning a number of imaginary data points to 
the prior determines its infl uence on the analysis results (the hypothetical sample size is 
one of the prior distribution’s hyperparameters). The equivalence of the beta and the bino-
mial distributions illustrates this point. For example, Researcher A’s prior is a beta distribu-
tion with a = 7 and b = 40. A beta distribution with a = 7 equates to a binomial distribution 
with a hypothetical sample of six depressed cases (i.e., a = y + 1, so y = a – 1 = 6). Similarly, 
b = 40 corresponds to a binomial distribution with 45 imaginary data points (i.e., b = N – y 
+ 1, so N = b – 1 + y = 45). In contrast, Researcher B’s fl at prior is a beta distribution with 
a = 1 and b = 1. This equates to a binomial distribution with an imaginary sample size of zero 
(i.e., y = a – 1 = 0 and N = b – 1 + y = 0). Note that I use the words “hypothetical” and 
“imaginary” to describe the sample size because the researchers specifi ed their prior distribu-
tions before collecting data.

The Posterior Distribution

The fi nal step of a Bayesian analysis is to defi ne the posterior distribution. Ignoring the de-
nominator of Bayes’ theorem for the moment, note that Equation 6.4 says that the height of 
the posterior distribution at each value of π is proportional to the product of the prior times 
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the likelihood. Conceptually, multiplying the likelihood by the prior weights each point on the 
likelihood function by its prior probability. To illustrate, return to the relative probabilities in 
Table 6.1. To begin, consider the height of Researcher A’s prior distribution at π = 0.05 and 
π = 0.10, the values of which are 0.792 and 6.153, respectively. Multiplying each quantity by 
its corresponding likelihood gives 0.792 × 0.106 = 0.084 and 6.153 × 0.089 = 0.547. Visu-
ally, 0.084 and 0.547 represent the height of Researcher A’s posterior distribution at π = 0.05 
and π = 0.10, respectively. Consequently, after updating her prior beliefs with information 
from the data, Researcher A would claim that π = 0.10 is a more plausible parameter value 
than π = 0.05. Turning to Researcher B, the height of his prior distribution was 1.00 at every 
value of π. Multiplying the prior by the likelihood gives values of 1.00 × 0.106 = 0.106 and 
1.00 × .089 = 0.089. Again, 0.106 and 0.089 represent the height of Researcher B’s posterior 
distribution at π = 0.05 and π = 0.10, respectively. Unlike Researcher A, Researcher B would 
claim that π = 0.05 is somewhat more plausible than π = 0.10. However, notice that Re-
searcher B’s conclusion is based solely on the data because the shape of his posterior distri-
bution is identical to that of the likelihood function. Again, this is an important consequence 
of adopting a noninformative prior distribution.

The Role of the Marginal Distribution

Until now, I have ignored the marginal distribution that appears in the denominator of Bayes’ 
theorem. As I explained previously, the marginal distribution is a scaling constant that does 
not infl uence the shape of the posterior. To understand how the marginal distribution works, 
consider a simple probability example. Suppose that you wanted to know the probability of 
fl ipping a coin three times and getting two heads. Three possible sequences produce this 
outcome: (1) heads, heads, tails, (2) heads, tails, heads, and (3) tails, heads, heads. By itself, 
the fact that the three different sequences produce two heads does not provide an accurate 
gauge of the probability because there is no way of knowing whether three sequences is a 
large number or a small number. Judging the probability becomes easier after dividing by the 
total number of possible sequences (there are eight). Now, it becomes clear that 37.5% of the 
sequences produce two heads. Notice that dividing by the total number of possible outcomes 
does not change the number of sequences that produce two heads, but it does standardize 
things in a way that makes the probabilities sum to one.

Using only the numerator of Bayes’ theorem is akin to expressing the posterior proba-
bilities on an unstandardized metric (e.g., three sequences produce two heads), and dividing 
by the marginal distribution standardizes the probabilities (e.g., 37.5% of the sequences 
produce two heads) such that the area under the posterior distribution sums to one. Concep-
tually, the marginal distribution works as follows. Suppose that you computed the height of 
the posterior distribution at every possible value of π by multiplying the prior probabilities 
by their corresponding likelihood values. Summing these products yields a quantity that is 
analogous to the total number of possible outcomes from the coin toss example. To illustrate, 
the bottom row of Table 6.1 sums the product of the prior times the likelihood for integer 
values of π between 0.05 and 0.20. The value of 3.5338 represents Researcher A’s marginal 
distribution, and 0.9073 is the corresponding value for Researcher B. The Scaled Posterior col-
umns of Table 6.1 divide the posterior probabilities by the appropriate marginal distribution. 
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Doing so effectively standardizes the height of the posterior distribution such that posterior 
probabilities sum to one.

In reality, the population proportion can take on an infi nite number of values between 
zero and one, so the example in Table 6.1 is not mathematically accurate. That is, the correct 
marginal distributions sum the product over every possible value of π, not just integer values 
between 0.05 and 0.20. With a continuous density function such as the beta distribution, 
the summation of the prior times the likelihood involves a calculus integral. Nevertheless, 
whether you think about it as a sum or an integral, the marginal distribution is a constant 
value that standardizes the height of the posterior distribution such that the total area under 
the curve sums (i.e., integrates) to one.

6.6 HOW DOES BAYESIAN ESTIMATION APPLY TO 
MULTIPLE IMPUTATION?

Multiple imputation generates several copies of the data and fi lls in (i.e., imputes) each copy 
with different estimates of the missing values. This process uses an iterative algorithm that 
repeatedly cycles between an imputation step and a posterior step (an I-step and a P-step, 
respectively). The I-step uses the stochastic regression procedure from Chapter 2 to impute 
the missing values, and the P-step uses the fi lled-in data to generate new estimates of the mean 
vector and the covariance matrix. Virtually every aspect of multiple imputation is rooted in 
Bayesian methodology, but the ideas from the previous sections are particularly relevant to 
the P-step because it is essentially a standalone Bayesian analysis that describes the posterior 
distribution of a mean vector and a covariance matrix.

Generating multiple sets of imputed values requires different estimates of the mean vec-
tor and the covariance matrix at each I-step (recall from Chapter 2 that the stochastic regres-
sion procedure uses �̂ and �̂ to construct a set of imputation regression equations), and the 
purpose of the P-step is to generate these parameter values. At each P-step, the iterative algo-
rithm uses the fi lled-in data from the preceding I-step to defi ne the posterior distributions of 
� and �. It then uses Monte Carlo simulation to “draw” new estimates of the mean vector 
and the covariance matrix from their respective posteriors. The subsequent I-step uses these 
updated parameter values to construct a new set of regression equations that are slightly dif-
ferent from those at the previous I-step. Repeating the two-step procedure a number of times 
generates several copies of the data, each of which contains unique estimates of the missing 
values.

Given the important role that the mean vector and the covariance matrix play in a mul-
tiple imputation analysis, the rest of the chapter is devoted to defi ning the posterior distribu-
tions of these parameters. As you will see, the estimation steps remain the same (i.e., specify 
a prior, estimate the likelihood, defi ne the posterior), but the distribution families are differ-
ent. Because each P-step uses a fi lled-in data set, the complete-data procedures described in 
this chapter are identical to those in a multiple imputation analysis. Finally, it is worth noting 
that the selection of prior distributions has received considerable attention in the Bayesian 
literature (e.g., see Kass & Wasserman, 1996). Because the majority of multiple imputation 
analyses rely on a standard set of noninformative priors, I limit the subsequent discussion 
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to the prior distributions that you are likely to encounter in multiple imputation software 
packages.

6.7 THE POSTERIOR DISTRIBUTION OF THE MEAN

This section illustrates how to apply Bayesian estimation principles to the mean. I start by 
applying the three analysis steps to a univariate example and later extend the ideas to multi-
variate data. To simplify things, I assume that the population variance is known, but this does 
not affect the underlying logic of the estimation process, nor does it affect the shape of the 
posterior distribution.

The Prior Distribution

The fi rst step of a Bayesian analysis is to specify a prior distribution. Consistent with the 
previous depression example, you could specify a prior distribution that assigns a higher 
weight to mean values that you think are more probable, or you could use a noninformative 
prior that equally weights every value of the mean. The standard noninformative prior is a fl at 
distribution that assigns an equal weight to every possible value of the mean. The Bayesian 
literature often refers to this as a Jeffreys’ prior, after a Bayesian theoretician who proposed 
a set of principles for developing noninformative priors (Jeffreys, 1946, 1961). Using my 
previous notation, note that the Jeffreys’ prior for the mean is p(μ) = 1.00. In words, the prior 
states that every possible value of the population mean has the same a priori weight of 1.00. 
Visually, this prior is identical to the solid line in Figure 6.1.

The Likelihood Function

The second step of a Bayesian analysis is to collect data and use the likelihood function to 
summarize the data’s evidence about different parameter values. Assuming a normal distri-
bution for the population data, the sample likelihood is

 1
 p(Y|μ, σ2) = ∏

N

i=1{——— e–.5(yi–μ)2/σ2} (6.7)
 √2πσ2

where braces contain the probability density function for the normal distribution (i.e., the 
likelihood for a single score), ∏ is the multiplication operator, and p(Y|μ, σ2) is the likeli-
hood of the sample data, given the values of μ and σ2. (In previous chapters, I used the 
generic symbol L to denote the likelihood.) Recall from Chapter 3 that substituting a score 
value and the population parameters into the density function returns the likelihood for an 
individual score (i.e., the height of the normal curve at yi), and multiplying the individual 
likelihood values gives the sample likelihood. Repeating these computations with different 
values of μ produces a likelihood function that describes the relative probability of the data 
across a range of population means.
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To illustrate the likelihood step, consider the IQ scores in Table 6.2. I designed these 
data to mimic an employee selection scenario in which prospective employees complete an 
IQ test during their interview and a supervisor subsequently rates their job performance fol-
lowing a 6-month probationary period. These are the same data that I used in Chapter 3 to 
illustrate maximum likelihood estimation. I used Equation 6.7 to compute the sample likeli-
hood for population mean values between 80 and 120, and Figure 6.4 shows the resulting 
likelihood function (for simplicity, I fi xed σ2 at its sample estimate of 199.58). The height of 
the curve is the relative probability that the sample of IQ scores in Table 6.2 originate from a 
normally distributed population with a mean equal to the value of μ on the horizontal axis 
and a variance equal to σ2 = 199.58. As seen in the fi gure, the maximum likelihood estimate 
of the mean is μ̂ = 100, which is the same estimate that I derived from the log-likelihood 
function in Chapter 3.

The Posterior Distribution

The fi nal step of a Bayesian analysis is to defi ne the posterior distribution. The numerator of 
Bayes’ theorem states that the height of the posterior is proportional to the product of the 
prior times the likelihood. Consistent with the previous depression example, the height of 
the posterior distribution at any given value of μ is the product of the prior probability and 
the likelihood. In this situation, obtaining the posterior distribution is simply a matter of 
multiplying each point on the likelihood function by a value of 1.00. Consequently, the shape 

TABLE 6.2. IQ and Job Performance Data

  Job
 IQ performance

 78 9
 84 13
 84 10
 85 8
 87 7
 91 7
 92 9
 94 9
 94 11
 96 7
 99 7
 105 10
 105 11
 106 15
 108 10
 112 10
 113 12
 115 14
 118 16
 134 12
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of the posterior distribution is identical to that of the likelihood function in Figure 6.4. More 
formally, the shape of the posterior distribution is

 σ2
 p(μ|Y, σ2) ∼ N(μ̂, —) (6.8)
 N

where p(μ|Y, σ2) is the posterior distribution, ∼N denotes a normal curve (the ∼ symbol 
means “distributed as”), μ̂ is the sample mean, and σ2/N is the variance of the posterior. In 
words, Equation 6.8 says that the posterior distribution is a normal curve that is centered at 
the sample mean and has a variance of σ2/N. Notice that the data alone defi ne the shape of 
the posterior (i.e., the distribution is centered at the maximum likelihood estimate), which 
is a consequence of adopting a noninformative prior distribution. In addition, the shape of 
the posterior is identical to the frequentist sampling distribution (e.g., the posterior variance 
is the square of the usual formula for the standard error of the mean).

The Posterior Distribution of a Mean Vector

A univariate example is useful for understanding the mechanics of Bayesian estimation, but 
multiple imputation relies on the posterior distribution of a mean vector. Fortunately, the 
previous ideas readily extend to multivariate data. For example, the standard noninformative 
prior for a mean vector is a multidimensional fl at surface that assigns an equal weight to 
every combination of mean values. Similarly, the likelihood function is a multivariate, rather 
than univariate, normal distribution. Finally, the posterior is a multivariate normal distribu-
tion that has the same shape as the likelihood function. More formally, the shape of the pos-
terior is

 p(�|Y, �) ∼ MN(�̂, N–1�) (6.9)
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FIGURE 6.4. The likelihood function for the mean. The height of the curve is the relative probabil-
ity that the IQ scores in Table 6.2 originated from a normally distributed population with a mean equal 
to the value of μ on the horizontal axis. The maximum of the function (i.e., the maximum likelihood 
estimate) corresponds with μ = 100, which is the sample mean.
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where p(�|Y, �) is the posterior distribution, ∼MN denotes the multivariate normal distribu-
tion, �̂ is the vector of sample means, and � is the population covariance matrix. Again, the 
fact that the posterior is centered at the sample means indicates that the prior has no infl u-
ence on the distribution. Consistent with the univariate example, Equation 6.9 assumes that 
the population covariance matrix is known, but the equation remains the same when �̂ re-
places �.

6.8 THE POSTERIOR DISTRIBUTION OF THE VARIANCE

The covariance matrix plays an important role in a multiple imputation analysis, so it is im-
portant to understand its posterior distribution. However, this distribution is more complex 
than that of a mean vector, and it belongs to a distribution family that is less familiar. Conse-
quently, starting with a univariate example that involves a single variance makes it easier to 
understand how Bayesian estimation applies to a covariance matrix. As you will see, the ideas 
in this section readily generalize to a full covariance matrix. For simplicity, I temporarily as-
sume that the population mean is known, but I later describe how the posterior distribution 
changes when the mean is also a random variable.

The Likelihood Function

The fi rst step of a Bayesian analysis is to specify a prior distribution. Bayesian texts recom-
mend a noninformative prior distribution that looks somewhat different from the fl at prior 
described in previous sections. This new prior will make more sense if you fi rst understand 
the shape of the likelihood function; I will therefore present things out of order in this sec-
tion, beginning with the likelihood. Reconsider the normal likelihood in Equation 6.7. Mul-
tiplying the collection of bracketed terms by itself N times gives the sample likelihood. After 
performing this operation, the sample likelihood becomes

 .5
 1 —–∑(yi–μ)2

 p(Y|μ, σ2) ∝ ——e σ2 (6.10)
 (σ2)N—

2

The right-most term of Equation 6.10 is the sum of the squared deviations around the popu-
lation mean. Thus, the likelihood further reduces to

 SS
 1 –.5(–––) p(Y|μ, σ2) ∝ ——e σ2 (6.11)
 (σ2)N—

2

where SS is the sum of squares. The “proportional to” symbol (i.e., ∝) indicates that I omitted 
the scaling constant (i.e., 2π) from the equation.

Equation 6.11 is useful because it shows how the relative probability of the data (i.e., 
the sum of squares) varies across different values of the population variance. To illustrate, 
reconsider the IQ scores in Table 6.2. Assuming a population mean of μIQ = 100 yields a sum 
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of squares value of SS = 3792. I used Equation 6.11 to compute the sample likelihood across 
a range of population variances, and Figure 6.5 shows the resulting likelihood function. The 
likelihood function is a positively skewed distribution, but it works in the same manner as 
before. Specifi cally, the height of the curve is the relative probability of the data, given the 
population variance on the horizontal axis. Visually, the maximum of the likelihood function 
corresponds to a population variance that is slightly less than 200. You may recall from Chap-
ter 3 that the maximum likelihood estimate of the IQ variance was σ̂2

IQ = 189.60, so Figure 
6.5 agrees with this previous analysis.

The likelihood function in Figure 6.5 is an inverse chi-square distribution. More ac-
curately, the likelihood is a scaled inverse chi-square distribution, but I simply refer to it as 
an inverse chi-square throughout the remainder of the chapter. Using generic notation, note 
that the shape of an inverse chi-square distribution with ν degrees of freedom is

 S
 1 –.5(––) Inv-χ2 ∝ ——e x (6.12)
 x

ν—
2+1

where x is a variable, and S is a scale parameter that dictates the spread of the distribution 
(e.g., larger values of S produce a wider distribution). As before, the “proportional to” symbol 
(i.e., ∝) denotes an omitted scaling constant. Like the chi-square distribution, the inverse 
chi-square is a family of distributions where the exact shape of the curve is determined by the 
degrees of freedom (and in the case of a scaled inverse chi-square, the scale parameter).

Relabeling the terms in Equation 6.12 better illustrates the linkage between the likeli-
hood and the inverse chi-square distribution. Specifi cally, replacing x with σ2, ν with N, and 
S with SS gives

 SS
 1 –.5(–––) Inv-χ2 ∝ ———e σ2 (6.13)
 (σ2)

N—
2+1
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FIGURE 6.5. The likelihood function for the variance. The height of the likelihood function is the 
relative probability that a sample variance of 189.60 (the variance of the IQ data in Table 6.2) originated 
from a normally distributed population with a variance equal to the value of σ2 on the horizontal axis. 
The likelihood function for the variance belongs to the family of inverse chi-square distributions.
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Notice that Equation 6.13 is nearly identical to the likelihood, but σ2 has an exponent of 
(N/2) + 1 rather than N/2. This disparity refl ect  s a difference of two degrees of freedom, so 
the likelihood is actually an inverse chi-square distribution with ν = N – 2 degrees of 
freedom.

The Prior Distribution

Having gained some familiarity with the inverse chi-square distribution, I now return to the 
fi rst step of a Bayesian analysis, which is to specify a prior distribution. Researchers fre-
quently adopt conjugate priors that belong to the same distribution family as the likelihood, 
so the inverse chi-square distribution is a reasonable prior for σ2. However, using the inverse 
chi-square as a prior distribution requires a sum of squares value and an imaginary sample 
size (i.e., the hyperparameters). Substituting N = 0 and SS = 0 into Equation 6.13 is akin to 
saying that you have no prior information about the variance. Doing so yields the Jeffreys’ 
prior as follows:

 1
 p(σ2) ∝ — (6.14)
 σ2

Equation 6.14 is different from the Jeffreys’ prior for the mean because it assigns relative prob-
abilities that increase as the population variance approaches zero. To illustrate, Figure 6.6 
shows a graphic of the prior distribution, where the height of the curve represents the a priori 
relative probability for a particular value of σ2.

The Posterior Distribution

Having established the prior distribution and the likelihood function, the third step of a 
Baye sian analysis is to defi ne the posterior distribution. As before, the posterior is propor-
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FIGURE 6.6. The Jeffreys’ prior for the variance. The height of the curve represents each parameter 
value’s a priori weight. Unlike the Jeffreys’ prior for the mean, the prior probabilities increase as the 
population variance approaches zero.
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tional to the prior times the likelihood, so the posterior distribution for the variance is as 
follows:

 SS SS
 1 1 –.5(–––) 1 –.5(–––) p(σ2|Y, μ) ∝ — × —–—e  σ2 

= —–——e σ2 (6.15)
 σ2  (σ2)

N—
2 (σ2)

N—
2+1

Notice that the posterior distribution is an inverse chi-square distribution with N degrees of 
freedom and is identical to Equation 6.12. Substituting SS = 3792 into Equation 6.15 yields 
the posterior distribution in Figure 6.7. The effect is subtle, but you can see that left tail of the 
posterior distribution is slightly thicker than that of the likelihood function, which follows 
from the fact that the prior assigns higher weights to lower values of the population variance.

Estimation with an Unknown Mean

Throughout this section, I have effectively assumed that the population mean is known. 
Treating the mean as an unknown random variable changes the shape of the posterior in a 
way that is analogous to using the sample, rather than the population, formula to compute 
the variance. Bayesian texts give the mathematical details behind this change (e.g., see Gel-
man et al., 1995, pp. 67–68), but the result is a marginal posterior distribution with N – 1 
degrees of freedom (i.e., the exponent of σ2 changes from (N/2) + 1 to (N+1)/2). More for-
mally, the shape of the posterior distribution is

 p(σ2|μ̂, Y ) ∼ Inv-χ2(N – 1, SS) (6.16)

where p(σ2|Y, μ) is the posterior distribution, ∼Inv-χ2 denotes an inverse chi-square distri-
bution, N – 1 is the degrees of freedom, and SS is the sum of squares. The degrees of freedom 
and sum of squares values are known as the location and scale parameters, respectively, be-
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FIGURE 6.7. The posterior distribution of the variance. The posterior is very similar to the likeli-
hood in Figure 6.5, but its left tail is slightly thicker than that of the likelihood. This subtle difference 
results from using a noninformative prior distribution that assigns higher weights to lower values of σ2. 
The posterior distribution belongs to the family of inverse chi-square distributions.
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cause they determine the expected value and the spread of the posterior distribution (the 
mean and the variance play a similar role in defi ning the posterior distribution of the mean). 
As an aside, the sampling distribution of the variance is also an inverse chi-square distribu-
tion with N – 1 degrees of freedom; thus, adopting the Jeffreys’ prior in Equation 6.14 brings 
the Bayesian and frequentist paradigms into alignment.

6.9 THE POSTERIOR DISTRIBUTION OF A COVARIANCE MATRIX

This section extends Bayesian estimation to an entire covariance matrix. The basic procedure 
is similar to estimating a variance, and the distributions are multivariate extensions of the 
inverse chi-square. By now, you are probably familiar with the three steps of a Bayesian analy-
sis, so I give an abbreviated outline of the process. Consistent with the previous section, I 
present things out of order, beginning with the likelihood. For simplicity, I temporarily as-
sume that the population means are known, but this does not affect the logic of the estima-
tion process.

The Likelihood Function

Equation 6.11 describes how the likelihood of the sample data varies across different values 
of the population variance. The corresponding likelihood function for a covariance matrix is

 p(Y|�, �) ∝ |�|–N/2e–.5(tr[�–1�]) (6.17)

where � is the population mean vector, � is the population covariance matrix, and � is the 
sum of squares and cross products matrix. Equation 6.17 replaces the terms in Equation 6.11 
with their matrix analogs, but the likelihood still gives the relative probability of the data (in 
this case, the sum of squares and cross products matrix represents the data) across different 
values of the population parameters. To illustrate, Figure 6.8 shows the likelihood surface for 
a bivariate covariance matrix. I based the likelihood on a sample of 20 cases that I generated 
from a multivariate normal distribution with means of zero, variances equal to three, and a 
covariance equal to zero. Notice that the likelihood function is now a three-dimensional posi-
tively skewed distribution, but its shape resembles that of the univariate likelihood function 
in Figure 6.5. Consistent with its univariate counterpart, the height of the likelihood surface 
at any given point is the relative probability of the data, given the combination of population 
variances on the horizontal and depth axes.

The likelihood function in Figure 6.8 is a member of the inverse Wishart distribution 
family. The inverse Wishart density function is

 W–1 ∝ |�|–(ν+k+1)/2e–.5(tr[�–1�]) (6.18)

where W –1 denotes the inverse Wishart distribution, ν is the degrees of freedom, � is the 
sum of squares and cross products matrix, � is the population covariance matrix, and k is 
the number of variables. As before, the “proportional to” symbol (i.e., ∝) indicates that I 



184 APPLIED MISSING DATA ANALYSIS

excluded a scaling constant from the equation. Notice that the likelihood function and the 
inverse Wishart distribution are nearly identical, but have different exponents. This is not 
coincidental, because the likelihood function is an inverse Wishart distribution where ν 
equals N – k – 1. Finally, note that Equation 6.18 reduces to the inverse chi-square distribu-
tion in Equation 6.13 when k = 1.

The Prior Distribution

Having gained some familiarity with the inverse Wishart distribution, I now return to the fi rst 
step of a Bayesian analysis, which is to specify a prior distribution. Researchers often choose 
conjugate priors that belong to the same distribution family as the likelihood, so the inverse 
Wishart is a reasonable prior distribution for the covariance matrix. Substituting ν = 0 (i.e., 
zero imaginary data points) and � = 0 into Equation 6.18 is akin to saying that you have no 
prior information about the population covariance matrix. Doing so yields the multivariate 
version of the Jeffreys’ prior.

 k+1
 p(�) ∝ |�|– —— (6.19) 2

The determinant |�| is a scalar value that quantifi es the total variation in the population 
covariance matrix. Because the value of the determinant decreases as variability decreases, 
the prior probabilities increase as the elements in the population covariance matrix approach 
zero. This was also true of the Jeffreys’ prior for the variance, and Equation 6.19 reduces to 
Equation 6.14 when k = 1.
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FIGURE 6.8. The likelihood surface for a bivariate covariance matrix. This likelihood is based on a 
sample of 20 cases from a multivariate normal population with means of zero, variances equal to three, 
and a covariance equal to zero. The likelihood surface is a three-dimensional positively skewed distri-
bution, but its shape resembles that of the univariate likelihood in Figure 6.5. The height of the likeli-
hood surface at any given point quantifi es the relative probability of the sample covariance matrix, 
given the population variances on the horizontal and depth axes. The likelihood function belongs to 
the family of inverse Wishart distributions.
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The Posterior Distribution

The fi nal step of a Bayesian analysis is to defi ne the posterior distribution. Consistent with 
the previous examples, the height of the posterior distribution is proportional to the product 
of the prior distribution times the likelihood. Multiplying the prior and the likelihood yields 
an inverse Wishart distribution with N degrees of freedom. This distribution is identical to 
Equation 6.18 but replaces ν with N. Like its univariate counterpart, the posterior distribu-
tion changes slightly when the means are unknown and becomes an inverse Wishart distri-
bution with N – 1 degrees of freedom. More formally, the posterior is

 p(�|�̂, Y) ∼ W–1(N – 1, �̂) (6.20)

where p(�|�̂, Y) is the posterior distribution, W –1 denotes the inverse Wishart distribution, 
N – 1 is the degrees of freedom, and �̂ is the sample sum of squares and cross products ma-
trix. In words, Equation 6.20 says that the posterior distribution of a covariance matrix is an 
inverse Wishart distribution with N – 1 degrees of freedom and scale parameter equal to the 
sum of squares and cross products matrix. The degrees of freedom and sum of squares and 
cross products matrix determine the expected value and the spread of the distribution, respec-
tively. Importantly, the data (i.e., the sample size and �) defi ne the shape of the posterior, 
and the prior effectively plays no role. This has been a consistent theme throughout this chap-
ter and is a result of adopting a noninformative prior distribution. The sampling distribution 
of �̂ is also an inverse Wishart distribution with N – 1 degrees of freedom, so the Jeffreys’ 
prior in Equation 6.19 brings the Bayesian and frequentist paradigms into alignment.

6.10 SUMMARY

Chapter 7 introduces a second “modern” missing technique, multiple imputation. Rubin 
(1987) developed multiple imputation within the Bayesian framework, so understanding the 
nuances of imputation requires a basic working knowledge of Bayesian statistics. The goal of 
this chapter was to provide a user-friendly account of Bayesian statistics, while still providing 
interested readers with the technical information necessary to understand the seminal miss-
ing data literature (e.g., Little & Rubin, 2002; Rubin, 1987; Schafer, 1997).

Understanding Bayesian statistics requires a shift in thinking about the population pa-
rameter. Unlike the frequentist paradigm, Bayesian methodology defi nes a parameter as a 
random variable that has a distribution. An important analysis goal is to describe this distri-
bution’s shape, and doing so requires three steps. The fi rst step is to specify a prior distribu-
tion that describes your subjective beliefs about the relative probability of different parameter 
values before collecting data. In general, you can specify an informative prior that assigns a 
higher weight to parameter values that you feel are more probable, or you can specify a non-
informative prior that uniformly weights different values—multiple imputation analyses 
generally use the latter approach. The second step of a Bayesian analysis is to use a likelihood 
function to summarize the data’s evidence about different parameter values. The fi nal step of 
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a Bayesian analysis is to defi ne the parameter’s posterior distribution. Multiplying the likeli-
hood by the prior distribution adjusts the height of the likelihood function up or down ac-
cording to the magnitude of the prior probabilities and yields a new composite distribution 
that describes the relative probability of different parameter values.

Because the mean vector and the covariance matrix play an important role in a multiple-
imputation analysis, a key goal of this chapter was to defi ne the posterior distributions of 
these parameters. The posterior distribution of a mean vector is a multivariate normal dis-
tribution, whereas the posterior distribution of a covariance matrix is an inverse Wishart 
distribution. The majority of multiple imputation analyses rely on a standard set of noninfor-
mative prior distributions (i.e., so-called Jeffreys’ priors). Adopting a Jeffreys’ prior effectively 
eliminates the infl uence of the prior distribution and yields a posterior distribution that is 
defi ned solely by the data. The Jeffreys’ priors also bring the Bayesian and the frequentist 
paradigms into alignment because the posterior distributions of the mean vector and the co-
variance matrix are identical to the frequentist sampling distributions.

The next chapter introduces multiple imputation. Multiple imputation is actually a broad 
term that encompasses a collection of different techniques, but I focus on a data augmenta-
tion algorithm that assumes a multivariate normal distribution (Schafer, 1997; Tanner & 
Wong, 1987). Data augmentation is an iterative algorithm that repeatedly cycles between an 
I-step and a P-step (i.e., an imputation and a posterior step, respectively). The I-step uses the 
stochastic regression procedure from Chapter 2 to impute the missing values, and the P-step 
defi nes the shape of the posterior distributions and uses Monte Carlo simulation to “draw” 
new estimates of � and � from their respective posteriors. Repeating this two-step procedure 
a number of times generates several copies of the data, each of which contains unique esti-
mates of the missing values. The posterior step is essentially a standalone Bayesian analysis 
of � and �, so the ideas in this chapter play an important role throughout Chapter 7.
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7

The Imputation Phase 
of Multiple Imputation

7.1 CHAPTER OVERVIEW

Recall from previous chapters that maximum likelihood estimation uses a log-likelihood 
function to identify the population parameter values that are most likely to have produced 
the observed data. The estimation process essentially auditions different parameter values 
until it identifi es the estimates that minimize the standardized distance to the observed data. 
This process does not involve imputation. Rather, maximum likelihood estimates the param-
eters directly from the available data, and it does so in a way that does not require individuals 
to have complete data records. Multiple imputation is an alternative to maximum likelihood 
estimation and is the other state-of-the-art missing data technique that methodologists cur-
rently recommend (Schafer & Graham, 2002). The imputation approach outlined in this 
chapter makes the same assumptions as maximum likelihood estimation—missing at ran-
dom (MAR) data and multivariate normality—but takes the very different tack of fi lling in the 
missing values prior to analysis.

A multiple imputation analysis consists of three distinct steps: the imputation phase, 
the analysis phase, and the pooling phase. Figure 7.1 shows a graphical depiction of the 
process. The imputation phase creates multiple copies of the data set (e.g., m = 20), each of 
which contains different estimates of the missing values. Conceptually, this step is an itera-
tive version of stochastic regression imputation, although its mathematical underpinnings 
rely heavily on Bayesian estimation principles. As its name implies, the goal of the analysis 
phase is to analyze the fi lled-in data sets. This step applies the same statistical procedures 
that you would have used had the data been complete. Procedurally, the only difference is 
that you perform each analysis m times, once for each imputed data set. The analysis phase 
yields m sets of parameter estimates and standard errors, so the purpose of the pooling 
phase is to combine everything into a single set of results. Rubin (1987) outlined relatively 
straightforward formulas for pooling parameter estimates and standard errors. For example, 
the pooled parameter estimate is simply the arithmetic average of the m estimates from the 
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analysis phase. Combining the standard errors is slightly more complex but follows the same 
logic. The process of analyzing multiple data sets and pooling the results sounds very tedious, 
but multiple imputation software packages completely automate the procedure. The imputa-
tion phase is arguably the most diffi cult aspect of a multiple imputation analysis, so I devote 
Chapter 7 to this topic and outline the analysis and pooling phases in Chapter 8.

Multiple imputation is actually a broad term that encompasses a collection of tech-
niques. The three-step process (i.e., imputation, analysis, pooling) is common to all multiple 
imputation procedures, but methodologists have proposed a variety of algorithms for the 
imputation phase (King, Honaker, Joseph, & Scheve, 2001; Lavori, Dawson, & Shera, 1995; 
Raghunathan, Lepkowski, Van Hoewyk, & Solenberger, 2001; Royston, 2005; Schafer, 1997, 
2001; van Buuren, 2007). These algorithms address different types of problems (e.g., cate-
gorical versus continuous data, longitudinal versus cross-sectional data, monotone missing 
data patterns versus general patterns), so no single procedure works best in every situation. 
Because the normal distribution is arguably one of the most widely used data models in the 
social and behavioral sciences, I devote this chapter to an imputation approach that assumes 
multivariate normality. This so-called data augmentation algorithm (Schafer, 1997; Tanner & 
Wong, 1987) is perhaps the most widely used imputation approach and is readily available 
in a number of commercial and freeware software packages. I briefl y outline a few alternative 
imputation algorithms in Chapter 9.

As an important aside, researchers often object to imputation on grounds that the pro-
cedure is somehow cheating by “making up data.” This concern is ungrounded for at least 
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FIGURE 7.1. Graphical depiction of a multiple imputation analysis. The imputation phase creates 
multiple copies of the data set (i.e., m = 20) and imputes each with different missing values. The analy-
sis phase estimates the model parameters using each of the complete data sets. The pooling phase 
combines the parameter estimates and standard errors into a single set of of results.
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three reasons. First, it is important to remember that the primary goal of a statistical analysis 
is to estimate the population parameters. In truth, multiple imputation is nothing more than 
a mathematical tool that facilitates that task, so imputation itself is ancillary to the end goal. 
Second, multiple imputation and maximum likelihood estimation are asymptotically (i.e., in 
very large samples) equivalent and tend to produce the same results. The fact that the two 
procedures—only one of which fi lls in the data—are effectively interchangeable underscores 
the point that imputation is not inherently problematic. Finally, unlike other imputation rou-
tines, multiple imputation explicitly accounts for the uncertainty associated with the missing 
data. By repeatedly fi lling in the data, multiple imputation yields parameter estimates that 
average over a number of plausible replacement values, so the process never places faith in a 
single set of imputations. This is in stark contrast to imputation techniques that treat a single 
set of fi lled-in values as real data (e.g., the single imputation methods from Chapter 2).

I use the small data set in Table 7.1 to illustrate ideas throughout this chapter. I designed 
these data to mimic an employee selection scenario where prospective employees complete 
an IQ test and a psychological well-being questionnaire during their interview. The company 
subsequently hires the applicants that score in the upper half of the IQ distribution, and a 
supervisor rates their job performance following a 6-month probationary period. Note that 
the job performance scores are missing at random (MAR) because they are systematically 
missing as a function of IQ scores (i.e., individuals in the lower half of the IQ distribution 
were never hired and thus have no performance rating). In addition, I randomly deleted three 
of the well-being scores in order to mimic a missing completely at random (MCAR) mecha-
nism (e.g., the human resources department inadvertently loses an applicant’s well-being 
questionnaire). This data set is far too small for a serious application of multiple imputation, 
but it is useful for illustrating the basic mechanics of the imputation phase.

TABLE 7.1. Employee Selection Data Set

 Psychological Job
IQ well-being performance

 78 13 —
 84  9 —
 84 10 —
 85 10 —
 87 — —
 91  3 —
 92 12 —
 94  3 —
 94 13 —
 96 — —
 99  6  7
105 12 10
105 14 11
106 10 15
108 — 10
112 10 10
113 14 12
115 14 14
118 12 16
134 11 12
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7.2 A CONCEPTUAL DESCRIPTION OF THE IMPUTATION PHASE

Rubin (1987) developed multiple imputation in the Bayesian framework, and data augmen-
tation relies heavily on Bayesian methodology. The imputation phase has relatively intuitive 
logic (e.g., repeatedly impute the data and update the parameters), but its reliance on Bayes-
ian principles can make it diffi cult to grasp. This section gives a conceptual description of 
data augmentation that does not rely on Bayesian statistics. The goal of this section is to lay 
the foundation for the more precise explanation that I give in the next section, but also to 
provide an overview of data augmentation for researchers who want to use multiple imputa-
tion without necessarily mastering its mathematical underpinnings. I use the IQ and job per-
formance scores from Table 7.1 to illustrate the imputation phase. A bivariate analysis with a 
single incomplete variable is a very basic application of data augmentation, but the ideas in 
this section readily generalize to multivariate analyses.

The I-Step

The data augmentation algorithm is a two-step procedure that consists of an imputation step 
(I-step) and a posterior step (P-step). Procedurally, the I-step is identical to the stochastic 
regression procedure from Chapter 2. Specifi cally, the I-step uses an estimate of the mean 
vector and the covariance matrix to build a set of regression equations that predict the in-
complete variables from the observed variables. The bivariate analysis example is straightfor-
ward because there is only one pattern with missing data (the subset of cases with missing 
job performance scores), and thus only one regression equation. The imputation equation is

 JPi* = [β̂0 + β̂1(IQi)] + zi (7.1)

where JPi* is the imputed job performance rating for case i, the brackets contain the regres-
sion coeffi cients that generate the predicted job performance rating for that individual, and 
zi is a random residual from a normal distribution. The normal curve that generates the re-
siduals has a mean of zero and a variance equal to the residual variance from the regression 
of job performance on IQ (i.e., σ2

JP|IQ). Consistent with stochastic regression imputation, 
substituting an IQ score into the bracketed terms yields a predicted job performance rating. 
The predicted scores fall directly on a regression line (or a regression surface, in the multivari-
ate case), so adding a normally distributed residual term to each predicted value restores 
variability to the imputed data.

The P-Step

The ultimate goal of the imputation phase is to generate m complete data sets, each of which 
contains unique estimates of the missing values. Creating unique imputations requires dif-
ferent estimates of the regression coeffi cients at each I-step, and the purpose of the P-step is 
to generate alternate estimates of the mean vector and the covariance matrix (the building 
blocks of the I-step regression equations). Although this process relies heavily on Bayesian 
estimation principles, it is straightforward to understand at a conceptual level. Specifi cally, 
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the P-step begins by using the fi lled-in data from the preceding I-step to estimate the mean 
vector and the covariance matrix. Next, the algorithm generates a new set of parameter values 
by adding a random residual term to each element in �̂ and �̂. Randomly perturbing the 
parameter values is akin to drawing a new set of plausible estimates from a sampling distribu-
tion (or alternatively, a posterior distribution).

To illustrate the P-step in more detail, suppose that the mean and the variance of the 
fi lled-in job performance scores from a particular I-step are μ̂JP = 10 and σ̂2

JP = 9, respectively. 
The sampling distribution (or in the Bayesian context, the posterior distribution) of the mean 
is a normal curve with a standard deviation of σ̂/√⎯⎯N, so a new sample of 20 job performance 
scores should produce a mean that deviates from the current estimate by 3/√⎯2⎯0 = 0.67 
points, on average. To generate an alternate estimate of the mean, the P-step uses Monte 
Carlo simulation to draw a random residual term from a normal distribution with a mean of 
zero and a standard deviation of 0.67. Adding this residual to μ̂JP = 10 gives a new estimate 
of the job performance mean that randomly differs from that of the fi lled-in data. The same 
process generates new covariance matrix elements, but these parameters require a different 
residual distribution (the inverse Wishart distribution from Chapter 6).

Adding residual terms to the elements in the mean vector and the covariance matrix 
produces parameter values that randomly differ from those that produced the regression 
coeffi cients at the preceding I-step. Carrying the updated estimates forward to the next I-step 
yields a new set of regression coeffi cients and a different set of imputations. The new imputa-
tions carry forward to the next P-step, where the algorithm generates another set of plausible 
parameter estimates. Repeating this two-step procedure a large number of times creates mul-
tiple copies of the data, each of which contains unique estimates of the missing values.

7.3 A BAYESIAN DESCRIPTION OF THE IMPUTATION PHASE

The previous description of the data augmentation algorithm is conceptual in nature and 
omits many of the mathematical details. This section expands the previous ideas and gives a 
more precise explanation of the I-step and the P-step. In particular, I illustrate how the Bayes-
ian estimation principles from Chapter 6 apply to the imputation phase. In doing so, I con-
tinue to use the IQ and job performance scores from Table 7.1. Again, a bivariate analysis 
with a single incomplete variable is a very basic example, but surprisingly few changes occur 
when applying data augmentation to multivariate data.

The I-Step

As I explained in the previous section, the computational details of the I-step are identical to 
stochastic regression (i.e., use regression equations to predict the incomplete variables from 
the observed variables and add random residuals to the predicted scores). To illustrate the 
imputation process graphically, the top panel of Figure 7.2 shows a scatterplot of a set of 
imputed job performance ratings. The solid regression line corresponds to the predicted job 
performance scores (i.e., the values generated by the bracketed terms in Equation 7.1), and 
the dashed lines represent the random residuals (i.e., the zi values).
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From a Bayesian perspective, the imputed values are random draws from a conditional 
distribution that depends on the observed data and the estimates of the mean vector and the 
covariance matrix at a particular I-step. (Bayesian texts sometimes refer to this distribution as 
the posterior predictive distribution.) The bottom panel of Figure 7.2 imposes normal re-
sidual distributions over the regression line at IQ values of 80, 90, and 100. Each of the 
normal curves represents the conditional distribution of job performance ratings, given the 
particular IQ score on the horizontal axis (i.e., the distribution of performance ratings for a 
hypothetical subsample of cases that share the same IQ). The regression line intersects each 
distribution at its mean, so the predicted job performance ratings (i.e., the bracketed terms 
in Equation 7.1) are conditional means (i.e., the expected performance rating for a hypo-
thetical subsample of cases that share the same IQ). The normal curves represent the distri-
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FIGURE 7.2. The top panel shows a hypothetical imputed data set. The solid regression line de-
notes the predicted job performance scores, and the dashed lines represent the random residuals. The 
bottom panel shows normal curves imposed over the regression line at IQ values of 80, 90, and 100. 
These curves represent the conditional distribution of job performance ratings at three different IQ 
scores (i.e., the distribution of performance ratings for a hypothetical subsample of cases that share the 
same IQ). The imputed values are random draws from the conditional distributions.
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bution of the residuals, so adding a zi value to each predicted score effectively simulates a 
random draw from a distribution of plausible replacement values that is contingent on the 
observed IQ data.

More formally, the following equation summarizes the I-step

 Yt* ∼ p(Ymis|Yobs, θ*t–1) (7.2)

where Yt* represents the imputed values at I-step t, Ymis is the missing portion of the data 
(e.g., the missing job performance ratings), Yobs is the observed portion of data (e.g., the ob-
served IQ scores), and θ*t–1 denotes the mean vector and the covariance matrix from the 
preceding P-step (i.e., the parameter values that generate the imputation regression equa-
tions). In words, Equation 7.2 says that the imputed values at a particular I-step are random 
draws from a distribution (the ∼ symbol means “distributed as”) of plausible replacement 
values that depends on the observed data and the current parameter estimates. Regardless of 
how you conceptualize the I-step, the computational details amount to stochastic regression 
imputation.

The P-Step

The P-step is essentially a standalone Bayesian analysis that describes the posterior distribu-
tions of the mean vector and the covariance matrix. Recall that a Bayesian analysis consists 
of three steps: specify a prior distribution, estimate a likelihood function, and defi ne the 
posterior distribution. This section presents the relevant posterior distributions but provides 
no background on their derivations. Chapter 6 describes the Bayesian analytic steps in some 
detail, so it may be useful to review Sections 6.8 through 6.10 before proceeding.

Creating multiple sets of imputed values requires different estimates of the mean vector 
and the covariance matrix at each I-step, and the purpose of the P-step is to generate alternate 
parameter values. The Bayesian framework is ideally suited for this task because it views a 
parameter as a random variable that has a distribution of values. In the previous section, I 
stated that the P-step generates new parameter estimates by adding a random residual term 
to each element in �̂ and �̂. This description is conceptually accurate, but mathematically 
imprecise. More accurately, the P-step randomly draws a new mean vector and a new covari-
ance matrix from their respective posterior distributions. Throughout the chapter, I refer to 
these new estimates as simulated parameters because Monte Carlo computer simulation 
techniques generate their values.

To begin, the P-step uses the fi lled-in data from the preceding I-step to compute the 
sample means and the sample sum of squares and cross products matrix (i.e., �̂ and �̂, re-
spectively). Having obtained these quantities, note that the posterior distribution of the co-
variance matrix is

 p(�|�̂, Y ) ∼ W–1(N – 1, �̂) (7.3)

where p(�|�̂, Y ) denotes the posterior, �̂ is the vector of sample means, Y is the fi lled-in data 
matrix from the preceding I-step, ∼ W –1 represents the inverse Wishart distribution, N – 1 is 
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the degrees of freedom (i.e., the distribution’s expected value), and �̂ is the sample sum of 
squares and cross products matrix (i.e., the matrix that defi nes the spread of the distribu-
tion). Notice that this posterior distribution has the same form as the one from Chapter 6 
(see Equation 6.20). Having defi ned the shape of the posterior distribution, the data aug-
mentation algorithm uses Monte Carlo simulation techniques to “draw” a new covariance 
matrix from the posterior. Procedurally, this amounts to using a computer to generate a 
matrix of random numbers from the distribution in Equation 7.3. To avoid confusion with 
the sample estimates, I denote the simulated covariance matrix as �*.

The algorithm uses a similar procedure to create a new set of means. Specifi cally, the 
sample means and the simulated covariance matrix defi ne the posterior distribution of the 
mean vector, as follows:

 p(�̂|Y, �) ∼ MN(�̂, N–1�*) (7.4)

where p(�̂|Y, �) is the posterior, ∼ MN denotes a multivariate normal distribution, �̂ is the 
vector of sample means, and �* is the simulated covariance matrix. Again, this posterior 
distribution is the same as the one described in Chapter 6 (see Equation 6.9). Finally, Monte 
Carlo computer simulation techniques generate a new set of means from the distribution in 
Equation 7.4. I denote the resulting estimates as �̂*.

After drawing new parameter values from the posterior distributions, the subsequent 
I-step uses the updated estimates to construct a new set of regression coeffi cients and a dif-
ferent set of imputations. The new imputations carry forward to the next P-step, where the 
algorithm draws another set of plausible parameter estimates. Repeating the two-step proce-
dure a number of times generates multiple copies of the data, each of which contains unique 
estimates of the missing values.

More formally, the following equation summarizes the P-step

 �t* ~ p(�|Yobs, Yt*) (7.5)

where �t* denotes the simulated parameter values from P-step t (i.e., �* and �*), Yobs is the 
observed data (e.g., the observed IQ scores), and Yt* contains the imputed values from the 
preceding I-step. In words, Equation 7.5 says that the simulated parameter values from 
P-step t are random draws from a distribution that depends on the observed data and the 
fi lled-in values from the preceding I-step. A lack of familiarity with Bayesian estimation can 
make it diffi cult to grasp the nuances of the P-step, but the process described above is con-
ceptually straightforward: use the fi lled-in data to estimate the mean vector and the covari-
ance matrix and generate a new set of plausible parameter values by adding a random residual 
to each element in �̂ and �̂.

7.4 A BIVARIATE ANALYSIS EXAMPLE

Having outlined data augmentation in more detail, I use the IQ and job performance scores 
in Table 7.1 to illustrate a worked example. Multiple imputation software programs fully 
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automate the data augmentation procedure, so there is no need to perform the computa-
tional steps manually. Nevertheless, examining what happens at each step of the process is 
instructive and gives some insight into the inner workings of the “black box.”

Consistent with a maximum likelihood analysis, data augmentation requires an initial 
estimate of the mean vector and the covariance matrix to get started. For reasons discussed 
later, maximum likelihood parameter estimates make good starting values, so I use the esti-
mates from Chapter 4 for this purpose.

 
�̂0

 = [μ̂IQ] = [100.000] μ̂JP 10.281

 
�̂0 =

 [ σ̂2
IQ

 
 σ̂IQ,JP] = [189.600 23.392] σ̂JP,IQ σ̂2

JP 23.392 8.206

Throughout this section, I use a numeric subscript to index each data augmentation cycle, 
and the value of zero indicates that these parameter estimates are starting values that precede 
the fi rst I-step.

The initial I-step uses the elements in �̂0 and �̂0 to derive the regression equation that 
fi lls in the missing data. The necessary estimates are

 σ̂IQ,JP β̂1 = —–— (7.6)
 σ̂2

IQ

 β̂0 = μ̂JP – β̂1μ̂IQ (7.7)

 σ̂2
JP|IQ = σ̂2

JP – β̂2
1σ̂2

IQ (7.8)

where β̂0 and β̂1 are the intercept and slope coeffi cients, respectively, and σ̂2
JP|IQ is the resid-

ual variance from the regression of job performance on IQ. The means, variances, and covari-
ances that appear on the right side of the equations are elements from the mean vector and 
the covariance matrix.

To begin, substituting the appropriate elements of �̂0 and �̂0 into Equations 7.6 through 
7.8 produces the following regression estimates: β̂0 = –.057, β̂1 = 0.123, and σ̂2

JP|IQ = 5.320. 
Next, substituting the regression coeffi cients and the observed IQ scores into the bracketed 
terms in Equation 7.1 generates predicted job performance ratings for the 10 incomplete 
cases. The predicted scores fall directly on a regression line, so adding normally distributed 
residual terms restores variability to the imputed data. I used Monte Carlo simulation meth-
ods to generate these residuals from a normal distribution with a mean of zero and a variance 
equal to 5.320 (the previous residual variance estimate), and I subsequently added these 
terms to each predicted job performance rating. Table 7.2 summarizes the imputation steps 
and shows the predicted scores, residual terms, and the imputed values. Again, each imputed 
value is a random draw from a distribution of plausible job performance ratings that is con-
ditional on a particular IQ score.

The P-step is a standalone Bayesian analysis, the goal of which is to describe the poste-
rior distributions of the mean vector and the covariance matrix. To begin, the P-step uses the 
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complete data set from the preceding I-step to estimate the mean vector and the covariance 
matrix. The data in Table 7.2 yield the following estimates.

 
�̂1

 = [100.000] 10.063

 
�̂1 =

 [199.579 25.081] 25.081 7.270

Again, the numeric subscript denotes the fact that �̂1 and �̂1 are estimates from the fi rst data 
augmentation cycle.

The ultimate goal of the P-step is to sample new estimates of the mean vector and the 
covariance matrix from their respective posterior distributions, so that the next I-step can use 
these updated parameter values to construct a different set of regression coeffi cients. The 
posterior distribution of the covariance matrix depends on the sample size, the sample 
means, and the sum of squares and cross products matrix, �̂1 = (N – 1)�̂1. Substituting �̂1 
into Equation 7.3 gives the following posterior distribution.

 p(�|�̂1, Y) ∼ W–1(N – 1, �̂1)

Next, I used Monte Carlo simulation to draw a new covariance matrix from this posterior. 
Procedurally, this amounts to programming a computer to generate a matrix of random num-
bers from an inverse Wishart distribution with 19 degrees of freedom and a sum of squares 

TABLE 7.2. Imputed Values from the Initial I-Step of the 
Bivariate Example

 Job Predicted Random Imputed
IQ performance score residual value

 78 — 7.567 1.247 8.814
 84 — 8.307 1.023 9.330
 84 — 8.307 –1.586 6.721
 85 — 8.430 1.285 9.716
 87 — 8.677 –0.228 8.449
 91 — 9.171 0.469 9.640
 92 — 9.294 –3.663 5.631
 94 — 9.541 –2.389 7.152
 94 — 9.541 –0.329 9.212
 96 — 9.787 –0.189 9.598
 99  7 — — —
105 10 — — —
105 11 — — —
106 15 — — —
108 10 — — —
112 10 — — —
113 12 — — —
115 14 — — —
118 16 — — —
134 12 — — —
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and cross products matrix equal to �̂1. Interested readers can consult Schafer (1997, p. 184) 
for specifi c programming instructions. Monte Carlo simulation generated the following co-
variance matrix.

 
�1* = [488.873 36.663] 36.663 7.493

Consistent with the previous section, the asterisk denotes the fact that the covariance matrix 
is a simulated estimate.

The sample means and the simulated covariance matrix defi ne the posterior distribution 
of the mean vector, as follows:

 p(�|Y, �) ∼ MN(�̂1, N–1�*1)

To draw a new estimate of the mean vector from its posterior, I used Monte Carlo simulation 
to generate two data points from a multivariate normal distribution with a mean vector of �̂1  
and a covariance matrix equal to N–1�*1. This gave the following estimates.

 
�1* = [87.929] 8.162

Conceptually, using computer simulation procedures to generate �*1 and �*1 is akin to add-
ing a random residual term to each element in �̂1 and �̂1. Regardless of how you think about 
it, this process yields new parameter values that randomly differ from the estimates that gen-
erated the regression coeffi cients at the initial I-step.

Having completed the fi rst cycle, data augmentation returns to the I-step and uses the 
simulated parameter values to generate a new set of imputations. To illustrate, I estimated the 
regression parameters for the second I-step by substituting the appropriate elements of �*1 
and �*1 into Equations 7.6 through 7.8. Doing so produced the following estimates: β̂0 = 
2.564, β̂1 = 0.075, and σ̂2

JP|IQ = 4.743. Table 7.3 shows the predicted scores, residual terms, 
and imputed values from the second I-step. As before, the bracketed terms in Equation 7.1 
generate the predicted job performance ratings for the 10 incomplete cases, and I augmented 
each predicted score with a random residual term from a normal distribution with a mean of 
zero and a variance equal to 4.743. The regression coeffi cients from the second I-step are 
randomly different from those at the previous I-step, so it follows that the imputations in 
Table 7.3 are different from those in Table 7.2.

The second P-step is procedurally identical to the fi rst. As before, the P-step uses the 
fi lled-in data to estimate the mean vector and the covariance matrix. The data in Table 7.3 
yield the following estimates.

 
�̂2

 = [100.000] 10.767

 
�̂2 =

 [199.579 18.624] 18.624 5.818
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The sample size, the sample means, and the sum of squares and cross products matrix defi ne 
the posterior distribution of the covariance matrix

 p(�|�̂2, Y) ∼ W–1(N – 1, �̂2)

and using Monte Carlo simulation to generate a random draw from this distribution produced 
the following estimates:

 
�2* = [258.754 26.418] 26.418 7.929

The sample means and the simulated covariance matrix defi ne the posterior distribution of 
the mean vector

 p(�|Y, �) ∼ MN(�̂2, N–1�*2)

and I again used Monte Carlo procedures to draw a new pair of means from this distribution.

 
�2* = [101.277] 10.339

TABLE 7.3. Imputed Values from the Second I-Step of the 
Bivariate Example

 Job Predicted Random Imputed
IQ performance score residual value

 78 — 8.413 0.261 8.675
 84 — 8.863 1.358 10.221
 84 — 8.863 –1.576 7.287
 85 — 8.938 1.914 10.852
 87 — 9.088 –0.297 8.791
 91 — 9.388 2.725 12.113
 92 — 9.463 –0.510 8.953
 94 — 9.613 3.000 12.613
 94 — 9.613 –1.399 8.214
 96 — 9.763 0.865 10.628
 99  7 — — —
105 10 — — —
105 11 — — —
106 15 — — —
108 10 — — —
112 10 — — —
113 12 — — —
115 14 — — —
118 16 — — —
134 12 — — —
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As you might have guessed, the next I-step constructs a new regression equation from �*2 
and �*2 and uses this equation to generate another set of imputations. The subsequent P-step 
uses the parameter estimates from fi lled-in data (i.e., �̂3 and �̂3) to defi ne the posterior dis-
tributions, from which it draws yet another set of plausible parameter values.

Data augmentation repeatedly cycles between the I-step and the P-step, often for several 
thousand iterations. Unlike maximum likelihood estimation, the algorithm generates param-
eter estimates that randomly vary across successive P-steps, so the elements in �* and �* 
never converge to a single value. For example, Table 7.4 shows the simulated parameters 
from the fi rst 20 P-steps of the bivariate analysis. Notice that the estimates randomly bounce 
around from one cycle to the next and never land on a stationary value. This is true for every 
parameter, including those associated with the complete IQ variable (i.e., μIQ and σ2

IQ). The 
random behavior of the parameter estimates across the P-steps leads to a very different defi -
nition of convergence and adds a layer of complexity that was not present with maximum 
likelihood estimation. I discuss the issue of convergence in considerable detail later in the 
chapter.

7.5 DATA AUGMENTATION WITH MULTIVARIATE DATA

The previous bivariate illustration is relatively straightforward because the missing values are 
isolated to a single variable. Applying data augmentation to multivariate data is typically more 

TABLE 7.4. Simulated Parameters from the First 20 P-Steps of the 
Bivariate Example

P-Step μ*IQ μ*JP σ2*IQ σ*JP,IQ σ2*JP

 1 87.929 8.162 488.873 36.663 7.493
 2 101.277 10.339 258.754 26.418 7.929
 3 105.008 11.088 234.612 35.607 9.631
 4 104.608 11.414 186.003 31.542 10.205
 5 100.621 11.080 311.717 38.136 9.161
 6 99.774 9.929 191.862 19.771 6.655
 7 95.161 9.959 316.123 34.109 7.641
 8 106.298 11.451 308.825 26.468 10.873
 9 99.470 9.862 218.068 18.509 10.136
10 102.117 11.976 349.522 27.239 13.159
11 99.774 10.797 221.643 –0.813 7.077
12 97.273 11.903 261.294 0.813 4.329
13 92.820 10.882 234.744 19.840 12.870
14 99.974 10.424 256.293 4.937 4.881
15 98.452 10.573 327.198 3.915 4.365
16 103.664 11.705 216.647 10.612 5.964
17 103.860 11.306 202.434 21.347 12.383
18 97.445 11.595 384.950 3.103 3.795
19 99.501 11.560 218.074 11.698 5.258
20 93.604 11.099 127.753 10.401 7.271
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complex because each missing data pattern requires a unique regression equation (or set of 
equations). Despite this complication, the basic procedure is the same and only requires a 
slight modifi cation to the I-step. To illustrate the changes to the I-step, I use the full data set 
in Table 7.1. Data augmentation with three variables is still relatively straightforward, but the 
logic of this example generalizes to data sets with any number of variables. Finally, note that 
the procedural details of the P-step are unaffected by the shift from bivariate to multivariate 
data, so there is no need for further discussion of this aspect of the procedure.

Not including the complete cases, there are three missing data patterns in Table 7.1: 
cases that are missing (1) job performance ratings only, (2) well-being scores only, and 
(3) both job performance and well-being scores. The presence of multiple missing data pat-
terns complicates the imputation process somewhat because each missing data pattern re-
quires a unique regression equation. To illustrate, Table 7.5 shows the regression equations 
for the three missing data patterns. Consistent with the bivariate example, the I-step uses the 
mean vector and the covariance matrix from the preceding P-step to estimate the regression 
coeffi cients and the corresponding residual variances. After constructing the regression equa-
tions, the algorithm generates predicted values by substituting the observed data into the 
relevant regression equation, and it augments each predicted score with a normally distrib-
uted residual term. Each regression equation now requires its own residual distribution, but 
the basic idea is the same as before. Finally, whenever two or more variables are missing, the 
residual distribution is multivariate normal with a mean vector of zero and a covariance ma-
trix equal to the residual covariance matrix from the multivariate regression of the incom-
plete variables on the complete variables. For example, the third missing data pattern (i.e., 
the subset of cases with missing job performance and well-being scores) requires residuals 
from a multivariate normal distribution with a covariance matrix equal to the residual covari-
ance matrix from the multivariate regression of job performance and well-being on IQ.

Estimating unique regression equations for each missing data pattern is the only pro-
cedural change associated with multivariate data. The number of missing data patterns can 
often be quite large, but a computational algorithm called the sweep operator simplifi es the 
imputation process. The sweep operator repeatedly applies a series of transformations to � 
and � and yields new matrices that contain the desired regression coeffi cients and residual 
variances. A number of detailed descriptions of the sweep operator are available to readers 
who are interested in additional details (e.g., Dempster, 1969; Goodnight, 1979; Little & 
Rubin, 2002). The changes to the I-step have no bearing on the P-step, and the process of 
simulating new parameter values is identical to the earlier bivariate example.

TABLE 7.5. I-Step Regression Equations for a Multivariate Analysis

Missing variables Regression equation Residual distribution

Job performance JPi* = β̂0 + β̂1(IQi) + β̂2(WBi) + zi zi ∼ N(0, σ̂2
JP|IQ,WB)

Well-being WBi* = β̂0 + β̂1(IQi) + β̂2(JPi) + zi zi ∼ N(0, σ̂2
WB|IQ, JP)

Job performance JPi* = β̂0 + β̂1(IQi) + zi Zi ∼ MN(0, �̂JP,WB|IQ)
 and well-being WBi* = β̂0 + β̂1(IQi) + zi
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7.6 SELECTING VARIABLES FOR IMPUTATION

Deciding which variables to include in the imputation phase is an important aspect of a mul-
tiple imputation analysis. At a minimum, the imputation process should include any variable 
that you intend to use in a subsequent statistical analysis. Excluding an analysis model vari-
able will attenuate its associations with other variables, even if the data are MCAR or MAR. 
This underscores the importance of variable selection because an inadequate imputation 
model can introduce biases that would not occur in a maximum likelihood analysis. Fortu-
nately, including too many variables in the imputation process is unlikely to produce bias, so 
adopting a liberal approach to variable selection is usually a good strategy. The primary down-
side of including too many variables is the possibility of convergence problems (as an upper 
limit, the number of variables cannot exceed the number of cases).

In addition to including analysis model variables, the imputation phase should preserve 
any higher-order effects that are of interest in the analysis phase as well as any other special 
features of the data. In particular, researchers in the behavioral and the social sciences are 
often interested in estimating interaction (i.e., moderation) effects where the magnitude of the 
association between two variables depends on a third variable (e.g., a regression model where 
gender moderates the association between psychological well-being and job performance). In 
addition, many common statistical analyses address implicit interaction effects. For example, 
multiple group structural equation models and multilevel models do not necessarily contain 
interaction terms, but they do posit group differences in the mean structure, the covariance 
structure, or both. Regardless of whether the higher-order effect is an explicit part of the 
statistical analysis or a hidden feature of the data, it is necessary to specify an imputation 
model that preserves any complex associations among the variables. Again, failing to do so 
can bias the subsequent analysis results, regardless of the missing data mechanism. I address 
this topic in detail in Chapter 9, but for now, it is important to raise awareness of the issue.

Chapter 5 introduced the idea of an inclusive analysis strategy that incorporates a num-
ber of auxiliary variables into the missing data handling procedure (Collins, Schafer, & Kam, 
2001). Recall that an auxiliary variable is one that is ancillary to the substantive research 
questions but is a potential correlate of missingness or a correlate of an incomplete analysis 
model variable. Methodologists have long recommended the use of auxiliary variables in a 
multiple-imputation analysis. For example, Rubin (1996, p. 479) stated that “the advice has 
always been to include as many variables as possible when doing multiple imputation.” Us-
ing auxiliary variables in a multiple imputation analysis is particularly straightforward be-
cause the variables only play a role in the imputation phase. Including auxiliary variables in 
the imputation process infuses the fi lled-in values with the auxiliary information, so there is 
no need to include the extra variables in the subsequent analysis phase. This is in contrast to 
maximum likelihood estimation, which incorporates auxiliary variables via the slightly awk-
ward saturated correlates approach. As an aside, multiple imputation can generally handle a 
larger set of auxiliary variables than a maximum likelihood analysis, so there is usually no 
reason to limit the number of auxiliary variables. Chapter 5 describes the process of identify-
ing auxiliary variables, so that information need not be reiterated here.

Finally, although it is important to include all analysis variables in the imputation phase, 
it makes no difference whether a particular variable will ultimately serve as an explanatory 



202 APPLIED MISSING DATA ANALYSIS

variable or an outcome variable. For example, Chapter 8 illustrates a multiple regression 
analysis in which psychological well-being and job satisfaction predict job performance. Both 
predictor variables have missing data, but the imputation model uses the observed job per-
formance scores to impute the missing values. At fi rst glance, using an outcome variable to 
impute an incomplete independent variable may seem incorrect and somewhat circular. How-
ever, the addition of a random residual term to each imputed value eliminates any bias that 
might result from doing so (Little & Rubin, 2002). In fact, multiple imputation programs 
make no distinction between independent and dependent variables and only require you to 
specify a set of input variables.

7.7 THE MEANING OF CONVERGENCE

The data augmentation algorithm belongs to a family of Markov Chain Monte Carlo (i.e., 
MCMC) procedures (Jackman, 2000). The goal of a Markov chain Monte Carlo algorithm is 
to simulate random draws from a distribution (e.g., random draws from the posterior distri-
bution or from the distribution of missing values). Repeatedly cycling between the I- and 
P-steps creates a so-called data augmentation chain, as follows:

 Y1*, θ1*, Y2*, θ2*, Y3*, θ3*, Y4*, θ4*, . . . , Yt*, θt*

where Yt* represents the imputed values at I-step t and θt* contains the simulated parameter 
values at P-step t. Over the course of a long enough chain, the I-step generates imputations 
from a large array of plausible parameter values, so the Yt* values are effectively drawn from 
a distribution that averages over the entire range of the posterior distribution. Similarly, the 
P-step generates parameters from a large number of plausible Yt* values, so the simulated 
parameters form a posterior distribution that averages over all possible values of the missing 
data.

Simulating random draws from a distribution requires a new defi nition of convergence. 
Whereas maximum likelihood converges when the parameter estimates no longer change 
across successive iterations, data augmentation converges when the distributions become 
stable and no longer change in a systematic fashion (i.e., the distributions become station-
ary). The complicated aspect of this defi nition is that each step in the data augmentation 
chain is dependent on the previous step. That is, the simulated parameters at P-step t de-
pend on the imputed values at the preceding I-step, the imputations at I-step t + 1 depend 
on the simulated parameters from P-step t, the simulated parameters at P-step t + 1 depend on 
the imputed values at I-step t + 1, and so on. Although the behavior of the data augmenta-
tion algorithm is seemingly random from one cycle to the next, the mutual dependence of 
the I- and P-steps induces a correlation between the simulated parameters from successive 
P-steps. By extension, analyzing data sets from successive I-steps is inappropriate because the 
resulting imputations are also dependent (i.e., imputations from adjacent I-steps do not origi-
nate from a stable distribution).

Researchers often assess convergence by determining the number of data augmentation 
cycles that need to lapse before the imputations at iteration t + k are independent of those 
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at iteration t. Monitoring the behavior of the simulated parameter values across a large num-
ber of P-steps is one way to do this. For example, suppose that 10 data augmentation cycles 
separate two sets of simulated parameter values, θt* and θt*+10. A correlation between θt* and 
θt*+10 suggests that the posterior distribution is systematically changing after 10 cycles. Con-
sequently, analyzing data sets that are separated by only 10 data augmentation cycles is inap-
propriate because the imputed values are also dependent. In contrast, suppose that θt* is 
uncorrelated with the simulated parameters from 50 cycles later in the chain. The lack of 
correlation suggests that θt* and θt*+50 originate from a stable posterior distribution, so the 
two sets of parameter values should produce independent imputations. From a practical per-
spective, this implies that at least 50 data augmentation cycles need to separate the data sets 
that you analyze in the subsequent analysis phase.

7.8 CONVERGENCE DIAGNOSTICS

Methodologists have proposed dozens of techniques for assessing the convergence of data 
augmentation, the majority of which are computationally complex and diffi cult to implement 
(e.g., Gelman & Rubin, 1992; Geweke, 1992; Geyer, 1992; Johnson, 1996; Mykland, Tierney, 
& Yu, 1995; Ritter & Tanner, 1992; Roberts, 1992; Zellner & Min, 1995). A comprehensive 
review of convergence diagnostics is beyond the scope of this chapter, but interested readers 
can consult Cowles and Carlin (1996) for an overview of some of these procedures. I focus 
primarily on the use of graphical displays (time-series plots and autocorrelation function 
plots) because these methods are readily available in multiple imputation software packages. 
Graphical techniques are certainly not foolproof, but they are straightforward to implement 
and are relatively easy to understand.

Assessing convergence requires an exploratory data augmentation chain. The purpose of 
the exploratory analysis is to gather the simulated parameter values from a large number of 
P-steps and use graphical displays to examine their behavior (the literature sometimes refers 
to this as an output analysis). Establishing guidelines for the length of the exploratory chain 
is diffi cult because a number of factors infl uence convergence speed (e.g., the missing data 
rate, the choice of starting values for the mean vector and the covariance matrix). Running 
the data augmentation algorithm for several thousand cycles is probably suffi cient in most 
situations, but data sets with a large proportion of missing values may require longer chains. 
In this section, I use the small data set in Table 7.1 to illustrate graphical diagnostic tech-
niques. I generated an exploratory data augmentation chain of 5,000 cycles and saved the 
simulated parameters from each P-step to a fi le for further analysis. As you will see, the infor-
mation from this exploratory analysis is important for planning the fi nal data augmentation 
chain that generates the imputed data sets.

What Does EM Tell You about Convergence?

Using the EM algorithm (an algorithm that generates maximum likelihood estimates of the 
mean vector and the covariance matrix; see Chapter 4) to estimate the mean vector and the 
covariance matrix is a useful precursor to a multiple imputation analysis. EM estimates make 
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good starting values for data augmentation because they tend to be representative of the 
posterior distribution. Consequently, data augmentation will generally converge more rapidly 
from a set of EM starting values. In addition, the number of EM iterations is a useful diagnos-
tic for assessing convergence. Schafer and colleagues (Schafer, 1997; Schafer & Olsen, 1998) 
suggest that EM converges more slowly than data augmentation, so researchers often esti-
mate convergence speed by doubling the number of EM iterations. This approach is far from 
ideal, and blindly relying on the “two times the number of EM iterations” rule of thumb is 
not a good way to assess convergence. Nevertheless, the EM algorithm is a good starting 
point. Returning to the data in Table 7.1, note that the EM algorithm converged in 60 itera-
tions, so data augmentation may require even fewer cycles to converge. However, doubling 
the number of EM iterations can provide a more conservative initial guess about convergence 
speed.

7.9 TIME-SERIES PLOTS

A time-series plot displays the simulated parameter values from the P-step on the vertical 
axis and the data augmentation cycles along the horizontal axis. To illustrate, consider the 
exploratory data augmentation chain that I generated from the small job performance data 
set. Figure 7.3 shows time-series plots for the job performance and the psychological well-
being means. I arbitrarily chose to plot the parameter values from the fi rst 200 data augmen-
tation cycles, but did so after inspecting the plots over the entire chain. The top panel of 
Figure 7.3 suggests that the well-being means bounce around in a seemingly random fashion 
with no discernible long-term trends. The absence of trend is an ideal situation and suggests 
that this parameter quickly converges to a stable distribution. In contrast, the bottom panel 
of the fi gure shows a time-series plot that is somewhat less ideal (though not bad). Specifi -
cally, notice that the job performance means exhibit systematic upward and downward 
trends that last for 40 iterations or more. These systematic trends suggest that this parame-
ter’s posterior distribution requires at least 40 P-steps to converge (i.e., 40 data augmentation 
cycles need to lapse before the simulated parameters become independent). I examined the 
time-series plots for all of the means and covariance matrix elements, and they were largely 
consistent with those in Figure 7.3.

Figure 7.3 emphasizes that the simulated parameters can converge at different rates. For 
example, the job performance mean systematically wandered up and down while the well-
being mean settled into a random pattern almost immediately. Perhaps not surprisingly, the 
missing data rate—or more accurately, the fraction of missing information—is responsible 
for these differences. The fraction of missing information quantifi es the proportion of a pa-
rameter’s sampling error that is due to missing data. I describe this concept in more detail in 
Chapter 8, but you can think of missing information as a measure that combines the missing 
data rate and the magnitude of the correlations among the variables. For example, the frac-
tion of missing information and the proportion of missing data are roughly equal when vari-
ables are uncorrelated, but the missing information is typically less than the missing data rate 
when variables are correlated because the shared variability among the variables mitigates the 
loss of information.
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Because the fraction of missing information tends to vary across the elements in the 
mean vector and the covariance matrix, you should attempt to examine time-series plots for 
every parameter that is affected by missing data. Paying particularly close attention to param-
eters with high rates of missing information (i.e., high missing data rates) is a good idea be-
cause these parameters tend to converge most slowly. Multivariate data sets often have a 
prohibitively large number of covariance matrix elements, so the fraction of missing infor-
mation can serve as a screening device for identifying the most important time-series plots 
(multiple imputation programs typically report these values). As shown in the next chapter, 
the fraction of missing information infl uences the magnitude of the multiple-imputation 
standard errors, so inspecting these values is often useful in and of itself.

Worst Linear Function

In addition to inspecting the behavior of individual parameters, it is useful to examine a 
summary measure that Schafer (1997) terms the worst linear function of the parameters. The 
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FIGURE 7.3. Time-series plots for the simulated well-being and job performance means. The top 
panel shows a time-series plot that exhibits no systematic trends. The bottom panel shows systematic 
trends that last for 40 iterations or more.
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worst linear function combines the simulated parameters from each P-step into a single 
composite that weights each parameter according to its convergence speed. The idea behind 
the worst linear function is to create a summary measure that converges more slowly than 
the individual parameters, so the time series plot of the worst linear function should provide 
a conservative gauge of convergence speed. However, Schafer (1997) cautions that the worst 
linear function is not a defi nitive diagnostic tool, because other combinations of the simu-
lated parameters may converge at an even slower rate.

The worst linear function is a weighted sum of the simulated parameters at P-step t

 WLFt = �T�t* (7.9)

where �t* is a column vector that contains the simulated parameter values and � is a weight 
vector that quantifi es the change in the corresponding maximum likelihood estimates at the 
fi nal EM iteration. Parameters that converge slowly exhibit the greatest change at the fi nal 
iteration, so � assigns larger weights to parameters that converge slowly. The complete-data 
parameters do not change at the fi nal EM iteration, so they do not contribute to the function 
(the weights are zero for these parameters). Finally, note that the worst linear function can 
take on positive or negative values because it centers the parameters in �t* at their maximum 
likelihood estimates.

With regard to the exploratory data chain from the small job performance data set, Fig-
ure 7.4 shows the time-series plot of the worst linear function. Notice that the function ex-
hibits systematic upward and downward trends that last for approximately 50 iterations. 
Taken together, Figures 7.3 and 7.4 suggest that the joint posterior distribution is stable (i.e., 
the simulated parameter values are no longer dependent) after about 50 data augmentation 
cycles, although certain parameters (e.g., the well-being mean) converge far more rapidly. 
From a practical perspective, this implies that at least 50 data augmentation cycles need to 
separate the data sets that you analyze in the subsequent analysis phase. Doubling or tripling 
this number provides an extra margin of safety.
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 The Imputation Phase of Multiple Imputation 207

7.10 AUTOCORRELATION FUNCTION PLOTS

The systematic trends in the previous time-series plots suggest that certain parameters are 
serially dependent across successive data augmentation cycles. The autocorrelation quanti-
fi es the magnitude and duration of this dependency and is an important diagnostic tool for 
assessing convergence. The lag -k autocorrelation is the Pearson correlation between sets of 
parameter values separated by k iterations in the data augmentation chain. To illustrate, re-
consider the exploratory chain of 5,000 data augmentation cycles that I generated from the 
data in Table 7.1. The Lag-1 columns of Table 7.6 show the simulated job performance 
means from P-steps 1 through 10 and 4,991 through 5,000. Notice that the one row (i.e., 
one data augmentation cycle) offsets the parameter values, such that the mean at P-step 2 is 
coupled to the mean at P-step 1, the mean at P-step 3 is linked to the mean at P-step 2, and 
so on. Computing the Pearson correlation between the 4,999 pairs of parameter values gives 
the lag-1 autocorrelation, r1 = 0.61. This correlation indicates that the job performance mean 
at P-step t is highly dependent on the mean at the preceding iteration. Computing additional 
lag-k correlations can help determine the duration of this dependency. For example, Table 7.6 
also shows data excerpts for the lag-2 and the lag-3 autocorrelations. The lag-2 autocorrela-
tion quantifi es the dependency between estimates separated by two iterations (e.g., the mean 
from P-step 3 is linked to the estimate from P-step 1, the mean at P-step 4 is coupled with 
the mean from P-step 2, and so on), and the lag-3 autocorrelation separates the simulated 

TABLE 7.6. Data for the Lag–1, Lag–2, and Lag–3 Autocorrelations

 Simulated values Parameter values for autocorrelation computations

P-step μ*JP   Lag-1 Lag-2 Lag-3 

 1  8.16  8.16 —  8.16 —  8.16 —
 2 10.34 10.34  8.16 10.34 — 10.34 —
 3 11.09 11.09 10.34 11.09  8.16 11.09 —
 4 11.41 11.41 11.09 11.41 10.34 11.41  8.16
 5 11.08 11.08 11.41 11.08 11.09 11.08 10.34
 6  9.93  9.93 11.08  9.93 11.41  9.93 11.09
 7  9.96  9.96  9.93  9.96 11.08  9.96 11.41
 8 11.45 11.45  9.96 11.45  9.93 11.45 11.08
 9  9.86  9.86 11.45  9.86  9.96  9.86  9.93
 10 11.98 11.98  9.86 11.98 11.45 11.98  9.96
 … … … … … … … …
4991 10.66 10.66 11.29 10.66 10.88 10.66  9.53
4992 11.11 11.11 10.66 11.11 11.29 11.11 10.88
4993 12.13 12.13 11.11 12.13 10.66 12.13 11.29
4994 10.54 10.54 12.13 10.54 11.11 10.54 10.66
4995 11.22 11.22 10.54 11.22 12.13 11.22 11.11
4996 10.63 10.63 11.22 10.63 10.54 10.63 12.13
4997  9.94  9.94 10.63  9.94 11.22  9.94 10.54
4998 12.17 12.17  9.94 12.17 10.63 12.17 11.22
4999 11.79 11.79 12.17 11.79  9.94 11.79 10.63
5000 11.34 11.34 11.79 11.34 12.17 11.34  9.94
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parameter values by three iterations. The estimates of the lag-2 and lag-3 correlations are r2 
= 0.52 and r3 = 0.46, respectively.

An autocorrelation function plot (also known as a correlogram) is a graphical sum-
mary that displays the autocorrelation values on the vertical axis and the lag values on the 
horizontal axis. For example, Figure 7.5 shows the autocorrelation function plots for the job 
performance and the well-being means. The horizontal dashed lines represent the two-tailed 
critical values for an alpha level of 0.05 (Bartlett, 1946). The top panel of Figure 7.5 shows 
that autocorrelation in the well-being means drops to within sampling error of zero almost 
immediately. This suggests that the parameter’s distribution becomes stable after a very small 
number of data augmentation cycles. In contrast, the bottom panel of the fi gure shows auto-
correlations that exceed chance levels (i.e., fall outside the critical values) for nearly 60 data 
augmentation cycles. This suggests that the posterior distribution of the job performance 
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FIGURE 7.5. Autocorrelation function plots (correlograms) for the simulated well-being and job 
performance means. The top plot shows autocorrelations (denoted by a triangle symbol) that drop to 
within sampling error of zero almost immediately. The bottom plot shows nonzero autocorrelations 
that persist for nearly 60 iterations.
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mean requires approximately 60 data augmentation cycles to become stationary. As an aside, 
autocorrelations are subject to considerable sampling fl uctuation, so data augmentation 
chains that are several thousand cycles in length will provide the best assessment of serial 
dependencies.

Figures 7.3 and 7.5 are largely consistent with one another. For example, the time-series 
plot indicates that the job performance mean has systematic trends lasting for at least 40 data 
augmentation cycles, and the corresponding autocorrelation plot indicates serial dependen-
cies that last for approximately 60 iterations. In contrast, both plots suggest that distribution 
of the well-being mean stabilizes almost immediately. Taken together, the diagnostic infor-
mation suggests that the slowest parameters are stationary (i.e., become independent) after 
about 60 iterations, although some distributions are stable well before that. Again, multiply-
ing this value by a factor of two or three is a conservative strategy for planning the fi nal data 
augmentation run.

7.11 ASSESSING CONVERGENCE FROM ALTERNATE
STARTING VALUES

Thus far, I have only considered using EM estimates as starting values for data augmentation. 
EM estimates are ideal in the sense that they are often located near the center of the posterior 
distribution. However, methodologists disagree on whether a single set of starting values is 
suffi cient for assessing convergence (Gelman & Rubin, 1992; Geyer, 1992; Raftery & Lewis, 
1992). For example, Raftery and Lewis (1992) argue that a single exploratory data augmenta-
tion chain is usually suffi cient, whereas Gelman and Rubin (1992) recommend using mul-
tiple exploratory data augmentation chains, each of which uses starting values for � and � 
that are far from the center of their respective posterior distributions.

Multiple exploratory chains are useful for assessing whether idiosyncratic features of the 
data infl uence convergence and can yield a more conservative gauge of convergence speed. 
However, generating alternate starting values can be computationally complex and diffi cult to 
implement (Gelman & Rubin, 1992). One straightforward approach is to use the bootstrap 
to generate starting values for each exploratory data augmentation chain (Schafer, 1997). The 
bootstrap treats the data as a miniature population from which it draws samples of size N 
with replacement (see Chapter 5 for additional information on the bootstrap). The bootstrap 
procedure can generate a small number of alternate estimates of the mean vector and the 
covariance matrix. Because the ultimate goal is to start data augmentation with parameter 
values that are far from the center of their posterior distributions, the bootstrap estimates 
should be somewhat noisy and unrepresentative of their true values. To accomplish this, 
Schafer (1997) recommends drawing bootstrap samples with half as many cases as the origi-
nal data set because the additional sampling error is likely to yield estimates from the tails of 
the posterior distribution. After generating a small number of alternative starting values, you 
can run multiple exploratory data augmentation chains and use graphical diagnostic tech-
niques to examine the convergence of each chain. Some multiple imputation programs gen-
erate bootstrap starting values, so implementing this approach is relatively straightforward.
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7.12 CONVERGENCE PROBLEMS

You may occasionally encounter situations in which data augmentation fails to converge. For 
example, Figure 7.6 shows what the time-series and autocorrelation function plots would 
look like when data augmentation fails to converge. The times-series plot indicates the pres-
ence of systematic trends lasting for several hundred iterations, and the autocorrelation func-
tion plot shows serial dependencies that persist for an extended period (e.g., the lag-200 
correlation is approximately r200 = 0.70).

Convergence problems can occur because some of the parameters are inestimable or 
because the number of variables is close to the number of cases. Eliminating the problematic 
variables is one way to solve convergence problems, but this solution may not be ideal, par-
ticularly if it alters the substantive research goals. An alternate strategy is to use a so-called 
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FIGURE 7.6. Time-series and autocorrelation function plot for parameters that do not converge. The 
top panel shows a time-series plot that exhibits systematic trends that last for hundreds of iterations 
and simulated parameter values that are outside of the plausible score range of 1 to 20. The bottom 
panel shows autocorrelations (denoted by a triangle symbol) that are close to r = 0.70 at lag-200.
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ridge prior distribution for the covariance matrix. The basic idea behind the ridge prior is 
to add a small number of imaginary data records from a hypothetical population where the 
variables are uncorrelated. Adding these extra cases can stabilize estimation and eliminate 
convergence problems. Chapter 9 describes the ridge prior in more detail.

7.13 GENERATING THE FINAL SET OF IMPUTATIONS

After assessing convergence, you can begin planning the data augmentation run that will 
generate the imputed data sets for the subsequent analysis phase. As I explained previously, 
an important objective of the imputation phase is to generate data sets that mimic indepen-
dent draws from the distribution of the missing values. There are two strategies for generat-
ing independent imputations: sample imputed data sets at regular intervals in the data aug-
mentation chain (e.g., save and analyze the imputed data set from every 200th I-step), or 
generate several data augmentation chains and save the imputed data at the fi nal I-step in 
each chain. The multiple imputation literature refers to these two approaches as sequential 
and parallel data augmentation chains, respectively.

Sequential Data Augmentation Chains

One way to generate independent imputations is to sample imputed data sets at regular in-
tervals in a single data augmentation chain (e.g., save and analyze the data from every 200th 
I-step). The literature sometimes refers to this approach as sequential data augmentation. 
The diffi culty with sequential data augmentation is determining the number of iterations that 
need to lapse between each saved fi le (i.e., the number of between-imputation iterations). 
Choosing too large an interval is not a problem, but specifying too few between-imputation 
iterations can result in correlated imputations and negatively biased standard errors. Fortu-
nately, the time-series and autocorrelation function plots provide the necessary information 
to specify the number of between-imputation iterations. For example, if the longest serial 
dependency lasts for 20 data augmentation cycles, then the between-imputation interval 
should be at least 20 iterations. Again, the graphical diagnostics are far from perfect, so dou-
bling or tripling that value is probably a safe strategy.

To illustrate sequential data augmentation, reconsider the data in Table 7.1. Suppose 
that the goal is to generate m = 20 complete data sets for the subsequent analysis phase. The 
graphical diagnostics from the earlier example suggest that the slowest parameters converged 
(i.e., became independent) after about 60 iterations, so between-imputation interval should 
be at least 60 cycles, if not longer. Specifying 200 between-imputations is probably suffi cient 
because this interval is more than three times larger than the slowest convergence rate. Con-
sequently, the fi nal data augmentation chain consists of 4,000 cycles. Specifi cally, an initial 
burn-in period of 200 cycles precedes the fi rst data set, and 200 between-imputation cycles 
separate each of the remaining data sets. The burn-in iterations give the parameter distribu-
tions time to stabilize, and the between-imputation iterations ensure that the resulting im-
putations are independent.
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Parallel Data Augmentation Chains

Parallel data augmentation is a second method for generating independent imputations. 
Rather than saving data sets at specifi ed intervals in the chain, this approach generates sev-
eral chains and saves the imputed data at the fi nal I-step in each chain. For example, generat-
ing 20 imputations from the data in Table 7.1 would require 20 separate data augmentation 
chains, each of which is comprised of 200 iterations. The m chains can originate from a com-
mon set of starting values or from different estimates of the mean vector and the covariance 
matrix. The primary consideration is to generate chains that are long enough to ensure that 
the distribution of missing values has stabilized and that the imputations are independent of 
the starting values. As with sequential approach, graphical diagnostics can determine the 
length of the data augmentation chains.

Methodologists have debated on whether to use sequential or parallel data augmenta-
tion chains. Much of this discussion centers on the detection of convergence problems (e.g., 
Gelman & Rubin, 1992; Geyer, 1992; Raftery & Lewis, 1992), but computational effi ciency 
is also a consideration (e.g., Schafer, 1997, pp. 137–138; Smith & Roberts, 1993). If the pa-
rameter distributions converge properly, it probably makes little difference whether a single 
chain or multiple chains generate the fi nal imputations. Because sequential chains are some-
what easier to implement in existing software packages, the fi nal decision may be one of con-
venience. My advice is to explore convergence using a relatively small number of parallel chains 
that originate from a diverse set of starting values. If you are comfortable that the algorithm 
is converging properly, choose a conservative number of burn-in and between-imputation 
iterations and generate the fi nal set of imputations from a single data augmentation chain.

7.14 HOW MANY DATA SETS ARE NEEDED?

Choosing the number of imputed data sets to save and analyze is one of the most basic deci-
sions in a multiple imputation analysis. Conventional wisdom suggests that multiple imputa-
tion analyses require relatively few imputations, and the literature historically recommends 
between three and fi ve imputed data sets (e.g., Rubin, 1987, 1996; Schafer, 1997; Schafer & 
Olsen, 1998). However, there are good reasons to use many more imputations. In the next 
chapter, I show that multiple imputation standard errors decrease as the number of imputa-
tions increases, and analyzing an infi nite number of imputed data sets yields the lowest pos-
sible standard error. Obviously, it is not feasible to analyze an infi nite number of data sets, 
but this property suggests that using a large number of imputations can improve power. 
Power issues aside, some of the multiparameter signifi cance tests outlined in Chapter 8 be-
come more accurate as m increases, so analyzing a large number of data sets can improve the 
validity of these tests.

Relative Effi ciency

The recommendation to use between three and fi ve data sets follows from the fact that the 
resulting standard errors are not appreciably larger than their hypothetical minimum values. 
Relative effi ciency quantifi es the magnitude of a multiple imputation standard error (or 
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more precisely the sampling variance, or squared standard error) relative to its theoretical 
minimum

 FMI RE = (1 + ——)–1

 (7.10)
 m

where m is the number of imputed data sets and FMI is the fraction of missing informa-
tion (Rubin, 1987). I describe the fraction of missing information in Chapter 8, but for now, 
you can think of it as being roughly equal to the proportion of missing data. To illustrate, 
suppose that m = 5 and the fraction of missing information for a particular parameter is 0.20 
(e.g., there is a 20% missing data rate). Equation 7.10 suggests that the sampling variance 
(i.e., squared standard error) based on an infi nite number of imputations is 96% as large 
as the sampling variance based on only m = 5 imputations. From a practical standpoint, this 
means that analyzing fi ve imputed data sets should produce a standard error that is only 
√1 + (0.20/5)  = 1.02 times larger than its hypothetical minimum value.

Table 7.7 shows the relative effi ciency and proportional increase in the standard error for 
different fractions of missing information and different numbers of imputations. The table 
shows two noticeable trends. First, the largest gains in effi ciency (or alternatively, largest re-
ductions in the standard error) occur between 3 and 10 imputations, and using more than 
10 data sets has little additional benefi t. Second, using a large number of imputations is most 
benefi cial when the fraction of missing information is large. Researchers have traditionally 
relied on relative effi ciency estimates such as those in Table 7.6 when choosing the number 
of imputations. Doing so has led to the common recommendation to analyze between three 
and fi ve imputed data sets. Interestingly, this common rule of thumb does not necessarily 
maximize power.

The Number of Imputations and Power

Graham, Olchowski, and Gilreath (2007) used computer simulation studies to show that 
the number of imputations has a more dramatic impact on power than it does on relative 

TABLE 7.7. Relative Effi ciency and Proportional Increase in Standard Error for 
Different Fractions of Missing Information and Numbers of Imputations

 m = 3 m = 5 m = 10 m = 20

FMI R.E. P.S.E. R.E. P.S.E. R.E. P.S.E. R.E. P.S.E.

0.10 0.97 1.02 0.98 1.01 0.99 1.00 1.00 1.00
0.20 0.94 1.03 0.96 1.02 0.98 1.01 0.99 1.00
0.30 0.91 1.05 0.94 1.03 0.97 1.01 0.99 1.01
0.40 0.88 1.06 0.93 1.04 0.96 1.02 0.98 1.01
0.50 0.86 1.08 0.91 1.05 0.95 1.02 0.98 1.01
0.60 0.83 1.10 0.89 1.06 0.94 1.03 0.97 1.01
0.70 0.81 1.11 0.88 1.07 0.93 1.03 0.97 1.02

Note. R.E. = relative effi ciency; P.S.E. = proportional increase in standard error; m = number of imputations; FMI 
= fraction of missing information. 
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effi ciency. For example, returning to Table 7.7, the combination of m = 5 and FMI = .50 yields 
a relative effi ciency value of .91. In contrast, Graham et al. show that the power for this set 
of conditions is 13% below its ideal value. Decreasing the number of imputations to m = 3 
reduces relative effi ciency to .86, but reduces power to 75% of its optimal level.

Contrary to conventional wisdom, the Graham et al. study indicates that using more 
than 10 imputations has a benefi cial impact on statistical power. Considered as a whole, 
their simulations suggest that 20 imputations are suffi cient for many realistic situations, and 
increasing the number of imputations beyond 20 will only affect power if the fraction of miss-
ing information is very high (e.g., FMI > 0.50). The Graham et al. study also shows that an 
analysis based on 20 imputations yields comparable power to a maximum likelihood analy-
sis, so generating a minimum of 20 imputed data sets seems to be a good rule of thumb for 
many situations.

Other Considerations

Power issues aside, there are other good reasons to use a large number of imputations. As I 
mentioned previously, analyzing a large number of data sets can improve the validity of the 
multiparameter signifi cance tests in the next chapter. In addition, the estimates of missing 
information that most imputation programs report can be very noisy when the number of 
imputations is small (Graham et al., 2007; Harel, 2007; Schafer, 1997), and stable estimates 
require between 50 and 100 imputations (Harel, 2007). Obtaining accurate estimates of the 
missing information is usually not an important analytic goal, but these estimates are useful 
for assessing the impact of missing data on standard errors. Taken as a whole, there are many 
issues to consider when deciding on the number of imputed data sets to save and analyze. 
Although m = 20 appears to be a good rule of thumb, increasing the number of imputations 
beyond this point is a good idea and often adds very little to the total processing time.

7.15 SUMMARY

Multiple imputation is an alternative to maximum likelihood estimation and is the other 
state-of-the-art missing data technique that methodologists currently recommend. The im-
putation approach outlined in this chapter makes the same assumptions as maximum likeli-
hood estimation—MAR data and multivariate normality—but takes the very different tack 
of fi lling in the missing values prior to the analysis. A multiple imputation analysis consists 
of three distinct steps: the imputation phase, the analysis phase, and the pooling phase. The 
imputation phase creates multiple copies of the data set (e.g., m = 20), each of which con-
tains different estimates of the missing values. The purpose of the analysis phase is to analyze 
the fi lled-in data sets. This step applies the same statistical procedures that you would have 
used had the data been complete. Procedurally, the only difference is that you perform each 
analysis m times, once for each imputed data set. Finally, the pooling phase uses Rubin’s 
(1987) rules to combine the m sets of parameter estimates and standard errors into a single 
set of results. Because of its complexity, the imputation phase was the primary focus of this 
chapter.
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The imputation phase uses an iterative data augmentation algorithm that consists of an 
I-step and a P-step. The I-step uses an estimate of the mean vector and the covariance matrix 
to build a set of regression equations where the complete variables for a given missing data 
pattern predict the incomplete variables for that pattern. Substituting the observed data into 
these equations generates predicted scores for the missing variables. The predicted scores fall 
directly on a regression surface, so the imputation procedure restores variability to the data 
by adding a normally distributed residual term to each predicted value. From a Bayesian 
perspective, each imputed value is a random draw from the conditional distribution of the 
missing values, given the observed data (i.e., draws from the posterior predictive distribu-
tion). However, from a procedural standpoint, the I-step amounts to stochastic regression 
imputation.

The ultimate goal of the imputation phase is to generate m complete data sets, each of 
which contains different estimates of the missing values. Creating unique sets of imputations 
requires different estimates of the mean vector and the covariance matrix at each I-step, and 
the purpose of the P-step is to generate these estimates. The P-step begins by using the fi lled-
in data from the preceding I-step to estimate the mean vector and the covariance matrix, after 
which it generates alternative parameter estimates by randomly drawing new values from 
their respective posterior distributions. Conceptually, the algorithm generates new parameter 
values by adding a random residual term to each element in the complete-data mean vector 
and covariance matrix. The subsequent I-step uses these simulated parameter values to con-
struct a new set of regression coeffi cients, and the process begins anew. Repeating the two-
step procedure a number of times generates multiple copies of the data, each of which con-
tains unique estimates of the missing values.

Unlike maximum likelihood estimation, data augmentation generates parameter values 
that constantly vary across successive P-steps. Although the behavior of the data augmenta-
tion algorithm is seemingly random from one cycle to the next, the parameter values and the 
imputations from successive iterations are correlated. Because the ultimate goal is to simu-
late independent draws from a distribution of plausible values, it is inappropriate to save and 
analyze the fi lled-in data sets from successive I-steps. One way to simulate independent 
draws from the distribution of missing data is to sample imputed data sets at regular intervals 
in the data augmentation chain (e.g., save and analyze the data from every 200th I-step). 
Time-series and autocorrelation function plots can help determine if the number of between-
imputation iterations is large enough to produce independent sets of imputed values.

The convergence diagnostics play an important role in planning the fi nal data augmen-
tation run that generates the complete data sets. Choosing the number of imputed data sets 
to save and analyze is one of the most basic decisions in a multiple imputation analysis. 
Conventional wisdom suggests that multiple imputation analyses require relatively few im-
putations, and the literature historically recommends between three and fi ve imputed data 
sets. However, contemporary research suggests that analyzing 20 data sets will maximize 
power in most situations. Although m = 20 appears to be a good rule of thumb, there is no 
downside (other than computer processing time) to using far more imputations (e.g., m = 50 
or m = 100).

The next chapter describes the analysis and pooling phases. The purpose of the analysis 
phase is to analyze the fi lled-in data sets from the preceding imputation phase. This step 
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consists of m statistical analyses, one for each imputed data set. The analysis phase yields 
several sets of parameter estimates and standard errors, so the goal of the pooling phase is to 
combine everything into a single set of results. Rubin (1987) outlined relatively straightfor-
ward formulas for pooling parameter estimates and standard errors. Because the analysis 
phase is relatively straightforward, most of Chapter 8 is devoted to the pooling phase and 
related inferential procedures. At the end of Chapter 8, I revisit some of the data analysis 
examples from Chapter 4 and illustrate how to analyze the data using multiple imputation.
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8

The Analysis and Pooling Phases 
of Multiple Imputation

8.1 CHAPTER OVERVIEW

A multiple imputation analysis consists of three distinct steps: the imputation phase, the 
analysis phase, and the pooling phase. Chapter 7 described the mechanics of the imputation 
phase, and the purpose of this chapter is to outline the analysis and pooling phases. The 
purpose of the analysis phase is to analyze the fi lled-in data sets from the preceding imputa-
tion phase. This step consists of m statistical analyses, one for each imputed data set. The 
analysis phase yields several sets of parameter estimates and standard errors, so the goal of 
the pooling phase is to combine everything into a single set of results. Rubin (1987) outlined 
relatively straightforward formulas for pooling parameter estimates and standard errors. For 
example, the pooled parameter estimate is simply the arithmetic average of the estimates 
from the analysis phase. Combining the standard errors is slightly more complex but fol-
lows the same logic. The analysis phase is probably the easiest aspect of multiple imputation 
and requires very little explanation. Consequently, the majority of this chapter is devoted to 
the pooling phase, including the various signifi cance testing procedures that are available at 
this step.

As an advance warning, this chapter is relatively dense with equations, largely due to the 
complexity of the multiple imputation signifi cance tests. Not all of these formulas are equally 
important. For example, understanding Rubin’s (1987) equations for combining parameter 
estimates and standard errors is probably far more important than trying to digest the differ-
ent test statistics and their degrees of freedom. Software packages implement the majority of 
the signifi cance testing procedures that I outline in this chapter, so there is usually no need 
to compute the formulas by hand. Nevertheless, I felt that it was important for this chapter 
to serve as a comprehensive reference, so I included more equations than usual. The abun-
dance of equations should not hinder readers who are interested primarily in applying mul-
tiple imputation to their own research because the majority of the text does not require an 
in-depth understanding of the formulas.
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I use the small data set in Table 8.1 to illustrate ideas throughout this chapter. I designed 
these data to mimic an employee selection scenario in which prospective employees com-
plete an IQ test and a psychological well-being questionnaire during their interview. The 
company subsequently hires the applicants that score in the upper half of the IQ distribu-
tion, and a supervisor rates their job performance following a 6-month probationary period. 
Note that the job performance scores are missing at random (MAR) because they are system-
atically missing as a function of IQ (i.e., individuals in the lower half of the IQ distribution 
were never hired, and thus have no performance rating). In addition, I randomly deleted 
three of the well-being scores in order to mimic a situation where the applicant’s well-being 
questionnaire is inadvertently lost.

8.2 THE ANALYSIS PHASE

The analysis phase is probably the easiest aspect of a multiple imputation analysis. The impu-
tation phase generates m imputed data sets, each of which contains different estimates of the 
missing values. The purpose of the analysis phase, as noted earlier, is to analyze the fi lled-in 
data sets. This step consists of m statistical analyses, one for each imputed data set. For ex-
ample, suppose that a researcher had previously generated 20 imputations and is now inter-
ested in estimating a multiple regression equation. In the analysis phase, she would simply 
repeat the regression analysis 20 times, once for each data set. The researcher can employ the 

TABLE 8.1. Employee Selection Data Set

 Psychological Job
IQ well-being performance

 78 13 —
 84  9 —
 84 10 —
 85 10 —
 87 — —
 91  3 —
 92 12 —
 94  3 —
 94 13 —
 96 — —
 99  6  7
105 12 10
105 14 11
106 10 15
108 — 10
112 10 10
113 14 12
115 14 14
118 12 16
134 11 12
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same analysis procedures and the same software package that she would have used had the 
data been complete. Of course, repeating the analysis 20 times sounds incredibly tedious, but 
an increasing number of software packages have built-in routines that automate this process.

As an important aside, auxiliary variables play no role in the analysis phase. Multiple 
imputation can readily accommodate auxiliary variables, but this is handled in the imputa-
tion phase. The imputation process infuses the imputed values with the information from 
the auxiliary variables, so there is no need to include the additional variables in the subse-
quent analysis step. This is in contrast to maximum likelihood estimation, which uses the 
somewhat awkward saturated correlates approach to incorporate auxiliary variables. Although 
multiple imputation is arguably more diffi cult to implement, it holds a clear advantage over 
maximum likelihood when it comes to dealing with auxiliary variables.

8.3 COMBINING PARAMETER ESTIMATES IN THE POOLING PHASE

The analysis phase yields m different estimates of each parameter, any one of which is un-
biased if the data are MAR. Rather than rely on the results from any single data set, a mul-
tiple imputation analysis pools the m parameter values into a single point estimate. Rubin 
(1987) defi ned the multiple imputation point estimate as the arithmetic average of the m 
estimates

 1 θ̄ = — ∑
m

t=1
θ̂t (8.1) m

where θ̂t is the parameter estimate from data set t and θ̄ is the pooled estimate. Notice that 
Equation 8.1 is the usual formula for the sample mean, where the parameter estimates serve 
as data points. Although Rubin (1987) developed multiple imputation in the Bayesian frame-
work, the pooled point estimate is meaningful from either a Bayesian or a frequentist per-
spective. From the frequentist standpoint, θ̄ is a point estimate of the fi xed population pa-
rameter, whereas the Bayesian paradigm views θ̄ as the mean of the observed-data posterior 
distribution (Little & Rubin, 2002, pp. 210–211; Rubin, 1987).

A Bivariate Analysis Example

To illustrate the pooling process, suppose that it is of interest to use the data in Table 8.1 to 
estimate the regression of job performance on IQ. After generating 20 imputed data sets, I fi t 
an ordinary least squares regression model to each data set and saved the estimates and the 
standard errors to a fi le for further analysis. Table 8.2 shows the regression slopes from the 
analysis phase. As seen in the table, the regression coeffi cients ranged between –0.025 and 
0.239. Substituting the 20 estimates into Equation 8.1 yields a pooled point estimate of θ̄ = 
0.105. The fact that the pooled estimate is an average of 20 different values has no bearing 
on its interpretation. Consistent with a complete-data regression analysis, 0.105 is the ex-
pected change in job performance for a one-point increase in IQ.
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8.4 TRANSFORMING PARAMETER ESTIMATES 
PRIOR TO COMBINING

The pooling formula in Equation 8.1 assumes that the parameter estimates are asymptoti-
cally (i.e., in very large samples) normally distributed. However, some parameters meet this 
requirement better than others do, particularly in small and moderate samples. For example, 
the sampling distribution of Pearson’s correlation is normal when the population correlation 
equals zero but becomes increasingly skewed as ρ approaches plus or minus one. Many com-
mon variance estimates (e.g., R2 statistics, standard deviations, estimates of variances, and 
covariances) also have skewed sampling distributions (or from the Bayesian framework, 
skewed posterior distributions). These distributions eventually normalize as the sample size 
gets very large, but they can be markedly non-normal in small and moderate samples. Averag-
ing m parameter values into a single estimate is asymptotically valid for any parameter, but 
applying normalizing transformations prior to the pooling phase may improve the accuracy 
of certain estimates (Schafer, 1997).

To illustrate the use of normalizing transformations, consider Pearson’s correlation co-
effi cient. Fisher’s (1915) z transformation is a natural choice for pooling correlations because 
it places the estimates on a metric that more closely approximates a normal distribution. The 
transformation is

 1 rt + 1
 zt = — log(—–—) (8.2)
 2 rt – 1

TABLE 8.2. Regression Coeffi cients and Sampling 
Variances from the Bivariate Analysis Example

Imputation θ̂t SEt SE2
t

 1 0.12630 0.03639 0.00132
 2 0.09499 0.04978 0.00248
 3 0.05515 0.08348 0.00697
 4 0.06942 0.03509 0.00123
 5 0.16699 0.03901 0.00152
 6 0.02960 0.06283 0.00395
 7 0.20581 0.04523 0.00205
 8 0.02627 0.03739 0.00140
 9 0.05293 0.03456 0.00119
10 0.15939 0.05294 0.00280
11 0.18642 0.03604 0.00130
12 0.14726 0.03933 0.00155
13 0.23944 0.03601 0.00130
14 0.04638 0.04718 0.00223
15 0.10295 0.05341 0.00285
16 0.07162 0.04275 0.00183
17 0.20742 0.03783 0.00143
18 –0.02501 0.04752 0.00226
19 0.09447 0.03839 0.00147
20 0.04705 0.04372 0.00191
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where rt is the correlation coeffi cient from data set t and zt is the corresponding transformed 
coeffi cient. Substituting the transformed correlations into Equation 8.1 expresses the average 
correlation on the z score metric, and the equation below transforms the pooled estimate 
back to the correlation metric.

 e2θ̄ – 1 r̄  = (———) (8.3)
 e2θ̄ + 1

Applying normalizing transformations to variances and covariances is more complex 
because the appropriate transformation may not be immediately obvious. For example, a 
logarithmic transformation may work best for a distribution with substantial positive skew-
ness, whereas a square root transformation may be more appropriate for a moderately skewed 
distribution. When transforming raw data, methodologists often recommend experimenting 
with different transformations to identify the one that best normalizes the data, but this ex-
ploratory approach is unlikely to work well in the pooling phase. Given the potential diffi cul-
ties associated with specifying an appropriate transformation, it is reasonable to ask whether 
the use of transformations makes any practical difference. Because parameter distributions 
tend to normalize as N increases, it is also important to determine whether there is a sample 
size at which transformations are no longer necessary. I am unaware of any studies that have 
systematically evaluated the use of transformations at the pooling phase, so I performed some 
computer simulations to examine this issue.

Briefl y, the computer simulations generated 1,000 samples of bivariate normal data 
from a population with a correlation of ρ = .50. I subsequently imposed missing completely 
at random (MCAR) data by randomly deleting 25% of the values from one of the variables. 
Because the sample size plays an important role, I examined six different sample size condi-
tions (N = 50, 100, 200, 300, 500, and 1,000). Finally, I created m = 10 imputations for each 
sample and applied logarithmic and square root transformations prior to pooling variances, 
covariances, and R2 statistics. Although my simulations were very limited in scope, they do 
suggest that normalizing transformations tend to make very little difference, particularly when 
the sample size exceeds N = 200. Averaging the transformed estimates did reduce bias, but 
the mean squared errors of the transformed estimates were virtually identical to those of the 
raw estimates (the mean squared error is an overall measure of accuracy that combines bias 
and sampling error). The mean squared error results are interesting because they suggest that 
normalizing transformations increase sampling error to a degree that effectively negates the 
reduction in bias. Consequently, there may be little or no practical advantage to transforming 
estimates prior to combining them. (Fisher’s transformation is a notable exception because 
it provides a convenient mechanism for signifi cance testing.) As a caveat, my simulations 
were very limited in scope, so it is a good idea to view the results with some caution. Further 
methodological research should attempt to clarify this issue.

8.5 POOLING STANDARD ERRORS

The analysis phase also yields m estimates of each standard error. Pooling standard errors is 
not as simple as computing an arithmetic average, but Rubin’s (1987) combining rules are 
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still relatively straightforward. Multiple imputation standard errors combine two sources of 
sampling fl uctuation: the sampling error that would have resulted had the data been com-
plete, and the additional sampling error that results from missing data. As an aside, Rubin’s 
pooling formulas operate on the sampling variance metric rather than on the standard error 
metric. However, the sampling variance is simply the squared standard error, so switching 
to the standard error metric is an easy conversion.

Within-Imputation Variance

A multiple imputation standard error consists of two sources of sampling fl uctuation: within-
imputation variance and between-imputation variance. The within-imputation variance is 
the arithmetic average of the m sampling variances

 1 VW = — ∑
m

t=1
SEt

2 (8.4) m

where VW denotes the within-imputation variance, and SEt
2 is the squared standard error 

(i.e., sampling variance) from data set t. Notice that Equation 8.4 is the usual formula for 
the sample mean, where the sampling variances serve as data points. Equation 8.4 averages 
complete-data sampling variances, so the within-imputation variance effectively estimates 
the sampling variability that would have resulted had there been no missing data.

Between-Imputation Variance

At an intuitive level, missing values should increase standard errors because they add an 
additional layer of noise to the parameter estimates. Single imputation techniques fail to ad-
dress this issue because they treat the fi lled-in values as real data. Consequently, even the 
best single imputation technique (e.g., stochastic regression imputation) will underestimate 
standard errors. Analyzing multiply imputed data sets solves this problem because it pro-
vides a mechanism for estimating the additional source of sampling error. As an illustration, 
reconsider the regression coeffi cients in Table 8.2. The variation in the regression coeffi cients 
from one data set to the next (the estimates range between –0.025 and 0.239) is solely due 
to the use of different imputed values. Consequently, the variability of the parameter values 
across the m data sets estimates the additional sampling fl uctuation that results from the 
missing data.

More formally, the between-imputation variance quantifi es the variability of a parame-
ter estimate across the m data sets, as follows:

 1 VB = ——– ∑
m

t=1
(θ̂t – θ̄)2 (8.5) m – 1

where VB denotes the between-imputation variance, θ̂t is the parameter estimate from data 
set t, and θ̄ is the average point estimate from Equation 8.1. Notice that Equation 8.5 is the 
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usual formula for the sample variance, where the parameter estimates serve as data points. 
Again, the between-imputation variance represents the additional sampling error that results 
from the missing data because the fl uctuation of the θ̂t values from one data set to the next 
is solely due to the use of different imputed values.

Total Sampling Variance

Equations 8.4 and 8.5 decompose sampling error into two components: the sampling fl uc-
tuation that would have resulted had the data been complete (i.e., the within-imputation vari-
ance) and the additional sampling error that results from the missing data (i.e., the between-
imputation variance). The total sampling variance combines these two components into a 
single quantity, as follows:

 VB VT = VW + VB + —– (8.6)
 m

You might have anticipated that the total sampling variance is just the sum of the within- 
and between-imputation components, but the equation has an additional term, VB / m. The 
between-imputation variance in Equation 8.5 requires the average parameter estimate (i.e., θ̄), 
and this mean is also subject to sampling error. The right-most term in Equation 8.6 quan-
tifi es the sampling variance (i.e., squared standard error) of the mean and essentially serves as 
a correction factor for using a fi nite number of imputations. (As m goes to infi nity, this term 
vanishes and the total variance becomes the sum of VW and VB.)

Researchers are generally accustomed to reporting their results on the standard error 
metric rather than on the variance metric. Therefore, taking the square root of the total vari-
ance gives the multiple imputation standard error, as follows:

 SE = √⎯V⎯ T (8.7)

Throughout this section, I have been referring to various quantities as sampling variances, 
which implies repeated sampling (i.e., a frequentist interpretation). However, the total vari-
ance is meaningful from either a Bayesian or a frequentist perspective. From a frequentist 
perspective, the total variance estimates the variability of a parameter estimate across re-
peated samples. In contrast, the Bayesian paradigm views VT as the variance of the observed-
data posterior distribution. The difference in terminology is not just semantics and represents 
an important philosophical difference between the two paradigms (see Chapter 6). Because 
the standard error is a familiar concept, I use this term throughout the remainder of the book 
(much of the multiple imputation literature follows the same convention).

An ANOVA Analogy

Partitioning a parameter’s sampling variance into within- and between-imputation compo-
nents is very similar to what happens in an analysis of variance (ANOVA). ANOVA partitions 
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score variation into two orthogonal sources: explained variability that is attributable to an 
explanatory variable (i.e., between-group variability) and residual variation that remains after 
accounting for the explanatory variable (i.e., within-group variability). The pooling phase 
partitions variance in a manner that closely resembles an ANOVA analysis, but it does so 
using the variation in a parameter distribution rather than a score distribution.

To align the previous concepts with an ANOVA analysis, you can think of missingness 
as an explanatory variable and the total sampling variance as the variability in the outcome 
variable. In this analogy, the between-imputation variance quantifi es the portion of the pa-
rameter’s variance that is due to the explanatory variable (i.e., the missing data) and is akin 
to the between-group mean square from an ANOVA analysis. The within-imputation variance 
is the residual variation that remains after subtracting out the explanatory variable’s infl u-
ence (i.e., the sampling variation that would result had there been no missing data) and is 
analogous to the mean square error in an ANOVA. Thinking about VW and VB in ANOVA 
terms puts Rubin’s (1987) combining rules in a familiar context, but it also leads to an intui-
tive interpretation of some important quantities that I defi ne later in the chapter.

A Bivariate Analysis Example

To illustrate the process of combining standard errors, reconsider the regression of job per-
formance on IQ. Table 8.2 also shows the standard errors and the sampling variances from 
the 20 regression analyses. Averaging the squared standard errors in the right-most column 
of the table yields a within-imputation variance of VW = 0.00215. Again, this is an estimate 
of the sampling variability that would have resulted had the data been complete. Next, using 
Equation 8.5 to compute the variance of the regression coeffi cients across the 20 imputations 
gives a between-imputation variance of VB = 0.00515. As I explained previously, the between-
imputation variance represents the additional uncertainty that results from the missing data. 
Finally, substituting VW and VB into Equation 8.6 yields the total variance, VT = 0.00756, and 
taking the square root of this value gives the multiple imputation standard error, SE = 0.087. 
Notice that the pooled standard error is considerably larger than most of the individual stan-
dard errors in Table 8.2. (The average complete-data standard error is 0.045.) This makes 
intuitive sense because multiple imputation explicitly incorporates the additional sampling 
error that accrues from the missing data.

8.6 THE FRACTION OF MISSING INFORMATION AND THE RELATIVE 
INCREASE IN VARIANCE

The within-imputation variance, between-imputation variance, and the total variance defi ne 
two useful diagnostic measures, the fraction of missing information and the relative increase 
in variance due to nonresponse. These measures are important because they (1) quantify 
the infl uence of missing data on the standard errors, (2) dictate the convergence speed of the 
data augmentation algorithm, and (3) help defi ne the signifi cance tests outlined later in the 
chapter.
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The Fraction of Missing Information

I briefl y introduced the fraction of missing information in Chapter 7, where I described it as 
a diagnostic measure that adjusts the missing data rate by the correlations among the vari-
ables. More specifi cally, the fraction of missing information quantifi es the missing data’s 
infl uence on the sampling variance of a parameter estimate. An intuitive expression for the 
fraction of missing information is as follows.

 VB + VB/m FMI = ——–—— (8.8)
 VT

Equation 8.8 assumes that the number of imputations is very large; thus, an alternate expres-
sion that adjusts for a fi nite number of imputations is

 VB + VB/m + 2/(ν + 3)
 FMI1 = ————————— (8.9)
 VT

where ν is a degrees of freedom value that is defi ned later in Equation 8.12. The value of ν 
increases to infi nity as m goes to infi nity, so the additional terms in the numerator essentially 
vanish with a very large number of imputations. The result is the more straightforward expres-
sion in Equation 8.8.

Focusing on Equation 8.8, the fraction of missing information has an intuitive interpre-
tation. The denominator is the total sampling variance (i.e., squared standard error), and the 
numerator quantifi es the additional sampling variation that accrues from the missing data. 
Consequently, the fraction of missing information is the proportion of the total sampling 
variance that is due to the missing data. If you think of between- and within-imputation vari-
ance as being similar to the between- and within-group variation from ANOVA, then the 
fraction of missing information is analogous to an R2 statistic. In the context of multiple im-
putation, the pooling phase partitions the variation in a parameter distribution rather than a 
score distribution, but the R2 analogy is useful for understanding the equation.

With regard to the previous regression example, substituting VB = 0.00515 and VT = 
0.00755 into Equation 8.8 yields FMI = 0.715. This value indicates that 71.5% of the regres-
sion coeffi cient’s sampling variance is attributable to the missing data. Using the more com-
plex expression in Equation 8.9 gives an estimate that is more appropriate for a fi nite number 
of imputations, but the interpretation remains the same (i.e., FMI1 = 0.729, so approximately 
73% of the sampling variance is due to the missing data). I previously described missing in-
formation as a summary measure that combines the missing data rate and the correlations 
among the variables. The missing information is typically lower than the missing data rate, 
particularly when the variables in the imputation model are predictive of the missing values. 
In this situation, the correlations among the variables mitigate the information loss, such that 
the increase in sampling error is not completely commensurate with the overall reduction in 
the sample size. The regression analysis produced a fraction of missing information that ex-
ceeds the missing data rate, but this is likely an artifact of the sample size and the number of 
imputations (accurate FMI estimates require far more than 20 data sets).
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The fraction of missing information is also a useful diagnostic tool because it infl uences 
the convergence of the data augmentation algorithm. (Parameters with high rates of missing 
information tend to converge slowly.) Consequently, paying especially close attention to pa-
rameters with large fractions of missing information is a good strategy when examining the 
graphical diagnostics from the imputation phase. Because some multiple imputation soft-
ware packages report the fraction of missing information as a by-product of the imputation 
phase, usually these estimates are readily available. As an aside, methodologists have noted 
that the fraction of missing information tends to be noisy and somewhat untrustworthy 
(Harel, 2007; Schafer, 1997), particularly with fewer than 100 imputations (Harel, 2007). 
However, estimating the fraction of missing information is usually not the primary analytic 
goal, so approximate estimates are often acceptable.

Relative Increase in Variance

Like the fraction of missing information, the relative increase in variance quantifi es the miss-
ing data’s infl uence on the sampling variance of a parameter estimate, but it does so in a 
slightly different fashion. A standard formulation of the relative increase in variance is

 VB + VB/m FMI
 RIV = ——–—— = —–—— (8.10)
 VW 1 – FMI

To understand the relative increase in variance, consider the meaning of its component parts. 
The denominator of Equation 8.10 estimates the sampling variance that would have resulted 
had there been no missing data, and the numerator of the equation quantifi es the additional 
sampling variation that accrues from the missing data. Consequently, the relative increase in 
variance gives proportional increase in the sampling variance that is due to the missing data. 
For example, if the missing data have no infl uence on the sampling error of a particular 
parameter, the between-imputation variance is zero, as is the relative increase in variance. In 
contrast, if the between-imputation variance is equal to the within-imputation variance, then 
the relative increase in variance equals one. Returning to the previous regression analysis, 
note that the between- and the within-imputation variance estimates are VB = 0.00515 and 
VW = 0.00215, respectively. Substituting these values into Equation 8.10 yields RIV = 2.51. 
This means that the sampling fl uctuation due to the missing data is two and a half times 
larger than the sampling variance of a complete-data analysis.

Like the fraction of missing information, the relative increase in variance dictates the 
convergence speed of the data augmentation algorithm. Equation 8.10 shows that FMI and 
RIV are one-to-one transformations, so it makes little difference which measure you choose 
to examine. Several of the signifi cance tests outlined in subsequent sections rely on the rela-
tive increase in variance (or equivalently, the fractional missing information), so these con-
cepts will resurface throughout the remainder of the chapter.
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8.7 WHEN IS MULTIPLE IMPUTATION COMPARABLE 
TO MAXIMUM LIKELIHOOD?

Having gained an understanding of all three phases in a multiple imputation analysis, it is 
useful to consider the comparability of maximum likelihood and multiple imputation. Maxi-
mum likelihood and multiple imputation are equivalent techniques in the sense that they 
both assume multivariate normality and MAR data. Despite making the same assumptions, 
the two approaches may or may not yield similar parameter estimates and standard errors. 
Assuming that the sample size and the number of imputations are both large enough to 
eliminate idiosyncratic performance differences, the set of input variables and the relative 
complexity of the imputation model and the analysis model largely determine whether the 
two procedures produce similar results (Collins, Schafer, & Kam, 2001; Schafer, 2003).

When comparing multiple imputation and maximum likelihood, the fi rst thing to con-
sider is whether the imputation phase uses the same set of variables as the analysis phase. To 
illustrate, consider an analysis model that involves three variables, X, M, and Y. A researcher 
could use maximum likelihood to directly estimate the analysis model, or she could impute 
the data and analyze the m complete data sets. If the imputation phase includes additional 
variables that are not part of maximum likelihood analysis (e.g., a set of auxiliary variables), 
then the two procedures can yield different estimates, standard errors, or both. If the imputa-
tion phase includes only X, M, and Y, then multiple imputation and maximum likelihood are 
seemingly on an equal footing because they make the same assumptions and use the same 
set of input variables. However, the comparability of the two procedures still depends on the 
relative complexity of the imputation and the analysis models.

Recall from Chapter 7 that the imputation phase of a multiple imputation analysis uses 
a multiple regression model to fi ll in the missing values. A multiple regression model is 
known as a saturated model because the number of parameters in the model exactly equals 
the number of elements in the mean vector and the covariance matrix (i.e., there is a one-to-
one transformation that links the regression model parameters to the elements in �̂ and �̂). 
In practical terms, this means that the imputation phase uses the most complex model pos-
sible to impute the missing values (i.e., estimating the regression model expends all of the 
information present in the mean vector and the covariance matrix). The subsequent analysis 
model may or may not be as complex as the imputation regression model, and the relative 
parsimony of these two models has a bearing on the comparability of multiple imputation 
and maximum likelihood.

To illustrate the parsimony issue, consider a mediation analysis in which X predicts M, 
M predicts Y, and X also has a direct infl uence on Y. The top panel of Figure 8.1 shows a path 
diagram of this model. To begin, notice that the mediation model is saturated because it, 
too, estimates every possible association among the variables. Assuming that the imputation 
phase includes only three variables, then a maximum likelihood analysis of the mediation 
model estimates the same number of parameters as the imputation phase (i.e., the number 
of parameters in the mediation model equals the number of elements in �̂ and �̂). When the 
imputation and analysis models use the same set of input variables and estimate the same 
number of parameters, the two models are said to be congenial (Meng, 1994). In this situa-
tion, multiple imputation and maximum likelihood should produce very similar estimates 
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and standard errors (Collins et al., 2001; Schafer, 2003). All things being equal, Bayesian es-
timation is asymptotically (i.e., in large samples) equivalent to maximum likelihood (Gelman, 
Carlin, Stern, & Rubin, 1995), so there is no theoretical reason for the procedures to produce 
different results.

Next, consider an analysis model that restricts the association between X and Y to zero 
during estimation, such that the relationship between X and Y is completely mediated by M. 
The bottom panel of Figure 8.1 shows a path diagram of this model. Unlike the previous 
example, the imputation and analysis models are now uncongenial because they differ in 
complexity. That is, the analysis model restricts the association between X and Y, whereas the 
imputation regression model does not. When the imputation and analysis models are un-
congenial but use the same set of input variables, multiple imputation and maximum likeli-
hood should produce very similar parameter estimates, but multiple imputation standard 
errors may be slightly larger (Collins et al., 2001; Schafer, 2003). In effect, the imputation 
phase uses an unnecessarily complex model to deal with the missing data, and this addi-
tional complexity can add a small amount of noise to the resulting estimates. However, the 
difference between the two sets of standard errors is usually trivial, so uncongeniality is not 
necessarily a reason to favor maximum likelihood estimation.

The previous example might suggest that uncongeniality is detrimental to a multiple 
imputation analysis. However, uncongeniality can be benefi cial when it results from an inclu-

X
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M

ε

ε

ε

ε

FIGURE 8.1. Path diagram of a mediation analysis model. The top panel shows a model where X 
has a direct relationship with Y and is also related to Y via a mediating variable, M. The bottom panel 
shows a model where X and Y are only related via their mutual association with M.
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sive analysis strategy that incorporates auxiliary variables that are correlates of missingness 
or correlates of the incomplete analysis model variables. Because a single set of imputations 
can serve as input data for a variety of different analyses, it is natural for the imputation phase 
to include a much larger set of variables than would appear in any single analysis model. 
Returning to the analysis models in Figure 8.1, note that an ideal imputation model would 
include the mediation model variables, variables from other analyses, and a set of auxiliary 
variables. When the imputation phase includes additional variables that are not part of the 
analysis model, multiple imputation and maximum likelihood can yield different parameter 
estimates, standard errors, or both. Idiosyncratic features of the data infl uence these discrep-
ancies, so it is diffi cult to make predictions about the pattern and the magnitude of the dif-
ferences (e.g., some estimates may be similar, others may be different; one procedure may 
produce smaller standard errors for some parameters but not others).

A fi nal situation in which multiple imputation and maximum likelihood can differ oc-
curs when the imputation model is more restrictive than the analysis model. Returning to the 
mediation example, suppose that it is of interest to determine whether the regression coeffi -
cient between X and M is different for males and females (e.g., using a multiple group path 
analysis model or a regression model with interaction terms). Furthermore, suppose that the 
imputation phase includes X, M, Y, and a gender dummy code. In this situation, including 
the dummy code in the imputation phase accounts for mean differences between males and 
females, but omitting the gender by X product term effectively assumes that the gender groups 
have the same covariance between X and M. This is a potentially harmful form of unconge-
niality because the subsequent analyses can attenuate the interaction effect. Maximum likeli-
hood estimation would not suffer from this problem, so it is possible for the two approaches 
to produce very different estimates and standard errors. This example underscores the well-
established but important point that omitting analysis variables from the imputation phase 
can produce biased parameter estimates, regardless of the missing data mechanism (Meng, 
1994; Rubin, 1996).

8.8 AN ILLUSTRATIVE COMPUTER SIMULATION STUDY

In Chapter 4, I illustrated the accuracy of maximum likelihood analyses using computer 
simulations. Having outlined the analysis and pooling phases, I repeated these simulations, 
this time using multiple imputation to deal with missing data. The simulation programs 
generated 1,000 samples of N = 250 from a population model that mimicked the IQ and job 
performance data in Table 8.1. The fi rst simulation created MCAR data by randomly deleting 
50% of the job performance ratings. The second simulation modeled MAR data and elimi-
nated job performance scores for the cases in the lower half of the IQ distribution. The fi nal 
simulation generated missing not at random (MNAR) data by deleting the job performance 
scores for the cases in the lower half of the job performance distribution. After generating each 
data set, I used the data augmentation algorithm from Chapter 7 to create m = 10 imputed 
data sets for each sample. Next, I estimated the mean vector and the covariance matrix from 
each imputed data set and used Equation 8.1 to pool the resulting estimates. Table 8.3 shows 
the average multiple-imputation estimates from the simulations and uses bold typeface to 
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highlight severely biased estimates. For comparison purposes, the table also shows the cor-
responding maximum likelihood estimates.

As seen in the table, the multiple imputation and maximum likelihood parameter esti-
mates are virtually indistinguishable in all three simulations, which is not surprising given 
that the imputation and analysis models are congenial (i.e., they include the same variables 
and estimate the same number of parameters). Consistent with maximum likelihood estima-
tion, multiple imputation produced unbiased estimates in the MCAR and MAR simulations 
but gave biased estimates in the MNAR simulation. However, it is important to point out that 
the MNAR bias was confi ned to the parameters that were affected by missing data. Although 
these simulations were limited in scope, the results are consistent with missing data theory 
(Rubin, 1976; Schafer, 1997) and with previous simulation studies (e.g., Allison, 2000; Col-
lins et al., 2001; Graham & Schafer, 1999; Newman, 2003).

8.9 SIGNIFICANCE TESTING USING THE t STATISTIC

The next few sections outline a number of multiple imputation signifi cance tests. Again, the 
subsequent sections are relatively dense with equations, but not all of these formulas are 

TABLE 8.3. Average Parameter Estimates from the 
Illustrative Computer Simulation

 Population Multiple Maximum
Parameter value imputation likelihood

MCAR simulation

μIQ 100.00 99.98 100.02
μJP 12.00 11.99 11.99
σ2

IQ 169.00 169.34 168.25
σ2

JP 9.00 9.08 8.96
σIQ,JP 19.50 19.51 19.48

MAR simulation

μIQ 100.00 100.00 100.01
μJP 12.00 12.00 12.01
σ2

IQ 169.00 168.46 168.50
σ2

JP 9.00 9.23 8.96
σIQ,JP 19.50 19.43 19.15

MNAR simulation

μIQ 100.00 100.02 100.00
μJP 12.00 14.13 14.12
σ2

IQ 169.00 170.37 169.11
σ2

JP 9.00 3.42 3.33
σIQ,JP 19.50 8.51 8.55
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equally important (e.g., the degrees of freedom equations are complex and not very intui-
tive). The abundance of equations should not hinder readers who are primarily interested in 
applying multiple imputation to their own research because the majority of the text does not 
require an in-depth understanding of the formulas.

In the context of a maximum likelihood analysis, the Wald z test provides a mechanism 
for assessing whether a parameter estimate is statistically different from some hypothesized 
value. Multiple imputation analyses use an analogous t statistic. Like the Wald test, the nu-
merator of the t statistic compares the point estimate to some hypothesized value, and the 
denominator contains the standard error, as follows:

 θ̄ – θ0 t = ——— (8.11)
 √⎯V⎯ T

where θ̄ is the pooled point estimate, and θ0 is the hypothesized parameter value. Researchers 
typically test whether a parameter is signifi cantly different from zero, in which case the t sta-
tistic reduces to the ratio of the point estimate to its standard error.

Many complete-data statistical procedures employ a t statistic similar to that in Equa-
tion 8.11, but the multiple imputation test statistic uses a complex expression for the degrees 
of freedom (Rubin, 1987; Rubin & Schenker, 1986).

 VW 1
 ν = (m – 1)(1 + ———–—)2

 = (m – 1)(—–—) (8.12)
 VB + VB/m FMI2

With complete data, the t sampling distribution converges to a normal curve as the sample 
size becomes very large (i.e., the degrees of freedom approach infi nity). Interestingly, the 
sample size does not directly infl uence the value of ν. Instead, the degrees of freedom in-
crease as the number of imputations increase or as the fraction of missing information de-
creases. For example, substituting m = 20 and FMI = .25 (e.g., a 25% missing data rate) into 
Equation 8.12 yields ν = 304, whereas m = 20 and FMI = .05 gives a degrees of freedom value 
of ν = 7600.

In small to moderate samples, ν can substantially exceed the degrees of freedom that 
would have resulted had the data been complete. Returning to the previous regression ex-
ample, observe that the complete-data regression of job performance on IQ would have N – k 
– 1 = 18 degrees of freedom, where k is the number of predictor variables. In contrast, Equa-
tion 8.12 yields a value of ν = 37.148. To correct this problem, Barnard and Rubin (1999) 
proposed the following adjusted degrees of freedom value

 1 1 ν1 = (— + —)–1

 (8.13)
 ν ν̃

where

 dfcom + 1
 ν̃ = (1 – FMI)(————)dfcom (8.14)
 dfcom + 3
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and dfcom is the degrees of freedom that would have resulted had the data been complete. 
Unlike ν, the adjusted degrees of freedom value increases as the sample size increases and 
never exceeds the complete-data degrees of freedom. For example, the adjusted degrees of 
freedom for the previous regression example is ν1 = 4.124 as opposed to ν = 37.148. Barnard 
and Rubin’s (1999) computer simulations suggest that ν1 improves the accuracy of confi -
dence intervals in small samples, so you should use the adjusted degrees of freedom when-
ever possible.

Confi dence Intervals

Establishing a confi dence interval around a multiple imputation point estimate requires the 
appropriate critical values from a t distribution with ν1 degrees of freedom. To get the upper 
and lower confi dence interval limits, you multiply the standard error by the appropriate criti-
cal value and add the resulting product to the pooled point estimate, as follows:

 θ̄ + (tν1,1–α/2
)(√⎯V⎯ T ) (8.15)

where tν1,1–α/2
 is the t critical value that separates the desired proportion of the distribution. 

For example, the 95% confi dence interval requires the t critical value that separates the upper 
and the lower 2.5% of a t sampling distribution with ν1 degrees of freedom. Multiple imputa-
tion software programs generally report confi dence intervals, but you can obtain the t critical 
values from other software programs (e.g., Excel), if need be.

A Bivariate Analysis Example

Returning to the previous bivariate analysis, note that the regression of job performance on 
IQ produced a slope estimate of θ̄ = 0.105 and a standard error of SE = 0.087. The test sta-
tistic for the regression coeffi cient is t = 1.207, and referencing the statistic to a t distribution 
with ν1 = 4.124 degrees of freedom returns a probability value of p = .29. With an alpha level 
of 0.05, the two-tailed critical value for a t distribution with 4.124 degrees of freedom is 
2.776, therefore, substituting the appropriate values into Equation 8.15 gives upper and lower 
confi dence limits of 0.347 and –0.137, respectively. Aside from using a fractional degrees of 
freedom value, the signifi cance testing procedure is virtually identical to that of a complete-
data analysis.

Revisiting the Number of Imputations

Recall from Chapter 7 that the number of imputations has an impact on the power of mul-
tiple imputation signifi cance tests, such that power improves as m increases. The equations 
in this section illustrate that increasing the number of imputations can improve power in two 
ways. First, reconsider the expression for the total sampling variance (i.e., squared standard 
error) in Equation 8.6. The formula includes a correction factor (i.e., VB / m) that quantifi es 
the sampling error of the pooled point estimate. Increasing the number of imputations de-
creases the value of the correction factor and thus decreases the standard error. Increasing 
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the number of imputations also improves power in a more subtle fashion. Equations 8.12 
and 8.13 show that the degrees of freedom value increases as the number of imputations in-
creases. As the degrees of freedom increase, the t critical value decreases, making it easier to 
reject the null hypothesis. Consequently, all things being equal, analyses with a large num-
ber of imputations will produce more powerful signifi cance tests than analyses with a small 
number of imputations. Computer simulation studies suggest that m = 20 is a good rule of 
thumb for many situations (Graham, Olchowski, & Gilreath, 2007), but increasing the num-
ber of imputations beyond this point is certainly a good idea, if processing time permits. 
Using a large number of imputations will also improve the performance of the multiple-
parameter signifi cance tests that are described next, although much less is known about the 
impact of m on these tests.

8.10 AN OVERVIEW OF MULTIPARAMETER SIGNIFICANCE TESTS

In many situations it is of interest to determine whether a set of parameters is signifi cantly 
different from zero. For example, in a multiple regression analysis, researchers are often in-
terested in testing whether two or more regression slopes are different from zero. In an ordi-
nary least squares analysis with complete data, it is standard practice to use an omnibus F 
test for this purpose. In the context of maximum likelihood estimation, the multivariate Wald 
test and the likelihood ratio statistic are analogous procedures. Multiple imputation also of-
fers different mechanisms for testing a set of parameter estimates (the literature sometimes 
refers to these procedures as multiparameter inference or multivariate inference), although 
relatively little is known about the performance of these tests.

The subsequent sections describe three different multiparameter signifi cance tests. Fol-
lowing Schafer (1997), I refer to these tests as D1, D2, and D3. The D1 statistic uses the pooled 
parameter estimates and the pooled sampling variances to construct a test that closely re-
sembles the multivariate Wald statistic from Chapter 3. In contrast, D2 and D3 pool signifi -
cance tests from the analysis phase; the D2 statistic pools Wald tests, and the D3 statistic 
pools likelihood ratio tests. Although these procedures accomplish the same task, they are 
not equally trustworthy, nor are they equally easy to implement. The D1 and D3 statistics are 
asymptotically equivalent, but D1 is easier to implement because it is readily available in 
multiple imputation software programs. (At the time of this writing, relatively few programs 
compute D3.) Computing D2 is straightforward, but it appears to be the least trustworthy of 
the three test statistics.

8.11 TESTING MULTIPLE PARAMETERS USING THE D1 STATISTIC

The D1 statistic uses the pooled parameter estimates and the pooled sampling variances to 
construct a test that closely resembles the multivariate Wald statistic. Recall from Chapter 3 
that the Wald test is

 ω = (�̂ – �0)T var(�̂)–1(�̂ – �0) (8.16)
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where �̂ is a vector of parameter estimates, �0 is a vector of hypothesized values (typically 
zeros), and var(�̂) contains the appropriate elements from the parameter covariance matrix. 
In order to construct an analogous test for a multiple imputation analysis, it is fi rst necessary 
to extend Rubin’s (1987) pooling equations to multiple parameters and parameter covariance 
matrices.

Pooling Multiple Parameter Estimates

Because Rubin’s (1987) procedure for combining parameter estimates is unaffected by the 
shift to multiple parameters, the multiple imputation point estimate is still the arithmetic 
average of the m sets of estimates (see Equation 8.1). Constructing a test that resembles the 
Wald statistic requires matrix computations, so a column vector �t contains the set of esti-
mates from data set t, and the vector �̄ holds the pooled point estimates.

Pooling Parameter Covariance Matrices

The Wald test in Equation 8.16 uses elements from the parameter covariance matrix to stan-
dardize the deviations between the parameter estimates and the hypothesized values. The D1 
statistic uses the same procedure, so it is necessary to extend Rubin’s (1987) variance parti-
tioning formulas to multiple parameters. The basic logic of the pooling process remains the 
same, but covariance matrices quantify the within- and between-imputation variability.

With a single parameter, the within-imputation variance is the arithmetic average of the 
m sampling variances. In the multivariate context, the within-imputation covariance matrix 
is the average of the m parameter covariance matrices, as follows:

 1 VW = — ∑
m

t=1
var(�̂t) (8.17)

 m

where VW is the average within-imputation covariance matrix, and var(�̂t) is the parameter 
covariance matrix from data set t. Consistent with the single parameter case, VW estimates 
the parameter covariance matrix that would have resulted had the data been complete.

Filling in the data with different sets of imputed values causes the parameter estimates 
to vary across the m analyses, and this between-imputation variability is an important com-
ponent of the total sampling error. The between-imputation covariance matrix quantifi es 
this variation, as follows:

 1 VB = —–— ∑
m

t=1
(�̂t – �̄)(�̂t – �̄)T (8.18)

 m – 1

where VB is the between-imputation covariance matrix, �̂t contains the parameter estimates 
from data set t, and �̄ is the vector of pooled point estimates (i.e., the arithmetic average of 
the �̂t vectors). The diagonal elements of VB contain the between-imputation variance esti-
mates for individual parameters, and the off-diagonal elements quantify the extent to which 
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the between-imputation fl uctuation in one parameter is related to the between-imputation 
fl uctuation in another parameter. Considered as a whole, the between-imputation covariance 
matrix represents the additional sampling fl uctuation that results from the missing data.

Finally, the total parameter covariance matrix combines the within- and between- 
imputation covariance matrices, as follow:

 1 VT = VW + VB + — VB (8.19)
 m

The matrix VT refl ects the total sampling fl uctuation in a set of parameter estimates. Like the 
parameter covariance matrix from a maximum likelihood analysis, the diagonal elements of 
VT contain sampling variances, and the off-diagonals contain covariances between pairs of 
estimates.

An Alternate Estimate of the Total Covariance Matrix

The between-imputation covariance matrix in Equation 8.18 is prone to a great deal of sam-
pling error when the number of imputations is small, and this results in a poor estimate of 
the total parameter covariance matrix. Consequently, using the total covariance matrix in 
Equation 8.19 to construct a Wald-like test statistic can produce inaccurate inferences. Li, 
Raghunathan, and Rubin (1991) proposed a solution to this problem that requires an alter-
nate expression for the total covariance matrix.

 ṼT = (1 + ARIV)VW (8.20)

Earlier in the chapter, I introduced the relative increase in variance due to nonresponse. The 
ARIV term in the equation above estimates the average relative increase in variance across 
the k parameter estimates in �̄ and is defi ned by

 (1 + m–1)tr(VBVW
–1)

 ARIV = ———–————— (8.21)
 k

where tr denotes the trace operator (i.e., the sum of the diagonal elements).
To better understand ṼT, reconsider the total sampling variance for a single parameter. 

Applying some algebra to Equation 8.6 gives

 VT = (1 + RIV)VW (8.22)

where RIV is the relative increase in variance from Equation 8.10. Defi ning the total variance 
in this way makes it clear that ṼT is a matrix analog of VT, where the average relative increase 
in variance replaces RIV. Because ARIV condenses the information in the between-imputation 
covariance matrix into a single numeric value (i.e., ARIV), ṼT can provide a more stable esti-
mate of the total parameter covariance matrix.
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The D1 Statistic

Li, Raghunathan, et al. (1991) proposed the following test statistic:

 1 D1 = — (�̄ – �0)T(ṼT)–1(�̄ – �0) (8.23)
 k

where k is the number of parameters in �̄. Although D1 closely resembles the Wald test in 
Equation 8.16, its sampling distribution is far more complex. Li, Raghunathan, et al. suggest 
using an F distribution with k numerator degrees of freedom and ν2 denominator degrees of 
freedom to obtain a probability value, where

 2 1 ν2 = 4 + (km – k – 4)[1 + (1 – —–—–)—–—]2

 (8.24)
 km – k ARIV

In a situation where km – k is less than or equal to 4, they recommend an alternate expres-
sion for ν2, as follows.

 1 1 (km – k)(1 + —)(1 + —–—)2

 k ARIV ν2 = ———————————— (8.25)
 2

The D1 statistic uses a total parameter covariance matrix based on the average relative 
increase in variance. This formulation of the test statistics assumes that the relative increase 
in variance (or equivalently, the fraction of missing information) is the same for all parame-
ters (i.e., ARIV is representative of each parameter’s RIV value). This assumption is unlikely 
to hold in practice because it essentially requires that the analysis variables have the same 
missing data rates and the same correlations. Li, Raghunathan, et al. (1991) used Monte 
Carlo simulations to study the performance of the D1 statistic under a variety of different 
conditions. Their simulation results suggest that D1 has type I error rates close to the nomi-
nal 0.05 level, but it lacks power when the number of parameters is large or the number of 
imputations is small. For example, they show that an analysis that uses m = 4 imputations 
has approximately 10% less power than a hypothetical analysis based on an infi nite number 
of imputations. The authors only report power levels for m = 4 imputations, but it is reason-
able to expect power to improve as the number of imputations increases. As a fi nal note, the 
derivation of D1 assumes a very large sample size, but no research to date has investigated its 
performance in small to moderate samples. Consequently, it is diffi cult to assess the trust-
worthiness of the D1 statistic in realistic research scenarios.

An Analysis Example

To illustrate the D1 statistic, suppose that it is of interest to use the data in Table 8.1 to esti-
mate the regression of job performance on IQ and psychological well-being. After generating 
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20 imputations, I fi t an ordinary least squares regression model to each data set and saved 
the estimates and parameter covariance matrices to a fi le for further analysis. In a multiple 
regression analysis, researchers typically use an omnibus F test to determine whether two or 
more coeffi cients are signifi cantly different from zero, and the D1 statistic can serve a similar 
role in a multiple imputation analysis. Table 8.4 shows the parameter estimates and the pa-
rameter covariance matrices from the 20 analyses. Note that I excluded the regression inter-
cept and its covariance matrix elements from the table because the intercept is not part of the 
usual omnibus test. Consequently, the diagonal elements of each parameter covariance ma-
trix contain the sampling variances (i.e., squared standard errors), and the off-diagonal is the 
covariance between the two regression slopes.

To begin, averaging the 20 sets of regression coeffi cients gives the following vector of 
point estimates.

 
�̄ = [ β̄IQ ] = [.083] β̄WB .365

The interpretation of the regression coeffi cients is identical to that of a complete-data analy-
sis. For example, holding psychological well-being constant, a one-point increase in IQ is 
associated with a 0.083 increase in job performance ratings, on average.

Next, I computed the pooled parameter covariance matrix. Averaging the covariance ma-
trices in Table 8.4 yields the pooled within-imputation covariance matrix.

 
VW = [ .00159 –.00176] –.00176 .02708

Again, VW estimates the parameter covariance matrix that would have resulted had there been 
no missing data. Next, I used the m sets of regression coeffi cients and the corresponding 
pooled values to compute the between-imputation covariance matrix that quantifi es the ad-
ditional sampling fl uctuation that accrues from the missing data.

 
VB =

 [ .00689 –.01723] –.01723 .11446

Computing the total covariance matrix requires the average relative increase in variance. 
Substituting the previous estimates of VW and VB into Equation 8.21 gives ARIV = 4.042. 
This value suggests that the sampling variance due to the missing data is, on average, four 
times larger than the sampling variance that would have resulted had the data been complete. 
Next, substituting ARIV and VW into Equation 8.20 gives the total parameter covariance ma-
trix as follows:

 
ṼT =

 [ .00802 –.00889] –.00889 .13654
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Finally, substituting the parameter estimates and the total covariance matrix into Equa-
tion 8.23 yields D1 = 1.245, as follows:

 
D1 =  1—

2
 ([.083] – [0])T[ .00802 –.00889]–1([.083] – [0]) = 1.45

 .365 0 –.00889 .13654 .365 0

Referencing D1 against an F distribution with k = 2 and ν2 = 55.806 degrees of freedom re-
turns a probability value of p = .30. D1 is analogous to an omnibus F statistic, so the lack of 
signifi cance suggests that the pair of regression coeffi cients is not statistically different from 
zero (i.e., considered as a set, the explanatory variables do not predict job performance). 
Fortunately, the D1 statistic is available in a number of software programs, so performing the 
tedious matrix computations is rarely necessary.

8.12 TESTING MULTIPLE PARAMETERS BY COMBINING WALD TESTS

A second approach for conducting multiparameter signifi cance tests is to pool signifi cance 
tests from the analysis phase. Li, Meng, Raghunathan, and Rubin (1991) outlined a procedure 
for pooling Wald tests, which I henceforth refer to as the D2 statistic. To begin, D2 requires 
the arithmetic average of the m Wald tests, as follows:

 1 ω̄ = — ∑
m

t=1
ωt (8.26) m

where ωt is the Wald statistic from data set t and ω̄ is the mean test statistic. Similar to the 
D1 statistic, D2 also requires an estimate of the average relative increase in variance. Li, Meng, 
et al. (1991) provide an expression that relies only on the m Wald statistics

 1 ARIV1 = (1 + m–1)[—–— ∑
m

t=1
(√⎯ω⎯ t  – √⎯ω⎯ )2] (8.27)

 m – 1

where √⎯ω⎯ t  is the square root of the Wald statistic from data set t, and √⎯ω⎯  is the average of 
the √⎯ω⎯ t  values. (Collectively, the terms in brackets quantify the variance of the square root 
of the Wald statistics.) Although it does not resemble its previous counterpart, ARIV1 has the 
same interpretation as ARIV. Finally, the D2 statistic is as follows:

 ω̄k–1 – (m + 1)(m – 1)–1ARIV1 D2 = —————————–——— (8.28)
 1 + ARIV1

To generate a probability value, Li, Meng, et al. recommend an F reference distribution with 
k numerator degrees of freedom and ν3 denominator degrees of freedom, where

 1 ν3 = k–3/m(m – 1)(1 + ———)2

 (8.29)
 ARIV1
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The interpretation of D2 is similar to that of a complete-data Wald statistic. That is, a statisti-
cally signifi cant test statistic indicates that the parameter estimates differ from their hypoth-
esized values.

Li, Meng, et al. (1991) used Monte Carlo simulations to study the performance of D2 
statistic under a variety of conditions. Their results suggest that type I error rates can either 
be too high or too low, depending on the fraction of missing information (e.g., when the frac-
tion of missing information was less than 20%, type I errors dropped below the nominal 
0.05 level). Their simulations also indicate that D2 has lower power than D1. Considered as 
a whole, these simulation results suggest that D2 does not yield accurate inferences, and the 
authors recommend using the procedure “primarily as a screening test statistic” (p. 83). You 
should use the D1 statistic whenever possible, but a custom program for computing D2 is 
available on the companion website, if necessary.

8.13 TESTING MULTIPLE PARAMETERS BY COMBINING LIKELIHOOD 
RATIO STATISTICS

A fi nal option for conducting multiparameter signifi cance tests is to combine likelihood ratio 
test statistics from the analysis phase. Meng and Rubin (1992) outline such a procedure, and 
I subsequently refer to their test statistic as D3. As a brief reminder, recall that the likelihood 
ratio statistic uses the log-likelihood value to compare the relative fi t of two nested models, 
as follows:

 LR = –2(logLRestricted – logLFull) (8.30)

where logLFull and logLRestricted are the log-likelihood values from the full and the restricted 
models, respectively. The restricted model may include a subset of the parameters from the 
full model (e.g., a regression model where the slopes are constrained to zero during estima-
tion), or it can differ from the full model by a set of complex parameter constraints (e.g., a 
confi rmatory factor analysis model is a restricted model that expresses the population covari-
ance matrix as a function of the factor model parameters).

To begin, the D3 requires the average likelihood ratio test from the analysis phase, as 
follows:

 1 LR = —∑
m

t=1
LRt (8.31) m

where LR is the arithmetic average of the m likelihood ratio statistics, and LRt is the likeli-
hood ratio test from data set t. The computations also require the pooled parameter estimates 
from both models. I denote these parameter vectors as �̄F and �̄R for the full and the restricted 
models, respectively.

After pooling the test statistics and the parameter estimates, the next step is to re-estimate 
the full and the restricted models, this time constraining the model parameters to their pooled 
values (i.e., estimate the full model m times, each time fi xing the model parameters to the 



 Analysis and Pooling Phases of Multiple Imputation 241

values in �̄F). Estimating the models with parameter constraints yields a second set of m 
likelihood ratio tests that compare the relative fi t of the constrained models. The purpose of 
this step is to obtain the arithmetic average of these likelihood ratio tests (e.g., by substitut-
ing the LR values into Equation 8.31). I denote this average as LRConstrained in order to differ-
entiate it from LR.

Finally, the D3 test statistic is as follows:

 LRConstrained D3 = —————– (8.32)
 k(1 + ARIV2)

where ARIV2 is yet another estimate of the average relative increase in variance.

 m + 1 ARIV2 = ————(LR – LRConstrained) (8.33)
 k(m – 1)

To obtain a probability value for D3, Meng and Rubin recommend an F reference distribution 
with k numerator degrees of freedom and ν4 denominator degrees of freedom. In this context, 
k is the number of parameter constraints (i.e., the degrees of freedom for the complete-data 
likelihood ratio test), and ν4 is

 2 1 ν4 = 4 + (km – k – 4)[1 + (1 – —–—–)—–—]2

 (8.34)
 km – k ARIV2

In the situation where km - k is less than or equal to four, Meng and Rubin recommend an 
alternate expression for ν4, as follows.

 1 (km – k) (1 + k–1) (1 + —––—)2

 ARIV3 ν4 = ————————————— (8.35)
 2

Meng and Rubin show that D3 is asymptotically equivalent to D1, so the two tests should 
yield similar conclusions in large samples. However, because virtually no research studies 
have compared the two test statistics, it is diffi cult to assess their relative performance in re-
alistic research scenarios. All things being equal, D1 is more convenient because it is readily 
available in a number of popular software programs. However, D3 is potentially useful in 
structural equation modeling analyses because it provides a mechanism for assessing model 
fi t (e.g., by pooling the chi-square tests of model fi t). In the structural equation modeling 
context, the full model is a saturated model (e.g., a model that estimates the sample covari-
ance matrix), and the restricted model is the hypothesized model (e.g., a confi rmatory factor 
analysis model that expresses the population covariance matrix as a function of the factor 
model parameters). The so-called chi-square test of model fi t is a likelihood ratio test that 
compares the relative fi t of these two models. Methodologists have yet to develop procedures 
for pooling structural equation modeling fi t indices (e.g., the CFI, RMSEA), so the D3 statistic 
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is currently the only formal option for assessing fi t. I illustrate the use of D3 for this purpose 
in one of the subsequent data analysis examples.

8.14 DATA ANALYSIS EXAMPLE 1

In the remainder of the chapter, I use three data analysis examples to illustrate various as-
pects of a multiple imputation analysis. Chapter 7 did not include data analysis examples, so 
the subsequent examples illustrate all three phases of a multiple imputation analysis. To fa-
cilitate comparisons between maximum likelihood estimation and multiple imputation, the 
analysis examples are identical to those from Chapter 4.

The fi rst analysis example illustrates the use of multiple imputation to estimate a mean 
vector, covariance matrix, and a correlation matrix.* The data for this analysis are made up of 
scores from 480 employees on eight work-related variables: gender, age, job tenure, IQ, psy-
chological well-being, job satisfaction, job performance, and turnover intentions. I generated 
these data to mimic the correlation structure of published research articles in the manage-
ment and psychology literature (e.g., Wright & Bonett, 2007; Wright, Cropanzano, & Bonett, 
2007). The data have three missing data patterns, each of which is comprised of one- third of 
the sample. The fi rst pattern consists of cases with complete data, and the remaining two pat-
terns have missing data on either well-being or job satisfaction. These patterns mimic a situ-
ation in which the data are missing by design (e.g., to reduce the cost of data collection).

The Imputation Phase

First, I used the EM algorithm to estimate the mean vector and the covariance matrix. EM 
converged in only 20 iterations, which suggests that the data augmentation algorithm should 
also converge very quickly. Next, I generated an exploratory chain of 5,000 data augmenta-
tion cycles and saved the simulated parameter values from each P-step. The purpose of this 
initial analysis was to assess the convergence of the data augmentation algorithm, and I did 
so by examining time-series and autocorrelation function plots for each element in the mean 
vector and the covariance matrix.

To illustrate the convergence diagnostics, Figure 8.2 shows the times-series and autocor-
relation function plots for the simulated covariance between well-being and job satisfaction. 
I paid particularly close attention to the convergence behavior of this parameter because it 
has the highest percentage of missing data, and thus one of the highest fractions of missing 
information (only 33% of the cases have data on both variables). The time-series plot in the 
top panel of Figure 8.2 suggests that the covariances randomly vary, with no discernible long-
term trends. In fact, the upward and downward trends in the plot typically last for fewer than 
20 iterations. The autocorrelation plot in the bottom panel of the fi gure also shows very fast 
convergence, as the autocorrelations drop to chance levels by lag 10 (i.e., the correlation 
between parameter values separated by 10 iterations is not signifi cantly different from zero). 
I examined the plots for the remaining parameters, and they were largely consistent with 

*Analysis syntax and data are available on the companion website, www.appliedmissingdata.com. 
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those in Figure 8.2. Taken together, the graphical diagnostics suggest that the data augmen-
tation algorithm converges very quickly, perhaps in fewer than 20 iterations. The fast conver-
gence may seem somewhat surprising given that such a large proportion of the well-being 
and job satisfaction scores were missing. However, this example is an ideal situation because 
the data are MCAR by design.

As a general rule, it is a good idea to assess convergence using a small number of alter-
nate starting values (e.g., bootstrap estimates of � and �). However, the graphical displays 
were so ideal that this additional step did not seem necessary. Consequently, I generated the 
fi nal imputations using a single data augmentation chain. The graphical diagnostics suggest 
that the data augmentation algorithm converges in fewer than 20 iterations, but I took a 
conservative tack of specifying 100 burn-in and 100 between-imputation iterations (i.e., I 
saved the fi rst imputed data set after an initial burn-in period of 100 cycles and saved subse-
quent data sets at every 100th I-step thereafter). The exploratory data augmentation chain 
took just a few seconds to run, so I opted to generate m = 50 imputations for the analysis 
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phase. Estimating means and correlations from 50 data sets takes very little time, so using a 
large number of imputations posed no practical problems.

The Analysis Phase

I analyzed each of the 50 data sets in the analysis phase. This step produced an estimate of 
the mean vector, the covariance matrix, and the correlation matrix from each of the 50 fi lled-
in data sets. Although it sounds tedious to repeat the analysis that many times, many soft-
ware programs automate the process. As an aside, programs that automate the analysis phase 
have different formatting requirements for the imputed data fi les. For example, some software 
packages make it very easy to analyze a data set where the imputations are stacked in a single 
fi le, whereas other programs require separate data sets. The companion website has software 
examples that illustrate both approaches.

The Pooling Phase

In the pooling phase, I used Rubin’s (1987) formulas to combine the parameter estimates. 
Although some of the parameters are unlikely to satisfy the normality requirement (e.g., vari-
ances and covariances), I averaged the variable means and the covariance matrix elements 
without applying any transformations. Fisher’s (1915) z transformation is a natural choice 
for the pooling correlations because it transforms the estimates to a metric that more closely 
approximates a normal distribution, and it provides a straightforward mechanism for per-
forming signifi cance tests. Equation 8.2 gives the transformation, and the corresponding stan-
dard error is as follows:

 1 SEt = ——— (8.36)
 √⎯N⎯ ⎯–⎯ 3

After pooling the transformed estimates and their standard errors, I used Equation 8.3 to 
back-transform the average coeffi cients to the correlation metric.

Table 8.5 shows the pooled point estimates along with the corresponding maximum 
likelihood estimates from Chapter 4. As seen in the table, the multiple imputation and maxi-
mum likelihood estimates are quite similar. The close correspondence of the two sets of esti-
mates is not surprising given that both techniques make the same assumptions (MAR data 
and multivariate normality) and use the same set of input variables. You might have noticed 
that maximum likelihood estimates of variances and covariances are slightly smaller than 
those of multiple imputation, even for the variables that have complete data (e.g., the age 
variance estimates are 29.968 and 28.908 for multiple imputation and maximum likelihood, 
respectively). These systematic (albeit small) differences result from the fact that maximum 
likelihood estimates use N in the denominator rather than N – 1.
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8.15 DATA ANALYSIS EXAMPLE 2

The second analysis example applies multiple imputation to a multiple regression model.* 
The analysis uses the same employee data set as the fi rst example and involves the regression 
of job performance ratings on psychological well-being and job satisfaction, as follows:

 JPi = β0 + β1(WBi) + β2(SATi) + ε

I reused the 50 imputations from the previous example for this analysis. Carefully plan-
ning the imputation model allows you to use the same imputed data sets for many (if not all) 
of the subsequent analyses. At a minimum, the imputation phase must include all of the as-
sociations that are of interest in the subsequent analysis phase. I imputed the data using all 
eight variables in the data set, so I can perform any analysis that involves the zero-order as-
sociations among the variables. I would only need to generate a new set of imputations if my 
analysis model included higher-order terms (e.g., interactions) or other variables that I ex-
cluded from the imputation phase.

* Analysis syntax and data are available on the companion website, www.appliedmissingdata.com.

TABLE 8.5. Mean, Covariance, and Correlation Estimates from Data Analysis 
Example 1

Variable 1 2 3 4 5 6 7 8

Multiple imputation

1: Age 28.968 0.504 –0.010 .181 0.139 –0.049 –0.150 0.015
2: Tenure 8.477 9.755 –0.034 .156 0.153 0.016 0.011 0.001
3: Female –0.028 –0.052 0.249 .113 0.038 –0.015 0.005 0.068
4: Well-being 1.147 0.576 0.066 1.395 0.321 0.456 –0.255 0.293
5: Satisfaction 0.888 0.567 0.023 0.449 1.406 0.184 –0.234 0.407
6: Performance –0.331 0.061 –0.009 0.675 0.274 1.574 –.346 0.426
7: Turnover –0.378 0.016 0.001 –0.141 –0.129 –0.203 0.218 –0.180
8: IQ 0.675 0.026 0.285 2.912 4.063 4.505 –0.707 71.040
Means 37.948 10.054 0.542 6.291 5.946 6.021 0.321 100.102

Maximum likelihood

1: Age 28.908 0.504 –0.010 0.182 0.136 –0.049 –0.150 0.015
2: Tenure 8.459 9.735 –0.034 0.155 0.154 0.016 0.011 0.001
3: Female –0.028 –0.052 0.248 0.115 0.047 –0.015 0.005 0.068
4: Well-being 1.148 0.569 0.067 1.382 0.322 0.456 –0.257 0.291
5: Satisfaction 0.861 0.565 0.028 0.446 1.386 0.184 –0.234 0.411
6: Performance –0.330 0.061 –0.009 0.671 0.271 1.570 –0.346 0.426
7: Turnover –0.377 0.016 0.001 –0.141 –0.129 –0.203 0.218 –0.180
8: IQ 0.674 0.026 0.284 2.876 4.074 4.496 –0.706 70.892
Means 37.948 10.054 0.542 6.288 5.950 6.021 0.321 100.102

Note. Correlations are shown in the upper diagonal in bold typeface. Elements affected by missing data are en-
closed in the shaded box.
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The Analysis and Pooling Phases

In the analysis phase, I estimated the regression model parameters separately for each of the 
50 fi lled-in data sets. The imputation phase incorporated a number of extra variables that 
were not part of the regression analysis (i.e., age, job tenure, gender, IQ), so these additional 
variables effectively served as auxiliary variables. It is important to reiterate that auxiliary 
variables play no role in the analysis phase (the fi lled-in values already contain the auxiliary 
information), so I did not include the extra variables in the regression model.

In a multiple regression analysis, researchers typically use an omnibus F test to deter-
mine whether two or more coeffi cients are statistically different from zero. Of the three multi-
parameter signifi cance tests outlined previously in the chapter, the D1 statistic is particularly 
convenient because it is readily available in multiple imputation software programs. Conse-
quently, I used D1 to assess whether the two regression slopes were different from zero. This 
procedure produced a test statistic of D1 = 42.87, and referencing this value against an F 
distribution with k = 2 and ν2 = 899.07 degrees of freedom returned a probability value of 
p < .001. The substantive interpretation of D1 is identical to that of an omnibus F statistic, 
so rejecting the null hypothesis implies that at least one of the regression coeffi cients is sig-
nifi cantly different from zero.

As an aside, the D1 statistic assumes that the fractions of missing information are iden-
tical across parameters. Multiple imputation software programs generally report these quan-
tities, and the estimates from this analysis are 0.27 and 0.39 for the well-being and job satis-
faction slopes, respectively. Recall that missing information is akin to an R2 statistic, such 
that a value of 0.27 indicates that 27% of the well-being slope’s sampling variance (i.e., 
squared standard error) is attributable to missing data. Although the fractions of missing 
information are not identical, the magnitude of this difference is probably not large enough 
to seriously distort the D1 statistic (Li, Raghunathan, et al., 1991). I could have also used the 
D2 or D3 statistics to test the regression coeffi cients, but D1 is far easier to implement.

Researchers typically follow up a signifi cant omnibus test by examining the partial re-
gression coeffi cients. Table 8.6 gives the regression model estimates along with the saturated 
correlates model estimates from Chapter 5. As seen in the table, psychological well-being was 
a signifi cant predictor of job performance, β̂1 = 0.470, t(231.01) = 8.79, p < .001, but job 
satisfaction was not, β̂2 = 0.045, t(154.84) = 0.77, p = .44. The interpretation of these regres-
sion coeffi cients is the same as an ordinary least squares analysis. For example, holding job 
satisfaction constant, a one-point increase in psychological well-being yields a .470 increase 
in job performance ratings, on average. Note that I used Barnard and Rubin’s (1999) degrees 
of freedom for the t tests. This degrees of freedom expression relies, in part, on the degrees 
of freedom for a complete-data test statistic (e.g., dfcom = N – k – 1 = 477, where k is the 
number of predictors). I point this out because some multiple imputation software programs 
require the user to specify the complete-data degrees of freedom value when requesting Bar-
nard and Rubin’s formula.

Finally, notice that multiple imputation and maximum likelihood produced very similar 
parameter estimates and standard errors. In this particular example, the two missing data 
handling approaches are not exactly comparable because the saturated correlates model in 
Chapter 5 included only IQ and turnover intentions as auxiliary variables. Nevertheless, the 
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estimates are quite similar, even though the multiple imputation analysis used a larger set of 
auxiliary variables.

8.16 DATA ANALYSIS EXAMPLE 3

The fi nal data analysis example applies multiple imputation to a confi rmatory factor analysis 
model.* The analyses use artifi cial data from a questionnaire on eating disorder risk. Briefl y, 
the data contain the responses from 400 college-age women on 10 questions from the Eating 
Attitudes Test (EAT; Garner, Olmsted, Bohr, & Garfi nkel, 1982), a widely used measure of 
eating disorder risk. The 10 questions measure two constructs: Drive for Thinness (e.g., “I 
avoid eating when I’m hungry”) and Food Preoccupation (e.g., “I fi nd myself preoccupied 
with food”), and mimic the two-factor structure proposed by Doninger, Enders, and Burnett 
(2005). The 10 questionnaire items combine to measure two constructs. The Drive for Thin-
ness scale consists of seven items (EAT1, EAT2, EAT10, EAT11, EAT12, EAT14, and EAT24), and 
the Food Preoccupation scale has three items (EAT3, EAT18, and EAT21). Figure 4.2 shows a 
graphic of the EAT factor structure and abbreviated descriptions of the item stems. The data 
set also contains an anxiety scale score, a variable that measures beliefs about Western stan-
dards of beauty (e.g., high scores indicate that respondents internalize a thin ideal of beauty), 
and body mass index (BMI) values.

Variables in the EAT data set are missing for a variety of reasons. I simulated MCAR data 
by randomly deleting scores from the anxiety variable, the Western standards of beauty scale, 
and two of the EAT questions (EAT2 and EAT21). It seems reasonable to expect a relationship 
between body weight and missingness, so I created MAR data on fi ve variables (EAT1, EAT10, 

*Analysis syntax and data are available on the companion website, www.appliedmissingdata.com.

TABLE 8.6. Regression Model Estimates from Data 
Analysis Example 2

Parameter Estimate SE t

Multiple imputation

β0 (intercept) 6.021 0.060 118.096
β1 (well-being) 0.470 0.053 8.791
β2 (satisfaction) 0.045 0.058 0.772
R2 .208    

Maximum likelihood

β0 (intercept) 6.020 0.053 114.642
β1 (well-being) 0.475 0.054 8.798
β2 (satisfaction) 0.035 0.058 0.605
R2 .208    

Note. Predictors were centered at the maximum likelihood estimates of 
the mean.
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EAT12, EAT18, and EAT24) by deleting th  e EAT scores for a subset of cases in both tails of the 
BMI distribution. These same EAT questions were also missing for individuals with elevated 
anxiety scores. Finally, I introduced a small amount of MNAR data by deleting a number of 
the high body mass index scores (e.g., to mimic a situation where females with high BMI 
values refuse to be weighed). The deletion process typically produced a missing data rate of 
5 to 10% on each variable.

The Imputation Phase

To get a rough gauge of convergence speed, I fi rst used the EM algorithm to estimate the 
mean vector and the covariance matrix for the entire set of 13 variables (the 10 EAT items, 
body mass index, anxiety, and Western standard of beauty). EM converged in only nine itera-
tions, which suggests that data augmentation should also converge very quickly. Next, I 
generated an exploratory chain of 5,000 data augmentation cycles and saved the simulated 
parameter estimates from each P-step. The purpose of this initial analysis was to assess the 
convergence of the data augmentation algorithm, and I did so by examining time-series and 
autocorrelation function plots for each simulated parameter value in the mean vector and the 
covariance matrix. For the sake of brevity, I illustrate these plots using the covariance between 
EAT1 and EAT18. I chose this parameter because it has one of the highest fractions of missing 
information (i.e., this pair of variables has one of the highest missing data rates and the low-
est correlations). The fraction of missing information largely dictates convergence speed, so 
this parameter should be among the slowest to converge.

Figure 8.3 shows the time-series and autocorrelation function plots for the covariance 
between EAT1 and EAT18. The time-series plot in the top panel of Figure 8.3 suggests that the 
simulated covariance values randomly vary with no discernible trends whatsoever. The auto-
correlation plot in the bottom panel shows that the autocorrelations drop to chance levels 
by the second lag (i.e., the correlation between parameter values separated by two iterations 
is not signifi cantly different from zero). Thus, this parameter appears to converge almost 
immediately. I examined the plots for the remaining parameters, and they were largely con-
sistent with those in Figure 8.3. Taken together, the graphical diagnostics indicate that the 
data augmentation algorithm converges very quickly, perhaps in fewer than 10 iterations. 
The rather fast convergence follows from the fact that the fractions of missing information 
were generally rather low (e.g., values between 2 and 10% were common).

Having established the convergence of the data augmentation algorithm, I used a single 
data augmentation chain to generate the imputations. Although the data augmentation algo-
rithm appears to converge in fewer than 10 iterations, I took a conservative approach and 
specifi ed 100 burn-in iterations and 100 between-imputation iterations (i.e., i.e., I saved the 
fi rst imputed data set after an initial burn-in period of 100 cycles and saved subsequent data 
sets at every 100th I-step thereafter). For this analysis, I created m = 100 imputations for the 
analysis phase. Because a confi rmatory factor analysis model takes very little time to esti-
mate, using a large number of imputations does not pose a computational burden. Analyzing 
a large number of data sets is also useful for assessing model fi t (more on this later). Finally, 
note that I used the entire set of 13 variables in the imputation phase. The factor analysis 
model includes the 10 questionnaire items, so the additional variables (body mass index, 
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anxiety, and Western standards of beauty) effectively served as auxiliary variables. Again, there 
is no need to use the auxiliary variables in the subsequent analysis phase.

The Analysis and Pooling Phases

In the analysis phase, I estimated the factor model parameters separately for each of the 100 
fi lled-in data sets. The discrete nature of the questionnaire items violates the multivariate 
normality assumption, so I used robust (i.e., sandwich estimator) standard errors for each 
analysis (see Chapter 5). The analysis step produced 100 sets of results, and I subsequently 
used Rubin’s (1987) formulas to combine the parameter estimates and the standard errors 
(pooling robust standard errors is no different from pooling normal-theory standard errors). 
Although some of the parameters are unlikely to satisfy the normality requirement (e.g., factor 
variances, residual variances), I averaged the estimates without applying any transformations. 
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FIGURE 8.3. Time-series plots for the covariance between questions 1 and 18 from the EAT ques-
tionnaire (EAT1 and EAT18, respectively). The top panel shows a time-series plot with no long-term 
trends. The bottom panel shows autocorrelations that drop to within sampling error of zero by the 
second data augmentation cycle.
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Repeating the factor analysis 100 times sounds incredibly tedious, but some structural equa-
tion modeling software programs can fully automate the analysis and pooling phases. In fact, 
estimating the models and combining the results took less than 10 seconds on a laptop 
computer.

Table 8.7 shows selected parameter estimates and standard errors, along with the cor-
responding maximum likelihood estimates. To maximize the comparability of the two sets of 
results, the table gives the saturated correlates estimates from Chapter 5. As seen in the table, 
multiple imputation and maximum likelihood produced nearly identical estimates and stan-
dard errors. Again, this is not a surprise because the two procedures used the same set of 
variables (i.e., the saturated correlates model included the same 13 variables that I used in 
the imputation phase). Consistent with the previous analyses, the interpretation of the model 
parameters is unaffected by the missing data handling procedure. For example, the factor load-
ings estimate the expected change in the questionnaire items for a one-standard-deviation 
increase in the latent construct. This interpretation follows from the fact that I fi xed the vari-
ances of the latent variables to unity in order to identify the model.

Assessing model fi t is an important part of a structural equation modeling analysis. Ear-
lier in the chapter, I outlined a D3 statistic that combines likelihood ratio tests from a mul-

TABLE 8.7. Confi rmatory Factor Analysis Estimates from Data Analysis Example 3

 Loadings Intercepts Residuals

Variable Estimate SE Estimate SE Estimate SE

Multiple imputation

EAT1 0.743 0.049 4.006 0.055 0.606 0.067
EAT2 0.651 0.050 3.937 0.050 0.536 0.053
EAT10 0.808 0.052 3.955 0.050 0.331 0.038
EAT11 0.765 0.049 3.937 0.047 0.299 0.027
EAT12 0.665 0.054 3.929 0.051 0.540 0.057
EAT14 0.900 0.048 3.962 0.051 0.237 0.028
EAT24 0.625 0.053 3.985 0.051 0.604 0.050
EAT3 0.774 0.052 3.967 0.050 0.413 0.043
EAT18 0.749 0.055 3.982 0.052 0.456 0.049
EAT21 0.859 0.052 3.950 0.051 0.270 0.043

Maximum likelihood

EAT1 0.741 0.049 4.004 0.055 0.604 0.069
EAT2 0.649 0.050 3.937 0.050 0.535 0.054
EAT10 0.808 0.052 3.953 0.050 0.328 0.039
EAT11 0.764 0.049 3.938 0.047 0.300 0.027
EAT12 0.662 0.055 3.929 0.051 0.538 0.058
EAT14 0.901 0.047 3.963 0.051 0.234 0.028
EAT24 0.622 0.053 3.986 0.051 0.599 0.049
EAT3 0.772 0.052 3.967 0.050 0.415 0.042
EAT18 0.751 0.056 3.982 0.052 0.451 0.050
EAT21 0.862 0.053 3.952 0.051 0.264 0.043
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tiple imputation analysis (Meng & Rubin, 1992). This procedure is potentially useful for struc-
tural equation modeling analyses because it provides a mechanism for assessing model fi t 
(e.g., by pooling the chi-square test of model fi t). In the context of a confi rmatory factor 
analysis, the saturated model serves as the full model, and the hypothesized factor model is 
the restricted model. The so-called chi-square test of model fi t is a likelihood ratio test that 
compares the relative fi t of these two models.

To illustrate the D3 statistic, I fi t the confi rmatory factor model and the saturated model 
to each imputed data set and saved the resulting likelihood ratio tests. This step is straight-
forward because structural equation modeling programs report the likelihood ratio (i.e., chi-
square) test as standard output. Averaging the likelihood ratio tests produced LR = 61.94. In 
the next step, I re-estimated the two models after constraining the parameters to their pooled 
values. For example, I estimated the two-factor model on each imputed data set, but did so 
by constraining the factor model parameters to the pooled estimates in Table 8.7. I applied 
the same procedure to the saturated model. Estimating the constrained models produced 
another set of 100 likelihood ratio tests, the average of which was LRConstrained = 56.93. The 
D3 statistic requires the average relative increase in variance, and substituting the appropriate 
quantities into Equation 8.33 gives ARIV2 = 0.15. (The factor model has 34 fewer parameters 
than the saturated model, so k = 34.) Finally, substituting the appropriate values into Equa-
tion 8.32, a test statistic of D3 = 1.456, and referencing this value to an F distribution with 
k = 34 and ν4 = 197,410.74 degrees of freedom gives a probability value of p = .04. Because 
the substantive interpretation of D3 is identical to that of the likelihood ratio test, rejecting 
the null hypothesis implies that the factor model does not fi t the data as well as the saturated 
model. For comparison purposes, the saturated correlates model from Chapter 5 produced 
a likelihood ratio test of χ2(34) = 49.04, p = .05. Although the two analyses produced very 
similar conclusions about model fi t in this particular example, no studies have examined the 
performance of D3 in structural equation modeling applications. Until more research accu-
mulates, it seems prudent to interpret D3 with some caution.

Researchers generally augment the likelihood ratio test with a number of other fi t indices. 
The methodological literature currently favors the CFI, RMSEA, and the SRMR (Hu & Bentler, 
1998, 1999), but there is no established method for pooling these indices. In order to get 
some sense about model fi t, I used the 100 estimates of each index to construct an empirical 
distribution. The distributions were approximately normal and had means of 0.987 (CFI), 
0.041 (RMSEA), and 0.031 (SRMR). I arbitrarily examined the 5th and the 95th percentiles 
of each index, and these values were as follows: CFI (P5 = 0.981, P95 = 0.993), RMSEA (P5 = 
0.032, P95 = 0.050), and SRMR (P5 = 0.028, P95 = 0.034). High CFI values are indicative of 
good model fi t, so the CFI value at the 5th percentile of the distribution should provide a 
conservative assessment of fi t. In contrast, lower values of the RMSEA and SRMR are indica-
tive of good fi t, so the values at the 95th percentile of these distributions would be conserva-
tive. Considered as a whole, the means and the percentiles of the distributions suggest that 
the two-factor model fi ts the data adequately (e.g., the values at the mean and the 5th per-
centile of the CFI distribution exceed the conventional cutoff of 0.95). The approach out-
lined here is purely ad hoc and has no theoretical rationale. Until methodologists develop 
formal pooling rules for popular fi t indices, this is probably the best you can do.
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8.17 SUMMARY

A multiple imputation analysis consists of three distinct steps: the imputation phase, the 
analysis phase, and the pooling phase. The product of the imputation phase is a set of fi lled-
in data sets, each of which contains different estimates of the missing values. The purpose of 
the analysis phase is to analyze the fi lled-in data sets from the preceding imputation phase. 
This step consists of m statistical analyses, one for each imputed data set. The analysis phase 
yields several sets of parameter estimates and standard errors, so the goal of the pooling 
phase is to combine everything into a single set of results. Rubin (1987) outlined relatively 
straightforward formulas for pooling parameter estimates and standard errors. The pooled 
parameter estimate is simply the arithmetic average of the estimates from the analysis phase. 
Combining standard errors is somewhat more complex because it involves two sources of 
sampling variation. The within-imputation variance is the arithmetic average of the m sam-
pling variances (i.e., squared standard errors), and the between-imputation variance quanti-
fi es the variability of an estimate across the m imputations. The within-imputation variance 
estimates the sampling fl uctuation that would have resulted had there been no missing data, 
and the between-imputation variance captures the increase in sampling error due to missing 
data. Together, these two sources of variation combine to form the total sampling variance, 
the square root of which is the standard error.

The chapter outlined four signifi cance testing procedures. The familiar t statistic (the 
pooled estimate divided by its standard errors) is useful for testing whether a single estimate 
is different from some hypothesized value. Multiple imputation also offers different mecha-
nisms for testing a set of parameter estimates. The D1 statistic uses pooled parameter esti-
mates and pooled parameter covariance matrices to construct a test that closely resembles 
the multivariate Wald statistic. A second approach is to compute a signifi cance test for each 
imputed data set and pool the resulting test statistics. The D2 statistic pools Wald tests from 
the analysis phase, and the D3 statistic pools likelihood ratio tests. Although these proce-
dures accomplish the same task, they are not equally trustworthy, nor are they equally easy 
to implement. Relatively little is known about the performance of the multiparameter signifi -
cance tests, but it is clear that D1 and D3 are preferable to D2.

Chapter 9 outlines a number of practical issues that arise during the imputation phase 
of a multiple imputation analysis. Specifi cally, the chapter offers advice on dealing with con-
vergence problems, non-normal data (including nominal and ordinal variables), interaction 
effects, and large multiple-item questionnaire data sets. The chapter also provides a brief over-
view of some alternative imputation algorithms that are appropriate for special types of data 
structures (e.g., mixtures of categorical and continuous variables, multilevel data).
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9

Practical Issues in Multiple Imputation

9.1 CHAPTER OVERVIEW

Having outlined the technical and the procedural details of multiple imputation in Chap-
ters 7 and 8, I now address a number of practical issues that can arise in a multiple imputa-
tion analysis. Chapter 7 outlined a few such practical problems (e.g., assessing convergence, 
choosing the number of between-imputation iterations, deciding which variables to include 
in the imputation model), but several others need to be considered. Specifi cally, this chapter 
offers advice on dealing with convergence problems, non-normal data (including nominal 
and ordinal variables), interactive effects, and large multiple-item questionnaire data sets. 
The chapter also gives a brief overview of some alternative imputation algorithms that are 
appropriate for special types of data structures (e.g., mixtures of categorical and continuous 
variables, multilevel data). As you will see, this chapter is relatively applied in nature and is 
geared toward practical recommendations rather than toward technical issues. As an aside, 
many of the issues in this chapter have not been well studied in the methodological litera-
ture, so the practical guidelines that I offer are likely to change as additional methodological 
research accumulates.

9.2 DEALING WITH CONVERGENCE PROBLEMS

The data augmentation algorithm occasionally fails to converge, and it is useful to have some 
strategies for dealing with the problem. To illustrate a convergence problem, reconsider the 
small employee data set that I have been using throughout the book. First, I computed a 
binary employment status variable that denotes whether the company hired each applicant. 
Table 9.1 shows the resulting data. Next, I used the four variables in the table to generate 
5,000 cycles of data augmentation. The fact that a preliminary EM analysis converged in only 
25 iterations suggests that data augmentation should also converge very quickly, but graphi-
cal diagnostics suggested otherwise.
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Figure 9.1 shows the time-series and autocorrelation function plots for the job perfor-
mance mean. Two problems are apparent in the time-series plot: systematic trends that last 
for hundreds of iterations, and implausible parameter values (e.g., many of the simulated 
means fall outside the 1 to 20 score range). The autocorrelation function plot in the bottom 
panel of Figure 9.1 is also problematic and shows strong serial dependencies that persist for 
many cycles. In this example, data augmentation fails to converge because job performance 
scores are completely missing for the subsample of applicants that the company did not hire. 
Consequently, there is insuffi cient data to estimate the association between job performance 
ratings and the binary employment status variable. At fi rst glance, this seems at odds with 
the fact that EM converged after only 25 iterations. However, EM’s behavior is deceptive be-
cause alternate starting values produce a completely different solution. In reality, there is no 
way to identify a single set of parameter values that are most likely to have produced the 
observed data.

Convergence problems such as those in Figure 9.1 often occur because there is insuffi -
cient data to estimate certain parameters. In some situations, the lack of data results from 
including too many variables in the imputation phase. For example, when the number of 
variables exceeds the number of cases, the data contain linear dependencies that cause math-
ematical diffi culties for regression-based imputation. Because missing values reduce the 
amount of information in a data set, convergence problems can occur even when the number 
of variables is much smaller than the number of cases. A peculiar missing data pattern can also 
lead to estimation diffi culties and convergence failures. For example, the cohort-sequential 

TABLE 9.1. Employee Selection Data Set

 Psychological Job Employment
IQ well-being performance status

 78 13 — 0
 84  9 — 0
 84 10 — 0
 85 10 — 0
 87 — — 0
 91  3 — 0
 92 12 — 0
 94  3 — 0
 94 13 — 0
 96 — — 0
 99  6  7 1
105 12 10 1
105 14 11 1
106 10 15 1
108 — 10 1
112 10 10 1
113 14 12 1
115 14 14 1
118 12 16 1
134 11 12 1
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design from Chapter 1 has variable pairs that are concurrently missing, making it impossible 
to estimate certain elements of the covariance matrix. The same is true for the data in Table 9.1.

The Ridge Prior Distribution

In some situations, reducing the number of variables or eliminating problematic variables is 
the only way to eliminate convergence problems. An alternate strategy is to use a so-called 
ridge prior distribution for the covariance matrix. The standard practice in a multiple impu-
tation analysis is to adopt a noninformative prior distribution that carries no information 
about the mean vector and the covariance matrix. Consequently, the data alone defi ne the 
posterior distributions of � and � at each P-step. The ridge prior is a semi-informative distri-
bution that contributes additional information about the covariance matrix. Conceptually, the 
ridge prior adds a small number of imaginary data records from a hypothetical population 
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FIGURE 9.1. Time-series and autocorrelation function plot for parameters that do not converge. The 
top panel shows a time-series plot that exhibits systematic trends that last for hundreds of iterations 
and simulated parameter values that are outside of the plausible score range of 1 to 20. The bottom 
panel shows autocorrelations (denoted by a triangle symbol) that are close to r = 0.70 at lag-200.
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where the variables are uncorrelated. These additional data points can stabilize estimation 
and eliminate convergence problems, but they do so at the cost of introducing a slight bias 
to the simulated parameter values (and thus the imputations).

To illustrate the ridge prior, consider a hypothetical imputation model that consists of 
two variables and N = 100 cases. Furthermore, suppose the fi lled-in data from a particular 
I-step yields the following sample covariance matrix and sum of squares and cross products 
matrix.

 
�̂t =

 [1.00  .50] .50 1.00

 
�̂t =

 
(N – 1)�̂t

 = [99.00 49.50] 49.50 99.00

Recall from Chapter 7 that each P-step is a standalone Bayesian analysis that describes the 
posterior distributions and subsequently draws a new set of estimates of the mean vector 
and the covariance matrix from their distributions. With the standard noninformative prior, 
the posterior distribution of the covariance matrix is an inverse Wishart distribution, the 
shape of which depends on the fi lled-in data from the preceding I-step (i.e., the sample size 
and �̂t).

The ridge prior is also an inverse Wishart distribution, but its shape depends on a de-
grees of freedom value and an estimate of the sum of squares and cross products matrix. 
(Collectively, these two parameters are the distribution’s hyperparameters.) The sum of 
squares and cross products matrix for the prior is straightforward because it comes from a 
population covariance matrix with off-diagonal elements of zero and variances equal to those 
of the fi lled-in data. For example, the ridge covariance matrix for the previous bivariate ex-
ample is as follows.

 
�t =

 [1 0] 0 1

Notice that the variances are identical to those of the fi lled-in data, but the covariance is 
zero. Generating the sum of squares and cross products matrix for the prior requires a de-
grees of freedom value. The degrees of freedom value quantifi es the number of “imaginary 
data points” that you assign to the prior and effectively determines the amount of infl uence 
that the prior exerts on the simulated parameter values. For example, assigning two degrees 
of freedom to the prior is akin to saying that an imaginary sample of two cases generated the 
previous covariance matrix. Doing so leads to the following sum of squares and cross prod-
ucts matrix:

 
�t =

 
(dfp)�t

 = 
2[1 0] = [2 0] 0 1 0 2

where dfp is the degrees of freedom value for the prior.
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After implementing a ridge prior, the pooled degrees of freedom (i.e., the degrees of 
freedom from the data plus the number of imaginary cases that you assign to the prior) and 
the pooled sum of squares and cross products matrix (i.e., the sum of �t and �̂t) defi ne the 
shape of the posterior distribution, as follows.

 p(�|�̂, Y) ∼ W–1(dfp + N – 1, [�t + �̂t]) (9.1)

Notice that the shape of the posterior distribution depends on the data and the additional 
information from the prior (e.g., the usual posterior distribution has N – 1 and �̂t as its pa-
rameter values). Conceptually, the ridge prior adds dfp imaginary data points from a popula-
tion with uncorrelated variables. Altering the shape of the posterior distribution is the only 
change that occurs from implementing a ridge prior. Consistent with the description of data 
augmentation in Chapter 7, the P-step uses Monte Carlo simulation techniques to draw a 
new covariance matrix from the posterior, and the subsequent I-step uses these simulated 
parameters to construct a set of imputation regression equations.

The ridge prior eliminates convergence problems by increasing the effective sample size, 
but it attenuates the associations among the variables in the process. For example, pooling 
the degrees of freedom values and the sum of squares and cross products matrices from the 
bivariate example yields the following covariance matrix.

 1
�̂t = (dfp + N – 1)–1(�t + �̂t) = ——— ([2 0] + [99.00 49.50]) = [1.00  .49] 2 + 99 1 2 49.50 99.00 .49 1.00

Notice that the covariance matrix has the same diagonal elements (i.e., variances) as the 
sample covariance matrix, but its off-diagonal elements are slightly smaller in magnitude. 
This follows from the fact that the prior distribution contributes two cases from a hypotheti-
cal population with uncorrelated variables. The imputation regression equations at the sub-
sequent I-step depend on the parameter values from the P-step, so it makes intuitive sense 
that the imputations will also contain some bias. The magnitude of this bias depends on the 
number of data points that you assign to the prior, so you should try to minimize the prior 
distribution’s degrees of freedom value. It is impossible to establish good rules of thumb, and 
identifying an appropriate degrees of freedom value usually requires some experimentation.

To illustrate the effect of the ridge prior, I performed data augmentation on the small 
employee data set, this time using a ridge prior with two degrees of freedom. The top panel 
of Figure 9.2 shows the time-series plot for the simulated job performance means. Notice 
that the long-term trends are gone and that the means stay within a plausible range of values. 
The bottom panel of the fi gure shows the time-series plot for the covariance between employ-
ment status and job performance ratings. This parameter was previously inestimable, but the 
simulated parameters now vary around zero (the value specifi ed by the prior). Both plots still 
display systematic trends, but the ridge prior dramatically reduces the problems that were 
evident in Figure 9.1.
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9.3 DEALING WITH NON-NORMAL DATA

The data augmentation algorithm assumes multivariate normality, both at the I-step and at 
the P-step (e.g., the I-step draws residuals from a normal distribution, and the P-step distribu-
tions follow from assuming a normal distribution for the population data). However, Schafer 
and colleagues suggest that normality-based imputation can work for a variety of different 
distribution types (Bernaards, Belin, & Schafer, 2007; Graham & Schafer, 1999; Schafer, 
1997; Schafer & Olsen, 1998). This is an important practical issue because normality is of-
ten the exception rather than the rule (Micceri, 1989). The next section describes special is-
sues that arise with discrete data (e.g., nominal and ordinal variables), but for now it is useful 
to address normality violations in more general terms.

Empirical studies suggest that normality violations may not pose a serious threat to the 
accuracy of multiple imputation parameter estimates (Demirtas, Freels, & Yucel, 2008; Gra-
ham & Schafer, 1999; Leite & Beretvas, 2004; Rubin & Schenker, 1986; Schafer, 1997). 
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FIGURE 9.2. Time-series plot after specifying a ridge prior with ν = 2 degrees of freedom. The top 
panel shows a time-series plot of the job performance mean. The ridge prior eliminated the long-term 
dependencies, and the simulated parameters take on plausible values. The bottom panel shows the 
covariance between job status and job performance. This parameter was not estimable without the 
ridge prior, but now varies around a value of zero (the covariance specifi ed by the prior).
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Perhaps not surprisingly, the magnitude of the bias depends on the sample size and the miss-
ing data rate. For example, Demirtas et al. (2008) found that the parameter estimates and 
standard errors from a bivariate data analysis were relatively accurate with a sample size of 
N = 400 but were quite distorted with a sample size of N = 40. Other simulation studies have 
reported accurate estimates and confi dence intervals with sample sizes as low as N = 100 
(Graham & Schafer, 1999; Schafer, 1997). The percentage of missing data also plays a role, 
such that bias increases as the missing data rate increases. Although it is diffi cult to establish 
rules of thumb about the percentage of missing data, Demirtas et al. (2008) reported accu-
rate parameter estimates with missingness rates as high as 25%. Finally, the impact of nor-
mality violations varies across different parameter estimates. For example, variance estimates 
are sensitive to scores in the tails of a distribution, so they are likely to exhibit more bias than 
means and regression coeffi cients. Other parameters that depend on the tails of a distribution 
(e.g., extreme quantiles such as the 90th percentile) can also be quite sensitive to normality 
violations (Demirtas et al., 2008; Schafer, 1997).

Applying Normalizing Transformations at the Imputation Phase

One way to mitigate the impact of normality violations is to apply normalizing transforma-
tions at the imputation phase. Researchers sometimes object to transformations because the 
metric of the resulting scores is unfamiliar. However, variables can have different scales dur-
ing the imputation and pooling phases, so it is possible to impute the variable on a trans-
formed metric (e.g., a logarithmic scale) and analyze it on its original metric. Popular multiple-
imputation software programs offer a variety of common data transformations, and these 
programs can automatically back-transform variables to their original metric when outputting 
the imputed data sets. Analyzing non-normal variables can still cause problems in the subse-
quent analysis phase, but applying data transformations at the imputation phase can improve 
the validity of data augmentation.

Despite their intuitive appeal, data transformations pose two potential problems. First, 
choosing an appropriate transformation is not necessarily straightforward. For example, loga-
rithmic or square root transformations can work well for positively skewed variables, but the 
magnitude of the skewness and the kurtosis dictates the choice of transformation. Method-
ologists sometimes recommend experimenting with different transformations until you iden-
tify the one that best normalizes the data (Tabachnick & Fidell, 2007). This approach is dif-
fi cult to implement, however, because there are currently no software programs that estimate 
skewness and kurtosis with missing data. Unfortunately, using deletion methods to assess 
the utility of different transformations can produce wildly inaccurate estimates of skewness 
and kurtosis, particularly if data are systematically missing from a distribution’s tails. Data 
transformations are also problematic because they can alter the covariate structure of the 
data. Regression-based imputation relies heavily on the associations among the variables, so 
imputing variables on a transformed metric and back-transforming the scores to the original 
metric can potentially affect the accuracy of the imputations and the resulting parameter 
values. This has prompted some methodologists to raise strong concerns over the appro-
priate use of transformations in the context of multiple imputation (Demirtas et al., 2008, 
pp. 82–83). Further methodological research is needed to clarify this issue.
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Applying Corrective Procedures at the Analysis Phase

Non-normal data can also cause problems at the analysis phase. The methodological literature 
suggests that normality violations have a limited impact on parameter estimates but can bias 
standard errors and distort the likelihood ratio test (Finney & DiStefano, 2006; West, Finch, 
& Curran, 1995). The corrective procedures described in Chapter 5 (e.g., robust standard 
errors and rescaled test statistics) have long been available for complete-data analyses, and 
some of these procedures are readily applicable to multiple imputation. For example, it is 
perfectly appropriate to apply Rubin’s (1987) pooling formulas to robust (i.e., sandwich es-
timator) standard errors. Similarly, the sandwich estimator can generate the within-imputation 
covariance matrices for the D1 test statistic from Chapter 8. Unfortunately, it is unclear how to 
implement corrective procedures for the likelihood ratio test. For example, the methodological 
literature offers no guidance on whether it is appropriate to use rescaled likelihood ratio tests 
to compute the D3 statistic. This is a fruitful area for future methodological research.

9.4 TO ROUND OR NOT TO ROUND?

Discrete measurement scales are exceedingly common in the behavioral and the social sci-
ences, and researchers often incorporate nominal and ordinal variables into the imputation 
phase. Methodologists have developed specialized imputation algorithms for mixtures of cat-
egorical and continuous variables (e.g., the general location model—Schafer, 1997; sequen-
tial regression imputation—Raghunathan, Lepkowski, Van Hoewyk, & Solenberger, 2001), 
some of which I describe later in the chapter. However, these more complex categorical data 
models do not necessarily produce accurate parameter estimates (Belin, Hu, Young, & Grusky, 
1999), so data augmentation may be the best option.

One consequence of applying an imputation model for normal data to discrete variables 
is that the resulting imputations will have decimals. The traditional advice is to round the 
imputed values to the nearest integer or to the nearest plausible value (Schafer, 1997; Schafer 
& Olsen, 1998; Sinharay, Stern, & Russell, 2001). For example, Schafer (1997, p. 148) sug-
gests that “the continuous imputes should be rounded off to the nearest category to preserve 
the distributional properties as fully as possible and to make them intelligible to the analyst.” 
At an intuitive level, rounding is appealing because it eliminates implausible values and 
yields imputations that are aesthetically consistent with the observed data. However, recent 
research suggests that rounding may not be necessary and can actually lead to biased param-
eter estimates.

Much of the empirical work on rounding has focused on binary variables (Allison, 2005; 
Bernaards et al., 2007; Horton, Lipsitz, & Parzen, 2003; Yucel, He, & Zaslavsky, 2008). These 
studies clearly suggest that rounding is something to avoid. At an intuitive level, it is reason-
able to expect the effects of rounding to diminish as the number of ordinal response options 
increases. To date, relatively few studies have systematically examined the impact of round-
ing multiple-category ordinal variables (e.g., 5-point Likert scales). Computer simulation 
studies provide some indirect evidence that rounding is not as problematic with 5-category 
ordinal variables (Van Ginkel, Van der Ark, & Sijtsma, 2007a, 2007b), but analyzing the 
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fractional imputations still appears to be the best option, at least for now (Wu & Enders, 
2009). In some situations the analysis model requires rounding (e.g., a binary outcome in a 
logistic regression, a set of dummy variables). The remainder of this section describes some 
strategies for dealing with this issue.

Rounding Binary Variables

The impact of rounding seems to be most pronounced with binary variables. Including an 
incomplete binary variable (e.g., a dummy variable with codes of zero and one) in the impu-
tation phase will produce a range of imputed values, including fractional values between zero 
and one, values greater than one, and even negative values. One strategy for converting frac-
tional imputations to binary values is to apply a 0.50 rounding threshold to the imputed 
values (i.e., round imputed values that exceed 0.50 to one, and round imputed values that 
are less than 0.50 to zero). However, recent research suggests that this so-called naïve round-
ing scheme introduces bias, whereas analyzing the fractional imputations does not (Allison, 
2005; Bernaards et al., 2007; Horton et al., 2003; Yucel et al., 2008). Although these studies 
clearly suggest that rounding a binary variable is a bad idea, some analysis models require a 
binary outcome variable (e.g., a logistic regression that predicts membership in one of two 
categories). For these situations, methodologists have proposed rounding rules that appear 
to work somewhat better than a simple 0.50 threshold. I describe two such strategies next.

Bernaards et al. (2007) describe a so-called adaptive rounding procedure that relies on 
the normal approximation to a binomial distribution. For each imputed data set, adaptive 
rounding applies the following threshold:

 c = μ̂UR – Φ–1(μ̂UR)√μ̂UR(1 – μ̂UR) (9.2)

where c is the rounding threshold, μ̂UR is the mean of the imputed (i.e., unrounded) binary 
variable, and Φ–1(μ̂UR) is the z value from a standard normal distribution, below which the 
μ̂UR proportion of the distribution falls (i.e., the inverse of the standard normal cumulative 
distribution). To illustrate the adaptive rounding procedure, suppose that the mean of a bi-
nary variable is μ̂UR = 0.67 in a particular imputed data set. In a standard normal distribu-
tion, a z value of 0.44 separates the lowest 67% of the curve from the rest of the distribution. 
Consequently, substituting μ̂UR = 0.67 and Φ–1(μ̂UR) = 0.44 into Equation 9.2 yields a round-
ing threshold of 0.463. Consistent with naïve rounding, imputed values that exceed the 
threshold are rounded to one, and values that fall below the threshold get rounded to zero.

Yucel et al. (2008) describe an alternate rounding strategy that they refer to as calibra-
tion. The fi rst step of the calibration procedure is to create a copy of the raw data and delete 
the observed values of the incomplete binary variable from this fi le (i.e., make the binary 
variable completely missing). The second step is to vertically concatenate the original data 
and the copied data into a single stacked fi le. The fi nal step is to impute the missing values 
in the concatenated fi le. Imputing the stacked data fi le yields fi lled-in values for the sub-
sample of cases that actually have complete data on the binary variable. The idea behind cali-
bration is to use these values to identify a rounding threshold that reproduces the frequency 
of ones and zero in the raw data.
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To illustrate the calibration procedure, Table 9.2 shows a hypothetical sample of N = 10 
cases, 60% of which have data on a binary variable, Y. Furthermore, among the subsample 
of cases that have data, 50% have a code of one. The left-most set of columns shows the origi-
nal data and the duplicate data fi le where Y is completely missing. The middle set of columns 
shows the data that result from imputing the entire set of N = 20 data records. Notice that 
the subsample of complete cases (i.e., the calibration subsample) has imputed values that 
range between 0.270 and 0.737. The goal of calibration is to use this subset of imputations 
to identify a rounding threshold that reproduces the frequency of ones and zeros in the ob-
served data (i.e., a 50/50 split). For clarity, Table 9.2 orders the calibration subsample (shown 
in a shaded box) by their imputed values. As you can see, applying a rounding threshold of 
0.32 to the calibration subsample yields a 50/50 split of ones and zeros. I applied this thresh-
old to the four incomplete cases from the original sample, and the right-most column of the 
table shows the resulting Y values.

To date, no research has compared adaptive rounding to calibration, but both approaches 
appear to be superior to naïve rounding (Bernaards et al., 2007; Yucel et al., 2008). Cali-
bration is likely to exhibit some bias with missing at random (MAR) data (Yucel et al., 2008), 
but simulation studies suggest that adaptive rounding does not suffer from this problem 

TABLE 9.2. Illustration of Calibration Rounding for a Binary Variable

 Stacked data Imputed data Rounded data

ID X Y ID X Y ID X Y

Original data

 1 7 0 1 7 0 1 7 0
 2 10 1 2 10 1 2 10 1
 3 3 1 3 3 1 3 3 1
 4 5 0 4 5 0 4 5 0
 5 5 1 5 5 1 5 5 1
 6 8 0 6 8 0 6 8 0
 7 1 — 7 1 0.596 7 1 1
 8 2 — 8 2 0.172 8 2 0
 9 4 — 9 4 0.857 9 4 1
10 8 — 10 8 0.961 10 8 1

Duplicate data

 1 7 — 6 8 0.270 N/A N/A N/A
 2 10 — 4 5 0.311 N/A N/A N/A
 3 3 — 5 5 0.315 N/A N/A N/A
 4 5 — 1 7 0.500 N/A N/A N/A
 5 5 — 3 3 0.733 N/A N/A N/A
 6 8 — 2 10 0.737 N/A N/A N/A
 7 1 — 7 1 0.451 N/A N/A N/A
 8 2 — 8 2 0.421 N/A N/A N/A
 9 4 — 9 4 0.535 N/A N/A N/A
10 8 — 10 8 0.953 N/A N/A N/A
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(Bernaards et al., 2007). Adaptive rounding also has the advantage of being easier to imple-
ment, so until more research accumulates, it seems prudent to recommend this approach 
over calibration and naïve rounding.

Rounding a Set of Dummy Variables

A second situation in which rounding may be necessary occurs with incomplete nominal 
variables that have more than two categories. The appropriate way to impute a nominal vari-
able is to recast it as a set of g – 1 dummy variables prior to imputation. With complete data, 
cases that belong to the reference group (e.g., a control group or some other normative 
group) have a value of zero on the entire set of dummy variables, and the remaining cases 
have zeros on all but one of the code variables (Cohen, Cohen, West, & Aiken, 2003). How-
ever, applying naive rounding to a set of imputed dummy variables can produce illogical 
values where a case has a code of one on multiple dummy variables. Consequently, it is nec-
essary to apply rounding rules that produce a logical set of dummy codes.

Allison (2002) proposed straightforward rules for rounding a set of dummy variables. 
The cases with missing data on the nominal variable have imputed values for each of the g – 1 
dummy codes. The fi rst step of Allison’s procedure is to compute a new variable that sub-
tracts the sum of the imputed values from a value of one. This new variable serves as a pseudo-
imputation for membership in the reference category (i.e., the group coded all zeros). Next, 
if the pseudo-imputation variable has the highest numeric value, you round the g – 1 dummy 
codes to zero, thereby assigning the case to the reference group. Otherwise, if the highest 
imputed value corresponds to one of the g – 1 dummy variables, you assign a value of one 
to the appropriate code variable and set the remaining dummy codes to zero. To illustrate 
Allison’s rounding rules, Table 9.3 shows a small set of hypothetical imputations for a set of 
two dummy codes, D1 and D2 (i.e., a nominal variable with three categories). The fi rst two 
columns contain the imputed values for D1 and D2 and the middle column is the pseudo-
imputation for membership in the reference category (i.e., 1 – D1 – D2). As you can see, the 
highest value in the fi rst three columns determines each case’s group membership. It is im-
portant to note that Allison’s rounding rules have not been evaluated in the literature. Never-
theless, his rules provide a convenient solution for an imputation model that includes a 
number of multiple-category nominal variables.

TABLE 9.3. Illustration of Dummy Code Rounding Rules

 Imputed codes Rounded codes

D1 D2 1 – D1 – D2 D1 D2

 0.65 0.23 0.12 1 0
–0.12 0.55 0.57 0 0
 0.77 –0.02 0.25 1 0
 0.37 0.82 –0.19 0 1
 0.05 1.08 –0.13 0 1
 0.42 –0.02 0.60 0 0
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Out-of-Range Imputations

In addition to producing fractional values, data augmentation will often produce imputations 
that fall outside of the plausible score range (e.g., a 5-point Likert variable that has an im-
puted value of 5.23). There are essentially three options for dealing with out-of-range values: 
(1) analyze the imputed values as they are, (2) round to the nearest plausible score value, or 
(3) generate new imputations for cases that have out-of-range values (e.g., by adding a new 
random residual to each predicted score). Multiple-imputation software packages make the 
latter two options easy to implement, but analyzing the out-of-range values may be a fi ne 
option, particularly if they are relatively few in number. At an intuitive level, out-of-range 
imputations can infl ate variance estimates, but this bias is probably trivial if the number of 
implausible values is relatively small.

A large proportion of out-of-range imputations can be symptomatic of a normality viola-
tion, so transforming the data at the imputation phase may reduce or eliminate out-of-range 
values. However, transformations are unlikely to eliminate implausible imputations that occur 
when an ordinal variable has an asymmetric distribution (e.g., responses are isolated to small 
number of categories). Rounding the imputed values to the nearest plausible value is one 
solution, but an alternate strategy is to recast the ordinal variable as a set of dummy codes 
and apply Allison’s (2001) rounding rules following imputation.

9.5 PRESERVING INTERACTION EFFECTS

Researchers in the behavioral and the social sciences are often interested in estimating inter-
action (i.e., moderation) effects where the magnitude of the association between two vari-
ables depends on a third variable. In some situations, the interaction effect appears as an 
explicit term in the analysis model. For example, if it was of interest to determine whether the 
association between psychological well-being and job performance is different for males and 
females, including a product term in a multiple regression model could address this question 
(i.e., moderated multiple regression; Aiken & West, 1991). Many other analyses model 
implicit interaction effects. For example, multiple-group structural equation models do not 
contain explicit interaction terms, yet they allow for group differences in the mean structure, 
the covariance structure, or both. A multilevel model with random intercepts and slopes is 
another analysis that involves implicit interaction effects.

When using multiple imputation to treat missing data, it is important to specify an im-
putation model that preserves any interaction effects that are of interest in the subsequent 
analysis model because failing to do so will attenuate the magnitude of these effects, even if 
the data are missing completely at random (MCAR). For example, if gender moderates the 
association between psychological well-being and job performance, failing to build this com-
plex association into the imputation model is likely to produce an analysis that masks the 
gender difference. Similarly, an imputation model that fails to preserve group differences in 
the mean or the covariance structure could lead to the conclusion that the parameters of a 
multiple group structural equation model are invariant (i.e., the same) across groups when 
they are truly different in the population. This section outlines different imputation strategies 
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for dealing with interactive effects. The appropriate strategy depends largely on whether the 
interaction involves a categorical or a continuous moderator variable.

Interactions That Involve Quantitative Variables

If the analysis model includes an interaction effect between two quantitative variables, then 
the imputation phase should include a variable that is the product of the two interacting 
variables. This is effectively the only way to preserve the interaction. For example, suppose 
that it is of interest to determine whether the number of years on the job moderates the rela-
tionship between psychological well-being and job performance. A standard approach for 
addressing this question is to estimate a multiple regression model that includes main effects 
and a product term as predictor variables (e.g., years on the job, psychological well-being, 
and the product of years on the job and well-being). The imputation phase also employs a 
multiple regression model, so it too should include the same set of variables. The product 
variable is particularly important because it preserves the complex associations among the 
variables. It is important to point out that including a product variable in the imputation 
phase does not create an interaction effect where none exists. Rather, it simply preserves the 
natural structure of the data. Finally, note that the product term strategy also applies to non-
linear associations. For example, if the analysis model includes a quadratic effect, then the 
imputation phase should include main effects and a squared term.

When an analysis model includes an interaction effect between two or more quantitative 
variables, it is important to center predictor variables at their means (i.e., subtract the mean 
from each score) prior to analyzing the data (Aiken & West, 1991). However, centering be-
comes diffi cult when one of the variables in the product term has missing data. One option 
is to center the variables prior to imputation, compute the necessary product term, and fi ll in 
the missing variables (including the product term) on their centered metrics. This approach 
requires estimates of the variable means, so maximum likelihood estimates (e.g., from an 
initial EM analysis) are a logical choice. A second strategy is to fi ll in the missing variables 
(including the product term) on their original metrics and subsequently perform the center-
ing procedure on each of the complete data sets. Because the product of two uncentered 
variables has a larger mean and a larger variance than the product of two centered variables 
(Bohrnstedt & Goldberger, 1969), this method requires a complete rescaling of the imputed 
product variable. Neither of these approaches has been evaluated in the literature, but cen-
tering the variables prior to imputation is far easier and tends to yield estimates that are simi-
lar to those of a maximum likelihood analysis. Until further research suggests otherwise, this 
is probably the best strategy.

Interactions That Involve a Categorical Variable

When it is of interest to examine an interaction effect that involves a categorical variable, 
imputing the data separately for each subgroup is often more accurate than including prod-
uct terms in the imputation model (Enders & Gottschall, in press). To understand why, sup-
pose that it is of interest to determine whether a binary categorical variable D moderates the 
association between X and Y (e.g., gender moderates the association between psychological 
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well-being and job performance). Furthermore, suppose that some individuals have missing 
Y values. Using a product term to preserve the interaction effect yields the following imputa-
tion model:

 yi* = β̂0 + β̂1(Xi) + β̂2(Di) + β̂2(Xi)(Di) + zi (9.3)

where yi* is the imputed value for case i, Xi and Di are the observed scores for that case, and 
zi is a normally distributed residual term. Including the dummy code variable in the imputa-
tion model preserves group mean differences on Y, and the product term preserves group 
differences in the covariance between X and Y. It may not be immediately obvious, but using 
a single normal distribution to generate the residual terms effectively assumes that both 
groups have the same Y variance (i.e., data augmentation generates imputations that are 
homoscedastic). This subtle assumption may have a relatively minor impact on many analy-
ses, but in a number of situations the substantive goal is to determine whether the covariance 
structure is the same across qualitatively different subpopulations (e.g., measurement invari-
ance analyses, multiple-group structural equation models). If the subgroups have different 
population variances, then the product term approach will generate imputations that mask 
these group differences (Enders & Gottschall, in press).

A simple solution to the previous problem is to impute the data separately for each sub-
group (i.e., separate-group imputation). Because this approach uses a unique imputation 
equation and a unique residual distribution for each subpopulation, every element in the 
mean vector and the covariance matrix will freely vary across groups. The downsides of sep-
arate-group imputation are that it (1) is limited to situations that involve categorical mod-
erator variables, (2) requires adequate group sizes, and (3) necessitates additional effort to 
assess convergence (e.g., by examining the time-series and autocorrelation function plots for 
each subgroup). Despite these potential limitations, the approach is very easy to implement 
in multiple imputation software programs and has performed well in computer simulation 
studies, even with a smple size as low as n = 50 per group (Enders & Gottschall, in press).

Models with Implicit Interaction Effects

Many common statistical analyses involve implicit interaction effects. Multiple-group struc-
tural equation models are one such example. To illustrate, consider a measurement invariance 
analysis in which it is of interest to determine whether the factor model parameters (e.g., the 
loadings, measurement intercepts) are the same across qualitatively different subpopulations 
(e.g., males and females, Caucasians, and Hispanics). A typical measurement invariance 
analysis begins with separate factor models for each subgroup. Subsequent analysis steps 
constrain sets of parameter estimates (e.g., the factor loadings) to be equal across groups. If 
the constrained model fi ts the data as well as the unconstrained model, then there is evi-
dence that the subgroups have the same population mean vector or covariance matrix. In 
contrast, a constrained model that shows worse fi t suggests that the subgroups have a differ-
ent mean vector or covariance matrix.

Multiple-group structural equation models do not contain explicit interaction effects, 
but they allow for group differences in the mean structure, covariance structure, or both. 
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Consequently, it is necessary to specify an imputation model that preserves these group dif-
ferences. Incorporating product terms into the imputation phase is problematic because it 
generates imputations from a model that assumes equal variances across groups. As a result, 
the subsequent analyses are likely to suggest that certain parameters are invariant (i.e., the 
same) across groups, when they are actually different in the population. In contrast, separate-
group imputation naturally preserves group differences in the mean vector and the covari-
ance matrix and will lead to more accurate assessments of subgroup differences. Computer 
simulations suggest that the separate-group imputation approach produces accurate param-
eter estimates in a variety of multiple-group structural equation models (e.g., moderated 
mediation, multiple-group confi rmatory factor analysis, multiple-group growth curves), with 
sample sizes as low as n = 50 per group (Enders & Gottschall, in press).

A multilevel model with random intercepts and slopes is another analysis that contains 
implicit interaction effects. To illustrate, consider an educational study in which students 
(i.e., level-1 units) are nested within schools (i.e., level-2 units). Furthermore, suppose that 
it is of interest to examine the infl uence of student socioeconomic status on academic 
achievement. A random intercept model is one in which the mean achievement level differs 
across schools, and a random slope model allows the association between socioeconomic 
status and achievement to vary across schools. These group differences in the mean and the 
covariance structure show up as variance estimates rather than as regression coeffi cients, but 
they are interaction effects, nevertheless.

The data augmentation algorithm from Chapter 7 is not designed for multilevel data struc-
tures where the associations among variables potentially vary across clusters. In principle, 
separate-group imputation is appropriate for imputing missing values at the lowest level of 
the data hierarchy (e.g., by imputing individual-level variables separately for each cluster), 
but this approach requires a relatively large number of cases within each cluster. Many (if not 
most) common applications of multilevel modeling (e.g., dyadic data, longitudinal data, chil-
dren nested within classrooms) do not have adequate group sizes to support this method. A 
better strategy is to use a specialized imputation algorithm for multilevel data (Schafer, 2001; 
Schafer & Yucel, 2002; Yucel, 2008). I describe one such algorithm later in the chapter.

A Cautionary Note on Latent Categorical Variables

A number of popular statistical models treat group membership as a latent categorical vari-
able. Finite mixture models (McLachlan & Peel, 2000; Muthén, 2001, 2004) and latent class 
models (McCutcheon, 1987) are two common examples. Consistent with a multiple group 
structural equation model, it is often of interest to determine whether the latent classes have 
different mean and covariance structures. For example, a growth mixture model is character-
ized by a number of latent subgroups, each of which can have a different growth trajectory 
(i.e., different mean structures) and varying degrees of individual heterogeneity in the growth 
trajectories (i.e., different covariance structures). These models are important to consider 
because they are becoming increasingly common in the social sciences.

Because group membership is inferred from the data during the analysis, there is no way 
to use product terms or separate-group imputation to preserve the implicit interaction effects 
that are present in the data. Consequently, multiple imputation can produce biased estimates 
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of the model parameters, even when the data are MCAR (Enders & Gottschall, in press). 
Fortunately, maximum likelihood missing data routines are readily available for many popu-
lar latent class models (e.g., growth mixture models, factor mixture models), so there is no 
need to rely on multiple imputation. Methodologists are also beginning to develop imputation 
algorithms for latent categorical variables (Vermunt, Van Ginkel, Van der Ark, & Sijtsma, 2008). 
As a result, these procedures are likely to become increasingly common in the near future.

9.6 IMPUTING MULTIPLE-ITEM QUESTIONNAIRES

Researchers in the behavioral and the social sciences routinely use multiple-item question-
naires to measure complex constructs. For example, psychologists typically use several ques-
tionnaire items to measure depression, each of which taps into a different depressive symptom 
(e.g., sadness, lack of energy, sleep diffi culties, feelings of hopelessness). With multiple-item 
questionnaires, respondents often omit one or more of the items within a given scale. Mul-
tiple imputation is advantageous because it provides a mechanism for dealing with item-level 
missingness (maximum likelihood can be less fl exible in this regard). However, imputation 
can be challenging or even impossible when the data contain a large number of questionnaire 
items. This is an important practical issue because it is not uncommon for researchers to 
administer a dozen or more questionnaires in a single study, each of which may contain 20 
or more items. The number of variables can quickly multiply in a longitudinal study that has 
several questionnaires administered on multiple occasions.

Ideally, the imputation phase should include all of the individual questionnaire items 
because this maximizes the information that goes into creating the imputations. However, 
item-level imputation may not be feasible when the number of questionnaire items is very 
large. As an upper limit, the number of variables in the imputation model cannot exceed the 
number of cases because the input data contain linear dependencies that cause mathematical 
diffi culties for regression-based imputation. Because missing data exacerbate these mathemat-
ical diffi culties, the allowable number of variables tends to be much lower than the number 
of cases. One possible solution for imputing large data sets is to use a ridge prior described 
earlier in the chapter. Conceptually, the ridge prior adds a number of imaginary data records 
(i.e., degrees of freedom) to the estimation process, but it does so at the cost of attenuating 
the associations among the variables. A complex imputation model can require a relatively 
large number of additional degrees of freedom, in which case the ridge prior might be a poor 
solution. An alternative approach is to perform separate data augmentation runs for different 
subsets of variables. However, this strategy effectively assumes that variables from different 
subsets are uncorrelated, and it is viable only if variables from different subsets are not part of 
the same analysis model. This section outlines three alternative approaches for imputing large 
questionnaire data sets: scale-level, duplicate scale, and a three-step imputation approach.

Scale-Level Imputation

When collecting data with multiple-item questionnaires, researchers are often interested in 
analyzing scale scores based on a sum or an average of the item responses. When the analysis 
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model involves scale scores, ignoring the item-level data and imputing the scale scores them-
selves can dramatically reduce the number of imputation model variables (Graham, 2009). 
Under this scale-level imputation approach, the cases that have complete data on a particu-
lar subset of items (e.g., a set of depression items) also have complete data on the scale score, 
whereas the individuals who fail to answer one or more of the questionnaire items have miss-
ing data. To illustrate, Table 9.4 shows a small data set with a single auxiliary variable and six 
questionnaire items (X1 to X3 and Y1 to Y3) that combine to form two subscales, SX and SY. 
The scale-level imputation procedure for these data would include just three variables: SX, SY, 
and the auxiliary variable, Z.

Scale-level imputation can dramatically reduce the number of variables in the imputa-
tion model and can eliminate the mathematical diffi culties associated with imputing a large 
number of individual items. However, it does so at the cost of reducing statistical power. In 
my experience, scale-level imputation can increase standard errors by up to 10% relative to 
an ideal analysis that uses scale scores from an item-level imputation procedure. This de-
crease in statistical power becomes increasingly evident as the number of items within a scale 
increases. The failure of scale-level imputation stems from the fact that questionnaire items 
within a scale tend to have stronger correlations than items from different scales. Conse-
quently, the imputation phase effectively discards the strongest predictors of the missing scale 
scores (i.e., the items within the scale) in favor of weaker correlates (i.e., items from different 
scales).

One way to mitigate the power loss from scale-level imputation is to incorporate the 
item-level information back into the imputation model. A simple way to do this is to com-
pute a second set of scale scores by averaging the available items within each questionnaire. 
For example, if a respondent answered 8 out of 10 items on a particular questionnaire, the 
scale score for that individual would be the average of the eight observed items. Incorporat-
ing these additional scales into the imputation phase as auxiliary variables can recapture 
much of the item-level information that scale-level imputation ignores. For lack of a better 
term, I henceforth refer to this approach as duplicate-scale imputation. The right-most sec-
tion of Table 9.4 illustrates the input data for this method. Notice that the complete cases have 
identical scores on both sets of scales (e.g., SX and AX are the same), whereas the incomplete 
cases only have data on the duplicate scales. The duplicate-scale imputation approach requires 

TABLE 9.4. Input Data for Item-Level, Scale-Level, and Duplicate-Scale Imputation

  Scale-level
 Item-level imputation imputation Duplicate-scale imputation

X1 X2 X3 Y1 Y2 Y3 Z SX SY Z SX SY Z AX AY

5 4 5 3 — 4 20 4.67 — 20 4.67 — 20 4.67 3.50
2 — 1 3 2 3 17 — 2.67 17 — 2.67 17 1.50 2.67
4 3 5 5 5 4 24 4.00 4.67 24 4.00 4.67 24 4.00 4.67
— 3 2 — — 4 13 — — 13 — — 13 2.50 4.00
1 1 3 2 2 1  9 1.67 1.67  9 1.67 1.67  9 1.67 1.67

Note. SX and SY are scale scores that average the individual questionnaire items (X1 – X3 and Y1 – Y3). The scale 
scores are missing if one or more of the items are missing. AX and AY are averages of the available items within each 
scale, and Z is an auxiliary variable.
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twice as many variables as scale-level imputation, but it can dramatically reduce the complex-
ity of the imputation model. For example, suppose that the two questionnaires in Table 9.4 
had 20 items each. Duplicate-scale imputation would still only require fi ve variables: SX, SY, 
AX, AY, and Z.

In my experience, duplicate-scale imputation tends to yield parameter estimates and 
standard errors that are nearly identical to those of an ideal analysis that uses scale scores 
from an item-level imputation procedure. However, getting duplicate-scale imputation to 
work properly requires an additional nuance. Because the cases with complete data have 
identical scores on both sets of scales, the data contain linear dependencies that cause esti-
mation problems for data augmentation. Using a ridge prior distribution to add imaginary 
data records to the imputation process can solve this problem. Fortunately, adding a small 
number of additional degrees of freedom usually eliminates the linear dependencies, so any 
bias that results from use of a ridge prior is negligible. For example, later in the chapter I 
present an analysis example in which adding a single imaginary data record (i.e., a ridge prior 
with a single degree of freedom) eliminates the linear dependencies in the imputation model 
and produces parameter estimates and standard errors that are virtually identical to those of 
item-level imputation.

A Three-Step Approach for Item-Level Imputation

The duplicate-scale approach can work well for analyses that involve scale scores, but many 
analysis models require item-level data (e.g., internal consistency reliability analyses, confi r-
matory factor analyses). In situations where the number of items is prohibitively large, Little, 
McConnell, Howard, and Stump (2008) outline a three-step approach for item-level imputa-
tion. The idea behind their procedure is to separately impute different subsets of question-
naire items. This strategy is usually undesirable because it assumes that variables from differ-
ent item subsets are uncorrelated. However, Little et al. solve this problem by using scale 
scores to preserve the between-subset associations.

The Little et al. procedure requires a complete set of scale scores. The authors use scale-
level imputation to generate these scores, but averaging the available items within a scale is 
another option. These initial scale scores are simply temporary auxiliary variables, so the 
method that you use to generate them probably makes little difference. The second step in-
volves an iterative imputation process that repeatedly fi lls in the item scores from one subset 
while using the scale scores from the remaining subsets as auxiliary variables. As an example, 
consider a study that collects data on 10 multiple-item questionnaires (i.e., Q1 to Q10), each 
of which has 20 items. The fi rst imputation phase might consist of the 20 items from Q1 and 
the scale scores for Q2 through Q10. Similarly, the second imputation model could include the 
Q2 items and the scale scores for the nine remaining questionnaires (i.e., Q1, Q3 through Q10). 
Depending on the sample size, it may be possible to perform fewer data augmentation runs 
with larger item subsets (e.g., impute the items from Q1 through Q5 while using the scale 
scores for Q6 through Q10 as auxiliary variables). After completing the imputation process for 
each item subset, the temporary placeholder scales from the fi rst step are no longer neces-
sary. Consequently, the fi nal step is to discard the initial scales and compute a new set of 
composite scores from the fi lled-in item responses.
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To date, no studies have evaluated the duplicate-scale approach or the three-step impu-
tation approach. Because a single scale score preserves the between-subset associations, these 
procedures probably work best when the items within one subset have relatively uniform 
correlations with the items from another subset. Fortunately, this is a fairly realistic condition 
for many scales in the behavioral and the social sciences, so these procedures probably work 
well in a variety of settings. The imputation of large item-level data sets is an important prac-
tical topic that warrants future methodological research.

9.7 ALTERNATE IMPUTATION ALGORITHMS

Although the data augmentation algorithm in Chapter 7 is probably the most popular impu-
tation strategy, methodologists have developed a number of alternative imputation routines. 
Some of these algorithms are applicable to specialized situations that are relatively uncom-
mon in the behavioral and the social sciences (e.g., data comprised entirely of categorical 
variables; Schafer, 1997; randomized trials with monotone missing data patterns; Lavori, 
Daw son, & Shera, 1995), while others are suitable replacements for data augmentation 
(King, Honaker, Joseph, & Scheve, 2001). A thorough review of different imputation options 
is beyond the scope of this chapter, but it is useful to briefl y describe some of these alter-
native models. This section begins with a description of an EM-based imputation algorithm 
that is statistically equivalent to data augmentation. Next, the section outlines two algo-
rithms for imputing data sets that contain a mixture of categorical and continuous variables. 
The fi nal section describes an imputation algorithm for multilevel data structures. Note that 
the algorithms in this section simply replace data augmentation in the imputation phase and 
do not require changes to the analysis and pooling phases.

EM-Based Algorithms for Multivariate Normal Data

Generating unique sets of imputations from multivariate normal data requires several alter-
nate estimates of the mean vector and the covariance matrix. The P-step of data augmenta-
tion generates these estimates by simulating random draws from a posterior distribution. 
King et al. (2001) describe two approaches that use the EM algorithm from Chapter 4 to 
generate alternate estimates of the mean vector and the covariance matrix. These EM-based 
approaches also simulate random draws from a posterior distribution, but they do so in a 
very different fashion. The EM with an importance sampling algorithm is particularly inter-
esting because it is statistically equivalent to data augmentation, yet it does not require the 
same complicated defi nition of convergence.

EM with sampling (EMS) begins by using the EM algorithm to estimate the mean vector 
and the covariance matrix. These maximum likelihood estimates describe the central tendency 
of the posterior distributions from which the algorithm will draw alternate parameter esti-
mates. Next, the algorithm computes the parameter covariance matrix for the EM estimates 
and uses this matrix to defi ne the spread of the posterior distributions. Having characterized 
the shape of the posterior distribution, the EMS algorithm uses Monte Carlo simulation tech-
niques to draw m new estimates of the mean vector and the covariance matrix from their 
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respective posteriors. This process does not require a long iterative chain. Rather, the algo-
rithm simply generates the desired number of alternate estimates. Finally, EMS uses each set 
of parameter values to construct regression equations that impute the missing values. The 
fi nal imputation stage is identical to stochastic regression imputation (or alternatively, the 
I-step of data augmentation).

Using the parameter covariance matrix to estimate the spread of the posterior distribu-
tion is only appropriate in very large samples and can produce biased parameter estimates in 
small to moderate samples (King et al., 2001). To correct this problem, King et al. proposed 
a modifi ed algorithm that they call EM with importance sampling (EMIS). EMIS also uses 
maximum likelihood estimates and the parameter covariance matrix to approximate the 
posterior distributions, but it uses the likelihood function to fi ne-tune the shape of the dis-
tributions. Rather than retaining every set of simulated the parameter values, the algorithm 
selectively discards the estimates that are inconsistent with the data (i.e., estimates that have 
a low likelihood of producing the sample data).

More specifi cally, the EMIS algorithm works as follows. First, the algorithm uses Monte 
Carlo simulation techniques to draw a set of alternate parameter values from a multivariate 
normal posterior distribution, the shape of which is defi ned by the EM estimates and the 
corresponding parameter covariance matrix. With small to moderate samples, the true pos-
terior distribution may quite skewed, in which case the simulated parameters are not always 
accurate. Then, to remedy this problem, EMIS uses the likelihood function to weed out 
implausible parameter values. (Assuming a noninformative prior distribution, the likelihood 
function has the same shape as the correct posterior distribution.) Specifi cally, the algorithm 
generates an importance ratio by substituting the simulated parameters into the likelihood 
function and converting the resulting likelihood value into a probability. Simulated parameter 
values that have a high likelihood of producing the sample data also have a high importance 
ratio (i.e., probability), whereas parameters that are unlikely to have produced the sample 
data have a low importance ratio. To decide whether to retain a particular set of parameters, 
the algorithm generates a uniform random number between zero and one and compares this 
number to the importance ratio. EMIS retains the estimates if the uniform random number 
is less than the importance ratio. Otherwise, the algorithm discards the estimates and gener-
ates a new set. This so-called acceptance-rejection algorithm repeatedly screens simulated 
parameter values until it retains m sets of plausible estimates. The resulting estimates more 
closely approximate random draws from the true posterior distribution, the shape of which 
may not resemble a normal distribution. Finally, EMIS uses the retained parameter values to 
construct regression equations that impute the missing values. The fi nal imputation stage is 
identical to stochastic regression imputation.

The EMIS algorithm is statistically equivalent to data augmentation (i.e., it will yield 
the same analysis results, on average) but offers some potential advantages. One advantage 
is that EMIS can be easier to implement. Because the simulated parameter values do not 
depend on the imputed values from a preceding iteration, the m sets of imputations are au-
tomatically independent samples from the distribution of missing values. This simplifi es the 
imputation process considerably because it eliminates the need for graphical convergence 
diagnostics. By extension, there is no need to worry about the number of between-imputation 
iterations or other convergence-related issues that make data augmentation challenging to 
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implement. Speed is a second advantage. Data augmentation often requires thousands of it-
erations to generate a relatively small number of data sets. With large data fi les, this can take 
a considerable amount of time. Because EMIS does not continually iterate between draws, it 
can generate the same number of data sets in a much shorter period (e.g., problems that take 
data augmentation several minutes to run take EMIS just a few seconds). Although data aug-
mentation is the predominant method for generating imputations with multivariate normal 
data, the EMIS algorithm is certainly worth considering. At the time of this writing, Amelia is 
the only software program that implements EMIS.

Algorithms for Categorical and Continuous Variables

One shortcoming of the data augmentation is that it assumes a common distribution for every 
variable in the data set (i.e., the multivariate normal distribution). This is an unrealistic as-
sumption because data sets often contain a mixture of categorical and continuous variables. 
Schafer (1997) and colleagues suggest that normality-based imputation can often work well 
with categorical (e.g., nominal and ordinal) variables, but it is worth considering imputation 
algorithms that do not assume a common distribution. This section describes two such ap-
proaches: the general location model and sequential regression imputation. These methods 
are similar in the sense that they apply different imputation models to categorical and con-
tinuous variables, but their procedural details are quite different. Of the two, sequential 
regression is particularly promising because it is conceptually straightforward and has per-
formed well in empirical studies.

Schafer (1997, Chapter 9) describes an imputation approach for categorical and con-
tinuous variables based on the so-called general location model (Little & Schluchter, 1985; 
Olkin & Tate, 1961). The general location model uses a fully crossed contingency table to 
represent the categorical variables, and it assumes that the continuous variables follow a 
normal distribution within each cell of the table. The model for the continuous variables 
resembles a factorial multivariate analysis of variance (MANOVA) in the sense that the cells 
share a common covariance matrix but can have different means. To illustrate the general loca-
tion model, consider a data set with two continuous variables and two categorical variables, 
both of which have three levels. (The categories can be ordered, but the model treats them as 
nominal.) The saturated general location model for this example has 29 parameters. The con-
tingency table is comprised of nine cells, so the categorical variables contribute eight param-
eters to the model (if the sample size is fi xed, the frequency for the ninth cell is determined 
by the other eight). The continuous variable means vary across cells, adding another 18 pa-
rameters, and the covariance matrix of the continuous variables has three unique elements.

Schafer (1997) outlined a data augmentation algorithm for the general location model 
that consists of an I-step and a P-step. The procedure follows the same basic logic as data 
augmentation for multivariate normal data, but it uses different distribution families (e.g., 
the categorical variables follow a multinomial distribution, and the continuous variables are 
normally distributed within cells of the contingency table). The I-step imputes the incom-
plete categorical variables by assigning each missing observation to a cell in the contingency 
table, and it then uses a stochastic regression procedure to impute the missing continuous 
variables. The continuous variables inform the categorical imputations and vice versa. Con-
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ditional on the imputations from the preceding I-step, the P-step draws new cell probabilities 
for the contingency table and subsequently generates a new covariance matrix and a new set 
of cell means. Schafer describes the data augmentation algorithm in considerable detail, and 
both Schafer and Belin et al. (1999) illustrate applications of the general location model.

The general location model is seemingly well-suited for many realistic missing data 
problems, but it may not be the best option for imputing mixtures of categorical and continu-
ous variables. One problem is that the model becomes exceedingly complex as the number 
of variables increases. For example, Belin et al. (1999) applied the general location model to 
a data set with 16 binary variables and 18 continuous variables. Although this data set is not 
unusually large, the saturated model has more than one million parameters! The staggering 
number of parameters is attributable to the fact that the model includes main effects as well 
as every possible higher-order interaction among the categorical variables. In practice, it is 
usually necessary to perform a series of preliminary analyses to simplify the model prior to 
data augmentation, but doing so adds a layer of complexity to the imputation process. Com-
plexity issues aside, Belin et al. (1999) raise concerns about the accuracy of the general loca-
tion model, particularly for categorical imputations. Until further research is done, it may be 
best to view the general location model with some caution.

Sequential regression imputation is a second approach for imputing data sets that 
contain mixtures of categorical and continuous variables. (The literature also refers to this 
method as chained equations and fully conditional specifi cation.) Unlike the general loca-
tion model, sequential regression imputation fi lls in the data on a variable-by-variable basis, 
each time matching the imputation model to a variable’s distributional form. For example, 
the algorithm can use a linear regression to impute continuous variables, a logistic regression 
to impute binary variables, a Poisson regression to impute count variables, and so on. The 
remainder of this section gives a brief overview of the algorithm, and a number of sources 
provide more detailed descriptions of this approach (Raghunathan et al., 2001; van Buuren, 
2007; van Buuren, Brand, Groothuis-Oudshoorn, & Rubin, 2006).

Like data augmentation, the sequential regression approach uses regression equations 
to generate draws from the conditional distribution of the missing values, given the observed 
data. However, the mechanics of imputation are quite different. For one, the algorithm im-
putes variables in a sequence, one at a time. The imputation order is determined by the rates 
of missingness, where the variable with the fewest missing values gets imputed fi rst, the vari-
able with the next lowest missing data rate gets imputed second, and so on. Each step in the 
imputation sequence can apply a regression model that is appropriate for the scale of the 
incomplete variable (e.g., a logistic regression imputes incomplete binary variables, a linear 
regression imputes normally distributed variables, and so on). Unlike data augmentation, 
each regression model uses the fi lled-in values from one sequence to generate imputations 
for subsequent sequences. For example, suppose that Y3 gets imputed in the fi rst regression 
sequence, Y1 gets imputed in the second sequence, and Y4 in the fi nal sequence. After the 
initial sequence, the algorithm treats Y3 as a complete variable and uses the observed and 
the imputed values as predictors of the missing Y1 scores. Similarly, the next sequence uses 
the fi lled-in values of Y3 and Y1 to impute Y4.

After fi lling in the entire data set, the algorithm uses a Bayesian procedure that is akin 
to the P-step of data augmentation to sample a new set of regression parameters, and the 
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process begins anew. The second and subsequent rounds of imputation also fi ll in the data 
on a variable-by-variable basis, but they do so using all variables in the imputation model, 
including the fi lled-in variables from the preceding iteration. For example, the fi lled-in values 
of Y1 and Y4 from the fi rst imputation cycle serve as predictors of Y3 in the fi rst sequence of 
the second imputation cycle. The sequential regression algorithm iterates for a specifi ed num-
ber of cycles, and the imputed values from the fi nal iteration serve as data for a subsequent 
analysis. Repeating the imputation chain m times generates unique sets of imputed values.

The sequential regression approach has a number of advantages over data augmenta-
tion. Most importantly, it is unnecessary to assume that the variables share a common distri-
bution because the algorithm tailors the imputation model to each incomplete variable. In 
addition, formulating a separate imputation model for each variable makes it easy to specify 
constraints that preserve special characteristics of the data. For example, to avoid logical in-
consistencies between two variables, the range of imputed values for one variable can depend 
on the responses to another variable. Similarly, it is straightforward to accommodate survey 
skip patterns by restricting imputation to the subsample of cases that endorse a screener 
question. Despite its advantages, using separate regression models for imputation also intro-
duces diffi culties. For one, implementing the procedure is more cumbersome because it re-
quires additional programming that is not necessary with data augmentation. Second, the 
use of diverse regression models can produce a situation where the algorithm fails to con-
verge to a stable distribution (Raghunathan et al., 2001). In addition, assessing convergence 
is typically more diffi cult with sequential regression than it is with data augmentation (see 
Van Buuuren, 2007, for an illustration). Despite these potentially serious diffi culties, simu-
lation studies suggest that sequential regression performs well and can produce unbiased 
parameter estimates and standard errors (Raguhunathan et al., 2001; van Buuren et al., 2006). 
Although additional methodological research is needed, the sequential regression method 
may become a viable alternative to data augmentation when the data contain mixtures of 
categorical and continuous variables. A number of specialized software packages implement 
the sequential regression approach (e.g., MICE, ICE, IVEWARE), and the SPSS Missing Val-
ues add-on (available in version 17 and higher) also offers this imputation option.

An Algorithm for Multilevel Data

Multilevel data structures are characterized by observations that are nested within higher-
level units or clusters (e.g., children nested within schools, employees nested within work-
groups, repeated measures nested within individuals). Multilevel analysis techniques are 
well-suited for these data structures because they appropriately account for the nesting and 
allow researchers to investigate associations at different levels of the data hierarchy (Rauden-
bush & Bryk, 2002). The data augmentation algorithm from Chapter 7 is inappropriate for 
multilevel data sets because it fails to preserve between-cluster differences in the mean struc-
ture and the covariance structure. For example, in an education study, the association be-
tween socioeconomic status and student achievement might differ across schools, but data 
augmentation imputes missing values from a model where this association is constant for all 
schools in the sample. Not surprisingly, this can seriously distort the subsequent parameter 
estimates.
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Methodologists have developed specialized imputation algorithms for multilevel data 
(Schafer, 2001; Schafer & Yucel, 2002; Yucel, 2008). These routines may require software 
packages that you are not familiar with (e.g., the PAN library for the S-Plus program), but 
taking the time to learn one of these programs can provide an advantage over using maxi-
mum likelihood to estimate a multilevel model with missing data. At this time, multilevel 
software packages generally allow for missing data on outcome variables, but they eliminate 
cases with missing predictor variables. Although there is often little reason to prefer multiple 
imputation over maximum likelihood (or vice versa), the ability to retain cases with missing 
predictor variables gives multiple imputation a clear advantage in this situation. Analyzing 
multiply imputed data sets is also very straightforward because a number of multilevel soft-
ware packages have facilities for automating the analysis and pooling phases.

Before describing the multilevel imputation algorithm, it is useful to review the multi-
level model. As an illustration, consider a study of school achievement where children (i.e., 
level-1 units) are nested within a number of different schools (i.e., level-2 units). Furthermore, 
suppose that it is of interest to predict student achievement based on socioeconomic status 
and school size. The multilevel regression model for this analysis is

 Yij = γ00 + γ10(SESij) + γ01(Sizej) + γ11(SESij)(Sizej) + uoj + u1j(SESij) + rij (9.4)

where Yij is the achievement score for child i in school j, the γ terms are regression coeffi cients, 
u0j is a level-2 residual that allows the achievement means to differ across schools, u1j is a 
level-2 residual that allows the association between socioeconomic status and achievement 
to vary across schools, and rij is a level-1 residual that captures individual differences within 
a particular school. The level-2 residuals (i.e., the u terms) in the equation are essentially 
latent variables, the values of which differ across clusters (e.g., schools). Finally, it is worth 
noting that the multilevel model estimates a level-1 and a level-2 covariance matrix as opposed 
to the residuals themselves.

Multilevel imputation uses an iterative algorithm called the Gibbs sampler (Casella 
& George, 1992; Gelfand & Smith, 1990), which closely resembles data augmentation. The 
Gibbs sampler consists of a series of steps where the values at one step depend on the quanti-
ties from the previous step. In the context of multiple imputation, each iteration of the Gibbs 
sampler consists of three steps: (1) draw level-2 residuals from a distribution of plausible 
values, (2) draw new parameter values (i.e., regression coeffi cients, the level-2 covariance 
matrix, and the level-1 covariance matrix) from their respective posterior distributions, and 
(3) impute the missing values. I give a brief sketch of the imputation algorithm in the re-
mainder of this section; interested readers can fi nd additional details in Schafer (2001) and 
Schafer and Yucel (2002).

To begin, the Gibbs sampler draws a set of level-2 residuals from a normal distribution. 
The exact shape of this distribution depends on the fi lled-in data and the parameter values 
(i.e., the regression coeffi cients and the covariance matrices) from the previous iteration. The 
level-2 residuals are an important starting point because they defi ne the shape of the poste-
rior distributions in the second step and because they facilitate the computation of the 
multilevel model parameters. Next, the Gibbs sampler uses Monte Carlo simulation to draw 
new parameter values from their respective posterior distributions. Similar to the P-step of 
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data augmentation, the algorithm draws the level-1 and level-2 covariance matrices from an 
inverse Wishart distribution, and it uses a multivariate normal distribution to generate a new 
set of regression coeffi cients. The exact shape of these distributions depends on the level-2 
residuals from the fi rst step and on the imputed values from the preceding iteration. The fi nal 
step of the Gibbs sampler generates predicted scores for each case by substituting the ob-
served variables and the level-2 residuals into a multilevel regression model similar to that in 
Equation 9.5. Consistent with the I-step of data augmentation, the algorithm restores vari-
ability to the imputed data by augmenting each predicted score with a normally distributed 
residual term.

Implementing a multilevel imputation model involves additional nuances that are not 
relevant to standard data augmentation. For example, deciding what to include in the impu-
tation model becomes more complex. Following standard procedure, the imputation phase 
should include analysis model variables and auxiliary variables. However, you also need to 
decide which level-2 residual terms (i.e., random effects) to include in the imputation regres-
sion model. These residuals determine whether the association between two variables varies 
across clusters, so omitting an important residual term can bias the subsequent parameter 
estimates. Although it may seem like a good idea to include every possible residual term, 
doing so can lead to estimation problems and convergence failures. In addition to specifying 
which residual terms get included in the model, it is necessary to specify a covariance struc-
ture for the residuals. For example, a saturated covariance matrix allows the residuals for 
different variables to freely correlate, but it is also possible to specify a matrix that restricts 
the between-variable associations to zero. The fi rst option will better preserve the associa-
tions among the variables, but the complexity of the resulting imputation model can cause 
estimation problems. Schafer (2001) and Schafer and Yucel (2002) describe model specifi ca-
tion issues in more detail and give an analysis example that applies a multilevel imputation 
model.

9.8 MULTIPLE-IMPUTATION SOFTWARE OPTIONS

A number of software packages generate multiply imputed data sets, some of which are com-
mercially available, while others are freely available on the Internet. Software programs tend 
to change at a rapid pace, so a detailed description of these packages would quickly become 
out of date. Rather, this section provides a very general overview of multiple imputation com-
puting options, and I discuss a small handful of software options in more detail in Chapter 
11. A variety of resources are available for readers interested in the details of specifi c software 
programs (e.g., Allison, 2000; Honaker, King, & Blackwell, 2009; Horton & Lipsitz, 2001; 
Raghunathan, Solenberger, & Van Hoewyk, 2002; Royston, 2005; Schafer & Olsen, 1998; 
Yuan, 2000), and there are also useful websites that provide information about individual 
software packages (e.g., www.multiple-imputation.com).

Multiple-imputation software packages generally fall into one of three categories: pro-
grams that (1) generate multiply imputed data sets, (2) analyze multiply imputed data sets 
created by other programs, and (3) generate and analyze multiply imputed data sets. The 
programs that generate multiple imputations tend to offer the same set of features, some of 
which are described earlier in this chapter and in previous chapters (e.g., data transforma-
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tions, rounding options, ridge prior distributions). Although there is considerable overlap in 
features, software programs differ in the type and the number of algorithms that they imple-
ment. For example, the SAS MI procedure implements the data augmentation algorithm, 
whereas SPSS offers the sequential regression approach (also known as chained equations 
and fully conditional specifi cation) in its Missing Values add-on. SAS and SPSS are arguably 
the most popular statistical software packages in the social and the behavioral sciences, but 
a number of specialized imputation programs are also available (e.g., NORM, Amelia, MICE), 
as are open-source programs that offer a variety of user-written modules (e.g., the S-Plus 
and R statistical packages). Finally, software programs differ in their overall ease of use; some 
programs have point-and-click interfaces (e.g., the NORM program), but most are syntax 
driven (e.g., the SAS MI procedure and various R modules).

Regardless of which program you use to generate the multiple imputations, you have a 
number of options for analyzing the data and combining the resulting estimates. For ex-
ample, many popular software packages offer built-in routines for analyzing multiply im-
puted data sets (e.g., SAS, Mplus, HLM, to name just a few). Some of these programs require 
considerable programming to combine the m sets of estimates and standard errors, whereas 
others are so easy to use that the pooling process is virtually transparent to the user. Software 
programs also differ in the amount of summary information that they provide, so this is an 
additional consideration when choosing an analysis platform. For example, some programs 
output detailed diagnostic information (e.g., fraction of missing information, relative increase 
in variance, between- and within-imputation variance), whereas others simply report the 
pooled estimates and standard errors. In my experience, it is often convenient to use one 
program to generate the imputations and use a different program to analyze the data, but this 
choice is largely one of personal preference.

9.9 DATA ANALYSIS EXAMPLE 1

The fi rst analysis example uses multiple imputation to estimate a regression model with 
an interaction term.* The data for this analysis consist of scores from 480 employees on eight 
work-related variables: gender, age, job tenure, IQ, psychological well-being, job satisfaction, 
job performance, and turnover intentions. I generated these data to mimic the correlation 
structure of published research articles in the management and psychology literature (e.g., 
Wright & Bonett, 2007; Wright, Cropanzano, & Bonett, 2007). The data have three missing 
data patterns, each of which accounts for one-third of the sample. The fi rst pattern consists 
of cases with complete data, and the remaining two patterns have missing data on either 
well-being or job satisfaction. These patterns mimic a situation in which the data are missing 
by design (e.g., to reduce the cost of data collection).

The goal of the analysis is to determine whether gender moderates the association be-
tween psychological well-being and job performance. The multiple regression equation is as 
follows:

 JPi = β0 + β1(WBi) + β2(FEMALEi) + β3(WBi)(FEMALEi) + ε

*Analysis syntax and data are available on the companion website, www.appliedmissingdata.com.
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Using maximum likelihood to estimate a model with an interaction term is straightforward 
and follows the same procedure as any multiple regression analysis (e.g., see the analysis 
example in Chapter 4). However, dealing with interactive effects is more complex in a mul-
tiple imputation analysis because the imputation phase must account for group differences 
in the mean and the covariance structure. With a nominal moderator variable such as gender, 
the best way to preserve an interactive effect is to impute the data separately for each group.

The Imputation Phase

To implement separate-group imputation, I sorted the data by gender and performed data 
augmentation separately for males and females. Note that the imputation model included 
every variable except gender, which was constant in each group. As I explained previously, 
separate-group imputation naturally preserves interaction effects because it allows the mean 
and the covariance structure to freely vary across subpopulations. The graphical diagnostics 
for males and females suggested fast convergence, so I specifi ed 100 burn-in and 100 be-
tween-imputation iterations (i.e., I saved the fi rst imputed data set after an initial burn-in 
period of 100 cycles and saved subsequent data sets at every 100th I-step thereafter). Con-
sistent with the analysis example from Chapter 8, I opted to use m = 50 imputations for the 
analysis phase.

The Analysis and Pooling Phases

The standard advice in the regression literature is to center continuous predictor variables 
at the grand mean (Aiken & West, 1991; Cohen et al., 2003). To do so, I merged the male 
and female fi les and computed the mean well-being score within each of the 50 imputed data 
sets. Next, I centered the psychological well-being scores by subtracting the appropriate mean 
from each score, and I then computed a product variable (i.e., interaction term) by multiply-
ing gender and the centered well-being scores. Finally, I estimated a multiple regression 
model with job performance scores as the outcome variable and gender, psychological well-
being, and the product term as predictors. The analysis phase produced 50 sets of  regression 
coeffi cients and standard errors that I subsequently pooled into a single set of results.

Researchers often begin a regression analysis with an omnibus F test, and the D1 statistic 
from Chapter 8 is ideally suited for this purpose. This analysis produced a test statistic of 
D1 = 40.34. Referencing this value to an F distribution with 3 numerator and 3802.40 de-
nominator degrees of freedom returned a probability value of p < .001. Consistent with the 
omnibus F test from an ordinary least squares regression analysis, a signifi cant test statistic 
indicates that at least one of the regression slopes is statistically different from zero.

Table 9.5 shows the pooled estimates and standard errors, along with the correspond-
ing maximum likelihood estimates from Chapter 4. Although the imputation and analysis 
models are not congenial (the imputation model is more complex than the analysis model), 
the two analysis procedure produced nearly identical parameter estimates and standard er-
rors. Turning to the individual parameter estimates note that, males and females do not differ 
with respect to their mean job performance ratings, β̂2 = –0.175, t = –1.66, p = .10, but the 
interaction term indicates that the association between well-being and performance is differ-
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ent for males and females, β̂3 = 0.355, t = 3.57, p < .001. Because the gender variable is 
coded such that female = 1 and male = 0, the sign of the interaction coeffi cient indicates 
that the relationship is stronger for females. Notice that the interpretation of the regression 
coeffi cients is identical to what it would have been had the data been complete. In addition, 
the computation of simple slopes is identical to that of a complete-data analysis. For exam-
ple, the regression equation for the subsample of males (the group coded 0) is ŶM = β̂0 + 
β̂1(WB), and the corresponding equation for females (the group coded 1) is ŶF = (β̂0 + β̂2) + 
(β̂1 + β̂3)(WB).

9.10 DATA ANALYSIS EXAMPLE 2

The second data analysis example illustrates the difference between scale-level imputation 
and duplicate-scale imputation.* The analyses use artifi cial data from a questionnaire on eat-
ing disorder risk. Briefl y, the data contain the responses from 400 college-aged women on 10 
questions from the Eating Attitudes Test (EAT; Garner, Olmsted, Bohr, & Garfi nkel, 1982), a 
widely used measure of eating disorder risk. The 10 questions measure two constructs, Drive 
for Thinness (e.g., “I avoid eating when I’m hungry”) and Food Preoccupation (e.g., “I fi nd 
myself preoccupied with food”), and mimic the two-factor structure proposed by Doninger, 
Enders, and Burnett (2005). The data set also contains an anxiety scale score, a variable that 

* Analysis syntax and data are available on the companion website, www.appliedmissingdata.com.

TABLE 9.5. Regression Model Estimates from Data 
Analysis Example 1

Parameter Estimate SE t

Multiple imputation

β0 (intercept) 6.092 0.076 79.828
β1 (well-being) 0.332 0.065 5.107
β2  (gender) –0.173 0.105 –1.644
β3  (interaction) 0.355 0.100 3.566
σ̂2

e (Residual) 1.193 0.083 14.403
R2 0.240

Maximum likelihood estimation

β0 (intercept) 6.091 0.076 79.755
β1  (well-being) 0.337 0.071 4.723
β2  (gender) –0.167 0.105 –1.587
β3  (interaction) 0.362 0.106 3.426
σ̂2

e (residual) 1.234 0.084 14.650
R2 0.214    

Note. Predictors were centered at the maximum likelihood estimates of 
the mean.
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measures beliefs about Western standards of beauty (e.g., high scores indicate that respon-
dents internalize a thin ideal of beauty), and body mass index (BMI) values.

Variables in the EAT data set are missing for a variety of reasons. I simulated MCAR data 
by randomly deleting scores from the anxiety variable, the Western standards of beauty scale, 
and two of the EAT questions (EAT2 and EAT21). Expecting a relationship between body 
weight and missingness, I created MAR data on fi ve variables (EAT1, EAT10, EAT12, EAT18, 
and EAT24) by deleting the EAT scores f  or a subset of cases in both tails of the BMI distri-
bution. These same EAT questions were also missing for individuals with elevated anxiety 
scores. Finally, I introduced a small amount of MNAR data by deleting a number of the high 
body mass index scores (e.g., to mimic a situation where females with high BMI values refuse 
to be weighed). The deletion process typically produced a missing data rate of 5 to 10% on 
each variable.

The Imputation Phase

For the imputation phase, I generated three sets of m = 20 imputations by (1) imputing the 
individual questionnaire items (i.e., item-level imputation), (2) imputing the scale scores 
directly (i.e., scale-level imputation), and (3) imputing the scale scores using averages of the 
available items as auxiliary variables (i.e., duplicate-scale imputation). The number of vari-
ables in this data set is not nearly large enough to pose a problem for item-level imputation 
(the ideal procedure). Nevertheless, imputing the data using three approaches is useful for 
illustrating the differences that can result from using scale-level and duplicate-scale imputa-
tion. For each strategy, I used a single sequential data augmentation chain with 100 burn-in 
and 100 between-imputation iterations. The data augmentation algorithm converged very 
quickly and without problems, so there is no need to present the graphical diagnostics from 
the exploratory data augmentation chain.

The item-level imputation model included all 13 variables in the data set (i.e., the 10 
EAT questionnaire items, anxiety scores, Western standards of beauty scores, and body mass 
index values). For scale imputation, I began by computing scale scores by averaging the two 
sets of questionnaire items. The Drive for Thinness scale consists of seven items (EAT1, EAT2, 
EAT10, EAT11, EAT12, EAT14, and EAT24), and the Food Preoccupation scale has three items 
(EAT3, EAT18, and EAT21). Consequently, the Drive for Thinness scale score was an average of 
seven Likert items, and the Food Preoccupation scale was an average of three items. I re-
stricted the scale score computations to the cases with complete data, so respondents who 
were missing one or more of the item responses within a particular scale were also missing 
the scale score. This produced 291 cases with Drive for Thinness scores, 352 cases with Food 
Preoccupation scores, and 276 individuals with complete data on both scale scores. The 
subsequent scale-level imputation model had fi ve variables: the two EAT scale scores, anxiety 
scores, Western standards of beauty scores, and body mass index values.

The duplicate-scale imputation procedure was identical to that of scale imputation, but 
it also included two additional variables that I computed by averaging the available items 
within each scale. Again, the purpose of the duplicate scales is to recapture the important 
item-level information that scale imputation discards. An important nuance of the duplicate-
score approach is that the input data contain linear dependencies. Although the graphical 
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diagnostics looked ideal, the software package issued a warning message that the initial 
covariance matrix (i.e., the Bayesian estimate of � that generates the regressions for the fi rst 
I-step) was singular. I eliminated this problem by specifying a ridge prior distribution with a 
single degree of freedom. This effectively added one imaginary data record to the data aug-
mentation procedure.

The Analysis and Pooling Phases

To keep the analysis model simple, I estimated the mean vector and the covariance matrix for 
fi ve variables: the Drive for Thinness and Food Preoccupation scale scores, the anxiety scores, 
the Western standards of beauty scores, and the body mass index values. The analysis phase 
produced a mean vector and a covariance matrix for each of the 20 imputed data sets. I sub-
sequently used the pooling formulas from Chapter 8 to combine the estimates and the stan-
dard errors; Table 9.6 shows the results for three imputation approaches. Even when the 
ultimate goal is to analyze scale scores, imputing the individual questionnaire items and 
computing scale scores from the fi lled-in item responses should provide better results than 
imputing the scale scores directly. Consequently, the item-level imputation is the “gold stan-
dard” against which to compare the other methods. Focusing on the covariance matrix ele-
ments for the EAT scale scores, notice that scale-level imputation produced larger standard 
errors than item-level imputation. Also, notice that the standard error infl ation tends to be 
somewhat larger for the seven-item Drive for Thinness scale. This suggests that the power loss 
may increase as the number of scale items increases. In contrast, duplicate-scale imputation 
produced estimates and standard errors that are quite similar to those of item-level imputa-
tion. Scale-level imputation performed poorly because questionnaire items within a scale tend 
to have stronger correlations than items from different scales. Consequently, the imputation 
phase effectively discards the strongest predictors of the missing scale scores (i.e., the items 
within the scale) in favor of weaker correlates (i.e., items from different scales). Although it 
is not possible to draw fi rm conclusions from a single artifi cial data set, the standard error 
differences in Table 9.6 are consistent with what you might expect to see in real data sets.

9.11 SUMMARY

This chapter addressed a number of practical issues that arise during the imputation phase. 
The chapter began with a discussion of convergence problems. Convergence issues often oc-
cur because there is insuffi cient data to estimate certain parameters. This lack of data can 
result from including too many variables in the imputation phase or from a peculiar missing 
data pattern. In some situations, reducing the number of variables or eliminating the prob-
lematic variables can solve convergence problems. An alternate strategy is to specify a ridge 
prior distribution for the covariance matrix. Conceptually, the ridge prior adds a small num-
ber of imaginary data records (i.e., degrees of freedom) from a hypothetical population where 
the variables are uncorrelated. These additional data points can stabilize estimation and elimi-
nate convergence problems, but they do so at the cost of introducing a slight bias to the 
simulated parameter values (and thus the imputations). The biasing effect of the ridge prior 
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depends on the number of degrees of freedom that you assign to the prior, so it is generally 
a good idea to select a value that is as small as possible.

Like maximum likelihood estimation, the data augmentation algorithm in Chapter 7 
assumes multivariate normality, both at the I-step and at the P-step. However, methodologists 
suggest that normality-based imputation can work for a variety of different distribution types. 
Empirical studies suggest that normality violations may not pose a serious threat to the ac-
curacy of multiple imputation parameter estimates, particularly if the sample size is not too 
small and the missing data rate is not too large. One way to mitigate the impact of normality 
violations is to apply normalizing transformations to the data prior to performing data aug-
mentation. Variables can have different scales during the imputation and pooling phases, 
so you can impute a variable on a transformed metric (e.g., a logarithmic scale) and sub-
sequently analyze it on its original metric.

Nominal and ordinal variables are a special case of non-normal data that arises frequently 
in the behavioral and the social sciences. One consequence of applying an imputation model 
for normal data to discrete variables is that the resulting imputations will have decimals. The 

TABLE 9.6. Mean Vector and Covariance Matrix Estimates from Data Analysis 
Example 2

Variable 1 2 3 4 5

Item-level imputation

1: DFT 0.612 (0.044)
2: FP 0.349 (0.039) 0.759 (0.054)
3: ANX 1.227 (0.135) 1.254 (0.149)  9.078 (0.655)
4: WSB 0.549 (0.084) 0.462 (0.089)  0.997 (0.307) 3.667 (0.270)
5: BMI 0.846 (0.115) 0.664 (0.125)  1.164 (0.422) 1.109 (0.275)  7.343 (0.521)
Means 3.959 (0.039) 3.966 (0.044) 11.979 (0.152) 8.964 (0.099) 22.405 (0.136)

Scale-level imputation

1: DFT 0.599 (0.047)
2: FP 0.349 (0.042) 0.739 (0.521)
3: ANX 1.213 (0.151) 1.236 (0.151)  9.035 (0.663)
4: WSB 0.577 (0.083) 0.443 (0.093)  1.007 (0.306) 8.964 (0.097)
5: BMI 0.815 (0.126) 0.617 (0.129)  1.137 (0.418) 1.087 (0.274)  7.347 (0.521)
Means 3.957 (0.047) 3.971 (0.044) 11.979 (0.153) 8.964 (0.097) 22.401 (0.136)

Duplicate-scale imputation

1: DFT 0.616 (0.044)
2: FP 0.353 (0.039) 0.768 (0.054)
3: ANX 1.223 (0.135) 1.227 (0.149)  9.009 (0.649)
4: WSB 0.547 (0.082) 0.452 (0.089)  1.050 (0.308) 3.637 (0.266)
5: BMI 0.838 (0.115) 0.668 (0.125)  1.134 (0.419) 1.111 (0.278)  7.369 (0.524)
Means 3.959 (0.039) 3.967 (0.044) 11.965 (0.152) 8.968 (0.098) 22.402 (0.137)

Note. DFT = drive for thinness; FP = food preoccupation; ANX = anxiety; WSB = Western standards of beauty; 
BMI = body mass index. Values in parentheses are standard errors.
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traditional advice is to round imputed values to the nearest integer or to the nearest plausible 
value in order to produce imputations that are aesthetically consistent with the observed 
data. However, recent research suggests that rounding may not be necessary and can actually 
lead to biased parameter estimates. Aesthetics aside, there appear to be no negative conse-
quences associated with analyzing fractional imputations, so analyzing the data without 
rounding seems to be the safest strategy, at least for now. However, in some cases the analysis 
model requires rounding (e.g., a binary outcome in a logistic regression, a set of dummy 
variables), and the chapter described some rounding strategies for these situations.

Researchers in the behavioral and the social sciences are often interested in estimating 
interaction (i.e., moderation) effects where the magnitude of the association between two 
variables depends on a third variable. When using multiple imputation to treat missing data, 
it is important to specify an imputation model that preserves any interaction effects that are 
of interest in the subsequent analysis model. Failing to do so will attenuate the magnitude of 
these effects, even if the data are MCAR or MAR. The best strategy for preserving interaction 
effects depends largely on whether the interaction involves a continuous or a categorical 
moderator variable. If the analysis model includes an interaction effect between two quantita-
tive variables, the only way to preserve the interaction effect is to include a product variable 
in the imputation phase. The downside of this approach is that the imputation regression 
model generates fi lled-in values that are homoscedastic. This subtlety may have a relatively 
minor impact on many analyses, but in a number of situations the substantive goal is to de-
termine whether the covariance structure is the same across qualitatively different subpopu-
lations (e.g., measurement invariance analyses, multiple-group structural equation models). 
If the subgroups have different population variances, then the product term approach will 
generate imputations that mask these group differences. Consequently, when an inter active 
effect involves a categorical moderator variable, imputing the data separately for each sub-
group is often more accurate than including product terms in the imputation model.

Researchers in the behavioral and social sciences routinely use multiple-item question-
naires to measure complex constructs. Multiple imputation is advantageous for dealing with 
item-level missingness, but imputation can be challenging when a data set contains a large 
number of variables. Ideally, the imputation phase should include all of the individual ques-
tionnaire items in order to maximize the information that goes into creating the imputations. 
However, this may not be feasible when the number of questionnaire items is very large. 
When the analysis model involves scale scores, ignoring the item-level data and imputing the 
scale scores themselves can dramatically reduce the number of imputation model variables. 
This approach tends to lack power, but using the average of the available items as auxiliary 
variables (i.e., duplicate-scale imputation) can yield estimates and standard errors that are 
quite similar to those of an item-level imputation procedure. For situations that require item-
level data, I outlined a three-step approach for item-level imputation. The basic idea behind 
this procedure is to separately impute different subsets of questionnaire items, each time us-
ing scale scores to preserve the between-subset associations among the items.

The chapter concluded with a description of some alternate imputation algorithms. Al-
though the data augmentation algorithm in Chapter 7 is probably the most popular impu-
tation strategy, methodologists have developed a number of alternative imputation algorithms. 
The chapter described an EM-based imputation algorithm that is statistically equivalent to 
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data augmentation. This EMIS algorithm is appealing because it automatically yields inde-
pendent imputations and does so more quickly than data augmentation. The chapter also 
described two algorithms (the general location model and sequential regression) appropriate 
for data sets that contain a mixture of categorical and continuous variables. Of these two, the 
sequential regression approach appears particularly promising. Unlike data augmentation, 
which assumes a common distribution for every variable in the data set, sequential regres-
sion imputation fi lls in the data on a variable-by-variable basis, each time matching the im-
putation model to a variable’s distributional form. Preliminary simulation studies suggest 
that this procedure works well. Finally, I described an imputation algorithm for multilevel data 
structures. This algorithm is important because standard data augmentation fails to preserve 
any differences in the mean and the covariance structure that might exist across clusters.

The majority of this book is devoted to two so-called modern missing data techniques: 
maximum likelihood and multiple imputation. These methods use quite different approaches, 
but both assume MAR data. Although MAR-based methods are a substantial improvement 
over traditional methods that require the MCAR mechanism, they will produce bias when 
the data are missing not at random (MNAR). Chapter 10 outlines models that are designed 
specifi cally for MNAR data. As you will see, these MNAR methods are far from perfect and 
require assumptions that can be just as tenuous as MAR. In fact, when the model assump-
tions are violated, MNAR approaches can yield estimates that are worse than what you would 
have obtained from an MAR analysis. Nevertheless, MNAR models are useful for sensitivity 
analysis and are an important area of ongoing methodological research.
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10

Models for Missing 
Not at Random Data

10.1 CHAPTER OVERVIEW

Until now, this book has focused primarily on analysis methods that assume missing at 
 random (MAR) data. Although MAR-based approaches represent the current state of the art 
(Schafer & Graham, 2002), a considerable amount of methodological research is devoted 
models for missing not at random (MNAR) data. This chapter outlines two classes of MNAR 
models: the selection model and the pattern mixture model. Both models attempt to de-
scribe the joint distribution of the data and the probability of missingness, but they do so in 
a very different manner. For example, the selection model is a two-part model that combines 
the substantive analysis with an additional regression equation that predicts response prob-
abilities. In contrast, the pattern mixture model forms subgroups of cases that share the same 
missing data pattern and estimates the substantive analysis model within each pattern. In 
both frameworks, the model that describes the incidence of missing data is essentially a nui-
sance, but incorporating this additional component into the estimation process can poten-
tially reduce or eliminate bias that results from MAR violations.

The intuitive appeal of an MNAR analysis may have you wondering why these models 
are relegated to a single chapter. As you will see, MNAR models require assumptions that are 
every bit as tenuous as the MAR mechanism (and probably more so). For example, selection 
models rely heavily on untestable distributional assumptions, and pattern mixture models 
generally require researchers to specify assumed values for one or more inestimable param-
eters. Ultimately, there is no way to verify that these requirements are met, and assumption 
violations can produce estimates that are even worse than those from an MAR-based analysis. 
The fact that MNAR models rely so heavily on narrow, untestable assumptions has led some 
methodologists to caution against their routine use (Allison, 2002; Demirtas & Schafer, 
2003; Schafer & Graham, 2002). A common view is that MNAR models are most appropriate 
for sensitivity analyses that apply different models (and thus different assumptions) to the 
same data. Despite their inherent limitations, MNAR analysis models are likely to gain in 
popularity, so it is important to become familiar with these approaches.
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As an aside, there is a substantial literature on the application of MNAR models to lon-
gitudinal data analyses. In particular, these models have received a great deal of attention in 
the clinical trials literature, perhaps because the MNAR mechanism is plausible in medical 
studies where attrition often results from death or deteriorating health (Pauler, McCoy, & 
Moinpour, 2003). In line with this emphasis, much of this chapter describes MNAR models 
for longitudinal growth curve analyses. To keep things manageable, I confi ne the examples 
to a linear growth model, but the basic modeling ideas readily extend to quadratic growth 
curves (Demirtas & Schafer, 2003; Enders, 2010; Verbeke & Molenberghs, 2000). I give a 
relatively brief overview of the linear growth model in this chapter, and a number of excellent 
resources are available to readers interested in additional details (Bollen & Curran, 2006; 
Bryk & Raudenbush, 1987; Hancock & Lawrence, 2006; Raudenbush & Bryk, 2002; Singer 
& Willett, 2003).

In the fi rst half of the chapter, I use the small data set in Table 10.1 to illustrate the selec-
tion model and the pattern mixture model. I designed these data to mimic an employee 
selection scenario in which prospective employees complete an IQ test during their job inter-
view and a supervisor subsequently evaluates their job performance following a 6-month 
probationary period. Furthermore, suppose that a group of employees quits just before their 
6-month evaluation because they anticipate a negative performance review. The table shows 
the hypothetically complete job performance scores along with the observed performance rat-
ings. As you can see, job performance ratings are MNAR because employees with the lowest 
hypothetical values have higher rates of missingness (i.e., the probability of missing data is 

TABLE 10.1. Job Performance Data Set

 
Psychological

 Job performance

IQ well-being Hypothetical Observed

 78 13  9  9
 84  9 13 13
 84 10 10 10
 85 10  8 —
 87  7  7 —
 91  3  7 —
 92 12  9  9
 94  3  9  9
 94 13 11 11
 96  7  7 —
 99  6  7 —
105 12 10 10
105 14 11 11
106 10 15 15
108  7 10 10
112 10 10 10
113 14 12 12
115 14 14 14
118 12 16 16
134 11 12 12
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directly related to the rating that the employee would have received at their 6-month review). 
If the company’s goal is to estimate the mean job performance rating for the entire popula-
tion of new employees, MAR missing data handling procedures will produce distorted esti-
mates because they fail to account for the systematic missingness at the low end of the job 
performance distribution.

10.2 AN AD HOC APPROACH TO DEALING WITH MNAR DATA

The need to apply MNAR models stems from a concern that maximum likelihood and mul-
tiple imputation parameter estimates are not robust to departures from an MAR mechanism. 
The selection model and pattern mixture model formally address this concern by incorporat-
ing an additional model that describes the propensity for missing data. Until recently, a lack 
of software options has limited the application of these models, so researchers have relied on 
ad hoc approaches for testing the sensitivity of MAR-based estimates. Rubin (1987) and others 
(Allison, 2002; Graham, Hofer, Donaldson, MacKinnon, & Schafer, 1997) outline a simple 
approach that you can readily implement within a multiple imputation analysis. Because this 
method is so straightforward, it warrants a brief discussion.

Rubin’s (1987) idea for an ad hoc sensitivity analysis is simple: generate multiple impu-
tations under an MAR mechanism, then add a constant to the imputed values to compensate 
for the possibility that the MAR-based imputations may be too high or too low. As an illustra-
tion, consider the small job performance data set in Table 10.1. Suppose that the company 
has reason to believe that an MNAR mechanism is plausible, such that the employees who 
quit prior to their 6-month evaluation have systematically lower job performance ratings than 
the general population. If this is true, then MAR-based analyses are likely to overestimate the 
mean performance rating. To explore whether the mean estimate is sensitive to this distor-
tion, the company could use a standard multiple imputation routine to generate imputed job 
performance ratings and lower each imputation by some arbitrary constant. Analyzing the 
imputed data sets with and without the constant values may help assess whether the mean is 
sensitive to departures from an MAR mechanism.

Rubin (1987, p. 203) recommends a constant value that increases or decreases MAR-
based imputations by 20%, but this suggestion is arbitrary. An alternate approach is to use 
Cohen’s (1988) effect size guidelines for a standardized mean difference. For example, the 
maximum likelihood estimate of the job performance standard deviation is SD = 2.24. Co-
hen’s benchmark for a medium effect size is d = 0.50, so subtracting a constant value of 1.12 
from each imputed value imposes a downward adjustment of one-half of a standard devia-
tion unit. Expressing the constant as a percentage or as a standardized mean difference is an 
arbitrary choice, but Cohen’s guidelines have the advantage of providing a familiar metric.

Rubin (1987) gives a number of other suggestions for ad hoc sensitivity analyses. For ex-
ample, if there is reason to believe that more than one mechanism might be at play, then apply-
ing the constant to a subset of the imputed values might be appropriate. Rubin recommends 
adding or subtracting a constant value to 50% of the imputed scores, but this suggestion is 
also arbitrary. The purpose of a sensitivity analysis is to explore the variability of the param-
eter estimates across a variety of models and assumptions, so there is no need to choose a 
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single set of conditions. The simplicity of Rubin’s ad hoc approach makes it easy to impute 
and analyze the data under a number of different scenarios. Readers who are interested in 
additional details can consult. Graham et al. (1997, pp. 354–358), which provides a thor-
ough description of a sensitivity analysis that uses this ad hoc approach.

10.3 THE THEORETICAL RATIONALE FOR MNAR MODELS

Recall from Chapter 1 that Rubin’s (1976) missing data theory views individuals as having a 
pair of observations on each variable: a score value that may or may not be observed (i.e., Yobs 
or Ymis), and a corresponding code on a binary missing data indicator, R (i.e., r = 1 if the score 
is observed, and r = 0 if the value is missing). Defi ning the propensity for missing data as a 
variable implies that some unknown population model (e.g., a logistic regression) governs 
whether R takes on a value of zero or one. Because researchers rarely know why the data are 
missing, estimating a model that explains the probability of missingness is diffi cult, if not 
impossible. Fortunately, Rubin showed that the parameters that describe the missing data 
distribution carry no unique information about the substantive model parameters, provided 
that the data are MAR. For this reason, the missing data literature often describes the MAR 
mechanism as ignorable missingness because there is no need to consider the parameters of 
the missing data distribution when performing likelihood-based analyses (this includes both 
maximum likelihood estimation and multiple imputation).

An MNAR mechanism implies that the parameters of the missing data model carry im-
portant information about the substantive model parameters, and vice versa. Consequently, 
an MAR-based analysis that ignores the missing data model will produce biased parameter 
estimates because it does not fully adjust for the “cause” of missingness. The MNAR models 
in this chapter attempt to mitigate this bias by incorporating a model that describes the pro-
pensity for missing data, although they do so in different ways. For example, the selection 
model incorporates a regression equation that predicts the response probabilities, whereas 
the pattern mixture model stratifi es the sample by missing data pattern and estimates the 
model separately within each pattern. The joint distribution of the data and the probability 
of missingness is the key to understanding the rationale behind these two approaches.

The joint distribution of the data and the probability of missingness is

 p(Y, R) (10.1)

where p is a generic symbol for a probability distribution, Y represents the sample data, and 
R is the corresponding missing data indicator. In words, Equation 10.1 states that there is a 
distribution (and thus a set of unknown parameter values) that describes the mutual occur-
rence of different score values and missing data. The two classes of MNAR models differ in 
how they defi ne the unknown parameters of this distribution.

The selection model factors the joint distribution into the product of two component 
distributions, as follows:

 p(Y, R) = p(R|Y)p(Y) (10.2)
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where p(R|Y) is the conditional distribution of missingness, given Y, and p(Y) is the marginal 
distribution of the data. In words, the conditional distribution defi nes the probability that an 
individual with a particular score value has missing data, and the marginal distribution de-
scribes the probability of obtaining different scores. In practice, the marginal distribution is 
the substantive analysis model (i.e., the model that you would have estimated had there been 
no missing data), and the conditional distribution is a regression model that describes the 
response probabilities.

The pattern mixture model uses an alternative factorization of the joint distribution

 p(Y, R) = p(Y|R)p(R) (10.3)

where p(Y|R) is the conditional distribution of the data, given a particular value of R, and 
p(R) is the marginal distribution of missingness. This factorization also describes the mutual 
occurrence of different Y values and missing data, but it does so by switching the roles of 
Y and R. Specifi cally, the conditional distribution now governs the probability of obtaining 
different Y values within a subgroup of cases that share the same missing data pattern, and 
the marginal distribution describes the incidence of different missing data patterns. The fac-
torization in Equation 10.3 provides the rationale for stratifying the sample by missing data 
pattern and estimating the substantive model separately within each pattern.

The selection model and the pattern mixture model are exchangeable in the sense that 
they attempt to explain the same phenomena and rely on alternative factorizations of the same 
joint distribution. However, the two factorizations lead to very different assumptions, so the 
models may or may not produce the same point estimates. In fact, it is possible for two 
MNAR analyses to produce very different sets of parameter estimates. Some methodologists 
favor the pattern mixture model because it requires more transparent assumptions than the 
selection model (Little & Rubin, 2002). However, a common viewpoint is that both proce-
dures can play a role in a sensitivity analysis that applies different models (and thus different 
assumptions) to the same data. I illustrate a sensitivity analysis at the end of the chapter.

10.4 THE CLASSIC SELECTION MODEL

Heckman (1976, 1979) proposed the selection model as a method for correcting bias in a 
regression model with MNAR data on the outcome variable. (Note that Heckman uses the 
terms truncation and sample selection to describe MNAR data.) Heckman’s work spawned 
a great deal of interest in the econometrics literature, and there is now a considerable body 
of methodological research devoted to the selection model. This section illustrates the classic 
selection model, and I later describe variations of the model for longitudinal analyses. Econo-
metricians and methodologists have extended the selection model in a variety of ways, but 
a thorough review of this literature is well beyond the scope of this chapter. A number of 
resources are available to readers who want additional details on the selection model and its 
extensions (e.g., Puhani, 2000; Winship & Mare, 1992).

Heckman’s (1976, 1979) selection model is a two-part model that combines the sub-
stantive regression model with an additional regression equation that predicts response 
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probabilities. To illustrate, reconsider the small data set in Table 10.1. First, suppose that the 
substantive regression model (i.e., the regression that the company would have estimated had 
there been no missing data) is as follows:

 JP = β0 + β1(IQ) + ε (10.4)

where β0 and β1 are the intercept and slope coeffi cients, respectively, from the regression of 
job performance on IQ. Second, assume that the IQ scores are centered at the grand mean, 
such that β0 is the job performance mean. Returning to the factorization in Equation 10.2, 
note that the regression model above corresponds to the marginal distribution, p(Y).

The second part of the selection model is a regression equation that predicts response 
probabilities. The classic selection model defi nes the propensity for missing data on the out-
come variable as a normally distributed latent variable. Cases that fall above some threshold 
on this latent variable have data, whereas the cases that fall below the threshold have missing 
values. Throughout the remainder of this section, I denote this latent variable as R* in order 
to differentiate it from the binary missing data indicator, R. Returning to the job performance 
example, suppose that the company uses psychological well-being scores to predict missing-
ness, as follows:

 R* = γ0 + γ1(WB) + ζ (10.5)

where R* is an individual’s latent propensity for missing data (e.g., an employee’s anticipated 
job performance rating), γ0 and γ1 denote the regression intercept and slope, respectively, and 
ζ is a residual term. Note that the previous regression equations can share the same predictor 
variables, but it is good to have at least one predictor in the missing data model that does not 
appear in the substantive regression equation. Returning to the factorization in Equation 10.2, 
note that the regression model above corresponds to the conditional distribution of the miss-
ing data, p(R|Y).

Figure 10.1 shows the previous selection model as a path diagram. Following standard 
conventions, rectangles denote manifest variables, ellipses represent latent variables, and 
single-headed straight arrows are regression coeffi cients. The double-headed curved arrow 
that connects ε and ζ is a correlation between the residuals from the two regression equa-
tions. As I explain later, this correlation is very important because it is the mechanism by 
which the missing data model adjusts for bias in substantive model regression coeffi cients.

Well-being

IQ

R*

Job
Performance

γ1

β1

ζ

ε

FIGURE 10.1. Path diagram of the classic Heckman selection model. R* represents the latent re-
sponse probabilities, β1 is the regression slope from the substantive model, and γ1 is the slope from the 
missing data model. The double-headed curved arrow that connects ε and ζ is a correlation between 
the residuals from the two regression equations.
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How Does the Selection Model Reduce Bias?

An MNAR mechanism implies that the data and the probability of missingness have a joint 
distribution, such that the data values carry information about the probability of missing-
ness, and vice versa. The selection model incorporates this dependency via a bivariate normal 
distribution for the residual terms, as follows:

 [ε] ∼ BN([0],[ σ2
ε  σε,ζ]) ζ 0 σζ,ε σ2

ζ

where ∼ means “distributed as,” the vector of zeros denotes the fact that the residuals have 
means of zero, σ2

ε and σ2
ζ are the residual variances from Equations 10.4 and 10.5, respec-

tively, and σζ,ε is the covariance between the residual terms. Again, the covariance between ε 
and ζ is particularly important because it is the mechanism by which the missing data model 
adjusts for bias in the substantive model.

To illustrate how the selection model works, reconsider the previous job performance 
example. An MAR analysis assumes that the explanatory variables in the substantive regres-
sion model (e.g., IQ) fully explain the probability of missingness, so any adjustment to the 
parameter estimates is due solely to the predictors. For example, suppose that the company 
used IQ scores to impute the missing job performance ratings. The positive correlation be-
tween IQ and job performance suggests that an employee with a low IQ score would have a 
low imputed value, and vice versa. However, with MNAR data, estimating the missing job 
performance scores based on IQ alone does not eliminate bias because a residual correlation 
exists between job ratings and the probability of missingness, even after controlling for IQ 
(i.e., the latent response probabilities contribute information about the missing score values, 
above and beyond IQ). Conceptually, simultaneously estimating the two selection model 
regression equations is akin to using both IQ and R* to impute the missing job performance 
ratings. Although the estimation process does not actually fi ll in the missing values, it does 
identify parameter estimates (i.e., the β and γ coeffi cients in Equations 10.4 and 10.5) that 
are consistent with a normally distributed population where job performance and R* (or 
equivalently, ε and ζ) are positively correlated. Consequently, the presence of the R* regres-
sion equation adjusts the substantive model parameter estimates in a manner that is analo-
gous to an imputation procedure based on IQ and R*. To the extent that R* and the outcome 
variable are related, this leads to different estimates than an MAR-based analysis that relies 
solely on the predictors in the substantive model to adjust for missingness.

Although it may not be immediately obvious, the correlation between ε and ζ also quan-
tifi es the magnitude of the MAR violation. Specifi cally, a correlation of zero implies that the 
data are MAR because is no residual relationship exists between the outcome variable and the 
probability of missing data after controlling for the explanatory variables in the substantive 
regression model. Conversely, a nonzero correlation suggests that the data are MNAR be-
cause missingness is related to the outcome, even after accounting for other variables. At fi rst 
glance, the residual correlation appears to provide a method for empirically testing the MAR 
mechanism (e.g., if the residual correlation is signifi cantly different from zero, the data are 
inconsistent with an MAR mechanism). However, the selection model is highly sensitive to 
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the bivariate normality assumption, and relatively minor violations of this assumption can 
dramatically alter the resulting parameter estimates, including the residual correlation. Con-
sequently, using the residual correlation to test the MAR mechanism has virtually no practi-
cal utility and should be avoided.

The Probit Regression Model

The preceding description of the selection model is somewhat vague because I have yet to 
explain how to estimate the two regression models. In particular, the regression model in 
Equation 10.5 requires some clarifi cation because the latent R* values are themselves com-
pletely missing. In practice, there is no way of knowing an individual’s true propensity for 
missing data, so it is necessary to use the binary missing data indicator R as the dependent 
variable. In effect, R serves as a manifest indicator for R*, such that the cases that score above 
some threshold on R* have complete data (i.e., r = 1), and cases that fall below the threshold 
have missing values (i.e., r = 0). Although logistic regression is a common approach for ana-
lyzing binary outcomes, the classic selection model uses probit regression to predict R. Be-
cause probit regression is relatively uncommon in many areas of the social and the behavioral 
sciences, a brief overview of the probit model is warranted before proceeding. Readers inter-
ested in additional details on probit regression can consult Pampel (2000) and Agresti (2002), 
among others.

Probit regression is actually quite similar to logistic regression and tends to yield the 
same substantive conclusions. Like the logistic model, probit regression uses an S-shaped 
function to describe the association between a predictor variable and the probability of an 
event (in this context, the probability of complete data, or r = 1). However, the probit model 
uses the cumulative standard normal distribution transformation to generate predicted 
probabilities. For readers who are unfamiliar with this distribution, the cumulative standard 
normal distribution is an S-shaped function, the height of which corresponds to the propor-
tion of the standard normal curve that falls below a particular z value.

Returning to job performance example, the probit model expresses the predicted prob-
ability of a complete response as

 p(R = 1|WB) = Φ[γ0 + γ1(WB)] (10.6)

where p(R = 1|WB) is the probability that an individual with a particular well-being score has 
a job performance rating, γ0 and γ1 denote the regression intercept and slope, respectively, 
and Φ is the cumulative normal distribution function. Substituting a well-being score into 
the bracketed portion of Equation 10.6 yields a predicted z score, and the cumulative stan-
dard normal distribution function transforms the z score into a predicted probability.

To further illustrate probit regression, I used the small data set in Table 10.1 to estimate 
a probit model that predicts missingness from psychological well-being. The intercept and 
slope estimates from this analysis are γ̂0 = –1.884 and γ̂1 = 0.290, respectively. Substituting 
the regression coeffi cients into Equation 10.6 gives the following expression.

 p(R = 1|WB) = Φ[γ̂0 + γ̂1(WB)] = Φ[–1.884 + .290(WB)]
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Collectively, the bracketed terms produce a predicted value on the z score metric. For exam-
ple, the predicted value for an employee with a well-being score of 10 is [–1.884 + 0.290(10)] 
= 1.016. Substituting this value into the cumulative normal distribution function (i.e., Φ) 
converts the z score into a probability. For example, Φ[1.016] = 0.845 is the predicted prob-
ability that an employee with a well-being score of 10 has a job performance rating (i.e., 
0.845 is the proportion of the standard normal curve that falls below a z value of 1.016).

10.5 ESTIMATING THE SELECTION MODEL

The two principal approaches for estimating the classic selection model are maximum likeli-
hood and a two-step method based on ordinary least squares regression. Both methods have 
advantages and disadvantages, and a substantial body of literature has examined the perfor-
mance of these estimators (e.g., see Puhani, 2000). This section presents a brief overview of 
these two approaches, and additional technical details are available elsewhere in the literature 
(Amemiya, 1985; Heckman, 1976, 1979; Puhani, 2000; Stolzenberg & Relles, 1997). As an 
aside, methodologists have proposed a number of estimators that differ from those in this 
section. A thorough review of these procedures is beyond the scope of this chapter, but Pu-
hani (2000) and Winship and Mare (1992) discuss a few of these alternatives.

Maximum likelihood estimates the multivariate regression model parameters (e.g., the 
path model in Figure 10.1) in a single analytic step. The basic logic of the estimation pro-
cess is identical to what I describe in Chapters 3 and 4. That is, an iterative algorithm “audi-
tions” different combinations of parameter values until it identifi es the estimates that pro-
duce the highest likelihood of producing the sample data, assuming that R* and the outcome 
variable have a bivariate normal distribution in the population. Maximum likelihood estima-
tors are available in a number of statistical software packages; readers who are interested in 
the technical details of the selection model likelihood function can consult Amemiya (1985, 
pp. 385–387).

At the time of his original work, maximum likelihood estimation routines were not yet 
widely available, so Heckman (1976, 1979) outlined a two-step estimator based on ordinary 
least squares regression (the literature also refers to this method as the limited information 
maximum likelihood estimator). The fi rst step of Heckman’s procedure uses a probit model 
to regress the missing data indicator R on one or more covariates. The purpose of this step is 
to obtain the predicted probabilities of response. The second step of the procedure uses or-
dinary least squares with listwise deletion to estimate the substantive regression model. 
Heckman showed that including the predicted probabilities (or more accurately, a transfor-
mation of the probabilities called the Mill’s ratio) as an additional explanatory variable can 
correct the bias in the ordinary least squares regression coeffi cients. As an aside, the two-step 
procedure underestimates standard errors, so additional computational procedures (e.g., 
the bootstrap, asymptotic approximations) are required to obtain accurate signifi cance tests 
(Heckman, 1979).
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10.6 LIMITATIONS OF THE SELECTION MODEL

A relatively large number of empirical studies have examined the performance of the selection 
model (e.g., Hartman, 1991; Leung & Yu, 1996; Manning, Duan, & Rogers, 1987; Nawata, 
1993, 1994; Nelson, 1984; Paarsch, 1984; Stolzenberg & Relles, 1990). These studies sug-
gest that the selection model can reduce or eliminate bias when its assumptions are met. 
However, in many realistic scenarios, the model can produce estimates that are even worse 
than those of MAR-based missing data handling methods. Unfortunately, these assumptions 
are largely untestable, so there is no practical way to judge the model’s performance in a real 
data analysis.

The regression equation that describes the propensity to respond is the mechanism by 
which the selection model mitigates bias, but it is also an Achilles’ heel. For one, this regres-
sion model needs to be correctly specifi ed. As an example, one of the data analyses at the end 
of the chapter illustrates a situation in which missingness depends on an interactive effect, 
such that low-scoring cases in the treatment condition and high-scoring cases in the control 
condition have higher rates of missingness. The selection model that I apply to this example 
omits this interaction term from the regression model that predicts missingness, which ends 
up biasing the substantive model parameters. (This may not be the only source of bias, but 
it is almost certainly a contributing factor.) Unfortunately, researchers rarely know why the 
data are missing, so generating an appropriate set of predictors can be a challenge.

Related to the issue of model specifi cation, empirical studies show that the selection 
model is highly dependent on the degree of collinearity among the predictor variables. In 
particular, problems arise when the predictor variables in the probit regression are correlated 
with those from the substantive regression model. The reason collinearity is detrimental is 
relatively technical (Puhani, 2000; Stolzenberg and Relles, 1997), but the problem is fairly 
intuitive if you consider the two-step estimator. Recall that the two-step estimator includes 
the predicted probabilities from the probit regression as an explanatory variable in the sub-
stantive regression model. Because the predicted probabilities are a composite of the ex-
planatory variables in the probit model, they will be highly correlated with any variables that 
appear in both equations. This collinearity can introduce a substantial amount of sampling 
error into the estimates, and this infl ux of noise can be so great that it essentially negates any 
reduction in bias. Collinearity problems are most pronounced when the regression equations 
share a common set of explanatory variables. Thus, the usual recommendation is to include 
at least one predictor in the probit model that does not appear in the substantive regression 
model. However, this strategy does not necessarily solve the collinearity problem, and the 
selection model can produce inaccurate estimates even when the two equations contain 
unique sets of predictor variables.

Finally, selection model parameter estimates are highly dependent on the bivariate nor-
mality assumption for the residuals. This assumption is particularly problematic because it is 
largely untestable. For example, a sample of scores from a normally distributed population 
can appear skewed because values are systematically missing from one tail of the score dis-
tribution or because the sample accurately refl ects the true shape of the population data. To 
make matters worse, the latent R* values are completely missing, so there is ultimately no 
way to verify that the joint distribution of the residuals is bivariate normal, even if the distri-
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bution of the outcome is normal. As you will see in the next section, even slight departures 
from normality can produce substantial bias.

10.7 AN ILLUSTRATIVE ANALYSIS

The MNAR models in this chapter address an important shortcoming of the MAR-based 
missing data-handling approaches. However, the performance of these models also depends 
on untestable assumptions that are unlikely to hold in real data sets. To illustrate the sensitiv-
ity of the selection model to collinearity and nonnormality, I generated three artifi cial data 
sets of N = 2000 cases and used maximum likelihood to estimate the selection model.* To 
keep things simple, I used bivariate regression models similar to those in Equations 10.4 and 
10.5. To correctly model the underlying selection process, I generated a standard normal R* 
variable that had a population correlation of ρ = .70 with the outcome variable from the 
substantive regression model. Next, I imposed MNAR missing data by eliminating the out-
come variable for cases that fell in the lowest quartile of the R* distribution. For the probit 
portion of the model, I generated a single explanatory variable that had a population correla-
tion of ρ = .40 with R*. The fi rst artifi cial data set mimicked an ideal set of conditions where 
the predictor variables from the two regression models are uncorrelated and the entire set of 
variables is multivariate normal. The second data set was identical to the fi rst, except that the 
explanatory variables had a modest population correlation of ρ = .30. In the fi nal data set, 
the predictor variables were uncorrelated, but the population distribution of the outcome 
variable was somewhat nonnormal (skewness = 1.10 and kurtosis = 2.50).

Table 10.2 shows the intercept and slope estimates from the substantive regression 
model. For comparison purposes, the table also gives the estimates from a complete-data 
analysis and a maximum likelihood analysis that assumes an MAR mechanism. To begin, 
consider the estimates from the section labeled Analysis 1. These estimates represent an ideal 
situation in which the selection model assumptions are met. As expected, the selection 
model accurately adjusts for the MNAR missingness and yields estimates that are quite simi-
lar to those of the complete data. In contrast, the systematic missing data in the lower tail of 
the Y distribution causes maximum likelihood to overestimate the regression intercept. (The 
explanatory variable is centered at the grand mean, so the intercept is an estimate of the 
outcome variable mean.)

The estimates from the section labeled Analysis 2 refl ect a situation wherein the predic-
tor variables in the two regression equations have a modest correlation. Notice that the selec-
tion model intercept estimate is approximately two standard error units below the complete-
data intercept, and the slope coeffi cient is too high. In fact, the maximum likelihood slope 
estimate is far more accurate than that of the selection model. Finally, the section labeled 
Analysis 3 gives the estimates from a data set with a skewed outcome variable. Consistent 
with Analysis 2, the selection model yields biased estimates of the intercept and slope. Al-
though the selection model intercept is somewhat more accurate than that of maximum like-
lihood, its slope coeffi cient is severely distorted.

*Analysis syntax and data are available on the companion website, www.appliedmissingdata.com.
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Considered as a whole, the estimates in Table 10.2 illustrate two important points. First, 
when its assumptions are satisfi ed, the selection model can virtually eliminate the bias that 
results from MNAR data on an outcome variable. Second, modest correlations among the 
predictor variables and moderate departures from normality can produce severely biased es-
timates. In fact, the selection model estimates may be far worse than those of maximum 
likelihood and multiple imputation. From a practical perspective, the estimates in Table 10.2 
suggest that the selection model may be of limited utility because the conditions in Analysis 
2 and Analysis 3 are probably representative of many—if not most—realistic data sets. Of 
course, caution is warranted in drawing fi rm conclusions from a single artifi cial data set, but 
the analysis results are consistent with those from published Monte Carlo studies.

10.8 THE PATTERN MIXTURE MODEL

The pattern mixture model provides an alternate framework for MNAR data (Glynn, Laird, 
& Rubin, 1986; Little, 1993; Rubin, 1987). Like the selection model, the pattern mixture 
model integrates the distribution of missingness into the analysis, but it does so in a very 
different fashion. Specifi cally, the pattern mixture approach forms subgroups of cases that 
share the same missing data pattern and estimates the substantive model within each pat-
tern. Returning to the factorization in Equation 10.3, note that the pattern-specifi c analysis 
models correspond to the conditional distribution, p(Y|R), and the missing data pattern 
proportions align with the marginal distribution, p(R). The pattern-specifi c estimates that 
result from a pattern mixture model analysis are usually not of substantive interest, so averag-

TABLE 10.2. Estimates from Selection Model Illustration

 Intercept Slope

Analysis method Estimate SE Estimate SE

Analysis 1: Assumptions satisfi ed

Complete data 100.100 0.205 0.385 0.021
Maximum likelihood 102.991 0.202 0.393 0.021
Selection model 100.325 0.333 0.384 0.020

Analysis 2: Correlated predictors

Complete data 100.080 0.204 0.393 0.021
Maximum likelihood 102.970 0.202 0.393 0.021
Selection model  99.617 0.249 0.454 0.018

Analysis 3: Non-normal outcome variable

Complete data 100.056 0.205 0.371 0.021
Maximum likelihood 102.609 0.225 0.409 0.023
Selection model  98.434 0.275 0.303 0.020
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ing the estimates across the missing data patterns yields a single set of estimates that account 
for MNAR data. This section uses the small data set from Table 10.1 to illustrate the pattern 
mixture model, and I later describe variations of the model for longitudinal analyses.

Suppose that the substantive goal is to estimate the mean job performance rating. The 
fi rst step of the procedure forms subgroups of cases that share the same missing data pattern. 
The data set in Table 10.1 has only two missing data patterns: cases with complete data on 
both IQ and job performance, and cases with IQ scores only. For the complete cases, it is 
possible to estimate the means and the variances of both variables as well as the covariance 
between IQ and job performance. However, the employees who quit prior to their 6-month 
review have no job performance ratings, so it is only possible to estimate the mean and the 
variance of the IQ scores. Consequently, the subgroup of cases with missing data has three 
inestimable parameters (i.e., the mean and the variance of the job performance ratings and 
the covariance between IQ and job performance).

The bivariate example illustrates an important practical problem with pattern mixture 
models, namely, that the patterns with missing data typically have one or more inestimable 
parameters. For this reason, pattern mixture models are said to be underidentifi ed. In prac-
tice, estimating a pattern mixture model requires assumptions about the inestimable param-
eter values. To solve this problem, methodologists have proposed a number of so-called 
identifying restrictions that essentially equate the inestimable parameters from one missing 
data pattern to the estimable parameters from one or more of the other patterns. I describe 
several of these approaches later in the chapter, but for now, I focus on the complete case 
missing variable restriction (Little, 1993). Like its name implies, the complete case missing 
variable restriction equates the inestimable parameters from one missing data pattern to 
the estimable parameters of the complete cases. I illustrate how to use this approach to esti-
mate the mean, and Little (1993, p. 128) gives the equations for estimating variances and 
covariances.

To illustrate the complete case missing variable restriction, reconsider the job perfor-
mance data in Table 10.1. The fi rst step is to express the job performance mean (one of the 
inestimable parameters) as a function of the IQ scores, as follows:

 μJP = β0 + β1(μIQ) (10.7)

where β0 and β1 are the intercept and slope coeffi cients, respectively, from the regression of 
job performance on IQ. Equation 10.7 follows from standard linear regression, where substi-
tuting the mean of an explanatory variable into the regression equation returns the outcome 
variable mean as a predicted score. Of course, Equation 10.7 does not solve the estimation 
problem because the intercept and slope coeffi cients are also inestimable. The complete case 
missing variable restriction replaces the inestimable regression coeffi cients with the intercept 
and slope from the subset of complete cases.

Returning to the data in Table 10.1, the regression coeffi cients for the subset of complete 
cases are β̂0

(C) = 4.287 and β̂1
(C) = 0.069. (Throughout the remainder of the chapter I use a 

superscript in parentheses to denote a specifi c missing data pattern.) The job performance 
mean for the incomplete cases is now estimable because all of the terms on the right side of 
Equation 10.7 have values. Specifi cally, substituting the regression coeffi cients for the complete 
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cases and the IQ mean for the incomplete cases (i.e., μ̂IQ
(M) = 91.600) into Equation 10.7 yields 

the following estimate of the job performance mean

 μ̂JP
(M) = β̂0

(C) + β̂1
(C)(μ̂IQ

(M)) = 4.287 + 0.069(91.600) = 10.607

where the M and C superscripts denote the missing and complete cases, respectively. Note 
that the corresponding estimate for the complete cases is μ̂JP

(C) = 11.400.

Averaging across Missing Data Patterns

The pattern-specifi c mean estimates (i.e., μ̂JP
(C) = 11.400 and μ̂JP

(M) = 10.607) suggest that the 
employees that quit prior to their 6-month evaluation have somewhat lower job performance 
ratings than the employees who stay on the job. While this information is interesting and 
useful, the company is probably more interested in estimating the mean job performance 
rating for the entire population of employees. Averaging the pattern-specifi c estimates yields 
a single estimate that accounts for MNAR data. (The literature sometimes refers to this as a 
marginal parameter estimate.) More specifi cally, this marginal estimate is the weighted aver-
age of the pattern-specifi c estimates, where the weight for a given pattern is simply the pro-
portion of cases in that pattern. Returning to the job performance example, note that the 
pattern proportions are π̂C = 0.75 and π̂M = 0.25 for the complete and incomplete cases, 
respectively. The fi nal estimate of the job performance mean is the weighted average of the 
pattern-specifi c means, as follows.

 μ̂JP = π̂Cμ̂JP
(C) + π̂Mμ̂JP

(M) = 0.75(11.400) + 0.25(10.607) = 11.201 (10.8)

The previous bivariate example is far less complex than most real-world analysis problems. 
Nevertheless, the basic logic of the pattern mixture model (i.e., obtain pattern-specifi c esti-
mates and average over the missing data patterns) applies to virtually any analysis.

As an important aside, a pattern mixture model analysis does not yield standard errors 
for the averaged estimates. Notice from Equation 10.8 that the fi nal estimate of the mean is 
a linear combination of four estimates (i.e., the pattern-specifi c means and the pattern pro-
portions), each of which is affected by sampling error. Computing the standard error for an 
estimate that is a function of other estimates requires a computational approach known as 
the delta method. I describe how to compute these standard errors later in the chapter.

10.9 LIMITATIONS OF THE PATTERN MIXTURE MODEL

Like the selection model, the pattern mixture model’s reliance on untestable assumptions is 
its weakness. Although the model does not rely explicitly on distributional assumptions, it 
does require the user to specify values for the inestimable parameters. To the extent that these 
assumed values are correct, the model can reduce or eliminate bias. However, specifying the 
wrong values can produce substantial bias, even when the data are MAR (Demirtas & Scha-
fer, 2003). Specifying values for the inestimable parameters is an unavoidable—and perhaps 
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troubling—aspect of pattern mixture modeling. However, some methodologists argue that 
this is actually an advantage of the model because it forces researchers to make their assump-
tions explicit. This is in contrast to the selection model, which is only estimable because of 
implicit distributional assumptions (i.e., the bivariate normality of the residual terms). Like 
every other missing data handling method in this book, the pattern mixture model is prone 
to substantial bias when its assumptions are incorrect, and there is no way to test these as-
sumptions. However, the possibility of using different approaches to generate values for the 
inestimable parameters makes the pattern mixture model an ideal tool for sensitivity analyses 
because you can examine the stability of the resulting estimates across a variety of scenarios.

10.10 AN OVERVIEW OF THE LONGITUDINAL GROWTH MODEL

Much of the recent methodological work on MNAR models has focused on longitudinal data 
analyses. In particular, methodologists have put considerable effort into the development of 
selection models and pattern mixture models for growth curve analyses (also known as mul-
tilevel models, linear mixed models, hierarchical linear models, and latent growth models). 
Because the growth model is integral to much of the remaining material in this chapter, a 
brief overview is warranted. Researchers in the social and the behavioral sciences routinely 
use the multilevel modeling framework or the structural equation modeling framework to 
estimate these models. This section gives a brief description of both modeling frameworks, 
and a number of excellent resources are available to readers who are interested in additional 
details (Bollen & Curran, 2006; Bryk & Raudenbush, 1987; Hancock & Lawrence, 2006; 
Raudenbush & Bryk, 2002; Singer & Willett, 2003).

The Multilevel Growth Model

The multilevel growth model expresses the outcome variable as a function of a temporal 
predictor variable that captures the passage of time. The basic linear growth model is

 Yti = γ00 + γ10(TIMEti) + u0i + u1i(TIMEti) + rti (10.9)

where Yti is the outcome score for case i at time t, TIMEti is the value of the temporal predictor 
for case i at time t (e.g., elapsed time, age, data collection wave), γ00 is the intercept, γ10 is the 
expected change in the outcome variable for a one-unit increment in the TIME variable, u0i 
and u1i are residuals that allow the intercepts and the slopes to vary across individuals, and 
rti is a time-specifi c residual.

To put the growth model in a substantive context, consider a longitudinal study that 
examines the change in depressive symptoms during the course of a two-month intervention. 
Furthermore, suppose that the researchers administer a depression questionnaire at the be-
ginning of the intervention, one month after the start of the intervention, and two months 
after entry into treatment. In this scenario, the TIME variable quantifi es the number of months 
since the start of the intervention (i.e., 0 = the baseline assessment, 1 = the one-month fol-
low-up, and 2 = the two-month follow-up). This coding scheme facilitates the interpretation 
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of the model parameters, such that γ00 represents the baseline mean (i.e., the expected value 
when the TIME variable equals zero) and γ10 is the average change per month. The u0j and u1j 
terms are residuals that allow for individual differences in baseline scores and change rates, 
respectively. The growth model does not estimate the residuals themselves, but rather the 
variance of the residuals. For example, the variance of u0j quantifi es individual differences 
in depression at the baseline assessment, and the variance of u1j captures the degree to which 
the change rates vary across individuals.

The Latent Growth Curve Model

The structural equation modeling framework views the linear growth model as a two-factor 
confi rmatory factor analysis model with a mean structure. To illustrate, Figure 10.2 shows a 
path diagram of the growth model from the hypothetical depression study. Consistent with 
standard path diagram conventions, ellipses represent latent variables, rectangles denote 
manifest (i.e., measured) variables, single-headed straight arrows symbolize regression coef-
fi cients, and double-headed curved arrows are correlations. For consistency, the fi gure uses 
the same notation system as Equation 10.9.

To begin, the path diagram shows the repeated measures variables (i.e., the Yti values in 
Equation 10.9) as three rectangles. The Intercept and Slope ellipses are latent variables that 
represent the idealized linear growth trajectory (i.e., a latent growth curve) for a particular 
individual (i.e., the u0i and u1i terms in Equation 10.9, respectively). The unit factor loadings 
(i.e., the arrows that connect the latent variables to the manifest depression scores) for the 
Intercept latent variable refl ect the fact that the intercept is a constant component of an 
individual’s score at any given point in time, and the loadings for the Slope latent variable 
represent the amount of elapsed time between assessments (i.e., the values of the TIME vari-
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FIGURE 10.2. Path diagram of a three-wave linear growth curve model. The Intercept and Slope 
ellipses are latent variables that represent the individual growth trajectories. The primary parameters of 
interest are the latent variable means and the latent variable variances. The diagram denotes the means 
as the single-headed straight arrows linking the triangles (a column vector of ones) to the latent vari-
ables, and the variances are the double-headed curved arrows between each latent variable and itself.
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able in Equation 10.9). The primary parameters of interest are the latent variable means (i.e., 
the γ coeffi cients in Equation 10.9) and the latent variable variances. The path diagram de-
notes the means as single-headed straight arrows that connect the triangles (column vectors 
of ones) to the latent variables, and the variances are the double-headed curved arrows that 
link the latent variables to themselves.

Although the two modeling frameworks appear to be different from one another, the 
multilevel model and the structural equation model are quite similar. In fact, in many situa-
tions the two frameworks produce identical parameter estimates (Mehta & West, 2000; 
Raudenbush, 2001). Despite their similarity, the software programs that implement the two 
modeling frameworks tend to differ (sometimes dramatically) in their capabilities. Multilevel 
modeling software packages can estimate some of the models that I describe in this chapter, 
but structural equation modeling is a more fl exible tool for estimating MNAR models for 
longitudinal data. The remainder of this chapter is devoted to selection models and pattern 
mixture models for longitudinal data analyses; I use structural equation modeling software 
to estimate several of these MNAR models later in the chapter.

10.11 A LONGITUDINAL SELECTION MODEL

Diggle and Kenward (1994) outline a selection model for longitudinal analyses where partici-
pants permanently drop out of a study at some point after the initial data collection wave 
(i.e., a monotone missing data pattern). Following the logic of the classic selection model, the 
Diggle and Kenward selection model is a two-part model that combines the growth curve 
analysis with an additional set of regression equations that predict response probabilities. 
Diggle and Kenward use a growth model similar to that in Equation 10.9 to describe the 
change in the repeated measures variables, and they use a logistic, rather than a probit, model 
for the binary missing data indicators. In the logistic portion of the model, the probability of 
missingness at wave t depends on the outcome variable at time t and the outcome variable 
from the previous data collection wave. The logistic model can also include any predictors 
from the growth portion of the model. Because logistic regression analyses are relatively com-
mon in the behavioral and the social sciences, I do not outline the model here. A number of 
resources are available to readers interested in additional information on logistic regression 
(Agresti, 2002; Cohen, Cohen, West, & Aiken, 2003; Pampel, 2000).

To illustrate the selection model, reconsider the longitudinal depression study from the 
previous section. Figure 10.3 shows a path diagram of the model. The rectangles labeled R2 
and R3 are binary missing data indicators for the one- and two-month follow-up assessments, 
respectively. The missing data indicators take on a value of 0 at any assessment where Yt is 
observed, a value of 1 at the assessment immediately following dropout, and a missing value 
at all subsequent assessments. For example, a participant that drops out of the study after the 
initial data collection wave would have indicator values of R2 = 1 and R3 = missing. This cod-
ing is consistent with that of a discrete-time survival model, but other schemes can be used 
to represent both intermittent missingness and permanent dropout (e.g., multinomial logistic 
codes). Note that the baseline assessment does not require a missing data indicator because 
the model assumes that every case has data at the beginning of the study. Although it is not 
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immediately obvious from the diagram, the model contains a mixture of linear and logistic 
regression coeffi cients. To differentiate these two sets of coeffi cients, I use solid lines to de-
note linear regressions and dashed lines to represent logistic regressions.

In principle, the logistic regression coeffi cients in Figure 10.3 carry information about 
the missing data mechanism. For example, a signifi cant path between Y2 and R2 or between 
Y3 and R3 implies an MNAR mechanism (i.e., dropout at time t is related to the underlying 
values of Y at time t). Similarly, a signifi cant relationship between Y1 and R2 or between Y2 
and R3 suggests that the data are MAR (i.e., dropout at time t is related to the scores from a 
previous assessment). If the entire set of logistic regression coeffi cients is nonsignifi cant, this 
suggests that the data are MCAR (i.e., dropout is unrelated to variables in the model). Hypo-
thetically, it is possible to test the MAR mechanism by comparing the fi t of the model in 
Figure 10.3 to that of a nested model that constrains the MNAR coeffi cients (e.g., the regres-
sion of R3 on Y3) to zero. However, I previously illustrated that the selection model parameter 
estimates are highly sensitive to slight departures from normality, so the validity of any sig-
nifi cance tests is highly suspect. The Diggle and Kenward model assumes that the repeated 
measures variables are multivariate normal, so it too is subject to substantial bias when the 
normality assumption is violated. The volatile nature of the selection model parameter esti-
mates makes any test of the MAR assumption practically worthless.

A number of sources are available to readers who are interested in a more detailed de-
scription of the Diggle and Kenward selection model (Diggle & Kenward, 1994; Little, 1995; 
Molenberghs & Kenward, 2007; Verbeke & Molenberghs, 2000). Later in the chapter, I esti-
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FIGURE 10.3. Path diagram of a three-wave selection model. The Intercept and Slope ellipses are 
latent variables that represent the individual growth trajectories. The primary parameters of interest are 
the latent variable means and the latent variable variances. The diagram denotes the means as the single-
headed straight arrows linking the triangles (a column vector of ones) to the latent variables, and the 
variances are the double-headed curved arrows between each latent variable and itself. The dashed lines 
are logistic regressions that predict the binary missing data indicators (i.e., response probabilities).
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mate a model that is similar to the one in Figure 10.3, and a number of practical applications 
of the model are available elsewhere in the literature (e.g., Foster & Fang, 2004; Kenward, 
1998; Michiels, Molenberghs, Bijnens, Vangeneugden, & Thijs, 2002).

10.12 RANDOM COEFFICIENT SELECTION MODELS

The so-called random coeffi cient selection model (the literature also refers to this as the 
shared parameter model) is another selection-type model for longitudinal data analyses (De 
Gruttola & Tu, 1994; Little, 1995; Schluchter, 1992; Shih, Quan, & Chang, 1994; Wu & 
Carroll, 1988). Unlike the Diggle and Kenward (1994) model, the random coeffi cient selec-
tion model uses the individual growth curves (e.g., the latent variables in Figure 10.2, or the 
u0i and u1i values in Equation 10.9) to predict the probability of missing data. As an example, 
Figure 10.4 shows a variant of the random coeffi cient selection model for the earlier depres-
sion example. Consistent with the Diggle and Kenward model, the straight arrows that con-
nect the Intercept and Slope latent variables to the missing data indicators represent logistic 
regression coeffi cients. By linking the indicator variables to the individual growth trajectories, 
the random effect selection model effectively allows the probability of dropout at time t to 
depend on the entire set of repeated measures variables, including the hypothetical scores 
from future data collection waves (Little, 1995).
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FIGURE 10.4. Path diagram of a three-wave random coeffi cient selection model. The Intercept and 
Slope ellipses are latent variables that represent the individual growth trajectories. The primary param-
eters of interest are the latent variable means and the latent variable variances. The diagram denotes 
the means as the single-headed straight arrows linking the triangles (a column vector of ones) to the 
latent variables, and the variances are the double-headed curved arrows between each latent variable 
and itself. The dashed lines are logistic regressions that predict the binary missing data indicators (i.e., 
response probabilities).
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The model in Figure 10.4 is similar to that of Wu and Carroll (1988), but methodolo-
gists have proposed variations of the selection model that do not involve binary missing data 
indicators. For example, Schluchter (1992) and De Gruttola and Tu (1994) describe a model 
that replaces the binary missing data indicators with a continuous variable that quantifi es the 
assessment at which dropout occurs. Little (1995) gives a brief description of some of these 
alternatives.

10.13 PATTERN MIXTURE MODELS FOR 
LONGITUDINAL ANALYSES

Applying the pattern mixture model to a longitudinal analysis follows the same basic logic as 
the earlier bivariate analysis example (i.e., estimate the growth model separately for each 
missing data pattern and compute a single set of estimates by averaging the pattern-specifi c 
regression coeffi cients). To illustrate the model, reconsider the longitudinal depression study 
from the previous section. Assuming that there is no intermittent missing data, there are 
three missing data patterns: cases that permanently drop out after the baseline assessment, 
cases that drop out after the one-month follow-up, and cases that complete the study. The 
pattern mixture approach estimates the linear growth curve model in Equation 10.9 sepa-
rately within each missing data pattern. However, like the bivariate example, some of the 
model parameters are inestimable. For example, it is possible to estimate a linear function for 
the cases with two depression scores, but there is insuffi cient data to estimate the full set of 
variance and covariance parameters for this subgroup. The estimation problem is more obvi-
ous for the cases that drop out after the baseline assessment because there is no way to esti-
mate a trend.

In practice, pattern mixture models require explicit assumptions about the trajectory 
shapes that would have resulted had the data been complete. These assumptions often take 
the form of extrapolation techniques that extend the pattern-specifi c growth trajectories be-
yond the range of the complete data or identifying restrictions that equate the inestimable 
parameters from one pattern to the estimable parameters from one or more of the other pat-
terns. To illustrate, consider the cases that leave the depression study following the baseline 
assessment. The intercept coeffi cient (i.e., the γ00 term in Equation 10.9) is estimable, but 
the linear trend (i.e., γ10) is not. One option is to assume that the linear coeffi cient for the 
dropouts is identical to that of the complete cases; this is the complete case missing variable 
restriction described in the previous section. An alternative option is to assume that the in-
estimable linear trend is identical to the growth rate for the cases that go missing after the 
one-month follow-up. These are just two options for specifying the inestimable coeffi cients, 
and I describe others in the next section.

The pattern-specifi c growth curves are an intermediate step toward the ultimate goal, 
which is to estimate the population growth trajectory. Consistent with the earlier bivariate 
example, the population estimate is the weighted average of the pattern-specifi c estimates. 
For example, the fi nal intercept estimate from the depression study is

 γ̂̄00 = π̂1γ̂00
(1) + π̂2γ̂00

(2) + π̂3γ̂00
(3) (10.10)
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where γ̂̄00 is the average intercept, the π̂ terms are the pattern proportions, and the γ̂00
(P) co-

effi cients are the pattern-specifi c estimates. As before, the superscripts denote the missing 
data patterns. The average slope coeffi cient follows the same logic, but one of the pattern-
specifi c estimates will appear twice in the equation. For example, the complete case missing 
variable restriction replaces the inestimable linear trend for Pattern 1 (the cases that drop out 
after baseline) with the linear coeffi cient from Pattern 3 (the complete cases). This identifying 
restriction leads to the following weighted average.

 γ̂̄10 = π̂1γ̂10
(3) + π̂2γ̂10

(2) + π̂3γ̂10
(3) (10.11)

As explained previously, special computational procedures are needed to obtain standard 
errors for the average estimates. These computations are explained in a later section.

10.14 IDENTIFICATION STRATEGIES FOR LONGITUDINAL PATTERN 
MIXTURE MODELS

The inherent diffi culty with pattern mixture models is that the observed data do not contain 
enough information to estimate the pattern-specifi c parameters. To get around this, method-
ologists have proposed a number of identifi cation strategies that essentially augment the ob-
served data with assumptions about the inestimable parameter values (Demirtas & Schafer, 
2003; Fitzmaurice, Laird, & Shneyer, 2001; Hedeker & Gibbons, 1997; Little, 1993; Molen-
berghs, Michiels, Kenward, & Diggle, 1998; Thijs, Molenberghs, Michiels, & Curran, 2002; 
Verbeke & Molenberghs, 2000). The approaches described in this section achieve identifi -
cation by simplifying the model (e.g., combining missing data patterns) or by equating the 
inestimable parameters from one missing data pattern to the estimable parameters from an-
other pattern. The literature describes other estimation strategies, but the methods described 
here have received the most attention. Demirtas and Schafer (2003) provide an overview of 
several alternatives.

Combining Missing Data Patterns

Returning to the depression example, one way to sidestep the identifi cation issue is to com-
bine missing patterns. Specifi cally, combining the cases with missing values into a single 
pattern yields enough data to estimate a linear trend and thus eliminates the need for param-
eter substitution methods. Hedeker and Gibbons (1997) describe this approach in some 
detail, so I henceforth refer to this method as the Hedeker and Gibbons model. In their 
analysis of psychiatric drug trial data, Hedeker and Gibbons pooled patterns with missing 
data into a single subgroup and used a binary variable to denote completers (i.e., the cases 
with complete data at every wave) and dropouts (i.e., the cases with one or more missing 
values). They then used the missing data indicator and a number of interaction terms as 
predictor variables in a linear growth model.

Returning to the depression example, the cases that leave the study prior to the two-
month follow-up combine to form a single group of dropouts, and the cases that fi nish the 
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study form the group of completers. Including the missing data pattern as a predictor in the 
growth model gives

 Yti = β00 + β10(TIMEti) + β01(DROPOUTi) + β11(DROPOUTi)(TIMEti)
 + u0i + u1i(TIMEti) + rti  

(10.12)

where DROPOUT denotes the missing data pattern (0 = completers, 1 = dropouts). Repre-
senting the missing data patterns as a dummy variable leads to the following interpretation 
of the regression coeffi cients: β00 is the baseline mean for the completers, β10 is the monthly 
growth rate for the completers, β01 is the baseline mean difference between the completers 
and the dropouts, and β11 is the growth rate difference between the two patterns. Conse-
quently, β00 + β01 gives the baseline mean for the dropouts and β10 + β11 yields the dropout 
growth rate. It may not be immediately obvious, but the Hedeker and Gibbons model as-
sumes that the variance and covariance parameters are the same for both groups.

The Hedeker and Gibbons model yields pattern-specifi c estimates for the completers and 
the dropouts, and averaging the estimates follows the same procedure as before. For example, 
the fi nal intercept estimate is

 γ̂̄00 = π̂Cβ̂00 + π̂D(β̂00 + β̂01) = π̂Cγ̂00
(C) + π̂Dγ̂00

(D) (10.13)

and the fi nal slope estimate is

 γ̂̄10 = π̂Cβ̂10 + π̂D(β̂10 + β̂11) = π̂Cγ̂10
(C) + π̂Dγ̂10

(D) (10.14)

Later in the chapter I illustrate a more complex analysis example that incorporates a binary 
treatment variable into the model.

Perhaps the biggest advantage of the Hedeker and Gibbons model is that it does not 
require special software. In addition, the model is useful in studies with a large number of 
repeated measurements and in studies that employ individually varying assessment sched-
ules. With a large number of repeated measurements, the number of missing data patterns is 
likely to be large and the number of cases within each pattern is likely to be small. When 
individuals have different assessment schedules, it is possible that no two cases quit the 
study at exactly the same time, leaving a single case per pattern. In both situations, combin-
ing missing data patterns can improve the reliability of the pattern-specifi c estimates. The 
downside of the Hedeker and Gibbons model is that it treats all incomplete cases alike. In 
reality, individuals that go missing at the beginning of a study may be quite different from 
cases that drop out near the end of a study, in which case the model can produce biased 
parameter estimates.

Identifying Restrictions

A second identifi cation strategy is to impose so-called identifying restrictions that replace 
the inestimable parameters from one missing data pattern with the estimates from another 
pattern (Demirtas & Schafer, 2003; Little, 1993; Molenberghs et al., 1998; Verbeke & Mo-
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lenberghs, 2000). Methodologists have proposed a number of possible restrictions, one of 
which is the complete case missing variable restriction that I described previously. At an in-
tuitive level, borrowing information from the complete cases may be undesirable, particularly 
if you suspect that the dropouts follow a different growth trajectory than the completers. As 
an alternative, the neighboring case missing variable restriction borrows parameter esti-
mates from a similar group of incomplete cases. Applied to the depression study, the neigh-
boring case restriction replaces the inestimable linear trend from Pattern 1 (the cases that 
drop out after the baseline assessment) with the linear coeffi cient from Pattern 2 (the cases 
that quit after the one-month follow-up). As a fi nal option, the available case missing vari-
able restriction replaces an inestimable growth coeffi cient with the weighted average of the 
estimates from other patterns. For example, in the depression study, the weighted average of 
the two estimable linear terms replaces the inestimable coeffi cient for Pattern 1, where the 
relative sample sizes of the two donor patterns determine the weights. I illustrate the identify-
ing restrictions in the analysis examples at the end of the chapter.

10.15 DELTA METHOD STANDARD ERRORS

The fi nal estimates from a pattern mixture model are weighted averages of the pattern- specifi c 
estimates. Because these marginal estimates are not an explicit part of the estimation routine, 
additional computational steps are required to obtain their standard errors. The delta method 
is a widely used technique for deriving an approximate standard error for an estimate that is 
a function of other model parameters and is the predominant method for generating pattern 
mixture model standard errors (Hedeker & Gibbons, 1997; Hogan & Laird, 1997; Molen-
berghs & Kenward, 2007). In this section, I use the average intercept parameter from the 
depression study to sketch the procedural details of the delta method, and the analysis ex-
amples in the subsequent sections provide additional details.

Applying the delta method to a pattern mixture model involves fi ve steps: (1) obtain the 
fi rst derivatives of the weighted average, (2) obtain the parameter covariance matrix for the 
pattern-specifi c growth model coeffi cients, (3) obtain the parameter covariance matrix for 
the pattern proportions, (4) combine the parameter covariance matrices into a single matrix, 
and (5) use the quantities from the previous steps to compute the standard error. Describing 
the mathematical rationale behind the computational steps is beyond the scope of this chap-
ter, but interested readers can fi nd accessible descriptions of the delta method elsewhere in 
the literature (MacKinnon, 2008, pp. 91–94; Raykov & Marcoulides, 2004).

Begin by reconsidering the average intercept estimate from the depression study.

 γ̂̄00 = π̂1γ̂00
(1) + π̂2γ̂00

(2) + π̂3γ̂00
(3) (10.15)

The fi rst step of the delta method uses differential calculus to obtain the fi rst derivatives 
of the weighted average equation. You might recall from Chapter 3 that a fi rst derivative 
quantifi es the slope of a function at a particular value of a variable that appears in the func-
tion. The right side of the equation shows that γ̂̄00 varies as a function of six estimates (the 
three pattern-specifi c intercept coeffi cients and the three pattern proportions), so there are 
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six fi rst derivatives. Differentiation involves a series of steps, each of which treats one of the 
estimates in the function as a variable while holding all other estimates constant.

To illustrate the differentiation process, consider the fi rst derivative of the weighted aver-
age with respect to γ̂00

(1). Differentiation treats γ̂00
(1) as a variable and sets all other estimates 

constant, as follows:

 γ̂̄00 = π̂1γ̂00
(1) + (constants) (10.16)

The derivative (i.e., slope) of a constant is zero, so the terms that do not involve γ̂00
(1) disappear 

from the equation, leaving only π̂1γ̂00
(1). This remaining term is a simple linear equation that 

describes the infl uence of γ̂00
(1) on γ̂̄00, holding all other estimates in Equation 10.15 constant. 

Because π̂1 is a multiplicative constant that describes the relationship between γ̂00
(1) and γ̂̄00, 

it is the fi rst derivative of the weighted average with respect to γ̂00
(1). Repeating the differentia-

tion process yields the fi rst derivatives for the remaining parameters in Equation 10.15. For 
example, the fi rst derivative with respect to γ̂00

(2) is π̂2, the fi rst derivative with respect to γ̂00
(3)  

is π̂3, the fi rst derivative with respect to π̂1 is γ̂00
(1), and so on. Collecting the derivatives in a 

vector yields

 DT = [π̂1 π̂2 π̂3 γ̂00
(1) γ̂00

(2) γ̂00
(3)] (10.17)

Note that the order of the derivatives is important. The matrix in Equation 10.17 lists the 
derivatives for the pattern-specifi c growth model coeffi cients fi rst, followed by the derivatives 
for the pattern proportions. The derivative vector will come up again in the fi nal computa-
tional step.

Perhaps not surprisingly, the standard errors (or more accurately, the sampling vari-
ances) of the six estimates in Equation 10.15 play an important role in the defi ning the 
standard error of the average intercept estimate. Consequently, the next two steps of the delta 
method obtain parameter covariance matrices for the estimates in the weighted average. For 
simplicity, I temporarily separate the matrices for the regression coeffi cients and the pattern 
proportions. Recall from previous chapters that the parameter covariance matrix is a sym-
metric matrix that contains sampling variances (i.e., squared standard errors) on the main 
diagonal and has the covariances between pairs of estimates in the off-diagonal. The param-
eter covariance matrix for the pattern-specifi c intercept estimates is a 3 by 3 matrix that takes 
the following form.

 var(γ̂00
(1)) cov(γ̂00

(1), γ̂00
(2)) cov(γ̂00

(1), γ̂00
(3))

 var(�̂) = [cov(γ̂00
(2), γ̂00

(1))   var(γ̂00
(2)) cov(γ̂00

(2), γ̂00
(3))] (10.18)

 cov(γ̂00
(3), γ̂00

(1)) cov(γ̂00
(3), γ̂00

(2)) var(γ̂00
(3))

Because software programs routinely report the parameter covariance matrix, obtaining var(γ̂) 
is simply a matter of extracting the appropriate elements from the full covariance matrix. 
Note that the full parameter covariance matrix will be much larger than the matrix above 
because it contains the variances and covariances for all model parameters, not just the inter-
cept coeffi cients.

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣
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It is also necessary to obtain the parameter covariance matrix for the pattern proportions 
because these too are fallible estimates from the data. The pattern proportions are not explicit 
parameters in the pattern mixture model, so software programs do not typically report the 
parameter covariance matrix for these estimates. However, the necessary matrix is given by

 1 var(�̂) = —[diag(�̂) – �̂�̂T] (10.19)
 N

where π̂ is a column vector that contains the pattern proportions, and diag(π̂) is a so-called 
diagonal matrix that contains the pattern proportions on the main diagonal and zero values 
in the off-diagonal. Continuing with the depression example, the parameter covariance ma-
trix for the pattern proportions is as follows:

  π̂1 0 0 π̂1

 var(�̂) = N–1([ 0  π̂2 0 ] – [π̂2] [π̂1 π̂2 π̂3])   0 0 π̂3 π̂3 (10.20)

  var(π̂1) cov(π̂1, π̂3) cov(π̂1, π̂3)
 = [cov(π̂2, π̂1)   var(π̂2) cov(π̂2, π̂3)]  cov(π̂3, π̂1) cov(π̂3, π̂2) var(π̂3)

As before, the diagonal elements of var(�̂) are sampling variances (i.e., squared standard er-
rors) and the off-diagonal elements are covariances.

Having obtained separate covariance matrices for the growth model coeffi cients and the 
pattern proportions, the next step is to combine these matrices into a single parameter co-
variance matrix. The form of this matrix is

 
var(�̂, �̂) = [var(�̂)    0] (10.21)

 0 var(�̂)

where each element of the matrix is actually a standalone submatrix. For example, var(�̂) is 
the 3 by 3 matrix in Equation 10.18, var(�̂) is the 3 by 3 matrix in Equation 10.20, and 0 is 
a 3 by 3 matrix containing all zeros. Combining the three submatrices yields a 6 by 6 param-
eter covariance matrix. The parameter order in the combined matrix corresponds to the order 
of the elements in the fi rst derivative vector (i.e., the order of the rows and the columns cor-
responds to γ̂00

(1), γ̂00
(2), γ̂00

(3), π̂1, π̂2, and π̂3).
The fi nal step of the delta method is to compute the standard error. The approximate 

sampling variance of the average intercept coeffi cient is as follows:

 var(γ̂00) = DTvar(�̂, �̂)D (10.22)

where the outer vectors contain the fi rst derivatives from Equation 10.17, and the inner ma-
trix is the combined parameter covariance matrix from Equation 10.21. Note that Equation 
10.22 has the same basic form as the sandwich estimator (i.e., robust) standard errors from 
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Chapter 5. Equation 10.22 yields a single value that is the approximate sampling variance of 
the average intercept coeffi cient, and the square root of this value is the delta method stan-
dard error. The size of the matrices in the right side of the equation will change depending on 
the number of missing data patterns and the specifi c details of the analysis, but the general 
form of the equation remains the same. The analysis examples in the subsequent sections 
provide additional details on the standard error computations.

10.16 OVERVIEW OF THE DATA ANALYSIS EXAMPLES

Methodologists often recommend sensitivity analyses that fi t a number of different MNAR 
models to the same data set (Demirtas & Schafer, 2003; Michiels et al., 2002; Rubin, 1987; 
Verbeke & Molenberghs, 2000). In line with this recommendation, the remainder of the 
chapter describes several analysis examples that apply a variety of missing data models to a 
linear growth curve analysis. The data for the analyses consist of depression scores from 280 
patients measured on three different occasions (baseline, one-month follow-up, and two-
month follow-up). I generated the data to mimic a randomized trial where a researcher as-
signs individuals to either a treatment or a control condition. Furthermore, there are three 
missing data patterns within each of the two treatment arms: cases that permanently drop 
out after the initial wave, cases that drop out after the second wave, and cases that complete 
the study. Figure 10.5 shows the variable means broken down by the missing data pattern 
and by the treatment group.

The missing values in the longitudinal data set represent a mixture of MAR and MNAR 
mechanisms. Specifi cally, the data are MAR (i.e., missingness is dependent on baseline 
scores) for roughly half of the 38 cases that drop out after the baseline assessment, and the 
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FIGURE 10.5. Line graph of the depression means broken down by missing data pattern and by 
treatment group. Within the treatment group, cases with lower scores have a higher probability of 
missingness, while higher scores are associated with missingness in the control group. This mecha-
nism mimics a situation where the treatment cases that experience rapid decreases in depressive symp-
toms have a tendency to leave the study, whereas the control cases with the highest depression scores 
are more likely to drop out.
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data are MNAR for all cases that drop out after the one-month follow-up. Within the treat-
ment group, cases with lower scores have a higher probability of missingness, while higher 
scores are associated with missingness in the control group. This mechanism mimics a situ-
ation in which the treatment cases that experience the greatest improvement (i.e., rapid de-
creases in depressive symptoms) have a tendency to leave the study because they are no 
longer feeling depressed, whereas the control cases with the highest depression scores are 
more likely to drop out because their symptoms are not improving.

The substantive goal of this analysis is to determine whether the average change rates 
differ by treatment condition (i.e., determine whether there is treatment group by time inter-
action). The substantive analysis is a linear growth curve model where a binary treatment 
indicator (0 = control, 1 = treatment) predicts the intercepts and slopes, as follows:

 Yti = γ00 + γ10(TIMEti) + γ01(TXGROUPi) + γ11(TXGROUPi)(TIMEti) 
 + u0i + u1i(TIMEti) + rti 

(10.23)

In the model above, the TIME variable is a temporal predictor that takes on a value of 0 at 
baseline, a value of 1 at the one-month follow-up, and a value of 2 at the two-month follow-
up. This coding scheme facilitates the interpretation of the model parameters, such that γ00 
represents the control group mean at the baseline assessment and γ10 is the average change 
per month for the control group. Because a dummy variable represents treatment group mem-
bership, the γ01 coeffi cient gives the baseline mean difference between the treatment and the 
control group, and γ11 quantifi es the growth rate difference between the two conditions (i.e., 
the treatment group by time interaction). Finally, the u0j and u1j terms are residuals that allow 
for individual differences in initial status and change rates, respectively, and rij is a residual 
that captures the remaining within-person variation that exists after accounting for the pas-
sage of time. The growth model does not estimate the residuals themselves, but rather the 
variance of the residuals (e.g., the variance of u0j quantifi es individual score differences at the 
fi rst wave, the variance of u1j captures heterogeneity in the individual growth trajectories). 
Figure 10.6 shows a path diagram of the model.

Complete-Data Analysis Results

As a reference point, I estimated the growth model in Equation 10.23 prior to deleting any 
values from the data set. The control group had a baseline mean of γ̂00 = 51.109 and a non-
signifi cant monthly change rate, γ̂10 = –0.543, z = –1.16, p = .24. The treatment group did 
not differ from the control group at baseline, γ̂01 = –1.498, z = –1.25, p = .21, which is to be 
expected in a randomized study. Finally, the key parameter of interest—the treatment group 
by time interaction—was statistically signifi cant and indicated that the treatment cases de-
clined more rapidly than the control cases, γ̂11 = –1.680, z = –2.56, p = .01 (the treatment 
group slope was γ̂10 + γ̂11 = –2.223). Although the preceding estimates are not identical to 
the true population values, they can serve as a useful benchmark for comparing the perfor-
mance of the missing data models.

The presence of a signifi cant interaction effect suggests that the intervention produced a 
mean difference at the end of the study. The growth model parameter estimates can generate 
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model-predicted means for each group at the two-month follow-up. For example, the expected 
value for the control group is

 ŶC = γ̂00 + γ̂10(TIMEti) = 51.109 – 0.543(2) = 50.023 (10.24)

and the corresponding estimate for the treatment group is

 ŶT = (γ̂00 + γ̂01) + (γ̂10 + γ̂11)(TIMEti) = 49.611 – 2.223(2) = 45.165 (10.25)

Subtracting the two means and expressing the absolute difference relative to the pooled base-
line standard deviation (SD = 10.44) gives a standardized mean difference of d = 0.47, which 
is just shy of Cohen’s (1988) benchmark for a medium effect size (i.e., d > 0.50). I use this 
effect size as a baseline for comparing the relative performance of the subsequent missing 
data models.

10.17 DATA ANALYSIS EXAMPLE 1

The fi rst analysis example uses MAR-based maximum likelihood missing data handling to 
estimate the growth model in Equation 10.23.* Table 10.3 gives the parameter estimates and 

*Analysis syntax and data are available on the companion website, www.appliedmissingdata.com.

Slope

Y1 Y2 Y3

r r r

1 1

1
1

1

1

0 2

γ00 γ10

Intercept

γ11γ01

TXGROUP

FIGURE 10.6. Path diagram of a three-wave linear growth curve model with a binary predictor vari-
able. The Intercept and Slope ellipses are latent variables that represent the individual growth trajecto-
ries. The diagram denotes the control group baseline mean and slope (i.e., γ00 and γ10, respectively) as 
the single-headed straight arrows linking the triangles (a column vector of ones) to the latent variables. 
The arrows connecting the binary predictor variable to the latent variables are the treatment group 
differences in the baseline mean and growth rate (i.e., γ01 and γ11, respectively). The latent variable 
variances are the double-headed curved arrows between each latent variable and itself.
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standard errors from this analysis. As seen in the table, maximum likelihood produced a 
nonsignifi cant baseline mean difference that was quite similar to that of complete-data analy-
sis (γ̂01 = –1.559 versus γ̂01 = –1.498, respectively). The similarity of these two estimates is 
probably not surprising given that the baseline scores were complete. However, the MAR-
based analysis produced a very different substantive conclusion about the treatment effect. 
Specifi cally, the control group showed a signifi cant decrease in depressive symptoms over 
time, γ̂10 = –1.188, z = –2.30, p = .02, and the treatment group by time interaction was non-
signifi cant, γ̂ 11 = –0.836, z = –1.15, p = .25, suggesting that the two groups effectively 
changed at the same rate.

Substituting the maximum likelihood parameter estimates into Equations 10.24 and 
10.25 gives model-predicted means of ŶT = 45.653 and ŶC = 48.884 for the treatment and 
the control group, respectively. Expressing the absolute difference in these means relative to 
the pooled baseline standard deviation (SD = 10.44) yields a standardized mean difference 
of d = 0.31, a value that is noticeably lower than the d = 0.47 effect size from the complete-
data analysis. The fact that the maximum likelihood attenuates the treatment effect makes 
intuitive sense given that values are systematically missing from the upper tail of the control 
group distribution and the lower tail of the treatment group distribution.

10.18 DATA ANALYSIS EXAMPLE 2

The second analysis example applies the Diggle and Kenward (1994) selection model to de-
pression data.* Recall that the selection model augments the growth model with a logistic 
model that predicts the response probabilities. Applying the selection model to the depres-
sion data requires a binary missing data indicator (1 = missing, 0 = complete) for both the 
one-month and the two-month follow-up assessments. (The baseline measurement does not 
require an indicator because the data are complete.) In the logistic portion of the model, the 
probability of missingness at the one-month follow-up depends on the depression scores at 
baseline, the depression scores at the one-month follow-up, and the treatment group dummy 
variable. Similarly, the probability of missing data at the two-month follow-up depends on 
scores from the one-month follow-up, scores from the two-month follow-up, and the dummy 
variable. Figure 10.7 shows a path model diagram of the selection model. To differentiate the 

*Analysis syntax and data are available on the companion website, www.appliedmissingdata.com.

TABLE 10.3 Maximum Likelihood Estimates from Analysis Example 1

Parameter Estimate SE z p

Control baseline mean (γ00) 51.260 0.862 59.482 < .001
Control growth rate (γ10) –1.188 0.516 –2.304 0.021
Baseline difference (γ01) –1.559 1.241 –1.284 0.199
Growth rate difference (γ11) –0.836 0.726 –1.151 0.250
Wave 3 mean difference (d) 0.310

Note. For comparison purposes, the complete-data estimates are γ00 = 51.109, γ10 = –0.543, γ01 = 
–1.498, and γ11 = –1.680. The effect size at the two-month follow-up is d = 0.466.
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growth model from the logistic model, the fi gure uses solid lines to denote linear regressions 
and uses dashed lines to represent logistic regressions. For consistency, I continue to use the 
multilevel modeling notation from the previous analyses.

Table 10.4 shows the parameter estimates and standard errors from the selection model 
analysis. The top portion of the table contains the growth model parameter estimates, and 
the bottom portion of the table gives the estimates from the logistic model. As seen in the 
table, the control group had a baseline mean of γ̂00 = 51.231, and the initial mean difference 
between the two groups was non-signifi cant, γ̂01 = –1.506, z = –1.24, p = .21. The control 
group showed no signifi cant decrease in depressive symptoms over time, γ̂10 = –1.383, z = 
–.832, p = .40, and the treatment group by time interaction was nonsignifi cant, γ̂11 = –.805, 
z = –1.08, p = .28.

Substituting the growth model estimates into Equations 10.24 and 10.25 gives model-
predicted means of ŶT =45.397 and ŶC = 48.465 for the treatment and the control group, 
respectively. Expressing the absolute difference in the means relative to the pooled baseline 
standard deviation (SD = 10.44) yields a standardized mean difference of d = .29, which is 
slightly less than a medium effect size by Cohen’s (1988) standards. Notice that the selection 
model produced the same substantive conclusion as the maximum likelihood analysis (i.e., 
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FIGURE 10.7. Path diagram of a three-wave selection model with a binary predictor variable. The 
Intercept and Slope ellipses are latent variables that represent the individual growth trajectories. The 
diagram denotes the control group baseline mean and slope (i.e., γ00 and γ10, respectively) as the single-
headed straight arrows linking the triangles (a column vector of ones) to the latent variables. The arrows 
connecting the binary predictor variable to the latent variables are the treatment group differences in 
the baseline mean and growth rate (i.e., γ01 and γ11, respectively). The dashed lines are logistic regres-
sions that predict the binary missing data indicators (i.e., response probabilities).
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the control group improved at roughly the same rate as the treatment group), and underesti-
mated the complete-data effect size by about the same amount.

Although the regression coeffi cients from the selection portion of the model are not of 
substantive interest, they warrant a brief discussion. It is important to reiterate that the esti-
mates in the bottom portion of Table 10.4 are logistic regression coeffi cients. For example, 
consider the regression of the missing data indicators (1 = missing, 0 = complete) on treat-
ment group membership, β̂3 = –.215. This coeffi cient indicates that treatment group member-
ship decreases the log odds of missing data by –.215, holding other predictor variables con-
stant. The fact that the logistic coeffi cients are not signifi cant may owe to the fact that the 
selection portion of the model is misspecifi ed. Recall that the relationship between depression 
scores and missingness is in the opposite direction for the two intervention groups. Returning 
to the path diagram in Figure 10.7, there is no interaction term in the model that captures the 
moderating infl uence of treatment group membership on the relationship between depression 
scores and missingness, and this misspecifi cation likely explains at least part of the bias in the 
growth model estimates. Of course, in any real-world data analysis, there is no way of knowing 
whether the logistic regressions accurately depict the underlying missing data mechanism, so 
it is impossible to judge the accuracy of the selection model parameter estimates. The results 
of this analysis underscore the important conclusion that the accuracy of any missing data 
analysis—not just an MAR-based analysis—depends on the veracity of its assumptions.

10.19 DATA ANALYSIS EXAMPLE 3

The third data analysis example applies the Hedeker and Gibbons (1997) pattern mixture 
model to the depression data.* Recall from a previous section that Hedeker and Gibbons 

*Analysis syntax and data are available on the companion website, www.appliedmissingdata.com.

Table 10.4. Selection Model Estimates from Analysis Example 2

Parameter Estimate SE z p

Growth model

Control baseline mean (γ00) 51.231 0.862 59.419 < 0.001
Control growth rate (γ10) –1.383 1.663 –0.832 0.405
Baseline difference (γ01) –1.506 1.212 –1.242 0.214
Growth rate difference (γ11) –0.781 0.783 –0.998 0.318
Wave 3 mean difference (d) 0.290

Logistic model

β1 (Yt–1 → Rt) –0.007 0.097 –0.072 0.943
β2 (Yt → Rt) –0.022 0.185 –0.119 0.906
β3 (TXGROUP → Rt) –0.215 0.392 –0.549 0.583

Note: For comparison purposes, the complete-data estimates are γ00 = 51.109, γ10 = –0.543, γ01 = –1.498, and 
γ11 = –1.680. The effect size at the 2-month follow-up is d = 0.466.



318 APPLIED MISSING DATA ANALYSIS

generate pattern-specifi c parameter estimates by incorporating a binary missing data indica-
tor as an explanatory variable in the growth model. To apply their model to the depression 
data, I classifi ed cases as completers (i.e., the individuals with complete data at the two-
month follow-up) or dropouts (i.e., the cases with one or more missing values) and estimated 
the following growth model.

 Yti = β00 + β01(TXGROUPi) + β02(DROPOUTi) + β03(TXGROUPi)(DROPOUTi) 

 + β10(TIMEti) + β11(TXGROUPi)(TIMEti) + β12(DROPOUTi)(TIMEti)  (10.26)

 + β13(DROPOUTi)(TXGROUPi)(TIMEti) + u0i + u1i(TIMEti) + rti

Because the regression coeffi cients in this equation ultimately combine to produce pattern-
specifi c estimates of the four coeffi cients in Equation 10.23 (i.e., γ00, γ01, γ10, and γ11), I use 
β in order to avoid any confusion that might result from using two sets of γ coeffi cients.

In Equation 10.26, DROPOUT is a binary variable that denotes the two missing data 
patterns (0 = completers, 1 = dropouts). Substituting DROPOUT = 0 into the equation elimi-
nates several terms, leaving only the coeffi cients for the complete cases. Within the sub-
sample of completers, β00 and β10 quantify the mean initial status and the mean growth rate 
for the control group, respectively, β01 is the baseline mean difference between the treatment 
and the control group, and β11 is the growth rate difference between the groups. These co-
effi cients alone defi ne the growth model parameters for the completers, as follows:

 Ŷti
(C) = β̂00 + β̂10(TIMEti) + β̂01(TXGROUPi) + β̂11(TXGROUPi)(TIMEti) 

 = γ̂00
(C) + γ̂10

(C)(TIMEti) + γ̂01
(C)(TXGROUPi) + γ̂11

(C)(TXGROUPi)(TIMEti)  
(10.27)

Substituting DROPOUT = 1 into Equation 10.26 activates four coeffi cients that quantify 
differences between the two missing data patterns. Specifi cally, β02 is the amount by which 
the baseline control group mean differs between the completers and the dropouts and β12 is 
the amount by which the control group growth rate differs between missing data patterns. 
Similarly, β03 and β13 quantify the extent to which the treatment group regression coeffi cients 
(i.e., the baseline mean difference and slope difference, respectively) differ between the com-
pleters and the dropouts. Consequently, the regression coeffi cients from Equation 10.26 
model combine to produce the growth model parameters for the dropouts, as follows:

 Ŷti
(D) = (β̂00 + β̂02) + (β̂10 + β̂12)(TIMEti) + (β̂01 + β̂03)(TXGROUPi) 

 + (β̂11 + β̂13)(TXGROUPi)(TIMEti) 

 =  γ̂00
(D) + γ̂10

(D)(TIMEti) + γ̂01
(D)(TXGROUPi)   

(10.28)

 + γ̂11
(D)(TXGROUPi)(TIMEti)

Table 10.5 gives the parameter estimates and standard errors from the Hedeker and 
Gibbons model. Substituting the regression coeffi cients into Equations 10.27 and 10.28 
gives the pattern-specifi c estimates in Table 10.6. Notice that the baseline mean difference 
between the treatment and the control cases is substantially larger in the dropout group 
than in the completer group (γ̂ 01

(D) = –8.701 versus γ̂ 01
(C) = 1.467, respectively), and the treat-
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ment group by time interaction is also more pronounced for the dropouts (γ̂11
(D) = –5.378 

versus γ̂11
(C) = 1.320, respectively).

The product of a pattern mixture model is a set of estimates that averages over the miss-
ing data patterns. To illustrate, consider the treatment group by time interaction (i.e., the γ11 
coeffi cient in Equation 10.23). The proportion of completers and dropouts is π̂C = 0.714 and 
π̂D = 0.286, respectively, so the weighted average is

 γ̂̄11 = π̂Cγ̂11
(C) + π̂Dγ̂11

(D) = 0.714(–1.320) + 0.286(–5.378) = –2.479 (10.29)

Note that Hedeker and Gibbons (1997, p. 74) describe an alternate weighting scheme that 
stratifi es the pattern proportions by treatment group. The depression data set has very simi-
lar completion rates in the two treatment conditions (approximately 70% in the treatment 
group and 73% in the control), so using the overall pattern proportions is appropriate. How-
ever, in situations where the completion rates are signifi cantly different, stratifying the pro-
portions is likely to improve the resulting estimates.

Table 10.7 shows the average parameter estimates and the delta method standard errors 
from the pattern mixture model analysis. As seen in the table, the control group had a base-
line mean of γ̂̄00 = 51.165, and the baseline mean difference between the two groups was 

TABLE 10.5. Hedeker and Gibbons Model Estimates from Analysis 
Example 3

Parameter Estimate SE z p

Completer estimates

Control baseline mean (β00) 50.298 0.993 50.642 < .001
Control growth rate (β10) –1.015 0.547 –1.855 0.064
Baseline difference (β01) 1.467 1.384 1.060 0.289
Growth rate difference (β11) –1.320 0.763 –1.730 0.084

Difference between dropout and completer estimates

Control baseline mean (β02) 3.034 1.848 1.641 0.101
Control growth rate (β12) 0.777 1.929 0.403 0.687
Baseline difference (β03) –10.168 2.652 –3.834 < .001
Growth rate difference (β13) –4.059 2.790 –1.455 0.146

TABLE 10.6. Pattern-Specifi c Estimates from Analysis 
Example 3

 Completers Dropouts
Parameter (π̂C = 0.714) (π̂D = 0.286)

Control baseline mean (γ00) 50.298 53.332
Control growth rate (γ10) –1.015 –0.238
Baseline difference (γ01) 1.467 –8.701
Growth rate difference (γ11) –1.320 –5.378
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nonsignifi cant, γ̂̄ 01 = –1.438, z = –1.19, p = .24. Consistent with the complete-data analy-
sis, the monthly change rate for the control group was nonsignifi cant, γ̂̄10 = –0.793, z = –1.21, 
p = .23, and the treatment group by time interaction was signifi cant, γ̂̄11 = –2.479, z = –2.62, 
p = .01, such that the treatment group showed a more rapid decrease in symptoms.

Substituting the growth model estimates into Equations 10.24 and 10.25 gives model-
predicted means of ŶT = 43.183 and ŶC = 49.579 for the treatment and the control group, 
respectively. Expressing the absolute difference in the means relative to the pooled baseline 
standard deviation (SD = 10.44) yields a standardized mean difference of d = 0.61, which 
exceeds Cohen’s (1988) benchmark for a medium effect size (i.e., d > 0.50). Thus far, the 
pattern mixture model is the only missing data analysis to produce the same substantive 
conclusion as the complete-data analysis (i.e., the treatment group improved at a more rapid 
pace than the control group). However, the accuracy of the fi nal point estimates was compa-
rable to that of the MAR-based analysis, such that the pattern mixture model overestimated 
the complete-data effect size (d = 0.47) by roughly the same amount that maximum likeli-
hood underestimated the effect size.

Standard Error Computations

Because the estimates in Table 10.7 are weighted averages of other model parameters, it is 
necessary to use the delta method to compute their standard errors. In this section, I briefl y 
sketch the computational steps for the treatment group by time interaction (i.e., the γ̂̄11 coef-
fi cient), but the process is largely the same for the remaining parameters. A SAS program that 
automates these computations is available on the companion website, so readers who are not 
interested in the technical details can skip to the next analysis example.

It is useful to express the average estimate as a function of its component estimates, as 
follows:

 γ̂̄11 = π̂Cβ̂11 + π̂D(β̂11 + β̂13) (10.30)

The fi rst step of the delta method is to obtain the fi rst derivatives for each estimate in the 
weighted average. The interaction coeffi cient is a function of four unique estimates (two 
pattern-specifi c regression coeffi cients and two pattern proportions), so there are four fi rst 

TABLE 10.7. Average Pattern Mixture Model Estimates from Analysis 
Example 3

Parameter Estimate SE z p

Control baseline mean (γ00) 51.165 0.842 60.775 < .001
Control growth rate (γ10) –0.793 0.658 –1.206 0.228
Baseline difference (γ01) –1.438 1.213 –1.185 0.236
Growth rate difference (γ11) –2.479 0.947 –2.617 0.009
Wave 3 mean difference (d) 0.613

Note. For comparison purposes, the complete-data estimates are γ00 = 51.109, γ10 = –.543, γ01 = –1.498, 
and γ11 = –1.680. The effect size at the 2-month follow-up is d = 0.466.
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derivatives. Differentiating the right side of Equation 10.30 with respect to each estimate 
gives the following derivative vector:

 (π̂C + π̂D)
 π̂D

 
D =

 [   β̂11  ] (β̂11 + β̂13)

where π̂C + π̂D  is the fi rst derivative with respect to β̂11, π̂D  is the fi rst derivative with respect 
to β̂13, β̂11 is the fi rst derivative with respect to π̂C, and β̂11 + β̂13 is the derivative for π̂D.

The next two steps of the delta method construct a parameter covariance matrix for the 
estimates in the weighted average. The covariance matrix for the regression coeffi cients is a 
2 by 2 matrix that has sampling variances (i.e., squared standard errors) on the diagonal and 
the covariance between β̂11 and β̂13 on the off-diagonals. To obtain this matrix, you simply 
extract the appropriate elements from the full parameter covariance matrix that appears on 
the computer output. The covariance matrix for the pattern proportions is not a direct by-
product of the pattern mixture model, but it is relatively easy to compute from Equation 
10.19. The fi nal parameter covariance matrix is a block diagonal matrix that combines the 
two previous matrices. The form of this matrix is as follows:

 
var(�̂, �̂) = [var(�̂)    0] 0 var(�̂)

   var(β̂11) cov(β̂11, β̂13) 0 0
  cov(β̂13, β̂11) var(β̂13) 0 0
 

=
 [ 0 0 var(π̂C) cov(π̂C, π̂D) ]  0 0 cov(π̂D, π̂C) var(π̂D)

The fi nal step of the delta method is to compute the standard error. Pre- and postmultiplying 
the parameter covariance matrix by the previous derivative vector (see Equation 10.22) yields 
the sampling variance for the interaction coeffi cient, and taking the square root of this value 
gives its standard error.

10.20 DATA ANALYSIS EXAMPLE 4

The Hedeker and Gibbons (1997) model uses a binary missing data indicator and a number 
of product terms to generate pattern-specifi c growth model estimates. Another option is to 
estimate the growth model in Equation 10.23 separately within each missing data pattern. 
The diffi culty with this approach is that some patterns may not have enough data to support 
estimation. For example, in the depression data, the cases that drop out after the baseline 
assessment have two inestimable parameters: the control group slope (i.e., the γ10 coeffi -
cient) and the treatment group by time interaction (i.e., the γ11 coeffi cient). A solution to this 
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problem is to impose identifying restrictions that replace the inestimable parameters from 
one missing data pattern with the estimates from another pattern. The data analyses in this 
section illustrate two such strategies—the complete case missing variable restriction and the 
neighboring case missing variable restriction.

Traditionally, methodologists have used multilevel multiple imputation routines to fi ll 
in the data in a manner consistent with a particular identifying restriction (Demirtas & Scha-
fer, 2003; Thijs et al., 2002; Verbeke & Molenberghs, 2000). The need for imputation largely 
arose from a lack of maximum likelihood estimation options, but it is now possible to use 
certain structural equation modeling programs (e.g., Mplus; Muthén & Muthén, 1998–2009) 
to estimate pattern mixture models with identifying restrictions. The structural equation 
modeling approach treats the missing data patterns as known latent classes. That is, unlike 
traditional latent class analyses, the model assigns cases to classes with a probability of either 
one or zero (probabilities that are usually estimated from the data). For example, the depres-
sion data set has three missing data patterns and thus three latent classes. The cases that 
drop out after the baseline assessment defi ne one of the latent classes, and these cases have 
a zero probability of belonging to one of the other two classes. The structural equation mod-
eling approach allows each missing data pattern to have a unique set of parameter estimates, 
and between-class equality constraints provide a way to implement the identifying restric-
tions (e.g., by fi xing the inestimable parameters from one pattern equal to the estimable pa-
rameters from another pattern).

Turning to the depression data, I used structural equation modeling software to estimate 
a pattern mixture model with three known latent classes (i.e., missing data patterns).* Within 
each pattern, I estimated the growth model from Equation 10.23. As I explained previously, 
the cases that drop out after the baseline assessment (i.e., Pattern 1) have two inestimable 
parameters—the control group slope and the growth rate difference (i.e., the treatment group 
by time interaction). The complete case missing variable restriction equates these inesti-
mable parameters to the estimates from the complete cases (i.e., Pattern 3). Consequently, 
the Pattern 1 growth model is

 Ŷti
(1) = γ̂00

(1) + γ̂10
(3)(TIMEti) + γ̂01

(1)(TXGROUPi) + γ̂11
(3)(TXGROUPi)(TIMEti) (10.31)

where the numeric superscript denotes the missing data pattern. In a similar vein, the neigh-
boring case missing variable restriction equates the inestimable parameters with the estimates 
from the cases that drop out after the one-month follow-up (i.e., Pattern 2). The result is the 
following model.

 Ŷti
(1) = γ̂00

(1) + γ̂10
(2)(TIMEti) + γ̂01

(1)(TXGROUPi) + γ̂11
(2)(TXGROUPi)(TIMEti) (10.32)

Procedurally, I implemented the identifying restrictions by constraining pairs of param-
eters to be equal during estimation. For example, I implemented the complete case missing 
variable restriction by specifying an equality constraint on the control group slope for Pat-

* Analysis syntax and data are available on the companion website, www.appliedmissingdata.com.



 Models for Missing Not at Random Data 323

terns 1 and 3. Specifying these equality constraints is straightforward in structural equation 
modeling software packages. As an important aside, the missing data make it diffi cult or 
impossible to estimate pattern-specifi c variance estimates. To get around this problem, I es-
timated a model that assumes a common covariance matrix across patterns. Although it is not 
necessarily obvious, the Hedeker and Gibbons (1997) model makes the same assumption.

Table 10.8 gives the pattern-specifi c growth model estimates for both identifying restric-
tions. Notice that the growth rate parameters (i.e., the γ10 and γ11 coeffi cients) for Pattern 1 
are identical to those of either Pattern 2 or Pattern 3, which is a consequence of implement-
ing the identifying restrictions. The product of a pattern mixture model is a set of estimates 
that averages over the missing data patterns. To illustrate, consider the baseline mean differ-
ence between the treatment and the control group (i.e., the γ01 coeffi cient in Equation 10.23). 
The missing data pattern proportions are π̂1 = 0.136, π̂2 = 0.150, and π̂3 = 0.714, so the aver-
age estimate is

 γ̂̄01 = π̂1γ̂01
(1) + π̂2γ̂01

(2) + π̂3γ̂01
(3) 

  = 0.136(–15.218) + 0.150(–2.801) + 0.714(1.468) = –1.437 
(10.33)

Because this parameter is estimable in each pattern, the complete case and the neighboring 
case missing variable restrictions produce the same average estimate. As a second example, 
consider the treatment group by time interaction (i.e., the γ11 coeffi cient in Equation 10.23). 
The average estimate from the complete case missing variable restriction model is

 γ̂̄11 = π̂1γ̂11
(3) + π̂2γ̂11

(2) + π̂3γ̂11
(3) 

 = 0.136(–1.319) + 0.150(–8.331) + 0.714(–1.319) = –2.371 
(10.34)

TABLE 10.8. Pattern-Specifi c Estimates from Analysis Example 4

 Pattern 1 Pattern 2 Pattern 3
Parameter (π̂1 = 0.136) (π̂2 = 0.150) (π̂3 = 0.714)

Complete case missing variable restriction

Control baseline mean (γ00) 57.551 49.500 50.297
Control growth rate (γ10) –1.015 1.681 –1.015
Baseline difference (γ01) –15.218 –2.801 1.468
Growth rate difference (γ11) –1.319 –8.331 –1.319

Neighboring case missing variable restriction

Control baseline mean (γ00) 57.551 49.500 50.297
Control growth rate (γ10) 1.681 1.681 –1.015
Baseline difference (γ01) –15.218 –2.801 1.468
Growth rate difference (γ11) –8.331 –8.331 –1.319

Note. Pattern 1 = cases that drop out after baseline; Pattern 2 = cases that drop out after one-month 
follow-up; Pattern 3 = complete cases.
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and the corresponding estimate from the neighboring case missing variable restriction is

 γ̂̄11 = π̂1γ̂11
(2) + π̂2γ̂11

(2) + π̂3γ̂11
(3) 

  = 0.136(–8.331) + 0.150(–8.331) + 0.714(–1.319) = –3.323 
(10.35)

Because the two identifying restrictions make different assumptions about the inestimable 
parameters, it should come as no surprise that they produce different point estimates.

Table 10.9 shows the average parameter estimates and the delta method standard errors 
from the pattern mixture model analyses. As seen in the table, both identifying restrictions 
produced the same substantive conclusion, albeit with different point estimates. Specifi cally, 
both analyses produced a nonsignifi cant change rate for the control group (i.e., the γ̂̄10 coef-
fi cient) and a signifi cant treatment group by time interaction (i.e., γ̂̄11), such that the treat-
ment group showed a more rapid decrease in depressive symptoms. Substituting the growth 
model estimates into Equations 10.24 and 10.25 gives model-predicted means of ŶT = 
43.761 and ŶC = 49.940 for the complete case missing variable restriction and means of ŶT = 
42.589 and ŶC = 50.672 for the neighboring case missing variable restriction. Expressing 
the absolute difference in the means relative to the pooled baseline standard deviation (SD = 
10.44) yields standardized mean difference values of d = 0.59 and d = 0.78 for the complete 
case and neighboring case missing variable restrictions, respectively. Consistent with the He-
deker and Gibbons (1997) analysis, both pattern mixture models overestimated the complete-
data effect size.

TABLE 10.9. Average Pattern Mixture Model Estimates from Analysis 
Example 4

Parameter Estimate SE z p

Complete case missing variable restriction

Control baseline mean (γ00) 51.162 0.803 63.752 < .001
Control growth rate (γ10) –0.611 0.616 –0.992 0.321
Baseline difference (γ01) –1.437 1.209 –1.189 0.235
Growth rate difference (γ11) –2.371 0.804 –2.948 0.003
Wave 3 mean difference (d) 0.592

Neighboring case missing variable restriction

Control baseline mean (γ00) 51.162 0.803 63.752 < .001
Control growth rate (γ10) –0.245 0.797 –0.307 0.759
Baseline difference (γ01) –1.437 1.209 –1.189 0.235
Growth rate difference (γ11) –3.323 1.028 –3.231 0.001
Wave 3 mean difference (d) 0.775

Note. For comparison purposes, the complete-data estimates are γ00 = 51.109, γ10 = –0.543, γ01 = 
–1.498, and γ11 = –1.680. The effect size at the 2-month follow-up is d = 0.466.
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Standard Error Computations

The pattern mixture estimates in Table 10.9 are weighted averages of the pattern-specifi c esti-
mates, so it is again necessary to use the delta method to compute their standard errors. In 
this section, I briefl y sketch the computational steps for the treatment group by time inter-
action (i.e., the γ̂̄11 coeffi cient) because the identifying restrictions infl uence the computa-
tions for this parameter. A SAS program that automates these computations is available on 
the companion website; readers who are not interested in the technical details can therefore 
skip to the next section.

The fi rst step of the delta method is to obtain the fi rst derivatives for each unique esti-
mate in the weighted average. For example, reconsider the weighted averages in Equations 
10.34 and 10.35. The interaction coeffi cient is a function of fi ve unique estimates (i.e., γ̂11

(2), 
γ̂11

(3), π̂1, π̂2, and π̂3), so there are fi ve fi rst derivatives. Differentiating the right side of Equation 
10.34 with respect to each estimate gives the derivative vector for the complete case missing 
variable restriction.

  π̂2

  (π̂1 + π̂3)
 DCCMV = [ γ̂11

(3) ]  γ̂11
(2)

  γ̂11
(3)

In a similar vein, differentiating the right side of Equation 10.35 gives the derivative vector 
for the neighboring case missing variable restriction.

  (π̂1 + π̂2)
  π̂3

 DNCMV = [ γ̂11
(2) ]  γ̂11
(2)

  γ̂11
(3)

Note that the order of the elements is the same in both vectors, such that the fi rst element is 
the fi rst derivative with respect to γ̂11

(2), the second element is the fi rst derivative with respect 
to γ̂11

(3), the third element is the derivative for π̂1, the fourth element is the derivative for π̂2, 
and fi nal element is the derivative for π̂3.

The next two steps of the delta method construct a parameter covariance matrix for 
the estimates in the weighted average. The covariance matrix for the regression coeffi cients is 
a 2 by 2 matrix that has sampling variances (i.e., squared standard errors) on the diagonal 
and the covariance between γ̂11

(2) and γ̂11
(3) on the off-diagonals. Again, these values are part of 

the parameter covariance matrix from the full model. Equation 10.19 generates the covari-
ance matrix for the pattern proportions, which in this example is a 3 by 3 matrix. The fi nal 
parameter covariance matrix is a block diagonal matrix that combines the two previous 
matrices, as follows.
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var(�̂, �̂) = [var(�̂)    0] 0 var(�̂)

   var(γ̂11
(2)) cov(γ̂11

(2), γ̂11
(3)) 0 0 0

  cov(γ̂11
(3), γ̂11

(2)) var(γ̂11
(3)) 0 0 0

 = [ 0 0 var(π̂1) cov(π̂1, π̂2) cov(π̂1, π̂3) ]  0 0 cov(π̂2, π̂1) var(π̂2) cov(π̂2, π̂3)
  0 0 cov(π̂3, π̂1) cov(π̂3, π̂2) var(π̂3)

Note that two identifying restrictions share the same parameter covariance matrix because 
their respective weighted averages depend on the same set of estimates. Finally, substituting 
the appropriate matrices into Equation 10.22 yields the sampling variance (i.e., the squared 
standard error) for the treatment group by time interaction, and taking the square root of this 
value gives the standard error.

The delta method computations for the remaining parameter estimates follow the same 
steps that have been outlined. In fact, the computations for the control group slope (i.e., the 
γγ̂̄10 coeffi cient) are identical, except that γ̂10

(2) and γ̂10
(3) replace γ̂11

(2) and γ̂11
(3) in previous matri-

ces. Because the standard errors for the estimable parameters (i.e., γ̂̄00 and γ̂̄01) are a function 
of six unique estimates (e.g., see Equation 10.33), the derivative matrices have six elements 
and the fi nal parameter covariance matrix is a 6 by 6 matrix. Again, a SAS program that 
automates the delta method computations is available on the companion website.

Sensitivity Analysis Summary

The preceding analysis examples used fi ve different missing data-handling techniques to es-
timate the linear growth model. The results of this sensitivity analysis are somewhat discon-
certing because no single model accurately reproduced the complete-data analysis results. 
Specifi cally, MAR-based maximum likelihood estimation and the selection model underesti-
mated the true effect size, while the pattern mixture models overestimated the complete-data 
effect size by about the same amount. One the one hand, the fi ve models apply very different 
assumptions, so it should come as no surprise that the resulting estimates are different. Nev-
ertheless, it is disturbing that the models failed to reach a consensus about the nature of the 
treatment effect. Unfortunately, it is relatively common for sensitivity analyses to produce 
different sets of estimates (e.g., Demirtas & Schafer, 2003; Foster & Fang, 2003). Thus, choos-
ing among a set of competing models is really a matter of adopting the set of assumptions 
that you are most comfortable with.

10.21 SUMMARY

Although MAR-based approaches represent the current state of the art, a considerable amount 
of methodological research is devoted to models for MNAR data. This chapter outlines two 
such classes of MNAR models: the selection model and the pattern mixture model. Both 
models attempt to describe the joint distribution of the data and the probability of missing-
ness, but they do so in a very different way.
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The classic selection model was designed for a regression model with MNAR data on the 
outcome variable. The selection model is a two-part model that combines the substantive re-
gression equation with an additional regression equation that predicts response probabilities. 
The two parts of the model are linked via correlated residuals, and this linkage is essentially 
the mechanism by which the missing data model corrects for bias in the substantive model. 
To achieve identifi cation, the model assumes that the underlying response probabilities and 
the incomplete outcome variable (or more accurately, the residuals from the two regression 
equations) follow a bivariate normal distribution. This assumption is not trivial because even 
slight departures from normality can produce substantial bias. Methodologists have adapted 
the selection model for longitudinal data analyses. In this context, the selection model com-
bines a growth curve analysis with a set of logistic regressions that describe the probability of 
response at each measurement occasion. In the logistic portion of the model, each incom-
plete outcome variable has a corresponding binary missing data indicator, and the probability 
of response at wave t depends on the outcome variable at time t and the outcome variable 
from the previous data collection wave.

The pattern mixture model uses a different strategy to describe the joint distribution of 
the data and the probability of missingness. The pattern mixture approach forms subgroups 
of cases that share the same missing data pattern and estimates the substantive model within 
each pattern. Doing so yields a set of parameter estimates for each missing data pattern, and 
computing the weighted average of the pattern-specifi c estimates gives a single set of esti-
mates. Because the average estimates are linear combinations of other model parameters, 
additional computational steps are required to obtain their standard errors. The delta method 
is the predominant approach for generating pattern mixture model standard errors.

An inherent diffi culty with pattern mixture models is that the observed data do not 
contain enough information to estimate certain pattern-specifi c parameters. This problem 
is readily apparent in longitudinal models where it becomes impossible to estimate devel-
opmental trends for the cases that drop out early in a study. To address this problem, meth-
odologists have proposed a number of identifi cation strategies that essentially augment the 
observed data with assumptions about the inestimable parameter values. Simplifying the 
model by aggregating missing patterns is one potential solution, and replacing the inesti-
mable parameters from one missing data pattern with the estimates from another pattern is 
a second solution. The fl exibility of using different approaches to generate values for the 
inestimable parameters makes the pattern mixture model an ideal tool for sensitivity analy-
ses because you can examine the stability of the resulting estimates across a variety of 
assumptions.

Despite their intuitive appeal, MNAR models require assumptions that are every bit as 
tenuous as the MAR mechanism. Among other things, the selection model relies heavily on 
the normality assumption, and pattern mixture models require researchers to accurately 
specify the values of one or more inestimable parameters. Ultimately, there is no way to verify 
that these requirements are met, and assumption violations can produce severely biased es-
timates. The fact that MNAR models rely so heavily on narrow, untestable assumptions has 
led some methodologists to caution against their routine use. A common opinion is that 
MNAR models are most appropriate for sensitivity analyses that apply different models to the 
same data. However, sensitivity analyses are often disconcerting because alternate models can 
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produce very different point estimates. The analysis examples at the end of the chapter clearly 
illustrate this point.

Despite their inherent limitations, MNAR models are likely to gain in popularity, so re-
searchers will increasingly have to choose between MAR and MNAR analyses. Missing data 
handling techniques are only as good as the veracity of the assumptions they rely on, so 
thoughtfully applying these models is always important. In the end, choosing among a set of 
competing models is a matter of adopting the set of assumptions with which you are most 
at ease.
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11

Wrapping Things Up
Some Final Practical Considerations

11.1 CHAPTER OVERVIEW

This fi nal chapter addresses a small number of remaining practical considerations that arise 
when dealing with missing data. Specifi cally, the fi rst two sections of the chapter describe the 
missing data-handling options of several popular software programs. The analysis examples 
in previous chapters were program-independent in the sense that they rarely mentioned spe-
cifi c software packages by name. Because missing data-handling options vary widely from 
one program to the next, it is important to have some sense of the options that are currently 
available. To this end, I provide an overview of the analysis options in several popular pro-
grams that implement maximum likelihood estimation and multiple imputation. The next 
section of the chapter provides some practical advice on choosing between maximum likeli-
hood and multiple imputation. All things being equal, the two methods are likely to produce 
very similar estimates and standard errors, so the choice of technique is often one of personal 
preference. However, certain analysis-specifi c factors make maximum likelihood preferable to 
multiple imputation or vice versa. This chapter describes several of these scenarios. The fi nal 
section of the chapter focuses on missing data reporting practices. Despite recommendations 
from the methodological literature, reviews of published studies suggest that researchers 
often fail to report information about missing data and the procedures that they used to deal 
with the problem (Peugh & Enders, 2004). To this end, I give specifi c suggestions for im-
proving reporting practices and provide templates for conveying the results of a missing data 
analysis.

11.2 MAXIMUM LIKELIHOOD SOFTWARE OPTIONS

A relatively large number of statistical software packages offer maximum likelihood analysis 
options. A thorough review of these options is made diffi cult by the fact that programs tend 
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to implement maximum likelihood solutions on an analysis-by-analysis basis. For example, 
SAS implements maximum likelihood estimation with certain procedures (e.g., a longitudinal 
growth model in the MIXED procedure; a classic Heckman selection model in the QLIM pro-
cedure) but defaults to traditional missing data handling techniques in most cases. The same 
is true for other general-use statistical software programs. Both SAS and SPSS implement the 
EM algorithm. In SAS, the EM algorithm is part of the PROC MI, and SPSS offers EM estima-
tion as part of its Missing Values Analysis package. However, both programs are limited to 
estimating a mean vector and covariance matrix, so this analysis option has limited utility.

Many of the recent software innovations have occurred within the latent variable model-
ing framework, and every commercially available structural equation modeling software pack-
age now implements maximum likelihood missing data handling. (This approach is often 
referred to as full information maximum likelihood estimation, or simply FIML.) The latent 
variable modeling framework encompasses a vast number of analytic methods that research-
ers use on a routine basis (e.g., correlation, regression, ANOVA, factor analysis, path analysis, 
structural equation models, mixture models, multilevel models). Structural equation model-
ing software is therefore an ideal tool for many missing data estimation problems. Because 
of their fl exibility and breadth, I rely exclusively on structural equation programs to generate 
the analysis examples throughout the book and restrict the software review to these pack-
ages. Providing specifi c programming instructions for structural equation modeling software 
is beyond the scope of this chapter, but a number of resources are available to readers inter-
ested in learning one or more of these programs (e.g., Arbuckle, 2007; Bentler & Wu, 2002; 
Blunch, 2008; Byrne, 1998, 2006, 2009; Hancock & Mueller, 2006; Jöreskog & Sörbom, 
2006; Muthén & Muthén, 1998–2009).

Structural equation modeling programs have undergone dramatic improvements in the 
number of and type of missing data analyses they can perform. With these packages continu-
ing to evolve at a rapid pace, I use a website to maintain an up-to-date set of program fi les for 
the analysis examples in the book. Nevertheless, it is useful to document the current capa-
bilities of the commercially available software programs. Table 11.1 shows a checklist of 
analysis options for AMOS 16.0, EQS 6.1, LISREL 8.8, and Mplus 5.2. The checklist refl ects 
the analysis features of each software package at the time of this writing, although many of 
the options are also available in previous releases. Note that the checklist is not exhaustive, 
and some packages provide additional missing data handling options that do not appear in 
the table (e.g., tables that list the frequency of each missing data pattern; functions that cre-
ate binary missing data indicators; matrices that report the missing data rates for individual 
variables or pairs of variables). Nevertheless, the checklist does refl ect most of the major 
analysis options from previous chapters.

AMOS

AMOS (Arbuckle, 2007) was the fi rst commercial structural equation modeling software pro-
gram to implement maximum likelihood missing data handling. The missing data handling 
options in AMOS are well-suited for normally distributed variables, but the program cur-
rently lacks several of the desirable options that are available in other packages (e.g., correc-
tive procedures for non-normal missing data). One of the unique strengths of AMOS is its 
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ability to generate multiply imputed data sets. (The program also performs regression impu-
tation and stochastic regression imputation.) AMOS implements the same basic data aug-
mentation algorithm from Chapter 7, but it offers the option of generating imputations under 
different hypothesized models. For example, AMOS can generate imputations that are con-
sistent with a particular factor analysis model (e.g., a two-factor confi rmatory factor analysis 
model) in addition to the usual saturated model (i.e., a model based on the mean vector and 
the covariance matrix). If the hypothesized model that generates the imputations is correct 
(e.g., a two-factor model describes the structure of the population data), then the subsequent 
estimates should have somewhat lower standard errors than the corresponding estimates 
from a saturated imputation model. The downside using a parsimonious model to generate 
the imputations is that the resulting estimates may be biased if the hypothesized imputation 
model is incorrect. Finally, AMOS does not currently implement facilities for analyzing mul-
tiply imputed data sets and combining the resulting estimates and standard errors.

EQS

EQS (Bentler & Wu, 2002) has a rather extensive list of missing data handling capabilities. 
Like AMOS, EQS is well-suited for analyzing normally distributed variables, but it also offers 

TABLE 11.1. Missing Data Handling Capabilities of Commercial Structural 
Equation Modeling Programs

Technique AMOS EQS LISREL Mplus

Maximum likelihood options

Maximum likelihood with continuous outcomes ✓ ✓ ✓ ✓

Maximum likelihood with binary outcomes    ✓

Incomplete explanatory variables ✓ ✓ ✓ ✓

Standard errors based on observed information ✓ ✓  ✓

Robust standard errors  ✓ ✓ ✓

Naïve bootstrap  ✓  ✓

Bollen–Stine bootstrap  ✓  ✓

Rescaled likelihood ratio test  ✓ ✓ ✓

Automated auxiliary variable models    ✓

Selection and pattern mixture models    ✓

Multiple imputation options

Generate multiply imputed data sets ✓  ✓

Analyze and combine estimates    ✓

Multiparameter signifi cance tests    ✓

Miscellaneous options

MCAR tests  ✓

Tests of multivariate normality  ✓ ✓

Monte Carlo simulation with missing data   ✓   ✓
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a number of corrective procedures for non-normal data, including rescaled test statistics, 
robust standard errors, and the bootstrap. Although EQS has no options for generating or 
analyzing multiply imputed data sets, it does provide tests of the missing completely at ran-
dom (MCAR) mechanism, an estimate of Mardia’s multivariate kurtosis (Yuan, Lambert, & 
Fouladi, 2004), and built-in computer simulation routines for generating artifi cial data sets 
with missing values (e.g., for estimating power in a planned missingness design).

LISREL

LISREL’s (Jöreskog & Sörbom, 2006) missing data handling options are somewhere between 
those of AMOS and EQS. LISREL is also well-suited for analyzing normally distributed vari-
ables, and it does offer some corrective procedures for non-normal data (robust standard 
errors and rescaled test statistics). LISREL currently estimates standard errors based on the 
expected, rather than the observed, information matrix. Like AMOS, LISREL can generate 
multiply imputed data sets via the data augmentation algorithm, but it strictly relies on a 
saturated model to do so. (This is consistent with the imputation procedure from Chapter 7.) 
LISREL also performs similar response pattern imputation and regression imputation. The 
LISREL documentation is somewhat confusing because it describes regression imputation 
as an EM-based procedure. The program does use an EM estimate of the mean vector and 
the covariance matrix to generate the imputation regression equations, but this approach is 
still prone to the same biases as standard regression imputation. Finally, LISREL does not 
currently implement routines for analyzing multiply imputed data sets and combining the 
resulting estimates and standard errors. However, second-party programs to pool estimates are 
available (e.g., see www.Quant.ku.edu).

Mplus

Mplus (Muthén & Muthén, 1998–2009) currently offers the most diverse set of missing data 
handling options. In particular, Mplus is the only package that (1) performs maximum likeli-
hood missing data handling with binary outcomes (e.g., estimates a logistic regression with 
missing data), (2) automates the inclusion of auxiliary variables via Graham’s (2003) satu-
rated correlates model, (3) estimates missing not at random (MNAR) models, and (4) ana-
lyzes multiply imputed data sets and pools the resulting estimates and standard errors. With 
regard to its MNAR modeling capabilities, Mplus has a number of useful features that are ideal 
for estimating selection models and pattern mixture models. For example, Mplus can accom-
modate models that include mixtures of continuous and binary outcomes, so it is relatively 
straightforward to estimate the longitudinal selection models from Chapter 10. (The program 
also has a feature for creating binary missing data indicators.) Mplus offers extensive mixture 
modeling capabilities, so it is also straightforward to estimate a variety of pattern mixture 
models for longitudinal data, including models that implement the complete case and neigh-
boring case missing variable restrictions. I exclusively used Mplus to estimate the MNAR 
models in Chapter 10. Related to its multiple-imputation analysis options, Mplus fully auto-
mates the analysis and pooling phase. Thus, the process of analyzing multiply imputed data 
sets is virtually transparent to the user (though the program does not generate imputations). 
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The program features single-parameter and multiparameter signifi cance tests, including the 
D1 and D3 test statistics. Mplus uses somewhat different reference distributions from those 
described in Chapter 8 (e.g., a standard normal distribution generates the probability value 
for the single parameter test statistic, and a chi-square distribution generates the probability 
value for the D3 statistic).

11.3 MULTIPLE-IMPUTATION SOFTWARE OPTIONS

A number of software packages generate and analyze multiply imputed data sets, some of 
which are commercially available, whereas others are freely available on the Internet. A de-
tailed review of the many different imputation programs could easily fi ll an entire chapter, so 
I focus on three popular programs: NORM, SAS, and SPSS. These programs are fl exible be-
cause they can generate multiply imputed data sets and can pool the estimates and standard 
errors from a multiple imputation analysis. (Many programs can do one or the other, but not 
both.) Because SAS and SPSS are arguably the most popular statistical software packages in 
the social and the behavioral sciences, it is particularly important to outline features of these 
programs. A variety of resources are available for readers interested in other software options 
(e.g., Allison, 2000; Honaker, King, & Blackwell, 2009; Horton & Lipsitz, 2001; Raghunathan, 
Solenberger, & Van Hoewyk, 2002; Royston, 2005), and there are also useful websites that 
provide information about imputation software programs (e.g., www.multiple-imputation.com).

Table 11.2 shows a checklist of analysis options for NORM 2.03, SAS 9.2, and SPSS 
18.0. The checklist refl ects the analysis features at the time of this writing, although some of 
the options are also available in previous releases. Note that the checklist is not exhaustive, 
and some packages provide additional options that do not appear in the table. (SAS, in 
particular, offers the user a variety of options.) However, the checklist does refl ect most of 
the major analysis options from previous chapters. Consistent with the maximum likeli-
hood analysis examples, I maintain an up-to-date set of multiple imputation program fi les for 
the analysis examples on the companion website.

NORM

NORM (Schafer, 1999) is a freeware package that implements the data augmentation algo-
rithm from Chapter 7. The program is available as standalone software for Windows or as an 
S-Plus library. I give a brief overview of the Windows version of NORM here; interested read-
ers can consult Schafer and Olsen (1998) for a more detailed description of the program. In 
addition, the companion website has step-by-step instructions for using NORM, including 
screenshots that illustrate the major analysis features.

The Windows version of NORM is very easy to use because all of the analysis options 
are accessible via a point-and-click interface. The program readily imports text data fi les that 
are saved in a space-delimited free format. NORM offers a number of useful imputation 
 options, including a variety of data transformations, automatic dummy coding of categorical 
variables, rounding, and graphical convergence diagnostics (autocorrelation function plots 
and time-series plots), to name a few. Although the program does not perform statistical 
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analyses, it does generate maximum likelihood estimates of the mean vector and the covari-
ance matrix via the EM algorithm. The EM option is useful for monitoring convergence speed 
and for generating an initial set of parameter values for data augmentation. Unlike SAS and 
SPSS, NORM saves each imputed data set to a separate text fi le. Some programs that analyze 
multiply imputed data sets require this fi le format (e.g., Mplus), whereas others require the 
imputed data sets to be stacked in a single fi le (e.g., SAS and SPSS).

NORM is not an analysis program, but it can pool the estimates and standard errors 
from other software packages. To conduct single-parameter signifi cance tests, the estimates 
and their standard errors need to be assembled in a single text fi le. NORM subsequently 
imports this fi le and performs the t tests from Chapter 8. Multiparameter signifi cance tests 
follow a similar procedure, but the input text fi le must contain the estimates and the param-
eter covariance matrix from each imputed data set. (The Help menu shows how to arrange 
the contents of the text fi les.) Copying and pasting the estimates and standard errors into 
a text fi le can be inconvenient, particularly when the number of imputations is very large. 
However, the advantage of NORM is that it can pool the analysis results from any program 
and offers a straightforward graphical interface for doing so.

SAS

A multiple imputation procedure (PROC MI) has been available in SAS for several years. The 
MI procedure implements specialized algorithms for monotone missing data patterns, but its 
primary imputation method is the data augmentation algorithm from Chapter 7. As seen in 

TABLE 11.2. Analysis Options for Selected Multiple Imputation 
Software Programs

Technique NORM SAS SPSS*

Imputation phase options

Bootstrap starting values  ✓

Ridge prior distribution ✓ ✓

Variable transformations ✓ ✓

Constraints on minimum and maximum values  ✓ ✓

Rounding for imputed values ✓ ✓ ✓

Graphical convergence diagnostics ✓ ✓ *

Pooling phase options

Combine estimates and standard errors ✓ ✓ ✓

Bernard and Rubin degrees of freedom  ✓

Missing data diagnostics (e.g., FMI, RIV) ✓ ✓ ✓

D1 multiparameter test statistic ✓ ✓

D2 multiparameter test statistic
D3 multiparameter test statistic      

Note. FMI = fraction of missing information; RIV = relative increase in variance. *SPSS does not 
automate this option, but it produces the information necessary to construct graphical diagnostics. 
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Table 11.2, PROC MI offers a comprehensive set of options for customizing the imputation 
process that includes virtually every procedure described in Chapters 7 through 9 (as well 
as several others that I omit). Unlike NORM, the MI procedure stacks the imputations in a 
single fi le and assigns an identifi cation variable to each data set. The stacked fi le format is 
particularly convenient for the analysis phase because most SAS procedures have a BY sub-
command that produces separate analyses for subgroups of cases defi ned by one or more 
variables in the data set. Listing the imputation identifi er on the BY subcommand instructs 
SAS to perform an analysis separately for each imputed data set.

The MIANALYZE procedure pools the estimates and standard errors from a set of analy-
ses. With the exception of the D2 and D3 test statistics, MIANALYZE offers all of the options 
from Chapter 8. The procedure is fl exible in the sense that it can pool the results from virtually 
any analysis, but getting the estimates and standard errors in the correct format may require 
considerable effort. Some analysis procedures (e.g., PROC REG, PROC MIXED) can save 
parameter estimates and standard errors to a fi le that is compatible with the MIANALYZE 
procedure. However, for many analyses, SAS either does not output the necessary informa-
tion to a fi le or does not output the information in a format that MIANALYZE can use. Even 
when SAS does save the analysis results in an appropriate format, it may not save all of the 
estimates that are of interest. In these situations, it is necessary to use the Output Delivery 
System (ODS) to create a custom fi le compatible with MIANALYZE. This may not be a trivial 
task, particularly for users who are not facile with the SAS programming language. Consid-
ered together, the MI and MIANALYZE procedures are powerful tools that offer a rich set of 
features. However, for users unfamiliar with the SAS programming environment, NORM and 
SPSS offer interfaces that are far more user-friendly.

SPSS

SPSS implemented a multiple imputation procedure beginning in version 17. The imputation 
routine in SPSS is not as feature-rich as that of SAS, but it does have some unique features. 
Most notably, SPSS uses sequential regression imputation as opposed to data augmentation. 
(The SPSS documentation refers to this method as fully conditional specifi cation.) Recall 
from Chapter 9 that the sequential regression approach fi lls in the data on a variable-by-
variable basis, each time matching the imputation model to a variable’s distributional form. 
Currently, SPSS uses logistic regression to impute incomplete nominal and ordinal variables, 
and it uses linear regression to impute continuous variables. (The scale of each variable is 
de fi ned in the Variable View tab of the graphical interface.) Defi ning all incomplete variables 
as continuous (SPSS refers to this variable type as a “scale” variable) effectively imple-
ments normality-based imputation that resembles the data augmentation algorithm. However, 
the sequential nature of the imputation process is quite different from data augmentation 
because variables are imputed in a sequence, where the order is determined by the rates of 
missingness.

The SPSS imputation facility lacks several useful options that are available in SAS (e.g., 
a ridge prior distribution, variable transformations), although it does allow the user to round 
the imputed values and constrain minimum and maximum values. The program does not 
automatically produce graphical convergence diagnostics. However, SPSS can save the variable 
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means and standard deviations from each iteration to a data fi le; it is therefore relatively 
straightforward to construct time-series plots and estimate autocorrelations. Other useful 
diagnostic measures such as the worst linear function are not available.

One of the major advantages of using SPSS is that the pooling phase is completely auto-
mated and is virtually transparent to the user. Like SAS, the SPSS imputation procedure stacks 
the imputations in a single fi le and assigns an identifi cation variable to each data set. SPSS 
has a SPLIT FILE command that divides a data set into subgroups defi ned by one or more 
variables in the fi le. Entering the imputation identifi er into the SPLIT FILE command invokes 
an algorithm that automatically pools the estimates and standard errors from all subsequent 
analyses. Performing an analysis after invoking the SPLIT FILE command (available from 
the Data pull-down menu) produces an output fi le that contains the estimates and standard 
errors for each imputed data set as well as the pooled results. Again, the pooling procedure 
is completely transparent and requires no effort on the part of the user. The pooling algo-
rithm does not interface with all SPSS procedures, but it does work for many common analy-
ses. When the pooling algorithm is not available, the SPSS output fi le lists the analysis results 
separately for each imputed data set.

11.4 CHOOSING BETWEEN MAXIMUM LIKELIHOOD 
AND MULTIPLE IMPUTATION

Chapter 8 described the situations in which maximum likelihood and multiple imputation 
are likely to produce similar analysis results. The comparability of the two procedures is 
largely determined by the relative complexity of the imputation regression model and the 
subsequent analysis model (i.e., congeniality). For example, if the imputation model con-
tains the same variables as the subsequent analysis model, then maximum likelihood and 
multiple imputation are likely to produce similar results. In contrast, if the imputation re-
gression model includes additional variables that are not part of the subsequent analysis, the 
two approaches may produce different estimates, standard errors, or both (Collins, Schafer, 
& Kam, 2001). Given that the two procedures frequently produce very similar results, the 
choice of technique is often one of personal preference. However, there are analysis-specifi c 
factors that make maximum likelihood preferable to multiple imputation or vice versa. This 
section describes a few of these factors. The subsequent discussion, though not exhaustive, 
provides an overview of the practical issues that arise in real data analyses. As you will see, 
the factors that infl uence the decision to use one technique over another can vary from one 
analysis to the next and may also depend on the availability of certain software programs.

Advantage: Multiple Imputation

One situation in which multiple imputation potentially holds an advantage over maximum 
likelihood estimation is in the use of auxiliary variables (i.e., variables that are potential cor-
relates of missingness or correlates of the incomplete analysis model variables). Currently, 
Graham’s (2003) saturated correlates model is the easiest approach for incorporating auxil-
iary variables into a maximum likelihood analysis. Recall from Chapter 5 that the saturated 
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correlates model borrows information from the auxiliary variables via a series of correla-
tions between the auxiliary variables and the analysis model variables (or their residual terms). 
Mplus is currently the only structural equation modeling program that has built-in facilities 
for incorporating auxiliary variables. Other packages require the user to manually specify the 
model. Depending on the software package, this approach can be a bit cumbersome.

In contrast, multiple imputation readily accommodates auxiliary variables as additional 
predictors in the imputation phase. Because the imputation process infuses the imputed 
values with the information from the auxiliary variables, there is no need to include the ad-
ditional variables in the subsequent analyses. When performing a large number of analyses, 
it is convenient to deal with the auxiliary variables in a single preliminary step as opposed to 
an analysis-by-analysis basis. In addition, multiple imputation can often accommodate a larger 
set of auxiliary variables than a maximum likelihood analysis. (Using a large number of aux-
iliary variables can lead to estimation problems for maximum likelihood.) Although multiple 
imputation generally has a practical edge when it comes to auxiliary variables, this advantage 
may be trivial if you have access to Mplus.

A second situation in which multiple imputation potentially holds an advantage over 
maximum likelihood is in the treatment of incomplete explanatory variables. In the context 
of multiple imputation, it makes no difference whether a particular variable serves as an in-
dependent variable or an outcome variable in the subsequent analysis. The primary concern 
is that all of the analysis variables appear in the imputation regression model, regardless of 
their subsequent role. In contrast, maximum likelihood integrates the missing data handling 
into the estimation process, so a variable’s role in the analysis is potentially important. For 
some analysis models, there is no reason to prefer multiple imputation to maximum like-
lihood. For example, commercially available structural equation modeling programs allow 
the predictor variables in a multiple regression model to have missing data. However, in some 
situations implementing maximum likelihood estimation will result in a loss of cases. For 
example, multilevel modeling software programs (including structural equation modeling 
programs that estimate multilevel models) uniformly exclude cases with missing data on one 
or more of the predictor variables. In this situation, multiple imputation is the only missing 
data handling strategy that will retain the entire sample. However, it is important to reiterate 
that single-level imputation algorithms (e.g., data augmentation, sequential regression) are 
not appropriate for multilevel data. Methodologists have developed specialized imputation 
algorithms for multilevel data (Schafer, 2001; Schafer & Yucel, 2002; Yucel, 2008), but these 
routines may require software packages that you are not familiar with (e.g., the PAN library 
for the S-Plus program). Taking the time to learn one of these programs is clearly advanta-
geous when estimating multilevel models with missing data.

As a fi nal example, the problem of item-level missing data is one where multiple imputa-
tion has a solid advantage over maximum likelihood estimation. Researchers in the behavioral 
and the social sciences routinely use multiple-item questionnaires to measure complex con-
structs (e.g., psychologists typically use several questionnaire items to measure depression, 
each of which taps into a different depressive symptom). With multiple-item questionnaires, 
respondents often omit one or more of the items within a given scale. With few exceptions, 
multiple imputation is a more fl exible method for dealing with item nonresponse. For ex-
ample, suppose that a psychologist is interested in computing a depression scale score by 
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summing the responses to 20 individual questionnaire items. Furthermore, suppose that 
the ultimate goal is to use the resulting scale scores as the outcome variable in a multiple 
regression analysis. Applying multiple imputation to this scenario is relatively straightfor-
ward because the researcher would simply impute the missing questionnaire items and com-
pute a scale score for each imputed data set. Armed with a collection of complete data sets, 
the researcher could perform the regression analysis along with any ancillary analyses that 
require the item-level responses (e.g., factor analyses, reliability analyses).

Because maximum likelihood estimation does not fi ll in the data, there is no way to 
compute a single scale score that incorporates the partial information at the item level. One 
option would be to compute the scale score for the cases that have complete data and treat 
the resulting composite as missing for any respondent that failed to answer one or more of 
the questionnaire items. Failing to utilize the item-level data from incomplete data records 
may not bias the resulting regression coeffi cients, but it would likely cause a reduction in 
power relative to multiple imputation. A second option would be to treat the scale score as a 
latent variable in the regression model and use the individual questionnaire items as manifest 
indicators of the latent factor. This strategy incorporates the partial item responses in a man-
ner that is comparable to multiple imputation, but it adds a layer of complexity to an other-
wise straightforward analysis.

Advantage: Maximum Likelihood

Researchers in the behavioral and the social sciences are often interested in estimating inter-
action (i.e., moderation) effects where the magnitude of the association between two vari-
ables depends on a third variable. (For example, the magnitude of the association between 
psychological well-being and job performance depends on a third variable such as gender or 
years of experience on the job.) Maximum likelihood estimation usually holds an advantage 
over multiple imputation when it comes to estimating interaction effects. The standard ap-
proach for assessing interactions is to include a product term in a multiple regression model 
(i.e., moderated multiple regression; Aiken & West, 1991). Estimating interaction effects 
is straightforward in the context of maximum likelihood missing data handling because the 
product term is no different from any other variable. Furthermore, centering the two vari-
ables that form the product term follows the same logic as a complete-data analysis (e.g., 
center the variables at the maximum likelihood mean estimates, then compute the product 
term). Of course, the product variable would have missing values if one of the variables in-
volved in the product is incomplete, but this is not a problem, provided that the software 
program allows for missing data on predictor variables.

The diffi culty with multiple imputation and interaction effects occurs during the impu-
tation phase, where it is necessary to specify an imputation model that appropriately pre-
serves any interaction effects that might be present in the data. When an interaction effect 
involves a categorical moderator variable such as gender, imputing the data separately for each 
subgroup will adequately preserve the interaction effect in the imputed data sets. The situa-
tion becomes more diffi cult with a quantitative moderator variable because the methodologi-
cal literature has yet to establish the best approach for centering the predictor variables. One 
option is to center the variables prior to imputation (e.g., using the maximum likelihood mean 
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estimates), compute the necessary product term, and fi ll in the missing variables (including 
the product term) on their centered metrics. A second strategy is to fi ll in the missing vari-
ables (including the product term) on their original metrics and subsequently perform the 
centering procedure on each of the complete data sets. Because the product of two uncen-
tered variables has a different mean and variance than the product of two centered variables 
(Bohrnstedt & Goldberger, 1969), this method requires a complete rescaling of the imputed 
product variable. The ambiguity in the centering process makes maximum likelihood estima-
tion a clear winner when it comes to dealing with interaction effects.

Structural equation models represent another class of analyses where maximum likeli-
hood estimation is generally preferable to multiple imputation. For one, every commercially 
available structural equation program offers maximum likelihood missing data handling, so 
implementing the procedure is very easy. Multiple imputation is also relatively easy to im-
plement because some structural equation modeling programs (e.g., Mplus) have built-in 
facilities for automating the analysis and pooling phases. Although it is currently possible to 
use the D3 statistic from Chapter 8 to pool likelihood ratio tests (e.g., the chi-square test of 
model fi t) from a structural equation modeling analysis, methodologists have yet to develop 
principled approaches for pooling popular fi t indices such as the RMSEA, CFI, and SRMR. 
Given the important role that fi t assessments play in structural equation modeling analyses, 
the lack of pooling rules is a serious drawback of multiple imputation. Maximum likelihood 
does not suffer from this problem because most popular fi t indices are available in a missing 
data analysis.

As an aside, the recommendation to use maximum likelihood in conjunction with 
structural equation models partially depends on the scaling of the analysis model variables. 
For example, most structural equation modeling programs offer a weighted least squares es-
timator for ordered categorical variables. However, this estimator uses a pairwise deletion 
approach for dealing with missing values and thus requires stricter assumptions about the 
missing data mechanism. In situations where the complete-data analysis would have relied 
on weighted least squares estimation, multiple imputation may provide a better option than 
maximum likelihood estimation. Nevertheless, imputation is not a perfect solution because 
it is still necessary to generate discrete imputed values. One option is to use normality-based 
imputation in conjunction with rounding. A second possibility is to implement an imputa-
tion algorithm that accommodates mixtures of categorical and continuous variables (e.g., 
sequential regression imputation).

When reading some of the previous chapters, you might have noticed that the method-
ological literature offers relatively little guidance on a number of practical issues that arise 
during a multiple imputation analysis (e.g., rounding imputed values, transforming param-
eter estimates prior to pooling, imputing large item-level data sets, correcting test statistics 
for non-normality, pooling fi t indices from a structural equation model). Multiple imputation 
requires a number of nuanced steps and decisions that are not relevant to maximum likeli-
hood estimation. Therefore it probably comes as no surprise that some of the procedural 
details are a bit underdeveloped. Although maximum likelihood may lack fl exibility in cer-
tain situations (e.g., analyses that involve summed scale scores), it tends to have fewer pro-
cedural ambiguities. On a related point, implementing maximum likelihood is nearly always 
easier than implementing multiple imputation. For researchers who are already familiar with 
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structural equation modeling programs, invoking maximum likelihood estimation is as sim-
ple as adding another keyword or another line of code. In fact, the missing data handling is 
so transparent that users can readily implement procedure without knowing anything about 
the inner workings of the “black box.” (Some would argue that this is not necessarily a good 
thing.) Multiple imputation arguably has a much steeper learning curve, so the time required 
to effectively implement the procedure tends to be much greater. All things being equal, 
maximum likelihood estimation has a clear advantage with regard to ease of use. Conse-
quently, when a maximum likelihood solution is available for a particular analysis, it probably 
makes good sense to choose it over multiple imputation.

11.5 REPORTING THE RESULTS FROM A MISSING DATA ANALYSIS

A 1999 report by the American Psychological Association’s (APA) Task Force on Statistical 
Inference stated that, “Before presenting results, report complications, protocol violations, 
and other unanticipated events in data collection. These include missing data, attrition, and 
nonresponse” (Wilkinson & Task Force on Statistical Inference, 1999, p. 597). Recommen-
dations such as this can be found throughout the research methods literature, yet reviews of 
published studies suggest that researchers often fail to report information about missing data 
and the procedures they used to deal with the problem (Peugh & Enders, 2004). Accord-
ingly, this section gives suggestions for improving reporting practices and provides templates 
for conveying the results of a missing data analysis.

Beyond simply increasing the level of detail in published research studies, improving 
missing data reporting practices can have the added benefi t of reassuring reviewers and edi-
tors that modern missing data techniques are methodologically sound. In my experience, 
substantive researchers are often concerned about implementing sophisticated missing data 
techniques because they feel that reviewers or editors will view their study in a negative light, 
presumably because they are unfamiliar with or suspicious of these newer approaches. Al-
though this concern is understandable, resorting to fl awed procedures in order to avoid criti-
cism from an uninformed reviewer or editor is a poor reason for avoiding sophisticated miss-
ing data methodology. Until researchers, editors, and journal reviewers become familiar with 
modern missing data handling techniques, it is probably a good idea to be a bit “teachy” 
when preparing a manuscript for publication. The templates that I give in this section refl ect 
this approach.

As a basic starting point, published research reports should always acknowledge the 
presence of missing data. Although this recommendation seems obvious, many published 
research studies fail to report any information about missing data. For example, Peugh and 
Enders (2004) reviewed hundreds of published articles in the 1999 and 2003 volumes of 
several education and psychology journals. In 1999, roughly one-third of the research re-
ports with detectable missing data (e.g., studies where the degrees of freedom values changed 
across a set of ANOVAs) explicitly acknowledged the problem. Fortunately, reporting prac-
tices improved in the 2003 review, such that three-quarters of the studies with detectable 
missing data disclosed the problem. Although reporting practices are getting better in this 
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regard, it is reasonable to expect that every study with missing data should explicitly acknowl-
edge the problem. This recommendation is consistent with that of the APA Task Force, among 
others. Ideally, published studies should also describe the extent of the missing data prob-
lem. For unintentional missing data, a minimally suffi cient description should include the 
range of missing data rates across the analysis variables. This description could consist of a 
sentence or two and possibly a small table, as follows: “Across the 13 variables that we used 
in the analyses, the missing data proportions ranged between 2 and 11%. Table 2 gives the 
missing data rates for each of the analysis variables.”

Beyond acknowledging the presence of and describing the amount of missing data, a 
more detailed report might include comparisons of the missing and the complete cases. Pub-
lished research studies occasionally report these comparisons, but the purpose is usually to 
justify a complete-case analysis (e.g., if no signifi cant differences are found, researchers often 
perform their analyses after eliminating the incomplete cases). Because there is rarely a good 
reason to eliminate incomplete data records, examining mean differences across missing data 
patterns is most useful when the goal is to identify potential correlates of missingness that 
can serve as auxiliary variables in subsequent analyses. To conserve journal space, the mean 
comparisons could be part of a broader description of auxiliary variables. To illustrate, con-
sider a hypothetical study of eating disorder risk in high-school-age females. A brief descrip-
tion of the auxiliary variables might look like this:

Mean comparisons revealed that the participants with incomplete data had higher body mass 
index values and higher levels of peer pressure, on average. To correct for any systematic bias that 
might be related to these differences, we used body mass index and peer pressure as auxiliary 
variables in all analyses that didn’t already include these variables. We also used parental reports 
of food preoccupation as an auxiliary variable because of its high correlation with the incomplete 
self-reports. The methodological literature currently recommends an inclusive analysis strategy 
that incorporates auxiliary variables into the missing data handling procedure because this ap-
proach can make the missing at random assumption more plausible and can improve statistical 
power (Collins, Schafer, & Kam, 2001).

Notice that the template includes a sentence that essentially instructs the reader about the use 
of auxiliary variables. Again, taking a didactic approach can help reduce or eliminate con-
cerns about an unfamiliar technique. (Published examples of auxiliary variable models are still 
relatively rare.)

In the case of a planned missing data, a minimally suffi cient report would necessarily 
include a more detailed description of the missing data. Although the specifi cs of the descrip-
tion would probably vary from study to study, a good rule of thumb is to provide the same 
level of detail as you would for any other procedural aspect of a study. In this situation, com-
parisons of the incomplete and complete cases are unnecessary because the data are missing 
at random by defi nition, although a description of auxiliary variables may still be warranted 
(e.g., correlates of the incomplete variables could still appear in the analyses). To illustrate a 
written template for a planned missing data design, consider a hypothetical longitudinal 
study with six data collection waves, where each respondent has intentional missing data at 
one or more of the measurement occasions.
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To reduce the burden on the study participants and to improve the logistics of data collection, 
we implemented a planned missing data design (Graham, Taylor, and Cumsille, 2001; Graham, 
Taylor, Olchowski, & Cumsille, 2006). Briefl y, we divided the sample into six random subgroups, 
such that the members of each subgroup provided data at four or fi ve of the six data collection 
waves. Table 3 shows the 6 missing data patterns and the proportion of the sample in each pat-
tern. We used a series of computer simulation studies to identify a confi guration of missing values 
that would minimize the loss of power relative to a complete-data design. Depending on the effect 
size values that we used in the simulations, the design in the table produced power values that 
were between 87 and 94% as large as the corresponding complete-data analyses. It is important 
to note that planned missing data designs such as the one that we implemented produce missing 
completely at random data (i.e., missingness is unrelated to the study variables). Consequently, 
the missing data are benign and cannot introduce bias into the parameter estimates. Further-
more, analyzing the data with maximum likelihood missing data handling resulted in a minimal 
loss of power because it is unnecessary to exclude cases from the analyses. We judged that the 
relatively small drop in power was an acceptable trade-off for reducing respondent burden and 
streamlining the logistics of data collection.

The preceding description would be appropriate for one of the longitudinal designs in Gra-
ham, Taylor, and Cumsille (2001), but the write-up could easily be adapted to other types of 
planned missingness designs. Again, notice that the template is relatively didactic in nature.

Because the use of maximum likelihood estimation and multiple imputation has steadily 
increased in recent years, it is relatively easy to fi nd published studies that have employed 
these methods. Nevertheless, it is useful to have templates for describing these procedures 
because modern missing data methods are still widely misunderstood. To illustrate, recon-
sider the hypothetical study of eating disorder risk from one of the previous examples. A 
description of maximum likelihood missing data handling might look like this:

We used the maximum likelihood estimation option in the Mplus 5.2 software program to deal 
with the missing data in the multiple regression model and used the robust standard error option 
to correct for nonnormality. Furthermore, we used Graham’s (2003) saturated correlates approach 
to incorporate three auxiliary variables (body mass index, peer pressure, parental ratings of food 
preoccupation) into the analysis. It is important to point out that the auxiliary variables can po-
tentially reduce bias and improve power, but they do so without altering the substantive inter-
pretation of the parameters (i.e., the regression coeffi cients have the same interpretation as they 
would have had there been no missing data). Because the auxiliary variable correlations are not 
of substantive interest, we do not report these parameters here. Finally, note that methodologists 
currently regard maximum likelihood estimation as a state-of-the-art missing data technique 
because it improves the accuracy and the power of the analyses relative to other missing data 
handling methods (Schafer & Graham, 2002).

From a procedural standpoint, multiple imputation is far more involved than maximum 
likelihood because it requires multiple steps and many decisions. Ideally, the description of 
the imputation phase should convey information about convergence diagnostics, the number 
of burn-in and between-imputation iterations, the number of imputations, and the variables 
that were used in the imputation phase. Fully describing the nuances of the imputation phase 
alone could easily consume a full manuscript page, so the diffi culty becomes fi nding the right 
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balance of detail and brevity. With regard to the hypothetical study of eating disorder risk, a 
description of multiple imputation could be as follows:

Prior to performing the analyses, we used multiple imputation to deal with the missing data. 
Briefl y, multiple imputation uses a regression-based procedure to generate multiple copies of the 
data set, each of which contains different estimates of the missing values. We used the data aug-
mentation algorithm in the SAS MI procedure to generate 50 imputed data sets (Graham, Olcho-
wski, & Gilreath, 2007, recommend at least 20 for most situations). Graphical diagnostics from 
an exploratory analysis suggested that the data sets should be separated by at least 50 iterations 
of the imputation algorithm, so we took the conservative tack of saving the fi rst data set at the 
300th iteration and saved additional data sets every 300th iteration thereafter. The imputation 
process included the 13 variables that appeared in one or more of the subsequent regression 
analyses as well as three auxiliary variables (body mass index, peer pressure, and parental ratings 
of food preoccupation). After creating the complete data sets, we estimated the multiple regres-
sion models on each fi lled-in data set and subsequently used Rubin’s (1987) formulas to combine 
the parameter estimates and standard errors into a single set of results. Note that methodologists 
currently regard multiple imputation as a “state of the art” missing data technique because it 
improves the accuracy and the power of the analyses relative to other missing data handling 
methods (Schafer & Graham, 2002).

The previous description is far from comprehensive and omits many of the small details that 
arise during the imputation process (e.g., rounding, applying transformations). Certain anal-
yses may require additional information (e.g., analyses that involve interactive effects, cate-
gorical and continuous variables, multilevel data, etc.), but the template above includes 
much of the core information. When implementing multiple imputation, it may be a good 
idea to offer the reader additional details about the imputation process upon request or to 
place a full description of the imputation procedure in an appendix that could appear in the 
electronic version of the manuscript.

The previous templates are just ideas for reporting various aspects of a missing data 
analysis. Obviously, these passages can be expanded or shortened to fi t the specifi cs of a 
given study. By providing templates, it is my hope that missing data reporting practices can 
improve, but also that consumers of research will become increasingly familiar with the tech-
niques in this book.

11.6 FINAL THOUGHTS

Modern missing data handling techniques are beginning to take hold in some areas of the 
behavioral and the social sciences, and researchers are becoming increasingly aware that 
traditional approaches for dealing with missing data are fundamentally fl awed. A previous 
section in this chapter highlighted the pros and cons of maximum likelihood and multiple 
imputation, but it is useful to think about analysis options more broadly. Eliminating tradi-
tional techniques (e.g., deletion methods and single imputation) from consideration leaves 
two alternatives: an analysis that assumes a missing at random (MAR) mechanism (maxi-
mum likelihood estimation or multiple imputation), or an analysis that assumes an MNAR 
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mechanism (selection models or a pattern mixture models). Because the data provide little 
or no evidence in favor of one approach or another, MAR and MNAR analysis models ulti-
mately represent a choice between competing assumptions. A missing data handling tech-
niques is only as good as the veracity of its assumptions, so adopting a defensible analysis (or 
alternatively, adopting an analysis that minimizes the risk of violating key assumptions) is 
important.

In my experience, researchers (including journal editors and reviewers) are sometimes 
quick to assume that a sinister attrition mechanism is at play, such that MAR-based analyses 
are automatically invalid. Even if the missing values do follow an MNAR mechanism (and 
there is no way to tell), selection models and pattern mixture models are not necessarily 
the best solution. These MNAR models rely on assumptions that are probably far more tenu-
ous than the MAR mechanism. In truth, the range of conditions that satisfi es the assump-
tions for an MNAR analysis is much narrower than the range of conditions that satisfi es the 
MAR mechanism. This being the case, a well-executed MAR analysis may be preferable to 
an MNAR analysis, even if there is reason to believe that missingness is systematically related 
to the outcome variable. Other methodologists have voiced a similar opinion. For example, 
in discussing the trade-offs between MAR and MNAR analyses, Schafer (2003, p. 30) stated, 
“Rather than rely heavily on poorly estimated MNAR models, I would prefer to examine aux-
iliary variables that may be related to missingness … and include them in a richer imputation 
model under assumption of MAR.”

Missing data analyses are diffi cult because there is no inherently correct methodological 
procedure. In many (if not most) situations, blindly applying maximum likelihood estima-
tion or multiple imputation will likely lead to a more accurate set of estimates than using one 
of the traditional missing data handling techniques. In that sense, a thoughtless MAR analy-
sis is probably better than the best traditional missing data approach. However, Schafer’s 
(2003, p. 30) point is that a good MAR model may be better than a bad MNAR model. While 
simply increasing the frequency with which researchers use MAR-based analysis techniques 
is a good short-term goal, elevating the sophistication level of MAR analyses may prove to be 
the best long-term solution for missing data. Of course, achieving this goal requires time and 
effort at every stage of the research process, and implementing a sophisticated MAR analysis 
requires researchers to be proactive about missing data. Among other things, this includes 
planning for missing data, anticipating the possible reasons for attrition, collecting data on 
possible correlates of missingness, documenting the reasons behind attrition, exploring po-
tential auxiliary variables, and generally establishing a reasoned argument that supports a 
particular set of assumptions. Until more robust MNAR analysis models become available 
(and that may never happen), increasing the sophistication level of MAR analysis may be the 
best that we can do.

11.7 RECOMMENDED READINGS
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