
Big Data Cleaning

Nan Tang

Qatar Computing Research Institute, Doha, Qatar
ntang@qf.org.qa

Abstract. Data cleaning is, in fact, a lively subject that has played an
important part in the history of data management and data analytics,
and it still is undergoing rapid development. Moreover, data cleaning
is considered as a main challenge in the era of big data, due to the
increasing volume, velocity and variety of data in many applications. This
paper aims to provide an overview of recent work in different aspects of
data cleaning: error detection methods, data repairing algorithms, and a
generalized data cleaning system. It also includes some discussion about
our efforts of data cleaning methods from the perspective of big data, in
terms of volume, velocity and variety.

1 Introduction

Real-life data is often dirty: Up to 30% of an organization’s data could be
dirty [2]. Dirty data is costly: It costs the US economy $3 trillion+ per year [1].
These highlight the importance of data quality management in businesses.

Data cleaning is the process of identifying and (possibly) fixing data errors.
In this paper, we will focus on discussing dependency based data cleaning tech-
niques, and our research attempts in each direction [5].

Error detection. There has been a remarkable series of work to capture data
errors as violations using integrity constraints (ICs) [3, 9, 10, 18, 20, 21, 25, 27]
(see [17] for a survey). A violation is a set of data values such that when putting
together, they violate some ICs, thus considered to be wrong. However, ICs can-
not tell, in a violation, which values are correct or wrong, thus fall short of
guiding dependable data repairing. Fixing rules [30] are proposed recently that
can precisely capture which values are wrong, when enough evidence is given.

Data repairing. Data repairing algorithms have been proposed [7,8,12–15,23,24,
26,28,31]. Heuristic methods are developed in [6,8,13,26], based on FDs [6, 27],
FDs and INDs [8], CFDs [18], CFDs and MDs [23] and denial constraints [12].
Some works employ confidence values placed by users to guide a repairing pro-
cess [8, 13, 23] or use master data [24]. Statistical inference is studied in [28] to
derive missing values, and in [7] to find possible repairs. To ensure the accuracy
of generated repairs, [24,28,31] require to consult users. Efficient data repairing
algorithms using fixing rules have also been studied [30].

Data cleaning systems. Despite the increasing importance of data quality and
the rich theoretical and practical contributions in all aspects of data cleaning,

name country capital city conf

r1: George China Beijing Beijing SIGMOD

r2: Ian China Shanghai Hongkong ICDE

(Beijing) (Shanghai)

r3: Peter China Tokyo Tokyo ICDE

(Japan)

r4: Mike Canada Toronto Toronto VLDB

(Ottawa)

Fig. 1. Database D: an instance of schema Travel

there is a lack of end-to-end off-the-shelf solution to (semi-)automate the de-
tection and the repairing of violations w.r.t. a set of heterogeneous and ad-hoc
quality constraints. Nadeef [14, 15] was presented as an extensible, general-
ized and easy-to-deploy data cleaning platform. Nadeef distinguishes between
a programming interface and a core to achieve generality and extensibility. The
programming interface allows the users to specify multiple types of data quality
rules, which uniformly define what is wrong with the data and (possibly) how to
repair it through writing code that implements predefined classes.

Organization. We describe error detection techniques in Section 2. We discuss
data repairing algorithms in Section 3. We present a commodity data cleaning
system, Nadeef, in Section 4, followed by open research issues in Section 5.

2 Dependency-based Error Detection

In this section, we start by illustrating how integrity constraints work for error
detection. We then introduce fixing rules.

Example 1. Consider a database D of travel records for a research institute,
specified by the following schema:

Travel (name, country, capital, city, conf),

where a Travel tuple specifies a person, identified by name, who has traveled to
conference (conf), held at the city of the country with capital. One Travel instance
is shown in Fig. 1. All errors are highlighted and their correct values are given
between brackets. For instance, r2[capital] = Shanghai is wrong, whose correct
value is Beijing.

A variety of ICs have been used to capture errors in data, from traditional
constraints (e.g., functional and inclusion dependencies [8,10]) to their extensions
(e.g., conditional functional dependencies [18]).

Example 2. Suppose that a functional dependency (FD) is specified for the Travel
table as:

φ1: Travel ([country] → [capital])

country {capital−} capital+

ϕ1: China Shanghai Beijing

Hongkong

country {capital−} capital+

ϕ2: Canada Toronto Ottawa

Fig. 2. Example fixing rules

which states that country uniquely determines capital. One can verify that in
Fig. 1, the two tuples (r1, r2) violate φ1, since they have the same country but
carry different capital values, so do (r1, r3) and (r2, r3).

Example 2 shows that although ICs can detect errors (i.e., there must exist
errors in detected violations), it reveals two shortcomings of IC based error de-
tection: (i) it can neither judge which value is correct (e.g., t1[country] is correct),
nor which value is wrong (e.g., t2[capital] is wrong) in detected violations; and
(ii) it cannot ensure that consistent data is correct. For instance, t4 is consistent
with any tuple w.r.t. φ1, but t4 cannot be considered as correct.

Fixing rules. Data cleaning is not magic; it cannot guess something from noth-
ing. What it does is to make decisions from evidence. Certain data patterns of
semantically related values can provide evidence to precisely capture and rec-
tify data errors. For example, when values (China, Shanghai) for attributes
(country, capital) appear in a tuple, it suffices to judge that the tuple is about
China, and Shanghai should be Beijing, the capital of China. In contrast, the
values (China, Tokyo) are not enough to decide which value is wrong.

Motivated by the observation above, fixing rules were introduced [30]. A
fixing rule contains an evidence pattern, a set of negative patterns, and a fact
value. Given a tuple, the evidence pattern and the negative patterns of a fixing
rule are combined to precisely tell which attribute is wrong, and the fact indicates
how to correct it.

Example 3. Figure 2 shows two fixing rules. The brackets mean that the corre-
sponding cell is multivalued.

For the first fixing rule ϕ1, its evidence pattern, negative patterns and the fact
are China, {Shanghai, Hongkong}, and Beijing, respectively. It states that for
a tuple t, if its country is China and its capital is either Shanghai or Hongkong,
capital should be updated to Beijing. For instance, consider the database in
Fig. 1. Rule ϕ1 detects that r2[capital] is wrong, since r2[country] is China, but
r2[capital] is Shanghai. It will then update r2[capital] to Beijing.

Similarly, the second fixing rule ϕ2 states that for a tuple t, if its country
is Canada, but its capital is Toronto, then its capital is wrong and should be
Ottawa. It detects that r4[capital] is wrong, and then will correct it to Ottawa.

After applying ϕ1 and ϕ2, two errors, r2[capital] and r4[capital], can be re-
paired.

Notation. Consider a schema R defined over a set of attributes, denoted by
attr(R). We use A ∈ R to denote that A is an attribute in attr(R). For each
attribute A ∈ R, its domain is specified in R, denoted as dom(A).

Syntax. A fixing rule ϕ defined on a schema R is formalized as
((X, tp[X]), (B, T−p [B])) → t+p [B] where

1. X is a set of attributes in attr(R), and B is an attribute in attr(R) \X (i.e.,
B is not in X);

2. tp[X] is a pattern with attributes in X, referred to as the evidence pattern
on X, and for each A ∈ X, tp[A] is a constant value in dom(A);

3. T−p [B] is a finite set of constants in dom(B), referred to as the negative
patterns of B; and

4. t+p [B] is a constant value in dom(B) \ T−p [B], referred to as the fact of B.

Intuitively, the evidence pattern tp[X] of X, together with the negative pat-
terns T−p [B] impose the condition to determine whether a tuple contains an error
on B. The fact t+p [B] in turn indicates how to correct this error.

Note that condition (4) enforces that the correct value (i.e., the fact) is
different from known wrong values (i.e., negative patterns) relative to a specific
evidence pattern.

We say that a tuple t of R matches a rule ϕ : ((X, tp[X]), (B, T−p [B])) →
t+p [B], denoted by t ` ϕ, if (i) t[X] = tp[X] and (ii) t[B] ∈ T−p [B]. In other
words, tuple t matches rule ϕ indicates that ϕ can identify errors in t.

Example 4. Consider the fixing rules in Fig. 2. They can be formally expressed
as follows:

ϕ1: (([country], [China]), (capital, {Shanghai, Hongkong})) → Beijing
ϕ2: (([country], [Canada]), (capital, {Toronto})) → Ottawa

In both ϕ1 and ϕ2, X consists of country and B is capital. Here, ϕ1

states that, if the country of a tuple is China and its capital value is in
{Shanghai, Hongkong}, its capital value is wrong and should be updated to
Beijing. Similarly for ϕ2.

Consider D in Fig. 1. Tuple r1 does not match rule ϕ1, since
r1[country] = China but r1[capital] 6∈ {Shanghai, Hongkong}. As an-
other example, tuple r2 matches rule ϕ1, since r2[country] = China, and
r2[capital] ∈{Shanghai, Hongkong}. Similarly, we have r4 matches ϕ2.

Semantics. We next give the semantics of fixing rules.
We say that a fixing rule ϕ is applied to a tuple t, denoted by t→ϕ t

′, if (i)
t matches ϕ (i.e., t ` ϕ), and (ii) t′ is obtained by the update t[B] := t+p [B].

That is, if t[X] agrees with tp[X], and t[B] appears in the set T−p [B], then
we assign t+p [B] to t[B]. Intuitively, if t[X] matches tp[X] and t[B] matches some
value in T−p [B], it is evident to judge that t[B] is wrong and we can use the fact
t+p [B] to update t[B]. This yields an updated tuple t′ with t′[B] = t+p [B] and
t′[R \ {B}] = t[R \ {B}].

Example 5. As shown in Example 3, we can correct r2 by applying rule ϕ1. As
a result, r2[capital] is changed from Shanghai to Beijing, i.e., r2 →ϕ1

r′2 where
r′2[capital] = Beijing and the other attributes of r′2 remain unchanged.

Similarly, we have r4→ϕ2
r′4 where the only updated attribute value is

r′4[capital] = Ottawa.

Fundamental problems associated with fixing rules have been studied [30].

Termination. The termination problem is to determine whether a rule-based
process will stop. We have verified that applying fixing rules can ensure the
process will terminate.

Consistency. The consistency problem is to determine, given a set Σ of fixing
rules defined on R, whether Σ is consistent.

Theorem 1. The consistency problem of fixing rules is PTIME.

We prove Theorem 1 by providing a PTIME algorithm for determining if a
set of fixing rules is consistent in [30].

Implication. The implication problem is to decide, given a set Σ of consistent
fixing rules, and another fixing rule ϕ, whether Σ implies ϕ.

Theorem 2. The implication problem of fixing rules is coNP-complete. It is
down to PTIME when the relation schema R is fixed.

Please refer to [30] for a proof.

Determinism. The determinism problem asks whether all terminating cleaning
processes end up with the same repair.

From the definition of consistency of fixing rules, it is trivial to get that, if a
set Σ of fixing rules is consistent, for any t of R, applying Σ to t will terminate,
and the updated t′ is deterministic (i.e., a unique result).

3 Data Repairing Algorithms

In this section, we will discuss several classes of data repairing solutions. We
will start by the most-studied problem: computing a consistent database (Sec-
tioin 3.1). We then discuss user guided repairing (Section 3.2) and repairing data
with precomputed confidence values (Section 3.3). We will end up this section
with introducing the data repairing with fixing rules (Section 3.4).

3.1 Heuristic Algorithms

A number of recent research [4,8,12] have investigated the data cleaning problem
introduced in [3]: repairing is to find another database that is consistent and
minimally differs from the original database. They compute a consistent database
by using different cost functions for value updates and various heuristics to guide
data repairing.

For instance, consider Example 2. They can change r2[capital] from Shanghai

to Beijing, and r3[capital] from Tokyo to Beijing, which requires two changes.
One may verify that this is a repair with the minimum cost of two up-
dates. Though these changes correct the error in r2[capital], they do not rectify
r3[country]. Worse still, they mess up the correct value in r3[capital].

country capital
s1: China Beijing

s2: Canada Ottawa

s3: Japan Tokyo

Fig. 3. Data Dm of schema Cap

3.2 User Guidance

It is known that heuristic based solutions might introduce data errors [22]. In
order to ensure that a repair is dependable, users are involved in the process of
data repairing [22,29,31].

Consider a recent work [24] that uses editing rules and master data. Figure 3
shows a master data Dm of schema Cap (country, capital), which is considered to
be correct. An editing rule eR1 defined on two relations (Travel,Cap) is:

eR1 : ((country, country) → (capital, capital), tp1[country] = ())

Rule eR1 states that: for any tuple r in a Travel table, if r[country] is correct
and it matches s[country] from a Cap table, we can update r[capital] with the
value s[capital] from Cap. For instance, to repair r2 in Fig. 1, the users need to
ensure that r2[country] is correct, and then match r2[country] and s1[country] in
the master data, so as to update r2[capital] to s1[capital]. It proceeds similarly
for the other tuples.

3.3 Value Confidence

Instead of interacting with users to ensure the correctness of some values or
to rectify some data, some work employs pre-computed or placed confidence
values to guide a repairing process [8, 13, 23]. The intuition is that the values
with high confidence values should not be changed, and the values with low
confidence values are mostly probably to be wrong and thus should be changed.
These information about confidence values will be taken into consideration by
modifying algorithms e.g., those in Section 3.1.

3.4 Fixing Rules

There are two data repairing algorithms using fixing rules that are introduced in
Section 2. Readers can find the details of these algorithms in [30]. In this paper,
we will give an example about how they work.

Example 6. Consider Travel data D in Fig. 1, rules ϕ1, ϕ2 in Fig 2, and the
following two rules.

ϕ3: (([capital, city, conf], [Tokyo, Tokyo, ICDE]), (country, {China})) → Japan

ϕ4: (([capital, conf], [Beijing, ICDE]), (city, {Hongkong}) → Shanghai

pkeyp plistp

country, China → ϕ1 X
country, Canada → ϕ2 X
conf, ICDE → ϕ3, ϕ4 X
capital, Tokyo → ϕ3 X
city, Tokyo → ϕ3 X
capital, Beijing → ϕ4 X

(a) Inverted listsX

r1: Γ = {ϕ1}, c(ϕ1) = 1

itr1: r′1 = r1, Γ = ∅

r2: Γ={ϕ1}, c(ϕ1, ϕ3, ϕ4)=1;

itr1: r′2[capital]= Beijing

c(ϕ3)=1, c(ϕ4)=2, Γ={ϕ4};

itr2: r′2[city]= Shanghai , Γ = ∅

r3: Γ={ϕ3}, c(ϕ3)=3;

itr1: r′3[country]= Japan , Γ = ∅

r4: Γ={ϕ2}, c(ϕ2)=1;

itr1: r′4[capital]= Ottawa , Γ = ∅

Fig. 4. A running example

Rule ϕ3 states that: for t in relation Travel, if the conf is ICDE, held at city
Tokyo and capital Tokyo, but the country is China, its country should be updated
to Japan.

Rule ϕ4 states that: for t in relation Travel, if the conf is ICDE, held at
some country whose capital is Beijing, but the city is Hongkong, its city should
be Shanghai. This holds since ICDE was held in China only once at 2009, in
Shanghai but never in Hongkong.

Before giving a running example, we shall pause and introduce some indices,
which is important to understand the algorithm.

Inverted lists. Each inverted list is a mapping from a key to a set Υ of fixing
rules. Each key is a pair (A, a) where A is an attribute and a is a constant value.
Each fixing rule ϕ in the set Υ satisfies A ∈ Xϕ and tp[A] = a.

For example, an inverted list w.r.t. ϕ1 in Example 4 is as:

country, China → ϕ1

Intuitively, when the country of some tuple is China, this inverted list will
help to identify that ϕ1 might be applicable.

Hash counters. It uses a hash map to maintain a counter for each rule. More
concretely, for each rule ϕ, the counter c(ϕ) is a nonnegative integer, denoting
the number of attributes that a tuple agrees with tp[Xϕ].

For example, consider ϕ1 in Example 4 and r2 in Fig. 1. We have c(ϕ1) = 1
w.r.t. tuple r2, since both r2[country] and tp1

[country] are China. As another ex-
ample, consider r4 in Fig. 1, we have c(ϕ1) = 0 w.r.t. tuple r4, since r4[country] =
Canada but tp1 [country] = China.

Given the four fixing rules ϕ1–ϕ4, the corresponding inverted lists are given
in Fig. 4(a). For instance, the third key (conf, ICDE) links to rules ϕ3 and ϕ4,
since conf ∈ Xϕ3

(i.e., {capital, city, conf}) and tp3
[conf] = ICDE; and moreover,

conf ∈ Xϕ4
(i.e., {capital, conf}) and tp4

[conf] = ICDE. The other inverted lists
are built similarly.

Now we show how the algorithm works over tuples r1 to r4, which is also
depicted in Fig. 4. Here, we highlight these tuples in two colors, where the green
color means that the tuple is clean (i.e., r1), while the red color represents the
tuples containing errors (i.e., r2, r3 and r4).

r1: It initializes and finds that ϕ1 may be applied, maintained in Γ . In the first

iteration, it finds that ϕ1 cannot be applied, since r1[capital] is Beijing, which is
not in the negative patterns {Shanghai, Hongkong} of ϕ1. Also, no other rules
can be applied. It terminates with tuple r1 unchanged. Actually, r1 is a clean
tuple.

r2: It initializes and finds that ϕ1 might be applied. In the first iteration, rule
ϕ1 is applied to r2 and updates r2[capital] to Beijing. Consequently, it uses
inverted lists to increase the counter of ϕ4 and finds that ϕ4 might be used. In
the second iteration, rule ϕ1 is applied and updates r2[city] to Shanghai. It then
terminates since no other rules can be applied.

r3: It initializes and finds that ϕ3 might be applied. In the first iteration, rule
ϕ3 is applied and updates r3[coutry] to Japan. It then terminates, since no more
applicable rules.

r4: It initializes and finds that ϕ2 might be applied. In the first iteration, rule
ϕ2 is applied and updates r4[capital] to Ottawa. It will then terminate.

At this point, we see that all the fours errors shown in Fig. 1 have been
corrected, as highlighted in Fig. 4.

4 NADEEF: A Commodity Data Cleaning Systems

Despite the need of high quality data, there is no end-to-end off-the-shelf solution
to (semi-)automate error detection and correction w.r.t. a set of heterogeneous
and ad-hoc quality rules. In particular, there is no commodity platform simi-
lar to general purpose DBMSs that can be easily customized and deployed to
solve application-specific data quality problems. Although there exist more ex-
pressive logical forms (e.g., first-order logic) to cover a large group of quality
rules, e.g., CFDs, MDs or denial constraints, the main problem for designing an
effective holistic algorithm for these rules is the lack of dynamic semantics, i.e.,
alternative ways about how to repair data errors. Most of these existing rules
only have static semantics, i.e., what data is erroneous.

Emerging data quality applications place the following challenges in building
a commodity data cleaning system.

Heterogeneity: Business and dependency theory based quality rules are ex-
pressed in a large variety of formats and languages from rigorous expressions
(e.g., functional dependencies), to plain natural language rules enforced by code
embedded in the application logic itself (as in many practical scenarios). Such
diversified semantics hinders the creation of one uniform system to accept het-

Rule Collector

Data Quality Dashboard

NADEEF

Data owners
Domain experts

Rules

Data

ETLs, CFDs, MDs,
Business rules

Violation Detection

Data Repairing

Rule Compiler

Detection and Cleaning Algorithms
Core

Metadata

Data Loader

Metadata Management
Auditing and Lineage

Indices

Probabilistic models

Fig. 5. Architecture of Nadeef

erogeneous quality rules and to enforce them on the data within the same frame-
work.

Interdependency: Data cleaning algorithms are normally designed for one spe-
cific type of rules. [23] shows that interacting two types of quality rules (CFDs

and MDs) may produce higher quality repairs than treating them independently.
However, the problem related to the interaction of more diversified types of rules
is far from being solved. One promising way to help solve this problem is to pro-
vide unified formats to represent not only the static semantics of various rules
(i.e., what is wrong), but also their dynamic semantics (i.e., alternative ways to
fix the wrong data).

Deployment and extensibility: Although many algorithms and techniques
have been proposed for data cleaning [8,23,31], it is difficult to download one of
them and run it on the data at hand without tedious customization. Adding to
this difficulty is when users define new types of quality rules, or want to extend
an existing system with their own implementation of cleaning solutions.

Metadata management and data custodians: Data is not born an orphan.
Real customers have little trust in the machines to mess with the data without
human consultation. Several attempts have tackled the problem of including
humans in the loop (e.g., [24, 29, 31]). However, they only provide users with
information in restrictive formats. In practice, the users need to understand much
more meta-information e.g., summarization or samples of data errors, lineage of
data changes, and possible data repairs, before they can effectively guide any
data cleaning process.

Nadeef1 is a prototype for an extensible and easy-to-deploy cleaning system
that leverages the separability of two main tasks: (1) isolating rule specification
that uniformly defines what is wrong and (possibly) how to fix it; and (2) devel-
oping a core that holistically applies these routines to handle the detection and
cleaning of data errors.

1 https://github.com/Qatar-Computing-Research-Institute/NADEEF

4.1 Architecture Overview

Figure 5 depicts of the architecture of Nadeef. It contains three components:
(1) the Rule Collector gathers user-specified quality rules; (2) the Core com-
ponent uses a rule compiler to compile heterogeneous rules into homogeneous
constructs that allow the development of default holistic data cleaning algo-
rithms; and (3) the Metadata management and Data quality dashboard modules
are concerned with maintaining and querying various metadata for data errors
and their possible fixes. The dashboard allows domain experts and users to easily
interact with the system.

Rule Collector. It collects user-specified data quality rules such as ETL rules,
CFDs (FDs), MDs, deduplication rules, and other customized rules.

Core. The core contains three components: rule compiler, violation detection
and data repairing.

(i) Rule Compiler. This module compiles all heterogeneous rules and manages
them in a unified format.

(ii) Violation Detection. This module takes the data and the compiled rules as
input, and computes a set of data errors.

(iii) Data Repairing. This module encapsulates holistic repairing algorithms that
take violations as input, and computes a set of data repairs, while (by default)
targeting the minimization of some pre-defined cost metric. This module may in-
teract with domain experts through the data quality dashboard to achieve higher
quality repairs.

For more details of Nadeef, please refer to the work [14].

4.2 Entity Resolution Extension

Entity resolution (ER), the process of identifying and eventually merging records
that refer to the same real-world entities, is an important and long-standing
problem. Nadeef/Er [16] was an extension of Nadeef as a generic and in-
teractive entity resolution system, which is built as an extension over Nadeef.
Nadeef/Er provides a rich programming interface for manipulating entities,
which allows generic, efficient and extensible ER. Nadeef/Er offers the fol-
lowing features: (1) Easy specification – Users can easily define ER rules with
a browser-based specification, which will then be automatically transformed to
various functions, treated as black-boxes by Nadeef; (2) Generality and extensi-
bility – Users can customize their ER rules by refining and fine-tuning the above
functions to achieve both effective and efficient ER solutions; (3) Interactivity –
Nadeef/Er [16] extends the existing Nadeef [15] dashboard with summariza-
tion and clustering techniques to facilitate understanding problems faced by the
ER process as well as to allow users to influence resolution decisions.

4.3 High-Volume Data

In order to be scalable, Nadeef has native support for three databases, Post-
greSQL, mySQL, and DerbyDB. However, to achieve high performance for high-

volume data, a single machine is not enough. To this purpose, we have also built
Nadeef on top of Spark2, which is transparent to end users. In other words,
users only need to implement Nadeef programming interfaces in logical level.
Nadeef will be responsible to translate and execute user provided functions on
top of Spark.

4.4 High-Velocity Data

In order to deal with high-velocity data, we have also designed new Nadeef
interfaces for incremental processing of streaming data. By implementing these
new functions, Nadeef can maximally avoid repeated comparison of existing
data, hence is able to process data in high-velocity.

5 Open Issues

Data cleaning is, in general, a hard problem. There are many issues to be ad-
dressed or improved to meet practical needs.

Tool selection. Given a database and a wide range of data cleaning tools
(e.g., FD-, DC- or statistical-based methods), the first challenging question is
which tool to pick for the given specific task.

Rule discovery. Although several discovery algorithms [11, 19] have been de-
veloped for e.g., CFDs or DCs, rules discovered by automatic algorithms are far
from clean themselves. Hence, often times, manually selecting/cleaning thou-
sands of discovered rules is a must, yet a difficult process.

Usability. In fact, usability has been identified as an important feature of data
management, since it is challenging for humans to interact with machines. This
problem is harder when comes to the specific topic of data cleaning, since given
detected errors, there is normally no evidence that which values are correct and
which are wrong, even for humans. Hence, more efforts should be put to usability
of data cleaning systems so as to effectively involve users as first-class citizens.

References

1. Dirty data costs the U.S. economy $3 trillion+ per year.
http://www.ringlead.com/dirty-data-costs-economy-3-trillion/.

2. Firms full of dirty data. http://www.itpro.co.uk/ 609057/firms-full-of-dirty-data.
3. M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query answers in inconsis-

tent databases. TPLP, 2003.
4. L. E. Bertossi, S. Kolahi, and L. V. S. Lakshmanan. Data cleaning and query

answering with matching dependencies and matching functions. In ICDT, 2011.
5. G. Beskales, G. Das, A. K. Elmagarmid, I. F. Ilyas, F. Naumann, M. Ouzzani,

P. Papotti, J.-A. Quiané-Ruiz, and N. Tang. The data analytics group at the
qatar computing research institute. SIGMOD Record, 41(4):33–38, 2012.

2 http://spark.apache.org

6. G. Beskales, I. F. Ilyas, and L. Golab. Sampling the repairs of functional depen-
dency violations under hard constraints. PVLDB, 2010.

7. G. Beskales, M. A. Soliman, I. F. Ilyas, and S. Ben-David. Modeling and querying
possible repairs in duplicate detection. In VLDB, 2009.

8. P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cost-based model and effective
heuristic for repairing constraints by value modification. In SIGMOD, 2005.

9. L. Bravo, W. Fan, and S. Ma. Extending dependencies with conditions. In VLDB,
2007.

10. J. Chomicki and J. Marcinkowski. Minimal-change integrity maintenance using
tuple deletions. Inf. Comput., 2005.

11. X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial constraints. PVLDB, 6(13),
2013.

12. X. Chu, P. Papotti, and I. Ilyas. Holistic data cleaning: Put violations into context.
In ICDE, 2013.

13. G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma. Improving data quality: Consistency
and accuracy. In VLDB, 2007.

14. M. Dallachiesa, A. Ebaid, A. Eldawy, A. K. Elmagarmid, I. F. Ilyas, M. Ouzzani,
and N. Tang. Nadeef: a commodity data cleaning system. In SIGMOD, 2013.

15. A. Ebaid, A. K. Elmagarmid, I. F. Ilyas, M. Ouzzani, J.-A. Quiané-Ruiz, N. Tang,
and S. Yin. Nadeef: A generalized data cleaning system. PVLDB, 2013.

16. A. Elmagarmid, I. F. Ilyas, M. Ouzzani, J. Quiane-Ruiz, N. Tang, and S. Yin.
NADEEF/ER: Generic and interactive entity resolution. In SIGMOD, 2014.

17. W. Fan. Dependencies revisited for improving data quality. In PODS, 2008.
18. W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional functional depen-

dencies for capturing data inconsistencies. TODS, 2008.
19. W. Fan, F. Geerts, J. Li, and M. Xiong. Discovering conditional functional depen-

dencies. IEEE Trans. Knowl. Data Eng., 23(5):683–698, 2011.
20. W. Fan, F. Geerts, N. Tang, and W. Yu. Inferring data currency and consistency

for conflict resolution. In ICDE, 2013.
21. W. Fan, F. Geerts, and J. Wijsen. Determining the currency of data. In PODS,

2011.
22. W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Towards certain fixes with editing rules

and master data. PVLDB, 3(1):173–184, 2010.
23. W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Interaction between record matching

and data repairing. In SIGMOD, 2011.
24. W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Towards certain fixes with editing rules

and master data. VLDB J., 2012.
25. W. Fan, J. Li, N. Tang, and W. Yu. Incremental detection of inconsistencies in

distributed data. In ICDE, pages 318–329, 2012.
26. I. Fellegi and D. Holt. A systematic approach to automatic edit and imputation.

J. American Statistical Association, 1976.
27. S. Kolahi and L. Lakshmanan. On approximating optimum repairs for functional

dependency violations. In ICDT, 2009.
28. C. Mayfield, J. Neville, and S. Prabhakar. ERACER: a database approach for

statistical inference and data cleaning. In SIGMOD, 2010.
29. V. Raman and J. M. Hellerstein. Potter’s Wheel: An interactive data cleaning

system. In VLDB, 2001.
30. J. Wang and N. Tang. Towards dependable data with fixing rules. In SIGMOD,

2014.
31. M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and I. F. Ilyas. Guided

data repair. PVLDB, 2011.

