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Abstract. The paper presents a novel algorithm for restoration of the missing samples in additive
Gaussian noise based on the forward–backward autoregressive (AR) parameter estimation approach
and the extrapolation technique. The proposed algorithm is implemented in two consecutive steps.
In the first step, the forward–backward approach is used to estimate the parameters of the given
neighbouring segments, while in the second step the extrapolation technique for the segments is
applied to restore the samples of the missing segment. The experimental results demonstrate that
the restoration error of the samples of the missing segment using the proposed algorithm is reduced
as compared with the Burg algorithm.
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1. Introduction

Time series in econometrics, biometrics, techniques and other applications in many cases
have missing data. Missing data are obtained by a variety of reasons. The missing data
can be caused by faulty equipment or as a result of outliers removal, or they may follow
a deterministic pattern due to inaccessibility of the data during curtain times. In radar
measurements of the Moon surface, it is observed a time series which represents the echo
of a radar signal transmitted to the Moon. In meteorology, the weather conditions may
disturb the equidistant sampling scheme. In paleodimatic data, the relation between the
chronological time and the physical depth causes an observed time series with missing
observations (Broersen et al., 2004). Signal losses may occur due to the presence of spu-
rious noises such as clicks, pops, and crackles which are associated with the reproduction
of old disk records (Esquef et al., 2003).

Restoration of missing data is the estimation of the lost samples of a signal using a
known samples at the neighbouring segments. Restoration of discrete missing data has
been approached through various methods. The finite interval likelihood minimization al-
gorithm ARFIL is a numerically stable method for estimating AR models from incomplete
data and was proposed by Broersen et al. (2004). Bos et al. (2008) introduced a new es-
timator that applies the Burg algorithm for autoregressive spectral estimation to unevenly
spaced data. The paper of Etter (1996) presents an algorithm for the interpolation of a
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missing signal segment on the assumption that the signal can be modeled as an autore-
gressive process. Janssen et al. (1986) investigate an adaptive algorithm for the restoration
of lost sample values in discrete-time signals that can be described by means of autoregres-
sive processor. The work of Esquef et al. (2003) addresses the reconstruction of missing
samples in audio signals via model-based schemes that employs a frequency-warped ver-
sion of Burg’s method and is advantageous for interpolation of long duration signal gaps.
In Paulikas and Navakauskas (2006) the problem of discrimination of homographs when
a lengthy segment of an uttered word is missing. The article of Dahimene et al. (2008)
deals with the problem of peak clipped speech with assumption that the clipped speech
is voiced and can be linearly predicted with high accuracy. In the paper of Rosen and Po-
rat (1989) the problem of spectral estimation through the autoregressive moving-average
modeling of stationary processes with missing observations based on the sample covari-
ances is presented. In the paper of Porat and Friendlander (1984) a new ARMA method
for spectral estimation problem with missing samples based on nonlinear optimization of
a weighted squared error criterion is proposed. The Burg algorithm for segments was ap-
plied by Waele and Broersen (2000). Investigation of Zgheib et al. (2008) deals with the
problem of adaptive reconstruction and identification of nonstationary AR process with
randomly missing observations. In the paper of Wolfe and Godsill (2005) the problem of
missing data interpolation over repeated short gaps in audio signals is analyzed.

Problem statement: consider a problem of restoration of a missing data segment in
relatively short data sequence on the assumption that the data can be modeled as a finite
order autoregressive process contaminated with the additive Gaussian noise. The restora-
tion must be done in such a way that the restored data fits the assumed model as well as
possible in the least square sense.

The aim of this paper is to present a new algorithm to restore the missing observations
of the signals in Gaussian additive noise using forward–backward approach and extrapo-
lation technique. The organization of the paper is as follows. Section 2 provides a descrip-
tion of the forward–backwardautoregressive parameter estimation approach. In Section 3,
we propose the missing data restoration algorithm. We evaluate the performance of the
proposed algorithm in Section 4. Conclusions are given in Section 5.

2. A Forward–Backward Autoregressive Parameter Estimation

Linear prediction plays an important role in computational and practical areas of signal
processing and deals with the problem of predicting the value x(n) of signal at the time
instant n by using a set of the samples from the same signal. The forward prediction
involves the prediction of the value x(n), n = 0,1, . . . ,N − 1 of a stochastic process
by using a linear combination of the past values x(n − 1), . . . , x(n − p) (Proakis and
Manolakis, 1996)

x̂(n) = −
p

∑

k=1

akx(n − k), (1)
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and the forward prediction error is

ef (n) = x(n) − x̂(n) =
p

∑

k=0

akx(n − k) = aT x(n), (2)

where aT = [1, a1, . . . , ap], xT (n) = [x(n), . . . , x(n − p)].
Thus the forward prediction error over the range p 6 n 6 N − 1 can be expressed as

a vector

ef = Xa, (3)

where ef = [e(p), . . . , e(N − 1)]T and X is the data matrix

X =









x(p) x(p − 1) . . . x(0)

x(p + 1) x(p) . . . x(1)
...

...
...

...

x(N − 1) x(N − 2) . . . x(N − p − 1)









. (4)

The backward prediction error is predicting the sample x(n − p) from the samples
{x(n − p + 1), . . . , x(n)}

x(n − p) = −
p

∑

k=1

bkx(n + k − p), (5)

where bk are the coefficients of the backward prediction filter.
The backward prediction error is

eb(n) = x(n − p) − x̂(n − p) =
p

∑

k=0

bkx(n + k − p) = bT x(n), (6)

where bT = [1, b1, . . . , bp].
The backward prediction error over the range p 6 n 6 N − 1 can be expressed as a

vector

eb = X̂b, (7)

where X̂ is the data matrix

X̂ =









x(N − p − 1) . . . x(N − 1)

x(N − p − 2) . . . x(N − 2)
...

...
...

x(0) . . . x(p)









. (8)
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The forward and backward estimates of parameters are different because the data read
forward and backward are different. We could improve performance by minimizing the
total forward and backward squared errors

Efb =
N−1
∑

n=p

(
∣

∣ef (n)
∣

∣

2 +
∣

∣eb(n)
∣

∣

2) =
∥

∥ef
∥

∥

2 +
∥

∥eb
∥

∥

2
, (9)

where

∥

∥ef
∥

∥

2 = aT XT Xa (10)

and

∥

∥eb
∥

∥

2 = bT X̂T X̂b. (11)

Substituting (10) and (11) in (9), we have

Efb = aT XT Xa + bT X̂T X̂b. (12)

The total error Efb is minimized under the constraint

afb = a = Jb, (13)

where J is the vector reversing operator, i.e., we have Jx = J [x(1), . . . , x(M)] =
[x(M), . . . , x(1)].

Substituting (13) into (12), we obtain

Efb = aT
(

XT X + X̂T X̂
)

a. (14)

We minimize (14) subject to the constraint that a0 = 1.
The problem can be solved by differentiating (14) according to a, i.e., we get

(Manolakis et al., 2005)

(

XT X + X̂T X̂
)

a =
(

Efb

0

)

. (15)

The time-averaged forward–backward correlation matrix

Rfb = XT X + X̂T X̂ (16)

is symmetric about both main diagonals elements r
fb
ij = rij + rp−i,p−j , 0 6 i, j 6 p.
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3. Proposed Missing Data Restoration Algorithm

In this section, we propose the missing data restoration algorithm. The restoration algo-
rithm is a two stage process: in the first stage, the AR model coefficients are estimated
using forward–backward autoregressive parameter estimation, and in the second stage the
estimates of the model coefficients are used to extrapolate the missing samples. The ex-
trapolation order depends on the number of extrapolated samples.

Consider a signal x(n) = {x1(n), x2(n), x3(n)}, n = 0,1, . . . , n − 1 where x1(n),
n = 0,1, . . . ,N1 − 1 is the first given segment of the signal x(n); x2(n), n = N1,N1 +
1, . . . ,N1 + N2 − 1 is the missing segment of the signal x(n), and x3(n), n = M,M +
1, . . . , n − 1, where M = N1 + N2, is the second given segment of the signal x(n).

For the first given segment x1(n), using forward–backward approach (15), we have
estimated the parameters ck , k = 1,2, . . . , p1 (c0 = 1) of the first AR model. The model
order p1 = floor( 2

3
N1 − 1), where the function floor(x) maps a real number x to the

largest previous integer, i.e., floor(x) = max{m ∈ Z!, m6 x}.
Similarly, for the second given segment x3(n), n = M,M + 1, . . . , n − 1, using

forward–backward approach (15), we have estimated the parameters dk , k = 1,2, . . . , p3

(d0 = 1), of the second AR model. The model order p3 = floor( 2
3
N3 − 1).

In the proposed algorithm, the first given segment x1(n), n = 0,1, . . . ,N1 − 1 is for-
ward extrapolated to get the forward estimates of missing samples. The forward extrapo-
lated estimates x

f

2 (N1), . . . , x
f

2 (N1 + N2 − 1) of missing samples, we have obtained as
follows:

x
f

2 (N1 + j) = −
p1(j)
∑

k=1

ckx1(N1 + j − k), j = 0,1, . . . ,N2 − 1, (17)

where the growing extrapolation order p1(j) = floor( 2
3
(N1 + j)), j = 0,1, . . . ,N2 − 1.

Similarly, the second given segment x3(n), n = M,M + 1, . . . , n − 1 is backward
extrapolated to get the backward estimates of missing samples. The backward extrapolated
estimates xb

2 (N1 +N2 −1), . . . , xb
2 (N1) of missing samples, we have computed as follows:

xb
2 (M − j) = −

p3(j)
∑

k=1

dkx3(M − j + k), j = 1,2, . . . ,N2, (18)

where the growing extrapolation order p3(j) = floor( 2
3
(N3 + j − 1)), j = 1,2, . . . ,N2.

The parameters, which were calculated by the forward–backward approach, are up-
dated each time to find the next estimate of missing sample, and every the extrapolated
missing sample is used to re-estimate the AR parameters ck and dk .

We can solve the missing data restoration task by weighting the forward extrapolated
and backward extrapolated estimates of missing samples. The restored missing segment
x̂2(n), n = N1,N1 + 1, . . . ,N1 + N2 − 1 can be written as a weighted sum (19).

x̂2(n) = wf (n)x
f

2 (n) + wb(n)Jxb
2 (n), (19)
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where the forward weighting sequence

wf (n) = 0.5 − 0.5 cos

(

π

(

1 + n

N2

))

, (20)

and the backward weighting sequence

wb(n) = 0.5 − 0.5 cos

(

π
n

N2

)

. (21)

4. Simulation Results

In this section, we examine the performance of the proposed algorithm and compare the
results with that of the Burg algorithm. To investigate the abilities of the proposed ap-
proach, we have generated a signal from the signal generator comprised of four sinusoids
(M = 4) embedded in the noise

x(n) = s(n) + w(n) =
M

∑

i=1

cos(2πfin) + w(n), n = 0, . . . ,199 (22)

with normalized frequencies f1 = 0.15, f2 = 0.3, f3 = 0.32, f4 = 0.38, and w(n) is a
zero-mean white Gaussian noise with the unit variance σ 2

w = 1. To get the desired signal-
to-noise ratio (SNR) from the signal generator, the output signal is defined by

x(n) = s(n) + kw(n), (23)

in which the coefficient k is computed such that

SNR = 10 log
Ps

k2Pw

, (24)

where Ps = 1
N

∑N
n=1 s2(n), Pw = 1

N

∑N
n=1 w2(n), and N is the length of the s(n) and

w(n).
From (24) we obtain that for desired SNR, the coefficient k is calculated as follows

k =
√

Ps√
Pw

10− SNR
20 . (25)

To evaluate the accuracy of the algorithm, we define the mean absolute error (MAE) of
missing samples restoration as follows:

MAE = 1

N2

N1+N2−1
∑

n=N1

∣

∣x2(n) − x̂2(n)
∣

∣, (26)
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where N2 is the number of missing samples, x2(n) are true samples, and x̂2(n) are restored
missing samples.

Considering the restoration error as a noise, the signal to noise ratio (STNR) is defined
as

STNR = 10 log

∑N1+N2−1
n=N1

x2
2(n)

∑N1+N2−1
n=N1

(x2(n) − x̂2(n))2
. (27)

Tables 1–3 illustrate the error estimates MAE and STNR averaged by L = 200 ex-
periments and their confidence intervals 1 = ±tα/2;L−1

σ̂√
L

, in which σ̂ is the estimate

of the standard deviation and α is the significance level. The value tα/2;L−1 is the point

Table 1
Mean absolute error (MAE), and signal to noise ratio (STNR) with confidence intervals 1 versus SNR.

SNR (dB) MAE STNR (dB)

0 1.4701 ± 0.1770 0.8481±0.2573

10 0.5916 ± 0.0988 5.9846±1.1879

30 0.1398 ± 0.0368 18.3454±1.3559

50 0.0755 ± 0.0013 23.2654±1.2970

100 0.0312 ± 0.0009 30.6215±0.3759

The signal x(n) length n = 200; the predictive filter order p = 16; missing samples are in the interval (75,125);
Monte Carlo runs are equal to 200.

Table 2
Mean absolute error (MAE), and signal to noise ratio (STNR) with confidence intervals 1 versus the number

of missing samples N2 .

N2 MAE STNR (dB)

10 0.5563 ± 0.1229 6.6404 ± 1.5183

30 0.7042 ± 0.1140 5.4176 ± 1.2039

50 0.8472 ± 0.1346 3.2107 ± 1.2111

100 0.8133 ± 0.1340 3.2634 ± 1.0968

130 1.0156 ± 0.1512 1.7054 ± 1.5933

The signal x(n) length n = 200; the predictive filter order p = 16; SNR = 10 dB; Monte Carlo runs are equal
to 200.

Table 3
Mean absolute error (MAE), and signal to noise ratio (STNR) with confidence intervals 1 versus the

predictive filter order p.

p MAE STNR (dB)

5 1.2484 ± 0.0774 0.0251 ± 0.0192

15 0.9587 ± 0.1035 2.1748 ± 0.6442

20 0.6953 ± 0.0831 4.8401 ± 0.7119

30 0.5049 ± 0.0641 7.4029 ± 0.8896

40 0.5545 ± 0.1043 6.7874 ± 1.1484

The signal x(n) length n = 200; missing samples are in the interval (75,125); SNR = 10 dB; Monte Carlo runs
are equal to 200.
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Fig. 1. Missing data estimates: (a) signal x(n) generated according to (23) (SNR = 57 dB); (b) signal x(n) with
missing samples in the interval (50,150); (c) restored signal x(n); (d) MAE versus SNR; (e) STNR versus SNR;
model order p = 18.

of Student’s distribution with L − 1 degrees of freedom which cuts the α/2 part of the
distribution. In case α = 0.05 and L = 200, we find from Student’s distribution table that
t0.025;199 = 1.9720.

Table 1 shows the mean absolute error (MAE) and the signal to noise ratio (STNR) as
a function of SNR. The MAE decreases and STNR increases with an increase of SNR.
From Table 2, it follows that MAE increases and STNR decreases if missing samples N2

increase. As we can see from Table 3, the MAE decreases and STNR increases with an
increase of model order p.

In the first experiment, we have generated the signal x(n), n = 0,1, . . . ,199 with
SNR = 57 dB (Fig. 1(a)). The signal x(n) with missing samples in the interval (50,150)

is shown in Fig. 1(b). The restored signal is shown in Fig. 1(c). Figure 1(d) shows MAE
dependence on SNR, and in Fig. 1(e), we show STNR dependence on SNR. Model order
p = 18.

In the second experiment, the same signal x(n) was generated with SNR = 10 dB
(Fig. 2(a)). The signal x(n) with missing samples in the interval (30,145) is shown in
Fig. 2(b), and restored signal is shown in the Fig. 2(c). In Fig. 2(d), the relation between
STNR and the number of missing samples is shown. Model order p = 16.

In the third experiment, we have analyzed how performance of the proposed algo-
rithm depends on model order p. We generated the same signal x(n) with SNR =
0 dB (Fig. 3(a)). In Fig. 3(b), we show signal x(n) with missing samples in the inter-
val (75,125). Figure 3(c) shows the restored signal. In Fig. 3(d), (e), the relation between
restoration errors MAE and STNR, and the model order p is shown.

In Fig. 4, the relation between STNR and SNR for the proposed algorithm (◦), and the
Burg algorithm (∗) is presented in case when model order p = 18, and missing samples
are in the interval (50,150).

In Fig. 5, we show performance criterion STNR versus missing data for Burg algo-
rithm (∗), and the proposed algorithm (◦) in case when SNR = 10 dB. Model order
p = 18.
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Fig. 2. Missing data estimates: (a) signal x(n) generated according to (23) (SNR = 10 dB); (b) signal x(n)

with missing samples in the interval (30,145); (c) restored signal x(n); (d) MAE versus the number of missing
samples from 5 to 115; model order p = 16.
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Fig. 3. Missing data estimates: (a) signal x(n) generated according to (23) (SNR = 0 dB); (b) signal x(n) with
missing samples in the interval (75,125); (c) restored signal x(n); (d) MAE versus model order p; (e) STNR
versus model order p.
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Fig. 4. STNR versus SNR: Results for comparative study between the proposed algorithm (◦) and the Burg
algorithm (∗). Missing samples are in the interval (50,150). Model order p = 18.
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Fig. 5. STNR versus missing data. Results for comparative study between the proposed Fig. 5. STNR versus missing data: Results for comparative study between the proposed algorithm (◦) and the
Burg algorithm (∗). SNR = 10 dB. Model order p = 18.
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Fig. 6. MAE versus SNR. (o) missing samples are replaced with samples from given 
Fig. 6. MAE versus SNR: (◦) missing samples are replaced with samples from given earlier samples; (×) miss-
ing samples are replaced with zeros; (∗) missing samples are restored according to the proposed algorithm.
Missing samples are in the interval (70,120). Model order p = 18.

Figure 6 shows the dependence of the restoration error MAE on SNR. Model order
p = 18. Missing samples are in the interval (70,120). We analyze three cases: missing
samples are restored using the proposed algorithm (∗), missing samples are replaced with
zeros (x), and missing samples are replaced with samples from the given earlier sam-
ples (◦).

5. Conclusions

We have presented the missing data restoration algorithm which uses the forward–
backward AR model parameter estimates of neighbouring segments and the extrapola-
tion technique. As neighbouring segments are modeled separately, the proposed algorithm
may be applied for the restoration of missing samples of the non-stationary signals. The
restoration error is minimized using the forward–backward signal model and the infor-
mation from the neighbouring segments. Accurate restoration of the missing segment is
possible if the signal is predictable, i.e., if the missing samples carry no more informa-



Missing Data Restoration Algorithm 219

tion than that included in the given segments. For deterministic signals without noise,
restoration error is zero, but for deterministic signals in noise, the accurate missing data
restoration is impossible. The restoration error depends on the model order, signal to noise
ratio, number of missing samples, and on the accuracy of the estimated parameters from
the incomplete data. Restoration error increases with increasing length of the missing seg-
ment. The restoration error is largest in the middle of the missing segment. The simulation
results also showed that in many cases the proposed algorithm reduces the missing data
restoration error as compared with the Burg algorithm.
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Prarastųjų duomenų atkūrimo algoritmas

Kazys KAZLAUSKAS, Rimantas PUPEIKIS

Straipsnyje pasiūlytas prarastųjų duomenų atkūrimo algoritmas esant Gauso triukšmams panaudo-
jant autoregresijos parametrų tiesioginio bei atgalinio įvertinimo metodą ir ekstrapoliavimą. Pir-
miausia, tiesioginio bei atgalinio parametrų įvertinimo metodu įvertinami gretimų segmentų para-
metrai. Po to, panaudojus ekstrapoliavimo metodą gretimiems segmentams, atkuriami prarastieji
duomenys. Eksperimento rezultatai parodė, kad šis metodas yra pranašesnis už Burgo metodą.


