


Data
Cleaning

Best Practices in



This book is dedicated to my parents, James and Susan Osborne. They have  
always encouraged the delusions of grandeur that led me to write this book.  

Through all the bumps life placed in my path, they have been the  
constant support needed to persevere. Thank you, thank you, thank you.

I also dedicate this book to my children, Collin, Andrew, and Olivia,  
who inspire me to be the best I can be, in the vague hope that at  

some distant point in the future they will be proud of the work their  
father has done. It is their future we are shaping through our research,  
and I hope that in some small way I contribute to it being a bright one.

My wife deserves special mention in this dedication as  
she is the one who patiently attempts to keep me grounded in the real  
world while I immerse myself in whatever methodological esoterica  

I am fascinated with at the moment. Thank you for everything.



This book is dedicated to my parents, James and Susan Osborne. They have  
always encouraged the delusions of grandeur that led me to write this book.  

Through all the bumps life placed in my path, they have been the  
constant support needed to persevere. Thank you, thank you, thank you.

I also dedicate this book to my children, Collin, Andrew, and Olivia,  
who inspire me to be the best I can be, in the vague hope that at  

some distant point in the future they will be proud of the work their  
father has done. It is their future we are shaping through our research,  
and I hope that in some small way I contribute to it being a bright one.

My wife deserves special mention in this dedication as  
she is the one who patiently attempts to keep me grounded in the real  
world while I immerse myself in whatever methodological esoterica  

I am fascinated with at the moment. Thank you for everything.

Data
Cleaning

Best Practices in

Jason W. Osborne
Old Dominion University

A Complete Guide to Everything
You Need to Do Before and After
Collecting Your Data



Copyright © 2013 by SAGE Publications, Inc.

All rights reserved. No part of this book may be 
reproduced or utilized in any form or by any means, 
electronic or mechanical, including photocopying, 
recording, or by any information storage and retrieval 
system, without permission in writing from the publisher.

Printed in the United States of America

Library of Congress Cataloging-in-Publication Data

Osborne, Jason W.

Best practices in data cleaning : a complete guide to 
everything you need to do before and after collecting 
your data / Jason W. Osborne.

p. cm. 
Includes bibliographical references and index.

ISBN 978-1-4129-8801-8 (pbk.)

1.  Quantitative research. 2. Social sciences—
Methodology. I. Title. 

H62.O82 2013 
001.4'2—dc23   2011045607

This book is printed on acid-free paper.

12 13 14 15 16 10 9 8 7 6 5 4 3 2 1

FOR INFORMATION: 

SAGE Publications, Inc.

2455 Teller Road

Thousand Oaks, California 91320

E-mail: order@sagepub.com

SAGE Publications Ltd. 

1 Oliver’s Yard

55 City Road

London EC1Y 1SP

United Kingdom

SAGE Publications India Pvt. Ltd. 

B 1/I 1 Mohan Cooperative Industrial Area

Mathura Road, New Delhi 110 044 

India

SAGE Publications Asia-Pacific Pte. Ltd.

33 Pekin Street #02-01

Far East Square

Singapore 048763

Acquisitions Editor: Vicki Knight

Associate Editor: Lauren Habib

Editorial Assistant: Kalie Koscielak

Production Editor: Eric Garner

Copy Editor: Trey Thoelcke

Typesetter: C&M Digitals (P) Ltd.

Proofreader: Laura Webb

Indexer:  Sheila Bodell

Cover Designer: Anupama Krishnan

Marketing Manager: Helen Salmon

Permissions Editor: Adele Hutchinson



Preface xi

About the Author xv

Chapter 1 Why Data Cleaning Is Important: 
Debunking the Myth of Robustness 1

Origins of Data Cleaning 2
Are Things Really That Bad? 5
Why Care About Testing Assumptions 

and Cleaning Data? 8
How Can This State of Affairs Be True? 8
The Best Practices Orientation of This Book 10
Data Cleaning Is a Simple Process; However . . . 11
One Path to Solving the Problem 12
For Further Enrichment 13

SECTION I: BEST PRACTICES AS YOU 
PREPARE FOR DATA COLLECTION 17

Chapter 2 Power and Planning for Data Collection: 
Debunking the Myth of Adequate Power 19

Power and Best Practices in Statistical Analysis of Data 20
How Null-Hypothesis Statistical Testing Relates to Power 22
What Do Statistical Tests Tell Us? 23
How Does Power Relate to Error Rates? 26
Low Power and Type I Error Rates in a Literature 28
How to Calculate Power 29
The Effect of Power on the Replicability of Study Results 31
Can Data Cleaning Fix These Sampling Problems? 33
Conclusions 34
For Further Enrichment 35
Appendix 36

CONTENTS



Chapter 3 Being True to the Target Population: 
Debunking the Myth of Representativeness 43

Sampling Theory and Generalizability 45
Aggregation or Omission Errors 46
Including Irrelevant Groups 49
Nonresponse and Generalizability 52
Consent Procedures and Sampling Bias 54
Generalizability of Internet Surveys 56
Restriction of Range 58
Extreme Groups Analysis 62
Conclusion 65
For Further Enrichment 65

Chapter 4 Using Large Data Sets With Probability 
Sampling Frameworks: Debunking the Myth of Equality 71

What Types of Studies Use Complex Sampling? 72
Why Does Complex Sampling Matter? 72
Best Practices in Accounting for Complex Sampling 74
Does It Really Make a Difference in the Results? 76
So What Does All This Mean? 80
For Further Enrichment 81

SECTION II: BEST PRACTICES IN 
DATA CLEANING AND SCREENING 85

Chapter 5 Screening Your Data for Potential 
Problems: Debunking the Myth of Perfect Data 87

The Language of Describing Distributions 90
Testing Whether Your Data Are Normally Distributed 93
Conclusions 100
For Further Enrichment 101
Appendix 101

Chapter 6 Dealing With Missing or Incomplete 
Data: Debunking the Myth of Emptiness 105

What Is Missing or Incomplete Data? 106
Categories of Missingness 109
What Do We Do With Missing Data? 110
The Effects of Listwise Deletion 117
The Detrimental Effects of Mean Substitution 118



The Effects of Strong and Weak Imputation of Values 122
Multiple Imputation: A Modern Method 

of Missing Data Estimation 125
Missingness Can Be an Interesting Variable in and of Itself 128
Summing Up: What Are Best Practices? 130
For Further Enrichment 131
Appendixes 132

Chapter 7 Extreme and Influential Data Points: 
Debunking the Myth of Equality 139

What Are Extreme Scores? 140
How Extreme Values Affect Statistical Analyses 141
What Causes Extreme Scores? 142
Extreme Scores as a Potential Focus of Inquiry 149
Identification of Extreme Scores 152
Why Remove Extreme Scores? 153
Effect of Extreme Scores on Inferential Statistics 156
Effect of Extreme Scores on Correlations and Regression 156
Effect of Extreme Scores on t-Tests and ANOVAs 161
To Remove or Not to Remove? 165
For Further Enrichment 165

Chapter 8 Improving the Normality of Variables 
Through Box-Cox Transformation: Debunking 
the Myth of Distributional Irrelevance 169

Why Do We Need Data Transformations? 171
When a Variable Violates the Assumption of Normality 171
Traditional Data Transformations for Improving Normality 172
Application and Efficacy of Box-Cox Transformations 176
Reversing Transformations 181
Conclusion 184
For Further Enrichment 185
Appendix 185

Chapter 9 Does Reliability Matter? Debunking 
the Myth of Perfect Measurement 191

What Is a Reasonable Level of Reliability? 192
Reliability and Simple Correlation or Regression 193
Reliability and Partial Correlations 195
Reliability and Multiple Regression 197
Reliability and Interactions in Multiple Regression 198



Protecting Against Overcorrecting During Disattenuation 199
Other Solutions to the Issue of Measurement Error 200
What If We Had Error-Free Measurement? 200
An Example From My Research 202
Does Reliability Influence Other Analyses? 205
The Argument That Poor Reliability Is Not That Important 206
Conclusions and Best Practices 207
For Further Enrichment 208

SECTION III: ADVANCED TOPICS IN DATA CLEANING 211

Chapter 10 Random Responding, Motivated Misresponding, 
and Response Sets: Debunking the Myth of the 
Motivated Participant 213

What Is a Response Set? 213
Common Types of Response Sets 214
Is Random Responding Truly Random? 216
Detecting Random Responding in Your Research 217
Does Random Responding Cause Serious 

Problems With Research? 219
Example of the Effects of Random Responding 219
Are Random Responders Truly Random Responders? 224
Summary 224
Best Practices Regarding Random Responding 225
Magnitude of the Problem 226
For Further Enrichment 226

Chapter 11 Why Dichotomizing Continuous Variables Is 
Rarely a Good Practice: Debunking the Myth of Categorization 231

What Is Dichotomization and Why Does It Exist? 233
How Widespread Is This Practice? 234
Why Do Researchers Use Dichotomization? 236
Are Analyses With Dichotomous 

Variables Easier to Interpret? 236
Are Analyses With Dichotomous 

Variables Easier to Compute? 237
Are Dichotomous Variables More Reliable? 238
Other Drawbacks of Dichotomization 246
For Further Enrichment 250



Chapter 12 The Special Challenge of Cleaning Repeated 
Measures Data: Lots of Pits in Which to Fall 253

Treat All Time Points Equally 253
What to Do With Extreme Scores? 257
Missing Data 258
Summary 258

Chapter 13 Now That the Myths Are Debunked . . . : Visions 
of Rational Quantitative Methodology for the 21st Century 261

Name Index 265

Subject Index 269





xi

I f I am honest with myself, the writing of this book is primarily a therapeutic 
exercise to help me exorcize 20 or more years of frustration with certain 

issues in quantitative research. Few concepts in this book are new—many are 
the better part of a century old. So why should you read it? Because there are 
important steps every quantitative researcher should take prior to collecting 
their data to ensure the data meet their goals. Because after collecting data, and 
before conducting the critical analyses to test hypotheses, other important 
steps should be taken to ensure the ultimate high quality of the results of those 
analyses. I refer to all of these steps as data cleaning, though in the strictest 
sense of the concept, planning for data collection does not traditionally fall 
under that label.

Yet careful planning for data collection is critically important to the 
overall success of the project. As I wrote this book, it became increasingly 
evident to me that without some discussion on these points, the discussion on 
the more traditional aspects of data cleaning were moot. Thus, my inclusion of 
the content of the first few chapters.

But why the need for the book at all? The need for data cleaning and 
testing of assumptions is just blatantly obvious, right? My goal with this book 
is to convince you that several critical steps should be taken prior to testing 
hypotheses, and that your research will benefit from taking them. Furthermore, 
I am not convinced that most modern researchers perform these steps (at the 
least, they are failing to report having performed these actions). Failing to do 
the things I recommend in this book leaves you with potential limitations and 
biases that are avoidable. If your goal is to do the best research you can do, to 
draw conclusions that are most likely to be accurate representations of the 
population(s) you wish to speak about, to report results that are most likely to 
be replicated by other researchers, then this is a basic guidebook to helping 
accomplish these goals. They are not difficult, they do not take a long time to 
master, they are mostly not novel, and in the grand scheme of things, I am 
frankly baffled as to why anyone would not do them. I demonstrate the 
benefits in detail throughout the book, using real data.

PREFACE
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Scientists in other fields often dismiss social scientists as unsophisticated. 
Yet in the social sciences, we study objects (frequently human beings) that are 
uniquely challenging. Unlike the physical and biological sciences, the objects 
we study are often studying us as well and may not be motivated to provide us 
with accurate or useful data. Our objects vary tremendously from individual to 
individual, and thus our data are uniquely challenging. Having spent much of 
my life focusing on research in the social sciences, I obviously value this type 
of research. Is the research that led me to write this book proof that many 
researchers in the social sciences are lazy, ill-prepared, or unsophisticated? 
Not at all. Most quantitative researchers in the social sciences have been 
exposed to these concepts, and most value rigor and robustness in their results. 
So why do so few report having performed these tasks I discuss when they 
publish their results?

My theory is that we have created a mythology in quantitative research in 
recent decades. We have developed traditions of doing certain things a certain 
way, trusting that our forebears examined all these practices in detail and 
decided on the best way forward. I contend that most social scientists are 
trained implicitly to focus on the hypotheses to be tested because we believe 
that modern research methods somehow overcome the concerns our forebears 
focused on—data cleaning and testing of assumptions.

Over the course of this book, I attempt to debunk some of the myths I see 
evident in our research practices, at the same time highlighting (and 
demonstrating) the best way to prepare data for hypothesis testing. 

The myths I talk about in this book, and do my best to convincingly 
debunk, include the following.

 • The myth of robustness describes the general feeling most researchers 
have that most quantitative methods are “robust” to violations of 
assumptions, and therefore testing assumptions is anachronistic and a 
waste of time.

 • The myth of perfect measurement describes the tendency of many 
researchers, particularly in the social sciences, to assume that “pretty 
good” measurement is good enough to accurately describe the effects 
being researched.

 • The myth of categorization describes many researchers’ belief that 
dichotomizing continuous variables can legitimately enhance effect 
sizes, power, and the reliability of their variables.



Preface xiii

 • The myth of distributional irrelevance describes the apparent belief that 
there is no benefit to improving the normality of variables being ana-
lyzed through parametric (and often nonparametric) analyses.

 • The myth of equality describes many researchers’ lack of interest in 
examining unusually influential data points, often called extreme scores 
or outliers, perhaps because of a mistaken belief that all data points 
contribute equally to the results of the analysis.

 • The myth of the motivated participant describes the apparent belief that 
all participants in a study are motivated to give us their total concentra-
tion, strong effort, and honest answers.

In each chapter I introduce a new myth or idea and explore the empirical 
or theoretical evidence relating to that myth or idea. Also in each chapter, I 
attempt to demonstrate in a convincing fashion the truth about a particular 
practice and why you, as a researcher using quantitative methods, should 
consider a particular strategy a best practice (or shun a particular practice as it 
does not fall into that category of best practices).

I cannot guarantee that, if you follow the simple recommendations 
contained in this book, all your studies will give you the results you seek or 
expect. But I can promise that your results are more likely to reflect the actual 
state of affairs in the population of interest than if you do not. It is similar to 
when your mother told you to eat your vegetables. Eating healthy does not 
guarantee you will live a long, healthy, satisfying life, but it probably increases 
the odds. And in the end, increasing the odds of getting what we want is all we 
can hope for.

I wrote this book for a broad audience of students, professors teaching 
research methods, and scholars involved in quantitative research. I attempt to 
use common language to explore concepts rather than formulas, although they 
do appear from time to time. It is not an exhaustive list of every possible 
situation you, as a social scientist, might experience. Rather, it is an attempt to 
foment some modest discontent with current practice and guide you toward 
improving your research practices.

The field of statistics and quantitative methodology is so vast and constantly 
filled with innovation that most of us remain merely partially confused fellow 
travelers attempting to make sense out of things. My motivation for writing this 
book is at least partly to satisfy my own curiosity about things I have believed 
for a long while, but have not, to this point, systematically tested and collected. 
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I can tell you that despite more than 20 years as a practicing statistician and 13 
years of teaching statistics at various levels, I still learned new things in the 
process of writing this book. I have improved my practices and have debunked 
some of the myths I have held as a result. I invite you to search for one way you 
can improve your practice right now.

This book (along with my many articles on best practices in quantitative 
methods) was inspired by all the students and colleagues who asked what they 
assumed was a simple question. My goal is to provide clear, evidence-based 
answers to those questions. Thank you for asking, and continue to wonder. 
Perhaps I will figure out a few more answers as a result.

If you disagree with something I assert in this book, and can demonstrate 
that I am incorrect or at least incomplete in my treatment of a topic, let me 
know. I genuinely want to discover the best way to do this stuff, and I am 
happy to borrow ideas from anyone willing to share. I invite you to visit my 
webpage at http://best-practices-online.com/ where I provide data sets and 
other information to enhance your exploration of quantitative methods. I also 
invite your comments, suggestions, complaints, constructive criticisms, rants, 
and adulation via e-mail at jasonwosborne@gmail.com.
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1

 ONE 

WHY DATA CLEANING  
IS IMPORTANT

Debunking the Myth of Robustness

You must understand fully what your assumptions say and what 
they imply. You must not claim that the “usual assumptions” are 
acceptable due to the robustness of your technique unless you 
really understand the implications and limits of this assertion in 
the context of your application. And you must absolutely never use 
any statistical method without realizing that you are implicitly 
making assumptions, and that the validity of your results can 
never be greater than that of the most questionable of these.

(Vardeman & Morris, 2003, p. 26)

The applied researcher who routinely adopts a traditional proce-
dure without giving thought to its associated assumptions may 
unwittingly be filling the literature with nonreplicable results. 

(Keselman et al., 1998, p. 351)

Scientifically unsound studies are unethical. 

(Rutstein, 1969, p. 524)

Many modern scientific studies use sophisticated statistical analyses 
that rely upon numerous important assumptions to ensure the validity 

of the results and protection from undesirable outcomes (such as Type I or 
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Type II errors or substantial misestimation of effects). Yet casual inspection of 
respected journals in various fields shows a marked absence of discussion of 
the mundane, basic staples of quantitative methodology such as data cleaning 
or testing of assumptions. As the quotes above state, this may leave us in a 
troubling position: not knowing the validity of the quantitative results pre-
sented in a large portion of the knowledge base of our field.

My goal in writing this book is to collect, in one place, a systematic over-
view of what I consider to be best practices in data cleaning—things I can 
demonstrate as making a difference in your data analyses. I seek to change the 
status quo, the current state of affairs in quantitative research in the social sci-
ences (and beyond).

I think one reason why researchers might not use best practices is a lack 
of clarity in exactly how to implement them. Textbooks seem to skim over 
important details, leaving many of us either to avoid doing those things or 
having to spend substantial time figuring out how to implement them effec-
tively. Through clear guidance and real-world examples, I hope to provide 
researchers with the technical information necessary to successfully and easily 
perform these tasks.

I think another reason why researchers might not use best practices is the 
difficulty of changing ingrained habits. It is not easy for us to change the way 
we do things, especially when we feel we might already be doing a pretty good 
job. I hope to motivate practice change through demonstrating the benefits of 
particular practices (or the potential risks of failing to do so) in an accessible, 
practitioner-oriented format, I hope to reengage students and researchers in the 
importance of becoming familiar with data prior to performing the important 
analyses that serve to test our most cherished ideas and theories. Attending to 
these issues will help ensure the validity, generalizability, and replicability of 
published results, as well as ensure that researchers get the power and effect 
sizes that are appropriate and reflective of the population they seek to study. 
In short, I hope to help make our science more valid and useful.

ORIGINS OF DATA CLEANING

Researchers have discussed the importance of assumptions from the introduc-
tion of our early modern statistical tests (e.g., Pearson, 1931; Pearson, 1901; 
Student, 1908). Even the most recently developed statistical tests are devel-
oped in a context of certain important assumptions about the data.
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Mathematicians and statisticians developing the tests we take for granted 
today had to make certain explicit assumptions about the data in order to for-
mulate the operations that occur “under the hood” when we perform statistical 
analyses. A common example is that the data are normally distributed, or that 
all groups have roughly equal variance. Without these assumptions the formu-
lae and conclusions are not valid.

Early in the 20th century, these assumptions were the focus of much 
debate and discussion; for example, since data rarely are perfectly normally 
distributed, how much of a deviation from normality is acceptable? Similarly, 
it is rare that two groups would have exactly identical variances, so how close 
to equal is good enough to maintain the goodness of the results?

By the middle of the 20th century, researchers had assembled some evi-
dence that some minimal violations of some assumptions had minimal effects on 
error rates under certain circumstances—in other words, if your variances are 
not identical across all groups, but are relatively close, it is probably acceptable 
to interpret the results of that test despite this technical violation of assumptions. 
Box (1953) is credited with coining the term robust (Boneau, 1960), which usu-
ally indicates that violation of an assumption does not substantially influence the 
Type I error rate of the test. Thus, many authors published studies showing that 
analyses such as simple one-factor analysis of variance (ANOVA) analyses are 
“robust” to nonnormality of the populations (Pearson, 1931) and to variance 
inequality (Box, 1953) when group sizes are equal. This means that they con-
cluded that modest (practical) violations of these assumptions would not 
increase the probability of Type I errors (although even Pearson, 1931, notes that 
strong nonnormality can bias results toward increased Type II errors).

Remember, much of this research arose from a debate as to whether even 
minor (but practically insignificant) deviations from absolute normality or 
exactly equal variance would bias the results. Today, it seems almost silly to 
think of researchers worrying if a skew of 0.01 or 0.05 would make results 
unreliable, but our field, as a science, needed to explore these basic, important 
questions to understand how our new tools, these analyses, worked.

Despite being relatively narrow in scope (e.g., primarily concerned with 
Type I error rates) and focused on what then was then the norm (equal sample 
sizes and relatively simple one-factor ANOVA analyses), these early studies 
appear to have given social scientists the impression that these basic assump-
tions are unimportant. Remember, these early studies were exploring, and they 
were concluding that under certain circumstances minor (again, practically 
insignificant) deviations from meeting the exact letter of the assumption  
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(such as exact equality of variances) did not appreciably increase Type I error 
rates. These early studies do not mean, however, that all analyses are robust to 
dramatic violations of these assumptions, or to violations of these assumptions 
without meeting the other conditions (e.g., exactly equal cell sizes).

Despite all our progress, almost all our analyses are founded on important, 
basic assumptions. Without attending to these foundations, researchers may be 
unwittingly reporting erroneous or inaccurate results.

Note also that the original conclusion (that Type I error rates were prob-
ably not increased dramatically through modest violation of these assumptions 
under certain specific conditions) is a very specific finding and does not neces-
sarily generalize to broad violations of any assumption under any condition. It 
is only focused on Type I error rates and does not deal with Type II error rates, 
as well as misestimation of effect sizes and confidence intervals.

Unfortunately, the latter points seem to have been lost on many modern 
researchers. Recall that these early researchers on “robustness” were often 
applied statisticians working in places such as chemical and agricultural com-
panies as well as research labs such as Bell Telephone Labs, not in the social 
sciences where data may be more likely to be messy. Thus, these authors are 

viewing “modest deviations” as exactly 
that—minor deviations from mathe-
matical models of perfect normality 
and perfect equality of variance that 
are practically unimportant. It is likely 
that social scientists rarely see data that 
are as clean as those produced in those 
environments.

Further, important caveats came 
with conclusions around robustness, 
such as adequate sample sizes, equal 
group sizes, and relatively simple anal-
yses such as one-factor ANOVA.

This mythology of robustness, 
however, appears to have taken root in 
the social sciences and may have been 
accepted as broad fact rather than nar-
rowly, as intended. Through the latter 
half of the 20th century, the term came 
to be used more often as researchers 

Some Relevant Vocabulary

Type I Error Rate: the probability of 
rejecting the null hypothesis when in 
fact the null hypothesis is true in the 
population.

Type II Error Rate: the probability of 
failing to reject the null hypothesis 
when in fact the null hypothesis is 
false in the population.

Misestimation of Effect Size: failure 
to accurately estimate the true 
population parameters and effects.

Robust: generally refers to a test that 
maintains the correct Type I error 
rate when one or more assumptions 
is violated. In this chapter, I argue 
that robustness is largely a myth in 
modern statistical analysis.
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published narrowly focused studies that appeared to reinforce the mythology 
of robustness, perhaps inadvertently indicating that robustness was the rule 
rather than the exception.

In one example of this type of research, studies reported that simple sta-
tistical procedures such as the Pearson product-moment correlation and the 
one-way ANOVA (e.g., Feir-Walsh & Toothaker, 1974; Havlicek & Peterson, 
1977) were robust to even “substantial violations” of assumptions.1 It is per-
haps not surprising that robustness appears to have become unquestioned 
canon among quantitative social scientists, despite the caveats to these latter 
assertions, and the important point that these assertions of robustness usually 
relate only to Type I error rates, yet other aspects of analyses (such as Type II 
error rates or the accuracy of the estimates of effects) might still be strongly 
influenced by violation of assumptions.

However, the finding that simple correlations might be robust to certain 
violations is not to say that similar but more complex procedures (e.g., multiple 
regression) are equally robust to these same violations. Similarly, should one-way 
ANOVA be robust to violations of assumptions,2 it is not clear that similar but 
more complex procedures (e.g., factorial ANOVA or analysis of covariance—
ANCOVA) would be equally robust to these violations. Yet as social scientists 
adopted increasingly complex procedures, there is no indication that the issue of 
data cleaning and testing of assumptions was revisited by the broad scientific 
community. Recent surveys of quantitative research in the social sciences affirms 
that a relatively low percentage of authors in recent years report basic information 
such as having checked for extreme scores or normality of the data, or having 
tested assumptions of the statistical procedures being used (Keselman, et al., 
1998; Osborne, 2008b; Osborne, Kocher, & Tillman, 2011). It seems, then, that 
this mythology of robustness has led a substantial percentage of social science 
researchers to believe it unnecessary to check the goodness of their data and the 
assumptions that their tests are based on (or to report having done so).

With this book, I aim to change that. I will show how to perform these 
basic procedures effectively, and perhaps more importantly, show you why it 
is important to engage in these mundane activities.

ARE THINGS REALLY THAT BAD?

Recent surveys of top research journals in the social sciences confirm that 
authors (as well as reviewers and editors) are disconcertingly casual about data 
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cleaning and reporting of tests of assumptions. One prominent review of educa-
tion and psychology research by Keselman and colleagues (1998) provided a 
thorough review of empirical social science during the 1990s. The authors 
reviewed studies from 17 prominent journals spanning different areas of educa-
tion and psychology, focusing on empirical articles with ANOVA-type designs.

In looking at 61 studies utilizing univariate ANOVA between-subjects 
designs, the authors found that only 11.48% of authors reported anything 
related to assessing normality, almost uniformly assessing normality through 
descriptive rather than inferential methods.3 Further, only 8.20% reported 
assessing homogeneity of variance, and only 4.92% assessed both distribu-
tional assumptions and homogeneity of variance. While some earlier studies 
asserted ANOVA to be robust to violations of these assumptions (Feir-Walsh 
& Toothaker, 1974), more recent work contradicts this long-held belief, par-
ticularly where designs extend beyond simple one-way ANOVA and where 
cell sizes are unbalanced, which seems fairly common in modern ANOVA 
analyses within the social sciences (Lix, Keselman, & Keselman, 1996;  
Wilcox, 1987).

In examining articles reporting multivariate analyses, Keselman and col-
leagues (1998) describe a more dire situation. None of the 79 studies utilizing 
multivariate ANOVA procedures reported examining relevant assumptions of 
variance homogeneity, and in only 6.33% of the articles was there any evi-
dence of examining of distributional assumptions (such as normality).

Similarly, in their examination of 226 articles that used some type of 
repeated-measures analysis, only 15.50% made reference to some aspect of 
assumptions, but none appeared to report assessing sphericity, an important 
assumption in these designs that when violated can lead to substantial inflation 
of error rates and misestimation of effects (Maxwell & Delaney, 1990, p. 474).

Finally, their assessment of articles utilizing covariance designs (N = 45) 
was equally disappointing—75.56% of the studies reviewed made no mention 
of any assumptions or sample distributions, and most (82.22%) failed to report 
any information about the assumption of homogeneity of regression slope, an 
assumption critical to the validity of ANCOVA designs.

Another survey of articles published in 1998 and 1999 volumes of well-
respected educational psychology journals (Osborne, 2008b) showed that 
indicators of high-quality data cleaning in those articles were sorely lacking. 
Specifically, authors in these top educational psychology journals almost 
never reported testing any assumptions of the analyses used (only 8.30% 
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reported having tested any assumption). Only 26.0% reported reliability of 
data being analyzed, and none reported any significant data cleaning (e.g., 
examination of data for outliers, normality, analysis of missing data, random 
responding).

Finally, a recent survey of recent articles published in prominent Ameri-
can Psychological Association (APA) journals’ 2009 volumes (Osborne, et al., 
2011) found improved, but uninspiring results (see Figure 1.1). For example, 
the percentage of authors reporting data cleaning ranged from 22% to 38% 
across journals. This represents a marked improvement from previous surveys, 
but still leaves a majority of authors failing to report any type of data cleaning 
or testing of assumptions, a troubling state of affairs.

Similarly, between 16% and 18% reported examining data for extreme 
scores (outliers), 10% and 32% reported checking for distributional assump-
tions (i.e., normality), and 32% and 45% reported dealing with missing data in 

Figure 1.1   Percentage of Papers Reporting Having Checked for Each 
Data Cleaning Aspect
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some way. Clearly, even in the 21st century, the majority of authors in highly 
respected scholarly journals fail to report information about these basic issues 
of quantitative methods.

WHY CARE ABOUT TESTING  
ASSUMPTIONS AND CLEANING DATA?

Contrary to earlier studies, it is not clear that most statistical tests are robust to 
most violations of assumptions, at least not in the way many researchers seem to 
think. For example, research such as that by Havlicek and Peterson (1977) shows 
one-factor ANOVA to be more robust to violations of distributional assumptions 
than violations of the assumption of homogeneity of variance, but primarily when 
cell sizes are equal. One-way ANOVA appears to be less robust to violations  
of distributional assumptions when cell sizes are unequal, or to violations of  
variance homogeneity under equal or unequal cell sizes (e.g., Lix, et al., 1996; 
Wilcox, 1987). Yet this information about the robustness of simple one-way 
ANOVA, a relatively rare procedure in modern times, does little to inform us as 
to the relative robustness of more complex ANOVA-type analyses. In fact, recent 
arguments by research ethicists such as Vardeman and Morris (2003) state that 
statistical assumptions must be routinely assessed in order to ensure the validity 
of the results, and researchers such as Rand Wilcox (e.g., 2003, 2008) have made 
contributions by providing strong alternatives to traditional procedures for use 
when typical parametric assumptions fail the researcher.

One of the primary goals of this book is to convince researchers that, 
despite a seemingly ingrained mythology of robustness, it is in the best inter-
ests of everyone concerned to screen and clean data and test assumptions. 
While robustness research often focuses on Type I error rates (which are 
important), cleaning data and attending to assumptions also can have impor-
tant beneficial effects on power, effect size, and accuracy of population  
estimates (and hence, replicability of results), as well as minimizing the prob-
ability of Type II error rates.

HOW CAN THIS STATE OF AFFAIRS BE TRUE?

So how is it that we have come to this place in the social sciences? In the 
beginning of the 20th century, researchers explicitly discussed the importance 
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of testing assumptions. Yet contemporary researchers publishing in prominent 
empirical journals seem not to pay attention to these issues. Is it possible that 
authors, editors, reviewers, and readers are unaware of the importance of data 
screening and cleaning? Perhaps. It is true that most modern statistical text-
books seem to provide little concrete guidance in data cleaning and testing of 
assumptions, and it is also true that many modern statistical packages do not 
always provide these tests automatically (or provide guidance on how to inter-
pret them). I have taught graduate statistics classes for many years now, and 
having surveyed many textbooks, I am troubled at how few seem to motivate 
students (and researchers) to focus on these issues. Even when texts do discuss 
these issues, it is often abstractly and briefly, giving the reader little concrete 
guidance on how to perform these tests and how to think about the results of 
the tests of assumptions. It is possible that many students complete their doc-
toral training in the social sciences without focusing on these seemingly mun-
dane issues.

It also is possible that some portion of researchers are faithfully testing 
assumptions and not reporting having done so. I would encourage all researchers 
to both perform and report the results of data cleaning and testing assumptions, 
even if no action is necessary. It gives the reader confidence in the results.

Data cleaning and testing of assumptions remain as relevant and impor-
tant today as a century ago, and perhaps even more so. Data cleaning is critical 
to the validity of quantitative methods. Not only can problematic data points 
lead to violation of other assumptions (e.g., normality, variance homogeneity) 
but can lead to misestimation of parameters and effects without causing severe 
violation of assumptions. For example, in Chapter 7 I demonstrate that effec-
tively dealing with extreme scores can improve the accuracy of population 
parameter estimates, decrease Type I and Type II errors, and enhance effect 
sizes and power.

There is good evidence that two of the most basic assumptions in many 
statistical procedures (that data come from populations that conform to the 
normal density function with homogenous variances) appear rarely met in prac-
tice (Micceri, 1989). This raises important concerns about the validity of con-
clusions based on these assumptions in the absence of overt information about 
whether they are met. Further, I will demonstrate how paying attention to basic 
issues such as distributional assumptions may protect researchers from errors 
of inference, as well as lead to strengthened effect sizes (and hence, power  
and significance levels). These are not only relevant to parametric statistical 
procedures, coincidentally. Meeting these distributional assumptions also can 
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positively influence the results of nonparametric analyses (e.g., Zimmerman, 
1994, 1995, 1998).

Additionally, I will review issues such as the importance of dealing with 
missing data effectively, response sets and how they can bias your results, the 
basic mechanics of identifying and dealing with extreme or influential scores, 
performing data transformations, issues around data cleaning when the data 
consist of repeated measures, and using data sets that involve complex sam-
pling. In each chapter, my goal is to use empirical evidence and theory to 
guide the quantitative researcher toward best practices in applied quantitative 
methods.

THE BEST PRACTICES ORIENTATION OF THIS BOOK

It is my belief that quantitative researchers should be able to defend their prac-
tices as being the best available, much like medical doctors are encouraged to 
use the best practices available. In this spirit, I attempt to empirically demon-
strate each major point in this book. For example, many authors have argued 
that removal of outliers (or influential scores) does harm to the data and the 
results, while others have argued that failure to do so damages the replicability 
of the results.4 In my mind, it is less interesting to debate the philosophical 
aspects than to examine the evidence supporting each side. We, as quantitative 
researchers, should be able to definitively test which perspective is right and 
find evidence supporting a course of action. In the chapter on extreme scores 
(Chapter 7), I attempt to assemble a compelling empirical argument showing 
that it is a best practice to examine your data for influential data points, and to 
thoughtfully consider the benefits and costs of different courses of action. 
Similarly, there has been debate about whether it is appropriate to transform 
data to improve normality and homogeneity of variance. Again, I think that is 
something we can test empirically, and thus in Chapter 8 I attempt to persuade 
the reader through evidence that there are good reasons for considering data 
transformations. Further, in that chapter I present evidence that there are ways 
to perform transformations that will improve the outcomes.

Thus, the spirit of the book is evidence based. If I cannot demonstrate the 
benefit or importance of doing something a particular way, I will not recom-
mend it as a best practice. Further, if I cannot clearly show you how to incor-
porate a practice into your statistical routine, I will not recommend it as a best 
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practice. In other words, I propose that we as a field move toward a “survival 
of the fittest” mentality in our statistical practices. If we can show that, under 
certain circumstances, one practice is better than another, we should adopt it 
as a best practice, and shun others as less effective, at least in those situations 
where we have demonstrated a clear advantage of one technique over another.

As we move toward increasing specialization in the sciences, I believe it 
is unrealistic for scholars to remain current and expert in all areas. Thus, we 
need a cadre of statistical scholars who push the envelopes of innovation, who 
blaze the trail practitioners use, but we can no longer expect all researchers to 
be scholars of statistical methods. We must create clear, practitioner-oriented 
guidelines that help researchers get the best outcomes possible without assum-
ing they are masters of matrix algebra and statistical theory. In this vein, my 
goal in each chapter is to make procedures explicit so that practitioners can 
successfully apply them. I encourage my colleagues to do the same. Just as 
practicing nurses and doctors need explicit, research-based guidelines on 
implementing best practices, practicing researchers need clear guidance in 
order to do the greatest good.

DATA CLEANING IS A SIMPLE PROCESS; HOWEVER . . .

In conceptualizing this book, I intended to produce a simple series of proce-
dures that researchers could follow. Yet the more deeply I delved into this 
world, the more I realized that this is often not a simple, linear process. There 
is an art to data cleaning and statistical analysis that involves application of 
years of wisdom and experience. Not all readers at this time have extensive 
wisdom and experience with quantitative data analysis. Thus, the best you can 
do is to use your best professional judgment at all times. Every data set pres-
ents unique opportunities and challenges, and statistical analysis cannot be 
reduced to a simple formulaic approach. To do so ignores the complexities of 
the processes we deal with in the research enterprise and opens the researcher 
to miscarriages of scientific justice. This book is a beginning, not an end, to 
your exploration of these concepts. I cannot anticipate every eventuality, so all 
researchers must take the advice contained within as a set of guidelines that (I 
hope) generally work in most cases, but may not be appropriate in your par-
ticular case. This is where the art of data analysis meets the science of statis-
tics. Intimate familiarity with your own data, experience, and solid training in 
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best practices will prepare you to be optimally successful in most cases, but 
only you can determine when it is appropriate to deviate from recommended 
best practices. The only thing I would suggest is that whatever decisions you 
make in a particular analysis, you should be able to justify your course of 
action to a disinterested party (e.g., a qualified peer reviewer or dissertation 
committee member).

ONE PATH TO SOLVING THE PROBLEM

As my students (Brady Kocher and David Tillman) and I explored the myster-
ies surrounding statistical practice this past year, it has become increasingly 
clear that the peer review and publishing process itself can be part of the solu-
tion to the issue of data cleaning.

It may be the case that some portion of researchers publishing in the jour-
nals we examined did faithfully screen and clean their data and faithfully 
ensure that important assumptions were met prior to submitting the research 
for peer review. Perhaps these aspects of data analysis are viewed as too mun-
dane or unimportant to report. Alternatively, some portion of researchers may 
be aware of the tradition of screening and cleaning data but for some reason 
may be under the impression that when using modern statistical methods and 
modern statistical software it is unnecessary to screen and clean data. In a 
perfect world, editors and peer reviewers would serve as a methodological 
safety net, ensuring that these important issues are paid attention to.5

Regrettably, the usual peer-review process implemented by most schol-
arly journals seems ill-prepared to remedy this situation. Elazar Pedhazur, in 
Chapter 1 of Multiple Regression in Behavioral Research (Pedhazur, 1997), is 
even stronger in indicting current research quality in the social sciences, and 
the failure of the peer review process:

Many errors I draw attention to are so elementary as to require little or no 
expertise to detect. . . . Failure by editors and referees to detect such errors 
makes one wonder whether they even read the manuscripts. (p. 10).

Unfortunately, Pedhazur is not the only prominent scholar to question the 
quality of the traditional peer-review process (see also Kassirer & Campion, 
1994; Mahoney, 1977; Peters & Ceci, 1982; Weller, 2001). Reviews of the 
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literature (e.g., Hall, Ward, & Comer, 1988) going back decades find that a 
disturbingly large portion of published educational research appears to contain 
serious methodological flaws. Many of these errors are unnecessary and 
largely the result of poor methodological training (e.g., Thompson, 1999).

Yet as problematic as peer review might be, in at least one specific 
instance it appears that the system may have worked as a powerful agent of 
positive change in statistical practice. In 1999 the APA released guidelines for 
statistical methods in psychology journals (Wilkinson & Task Force on Statis-
tical Inference, 1999) that specified that effect sizes should be routinely 
reported. In response, many journals now include effect size reporting in their 
author guidelines and review criteria, and as a result, we have seen a substan-
tial increase in the reporting of effect size, at least partly because journal 
gatekeepers were mandating it. In the same spirit, it would be simple for pro-
fessional organizations such as the APA to mandate authors report on data 
screening, cleaning, and testing of assumptions.

Until that day, I hope this book encourages you, the reader, to change your 
practice to incorporate these easily-to-use techniques that can have unexpected 
payoffs. This book continues the spirit of best practices begun in my first edited 
volume (Osborne, 2008a) by presenting researchers with clear, easily imple-
mented suggestions that are research based and will motivate change in practice 
by empirically demonstrating, for each topic, the benefits of following best 
practices and the potential consequences of not following these guidelines.

FOR FURTHER ENRICHMENT

1. Review the author instructions for journals generally considered to be top 
tier or most respected in your field. See if any of them explicitly instruct 
authors to report testing assumptions, data cleaning, or any of the other 
issues we raise.

2. On our book’s website (http://best-practices-online.com/), I provide links to 
author instructions from journals in various fields. Which journals or fields 
have the most explicit author instructions? Which have the least explicit 
instructions? Can you see any differences in the articles contained in jour-
nals that have more explicit directions for authors?

3. Review a recent study of yours (or your advisor) where statistical assump-
tions were not tested and where the data are still available (we all have 
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them, and I am as guilty as everyone else). As you work through this book, 
apply the various data cleaning techniques and test all assumptions for all 
statistical tests used in the study. Perhaps all the assumptions are met and 
your results now have even more validity than you imagined. 
Congratulations! Perhaps after cleaning the data and testing assumptions, 
your results are changed. Sometimes that can be a positive outcome, or 
sometimes that can be disappointing.

4. If you have an interesting example of results and conclusions that changed 
after revisiting a data set and testing assumptions, I would love to hear from 
you at jasonwosborne@gmail.com. Send me a summary of what you 
found, and how things changed.

NOTES

1. Yet again, it is important to point out that these studies are often focused nar-
rowly on probability of Type I error rather than accuracy of parameter estimates or 
effect sizes. These latter aspects of analyses are often as important in modern research 
as the probability of making a Type I error.

2. To be clear, it is debatable as to whether these relatively simple procedures are 
as robust as previously asserted.

3. For more information on best practices in assessing normality, see Chapter 5.
4. These arguments are covered in greater depth in Chapter 7, and therefore are 

not reproduced here.
5. I must thank one of my doctoral committee members from years ago, Scott 

Meier, who gently reminded me to make sure I had done due diligence in cleaning my 
data and paying attention to extreme scores. Dr. Meier’s gentle reminder salvaged what 
was turning out to be rather dismal results, allowing me to identify a very small number 
of inappropriately influential scores that were substantially biasing my results. 
Removal of these few scores led to strong support for my original hypotheses, as well 
as a two-decade-long appreciation of the power of “sweating the small stuff.”
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A good friend and colleague recently came to me for help with data 
analysis for a study she was completing. In this study, teachers partici-

pated in professional development for new instructional technology and then 
received follow-up technical support as they attempted to incorporate the new 
technology into lesson plans. The 30 teachers were randomly assigned to 
receive support either traditionally (e.g., face-to-face, in person) or via video 
conferencing. This is a particularly interesting and important issue for teachers 
in rural and underserved areas where access to technical support may be scarce 
relative to teachers in suburban and relatively wealthy areas. The goal of the 
study was to explore whether there were any differences in teacher outcomes 
as a function of which type of technical support they received. The hope was 
that there were no differences between the two groups. In hypothesis testing 
terminology, my friend wanted to retain the null hypothesis, allowing her to 
assert that the two groups fared equally well regardless of which type of tech-
nical support they received.

Unfortunately, only 9 of 15 in one group and only 4 of 15 in another group 
returned follow-up surveys. Thus, when the data were analyzed, almost every 
statistical test was nonsignificant. My friend was initially delighted, believing 
this was evidence supporting her notion that teachers fare equally well with 
both types of technical support.

As is often the case, my friend’s mood became more somber after talking 
to me.1 She had the misfortune of approaching me for help with this study at 
the same time I was writing this chapter. From what little you know of her 

 TWO 

POWER AND PLANNING  
FOR DATA COLLECTION

Debunking the Myth of Adequate Power
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study thus far, do you see any potential issues with drawing conclusions about 
the groups’ equivalence?

POWER AND BEST PRACTICES IN  
STATISTICAL ANALYSIS OF DATA

“It may be accepted as a maxim that a poorly or improperly 
designed study involving human subjects—one that could not pos-
sibly yield scientific facts (that is, reproducible observations) . . . is 
by definition unethical.” (Rutstein, 1969, p. 524)

Imagine you are planning a study. You have spent a great deal of time review-
ing literature, figuring out how to measure the variables you need, planning 
your analyses, and probably imagining how the final published article will be 

received. How do you decide how 
many participants you need to include 
in your sample? Do you simply use as 
many as you can get to participate? 
That can be costly, but can definitely 
have benefits (e.g., more power, more 
representative sample). Do you go with 
the old2 rule of thumb of 10 partici-
pants per variable (or group)? Do you 
choose a number that seems reason-
able? Fortunately, there is a relatively 
simple, empirically valid method to 
estimate how large a sample you might 
need for any particular study using 
power analysis.

Statistical power is the ability to 
correctly reject a false null hypothesis 
(in other words, to detect effects when 
indeed effects are present) and is calcu-
lated based on a particular effect size, 
alpha level, and sample size as well as 
in the context of a particular analytic 

Defining Some Key Terms

Statistical Power: is the ability to 
correctly reject a false null 
hypothesis. Power is conceptualized 
as the probability of rejecting a false 
null hypothesis. There are two types 
of power discussed in this chapter.

A Priori Power: is an estimate of 
power that is calculated prior to 
beginning a study that estimates how 
many data points a researcher 
needs, given a Type I error rate and 
estimated effect size.

A Posteriori Power: is power that is 
calculated after data are collected 
and analyzed. Similar to a priori 
power, this type of power tells a 
researcher the probability of 
correctly rejecting a false null 
hypothesis at a particular effect size, 
given the size of the sample in the 
data set.
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strategy. Jacob Cohen (1962, 1988, 1992) spent many years encouraging the 
use of power analysis in planning research, reporting research, and interpret-
ing results (particularly where null hypotheses are not rejected). Indeed 
authors were discussing the issue of power more than half a century ago (e.g., 
Deemer, 1947).

Though it is unclear how many researchers actually calculate power and 
sample size before conducting a study, when I reviewed some literature 
recently, few seemed to report having done so (in educational psychology 
journals, only 2% of articles in the 1998–99 volumes reported calculating 
power of any kind; see Osborne, 2008). This raises interesting questions about 
the science we rely on. Further, recent surveys of the literature generally indi-
cate that a relatively low percentage of studies meet Cohen’s criterion for 
“acceptable” power. I also reported that, although power in the field of psy-
chology has increased from the 1960s to the 1990s, only 29% of randomized 
experimental studies, and only 44% of nonexperimental (or quasi-experimental) 
studies in prominent psychology journals met the criterion of having calcu-
lated power of .80 or higher (Osborne, 2008).

In this chapter I discuss how power is important in two different aspects 
of quantitative research: planning research sampling strategies and interpret-
ing null results. 

First, Cohen and others (see Cohen, 1962, 1988, 1992) have argued that 
no prudent researcher would conduct research without first making a priori 
analyses to determine the optimal sample size to maximize the probability of 
correctly rejecting the null hypothesis. Researchers who fail to do this risk 
having either (a) an insufficient sample size to detect the anticipated effect, 
thus wasting resources and effort, or (b) a sample that is far larger than needed 
to reliably detect an anticipated effect, thus wasting resources and effort on 
gathering substantially more data than is needed. As you might imagine, if you 
were planning for your dissertation this might be important information, par-
ticularly if it is difficult to gather data (or if you want to complete your degree 
in a reasonable timespan). You want to ensure you have enough power to 
adequately test your hypotheses, but do not want to waste extra months or 
years collecting unneeded data.

Second, a posteriori analyses of power are useful in shedding light on null 
results (i.e., the finding that there was no significant relationship between two 
variables or no significant differences between two or more groups). For 
example, in a study that fails to reject the null hypothesis, a power analysis can 



22 Best Practices in Data Cleaning

inform the researcher and reader about how to interpret the results. Failure to 
reject the null hypothesis when there was low power to detect effects of rea-
sonable magnitudes (such as in my friend’s case) is much less informative than 
when there was substantial power to detect effects of reasonable magnitude 
and still none are detected. In the latter case, one can be more certain that there 
truly are minimal differences between groups, whereas in the former case it is 
difficult to draw any clear conclusions about the data.

HOW NULL-HYPOTHESIS  
STATISTICAL TESTING RELATES TO POWER

Null-hypothesis statistical testing (NHST) has been reviled in the literature by 
many as counterproductive and misunderstood (for an excellent overview of 
the issues, see Fidler & Cumming, 2008; Killeen, 2008; Schmidt, 1996). Many 
authors have acknowledged the significant issues with NHST and some 
(Killeen, 2008; Schmidt, 1996) have proposed alternatives such as the proba-
bility of replication as a more interesting or useful replacement.

NHST is the classic procedure used in many areas of science where a 
scientist proposes two hypotheses. The first, a null hypothesis (Ho ), is gener-
ally a hypothesis that there is no effect (e.g., no relationship, no difference 
between groups) and can be stated in very simple forms as:

Ho: rxy = 0; or

Ho: x
–

1 = x–2

Conversely, alternative hypotheses are generally what the researcher 
expects or hopes to find, and is often stated as a “significant effect” (e.g., a 
relationship between two or more variables, a significant difference between 
two or more groups).

Ha: rxy ≠ 0; or

Ha: x
–

1 ≠ x–2

One could imagine that it is often the case that few group averages are 
exactly identical and that few correlations between two variables are exactly 
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.00000. So in an absolute sense, it is almost always the case that null hypoth-
eses are false if taken to enough decimal places (Cohen, 1988). In other words, 
group means of 50.000001 and 50.000002 are not equal in the strictest math-
ematical sense, but for practical purposes probably are functionally equal. 
Likewise, a correlation of .00001 is technically not equal to 0, but in a practi-
cal sense it is a little different. Further, it is possible to have two means that 
differ by hundreds (e.g., x–1 = 42,500.00 and x–2 = 42,756.00) and that look very 
different, yet one could imagine a scenario where those two means are not 
statistically or practically different (e.g., average yearly salaries, estimated 
number of years until a country’s debt is paid off).

Thus, while it is often informative to look descriptively at what the data 
tells us, examples like this should make it clear that we need a better way of 
making decisions about our data. Inferential tests such as null-hypothesis sta-
tistical testing were developed to guide researchers in determining whether 
they could conclude that there was a significant effect (Fisher, 1925).

WHAT DO STATISTICAL TESTS TELL US?

Statistical tests tell us the probability of obtaining the observed results (the 
pattern of group means and standard deviations, or the observed correlation 
coefficient, F, odds ratio, r2,and so on) if the null hypothesis were true in the 
population. In other words, the p value answers the following question: “What 
is the probability of getting the results observed in the data if in fact there are 
no group differences or no relationships in the population?” This concept is a 
little confusing at first, as we often are told that the p value is the probability 
of obtaining the results “by chance” or some similar, but technically inaccu-
rate, interpretation.

Thus, we establish two different possible decisions we can make regard-
ing our hypotheses and two different (yet unknowable) states of “reality.” 
Take, for example, a simple comparison of two groups. It is possible that the 
two groups are either identical or different in some way. It is also possible that 
I, as a researcher, can draw one of two different conclusions about those 
groups based on data I collect: that the groups are significantly different or that 
the groups are not significantly different. As Table 2.1 shows, this gives us 
four possible outcomes, two of which are potential errors.
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Table 2.1  Hypothesis Testing and Errors of Inference

Population or Unknowable “Reality”

Groups are  
Not Different

Groups are 
Different
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Groups are not 
Significantly 

Different

Correct Decision Type II Error

Groups are 
Different

Type I Error Correct Decision

Thus, we hope that our data lead to a correct decision, but it is possible that 
we make either a Type I error (concluding there is a significant effect when 
none exists in the population) or Type II error (failing to conclude a significant 
effect exists when there is in fact an effect in the population). Understandably, 
as our field evolved, a primary focus was on minimizing the probability of 
making a Type I error. For example, if I am testing a new drug on patients and 
comparing them to placebo or control groups, I want to be very sure that new 
drug is actually producing significant differences before recommending doctors 
prescribe it. Likewise, we want to be relatively certain that a psychological or 
educational intervention will produce the desired differences over existing 
interventions prior to recommending implementation. In the earlier decades of 
the 20th century this decision rule (α = .05) was more flexible. At this point it 
is routinely assumed that we fix alpha at .05, meaning that we give ourselves 
only a 5% chance of making a Type I error in our decision making.

Thus, when performing statistical tests that give us probabilities (p val-
ues), we accepted the rule that if p < .05 (in other words, that there is less than 
a 5% chance that we would get the observed data from a population where the 
null hypothesis was true), then we reject the null hypothesis and conclude that 
significant differences exist between groups. Why, might you ask, are we 
happy to institutionalize a 5% chance of making such an important error? Why 
not set the bar at 1% or 0.01% so that we are very certain of not making an 
error of this type? We very well could do that, but in doing so, we would dras-
tically increase the odds of making the other type of error, a Type II error. 
Thus, the scholars settled on 5% as small enough to avoid significant harm to 
the body of knowledge but large enough to avoid causing a high rate of the 
other type of error, which as you soon will see, can be equally problematic.
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Significance tests do not tell us several critical things about our results. 
First, p values do not tell us the probability that the results would be replicated 
in a subsequent sample or study. In fact, it is power that gives us insight into 
the probability of replication given identical circumstances (Schmidt, 1996). 
Second, and most importantly, significance tests do not tell us the importance 
of a particular effect. We often see researchers use terms like marginally sig-
nificant, significant, and highly significant to indicate ever smaller p values. Yet 
p values are determined by various factors, including sample size and effect 
size. Thus, a very small effect in a very large sample can have a very small p 
value, but be practically unimportant. Likewise, a large effect in a small sample 
(like my friend’s study) may have a relatively large p value (i.e., p in excess of 
.05). And in neither case do we know anything about the probability of replicat-
ing the result unless we know the power of each test. Finally, p values do not 
tell us anything about the probability of making a Type II error (failing to reject 
a null hypothesis when there is a significant effect in the population). Only 
power can tell us the probability of making this type of error.

So what does failure to reject the null hypothesis mean? It is not clear that 
in the seminal works by Fisher (e.g., Fisher, 1925) he intended that failure to 
reject the null hypothesis to mean the acceptance of the null (Schmidt, 1996) 
as we often think today. In other words, if you fail to reject the null hypothesis, 
two different possibilities exist: (a) that you have no clear information about 
the nature of the effect, or (b) that you have sufficient information about the 
nature of the effect and you can conclude that the null is accurate. A similar 
issue exists within our U.S. criminal justice system. Failing to convict some-
one accused of a crime can mean: (a) that there is not sufficient evidence to 
convict, or (b) there is clear evidence of innocence.

This is an important distinction (in both the legal and scientific communi-
ties). Imagine the situation where you are evaluating two educational interven-
tions, one that is very simple, traditional, and inexpensive, and one that uses 
expensive instructional technology in an attempt to improve student outcomes. 
Failure to reject the null could mean that you have insufficient information to 
draw any inferences or it could mean that the two interventions are not produc-
ing significantly different outcomes. The ability to conclude the null is valid is 
important from a policy perspective. It means school districts could save mil-
lions of dollars every year by implementing the “traditional” intervention in 
lieu of the high-technology intervention, as outcomes are identical. In contrast, 
not having enough information means just that: no conclusion is possible.
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The difference between being unable to draw conclusions and being able 
to conclude the null hypothesis is valid is related to the power of the study. If 
the study had sufficient power to detect appropriate sized effects and failed to, 
that allows us to be more confident in concluding the null is supported. If the 
study did not have sufficient power to reliably detect appropriate sized effects, 
then no conclusion is possible. This is a common misconception in the scien-
tific literature (Schmidt, 1996), and yet another reason to ensure you have the 
appropriate power in your research.

HOW DOES POWER RELATE TO ERROR RATES?

Power comes into play in this discussion in two different ways. First, power is 
the power to reject a false null hypothesis. In other words, if there really are 
differences between two groups in the unknowable “reality,” a study with 
greater power will be more likely to reject the null hypothesis, leading the 
researcher to the correct conclusion—that there are differences between the 
groups (when in fact, differences between the groups exist). So, following our 
examples thus far, if you are testing a new drug and the drug is really having 
a beneficial effect on patients, power is the probability you will detect that 
effect and correctly reject the null hypothesis. Theoretically, if your power is 
.80, you will correctly reject the null hypothesis on average 80% of the time 
(given a particular effect size, sample size, and alpha level). Conversely, even 
in situations where there is a real effect in the population, and there are real 
group differences, with a power level of .80, 20% of the time you will fail to 
detect that effect. In other words, you may have a wonderfully effective drug 
that can save people from misery, disease, and death, but under this hypo-
thetical scenario, 20% of the time you will not realize it. This is a Type II 
error—the failure to reject a null hypothesis when in the unknowable “reality” 
there is an effect.

As you can imagine, this is an undesirable outcome. While we want to be 
sure to avoid Type I errors (e.g., asserting an intervention is effective when in 
fact it is not), it seems to me equally troubling to fail to see effects when they 
are present. Fortunately, there is a simple way to minimize the probability of 
Type II errors—ensure you have sufficient a priori power to detect the 
expected effects. Researchers who fail to do a priori power analyses risk gath-
ering too little or too much data to test their hypotheses. If a power analysis 
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indicates that N = 100 subjects would be sufficient to reliably detect a particu-
lar effect,3 gathering a sample of N = 400 is a substantial waste of resources.

Second, a posteriori analyses of power are useful in shedding light on null 
results. For example, if a study that fails to reject the null hypothesis had power 
of .90 to detect anticipated or reasonable effect sizes, one can be more confident 
that failing to reject the null was the correct decision, as well as more confident 
in asserting that the null hypothesis is an accurate description of the population 
effect. However, in the context of poor power, failure to detect a null hypothesis 
gives little information about whether a Type II error has occurred. Taking my 
friend’s research on professional development for teachers, under the scenario 
described (four teachers in one group and nine teachers in another group who 
returned surveys), the power to detect a moderately large (e.g., d = 0.50) is only 
about .30 (see Figure 2.1). In other words, 70% of the time that analysis will 
miss an obvious effect just because there is not enough power to see it. Even if 
all teachers had returned their surveys, in the best case that study only had power 
of .45, meaning that more than half of the time a moderately sized effect will be 
missed solely due to lack of power. Given this, is it legitimate to conclude from 
her null results that the two groups were really equal? Or is it the case that we 
should be very cautious in concluding anything about the groups?
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Figure 2.1  Probability of Correctly Rejecting a False Null Hypothesis

Note. From Cohen, 1988, p.30: power of t-test with effect size d = 0.50, a = .05
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LOW POWER AND TYPE I ERROR RATES IN A LITERATURE

Aside from Type II error rates, low power has implications for Type I error 
rates in the overall body of research. The social sciences have been accused of 
having low power as a field for many decades, despite the fact that some 
recent reviews of the literature, like mine (Osborne, 2008), find good power to 
detect effects in most studies. Rossi (1990) argued that the power of a group 
of studies can influence their reliability and usefulness as a whole. The argu-
ment Rossi proposed was that low power in a large group of studies can 
increase the proportion of Type I errors in a field, which can influence consis-
tency in replication of results across studies.

To understand this novel perspective on the importance of power to Type 
I error rates, let us assume that there is a strong bias toward journal editors 
publishing only studies that report statistically significant findings (Dickersin 
& Min, 1993). Let us further imagine a field where there is very poor power, 
such that the average study in the field had a power of .20. Thus, out of 100 
studies performed within this field, we assume that 5% will end up with Type 
I errors and get published with erroneous results. With power of .20, 20 out of 
100 will detect real effects that exist, while 80% will miss existing effects and 
be discarded or remain unpublished. Thus, taking this extreme situation, 20 
studies with true effects will be published for every five that are published 
with false effects (Type I errors). Following Rossi’s argument, that leads us to 
a 20% Type I error rate (five out of 25 total articles published in the field) 
rather than the 5% we assume from setting alpha at .05.

This example represents an extreme and unrealistic situation. Or does it? 
Cohen’s 1962 survey of the top-tier psychological literature concluded power of 
.48 to detect medium-sized effects. While that is substantially better than the .20 
in the example above, it does produce inflated Type I error rates for the field. 
Again, assuming a very strong publication bias, we would have approximately 
50 true effects published for every five false effects, which leads to a 10% Type 
I error rate in the field—double the rate we think it is. While this might not sound 
like a serious problem, if you were being tested for cancer, would you rather 
have a test that has a 5% chance of a false positive or 10% chance?

Further, we often have controversies in fields that lead to confusion and 
tremendous expenditure of resources when in fact the conflicting results may 
be more methodological than substantive—marginal power producing con-
flicting results, noncomparable samples or methods, and so on. When power 
is low in a field, there can be wide variation in the replicability of a real,  
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moderately strong effect in the population. In a simulation presented later in 
this chapter, small, low-power samples taken of a “population” produced 
wildly fluctuating estimates of the effect, leading to a Type II error almost half 
the time. Imagine this was the study of the effect of homework on student 
achievement (or exercise on lifespan). If there was a real relationship between 
the two variables in the population, but researchers repeatedly used conve-
nience samples that had poor power, one could easily see how controversy 
could develop. Half the researchers would assert there is no significant rela-
tionship between the two variables, and half would find powerful, significant 
effects, leaving practitioners at a loss to draw valid conclusions.

Thus we are left with a situation where statistical power is a very important 
concept, but reviews of power in many disciplines are discouraging. Cohen’s 
(1962) initial survey of the Journal of Applied and Social Psychology, a top-tier 
psychology journal at the time, found that power to detect a small effect in this 
literature was .18, medium effect was .48, and a large effect was .83. In other 
words, unless researchers in psychology were studying phenomena with large 
effect sizes (which is assumed to be relatively rare in the social sciences), 
researchers generally had less than a 50:50 chance of detecting effects that 
existed—the exact situation described in the previous paragraph. Reviews of 
other areas (Rossi, 1990; Sedlmeier & Gigerenzer, 1989) paint a similarly bleak 
picture for more recent research. These reviews indicate that, by the end of the 
1980s, little had changed from the early 1960s regarding power.4

HOW TO CALCULATE POWER

Each statistical test has different methods for computing power. Thus, this is 
not a simple issue to address. Authors such as Cohen (1988) have published 
books that collect this information, and software is freely available to compute 
power for many different common analyses, such as G*Power (Faul,  
Erdfelder, Buchner, & Lang, 2009).5 There are also commercial power analy-
sis programs that often handle more complex analyses. If you are performing 
a particular type of analysis, many webpages provide calculators (the Depart-
ment of Epidemiology and Biostatistics at the University of California, San 
Francisco have attempted to catalogue some of these.)6

Using G*Power to do some simple calculations, you can see in Table 2.2 that 
it is often not a large increase in sample size to increase power from .80 to .95, 
although it is evident that power to detect small effects is difficult to come by.
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Table 2.2   Sample Sizes Needed to Achieve Power of .80 and .95 
Given Small, Medium, and Large Effect Sizes

Sample Size Needed to 
Achieve Power = 0.80

Sample Size Needed to 
Achieve Power = 0.95

Simple Correlation1

ρ = .10 779 1,289

ρ = .30  82   134

ρ = .50  26    42

Independent
Groups t-Test2

d = 0.20 788 1,302

d = 0.50 128   210

d = 0.80  52    84

Repeated Measures 
ANOVA3

f = 0.10 138   216

f = 0.25  24    36

f = 0.40  12    16

Logistic Regression4

Odds ratio = 1.50 308   503

Odds ratio = 3.00  53    80

Odds ratio = 8.00  26    35

Note. Effect size conventions taken from Cohen (1988).
1. Calculated at α = .05, two-tailed test
2. Calculated at α = .05, two-tailed test, equal cell sizes, total sample reported
3.  Calculated at α = .05, two groups, four measurements each, correlation among repeated 

measures = .50, no nonsphericity correction
4.  Odds ratios of 3.00 are considered important in epidemiological literature (Kraemer, 1992), thus this 

was selected as a medium effect size. Odds ratios inflate quickly (and not linearly) and thus 8.00 was 
selected as a large effect (Hsieh, Bloch, & Larsen, 1998), and 1.50 was selected as a small effect size. 
Unfortunately, there is not agreement about what constitutes large, medium, and small effects in odds 
ratio. Two-tailed tests, no other IVs were included in the analysis; the IV was assumed to be normal.
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THE EFFECT OF POWER ON THE  
REPLICABILITY OF STUDY RESULTS

To demonstrate the effect of power on the potential quality of results, I 
used data from the base year of the Education Longitudinal Study of 
2002 (Bozick, Lauff, & Wirt, 2007). The 15,244 students with complete 
data on both 10th grade family socioeconomic status (BYSES1) and 10th 
grade Math IRT score (BYTXMIRR) were used as the example popula-
tion for the purposes of this demonstration. In this population, the cor-
relation between those two variables is ρ = .43.7 Given this effect size in 
the population, G*Power estimated that a sample of N = 60 would pro-
duce power of .95, and N = 37 would produce power of .80. However, to 
demonstrate the effects of reduced power, I will begin the demonstration 
with samples of N = 20, which should give power of .50, which is only 
slightly less than that estimated to detect a medium effect size of the 
average psychological study published in the latter part of the 20th cen-
tury (Rossi, 1990). To simulate the effect of relatively inadequate power 
on research and error rates, I randomly drew 100 samples from this 
population, each with a sample size of N = 20,8 and calculated the cor-
relation described above. If the argument presented in this chapter is 
correct, a substantial number of the samples should lead to Type II errors 
(failure to reject the null hypothesis). Further, there should be substantial 
variability in the ability to replicate the population parameter. The data 
generated is presented in full in the appendix of this chapter and is sum-
marized in Figure 2.2.

As expected, the average correlation over the 100 samples was close to 
the population parameter of .43 (average r = .44) but due to the low sample 
size the range of outcomes was somewhat alarming—ranging from r20 = .02 to 
.88. In this example, 44.0% of the correlations produced Type II errors (failing 
to reject a false null hypothesis), producing an observed power that is similar 
to the theoretical power calculated (.56). Thus, had I been a researcher with a 
limited, representative sample from this population, the odds are almost 50:50 
that I would have committed a Type II error, incorrectly failing to reject the 
null hypothesis. Perhaps more disturbing, it is likely I would have seriously 
misestimated the effect size.

By converting the correlation coefficients to effect sizes (r2), we can 
evaluate the extent of the misestimation of effect size attributable to having an 
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inappropriately small sample size. I squared each calculated correlation coef-
ficient, subtracted it from the square of .43 (ρ2 = .1849, the population effect 
size) and then divided by the population effect size (.1849) to calculate the 
percentage by which each calculated correlation coefficient was misestimated. 
This ranged from 0.00% to 319.00%, with an average of 66.76% (and a stan-
dard deviation of 56.88%). To explore the effect of low power on the precision 
of the population estimate (ρ = .43) I calculated a 95% confidence interval for 
the correlation coefficient from the 100 samples of N = 20. This calculation 
(mean ± 1.96 SD) yields a 95% confidence interval that ranges from .10 to .78, 
hardly a strong point estimate.

In contrast, when samples are appropriately powered at .95 power (N = 
60), the results are markedly different. As Figure 2.3 shows, in this case, the 
average correlation coefficient was .44 with a standard deviation of 0.10, rang-
ing from .13 to .64. Furthermore, as expected, only 4.0% of the samples pro-
duced Type II errors, and the magnitude of the misestimation was markedly 

Figure 2.2  Results of 100 Correlation Coefficients (N=20)

30

25

20

15

10

5

0

Sample Correlations
.1

1–
.2

0
<.

10

.2
1–

.3
0

.3
1–

.4
0

.4
1–

.5
0

.5
1–

.6
0

.6
1–

.7
0

.7
1–

.8
0

.8
1–

.9
0

>.
90

Note. Calculated from samples of N = 20 where the population coefficient is ρ = .43



Chapter 2  Power and Planning for Data Collection 33

reduced (37.28% with a standard deviation of 29.01%, significant at F(1, 198) = 
21.32, p < .0001, η2 = .10).

In other words, the odds that a Type II error in the N = 20 samples would 
be made were 18.86 times that of the N = 60 samples (the odds ratio is sig-
nificant at p < .0001). Furthermore, the samples of N = 60 create a more pre-
cise population estimate. When once again figuring the 95% confidence 
interval, we get a range of .24 to .64, a narrower range than the N = 20 sample.

CAN DATA CLEANING FIX THESE SAMPLING PROBLEMS?

Unfortunately, in many cases poor sampling cannot be corrected by data clean-
ing. In subsequent chapters, we will explore the benefits of screening for 
extreme scores and normality of variables prior to analyses such as this. Thus, 
it is probably natural to wonder if those techniques would help offset the issues 

Figure 2.3  Results of 100 Correlation Coefficients (N=60)
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raised in this chapter from poor sampling, and to my knowledge no research 
addresses this issue definitively.

However, taking a few of the N = 20 samples that produced substantial 
misestimation, it does not appear to be the case that an oddly skewed sample 
or the presence of extreme scores is responsible for the misestimation. For 
example, taking one sample that produced a seriously misestimated correla-
tion of r(20) = .69 (Sample07), there is no evidence of extreme scores9 (no score 
more than 2 standard deviations from the mean on either variable, nor is the 
normality of either variable tremendously out of line (skew was -0.60 for 
BYSES1 and -0.03 for BYTXMIRR). Further, when a transformation was 
applied to BYSES1 to correct normality that misestimation actually increased, 
subsequently calculating a r(20) = .72. Finally, screening the data for bivariate 
outliers using standardized residuals failed to show any evidence of extreme 
biavariate scores (outliers) that were substantially skewing the estimation of 
the correlation (standardized residuals ranged from z = -1.56 to 1.83, well 
within normal range). Similar effects were found on other substantially mises-
timated samples, both those that overestimate the population correlation and 
those that substantially underestimate the population correlation (e.g., Sam-
ple10). Both of these sample data files will be available online.

CONCLUSIONS

I hope at this point it is obvious that calculating a priori power is in your best 
interest as a researcher to help maximize the probability that your study will 
be a success and that your data gathering will be maximally efficient. I also 
hope that the discussions concerning a posteriori power helps clarify best 
practices when dealing with interpretation of null findings. Specifically, I 
would suggest calculating a posteriori power given a sample size and alpha = 
.05 for small, medium, and large effects (Cohen and others have published 
guidelines for this, such as d = 0.20, 0.50, and 0.80) to establish the probabil-
ity of detecting a small, medium, or large effect in a particular sample. If 
power was good, and your study did not detect an effect (or did not detect an 
important sized effect), you can be more confident accepting the null hypoth-
esis than if your sample did not have sufficient power to detect even moderate 
or large effects.
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The unfortunate truth that I had to share with my friend is that little 
can be done with a study such as hers when there is such poor power. 
Because she failed to do a power analysis and gather appropriate amounts 
of data, she may have wasted a good deal of her time without being able 
to clearly answer the question she was posing. This is an avoidable prob-
lem. I encourage you to always calculate power prior to engaging in  
data collection so that your research can be maximally productive and 
successful.

FOR FURTHER ENRICHMENT

1. Explore the data sets sampled at N = 20 from the population posted online 
(http://best-practices-online.com) to see if any of the samples that produced 
seriously misestimated effects can be salvaged through conventional data 
cleaning methods.

2. Download the “population” data set and take a sample of your own. 
Calculate the correlation coefficient and see how close you are to the “true” 
population estimate of ρ = .43. Take a smaller or larger sample and see 
whether your results change.

3. Take a recent study that you were involved in (or one from a good journal 
in your field, preferably a study your advisor published recently). Using 
the freely available software G*Power, calculate how much power that 
study had to detect a small, medium, or large effect (for example, using 
t-tests, d = 0.20, 0.50, and 0.80 for small, medium, and large effect sizes). 
Are you satisfied with that level of power? If not, calculate what sample 
size you (or your advisor) would have needed to gather in order to have 
sufficient power.

4. Review articles in a top journal in your field. Note how many articles men-
tion the term power and in what context. What percentage appear to have 
performed an a priori power analysis?

5. Find an article in your field that concludes null findings (e.g., no rela-
tionship, no difference between groups). Do the authors discuss whether 
they had sufficient power to detect effects of reasonable magnitude? If 
not, perform your own test to see if their conclusions are warranted. If 
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power to detect reasonable effects is not high, their conclusions might 
be suspect.

APPENDIX

Data from first simulation: ρ = .43, N = 20, and power = .50, or N = 60 
and power = .95

Sample cale_r_N20 p < cale_r_N60 p <

  1  0.34  .15  0.36 .005

  2  0.4  .08  0.51 .0001

  3  0.57  .009  0.33 .01

  4  0.5  .03  0.4 .002

  5  0.28  .24  0.28 .03

  6  0.26  .28  0.51 .0001

  7  0.57  .008  0.57 .0001

  8  0.07  .77  0.49 .0001

  9  0.34  .14  0.4 .001

 10  0.3  .2  0.44 .0001

 11  0.44  .05  0.4 .001

 12  0.56  .01  0.44 .0001

 13  0.11  .63  0.53 .0001

 14  0.19  .42  0.44 .0001

 15  0.5  .02  0.6 .0001

 16  0.51  .02  0.5 .0001

 17  0.43  .05  0.13 .32

 18  0.33  .16  0.36 .005

 19  0.59  .006  0.41 .001

 20  0.31  .187  0.31 .02

Table 2.3  Results of 100 Correlation Coefficients 
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Observed r, 
N=20 

Observed r, 
N=60

 21  0.36  .12  0.38 .003

 22  0.62  .004  0.44 .001

 23  0.73  .0001  0.42 .001

 24  0.44  .05  0.5 .0001

 25  0.29  .21  0.38 .003

 26  0.28  .24  0.57 .0001

 27  0.37  .11  0.54 .0001

 28  0.4  .08  0.59 .0001

 29  0.39  .09  0.43 .001

 30  0.78  .0001  0.46 .0001

 31  0.33  .16  0.59 .0001

 32  0.25  .29  0.48 .0001

 33  0.66  .002  0.52 .0001

 34  0.61  .004  0.53 .0001

 35  0.35  .126  0.52 .0001

 36  0.67  .001  0.53 .0001

 37  0.52  .018  0.42 .001

 38  0.5  .027  0.52 .0001

 39  0.46  .04  0.56 .0001

 40  0.46  .044  0.53 .0001

 41  0.52  .019  0.36 .005

 42  0.58  .008  0.4 .002

 43  0.47  .036  0.33 .011

 44  0.76  .0001  0.55 .0001

 45  0.3  .21  0.43 .001

 46  0.52  .019  0.56 .0001

(Continued)
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Sample Calculated r 
(N=20)

ρ < Calculated r 
(N=60)

ρ <

 47  0.31  .19  0.32 .012

 48  0.47  .038  0.45 .0001

 49  0.3  .2  0.36 .005

 50  0.43  .05  0.34 .008

 51  0.88  .0001  0.49 .0001

 52  0.36  .12  0.45 .0001

 53  0.26  .26  0.55 .0001

 54  0.48  .03  0.44 .0001

 55  0.45  .046  0.39 .002

 56  0.47  .035  0.51 .0001

 57  0.54  .015  0.56 .0001

 58  0.61  .004  0.29 .024

 59  0.41  .07  0.29 .023

 60  0.24  .3  0.45 .0001

 61  0.48  .03  0.35 .006

 62  0.67  .001  0.14 .29

 63  0.19  .42  0.53 .0001

 64  0.27  .25  0.41 .001

 65  0.23  .32  0.46 .0001

 66  0.37  .11  0.42 .001

 67  0.59  .007  0.37 .003

 68  0.64  .003  0.43 .001

 69  0.69  .001  0.56 .0001

 70  0.45  .05  0.45 .0001

 71  0.4  .09  0.18 .18

 72  0.34  .14  0.64 .0001

(Continued)
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Sample Calculated r 
(N=20)

ρ < Calculated r 
(N=60)

ρ <

 73  0.7  .001  0.4 .002

 74  0.18  .45  0.29 .03

 75  0.37  .11  0.44 .0001

 76  0.19  .43  0.58 .0001

 77  0.45  .047  0.62 .0001

 78  0.57  .009  0.5 .0001

 79  0.46  .04  0.64 .0001

 80  0.68  .001  0.38 .003

 81  0.45  .05  0.48 .0001

 82  0.45  .05  0.25 .05

 83  0.35  .14  0.4 .002

 84  0.49  .03  0.37 .004

 85  0.02  .93  0.21 .11

 86  0.35  .14  0.41 .001

 87  0.59  .006  0.53 .0001

 88  0.72  .0001 0.4 .001

 89  0.67  .001  0.37 .004

 90  0.7  .001  0.4 .002

 91  0.03  .9  0.34 .009

 92  0.37  .11  0.43 .001

 93  0.72  .0001 0.44 .001

 94  0.59  .006  0.45 .0001

 95  0.48  .03  0.5 .0001

 96  0.27  .25  0.47s .0001

 97  0.65  .002  0.33 .009

 98  0.34  .14  0.38 .003

 99  0.19  .42  0.45 .0001

100  0.5  .025  0.53 .0001
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NOTES

1. A statistician with a strong conscience must often deliver disappointing news 
to friends and colleagues. This is apparently our lot in life.

2. Antiquated might be a better term for this “rule of thumb.”
3. I am often troubled by what authors consider “acceptable” or “sufficient” in 

terms of power. Many, including Cohen, have suggested .80 as a reasonable level  
of power, and I have seen papers published in reputable journals with much less.  
However, I doubt that doctoral students would be happy with only an 80% chance of 
successfully defending a dissertation, or a parent would be satisfied with an 80% 
chance a child’s school bus will safely deliver the child to school and home again. Why 
are we satisfied with failing to detect effects 20% of the time, when it is often possible 
to easily increase power to .90 or higher? Again referring to Figure 2.1, increasing 
sample size from N = 50 to N = 70 increases power from .80 to .90.

4. However, my review of the educational psychology literature (Osborne, 2008) 
indicated that observed power in some branches of the social sciences may be much 
better than generally assumed.

5. Available from http://www.psycho.uni-duesseldorf.de/abteilungen/aap/
gpower3/.

6. See http://www.epibiostat.ucsf.edu/biostat/sampsize.html.
7. In this case, no transformations were done as both variables were close to 

normal (skew = -0.02, kurtosis = -0.65 for BYSES1 and skew = -0.03 and kurtosis = 
-0.85 for MYTXMIRR).

8. Sampling was done with replacement, meaning that after each correlation 
coefficient was calculated, all individuals were returned to the pool of 15,244 before 
the next sample was taken. This is important to prevent the samples from becoming 
increasingly nonrepresentative of the population.

9. See later chapters for information on extreme scores, standardized residuals, and 
transformation to improve normality. Unfortunately, at this point you have to trust me.
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 THREE 

BEING TRUE TO THE  
TARGET POPULATION

Debunking the Myth of Representativeness

Often ours seems to be a science of just those sophomores who 
volunteer to participate in our research and who also keep their 
appointment with the investigator.

(Rosenthal & Rosnow, 2009, p. 87)

T he social sciences have long been heavily dependent on undergraduates 
at research universities for their data, particularly in recent decades (e.g., 

Sears, 1986). I have nothing in particular against college-age students (in fact, 
I think quite highly of several). But when research depends on convenience 
samples of students who volunteer for a study and then remember to show up, 
I often have questions as to whether the results from that study tell us anything 
useful about the population we were originally trying to understand. It is argu-
able that students taking introduction to psychology classes (where many 
professors in the social sciences get their participants) are hardly representa-
tive of the undergraduate population as a whole, and once we start talking 
about differences between undergraduates who volunteer for experiments and 
those who do not (Rosnow, Rosenthal, McConochie, & Arms, 1969), things 
can get more tenuous. Yet at the same time, one has to be careful to think about 
the goal of the research. It is possible that a group of undergraduates are on the 
surface unrelated to the group you wish to generalize to, but if the psycho-
logical, physiological, or biological processes in that group are the same as the 
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processes of the group you wish to generalize to, then perhaps it is not such a 
stretch after all, at least when studying processes that are more universal (e.g., 
Greenberg, 1987).

To take a simple and silly (and probably not approved by the human sub-
jects review board) example, imagine I take a convenience sample of 100 
students from my undergraduate psychology class. One by one I bring each 
student into the research lab and observe what happens when I drop a heavy 
weight on one of their feet. Let us speculate that not only will there be pain in 
that foot, but also a healthy range of emotions directed at the experimenter. Is it 
impossible to generalize those findings to, say a population of executives at an 

Sampling 101

I remember reading an article (I will decline to cite the article to protect 
anonymity of the authors) on commitment to work in the industrial-
organizational psychology literature a few years back. It was a survey 
looking at how invested individuals are (or how committed to their work 
they are) as a function of various aspects of the work environment. The 
researchers’ goal was to make important statements about how 
companies can help their employees become more psychologically 
invested in their work, theoretically improving productivity and quality of 
work, as well as satisfaction and other variables important to the 
industrial-organizational psychology literature. The study surveyed about 
100 undergraduates about their experiences and perceptions working at a 
job and about their commitment to their job. The authors made broad, 
important-sounding statements concluding that various factors are 
important to white-collar professionals in commitment to work.

It seems that it should be common sense that the sample you are 
studying should bear at least a passing similarity to the population to 
which you want to generalize. Undergraduates are rarely working full-
time in a role related to their ultimate careers of choice (or careers similar 
to those to which the authors wanted to generalize). A convenience 
sample of undergraduates in a psychology class might not even be 
representative of the working undergraduate population. Therefore, 
although the article was published in a respected journal, it is probably 
not terribly informative about how real professionals in real jobs feel 
about the issues that were being surveyed.

If you really want to know what working, white-collar professionals 
are thinking, I’m afraid you have to actually survey them.
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insurance company or a group of firefighters from Mississippi? As Greenberg 
(1987) and others would argue, the basic processes are similar, and therefore 
generalizability probably does not suffer as long as we do not range too far 
from the sample demographics (it probably does not generalize to individuals 
with neuropathy who cannot feel pain in their feet, for example).

But does memory work in octogenarians in the same way that it does for 
undergraduates? What about motivation? Does media violence influence 
males and females in the same way? What about people with differing levels 
of education or from different racial or ethnic backgrounds? As you can see, 
the question of generalizability and sampling can get complex.

In this chapter I explore some issues around generalizability and argue that 
along with calculating power (see Chapter 2) crafting your sampling plan is one 
of the most important things you, as a researcher, can do to ensure the high 
quality and usefulness of your work. Specifically, we review here the impor-
tance of thinking about the goal of the research and population of interest, as 
well as making sure the subjects included in the analyses match those goals.

SAMPLING THEORY AND GENERALIZABILITY

It was not terribly long ago in the history of the sciences that males were  
the overwhelmingly preferred subjects, and most studies used males (usually 
Caucasian) exclusively (Carlson & Carlson, 1960; Dresser, 1992). The assump-
tion in both health and social science was that the normal male pattern of 
response was the typical adult response (McKenna & Kessler, 1977), despite 
substantial evidence regarding sex differences across many disciplines. Indeed, 
into the early 1990s medical research seemed to be predominantly based on 
Caucasian males.1,2 The implications are obvious—and legendary. Not all 
groups respond to medications, interventions, education, and social situations 
identically. Thanks to more progressive, diverse samples, we now have drugs 
that appear to be effective primarily for certain racial groups (Temple & Stock-
bridge, 2007), psychological theories that take into account differences in males 
and females (such as moral reasoning development, Gilligan & Attanucci, 
1994), and research into information processing across the lifespan (e.g.,  
Cerella, 1985). So diversity itself is a laudable goal and can benefit science 
through serendipity, but it is not always possible to have broad dimensions of 
diversity represented in every sample for every research question.



46 Best Practices in Data Cleaning

In a nutshell, the goal of sampling is to gather data on whatever phenom-
enon is being studied in such a way as to make the best case possible for draw-
ing inferences about the population of interest. The idea is that good science 
depends on drawing the strongest conclusions possible, and that to do that,  
a sample should represent the group and phenomenon as best possible.3  
However, some authors have argued this is essentially impossible, that all 
research samples are atypical at some level (Oakes, 1972), and that it is only 
when many studies comprising many samples can be looked at together that 
we can begin to examine the generalizability of effects (Lynch, 1999). This 
last point argues for more use of meta-analysis (studies that statistically sum-
marize the results of many other studies, which few would argue with). Yet 
meta-analysis is only possible after a good number of original studies of high 
quality have been performed.

While there is a robust literature on generalizability in the sciences, let us 
start with some basic assumptions. First, researchers want to do the best job 
they can in matching a sample to a target population. Second, the match will 
never be perfect. Third, researchers can do some basic things, particularly in 
relation to planning and data cleaning, that can make things better. But fourth, 
everything depends on theory (Lynch, 1999). And that last point is perhaps the 
one that is most difficult to convey, but most important to grasp. It is the pro-
posed mechanisms, theories, and understandings that help determine what 
constitutes a good sample for a particular goal.

A sample can be botched in limitless ways. This chapter covers some of 
the most common issues around sampling. Remember as you develop your 
own sampling plan that it is only your expertise in the particular area of 
research that can concretely guide you to good sampling practices.

AGGREGATION OR OMISSION ERRORS

Aggregation errors are errors not of sampling per se, but rather of failing to 
identify subsamples that may not function identically. When this happens, fail-
ing to examine subgroups can lead to errors in inference. Omission errors are the 
failure to examine a particular subgroup that may have a very different pattern.

A hypothetical example illustrating this effect was presented by Lynch 
(1982). In this paper, Lynch described a theoretical taste test experiment in 
which respondents rated their liking for three cola brands on a scale from 1 
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(worst) to 10 (best) in a traditional marketing experiment. Imagine the 
researchers performing this study are unfamiliar with the concept of subgroups 
(more technically, moderator variables that influence responses) and therefore 
do not separate out college students from stay-at-home mothers, the two most 
common subgroups in Lynch’s example. As presented in Figure 3.1, students 
rate the three colas as 8, 7, and 4, respectively, and mothers rate the same colas 
2, 6, and 7, respectively. These subgroup results indicate the first cola as the 
preference of students, the third cola the preference for mothers. If students’ 
and housewives’ ratings are equally numerous in the population and the 
researcher somehow achieved a probability sample, the mean ratings of the 
three colas would be 5.0, 6.5, and 5.5, respectively.

If we failed to separate out the two groups in our sample, we would con-
clude that all three colas are largely similar in terms of consumer preference, 
although cola #2 was preferred by a slight margin. This is of course a mischar-
acterization of the data, in that the third set of findings is representative of no 
group in the population that was sampled. Students preferred cola #1 and 
mothers preferred cola #3, a fact that would be lost on the researchers who 
failed to disaggregate their data by group, and no group preferred cola #2. This 
example reinforces the need for diversity in sampling, either within a single 

Figure 3.1  Hypothetical Taste Test
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study or across multiple studies. If the researchers had only gone to a local 
high school or university (thus only getting students), their conclusions would 
probably not have generalized to other nonstudent groups.

A real example with profound implications involves recent studies of the 
heart medication known as BiDil (isosorbide dinitrate/hydralazine hydrochlo-
ride, see Temple & Stockbridge, 2007). This drug combination was initially 
considered a failure after two trials as it appeared to have no beneficial effect 
within the majority-Caucasian samples. It was not until the data were analyzed 
separately by race that strong beneficial effects for African Americans were 
detected, and a third trial was performed to examine the effectiveness of the 
drug in a solely African American sample. Because African Americans made 
up a small portion of the original samples, that effect was lost until separated 
out. In this case, a null effect in a large portion of the sample threatened to 
obscure an important effect in a small portion of the sample. I wonder how 
many other drugs such as this have been overlooked in the testing process due 
to insufficient diversity or failure to recognize heterogeneous subgroup 
effects.

I experienced a similar aggregation effect in one of my very first publica-
tions (Osborne, 1995) when I was looking at Claude Steele’s theory of stereo-
type threat (e.g., Steele, 1997). The details of the theory, while fascinating (to 
me, anyway), are irrelevant for this discussion except to say that Steele 
hypothesized a weaker link between self-esteem and academic outcomes in 
students from traditionally academically stigmatized groups (e.g., African 
American students in the United States) than among other students (e.g.,  
Caucasian students). I set out to test that aspect of the theory within the context 
of a large national database and did the simplest possible test—I looked at the 
pattern of correlations between the two groups and failed to find significantly 
different patterns of this relationship across racial subgroups. This was con-
trary to the theory and was puzzling. Steele was a reviewer on the original 
manuscript, and suggested examining the trends separately by race and sex, 
which found some interesting and heretofore masked effects. Figure 3.2 pres-
ents the final data that separated out males from females in each racial group.

If you examine the two lines that represent African American males and 
females and imagine the groups combined, you would see no real change from 
8th grade to 10th grade. Likewise, aggregating the Caucasian males and 
females would yield no discernable pattern, failing to show support for 
Steele’s interesting theory. Yet once disaggregated, the pattern from the 
African American males lent support to the theory.
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INCLUDING IRRELEVANT GROUPS

In epidemiology and the medical sciences it is often very important to define 
the “denominator”—the group of individuals in whom the researcher is inter-
ested. For example, if you are interested in studying the effects of smoking on 
a particular outcome, you must define what it means to be a smoker, which 
helps make the research more precise and also defines the population to which 
the epidemiologist wants to generalize. It sounds simple, right? A smoker is 
one who smokes, who uses tobacco. But tobacco may be used in many ways. 
Do you include individuals who use snuff (inhaled tobacco) or chewing 
tobacco? Do you include those who smoke tobacco in the form of cigars, 
cigarillos, pipes, and hookahs, or are you only interested in those who smoke 
cigarettes (the most common way to use tobacco in the United States)? And 
what about people who just smoke occasionally, such as the “social smoker” 
who may only have a cigarette once a week or once a month? What about 
smokers who also smoke other substances, such as marijuana, that might have 
very different effects than tobacco? What about those smokers who previously 
used tobacco but have stopped? Do you include them if they stopped a week 

Figure 3.2  Aggregation Error from Osborne (1995)
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ago? What about 20 years ago? And what about “passive smokers,” people 
who are exposed to secondhand smoke by virtue of living with a smoker or 
working in an environment that contains secondhand smoke (e.g., a pub or 
nightclub where smoking is allowed)? As you can see, it is not always simple 
to define your population of interest, but it is extremely important. People who 
smoke cigars, for example, might be at risk for very different sorts of out-
comes than cigarette smokers (e.g., Iribarren, Tekawa, Sidney, & Friedman, 
1999) and those who previously quit smoking may have different outcomes 
than current smokers (Critchley & Capewell, 2003). In other words, failing to 
accurately define your denominator can leave you with a sloppy sample—one 
filled with error that can mask or undermine your ability to detect an effect that 
is really present in the population.

In this spirit, political surveys that occur around elections rarely attempt 
to survey the entire population, but rather “likely voters.” In other words, those 
surveys are only interested in predicting (or understanding) those individuals 
who are able to, and are likely to, actually vote. This population is not at all 
representative of the population as a whole, but of course is more germane to 
answering the question of attempting to predict the outcomes of elections.

I was involved in one recent example of this issue. In an evaluation study, 
we examined the effects of having all students in a high school use laptops as 
part of routine instruction. The focus of the study was concerned primarily with 
the academic effects, or the effects on teachers and student performance in what 
the Department of Education considered “core” subjects—mathematics,  
sciences, social studies, and language arts. As part of the study, we adminis-
tered a survey to teachers in schools implementing a one-to-one laptop  
program for students. However, teacher assistants, guidance counselors, 
librarians, assistant principals, and other non–core-teaching faculty (e.g., 
music, physical education, art teachers) also responded to the survey. The 
results would have been dramatically skewed or obscured had we not filtered 
out individuals who were not core content area classroom teachers. Not only 
would we have not directly addressed the goals of survey—to understand how 
classroom teachers in core content areas were utilizing an instructional tech-
nology environment where every student had a laptop—but it is likely that we 
would have failed to have observed some important effects due to the “noise” 
in the data caused by having individuals outside our target population included 
in the data set. This is an example of where careful thought in terms of sam-
pling (and checking at data cleaning) was critical to the quality of the results. 
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Despite our instructions to schools that only core content area teachers 
respond to the survey, some schools invited all faculty/staff to respond to the 
survey to prevent people from feeling left out.4

Another challenge from this study involved the question of what to do 
with teachers or students who transferred to the school after the pilot project 
began. Our decision was to exclude anyone not present at the beginning of the 
3-year study. This may be a controversial decision, but it was based on the fact 
that teachers coming to the school after all the training was completed would 
not show the same benefits or changes as a teacher who experienced a full 
summer’s worth of training. Likewise, if students came to the school mid-year, 
they would not have benefitted from a full year of laptop usage, and thus did 
not represent the population we were interested in generalizing to (students 
and teachers who were in a one-to-one laptop environment a full year with all 
the benefits of appropriate training).

One final example from a recent collaboration with a colleague (Osborne & 
Blanchard, 2011) again illustrates the importance of paying attention to how you 
conceptualize your sample. My colleague, Dr. Blanchard, was analyzing data 
from a study she conducted evaluating the effects of a progressive teaching 
method (compared to a more traditional teaching method) on student outcomes, 
such as test scores. Despite all expectations to the contrary, the data from the 
student tests were not showing any significant benefit of the new teaching 
method compared to traditional teaching. One problem with research in the 
social sciences (and education in particular) is that we often rely on people with 
little motivation to participate in our research (e.g., middle school students, 
introduction to psychology undergraduates) to be motivated to try their best, 
often at difficult tasks. And due to ethical guidelines for the treatment of human 
subjects (Galliher, 1973; Shalala, 2000), it is often difficult to motivate partici-
pants through penalizing those who fail to fully participate. In other words, there 
is no real incentive for some students to spend a good deal of their time taking 
a test that has little bearing on their grade or life, just to make a researcher happy.

But Blanchard had the foresight to include some questions toward the end 
of the lengthy knowledge test that allowed us to identify students who were 
randomly responding (i.e., just randomly answering rather than thoughtfully 
answering test items).5 This turned out to be critical to the study.

Conceptually, Blanchard wanted to evaluate what benefit, if any, students 
would get from learning particular science topics using a different teaching 
methodology. Remember, the question to be addressed was the comparative 
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effect of the two teaching strategies on students who are trying to learn the 
material. She was not interested in the effects of the two teaching strategies on 
student performance when they randomly respond to test items. Thus, when 
we screened out students who were randomly answering from the sample, we 
were focusing our sample to represent the group we were most interested in. 
As Figure 3.3 shows, it turned out those students engaging in random respond-
ing do seem to be qualitatively different than the students who at least 
appeared to be doing a conscientious job of taking the exam. Furthermore, 
once these students were removed from the data set, the effects of the interven-
tion were statistically significant in the expected direction.

NONRESPONSE AND GENERALIZABILITY

As Chapter 6 in this book explores, individuals who choose not to participate in 
your research or not to respond to particular questions, may substantially bias the 
results of a study. One example of this insidious effect is found in a now-classic 
series of studies by Steele and Aronson (1995). In one of their experiments, they 

Figure 3.3   Differences in Test Score Growth as a Function of 
Random Responding Status
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found that when individuals belonging to a stigmatized group are uncomfortable 
(experiencing stereotype threat, in this case), they are less likely to complete 
questions about the content of racial stereotypes or even answer basic demo-
graphic questions such as race of participant. In this one group (African American 
students) that was critical to the research question, 75% of Ivy League under-
graduates chose to skip the question asking them to indicate their race. Luckily, 
the experimenters had that information without getting it directly from the stu-
dents, but in other contexts, such as Internet surveys, that data would have been 
lost, substantially skewing the results.

Thus, researchers must take all ethical steps possible to ensure they pro-
tect against creating a situation where nonresponse (particularly dispropor-
tional nonresponse from a particular group) could bias the results. This is 
especially true when researching sensitive topics or topics that have changed 
in social desirability over the years. As Tourangeau and Yan (2007) report, 
nonresponse or misreporting is particularly likely when an individual has 
something embarrassing to report. Thus, women may skip questions on sexual 
activity or abortion, drug users often misrepresent their actual drug use, and 
health care workers may skip (or misreport) smoking or health behavior 
related questions, particularly if they do not conform to the expectations of 
society. People belonging to socially stigmatized groups (often of particular 
interest to researchers in the social sciences) may be more likely to refuse to 
participate in research (or parts of surveys) relating to their group membership, 
as Steele and Aronson (1995) found.

Furthermore, researchers must be sensitive to how changing societal norms 
could bias results. To again use smoking as an example, surveys tracking self-
reported smoking behavior over the decades might show dramatic decreases in 
smoking. But researchers must wonder if that is due to one of the following.

 • True reductions in smoking as a result of better information about the 
health risks associated with smoking.

 • Smokers being less likely to participate in those sorts of surveys in 
recent years due to smoking being more socially stigmatized.

 • Smokers who participate in surveys misrepresenting their actual behav-
iors out of social desirability concerns.

Unfortunately, without other data, it is difficult to know which of these 
three very different conclusions is warranted. Fortunately, there are methods 
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to minimize the biases that these social desirability effects can introduce into 
samples.

In the case of sensitive questions (e.g., sexual activity or finances), 
research seems to indicate that answering the questions on a paper question-
naire or computer is preferable to an interviewer asking the questions (Turner 
et al., 1998), preferably in the absence of significant others (e.g., a spouse or 
romantic partner). Research also has found that perceived similarity of the 
participant to the researcher can reduce misrepresentations or nonresponse 
(Tourangeau & Yan, 2007).That is, a person who has engaged in illicit drug 
use is more likely to be candid when that person perceives the respondent as 
similar (ideally, perhaps someone who has likewise engaged in illicit drug use 
in the past, but alternatively similar in other sociodemographic characteristics 
such as race, sex, age, income level, and education).

Of course, it is not always easy to know which questions may be sensitive 
across all potential demographic groups. For example, older individuals, 
males, individuals on disability, and those with less education were more 
likely to refuse to respond to a national health survey (Korkeila et al., 2001), 
indicating health may be a more sensitive topic for some groups than for others 
(it would be difficult to see health questions being more sensitive to teenagers 
or young adults unless they involved illicit or high-risk activity, for example). 
It is also easy to imagine employees of a company being uncomfortable saying 
negative things about the company or superiors for fear of embarrassment, 
humiliation, or reprisal (Dalton & Metzger, 1992).

There are, unfortunately, an almost infinite number of possibilities when 
it comes to sensitive questions, depending on the combination of the target 
population’s demographic characteristics and the type of research. It is impos-
sible to list all the possibilities, so each researcher must think carefully about 
the topic being researched and the target population to be sampled, perhaps 
pilot testing procedures and questions with members of that group to identify 
potential hazards that could bias data or increase the odds of nonresponse.

CONSENT PROCEDURES AND SAMPLING BIAS

It is generally considered a good thing that most researchers must go through 
rigorous review processes before subjecting human (or animal) participants to 
research protocols. However, it is possible that the process of obtaining 
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informed consent may bias the sample unintentionally. In some fields, where 
rigorous informed consent must convey long lists of possible negative out-
comes, no matter how minute the odds of experiencing those outcomes (e.g., 
medical research), informed consent has led to low levels of recruitment 
through increasing the anxiety of patients who are already in a very anxious 
state (Tobias & Souhami, 1993). From an ethical point of view, this is entirely 
necessary, at least given the current state of research ethics. But from a research 
methodology point of view, these procedures may be doing significant harm to 
the goal of the research—to generalize to a particular patient population.

Furthermore, in studies with differing levels of intervention (e.g., a radical 
new cancer therapy versus traditional radiation that is thought to be less  
effective—or worse, a placebo), it is not beyond reason that patients initially 
eager to participate in the groundbreaking research would be less enthusiastic in 
participating in the research that does nothing but give them traditional care—
thus opening the door for differential refusal rates or other factors that could lead 
to biased samples, skewed results, and less-than-ideal generalizability.

In the social sciences (and particularly education) informed consent or 
assent procedures can be particularly problematic. Parents of minors seem 
wary, in this information age, of allowing their children to provide information 
to researchers or participate in studies. Informed consent in educational settings 
can be particularly problematic, often having to go through multiple stages of 
school, teacher, student to take home to the parent, the parent to sign or not, and 
the student to return the signed form to the teacher, who turns it over to the 
school, who ultimately turns it over to the researcher. As you can imagine, this 
is a long chain of events fraught with potential for loss of informed consent, 
even in cases where the student and parent intended to provide informed con-
sent. Thus, again, researchers must be thoughtful about how best to maximize 
the possibility of receiving informed consent and eliminating the structural and 
procedural hurdles to obtaining it in order to maximize participation rate and 
minimize loss of informed consent through unintentional misplacement.

In one study of mine (Osborne & Walker, 2006) that was particularly 
effective at obtaining informed consent, my research team and I partnered with 
local high schools to obtain informed consent from parents for the research 
when parents came into the school to enroll their children as students before 
the school year began. This eliminated many potential problems with sending 
home papers with students and achieved a high rate of consent without sacri-
ficing ethics.
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In another study of elementary school students, we took advantage of the 
fact that parents received a folder with student work, forms to be signed, and 
important information every Monday from the teacher. We worked with teach-
ers to send home informed consent forms with students in their Monday fold-
ers, and because parents were used to looking at folders every Monday and 
students were required to return them every Tuesday morning, we received a 
good response to our informed consent forms.

Aside from structural and procedural issues, a variety of cultural, psycho-
logical, and situational factors can influence individual’s decisions to provide 
informed consent (e.g., volunteering to participate in a study). For example, in 
applying research on volunteerism, Roberts (2002) suggests that to the extent 
researchers can help potential participants clarify and enumerate cultural, reli-
gious, and personal beliefs and values (e.g., empowerment, charity, being 
relationship-focused) can highlight to individuals that participation in research 
may be congruent with their values and beliefs and may help them achieve 
these ephemeral, yet important goals.

GENERALIZABILITY OF INTERNET SURVEYS

I am sure I could write an entire book on this issue.6 Let us start by putting this 
type of research in context of what used to be the “high-technology” survey 
methodology, phone banks. At the time, calling people’s home phones was the 
best, most efficient way of reaching large numbers of the U.S. population. 
However, the issue of sampling was a tricky one. First, not every household 
had a phone (though most did, at least in the United States). So people living 
in poverty were more likely to be underrepresented in any phone survey. This, 
by extension, meant that individuals belonging to traditionally disadvantaged 
minority groups were less likely to be included in a phone sample. Further-
more, at some times and in some communities, women were more likely to be 
at home during the day than men, so phone calls during normal business hours 
were more likely to get responses from a female household member. And there 
was great discussion about how time of day affected sampling. Calling during 
the dinner hour was traditionally thought to be the ideal time to catch people 
at home, but also may be the least likely time for someone who answered the 
phone to want to participate in a phone survey. Yet calling later in the evening 
had strong disadvantages, and calling during the day may mean oversampling 
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the unemployed, the retired, people with nontraditional jobs, or stay-at-home 
parents.

And there was the issue of the population (or the denominator). While 
most people had their phone numbers listed in the phone company database 
(the phone book), there was a segment of the population who paid extra to 
have phone numbers “unlisted.” Thus, the population being sampled would 
include only those households with a phone number listed in the directory and 
who happened to be home at the particular time called. As you can see, this 
has been a thorny issue for years.

Fast forward to modern times and the situation is much more complex. Up 
to one-quarter of the U.S. population no longer has household phones (land lines) 
and instead many rely on cellular phones that have no centralized directory. 
Those with land lines are less representative of the population now, and those 
with cellular phones are very difficult to reach for surveys. The Internet is present 
in many homes, but finding e-mail addresses and getting people to respond to 
Internet surveys, even from large respected research universities, can be challeng-
ing. People do not seem to want to share information in this new information age. 
Thus researchers are left in a more challenging environment than ever.

Internet surveys are problematic from a sampling perspective for several 
reasons. First, it is probably not ever a best practice to simply post a survey 
that is open for anyone to access and invite the world to respond. On the Inter-
net, it is difficult to know who is responding, what country they are in, whether 
they are legitimate or providing poor information, and even whether the same 
person might fill out the survey dozens of times.

So finding a database that contains the population of interest is important. 
The database must be relatively up-to-date (as e-mail addresses can change 
rapidly relative to home phone numbers, which used to remain more stable), 
representative of the population of interest, and must include e-mail addresses 
(which is not as common as one might think). Then you are sampling those 
individuals who have access to the Internet and e-mail and who check it, as 
well as who choose to respond to your survey. Fortunately, some databases 
contain enough information to do a minimal check comparing respondents to 
nonrespondents for representativeness (which I discuss in more detail and 
recommend as a best practice in Chapter 6).

Recent research still shows a large generational gap in access to (and 
interest in using) the Internet. Participants in a prominent, large-scale survey 
on health and retirement found that among adults in the United States aged 50 
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or older, only 30% reported using the Internet, and of those, only 73% indi-
cated willingness to do a Web-based survey (Couper, Kapteyn, Schonlau, & 
Winter, 2007). Furthermore, there were significant demographic, socioeco-
nomic, and health status differences between those who can be surveyed 
through the Internet and those who cannot.

Other researchers have found similar biases in Internet research. For 
example, a group of researchers looking at sampling bias in sexual health 
research (Ross, Månsson, Daneback, Cooper, & Tikkanen, 2005) found that, 
compared with a “gold standard” random selection population based sexual 
health survey, an Internet survey targeting the same population diverged sub-
stantially from the traditional sampling methodology. Internet samples were 
more likely to be urban, better educated, and younger. In line with the previous 
discussion of nonresponse and sensitivity issues: individuals responding to the 
Internet survey were more likely to admit to being attracted to individuals of 
the same sex or to report higher numbers of sex partners in the past year.

Thus, even in the 21st century, surveys through the Internet have the like-
lihood of being substantially biased, even given the best database to start with, 
unless great care is taken to compile a large, unbiased sample. On the positive 
side, recent psychological research (Gosling, Vazire, Srivastava, & John, 
2004) showed that large Internet surveys can provide results similar to tradi-
tionally administered surveys published in psychological journals7 in some 
basic ways (e.g., the Big Five personality traits). Given the efficiencies of 
Web-based research, this is a desirable methodology to continue to explore, 
albeit with care to protect samples from becoming biased.

RESTRICTION OF RANGE

When I began graduate school two decades and more in the past, one of my 
first advisors was interested in self-esteem. In this research lab, we often split 
university students who had responded to a common self-esteem inventory 
(the Rosenberg Self-View Inventory) at the median into “high” and “low” self-
esteem groups for research purposes ( I will defer the discussion of the draw-
backs of median-splits on continuous variables to Chapter 11, where I delve 
into this issue in more detail). Let us focus on the sampling issue—in a 
research university, are students that score below the median on a measure of 
global self-esteem (or depression, or many other constructs) truly low in self-
esteem? Are we generalizing to the population we want to?
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Consider a more representative sample than university students: eighth 
graders from the National Education Longitudinal Study of 1988 (Ingels, 
1994). This nationally representative sample asked secondary school students 
seven of the original 10 questions from the Rosenberg SVI8 measured on a 
scale of 1 (strongly disagree) to 4 (strongly agree). The mean for this nation-
ally representative sample was 3.10 and the median was 3.14. Thus, splitting 
people into low and high self-esteem through a median split would allow us to 
compare those students who seem to be very high (above 3.14 on a 1-to-4 
scale) and only moderately high (in fact, only 2.7% averaged a 2.0 or lower, 
and only 10.1% averaged 2.5 or lower, the conceptual middle for a 1-to-4 
scale). Though I no longer have the data from those original studies of univer-
sity students with my first advisor, my recollection at the time was that univer-
sity students tended to have even higher self-esteem, on average, and thus, 
“low” self-esteem in that sample was still moderately high. In other words, 
from either of these two sources of data, it would be difficult to generalize to 
the population of individuals with truly low self-esteem.

Conceptually, this is a restriction of range issue, in that the observed range 
in a variable is restricted in some way from varying in the same way that one 
would expect in the population. As my comment at the beginning of the chap-
ter indicates, university students also have very restricted ranges of employ-
ment, and thus generalizing their experiences to employees in the overall 
population is risky. Socioeconomic status (SES) and of course age, as well as 
depression, romantic relationship experiences, and many other variables, are 
similarly restricted in university samples (which again make up a large major-
ity of the research in the social sciences). Likewise, in the general (noninstitu-
tionalized) population it is likely that researchers looking at mental disorders 
are likely to find only mild degrees of severity, limiting generalizability of 
findings. Similarly, studies of combat veterans or rape survivors suffering 
from post-traumatic stress disorder (PTSD) may not generalize to members of 
the population with less severe traumatic stress experiences. The list of poten-
tial issues could go on indefinitely, but researchers again must use judgment 
and care when examining their sampling frameworks or generalizing their 
conclusions. To the extent that range was restricted in the sample, it is impor-
tant to include that as a caveat when discussing the findings.9

The issues of ceiling and floor effects are similar to restriction of range. 
In the case of a ceiling or floor effect, the restriction of range is due to a mis-
match between the sample and the measure used. Continuing the discussion 
from the previous paragraph: it should make sense that one has to use a  
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measure appropriate for the expected 
range of the variable in the population 
of interest. So, looking at individuals 
who recently experienced a traumatic 
event, one needs to select a measure of 
stress, anxiety, or depression that is 
sensitive to the range commonly seen 
in the population. If I were to give 
measures intended for the general pop-
ulation to these groups, they would 
probably cluster at the upper end of the 
scale—finding the ceiling—indicating 
that there might be more severe symp-
toms than this scale can measure. This 
restriction of range likely will skew 
any results from this study in that the 
variables of interest are not accurately 
being measured.

Conversely, if we were to give 
measures of anxiety, depression, or 

stress designed for individuals experiencing PTSD to samples from the gen-
eral population, it is likely they would cluster at the bottom end of the scale—
finding the floor. In other words, a measure designed to be sensitive in the 
range of people experiencing PTSD likely will not be sensitive to the range of 
variation found in a general population. Again, this floor effect will result in 
restriction of range that will harm the fidelity of the results.

All this is to say that restriction of range can be caused by many different 
issues, from unfortunate sampling decisions to unfortunate choices in mea-
sures and operationalizations, and in all cases this restriction can cause unde-
sirable outcomes for the results. They are best avoided by thoughtful matching 
of measures to the intended sample of a study prior to collecting any data. 
Examples of these effects are presented in Figures 3.4 through 3.7.

As an example of these effects, I utilized data from the Education 
Longitudinal Study of 2002 (ELS 2002) available from the National Center for 
Educational Statistics.10 Those of us in education know that family socioeco-
nomic status can dramatically affect student outcomes. For example, in this 
data set, we see a relatively strong relationship between SES and reading 

Ceiling Effect: Caused by a mismatch 
of an instrument that is too sensitive 
with a sample that is relatively 
extreme on the trait being assessed. 
This causes too many to score at the 
uppermost end of the scale, where 
they “find the ceiling.” This is the 
measurement equivalent of shouting 
into a highly sensitive stethoscope.

Floor Effect: Caused by a mismatch 
of an instrument that is not sensitive 
enough with a sample that shows 
relatively low levels of the trait being 
assessed. This causes too many to 
score at the lowest end of the scale, 
where they “find the floor.” This is 
the measurement equivalent of 
someone who has very poor hearing 
attempting to hear a quiet whisper.
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Figure 3.4   Example of Effects of Restriction of Range—Full Sample 
Correlation Between Family SES and Reading 
Achievement, r = .43
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achievement scores for 10th graders (r = .43, p < .0001) for the general popu-
lation. However, let us imagine that we were studying low-performing stu-
dents only (defined for this example by students who perform below the 5th 
percentile on a 10th grade math achievement test). Theory tells us that restric-
tion of range can lead to substantial misestimation of effects, and indeed that 
is the case for this sample. As Figure 3.5 shows, in this subgroup there is no 
significant relationship (r = .03, not significant). The scatterplot in Figure 3.5 
also shows what might be a floor effect, wherein students who are among the 
lowest-performing students cluster at the minimum value of the achievement 
scale. This might indicate that this test, aimed at average 10th grade students, 
might not be sensitive to diversity amongst those who are lowest performing.

A more extreme example of misestimation amongst special populations is 
evident in Figure 3.6 on page 63. In this case, we selected only students iden-
tified by their parents as mentally retarded. Using this extreme population, we 
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see an even more serious misestimation of this relationship, which is this case 
was r = -.33 (not significant due to low numbers).

Finally, we can see that this restriction of range effect is evident when 
looking at the other end of the spectrum, students scoring above the 95th per-
centile on a math achievement test. As Figure 3.7 on page 64 shows, the effect 
is again misestimated (r = .24, p < .0001). It is also evident that in this sub-
population, there appears to be a ceiling effect, where the achievement test 
normed to the average student population of 10th graders appears not to be 
sensitive to the performance of highly accomplished students.

EXTREME GROUPS ANALYSIS

A less common issue related to restriction of range is that of extreme groups 
analysis (EGA) (Preacher, Rucker, MacCallum, & Nicewander, 2005), 
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Figure 3.5   Example of Effects of Restriction of Range Correlation 
Between Family SES and Reading Achievement, ONLY 
Students Identified as Performing Below 5th Percentile 
on Math Achievement, r = .03
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Figure 3.6   Example of Effects of Restriction of Range Correlation 
Between Family SES and Reading Achievement, ONLY 
Students Identified as Mentally Retarded Only, r = .33

wherein researchers may choose individuals that represent extremes of a dis-
tribution. For example, we could choose people who score above or below a 
certain IQ cutoff, or my advisor and I could have choosen the 25 individuals 
with the lowest self-esteem and the 25 individuals with the highest self-esteem 
for comparison or intervention. The latter approach, called post hoc subgroup-
ing, is generally to be avoided.

There are some benefits to this approach, properly applied, in terms of 
efficiency where resources prohibit use of large numbers of participants, and 
enhance power and effect size. There are, however, serious problems with this 
approach. First, when using this approach without strong justification, it 
appears that a researcher is merely attempting to artificially (unethically) 
inflate apparent effect sizes. I label this as unethical as the effect size from this 
sort of analysis is rarely representative of the effect size in the general popula-
tion, because the comparison is between two groups at different extremes of a 
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Figure 3.7   Example of Effects of Restriction of Range Correlation 
Between Family SES and Reading Achievement, ONLY 
Students Identified as High Performing Via Math 
Achievement > 95th Percentile r = .24

distribution. As mentioned previously, EGA is more acceptable in some spe-
cific instances, but those tend to be relatively rare.

Another drawback to EGA is that researchers are assuming a linear relation-
ship between the variable being subjected to EGA and the outcome variable of 
interest. It is not always clear that perfectly linear relationships exist, however, 
and where curvilinearity exists, this approach could create significant problems. 
For example, if we assume there is a strong curvilinear effect between student 
anxiety and academic performance, comparing students at the extremely low 
and high ends of anxiety would dramatically misestimate the overall nature of 
the relationship. Therefore EGA should always be strongly justified prior to 
being used. Furthermore, data should not be dichotomized, but rather original 
scores should be maintained to prevent loss of power or effect size—for more 
on the issue of dichotomizing, see Chapter 11 or (Preacher et al., 2005).
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CONCLUSION

Truly excellent research is often as much an art as a science. This issue of 
sampling is particularly vexing in that it is difficult to create clear guidelines 
for researchers that will always constitute best practices given the range of 
issues researched, methodologies used, and populations targeted. In general, 
the best research must start with the best sample, and the best sampling frame 
begins with a thoughtful and careful reflection on the goals of the research and 
how best to accomplish those goals given the practical limitations a researcher 
is working within.

FOR FURTHER ENRICHMENT

1. Experiment with how ceiling and floor effects can distort results of analy-
ses. Download the data set from the website for this book. In it you will find 
several variables that have generally strong correlations, such as family 
socioeconomic status and student achievement. While neither variable suf-
fers from restriction of range, we can simulate a restriction of range issue.

a. Explore how the correlation between reading achievement (BYTXRIRR) 
and socioeconomic status (BYSES1) is influenced by restricting analy-
ses to students whose parents have less than a high school education or 
more than a graduate school education.

2. Review articles from a respected journal in your field (or from a list of 
recent articles published by your advisor). See if you can identify any of the 
following issues raised in this chapter.

a. Use of extreme groups analysis.
b. Mismatch between measures used and sample (possible floor or ceiling 

effect).
c. Whether there is potential restriction of range (almost any convenience 

sample, such as college students, will have strong possibilities of this).
d. Whether there might be aggregation errors (i.e., groups that were com-

bined that might have been analyzed separately).
e. Whether the purpose of the article is met through the sample. If not, can 

you describe a sampling methodology that would have better met the 
goals of the study?



66 Best Practices in Data Cleaning

3. Examine data you have collected for a research project (or one your advisor 
or colleague has collected if you do not have data on-hand) for evidence of 
ceiling or floor effects, restriction of range, combining of groups that may 
not be homogenous, and so on. If you do not find evidence of such effects, 
simulate them as I did for the examples in this chapter and explore how 
your conclusions would change with less ideal sampling.

NOTES

 1. Dresser (1992) highlights the astounding finding that until very recently 
studies on the impact of obesity and uterine cancer were conducted solely on men.

 2. The historical reasons for this male-only bias are varied. They include the fact 
that, for much of the earlier part of the 20th century in the United States, Caucasian 
males were the majority of students at research universities where much of the research 
was taking place. It is also my impression that a perception existed that it was easier to 
get studies approved by institutional review boards when they included only males 
because women of child-bearing age constituted a population more at risk for harm (and 
thus, legal liability). I am sure there are other reasons as well, but rarely would reason 
lead us to assert “we exhaustively researched this issue and conclude that Caucasian 
males are the best sample to represent the groups to which we wish to generalize.”

 3. Note that I am not arguing that all samples should include representative 
aspects of all possible groups, but rather of all groups one is interested in researching. 
Yet where possible, examining diversity in responses often leads to valuable insights, 
such as the heart medication that seemed to be a dismal failure at first (Temple & 
Stockbridge, 2007), discussed later in the chapter.

 4. A laudable and important goal, but one that can create challenges in data 
cleaning for statisticians and researchers.

 5. The details of how this happened and recommendations for dealing with this 
issue are contained in Chapter 10 of this book.

 6. But Dillman (2007) already did. Those interested in web-based surveys, or 
survey methodology in general, are strongly encouraged to get his book and refer to it 
often. 

 7. One note of caution: these authors are essentially saying that a very large 
Internet survey of more than 360,000 participants essentially generated some similari-
ties to the body of 510 samples published in the Journal of Personality and Social 
Psychology in 2002. In this journal, 85% were student samples, 80% were Caucasian, 
and the mean age was 22.9 years of age, compared to 24.3 for the Internet sample. 
These findings reinforce the admonition to use Internet samples with caution if not 
seeking adolescent, primarily Caucasian, college student samples.

 8. From a technical point of view, the SVI has such high internal consistency 
(often exceeding alpha of .90) that the National Center for Educational Statistics, the 
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governmental organization responsible for this data set, decided it was acceptable to 
eliminate several items in the interest of space. I have mixed feelings about this, but 
that is a discussion for another time (such as in Chapter 9, where we explore issues 
concerning reliability of measurement). In general, losing those three items does not 
significantly alter the internal consistency of the scale.

 9. There are corrections for restriction of range, particularly in relation to cor-
relation coefficients, but there appears to be some debate over whether the corrected 
relationships are more or less accurate than the uncorrected correlations (and little is 
done with other techniques outside simple correlations). This is an issue best handled 
from a sampling methodology framework.

10. More information on this public data set is available at http://nces.ed.gov/
surveys/els2002/.
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 FOUR 

USING LARGE DATA SETS WITH PROBABILITY 
SAMPLING FRAMEWORKS

Debunking the Myth of Equality

L arge, governmental or international data sets are important resources for 
researchers in the social sciences. They present researchers with the 

opportunity to examine trends and hypotheses within nationally (or interna-
tionally) representative data sets that are difficult to acquire without the 
resources of a large research institution or governmental agency. In Chapter 3 
I introduced you to the Education Longitudinal Study of 2002 from the 
National Center for Educational Statistics, and in coming chapters I again refer 
to this and other large data sets for examples and demonstrations. Students in 
my research classes often use at least one of these publicly available data sets 
each semester. They are valuable tools for exploring policy questions, impor-
tant trends, historical changes, and testing new theories (as I did with Claude 
Steele’s stereotype threat theories a decade or more ago).1

Yet all too often, students and researchers jump into using one of these 
publicly accessible data sets without fully understanding some of the technical 
issues around using them. In this chapter, I try to present some of the larger 
issues so that if you are considering using them, you understand the impor-
tance of accounting for complex sampling methodologies even before you 
begin cleaning the data for analysis.

While these data sets are valuable, there are drawbacks to using them. For 
example, individual researchers must take the data as given—in other words, 
we have no control over the types of questions asked, how they are asked,  
to whom they are asked, and when they are asked. Variables might not be 
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measured in an ideal way, or they might not be ideally suited to answering the 
particular questions you, as an individual researcher, might wish to ask.

The one cost of using these types of data is the expectation that research-
ers will utilize best practices in using these samples. Specifically, researchers 
must take the time to understand the sampling methodology used and appro-
priately make use of weighting and design effects, which to a novice can be 
potentially confusing and intimidating. There is mixed evidence on research-
ers’ use of appropriate methodology (e.g., Johnson & Elliott, 1998), which 
highlights the need for more conversation around this important issue.  
Specifically, there is some question as to whether even studies using these 
types of data sets published in top-tier, peer reviewed journals are utilizing 
appropriate methodology for dealing with the complexities introduced with 
the types of sampling these data sets employ.

WHAT TYPES OF STUDIES USE COMPLEX SAMPLING?

Many large, interesting databases available to researchers use complex sam-
pling, such as data from the following.

 • National Center for Educational Statistics (NCES) in the United States. 
For example, the Education Longitudinal Study 2002 (ELS 2002), 
National Education Longitudinal Study of 1988 (NELS 88), and Third 
International Mathematics and Science Study (TIMSS).2

 • Centers for Disease Control and Prevention (CDC), such as the 
National Health Interview Survey (NHIS) and the National Health and 
Nutrition Examination Survey (NHANES).3

 • The Bureau of Justice Statistics, including the National Crime 
Victimization Survey (NCVS).4

Almost any survey seeking a representative sample from a large population 
probably will have a complex multistage probability sampling methodology, as 
it is relatively efficient and allows for estimation of representative samples.

WHY DOES COMPLEX SAMPLING MATTER?

In most of the examples cited above, the samples are not simple random 
samples of a population of interest, but rather complex samples with multiple 
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goals. For example, in NELS 88, students in certain underrepresented racial 
groups and in private schools were oversampled (i.e., more respondents 
selected than would typically be the case for a representative sample), mean-
ing that the sample is not, in its initial form, necessarily representative (Ingels, 
1994; Johnson & Elliott, 1998). Furthermore, in any survey like the ones dis-
cussed above there is a certain amount of nonresponse that may or may not be 
random (see Chapter 6 on missing data), making unweighted samples poten-
tially still less representative.

In contrast to simple random sampling, multistage probability sampling 
often utilizes cluster sampling (especially where personal interviews are 
required), in which clusters of individuals within primary sampling units are 
selected for convenience. For example, in ELS 2002, approximately 20,000 
students were sampled from 752 schools, rather than simply random sampling 
from the approximately 27,000 schools that met criteria within the United 
States (Bozick, Lauff, & Wirt, 2007). In the case of educational research, there 
are multiple possible strategies a researcher could use to get a large sample. 
One way, involving a simple random sample, would be to get a list of all stu-
dents in all schools within the United States and randomly select a certain 
number of them, which would produce a nationally representative sample, but 
at huge cost. One reason institutions use probability sampling is that when 
they have to interview students and parents, it is inefficient to go to a school 
to only interview one student and parent. In theory, this approach could leave 
researchers crisscrossing the country going to thousands of different schools.

Another drawback of simple random sampling is that small groups of inter-
est may be completely missed by simple random sampling. For example, in 
earlier national studies such as High School and Beyond, there was an interest 
in making sure certain underrepresented minority groups (e.g., Alaskan natives, 
Native Americans) were represented in large enough numbers to be analyzable. 
With simple random sampling it is possible that even large samples would not 
have enough members of these groups to analyze effectively. Further, special 
interest groups (e.g., African American students at private schools) are likely to 
suffer a similar fate under a simple random sampling technique.

Another possibility would be convenience sampling, wherein a researcher 
goes around the country to selected schools and samples. This has obvious draw-
backs in terms of representativeness, but obvious appeal in terms of efficiency. 
Multistage probability sampling attempts to combine the advantages of conve-
nience sampling with the advantages of random sampling to produce an efficient 
way to create a truly representative sample. This sampling methodology  
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identifies groups of institutions, for example, and then randomly selects a certain 
number of individuals within that institution. By knowing the number of institu-
tions and the number of students within each institution, researchers can create 
weights that, when appropriately applied, allow the sample to be representative 
of the population of interest.

But because this is not a simple random sample, individuals within clusters 
are more similar than individuals randomly sampled from the population as a 
whole. This allows organizations to assemble nationally representative samples 
while minimizing expense, but effectively reduces the information contained in 
each degree of freedom. Called design effects (DEFFs; Kish, 1965, is often 
credited with introducing this concept) these effects of sampling must also be 
accounted for or the researcher risks misestimating effects and increasing the 
probability of making Type I errors. This is because modern sampling strategies 
can lead to violation of traditional assumptions of independence of observa-
tions. Specifically, without correcting for design effects, standard errors are 
often underestimated, leading to significance tests that are inappropriately 
sensitive (e.g., Johnson & Elliott, 1998; Lehtonen & Pahkinen, 2004).

In sum, two issues are introduced by complex sampling: a sample that in 
its original form potentially deviates substantially from representative of the 
population of interest, and a sample that violates assumptions of independence 
of observations, potentially leading to significant misestimation of signifi-
cance levels in inferential statistical tests. The good news is that there are 
simple ways to account for these issues when doing quantitative analyses.

BEST PRACTICES IN  
ACCOUNTING FOR COMPLEX SAMPLING

In most samples of this nature, the data provider includes information in the 
data set (and in the user documentation) to facilitate appropriate use of the 
data. For example, weights for each individual, information about DEFFs for 
the overall sample and different subpopulations, as well as information on 
which primary sampling unit (PSU) and cluster each individual belongs to.

More information on these topics is available in most user manuals for 
those interested in the technical details of how each of these pieces of informa-
tion are calculated and used.5 Most modern statistical packages can easily 
incorporate these weights and design effects into analyses.
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Applying appropriate weights creates a sample that is representative of 
the population of interest (e.g., eighth graders in the United States who 
remained in school through 12th grade, to continue the previous example from 
NELS 88). In most statistical software packages, doing this is as simple as 
identifying the variable that contains weights for each individual and then tell-
ing the software to apply those weights. For example, in SPSS a simple menu 
under DATA allows application of a weight, or a single line of syntax:

Weight by <variablename>.

The problem is that application of weights dramatically increases the 
sample size to approximately the size of the population (in NELS 88, for 
example, a sample of approximately 25,000 becomes the population of more 
than 3 million students), dramatically (and illegitimately) inflating the degrees 
of freedom used in inferential statistics. Previous best practices included scal-
ing the weights, so that the weighted sample has the same weighted number of 
participants as the original, unweighted sample. I did this in some of my early 
research (e.g., Osborne, 1995, 1997), but scaling the weights does not take into 
account the design effects, which should further reduce the degrees of freedom 
available for the statistical tests.

Not all statistical software provides for accurate modeling of complex 
samples (e.g., SPSS requires users to purchase an additional module; in SAS, 
STATA, and SUDAAN, complex sampling appears to be incorporated, and 
software is also freely available, such as AM,6 that correctly deals with this 
issue). For those without access to software that models complex samples 
accurately (again, as was the case long ago when I first started working with 
large data sets) one way to approximate best practices in complex sampling 
would be to further scale the weights to take into account design effects (e.g., 
if the DEFF = 1.80 for whatever sample or subsample a researcher is interested 
in studying, that researcher would divide all weights by 1.80, which has the 
effect of reducing degrees of freedom almost by half).

Obviously, the most desirable way of dealing with this issue is using soft-
ware that has the capability to directly model the weight, primary sampling 
unit, and cluster directly, which best accounts for the effects of the complex 
sampling (e.g., Bozick et al., 2007; Ingels, 1994; Johnson & Elliott, 1998). In 
most cases, a simple set of commands informs the statistical software what 
weight you desire to use, what variable contains the PSU information, and what 
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variable contains the cluster information, and the analyses are adjusted from 
that point on, automatically. Yet because not all will have access to this sort of 
software, in this chapter I compare and contrast both scaling (the way we had 
to do it in the “old days”) and appropriately modeling the complex sample. You 
will see that if you do not have the capability to model complex samples in your 
software, the best old-school approach will not cause substantial problems.

DOES IT REALLY MAKE A DIFFERENCE IN THE RESULTS?

Some authors have argued that, particularly for complex analyses like multiple 
regression, it is acceptable to use unweighted data (e.g., Johnson & Elliott, 
1998). To explore whether this really does have the potential to make a sub-
stantial difference in the results of an analysis, I present several analyses, 
below, under four different conditions that might reflect various strategies 
researchers would take to using this sort of data: (a) unweighted (taking the 
sample as is), (b) weighted only (population estimate), (c) weighted, using 
weights scaled to maintain original sample size and to account for DEFF (best 
approximation), and (d) using appropriate complex sampling analyses via 
AM.7 For these examples, the ELS 2002 data set (introduced in Chapter 3) was 
used.

Condition

Unweighted. In this condition, the original sample (meeting condition 
G10COHRT = 1 and F1PNLWT > 0.00) was retained with no weighting or 
accommodation for complex sampling. This resulted in a sample of N = 14,654.

Weighted. In this condition, F1PNLWT was applied to the sample of 14,654 
who met the inclusion criteria for the study. Application of F1PNLWT inflated 
the sample size to 3,388,462. This condition is a likely outcome when 
researchers with only passing familiarity with the nuances of weighting com-
plex samples attempt to use a complex sample.

Scaled Weights. In this condition, F1PNLWT was divided by 231.232, bring-
ing the sample size back to approximately the original sample size but retain-
ing the representativeness of the population. Further, the weights were scaled 
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by the design effect (1.88 for examples using only males, yielding a final 
sample of 3,923 males, or 2.33 for examples using all subjects, yielding a final 
sample of 6,289) to approximate use of best practices. This condition is a 
likely outcome when a researcher is sophisticated enough to understand the 
importance of correcting for these issues but does not have access to software 
that appropriately models the complex sampling.

Appropriately Modeled. In this case, AM software was used to appropriately 
model the weight, PSU, and cluster information provided in the data to 
account for all issues mentioned above. This is considered the “gold standard” 
for purposes of this analysis. Identical results should be obtained by any soft-
ware that models probability samples, including SPSS with the complex 
samples module, SAS, STATA, and more.

Four different analyses were compared to explore the potential effects of 
failing to use best practices in modeling complex samples.

Large Effect in OLS Regression

In this example, 12th grade mathematics IRT achievement score (F1TX-
M1IR) is predicted from base year reading IRT achievement score 
(BYTXRIRR) controlling for socioeconomic status (F1SES2). The results of 
this analysis across all four conditions are presented in Table 4.1.

As Table 4.1 shows, with an unusually strong effect (e.g., β > 0.60) there 
is not a substantial difference in the effect regardless of whether the complex 
sampling design is accounted for or not. However, note that the standard errors 
vary dramatically across condition. Note also that the scaled weights condition 
closely approximates the appropriately modeled condition. However, as fol-
lowing analyses will show, this is possibly the exception, rather than the rule.

Modest Effect in Binary Logistic Regression

To test the effects of condition on a more modest effect, African American 
males were selected for a logistic regression predicting dropout (F1DOSTAT; 
0 = never, 1 = dropped out), from the importance of having children, control-
ling for standardized reading test scores in 10th grade.

The results of these analyses are presented in Table 4.2 on page 79. The 
results indicate that the conclusions across all four analyses are similar—that 
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Table 4.1   Large Effect: OLS Regression Predicting 12th Grade Math 
Achievement From 10th Grade Reading Achievement

Analysis Group b SE t (df) p < Beta

SPSS, no 
weighting

WhiteM 
AfAmM

1.009 
0.959

0.019
0.040

14.42 (3858)
23.91 (807)

.0001

.0001
.647
.638

SPSS, 
weight 
only

WhiteM 
AfAmM

1.027
0.951

0.001
0.003

872.25 (927909)
379.40 (201334)

.0001

.0001
.658
.642

SPSS, 
weights 
scaled for 
N, DEFF

WhiteM
AfAmM

1.027
0.951

0.025
0.052

41.806 (2132)
18.138 (460)

.0001

.0001
.658
.642

AM 
weight, 
PSU, 
Strata 
modeled

WhiteM 
AfAmM

1.027
0.951

0.023
0.049

45.35 (362)
19.41 (232)

.0001

.0001
N/A

Note: males only; BYTXRIRR predicting F1TXM1IR controlling for F1SES2.

as the importance of having children increases, the odds of dropping out 
decrease among African American males. However, there are several impor-
tant differences across the conditions. First, the standard error of b varies 
dramatically across the four analyses. Second, the results from the scaled 
weights analyses and the appropriately modeled analysis were again similar. 
Finally, this analysis is an example of a potential Type I error: using the origi-
nal sample with no weights or nonscaled weights produces a clear rejection of 
the null hypothesis, while the appropriately weighted analysis might not if one 
uses a rigid p < .05 cutoff criterion for rejection of the null hypothesis (which 
is not something I personally recommend).

Null Effect in ANOVA

To test the effects of condition on an analysis where the null hypothesis 
should be retained (no effect), an ANOVA was performed examining sex dif-
ferences (F1SEX) in the importance of strong friendships (F1S40D). Using 
our gold standard of modeling the complex sample effects via AM, as Table 
4.3 indicates, there should be no differences across groups.



Chapter 4  Using Large Data Sets With Probability Sampling Frameworks 79

Table 4.2   Modest Effect: Logistic Regression Predicting Dropout 
From Importance Having Children

Analysis b SE Wald p < Exp(b)

SPSS, no 
weighting

-0.09 0.146  5.59  .018 0.709

SPSS, weight only -0.346 0.008  1805.85  .0001 0.708

SPSS, weights 
scaled for N, DEFF

-0.344 0.170  4.154  .042 0.708

AM weight, PSU, 
Strata modeled

-0.346 0.177  3.806  .052 N/A

Note: African American males only; F1DOSTAT never versus DO only; controlling for 
BYTXRSTD.

Analysis Group Mean SE mean t (df) p <

SPSS, no 
weighting

Male
Female

2.827
2.838

0.0050
0.0048

-1.67 
(14,539)

 .095

SPSS, weight only Male
Female

2.822
2.833

0.0003
0.0003

-25.53 
(3,360,675)

.0001

SPSS, weights 
scaled for N, DEFF

Male
Female

2.822
2.833

0.0077
0.0075

-1.100 
(6,236)

  .27

AM weight, PSU, 
Strata modeled

Male
Female

2.822
2.833

0.0060
0.0060

-1.366 
(386)

  .17

Table 4.3   Null Effect: Sex Differences in Importance of Strong 
Friendships (F1S40D)

As Table 4.3 shows, this is a good example of the risks associated with 
failing to appropriately model or approximate complex sampling weights and 
design effects. A researcher using only the original weights would conclude 
there is evidence of sex differences in the importance of strong friendships 
amongst high school students when in fact there should not be. Finally, there 
is again similarity between the third (scaled weights) and fourth condition 
(AM analysis) indicating that the approximation in this case yields similar 
results to the AM analysis.
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Null Effect in OLS Regression

In the final example, a multiple regression analysis predicted cumulative 
ninth to 12th grade GPA (F1RGPP2) from school poverty (percentage of stu-
dents with free or reduced lunch; BY10FLP) controlling for dummy-coded 
race (based on F1RACE), and whether the school was public or private 
(BYSCTRL).

As Table 4.4 shows, in this case a stark contrast exists between appropri-
ately modeled complex sampling and less ideal analyses. In this example, 
researchers using the unweighted sample or a weighted sample would make a 
Type I error, rejecting the null hypothesis and concluding there is a significant 
(albeit weak) relationship between school poverty and student GPA once other 
background variables were covaried. The last two conditions (scaled weights 
and AM modeling) produced similar results, indicating no significant effect. 
This is contrary to the results from the inappropriately modeled analyses.

SO WHAT DOES ALL THIS MEAN?

While this might seem an esoteric topic to many researchers, a wealth these 
types of data sets is easily accessible to researchers from all areas of science, 
and it is probably beneficial for these data sets to be fully explored. However, 
some have found evidence that researchers do not always model the complex 
sampling frame appropriately (Johnson & Elliott, 1998). When this happens, 

Analysis b SE t (df) p <

SPSS, no weighting -0.21 0.069 -2.98
(5,916)

.003

SPSS, weight only -0.01 0.005 -2.09
(1,124,550)

.04

SPSS, weights 
scaled for N, DEFF

-0.01 0.11 -0.09
(2,078)

.93

AM weight, PSU, 
Strata modeled

-0.01 0.17 -0.058
(228)

.95

Table 4.4   Null Effect: Predicting Student GPA From School Poverty, 
Controlling for Race, School Sector
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researchers may be at risk for drawing false conclusions. In three of the four 
examples included earlier, researchers might be at serious risk of drawing 
incorrect conclusions if they fail to take the sampling effects into account. In 
two of the four analyses, researchers would clearly make a Type I error, while 
in the logistic regression example it is less clear but still troubling.

Further, most of the analyses highlight how unweighted samples can mis-
estimate not only parameter estimates, but also standard errors. This is because 
the unweighted sample is usually not representative of the population as a 
whole and contains many eccentricities, such as oversampling of populations 
of interest and perhaps nonrandom dropout patterns. Weighting provides a 
better parameter estimate, but, unless further measures are taken, serious 
errors can occur in hypothesis testing and drawing of conclusions because of 
inappropriately inflated degrees of freedom (in this case inflating df from 
approximately 15,000 to more than 3 million). Thus, while it requires extra 
effort to appropriately model the complex samples in these data sets, it is a 
necessary step to have confidence in the results arising from the analyses.

FOR FURTHER ENRICHMENT

1. Examine a study in your field that utilized a public data set like the ones 
described in this chapter. Did the authors use best practices in accommodat-
ing the sampling issues?

2. Find a data set in your field of interest that utilized complex sampling. 
Through reviewing the user manuals, identify the weighting variables and 
what design effects you might need to account for. Find out how to utilize 
this information in the statistical software you most commonly use.

3. Pick a relatively simple analysis (simple one-way ANOVA or simple cor-
relation) and perform analyses of interest to you using both appropriate 
handling of the complex sampling and inappropriate handling of the sam-
pling. Compare results to see how serious an error you are likely to make 
if you fail to appropriately model sampling in your analyses. If you do not 
have access to other data sets, earlier in the chapter I mentioned popular 
data sets in a variety of social science disciplines.

4. Pick a commonly used data set in your field that requires the use of com-
plex sampling. Perform a search of scholarly articles published using that 
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data set and describe what percentage of the authors appropriately modeled 
the sampling issues. If you find interesting data, share it with me (jason-
wosborne@gmail.com) and I will post it on the book’s website.

NOTES

1. Thanks to John Wirt from the National Center for Educational Statistics and 
David Miller from the American Institute for Research for their mentorship on this 
issue. Further acknowledgements to a mentor from too long ago at the University of 
Buffalo, Robert Nichols, who helped me learn to love working with complex data sets.

2. Available through the NCES website (http://nces.ed.gov/) or the Interuniversity 
Consortium for Political and Social Research website (http://www.icpsr.umich.edu).

3. Available through the CDC website (http://www.cdc.gov/nchs/index.htm).
4. Available through the bureau’s website (http://bjs.ojp.usdoj.gov/index.

cfm?ty=dctp&tid=3).
5. In many data sets there are multiple options for weights. For example, in NELS 

88, a survey of eighth grade students who were then followed for many years, there is 
a weight only for individuals interested in using the first (BY) data collection. A similar 
weight exists for each other data collection point (F1, F2, F3, and so on). Yet not all 
students present in BY are present also in F1 and F2, so if I want to perform an analy-
sis following students from 8th grade to 10th and 12th grade, there is a weight (called 
a panel weight) for longitudinal analyses as well. This highlights the importance of 
being thoroughly familiar with the details of the user manual before using data from 
one of these studies.

6. Available from the AM Statistical website (http://am.air.org/).
7. In order to examine the effects of utilization of best practices in modeling com-

plex samples, the original tenth grade (G10COHRT = 1) cohort from the Education 
Longitudinal Study of 2002 (along with the first follow-up) public release data was 
analyzed. Only students who were part of the original cohort (G10COHRT = 1) and 
who had weight over 0.00 on F1PNLWT (the weight for using both 10th and 12th grade 
data collection time points) were retained so that the identical sample is used through-
out all analyses.
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 FIVE 

SCREENING YOUR DATA  
FOR POTENTIAL PROBLEMS

Debunking the Myth of Perfect Data

Part of a complete statistical analysis is an assessment of assump-
tions including any distributional assumptions.

(DeCarlo, 1997, p. 296)

In upcoming chapters I discuss the importance of screening your data for 
extreme scores (e.g., outliers) and performing data transformations to 

improve the normality of your variables, which can have important implica-
tions for the normality of your data. The goal of this chapter is to talk about 
some of the practical aspects of data screening using modern statistical  
software.

In quantitative research methods, the standard normal distribution (or the 
bell-shaped curve) is a symmetrical distribution with known mathematical 
properties.1 Most relevant to our discussion, we know what percentage of a 
population falls at any given point of the normal distribution, which also gives 
us the probability that an individual with a given score (or above or below that 
score, as well) on the variable of interest would be drawn at random from a 
normally distributed population.

For example, we know that in a perfectly normal distribution, 68.26% of 
the population will fall within 1 standard deviation (SD) of the mean. That 
means that most individuals randomly sampled from a normally distributed 
population should fall relatively close to the mean. It also means we can cal-
culate other interesting statistics, like percentage of individuals that should fall 
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above or below a point. According to common statistics tables, we know that 
34.13% of individuals fall between the mean and 1 standard deviation above 
the mean. We also know that 50% of individuals fall below the mean (again, 
remember we are assuming a normal distribution—this does not apply to vari-
ables not distributed normally!). Thus, an individual who is 1 standard  
deviation above the mean is at the 84.13rd percentile (50% + 34.13%). An 
individual 1 standard deviation below the mean is at the 15.87th percentile 
(50% − 34.13%).

Likewise, 95.44% of the population should fall within ± 2.0 standard 
deviations from the mean,2 and that 99.74% of the population will fall within 
± 3.0 standard deviations of the mean. You can see in Figure 5.1 an expectation 
that a particular percentage of the population will fall between any two points 
on a normally distributed variable.

Imagine at the pediatrician’s visit, my 6-month-old child weighs 13.5 
pounds and the mean for that age is 15.0 with a standard deviation of 3.0. That 
equals a z score of -0.50.

How do they know my daughter is in the 5th percentile for weight?

When we took our infant daughter to the pediatrician, the first thing our 
nurse did was measure her height, weight, and head circumference. The 
pediatrician then told us what percentile she was for each measurement. 
How did she do that?

The process is similar for deciding whether a statistical test is 
“significant” at p < .05. The key to all of this, and much of parametric 
statistics, is the standard normal distribution (although not all percentiles 
are based on the normal distribution). 

One of the fun properties of the standard normal distribution is that 
we know what percentage of the population falls above or below any 
given point. When these data are based on good statistics from the 
population, doctors such as our daughter’s pediatrician can use them to 
tell nervous parents whether their child is below or above average for 
height and weight. 

Using the same process, researchers can determine the probability of 
obtaining certain results (e.g., the probability two group means would be 
a certain distance apart if in the population there was no difference 
between the groups) and make a decision whether to reject a hypothesis.

But remember, if the data are not normally distributed, it is misleading 
to draw conclusions based on the standard normal distribution!
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My child’s weight is one half of 1 standard deviation below the mean. So 
she weighs slightly less than average. By looking up z = -0.50 in any z-score 
table (such as the one in the appendix of this chapter) you can see that this z 
score corresponds to 0.2776, meaning 27.76% of the population falls at or 
below this number. Another way of saying this is my child’s weight is the 
27.76th percentile. And no wonder; my daughter Olivia is very active.

Now imagine that you are taking the MCATs to get into medical school. 
You are applying to very selective schools, meaning that you must do very 
well compared to your peers in order to be accepted. According to my infor-
mation, each scale on the test has a normal distribution with a mean of 8 and 
a standard deviation of 2.5. Thus, if you scored an 11, your z score would be:

z =
−( )
.

12 8
2 5

 = 1.60 = 0.9452 or 94.52th percentile.

In other words, you scored higher than 94.52% of the other students taking 
the MCATs that year, and the odds are good you will get accepted into the school 
of your choice. So how does this relate to statistical analyses? In brief, we also 
use our knowledge of this sort of process to understand how likely it is we would 

Figure 5.1  The Standard Normal Distribution

Mean

z Score
0.0 0.5−0.5 1.0−1.0 1.5−1.5 2.0−2.0 2.5−2.5 3.0−3.0
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observe some pattern of results if in fact the null hypothesis were true (e.g., what 
is the probability you would see a correlation of -.32 in your sample if in reality 
the population correlation was .00?). In general, then, we compare that probabil-
ity to the conventional p < .05 and if the probability is less than .05 (i.e., if the 
odds we would get our results from a sample when in fact the population results 
are null) then we say we reject the null hypothesis and discuss the alternative.

The important thing to remember is that all our parametric statistics 
(which include most of the commonly used statistical tests such as regression 
and ANOVA, as well as many more advanced techniques) assume variables 
are normally distributed because they use information such as this to deter-
mine the probability of achieving those results if in fact the null hypothesis 
(e.g., no correlation, no differences between groups) was true. So in many 
cases, having variables that violate this assumption of normality can substan-
tially bias the results of your analyses (Yuan, Bentler, & Zhang, 2005). From 
a scientific point of view, this can make you more likely to draw the wrong 
conclusion (e.g., make a Type I error asserting that an effect exists when in fact 
there is none, or making a Type II error, which is failing to see an effect when 
in fact there is one), which is obviously undesirable. In other words, most 
procedures that assume normal distributions are relatively nonrobust (meaning 
not immune) to even modest violations of this assumption (Micceri, 1989).

From a more practical point of view, subsequent chapters explore how 
improving the normality of your variables not only reduces the odds of making 
one of these errors of inference, but also can improve the effect sizes of your 
analyses, making them more accurate estimates of what is actually in the 
population of interest.

Before we get into the effects of nonnormality in future chapters, here we 
focus on different techniques to screen your data so that you can diagnose 
whether you have an issue with nonnormality or extreme scores. This is an 
important, yet often overlooked first step in statistical analysis (DeCarlo, 
1997), as the majority of variables you are likely to be analyzing are probably 
not normally distributed (Micceri, 1989)

THE LANGUAGE OF DESCRIBING DISTRIBUTIONS

In general we use two different terms to describe the distribution of variables: 
skew and kurtosis. Skew refers to how symmetrical the variable is. As you can 
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see in Figure 5.2, the students in my undergraduate educational psychology 
class tend to do well on my exams. The data is not remotely symmetrical as 
the curve in Figure 5.1, but rather is highly skewed. In this case, we would say 
that the distribution is negatively skewed, as the “tail” of the distribution (the 
elongated part of the curve where there are relatively few individuals) points 
toward the negative portion of the number line if it were extended below zero. 
If the distribution were reversed, as the data in Figure 5.3, we would say that 
distribution is positively skewed because the tail of the distribution is pointing 
toward the positive end of the number line.

Kurtosis is the other aspect of describing the shape of a distribution. It 
refers to the height of the variable in relation to its width. Again, using our 
standard normal distribution in Figure 5.1 as our gold standard, a leptokurtotic 
distribution is one that is too “slender” or tall relative to its tails. So a leptokur-
totic distribution would be taller and narrower (with heavier tails and a higher 
peak) than the curve in Figure 5.1, and would have a higher or positive  
value for kurtosis (in many statistical software packages, kurtosis of 0.00 is 
perfectly normal). The student grades in Figure 5.2 are a good example of a 

Figure 5.2   Performance on Class Unit Exam, Undergraduate 
Educational Psychology Course
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leptokurtotic (and highly skewed) distribution—the tails are too thin and long 
relative to the peak. A platykurtotic distribution is a distribution that is flatter 
and wider than a normally distributed variable, as though we took the distribu-
tion in Figure 5.1 and pushed down on the top, squashing it. Platykurtosis is 
also sometimes characterized as having “lighter tails than normal” (DeCarlo, 
1997, p. 292; see also Pearson, 1905). A platykurtotic distribution would have 
a negative kurosis value.

Ceiling and Floor Effects

One topic related to normality is that of a ceiling or floor effect, intro-
duced in Chapter 3. These are most commonly encountered when variation in 
responses are inhibited in some way, artificially attenuating the variation one 
would normally expect to see. For example, in educational research, giving 
students a test that is too hard or too easy can artificially attenuate variation. 
Giving second graders a multiple-choice high school calculus test would cre-
ate a floor effect. Many will receive scores around 25%, representing random 
guessing. In this case, many students would have scored much worse than 
25% if the measure of calculus ability was more carefully calibrated to be age 

Figure 5.3  Deaths From Horse Kicks, Prussian Army 1875–1894
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appropriate. Thus, we can say many students find the floor of the measure. 
Conversely, giving high school students a second grade math test should pro-
duce a ceiling effect. Many will score 100% (if they truly are trying their best), 
but that does not truly assess their mathematical ability. We can say many of 
these students hit the ceiling of the measure, due to the mismatch between the 
ability of the student and the range of ability the test is assessing. Ceiling and 
floor effects are issues of calibration—matching the test to the population.

Another common example of this sort of issue can be found in mental or 
physical health inventories (e.g., O’Mahony, Rodgers, Thomson, Dobson, & 
James, 1998). For example, administering a wellness inventory intended for 
the general population to severely ill individuals (e.g., stroke patients or 
advanced cancer patients) could create floor effects. Likewise, administering 
a depression inventory intended for the general population to patients experi-
encing hospitalization for depression could create ceiling effects.

These effects create nonnormal distributions that are not always easily 
dealt with through methods discussed in coming chapters. Rather this is an 
issue best dealt with at the beginning of a study, ensuring the measures a 
researcher will use are appropriate (and validated) for the population of interest.

Again, remember that the reason why we care about the shape of a distri-
bution is because if we assume a distribution is normal and it is not, all our 
assumptions about the probability of certain outcomes occurring are wrong, 
exposing us to increased likelihood of errors of inference.

TESTING WHETHER YOUR  
DATA ARE NORMALLY DISTRIBUTED

The Ocular Test

The most time-honored method of determining whether a variable is nor-
mally distributed is by looking at a histogram or other graphic representation of 
the distribution (modern statistical packages have excellent options for visual 
exploration of data). This is perhaps the most common and useful method 
researchers use. However, in my opinion, it is insufficient by itself, as decisions 
about normality based on visual inspection alone can be somewhat arbitrary.

I would suggest that you always look at a graphic representation of your 
data before doing anything else, as the human eye and brain are good at under-
standing nuances that simple numbers miss. Most researchers would recognize 
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the data in Figure 5.1 as normal and the data in Figures 5.2 and 5.3 as non-
normal, both skewed and leptokurtotic. However, in the 21st century, it is good 
to have objective evidence to corroborate conclusions from the ocular test.3

Examining Skew and Kurtosis Figures

Most statistical packages easily produce quantitative estimates of skew 
and kurtosis. There are various rules of thumb about what constitutes an 
acceptable skew or kurtosis. I often get concerned when I see skew or kurtosis 
moving toward 1.0 or -1.0, and have numerous examples of the beneficial 
effects of correcting skew of less than 1.0. Thus, it is difficult to give a defin-
itive indication as to what is acceptable except to say that closer to normal is 
better than farther.

One further drawback to skew and kurtosis is that no consensus exists as 
to what constitutes a “significant” improvement in either. It is possible to 
imagine developing a measure using skew and the standard error of skew (or 
kurtosis and the standard error of kurtosis), but that may be more esoteric than 
necessary.

Obviously, as the data in Figure 5.1 was generated to be perfectly normal, 
it would have both a skew and kurtosis of 0.00. The data in Figure 5.2 has a 
skew of -1.75 and a kurtosis of 5.43 (indicating what is confirmed by visual 
inspection—that the tail of the distribution points to the left, and that the curve 
is narrower and taller, or “pointier” than desirable in a normal distribution). 
The data in Figure 5.3 is similarly nonnormal, with a skew of 1.24 (verifying 
our visual inspection that shows the tail of the distribution pointing to the 
right) and kurtosis of 1.20 (again, indicating a distribution that is narrower and 
taller, or “pointier” than a normal distribution.

An example of a platykurtotic distribution is obtained by examining stu-
dent grades from Figure 5.2 but limiting the range to high-performing students 
(80% to 95%). This subsample yields a curve that is relatively symmetric 
(skew = -0.11) but is platykurtotic (kurtosis = -0.82, indicating it is flatter 
than a normal distribution), as shown in Figure 5.4.

Examining P-P Plots

P-P plots4 examine the actual cumulative probabilities of your data from 
that expected from a theoretical normal distribution. If you have a perfectly 
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normal variable, the observed values (the dots) will fall exactly on the line (the 
expected values). In the P-P plot in Figure 5.5, you see the plot for socioeco-
nomic status (SES) from a national data set (a very normal curve with a skew 
of 0.004 and kurtosis of -0.59). Thus, the normally distributed variable 
appears to follow the diagonal line very closely (essentially obscuring the line 
itself).

To the extent that you see substantial deviation from normal (as in Figure 5.6 
on page 97, which comes from automobile crash test head injury data and has 
a skew of 1.67 and kurtosis of 4.52) you will see the observed data diverge 
from the line representing theoretical normality. This is merely another visual 
inspection tool for researchers.

Unfortunately, these plots share interpretive ambiguity with visual inspec-
tion and examination of skew and kurtosis statistics: there is once again no 

Figure 5.4  Grade Distribution of Scores Between 80 and 95
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Figure 5.5  A P-P Plot of a Mostly Normal Variable
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clear rule or guide to let you know how much of a deviation from normal is 
“too much.” As I demonstrate in coming chapters, even seemingly modest 
deviations from normal can have implications for effect sizes.

Inferential Tests of Normality

Two of the most common inferential tests of normality—Kolmogorov-
Smirnov (K-S) (with Lilliefors correction; see Lilliefors, 1967) and Shapiro-
Wilk (S-W) (Shapiro & Wilk, 1965)—examine whether a variable conforms 
to a predetermined type of distribution (e.g., a normal distribution) or whether 
it differs significantly. Thus, these last two tests are examples of what might 
be one of the more objective ways to determine if your data are significantly 
different from normal. In all cases, the hypotheses tested are:

H o: The variable distribution is not significantly different from normal.

Ha: The variable distribution is significantly different from normal.
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Figure 5.6   A P-P Plot of a Negatively Skewed, Leptokurtic 
Distribution
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Recalling that the null hypothesis is that the variable is normally distrib-
uted, a significant (i.e., p < .05) result leads to the rejection of that hypothesis 
and the conclusion the variable shows significant nonnormality and is then a 
candidate for data cleaning in some way. S-W has often been discussed as 
more accurate than K-S/Lilliefors (DeCarlo, 1997; Schoder, Himmelmann, & 
Wilhelm, 2006; Shapiro, Wilk, & Chen, 1968). Yet in this type of analysis, 
power from large samples may ironically make these tests undesirable.

How power can harm inferential tests of normality. This special type of 
hypothesis testing is actually difficult to do in large-sample situations, as sen-
sitivity to extremely minor deviations (i.e., unimportant deviations) from 
normality becomes problematic quickly. The goal of using these tests is 
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betrayed if every test is significant, even for almost perfectly normal data. 
Thus, researchers need to interpret significant results with caution when 
samples are large (i.e., more than a couple hundred individuals).

Despite the K-S test (especially without the Lilliefors correction) being 
criticized in the literature for being insensitive to minor deviations, in larger-
sample situations this might actually make it more desirable in the social sci-
ences, where minor deviations from normality are practically unimportant 
(and usually unavoidable). As Table 5.1 shows, in a sample of more than 700 
individuals, a relatively normal variable (SES) does not produce a significant 
K-S test statistic, but does under S-W. Both appear to be too sensitive to minor 
deviations from normality under very large sample conditions, so these tests 
must all be interpreted with caution (Steinskog, Tjøstheim, & Kvamstø, 2007) 
and in the context of what the goal of the researcher is (e.g., if the goal is want-
ing to be most sensitive to detecting deviations from normality then Shapiro-
Wilk seems the best test).

Performing a K-S or S-W Test

Obviously, the details differ across software packages as to how to per-
form a K-S or S-W test. In SPSS, for example, you can perform a traditional 
K-S test by choosing ANALYSIS àNONPARAMETRIC TESTS à ONE 
SAMPLE (for the less sensitive K-S test) or you can go through ANALYSIS 
à DESCRIPTIVE STATISTICS à EXPLORE, selecting PLOT and check-
ing NORMALITY PLOTS with tests, to perform a K-S test with Lilliefors 
correction (which appears to make it more sensitive to nonnormality).5 Other 
statistical software has similar options.

As Table 5.1 shows, the K-S (with or without Lilliefors) test is nonsig-
nificant for the two examples where it is probably least important for a 
researcher to deal with nonnormality (i.e., where the distributions were closest 
to normal) yet clearly identified the other two distributions as significantly 
different from normal and in need of attention. In contrast S-W may be too 
sensitive as it identified all four distributions as significantly different from 
normal (though in fairness, this test was designed to be more accurate in terms 
of identifying deviations from normality). In the chapters that follow, we will 
explore causes and solutions to substantial nonnormality.



99

Ta
bl

e 
5.

1 
 R

es
ul

ts
 o

f I
nf

er
en

tia
l T

es
tin

g 
of

 N
or

m
al

ity

 
O

cu
la

r 
Te

st
 

Sk
ew

 
K

ur
to

s 
is

 
K

-S
 (

df
)

 p 
<

K
-S

 W
it

h 
Li

lli
ef

or
s 

(d
f)

 p 
<

 
S-

W
 (

df
)

 p 
<

So
ci

oe
co

no
m

ic
 

St
at

us
 (

N
or

m
al

)
N

or
m

al
0.

00
4

-0
.5

9
0.

75
(7

12
)

.6
2

0.
03

(7
12

)
.2

0
0.

99
(7

12
)

 
.0

02

St
ud

en
t 

G
ra

de
s

N
eg

at
iv

e 
sk

ew
 

+
 le

pt
ok

ur
to

tic
-1

.7
5

5.
43

1.
65

(1
74

)
.0

08
0.

12
6

(1
74

)
.0

00
1

0.
87

6
(1

74
)

 
.0

00
1

St
ud

en
t 

G
ra

de
s 

(O
nl

y 
80

–9
5)

Sy
m

m
et

ri
c 

bu
t

pl
at

yk
ur

to
tic

-0
.1

1
-0

.8
2

0.
81

(1
28

)
.5

3
0.

07
(1

28
)

.1
9

0.
98

(1
28

)
 

.0
3

H
or

se
 K

ic
ks

Po
si

tiv
e 

sk
ew

 +
 

le
pt

ok
ur

to
tic

1.
24

1.
20

5.
07

(2
80

)
.0

00
1

0.
30

(2
80

)
.0

00
1

0.
76

(2
80

)
 

.0
00

1



100 Best Practices in Data Cleaning

CONCLUSIONS

There is an art and a science to data screening and cleaning. The thoughtful 
researcher will use a variety of different pieces of information to determine the 
most reasonable course of action. Visual inspection of data will always be an 
important first step in understanding and screening that data, accompanied by 
quantitative information about the distributional qualities of the data (e.g., 
skew and kurtosis). Yet for many, that leaves the question of “how good is 
good enough” open to debate. Reviewers, thesis committee members, and 
even professors teaching quantitative methods courses are left open to justifi-
able debate and criticism if they use these pieces of information exclusively. It 
seems to me a much stronger and defensible position to be able to say that 
visual inspection, normality statistics, and inferential tests all support the argu-
ment that the data meet distributional assumptions.

Yet it is not always the case that all three pieces of information will point 
to the same conclusion. In this case, the professional, scholarly judgment of 
the statistician must come into play in making the best decisions about what 
steps might be necessary to prepare the data for analysis.

When Inferential Tests of Distributional  
Assumptions Might Not Be Valuable

Remember the K-S and S-W tests are attempting to detect deviations from 
normality, and that (like all inferential tests) the power to reject the null 
hypothesis (in this case the null hypothesis is the desired one to retain, to con-
clude that the data distribution is not significantly different from normal) is 
strongly influenced by sample size. For example, it might be that with a 
sample of 1,000 participants, it will be difficult to get a nonsignificant K-S or 
S-W test no matter how close to normally distributed the data are, because the 
power to detect minute deviations from normality is so great. Thus, in large 
samples, social scientists may find the inferential tests more of a guide than a 
final arbiter of distributional assumptions. A skilled statistician will utilize all 
information at hand, such as skew and kurtosis, as well as visual inspection of 
the data.
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FOR FURTHER ENRICHMENT

1. Data sets mentioned in this chapter are available for download on the 
book’s website. Download them and practice screening for nonnormality in 
the software you prefer. Identify how to perform a K-S test (with or without 
the Lilliefors correction) or the S-W test.

2. Explore a recent data set from your research, your advisor’s research, or 
from a journal article you admire. Do the variables meet assumptions of 
normality according to the various methods discussed in this chapter?

3. Discuss basic data cleaning with another scholar in your field. Ask whether 
that person routinely screens data for normality. If not, ask why not. If so, 
ask what methods that person relies on to determine whether the assump-
tion is met.

APPENDIX

Z-Score Table

Chart value corresponds to area below z score.

Z 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00

-3.4 .0002 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003

-3.3 .0003 .0004 .0004 .0004 .0004 .0004 .0004 .0005 .0005 .0005

-3.2 .0005 .0005 .0005 .0006 .0006 .0006 .0006 .0006 .0007 .0007

-3.1 .0007 .0007 .0008 .0008 .0008 .0008 .0009 .0009 .0009 .0010

-3.0 .0010 .0010 .0011 .0011 .0011 .0012 .0012 .0013 .0013 .0013

-2.9 .0014 .0014 .0015 .0015 .0016 .0016 .0017 .0018 .0018 .0019

-2.8 .0019 .0020 .0021 .0021 .0022 .0023 .0023 .0024 .0025 .0026

-2.7 .0026 .0027 .0028 .0029 .0030 .0031 .0032 .0033 .0034 .0035

-2.6 .0036 .0037 .0038 .0039 .0040 .0041 .0043 .0044 .0045 .0047

(Continued)

Table 5.2  Results of 100  Correlation Coefficients 
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Z 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00

-2.5 .0048 .0049 .0051 .0052 .0054 .0055 .0057 .0059 .0060 .0062

-2.4 .0064 .0066 .0068 .0069 .0071 .0073 .0075 .0078 .0080 .0082

-2.3 .0084 .0087 .0089 .0091 .0094 .0096 .0099 .0102 .0104 .0107

-2.2 .0110 .0113 .0116 .0119 .0122 .0125 .0129 .0132 .0136 .0139

-2.1 .0143 .0146 .0150 .0154 .0158 .0162 .0166 .0170 .0174 .0179

-2.0 .0183 .0188 .0192 .0197 .0202 .0207 .0212 .0217 .0222 .0228

-1.9 .0233 .0239 .0244 .0250 .0256 .0262 .0268 .0274 .0281 .0287

-1.8 .0294 .0301 .0307 .0314 .0322 .0329 .0336 .0344 .0351 .0359

-1.7 .0367 .0375 .0384 .0392 .0401 .0409 .0418 .0427 .0436 .0446

-1.6 .0455 .0465 .0475 .0485 .0495 .0505 .0516 .0526 .0537 .0548

-1.5 .0559 .0571 .0582 .0594 .0606 .0618 .0630 .0643 .0655 .0668

-1.4 .0681 .0694 .0708 .0721 .0735 .0749 .0764 .0778 .0793 .0808

-1.3 .0823 .0838 .0853 .0869 .0885 .0901 .0918 .0934 .0951 .0968

-1.2 .0985 .1003 .1020 .1038 .1056 .1075 .1093 .1112 .1131 .1151

-1.1 .1170 .1190 .1210 .1230 .1251 .1271 .1292 .1314 .1335 .1357

-1.0 .1379 .1401 .1423 .1446 .1469 .1492 .1515 .1539 .1562 .1587

-0.9 .1611 .1635 .1660 .1685 .1711 .1736 .1762 .1788 .1814 .1841

-0.8 .1867 .1894 .1922 .1949 .1977 .2005 .2033 .2061 .2090 .2119

-0.7 .2148 .2177 .2206 .2236 .2266 .2296 .2327 .2358 .2389 .2420

-0.6 .2451 .2483 .2546 .2514 .2578 .2611 .2643 .2676 .2709 .2743

-0.5 .2776 .2810 .2843 .2877 .2912 .2946 .2981 .3015 .3050 .3085

-0.4 .3121 .3156 .3192 .3228 .3264 .3300 .3336 .3372 .3409 .3446

-0.3 .3483 .3520 .3557 .3594 .3632 .3669 .3707 .3745 .3783 .3821

-0.2 .3859 .3897 .3936 .3974 .4013 .4052 .4090 .4129 .4168 .4207

-0.1 .4247 .4286 .4325 .4364 .4404 .4443 .4483 .4522 .4562 .4602

-0.0 .4641 .4681 .4721 .4761 .4801 .4840 .4880 .4920 .4960 .5000

(Continued)

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753

0.2 .5783 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549

0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
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Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8115 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621

1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 8830

1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015

1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177

1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441

1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545

1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633

1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706

1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857

2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890

2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916

2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952

2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964

2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974

2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981

2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990

3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993

3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995

3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997

3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

NOTES

1. y e x= −1
2

2 2

π
/ .

 (Spiegel, 1968).

2. That 95.0% fall within 1.96 standard deviation of the mean gives rise to the 
hallowed p < .05 criterion for null hypothesis significance testing. For some historical 
background on null hypothesis statistical testing, see Fisher (1925) and Neyman and 
Pearson (1936).

3. Thanks to my colleague Brett Jones, from Virginia Tech, who shared this term 
with me. 
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4. Not to be confused with Q-Q plots, which also serve to test for normality and 
compare the quantiles of the variable against the quantiles of the theoretical distribution.

5. The second, preferred method amongst statisticians applies the Lilliefors cor-
rection. Without this correction (as with the K-S test performed from the Non-Paramet-
ric menu option) the K-S test is considered to be biased.
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 SIX 

DEALING WITH MISSING  
OR INCOMPLETE DATA

Debunking the Myth of Emptiness

I n almost any research you perform, there is the potential for missing or 
incomplete data. Missing data can occur for many reasons: participants 

can fail to respond to questions (legitimately or illegitimately—more on that 
later), equipment and data collecting or recording mechanisms can malfunc-
tion, subjects can withdraw from studies before they are completed, and data 
entry errors can occur. In later chapters I also discuss the elimination of 
extreme scores and outliers, which also can lead to missingness.

The issue with missingness is that nearly all classic and modern statistical 
techniques assume (or require) complete data, and most common statistical 
packages default to the least desirable options for dealing with missing data: 
deletion of the case from the analysis. Most people analyzing quantitative data 
allow the software to default to eliminating important data from their analyses, 
despite that individual or case potentially having a good deal of other data to 
contribute to the overall analysis.

It is my argument in this chapter that all researchers should examine their 
data for missingness, and researchers wanting the best (i.e., the most replicable 
and generalizable) results from their research need to be prepared to deal with 
missing data in the most appropriate and desirable way possible. In this chap-
ter I briefly review common reasons for missing (or incomplete) data, compare 
and contrast several common methods for dealing with missingness, and dem-
onstrate some of the benefits of using more modern methods (and some draw-
backs of using the traditional, default methods) in the search for the best, most 
scientific outcomes for your research.
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WHAT IS MISSING OR 
INCOMPLETE DATA?

The issue before us is whether we have 
complete data from all research partici-
pants on all variables (at all possible 
time points, if it is a repeated-measures 
design). If any data on any variable 
from any participant is not present, the 
researcher is dealing with missing or 
incomplete data. For the purposes of 
the rest of this chapter, we use the term 
missing to indicate that state of affairs. 
In many types of research, it is the case 
that there can be legitimate missing 
data. This can come in many forms, for 
many reasons. Most commonly, legiti-
mate missing data is an absence of data 
when it is appropriate for there to be an 
absence. Imagine you are filling out a 
survey that asks you whether you are 
married,1 and if so, how long you have 
been married. If you say you are not 
married, it is legitimate for you to skip 
the follow-up question on how long 
you have been married. If a survey 
asks you whether you voted in the last 
election, and if so, what party the can-
didate was from, it is legitimate to skip 
the second part if you did not vote in 
the last election.

In medical research, it is possible 
that whatever treatment a participant is 
receiving has eliminated the condition 

that person was getting treated for (since I am not a medical doctor, I will call 
that “being cured”). In a long-term study of people receiving a particular type 
of treatment, if you are no longer receiving treatment because you are cured, 

Is emptiness meaninglessness?

Modern researchers seem to view 
missing data as empty, useless, a 
void that should have been filled 
with information, a thing without 
pattern, meaning, or value.

Yet the ancient Greeks saw 
potential in emptiness. The Greek 
goddess Chaos (Khaos) represented 
unfilled space (initially the unfilled 
space between the earth and the 
heavens in the creation mythology), 
much as a blank canvas represents 
unfilled potential to an artist or a 
blank page to a writer. And ancient 
Olmec, Indian, and Arabic 
mathematicians saw usefulness in 
the mathematical quantification of 
nothing, what we now call zero 
(Colebrooke, 1817; Diehl, 2004).

The modern computer era is built 
upon use of 0s and 1s as indicators 
of important states, both meaningful 
and critical to the functioning of 
devices that are now ubiquitous. Just 
as our ancestors saw usefulness and 
information in absence, I propose to 
demonstrate that missingness can not 
only be informative, but in certain 
circumstances can also be filled with 
meaning and that those with missing 
data do not need to be banished 
from our analyses but rather can 
contribute to a more complete and 
accurate understanding of the 
population about which we wish to 
draw conclusions.
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that might be a legitimate form of missing data. Or perhaps you are following 
employee satisfaction at a company. If an employee leaves the company (and 
thus is no longer an employee) it seems to me legitimate that person should no 
longer be responding to employee satisfaction questionnaires.

Large data sets, especially government data sets, are full of legitimately 
missing data, and researchers need to be thoughtful about handling this issue 
appropriately (as I hope you will be thoughtful about all issues around data 
cleaning). Note too that even in the case of legitimate missingness, missing-
ness is meaningful. Missingness in this context informs and reinforces the 
status of a particular individual and can even provide an opportunity for 
checking the validity of an individual’s responses. In cleaning the data from a 
survey on adolescent health risk behaviors many years ago, I came across 
some individuals who indicated on one question that they had never used ille-
gal drugs, but later in the questionnaire, when asked how many times they had 
used marijuana, they answered that question indicating a number greater than 
0. Thus, what should have been a question that was legitimately skipped was 
answered with an unexpected number. What could this mean? One possibility 
is that the respondent was not paying attention to the questions and answered 
carelessly or in error. Another possibility is that the initial answer (have you 
ever used illegal drugs) was answered incorrectly. It also is possible that some 
subset of the population did not include marijuana in the category of illegal 
drugs—an interesting finding in itself and one way in which researchers can 
use data cleaning to improve their subsequent research.

Legitimate missing data can be dealt with in different ways. One common 
way of dealing with this sort of data could be using analyses that do not require 
(or can deal effectively with) incomplete data. These include things like hier-
archical linear modeling (HLM) (Raudenbush & Bryk, 2002) or survival 
analysis.2 Another common way of dealing with this sort of legitimate missing 
data is adjusting the denominator (an important concept introduced in Chapter 
3). Again taking the example of the marriage survey, we could eliminate non-
married individuals from the particular analysis looking at length of marriage, 
but would leave nonmarried respondents in the analysis when looking at issues 
relating to being married versus not being married. Thus, instead of asking a 
slightly silly question of the data—“How long, on average, do all people, even 
unmarried people, stay married?”—we can ask two more refined questions: 
“What are the predictors of whether someone is currently married?” and  
“Of those who are currently married, how long on average have they been 
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married?” In this case, it makes no sense to include nonmarried individuals in 
the data on how long someone has been married.

This example of dealing with legitimately missing data is relatively 
straightforward and mostly follows common sense. The best practice here is 
to make certain the denominator (the sample or subsample) is appropriate for 
the analysis. Be sure to report having selected certain parts of your sample for 
specific analyses when doing so. In the case of legitimate missing data, it is 
probably rare that a researcher would want to deal with it by imputing or sub-
stituting a value (as we discuss for illegitimately missing data below), as that 
again changes the research question being addressed to “If everyone was mar-
ried, how long, on average, would they stay married?” That probably is not 
something that makes a tremendous amount of sense.

Illegitimately missing data is also common in all types of research.  
Sensors fail or become miscalibrated, leaving researchers without data until 
that sensor is replaced or recalibrated. Research participants choose to skip 
questions on surveys that the researchers expect everyone to answer. Partici-
pants drop out of studies before they are complete. Missing data also, some-
what ironically, can be caused by data cleaning. It is primarily this second type 
of missing data that I am most concerned with, as it has the potential to bias 
the results.

Few authors seem to explicitly deal with the issue of missing data, despite 
its obvious potential to substantially skew the results (Cole, 2008). For exam-
ple, in a recent survey my students and I performed of highly regarded journals 
from the American Psychological Association, we found that more than one-
third (38.89%) of authors discussed the issue of missing data in their articles 
(Osborne, Kocher, & Tillman, 2011). Do those 61% who fail to report any-
thing relating to missing data have complete data (rare in the social sciences, 
but possible for some authors), do they have complete data because they 
removed all subjects with any missing data (undesirable, and potentially bias-
ing the results, as we discuss next), did they deal effectively with the missing 
data and fail to report it (less likely, but possible), or did they allow the statis-
tical software to treat the missing data via whatever the default method is, 
which most often leads to deletion of subjects with missing data? If our survey 
is representative of researchers across the sciences, we have cause for concern. 
Our survey found that of those researchers who did report something to do 
with missing data, most reported having used the classic methods of listwise 
deletion (complete case analysis) or mean substitution, neither of which are 
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particularly effective practices (Schafer & Graham, 2002), as I demonstrate 
below. In only a few cases did researchers report doing anything constructive 
with the missing data, such as estimation or imputation. And in no case did we 
find that researchers analyzed the missingness to determine whether it was 
missing completely at random (MCAR), missing at random (MAR), or miss-
ing not at random (MNAR). This suggests there is a mythology in quantitative 
research that (a) individuals with incomplete data cannot contribute to the 
analyses, and that (b) removing them from the analyses is an innocuous action, 
which is only justified if you believe that missing data is missing completely 
at random (probably not the most common state).

CATEGORIES OF MISSINGNESS

When exploring missing data, it is important to come to a conclusion about the 
mechanism of missingness—that is, the hypothesized reason for why data are 
missing. This can range from arbitrary or random influences to purposeful 
patterns of nonresponse (e.g., most women in a study refuse to answer a ques-
tion that is offensive or sensitive to women but that does not affect men in the 
same way).

Determination of the mechanism is important. If we can infer the data are 
missing at random (i.e., MCAR or MAR), then the nonresponse is deemed 
ignorable. In other words, random missingness can be problematic from a 
power perspective (in that it often reduces sample size or degrees of freedom 
for an analysis), but it would not potentially bias the results. However, data 
missing not at random (MNAR) could potentially be a strong biasing influence 
(Rubin, 1976).

Let us take an example of an employee satisfaction survey given to school-
teachers in a local district as an example of MCAR, MAR, and MNAR.  
Imagine that in September all teachers are surveyed (X), and then in January 
teachers are surveyed again (Y). Missing completely at random (MCAR) 
would mean that missingness in January is completely unrelated to any vari-
able, including September satisfaction level, age, years of teaching, and the 
like. An example of this would be 50% of all respondents from September were 
randomly sampled to respond to the survey again in January, with all potential 
respondents completing surveys at both time points. In this case, having data 
for Y present or absent is completely explained by random selection. Put 
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another way, missingness has no systematic relation to any variable present or 
unmeasured (such as age, sex, race, level of satisfaction, years teaching).

Now imagine that this surveying was part of the school district’s initiative 
to keep teachers from leaving, and they wanted to focus on teachers with low 
satisfaction in September, perhaps with an intervention to help raise satisfaction 
of these low-satisfaction teachers. In this case, the missingness depends solely 
and completely on X, the initial score. Because the goal of the survey is to 
explore how these particular teachers fared, rather than all teachers in general, 
missingness is still considered ignorable and missing at random (MAR). If, on 
the other hand, other factors aside from initial satisfaction level were responsible 
(or partly responsible for missingness) such that perhaps only teachers whose 
satisfaction had improved responded (the teachers who continued to be substan-
tially dissatisfied may be less likely to return the survey), then the data are 
considered missing not at random (MNAR) and are not ignorable (Rubin, 1976; 
Schafer & Graham, 2002) because they may substantially bias the results. In the 
case of MNAR, the average satisfaction of the follow-up group would be 
expected to be inflated if those who were most dissatisfied had stopped respond-
ing. If missingness were related to another external factor, such as if those teach-
ers who were most dissatisfied were the most junior teachers (the teachers with 
least time in the profession), that also would qualify the missing data as MNAR.

In other words, it is only legitimate to assume that your observed data are 
representative of the intended population if data are convincingly missing at 
random or missing completely at random.3 For simplicity, I will proceed 
through the rest of the chapter focusing on MCAR versus MNAR. MAR 
(ignorable missingness) is probably more common than MCAR but MNAR is 
probably most common, and thus, MCAR is merely presented as a comparison 
point. In truth, best practices in handling missing data appear to be equally 
effective regardless of whether the data are MCAR, MAR, or MNAR.

WHAT DO WE DO WITH MISSING DATA?

To illustrate some of the effects of missing data handling, I used data from the 
Education Longitudinal Study of 2002 (Ingels et al., 2004), grade 10 cohort to 
provide an example. For these analyses, no weights were applied. The  
complete sample of 15,163 students represents our example of the population 
(the advantage here is that we know the exact parameters of the population, 
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something we often do not know). In this first example, I use the relatively 
strong correlation between math and reading achievement scores (BYTX-
MIRR, BYTXRIRR), which produces what we define as the “population” 
correlation estimate (ρ) of .77, as indicated in Table 6.1 (row #1). (See also 
Figure 6.3 on page 134.)

Data Missing Completely at Random (MCAR)

To simulate MCAR situations, 20% of mathematics scores were randomly 
selected to be identified as missing. As a confirmation of the randomness of 
the missingness, two analyses were performed. First, as Table 6.1 shows, there 
was no mean difference in reading IRT scores between the missing and non-
missing groups (F(1, 15161) = 0.56, p < .45, η2 = .0001). Second, there was no 
correlation between the missingness variable and any other substantive or 
ancillary variable (e.g., socioeconomic status, standardized reading IRT 
scores; all r(15,163) .002 to .006, p < .57 to .79). Another test of randomness was 
a logistic regression predicting missingness (0 = not missing, 1 = missing) 
from all other variables (math, reading, and socioeconomic status). When all 
three variables were in the equation, the overall equation was not significant 
(p < .47) and all 95% confidence intervals for the odds ratios for the three 
variables included 1.00, indicating no significant relationship between miss-
ingness and any of the three variables.4 Finally, another test of randomness is 
to perform an ANOVA to see if individuals with missing data on one variable 
are significantly different on other, similar variables (in this case, reading 
achievement). As you can see in Table 6.1, there is no significant difference in 
reading achievement between those with missing data on math achievement 
and those with valid math scores. Although not definitive, this sort of analysis 
in your data can give support to an inference of randomness or nonrandomness 
regarding the missing data.

Data Missing Not at Random—Low Scoring  
Students More Likely to Be Missing (MNAR-Low)

To simulate one type of MNAR (labeled MNAR-low), cases at or below 
the 30th percentile on the math achievement test were given a 80% chance  
of being randomly labeled as missing on the math test, cases between the  
30th and 50th percentile on the math test were given a 50% chance of being 
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randomly labeled as missing, and those over the 50th percentile on the math test 
were only given a 1% chance of being labeled as missing on the math test. This 
should simulate a highly biased situation where the best-performing students  
are more likely to respond to an item than the worst-performing students.  
As expected, MNAR-low produced an upwardly biased estimate of average 
performance—overestimating the mean performance due to more missing data 
from lower-performing students and slightly underestimating the standard 
deviation, also expected in this case due to less dispersion at the lower extreme 
of the distribution. As expected, achievement test scores were significantly cor-
related with missingness in this case (r(15,163) = -.51 and -.66 for reading and math 
achievement, respectively, both p < .0001) as was socioeconomic status (r(15,163) 
= -.28, p < .0001). Furthermore, logistic regression predicting missingness from 
achievement and socioeconomic status found all three variables were significant 
predictors of MNAR-low (all p < .0001), indicating that those with lower 
achievement (or SES) were more likely to be missing (as expected). Finally, as 
Table 6.1 shows, there were substantial mean differences in reading achievement 
between those with missing scores and those with valid math scores.

Data Missing Not at Random—Students at the  
Extremes More Likely to Be Missing (MNAR-Extreme)

A second type of MNAR (MNAR-extreme) was simulated by giving 
those students below the 30th percentile and above the 70th percentile on the 
math achievement test an 80% chance of being randomly identified as missing 
on the math test. Those in the center of the distribution were given only a 5% 
chance of being labeled as missing on the math test (Acock, 2005). This 
should have the effect of increased nonrandom missingness without substan-
tially skewing the population average estimates.

As expected, MNAR-extreme produced the desired effects. Because the 
highest and lowest 30% of the students were more likely to be missing than the 
middle 40% (i.e., the missing data was symmetrically, but not randomly distrib-
uted), the distribution should closely match the mean of the original population, 
with dramatically reduced variance, and little or no difference in missing or 
nonmissing scores. As Table 6.1 shows, that is exactly what occurred. The  
average for MNAR-extreme closely approximates the population mean, under-
estimates the standard deviation, and produced significant, but unimportant 
differences between the two groups (an eta-squared of .001 is an extremely 
small effect size). Furthermore, we would not expect significant correlations 
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between missingness and achievement or socioeconomic status, and correla-
tions ranged from r(15,163) = -.03 to .02. Finally, though the logistic regression 
indicated that missingness in this case was significantly related to reading 
achievement (Odds ratio = 0.99, p < .0001) and socioeconomic status (Odds 
ratio = 1.10, p < .0001), the odds ratios are close to 1.00, indicating a small 
effect size that is only significant by virtue of having more than 15,000 degrees 
of freedom. Thus, I can argue that while MNAR-extreme was decidedly non-
random missingness, it did produce a largely symmetrical distribution.

Data Missing Not at Random That 
Inverts the Relationship Between 
Two Variables (MNAR-Inverse)

As a final challenge and test of miss-
ing data handling techniques, I created an 
extremely biased sampling technique that 
virtually eliminated those with both high 
reading and math scores, and those with 
both low reading and math scores, to have 
the effect of reversing the relationship 
between reading and math achievement 
(this is described more thoroughly in 
Appendix A of this chapter and also is 
available on the book’s website). (See also 
Figure 6.4 on page 135.) By selectively 
sampling only those students on the 
downward diagonal, this produced a sam-
ple of almost N = 5,000 students that had 
a negative correlation (r(4,994) = -.20).

Finally, MNAR-inverse also had 
the desired effect of producing a  
sample that at a glance does not look 
problematic. As Table 6.1 (5th row) 
shows, this MNAR-inverse sample is 
not substantially different from the 
other samples in mean math achieve-
ment (although the standard deviation 

Complete case analysis can lead to 
incomplete understanding.

Stuart, Azur, Frangakis, and Leaf 
(2009) give some interesting 
examples of how looking at only 
cases with complete data can lead 
to incomplete or inaccurate findings 
in the context of a national health 
survey. In one example, eliminating 
cases with missing data could lead 
us to conclude that individuals who 
start smoking earlier in life are more 
emotionally strong and less 
functionally impaired than 
individuals who started smoking 
later in life—a finding contrary to 
common sense and decades of 
research. They also found that under 
complete case analysis, those who 
drink more have fewer internalizing 
problems (e.g., depression, anxiety), 
another incongruous finding. 
Fortunately, after appropriate 
handling of missing data, these 
relationships were more consistent 
with the literature.

These real-life examples inspired 
me to create the fourth condition, 
MNAR-inverse because missing data 
apparently can lead to completely 
wrong conclusions in the real world.
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underestimates the population variablility), and the shape of the distribution is 
not substantially different from the MNAR-extreme distribution. Furthermore, 
there is little difference between those missing and not missing on the reading 
achievement score (again, a very small effect size of eta-squared = .001). Other 
analyses showed no important correlations between missingness and achieve-
ment or socioeconomic status (r(15,163) ranged from .03 to .04), and a logistic 
regression predicting missingness from the same three variables showed only a 
small effect for socioeconomic status (Odds ratio = 1.08, p < .0001) indicating 
that those from more affluent families were more likely to be missing. If a 
researcher was unaware that the population correlation for these two variables 
should be .77, none of these minor effects hint at how biased this sample is due 
to nonrandom missingness—yet this example highlights the importance of deal-
ing effectively with missing data.

THE EFFECTS OF LISTWISE DELETION

Traditional methods of dealing with missing data (and the default for many 
statistical packages) is to merely delete any cases with missing values on any 
variable in the analysis. A special case of this, called pairwise deletion or avail-
able case analysis, uses those cases with complete data on only those variables 
selected for a particular analysis. This means that the sample being analyzed can 
change depending on which variables are in the analysis, which could be prob-
lematic regarding replicability and increase the odds of errors of inference. 
Neither case is particularly desirable (Cole, 2008; Schafer & Graham, 2002). 
When data are MCAR, estimates are not biased, but under the more common 
MAR or MNAR conditions, misestimation and errors can result (Stuart, et al., 
2009). Again, referring to Table 6.1, a simple example of the correlation between 
reading and math achievement test scores demonstrates this effect nicely.

As Table 6.1 shows, the original correlation coefficient for the population was 
ρ = .77 (variance accounted for = .59). When the data are MCAR, the population 
effect is estimated almost exactly. However, when data are MNAR, estimates 
begin to stray from the population parameter. In the MNAR-low sample, what 
might look like a minor misestimation (r(12,134) = .70) is an underestimation of the 
effect size by almost 20% (coefficients of determination/percentage variance 
accounted for are .59 versus .49, a 16.9% underestimation). When the missing data 
causes a restriction of range situation (introduced in Chapter 3, showing restriction 
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of range causing attenuation of correlation coefficients) represented by the 
MNAR-extreme sample, the misestimation is even more pronounced, producing 
a correlation coefficient of r(7,578) = .61 (coefficient of determination of 0.37, which 
underestimates the population effect size by 37.29%). Finally, and most obviously, 
when the missingness is biased in a particular way, such as the MNAR-inverse 
example, it is possible that deletion of cases could lead researchers to draw the 
opposite conclusion regarding the nature of the relationship than exists in the 
population, as evidenced by the MNAR-inverse sample.

Thus, by deleting those with missing data, a researcher could be misesti-
mating the population parameters, making replication less likely (for more 
examples of this effect, see Schafer & Graham, 2002, Table 2.).

Another undesirable effect of case deletion (even under MCAR) is loss of 
power. Most researchers use analyses with multiple variables. If each variable 
has some small percentage of randomly missing data, five variables with small 
percentages of missing data can add up to a substantial portion of a sample 
being deleted, which can have deleterious effects on power (as discussed in 
Chapter 2). Combined with what is likely an underestimation of the effect size, 
power can be significantly impacted when substantial portions of the sample 
are deleted when data are not MCAR. Thus, case deletion is only an innocuous 
practice when (a) the number of cases with missing data is a small percentage 
of the overall sample, and (b) the data are demonstrably MAR.

THE DETRIMENTAL EFFECTS OF MEAN SUBSTITUTION

I have seen two types of mean substitution. In one case, an observed variable 
(e.g., number of years of marriage) is unreported, the group or overall sample 
mean is substituted for each individual with missing data. The theory is that, 
in the absence of any other information, the mean is the best single estimate 
of any participant’s score. The flaw in this theory is that if 20% of a sample is 
missing, even at random, substituting the identical score for a large portion of 
the sample artificially reduces the variance of the variable, and as the percent-
age of missing data increases, the effects of missing data become more pro-
found. These effects have been known for many decades now (Cole, 2008; 
Haitovsky, 1968), yet many researchers still view mean substitution as a via-
ble, or even progressive, method of dealing with missing data. As you will see 
below (and in Figure 6.1), mean substitution can create more inaccurate popu-
lation estimates than simple case deletion when data are not MCAR.
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To simulate this effect as a real researcher would face it, I substituted the 
mean of the math achievement variable calculated once the missing values 
were inserted into the variable.5 As Table 6.1 shows, standard deviations are 
underestimated under MNAR situations.6 For example, even under MCAR, 
the variability of math achievement is underestimated by 10.47% when mean 
substitution is used (and the effect would become more substantial as a larger 
percentage of the sample were missing), although the estimate of the mean is 
still accurate. In this case, the correlation effect size also is underestimated by 
20.34% (coefficient of determination = 0.59 versus 0.47) just through virtue 
of 20% of the sample being MCAR and substituting the mean to compensate. 
Note also that mean substitution under MCAR appears to be less desirable 
than case deletion. In Figure 6.1, comparing MCAR with deletion and MCAR 
with mean substitution, you can see that the estimates of the population are 
more accurate when the missing cases are deleted.
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Imputation, Weak Imputation, and Multiple Imputation
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To explore the errors mean substitution made, even under MCAR, the 
difference between the mean substituted and the original score was calculated 
and is presented in Figure 6.2. As you might expect from randomly missing 
data, the average error is almost 0 (-0.17), but there is a large range (-25.54 to 
31. 15). Taking the absolute values of each error (presented in Figure 6.2), the 
average error of estimating scores via mean substitution is 9.97 with a standard 
deviation of 6.34.

The effects of mean substitution appear more dramatic under MNAR-low, 
despite being approximately the same overall number of missing cases. This 
is because the missing data in this case are likely to be low-performing stu-
dents, and the mean is a poor estimate of their performance (average error in 
this case is 16.71, standard deviation is 6.53, much larger than under MCAR). 
Thus, under MNAR-low, mean substitution produces a biased mean, substan-
tially underestimates the standard deviation by almost 33%, dramatically 
changes the shape of the distribution (skew, kurtosis), and leads to significant 
underestimation of the correlation between reading and math achievement. 
Under MNAR-low with mean substitution, the effect size for this simple cor-
relation is underestimated by 57.63% (coefficient of determination = 0.59 
versus 0.25). Note that MNAR with deletion produced better population esti-
mates than mean substitution.

The example of MNAR-extreme also exposes the flaws of mean substitu-
tion. Note that because the missing data were symmetrical, the estimate of the 

Figure 6.2   Misestimation of Math Scores Under Mean Substitution, Strong 
Imputation, MCAR
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population mean was excellent both when cases were deleted and when mean 
substitution was used. However, the case of MNAR-extreme with mean sub-
stitution produced inaccurate estimates of population variability (SD = 5.84 
versus population SD = 11.94, a 51.09% underestimation of the true variability 
in the population). Again, this is not a surprise as the average error from mean 
substitution is 13.84, standard deviation is 5.00. Furthermore, because of the 
high concentration of missing data in the tails of the distribution, the shape of 
the distribution becomes dramatically nonnormal. Finally, the effect size of the 
simple correlation between reading and math achievement scores is underesti-
mated by 76.27% (0.59 versus 0.14), a notably poorer estimation than merely 
deleting cases under MNAR-extreme.

It should be no surprise that mean substitution does little to help the situ-
ation of MNAR-inverse. The correlation is simply a complete misestimation 
of the population parameter, has high error (but not as high as the two other 
MNAR samples, interestingly), and substantially underestimates population 
variability. Thus, this type of mean substitution does not appear to be an 
acceptable practice in which researchers should engage.

Mean substitution when creating composite scores based on multi-item ques-
tionniares. The other type of mean substitution involves administration of 
psychological scales (e.g., self-esteem, depression) where there are multiple, 
highly correlated questions assessing a single construct. In the case of the 
Rosenberg SVI, for example, where internal reliability estimates are often in 
excess of .90, the theory is that it is more desirable to substitute that individu-
al’s mean for the other items rather than to discard the individual from the data 
set. Thus, the idea that significant information is contained in the other highly 
correlated answers is an intriguing one, and used to generate other estimates 
discussed below. In this case, as item intercorrelations get higher, and the 
number of items increases, the bias does not appear to be substantial (Schafer 
& Graham, 2002), but this holds true only if the scale is unidimensional. In 
other words, if a scale has multiple independent aspects or subscales (e.g., 
depression is often not considered a unitary scale, and therefore averaging all 
the items would not be appropriate) it is only legitimate to average the items 
from the subscale the missing value belongs to.7 This type of mean substitution 
is similar to imputation, discussed next, and when the imputation is based on 
strong relationships, it can be very effective. Thus, this type of mean substitu-
tion for missing scale items when internal consistency is strong and the scale 
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is unidimensional appears to be a defensible practice. Of course, measurement 
scholars will argue that there are more modern methods of dealing with this 
sort of issue, and they are correct. If you are trained in more advanced mea-
surement techniques, please use them.

THE EFFECTS OF STRONG AND  
WEAK IMPUTATION OF VALUES

Conceptually, the second type of mean substitution mentioned earlier is simi-
lar to imputation via multiple regression. It uses information available in the 
existing data to estimate a better value than the sample average, which as we 
saw in the previous section, is only effective at reducing the accuracy of the 
analysis. Essentially, imputation combines the complexity of predictive appli-
cations of multiple regression, which I think is excellently discussed in an 
article I wrote and which is freely available on the Internet (Osborne, 2000). 
In practice, assuming most variables have complete data for most participants, 
and they are strongly correlated to the variable with the missing data, a 
researcher can create a prediction equation using the variables with complete 
data, estimating values for the missing cases much more accurately than sim-
ple mean substitution.

To demonstrate this under the most ideal circumstances, I used two vari-
ables from the ELS 2002 data set that are correlated with the 10th grade math 
achievement variable that contains missing values: 12th grade math achieve-
ment (F1TXM1IR) and socioeconomic status (BYSES2). As imputation 
involves creating a regression equation based on the valid cases in a sample, 
for each simulation below I used only cases with nonmissing data to generate 
the regression equation, as a researcher faced with a real data set with missing 
data would have to do. For reference, I also calculated the regression equation 
for the population. These equations represent strong imputation, as the vari-
ance accounted for is very high (.40 to .80).

Prediction equation for population:

Math = 5.286 + 0.552(BYSES2) + 0.680(F1TXM1IR) (r2 = .80).

Prediction equation for MCAR sample:

Math = 5.283 + 0.533(BYSES2) + 0.681(F1TXM1IR) (r2 = .80).
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Prediction equation for MNAR-low sample:

Math = 9.907 + 0.437(BYSES2) + 0.617(F1TXM1IR) (r2 = .72).

Prediction equation for MNAR-extreme sample:

Math = 11.64 + 0.361(BYSES2) + 0.548(F1TXM1IR) (r2 = .63).

Prediction equation for MNAR-inverse sample:

Math = 18.224 + -0.205(BYSES2) + 0.407(F1TXM1IR) (r2 = .40).

It should not be surprising that the prediction equations became increas-
ingly less similar to the population equation (and less effective) as I moved 
from MCAR to MNAR-low to MNAR-extreme to MNAR-inverse. However, 
given the extremely high predictive power of 12th grade math achievement 
scores in predicting 10th grade math achievement (r(12,785) = .89, which has a 
coefficient of determination of 0.79), prediction even in the worst case is 
strong. The relevant question is whether these equations will produce better 
estimations than mean substitution or complete case analysis.

As Table 6.1 and Figure 6.1 show, given this strong prediction, under 
MCAR the population mean and standard deviation, as well as the distribu-
tional properties, are closely replicated. Under MNAR-low, MNAR-extreme, 
and MNAR-inverse, the misestimation is significantly reduced, and the popu-
lation parameters and distributional properties are more closely approximated 
than under mean substitution. Further, in all cases the errors of the estimates 
dropped markedly (as one might expect using such powerful prediction rather 
than mean substitution). Finally, under imputation, the estimates of the corre-
lation between reading and math achievement test scores are much closer to 
approximating the population correlation than either deletion or mean substi-
tution. This is particularly true for MNAR-inverse, where we see the true 
power of more progressive missing value handling techniques. Researchers 
using strong imputation would estimate a relationship between these two vari-
ables in the correct direction and, while underestimated, it is much closer to 
the population parameter than under any other technique.

Unfortunately, it is not always the case that one has another variable with 
a correlation of this magnitude with which to predict scores for missing values. 
Thus, to simulate a weaker prediction scenario, I used other variables from  
the same data set: BYSES2 (socioeconomic status), BYRISKFC (number of 
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academic risk factors a student exhibits), and F1SEX (1 = male, 2 = female). 
Collectively, these three variables represent modest predictive power, with an r 
= .49, r2 = .24, p < .0001 for the model. The predictive equations are as follows:

Prediction equation for population:

Math = 42.564 + 5.487(BYSES2) – 1.229(F1SEX) –  
2.304(BYRISKFC) (r2 = .24).

Prediction equation for MCAR sample:

Math = 42.701 + 5.468(BYSES2) – 1.241(F1SEX) – 
2.368(BYRISKFC) (r2 = .24).

Prediction equation for MNAR_low sample:

Math = 46.858 + 4.035(BYSES2) – 1.440(F1SEX) –  
1.748(BYRISKFC) (r2 = .17).

Prediction equation for MNAR_extreme sample:

Math = 40.149 + 3.051 (BYSES2) – 0.491(F1SEX) –  
1.155(BYRISKFC) (r2 = .13).

Prediction equation for MNAR_inverse sample:

Math = 40.416 + 0.548 (BYSES2) – 1.460(F1SEX) –  
0.547(BYRISKFC) (r2 = .03).

As you can see from this more realistic example (Table 6.1, and Figure 
6.1), as the imputation gets weaker, the results get closer to mean substitution. 
In this case, the prediction was generally better than simple mean substitution, 
but not as good as strong imputation. As Table 6.1 shows, under MNAR-low, 
MNAR-extreme, and MNAR-inverse conditions, the variance of the popula-
tion was misestimated, and in the case of MNAR-low, the population mean 
also was misestimated. The errors of estimation, while not as large as mean 
substitution, were still undesirably large. Finally, estimation of the population 
correlation between math and reading achievement tests were improved over 
mean substitution, but still misestimated compared to strong imputation.

So where does that leave us? Under the best circumstances, imputation 
appears to give the best results, even correcting the undesirable situation present 
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in MNAR-inverse, particularly when prediction is strong and done well. When 
done poorly, imputation can cause distortion of estimates and lead to errors of 
inference (Little & Rubin, 1987), just as complete case analysis can (Stuart  
et al., 2009). In large samples with strongly correlated variables and low rates of 
missing data, this appears to be a good option from amongst the classic tech-
niques thus far, although far more effective when data are missing at random 
than when missingness is biased in some way. However, recent research has 
shown that taking the extra effort of using advanced, modern estimation proce-
dures can have benefits for those researchers with relatively high rates of miss-
ingness. It is beyond the scope of this chapter to get into all the details of all 
these different advanced techniques, but I will briefly address one of the more 
common ones for those curious in exploring further.

MULTIPLE IMPUTATION: A MODERN  
METHOD OF MISSING DATA ESTIMATION

Multiple imputation (MI) has emerged as one of the more common modern 
options in missing data handling with the ubiquity of desktop computing 
power. Essentially, multiple imputation uses a variety of advanced tech-
niques—e.g., EM/maximum likelihood estimation, propensity score estima-
tion, or Markov Chain Monte Carlo (MCMC) simulation—to estimate missing 
values, creating multiple versions of the same data set (sort of a statistician’s 
view of the classic science fiction scenario of alternate realities or parallel 
universes) that explore the scope and effect of the missing data. These parallel 
data sets can then be analyzed via standard methods and results combined to 
produce estimates and confidence intervals that are often more robust than 
simple (especially relatively weak) imputation or previously mentioned meth-
ods of dealing with missing values (Schafer, 1997, 1999).

When the proportion of missing data is small and prediction is good, single 
imputation described above is probably sufficient, although as with any predic-
tion through multiple regression, it “overfits” the data, leading to less generaliz-
able results than the original data would have (Osborne, 2000, 2008; Schafer, 
1999).8 The advantage of MI is generalizability and replicability—it explicitly 
models the missingness and gives the researcher confidence intervals for esti-
mates rather than trusting to a single imputation. Some statistical software 
packages are beginning to support MI (e.g., SAS, R, S-Plus, SPSS—with  
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additionally purchased modules and standalone software such as that available 
from Joseph Schafer at http://www.stat.psu.edu/~jls/software.html). Finally, 
and importantly, some MI procedures do not require that data be missing at 
random (e.g., in SAS there are several options for estimating values depending 
on the assumptions around the missing data). In other words, under a worst-
case scenario of a substantial portion of missing data that is due to some sig-
nificant bias, this procedure should be a good alternative (Schafer, 1999).

I used SAS’s PROC MI procedure as it is relatively simple to use (if you 
are at all familiar with SAS)9 and has the nice option of automatically combin-
ing the multiple parallel data sets into one analysis. For this analysis, I pre-
pared a data set that contained the math and reading achievement test scores, 
as well as the three variables used for weak imputation (sex of student, socio-
economic status, and risk factors), and used the SAS defaults of EM estima-
tion with five parallel data sets.

The traditional view within multiple imputation literature has been that 
five parallel data sets is generally a good number, even with high proportions 
of missing data. More recent studies suggest that 20 should be a minimum 
number of iterations (Graham, Olchowski, & Gilreath, 2007). In truth, with 
software that can perform MI automatically, there is no reason not to do more 
iterations. But in the case of this analysis, five parallel data sets achieved a 
relative efficiency of 96%, a good indicator. For illustrative purposes, Table 
6.2 shows the five different imputations.

As you can see in Table 6.2 (and Figure 6.1), even using the weak 
relationships between the variables from the weak imputation example, the 
results are much better than the simple weak imputation (closer to strong 
imputation) and remarkably consistent. And the variance of the population, 
the shape of the variable distribution, and the estimation of the correlation 
between the two variables of interest are estimated much more accurately 
than any other method save having an extremely highly correlated variable 
to help with imputation. These estimates would then be combined to create 
a single estimate of the effect and confidence interval around that effect. 
In this case, the effect was so consistent that step was not necessary for this 
purpose.

Can multiple imputation fix the highly biased missingness in MNAR-inverse? As 
a final test of the power of MI, Table 6.3 shows the 20 EM imputations I per-
formed to get a relative efficiency of 98% on the MNAR-inverse data.10 By 
analyzing the 20 imputations through PROC MI ANALYZE, SAS provides the 
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Table 6.2   Example of Multiple Imputation Using Sas Proc MI and 
Weak Predictors Only, MNAR-Extreme Missingness Pattern

 
 
 
 
N

 
Mean 
Math 
IRT 

Score

 
SD 

Math 
IRT 

Score

Skew, 
Kurtosis

Math 
IRT 

Score

 
Correlation 

With 
Reading 

IRT Score

 
 

Effect 
Size 
(r2)

Original 
Data—
“Population”

15,163 38.03 11.94 -0.02,
-0.85

.77 .59

Complete 
Case 
Analysis

 7,578 38.14  8.26 -0.01,  
 0.89

.61* .37

Mean 
Substitution

15,163 38.14  5.84 -0.02,
 4.77

.38* .14

Strong 
Imputation

13,912 38.59  9.13 -0.05, 
-0.53

.73* .53

Weak 
Imputation

13,489 38.34  6.56 -0.10,
 2.56

.52* .27

EM Estimation

Imputation 1 15,163 38.07  8.82 -0.03
 0.16

.67* .45

Imputation 2 15,163 37.90  8.79 -0.04
 0.13

.68* .46

Imputation 3 15,163 37.97  8.81 -0.03
 0.15

.68* .46

Imputation 4 15,163 38.07  8.80 -0.02
 0.15

.67* .45

Imputation 5 15,163 37.95  8.85 -0.02
 0.13

.68* .46

Markov Chain Monte Carlo Estimation

Imputation 1 15,163 37.94  8.80 -0.03,
 0.19

.68* .46

Imputation 2 15,163 38.01  8.80 -0.02,
 0.15

.67* .45

(Continued)
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average of the estimate, the standard error of the estimate, 95% confidence inter-
val for the estimate, and more. In this case, the 20 iterations produced an average 
standardized regression coefficient (identical to correlation in this example) of 
0.51, with a standard error of 0.00982, a 95% confidence interval of 0.49 to 0.52.

Ultimately, multiple imputation (and other modern missing value estima-
tion techniques) are increasingly accessible to average statisticians and there-
fore represents an exciting frontier for improving data cleaning practice. As 
the results in Tables 6.2 and 6.3 show, even with only modestly correlated 
variables and extensive missing data rates, the MI techniques demonstrated 
here gave superior results to single, weak imputation for the MNAR-extreme 
and MNAR-inverse missingness patterns. These represent extremely challeng-
ing missingness issues often not faced by average researchers, but it should be 
comforting to know that appropriately handling missing data, even in 
extremely unfortunate cases, can still produce desirable (i.e., accurate, repro-
ducible) outcomes. MI techniques seem, therefore, to be vastly superior to any 
other, traditional technique. Unfortunately, no technique can completely 
recapture the population parameters when there are such high rates of missing-
ness, and in such a dramatically biased fashion. But these techniques would at 
least keep you, as a researcher, on safe ground concerning the goodness of 
inferences you would draw from the results.

MISSINGNESS CAN BE AN  
INTERESTING VARIABLE IN AND OF ITSELF

Missing data is often viewed as lost, an unfilled gap, but as I have demon-
strated in this chapter, it is not always completely lost, given the availability 

Imputation 3 15,163 38.01 8.93 -0.03,
 0.07

.69* .47

Imputation 4 15,163 37.98 8.80 -0.04,
 0.13

.68* .46

Imputation 5 15,163 37.92 8.88 -0.02,
 0.16

.68* .46

Note. * p < .0001

(Continued)
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N

Correlation With 
Reading IRT Score

 
Effect Size (r2)

Original Data—
“Population”

15,163 .77 .59

Complete Case 
Analysis

 4,994 -.20* .04

Mean 
Substitution

15,163 -.06* .004

Strong Imputation 13,521 .61* .37

Weak Imputation 12,977 .02 .00

Markov Chain Monte Carlo Estimation

Imputation 1 15,163 .51* .28

Imputation 2 15,163 .51* .28

Imputation 3 15,163 .49* .25

…

Imputation 18 15,163 .50* .25

Imputation 19 15,163 .50* .25

Imputation 20 15,163 .51* .27

Note. * p < .0001

Table 6.3   MI Estimation for MNAR-Inverse Using Weak Predictor, 
MCMC Estimation

of other strongly correlated variables. Going one step farther, missingness 
itself can be considered an outcome itself, and in some cases can be an inter-
esting variable to explore. There is information in missingness. The act of 
refusing to respond or responding in and of itself might be of interest to 
researchers, just as quitting a job or remaining at a job can be an interesting 
variable. I always encourage researchers to create a dummy variable, repre-
senting whether a person has missing data or not on a particular variable, and 
do some analyses to see if anything interesting arises. Aside from attempting 
to determine if the data are MCAR, MAR, or MNAR, these data could yield 
important information.
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Imagine two educational interventions designed to improve student 
achievement, and further imagine that in one condition there is much higher 
dropout than in the other condition, and further that the students dropping out 
are those with the poorest performance. Not only is that important information 
for interpreting the results (as the differential dropout would artificially bias 
the results), but it might give insight into the intervention itself. Is it possible 
that the intervention with a strong dropout rate among those most at risk indi-
cates that the intervention is not supporting those students well enough? Is it 
possible that intervention is alienating the students in some way, or it might be 
inappropriate for struggling students?

All of this could be important information for researchers and policymak-
ers, but many researchers discard this potentially important information. 
Remember, you (or someone) worked hard to obtain your data. Do not discard 
anything that might be useful!

SUMMING UP: WHAT ARE BEST PRACTICES?

This chapter ended up being a longer journey than I had intended. The more I 
delved into this issue, the more I found what (I thought) needed to be said, and 
the more examples needed to be explored. There are some very good books by 
some very smart people dealing solely with missing data (e.g., Little & Rubin, 
1987; Schafer, 1997), and I have no wish to replicate that work here. The goal 
of this chapter was to convince you, the researcher, that this is a topic worthy 
of attention, that there are good, simple ways to deal with this issue, and that 
effectively dealing with the issue makes your results better.

Because we often gather data on multiple related variables, we often 
know (or can estimate) a good deal about the missing values. Aside from 
examining missingness as an outcome itself (which I strongly recommend), 
modern computing affords us the opportunity to fill in many of the gaps with 
high-quality data. This is not merely “making up data” as some early, misin-
formed researchers claimed. Rather, as my examples show, the act of estimat-
ing values and retaining cases in your analyses most often leads to more rep-
licable findings as they are generally closer to the actual population values 
than analyses that discards those with missing data (or worse, substitutes 
means for the missing values). Thus, using best practices in handling missing 
data makes the results a better estimate of the population you are interested in. 
And it is surprisingly easy to do, once you know how.
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Thus, it is my belief that best practices in handling missing data include 
the following.

 • First, do no harm. Use best practices and careful methodology to mini-
mize missingness. There is no substitute for complete data11 and some 
careful forethought can often save a good deal of frustration in the data 
analysis phase of research.

 • Be transparent. Report any incidences of missing data (rates, by vari-
able, and reasons for missingness, if possible). This can be important 
information to reviewers and consumers of your research and is the first 
step in thinking about how to effectively deal with missingness in your 
analyses.

 • Explicitly discuss whether data are missing at random (i.e., if there are 
differences between individuals with incomplete and complete data). 
Using analyses similar to those modeled in this chapter, you can give 
yourself and the reader a good sense of why data might be missing and 
whether it is at random. That allows you, and your audience, to think 
carefully about whether missingness may have introduced bias into the 
results. I would advocate that all authors report this information in the 
methods section of formal research reports.

 • Discuss how you as a researcher have dealt with the issue of incomplete 
data and the results of your intervention. A clear statement concerning 
this issue is simple to add to a manuscript, and it can be valuable for 
future consumers as they interpret your work. Be specific—if you used 
imputation, how was it done, and what were the results? If you deleted 
the data (complete case analysis) justify why.

Finally, as I mentioned in Chapter 1, I would advocate that all authors 
report this information in the methods section of formal research reports and 
that all journals and editors and conferences mandate reporting of this type. If 
no data is missing, state that clearly so consumers and reviewers have that 
important information as well.

FOR FURTHER ENRICHMENT

1. Download from the book’s website some of the missing data sets I discuss 
in this chapter, and see if you can replicate the results I achieved through 
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various means. In particular, I would challenge you to attempt multiple 
imputation.

2. Choose a data set from a previous study you conducted (or your advisor 
did) that had some missing data in it. Review how the missing data was 
handled originally. (I also have another data set online that you can play 
with for this purpose.)

a. Conduct a missingness analysis to see if those who failed to respond 
were significantly different than those who responded.

b. Use imputation or multiple imputation to deal with the missing data.
c. Replicate the original analyses to see if the conclusions changed.
d. If you found interesting results from effectively dealing with missing-

ness, send me an e-mail letting me know. I will gather your results 
(anonymously) on the book’s website, and may include you in future 
projects.

3. Find a data set wherein missing data were appropriately dealt with (i.e., 
imputation or multiple imputation). Do the reverse of #2, above, and 
explore how the results change by instead deleting subjects with missing 
data or using mean substitution.

APPENDIXES

Appendix A: SPSS Syntax for Creating Example Data Sets

If you are interested in the details of how I created these various missing 
data sets, I am including the SPSS syntax. Also, because the MNAR-inverse 
data set is a particularly odd one (and one I am particularly proud of), I include 
scatterplots of the data points prior to and after missingness was imposed.

*********************************************.
***missing NOT at random- lower scores more likely 

to be missing
**************************************.
if (bytxmirr< 30.725) prob2=.80.
if (bytxmirr ge 30.725 and bytxmirr < 38.13) 

prob2=0.50.
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if (bytxmirr ge 38.13) prob2=0.01.
execute.
COMPUTE missing2=RV.BINOM(1,prob2).
EXECUTE.
compute math2=bytxmirr.
do if (missing2=1). 
compute math2=-9.
end if.
recode math2  (-9=sysmis).
execute.
*********************************************.
***missing NOT at random- lower scores and higher 

scores more likely to be missing
**************************************.
if (bytxmirr< 30.725) prob3=.80.
if (bytxmirr ge 30.725 and bytxmirr < 45.74) 

prob3=0.05.
if (bytxmirr ge 45.74) prob3=0.80.
execute.
COMPUTE missing3=RV.BINOM(1,prob3).
EXECUTE.
compute math3=bytxmirr.
do if (missing3=1). 
compute math3=-9.
end if.
recode math3  (-9=sysmis).
execute.
*********************************************.
***missing NOT at random- inverted relationship
**************************************.
compute prob4=0.001.
compute missing4=0.
if (bytxmirr<38.13 and bytxrirr<20.19) prob4=.99.
if (bytxmirr<34.55 and bytxrirr<23.75) prob4=.99.
if (bytxmirr<30.73 and bytxrirr<27.29) prob4=.99.
if (bytxmirr<26.47 and bytxrirr<33.69) prob4=.99.
if (bytxmirr<21.48 and bytxrirr<36.65) prob4=.99.
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if (bytxmirr>34.55 and bytxrirr>39.59) prob4=.99.
if (bytxmirr>38.13 and bytxrirr>36.65) prob4=.99.
if (bytxmirr>41.92 and bytxrirr>33.69) prob4=.99.
if (bytxmirr>45.75 and bytxrirr>30.61) prob4=.99.
if (bytxmirr>49.41 and bytxrirr>27.29) prob4=.99.
COMPUTE missing4=RV.BINOM(1,prob4).
EXECUTE.
compute math4=bytxmirr.
do if (missing4=1). 
compute math4=-9.
end if.
recode math4 (-9=sysmis).
execute.

Figure 6.3  Original Relationship Between Math and Reading Score
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Figure 6.4   Inverse Relationship Between Math and Reading Score 
Creating MNAR-Inverse
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Appendix B: SAS Syntax for Performing Multiple Imputation

This SAS Syntax was used to generate multiple imputation data sets, 
analyze them, and report summary statistics.

proc MI  data=MNAR_EXT_NEW out=work.MNAREXT_MIout1;
mcmc chain=single impute=full initial=em nbiter=200 

niter=100;
Run;
proc reg  data=work.mnarext_miout1 outest=MNAR_

ext_est covout;
  model BYTXRIRR=math3;
  by _imputation_;
  run;
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proc mianalyze data=work.mnar_ext_est;
modeleffects intercept math3;
run;

NOTES

 1. And, of course, if this was good research, I would assume follow-up ques-
tions would ask if the respondent is in a committed, long-term relationship as well to 
capture the effect of being in a stable relationship with another person regardless of 
whether that relationship was technically an officially recognized marriage. I leave that 
to all the relationship researchers out there to figure out—I am just a humble quaint guy 
trying to help clean data.

 2. Which can deal with issues like participants leaving the study (right-censored 
or truncated data) or entering the study at a particular point (left-censored or truncated 
data).

 3. Once again, let us be clear that values that are “out of scope” or legitimately 
missing, such as nonsmokers who skip the question concerning how many cigarettes 
are smoked a day, are not considered missing and are not an issue (Schafer & Graham, 
2002). In this example, let us imagine that non–classroom teachers (e.g., guidance 
counselors, teacher assistants, or other personnel) who took the initial survey were not 
included in the follow-up because they are not the population of interest—i.e., class-
room teachers. This would be legitimate missing data.

 4. Which, honestly, is darned impressive, considering how much power there 
was in this analysis to detect any effect, no matter how small.

 5. This is important because, as a researcher, you would not know the true 
population mean, and thus would be substituting an already biased mean for the miss-
ing values.

 6. Note as well that case deletion also produces artificially reduced estimates of 
the population standard deviation under MNAR.

 7. This also is implemented relatively easily in many statistical packages. For 
example, the SPSS syntax command below creates an average called “average” by 
averaging the items if at least five of the six values are present. As mentioned in the 
text, this is only desirable if these items have good internal consistency.

Compute average=mean.5(item01, item02, 
item03, item04, item05, item06).

 8. This is a bit of an esoteric topic to many researchers, so I will be brief and 
refer you to the cited references if you are interested in further information. Almost by 
definition, multiple regression creates an ideal fit between variables based on a par-
ticular data set. It squeezes every bit of relationship out of the data that it can. This is 
called overfitting because if you take the same equation and apply it to a different 
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sample (e.g., if we were to predict math achievement from reading achievement and 
socioeconomic status in a new sample) the prediction equations are often not as accu-
rate. Thus, the relationships in a new sample are likely to be lower, leading to “shrink-
age” in the overall relationship. Thus, in the prediction literature double cross-valida-
tion is a good practice, where samples are split in two and prediction equations gener-
ated from each are validated on the other half-sample to estimate how generalizable the 
prediction equation is. Multiple imputation takes this to another level, essentially, by 
creating several different parallel analyses to see how much variability there is across 
samples as a function of the missing data estimation. A very sensible concept!

9. An excellent introduction and guide to this procedure and process is Yuan 
(2000). Though some beginning users find SAS challenging, multiple imputation 
through SAS is relatively painless and efficient, accomplished through only a few lines 
of syntax. Once programmed, the actual multiple imputation procedure that produced 
20 parallel data sets, analyzed them, and reported the summary statistics took less than 
60 seconds on my laptop. For reference, I have appended the SAS syntax used to per-
form the first multiple imputation at the end of this chapter.

10. As the proportion of data missing increases, it is sometimes desirable to 
increase the number of imputed data sets to maintain a high relative efficiency. Given 
the ease of using SAS to create and analyze these data, and the speed of modern com-
puters, there is little reason not to do so.

11. Except in certain specialized circumstances where researchers purposely 
administer selected questions to participants or use other advanced sampling tech-
niques that have been advocated for in the researching of very sensitive topics.
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 SEVEN 

EXTREME AND INFLUENTIAL  
DATA POINTS

Debunking the Myth of Equality

N ext time you read an article from a top journal in your field, look for 
any mention of looking for influential data points (or extreme scores 

or outliers). Odds are you will find none (as my students and I have found in 
several surveys across several disciplines). Authors spend a great deal of time 
describing the importance of the study, the research methods, the sample, the 
statistical analyses used, results, and conclusions based on those results, but 
rarely mention having screened their data for outliers or extreme scores (some-
times referred to as influential data points). Many conscientious researchers do 
check their data for these things, perhaps neglecting to report having done so, 
but more often than not, this step is skipped in the excitement of moving 
directly to hypothesis testing. After all, researchers often spend months or 
years waiting for results from their studies, so it is not surprising they are 
excited to see the results of their labors. Yet jumping directly from data collec-
tion to data analysis without examining data for extreme scores or inappropri-
ately influential scores can, ironically, decrease the likelihood that the 
researcher will find the results they so eagerly anticipate.

Researchers from the dawn of the age of statistics have been trained in the 
effects of extreme scores, but more recently, this seems to have waned. In fact, 
a recent article of mine examining publications in respected educational psy-
chology journals (Osborne, 2008) found that only 8% of these articles reported 
testing any sort of assumption, and almost none specifically discussed having 
examined data for extreme scores. There is no reason to believe that the situ-
ation is different in other disciplines. Given what we know of the importance 
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of assumptions to accuracy of estimates and error rates (Micceri, 1989; Yuan, 
Bentler, & Zhang, 2005), this is troubling, and it leads to the conclusion that 
research in the social sciences is probably at increased risk for errors of infer-
ence, problems with generalizability, and suboptimal outcomes. One can only 
conclude that most researchers assume that extreme scores do not exist, or that 
if they exist, they have little appreciable influence on their analyses. Hence, 
the goal of this chapter is to debunk the myth of equality, the myth that all data 
points are equal. As this chapter shows, extreme scores have disproportionate, 
usually detrimental, effects on analyses.

Some techniques, such as “robust” procedures and nonparametric tests 
(which do not require an assumption of normally distributed data) are often 
considered to be immune from these sorts of issues. However, parametric tests 
are rarely robust to violations of distributional assumptions (Micceri, 1989) 
and nonparametric tests benefit from clean data, so there is no drawback to 
cleaning your data and looking for outliers and fringeliers, whether you are 
using parametric or nonparametric tests (e.g., Zimmerman, 1994, 1995, 1998).

The goal of this step is to decrease the probability you will make a sig-
nificant error of inference, as well as to improve generalizability, replicability, 
and accuracy of your results by making sure your data includes only those data 
points that belong there.

WHAT ARE EXTREME SCORES?

Figure 7.1, on page 142, visually shows the concept of the extreme score, includ-
ing the outlier and the fringelier. Although definitions vary, an outlier is generally 
considered to be a data point that is far outside the norm for a variable or popula-
tion (e.g., Jarrell, 1994; Rasmussen, 1988; Stevens, 1984). It is an observation that 
“deviates so much from other observations as to arouse suspicions that it was 
generated by a different mechanism” (Hawkins, 1980, p. 1). Hawkins’s description 
of outliers reinforces the notion that if a value is very different because it reflects 
different processes (or populations), then it does not belong in the analysis at hand. 
Outliers also have been defined as values that are “dubious in the eyes of the 
researcher” (Dixon, 1950, p. 488) and contaminants (Wainer, 1976), all of which 
lead to the same conclusion: extreme scores probably do not belong in your 
analyses. That is not to say that these extreme scores are not of value. As discussed 
next, they most likely should be examined more closely and in depth.
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The scholarly literature on extreme scores reveals two broad categories: 
scores typically referred to as outliers, which are clearly problematic in that 
they are far from the rest of the distribution, and fringeliers, which are scores 
hovering around the fringes of a normal distribution that are unlikely to be part 
of the population of interest but less clearly so (Wainer, 1976, p. 286). We can 
operationalize fringeliers as those scores around ± 3.0 standard deviations 
(SD) from the mean, which represents a good (but by no means the only pos-
sible) rule of thumb for identifying scores that merit further examination.

Why are we concerned with scores around ± 3.0 standard deviations from the 
mean? Recall from Chapter 5 that the standard normal distribution is symmetrical 
distribution with known mathematical properties. Most relevant to our discussion, 
we know what percentage of a population falls at any given point of the normal 
distribution, which also gives us the probability that an individual with a given 
score on the variable of interest would be drawn at random from a normally dis-
tributed population. So, for example, we know that in a perfectly normal distribu-
tion, 68.2% of the population will fall within 1 standard deviation of the mean, 
about 95% of the population should fall within 2 standard deviations from the 
mean, and 99.74% of the population will fall within 3 standard deviations. In other 
words, the probability of randomly sampling an individual more than 3 standard 
deviations from the mean in a normally distributed population is 0.26%, which 
gives me good justification for considering scores outside this range as suspect.

Because of this, I tend to be suspicious that data points outside ± 3.0 stan-
dard deviations from the mean are not part of the population of interest, and 
furthermore, despite being plausible (though unlikely) members of the popula-
tion of interest, these scores can have a disproportionately strong influence on 
parameter estimates and thus need to be treated with caution. In general, since 
both outliers and fringeliers represent different magnitudes of the same prob-
lem (single data points with disproportionately high influence on statistics) I 
refer to them here collectively as extreme values.

HOW EXTREME VALUES AFFECT  
STATISTICAL ANALYSES

Extreme values can cause serious problems for statistical analyses. First, they 
generally increase error variance and reduce the power of statistical tests by 
altering the skew or kurtosis of a variable (which can become very problematic 
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in multivariate analyses). As many statistical tests compare variance accounted 
for to error (unexplained) variance, the more error variance in the analyses, the 
less likely you are to find a statistically significant result when you should 
(increasing the probability of making a Type II error).

Second, they can seriously bias or influence estimates that may be of 
substantive interest, such as means, standard deviation, and the like (for more 
information on these points, see Rasmussen, 1988; Schwager & Margolin, 
1982; Zimmerman, 1994). Since extreme scores can substantially bias your 
results, you may be more likely to draw erroneous conclusions, and any con-
clusions you do draw will be less replicable and generalizable, two important 
goals of scientific quantitative research.

I explore each of these effects and outcomes in this chapter.

WHAT CAUSES EXTREME SCORES?

Extreme scores can arise from several different mechanisms or causes. Anscombe 
(1960) sorts extreme scores into two major categories: those arising from errors 

Figure 7.1  Extreme Scores: Outliers and Fringeliers
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Figure 7.2  The Case of the Mysterious 99s

in the data and those arising from the inherent variability of the data. I elabo-
rate on this idea to summarize six possible reasons for data points that may be 
suspect.

Let me first be careful to note that not all extreme scores are illegitimate 
contaminants, and not all illegitimate scores show up as extreme scores  
(Barnett & Lewis, 1994). Although the average American male stands about 5′ 
10″ tall, there are 7-foot-tall males and 4-foot-tall males. These are legitimate 
scores, even though they are relatively extreme and do not describe the major-
ity of the American male population. Likewise, it is possible that a score of 
5′5″ (what seems to be a very legitimate score) could be an error, if the male 
was in reality 6′5″ but the data was recorded incorrectly.

It is therefore important to consider the range of causes that may be 
responsible for extreme scores in a given data set. What should be done about 
an outlying data point is very much a function of the inferred cause.

The Case of the Mysterious 99s

Early in my career I was working with data from the U. S. National 
Center for Educational Statistics (NCES), analyzing student psychological 
variables such as self-esteem. With many thousands of subjects and 
previous research showing strong correlations between the variables we 
were researching, I was baffled to discover correlations that were 
substantially lower than what we expected.

Exasperated, I informed a professor I was working with of the problem, 
who merely smiled and suggested checking the data for outliers.
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(Continued)

Immediately the problem became apparent. Items, such as the one in 
Figure 7.2, had responses from 1-5, a typical Likert-type scale item, and 
then a small but significant number of 98s and 99s. I learned that many 
researchers and government data sets use numeric codes for missing data, 
rather than just leaving the data field blank. There are good reasons for this.

First, in earlier days, computers had difficulty handling blanks in data, 
so entering numeric codes for missing data was important. Second, there 
are sometimes different reasons for missing data, and the NCES had 
different codes so they could analyze the missingness in the data (as we 
discussed in Chapter 6). Identifying 99 and 98 as missing data 
immediately solved the problem, but I never forgot the lesson: always 
check for extreme scores!

1. Extreme Scores From Data Errors. Extreme scores, particularly outli-
ers, are often caused by human error, such as errors in data collection, record-
ing, or entry. Data gathered during research can be recorded incorrectly and 
mistakes can happen during data entry. One survey I was involved with gath-
ered data on nurses’ hourly wages, which at that time averaged about $12.00 
per hour with a standard deviation of about $2.00 per hour. In our data set one 
nurse had reported an hourly wage of $42,000.00, clearly not a legitimate 
hourly wage in nursing. This figure represented a data collection error (specifi-
cally, a failure of the respondent to read the question carefully—she reported 
yearly wage rather than hourly wage). The good news about these types of 
errors is that they can often be corrected by returning to the original documents 
or even possibly contacting the research participant, thus potentially eliminat-
ing the problem. In cases such as this, another option is available—estimation 
of the correct answer. We used anonymous surveys, so we could not contact the 
nurse in question, but because the nature of the error was obvious, we could 
convert this nurse’s salary to an estimated hourly wage because we knew how 
many hours per week and how many weeks per year she worked.

Data entry is a significant source of extreme scores, particularly when 
humans are hand-entering data from printed surveys (the rise of web-based 
surveys are helpful in this regard). Recently, I was analyzing some hand-
entered data from a Likert scale where values should range from 1 to 7, yet I 
found some 0 and 57 values in the data. This obviously arose from human entry 
error, and returning to the original surveys allowed for entry of correct values.
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If extreme scores of this nature cannot be corrected they should be elimi-
nated as they do not represent valid population data points, and while it is 
tempting to assume the 0 was supposed to be a 1 or 2 (which is right above the 
0 on a numeric keypad) and the 57 was supposed to probably be a 5 (and the 
data entry person hit both keys accidentally) researchers cannot make those 
assumptions without reasonable rationale to do so. If you do such a thing, be 
sure to be transparent and report having done so when you present your results.

A final, special case of this source of extreme score is when researchers 
(such as government agencies) use numeric codes for missing data, but 
researchers fail to identify those codes to the statistical software as missing. 
This is a simple process that all modern statistical software does easily, but can 
be disastrous to analyses if these codes are in the data but researchers fail to 
realize this (see sidebar, The Case of the Mysterious 99s).

2. Extreme Scores From Intentional or Motivated Misreporting. Sometimes 
participants purposefully report incorrect data to experimenters or surveyors. 
In Chapter 10, I explore various motivations for doing so, such as impression 
management or malingering. Yet these types of motives might not always 
result in extreme scores (social desirability pressures often push people toward 
average rather than toward unrealistic extremes).

This also can happen if a participant makes a conscious effort to sabotage the 
research, is fatigued, or may be acting from other motives. Motivated misreport-
ing also can happen for obvious reasons when data are sensitive (e.g., teenagers 
misreporting drug or alcohol use, misreporting of sexual behavior, particularly if 
viewed as shameful or deviant). If all but a few teens underreport a behavior (for 
example, cheating on a test or driving under the influence of alcohol), the few 
honest responses might appear to be extreme scores when in fact they are legiti-
mate and valid scores. Motivated overreporting can occur when the variable in 
question is socially desirable (e.g., income, educational attainment, grades, study 
time, church attendance, sexual experience) and can work in the same manner.

Environmental conditions can motivate misreporting, such as if an attrac-
tive female researcher is interviewing male undergraduates about attitudes on 
gender equality in marriage. Depending on the details of the research, one of two 
things can happen: inflation of all estimates, or production of extreme scores. If 
all subjects respond the same way, the distribution will shift upward, not gener-
ally causing extreme scores. However, if only a small subsample of the group 
responds this way to the experimenter, or if some of the male undergraduates are 
interviewed by male researchers, extreme scores can be created.
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Identifying and reducing this issue is difficult unless researchers take care 
to triangulate or validate data in some manner.

3. Extreme Scores From Sampling Error or Bias. As I discuss in Chapter 
3, sampling can help create biased samples that do not reflect the actual nature 
of the population. Imagine you are surveying university undergraduates about 
the extent of their alcohol usage, but due to your schedule, the only time you 
could perform interviews was 8:00 to 10:00 in the mornings Friday, Saturday, 
and Sunday. One might imagine that heavy alcohol users might not be willing 
or able to get up that early on the weekend, so your sample may be biased 
toward low usage. If most of your sample is biased toward nondrinkers, but a 
few average—drinking college students by chance slip into the sample, you 
may well see those as extreme scores when in fact they are part of the normal 
diversity in the population. Ideally, upon realizing this, you would correct your 
sampling plan to gather a representative sample of the population of interest.

Another cause of extreme scores is sampling error. It is possible that a few 
members of a sample were inadvertently drawn from a different population 
than the rest of the sample. For example, in the previously described survey of 
nurse salaries, nurses who had moved into hospital administration were 
included in the database we sampled from, as they had maintained their nurs-
ing license, despite our being primarily interested in nurses currently involved 
in routine patient care. In education, inadvertently sampling academically 
gifted or mentally retarded students is a possibility, and (depending on the goal 
of the study) might provide undesirable extreme scores. These cases should be 
removed if they do not reflect the target population.

4. Extreme Scores From Standardization Failure. Extreme scores can be 
caused by research methodology, particularly if something anomalous hap-
pened during a particular subject’s experience. One might argue that a study 
of stress levels in schoolchildren around the country might have found some 
significant extreme scores if the sample had included schoolchildren in New 
York City schools during the fall of 2001 or in New Orleans following  
Hurricane Katrina in 2005. Researchers commonly experience such chal-
lenges—construction noise outside a research lab or an experimenter feeling 
particularly grouchy, or even events outside the context of the research lab, such 
as a student protest, a rape or murder on campus, observations in a classroom 
the day before a big holiday recess, and so on can produce extreme scores. 
Faulty or noncalibrated equipment is another common cause of extreme scores.
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Let us consider two possible cases in relation to this source of extreme 
scores. In the first case, we might have a piece of equipment in our lab that 
was miscalibrated, yielding measurements that were extremely different from 
other days’ measurements. If the miscalibration results in a fixed change to the 
score that is consistent or predictable across all measurements (for example, 
all measurements are off by 100) then adjustment of the scores is possible and 
appropriate. If there is no clear way to defensibly adjust the measurements, 
they must be discarded.

Other possible causes of extreme scores can cause unpredictable effects. 
Substantial changes in the social, psychological, or physical environment (e.g., 
a widely known crime, substantial noise outside the research lab, a natural 
disaster) can substantially alter the results of research in unpredictable ways, 
and these extreme scores should be discarded as they do not represent the nor-
mal processes you wish to study (e.g., if one were not interested in studying 
subjects’ reactions to construction noise outside the lab, which I experienced 
one summer while trying to measure anxiety in a stereotype threat study).

5. Extreme Scores From Faulty Distributional Assumptions. Incorrect 
assumptions about the distribution of the data also can lead to the presence of 
suspected extreme scores (Iglewicz & Hoaglin, 1993). Blood sugar levels, 
disciplinary referrals, scores on classroom tests where students are well- 
prepared, and self-reports of low-frequency behaviors (e.g., number of times 
a student has been suspended or held back a grade) may give rise to bimodal, 
skewed, asymptotic, or flat distributions, depending on the sampling design 
and variable of interest, as Figure 7.3 shows.

The data in Figure 7.3, taken from an exam in one of the large under-
graduate classes I teach, shows a highly skewed distribution with a mean of 
87.50 and a standard deviation of 8.78. While one could argue the lowest 
scores on this test are extreme scores by virtue of distance from the mean, a 
better interpretation might be that the data should not be expected to be nor-
mally distributed. Thus, scores on the lower end of this distribution are in 
reality valid cases. In this case, a transformation could be used to normalize 
the data before analysis of extreme scores should occur (see Chapter 8 for 
details of how to perform transformations effectively) or analyses appropriate 
for nonnormal distributions could be used. Some authors argue that splitting 
variables such as this into groups (i.e., dichotomization) is an effective strat-
egy for dealing with data such as this. I disagree, and demonstrate why in 
Chapter 11.
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Similarly, the data may have a different structure than the researcher 
originally assumed, and long- or short-term trends may affect the data in unan-
ticipated ways. For example, a study of college library usage rates during the 
month of August in the United States may find outlying values at the begin-
ning and end of the month—exceptionally low rates at the beginning of the 
month when students are still on summer break and exceptionally high rates at 
the end of the month when students are just back in classes and beginning 
research projects. Depending on the goal of the research, these extreme values 
may or may not represent an aspect of the inherent variability of the data, and 
they may or may not have a legitimate place in the data set.

6. Extreme Scores as Legitimate Cases Sampled From the Correct  
Population. Finally, it is possible that an extreme score can come from the 
population being sampled legitimately through random chance. It is impor-
tant to note that sample size plays a role in the probability of outlying values. 
Within a normally distributed population, it is more probable that a given data 
point will be drawn from the most densely concentrated area of the distribu-
tion, rather than one of the tails (Evans, 1999; Sachs, 1982). As a researcher 
casts a wider net and the data set becomes larger, the more the sample 

Figure 7.3   Performance on Class Unit Exam, Undergraduate 
Educational Psychology Course
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resembles the population from which it was drawn, and thus the likelihood of 
legitimate extreme values, becomes greater.

Specifically, if you sample in a truly random fashion from a population that 
is distributed in an exact standard normal distribution, there is about a 0.25% 
chance you will get a data point at or beyond 3 standard deviations from the 
mean. This means that, on average, about 0.25% of your subjects should be 3 
standard deviations from the mean. There is also a nontrivial probability of 
getting individuals far beyond the 3 standard deviation threshold. For example, 
in the United States, assume the average height for a woman is 5′ 4″ (64 
inches), with a standard deviation of 2.5 inches.1 While the odds are highest that 
a sample of women will be between 4′ 11″ and 5′ 9″, if one of our female vol-
leyball players from North Carolina State University randomly happens to 
participate in your study, you could easily get a legitimate data point from a 
woman that is 6′0 ″. Or if you had happened to ever meet my great-aunt 
Winifred Mauer, you could have included a woman about 4′ 6″ in your data set.

When legitimate extreme scores occur as a function of the inherent vari-
ability of the data, opinions differ widely on what to do. Due to the deleterious 
effects on power, accuracy, and error rates that extreme scores can have, I 
believe it is important to deal with the extreme score in some way, such as 
through transformation or a recoding/truncation strategy to both keep the indi-
vidual in the data set and at the same time minimize the harm to statistical 
inference (for more on this point see Chapter 8). The alternative is removal.

EXTREME SCORES AS A POTENTIAL FOCUS OF INQUIRY

We all know that interesting research is often as much a matter of serendipity 
as planning and inspiration. Extreme scores can represent a nuisance, error, or 
legitimate data. They can be inspiration for inquiry as well. When researchers 
in Africa discovered that some women were living with HIV for many years 
longer than expected despite being untreated (Rowland-Jones et al., 1995), 
those rare cases constitute extreme scores compared to most untreated women 
infected with HIV, who die relatively rapidly. They could have been discarded 
as noise or error, but instead they served as inspiration for inquiry: what makes 
these women different or unique, and what can we learn from them? Legitimate 
exceptionality (rather than motivated misinformation or exaggeration moti-
vated by social motives) can be the source of important and useful insight into 
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processes and phenomena heretofore unexplored. Before discarding extreme 
scores, researchers should consider whether those data contain valuable infor-
mation that may not necessarily relate to the intended study, but has impor-
tance in a more global sense.

I have a small sample and can’t afford to lose data. Can I keep my 
extreme scores and still not violate my assumptions?

Yes, at least in some cases. But first, let’s talk about why you want to keep 
your data, because keeping extreme scores can cause substantial 
problems. Are you dealing with a specialized population that precludes 
you from getting a large enough sample to have sufficient power? You 
should be aware that you might be better off without that data point 
anyway. Extreme scores that add substantial error variance to the analysis 
may be doing more harm than good.

If your extreme case is a legitimate member of the sample then it is 
acceptable to keep that case in the data set, provided you take steps to 
minimize the impact of that one case on the analysis.

Assuming you conclude that keeping the case is important, one means 
of accommodating extreme scores is the use of transformations or 
truncation. By using transformations, extreme scores can be kept in the 
data set with less impact on the analysis (Hamilton, 1992).

Transformations may not be appropriate for the model being tested, or 
may affect its interpretation in undesirable ways (see Chapter 8). One 
alternative to transformation is truncation, wherein extreme scores are 
recoded to the highest (or lowest) reasonable score. For example, a 
researcher might decide that in reality, it is impossible for a teenager to have 
more than 20 close friends. Thus, all teens reporting more than this value 
(even 100) would be recoded to 20. Through truncation the relative ordering 
of the data is maintained and the highest or lowest scores remain the highest 
or lowest scores, yet the distributional problems are reduced. However, this 
may not be ideal if those cases really represent bad data or sampling error.

To be clear on this point, even when the extreme score is either a legiti-
mate part of the data or the cause is unclear, and even if you will study the case 
in more depth, that is a separate study. If you want the most replicable, honest 
estimate of the population parameters possible, Judd and McClelland (1989) 
suggest removal of the extreme data points, and I concur. However, not all 
researchers feel that way (Orr, Sackett, & DuBois, 1991). This is a case where 
researchers must use their training, intuition, reasoned argument, and thought-
ful consideration in making decisions.
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Interestingly, analysis of extreme scores is now becoming a growth indus-
try in data forensics, where companies attempt to catch students cheating on 
high-stakes tests by looking at statistical anomalies like unusual patterns of 
answers, agreement across test-takers that indicates copying, and unusually 
large gain scores (Impara, Kingsbury, Maynes, & Fitzgerald, 2005).

Advanced Techniques for Dealing  
With Extreme Scores: Robust Methods

Instead of transformations or truncation, researchers sometimes use vari-
ous “robust” procedures to protect their data from being distorted by the pres-
ence of extreme scores. These techniques can help accommodate extreme 
scores while minimizing their effects. Certain parameter estimates, especially 
the mean and least squares estimations, 
are particularly vulnerable to extreme 
scores, or have low breakdown values. 
For this reason, researchers turn to 
robust, or high breakdown, methods to 
provide alternative estimates for these 
important aspects of the data.

A common robust estimation 
method for univariate distributions 
involves the use of a trimmed mean, 
which is calculated by temporarily elim-
inating extreme observations at both 
ends of the sample (Anscombe, 1960). 
Alternatively, researchers may choose to 
compute a Windsorized mean, for which 
the highest and lowest observations are 
temporarily censored, and replaced with 
adjacent values from the remaining data 
(Barnett & Lewis, 1994).

Assuming that the distribution of 
prediction errors is close to normal, sev-
eral common robust regression techniques 
can help reduce the influence of outlying 
data points. The least trimmed squares 
(LTS) and the least median of squares 

A Univariate Extreme Score: is one 
that is relatively extreme when 
considering only that variable. An 
example would be a height of 36" in 
a sample of adults.

A Bivariate Extreme Score: is one 
that is extreme when considered in 
combination with other data. An 
example would be a height of 5'2" 
in a sample of adults. This score 
would not necessarily stand out 
from the overall distribution. 
However, in considering gender and 
height, if that height belonged to a 
male, that male would be 
considered an outlier within his 
group.

A Multivariate Extreme Score: is one 
that is extreme when considering 
more than two variables 
simultaneously. My nephew is 5'8", 
which is not extreme for a male, but 
considering he is only 10 years old, 
he is extreme when age is 
considered.
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(LMS) estimators are  conceptually similar to the trimmed mean, helping to mini-
mize the scatter of the prediction errors by eliminating a specific percentage of the 
largest positive and negative extreme scores (Rousseeuw & Leroy, 1987), while 
Windsorized regression smooths the Y-data by replacing extreme residuals with 
the next closest value in the dataset (Lane, 2002). Rand Wilcox (e.g., Wilcox, 
2008) is a noted scholar in the development and dissemination of these types of 
methods, and I would encourage readers interested in learning more about these 
techniques to read some of his work.

In addition to the above-mentioned robust analyses, researchers can 
choose from a variety of nonparametric analyses, which make few if any dis-
tributional assumptions. Unfortunately, nonparametric tests are sometimes less 
powerful than parametric analyses and can still suffer when extreme scores are 
present (e.g., Zimmerman, 1995).

IDENTIFICATION OF EXTREME SCORES 

The controversy over what constitutes an extreme score has lasted many decades. 
I tend to do an initial screening of data by examining data points three or more 
standard deviations from the mean, in combination with visual inspection of the 
data in most cases.2 Depending on the results of that screening, I may examine the 
data more closely and modify the extreme score detection strategy accordingly.

However, examining data for univariate extreme scores is merely a start-
ing point, not an end point. It is not uncommon to find bivariate and multi-
variate extreme scores once you start performing data analyses. Bivariate and 
multivariate extreme scores are easily identified in modern statistical analyses 
through examination of things such as standardized residuals (where I also use 
the ±3.0 rule for identifying multivariate extreme scores) or diagnostics com-
monly provided in statistical packages, such as Mahalanobis distance and 
Cook’s distance. The latter two indices attempt to capture how far individual 
data points are from the center of the data, and thus larger scores are consid-
ered more problematic than smaller scores. However, there is no good rule of 
thumb as to how large is too large, and researchers must use their professional 
judgment in deciding what data points to examine more closely.

For ANOVA-type analyses, most modern statistical software will produce a 
range of statistics, including standardized residuals. ANOVA analyses suffer from 
a special type of multivariate extreme score called a within-cell extreme score. In 
this case, within-cell extreme scores are data points that may not be extreme in the 
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univariate analysis, but are extreme compared to the other data points within a par-
ticular cell or group (as in the example of my nephew’s height in the earlier example 
above). Fortunately, most modern statistical packages will allow researchers to save 
standardized residuals in ANOVA, regression, and many other types of analyses, 
allowing for straightforward examination of data for extreme scores.

WHY REMOVE EXTREME SCORES?

Extreme scores have several specific effects on variables that otherwise are 
normally distributed. To illustrate this, I will use some examples from the 
National Education Longitudinal Study (NELS 88) data set from the National 
Center for Educational Statistics (http://nces.ed.gov/surveys/NELS88/). First, 
socioeconomic status (SES) represents a composite of family income and 
social status based on parent occupation (see Figure 7.4). In this data set, SES 
scores were reported as z scores (a distribution with a mean of 0.00 and a 
standard deviation of 1.0). This variable shows good (though not perfect) nor-
mality, with a mean of -0.038 and a standard deviation of 0.80. Skew is calcu-
lated to be -0.001 (where 0.00 is perfectly symmetrical).

Samples from this distribution should share these distributional traits as 
well. As with any sample, larger samples tend to better mirror the overall dis-
tribution than smaller samples. To show the effects of extreme scores on uni-
variate distributions and analyses, my colleague Amy Overbay and I (Osborne 
& Overbay, 2004) drew repeated samples of N = 416, that included 4% 
extreme scores on one side of the distribution (very wealthy or very poor stu-
dents) to demonstrate the effects of extreme scores even in large samples (I use 
a similar methodology to discuss the effects of extreme scores on correlation 
and regression and on t-tests and ANOVAs later in this chapter).

With only 4% of the sample (16 of 416) classified as extreme scores, you 
can see in Figure 7.5 the distribution for the variable changes substantially, 
along with the statistics for the variable. The mean is now -0.22, the standard 
deviation is 1.25, and the skew is -2.18. Substantial error has been added to 
the variable, and it is clear that those 16 students at the very bottom of the 
distribution do not belong to the normal population of interest. To confirm this 
sample was strongly representative of the larger population as a whole, 
removal of these extreme scores returned the distribution to a mean of -0.02, 
standard deviation = 0.78, skew = 0.01, not markedly different from the sam-
ple of more than 24,000.
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Figure 7.4  Distribution of Socioeconomic Status 
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To emphasize the point that you need to examine your data visually, we 
repeated the process for drawing a sample of 416 from the same data, however 
this time half the extreme scores were in each tail of the distribution. As you 
can see in Figure 7.6, the distribution is still symmetrical and the mean is not 
significantly different from the original population mean (mean = -0.05, stan-
dard deviation = 1.28, skew = -0.03). In this case only the standard deviation is 
inflated because of added error variance caused by the extreme scores. This 
increase in error variance would have deleterious effects on any analyses you 
would want to perform if these extreme scores were not dealt with in some way.

Removing Univariate Extreme Scores

A simple way to handle this problem is to do a z transformation, converting 
all scores in a distribution to a z (standard normal distribution by subtracting 
the mean from each score and dividing by the standard deviation) distribution, 
which has a mean of 0.00 and standard deviation of 1.0, something most mod-
ern statistical packages can do automatically. You can then select cases with 
scores greater than -3.0 and less than 3.0 (or another cutoff point of your choos-
ing) and continue analyses.

Figure 7.6   Distribution of Socioeconomic Status With 4% Extreme 
Scores, Both Tails
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EFFECT OF EXTREME SCORES ON INFERENTIAL STATISTICS

Dr. Overbay and I also demonstrated the effects of extreme scores on the accu-
racy of parameter estimates and Type I and Type II error rates in analyses 
involving continuous variables such as correlation and regression, as well as 
discrete variable analyses such as t-tests and ANOVA.3

In order to simulate a real study in which a researcher samples from a 
particular population, we defined our population as the 23,396 subjects with 
complete data on all variables of interest in the NELS 88 data file (already 
introduced earlier in the book).4 For the purposes of the analyses reported 
below, this population was sorted into two groups: “normal” individuals whose 
scores on relevant variables were between z = -3.0 and z = 3.0, and “extreme 
scores,” who scored at least z = ± 3.0 on one of the relevant variables.

To simulate the normal process of sampling from a population, but stan-
dardize the proportion of extreme scores in each sample, one hundred samples 
of N = 50, N = 100, and N = 400 each were randomly sampled (with replace-
ment between each samples but not during the creation of a single sample) 
from the population of normal subjects. Then an additional 4% were randomly 
selected from the separate pool of extreme scores, bringing samples to N = 52, 
N = 104, and N = 416, respectively. This procedure produced samples that 
simulate samples that could easily have been drawn at random from the full 
population, but that ensure some small number of extreme scores in each 
sample for the purposes of our demonstration.

The following variables were calculated for each of the analyses below.

 • Accuracy was assessed by checking whether the original statistics or 
cleaned statistics were closer to the population correlation. In these 
calculations the absolute difference was examined.

 • Error rates were calculated by comparing the outcome from a sample 
to the outcome from the population. An error of inference was consid-
ered to have occurred if a particular sample yielded a different conclu-
sion than was warranted by the population.

EFFECT OF EXTREME SCORES  
ON CORRELATIONS AND REGRESSION

The first example looks at simple zero-order correlations. The goal was to 
demonstrate the effect of extreme scores on two different types of correlations: 
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correlations close to zero (to demonstrate the effects of extreme scores on 
Type I error rates) and correlations that were moderately strong (to demon-
strate the effects of extreme scores on Type II error rates). Toward this end, 
two different correlations were identified for study in the NELS 88 data set: 
the correlation between locus of control and family size (“population” ρ = 
-.06), and the correlation between composite achievement test scores and 
socioeconomic status (“population” ρ = .46). Variable distributions were 
examined and found to be reasonably normal.

After all samples were drawn, correlations were calculated in each sample, 
both before removal of extreme scores and after. For our purposes, r = -.06 was 
not significant at p < .05 for any of the sample sizes, and r = .46 was significant at 
p < .05 for all sample sizes. Thus, if a sample correlation led to a decision that 
deviated from the “correct” state of affairs, it was considered an error or inference.

As Table 7.1 demonstrates, extreme scores had adverse effects upon cor-
relations. In all cases, removal of extreme scores had significant effects on the 
magnitude of the correlations, and the cleaned correlations were more accurate 
(i.e., closer to the known “population” correlation) 70% to 100% of the time. 
Further, in most cases, errors of inference were significantly less common with 
cleaned than uncleaned data.

As Figure 7.7 shows, a few randomly chosen extreme scores in a sample 
of 100 can cause substantial misestimation of the population correlation. In the 
sample of almost 24,000 students, these two variables were correlated very 
strongly, r = .46. In this particular sample, the correlation with four extreme 
scores in the analysis was r = .16 and was not significant. If this was your 
study, and you failed to deal with extreme scores, you would have committed 
a Type II error asserting no evidence of an existing relationship when in fact 
there is a reasonably strong one in the population.

Removing Extreme Scores in Correlation and Regression

Merely performing univariate data cleaning is not always sufficient when 
performing statistical analyses, as bivariate and multivariate extreme scores 
are often in the normal range of one or both of the variables, so merely con-
verting variables to z scores and selecting the range -3.0 ≤ z ≥ 3.0 may not 
work (as I mention above). In this type of analysis, a two-stage screening 
process is recommended. First, checking all univariate distributions for 
extreme scores before calculating a correlation or regression analysis should be 
done automatically. As you can see in Figure 7.8, after all extreme univariate 
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extreme scores were removed, some bivariate extreme scores remain. Most 
statistical programs allow you to save various statistics when you perform an 
analysis such as a regression. You will see several different types of residuals 
and many types of statistics. For simplicity, let us talk about two particular 
types: standardized residuals and distance indexes.

If you know what a residual is (the difference between the actual value of 
Y and the predicted value of Y from the analysis; also it can be conceptually 
defined as the vertical distance a data point is from the regression line), then a 
standardized residual is easy. It is essentially the z score of the residual and can 
be interpreted the same way as a univariate z score (e.g., higher numbers mean 
you are farther from the regression line, and standardized residuals outside the 
± 3.0 range should be viewed suspiciously).5

Additionally, bivariate and multivariate extreme scores can exist in mul-
tiple directions (not just vertically from the regression line), but standardized 
residuals only identify scores that fall far from the regression line in a vertical 
direction. Thus, going back to our example in Figure 7.7, in Figure 7.9 the data 
points that are clearly extreme scores but are not vertically separated from the 
regression line (circled) would not be detected by examining standardized 

Figure 7.7  Correlation of SES and Achievement, 4% Extreme Scores
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residuals as they are very near the regression line. Thus, while visual inspec-
tion is helpful, particularly with simple analyses containing only two vari-
ables, once we get past two variables we need other indices, especially as we 
get beyond two-dimensional space into multiple regression.

Indices of distance, such as Mahalanobis distance and Cook’s distance, 
attempt to capture distance in more than one direction. While the details of 
their computations are beyond the scope of this chapter, imagine there is a 
center to the large group of data points in the middle of the scatterplot in 
Figure 7.9. As discussed above, the Mahalanobis distance and Cook’s distance 
attempt to quantify distance from the center of the multivariate distribution 
and would likely pick up these extreme scores as being very far from the cen-
ter of where most data points are, even though they are not vertically separated 

Figure 7.8   Correlation of SES and Achievement, Bivariate Extreme 
Scores Remain After Univariate Outliers Removed
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from the regression line. Using these indices to help with extreme score iden-
tification is relatively simple. Since statistical packages save these values as a 
separate variable, you can easily select or remove cases based on these scores.

Note that the same process of decision making we covered in the previous 
discussion of extreme scores should apply here as well—a case might be a 
multivariate extreme score for many reasons, some of which are legitimate and 
interesting and some not. You need to decide on an individual basis for each 
analysis and data point how to handle them, with the same options (removal, 
separate study, truncation or recoding, transformation, correction, and so on) 
available.

EFFECT OF EXTREME SCORES ON T-TESTS AND ANOVAS

The second example deals with analyses that look at group mean differences, 
such as t-tests and ANOVA. For the purpose of simplicity, I used t-tests for this 
example, but these results easily generalize to more complex ANOVA-type 

Figure 7.9   Extreme Scores Not Detected by Standardized Residuals
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analyses. For these analyses, two different conditions were examined: when 
there were no significant differences between the groups in the population (sex 
differences in socioeconomic status produced a mean group difference of 
0.0007 with a standard deviation of 0.80 and with 24,501 df produced a t of 
0.29, which is not significant at p < .05) and when there were significant group 
differences in the population (sex differences in mathematics achievement test 
scores produced a mean difference of 4.06 and standard deviation of 9.75 and 
24,501 df produced a t of 10.69, p < .0001). For both analyses, the effects of 
having extreme scores in only one cell as compared to both cells were exam-
ined. Distributions for both dependent variables were examined and found to 
be reasonably normal.

Similar to the previous set of analyses, in this example, t-tests were cal-
culated in each sample, both before removal of extreme scores and after. For 
this purpose, t-tests looking at SES should not produce significant group dif-
ferences, whereas t-tests looking at mathematics achievement test scores 
should. Two different issues were examined: mean group differences and the 
magnitude of the t. If an analysis from a sample led to a different conclusion 
than expected from the population analyses, it was considered an error of 
inference.

The results in Table 7.2 illustrate the unfortunate effects of extreme scores 
on ANOVA-type analyses, and they again highlight the importance of includ-
ing this step in your routine data cleaning regimen. Removal of extreme scores 
produced a significant change in the mean differences between the two groups 
when there were no significant group differences expected, but tended not to 
when there were strong group differences (as these group differences were 
very strong to begin with). Removal of extreme scores produced significant 
change in the t statistics primarily when there were strong group differences. 
In both cases the tendency was for both group differences and t statistics to 
become more accurate in a majority of the samples. Interestingly, there was 
little evidence that extreme scores produced Type I errors when group means 
were equal, and thus removal had little discernable effect. But when strong 
group differences were revealed, extreme score removal tended to have a sig-
nificant beneficial effect on error rates, although not as substantial an effect as 
seen in the correlation analyses.

The presence of extreme scores appears to produce similar effects 
regardless of whether they are concentrated only in one cell or are present in 
both.
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Detecting Extreme Scores in ANOVA-Type Analyses

Similar to regression type analyses, ANOVA-type analyses can contain 
bivariate or multivariate extreme scores not removed by simple univariate data 
cleaning. As mentioned previously, most statistical packages will save stan-
dardized residuals, which allows for identification of these types of extreme 
scores. In the case of ANOVA-type analyses, the residual is the difference 
between an individual score and the group mean, and by standardizing it, the 
same ± 3.0 standard deviation rule can apply.

TO REMOVE OR NOT TO REMOVE?

Some authors have made the argument that removal of extreme scores pro-
duces undesirable outcomes, such as making analyses less generalizable or 
representative of the population. I hope that this chapter persuades you that the 
opposite is in fact true: that your results probably will be more generalizable 
and less likely to represent an error of inference if you do conscientious data 
cleaning, including dealing with extreme scores where warranted (remember, 
there are many possible reasons for extreme scores, and the reason for them 
should inform the action you take). In univariate analyses, the cleaned data are 
closer to our example population than any sample with extreme scores—often 
by a substantial margin. In correlation and regression and in ANOVA-type 
analyses, my colleague and I demonstrated several different ways in which 
statistics and population parameter estimates are likely to be more representa-
tive of the population after having addressed extreme scores than before.

Though these were two fairly simple statistical procedures, it is straight-
forward to argue that the benefits of data cleaning extend to more complex 
analyses. More sophisticated analyses, such as structural equation modeling, 
multivariate analyses, and multilevel modeling, tend to have more restrictive 
and severe assumptions, not fewer, because they tend to be complex systems. 
Thus, it is good policy to make sure the data are as clean as possible when 
using more complex analyses. Ironically, even analyses designed to be robust 
to violations of distributional assumptions, such as nonparametric procedures, 
seem to benefit from solid, more normally distributed data.

FOR FURTHER ENRICHMENT

1. Data sets from the examples given in this chapter are available online on 
this book’s website. Download some of the examples yourself and see how 
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removal of outliers generally makes results more generalizable and closer 
to the population values.

2. Examine a data set from a study you (or your advisor) have previously published 
for extreme scores that may have distorted the results. If you find any relatively 
extreme scores, explore them to determine if it would have been legitimate to 
remove them, and then examine how the results of the analyses might change as 
a result of removing those extreme scores. And if you find something interesting, 
be sure to share it with me. I enjoy hearing stories relating to real data.

3. Explore well-respected journals in your field. Note how many report hav-
ing checked for extreme scores, and if they found any, how they dealt with 
them and what the results of dealing with them were (if reported). In many 
of the fields I explored, few authors explicitly discussed having looked for 
these types of issues.

NOTES

1. Data comes from the Health and Nutrition Examination Survey (HANES), 
performed by the U.S. Centers for Disease Control and Prevention (CDC).

2. Researchers (Miller, 1991; Van Selst & Jolicoeur, 1994) demonstrated that 
simply removing scores outside the ± 3.0 standard deviations can produce problems 
with certain distributions, such as highly skewed distributions characteristic of 
response latency variables, particularly when the sample is relatively small. If you are 
a researcher dealing with this relatively rare situation, Van Selst and Jolicoeur (1994) 
present a table of suggested cutoff scores for researchers to use with varying sample 
sizes that will minimize these issues with extremely nonnormal distributions. Another 
alternative would be to use a transformation to normalize the distribution prior to 
examining data for extreme scores.

3. Some readers will recognize that both regression and ANOVA are examples of 
general linear models. However, as many researchers treat these as different paradigms 
and there are slightly different procedural and conceptual issues in extreme scores, we 
treat them separately for the purpose of this chapter.

4. This is a different number from the univariate examples as there are different 
numbers of missing data in each variable, and for these analyses we removed all cases 
with missing data on any variable of interest. For more information on more appropri-
ate ways of handling missing data, be sure to refer to Chapter 6.

5. However, standardized residuals are not perfect. In some cases a studentized 
residual is more helpful (studentized residuals are standardized residuals that account 
for the fact that extreme scores can inflate standard errors, thus potentially masking 
extreme scores, particularly in small data sets).
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 EIGHT 

IMPROVING THE NORMALITY OF VARIABLES 
THROUGH BOX-COX TRANSFORMATION

Debunking the Myth of  
Distributional Irrelevance

I n the social sciences, many of the statistical procedures you will encounter 
assume normality and equality of variance (e.g., homogeneity of variance 

or homoscedasticity, depending on the type of analysis). Yet how often do you 
read a research article in which the author describes testing the assumptions of 
the selected analysis? My experience is that authors rarely report attending to 
these important issues, which is a shame, because violation of certain assump-
tions can harm the validity and generalizability of the results, cause underes-
timation of effect sizes and significance levels, and inflate confidence  
intervals. Two common assumptions, normality and equality of variance, are 
easily tested during the initial data cleaning process. More importantly, issues 
arising from these tests are often easy to fix prior to analysis.

Data transformations are commonly used tools that can serve many func-
tions in quantitative analysis of data, including improving normality and 
equalizing variance. There are as many potential types of data transformations 
as there are mathematical functions. Some of the more commonly discussed 
“traditional” transformations include: square root, converting to logarithmic 
(e.g., base 10, natural log) scales, inverting and reflecting, and applying trigo-
nometric transformations such as sine wave transformations.

Unfortunately, if you have data that do not conform to the standard normal 
distribution, most statistical texts provide only cursory overview of best prac-
tices in transformation. I have, in previous papers (Osborne, 2002, 2008a), pro-
vided some detailed recommendations for best practices in utilizing traditional 
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transformations (e.g., square root, log, inverse). One of the best practices I 
identified early on was anchoring the minimum value in a distribution at exactly 
1.0 to improve the effectiveness of the transformations as some are severely 
degraded as the minimum deviates above 1.0 (and having values in a distribution 
less than 1.0 can either cause mathematical problems or cause data below 1.0 to 
be treated differently than those at or greater than 1.0).

The focus of this chapter is streamlining and improving data normaliza-
tion that should be part of a routine data cleaning process. In the spirit of best 
practices, I introduce and explore the Box-Cox series of transformations (e.g., 
Box & Cox, 1964; Sakia, 1992), which has two significant advantages to the 
traditional transformations. First, Box-Cox expands on the traditional transfor-
mations to give the statistician the ability to fine-tune transformations for 
optimal normalization using an almost infinite number of potential transfor-
mations. Second, the syntax shared in this chapter (and the routines incorpo-
rated into programs like SAS) can easily transform data that are both  
positively and negatively skewed. More traditional transformations like square 
root or log transformations work primarily on positively skewed distributions. 
In the case of a negatively skewed variable, these traditional transformations 
require a cumbersome process that includes: (a) reflection (creating a mirror-
image of the distribution), (b) anchoring at 1.0, (c) transformation, and 
(d) rereflection processes to return the variable to its original nature.

Box and Cox (1964) originally envisioned this transformation as a pana-
cea for simultaneously correcting issues with normality, linearity, and 
homoscedasticity. While these transformations often improve all of these 
aspects of a distribution or analysis, Sakia (1992) and others have noted it does 
not always accomplish these challenging goals.

First, a cautionary note. While transformations are important tools, they 
should be used thoughtfully as they fundamentally alter the nature of the vari-
able, making the interpretation of the results slightly more complex.1 Thus, 
some authors suggest reversing the transformation once the analyses are done 
for reporting of means and standard deviations, graphing, and so on. Although 
it sounds simple, reversing a transformation so that you might substantively 
interpret estimates is a complex task fraught with the potential for introducing 
substantial bias (e.g., Beauchamp & Olson, 1973; Miller, 1984) that also might 
create potential for misunderstanding or misrepresentation of the actual nature 
of the analysis. This decision ultimately depends on the nature of the hypoth-
eses and analyses, but is probably rarely needed in most research. I briefly 
discuss this issue later in the chapter.
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WHY DO WE NEED DATA TRANSFORMATIONS?

Most common statistical procedures make two assumptions that are relevant 
to this topic: (a) an assumption that the variables (or their error terms, more 
technically) are normally distributed, and (b) an assumption of equality of 
variance (homoscedasticity or homogeneity of variance), meaning that the 
variance of the variable remains constant over the observed range of some 
other variable. In regression analyses, this second assumption is that the vari-
ance around the regression line is constant across the entire observed range of 
data. In ANOVA analyses, this assumption is that the variance in one group is 
not significantly different from that of other groups. Most statistical software 
packages provide ways to test both assumptions, and data transformations 
provide a way to remedy issues identified through testing these assumptions.

Significant violation of either assumption can increase your chances of 
committing Type I or II errors (depending on the nature of the analysis and 
violation of the assumption). Yet few researchers report testing these assump-
tions, and fewer still report correcting for violation of these assumptions 
(Osborne, 2008b). This is unfortunate, given that in most cases it is relatively 
simple to correct this problem through the application of data transformations. 
Even when one is using analyses considered robust to violations of these 
assumptions or nonparametric tests (that do not explicitly assume normally 
distributed error terms), attending to these issues can improve the results of the 
analyses (e.g., Zimmerman, 1995).

WHEN A VARIABLE VIOLATES THE  
ASSUMPTION OF NORMALITY

There are several ways to tell whether a variable deviates significantly from 
normal, as we saw in Chapter 5. While researchers tend to report favoring the 
“ocular test” (i.e., “eyeballing” the data or visual inspection of either the vari-
able or the error terms) (Orr, Sackett, & DuBois, 1991), more sophisticated 
tools are available. These tools range from simple examination of skew (ide-
ally between -0.80 and 0.80; closer to 0.00 is better) and kurtosis (closer to 3.0 
is better in many software packages, closer to 0.00 in SPSS) to examination of 
P-P plots (plotted percentages should remain close to the diagonal line to indi-
cate normality) and inferential tests of normality, such as the Kolmogorov-
Smirnov (K-S) or Shapiro-Wilk (S-W) test. For the K-S or S-W tests, p > .05 
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indicates the distribution does not differ significantly from the standard  
normal distribution, thus meeting the assumption of normality. For more infor-
mation on the K-S test and other similar tests, consult the manual for your 
software, as well as Goodman (1954), Lilliefors (1968), Rosenthal (1968), and 
Wilcox (1997).

TRADITIONAL DATA TRANSFORMATIONS  
FOR IMPROVING NORMALITY

Square Root Transformation

The Case of the Difficult Student and the Genesis of the Anchoring Rule

Early in my career, I was teaching graduate statistics courses at the 
University of Oklahoma, and as usual I had thoroughly indoctrinated my 
students in the art of data cleaning. Toward the end of the semester, while 
working with her own data, one student complained that the data 
transformations I had taught them were not working. No matter what 
transformation she tried (this was before I introduced my students to Box-
Cox), she could not get her modestly skewed variable to become more 
normally distributed.

After verifying she was indeed performing the transformations 
correctly, we delved deeper into the data. The troublesome variable 
(student SAT scores) had an original range of 200 to 800. This problem 
led to the insight that applying transformations to variables with large 
minimum values can cause the transformations to be less effective, 
something I had never come across in all my statistics courses. Once we 
moved the distribution of the variable to have a minimum of 1.0 (by 
subtracting a constant from all scores), the transformations were more 
effective, giving her a more normally distributed variable to work with.

This “difficult student” with her unruly variable led me to write a 
paper in 2002 recommending anchoring all distributions at 1.0 prior to 
applying any transformation.

Many readers will be familiar with this procedure—when one applies a 
square root transformation, the square root of every value is taken (technically, 
a special case of a power transformation where all values are raised to the  
one-half power). However, as one cannot take the square root of a negative 
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number. If the distribution of a variable includes negative values, a constant 
must be added to move the minimum value of the distribution above 0, prefer-
ably to 1.00. This recommendation (Osborne, 2002) reflects the fact that 
numbers between 0.00 and 1.0 behave differently than numbers 0.00, 1.00, and 
those larger than 1.00 (and the fact that adding a constant to all observations 
within a particular variable does not change the shape of the distribution of 
that variable). The square root of 1.00 and 0.00 remain 1.00 and 0.00, respec-
tively, while numbers above 1.00 become smaller, and numbers between 0.00 
and 1.00 become larger (the square root of 4 is 2, but the square root of 0.40 
is 0.63). Thus, if you apply a square root transformation to a continuous vari-
able that contains values between 0 and 1 as well as above 1, you are treating 
some numbers differently than others, which is not desirable. Square root 
transformations are traditionally thought of as good for normalizing Poisson 
distributions (most common with data that are counts of occurrences, such as 
number of times a student was suspended in a given year or the famous 
example, presented later in this chapter, of the number of soldiers in the  
Prussian Cavalry killed by horse kicks 
each year; Von Bortkiewicz, 1898) and 
equalizing variance.

Log Transformation(s)

Logarithmic transformations are 
actually a family of transformations, 
rather than a single transformation, and 
in many fields of science log-normal 
variables (i.e., normally distributed 
after log transformation) are relatively 
common. Log-normal variables seem 
to be more common when outcomes 
are influenced by many independent 
factors (e.g., biological outcomes; note 
that most variables in the social sci-
ences are influenced by many factors as 
well). In brief, a logarithm is the power 
(exponent) a base number must be 
raised to in order to get the original 

How Log Transformations Are Really 
a Family of Transformations

Log transformations express any 
number as a particular base raised to 
an exponent. Thus:

log100(100)=1.000, log100(10)=0.500

log50(100)=1.177, log50(10)=0.589

log25(100)=1.431, log25(10)=0.715

log10(100)=2.000, log10(10)=1.000

log9(100)=2.096, log9(10)=1.048

log8(100)=2.214, log8(10)=1.107

log7(100)=2.367, log7(10)=1.183

log6(100)=2.570, log6(10)=1.285

log5(100)=2.861, log5(10)=1.431

log4(100)=3.322, log4(10)=1.661

log3(100)=4.192, log3(10)=2.096

loge(100)=4.605, loge(10)=2.302

log2(100)=6.644, log2(10)=3.322
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number. Any given number can be expressed as yx in an infinite number of 
ways. For example, if we were talking about base 10, 1 is 100, 100 is 102, 16 
is 101.2, and so on. Thus, log10(100) = 2 and log10(16) = 1.2. Another common 
option is the natural logarithm, where the constant e (2.7182818…) is the 
base. In this case the natural log of 100 is 4.605. As this example illustrates, a 
base in a logarithm can be almost any number, thus presenting infinite options 
for transformation. Traditionally, authors such as Cleveland (1984) have 
argued that a range of bases should be examined when attempting log trans-
formations (see Osborne, 2002, for a brief overview on how different bases 
can produce different transformation results). The argument that a variety of 
transformations should be considered is compatible with the assertion that 
Box-Cox can constitute a best practice in data transformation.

Mathematically, the logarithm of a number less than or equal to 0 is unde-
fined, and numbers in the range of 0 through 1.0 produce negative values, 
getting extremely large as values approach 0.00. Numbers above 1.0 produce 
positive values, though they do not become very large until they approach 
infinity. Thus, because numbers between 0 and 1.0 are treated differently than 
numbers above 1.0, a best practice should be to anchor a distribution submit-
ted to this type of transformation at 1.00 (the recommendation in Osborne, 
2002) or higher (see also Jobson, 1992).

Inverse Transformation

To take the inverse of a number (x) is to compute 1/x or x-1. I personally 
dislike this transformation as it essentially makes very small numbers (e.g., 
0.00001) very large, and very large numbers very small, thus reversing the 
order of your scores (this also is technically a class of transformations, as 
inverse square root and inverse of other powers are all discussed in the litera-
ture). Therefore one must be careful to either reflect or reverse the order dis-
tribution prior to applying an inverse transformation, or adjust interpretation 
of the results accordingly.

Arcsine Transformation

This transformation has traditionally been used for proportions (such as 
proportion of students passing a test at each school surveyed; recall that pro-
portions only range from 0.00 to 1.00) and involves taking the arcsine of the 
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square root of a number, with the resulting transformed data reported in radi-
ans. Because of the mathematical properties of this transformation, the vari-
able must be transformed to the range -1.00 to 1.00. While a perfectly valid 
transformation, other modern techniques may limit the need for this transfor-
mation (e.g., rather than aggregating binary outcome data to a proportion, 
analysts can use multilevel logistic regression on the original data).

Box-Cox Power Transformations

Most of the traditional transformations mentioned above are members of 
a class of transformations called power transformations. Power transforma-
tions are merely transformations that raise all values of a variable to an expo-
nent (power). For example, a square root transformation can be characterized 
as x1/2 and inverse transformations can be characterized as x-1. And as men-
tioned above, log transformations embody a class of power transformations. 
Although they are rarely discussed in texts, some authors have talked about 
third and fourth roots (e.g., x1/3, x1/4) being useful in various circumstances. So 
you might wonder why we should be limited to these options. Why not use x0.9 
or x-2 or x4 or any other possible exponent if it improves the quality of the data? 
In fact, for half a century and more statisticians have been talking about this 
idea of using a continuum of transformations that provide a range of opportu-
nities for closely calibrating a transformation to the needs of the data. Tukey 
(1957) is often credited with presenting the initial idea that transformations 
can be thought of as a class or family of similar mathematical functions. This 
idea was modified by Box and Cox (1964) to take the form of the Box-Cox 
series of transformations:2

yi
λ = (yi

λ - 1) / λ where λ ≠ 0; 

yi
λ = loge(yi) where λ = 0.

While not implemented in all statistical packages,3 there are ways to esti-
mate lambda, the Box-Cox transformation coefficient, through a variety of 
means. Once an optimal lambda is identified, the transformation is mathemat-
ically straightforward to implement in any software package. Implementing 
Box-Cox transformations within SPSS is discussed in detail at the end of this 
chapter. Given that lambda is potentially a continuum from negative infinity 
to positive infinity, we can theoretically calibrate this transformation to be 
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maximally effective in moving a variable toward normality. Additionally, as 
mentioned above, this family of transformations incorporates many traditional 
transformations:

λ = 1.00: no transformation needed; produces results identical to original 
data

λ = 0.50: square root transformation

λ = 0.33: cube root transformation

λ = 0.25: fourth root transformation

λ = 2.00: square transformation

λ = 3.00: cube transformation

λ = 0.00: natural log transformation

λ = -0.50: reciprocal square root transformation

λ = -1.00: reciprocal (inverse) transformation

λ = -2.00: reciprocal (inverse) square transformation

and so forth.

APPLICATION AND EFFICACY  
OF BOX-COX TRANSFORMATIONS

Bortkiewicz’s Data on Prussian  
Cavalrymen Killed by Horse Kicks

This classic data set has long been used as an example of nonnormal 
(Poisson, or count) data. In this data set, Bortkiewicz (1898) gathered the 
number of cavalrymen in the Prussian army that had been killed each year 
from horse kicks between 1875 and 1894 by unit. As each unit had relatively 
few (ranging from 0 to 4 per year), this distribution is skewed (presented in 
Figure 8.1; skew = 1.24, kurtosis = 1.20), as is often the case in count data. 
Using square root, loge, or log10, will improve normality in this variable 
(resulting in skew of 0.84, 0.55, and 0.55, respectively). By using Box-Cox 
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with a variety of lambda ranging from -2.00 to 1.00, we can determine that 
the optimal transformation after being anchored at 1.0 would be a Box-Cox 
transformation with λ = -2.00 (see Figure 8.2) yielding a variable that is 
almost symmetrical (skew = 0.11; note that even though transformations 
between λ = -2.00 and λ = -3.00 yield slightly better skew, it is not substan-
tially better; note also that kurtosis remained suboptimal at -1.90).

University Size and Faculty Salary in the United States

Data from 1,161 institutions in the United States were collected on the size 
of the institution (number of faculty) and average faculty salary by the American 
Association of University Professors in 2005. As Figure 8.3 shows, the variable 
number of faculty is highly skewed (skew = 2.58, kurtosis = 8.09), and Figure 
8.4 shows the results of Box-Cox transformations after being anchored at 1.0 
over the range of lambda from -3.00 to 1.00. Because of the nature of these data 
(values ranging from 7 to more than 2,000 with a strong skew), this transformation 
attempt produced a wide range of outcomes across the 32 examples of Box-Cox 
transformations, from extremely bad outcomes (skew < -30.0 where λ < -1.20) 

Figure 8.1  Deaths From Horse Kicks, Prussian Army 1875–1894
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Figure 8.2  Box-Cox Transforms of Horse Kicks With Various Lambda
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Figure 8.3  Number of Faculty at Institutions in the United States
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to very positive outcomes of λ = 0.00 (equivalent to a natural log transformation) 
achieved the best result (skew = 0.11, kurtosis = -0.09 at λ = 0.00). (Figure 8.5 
shows results of the same analysis when the distribution is anchored at other 
points beyond 1.0, such as the original mean (132.0) or 500. Once the anchor is 
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Figure 8.4   Box-Cox Transformation of University Size With Various 
Lambda Anchored at 1.00
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Figure 8.5   Box-Cox Transformation of University Size With Various 
Lambda Anchored at 132,500,10,000
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moved from 1.0, it becomes less likely that any level lambda will produce a 
normally distributed transformation. In the case of the variable when anchored 
at 132, one transform (λ = -1.20) achieves a skew of 0.00 but has a kurtosis  
of -1.11, arguably a poorer outcome than when the distribution was anchored  
at 1.0.

As noted (Osborne, 2002), as minimum values of distributions deviate from 
1.00, power transformations tend to become less effective. To illustrate this, 
Figure 8.5 shows the same data anchored at a minimum of 500 and 10,000.4 
When anchored at 500, the results of the transformation are appreciably worse. 
It takes a much more severe transformation (λ = -3.70) to get the skew to 
approach 0.00, but kurtosis at this point is -1.28, again, not as good an outcome 
as when anchored at 1.0. And when the minimum value is 10,000, even the most 
severe transformations fail to bring the variable appreciably closer to normal 
(and in fact, some of the values of lambda produced distributions so severely 
nonnormal that SPSS could not calculate distributional characteristics).

As Figure 8.6 shows, once anchored at 1.0 and transformed appropriately, 
the distribution is much closer to normal.
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Faculty salary (associate professors) was more normally distributed to 
begin with, with a skew of 0.36 and kurtosis of 0.12. A Box-Cox transforma-
tion with lambda of 0.70 improved normality, but it is questionable whether it 
is necessary to transform a variable that is already approximating normality.

To demonstrate the benefits of normalizing data via Box-Cox, a simple 
correlation between number of faculty and associate professor salary (com-
puted prior to any transformation) produced a correlation of r(1,161) = .49, p < 
.0001 (model fit improved from F(1, 1123) = 362.90 to F(1, 1123) = 850.60 following 
transformation, a 134.39% increase). This represents a coefficient of determi-
nation (percentage variance accounted for) of 0.24, which is substantial yet 
probably underestimates the true population effect due to the substantial non-
normality present. Once both variables were optimally transformed, the simple 
correlation was calculated to be r(1,161) = .66, p < .0001. This represents a coef-
ficient of determination (percentage variance accounted for) of 0.44, or an 
81.50% increase in the coefficient of determination over the original.

Student Test Grades

Positively skewed variables are easily dealt with via the above proce-
dures. Traditionally, a negatively skewed variable had to be reflected 
(reversed), anchored at 1.0, transformed via one of the traditional (square root, 
log, inverse) transformations, and reflected again. This is because these tradi-
tional methods of transformation tended to work only on positively skewed 
variables, and would increase skew on negatively skewed variables. While this 
reflect-and-transform procedure also works fine with Box-Cox, researchers 
can merely use a different range of lambda to create a transformation that deals 
with negatively skewed data. Here I use data from a test in an undergraduate 
class I taught several years ago. These 174 scores range from 48% to 100%, 
with a mean of 87.3% and a skew of -1.75 (kurtosis = 5.43) (see Figure 8.7). 
Anchoring the distribution at 1.0 by subtracting 47 from all scores, and apply-
ing Box-Cox transformations from λ = 1.0 to 4.0, we get the results presented 
in Figures 8.8 and 8.9, indicating a Box-Cox transformation with a λ = 2.60 
produces a skew of -0.04 (kurtosis = -0.06).

REVERSING TRANSFORMATIONS

This area of discussion is relatively undeveloped in the social sciences, 
primarily because a need for it is rare. Most of our questions revolve around 
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Figure 8.7   Student Grades From an Undergraduate Psychology 
Class
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Figure 8.9  Student Grades Following Transformation λ = 2.60
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variables that are not concrete and specifically interpretable, but rather rela-
tional—what happens to one variable as another one increases, or are groups 
significantly different on a particular measure. In these types of cases, there is 
rarely a need to back-transform the values.

While it is relatively simple to manipulate the Box-Cox transformation to 
calculate the reverse of the transform (in other words, to convert a transformed 
value to the original value), other conceptual issues are important to discuss.

First, should you want to know what a particular transformed value cor-
responds to in the original variable metric (e.g., if you are graphing results or 
providing information on critical points of interest), this formula reverses the 
Box-Cox transformation:

y = [ŷ(λ) + 1)1/λ] - C

Where ŷ is the transformed value, λ is the Box-Cox coefficient used to 
transform the variable, and C is the value subtracted or added to anchor the 
minimum value of the distribution at 1.0. Note that if a constant was subtracted 
to anchor the original distribution, that constant must be added here, and,  
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conversely, if a constant was added to anchor the original distribution, that 
constant must be subtracted here.

Look for an Excel spreadsheet that performs these calculations on the 
website for this book.

Conceptually, I find the arguments for or against back-transforming most 
important. The question of why you transformed a variable in the first place is 
important. In general, it improved the normality of the data, improving the 
analysis. To back-transform is to undo that benefit. Indeed, if you were to 
transform and then appropriately back-transform, you would end up with an 
identical distribution to that with which you started, ignoring rounding error.

Further, having transformed a variable for analysis, it is important to 
make that clear to the reader. The fifth root of a variable or natural log of a 
variable is a different variable than the original variable.

More thought needs to be given to this issue in the literature. Under what 
conditions is it desirable or important to back-transform and under what condi-
tions is it unacceptable (or suboptimal)?

I would suggest the only time it is appropriate is if: (a) you have a variable 
that has specific, concrete interpretations (e.g., weight, age, income, grade 
point average, SAT score, IQ) and you are wanting to display the results 
graphically for reader interpretation, or (b) if you are attempting to establish 
critical cutoff scores for practitioners to use in settings where it would be 
impractical for them to convert observations to some other metric.

CONCLUSION

The goal of this chapter was to introduce Box-Cox transformations to 
researchers as a potential best practice in data cleaning. Many of us have been 
briefly exposed to data transformations, but few researchers appear to use 
them or report data cleaning of any kind (Osborne, 2008b). Box-Cox takes the 
idea of having a range of power transformations (rather than the classic square 
root, log, and inverse) available to improve the efficacy of normalizing and 
variance equalizing for both positively and negatively skewed variables.

As the examples presented in this chapter show, not only does Box-Cox 
easily handle substantially skewed data, but normalizing the data also can have 
a dramatic impact on effect sizes in analyses (in this case, improving the effect 
size of a simple correlation by more than 80%).

Further, many modern statistical programs (e.g., SAS) incorporate power-
ful Box-Cox routines, and in others (e.g., SPSS) it is relatively simple to use 
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a script (see this chapter’s appendix) to automatically examine a wide range of 
lambda to quickly determine the optimal transformation.

Data transformations can introduce complexity into substantive interpreta-
tion of the results (as they change the nature of the variable, and some can 
reverse the order of the data, and thus care should be taken when interpreting 
results). Sakia (1992) briefly reviews the arguments revolving around this 
issue, as well as techniques for using variables that have been power trans-
formed in prediction or converting results back to the original metric of the 
variable. For example, Taylor (1986) describes a method of approximating the 
results of an analysis following transformation, and others (see Sakia, 1992) 
have shown that this seems to be a relatively good solution in most cases. Given 
the potential benefits of utilizing transformations (e.g., meeting assumptions of 
analyses, improving generalizability of the results, improving effect sizes) the 
drawbacks do not seem compelling in the age of modern computing.

FOR FURTHER ENRICHMENT

1. Explore how to implement Box-Cox transformations within the statistical 
software you use. Download one (or more) of the example data files from 
the book’s website and see if you use Box-Cox transformations to normal-
ize them as effectively as I did. Remember to use best practices, anchoring 
at 1.0.

2. Using a data set from your own research (or one from your advisor), exam-
ine variables that exhibit significant nonnormality. Perform an analysis 
prior to transforming them (e.g., correlation, regression, ANOVA), then 
transform them optimally using Box-Cox methods. Repeat the analysis, 
and note whether the normalization of the variables had any influence on 
effect sizes or interpretation of the results. If you find an interesting exam-
ple, e-mail me a summary and I may feature it on the book’s website.

APPENDIX

Calculating Box-Cox Lambda by Hand

If you desire to estimate lambda by hand, the general procedure is as follows.

 • Divide the variable into at least 10 regions or parts.
 • Calculate the mean and standard deviation for each region or part.
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 • Plot log(SD) versus log(mean) for the set of regions.
 • Estimate the slope of the plot and use the slope (1-b) as the initial esti-

mate of lambda.

To illustrate this procedure, I revisit the second example: number of faculty 
at a university. After determining the 10 cutpoints that divide this variable into 
even parts, selecting each part and calculating the mean and standard deviation, 
and then taking the log10 of each mean and standard deviation, Figure 8.10 
shows the plot of these data. I estimated the slope for each segment of the line 
since there was a slight curve (segment slopes ranged from -1.61 for the first 
segment to 2.08 for the last) and averaged all, producing an average slope of 
1.02. Interestingly, the estimated lambda from this exercise would be -0.02, 
very close to the empirically derived 0.00 used in the example above.

Figure 8.10  Figuring Lambda By Hand
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Estimating Lambda Empirically in  
SPSS and Performing the Box-Cox Transformation

Using the following syntax, you can estimate the effects of Box-Cox 
using 32 different lambdas simultaneously, choosing the one that seems to 
work the best. Note that the first COMPUTE anchors the variable (NUM_
TOT) at 1.0, as the minimum value in this example was 7. You need to edit 
this to move your variable to 1.0.
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*******************************************************

*** 

***********Syntax for exploring larger range of lambda

*** 

*********** On first line change NUM_TOT to variable you want to 

  transform, 

*********** and -16 to anchor that variable at 1.0***.

*** 

*******************************************************.

COMPUTE var1=num_tot-16.
execute.
VECTOR lam(61) /tran(61).
LOOP idx=1 TO 61.
- COMPUTE lam(idx)=-3.1 + idx * .1.
- DO IF lam(idx)=0.
-   COMPUTE tran(idx)=LN(var1).
- ELSE.
-   COMPUTE tran(idx)=(var1**lam(idx) - 1)/lam(idx).
- END IF.
END LOOP.
EXECUTE.
FREQUENCIES VARIABLES=var1 tran1 to tran61
  /format=notable
  /STATISTICS= SKEWNESS KURTOSIS
  /ORDER=ANALYSIS.
FREQUENCIES VARIABLES= lam1 to lam61
  /format=notable
  /STATISTICS= MINIMUM
  /ORDER=ANALYSIS.

Note that this syntax tests lambda from -3.0 to 3.0, which is the range 
most transformations should fall into, regardless of whether your variable is 
positively or negatively skewed. Although there is no reason to limit analy-
ses to this range, I would be cautious about extending the transformations 
into more extreme ranges. If this range of lambda does not produce a  
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satisfactory transformation, it is possible that something odd is going on 
(perhaps some extreme outliers, failure to anchor at 1.0, or the presence 
categorical variable) that indicates you should explore your data prior to 
attempting transformation.

To change the range of lambda, you can change the -3.1 starting value on 
following line:

- COMPUTE lam(idx)=-3.1 + idx * .1.
Changing the number at the end (0.1) changes the interval SPSS examines—

in this case it examines lambda in 0.1 intervals, but changing the range and the 
interval can help fine-tune a transformation, should further refinement toward 
normality be desired.

Note: Thanks to Raynald Levesque for his webpage: http://www.spsstools.net/
Syntax/Compute/Box-CoxTransformation.txt, which informed my SPSS syntax for 
estimating lambda.

NOTES

1. For example, instead of predicting student achievement test scores, you might 
be predicting the natural log of student achievement test scores, which alters the inter-
pretation of the outcome and greatly complicates things if you want to substantively 
interpret unstandardized regression coefficients, means, or confidence intervals, or to 
create prediction equations.

2. Since Box and Cox (1964), other authors have introduced modifications of 
these transformations for special circumstances (e.g., data with negative values, which 
should be addressed via anchoring at 1.0) or peculiar data types less common in the 
social sciences. For example, John and Draper (1980) introduced their “modulus” trans-
formation that was designed to normalize distributions that are relatively symmetrical 
but not normal (i.e., removing kurtosis where skew is not an issue). In practice, most 
researchers will get good results from using the original Box-Cox family of transforma-
tions, which is preferable to those new to this idea thanks to its computational simplicity.

3. SAS has a convenient and very well-done implementation of Box-Cox within 
proc transreg that iteratively tests a variety of lambda and identifies the several differ-
ent good options for you. Many resources on the web, such as http://support.sas.com/
rnd/app/da/new/802ce/stat/chap15/sect8.htm, provide guidance on how to use Box-
Cox within SAS.

4. This is not unrealistic if this data represented something like salary, rather than 
number of faculty.
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 NINE 

DOES RELIABILITY MATTER?

Debunking the Myth of  
Perfect Measurement

I n many branches of science, the variables we are interested in are also dif-
ficult to measure, making measurement error a particular concern.1 

Despite impressive advancements in measurement in recent years (particularly 
the broad dissemination of structural equation modeling, Rasch measurement 
methodologies, and item response theory, to name but a few), simple reliabil-
ity of measurement remains an issue. In simple analyses such as simple cor-
relation or regression, or univariate ANOVA, unreliable measurement causes 
relationships to be underestimated (or attenuated), increasing the risk of Type 
II errors. In the case of multiple regression or partial correlation, effect sizes 
of variables with poor reliability can be underestimated while causing other 
variables in the analysis to simultaneously be overestimated, as the full effect 
of the variable with poor measurement qualities might not be removed.

This is a significant concern if the goal of research is to accurately model 
the “real” relationships evident in the population, effects that would be repli-
cable. Although most authors assume that reliability estimates (e.g., Cronbach 
alpha internal consistency estimates) of .70 and above are acceptable (e.g., 
Nunnally & Bernstein, 1994) and I (Osborne, 2008b) reported that the average 
alpha reported in top educational psychology journals was .83,2 measurement 
of this quality still contains enough measurement error to make correction 
worthwhile (as illustrated below).

Many authors seem largely unconcerned with reliable measurement (by 
virtue of failing to report any facts relating to the quality of their measure-
ment—see Osborne, 2008b). Others seem to believe that moderately good 
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reliability is “good enough” to accurately model the population relationships 
and produce generalizable, accurate results. So, the goal in this chapter is to 
debunk the myth of perfect measurement—in other words, to encourage 
researchers to more rigorously assess the quality of their measurement, more 
fully understanding the effect of imperfect reliability on their results. In this 
chapter I argue that authors should be more thoughtful and careful about 
assuming their measurement is good enough if their goal is to obtain an accu-
rate picture of the “true” relationship in the population.

WHAT IS A REASONABLE LEVEL OF RELIABILITY?

Reliability is a difficult topic to address in many sciences. There tend to be two 
ways of assessing reliability. Where scales or multiple indicators are involved, 
internal consistency is most often assessed through Cronbach’s alpha.3 Alpha 
is a function of two aspects of a scale or set of indicators: number of items and 
the average correlation between the items. This means that you can get a high 
alpha from either having a scale with strongly correlated items or a scale with 
many items (or both).

Conceptually, Cronbach’s alpha is the average of all possible split-half 
correlations for a scale, which is also an estimate of the correlation of two 
random samples of items from a theoretical universe of items similar to those 
on a particular test or scale (Cronbach, 1951).4 That is, if you took a particular 
scale and randomly split the items into two groups, making two parallel scales, 
and correlated those two halves of the scale, that would be an estimate of split-
half reliability. If you did that an infinite number of times and averaged all the 
resulting correlations (both for actual items and the universe of similar theo-
retical items), that would be a close approximation of Cronbach’s alpha. Thus, 
Cronbach’s alpha was intended to provide an estimate of test/scale reliability 
without the drawbacks of actually having to compute split-half reliability, 
which has many conceptual and practical issues.5 Note that alpha is not a mea-
sure of unidimensionality (an indicator that a scale is measuring a single con-
struct rather than multiple related constructs) as is often thought (Cortina, 
1993; Schmitt, 1996). Unidimensionality is an important assumption of alpha 
in that scales that are multidimensional will cause alpha to be underestimated 
if not assessed separately for each dimension, but high values for alpha are not 
necessarily indicators of unidimensionality (e.g., Cortina, 1993; Schmitt, 
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1996). I have seen examples of random items collected from different types of 
questionnaires leading to very acceptable levels of alpha if enough are used—
regardless of whether they are measuring the same construct or very different 
constructs.

Furthermore, alpha should be considered a lower boundary of reliability in 
that actual reliability may be higher than alpha estimates (but is almost never 
lower than alpha in practice). Again, to the extent that item standard deviations 
are unequal, or that scales are multidimensional rather than unidimensional, 
actual reliability will be higher than estimated by alpha. Therefore, correcting 
statistics for low reliability based on alpha can, in some cases, lead to overcor-
rection, and thus should be approached with caution (Osborne, 2008a). As 
many authors have argued, the “acceptable” level of alpha depends on the use 
of the scale or measure, and there is probably no one universal cutoff point for 
acceptable levels of internal consistency. However, noting that (1 – α)2 is an 
estimate of the amount of error in a measure (coefficient of nondetermination), 
and in light of the pronounced effects reduced reliability can have on estimates 
of effect sizes (discussed below), researchers should be cautious in accepting 
measurement with a significant amount of error variance.

To this point I have only addressed one possible indicator of reliable mea-
surement: internal consistency as measured by Cronbach’s alpha. It is often the 
case that alpha is not the appropriate measure of reliability. For example, 
kappa (e.g., Cohen, 1968) is an indicator of agreement between raters, and 
test-retest correlations (e.g., weighing an individual twice with the same scale) 
are other common indicators of reliability that can be a measure of the reli-
ability of a measurement. Each has methodological limitations and drawbacks 
that should be considered when employing them to correct for measurement 
error.

RELIABILITY AND SIMPLE CORRELATION OR REGRESSION

Since “the presence of measurement errors in behavioral research is the rule 
rather than the exception” and the “reliabilities of many measures used in the 
behavioral sciences are, at best, moderate” (Pedhazur, 1997, p. 172), it is 
important that researchers be aware of accepted methods of dealing with this 
issue. For simple correlation, the formula below (available in many references, 
such as Cohen, Cohen, West, & Aiken, 2002) provides an estimate of the 
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“true” relationship between the independent variable (IV) and dependent vari-
able (DV) in the population.

r
r
r r12
12

11 22

* =

In this equation, r12 is the observed correlation, and r11 and r22 are the reli-
ability estimates of the variables.6 To illustrate use of this formula, I take an 
example from my own research (which I also return to later in this chapter).

Years ago I administered two scales measuring how psychologically 
invested students were in their education to 214 high school students. The two 
scales, the School Perceptions Questionnaire (SPQ), which I published 
(Osborne, 1997), and the Identification With School (IWS), published by a 
colleague, Kristin Voelkl-Finn (Voelkl, 1996, 1997). In practice, these scales 
tend to be strongly correlated, tend to have good internal consistency, and 
served as a good example of what can happen when reliability is sacrificed.

First, internal consistency estimates (Cronbach’s alpha) were estimated for 
the SPQ via traditional means to be α = .88 and for IWS was α = .81, both of 
which are considered by traditional benchmarks to be good levels of internal 
consistency. After averaging the items to create composite scores and testing 
assumptions of simple correlation,7 the correlation was calculated to be r = .75, 
which translates to a coefficient of determination (percentage variance 
accounted for) of .56. Again, this is considered a relatively strong correlation 
for the social sciences and is expected from two measures of similar constructs.

Using the equation above, we could correct this correlation to estimate the 
disattenuated, or “true” population correlation to be estimated at .89. Looking 
at effect size (percentage variance accounted for, often called the coefficient 
of determination) for these two correlations, we see a sizable improvement 
from .56 to .79. This represents a 40.29% increase in effect size or variance 
accounted for, or a 28.72% underestimation of the true correlation between 
these two variables if the assumption of perfectly reliable measurement was 
met.8 Many are surprised that variables having such good reliability could still 
show such a dramatic misestimation of the true population effect. And some 
might be skeptical whether we can really estimate the true reliability of scales. 
Below I take the same data and use structural equation modeling (SEM) to 
estimate the true correlation between these two scales and the corrected esti-
mate from our equation is remarkably close to the estimate generated by SEM.

Other examples of the effects of disattenuation (correcting estimates for 
attenuation due to poor reliability) are included in Table 9.1.



Chapter 9  Does Reliability Matter? 195

Observed Correlation Coefficient

Reliability 
Estimate

r = .10 
(.01)

r = .20 
(.04)

r = .30 
(.09)

r = .40 
(.16)

r = .50 
(.25)

r = .60 
(.36)

.95 .11 (.01) .21 (.04) .32 (.10) .42 (.18) .53 (.28) .63 (.40)

.90 .11 (.01) .22 (.05) .33 (.11) .44 (.19) .56 (.31) .67 (.45)

.85 .12 (.01) .24 (.06) .35 (.12) .47 (.22) .59 (.35) .71 (.50)

.80 .13 (.02) .25 (.06) .38 (.14) .50 (.25) .63 (.39) .75 (.56)

.75 .13 (.02) .27 (.07) .40 (.16) .53 (.28) .67 (.45) .80 (.64)

.70 .14 (.02) .29 (.08) .43 (.18) .57 (.32) .71 (.50) .86 (.74)

.65 .15 (.02) .31 (.10) .46 (.21) .62 (.38) .77 (.59) .92 (.85)

.60 .17 (.03) .33 (.11) .50 (.25) .67 (.45) .83 (.69) ---

Table 9.1  Example Disattenuation of Simple Correlation Coefficients

Note. Reliability estimates for this example assume the same reliability for both variables. Percent-
age variance accounted for (shared variance minus coefficient of determination) is in parentheses.

For example, even when reliability is .80, correction for attenuation sub-
stantially changes the effect size (increasing variance accounted for by about 
50% compared to simple attenuated correlations). When reliability drops to 
.70 or below, this correction yields a substantially different picture of the true 
nature of the relationship and potentially avoids Type II errors. As an example, 
an alpha of .70 equates conceptually to approximately half the variance in a 
measure being composed of error, half of the true score. Looking at Table 9.1, 
you can see that correcting for this level of reliability tends to double the effect 
size in the analysis. In other words, having an alpha of .70 can lead you to 
underestimate the effects in your analyses by 50%! How many articles in 
respected journals have reliability estimates at or below that important concep-
tual threshold?

RELIABILITY AND PARTIAL CORRELATIONS

With each independent variable added to a regression equation, the effects of 
less-than-perfect reliability on the strength of the relationship becomes more 
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complex and the results of the analysis more questionable. With the addition of 
one independent variable with less-than-perfect reliability, each succeeding 
variable entered has the opportunity to claim part of the error variance left over 
by the unreliable variable(s). The apportionment of the explained variance 
among the independent variables thus will be incorrect and reflect a misestima-
tion of the true population effect. In essence, low reliability in one variable can 
lead to substantial overestimation of the effect of another related variable. As 
more independent variables with low levels of reliability are added to the equa-
tion, the greater the likelihood that the variance accounted for is not appor-
tioned correctly. This can lead to erroneous findings and increased potential for 
Type II errors for the variables with poor reliability, as well a Type I errors for 
the other variables in the equation. Obviously this gets increasingly complex as 
the number of variables in the equation grows and increasingly unacceptable in 
terms of replicability and confidence in results. In these cases, structural equa-
tion modeling could be considered a best practice.

A simple example, drawing heavily from Pedhazur (1997), is a case in 
which one is attempting to assess the relationship between two variables con-
trolling for a third variable (r12.3). When one is correcting for low reliability in 
all three variables, the formula below is used, where r11, r22, and r33 are reli-
abilities, and r12, r23, and r13 are relationships between variables. If one is only 
correcting for low reliability in the covariate, one could use the simplified 
version of the formula on the right.

r
r r r r

r r r r r r
12 3

33 12 13 23

11 33 13
2

22 33 23
2.

* =
−

− −

r
r r r r

r r r r
12 3

33 12 13 23

33 13
2

33 23
2.

* =
−

− −

Table 9.2 presents some examples of corrections for low reliability in the 
covariate (only) and in all three variables. Table 9.2 shows some of the many 
possible combinations of reliabilities, correlations, and the effects of correcting 
for only the covariate or all variables. Some points of interest: (a) as in Table 9.1, 
even small correlations see substantial effect size (r2) changes when corrected 
for low reliability, in this case often toward reduced effect sizes (b) in some cases 
the corrected correlation is not only substantially different in magnitude, but also 
in direction of the relationship, and (c) as expected, the most dramatic changes 
occur when the covariate has a substantial relationship with the other variables.
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Table 9.2  Values of r12.3 After Correction Low Reliability

Reliability of 
Covariate

Reliability of All 
Variables

Examples .80 .70 .60 .80 .70 .60

r12 r13 r23 Observed r12.3 r12.3 r12.3 r12.3 r12.3 r12.3 r12.3

.30 .30 .30 .23 .21 .20 .18 .27 .30 .33

.50 .50 .50 .33 .27 .22 .14 .38 .42 .45

.70 .70 .70 .41 .23 .00 -.64 .47 .00 —

.70 .30 .30 .67 .66 .65 .64 .85 .99 —

.30 .50 .50 .07 -.02 -.09 -.20 -.03 -.17 -.64

.50 .10 .70 .61 .66 .74 .90 — — —

Note. Some examples produce impossible values. These are denoted by --.

RELIABILITY AND MULTIPLE REGRESSION

Research has argued that regression coefficients are primarily affected by reli-
ability in the independent variable (except for the intercept, which is affected 
by reliability of both variables), while true correlations are affected by reli-
ability in both variables. Thus, researchers wanting to correct multiple regres-
sion coefficients for reliability can use the formula below, taken from Bohrn-
stedt (1983), which takes this issue into account.

β
σ

σ
yx z

y

x

zz xy yz xz

xx zz xz

r r r r
r r r.

* =






−
− 2

Some examples of disattenuating multiple regression coefficients are pre-
sented in Table 9.3.

In these examples (which are admittedly and necessarily a very narrow 
subset of the total possibilities), corrections resulting in impossible values 
were rare, even with strong relationships between the variables and even when 
reliability is relatively weak.
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Table 9.3   Example Disattenuation of Multiple Regression Coefficients

Correlations rxy and ryz

Reliability 
of All 
Variables rxz r = .10 r = .20 r = .30 r = .40 r = .50 r = .60 r = .70 r = .80

.90

.10 .10 .20 .30 .40 .50 .60 .70 .80

.40 .08 .15 .23 .31 .38 .46 .54 .62

.70 .06 .13 .19 .25 .31 .38 .44 .50

.80

.10 .11 .22 .33 .44 .56 .67 .78 .89

.40 .08 .17 .25 .33 .42 .50 .58 .67

.70 .07 .13 .20 .27 .33 .40 .47 .53

.70

.10 .13 .25 .38 .50 .63 .75 .88 —

.40 .09 .18 .27 .36 .45 .55 .64 .73

.70 .07 .14 .21 .29 .36 .43 .50 .57

.60

.10 .14 .29 .43 .57 .71 .86 — —

.40 .10 .20 .30 .40 .50 .60 .70 .80

.70 .08 .15 .23 .31 .38 .46 .54 .62

Notes. Calculations in this table utilized Bohrnstedt’s formula, assumed all IVs had the same reliability estimate, 
assumed each IV had the same relationship to the DV, and assumed each IV had the same variance, in order to 
simplify the example. Numbers reported represent corrected rxz.

RELIABILITY AND INTERACTIONS  
IN MULTIPLE REGRESSION

To this point the discussion has been confined to the relatively simple issue of the 
effects of low reliability, and correcting for low reliability, on simple correlations 
and higher-order main effects (partial correlations, multiple regression coef-
ficients). However, many interesting hypotheses in the social sciences involve 
curvilinear or interaction effects. Of course, poor reliability in main effects is 
compounded dramatically when those effects are used in cross-products, such as 
squared or cubed terms or interaction terms. Aiken and West (1991) present a good 
discussion on the issue. An illustration of this effect is presented in Table 9.4.
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As Table 9.4 shows that, even at relatively high reliabilities, the reliability 
of cross-products is relatively weak (except when there are strong correlations 
between the two variables). This, of course, has deleterious effects on power 
and inference. According to Aiken and West (1991), two avenues exist for 
dealing with this: correcting the correlation or covariance matrix for low reli-
ability and then using the corrected matrix for the subsequent regression 
analyses, which of course is subject to the same issues discussed earlier, or 
using SEM to model the relationships in an error-free fashion.

Correlation Between X and Z

Reliability
of X and Z r = 0 r = .20 r = .40 r = .60

.9 .81 .82 .86 .96

.8 .64 .66 .71 .83

.7 .49 .51 .58 .72

.6 .36 .39 .47 .62

Table 9.4   Effects of Measurement on the Reliability of Cross-
Products (Interactions) in Multiple Regression

Note. These calculations assume both variables are centered at 0 and that both X and Z have equal 
reliabilities. Numbers reported are cross-product reliabilities.

PROTECTING AGAINST OVERCORRECTING  
DURING DISATTENUATION

The goal of disattenuation is to be simultaneously accurate (in estimating the “true” 
relationships) and conservative in preventing overcorrecting. Overcorrection serves 
to further our understanding no more than leaving relationships attenuated.

Several scenarios might lead to inappropriate inflation of estimates, even 
to the point of impossible values. A substantial underestimation of the reli-
ability of a variable would lead to substantial overcorrection, and potentially 
impossible values. This can happen when reliability estimates are biased 
downward by heterogeneous scales, for example. Researchers need to seek 
precision in reliability estimation in order to avoid this problem.

Given accurate reliability estimates, however, it is possible that sam-
pling error, well-placed outliers, or even suppressor variables could inflate 
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relationships artificially, and thus, when combined with correction for low 
reliability, produce inappropriately high or impossible corrected values. In 
light of this, I would suggest that researchers make sure they have checked 
for these issues prior to attempting a correction of this nature (researchers 
should check for these issues regularly anyway).

OTHER SOLUTIONS TO THE  
ISSUE OF MEASUREMENT ERROR

Fortunately, as the field of measurement and statistics advances, other options 
to these difficult issues emerge. One obvious solution to the problem posed by 
measurement error is to use SEM to estimate the relationship between con-
structs (which can give estimates of error-free results given the right condi-
tions), rather than using our traditional methods of assessing the relationship 
between measures. This eliminates the issue of overcorrection or undercorrec-
tion, which estimate of reliability to use, and so on. Given the easy access to 
SEM software, and a proliferation of SEM manuals and texts, it is more acces-
sible to researchers now than ever before. Having said that, SEM is still a 
complex process and should not be undertaken without proper training and 
mentoring (of course, that is true of all statistical procedures).

Another emerging technology that can potentially address this issue is the 
use of Rasch modeling. Rasch measurement utilizes a fundamentally different 
approach to measurement than classical test theory, which many of us were 
trained in. Use of Rasch measurement provides not only more sophisticated, 
and probably accurate, measurement of constructs, but more sophisticated 
information on the reliability of items and individual scores. Even an introduc-
tory treatise on Rasch measurement is outside the limits of this chapter, but 
individuals interested in exploring more sophisticated measurement models 
are encouraged to refer to Bond and Fox (2001) for an excellent primer on 
Rasch measurement.

WHAT IF WE HAD ERROR-FREE MEASUREMENT?

To give a concrete example of how important this process might be as it applies 
to our fields of inquiry, I draw from a survey I and a couple graduate students 
completed of the educational psychology literature from 1998 to 1999 (Osborne, 
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2008b). This survey consisted of recording all effects from all quantitative stud-
ies published in the Journal of Educational Psychology during the years 1998 
and 1999, as well as ancillary information such as reported reliabilities.

Studies from these years indicate a mean effect size (d) of 0.68, with a 
standard deviation of 0.37. When these effect sizes are converted into simple 
correlation coefficients via direct algebraic manipulation, d = 0.68 is equiva-
lent to r = .32. Effect sizes 1 standard deviation below and above the mean 
equate to rs of .16 and .46, respectively.

From the same review of the literature, where reliabilities (Cronbach’s 
alpha) are reported, the average reliability is α = .80, with a standard deviation 
of 0.10.

Table 9.5 contains the results of what would be the result for the field of 
educational psychology in general if all studies in the field eliminated the nega-
tive effects of low reliability (and if we assume reported reliabilities are accu-
rate), such as if all analyses used SEM or error-free measures. For example, 
while the average reported effect equates to a correlation coefficient of r = .32 
(coefficient of determination of .10), if corrected for average reliability in the 
field (α = .80) the better estimate of that effect is r = .40, (coefficient of determi-
nation of .16, a 60% increase in variance accounted for.) These simple numbers 
indicate that when reliability is low but still considered acceptable by many  
(α = .70, 1 standard deviation below the average reported alpha, and a level 

Small Effect
(r= .16, r2 = .025, 

d = 0.32)

Average Effect
(r= .32, r2 = .10, 

d =0.68)

Large Effect
(r = .46, r2 = .21,  

d = 1.04)

Poor 
Reliability
(a = .70)

 r  = .23
 r2  = .052
 d  = 0.47

 r  = .46
 r2  = .21
 d  = 1.04

 r  = .66
 r2  = .43
 d  = 1.76

Average 
Reliability
(a = .80)

 r  = .20
 r2  = .040
 d  = 0.41

 r  = .40
 r2  = .16
 d  = 0.87

 r  = .58
 r2  = .33
 d  = 1.42

Above-
Average 
Reliability
(a = .90)

 r  = .18
 r2  = .032
 d  = 0.37

 r  = .36
 r2  = .13
 d  = 0.77

 r  = .51
 r2  = .26
 d  = 1.19

Table 9.5   An Example of Disattenuation of Effects From Educational 
Psychology Literature
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decidedly not considered acceptable by me), the increase in variance accounted 
for can top 100%—in this case, our average effect of r = .32 is disattenuated 
to r = .46, (coefficient of determination of .21). At minimum, when reliabilities 
are good, 1 standard deviation above average (α = .90), the gains in effect size 
range around 30%—still a substantial and potentially important increase as 
Figure 9.1 visually shows.

Figure 9.1   Effect Sizes and Measurement Error
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AN EXAMPLE FROM MY RESEARCH

I now return to the previously mentioned example, where I administered two 
closely related scales to high school students: the School Perceptions Ques-
tionnaire (SPQ) and the Identification With School questionnaire (IWS). 
Recall that internal consistency estimates were α = .88 and .81, respectively, 
considered good by most researchers in the field. Recall also that after averag-
ing the items to create composite scores and testing assumptions of simple 
correlation,9 the correlation was calculated to be r = .75, which translates to a 
coefficient of determination (percentage variance accounted for) of .56. This 
is generally considered a relatively strong correlation for the social sciences 
and is expected from two measures of similar constructs. Using formula to 
estimate of the “true” relationship between the IV and DV, I estimated that the 
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corrected correlation should be r = .89, but of course have no way of verifying 
that to be the case using this example.

However, we can simulate what perfect measurement might yield as a 
correlation between these two variables using AMOS structural equation mod-
eling software to construct latent variables representing each of these scales. 
While structural equation modeling is a relatively advanced procedure, and 
getting into the intricacies of the analysis is beyond the scope of this chapter, 
for our purposes all you need to understand is that SEM can be used to esti-
mate relationships between variables as though they were measured perfectly. 
As Figure 9.2 shows, the estimate, therefore, of the correlation under perfect 
correlation was r = .90 (coefficient of determination of .81), very close to that 
estimated our formula. Thus, we can have a good level of confidence that is 
what the true correlation should be if perfect measurement were possible.

And while some of you may be inclined to shrug and observe that correla-
tions of .90 and .75 are both “pretty large,” note that the effect sizes are dra-
matically different—0.56 with good but imperfect measurement and 0.81 with 
a simulation of perfect measurement. That means that with good but imperfect 
measurement, approximately one-third (30.87%) of the effect size was lost 
compared to the actual relationship in the population.

Figure 9.2  Measurement’s Influence on Correlation and Effect Size
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However, as α = .83 (standard deviation of 0.10) is the average alpha 
reported in top educational psychology journals (Osborne, 2008b), it is not 
difficult to find studies published in well-respected journals with alphas that 
are substantially lower. In fact, it is not difficult to find alphas under .70 (1 
standard deviation below the average alpha), and even 2 standard deviations 
or more below the mean (0.63), despite the fact that means that a substantial 
portion of the variance in measures are error!

Therefore, to simulate how unfortunate reliability levels can affect effect 
sizes, I took the same data and randomly substituted numbers for 20% of the 
items in each scale.10 This simulated random responding had the effect of 
lowering the internal consistency of the scales to simulate poorer internal con-
sistency. After this random substitution, the alphas were .64 for the SPQ and 
.59 for IWS.11

After inserting some random error variance and lowering the effective 
reliability of the measurement, the correlation for these two scales was still a 
respectable r = .51. Many of us would be delighted to see that magnitude cor-
relation occur in our research. However, note that with a coefficient of deter-
mination of .26, the effect under poorer measurement levels (but still levels 
found in published journal articles) is underestimated by 67.90% (compared to 
perfect measurement as estimated through SEM). That is, more than two-
thirds of the effect is lost to measurement error in studies reporting analyses 
based on measurement reliability of this level. Worse, as mentioned earlier, in 
more complex analyses like multiple regression, this underestimation of effect 
can have unpredictable effects on other variables in the analyses, leading to 
dramatic overprediction of those effects. In other words, researchers using 
measures with poor reliability risk not only Type II errors from underestimat-
ing particular effects, but also inflate the risk of Type I error for other effects 
in the same analysis. This should be considered an undesirable state of affairs 
in the 21st century, particularly when it is relatively simple to improve mea-
surement in scales by increasing item numbers or through analysis by using 
modern methods like structural equation modeling.

Finally, as another test, I calculated a disattenuated correlation using the 
data with the reduced internal consistency estimates (.64, .59 that yielded r = 
.51). Put another way, if I, as a researcher came across a correlation of r = .51 
in my data based on reliabilities of .64 and .59, would it be legitimate to use 
our formula to correct such poor reliabilities? A quick calculation using that 
formula yielded a disattenuated correlation of .83 (coefficient of determination 
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of .69), much closer to the “true” correlation of .90 than the observed correla-
tion, to be sure. Importantly, it appears that even in this situation, this simple 
method of disattenuation does a relatively good job of estimating the true 
relationship as modeled by SEM (a methodology that was not readily available 
at the time these corrections were being disseminated). Furthermore, I was 
gratified to see no evidence that this formula would overcorrect. If anything, 
when internal consistency estimates get relatively low, the formula provides a 
slightly conservative correction (leaving the coefficient of determination 
approximately 10 below where it should be).

DOES RELIABILITY INFLUENCE OTHER ANALYSES?

You may be wondering whether reliability can have the same deleterious 
effects on other types of analysis, like ANOVA or t-tests. Recent decades have 
brought these various procedures together under the heading of general linear 
modeling, both conceptually and mathematically. Because ANOVA-type 
analyses can be easily expressed in equations similar to that of regression 
equations, similar effects should result. The difference between ANOVA-type 
analyses and regression or correlation analyses is that categorical variables, 
such as sex and experimental condition, tend to be measured much more reli-
ably than continuous variables such as the psychological scales I used in the 
previous example. Thus, in simple ANOVA analyses, it is usually only the 
dependent variable that has significant amounts of error variance, leaving the 
analysis on stronger ground with only one of the two variables containing 
increased error variance. This still reduces effect sizes.

In some simulations I ran preparing for this chapter, I often saw 15% to 
20% reduction of effect sizes between the ANOVA analyses with average reli-
ability and the ones with poor reliability. In this example below, we use the 
SPQ with original reliability (.88) and reduced reliability (.64).

This example looks at identification with academics (SPQ scores) as a 
function of whether the student withdrew from school.12 Conceptually, those 
who stay in school (do not withdraw or drop out) should have higher scores in 
the SPQ than those who do. A simple ANOVA13 performed on the SPQ with 
normal reliability (α = .88) showed a strong difference between those who 
stayed in school (mean = 4.35 out of 5.00, with a SD = 0.45) and those who 
withdrew from school (mean = 3.50 out of 5.00, with a SD = 0.61). This effect 
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was significant (F(1, 166) = 94.96, p < .0001, η2 = .36).14 But when the dependent 
variable was the SPQ with poor reliability (α = .64), the effect was still sig-
nificant and in the same direction (Mean = 3.87 versus 3.22) but the effect size 
was reduced (F(1, 166) = 58.29, p < .0001, η2 = .26) by 27.78% (which is approx-
imately what would be expected given that in the parallel analysis with two 
variables of poor reliability the effect size was reduced by about 54%—r = .75 
versus r = .51). This effect of poor reliability is significant enough that in an 
analysis with reduced sample size (and hence, reduced power) researchers are 
more likely to experience a Type II error. This highlights the importance of 
paying attention to the quality of measurement in research.

THE ARGUMENT THAT POOR  
RELIABILITY IS NOT THAT IMPORTANT

I might be biased, but I hope I have persuaded you this is an issue worthy of 
attention. Other articles espouse the opposite view, just as some authors argue 
it is irresponsible to remove outliers or transform nonnormal data.

One example is a previous article by Schmitt (1996), wherein he argued 
that even relatively low alphas (e.g., .50) do not seriously attenuate validity 
coefficients, which are correlations. In his example, he cites the maximum 
validity coefficient under α as the square root of α (in this case, α = .50 would 
yield a maximum validity coefficient of 0.71). Yet in making this argument, 
Schmitt and others have overlooked an important aspect of interpreting cor-
relation coefficients—while 0.50 and 0.71 seem relatively close in size, if you 
examine their relative effect sizes—their coefficients of determination, which 
represents the percentage variance accounted for—you see that the effect size 
for r = .50 is 0.25, and for .71 is 0.50—double the effect size. But more impor-
tantly, by having an alpha of .50, and capping a reliability coefficient at .71, 
you therefore essentially give away 50% of the potential effect size for your 
research. In other words, you have now set the ceiling for the highest possible 
effect size you can report in your research at 0.50, rather than 1.00. This 
should be a serious concern for any researcher. Even Schmitt’s own results 
showing examples of disattenuation of correlations show profound effects of 
poor reliability. In one example (Schmitt, 1996, table 4) two variables with α 
of .49 and .36, respectively, show an observed correlation of r = .28. Correct-
ing for low reliability produced an estimated “true” correlation of 0.67. Again, 
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it is only when one examines the coefficients of determination (r2 = .08 and 
.45, respectively) where the true damage low reliability causes—in this case, 
the true effect size is reduced by 82.18%—or the correct effect size is over five 
times larger). I hope you are of the mind that in your research you are not 
happy to give away a majority of your effect sizes, instead desiring to accu-
rately model what is actually occurring in the population.

CONCLUSIONS AND BEST PRACTICES

If the goal of research is to provide the best estimate of the true effect within 
a population, and we know that many of our statistical procedures assume 
perfectly reliable measurement, then we must assume that we are consistently 
underestimating population effect sizes, usually by a sizable amount. Using 
the field of educational psychology as an example, and using averages across 
2 years of studies published in top-tier empirical journals, we can estimate that 
while the average reported effect size is equivalent to r = .32, (10% variance 
accounted for), once corrected for average reliability the average effect is 
equivalent to r = .40, (16% variance accounted for). If you take these numbers 
seriously, this means that many studies in the social sciences underestimate the 
population effects by about one-third.

So what would research look like in an ideal world? In the social sciences, 
measurement is challenging, but that does not mean it is impossible to do well. 
Researchers need to use measures and methods that produce reliable and valid 
data. So the first recommendation is to research the measures and methods you 
intend to use and confirm they are the best possible.

Next, all researchers should assess and report reliability so that consumers 
of research have the information necessary to interpret their results. Unfortu-
nately, even in modern journals this does not always happen (Osborne, 2008b). 
Researchers should always make sure they estimate reliability on unidimen-
sional measures only, and if using multidimensional measures (such as scales 
with multiple subscales) reliability should be calculated for each dimension 
separately to avoid underestimating reliability.

Finally, it is my belief from the examples presented in this chapter that 
authors should use methods that correct for imperfect measurement and report 
both original and disattenuated estimates. Furthermore, authors should explic-
itly explain what procedures were used in the process of disattenuation. Since 
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latent variable modeling is more easily accessible these days, my recommen-
dation would be for researchers to routinely use that technique if reliability of 
measurement is a concern (although SEM does require larger samples than 
your average t-test or multiple regression). Rasch or item response theory 
modeling is another option where possible, as are the formulae presented in 
this chapter.

FOR FURTHER ENRICHMENT

1. Download the spreadsheet from the book’s website that allows you to 
explore correcting simple correlations for low reliability. Enter a correla-
tion, and the two reliabilities for each of the two variables used in the cor-
relation, and examine the effects of good or poor reliability on effect sizes 
(particularly the percentage variance accounted for).

2. Examine a good journal for your field. Can you, like me, easily find an 
article reporting results where alpha was .70 or lower? Find one of these 
articles, correct a correlation for low reliability using the information from 
the article (and the spreadsheet available from this book’s website). How 
would the author’s results have looked different if the variables were mea-
sured with perfect reliability? Send me an e-mail with what you find, and I 
may share it on the book’s website.

NOTES

 1. This chapter incorporates some aspects of a previously published article; see 
Osborne (2003).

 2. Among those articles actually reporting internal consistency estimates, which 
may be a biased sample.

 3. In past decades, when computing power was not as easily accessible, variants 
and derivative formulas such as the Kuder-Richardson (e.g., KR-20) indicators were 
used because in special situations (e.g., dichotomous correct/incorrect or yes/no scor-
ing of tests) these formulae simplify calculation. These are unnecessary in the modern 
age of computing as KR-20 and alpha should produce identical results under those 
special conditions (Cortina, 1993; Cronbach, 1951).

 4. But only when item standard deviations are equal using the Spearman-Brown 
split-half reliability formula, otherwise alpha underestimates reliability. There is 
another formula that takes into account standard deviations of items, which alpha  
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replicates more closely (Cortina, 1993). Regardless, this is an appropriate conceptual 
understanding of alpha, despite mathematical inconsistencies such as these.

 5. Split-half reliability estimates suffer from serious drawbacks that can cause 
reliability to be seriously underestimated, which is partially alleviated through applica-
tion of the Spearman-Brown correction, (Brown, 1910; Spearman, 1910).

 6. Note again that many estimates of reliability, such as alpha, are lower-bound 
estimates that can lead to overcorrection. Thus, conservativeness is advised when cor-
recting in this manner. Specifically, one of my advisors in graduate school advocated 
correcting reliability to .95, rather than 1.00 to reduce the probability of overcorrection 
when using structural equation modeling. In this case, I think a good idea is to add .05 
or so to any reliability estimate prior to using it in a formula such as this to be conser-
vative and limit overcorrection.

 7. You did not expect the guy writing the book on data cleaning to skip that part, 
did you? All assumptions met.

 8. Taking my advisor’s admonition to avoid overcorrecting to heart, if I correct 
the reliability estimates by adding .05 to each the more conservative disattenuated cor-
relation is estimated to be .84 (coefficient of determination = .70), which still repre-
sents a 25.03% increase in effect size. However, as you will see, the original calculation 
may not be an overcorrection.

 9. You did not expect the guy writing the book on data cleaning to skip that part, 
did you? All assumptions met.

10. If you are interested in this particular esoteric point, please feel free to contact 
me. Essentially what I did was randomly selected 20% of each answers for each item 
and randomly substituted a whole number from 1 to 5, as both scales were 5-point 
Likert scales.

11. Believe it or not, I have seen comparable alphas reported in well-respected 
journals by well-respected scholars.

12. If you are interested in this topic, refer to a recent theoretical piece by myself 
and my colleague Brett Jones (Osborne & Jones, 2011) explaining how identification 
with academics is theoretically related to outcomes like dropping out of school. For 
purposes of this example, you have to trust that it should be.

13. Again, all assumptions met except perfect reliability.
14. Eta-squared is the effect size indicating percentage variance accounted for in 

ANOVA, analogous to the coefficient of determination or r2 in correlation and regression.

REFERENCES

Aiken, L. S., & West, S. (1991). Multiple regression: Testing and interpreting interac-
tions Thousand Oaks, CA: Sage.

Bohrnstedt, G. W. (1983). Measurement. In P. H. Rossi, J. D. Wright & A. B. Anderson 
(Eds.), Handbook of survey research (pp. 69–121). San Diego, CA: Academic 
Press.



210 Best Practices in Data Cleaning

Bond, T. G., & Fox, C. M. (2001). Applying the Rasch model: Fundamental measure-
ment in the human sciences. Mahwah, NJ: Erlbaum.

Brown, W. (1910). Some experimental results in the correlation of mental abilities. 
British Journal of Psychology, 3, 296–322.

Cohen, J. (1968). Weighted kappa: Nominal scale agreement provision for scaled dis-
agreement or partial credit. Psychological Bulletin, 70(4), 213–220. 

Cohen, J., Cohen, P., West, S., & Aiken, L. S. (2002). Applied multiple regression/ 
correlation analysis for the behavioral sciences. Mahwah, NJ: Lawrence Erlbaum.

Cortina, J. (1993). What is coefficient alpha? An examination of theory and applica-
tions. Journal of Applied Psychology, 78, 98–104.

Cronbach, L. (1951). Coefficient alpha and the internal structure of tests. Psy-
chometrika, 16(3), 297–334.

Nunnally, J. C., & Bernstein, I. (1994). Psychometric theory (3rd ed.). New York: 
McGraw-Hill.

Osborne, J. W. (1997). Identification with academics and academic success among 
community college students. Community College Review, 25(1), 59–67.

Osborne, J. W. (2003). Effect sizes and the disattenuation of correlation and regression 
coefficients: Lessons from educational psychology. Practical Assessment, 
Research, and Evaluation, 8(11). Retrieved from http://pareonline.net/getvn.
asp?v=8&n=11

Osborne, J. W. (2008a). Is disattenuation of effects a best practice? In J. W. Osborne 
(Ed.), Best practices in quantitative methods (pp. 239–245). Thousand Oaks, CA: 
Sage.

Osborne, J. W. (2008b). Sweating the small stuff in educational psychology: How 
effect size and power reporting failed to change from 1969 to 1999, and what that 
means for the future of changing practices. Educational Psychology, 28(2), 1–10.

Osborne, J. W., & Jones, B. D. (2011). Identification with academics and motivation to 
achieve in school: How the structure of the self influences academic outcomes. 
Educational Psychology Review, 23(1), 131–158.

Pedhazur, E. J. (1997). Multiple regression in behavioral research: Explanation and 
prediction. Fort Worth, TX: Harcourt Brace College.

Schmitt, N. (1996). Uses and abuses of coefficient alpha. Psychological Assessment, 
8(4), 350–353.

Spearman, C. (1910). Correlation calculated from faulty data. British Journal of Psy-
chology, 3, 271–295.

Voelkl, K. E. (1996). Measuring students’ identification with school. Educational and 
Psychological Measurement, 56(5), 760–770.

Voelkl, K. E. (1997). Identification with school. American Journal of Education, 
105(3), 294–318.



 SECTION III 

ADVANCED TOPICS  
IN DATA CLEANING





213

A sk your friends how they are doing today. Ever notice that some people 
tend to flip between extremes (e.g., “wonderful” or “horrible”) while 

others seem to be more stable (e.g., “OK” or “fine”) no matter what is going 
on? This is an example of one sort of response set, where individuals tend to 
vary in a narrow band around an average or vary at the extremes around the 
same average.1

WHAT IS A RESPONSE SET?

A response set is a strategy people use (consciously or otherwise) when 
responding to educational tests, questionnaires, or things like psychological 
tests (or even questions posed in casual conversation, per our example above). 
These response sets range on a continuum from unbiased retrieval, where 
individuals use direct, unbiased recall of factual information in memory to 
answer questions, to generative strategies, where individuals create responses 
not based on factual recall, due to inability or unwillingness to produce rele-
vant information from memory (see Meier, 1994). Response sets have been 
discussed in the measurement and research methodology literature for more 
than 70 years now (Cronbach, 1942; Goodfellow, 1940; Lorge, 1937). Some 
researchers (Cronbach, 1950) argue that response sets are ubiquitous, found in 
almost every population on almost every type of test or assessment. In fact, 
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early researchers identified response sets on assessments as diverse as the 
Strong Interest Inventory (Strong, 1927), tests of clerical aptitude, word mean-
ings, temperament, and spelling, and judgments of proportion in color mix-
tures, seashore pitch (angle), and pleasantness of stimuli, (see summary in 
Cronbach, 1950, table 1).

Researchers (myself included) are guilty of too often assuming respon-
dents exclusively use unbiased retrieval strategies when responding to ques-
tionnaires or tests, despite considerable evidence for the frequent use of the 
less desirable and more problematic generative strategies (Meier, 1994). Thus, 
the myth addressed in this chapter is the myth of the motivated participant, 
referring to the assumption many of us make that we can take subject 
responses at face value as accurate.

The goal of this chapter is to demonstrate why researchers should pay 
more attention to response sets, particularly the detrimental effects of random 
responding, which can substantially increase the probability of Type II errors.

COMMON TYPES OF RESPONSE SETS

Examples of common response sets discussed in the literature include the  
following.

Random responding is a response set in which individuals respond with little 
pattern or thought (Cronbach, 1950). This behavior adds substantial error vari-
ance to analyses, which completely negates the usefulness of responses. Meier 
(1994) and others suggest this may be motivated by lack of preparation, reactiv-
ity to observation, lack of motivation to cooperate with the testing, disinterest, 
or fatigue (Berry et al., 1992; Wise, 2006). Random responding is a particular 
focus of this chapter as it can mask the effects of interventions, biasing results 
toward null hypotheses, smaller effect sizes, and much larger confidence inter-
vals than would be the case with valid data. As you might imagine from read-
ing the previous chapters, random responding is a potentially significant threat 
to the power and validity of research in any science that relies on human 
responses.2 Much of the research scientist’s performance relies on the good-
will of research participants (students, teachers, participants in organizational 
interventions, minimally compensated volunteers, patients in health care 
research, and the like) with little incentive to expend effort in providing data 
to researchers. If we are not careful, participants with lower motivation to 
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perform at their maximum level may increase the odds of Type II errors,  
masking real effects of our research through response sets such as random 
responding.

Malingering and dissimulation. Dissimulation refers to a response set in 
which respondents falsify answers in an attempt to be seen in a more negative 
or more positive light than honest answers would provide. Malingering is a 
response set where individuals falsify and exaggerate answers to appear 
weaker or more medically or psychologically symptomatic than honest 
answers would indicate, often motivated by a goal of receiving services they 
would not otherwise be entitled to (e.g., attention deficit or learning disabili-
ties evaluation; see Kane, 2008; Rogers, 1997) or avoiding an outcome they 
might otherwise receive (such as a harsher prison sentence; see e.g., Ray, 
2009; Rogers, 1997). These response sets are more common on psychological 
scales where the goal of the question is readily apparent, such as “Do you have 
suicidal thoughts?” (see Kuncel & Borneman, 2007). Clearly, this response set 
has substantial costs to society when individuals dissimulate or malinger, but 
researchers also should be vigilant for these response sets, as motivated 
responding such as this can dramatically skew research results.

Social desirability is related to malingering and dissimulation in that it 
involves altering responses in systematic ways to achieve a desired goal— 
in this case, to conform to social norms or to “look good” to the examiner 
(Nunnally & Bernstein, 1994). Many scales in psychological research have 
attempted to account for this long-discussed response set (Crowne &  
Marlowe, 1964), yet it remains a real and troubling aspect of research in the social 
sciences that may not have a clear answer, but can have clear affects for important 
research (e.g., surveys of risky behavior, compliance in medical trials).

Other response styles, such as acquiescence and criticality, are response pat-
terns wherein individuals are more likely to agree with (acquiescence) or dis-
agree with (criticality) questionnaire items in general, regardless of the nature 
of the item (e.g., Messick, 1991; Murphy & Davidshofer, 1988).

Response styles peculiar to educational testing also are discussed in the litera-
ture. While the response styles above can be present in educational data, other 
biases peculiar to tests of academic mastery (often multiple choice) include: 
(a) response bias for particular columns (e.g., A or D) on multiple choice 



216 Best Practices in Data Cleaning

items, (b) bias for or against guessing when uncertain of the correct answer, 
and (c) rapid guessing (Bovaird, 2003), which is a form of random responding 
(discussed earlier). As mentioned previously, random responding (rapid guess-
ing) is undesirable as it introduces substantial error into the data, which can 
suppress the ability for researchers to detect real differences between groups, 
change over time, or the effect(s) of interventions.

Summary. We rely on quantitative research to inform and evaluate many types 
of innovations, from health care and medicine to consumer research and edu-
cation. Often this research holds high stakes and financial implications for 
society as a whole. Some interventions involve tremendous financial and time 
investment (e.g., instructional technology, community outreach agencies), and 
some might even be harmful if assessed validly, and therefore can be costly to 
individuals in terms of frustration, lost opportunities, or actual harm. Thus, it 
is important for researchers to gather the best available data on interventions 
to evaluate their efficacy. Yet research must rely on the good faith and motiva-
tion of participants (e.g., students, teachers, administrators, parents) to put 
effort into data gathering for which they may find neither enjoyment nor 
immediate benefit. This leaves us in a quandary of relying on research to make 
important decisions, yet often having flawed data. This highlights the impor-
tance of all data cleaning (including examining data for response bias) in order 
to draw the best possible inferences. This chapter, and our example, focuses 
on educational research, but the lesson should generalize to many areas of 
scientific research.

IS RANDOM RESPONDING TRULY RANDOM?

An important issue is whether we can be confident that what we call random 
responding truly is random, as opposed to some other factor affecting 
responses. In one study attempting to address this issue, Wise (2006) reported 
that answers identified as random responding on a four-choice multiple choice 
test (by virtue of inappropriately short response times on computer-based 
tests) were only correct 25.5% of the time, which is what one would expect for 
truly random responses in this situation. On the same test, answers not identi-
fied as random responding (i.e., having appropriate response times) were  
correct 72.0% of the time.3 Further, this issue does not appear to be rare or 
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isolated behavior. In Wise’s (2006) sample of university sophomores, 26% of 
students were identified as having engaged in random responding, and Berry 
and colleagues (1992) reported the incidence of randomly responding on the 
MMPI-2 to be 60% in college students, 32% in the general adult population, 
and 53% amongst applicants to a police training program. In this case, 
responses identified as random were more likely to be near the end of this 
lengthy assessment, indicating these responses were likely random due to 
fatigue or lack of motivation.

DETECTING RANDOM RESPONDING IN YOUR RESEARCH

There is a large and well-developed literature on how to detect many different 
types of response sets that goes far beyond the scope of this chapter to sum-
marize. Examples include addition of particular types of items to detect social 
desirability, altering instructions to respondents in particular ways, creating 
equally desirable items worded positively and negatively, and for more meth-
odologically sophisticated researchers, using item response theory (IRT) to 
explicitly estimate a guessing (random response) parameter. Meier (1994) (see 
also Rogers, 1997) contains a summary of some of the more common issues 
and recommendations around response set detection and avoidance. However, 
I focus here on random responding, one of the most damaging common 
response sets (from an inference perspective).

Creation of a Simple Random Responding Scale

For researchers not familiar with IRT methodology, it is still possible to 
be highly effective in detecting random responding on multiple choice educa-
tional tests (and often on psychological tests using Likert-type response scales 
as well). In general, a simple random responding scale involves creating items 
in such a way that 100% or 0% of the respondent population should respond 
in a particular way, leaving responses that deviate from that expected response 
suspect. This may be done in several ways, depending on the type of scale in 
question. For a multiple choice educational test, one method (most appropriate 
when students are using a separate answer sheet, such as a machine-scored 
answer sheet, used in this study, and described next) is to have one or more 
choices that are illegitimate responses.4
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A variation of this is to have questions scattered throughout the test that 
100% of respondents should answer in a particular way if they are reading the 
questions (Beach, 1989). These can be content that should not be missed (e.g., 
2+ 2 = __), behavioral/attitudinal questions (e.g., I weave the fabric for all my 
clothes), nonsense items (e.g., February has 30 days) or targeted multiple 
choice test items such as: How do you spell forensics? (a) forensics, (b) forn-
sicks, (c) phorensicks, (d) forensix.

Item Response Theory

One application of IRT has implications for identifying random respond-
ers using the theory to create person-fit indices (Meijer, 2003). The idea 
behind this approach is to quantitatively group individuals by their pattern of 
responding and then use these groupings to identify individuals who deviate 
from an expected pattern of responding. This could lead to inference of groups 
using particular response sets, such as random responding. Also, it is possible 
to estimate a guessing parameter and then account for it in analyses, as men-
tioned above.

I do not have the space to include a thorough discussion of IRT in this 
chapter. Interested readers should consult references such as Edelen and Reeve 
(2007) (see also Hambleton, Swaminathan, & Rogers, 1991; Wilson, 2005). 
However, IRT does have some drawbacks for many researchers, in that it gen-
erally requires large (e.g., N ≥ 500) samples, significant training and resources, 
and finally, while it does identify individuals who do not fit with the general 
response pattern, it does not necessarily show what the response set, if any, is. 
Thus, although useful in many instances, we cannot use it for our example.

Rasch Measurement Approaches

Rasch measurement models are another class of modern measurement 
tools with applications to identifying response sets. Briefly, Rasch analyses 
produce two fit indices of particular interest to response sets and random 
responding: infit and outfit, both of which measure sum of squared standard-
ized residuals for individuals. Large outfit mean squares can indicate an issue 
that deserves exploration, including haphazard or random responding. Again, 
the challenge is interpreting the cause (response set or missing knowledge, for 
example, in an educational test) of the substantial infit/outfit values. We use 
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this application of Rasch as a check on the validity of our measure of random 
responding below. Again, a thorough discussion of this approach is beyond the 
scope of this chapter, but interested readers can explore Bond and Fox (2001) 
or Smith and Smith (2004).

No matter the method, it is generally desirable for researchers to include 
mechanisms for identifying random responding in their research, as random 
responding from research participants seems relatively commonplace and can 
be a substantial threat to the validity of research results.

DOES RANDOM RESPONDING  
CAUSE SERIOUS PROBLEMS WITH RESEARCH?

To stimulate discussion and to encourage researchers to examine their data for 
this issue, I present an example from my own research with a colleague, Mar-
garet Blanchard. In the course of this project, we saw how a small number of 
individuals engaging in random responding obscured the effects of a relatively 
robust educational intervention, decreasing our ability to detect the real effects 
of an educational intervention until the random responding was dealt with.

From what you know about random responding thus far, let us suggest 
that in the data to come we should see the following.

 1. Students who engaged in random responding should perform signifi-
cantly worse than students not engaged in random responding.

 2. When random responders are removed from analyses, the effects of 
educational interventions should be clearer; that is, stronger and more 
likely to be detected.

EXAMPLE OF THE EFFECTS OF RANDOM RESPONDING

The example data presented in this chapter are borrowed from another study 
(Blanchard et al., 2010) that compared the effects of two instructional methods 
on student learning and retention.5 As the details of the intervention and 
instructional methods are irrelevant here, we will call the instructional meth-
ods method 1 and method 2. In this study, middle school science students 
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completed a unit on forensic analysis, developed specifically to compare the 
effects two teaching methods. Prior to the unit, a pretest was administered, and 
following, an identical posttest was administered to assess the effects of the 
instructional methods. The hypothesis was that method 1 would produce stron-
ger growth in student test scores than method 2. In all, 560 middle school 
students completed both tests and were thus eligible for inclusion in this study.

Identifying Random Responding

The test contained 37 multiple choice questions assessing mastery of the 
unit material. Most questions had four answer options (A to D), but several 
toward the end (question numbers 29, 31, 32, 35, 36, 37) had either two (true/
false) or three (A to C) answer options. All answers were entered on standard 
machine-readable answer sheets for scoring. These answer sheets had five 
answer options (A to E). On a traditional test the only way to identify random 
responders (or student error) would be to find an answer of E where no item 
included E as a legitimate answer. In this data set, that was a low frequency 
event, occurring in only 2% of student tests.

To identify random responders we used a variation of a simple random 
responding scale composed of legitimate test questions with fewer than four 
answer choices. With a calculated 91% chance of detecting random respond-
ing (see below), and substantial differences in performance between students 
identified as random responders and non–random responders, this method is 
preferable to having no method of detecting random responding.

Because six of the 37 items did not conform to the four-answer option 
question format, illegitimate answers were defined as entering a C or D on 
questions 29, 31, or 32, or a D on questions 35, 36, or 37. This is a variation 
of what Beach (1989) discussed as a random response scale, wherein test 
authors embed several items within a scale or test that all respondents who 
read and understand the question can only answer one way, such as: How 
many hours are there in a day? (a) 22 (b) 23 (c) 24 (d) 25. According to Beach, 
the probability of detecting a random responder through this method is:

p = 1 − (1/x)n

where p is the probability of detecting a random responder, x is the number of 
possible answers in each question, and n is the number of questions in the 



Chapter 10  Random Responding, Motivated Misresponding 221

random responding subscale. In this case, as there were three items with three 
possible answers and three items with two possible answers (i.e., three items 
had one illegitimate answer and three items had two illegitimate answers, with 
an average of 1.5 illegitimate answers across all six items). With x = 1.5, and 
n = 6, we had a probability of accurately detecting random responders (accu-
racy of classification) p = .91. Unidentified random responders would serve to 
bias our results toward no effect of random responding. Therefore, if this 
method missed a substantial number of random responders, we should show 
little or no significant effect of random responding. As described below, it 
appears that we correctly identified the majority.

In this sample, 40.0% of students were identified as engaging in random 
responding on the pretest, 29.5% on the posttest. Overall, of the original 560 
students in the sample, 279 (49.8%) entered no illegitimate answers on either 
pretest or posttest, while 108 (19.3%) were identified as random responders 
both pretest and posttest. A dummy variable indicating random responding 
status was created, with random responders assigned a 1 and non–random 
responders assigned a 0.

As Expected, Random Responders Score Lower Than Others

I used repeated measures ANOVA to examine whether students identified 
as random responders performed differently than students answering accu-
rately. The results showed a striking difference as a function of random 
responding status (RRS). Combined, all students showed a significant change 
in test scores over time (F(1, 383) = 38.96, p < .0001, partial h2 = .09), with pre-
test scores averaging 12.55 and posttest scores averaging 14.03. Random 
responders averaged significantly lower scores than non–random responders 
(F(1, 383) = 177.48, p < .0001, partial h2 = .32; means = 10.27 vs. 16. 31, respec-
tively), supporting the hypothesis that method 1 would produce stronger 
growth in test scores. Finally, there was an interaction with random responding 
and a change in test scores (F(1, 383) = 34.47, p < .0001, partial h2 = .08).6 The 
means for this interaction are presented in Figure 10.1.

As Figure 10.1 shows, random responders scored significantly lower than 
non–random responders, and random responders showed no significant 
growth from pretest to posttest, while non–random responders showed higher 
mean scores and stronger growth over time. This supports the hypothesis, in 
that random responders not only scored lower, on average, than non–random 
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responders, but also that the change in test scores over time was significantly 
affected by RRS. For random responders there was no substantial change in 
test scores over time, as might be expected. For non–random responders, there 
was substantial growth in test scores over time, as might be expected of stu-
dents who learned something from an instructional unit and whose test scores 
reflected their mastery of the topic.

Does Removing Random Responders Improve Statistical Inference?

With all random responders in the analysis, there was significant main 
effect of growth from pretest (mean = 12.91) to posttest (mean = 15.07; F(1, 558) 
= 127.27, p < .0001, partial h2 = .19). A significant but weak main effect of 
instructional method indicated that students taught through method 2 generally 

Figure 10.1   Differences Between Random and Non-Random 
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outscored those taught through method 1 (means = 14.53 and 13.45, respec-
tively; F(1, 558) = 7.65, p < .006, partial h2 = .01). The important effect, the 
interaction between time and instructional method, was not significant (F(1, 558) 
< 0.10) indicating no difference in student growth over time as a function of 
instructional method. If Dr. Blanchard and I had ended our analyses here, we 
would have concluded there is no evidence for any benefit of one instructional 
method over another.

However, when random responders were removed, results indicated a 
significant and substantial change over time in student test scores (mean scores 
grew from 14.78 to 17.75; F(1, 277) = 101.43, p < .0001, partial h2 = .27; note that 
this is a 42% increase in effect size over the previous analysis). Also, in contrast 
to the last analysis, there was a significant interaction between time and instruc-
tional method (F(1, 277) = 4.38, p < .04, partial h2 = .02), as Figure 10.2 shows. 
Consistent with predictions from the original study, students taught through 
method 1 showed significantly stronger growth than students taught through 
method 2.

Figure 10.2 Differences Between Instructional Methods
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ARE RANDOM RESPONDERS  
TRULY RANDOM RESPONDERS?

Our initial attempt to identify random responders through simple design of test 
questions toward the end of the test is simple and something all researchers 
can do. Some skeptics reviewing our work wondered whether these truly were 
individuals who were randomly responding or they were just poorly perform-
ing students. Admittedly, our use of a random responding scale does not 
employ the powerful, modern measurement technologies available (e.g., IRT, 
Rasch).

To examine this question, I subjected the same data to Rasch analysis, 
using outfit mean square scores as an indicator of random responding (stu-
dents with large outfit scores should be the same ones identified as random 
responders). The goal here was to see whether students we identified as ran-
dom responders also would be identified as a student having an unexpected 
response pattern, and whether those with unexpected response patterns tend to 
score significantly lower than those without these patterns.

To answer the first question, we performed a binary logistic regression 
analysis, predicting random responding status (0 = not random responding, 1 
= having a random response) from outfit mean square (where scores signifi-
cantly above 1.0 can indicate unexpected response patterns). As expected, the 
odds that those with higher outfit mean squares would be identified also as a 
random responder were significantly and substantially higher (odds ratio = 
241.73, p < .0001). This means that the odds of being labeled a random 
responder increased just over 241 times for each increase of 1.0 for outfit 
mean square.7

To test the second question, we examined the correlation between outfit 
mean square and overall test score. As expected, those with higher outfit mean 
squares had significantly lower test scores (r(560) = -.53, coefficient of deter-
mination = 28.09%) than those with more expected patterns of responding.

SUMMARY

These analyses provide convergent evidence that those students we initially 
identified as engaging in random responding also were identified as having 
unexpected response patterns by Rasch analyses. Further, these findings  
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confirm that those students who were identified as engaging in random 
responding tend to score much lower on the study’s knowledge test than those 
not engaging in random responding.

BEST PRACTICES REGARDING RANDOM RESPONDING

In many branches of science, change in subject responses is an important 
method of comparing the efficacy of interventions or methods. Even under 
ideal conditions, students or respondents may not be motivated or able to 
provide accurate, high-quality data. In education, students whose perfor-
mance does not reflect ability or mastery of learning objectives add error to 
the data and reduce the validity of the test’s scores (Cronbach, 1950), dimin-
ishing a researcher’s ability to detect or compare effects of instructional 
interventions or methods. In other fields, participants who are fatigued or 
distracted may engage in random responding on any type of survey, again 
necessitating researchers examine and clean their data prior to analysis or risk 
Type II errors.

Although there is a long tradition of research on response sets in social 
sciences research, few studies in modern times seem to attend to this issue. In 
fact, classic measurement texts (e.g., Nunnally & Bernstein, 1994) rarely give 
the topic more than cursory attention, generally presenting random responding 
as nuisance or random error variance, not worth addressing actively.8 Quite the 
contrary, this is an issue of importance for both practical and conceptual rea-
sons. First, the random error this sort of response set can introduce, as you can 
see, has the potential to substantially reduce power to detect group differences 
or change over time. It is therefore important to consider preparing for this 
issue when constructing data gathering instruments, and examining data for 
evidence of random responding should be an integral part of initial data clean-
ing. But perhaps even more importantly, this is a special case of heterogeneous 
groups (introduced in Chapter 3). Similar to the cola preferences study exam-
ple in Chapter 3, in this real-world example there are two groups: students who 
attempted to accurately assess their learning and those who did not. In general, 
education researchers performing this sort of analysis are interested in general-
izing the results of their intervention to those students who are actually 
attempting to learn and complete the assessments successfully. From a sam-
pling perspective, this sort of data cleaning also makes sense.
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MAGNITUDE OF THE PROBLEM

In this sample, a substantial number (up to 40.0%) of middle school stu-
dents engaged in random responding (and estimates in other populations are 
similar in magnitude; e.g., Berry et al., 1992). While this might surprise 
researchers at first glance, given the low stakes of the test and no apparent 
motivation to succeed, it is not surprising. As can be seen from the average 
test scores, the test used in this research was designed to be challenging, 
which has been shown to increase response biases such as random respond-
ing (Cronbach, 1950; Wise, 2006; Wise & Kong, 2005).9 This reinforces the 
importance of including screening for response set as a routine part of data 
cleaning.

Researchers need to consider that not all respondents participating in their 
research are equally motivated to perform at their peak, given the lack of sig-
nificant incentives for compliance and consequences for failure to perform as 
requested. Researchers should incorporate methods to detect these issues in 
their data. This recommendation is particularly valuable where important 
policy or pedagogical decisions are involved, such as large-scale standardized 
national and international tests (NAEP, TIMSS), which have substantial 
effects on policy and outcomes for constituencies, but for which individual 
students may not be significantly motivated.

FOR FURTHER ENRICHMENT

1. Think about how you could include a measure (a question, an item, a scale) 
that would help you determine if any of your subjects are not responding 
thoughtfully to your measures. Create a plan to do so to examine the quality 
of the data you might be collecting. What actions could you take to examine 
this issue in your own research?

2. Examine the data set presented on the book’s website. Can you identify the 
participants engaging in random responding? What happens to the results 
when they are eliminated from the analysis?

NOTES

1. Parts of this chapter were adapted from Osborne and Blanchard (2011).
2. I also know some dogs and cats that are pretty lazy, so perhaps it is not a phe-

nomenon confined to human respondents. I leave this to others to explore.
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3. Wise used computer-based testing, allowing him to look at individual items 
rather than students’ total test scores. While computer-based testing can eliminate some 
aspects of random responding, such as choosing illegitimate answers, it does not 
eliminate random selection of items or rapid guessing.

4. One option, used in this particular data set included having 20 questions with 
four choices: A to D, with other questions scattered throughout the test, and particularly 
near the end, with items that contain only three (A to C) or two (A to B) legitimate 
answers. Students or respondents choosing illegitimate answers one or more times can 
be assumed to be randomly responding, as our results show.

5. Note that these analyses should in no way be construed as a test of these 
hypotheses, nor should the results be interpreted substantively to infer which teaching 
method is superior. Those interested in the substantive results of the study should con-
sult Blanchard and colleagues (2010).

6. The three-way interaction between RRS × method × time was not significant, 
indicating that this difference was not dependent on instructional method.

7. We also examined results for the standardized outfit statistic, which is essen-
tially a z score of the outfit mean squares. Similar results were obtained.

8. The exception to this exists in some literature around assessment of mental 
health and personality disorders, wherein random responding, poor effort, malingering, 
and exaggeration (all different types of response bias) detection can signal certain types 
of mental disorders (Clark, Gironda, & Young, 2003; Iverson, 2006).

9. This is due to the fact that response bias on multiple choice tests is, by defini-
tion, found in errors, not correct answers. Thus, easier tests and higher-scoring students 
are less likely to demonstrate response bias.
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 ELEVEN 

WHY DICHOTOMIZING CONTINUOUS  
VARIABLES IS RARELY A GOOD PRACTICE

Debunking the Myth of Categorization

There is a very long tradition in 
many different sciences of split-

ting people into easily analyzed groups. 
Health sciences researchers split peo-
ple into sick and healthy, or obese and 
normal weight, despite the fact that 
people vary on a continuum from very 
healthy to very ill or from very thin to 
very heavy. In the social sciences we 
categorize people as low income or 
not, successful or not, old and young, 
depressed or not, and so on, again 
despite most variables being continu-
ous in nature. In fact we can even argue 
about whether states such as dropping 
out of school, being a tobacco user, 
being male or female, or even being 
dead are categorical or continuous.

The traditional myth has been 
that it is easier for readers to under-
stand analyses that compare one 
group to another rather than relation-
ships between variables. In general, I 

When is low self-esteem not low 
self-esteem? The case of the 
misinformed advisor.

As I mentioned in Chapter 3, when I 
was in graduate school my advisor and 
I were exploring self-esteem effects in 
college undergraduate samples. In one 
project my advisor directed me to split 
students into “high self-esteem” and 
“low self-esteem” groups and do a 2×2 
ANOVA (self-esteem by experimental 
condition). Yet individuals tend to rate 
their global self-esteem relatively high. 
This is probably a good thing, as we 
generally want people to feel good 
about themselves, but when you have 
a variable (like global self-esteem) that 
theoretically ranges from 1 to 4 but has 
a median of 3.14, one must wonder 
what it means to split a variable like 
this at the median. Was it really 
capturing low self-esteem and high 
self-esteem? Or were we studying very 
high self-esteem as compared to 
moderately high self-esteem but 
misrepresenting the results?
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disagree, provided we as researchers do a good job clearly communicating 
research results.

When I studied epidemiology (after years of graduate school in psychol-
ogy) I resisted the tendency to want to group people into two categories. When 
studying cardiovascular epidemiology, we were taught to group people into 
high blood pressure or normal blood pressure groups and analyze their risk of 
heart attack. It was certainly interesting to see that individuals above a certain 
threshold had increased odds of experiencing a heart attack relative to indi-
viduals below that threshold, but I never felt comfortable splitting a continu-
ous variable such as blood pressure into two categories.

Let us say we define anyone with a diastolic pressure (that is the second 
number in the traditional 120/75-type of blood pressure measurement) more 
than 80 as having “high blood pressure” and anyone at less than 80 as “normal 
blood pressure.” We are essentially saying that someone with a diastolic blood 
pressure (DBP) of 81 is in a completely different category than someone with 
one of 79, despite the fact that in reality those are probably not meaningfully 
different pressures and the risks of heart attack for these two individuals are 
probably similar. Further, we are saying that someone with a BDP of 81 is the 
same as someone with a DBP of 120, or that someone with a DBP of 79 is the 
same as someone with DBP of 50. I doubt many doctors or epidemiologists 
would agree with either of those statements, however. In all likelihood, the 
difference in risk of experiencing a heart attack in this scenario is at least as 
large within each group as between the two groups. So why not simply do a 
correlation between DBP and age of heart attack or use logistic regression to 
predict incidence of heart attack based on DBP as a continuous variable? Just 
like it does not make sense to say that all people less than 65 years of age are 
the same, and all people over 65 are the same, it often does not make sense to 
group people based on continuous variables. We are potentially giving away a 
lot of useful information, and definitely creating a lot of error variance.

My goal in this chapter is to debunk several myths relating to splitting  
continuous variables into groups (such as dichotomization or median- 
splitting): that this makes effects more easily understood by readers, more power-
ful in terms of effect size, or more robust in terms of measurement. Instead, I 
intend to persuade you that this relatively common practice is really undermining 
your ability to detect effects (i.e., increasing the odds of Type II errors), drasti-
cally increasing error variance, and causing misestimation (generally underesti-
mation) of true effects. Oh, and I finally want to tell my former advisor that she 
was just plain wrong, at least about this issue, and demonstrate in detail why.
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WHAT IS DICHOTOMIZATION AND WHY DOES IT EXIST?

Let us start with a definition. Dichotomization is the practice of splitting indi-
viduals measured on a continuous (or ordinal) scale into two groups, often 
through a median split or use of another cutoff point. A median split is a com-
mon methodological procedure (MacCallum, Zhang, Preacher, & Rucker, 
2002) that groups objects or individuals by whether they fall above or below 
the median. Dichotomization can use other cutoff points, (Cohen, 1983), but 
the median is often preferred as it technically represents the exact middle of a 
distribution (i.e., 50% of the scores will fall above and 50% will fall below 
regardless of the shape of the distribution). Other indicators of centrality (e.g., 
mean) are more strongly influenced by nonnormality and outliers, which could 
result in relatively uneven groups if used to split a sample.

Dichotomization and median-splits are a special case of k-group splits 
with which researchers convert a continuously measured variable into a vari-
able represented by k number of groups. For example, some researchers (and 
governmental agencies) tend to use tertiles (grouping into three groups based 
on where the 33.33rd and the 66.67th percentiles fall, such as low-, medium-, 
and high-income groups), quartiles (grouping into four groups, usually at the 
25th, 50th, and 75th percentiles), deciles (grouping into 10 groups of relatively 
equal size or span), and so forth. In all cases, the commonality is that the 
researcher is converting a continuous variable into a categorical variable, 
which can cause significant loss of information and increase error variance 
(Knüppel & Hermsen, 2010). I demonstrate that point a little later.

The origins of this practice are difficult to trace. Relatively few articles 
have been written about the procedure itself, compared to the hundreds of 
thousands of times it has been used in peer-reviewed journal articles. My 
assumption is that the technique is probably rooted in the late 19th century and 
early 20th century, when scholars were constructing inferential statistical tests 
such as Student’s t-test and the Pearson product-moment correlation (Pearson, 
1901; Student, 1908), or was borrowed from early epidemiology and health 
sciences, where groups were often split into two (as discussed above) for 
easier computation of odds ratios and relative risk. Prior to the wide availabil-
ity of statistical computing software, some of these calculations, particularly 
for procedures with continuous variables, were onerous and difficult (Cohen, 
1983). Furthermore, in many branches of science there were traditions of 
using analyses requiring categorical independent variables—e.g., analysis of 
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variance (ANOVA) or odds ratios (ORs). Therefore, a tradition of simplifying 
computations through dichotomization developed (for example, refer to 
Blomqvist, 1951). Early statisticians (at least in the social sciences) were gen-
erally well aware that they were compromising quality and power for conve-
nience. For example, Peters and Van Voorhis (1940) explicitly pointed out that 
computing correlations using dichotomous variables gives away large amounts 
of their effect sizes (particularly if the groups are unequal, as highlighted in 
Cohen, 1983). This important point seems to have been lost over the years as 
the acceptance of this methodology continued. Subsequent generations of 
scholars were trained in the tradition of quantitative analysis (and I am not sure 
epidemiologists and health sciences researchers acknowledge the issue to this 
day), perhaps without questioning whether there are better ways to conduct 
analyses. By the early 1970s, as researchers had more access to statistical 
computing, researchers began calling for the end to this practice, reminding 
scientists of the forgotten costs of this procedure (i.e., substantial misestima-
tion of effects), and calling for the widespread use of regression techniques as 
an alternative to this practice (Humphreys & Fleishman, 1974).

As I have noted in previous chapters, traditions and mythologies in statis-
tics seem to be tenacious once established, and the one advisor I refer to here, 
although an extremely smart woman, had difficulty getting beyond her own 
training and tradition to see the potential downsides of such practices. Like-
wise, the professors teaching the epidemiology courses I took thought it a silly 
idea to use continuous variables in their analyses. They do not appear to be 
alone (Fitzsimons, 2008), though I hope readers of this book will be among the 
growing number of researchers to understand the drawbacks of this practice.

HOW WIDESPREAD IS THIS PRACTICE?

In the year that I write this chapter (2011), dichotomization in the particular 
form of median split methodology can be found referenced in more than 
340,000 articles catalogued by Google Scholar, spanning such important top-
ics as the following.

 • Alzheimer’s Disease
 • HIV Interventions
 • Diabetes
 • Personality and Mortality Due to Cardiovascular Disease
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 • Androgyny
 • Problem Solving
 • Facial Recognition
 • Acculturation to New Situations
 • Spatial Learning in Female Meadow Voles
 • Therapy for Bipolar Disorder
 • Leadership
 • Gene Expression and Cancer Treatment
 • Empathy
 • Humor and Coping With Stress
 • Environmental Knowledge
 • Meal Variety and Caloric Intake
 • Aggressive Behavior
 • Acculturation to Latino Culture and Cancer Risk
 • Memory and Gene Expression
 • Maternal Anxiety and Fetal Outcomes
 • Postmenopausal Estradiol Treatment and Intellectual Functioning
 • Social Support and Coping With Pain
 • Internet Purchasing Behavior
 • False Memories
 • Depression in Asylum Seekers
 • Entrepreneurial Behavior
 • Burnout
 • Unconscious Decision Making
 • Goal Orientation and Motivational Beliefs
 • Condom Usage in Adolescent Populations
 • Maternal Responsiveness and Infant Attachment
 • Body Image
 • Brain Growth in Children With Autism
 • Disability Due to Pain
 • Attitudes Toward Female Business Executives
 • Service Quality Expectations
 • Glaucoma
 • Effectiveness of Physical Therapy on Osteoarthritis of the Knee
 • Loneliness and Herpes Latency
 • The Subjective Effects of Alcohol Consumption
 • Creativity
 • Impulsive Buying Behavior1
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Authors have been vocal about the deleterious effects of dichotomization 
(Cohen, 1983) and similar techniques in fields such as psychology/social sci-
ence (MacCallum et al., 2002), medical research (Royston, Altman, & 
Sauerbrei, 2006), pharmaceutical research (Fedorov, Mannino, & Zhang, 
2009), stock market forecasting (Lien & Balakrishnan, 2005), and consumer 
research (Fitzsimons, 2008). Despite these recent efforts, the practice persists 
to this day as a common occurrence (e.g., DeCoster, Iselin, & Gallucci, 2009). 
For example, MacCallum and colleagues (2002) found that 11.5% of articles 
in two highly respected psychology journals contained analyses that had at 
least one continuous variable converted to dichotomous.

Not only are scientists still using the procedure, researchers are still argu-
ing for their use. For example, Westfall argues that in certain applications, 
dichotomization can improve power in biopharmaceutical research (Westfall, 
2011),2 and others argue it can enhance ease of interpretation for readers in 
criminology and psychiatric research (Farrington & Loeber, 2000).3 I think 
evidence is on the side of letting dichotomization slip into the history books as 
an anachronistic practice, due to all the drawbacks of this practice that this 
chapter demonstrates.

WHY DO RESEARCHERS USE DICHOTOMIZATION?

Attempting to understand why smart, sophisticated researchers publishing in 
good journals continue to use this practice (and perhaps why reviewers and 
editors continue to allow it), DeCoster and colleagues (2009) surveyed more 
than a hundred authors of recent articles in respected journals who used this 
practice to attempt to understand the reasoning behind these dichotomization 
decisions. Some of the myths surrounding the continued use of dichotomization 
seem to include three general categories of proposed benefits: distributions of 
the continuous variables or improved measurement, ease of analysis or inter-
pretation, and prior precedent within the field (see also Fitzsimons, 2008).

ARE ANALYSES WITH DICHOTOMOUS  
VARIABLES EASIER TO INTERPRET?

Some researchers (such as my former advisor) seem to be under the impression 
that certain types of analyses are much more easily interpretable by  
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nontechnical audiences if dichotomous variables are used. So, for example, this 
argument holds that it is more confusing for a reader to ponder a correlational 
relationship such as: “As socioeconomic status increases, student achievement 
test scores tend to increase.” Instead, this argument posits that this type of find-
ing is more easily received as “students with high socioeconomic status tend to 
score higher on achievement tests than low-SES students.” Leaving aside the 
notion that Type II errors are more likely in the latter case (reducing rather than 
enhancing the clarity of the literature), most consumers of research I have talked 
to4 seem equally able to digest both types of finding if presented clearly. Some 
particular authors (Farrington & Loeber, 2000) seem to think that logistic regres-
sion (which uses a regression-type analysis to predict a dichotomous or multi-
group outcome variable) are more easily interpretable with dichotomous predic-
tors (but see the strong dissenting opinion by Fitzsimons, 2008). This idea is 
again rooted in tradition and origins of the technique, where the earliest epide-
miologists such as John Snow (1855) made simple hand calculations of 2×2 
matrices (e.g., did or did not drink water from the Broad Street Pump and did or 
did not contract cholera) calculating odds ratios.

Indeed, in modern epidemiology it is often this simple 2×2 analysis that 
leads to important investigations. But as with other historical analyses, such as 
certain types of correlations or internal consistency estimates, they are not 
superior to more complex analyses, merely easier to calculate. Thus, I argue it 
is as easy for a reader to read, “Individuals drinking more frequently from the 
Broad Street pump have odds of contracting cholera that are 1.25 times that of 
those drinking less frequently” as it is to read, “the odds of contracting cholera 
for those having drank from the Broad Street well were 3.20 times that of 
those who had never drank from that well.”

ARE ANALYSES WITH DICHOTOMOUS  
VARIABLES EASIER TO COMPUTE?

To be sure, sometimes dichotomization creates simplicity in formulae, leaving 
researchers easier computations (Cohen, 1983). Yet this argument is a bit silly 
in the 21st century when we have cell phones in our pockets with more power 
than some of the mainframe computers on which I first ran statistical analyses 
years ago. Most statistical software provides analyses for either categorical or 
continuous variables with just a few mouse clicks or a few lines of code. In 
my opinion, this is not a rationale for dichotomization.



238 Best Practices in Data Cleaning

ARE DICHOTOMOUS VARIABLES MORE RELIABLE?

The most common reasons for performing dichotomization include: (a) refin-
ing crude or unreliable measurement, and (b) dealing with irregular or non-
normal distributions, or the presence of outliers (DeCoster et al., 2009). Let us 
take each of these related arguments in order.

Dichotomization Improves Reliability of Measurement

The myth here is founded on the argument that measurement becomes 
more reliable under dichotomization because: (a) all members of each group 
have identical scores, and (b) measurement is probably more replicable lump-
ing people into two groups (i.e., it is more likely that a person in a “high 
depression” or “low depression” group will be in that same group at a follow-
ing measurement, whereas it is unlikely that a second administration of a 
depression inventory would produce an identical score). This argument is 
misguided on several counts.

It is true that reliable measurement is important to research and that one 
hallmark of reliable measurement is repeatedly assigning the same score to 
an individual (assuming the individual’s underlying trait has not changed). 
However this argument assumes that being assigned to a different group 
(e.g., first being assigned to the depressed group and then to the nonde-
pressed group) is equivalent in importance to receiving a different score on 
whatever inventory is being used (e.g., 38 versus 39). This is an obvious 
misstatement. There is a meaningful difference between being assigned to 
one group versus the other, whereas there may not be a meaningful differ-
ence between a score of 38 and 39 on a depression inventory. Following this 
logic, the ultimate reliability would be achieved from putting everyone in a 
single group, assigning everyone the same score. But clearly that is not a 
desirable strategy from a scientific or statistical point of view unreliable in 
fact, this would create the maximally measurement.

The reason we care about reliable measurement is that more reliable mea-
surement means less error variance in the analysis. To the extent that measure-
ment is unreliable, we have increased error variance, which undermines our 
ability to detect effects and causes in underestimation of effect sizes. So let us 
think this process through. If we perform a median or mean split, more of the 
sample lies very close to the cutoff point than far away from it. If we have less 
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than perfect measurement (and we almost always do), it is likely we have a good 
number of subjects moving across the cutoff score to the other category due to 
minor fluctuations. When a variable is kept continuous, these minor fluctuations 
are largely ignorable (e.g., a grade point average moving from 2.95 to 3.01 is not 
a big deal, but if 3.0 is the cutoff for admission to a university, that minor fluc-
tuation has a large effect). Yet under dichotomization, differences between being 
in one group or the other have large implications, and group membership for a 
large portion of the sample may be influenced by random fluctuation around the 
cutoff score. So categorization may not increase replicability, perhaps undermin-
ing one of the original arguments for using this procedure.

Let us also look at the issue of error variance, which is quantified by the 
residual, or the difference between expected (predicted) scores and actual 
scores. In ANOVA-type analyses, we can look at the difference between indi-
vidual scores and group averages. In regression-type analyses, we can simi-
larly look at the difference between a predicted score and an actual score. It 
simply does not make sense to argue that dichotomization (e.g., assigning 
everyone below the median a score of 1 and everyone above the median a 2) 
would reduce error, as we now have vast differences between individual scores 
and the group mean, whereas each individual would be much closer to their 
predicted score in a regression equation.

Let me demonstrate this with a concrete example. Starting with two highly 
correlated variables from the Education Longitudinal Study of 2002 (Ingels  
et al., 2004), 10th grade math achievement test score (BYTXMIRR) and 12th 
grade math achievement test score (F1TXM1IR), we can explore the effects of 
dichotomization. Both variables are initially normally distributed, as Figure 11.1 
and 11.2 shows (both skew close to 0.00). Furthermore, the two variables, as 
one might expect, are very strongly correlated (r(13,394) = .89, p < .0001, with 
10th grade math scores accounting for 79.7% of the variance in 12th grade 
math scores). In other words, students who score higher on 10th grade math 
assessments are likely to score higher on 12th grade math assessments.

As you can see in Figure 11.3 on page 241, there is not a tremendous amount 
of error variance in this analysis—only 20.3% of the variance is unaccounted for, 
and the residuals are relatively small, as Figure 11.4 on page 241 shows. The aver-
age (unstandardized or raw) residual is 3.73, with a standard deviation of 4.70 
(recall these variables range from 12.52 to 69.72 for 10th grade, and 15.20 to 82.54 
for 12th grade). If dichotomization truly does improve reliability of measurement, 
the size of the residuals should diminish after splitting students into “low  
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Figure 11.1  
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Figure 11.2  
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Figure 11.3  10th and 12th Grade Math Achievement Test Scores, r =. 89
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Figure 11.4   Residuals from the Correlation of Math Achievement Test Scores
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Figure 11.5  Scatterplot Following Dichotomization
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performers” and “high performers.” To test this, I performed a median split on the 
10th grade variable and an ANOVA with grade achievement as the dependent 
variable. As you can see in Figure 11.5, when 10th graders are dichotomized into 
low and high, the dispersion of the data at each group is now much larger than the 
dispersion around any given point in Figure 11.3.

Once dichotomized, we come to the same conclusion: low math performers 
in 10th grade tend to score lower in 12th grade than high math performers: average 
scores = 38.45 (SD = 10.56) and 60.91 (SD = 9.69), respectively, F(113, 387) = 
16433.22, p < .0001, η2 = .55. And in fact, there is still a strong effect present, with 
the dichotomous 10th grade math performance variable accounting for 55% of the 
variance in 12th grade math performance. This is a 30.99% reduction in effect size, 
and the residuals (presented in Figure 11.6) show an equal increase. The average 
residual is now 8.26, with a standard deviation of 5.87. Thus, this simple dichoto-
mization increased the average size of the residuals 221.45%.
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Figure 11.6  Residuals Following Dichotomization
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Remember that this is an unusually strong relationship, and most 
researchers do not deal with effect sizes this large. Imagine how more modest 
effects would fare. How many researchers would still find significant effects 
giving away one-third of their effect sizes?

The other argument, that measurement is more reliable because of the reli-
ability of repeated categorization, also is shown to be false in this analysis. 
Again, even with this tremendously strong correlation between the two admin-
istrations of the math test, 13.3% of the students change classification from low 
to high or from high to low between 10th and 12th grade.5 Does this mean that 
more than 1,700 students in this sample got appreciably more or less adept at 
math? Probably not. This changing of categories is most often caused by minor 
variation in performance near the median, where most students are, rather than 
by students who radically change performance levels. And again, this effect 
would be theoretically more pronounced with less perfect measurement.

By taking the absolute value of the distance of each individual from the 
median (BYTXMIRR − 39.63) and comparing distances between people who 
switched classification from low to high math-achiever or the opposite direc-
tion, it is clear that this is exactly what is happening. The average distance for 
people switching classification was 3.91 points (SD = 3.57), whereas for those 
who maintained their classification consistently, the average distance was 
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10.72 (SD = 6.27; significant effect F(113, 387) = 1992.48, p < .0001, η2 = .13). 
This example supports some important conclusions about dichotomization.

First, even with very high relationships between variables and excellent 
measurement properties, categorization reduces effect sizes dramatically. This 
does not seem to be consistent with improved reliability, as some proponents 
of this technique have argued. Second, approximately one in seven in this 
sample switched from high to low achievement categories between 10th and 
12th grade. Thus, dichotomization does not seem to improve reliability of 
measurement. Errors (residuals) are appreciably larger under dichotomization. 
And finally, those who move categories are those closest to the median, there-
fore creating the appearance of large differences in performance when in fact 
these changes are due to relatively small changes consistent with random 
fluctuation rather than meaningful improvement or decline.

Dichotomization Deals With Nonnormality or Outliers

My immediate response, as you might imagine, is to encourage use of a 
data transformation to deal with variables that are not normally distributed, as 
discussed in Chapter 8. Further, my inclination regarding outliers is to exam-
ine the potential cause of them and fix them where appropriate. Other options, 
as examined in the Chapter 7 on extreme scores, are probably more desirable 
than merely ignoring the fact and dichotomizing.

To explore this issue we will revisit data from Chapter 8 on university size 
and average faculty salary. Recall the data were from 1,161 institutions in the 
United States collected on the size of the institution (number of faculty) and 
average faculty salary by the American Association of University Professors 
in 2005. As Figure 11.7 shows, the variable number of faculty is highly 
skewed (skew = 2.58, kurtosis = 8.09), while faculty salary (associate profes-
sors) was more normally distributed to begin with, with a skew = 0.36 and 
kurtosis = 0.12. Recall also that an initial correlation between the two variables 
of r(1,161) = .49, p < .0001 (coefficient of determination or percentage variance 
accounted for of 24.0%) was improved to r(1,161) = .66, p < .0001 (coefficient 
of determination or percentage variance accounted for 0.44, or an 81.50% 
increase). Likewise, the average residual was 48.49 (SD = 38.92) before this 
transformation and 42.94 (SD = 33.46) after.

Instead of performing this data transformation, let us imagine we dichoto-
mized the number of faculty variable through median split (this variable 
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ranged from 7 to 2,261, with a median of 132.0 and a mean of 257.35). 
Following dichotomization, the correlation is indeed somewhat improved over 
the untransformed data r(1,161) = .57, p < .0001 (coefficient of determination or 
percentage variance accounted for of 33.0%). But rather than demonstrate the 
potential of this method, this analysis highlights the weakness. Recall that fol-
lowing a good normalizing Box-Cox transformation, the effect size was one-
third stronger than dichotomization (coefficient of determination = 44%). 
Similarly, the residuals are closer in magnitude to the untransformed data than 
the appropriately transformed data (average residual was 46.88, SD = 35.11). 
Thus, I would suggest that even in the case of extremely nonnormal data such 
as this variable, appropriate transformation yields is still a better practice (in 
this case, 33.33% stronger effect size over dichotomized data). Similarly, 
appropriately dealing with outliers will be a more satisfactory solution than 
dichotomization. Finally, there is some evidence that other procedures that are 

Figure 11.7  
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nonparametric, such as logistic regression, similarly suffer reduced effect sizes 
from dichotomization (Farrington & Loeber, 2000).

OTHER DRAWBACKS OF DICHOTOMIZATION

Curvilinearity and Interactions Will Be Masked or Undetectable

Sometimes variables have nonlinear relationships. As I often tell my stu-
dents, interactions and nonlinear relationships are often among the more inter-
esting results we can find. It seems unrealistic to expect all things in nature to 
be perfectly linearly related. However, conversion of variables to dichotomous 
effectively eliminates the opportunity to look for curvilinear relationships. 
Most statistical software packages include simple ways to model nonlinear 
relationships (and in those that do not easily support this type of analysis, you 
can easily incorporate exponential terms in regression equations to test for 
curvilinearity). Thus, it seems a shame to lose this possibility (and more accu-
rate representation of the true nature of the effect) through artificially dichoto-
mizing a continuous variable. (See also Farewell, Tom, & Royston, 2004; 
Maxwell & Delaney, 1993.)

The Variable Is by Nature Categorical

To be sure, there probably are instances where individuals cluster together, 
creating the illusion of categorical groups (MacCallum et al., 2002). If a vari-
able is truly categorical, why is it being measured continuously? What the 
researcher probably means is that the sample or population is not evenly dis-
tributed across the entire range of the variable. But then, is dichotomization an 
appropriate response to this phenomenon? I tend not to think so. And even 
where individuals clearly cluster into well-defined and separated groups, care 
must be taken to accurately categorize. This may involve more than two groups, 
split at points not necessarily represented by the median, and so on. My decades 
of experience tell me this will be an unusual event. But it is possible.

Spurious Statistical Significance

Type I errors might be encouraged by the use of dichotomized covariates 
that fail to adequately remove the effects of the variable had it been left  
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continuous (Maxwell & Delaney, 1993). Along the same lines, prediction 
equations or models can be significantly biased when artificial dichotomiza-
tion is used (Hin, Lau, Rogers, & Chang, 1999), as can the goodness of fit of 
predictive modeling (Lien & Balakrishnan, 2005). Finally, for those interested 
in the nuances of logistic regression: dichotomization can inappropriately 
inflate a variable’s effect size by altering the nature of an increment of 1.0.

Logistic regression calculates an odds ratio as the change in odds as a 
function of a change of 1.0 in the independent variable. Thus, if you have a 
variable such as percentage correct on a test as an independent variable, with 
perhaps 50 increments of 1.0, you can get highly significant effects that look 
very small (odds ratio of, say, 1.05). Changing this variable to z scores changes 
the interpretation from an increment of 1.0 percentage points to 1.0 standard 
deviations, and it can change the odds ratio. Note that this is only an apparent 
increase in effect size that results from redefining what an increment of 1.0 
means. Similarly, dichotomizing changes the interpretation yet again. Where 
there were potentially 50, or 6 increments accounting for the effect, now there 
is only 1: above the mean versus below the mean. At this point, the odds ratio 
may be substantially larger, inappropriately because of the dichotomization, 
making this variable look substantially more important than when it was con-
tinuous or z-scored. But this is an illusion. The actual variance being accounted 
for should drop.

In Table 11.1 I present some simple examples from the Education Longi-
tudinal Study of 2002. I used logistic regression to predict whether a student 
graduated from high school or dropped out prior to completion as a function 
of 10th grade reading achievement test score. Reading achievement ranges 
from 10.20 to 49.09, with a standard deviation of 9.69. Thus, left as is, the 
original variable has almost 40 increments of 1.0 to account for the effect of 
graduating. As the table shows, reading is a significant predictor of graduation 
and dropout. For every increase of 1.0 in reading, the odds of being retained 
through graduation are 1.082 that of those who scored one point lower. The 
analysis reports accounting for about 10.2% of the variance in this outcome. 
As one might expect, converting reading scores to z scores has no effect on the 
variance accounted for, which is identical. However, because we have rede-
fined the number of increments of 1.0 (in this case, about four in the observed 
range), each increment of 1 standard deviation leads to an increase in the odds 
of graduating of 2.152. Note that this seems to be an inflation of effect size but 
is defensible as it keeps the original variable intact, accounts for the same 
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amount of variance, and when performed on all continuous variables, allows 
for direct comparisons across predictors.

The third line in the table shows how dichotomization (mean split) can 
inappropriately inflate the apparent effect size. In this case, the odds ratio 
inflates to 3.795, however the variance accounted for dropped substantially. 
This represents an inappropriate inflation of apparent effect size.

Furthermore, as discussed previously, extreme groups analysis can inap-
propriately increase apparent effect size through eliminating individuals in the 
center of the distribution. In this case, choosing students ± 1.0 standard devia-
tions from the mean only eliminates a majority of the sample but inappropri-
ately inflates both variance accounted for and apparent odds ratio. This is 
inappropriate because the comparison eliminates the majority of the sample, 
making it nonrepresentative, and changes the definition of the comparison 
from the original (1 point or 1 standard deviation increase) to represent a com-
parison between those substantially below the mean only to those substantially 
above the mean.

Inhibiting Accurate Meta-analysis of Results

Widespread dichotomization has implications for researchers as the method-
ology of meta-analysis becomes more widely used. As Hunter and Schmidt (1990) 

Table 11.1   Illusory Effects of Dichotomization on Logistic  
Regression

 
Model

Nagelkerke 
Pseudo-r2

 
Odds Ratio

 
95% CI Odds Ratio

Reading Continuous .102 1.082* 1.076–1.088

Reading z-Scored .102 2.152* 2.037–2.273

Reading 
Dichotomized

.076 3.795* 3.389–4.248

Reading Extreme 
Groups

.169 9.246* 7.425–11.513

Note. * p < .0001. N = 15,982, N = 6,293 for extreme groups analysis
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correctly point out, dichotomization has the potential to significantly bias the 
results of the analysis (compared to what analyses with the original data would 
have shown).

Extreme Groups Analysis

One special case of dichotomization is extreme groups analysis, where 
researchers purposefully take groups only from the extremes of the distribution. 
In this way, researchers artificially inflate effect sizes (Preacher, Rucker, Mac-
Callum, & Nicewander, 2005). This is the opposite of the restricted range issue 
discussed in Chapter 3, though it carries similar risks: misestimation. Specifi-
cally, if you are examining variables that have broad ranges in the population 
but only select extreme samples, you as a researcher are artificially creating an 
effect where there might not be one. Absent a very strong rationale for doing 
this, this practice seems to me like a dangerous way to dramatically inflate Type 
I error rates and purposefully misrepresent the population parameters.

This is not the same thing as examining extreme groups (such as very low 
performing or very high performing students) in an attempt to understand 
issues unique to those groups. Those analyses examine groups of interest with 
hopes of learning lessons from them, and they attempt to accurately model 
what is happening within a particular subgroup. Extreme groups analysis, on 
the other hand, seeks to illegitimately create or enhance an effect where one 
might not exist by comparing individuals who reside at the extremes of a dis-
tribution—and therefore who are by definition not representative of the major-
ity of the population the researcher wishes to speak to.

For an example, taking the relationship between university size and fac-
ulty salaries, I dichotomized university size to represent those institutions 
below the 10th percentile (with 44 or fewer faculty) and above the 90th per-
centile (with 658 or more faculty). This extreme groups analysis yielded a 
correlation of r(212) = .84, p < .0001, coefficient of determination = 70.7% 
variance accounted for. This is a substantial misestimation of the effect, 
which was originally 24%, 33% with dichotomization of the highly skewed 
variable, and 44% with an appropriately transformed variable. While it is 
often interesting and desirable to explore those at the margins of distributions 
(e.g., very small universities, for example), this particular version of dichoto-
mization of extreme groups analysis does not have a place in legitimate 
research.
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FOR FURTHER ENRICHMENT

1. Download the data set from the book’s website. Compare an analysis with 
continuous variables and dichotomized variables. How do interpretations and 
effect sizes suffer when continuous variables are illegitimately dichotomized?

2. Look through the best journals in your field and see if you can find an 
example in which an author dichotomized a continuous variable. What was 
the justification for doing so? Do you agree it was a legitimate analytic 
strategy?

3. Using one of your own (or your advisor’s) data sets, explore how dichoto-
mization can alter or damage power and effect sizes.

NOTES

1. This is, sadly, only a brief summary of the 340,000 articles I found that include 
median split methodology. This does not include other dichotomization techniques that 
may not involve median splitting, or other techniques for converting continuous vari-
ables to categorical e.g., converting to four groups.

2. I am not sure dichotomization can legitimately improve power in any line of 
research, given the inflation of error variance. But later in this chapter I show how 
inappropriate applications of this methodology (such as extreme groups analysis) can 
illegitimately inflate effect sizes and power.

3. It may not surprise you to learn that I disagree. Farrington makes the point that 
in logistic regression dichotomous variables are more interpretable. Having written on 
best practices in logistic regression, I believe that even nontechnical audiences can 
appreciate and understand odds ratios based on continuous variables if presented 
appropriately. For example, researchers can convert continuous variables to z scores, 
thus changing the interpretation of the odds ratio to the change in odds as the predictor 
changes 1 standard deviation rather than one point. Furthermore, this application of 
z-scoring allows continuous variables to be directly compared for effect size, whereas 
without doing this they are not directly comparable. This does not seem a barrier to 
interpretability. Furthermore, when dichotomization of control variables occurs, biased 
odds ratios can result (Chen, Cohen, & Chen, 2007) as the effects of these covariates 
are not completely removed from the analysis due to dichotomization. All in all, a very 
weak argument, in my opinion, that promotes the use of a very poor practice.

4. I have a long history of working with nonresearchers like teachers, policymak-
ers, and health care professionals. They all seem to digest results generated by continu-
ous variables easily.
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5. Not surprisingly, an equal number of students moved from high-performing to 
low-performing categories as moved the other way: 890 moved from the low to high 
group, while 886 moved the other way. This is consistent with random fluctuation 
around a fixed point rather than some other purposeful change in performance.
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 TWELVE 

THE SPECIAL CHALLENGE OF CLEANING  
REPEATED MEASURES DATA

Lots of Pits in Which to Fall

A s I wrote the other chapters and worked with students in various statistics 
classes, it occurred to me that some data cleaning issues are particular 

to repeated measures analyses but are not always obvious. In this chapter I 
briefly outline some of the issues and potential ways to deal with them. This 
is an area I hope to expand on at a later time.

TREAT ALL TIME POINTS EQUALLY

Repeated measures analyses are peculiar creatures: powerful at detecting 
changes over time, but riddled with difficult assumptions that are rarely met in 
practice. In many statistical packages, such as SPSS, repeated measures analy-
ses can compensate for failing the assumption of sphericity1 by altering the 
statistics to eliminate that assumption. If you are using a software package that 
does not automatically compute alternative statistics for dealing with assump-
tions of sphericity, you might be inclined to perform a transformation to equal-
ize variance across time points.

One rule I find helpful is to treat all time points equally. In other words, 
they are all the same variable, just measured at different points in time. They 
must all be treated equally.

The implications of not treating all time points equally is that you might 
end up creating strong differences across time points when in fact there were 
none. Performing a transformation on one time point and ignoring others is a 
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fantastic way to get large effect sizes in repeated measures analysis, but the 
effects are not reflective of anything other than an analysis error.

An illustration of this point is presented in Figure 12.1. For this figure I 
randomly generated four variables with 100 data points in each variable. All 
distributions were to have a mean of 10.0 and a standard deviation of 1.0 
(although you can see, with relatively modest data sets they deviate slightly 
from those statistics). Imagine these are four repeated measures. They are, in 
actuality, not significantly different. When subjected to a repeated measures 
ANOVA, the four repeated measures have F(3, 297) < 1.00, p < .56, with a par-
tial eta-squared of .007. However, if I decide the third data point is a little more 
skewed than I like, and apply a square root transformation (λ = 0.50 in Box-
Cox transforms, which you should be familiar with by this point), I end up 
with a large effect of F(3, 297) = 2476.24, p < .0001, partial eta-squared of .96.

As you can see in Figure 12.2, by transforming just one subset of all observa-
tions, I just created a huge error. But, if I had transformed all four time points in 
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the identical fashion, I would have come to the correct, original conclusion that 
there was no difference over time: F(3, 297) = < 1.0, p < .71, eta-squared = .005.

Taking the example of applying a transformation, one of the practices I 
endorse is anchoring the variable at 1.0. Yet if you subtract a different number 
from each time point so that all time points are anchored at 1.0, you may just 
have erased your differences across groups in a quest to improve normality!

Taking a similar example, in Figure 12.3 you see four distributions with 
means of about 5, 8, 11, and 14, all with standard deviations of about 1.0 
(again, randomly generated data). These data should result in a very large 
effect size, and indeed a simple repeated measures shows this to be the case 
F(3, 297) = 1581.73, p < .0001, eta-squared = .94. Yet if I were to follow the 
guidelines for best practices in transformation, anchoring each time point at 
1.0 and then applying a transformation (such as our old friend the square root 
transform, λ = 0.50), my very strong effect has now disappeared. After anchor-
ing at 1.0 and transforming each time point, the results are F(3, 297) = < 1.00,  
p < .78, eta-squared = .004.

Should you decide it is important to impose a data transformation on 
repeated measures data, it is important to figure out the minimum value of any 
time point and anchor that time point at 1.0. You would subtract the same 

Figure 12.2   Not Treating All Time Points Equally Creates Type I 
Errors
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amount from every other score in every other repeated measure. This will not 
anchor all time points at 1.0, but will bring many of them close, and will be 
consistent with the rule of treating all time points equally.

Thus, knowing this rule of thumb, taking appropriate anchoring strategy 
of subtracting 1.61 from all data points (2.61 is the minimum value overall 
within the four time points), I can apply a simple transformation (again, square 
root or λ = 0.50). While it might not look like the change over time is as sub-
stantial as prior to transformation, the results are similarly strong: F(3, 297) = 
1363.39, p < .0001, eta-squared = .93.

Likewise, it might be tempting to use a different λ on each time point to 
optimally transform each one to normality. Doing that, however, violates the 
rule of treating all time points equally. If you decide to transform one time 
point with λ = 1.75, you must do the same for all other time points.

The tricky part in dealing with repeated measures data is that it is not 
always the case that all points in time are equally nonnormal. In some exam-
ples I have seen, it is possible that of four repeated measures, only one is 
significantly nonnormal, and applying a transformation that normalizes the 
one time point causes significant nonnormality in the other three. In repeated 
measures, it is an art to arrive at the best decision for all time points. It might 

Figure 12.3  Anchoring All Time Points at 1.0 Produces Type II Errors
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be the case that you must leave data from one time point nonnormal in order 
to keep the others normally distributed. Or it might be the case that you must 
choose a more mild transformation that does the most good for some points 
while doing the least harm for other time points. Again, the key is to decide 
what is best for all repeated measures and treat them all equally.

WHAT TO DO WITH EXTREME SCORES?

Given the discussion in Chapter 7, you might be under the impression that if 
you have an extreme score it should be removed. The problem with this in a 
repeated measures framework (particularly repeated measures ANOVA) is that 
person would be removed from the entire analysis if they have missing data at 
one time point. So by removing an outlier from one time point, you essentially 
remove that person from the entire analysis, which may be undesirable, par-
ticularly in small-sample situations.

As mentioned in Chapter 7, an extreme score might occur for many rea-
sons, and that is no different in repeated measures analyses. It is possible the 
score is a legitimate one. It is possible that it was a data entry error, caused by 
carelessness on the part of the participant, sample contamination, and so forth. 
You, the researcher, must determine whether you can fix the extreme score 
through correcting a mistake in data entry, contacting the person to verify the 
value of the observation, or through inference. If not, you should determine the 
costs and benefits of keeping the individual in the data set.

Truncation is a possible solution in cases in which it is not possible to 
correct the error and where it is not desirable to remove the individual com-
pletely from the analysis. Extremely low or high scores can be corrected to be 
equivalent to the next most extreme score, which maintains the ordinal order 
of the data without some of the drawbacks of having such an extreme score. 
This technique involves altering the actual data you are analyzing, and so 
should be performed with caution. And researchers should always report hav-
ing done this, with a justification for keeping the individual in the data set 
under these altered conditions.

Another potential strategy might be to delete the data point and attempt to 
use appropriate missing data techniques to impute a more appropriate score. 
Again, this is only defensible in cases where it is obvious that the extreme 
value is illegitimate and it is important to keep the individual in the data set. 
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In this case, multiple imputation or strong imputation from closely correlated 
variables would be most appropriate.

Examination of standardized residuals is valuable to data cleaning with 
repeated measures as with other analyses. It is always possible that analyses 
can be biased by the inclusion of an individual who appears relatively extreme 
compared to others at a particular time point.

Finally, one can use modern methods of analyses to explore repeated 
measures. Some modern methodologies, such as hierarchical linear modeling 
(Raudenbush & Bryk, 2002) do not require complete data at all time points, 
and thus can manage these situations effectively.

MISSING DATA

Recalling that traditional repeated measures analyses require complete data, 
missing values on one time point can cause an individual to be removed from 
the entire analysis. However, appropriate intervention with missing data can 
prevent the biases that might be introduced by complete case analysis of 
repeated measures.

One of the advantages of missing data analysis in repeated measures 
designs is that the researcher often has very closely correlated data (data from 
the same person at different time points) in order to impute reasonable scores. 
This is often a case of strong single imputation, and can be very effective in 
multiple imputation frameworks as well. I would encourage researchers 
employing repeated measures designs to utilize imputation to deal with miss-
ingness (or to use hierarchical linear modeling, which again does not require 
complete data at all time points for all participants).

SUMMARY

I hope these brief thoughts are of value to those of you wanting to perform due 
diligence on your data cleaning in repeated measures contexts. I hope to 
elaborate and provide examples in future versions of this chapter. In the mean-
time, remember the prime directive: treat all time points identically. And keep 
participants with missing data in the data set via imputation or use of alterna-
tive analysis strategies (where appropriate).
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NOTES

1. Sphericity is an assumption in repeated measures that relates to equality of 
variance across time points. It is rarely met in practice without transformation.
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 THIRTEEN 

NOW THAT THE MYTHS ARE DEBUNKED . . .

Visions of Rational Quantitative  
Methodology for the 21st Century

T hroughout this book I have led you on an exploration of some of the 
important issues researchers need to consider (a) before beginning data 

collection and (b) after data collection but before analysis of the data. These 
are not all the issues and decisions that a good, ethical researcher will face, but 
they represent some of the most common ones (in my opinion).

We have explored 10 different myths that statisticians and quantitative 
researchers seem to hold (as evidenced by their actions and publications). My 
hope is that by this point you are convinced of the following.

 1. It is important to plan for data analysis by carefully considering how 
many participants you might need to achieve your goals. I hope this saves you 
from wasted effort collecting too much data and saves you from the frustration 
of collecting insufficient data to adequately test your hypotheses.

 2. It is vitally important to consider how you will collect your sample of 
data, and how that will meet your original goals for the study. I hope I have 
convinced you to carefully consider defining your population and the need to 
carefully craft your sampling plan so that your results will speak to the issues 
and population(s) to which you originally wanted to speak.

 3. It is important to understand the sampling framework of any large 
secondary data sets you plan to use, and it is important to account for that 
information in planning your analyses. If you are exploring large national or 
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international data sets, weights and design effects will be your constant com-
panions—if you want your analyses to be generalizable and accurate.

 4. Assumptions are important and should be tested (and met) prior to 
interpreting the substantive results of any analysis you might perform. Most of 
the analyses you are likely to perform in the 21st century are not robust to 
violations of assumptions, particularly the complex multivariate analyses we 
tend to enjoy using these days. Even when procedures are robust to violations, 
your results are more likely to be accurate and replicable if they are met.

 5. Data screening is important and relatively easy. I hope I have con-
vinced you by this point that careful screening of your data can pay large 
dividends in terms of the goodness of your results. Contrary to common belief, 
it is not a waste of time. What is a waste of time is spending a great deal of 
resources collecting data, only to have the results be misestimated, leading to 
erroneous conclusions that could have been prevented by simple data cleaning.

 6. Missing data can not only be useful as an object of analysis itself, but 
can add value and accuracy to analyses if dealt with appropriately. Statistical 
software rarely deals with missing data appropriately by default, but it is not 
terribly difficult to deal with appropriately if you know how.

 7. It is important to examine your data for extreme or influential data 
points. Your results will not be more accurate or replicable if you leave 
extreme scores in your analysis. There are simple ways to deal with extreme 
scores based on why you think they are extreme, and sometimes extreme data 
points can lead your research in unexpected and important directions.

 8. Results are more accurate and replicable if assumptions of normality 
are met. Though using Box-Cox transformations, many difficult variables can 
be successfully normalized. It is worthwhile to take a few minutes to normal-
ize variables prior to conducting your hypothesis testing.

 9. Reliability matters. The better your reliability, the more accurate and 
generalizable your results. We often accept poor reliability for our measures 
when modern analyses (such as structural equation modeling) can accurately 
model relationships even with unruly variables.

10. Not all data points are equally representative of the population to 
which you wish to speak. Not all subjects give you high-quality data, and 
failure to distinguish between those giving high-quality data and low-quality 
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data can dramatically undermine the odds of having replicable, accurate 
results.

11. Dichotomizing continuous variables is almost always a bad idea, and 
almost always leads to misestimation of effects. You should be particularly 
skeptical of logistic regression analyses that incorporate dichotomized con-
tinuous variables, as authors may be trying to inappropriately inflate the per-
ceived importance of a variable.

12. If you are engaging in repeated measures analyses, it is critically 
important that you be very thoughtful about data cleaning, as the identical 
procedures must be performed on each repeated measure or you can cause 
errors in your analyses.

As I say in Chapter 1, none of this is all that revolutionary, and almost none 
of this information is new (although I do hope it is presented in such a way that 
you are thinking in new ways about these old issues). We, as scientists, may 
have become seduced by the power and ease of statistical computing in the lat-
ter half of the 20th century, and we need to all remain thoughtful and careful 
about what it is we do. It does not take a lot of effort to implement these simple 
planning and data cleaning steps into your routine, yet it might help you con-
tribute more productively to the scientific literature. I hope I have demonstrated 
the value of considering each of these practices as important prior to the point 
at which you are testing your hypotheses and drawing conclusions.

It is possible you might disagree with me after reading some of my sug-
gestions. I am under no illusion that I have all the answers for all circum-
stances. Like many of you reading this, I am always open to improving my 
ideas, particularly where I am attempting to describe best practices. If you 
think I have gotten something wrong, and you can demonstrate it empiri-
cally, I welcome your feedback and empirical demonstration. If I agree with 
you, I will feature your correction or exception on the website for this book, 
incorporate it into the next revision of this book, and prominently acknowl-
edge your contribution to the literature. Or I may invite you to coauthor  
an article exploring the issue. As I mention in Chapter 1, my e-mail address  
is: jasonwosborne@gmail.com, and I welcome your comments and  
suggestions.

Statistical analysis and quantitative research is a vast field that is con-
stantly evolving. We must remain humble and open to learning new ideas and 
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techniques, remembering that our goal is not self-aggrandizement but rather 
improvement of the human condition for current and future generations.

Toward this end, I call on journal editors and peer reviewers to begin 
mandating authors address these basic issues of research quality in every 
article, detailing the results of tests of important assumptions, data screening 
and cleaning steps undertaken (and results), enumerating missing data and 
describing how they were dealt with, and so forth. If our goal is quality and 
replicability of research findings, and if you believe I have convincingly dem-
onstrated the value of these steps in achieving that goal, then it is time to 
become more prescriptive in submission guidelines. Note that most of these 
issues can be dealt with in a few brief sentences, so there is little implication 
for journal space or article length.

I also would ask scholarly conferences who aspire to present high-quality 
research to consider requiring proposals to include brief descriptions of 
actions taken regarding these issues. Researchers consistently performing 
these simple steps are more likely to have useful, replicable, accurate results 
to share.
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analysis of data, 20–22

effect on replicability of study 
results, 31–33

error rates related to, 26–27
how null-hypothesis statistical testing 

relates to, 22–23
how to calculate, 29–30
type I error rates and low, 28–29

Power transformations, 175–176
P-P plots, 94–96
Prediction equations, 122–124
Primary sampling unit (PSU), 74
Protecting against overcorrecting during 

disattenuation, 199–200
Publicly accessible data sets, 71–72

Random responding, 214–215
best practices, 225
causing serious problems with 

research, 219
detecting, 217–219
effects of, 219–223
identifying, 220–221
lower scores due to, 221–222

problem magnitude, 226
removal to improve statistical 

inference, 222–223
true randomness of, 216–217, 224

Random sampling, 73
Range, restriction of, 58–62
Rasch measurement, 191, 200, 

218–219
Regression

effect of extreme scores 
on, 156–161

large effect in OLS, 77, 78 (table)
modest effect in binary logistic, 

77–78, 79 (table)
multiple, 197–199
null effect in OLS, 80
reliability and, 193–195, 

197–199
Reliability

best practices, 207–208
dichotomous variables, 238–246
influencing other analyses, 

205–206
interactions in multiple regression 

and, 198–199
multiple regression and, 

197, 198 (table)
partial correlations and, 

195–196, 197 (table)
protecting against overcorrecting 

during disattenuation 
and, 199–200

reasonable levels of, 192–193
significance of poor, 206–207
simple correlation or regression 

and, 193–195
Removal of extreme scores, 165
Repeated measures analysis

extreme scores and, 257–258
missing data and, 258
treating all time points 

equally in, 253–257
Replicability of study results, 

effect of power on, 31–33
Research on data cleaning, 5–8
Responding, random, 214–215
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Response sets
common types, 214–216
defined, 213–214

Restriction of range, 58–62
Reversing transformations, 181–184
Robust estimation for extreme 

scores, 151–152
Robustness, 3, 262

Sampling
aggregation or omission 

errors in, 46–48, 49 (figure)
bias, 54–56, 146
consent procedures, 54–56
data cleaning and poor, 33–34
extreme groups analysis, 62–64
generalizability of internet 

surveys, 56–58
including irrelevant groups in, 49–52
nonresponse and 

generalizability, 52–54
restriction of range in, 58–62
theory and generalizability, 

45–46
undergraduates and, 43–45

Sampling, complex
best practices in accounting 

for, 74–76
importance of, 72–74
types of studies using, 72
weighted data in, 75, 76–80

Scaled weights, 76–77
School Perceptions Questionnaire 

(SPQ), 194, 202–203
Scores, composite, 121–122
Sensitive questions, 54
Significance tests, 25
Simple correlation and reliability, 

193–195
Skew, 90–91, 94, 171

Box-Cox transformations, 
176–181

Social desirability, 215
Software, statistical, 74–76

Spurious statistical 
significance, 246–248

Square root transformation, 172–173
Standard deviation (SD), 87–89
Standardization failure, extreme scores 

from, 146–147
Statistical power, 20–21
Statistical testing

information gathered from, 23–26
myths of data and, 261–263
null-hypothesis, 22–23

Stereotype threat, 48
Strong and weak imputation 

of values, 122–125
Structural equation 

modeling (SEM), 194
Substitution, mean, 118–122
Surveys, internet, 56–58
S-W test, 98, 99 (table), 

171–172

Testing assumptions, 8
Third International Mathematics and 

Science Study (TIMSS), 72
Transformations, 262

arcsine, 174–175
Box-Cox, 170, 174, 175–184
importance of, 171
for improving normality, 172–176
inverse, 174
log, 173–174
power, 175–176
reversing, 181–184
square root, 172–173
treating all time points equally 

and, 255–256
Treating of all time points 

equally, 253–257
T-Tests, 161–165, 205–206
Type I errors, 3, 4, 24

data transformations and, 171
partial correlations and, 196
power and, 26–27
rates and low power, 28–29
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Type II errors, 4, 24
data transformations and, 171
low power and, 29
partial correlations and, 196
power and, 26–27
reliability and, 195

Understimated measurements, 
191, 194

Unidimensionality, 192

Univariate extreme scores, 151
Unweighted data, 76

Variables, dummy, 129

Weak and strong imputation of 
values, 122–125

Weighted data, 75, 76–81

Z-score, 101–103 (table)
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