
SPH SPH
JWDD053-FM JWDD053-Markov March 8, 2007 22:51 Char Count= 0

DATA MINING
THE WEB
Uncovering Patterns in
Web Content, Structure,
and Usage

ZDRAVKO MARKOV AND DANIEL T. LAROSE
Central Connecticut State University
New Britain, CT

WILEY-INTERSCIENCE
A JOHN WILEY & SONS, INC., PUBLICATION

iii

SPH SPH
JWDD053-FM JWDD053-Markov March 8, 2007 22:51 Char Count= 0

Copyright C© 2007 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax
978-750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
201-748–6011, fax 201-748–6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or completeness
of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness
for a particular purpose. No warranty may be created or extended by sales representatives or written sales
materials. The advice and strategies contained herein may not be suitable for your situation. You should
consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss
of profit or any other commercial damages, including but not limited to special, incidental, consequential,
or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at 877-762-2974, outside the United States at 317-
572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Wiley Bicentennial Logo: Richard J. Pacifico

Library of Congress Cataloging-in-Publication Data:

Markov, Zdravko, 1956–
Data-mining the Web : uncovering patterns in Web content, structure, and usage /

by Zdravko, Markov & Daniel T. Larose.
p. cm.

Includes index.
978-0-471-66655-4 (cloth)
1. Data mining. 2. Web databases. I. Larose, Daniel T. II. Title.

QA76.9.D343M38 2007
005.74 – dc22

2006025099

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

iv

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

SPH SPH
JWDD053-FM JWDD053-Markov March 8, 2007 22:51 Char Count= 0

For my children
Teodora, Kalin, and Svetoslav

– Z.M.

For my children
Chantal, Ellyriane, Tristan, and Ravel

– D.T.L.

v

SPH SPH
JWDD053-FM JWDD053-Markov March 8, 2007 22:51 Char Count= 0

CONTENTS

PREFACE xi

PART I

WEB STRUCTURE MINING

1 INFORMATION RETRIEVAL AND WEB SEARCH 3

Web Challenges 3

Web Search Engines 4

Topic Directories 5

Semantic Web 5

Crawling the Web 6

Web Basics 6

Web Crawlers 7

Indexing and Keyword Search 13

Document Representation 15

Implementation Considerations 19

Relevance Ranking 20

Advanced Text Search 28

Using the HTML Structure in Keyword Search 30

Evaluating Search Quality 32

Similarity Search 36

Cosine Similarity 36

Jaccard Similarity 38

Document Resemblance 41

References 43

Exercises 43

2 HYPERLINK-BASED RANKING 47

Introduction 47

Social Networks Analysis 48

PageRank 50

Authorities and Hubs 53

Link-Based Similarity Search 55

Enhanced Techniques for Page Ranking 56

References 57

Exercises 57

vii

SPH SPH
JWDD053-FM JWDD053-Markov March 8, 2007 22:51 Char Count= 0

viii CONTENTS

PART II

WEB CONTENT MINING

3 CLUSTERING 61

Introduction 61

Hierarchical Agglomerative Clustering 63

k-Means Clustering 69

Probabilty-Based Clustering 73

Finite Mixture Problem 74

Classification Problem 76

Clustering Problem 78

Collaborative Filtering (Recommender Systems) 84

References 86

Exercises 86

4 EVALUATING CLUSTERING 89

Approaches to Evaluating Clustering 89

Similarity-Based Criterion Functions 90

Probabilistic Criterion Functions 95

MDL-Based Model and Feature Evaluation 100

Minimum Description Length Principle 101

MDL-Based Model Evaluation 102

Feature Selection 105

Classes-to-Clusters Evaluation 106

Precision, Recall, and F-Measure 108

Entropy 111

References 112

Exercises 112

5 CLASSIFICATION 115

General Setting and Evaluation Techniques 115

Nearest-Neighbor Algorithm 118

Feature Selection 121

Naive Bayes Algorithm 125

Numerical Approaches 131

Relational Learning 133

References 137

Exercises 138

PART III

WEB USAGE MINING

6 INTRODUCTION TO WEB USAGE MINING 143

Definition of Web Usage Mining 143

Cross-Industry Standard Process for Data Mining 144

Clickstream Analysis 147

SPH SPH
JWDD053-FM JWDD053-Markov March 8, 2007 22:51 Char Count= 0

CONTENTS ix

Web Server Log Files 148

Remote Host Field 149

Date/Time Field 149

HTTP Request Field 149

Status Code Field 150

Transfer Volume (Bytes) Field 151

Common Log Format 151

Identification Field 151

Authuser Field 151

Extended Common Log Format 151

Referrer Field 152

User Agent Field 152

Example of a Web Log Record 152

Microsoft IIS Log Format 153

Auxiliary Information 154

References 154

Exercises 154

7 PREPROCESSING FOR WEB USAGE MINING 156

Need for Preprocessing the Data 156

Data Cleaning and Filtering 158

Page Extension Exploration and Filtering 161

De-Spidering the Web Log File 163

User Identification 164

Session Identification 167

Path Completion 170

Directories and the Basket Transformation 171

Further Data Preprocessing Steps 174

References 174

Exercises 174

8 EXPLORATORY DATA ANALYSIS FOR WEB USAGE MINING 177

Introduction 177

Number of Visit Actions 177

Session Duration 178

Relationship between Visit Actions and Session Duration 181

Average Time per Page 183

Duration for Individual Pages 185

References 188

Exercises 188

9 MODELING FOR WEB USAGE MINING: CLUSTERING,
ASSOCIATION, AND CLASSIFICATION 191

Introduction 191

Modeling Methodology 192

Definition of Clustering 193

The BIRCH Clustering Algorithm 194

Affinity Analysis and the A Priori Algorithm 197

SPH SPH
JWDD053-FM JWDD053-Markov March 8, 2007 22:51 Char Count= 0

x CONTENTS

Discretizing the Numerical Variables: Binning 199

Applying the A Priori Algorithm to the CCSU Web Log Data 201

Classification and Regression Trees 204

The C4.5 Algorithm 208

References 210

Exercises 211

INDEX 213

SPH SPH
JWDD053-FM JWDD053-Markov March 15, 2007 21:2 Char Count= 0

PREFACE

DEFINING DATA MINING THE WEB

By data mining the Web, we refer to the application of data mining methodologies,
techniques, and models to the variety of data forms, structures, and usage patterns
that comprise the World Wide Web. As the subtitle indicates, we are interested in
uncovering patterns and trends in the content, structure, and use of the Web. A good
definition of data mining is that in Principles of Data Mining by David Hand, Heikki
Mannila, and Padhraic Smyth (MIT Press, Cambridge, MA, 2001): “Data mining is
the analysis of (often large) observational data sets to find unsuspected relationships
and to summarize the data in novel ways that are both understandable and useful to the
data owner.” Data Mining the Web: Uncovering Patterns in Web Content, Structure,
and Usage demonstrates how to apply data mining methods and models to Web-based
data forms.

THE DATA MINING BOOK SERIES

This book represents the third volume in a data mining book series. The first volume
in this series, Discovering Knowledge in Data: An Introduction to Data Mining, by
Daniel Larose, appeared in 2005, and introduced the reader to this rapidly growing
field of data mining. The second volume in the series, Data Mining Methods and
Models, by Daniel Larose, appeared in 2006, and explores the process of data mining
from the point of view of model building—the development of complex and powerful
predictive models that can deliver actionable results for a wide range of business
and research problems. Although Data Mining the Web: Uncovering Patterns in Web
Content, Structure, and Usage serves well as a stand-alone resource for learning how
to apply data mining techniques to Web-based data, reference is sometimes made to
more complete coverage of certain topics in the earlier volumes.

HOW THE BOOK IS STRUCTURED

The book is presented in three parts.

Part I: Web Structure Mining

In Part I we discuss basic ideas and techniques for extracting text information from the
Web, including collecting and indexing web documents and searching and ranking

xi

SPH SPH
JWDD053-FM JWDD053-Markov March 15, 2007 21:2 Char Count= 0

xii PREFACE

web pages by their textual content and hyperlink structure. Part I contains two chapters,
Chapter 1, Information Retrieval and Web Search; and Chapter 2, Hyperlink-Based
Ranking.

Part II: Web Content Mining

Machine learning and data mining approaches organize the Web by content and thus
respond directly to the major challenge of turning web data into web knowledge. In Part
II we focus on two approaches to organizing the Web, clustering and classification. Part
II consists of three chapters: Chapter 3, Clustering; Chapter 4, Evaluating Clustering;
and Chapter 5, Classification.

Part III: Web Usage Mining

Web usage mining refers to the application of data mining methods for uncovering
usage patterns from Web data. Web usage mining differs from web structure mining
and web content mining in that web usage mining reflects the behavior of humans as
they interact with the Internet. Part III consists of four chapters: Chapters 6, Introduc-
tion to Web Usage Mining; Chapter 7, Preprocessing for Web Usage Mining; Chapter
8, Exploratory Data Analysis for Web Usage Mining; and Chapter 9, Modeling for
Web Usage Mining: Clustering, Association, and Classification.

WHY THE BOOK IS NEEDED

The book provides the reader with:

� The models and techniques to uncover hidden nuggets of information in Web-
based data

� Insight into how web mining algorithms really work
� The experience of actually performing web mining on real-world data sets

“WHITE-BOX” APPROACH: UNDERSTANDING
THE UNDERLYING ALGORITHMIC AND
MODEL STRUCTURES

The best way to avoid costly errors stemming from a blind black-box approach to data
mining, is to apply, instead, a white-box methodology, which emphasizes an under-
standing of the algorithmic and statistical model structures underlying the software.
The book, applies this white-box approach by:

� Walking the reader through various algorithms
� Providing examples of the operation of web mining algorithms on actual large

data sets

SPH SPH
JWDD053-FM JWDD053-Markov March 15, 2007 21:2 Char Count= 0

PREFACE xiii

� Testing the reader’s level of understanding of the concepts and algorithms
� Providing an opportunity for the reader to do some real web mining on large

Web-based data sets

Algorithm Walk-Throughs

The book walks the reader through the operations and nuances of various algorithms,
using small sample data sets, so that the reader gets a true appreciation of what is
really going on inside an algorithm. For example, in Chapter 1, we demonstrate the
nuts and bolts of relevance ranking, similarity searching, and other topics, using a
particular small web data set. The reader can perform the same analysis in parallel,
and therefore understanding is enhanced.

Applications of Algorithms and Models to Large Data Sets

The book provides examples of the application of the various algorithms and models
on actual large data sets. For example, in Chapter 7 data cleaning, de-spidering,
session identification, and other tasks are carried out on two real-world large web log
databases, from the Web sites for NASA and Central Connecticut State University.
All data sets used throughout the book are available for free download from the book
series Web site, www.dataminingconsultant.com.

Chapter Exercises: Checking to Make Sure That You
Understand It

The book includes over 100 chapter exercises, which allow readers to assess their
depth of understanding of the material, as well as to have a little fun playing with
numbers and data. These include exercises designed to (1) clarify some of the more
challenging concepts in data mining, and (2) challenge the reader to apply the par-
ticular data mining algorithm to a small data set and, step by step, to arrive at a
computationally sound solution. For example, in Chapter 4 readers are asked to run
a series of experiments comparing the efficacy of a variety of clustering algorithms
applied to the “Top 100 Websites” data set.

Hands-on Analysis: Learn Data Mining by Doing Data Mining

Nearly every chapter provides the reader with hands-on analysis problems, repre-
senting an opportunity for the reader to apply his or her newly acquired data mining
expertise to solving real problems using large data sets. Many people learn by doing.
The book provides a framework by which the reader can learn data mining by doing
data mining. For example, in Chapter 8 readers are challenged to provide detailed
reports and summaries for real-world web log data. The 34 tasks include finding
the average time per page view, constructing a table of the most popular directories,
and so on.

SPH SPH
JWDD053-FM JWDD053-Markov March 15, 2007 21:2 Char Count= 0

xiv PREFACE

DATA MINING AS A PROCESS

The book continues the coverage of data mining as a process. The particular standard
process used is the CRISP-DM framework: the cross-industry standard process for
data mining. CRISP-DM demands that data mining be seen as an entire process, from
communication of the business problem through data collection and management,
data preprocessing, model building, model evaluation, and finally, model deploy-
ment. Therefore, this book is not only for analysts and managers, but also for data
management professionals, database analysts, decision makers, and others who would
like to leverage their repositories of Web-based data.

THE SOFTWARE

The software used in this book includes the following:

� WEKA open-source data mining software
� Clementine data mining software suite.

The Weka (Waikato Environment for Knowledge Analysis) machine learn-
ing workbench is open-source software issued under the GNU General Public
License, which includes a collection of tools for completing many data min-
ing tasks. The book uses Weka throughout Parts I and II. For more informa-
tion regarding Weka, see http://www.cs.waikato.ac.nz/∼ml/. Clementine
(http://www.spss.com/clementine/) is one of the most widely used data min-
ing software suites and is distributed by SPSS. Clementine is used throughout Part
III.

THE COMPANION WEB SITE:
www.dataminingconsultant.com

The reader will find supporting materials for both this book and the
other data mining books in this series at the companion Web site,
www.dataminingconsultant.com. There one may download the many data sets
used in the book, so that the reader may develop a hands-on feeling for the analytic
methods and models encountered throughout the book. Errata are also available, as
is a comprehensive set of data mining resources, including links to data sets, data
mining groups, and research papers.

The real power of the companion Web site is available to faculty adopters of
the textbook, who will have access to the following resources:

� Solutions to all the exercises, including hands-on analyses
� Powerpoint presentations of each chapter, ready for deployment in the class-

room

SPH SPH
JWDD053-FM JWDD053-Markov March 15, 2007 21:2 Char Count= 0

PREFACE xv

� Sample data mining course projects, written by the authors for use in their own
courses, and ready to be adapted for your course

� Real-world data sets, to be used with the course projects.
� Multiple-choice chapter quizzes
� Chapter-by-chapter web resources

DATA MINING THE WEB AS A TEXTBOOK

The book naturally fits the role of a textbook for an introductory course in web mining.
Instructors may appreciate:

� The “white-box” approach, emphasizing an understanding of the underlying
algorithmic structures
◦ Algorithm walk-throughs
◦ Application of the algorithms to large data sets
◦ Chapter exercises
◦ Hands-on analysis

� The logical presentation, flowing naturally from the CRISP-DM standard pro-
cess and the set of web mining tasks

� The companion Web site, providing the array of resources for adopters detailed
above

The book is appropriate for advanced undergraduate or graduate-level courses.
An introductory statistics course would be nice, but is not required. No prior computer
programming or database expertise is required.

ACKNOWLEDGMENTS

The material for web content and structure mining is based on the web mining course
that I developed and taught for the graduate CIT program at Central Connecticut
State University. The student projects and some exercises from this course were then
used in the artificial intelligence course that I taught for the CS program at the same
school. Some material from my data mining and machine learning courses taught for
the data mining program at CCSU is also included. I am grateful to my students from
all these courses for their inspirational enthusiasm and valuable feedback. The book
was written while I was on sabbatical leave, spent in my home country, Bulgaria,
sharing my time between family and writing. I wish to thank my children, Teodora
and Kalin, and my wife, Irena, for their patience and understanding during that time.

Zdravko Markov, Ph.D.
Department of Computer Science

Central Connecticut State University
www.cs.ccsu.edu/∼markov/

SPH SPH
JWDD053-FM JWDD053-Markov March 16, 2007 15:53 Char Count= 0

xvi PREFACE

I would like to thank all the folks at Wiley, especially editor Paul Petralia,
for their guidance and support. Je suis également reconnaissant à ma rédactrice
et amie Val Moliere, qui a insisté pour que cette série de livres devienne réalité.
I also wish to thank Dr. Chun Jin, Dr. Daniel S. Miller, Dr. Roger Bilisoly, Dr. Darius
Dziuda, and Dr. Krishna Saha, my colleagues in the Master of Science in data min-
ing program at Central Connecticut State University, Dr. Timothy Craine, Chair of
the Department of Mathematical Sciences at CCSU, Dr. Dipak K. Dey, Chair of the
Department of Statistics at the University of Connecticut, and Dr. John Judge, Chair
of the Department of Mathematics at Westfield State College. Thanks to my daughter,
Chantal, for her precious love and gentle insanity. Thanks to my twin children, Tristan
and Ravel, for sharing the computer and for sharing their true perspective. Above all,
I extend my deepest gratitude to my darling wife, Debra J. Larose, for her support,
understanding, and love. “Say you’ll share with me one love, one lifetime. . . .”

Daniel T. Larose, Ph.D.
Professor of Statistics

Director, Data Mining @CCSU
Department of Mathematical Sciences

Central Connecticut State University
www.math.ccsu.edu/larose

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

PARTI
WEB STRUCTURE
MINING

I n the first part of the book we discuss basic ideas and techniques for
extracting text information from the Web, including collecting and indexing

web documents and searching and ranking web pages by their textual content
and hyperlink structure. We first discuss the motivation to organize the web
content and find better ways for web search to make the vast knowledge on
the Web easily accessible. Then we describe briefly the basics of the Web and
explore the approaches taken by web search engines to retrieve web pages
by keyword search. To do this we look into the technology for text analysis
and search developed earlier in the area of information retrieval and extended
recently with ranking methods based on web hyperlink structure.

All that may be seen as a preprocessing step in the overall process of data
mining the web content, which provides the input to machine learning methods
for extracting knowledge from hypertext data, discussed in the second part of
the book.

Data Mining the Web: Uncovering Patterns in Web Content, Structure, and Usage
By Zdravko Markov and Daniel T. Larose Copyright C© 2007 John Wiley & Sons, Inc.

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

CHAPTER 1
INFORMATION RETRIEVAL
AND WEB SEARCH

WEB CHALLENGES

CRAWLING THE WEB

INDEXING AND KEYWORD SEARCH

EVALUATING SEARCH QUALITY

SIMILARITY SEARCH

WEB CHALLENGES

As originally proposed by Tim Berners-Lee [1], the Web was intended to improve the
management of general information about accelerators and experiments at CERN.
His suggestion was to organize the information used at that institution in a graphlike
structure where the nodes are documents describing objects, such as notes, articles,
departments, or persons, and the links are relations among them, such as “depends on,”
“is part of,” “refers to,” or “uses.” This seemed suitable for a large organization like
CERN, and soon after it appeared that the framework proposed by Berners-Lee was
very general and would work very well for any set of documents, providing flexibility
and convenience in accessing large amounts of text. A very important development
of this idea was that the documents need not be stored at the same computer or
database but rather, could be distributed over a network of computers. Luckily, the
infrastructure for this type of distribution, the Internet, had already been developed.
In short, this is how the Web was born.

Looking at the Web many years later and comparing it to the original proposal
of 1989, we see two basic differences:

1. The recent Web is huge and grows incredibly fast. About 10 years after the
Berners-Lee proposal, the Web was estimated to have 150 million nodes (pages)
and 1.7 billion edges (links). Now it includes more than 4 billion pages, with
about 1 million added every day.

Data Mining the Web: Uncovering Patterns in Web Content, Structure, and Usage
By Zdravko Markov and Daniel T. Larose Copyright C© 2007 John Wiley & Sons, Inc.

3

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

4 CHAPTER 1 INFORMATION RETRIEVAL AND WEB SEARCH

2. The formal semantics of the Web is very restricted—nodes are simply web
pages and links are of a single type (e.g., “refer to”). The meaning of the nodes
and links is not a part of the web system; rather, it is left to web page developers
to describe in the page content what their web documents mean and what types
of relations they have with the documents to which they are linked. As there is
neither a central authority nor editors, the relevance, popularity, and authority
of web pages are hard to evaluate. Links are also very diverse, and many have
nothing to do with content or authority (e.g., navigation links).

The Web is now the largest, most open, most democratic publishing system
in the world. From a publishers’ (web page developers’) standpoint, this is a great
feature of the Web—any type of information can be distributed worldwide with no
restriction on its content, and most important, using the developer’s own interpretation
of the web page and link meaning. From a web user’s point of view, however, this is
the worst thing about the Web. To determine a document’s type the user has to read
it all. The links simply refer to other documents, which means again that reading the
entire set of linked documents is the only sure way to determine the document types
or areas. This type of document access is directly opposite to what we know from
databases and libraries, where all data items or documents are organized in various
ways: by type, topic, area, author, year, and so on. Using a library in a “weblike”
manner would mean that one has first to read the entire collection of books (or at least
their titles and abstracts) to find the one in the area or topic that he or she needs. Even
worse, some web page publishers cheat regarding the content of their pages, using
titles or links with attractive names to make the user visit pages that he or she would
never look at otherwise.

At the same time, the Web is the largest repository of knowledge in the world, so
everyone is tempted to use it, and every time that one starts exploring the Web, he or
she knows that the piece of information sought is “out there.” But the big question is
how to find it. Answering this question has been the basic driving force in developing
web search technologies, now widely available through web search engines such
as Google, Yahoo!, and many others. Other approaches have also been taken: Web
pages have been manually edited and organized into topic directories, or data mining
techniques have been used to extract knowledge from the Web automatically.

To summarize, the challenge is to bring back the semantics of hypertext docu-
ments (something that was a part of the original web proposal of Berners-Lee) so that
we can easily use the vast amount of information available. In other words, we need
to turn web data into web knowledge. In general, there are several ways to achieve
this: Some use the existing Web and apply sophisticated search techniques; others
suggest that we change the way in which we create web pages. We discuss briefly
below the three main approaches.

Web Search Engines

Web search engines explore the existing (semantics-free) structure of the Web and try
to find documents that match user search criteria: that is, to bring semantics into the
process of web search. The basic idea is to use a set of words (or terms) that the user

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

WEB CHALLENGES 5

specifies and retrieve documents that include (or do not include) those words. This
is the keyword search approach, well known from the area of information retrieval
(IR). In web search, further IR techniques are used to avoid terms that are too general
and too specific and to take into account term distribution throughout the entire body
of documents as well as to explore document similarity. Natural language processing
approaches are also used to analyze term context or lexical information, or to combine
several terms into phrases. After retrieving a set of documents ranked by their degree
of matching the keyword query, they are further ranked by importance (popularity,
authority), usually based on the web link structure. All these approaches are discussed
further later in the book.

Topic Directories

Web pages are organized into hierarchical structures that reflect their meaning. These
are known as topic directories, or simply directories, and are available from almost all
web search portals. The largest is being developed under the Open Directory Project
(dmoz.org) and is used by Google in their Web Directory: “the Web organized by
topic into categories,” as they put it. The directory structure is often used in the process
of web search to better match user criteria or to specialize a search within a specific
set of pages from a given category. The directories are usually created manually with
the help of thousands of web page creators and editors. There are also approaches
to do this automatically by applying machine learning methods for classification and
clustering. We look into these approaches in Part II.

Semantic Web

Semantic web is a recent initiative led by the web consortium (w3c.org). Its main ob-
jective is to bring formal knowledge representation techniques into the Web. Currently,
web pages are designed basically for human readers. It is widely acknowledged that
the Web is like a “fancy fax machine” used to send good-looking documents world-
wide. The problem here is that the nice format of web pages is very difficult for
computers to understand—something that we expect search engines to do. The main
idea behind the semantic web is to add formal descriptive material to each web page
that although invisible to people would make its content easily understandable by
computers. Thus, the Web would be organized and turned into the largest knowledge
base in the world, which with the help of advanced reasoning techniques developed in
the area of artificial intelligence would be able not just to provide ranked documents
that match a keyword search query, but would also be able to answer questions and give
explanations. The web consortium site (http://www.w3.org/2001/sw/) provides
detailed information about the latest developments in the area of the semantic web.

Although the semantic web is probably the future of the Web, our focus is on
the former two approaches to bring semantics to the Web. The reason for this is that
web search is the data mining approach to web semantics: extracting knowledge from
web data. In contrast, the semantic web approach is about turning web pages into
formal knowledge structures and extending the functionality of web browsers with
knowledge manipulation and reasoning tools.

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

6 CHAPTER 1 INFORMATION RETRIEVAL AND WEB SEARCH

CRAWLING THE WEB

In this and later sections we use basic web terminology such as HTML, URL, web
browsers, and servers. We assume that the reader is familiar with these terms, but for
the sake of completeness we provide a brief introduction to web basics.

Web Basics

The Web is a huge collection of documents linked together by references. The mecha-
nism for referring from one document to another is based on hypertext and embedded
in the HTML (HyperText Markup Language) used to encode web documents. HTML
is primarily a typesetting language (similar to Tex and LaTex) that describes how
a document should be displayed in a browser window. Browsers are computer pro-
grams that read HTML documents and display them accordingly, such as the popular
browsers Microsoft Internet Explorer and Netscape Communicator. These programs
are clients that connect to web servers that hold actual web documents and send those
documents to the browsers by request. Each web document has a web address called
the URL (universal resource locator) that identifies it uniquely. The URL is used by
browsers to request documents from servers and in hyperlinks as a reference to other
web documents. Web documents associated with their web addresses (URLs) are
usually called web pages.

A URL consists of three segments and has the format

<protocol name>://<machine name>/<file name>,

where <protocol name> is the protocol (a language for exchanging information)
that the browser and the server use to communicate (HTTP, FTP, etc.), <machine
name> is the name (the web address) of the server, and <file name> is the directory
path showing where the document is stored on the server. For example, the URL

http://dmoz.org/Computers/index.html

points to an HTML document stored on a file named “index.html” in the folder
“Computers” located on the server “dmoz.org.” It can also be written as

http://dmoz.org/Computers/

because the browser automatically looks for a file named index. html if only a folder
name is specified.

Entering the URL in the address window makes the browser connect to the web
server with the corresponding name using the HyperText Transport Protocol (HTTP).
After a successful connection, the HTML document is fetched and its content is
shown in the browser window. Some intermediate steps are taking place meanwhile,
such as obtaining the server Internet address (called the IP address) from a domain
name server (DNS), establishing a connection with the server, and exchanging com-
mands. However, we are not going into these details, as they are not important for our
discussion here.

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

CRAWLING THE WEB 7

Along with its informational content (formatted text and images), a web page
usually contains URLs pointing to other web pages. These URLs are encoded in
the tag structure of the HTML language. For example, the document index.html at
http://dmoz.org/Computers/ includes the following fragment:

<table border=0>

<tr><td valign=top>

Algorithms

<i>(367)</i>

The URL in this HTML fragment, /Computers/Algorithms/, is the text
that appears quoted in the <a> tag preceded by href. This is a local URL, a part
of the complete URL (http://dmoz.org/Computers/Algorithms/), which the
browser creates automatically by adding the current protocol name (http) and server
address (dmoz.org). Here is another fragment from the same page that includes
absolute URLs.

Visit our sister sites

mozilla.org|

ChefMoz

Another important part of the web page linking mechanism is the anchor, the text
or image in the web page that when clicked makes the browser fetch the web page that
is pointed to by the corresponding link. Anchor text is usually displayed emphasized
(underlined or in color) so that it can be spotted easily by the user. For example, in
the HTML fragment above, the anchor text for the URL http://mozilla.org/ is
“mozilla.org” and that for http://chefmoz.org/ is “ChefMoz.”

The idea of the anchor text is to suggest the meaning or content of the web page
to which the corresponding URL is pointing so that the user can decide whether or
not to visit it. This may appear similar to Berners-Lee’s idea in the original web
proposal to attach different semantics to the web links, but there is an important
difference here. The anchor is simply a part of the web page content and does not
affect the way the page is processed by the browser. For example, spammers may
take advantage of this by using anchor text with an attractive name (e.g., summer
vacation) to make user visit their pages, which may not be as attractive (e.g., online
pharmacy). We discuss approaches to avoid this later.

Formally, the Web can be seen as a directed graph, where the nodes are web
pages and the links are represented by URLs. Given a web page P, the URLs in it are
called outlinks. Those in other pages pointing to P are called inlinks (or backlinks).

Web Crawlers

Browsing the Web is a very useful way to explore a collection of linked web documents
as long as we know good starting points: URLs of pages from the topic or area in
which we are interested. However, general search for information about a specific
topic or area through browsing alone is impractical. A better approach is to have web
pages organized by topic or to search a collection of pages indexed by keywords. The
former is done by topic directories and the latter, by search engines. Hereafter we

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

8 CHAPTER 1 INFORMATION RETRIEVAL AND WEB SEARCH

shall see how search engines collect web documents and index them by the words
(terms) they contain. First we discuss the process of collecting web pages and storing
them in a local repository. Indexing and document retrieval are discussed in the next
section.

To index a set of web documents with the words they contain, we need to have
all documents available for processing in a local repository. Creating the index by
accessing the documents directly on the Web is impractical for a number of reasons.
Collecting “all” web documents can be done by browsing the Web systematically
and exhaustively and storing all visited pages. This is done by crawlers (also called
spiders or robots).

Ideally, all web pages are linked (there are no unconnected parts of the web
graph) and there are no multiple links and nodes. Then the job of a crawler is simple:
to run a complete graph search algorithm, such as depth-first or breadth-first search,
and store all visited pages. Small-scale crawlers can easily be implemented and are a
good programming exercise that illustrates both the structure of the Web and graph
search algorithms. There are a number of freely available crawlers from this class that
can be used for educational and research purposes. A good example of such a crawler
is WebSPHINX (http://www.cs.cmu.edu/∼rcm/websphinx/).

A straightforward use of a crawler is to visualize and analyze the structure of
the web graph. We illustrate this with two examples of running the WebSPHINX
crawler. For both runs we start with the Data Mining home page at CCSU at
http://www.ccsu.edu/datamining/. As we want to study the structure of the
web locally in the neighborhood of the starting page, we have to impose some limits
on crawling. With respect to the web structure, we may limit the depth of crawling
[i.e., the number of hops (links) to follow and the size of the pages to be fetched].
The region of the web to be crawled can also be specified by using the URL structure.
Thus, all URLs with the same server name limit crawling within the specific server
pages only, while all URLs with the same folder prefixes limit crawling pages that
are stored in subfolders only (subtree).

Other limits are dynamic and reflect the time needed to fetch a page or the
running time of the crawler. These parameters are needed not only to restrict the web
area to be crawled but also to avoid some traps the crawler may fall into (see the
discussion following the examples). Some parameters used to control the crawling
algorithm must also be passed. These are the graph search method (depth-first or
breadth-first) as well as the number of threads (crawling processes running in parallel)
to be used. Various other limits and restrictions with respect to web page content can
also be imposed (some are discussed in Chapter 2 in the context of page ranking).
Thus, for the first example we set the following limits: depth = 3 hops, page size =
30 kB (kilobytes), page timeout = 3 seconds, crawler timeout = 30 seconds, depth-
first search, threads = 4. The portion of the web graph crawled with this setting is
shown in Figure 1.1. The starting page is marked with its name and URL. Note that
due to the dynamic limits and varying network latency, every crawl, even those with
the same parameters, is different. In the one shown in Figure 1.1, the crawler reached
an interesting structure called a hub. This is the page in the middle of a circle of
multiple pages. A hub page includes a large number of links and is usually some
type of directory or reference site that points to many web pages. In our example

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

CRAWLING THE WEB 9

Figure 1.1 Depth-first web crawling limited to depth 3.

the hub page is KDnuggets.com, one of the most comprehensive and well-organized
repositories of information about data mining.

Another crawl with the same parameters and limits, but using a breadth-first
search, is shown in Figure 1.2. The web graph here is more uniformly covered because
of the nature of the search algorithm—all immediate neighbors of a given page are
explored before going to further pages. Therefore, the breadth-first crawl discovered
another hub page that is closer to the starting point. It is the resources page at CCSU—
Data Mining. In both graphs, the ×’s mean that some limits have been reached or
network exceptions have occurred, and the dots are pages that have not yet been
explored, due to the crawler timeout.

The web graph shown by the WebSPHINX crawler is actually a tree, because
only the links followed are shown and the pages are visited only once. However, the
Web is not a tree, and generally there is more than one inlink to a page (occurrences
of the page URL in other web pages). In fact, these inlinks are quite important
when analyzing the web structure because they can be used as a measure of web
page popularity or importance. Similar to the hubs, a web page with a large number
of inlinks is also important and is called an authority. Finding good authorities is,
however, not possible using the local crawls that we illustrated with the examples
above and generally requires analyzing a much larger portion of the web (theoretically,
the entire Web, if we want to find all inlinks).

Although there is more than one inlink to some of the pages in our example
(e.g., the CCSU or the CCSU—Data Mining home pages are referred to in many other
pages), these links come from the same site and are included basically for navigation

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

10 CHAPTER 1 INFORMATION RETRIEVAL AND WEB SEARCH

Figure 1.2 Breadth-first web crawling limited to depth 3.

purposes. Such links do not reflect the actual popularity of the web pages to which
they point. This is a situation similar to self-citation in scientific literature, which is
hardly considered as a good measure of authority. We discuss these issues in more
depth later in the context of page ranking.

Although visualizing the web graph is a nice feature of web crawlers, it is
not the most important. In fact, the basic role of a crawler that is part of a search
engine is to collect information about web pages. This may be web page textual
content, page titles, headers, tag structure, or web links structure. This information
is organized properly for efficient access and stored in a local repository to be used
for indexing and search (see the next section). Thus, a crawler is not only an im-
plementation of a graph search algorithm, but also an HTML parser and analyzer,
and much more. Some of the extended functionalities of web crawlers are discussed
next.

The Web is far from an ideal graph structure such as the one shown in Figures
1.1 and 1.2. Crawling the Web involves interaction with hundreds of thousands of
web servers, designed to meet different goals, provide different services such as
database access and user interactions, generate dynamic pages, and so on. Another
very important factor is the huge number of pages that have to be visited, analyzed, and
stored. Therefore, a web crawler designed to crawl the entire Web is a sophisticated
program that uses advanced programming technology to improve its time and space
efficiency and usually runs on high-performance parallel computers. Hereafter we
provide a brief account of common problems that large-scale crawlers are faced with

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

CRAWLING THE WEB 11

and outline some solutions. We are not going into technical details because this is
aside from our main goal: analyzing the web content.

� The process of fetching a web page involves some network latency (sometimes
a “timeout”). To avoid waiting for the current page to load in order to continue
with the next page, crawlers fetch multiple pages simultaneously. In turn, this
requires connecting to multiple servers (usually thousands) at the same time,
which is achieved by using parallel and distributed programming technology
such as multithreading (running multiple clients concurrently) or nonblocking
sockets and event handlers.

� The first step in fetching a web page is address resolution, converting the sym-
bolic web address into an IP address. This is done by a DNS server that the
crawler connects. Since multiple pages may be located at a single server, storing
addresses already looked up in a local cache allows the crawler to avoid repeat-
ing DNS requests and consequently, improves its efficiency and minimizes the
Internet traffic.

� After fetching a web page it is scanned and the URLs are extracted—these are
the outlinks that will be followed next by the crawler. There are many ways to
specify an URL in HTML. It may also be specified by using the IP address of
the server. As the mapping between server names and IP addresses is many-to-
many,1 this may result in multiple URLs for a single web page. The problem is
aggravated by the fact that browsers are tolerant of pages that have the wrong
syntax. As a result, HTML documents are not designed with enough care and
often include wrongly specified URLs as well as other malicious structures.
All this makes parsing and extracting URLs from HTML documents not an
easy task. The solution is to use a well-designed and robust parser and after
extracting the URLs to convert them into a canonical form. Even so, there
are traps that the crawler may fall into. The best policy is to collect statistics
regularly about each crawl and use them in a special module called a guard. The
purpose of the guard is to exclude outlinks that come from sites that dominate
the crawler collection of pages. Also, it may filter out links to dynamic pages
or forms as well as to nontextual pages (e.g., images, scripts).

� Following the web page links may bring the crawler back to pages already
visited. There may also exist identical web pages at different web addresses
(called mirror sites). To avoid following identical links and fetching identical
pages multiple times, the crawler should keep caches for URLs and pages
(this is another reason for putting URLs into canonical form). Various hashing
techniques are used for this purpose.

� An important part of the web crawler system is the text repository. Yahoo!
claimed that in August 2005 their index included 20 billion pages [2], 19.2
of them web documents. With an average of 10 kB for a web document, this

1 A server may have more than one IP address, and different host names may be mapped onto a single IP
address. The former is usually done for load balancing of servers that handle a large number of requests,
and the latter, for organizing web pages into more logical host names than the number of IP addresses
available (virtual hosting).

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

12 CHAPTER 1 INFORMATION RETRIEVAL AND WEB SEARCH

makes about 200,000 GB (gigabytes) of storage. Managing such a huge repos-
itory is a challenging task. Note that this is the crawler repository, not the
indexed collection of web pages used to answer search queries. The latter is
of comparable size, but even more complicated because of the need for fast
access. The crawler repository is used to store pages, maintain the URL and
document caches needed by the crawler, and provide access for building indices
at the next stage. To minimize storage needs, the web pages are usually com-
pressed, which reduces the storage requirements two- to threefold. For large-
scale crawlers the text repository may be distributed over a number of storage
servers.

� The purpose of a web crawler used by a search engine is to provide local ac-
cess to the most recent versions of possibly all web pages. This means that
the Web should be crawled regularly and the collection of pages updated ac-
cordingly. Having in mind the huge capacity of the text repository, the need
for regular updates poses another challenge for the web crawler designers. The
problem is the high cost of updating indices. A common solution is to append
the new versions of web pages without deleting the old ones. This increases
the storage requirements but also allows the crawler repository to be used for
archival purposes. In fact, there are crawlers that are used just for the purposes
of archiving the web. The most popular web archive is the Internet Archive at
http://www.archive.org/.

� The Web is a live system, it is constantly changing—new features emerge and
new services are offered. In many cases they are not known in advance, or even
worse, web pages and servers may behave unpredictably as a result of bugs or
malicious design. Thus, the web crawler should be a very robust system that is
updated constantly in order to respond to the ever-changing Web.

� Crawling of the Web also involves interaction of web page developers. As
Brin and Page [5] mention in a paper about their search engine Google, they
were getting e-mail from people who noticed that somebody (or something)
visited their pages. To facilitate this interaction there are standards that allow
web servers and crawlers to exchange information. One of them is the robot
exclusion protocol. A file named robots.txt that lists all path prefixes of pages
that crawlers should not fetch is placed in the http root directory of the server
and read by the crawlers before crawling of the server tree.

So far we discussed crawling based on the syntax of the web graph: that is,
following links and visiting pages without taking into account their semantics. This
is in a sense equivalent to uninformed graph search. However, let’s not forget that we
discuss web crawling in the context of web search. Thus, to improve its efficiency,
or for specific purposes, crawling can also be done as a guided (informed) search.
Usually, crawling precedes the phase of web page evaluation and ranking, as the latter
comes after indexing and retrieval of web documents. However, web pages can be
evaluated while being crawled. Thus, we get some type of enhanced crawling that
uses page ranking methods to achieve focusing on interesting parts of the Web and
avoiding fetching irrelevant or uninteresting pages.

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

INDEXING AND KEYWORD SEARCH 13

INDEXING AND KEYWORD SEARCH

Generally, there are two types of data: structured and unstructured. Structured data
have keys (attributes, features) associated with each data item that reflect its content,
meaning, or usage. A typical example of structured data is a relational table in a
database. Given an attribute (column) name and its value, we can get a set of tuples
(rows) that include this value. For example, consider a table that contains descriptions
of departments in a school described by a number of attributes, such as subject, pro-
grams offered, areas of specialization, facilities, and courses. Then, by a simple query,
we may get all departments that, for example, have computer labs. In SQL (Struc-
tured Query Language) this query is expressed as select * from Departments

where facilities=`̀ computer lab´́ . A more common situation is, however,
to have the same information specified as a one-paragraph text description for each
department. Then looking for departments with computer labs would be more difficult
and generally would require people to read and understand the text descriptions.

The problem with using structured data is the cost associated with the process
of structuring them. The information that people use is available primarily in unstruc-
tured form. The largest part of it are text documents (books, magazines, newspapers)
written in natural language. To have content-based access to these documents, we
organize them in libraries, bibliography systems, and by other means. This process
takes a lot of time and effort because it is done by people. There are attempts to use
computers for this purpose, but the problem is that content-based access assumes
understanding the meaning of documents, something that is still a research question,
studied in the area of artificial intelligence and natural language processing in partic-
ular. One may argue that natural language texts are structured, which is true as long as
the language syntax (grammatical structure) is concerned. However, the transition to
meaning still requires semantic structuring or understanding. There exists a solution
that avoids the problem of meaning but still provides some types of content-based
access to unstructured data. This is the keyword search approach known from the
area of information retrieval (IR). The idea of IR is to retrieve documents by using
a simple Boolean criterion: the presence or absence of specific words (keywords,
terms) in the documents (the question of meaning here is left to the user who for-
mulates the query). Keywords may be combined in disjunctions and conjunctions,
thus providing more expressiveness of the queries. A keyword-based query cannot
identify the matching documents uniquely, and thus it usually returns a large number
of documents. Therefore, in IR there is a need to rank documents by their relevance
to the query. Relevance ranking is an important difference with querying structured
data where the result of a query is a set (unordered collection) of data items.

IR approaches are applicable to bibliographic databases, collections of journal
and newspaper articles, and other large text document collections that are not well
structured (not organized by content), but require content-based access. In short,
IR is about finding relevant data using irrelevant keys. The Web search engines
rely heavily on IR technology. The web crawler text repository is very much like
the document collection for which the IR approaches have been developed. Thus,
having a web crawler, the implementation of IR-based keyword search for the Web is
straightforward. Because of their internal HTML tag structure and external web link

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

14 CHAPTER 1 INFORMATION RETRIEVAL AND WEB SEARCH

Figure 1.3 Directory page for a collection of web documents.

structure, the web documents are richer than simple text documents. This allows search
engines to go further and provide more sophisticated methods for matching keyword
queries with web documents and to do better relevance ranking. In this section we
discuss standard IR techniques for text document processing. The enhancements that
come from the Web structure are discussed in the next sections.

To illustrate the basic keyword search approach to the Web, we consider again
the unstructured version of our example with the departments and make it more
realistic by taking the web page that lists all departments in the school of Arts and
Sciences at CCSU (Figure 1.3). The information about each department is provided
in a separate web page linked to the department name listed on the main page. We
include one of those pages in Figure 1.4 (the others have a similar format).

The first step is to fetch the documents from the Web, remove the HTML tags,
and store the documents as plain text files. This can easily be done by a web crawler
(the reader may want to try WebSPHINX) with proper parameter settings. Then the
keyword search approach can be used to answer such queries as:

1. Find documents that contain the word computer and the word programming.

2. Find documents that contain the word program, but not the word programming.

3. Find documents where the words computer and lab are adjacent. This query is
called proximity query, because it takes into account the lexical distance between
words. Another way to do it is by searching for the phrase computer lab.

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

INDEXING AND KEYWORD SEARCH 15

Figure 1.4 Sample web document.

Answering such queries can be done by scanning the content of the documents
and matching the keywords against the words in the documents. For example, the
music department document shown in Figure 1.4 will be returned by the second and
third queries.

Document Representation

To facilitate the process of matching keywords and documents, some preprocessing
steps are taken first:

1. Documents are tokenized; that is, all punctuation marks are removed and the
character strings without spaces are considered as tokens (words, also called
terms).

2. All characters in the documents and in the query are converted to upper or lower
case.

3. Words are reduced to their canonical form (stem, base, or root). For example,
variant forms such as is and are are replaced with be, various endings are re-
moved, or the words are transformed into their root form, such as programs and
programming into program. This process, called stemming, uses morphological
information to allow matching different variants of words.

4. Articles, prepositions, and other common words that appear frequently in text
documents but do not bring any meaning or help distinguish documents are

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

16 CHAPTER 1 INFORMATION RETRIEVAL AND WEB SEARCH

TABLE 1.1 Basic Statistics for A&S Documents

Document ID Document Name Words Terms

d1 Anthropology 114 86
d2 Art 153 105
d3 Biology 123 91
d4 Chemistry 87 58
d5 Communication 124 88
d6 Computer Science 101 77
d7 Criminal Justice 85 60
d8 Economics 107 76
d9 English 116 80
d10 Geography 95 68
d11 History 108 78
d12 Mathematics 89 66
d13 Modern Languages 110 75
d14 Music 137 91
d15 Philosophy 85 54
d16 Physics 130 100
d17 Political Science 120 86
d18 Psychology 96 60
d19 Sociology 99 66
d20 Theatre 116 80

Total number of words/terms 2195 1545
Number of different words/terms 744 671

called stopwords. Examples are a, an, the, on, in, and at. These words are
usually removed.

The collection of words that are left in the document after all those steps is dif-
ferent from the original document and may be considered as a formal representation
of the document. To emphasize this difference, we call the words in this collection
terms. The collection of words (terms) in the entire set of documents is called the text
corpus.

Table 1.1 shows some statistics about documents from the school of Arts and
Sciences (A&S) that illustrate this process (the design department is not included be-
cause the link points directly to the department web page). The words are counted after
tokenizing the plain text versions of the documents (without the HTML structures).
The term counts are taken after removing the stopwords but without stemming.

The terms that occur in a document are in fact the parameters (also called
features, attributes, or variables in different contexts) of the document representation.
The types of parameters determine the type of document representation:

� The simplest way to use a term as a feature in a document representation is
to check whether or not the term occurs in the document. Thus, the term is
considered as a Boolean attribute, so the representation is called Boolean.

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

INDEXING AND KEYWORD SEARCH 17

� The value of a term as a feature in a document representation may be the number
of occurrences of the term (term frequency) in the document or in the entire
corpus. Document representation that includes the term frequencies but not the
term positions is called a bag-of-words representation because formally it is a
multiset or bag (a type of set in which each item may occur numerous times).

� Term positions may be included along with the frequency. This is a “complete”
representation that preserves most of the information and may be used to gen-
erate the original document from its representation.

The purpose of the document representation is to help the process of keyword
matching. However, it may also result in loss of information, which generally increases
the number of documents in response to the keyword query. Thus, some irrelevant
documents may also be returned. For example, stemming of programming would
change the second query and allow the first one to return more documents (its original
purpose is to identify the Computer Science department, but stemming would allow
more documents to be returned, as they all include the word program or programs
in the sense of “program of study”). Therefore, stemming should be applied with
care and even avoided, especially for Web searches, where a lot of common words
are used with specific technical meaning. This problem is also related to the issue
of context (lexical or semantic), which is generally lost in keyword search. A partial
solution to the latter problem is the use of proximity information or lexical context.
For this purpose a richer document representation can be used that preserves term
positions. Some punctuation marks can be replaced by placeholders (tokens that are
left in a document but cannot be used for searching), so that part of the lexical structure
of the document, such as sentence boundaries, can be preserved. This would allow
answering queries such as “Find documents containing computer and programming
in the same sentence.” Another approach, called part-of-speech tagging, is to attach
to words tags that reflect their part-of-speech roles (e.g., verb or noun). For example,
the word can usually appears in the stopword list, but as a noun it may be important
for a query.

For the purposes of searching small documents and document collections such
as the CCSU Arts and Sciences directory, direct text scanning may work well. This
approach cannot, however, be scaled up to large documents and/or collections of
documents such as the Web, due to the prohibitive computational cost. The approach
used for the latter purposes is called an inverted index and is central to IR. The idea is
to switch the roles of document IDs and terms. Instead of accessing documents by IDs
and then scanning their content for specific terms, the terms that documents contain
are used as access keys. The simplest form of an inverted index is a document–term
matrix, where the access is by terms (i.e., it is transposed to term–document matrix).

The term–document matrix for our department example has 20 rows, corre-
sponding to documents, and 671 columns, corresponding to all the different terms
that occur in the text corpus. In the Boolean form of this matrix, each cell contains
1 if the term occurs in the document, and 0 otherwise. We assign the documents as
rows because this representation is also used in later sections, but in fact, the table
is accessed by columns. A small part of the matrix is shown in Table 1.2 (instead of
names, document IDs are used).

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

18 CHAPTER 1 INFORMATION RETRIEVAL AND WEB SEARCH

TABLE 1.2 Boolean Term–Document Matrix

Document ID lab laboratory programming computer program

d1 0 0 0 0 1
d2 0 0 0 0 1
d3 0 1 0 1 0
d4 0 0 0 1 1
d5 0 0 0 0 0
d6 0 0 1 1 1
d7 0 0 0 0 1
d8 0 0 0 0 1
d9 0 0 0 0 0
d10 0 0 0 0 0
d11 0 0 0 0 0
d12 0 0 0 1 0
d13 0 0 0 0 0
d14 1 0 0 1 1
d15 0 0 0 0 1
d16 0 0 0 0 1
d17 0 0 0 0 1
d18 0 0 0 0 0
d19 0 0 0 0 1
d20 0 0 0 0 0

Using the term–document matrix, answering the keyword search queries is
straightforward. For example, query 1 returns only d6 (Computer Science document),
because it has 1’s in the columns programming and computer, while query 2 returns
all documents with 1’s in the column program, excluding d6, because the latter has
1 in the column programming. The proximity query (number 3), however, cannot be
answered using a Boolean representation. This is because information about the term
positions (offsets) in the document is lost. The problem can be solved by using a
richer representation that includes the position for each occurrence of a term. In this
case, each cell of the term–document matrix contains a list of integers that represent
the term offsets for each of its occurrences in the corresponding document. Table 1.3
shows the version of the term–document matrix from Table 1.2 that includes term
positions. Having this representation, the proximity query can also be answered. For
document d14 (Music department) the matrix shows the following position lists: [42]
for lab and [41] for computer. This clearly shows that the two terms are adjacent and
appear in the phrase computer lab.

The term position lists also show the term frequencies (the length of these lists).
For example, the term computer occurs six times in the Computer Science document
and once in the Biology, Chemistry, Mathematics, and Music documents. Obviously,
this is a piece of information that shows the importance of this particular feature for
those documents. Thus, if computer is the query term, clearly the most relevant docu-
ment returned would be Computer Science. For the other four documents, additional
keywords may be needed to get a more precise relevance ranking. These issues are
further discussed in the next sections.

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

INDEXING AND KEYWORD SEARCH 19

TABLE 1.3 Term–Document Matrix with Term Positions

Document ID lab laboratory programming computer program

d1 0 0 0 0 [71]
d2 0 0 0 0 [7]
d3 0 [65,69] 0 [68] 0
d4 0 0 0 [26] [30,43]
d5 0 0 0 0 0
d6 0 0 [40,42] [1,3,7,13,26,34] [11,18,61]
d7 0 0 0 0 [9,42]
d8 0 0 0 0 [57]
d9 0 0 0 0 0
d10 0 0 0 0 0
d11 0 0 0 0 0
d12 0 0 0 [17] 0
d13 0 0 0 0 0
d14 [42] 0 0 [41] [71]
d15 0 0 0 0 [37,38]
d16 0 0 0 0 [81]
d17 0 0 0 0 [68]
d18 0 0 0 0 0
d19 0 0 0 0 [51]
d20 0 0 0 0 0

Implementation Considerations

The Boolean representation of a term–document matrix is simple and can easily be
implemented as a relational table. We use this representation later in the book for the
purposes of document classification and clustering. However, for large document col-
lections (such as those used by search engines) and for incorporating term positions,
the amount of space needed is too large and does not allow straightforward imple-
mentation using a relational database. In these cases more advanced methods such
as B-trees and hash tables are used. The idea is to implement the mappings directly
from terms to documents and term positions. For example, the following structures
can be used for this purpose:

lab → d14/42

laboratory → d3/65, 69

programming → d6/40, 42

computer → d3/68; d4/26; d6/1, 3, 7, 13, 26, 34; d12/17; d14/41

There are two problems associated with this representation:

1. The efficiency of creating the data structure implementing the index

2. The efficiency of updating the index

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

20 CHAPTER 1 INFORMATION RETRIEVAL AND WEB SEARCH

Both issues are critical, especially for the indices used by web search engines. To
get an idea of the magnitude of the problem, we provide here some figures from
experiments performed with the GOV2 collection reported at the Text Retrieval Con-
ference 2004-terabyte (TB) track. The GOV2 document collection is 426 GB and
contains 25 million documents taken from the .gov web domain, including HTML
and text, plus the extracted text of PDF, Word, and postscript files. For one of the
submissions to this track (Indri), the index size was 224 GB and took 6 hours to build
on a cluster of six computers. Given these figures, we can also get an idea about
the indices build by web search engines. Assuming a web document collection of
20 billion documents (the size of the document collection that Yahoo! claimed to
index in August 2005), its size can be estimated to be 500 TB (for comparison, the
books in the U.S. Library of Congress contain approximately 20 TB of text). Simple
projection suggests an index size of about 200 TB and an indexing time of 6000
hours (!). This amount of memory can be managed by recent technology. Moreover,
there exist compression techniques that can substantially reduce the memory require-
ments. This indexing time is, however, prohibitive for search engines because the
web pages change at a much quicker rate. The web indices should be built quickly
and, most important, updated at a rate equal to the average rate of updating web
pages.

There is another important parameter in indexing and search: the query time.
It is assumed that this time should be in the range of seconds (typically, less than
a second). The problem is that when the index is compressed, the time to update
it and the access time (query time) both increase. Thus, the concern is to find the
right balance between memory and time requirements (a version of the time–space
complexity trade-off well known in computing).

Relevance Ranking

The Boolean keyword search is simple and efficient, but it returns a set (unordered
collection) of documents. As we mentioned earlier, information retrieval queries are
not well defined and cannot uniquely identify the resulting documents. The average
size of a web search query is two terms. Obviously, such a short query cannot specify
precisely the information needs of web users, and as a result, the response set is
large and therefore useless (imagine getting a list of a million documents from a web
search engine in random order). One may argue that users have to make their queries
specific enough to get a small set of all relevant documents, but this is impractical. The
solution is to rank documents in the response set by relevance to the query and present
to the user an ordered list with the top-ranking documents first. The Boolean term–
document matrix cannot, however, provide ordering within the documents matching
the set of keywords. Therefore, additional information about terms is needed, such
as counts, positions, and other context information. One straightforward approach
is to incorporate the term count (frequencies). This is done in the term frequency–
inverse document frequency (TFIDF) framework used widely in IR and Web search.
Other approaches using positions and lexical and web context are discussed in later
sections.

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

INDEXING AND KEYWORD SEARCH 21

Vector Space Model

The vector space model defines documents as vectors (or points) in a multidimensional
Euclidean space where the axes (dimensions) are represented by terms. Depending
on the type of vector components (coordinates), there are three basic versions of this
representation: Boolean, term frequency (TF), and term frequency–inverse document
frequency (TFIDF).

Assume that there are n documents d1, d2, . . . , dn and m terms t1, t2, . . . , tm .
Let us denote as nij the number of times that term ti occurs in document d j . In
a Boolean representation, document d j is represented as an m-component vector
�d j = (d1

j d2
j · · · dm

j), where2

di
j =
{

0 if nij = 0
1 if nij > 0

For example, in Table 1.2 the documents from our department collection are repre-
sented in five-dimensional space, where the axes are lab, laboratory, programming,
computer, and program. In this space the Computer Science document is represented
by the Boolean vector

�d6 = (0 0 1 1 1)

As we mentioned earlier, the Boolean representation is simple, easy to compute, and
works well for document classification and clustering. However, it is not suitable for
keyword search because it does not allow document ranking. Therefore, we focus
here on the TFIDF representation.

In the term frequency (TF) approach, the coordinates of the document vector �d j

are represented as a function of the term counts, usually normalized with the document
length. For each term ti and each document d j , the TF (ti ,d j) measure is computed.
This can be done in different ways; for example:

� Using the sum of term counts over all terms (the total number of terms in the
document):

TF (ti , d j) =
⎧⎨
⎩

0 if nij = 0
nij∑m

k=1
nkj

if nij > 0

� Using the maximum of the term count over all terms in the document:

TF (ti , d j) =
⎧⎨
⎩

0 if nij = 0
nij

maxk nkj
if nij > 0

� Using a log scale to condition the term count (this approach is used in the
Cornell SMART system [3]):

TF (ti , d j) =
{

0 if nij = 0
1 + log(1 + log nij) if nij > 0

2 For compactness of presentation here and throughout the book, we interchange the row and column
notation for vectors where appropriate.

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

22 CHAPTER 1 INFORMATION RETRIEVAL AND WEB SEARCH

This approach does not use the document length; rather, the counts are just
smoothed by the log function.

In the Boolean and TF representations, each coordinate of a document vector
is computed locally, taking into account only the particular term and document. This
means that all axes are considered to be equally important. However, terms that occur
frequently in documents may not be related to the content of the document. This is
the case with the term program in our department example. Too many vectors have
1’s (in the Boolean case) or large values (in TF) along this axis. This in turn increases
the size of the resulting set and makes document ranking difficult if this term is used
in the query. The same effect is caused by stopwords such as a, an, the, on, in, and at
and is one reason to eliminate them from the corpus.

The basic idea of the inverse document frequency (IDF) approach is to scale
down the coordinates for some axes, corresponding to terms that occur in many
documents. For each term ti the IDF measure is computed as a proportion of documents
where ti occurs with respect to the total number of documents in the collection. Let
D =⋃n

1 d j be the document collection and Dti the set of documents where term ti
occurs. That is, Dti = {d j |ni j > 0}. As with TF, there are a variety of ways to compute
IDF; some take a simple fraction |D|/|Dti |, others use a log function such as

IDF(ti) = log
1 + |D|
|Dti |

In the TFIDF representation each coordinate of the document vector is computed as
a product of its TF and IDF components:

di
j = TF(ti , d j)IDF(ti)

To illustrate the approach we represent our department documents in the TFIDF
framework. First we need to compute the TF component for each term and each
document. For this purpose we use a term–document matrix with term positions (Table
1.3) to get the counts ni j , which are equal to the length of the lists with positions.
These counts then have to be scaled with the document lengths (the number of terms
taken from Table 1.1). The result of this is shown in Table 1.4, where the vectors are
rows in the table (the first column is the vector name and the rest are its coordinates).

Note that the coordinates of the document vectors changed their scale, but
relative to each other they are more or less the same. This is because the factors used
for scaling down the term frequencies are similar (documents are similar in length).
In the next step, IDF will, however, change the coordinates substantially.

Using the log version of the IDF measure, we get the following factors for each
term (in decreasing order):

lab laboratory programming computer program

3.04452 3.04452 3.04452 1.43508 0.559616

These numbers reflect the specificity of each term with respect to the document col-
lection. The first three get the biggest value, as they occur in only one document each.
The term computer occurs in five documents and program in 11. The document vector

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

INDEXING AND KEYWORD SEARCH 23

TABLE 1.4 Document Vectors with TF Coordinates

Document ID TF Coordinates

�d1 0 0 0 0 0.012
�d2 0 0 0 0 0.010
�d3 0 0.022 0 0.011 0
�d4 0 0 0 0.017 0.034
�d5 0 0 0 0 0.011
�d6 0 0 0.026 0.078 0.039
�d7 0 0 0 0 0.033
�d8 0 0 0 0 0.013
�d9 0 0 0 0 0
�d10 0 0 0 0 0
�d11 0 0 0 0 0
�d12 0 0 0 0.015 0
�d13 0 0 0 0 0
�d14 0.011 0 0 0.011 0.011
�d15 0 0 0 0 0.037
�d16 0 0 0 0 0.010
�d17 0 0 0 0 0.012
�d18 0 0 0 0 0
�d19 0 0 0 0 0.015
�d20 0 0 0 0 0

TF components are now multiplied by the IDF factors. In this way the vector coordi-
nates corresponding to rare terms (lab, laboratory, and programming) increase, and
those corresponding to frequent ones (computer and program) decrease. For example,
the Computer Science (CS) document vector with TF only is

�d6 = (0 0 0.026 0.078 0.039)

whereas after applying IDF, it becomes

�d6 = (0 0 0.079 0.112 0.022)

In this vector the term computer is still the winner (obviously, the most important
term for CS), but the vector is now stretched out along the programming axis, which
means that the term programming is more relevant to identifying the document than
the term program (quite true for CS, having in mind that program also has other
non-CS meanings).

Document Ranking

In the Boolean model the query terms are simply matched against the document
vectors, and the documents that match the query exactly are returned. In the TFIDF
model, exact matching is not possible; therefore, we need some proximity measure
between the query and the documents in the collection. The basic idea is to represent
the query as a vector (called a query vector) in the document vector space and then

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

24 CHAPTER 1 INFORMATION RETRIEVAL AND WEB SEARCH

to use the metric properties of vector spaces. For this purpose we first consider the
keyword query as a document. For example, the query that is supposed to return all
documents containing the terms computer and program is represented as a document
q = {computer, program}. As each term occurs once, its TF component is 1

2 (normal-
ized with the document length of 2). Thus, the TF vector in five-dimensional space is

�q = (0 0 0 0.5 0.5)

which after scaling with IDF becomes

�q = (0 0 0 0.718 0.28)

When we specify a Boolean query we usually assume that the terms are equally impor-
tant for the document we are looking for. However, it appears that the importance of
the keywords depends on the document collection. Thus, the search engine automati-
cally adjusts the importance of each term in the query. For example, the term computer
seems to be more important than program simply because program is a more com-
mon term (occurs in more documents) in this particular collection. The situation may
change if we search a different collection of documents (e.g., in the area of CS only).

Given a query vector �q and document vectors �d j , j = 1, 2, . . . , 20, the objective
of a search engine is to order (rank) the documents with respect to their proximity to
�q . The result list should include a number of top-ranked documents. There are several
approaches to this type of ranking. One option is to use the Euclidean norm of the
vector difference ‖�q − �d j‖, defined as

‖�q − �d j‖ =
√√√√ m∑

i=1

(
qi − di

j

)2
This measure is, in fact, the Euclidian distance between the vectors considered as
points in Euclidean space, and being a metric function, it has some nice properties,
such as the triangle inequality. However, it depends greatly on the length of the vectors
to be compared. This property is not in agreement with one of the basic assumptions
in IR: that similar documents (in terms of their relevance to the query) also have to
be close in the vector space. For example, a large and a small document will be at a
great distance even though they may both be relevant to the same query. To avoid this,
the document and the query vectors are normalized to unit length before taking the
vector difference. This approach still has a drawback because queries are very short
and when scaled down with the query length (typically, 2), their vectors tend to be at
a great distance from large documents.

Another approach is to use the cosine of the angle between the query vector and
the document vectors. When the vectors are normalized, this measure is equivalent
to the dot product �q · �d j , defined as

�q · �d j =
m∑

i=1

qi di
j

This measure, known as cosine similarity, is the one used primarily in IR and web
search.

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

INDEXING AND KEYWORD SEARCH 25

TABLE 1.5 Cosine Similarity and Distances with �q = (0 0 0 0.932 0.363)

Document ID TFIDF Coordinates (Normalized) �q · �d j (rank)a |�q − �d j | (rank)a

�d1 0 0 0 0 1 0.363 1.129
�d2 0 0 0 0 1 0.363 1.129
�d3 0 0.972 0 0.234 0 0.218 1.250
�d4 0 0 0 0.783 0.622 0.956 (1) 0.298 (1)
�d5 0 0 0 0 1 0.363 1.129
�d6 0 0 0.559 0.811 0.172 0.819 (2) 0.603 (2)
�d7 0 0 0 0 1 0.363 1.129
�d8 0 0 0 0 1 0.363 1.129
�d9 0 0 0 0 0 0 1
�d10 0 0 0 0 0 0 1
�d11 0 0 0 0 0 0 1
�d12 0 0 0 1 0 0.932 0.369
�d13 0 0 0 0 0 0 1
�d14 0.890 0 0 0.424 0.167 0.456 (3) 1.043 (3)
�d15 0 0 0 0 1 0.363 1.129
�d16 0 0 0 0 1 0.363 1.129
�d17 0 0 0 0 1 0.363 1.129
�d18 0 0 0 0 0 0 1
�d19 0 0 0 0 1 0.363 1.129
�d20 0 0 0 0 0 0 1

a The rank is shown only for documents that include both terms (computer and program)

Table 1.5 illustrates the query processing and document ranking approach dis-
cussed so far with the department example. The query is “computer AND program,”
represented by the normalized query vector �q = (0 0 0 0.932 0.363). The docu-
ment vectors are generated from those shown in Table 1.4 by applying IDF scaling
and normalization. The last two columns show the cosine similarity (dot product) and
the distance (norm of the vector difference) between those vectors and the query vec-
tor. The documents that include both terms (computer and program) are emphasized
and their ranking is shown in parentheses.

First let us look at the document vectors. Those with just one nonzero coordinate
look like Boolean vectors. This is because of the normalization step, which scales
the coordinates so that the vector norm is equal to 1. Another interesting effect due
to normalization is demonstrated by vectors �d6 and �d12. Both documents include
the term computer, but the TFIDF component for computer in �d6 is lower than the
one in �d12. The explanation is that the normalization step scaled up the computer
coordinate of �d12 to 1 because that was the only nonzero coordinate, whereas the
same coordinate of �d6 was scaled down due to the presence of two other nonzero
coordinates. Generally, this shows the importance of the choice of terms to represent
documents. In this particular case the problem is caused by the limited number of
terms used (only five). One straightforward solution is to use all 671 terms that occur
in the entire document collection. However, in large collections the number of terms
is usually tens of thousands, and most important, they are not distributed uniformly

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

26 CHAPTER 1 INFORMATION RETRIEVAL AND WEB SEARCH

over the documents. Moreover, the documents are of different lengths, which again
may cause a lot of 0’s in the document vectors. All this results in extremely sparse
distribution of the document vectors, especially those collected from the Web. In this
respect the sparsely populated Table 1.5 seems to represent well the general situation
with document vector space.

Table 1.5 shows the similarity of all document vectors with the query vec-
tor. However, to answer the query (computer AND program), only the documents
that include both keywords need to be considered. They are �d4 (Chemistry), �d6 (Com-
puter Science), and �d14 (Music), in the order of their ranking. Interestingly, both
measures, maximum dot product and minimum distance, agree on the relevance of
these documents to the query. We would also like to have these three documents
ranked at the top among all documents. Another desired property would be the ex-
istence of a cutoff value that would allow us to distinguish the exact Boolean match
with all keywords. However, this is not the case here. The ordering of documents that
do not match both keywords is indicative for the differences between the two proxim-
ity measures. The cosine similarity ordering seems more natural, while the distance
ranking looks peculiar. For example, at distance 1 to the query the documents are
represented by all-zero vectors [i.e., none of the terms used in the representation (the
dimensions) occur in those documents]. Strangely, one of the matches with the query
(�d14) is farther from the query than the all-zero vectors. There is a similar situation
with cosine similarity: Document vector �d12, with just one nonzero component (the
one that matches one of the keywords), has the second-highest score among all the
documents, but obviously this is an exception. In general, the cosine similarity mea-
sure seems more stable with respect to the choice of terms, which in turn may explain
why it is the preferred proximity measure for IR systems.

The results above suggest that terms have to be chosen such that the zero-valued
coordinates of the vectors are minimized. One approach to achieving this is to use
terms with high TF scores. For example, the term counts may be taken on the entire
corpus and then the top frequency terms chosen as dimensions of the vector space.
In this way we can have more nonzero components in each vector. However, as we
have already seen, these frequent terms do not reflect the content and meaning of a
document. In fact, the important terms are the more document-specific terms (i.e.,
those with high IDF scores). Thus, the question is how to balance the TF and IDF
contributions when we choose terms (features) to represent documents. In a more
general context, this problem, called feature selection, plays an important role in
document classification and clustering. In later chapters we shall discuss it in more
detail.

Relevance Feedback

Keyword queries are often incomplete or ambiguous. The response from such queries
may not return the relevant documents that match user information needs or may
include many irrelevant documents. So queries have to be specialized and refined,
which is usually done through advanced search options, available in most search
engines. This means, however, that the user needs to know more about the document
searched, which contradicts the basic philosophy of information retrieval, which is

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

INDEXING AND KEYWORD SEARCH 27

about search for information, not documents. The relevance feedback approach refines
the query automatically using user feedback as to the relevance of the result. This
can be done by providing some type of rating for each document in the result list.
In the initial response these ratings may be the document ranks or simply binary
labels indicating the relevance or irrelevance for each document. For example, the
top 10 documents in the ranked list may be considered as relevant and the rest as
irrelevant.

After the initial response the user evaluates the actual relevance of each doc-
ument (e.g., by reading its content) and is provided with the option to change the
relevance suggested by the system. This information, called relevance feedback, is
then sent back to the search engine and the query is repeated. At this point the rel-
evance feedback is used to adjust the original query vector. This can be done using
Rocchio’s method, a simple and popular technique known from early IR systems
and used recently in related areas, such as machine learning. The idea is to update
the query vector using a linear combination of the previous query vector �q and the
document vectors �d j of relevant and irrelevant documents. That is,

�q ′ = α �q + β
∑

d j ∈D+

�d j − γ
∑

d j ∈D−

�d j

where α, β, and γ are adjustable parameters and D+ and D− are the sets of relevant
and irrelevant documents provided by the user. These sets can also be determined
automatically (the approach is then called pseudorelevance feedback): for example,
by assuming that the top 10 documents returned by the original query belong to
D+ and the rest to D−. Because the set of irrelevant documents is usually much
larger, we may want not to use D− (i.e., set γ = 0). Also, not all terms have to be
included in the equation. The reason is that terms with high TF may occur in many
documents and thus contribute too much to the corresponding component of the query
vector. This would shift the focus to unimportant terms and may call up documents
that are more irrelevant. To avoid this, terms are ordered in decreasing order by
their IDF score, and a given number of terms from the top of the list (e.g., 10) are
chosen.

To illustrate the approach, let us try to improve the search results shown in
Table 1.5. Let α = 1, β = 0.5, γ = 0, and D+ be the set of three relevant documents
returned by the original query. Let us also use only the top three terms from the list
sorted by IDF score (lab, laboratory, and programming), thus excluding computer
and program, which occur in more documents and have lower IDF scores (see the
earlier table showing the IDF scores). The new query vector is computed as

�q ′ = �q + 0.5 (�d4 + �d6 + �d14)

=

⎛
⎜⎜⎜⎜⎝

0
0
0
0.932
0.363

⎞
⎟⎟⎟⎟⎠+ 0.5

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

0.

0
0
0
0

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

0
0
0.559
0
0

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

0.89
0
0
0
0

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ =

⎛
⎜⎜⎜⎜⎝

0.445
0
0.28
0
0.363

⎞
⎟⎟⎟⎟⎠

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

28 CHAPTER 1 INFORMATION RETRIEVAL AND WEB SEARCH

Note that the last two coordinates of the document vectors are replaced with 0’s, as
we decided to exclude these terms due to low IDF scores. Before the second run the
query vector is normalized to �q ′ = (0.394 0 0.248 0.824 0.321). The resulting list
of documents ranked by cosine similarity (shown in parentheses in Table 1.5) is now
d6(0.863), d4(0.846), and d14(0.754). This ranking seems a little more natural because
the Computer Science document (d6), which has a higher count for the term computer
(the more important query term), is now ranked before the Chemistry document (d4),
which has a smaller count for the same term. Also, the incorrectly ranked document
from the original query d12 (now with cosine similarity 0.824) is one position down.

The general effect of pseudorelevance feedback is that the query becomes more
similar to the relevant documents returned from the original query. Consequently,
on the second run the relevant documents’ vectors are grouped around bigger and
more homogeneous vectors (with more uniform distribution of terms, such as d6 in
the example), and those with scattered terms (e.g., d12) are pushed away. When the
user provides the feedback, the group of relevant vectors may be moved toward a
user-specified set of relevant vectors.

Relevance feedback is a standard technique in classical IR. However, it is not
popular for web search mainly because web users generally expect instant results
from their queries. Also, user feedback would increase the computational cost for
handling the millions of queries that search engines have to deal with every second.
The reason we include the discussion of relevance feedback here is that it contributes
further to better understanding the vector space model and the TFIDF framework.

There also exist probabilistic approaches to relevance feedback that try to model
the mapping between queries and relevant documents using statistical techniques.
Basically, these techniques assume term independence (with respect to other terms,
queries, and document relevance) and calculate conditional probabilities for document
relevance. We are not discussing these approaches here because similar ones exist in
the more general context of document classification, where the document relevance
can be seen as a category (class) label of a document and machine learning techniques
can be used to learn mappings between queries and documents, considering user
feedback as a training set of examples. We discuss some of these techniques in later
chapters.

Advanced Text Search

The commonly used text search queries include only individual terms, and by default
most search engines assume that all of the terms specified must occur in the documents
returned (they are implicitly AND-ed). Advanced search options also allow the use
of “OR” or “NOT” Boolean operators. All these constraints can be implemented
easily during the retrieval phase, when documents are looked up in the inverted
index. After (or while) obtaining a set of documents that satisfy the Boolean Query,
the TFIDF measure is used to compute the proximity of the document vectors to the
query vector. This allows the documents retrieved to be ordered by relevance to the
query.

Another advanced search option is phrase search. Documents that include given
phrases can be retrieved using the standard term-based inverted index, as it also

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

INDEXING AND KEYWORD SEARCH 29

contains term position information. We have illustrated this with the phrase computer
lab (see Table 1.3) found in the Music document (d14) because computer and lab
occurred in successive positions (41 and 42) in that particular document.

Ranking documents retrieved by phrase search is, however, more difficult. Using
combinations of the TFIDF measures of the terms that occur in the phrase is not
appropriate because these measures are computed independently for the individual
terms. So we need the TF and IDF values for the phrase itself. Once we have those
measures, phrases can be added as new dimensions to the document vector space,
and cosine similarity can be used for relevance ranking. Thus, the question is how to
identify potentially useful phrases from a given corpus. A collection of phrases that
occur in a corpus is called a phrase dictionary.

The phrase dictionary may be built manually or derived from the corpus au-
tomatically. Most approaches use statistical methods first to extract possible phrases
and then linguistic tools or manual editing to refine the phrase dictionary. Phrases
typically consist of two or three words. In a large corpus two or three words may
occur together by chance or they may be a pattern (i.e., a phrase). The statistical
approach tries to answer this question by estimating the probabilities of occurrences
of the terms individually and as a phrase. For example, if two terms t1 and t2 are in-
dependent, the probability of their cooccurrence is P(t1 t2) = P(t1)P(t2). However if
“t1 t2” is a phrase, the probability P(t1 t2) would significantly differ from the product
P(t1)P(t2). Statistical tests such as likelihood ratio are used to determine this.

Phrases provide context for terms, but they play the same role as that played
by individual terms: They add new features to the document model (dimensions in
vector space). Another, richer context for terms is provided by tagging. We have
already mentioned part-of-speech tagging, where words are associated with their role
in the sentence and the same words with different tags are used as dimensions in
vector space. This approach allows queries to be more specific and unambiguous.

So far we have assumed that keywords in queries can match exactly words
that occur in documents. In practice, however, various languages and dialects are
used and words are often misspelled. Thus, if only exact matching is used, many
relevant documents may be missed. Generally, there are two approaches to solving this
problem. One is to extend the process of stemming with some conflation mechanism
that may handle misspelling and dialects. The difficulties with this approach are that
such mechanisms are developed mostly for English and other Western languages.
Also, a lot of common words are used with specific technical meaning.

The other approach is to try to find the closest match of the query term to
terms in the inverted index. This can be done by approximate string matching. One
popular approach for this is to decompose words into subsequences of characters with
fixed length called n-grams (or q-grams). For example, the word program may be
represented by a sequence of 2-grams as {pr, ro, og, gr, ra, am} and its misspelling
prorgam as {pr, ro, or, rg, ga, am}. So they overlap in three of the six 2-grams and
may be considered close.

To use n-grams in keyword search, the query term is first looked up in a index
of n-grams (n is usually 2 to 4) and is slightly modified so that a set of variant terms
is obtained. Then the inverted index is used with each one those terms. The closest
match is determined by comparing the relevance of the documents retrieved.

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

30 CHAPTER 1 INFORMATION RETRIEVAL AND WEB SEARCH

Using the HTML Structure in Keyword Search

So far we have ignored the rich HTML structure of web documents. However, HTML
tags provide a lot of context information that may be very useful in keyword search.
Basically, the tags that add to or modify the meaning of web page text are important
for this purpose. These are:

� Titles and metatags that provide meta information about the web page. For
example, the following fragments from the Music page (Figure 1.4) provide
information about the title of the page, its authors, and the software used to
create it:

<title>Music</title>

<meta name="Author" content="John Smith ">

<meta name="GENERATOR" content="Microsoft FrontPage 5.0">

This information is included in the “head” area of the web page, and with the
exception of the title is not displayed by the browser.

� Headings and font modifiers used to separate or emphasize parts of the text
(e.g., <h2> · · · </h2>, · · · , · · · , <p>,
).
For example, the title of the web page is generated with the following structure:

<h2 align="center">

<big>Music</big>

</h2>

� Anchor text. For example, the following anchor occurs in the department direc-
tory page (Figure 1.3):

Department Chairs, Locations, Phone Numbers

The anchor text here explains briefly the content of the page to which it links.

HTML tags have two basic uses in web search. First, the terms that occur in their
context may be tagged and indexed accordingly. For this purpose the main index can
be extended with tagged terms, or separate indices can be built for faster access. This
will allow web documents to be retrieved by specific parts of their HTML structure.
For example, Google advanced search options allow specifying exactly where the
terms should occur in the page: in the title, in the text (excluding the title), in the page
URL, or in links (anchor text) pointing to the page. Some of these HTML structures
may even replace full text indexing. For example, one of the early versions of Google
built at Stanford University indexed only the titles of 16 million web pages and was
very successful because of the small and efficient index (and also because of the use
of hyperlink-based ranking, which we discuss later). However, the lack of authority
and editorial control on web publishing allows many web pages to have no titles, or
titles that are irrelevant to the page content. The same is true for other tags generally

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

INDEXING AND KEYWORD SEARCH 31

supposed to provide metainformation about the web page. All this made the designers
of web search engines take the full-text indexing approach.

The other use of HTML tags is for relevance ranking. The specific HTML scope
where keyword terms occur in a document may affect its ranking. This can be achieved
by assigning different weights to terms occurring in different HTML structures. These
weights are then used to modify the corresponding TFIDF components of the query
and document vectors, which in turn affect their cosine similarity and consequently
the relevance ranking of the documents in the response. Typically, words in titles,
emphasized text, heading, and anchors may get higher scores and thus increase the
relevance score of the documents in which they occur. This approach was popular
in the early search engines and worked well for providing more natural relevance
ranking. The reason for this is that these are techniques used in traditional typesetting
and, more recently, in web page design to emphasize important words and phrases
that have high relevance to the document content and meaning.

With the appearance of spam, however, HTML tags became a tool for making
search engines index web pages with content irrelevant to the indexed terms or for
getting top ranking in search engines. One popular way to achieve this was to include
in the web page invisible words (text with the same foreground and background
color) that will be indexed by search engines but will not be seen by web users.
Metatags were also used by spammers to get top ranking in search engines because the
metainformation they include is not displayed by browsers but is taken into account for
relevance ranking. All this shifted the emphasis of search engines from the HTML tags
to the page hyperlink structure. We discuss link-based ranking in detail in Chapter 2.

Still, one HTML structure plays a significant role in web page indexing and
search. This is the anchor tag, which actually implements the main feature of the web
pages, the hyperlinks. As we mentioned earlier, the purpose of web search is to access
unstructured data by content. The discussion so far was focused on the approaches to
model the web page content. Hyperlinks and especially, anchor text provide additional
content description of web pages. For example, the anchor text “Department Chairs,
Locations, Phone Numbers” (from the A&S directory page shown in Figure 1.4)
includes the term phone, which in fact is not present in the content of the page to
which it points (http://www.artsci.ccsu.edu/ASLinks/Chairs.html). The
latter contains a table in which the phone numbers are listed in a column named “Ext.”
Obviously, when crawled and indexed, this page will not be included in the index entry
for the term phone and consequently cannot be retrieved by keyword search with the
term phone. However, this term may be taken from the anchor text that points to the
page and is included in the set of terms representing the document. Weight that would
increase the TFIDF score of the document vector along this dimension may also be
assigned to such external terms, because they are often more relevant to the page
content than are terms from the original page. The reason for this is that the pages
that link to a particular page provide independent and authoritative judgment about
its content. In some cases the anchor text may be used for indexing instead of the
actual page content. For example, the web page with the phone numbers mentioned
above can be indexed by all the terms that occur in the anchor text pointing to it:
department, chairs, locations, phone, and numbers. More terms may be collected
from other pages pointing to it. This idea was implemented in one of the first search

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

32 CHAPTER 1 INFORMATION RETRIEVAL AND WEB SEARCH

engines, the World Wide Web Worm system [4], and later used by Lycos and Google.
This allows search engines to increase their indices with pages that have never been
crawled, are unavailable, or include nontextual content that cannot be indexed, such
as images and programs. As reported by Brin and Page [5] in 1998, Google indexed
24 million pages and over 259 million anchors.

EVALUATING SEARCH QUALITY

Information retrieval systems do not have formal semantics (such as that of databases),
and consequently, the query and the set of documents retrieved (the response of the
IR system) cannot be mapped one to one. Therefore, some measures are used to
evaluate the degree of fitness (accuracy) of the response. A standard benchmark for
this purpose is the recall-precision measure, which is also used in related areas (such
as machine learning and data mining).

Assume that there is a set of queries Q and a set of documents D, and for each
query q ∈ Q submitted to the system we have:

� The response set of documents (retrieved documents) Rq ⊆ D
� The set of relevant documents Dq selected manually from the entire collection

of documents D (i.e., Dq ⊆ D)

The proportion of retrieved relevant documents to all retrieved documents is
called precision and is defined as

precision =
∣∣Dq ∩ Rq

∣∣∣∣Rq

∣∣
Clearly, the value of the precision is between 0 and 1: where 0 is the worst case—no
relevant documents are retrieved—and 1 is the best case—all documents retrieved
are relevant. Precision 1 is not, however, all that an ideal IR system should provide,
because there may be relevant documents that are not retrieved. Recall is the measure
that accounts for this. It represents the proportion of relevant documents retrieved to
all relevant documents. Formally,

recall =
∣∣Dq ∩ Rq

∣∣∣∣Dq

∣∣
Again, the best case is 1—all relevant documents are retrieved—and the worst case
is 0—no relevant documents are retrieved.

Recall and precision determine the relationship between two sets of documents:
relevant (Dq) and retrieved (Rq). Ideally, these sets coincide (precision and recall are
both 1), but this never happens in real systems. Generally, there is some overlap
(Dq ∩ Rq ⊂ Dq) which we would like to maximize, or the set retrieved is too large
(Dq ⊂ Rq) and we want to exclude from it documents that are irrelevant. Interestingly,
achieving the maximum value for each of the two measures individually is trivial. By
using a very general query (e.g., a query including terms that occur in all documents),
the response set will be the entire collection of documents D, and thus the recall

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

EVALUATING SEARCH QUALITY 33

will be 1. However, the precision will be low because all irrelevant documents will
also be included in the response. Inversely, with a very restrictive query, a small
subset of relevant-only documents may be retrieved easily. For example, one of the
relevant documents may be used as a query, and then the precision will be 1. These
observations suggest that there is an important trade-off between precision and recall.
A plot of precision against recall generally slopes down with increasing recall. Thus,
a better IR system will have its recall–precision curve above that of a poorer system.

The set-valued recall–precision framework is oversimplified and is commonly
used only to illustrate the general idea or in areas where ranking is not possible. Real
IR systems, such as web search engines, return thousands of documents. Considering
them as a set as well as computing the set Dq is practically impossible. Obviously, the
document ranks have to be taken into consideration. For this purpose we modify the
setting as follows. Consider that the response to a query q is now not a set but a list
Rq = (d1, d2, . . . , dm) of ranked documents (highest ranks first). Then using the set
of relevant documents Dq , for each document di ∈ Rqwe can compute its relevance
ri as a Boolean value. That is,

ri =
{

1 if di ∈ Dq

0 otherwise

We also add a parameter k ≥ 0 that represents the number of documents from the top
of the list Rq that we consider. Thus, we define precision at rank k as

precision (k) = 1

k

k∑
i=1

ri

and recall at rank k as

recall (k) = 1

|Dq |
k∑

i=1

r i

If we fix k and consider the top k elements from Rq as a set, the new measures work
exactly the same as the set-based measures. The parameter k allows us to see how
recall and precision change with increasing k (i.e., decreasing rank). The average
precision is the measure that accounts for this:

average precision = 1

|Dq |
|D|∑
k=1

rk × precision (k)

The average precision is a useful measure that combines precision and recall and also
evaluates document ranking. The maximal value of average precision is 1, reached
when all relevant documents are retrieved and ranked in the response list before any
irrelevant documents. Note that the sum goes over all documents in the collection D.
Although the system provides ranking only for the documents in the response list Rq ,
we assume that all documents in D are ordered by their rank. In practice, to compute
the average precision we first go over the ranked documents from the response list Rq

and then continue with the rest of the documents from D. Also, we assume that ri ’s
are computed for all documents in D. Thus, the maximum of 1 is reached when Rq

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

34 CHAPTER 1 INFORMATION RETRIEVAL AND WEB SEARCH

TABLE 1.6 Document Ranking, Relevance, Recall, and Precision

k Document Index rk recall (k) precision (k)

1 4 1 0.333 1
2 12 0 0.333 0.5
3 6 1 0.667 0.667
4 14 1 1 0.75
5 1 0 1 0.6
6 2 0 1 0.5
7 3 0 1 0.429
8 5 0 1 0.375
9 7 0 1 0.333

10 8 0 1 0.3
11 15 0 1 0.273
12 16 0 1 0.25
13 17 0 1 0.231
14 19 0 1 0.214
15 9 0 1 0.2
16 10 0 1 0.188
17 11 0 1 0.176
18 13 0 1 0.167
19 18 0 1 0.158
20 20 0 1 0.15

includes all relevant documents. It may also include irrelevant ones, but they should
occur after the relevant documents.

To generate a plot of precision against recall, interpolated precision is used.
First, the actual recall levels recall(k) are computed for each k corresponding to a
relevant document from set Dq , that is, for those k’s for which rk = 1. Then for each
standard value of recall ρ (e.g., ρ = 0, 0.1, 0.2, . . . , 1) the interpolated precision is
the maximum precision computed for recall levels greater than or equal to ρ (inter-
polated precision is defined as 0 for recall 0). To get the average performance of an
IR system on a set of queries Q at each level of recall, the interpolated precision is
averaged over all q ∈ Q.

Let us illustrate the recall–precision evaluation technique with our department
example. The initial data needed for this purpose include the ranking of all documents
and the corresponding rk’s. As the ranking shown in Table 1.5 is nearly perfect, we
modify it a bit to get a more interesting situation. The new ranking that we are going
to evaluate here is based purely on the cosine similarity (the original ranking was
done only on documents that include both keywords). The relevant documents that
form the list Rq (determined manually) are d4 (Chemistry), d6 (Computer Science),
and d14 (Music): that is, those that include both computer and program. Thus, we
rank all documents in the collection as shown in Table 1.6.

As the recall values increase with k, the precision interpolated at each standard
recall level ρ is computed as the maximum precision in all rows, starting with the first
one (from the top) in which the actual recall value is greater than or equal to ρ. Thus,

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

EVALUATING SEARCH QUALITY 35

Original relevance ranking

0.0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1

recall

in
te

rp
o

la
te

d
 p

re
ci

si
o

n

After relevance feedback

0.0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8

recall

in
te

rp
o

la
te

d
 p

re
ci

si
o

n

1

Figure 1.5 Interpolated precision against recall before and after relevance feedback.

for recall levels of 0, 0.1, 0.2, and 0.3, the interpolated precision of 1 is computed
as the maximum precision on rows 1 to 20. For recall levels 0.4, 0.5, and 0.6, the
interpolated precision is 0.75 (maximum precision on rows 3 to 20), and it is also 0.75
for levels 0.7 to 1 (maximum precision on rows 4 to 20). The plot of the precision
interpolated against recall computed as described is shown on the left in Figure 1.5.
For comparison the right side of the figure shows the precision against recall for
the ranking produced by Rocchio’s method as described in the section “Relevance
Feedback” (the sequence of rk’s starts with 1, 1, 0, 1, 0, . . .). The curve on the right of
the figure is above that on the left, which indicates that relevance feedback improves
the performance of an IR system.

Let us also compute the average precision for the two rankings shown in Figure
1.5. We use Table 1.6 and average the precision in the rows where rk = 1(rows 1, 3,
and 4). Thus, for the original ranking we have

average precision = 1
3 (1 + 0.667 + 0.75) = 0.806

The relevance feedback swaps the values of r2 and r3 and changes the precisions
accordingly. Thus, we have

average precision = 1
3 (1 + 1 + 0.75) = 0.917

Clearly, the average precision also indicates that the relevance feedback improves
document ranking.

The recall–precision framework is a useful method for evaluating IR system
performance. It is, however, important to note that it has its limitations. As we already
mentioned for large document collections such as the Web, it is not possible to use
the response set Rq explicitly. For example, a Web search with the query that we
have used for our small collection of 20 documents, computer program, submitted to
Google returns about 504 million documents (!). Of course, the recall and precision
can be computed on the first 10 or 20 documents, which is still useful. There is
another critical issue, however, that may require a different approach. The classical
IR recall–precision evaluation is based entirely on the document content (the TFIDF
vector space model). As we shall see in Chapter 2, other measures, such as popularity
and authority, are also important and have to be taken into account.

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

36 CHAPTER 1 INFORMATION RETRIEVAL AND WEB SEARCH

SIMILARITY SEARCH

We have assumed that web user information needs are represented by keyword queries,
and thus document relevance is defined in terms of how close a query is to documents
found by the search engine. Because web search queries are usually incomplete
and ambiguous, many of the documents returned may not be relevant to the query.
However, once a relevant document is found, a larger collection of possibly relevant
documents may be found by retrieving documents similar to the relevant document.
This process, called similarity search, is implemented in some search engines (e.g.,
Google) as an option to find pages similar or related to a given page. The intuition
behind similarity search is the cluster hypothesis in IR, stating that documents sim-
ilar to relevant documents are also likely to be relevant. In this section we discuss
mostly approaches to similarity search based on the content of the web documents.
Document similarity can also be considered in the context of the web link struc-
ture. The latter approach is discussed briefly in the section “Authorities and Hubs” in
Chapter 2.

Cosine Similarity

The query-to-document similarity which we have explored so far is based on the vec-
tor space model. Both queries and documents are represented by TFIDF vectors, and
similarity is computed using the metric properties of vector space. It is also straight-
forward to compute similarity between documents. Moreover, we may expect that
document-to-document similarity would be more accurate than query-to-document
similarity because queries are usually too short, so their vectors are extremely sparse
in the highly dimensional vector space. Thus, given a document d and a collection
D, the problem is to find a number (usually, 10 or 20) of documents di ∈ D which
have the largest value of cosine similarity to d: that is, the maximum value of the dot
product �d. �di .

In similarity search we are not concerned with a small query vector, so we are
free to use more (or all) dimensions of the vector space to represent our documents.
In this respect it will be interesting to investigate how the dimensionality of vector
space affects the similarity search results. This issue is related to feature selection,
a problem that we mentioned earlier and will revisit later. Generally, several options
can be explored:

� Using all terms from the corpus. This is the easiest option but may cause
problems if the corpus is too large (such as the document repository of a web
search engine).

� Selecting terms with high TF scores (usually based on the entire corpus). This
approach prefers terms that occur frequently in many documents and thus makes
documents look more similar. However, this similarity is not indicative of doc-
ument content.

� Selecting terms with high IDF scores. This approach prefers more document-
specific terms and thus better differentiates documents in vector space. However,

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

SIMILARITY SEARCH 37

it results in extremely sparse document vectors, so that similarity search is too
restricted to closely related documents.

� Combining the TF and IDF criteria. For example, a preference may be given
to terms that maximize the product of their TF (on the entire corpus) and TDF
scores. As this is the same type of measure used in the vector coordinates (the
difference is that the TF score in the vector is taken on the particular document),
the vectors will be better populated with nonzero coordinates. We explore this
option when we discuss document clustering and classification later in the book.

Let us illustrate the similarity search basics with our department example. We
shall represent all documents as TFIDF vectors with different dimensionality (to
examine the effect of feature selection). For this purpose we create two lists, including
all 671 terms in the corpus (see the basic statistics in Table 1.1), one ordered by their
global (for the corpus) frequency scores and another ordered by their IDF scores. The
two halves of Table 1.7 give us an idea of what these lists look like. The left half
shows the 10 most frequent terms along with their frequencies, IDF scores, and the
number of documents in which they occur. The right half shows the terms with the
top 10 IDF scores, their frequency counts, and the number of documents in which
they occur.

In fact, the table shows the beginning and end of the frequency-ordered list
of terms and illustrates nicely the basic properties of the IDF measure. The highest-
frequency terms usually occur in many documents and have low IDF scores. Using
these terms as dimensions of vector space would make all documents too similar.
On the other hand, each of the top IDF-scored terms occurs in one document only
(these are, in fact, the department names). Obviously, in a 20-dimensional vector
space created with the top 20 terms from this list, the documents will be represented
by orthogonal vectors and thus will be perfectly differentiated. However, in such a
space all vectors will be equally dissimilar one to another (with cosine similarity 0).

To further illustrate the observations above, increasingly large samples are taken
from the top of the TF list, the IDF list, and the TF∗IDF list (ordered by the product of
TF and IDF) and the documents are ordered by their cosine similarity to the Computer

TABLE 1.7 Term Frequencies and IDF Scores

Term Count IDF Docs. Term IDF Count Docs.

department 65 0.049 20 english 3.045 5 1
study 28 0.049 20 psychology 3.045 5 1
students 26 0.336 15 chemistry 3.045 6 1
ba 22 0.272 16 communication 3.045 6 1
website 21 0.049 20 justice 3.045 7 1
location 21 0.049 20 criminal 3.045 8 1
programs 21 0.405 14 theatre 3.045 8 1
832 20 0.100 19 anthropology 3.045 9 1
phone 20 0.049 20 sociology 3.045 10 1
chair 20 0.049 20 music 3.045 12 1

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

38 CHAPTER 1 INFORMATION RETRIEVAL AND WEB SEARCH

TABLE 1.8 Experiments with Cosine Similarity

Sample i/ �di · �d6 (Indices of Documents Ordered by �di · �d6)

100 TF 17/0.23, 3/0.20, 4/0.18, 12/0.17, 14/0.05
200 TF 12/0.19, 17/0.19, 4/0.16, 3/0.13, 14/0.08
300 TF 17/0.21, 12/0.19, 4/0.17, 3/0.13, 14/0.08
400 TF 17/0.21, 12/0.19, 4/0.17, 3/0.13, 14/0.13
500 TF 17/0.21, 12/0.20, 4/0.17, 3/0.13, 14/0.13
600 TF 17/0.24, 4/0.22, 12/0.2, 3/0.16, 14/0.13
100–500 IDF 20/0, 19/0, 18/0, 17/0, 16/0
600 IDF 12/0.08, 14/0.05, 2/0.03, 15/0.03, 17/0.02
100 TF*IDF 17/0.42, 12/0.22, 4/0.20, 3/0.09, 1/0.07
200 TF*IDF 17/0.26, 12/0.14, 4/0.14, 1/0.06, 2/0.05
300 TF*IDF 17/0.16, 4/0.13, 12/0.12, 1/0.06, 2/0.05
400 TF*IDF 17/0.16, 4/0.13, 12/0.08, 1/0.06, 2/0.04
500 TF*IDF 17/0.17, 12/0.13, 4/0.12, 1/0.06, 3/0.05
600 TF*IDF 17/0.19, 12/0.19, 4/0.18, 3/0.14, 14/0.10
671 ALL 17/0.24, 4/0.22, 12/0.20, 3/0.16, 14/0.13

Science document (�d6). Table 1.8 summarizes the results. The results from TF and
TF∗IDF sampling generally look more stable with increasing sample size and tend
toward the results obtained from the complete set of features. This comes as no
surprise, because with many frequent terms the document vectors are well populated
with nonzero coordinates, so that adding new features does not change similarity
values very much. The situation with IDF sampling is different. With 100 to 500
features, all vectors are orthogonal (the dot product with �d6 is 0). With 600 features
the vectors are somewhat more populated, but many are still orthogonal. They are
also very sparsely populated; for example, the 600-dimensional IDF query vector �d6

has only 43 nonzero coordinates.
Another interesting observation is based on the similarity values. Because all

vectors are normalized to unit length, the dot product values can be compared directly,
even for vectors with different number of coordinates. Thus, the similarity values may
be used as an objective measure of the quality of feature selection. Not surprisingly,
the highest values are achieved with the 100 TF*IDF sample (shown in boldface).
This is an additional argument that a good balance between TF and IDF measures
could bring the best results.

Jaccard Similarity

There is an alternative to cosine similarity, which appears to be more popular in the
context of similarity search (we discuss the reason for this later). It takes all terms that
occur in the documents but uses the simpler Boolean document representation. The
idea is to consider only the nonzero coordinates (i.e., those that are 1) of the Boolean
vectors. The approach uses the Jaccard coefficient, which is generally defined (not
only for Boolean vectors) as the percentage of nonzero coordinates that are different in

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

SIMILARITY SEARCH 39

the two vectors. In our particular case the similarity between two Boolean document
vectors sim(�d1, �d2) is defined as the proportion of coordinates that are 1 in both �d1

and �d2 to those that are 1 in �d1 or �d2. Thus, formally,

sim (�d1, �d2) =

∣∣∣{ j |d j
1 = 1 ∧ d j

2 = 1}
∣∣∣∣∣∣{ j |d j

1 = 1 ∨ d j
2 = 1}

∣∣∣
As each 1 in the document vector represents a term that occurs in the document,
this formula can be rewritten using sets of terms. Thus, we arrive at an alternative
formulation of the Jaccard coefficient defined on sets. Let us denote the set of terms
that occur in document d as T (d). Then the similarity between two documents sim
(d1, d2) is defined as

sim (d1, d2) = |T (d1) ∩ T (d2)|
|T (d1) ∪ T (d2)|

sim (d1, d2) has some nice properties that are important in the context of a similarity
search. For example, the similarity reaches its maximum (1) if the two documents are
identical [i.e., sim (d, d) = 1] and is symmetrical [i.e., sim (d1, d2) = sim (d2, d1)].
However, it is not a formal metric (distance function), as it does not satisfy the triangle
equality. Note, however, that 1 − sim (d1, d2) is a metric called the Jaccard metric.

Direct computation of the Jaccard coefficient is straightforward, but with large
documents and collections it may lead to a very inefficient similarity search. Also,
finding similar documents at query time is impractical because it may take quite a long
time. Therefore, some optimization techniques are used and most of the similarity
computation is done offline (i.e., for each document from the collection, a number
of nearest documents are precomputed). The inverted index provides a good deal
of information that may be used for this purpose. The idea is to create a list of all
document pairs sorted by the similarity of the documents in each pair. Then the k
most similar documents to a given document d are those that are paired with d in the
first k pairs from the list. Theoretically, the number of document pairs is n (n − 1)/2
for n documents. However, two simple heuristics may drastically reduce the number
of candidate pairs:

1. Frequent terms that occur in many documents (say, more than 50% of the
collection) are eliminated because they cause even loosely related documents
to look similar.

2. Only documents that share at least one term are used to form a pair.

Let us illustrate the basic steps of precomputing document similarity with our
department collection. To simplify the discussion, in the first two steps we use the five-
column term–document matrix shown in Table 1.2. In step 3, however, we compute
the Jaccard coefficient using the complete set of terms for each document.

1. For each term, create a set of documents that includes the term. At this point
we eliminate three terms (lab, laboratory, and programming) because their
respective sets include only one document (no document pair can be created).

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

40 CHAPTER 1 INFORMATION RETRIEVAL AND WEB SEARCH

Thus, we end up with (for brevity, only the document indices are shown)

[(program, {1,2,4,6,7,8,14,15,16,17,19}), (computer, {3,4,6,12,14})]
(One may decide to eliminate program, due to its high frequency, but we leave
it, because otherwise the example would be trivial.)

2. Create pairs of documents from each set in item 1, store them in a single file,
and sort the file by the frequency counts of the pairs. The result of this step is a
list of 78 pairs (counts follow the slash): [(4,6)/2, (4,14)/2, (6,14)/2, (1,2)/1,
(1,4)/1, (1,6)/1, . . .]. Thus, counts represent the number of terms shared by the
documents in the pair. At this point more candidate pairs can be eliminated by
setting a threshold for the minimal number of shared terms.

3. Compute the similarity between the documents in each pair and sort the list of
pairs accordingly. The beginning of the sorted list is as follows:

[(7,15)/0.208, (1,17)/0.196, (15,19)/0.192, (8,17)/0.189, (3,12)/0.186,

(17,19)/0.185, (12,15)/0.185, (12,17)/0.18, (1,19)/0.178, (4,14)/0.176,

(6,12)/0.175, (3,4)/0.173, (12,19)/0.170, (4,19)/0.168, (7,17)/0.159,

(8,19)/0.158, (8,7)/0.156, (8,12)/0.153, (1,14)/0.145, (1,15)/0.142,

(7,12)/0.141, (1,12)/0.140, (4,7)/0.137, (15,17)/0.136, (4,6)/0.136,

(4,12)/0.136, (7,14)/0.136, (6,14)/0.135, (12,14)/0.135, . . .]

Having done this computation, we are now able to answer similarity search
queries very quickly. For example, to find the documents most similar to document
6 (computer science), we go through the list from left to right and report (in the
order of occurrence) the other document in each pair that contains 6. Thus, we get
12 (Mathematics), 4 (Chemistry), and 14 (Music) for the part of the list that is shown
above (the corresponding pairs are shown in boldface). The complete list of documents
most similar to document 6 is [12,4,14,17,3,15,19,7,2,1,16,8].

It is interesting to compare these results with the TFIDF similarity results shown
in Table 1.7. The closest match is with the list produced with all features, where the
five most similar documents are the same but are ranked differently ([17,4,12,3,14]).
Which of the two rankings is more trustworthy? The ranking produced by the cosine
similarity may look a bit strange, because it picks the Political Science document
(17), whereas generally, Computer Science as a subject may be considered closer to
Mathematics (12). Obviously, the documents in both pairs, (6,17) and (6,12), share a
lot of terms, but in TFIDF ranking not only is the term overlap taken into account but
the TF and IDF measures as well. They bring more information into the similarity
ranking process, which allows more accurate computation of similarity to be done,
For example, both the Computer Science and Political Science documents have five
occurrences of the term science, while Computer Science and Mathematics have one
occurrence of the term sciences. Also, the term science has a relatively high IDF
score. All this is taken into account by the cosine similarity measure but is simply
ignored by the Jaccard measure.

There have been studies that compare the two measures for various tasks and
in various domains. In many areas the two measures show comparable results (see,

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

SIMILARITY SEARCH 41

e.g., [6]). It seems, however, that for the purpose of document similarity search, the
Jaccard measure is preferable. The reason for this is primarily scalability, which is
an issue in large document collections such as the Web. There exist methods for
approximate computation of the Jaccard coefficient that work quite well in these
cases. Broder [7] proposed a method for estimating the resemblance between two
documents using a set representation of document subsequences called shingles (see
the next section). In fact, his method estimates the Jaccard coefficient on two sets
by representing them as smaller sets called sketches, which are then used instead of
the original documents to compute the Jaccard coefficient. Sketches are created by
choosing a random permutation, which is used to generate a sample for each document.
Most important, sketches have a fixed size for all documents. In a large document
collection each document can be represented by its sketch, thus substantially reducing
the storage requirements as well as the running time for precomputing similarity
between document pairs. The method was evaluated by large-scale experiments with
clustering of all documents on the Web [8]. Used originally in a clustering framework,
the method also suits very well the similarity search setting.

Document Resemblance

So far we have discussed two approaches to document modeling: the TFIDF vector
and set representations. Both approaches try to capture document semantics using
the terms that documents contain as descriptive features and ignoring any informa-
tion related to term positions, ordering, or structure. The only relevant information
used for this purpose is whether or not a particular term occurs in the documents
(the set-of-words approach) and the frequency of its occurrence (the bag-of-words
approach). For example, the documents “Mary loves John” and “John loves Mary”
are identical, because they include the same words with the same counts, although
they have different meanings. The idea behind this representation is that content is
identified with topic or area but not with meaning (that is why these approaches are
also called syntactic). Thus, we can say that the topic of both documents is people
and love, which is the meaning of the terms that occur in the documents.

Assume, however, that the task is to find identical or nearly identical documents,
or documents that share phrases, sentences, or paragraphs. Obviously, set-based rep-
resentation is not appropriate for such tasks. In a similarity search a query may return
many copies of the same document (sometimes with slight modifications) that are
stored at different web locations (mirror sites). Such pages may also be fetched mul-
tiple times by the web crawler if it keeps track only of the URLs of pages that have
been visited. To avoid such situations, some mechanism for detecting duplicates or
near duplicates of documents is needed. Detecting shared sentences, paragraphs, or
other structures of text is a useful technique for identifying cases of plagiarism or
studying stylistic properties of texts. Some figures obtained in the clustering study
of the Web that we mentioned earlier [8] illustrate the magnitude of the problem.
Among the 30 million web pages that were analyzed, there were 2.1 million clusters
containing only identical documents (5.3 million documents).

There is a technique that extends the set-of-words approach to sequences of
words. The idea is to consider the document as a sequence of words (terms) and

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

42 CHAPTER 1 INFORMATION RETRIEVAL AND WEB SEARCH

extract from this sequence short subsequences of fixed length called n-grams or
shingles. The document is then represented as a set of such n-grams. For example, the
document “Mary loves John” can be represented by the set of 2-grams {[Mary, loves],
[loves, John]} and “John loves Mary” by {[John, loves], [loves, Mary]}. Now these
four 2-grams are the features that represent our documents. In this representation
the documents do not have any overlap. We have already mentioned n-grams as a
technique for approximate string matching but they are also popular in many other
areas where the task is detecting subsequences such as spelling correction, speech
recognition, and character recognition.

Shingled document representation can be used for estimating document re-
semblance. Let us denote the set of shingles of size w contained in document d as
S(d,w). That is, the set S(d,w) contains all w-grams obtained from document d. Note
that T (d) = S(d,1), because terms are in fact 1-grams. Also, S(d ,|d|) = d (i.e., the
document itself is a w-gram, where w is equal to the size of the document). The resem-
blance between documents d1 and d2 is defined by the Jaccard coefficient computed
with shingled documents:

rw(d1,d2) = |S(d1,w) ∩ S(d2,w)|
|S(d1,w) ∪ S(d2,w)|

The same technique for precomputing document similarity can be used with the
shingled document representation. The advantage here is that after obtaining doc-
ument pairs along with those that are too dissimilar, we can also eliminate those
that are too similar in terms of resemblance [with large values of rw(d1,d2)]. In
this way, duplicates or near duplicates can be eliminated from the similarity search
results.

Although the number of shingles needed to represent each document is roughly
the same as the number of terms needed for this purpose, the storage requirements for
shingled document representation increase substantially. A straightforward represen-
tation of w-word shingles as integers with a fixed number of bits results in a w-fold
increase in storage. For example, if the term IDs are represented by 32-bit numbers, a
four-word shingle will take 128 bits. There are, however, hashing (or fingerprinting)
techniques that can be used to reduce the storage requirements. Each shingle may be
hashed into a number with a fixed number of bits using a fingerprinting function (see
[7]). Then instead of the complete set of shingles S(d ,w) for each document, only
shingles with 0 modulo p (some suitable prime number) are kept. Let L(d) be the
set of shingles that are S(d,w) that are 0 modulo p. Then the estimated value of the
resemblance between documents d1 and d2 is

re(d1,d2) = |L(d) ∩ L(d2)|
|L(d1) ∪ L(d2)|

L(d) is a smaller set of shingles called a sketch of document d. By choosing a proper
value for p, the storage for L(d), and consequently the storage needed for precom-
puting resemblance for pairs of documents, can be reduced. Of course, this comes at
the expense of less accurate estimation of resemblance.

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

EXERCISES 43

REFERENCES

1. Tim Berners-Lee, Information Management: A Proposal, CERN, Geneva, Switzerland,
1989–1990, http://www.w3.org/History/1989/proposal.html.

2. Tim Mayer, Our blog is growing up—and so has our index, Yahoo! Search Blog, Aug. 2005,
http://www.ysearchblog.com/archives/000172.html.

3. C. Buckley, Implementation of the SMART information retrieval system, Technical Report
85-686, Cornell University, Ithaca, NY, 1985.

4. Oliver A. McBryan, GENVL and WWW: tools for taming the Web, presented at the First
International Conference on the World Wide Web, CERN, Geneva, Switzerland, May 25–27,
1994, http://www.cs.colorado.edu/home/mcbryan/mypapers/www94.ps.

5. Sergey Brin and Lawrence Page, The anatomy of a large-scale hypertextual Web search
engine, in Proceedings of the 7th World Wide Web Conference (WWW7), 1998, http://
www7.scu.edu.au/1921/com1921.htm.

6. L. Lee, Measures of distributional similarity. Proc. ACL, 1999.
7. A. Broder, On the resemblance and containment of documents, in Proceedings on Compres-

sion and Complexity of Sequences (SEQUENCES’97), pp. 21–29, IEEE Computer Society,
Los Alamitos, CA, 1998.

8. A. Broder, S. Glassman, M. Manasse, and G. Zweig, Syntactic clustering of the Web, in
Proceedings of the 6th International World Wide Web Conference, Apr. 1997, pp. 393–404.

EXERCISES

1. Use the WebSPHINX crawler (http://www.cs.cmu.edu/∼rcm/websphinx/, also
available from the book series Web site www.dataminingconsultant.com), to collect
the department web pages listed in the department directory page (Figure 1.3). Use the
following parameters:
� Starting URL: http://www.artsci.ccsu.edu/Departments.htm
� Crawl: the Web (or the server)
� Depth: 1 hop

a. Save the pages as separate files in a directory (action: save, on pages: text). The crawler
creates a directory tree automatically and saves the web pages as HTML documents.
See how the directory structure matches the URL structure of the corresponding pages.

b. Convert the web documents into text documents. For example, use the “Save As . . . ”
option of the Internet Explorer with “Save as type: Text File (*.txt).”

c. Save all documents in a single file (action: concatenate, on pages: text). Convert it to
text format [as done in part (b)] and examine its content.

2. Download and install the Weka data mining system (http://www.cs.waikato.
ac.nz/∼ml/weka/). Read the documentation and try some examples to familiarize
yourself with its use (e.g., the weather data provided with the installation).

3. Create a data file in ARFF format (see a description of the format at http://

www.cs.waikato.ac.nz/∼ml/weka/). Follow the steps below.

a. Use the concatenation of the web documents (Exercise 1c) and create a text file where
each document is represented on a separate line in plain text format. For example, this
can be done by loading the concatenation in MS Word and then saving the file in plain
text format without line breaks.

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

44 CHAPTER 1 INFORMATION RETRIEVAL AND WEB SEARCH

b. Enclose the document content in quotation marks (“) and add the document name at
the beginning of each line and a file header at the beginning of the file:

@relation departments_string

@attribute document_name string

@attribute document_content string

@data

Anthropology, " Anthropology consists of four ...

...

This representation uses two attributes: document-name and document-
content, both of type string. An example of such a data file is
“Departments-string.arff,” available from the book series Web site,
www.dataminingconsultant.com. Note that the representation in “Departments-
string.arff” uses an additional class attribute (see Chapter 5), which is defined in the
file header, and its values are added at the end of each line in the data section (after
@data).

c. Load the file in the Weka system using the “Open file” button in “Preprocess” mode.
After successful loading the system shows some statistics about the number of at-
tributes, their type, and the number of instances (rows in the data section or documents).

d. Choose the StringToNominal filter and apply it to the first attribute, document name.
Then choose the StringToWordVector filter and apply it with “outputWordCounts =
true” (you may also change the setting of “onlyAlphabeticTokens” and “useStoplist”
to see how the results change).

e. Now you have a document–term matrix loaded in Weka. Use the “Edit” option to
see it in a tabular format, where you can also change its content or copy it to other
applications (e.g., MS Excel). Once created in Weka the table can be stored in an
ARFF file through the “Save” option. Figure E1.3e shows a screenshot of a part of the
document–term table.

f. Weka can also show some interesting statistics about the terms. In the visualization
area (preprocess mode), change the class to document name. Then you will see the
distribution of terms over documents as bar diagrams. The screenshot in Figure E1.3f
shows some of these diagrams.

g. Examine the diagrams (the color indicates the document) and find the most specific
terms for each document. For example, compare the diagrams of anthropology and
chair and explain the difference. Which one is more representative, and for which
document?

4. Similar to Exercise 3, create the Boolean and TFIDF representation of the doc-
ument collection. Examples of these representations are provided in the files
“Departments-binary.arff” and “Departments-TFIDF.arff,” available from the book Web
site, www.dataminingconsultant.com.

a. To obtain the Boolean representation, apply the NumericToBinary filter to the word-
count representation. What changed in the diagrams?

b. For the TFIDF representation, use the original string representation and apply the
StringToWordVector filter with IDFTransform = true. Examine the document–term
table and the diagrams. Explain why some columns (e.g., chair and website) are
all zero. See these columns in the book versions of the same document collection:

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

EXERCISES 45

Figure E1.3e

Figure E1.3f

SPH SPH
JWDD053-01 JWDD053-Markov March 9, 2007 12:24 Char Count= 0

46 CHAPTER 1 INFORMATION RETRIEVAL AND WEB SEARCH

“Departments-book-binary.arff” and “Departments-book-TFIDF.arff” (also available
from the book Web site). Why are the Weka and the book versions slightly different?
(See what is behind the “More” button of the StringToWordVector parameter setting
window.)

5. Collect web documents from other domains (use the WebSPHINX crawler or web search)
and follow the preceding steps to create ARFF data files for the term-count, Boolean,
and TFIDF representations. Then load the files into Weka and analyze the document
collections by examining the document–term table or the term distribution diagrams.

6. Find proper sets of keywords and evaluate the precision and recall provided by Google
when searching documents in the CCSU A&S collection.

a. Use the keywords computer and program with advanced search limited within the
server domain. The query will be

computer program site:www.artsci.ccsu.edu

b. Using the query results, create a table similar to Table 1.6. Then compute the interpo-
lated precision for different recall levels and create charts similar to those in Figure
1.5.

c. Compare the charts based on the results from Google search with those based on cosine
similarity (Figure 1.5).

d. Use fewer or more terms and create the corresponding charts. Try terms with different
IDF scores (use Figure 1.6). Compute the average precision. Analyze the results.

e. Use terms that occur in all 20 documents (e.g., department, phone, chair). Explain
why these documents are not always among the top 20 in the result list. Which docu-
ments occur in the top?

f. Search for specific web pages (e.g., department Web sites) in wider domains (e.g.,
www.ccsu.edu) or in the entire Web. Use a different number of keywords and compute
the precision and recall. Analyze the results.

SPH SPH
JWDD053-02 JWDD053-Markov March 5, 2007 23:48 Char Count= 0

CHAPTER 2
HYPERLINK-BASED RANKING

INTRODUCTION

SOCIAL NETWORKS ANALYSIS

PAGERANK

AUTHORITIES AND HUBS

LINK-BASED SIMILARITY SEARCH

ENHANCED TECHNIQUES FOR PAGE RANKING

INTRODUCTION

So far we have focused on the textual content of web documents. We have also used
the web hyperlink structure to add more textual content to documents by using the
anchor text in backlinks. The hyperlinks play another, more important role for web
documents, however; they provide an independent evaluation of web page popularity
or authority. The role of web page links is similar to the role of citations in scientific
literature, for example. Popular articles are often cited. Many hyperlinks pointing to
a page draw the attention of web users just as citations to an article do for academics.
In fact, the Web is an example of a social network, a network of entities such as
individuals or organizations that connect (or interact with) each other in various
ways. The notions of popularity, authority, and prestige are central to social networks.
There is an approach called bibliometrics, which is used in library and information
science to analyze the merit of scientific publications. Citation indices are examples of
the bibliometrics approach. For example, the impact factor (number of citations in
the preceding two years) uses the in-degree of the nodes in the network of scientific
journals to evaluate the merit of a publication.

The measures of popularity, authority, and prestige can be used for ranking
web pages retrieved by a search engine. The idea is to assign to each page on the
Web a rank based on the hyperlink structure. This ranking can be done off-line (e.g.,
when pages are indexed) because it is independent of any query and web page textual

Data Mining the Web: Uncovering Patterns in Web Content, Structure, and Usage
By Zdravko Markov and Daniel T. Larose Copyright C© 2007 John Wiley & Sons, Inc.

47

SPH SPH
JWDD053-02 JWDD053-Markov March 5, 2007 23:48 Char Count= 0

48 CHAPTER 2 HYPERLINK-BASED RANKING

content and is then used to rank the pages returned by the keyword search query.
Combinations of relevance ranking and hyperlink-based ranking are also possible.
Later in the chapter we discuss the notion of prestige in social networks and two
important web page ranking algorithms, PageRank and HITS, which further develop
that notion and combine it with a content-based web search.

SOCIAL NETWORKS ANALYSIS

A social network can be represented formally as a directed graph with weights as-
signed to its edges. Without loss of generality we may assume that the nodes represent
documents and the edges represent citations from one document to other documents.
In this setting the notion of prestige can be associated with the number of input edges
to a node (in-degree). An obvious assumption in any social network is that prestige
depends on the authority (or again, the prestige) of citations. In other words, prestige
has a recursive nature. Thus, the prestige score of a node is not simply equal to its
in-degree but has to be defined recursively using the prestige scores of the nodes that
cite it. We do this using some notions from linear algebra.

Consider the adjacency matrix A of the document citation graph defined as
follows: A(u, v) = 1 if document u cites document v and A(u, v) = 0 otherwise.
Each node u has a prestige score p(u), which is defined as a sum of the prestige
scores of the nodes that cite u; that is,

p(u) =
∑

v

A(v, u) p(v)

Using matrix notation, the prestige scores p(u) of all documents u can be written as a
column vector P . Then given some initial prestige vector P , the new prestige vector
P ′ is

P ′ = AT P

where AT is the transpose of A. Plugging P ′ for P and recomputing the prestige vector
a number of times leads to a fixpoint for P , which is the solution to the equation

λP = AT P

Finding the solution to this equation is known in linear algebra as eigen-decomposition
of a matrix. Generally, for a matrix of size n × n there are n such vectors, called
eigenvectors, each with an associated value for the scalar λ, called an eigenvalue.
Among all eigenvectors of a matrix, we are interested in the dominant (or principal)
eigenvector, the eigenvector associated with the largest eigenvalue.

Let us illustrate the computation of prestige with a simple graph of three docu-
ments, a, b, and c, shown in Figure 2.1. The adjacency matrix of this graph A and its
transpose AT are

A =
⎛
⎝ 0 1 1

0 0 1
1 0 0

⎞
⎠ AT =

⎛
⎝0 0 1

1 0 0
1 1 0

⎞
⎠

SPH SPH
JWDD053-02 JWDD053-Markov March 5, 2007 23:48 Char Count= 0

SOCIAL NETWORKS ANALYSIS 49

The prestige scores of the documents are shown in the nodes. They are computed
by solving the vector equation λP = AT P . The solution with the largest eigenvalue,
λ = 1.325, is P = (0.548 0.414 0.726)T. Plugging these values back in the equation
gives

1.325

⎛
⎝ 0.548

0.414
0.726

⎞
⎠ =

⎛
⎝0 0 1

1 0 0
1 1 0

⎞
⎠
⎛
⎝0.548

0.414
0.726

⎞
⎠

The scores of the documents illustrate well the intuition behind the recursive defi-
nition of prestige. Document c gets the highest score because it has two citations.
Documents a and b get lower scores because each has one citation only, but a
gets a higher score than b because a is cited by a document with a higher prestige
score (c).

One method to compute eigenvectors is first to find the eigenvalues by solving
the characteristic equation |A − λI | = 0 (|M | is the determinant of matrix M and I
is the identity matrix). Then for each of its n (possibly, nondistinct) roots, a system
of linear equations is solved to find the associated eigenvector. For our purposes,
however, we do not need all eigenvectors. Therefore, a simpler algorithm can be used.
It is based on the power iteration method and computes the dominant eigenvector as
follows:

� P ← P0

� loop:
◦ Q ← P
◦ P ← A T Q
◦ P ← 1

‖P‖ P(normalize P)
� while ‖P − Q‖ > ε

P0 can be any nonzero vector and ε is a parameter that controls the accuracy. The
algorithm converges to the eigenvector associated with the largest eigenvalue. The
eigenvector is normalized to unit length (i.e., ‖P‖ = 1) and the eigenvalue is λ =
‖AT P‖. For example, with P0 = (1 1 1)T and ε = 0.00016, it takes 20 iterations to
compute the prestige vector for the example shown in Figure 2.1.

a
0.548

b
0.413

c
0.726Figure 2.1 A Document network with pres-

tige scores for the nodes.

SPH SPH
JWDD053-02 JWDD053-Markov March 5, 2007 23:48 Char Count= 0

50 CHAPTER 2 HYPERLINK-BASED RANKING

PAGERANK

The hyperlinks are not only ways to propagate the prestige score of a page to pages
to which it links, they are also paths along which web users travel from one web page
to another. In this respect, the popularity (or prestige) of a web page can be measured
in terms of how often an average web user visits it. To estimate this we may use
the metaphor of the “random web surfer,” who clicks on hyperlinks at random with
uniform probability and thus implements the random walk on the web graph. Assume
that page u links to Nu web pages and page v is one of them. Then once the web surfer
is at page u, the probability of visiting page v will be 1/Nu . This intuition suggests
a more sophisticated scheme of propagation of prestige through the web links also
involving the out-degree of the nodes. The idea is that the amount of prestige that
page v receives from page u is 1/Nu of the prestige of u. This idea is illustrated in
Figure 2.2. This is also the idea behind the web page ranking algorithm PageRank [1],
which was originally used in the search engine Google and contributed substantially
to its success.

Let us first describe the simplified ranking scheme illustrated in Figure 2.2.
Consider the web graph defined with its adjacency matrix A. To each page u we
assign a rank score R(u) defined as

R(u) = λ
∑

v

A(v, u)R(v)

Nv

where Nv is the out-degree of node v [the number of outlinks from v, i.e., Nv =∑
w A(v, w)]. An example of rank calculation with three documents is shown in

Figure 2.3. This is, in fact, the social network that we have used for computing
prestige, now with weights on the edges and PageRank scores for the nodes. The
solution of the rank equation is for λ = 1.

To use the matrix notation, we first need to redefine the adjacency matrix.
Instead of using the adjacency information only (0’s and 1’s), we have to include
edge weights that are equal to 1/Nu , where Nu is the out-degree of node u. This
can be done easily by using the original adjacency matrix and replacing each 1
with 1 over the row total. Thus, for the network in Figure 2.3, we get the following

60

12

26

10

20

30

4

2

6

20
20

20

6

6

13

13

Figure 2.2 Propagation of page rank.

SPH SPH
JWDD053-02 JWDD053-Markov March 5, 2007 23:48 Char Count= 0

PAGERANK 51

a
0.4

c
0.4

b
0.2

0.2

0.2

0.20.4

Figure 2.3 Document network with page-
Rank scores.

matrix:

A =
⎛
⎝0 0.5 0.5

0 0 1
1 0 0

⎞
⎠

The rank equation is the same as the one for prestige (i.e., λP = AT P) and its solution
is the eigenvector of AT for λ = 1; that is,⎛

⎝ 0.4
0.2
0.4

⎞
⎠ =

⎛
⎝0 0 1

0.5 0 0
0.5 1 0

⎞
⎠
⎛
⎝0.4

0.2
0.4

⎞
⎠

This is also the solution, which is computed by power iteration with norm L1 (‖X‖1 =
x1 + x2 + · · · + xn). The solution for norm L2 (‖X‖2 =

√
x2

1 + x2
2 + · · · + x2

n)

is PT = (0.666 0.333 0.666), and the solution with integers only is PT =
(2 1 2). Any of these solutions works for ranking because the scores are used
only for ordering pages.

Clearly, the web graph includes loops. The simplified PageRank algorithm
generally works with loops; however, there is a special configuration of nodes that the
algorithm cannot deal with properly. Consider, for example, two pages that point to
each other but do not point to other pages. Such an isolated loop is called a rank sink.
If pointed to from an outside page, it accumulates rank but never distributes it to other
nodes. To deal with the rank sink situation, we return to the random surfer model.
As we have already noted, computing page rank is based on the idea of a random
walk on the web graph, but the random surfer may get trapped into a rank sink. To
avoid this situation we try to model the behavior of a real web surfer who gets bored
running into a loop and jumps to some other web page outside the rank sink. For this
purpose we introduce a rank source E, a vector over all web pages, which defines
the probability distribution of jumping to a web page at random. Thus, the modified
PageRank equation becomes

R(u) = λ

[∑
v

A(v, u)R(v)

Nv

+ E(u)

]

The PageRank equation can be solved by using the eigenvector approach. Below
we present an iterative algorithm, which basically implements the power iteration

SPH SPH
JWDD053-02 JWDD053-Markov March 5, 2007 23:48 Char Count= 0

52 CHAPTER 2 HYPERLINK-BASED RANKING

method for computing the dominant eigenvector with a small modification of the way
the normalization is done.

� R ← R0

� loop:
◦ Q ← R
◦ R ← A T Q
◦ d ← ‖Q‖1 − ‖R‖1

◦ R ← R + d E
� while ‖R − Q‖1 > ε

The initial rank vector R0 can be any vector over the web pages, A T is the transpose
of the adjacency matrix with weights 1/Nu , and E is the rank source vector. The
parameter d implements the normalization step and also affects the rate of convergence
positively. The alternative approach would be just to add E to R and then normalize
(R ← R/‖R‖1). As defined, the PageRank algorithm implements the random surfer
model, where:

� The rank vector R defines the probability distribution of a random walk on the
graph of the Web.

� With some low probability the surfer jumps to a random page chosen according
to the distribution E.

The source of rank E is usually chosen as a uniform vector with a small norm
(e.g., ‖E‖1 = 0.15). The way it affects the model of the random surfer is that the
jumps to a random page happen more often if the norm of E is larger. In terms of
PageRank score, a larger E means less contribution of the link structure to the final
score (i.e., the rank distribution in R gets closer to E).

The use of rank source solves the problem with the rank sink and allows the
algorithm to work with a web graph with disconnected parts (which is the case in
the real web). It also allows page rank to be adjusted for specific situations such as
manipulation by commercial interests and customized ranking. For example, a web
page score may be increased by including a link from an important page or a large
number of links from nonimportant pages. Navigation links, copyright notices, and
similar nonauthoritative links also create highly interconnected pages, which may get
large page ranks. A proper choice of E could minimize these undesired effects. One
option is to include in E the root pages of all web servers. This would distribute the
rank sources evenly over the Web and make commercial manipulation more difficult.

Another option is to use just one web page (i.e., only one nonzero coordinate)
for E. In this way the page chosen would get the highest rank, followed by its links.
Such a page might be a trusted web directory, for example. This option would also
allow implementing a personalized web page ranking. Suppose that the page chosen
is somebody’s home page. Then PageRank will assign the highest score to that page
and its links, followed by related pages. In this way, ranking can be done from the
perspective of a specific web user or in a particular context defined by a group of
pages linked together. Page et al. [1] report such experiments with an early version of

SPH SPH
JWDD053-02 JWDD053-Markov March 5, 2007 23:48 Char Count= 0

AUTHORITIES AND HUBS 53

Google. The page chosen was the home page of the famous computer scientist John
McCarthy.

Other applications of PageRank include estimating web traffic, optimal crawl-
ing, and web page navigation. The random surfer model actually estimates the number
of visits to a web page. Thus, the rank score of a web page may be used to estimate
web traffic and the load of the hosting server. In this way, PageRank may be seen as a
useful tool to measure and study the Web by complementing web usage data or filling
gaps where such data are not available.

Web pages with high PageRank score are important because they are cited
by many other pages and are also visited more often by web users. Therefore, it
is desirable that such pages be fetched and indexed first by the web crawler. This
can be achieved by using PageRank as an evaluation function in an informed graph
search algorithm that the web crawler implements. As an independent indicator of
web page importance, PageRank can enhance page navigation. One option is to show
the page score on the link before the user clicks on it. Another option (currently used
by Google) is to order web pages in a web directory by their PageRank score, thus
providing both topical and authoritative criteria for selection of web pages.

AUTHORITIES AND HUBS

Although it is widely acknowledged that link-based ranking and especially PageRank
is fundamental to web search, there are problems using only the in-degree-based
authority for this purpose. Often, links (e.g., navigational links) have nothing to do
with authority. On the other hand, the most popular and authoritative pages are not
necessarily the most relevant to a particular query. In other words, neither relevance
nor popularity can do the job alone; there must be a good balance between the two.
In this section we discuss an approach called HITS (hyperlink induced topic search),
proposed by Kleinberg [2], which combines content-based relevance with link-based
authority ranking. The basic idea is to focus on the relevant pages first and then
compute authority. The approach also takes into account the hub pages (pages that
point to multiple relevant authoritative pages).

In contrast to PageRank, the HITS algorithm works with the much smaller and,
most important, query-dependent part of the web graph. It starts with keyword search
and then analyzes the link structure of the relevant web pages obtained. The entire
process is called topic distillation. Given a query q, the following steps are performed:

1. By using a standard IR system, a small set of relevant web pages called a root
set Rq is found.

2. The root set is expanded by adding pages that point to and are pointed to by
pages from the root set. This larger set is called a base set Sq .

3. The hyperlink structure of the base set Sq is analyzed to find authorities and hubs
as described below.

4. Let E be the adjacency matrix of the web graph of Sq , where E(u, v) = 1 if
page u points to page v, and E(u, v) = 0 otherwise (both u and v belong to Sq).

SPH SPH
JWDD053-02 JWDD053-Markov March 5, 2007 23:48 Char Count= 0

54 CHAPTER 2 HYPERLINK-BASED RANKING

5. Let X = (x1x2 · · · xn) be the authority vector and Y = (y1 y2 · · · yn) be the hub
vector, both over all pages in Sq . They can be computed by power iteration as
follows (k is a tuned parameter):
� X ← (11 . . . 1)
� Y ← (11 . . . 1)
� loop k times

◦ xu ← ∑
{v,E(v,u)=1}

yv, for u = 1, 2, . . . , n

◦ yu ← ∑
{v,E(u,v)=1}

xv, for u = 1, 2, . . . , n

◦ normalize X and Y by the L2 norm
� end loop

Using the computed authority and hub vectors, the algorithm reports the pages that
correspond to the highest coordinates in these vectors.

A disadvantage of HITS is that the hub and authority scores cannot be precom-
puted because they depend on the hyperlink structure of the web subgraph selected
by the query. This slows down the response time, as the scores have to be computed
online after documents relevant to the query are retrieved. At the same time, this is
an advantage of HITS over PageRank, because hyperlink-based scores are computed
using a relevant part of the web graph, thus avoiding situations where pages with low
content-based relevance get high scores because they collect a lot of inlinks. An ex-
ample of such a situation is the query “music program,” which a user may want to use
to search for documents in the area of radio, performance, or educational programs.
Submitted to Google (based on PageRank), this query returns mostly documents re-
lated to computer music and music software, simply because the pages where the term
program occurs along with computer and software are much more popular (collect
more inlinks) than those where program occurs along with music only.

An important difference between HITS and PageRank is the way that page
scores are propagated in the web graph. In HITS the hub collects its score from
pages to which it points. In this way the propagation of authority and hub scores is
bidirectional. The specific way that authority and hub scores are computed (taking
turns at each step in the power iteration) allows even sibling pages to influence each
other’s score. The simple graph shown in Figure 2.4 illustrates this. At each step, page
u1 collects its hub score h(u1) as a sum of the authority scores of the pages to which

u1

u2

u3 v1

v3

v2

a(v1)=h(u1)+h(u2)+h(u3)

h(u1)=a(v1)+a(v2)+a(v3)

Figure 2.4 Computing hub (h) and au-
thority (a) scores.

SPH SPH
JWDD053-02 JWDD053-Markov March 5, 2007 23:48 Char Count= 0

LINK-BASED SIMILARITY SEARCH 55

it points (v1, v2, and v3). At the next step, page v1 collects its authority score a(v1) as
a sum of the hub scores of the pages that point to it. This process continues until all
scores reach some fixpoint. If at some step v2 gets a high authority score, then in the
later steps it will be transferred to its siblings, v1 and v3. In this way the authority and
hub vectors X and Y are computed, and each page ui get its authority score xi = a(ui)
and hub score yi = h(ui). Computing hub scores is an advantage of HITS because
the hub pages are important sources of information on the Web. PageRank does not
compute hub scores, but practically, this is not a big disadvantage, because good hub
pages quickly accumulate inlinks and thus also get high authority.

As defined, the HITS algorithm always follows the links (from and to pages
in the base set) and therefore may be trapped in some irrelevant part of the web
subgraph. This may happen when the base set contains a disconnected subgraph due
to an ambiguous query. For example, the query “star” may retrieve several sets of
possibly disconnected pages: from the area of movie stars, astronomy, newspapers
with that popular name, and so on. Then only the pages in the largest subgraph will
be ranked as authorities and hubs. The reason for this is that HITS actually finds
the dominant eigenvectors (the eigenvectors associated with the largest eigenvalue)
of E ET (the hub vector) and ETE (the authority vector), where E is the adjacency
matrix of the base set and dominant eigenvectors correspond to the largest subgraph.
A solution to this problem is to compute not only the dominant eigenvector, but also
others that correspond to smaller subgraphs.

Another solution to the problem with disconnected subgraphs is based on the
random walk model. Similarly to PageRank, the HITS algorithm can be extended
with a parameter that controls the random surfer. Let this be a value d ∈ [0, 1]. Then:

� With probability d, the surfer jumps to a random page in the base set.
� With probability 1 − d, the surfer takes a random outlink from the current page

or goes to a random page that points to the current one.

With d = 0, the algorithm works similar to that of the original HITS. The
stability of the algorithm improves as d increases, which means that pages tend to get
more uniform hub and authority scores independent of the web subgraph structure.
In the extreme case of d = 1, all pages get the same rank (i.e., there is no ranking).

LINK-BASED SIMILARITY SEARCH

The HITS approach combines content-based search with link-based ranking. It also
makes the basic assumption that if the pages from the root set are close to the query
topic, the pages belonging to the base set (one link farther) are, by their content,
similar to the query. This assumption is supported by experimental evidence showing
that pages at a distance of one link usually belong to the same topic. (Observations
also show that the topic usually changes after more than two links.) This idea can be
used to implement a link-based approach to compute similar pages. This is an alter-
native to the content-based similarity discussed earlier and uses the HITS approach
for computing hubs and authorities. The difference is that the root set is computed

SPH SPH
JWDD053-02 JWDD053-Markov March 5, 2007 23:48 Char Count= 0

56 CHAPTER 2 HYPERLINK-BASED RANKING

differently; instead of keyword search, links are used for this purpose. Given a page
u and a parameter k, the algorithm proceeds as follows:

1. Find k pages pointing to page u and use them to form the root set Ru .

2. Use Ru to find the base set Su .

3. Compute authorities and hubs in Su .

4. Report the highest-ranking authorities and hubs as pages similar to u.

The intuition behind thus-defined link-based similarity search is that the pages
in a close neighborhood (at most two links away) of a given page are similar to it.
Then assuming that links are indicators of the same or a similar topic, the authorities
and hubs in this neighborhood must be the most representative similar pages because
they collect the most links. An advantage of the link-based approach to similarity is
that it has no problems with pages that have very little text (consequently, very little
overlap and low content similarity) and pages with nontextual content, such as images
and programs.

ENHANCED TECHNIQUES FOR PAGE RANKING

Both PageRank and HITS, along with their improvements that we have discussed,
so far rely on the basic assumption that linked pages belong to a similar or the same
topic. However, as we mentioned earlier, the topic changes quickly as the number
of links between the pages increases. Thus, assuming that a set of pages are from
the same topic, expansion of this set by one or more links may include pages from
other topics. This process is called topic generalization. Topic generalization by a
single link is used in HITS to form the base set and is the maximum that is feasible.
Expansion by more than one link usually brings many unrelated pages and has to be
avoided.

Another undesired situation is when a page from a single topic set of pages
points to a large set of pages from another topic. Then expanding the former set
would include in it pages from the larger set, thus changing the original topic. This
process, called topic drift, poses problems to both HITS and PageRank. In HITS the
top-ranked hubs and authorities may appear unrelated to the query, and PageRank may
assign high scores to pages with low relevance. This effect may be used intentionally
to bring up the rank of a page linked to a large, densely connected web subgraph.

Problems with topic generalization and drift are due basically to a single ranking
system based dominantly on the web graph structure. A general solution to these and
other problems is to use many ranking systems and to weight their scores when com-
puting the final page rank. We have already discussed two: the content-based relevance
that uses the vector space metric and the link-based ranking of PageRank and HITS.
It is important to note that successful web search engines (e.g., Google) use these and
other ranking schemes and sophisticated weighting techniques to combine them.

Other problems with link-based ranking include nepotism and outliers. Densely
linked pages located on a single server cause problems with purely link-based rank-
ing. Such links are called nepotistic links because they increase the page rank, but

SPH SPH
JWDD053-02 JWDD053-Markov March 5, 2007 23:48 Char Count= 0

EXERCISES 57

indicate hardly any authority and may also be used for commercial manipulation.
Two-party and multiparty nepotisms are also possible, due basically to navigation
links or links between different sites belonging to the same business. For example,
Google has more than 20 sites all linked together:http://froogle.google.com/,
http://groups.google.com/, http://images.google.com/, and others.
Such sites may be completely unrelated with respect to page content. One simple
approach to avoid nepotism is to assign weights of 1/k to the inlinks from pages
belonging to a site with k pages.

Outliers are web pages that are retrieved by keyword search and thus are relevant
to the query but are somehow far from the central topic of the query. Such pages may
be linked to outside the topic web subgraphs and thus may increase the probability of
topic drift when the root set is expanded. Therefore, outlier elimination can stabilize
the ranking algorithm and avoid undesired topic generalizations and drifts. Outliers
can be detected by clustering because they are far from the cluster centroids. Following
are the basic steps of a simple approach that uses the idea of centroids and is designed
to stabilize the HITS algorithm.

1. Create vector space representation for the pages from the root set.

2. Find the centroid of the root set. This is the page that minimizes the sum (or
the average) of its cosine similarity to all pages in the set.

3. When expanding the root set, discard pages (from the base set) that are too far
from the centroid page (their cosine similarity to the centroid is below a given
threshold).

There are also other approaches to enhance page ranking that are based on the
structure of the web graph as well as on the HTML structure of web documents.
Chakrabarti [3] provides an in-depth discussion of all these methods, including the
basic PageRank and HITS algorithms and their improvements.

REFERENCES

1. Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd, The PageRank Citation
Ranking: Bringing Order to the Web, Stanford Digital Library Technology Project, Stanford,
University, Stanford, CA, 1998, http://dbpubs.stanford.edu/pub/1999-66.

2. Jon M. Kleinberg, Authoritative sources in a hyperlinked environment, J. ACM, 46(5):
604–632, 1999, http://www.cs.cornell.edu/home/kleinber/auth.ps.

3. Soumen Chakrabarti, Mining the Web: Discovering Knowledge from Hypertext Data, Mor-
gan Kaufmann, San Francisco, CA, 2003.

EXERCISES

1. Use the WebSPHINX crawler (http://www.cs.cmu.edu/∼rcm/websphinx/, also
available from the book series Web site www.dataminingconsultant.com), to create
a document citation matrix for a small set of web pages. For example, use the domain
http://www.artsci.ccsu.edu/.

SPH SPH
JWDD053-02 JWDD053-Markov March 5, 2007 23:48 Char Count= 0

58 CHAPTER 2 HYPERLINK-BASED RANKING

a. To limit the web domain, crawl the server pages only (set Crawl: the server). As only
the immediate citations are needed, the depth of crawling should be set to 1 hop.

b. Create a square matrix for the URLs collected from the pages crawled. For this purpose,
crawl the server using each of these pages as a starting URL (again with a depth of
1 hop). The results of each crawl will include the pages cited by the page used as a
starting URL, and thus will provide the information needed to fill the corresponding
row of the adjacency matrix with 0’s or 1’s.

c. (Advanced project) The entire process of creating the citation matrix may be auto-
mated by writing a program that uses the source code of the WebSPHINX crawler,
the W3C Protocol Library (http://www.w3.org/Library/), or another package
providing tools to manipulate web page links.

2. Compute the prestige score of the pages in the collection by finding the eigenvector
associated with the largest eigenvalue of the citation matrix. Use a math package, such
as MATLAB and MathWorks, or implement the power iteration algorithm described in
this chapter.

3. Include weights in the adjacency matrix as explained in the section “PageRank.” For this
purpose, use the citation matrix created in Exercise 1. Analyze the structure of the web
graph described with this matrix and determine whether or not it contains rank sinks. Use
the eigenvector approach to compute the PageRank score of the web pages (see Exercise
2).

4. Investigate how a rank sink may affect page scores based on the simplified PageRank
algorithm (without rank source). If the pages collected do not include a rank sink, modify
the matrix to create one.

5. Implement the power iteration method for computing PageRank. Investigate how it deals
with the rank sink situation. Use a uniform rank source with a small norm. Also experiment
with different rank source vectors.

6. Find statistics for web page visits and try to match the PageRank scores with the frequency
of visits for each page. How good is the PageRank estimate of web traffic? Change the
rank source vector (e.g., use the pages visited most often) or extend the web subgraph
(include more pages) and see how this changes the PageRank scores.

7. Rewrite the PageRank equation with the rank source in matrix notation.

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

PARTII
WEB CONTENT
MINING

T he information retrieval approaches discussed in Chapters 1 and 2 pro-
vide content-based access to the Web, while machine learning and data

mining approaches organize the Web by content and thus respond directly to
the major challenge of turning the web data into web knowledge. Combined,
information retrieval, machine learning, and data mining provide a general
framework for mining the web structure and content. In this part of the book
we look into the machine learning and data mining components of the frame-
work by focusing on two approaches to organizing the Web: clustering and
classification (categorization). In clustering, web documents are grouped or
organized hierarchically by similarity; that is, clustering is concerned with au-
tomatic structuring of the web content. Web document classification is based
primarily on prediction methods, where documents are labeled by topic, pref-
erence, or usage, given sets of documents already labeled. Concept learning
methods can also be used to generate explicit descriptions of sets of web doc-
uments, which can then be applied to categorization of new documents or to
better understand the document area or topic.

Data Mining the Web: Uncovering Patterns in Web Content, Structure, and Usage
By Zdravko Markov and Daniel T. Larose Copyright C© 2007 John Wiley & Sons, Inc.

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

CHAPTER 3
CLUSTERING

INTRODUCTION

HIERARCHICAL AGGLOMERATIVE CLUSTERING

k-MEANS CLUSTERING

PROBABILTY-BASED CLUSTERING

COLLABORATIVE FILTERING (RECOMMENDER SYSTEMS)

INTRODUCTION

The most popular approach to learning is by example. Given a set of objects, each
labeled with a class (category), the learning system builds a mapping between ob-
jects and classes which can then be used for classifying new (unlabeled) objects.
As the labeling (categorization) of the initial (training) set of objects is done by
an agent external to the system (teacher), this setting is called supervised learning.
Clustering is another setting for learning, which does not use labeled objects and
therefore is unsupervised. The objective of clustering is finding common patterns,
grouping similar objects, or organizing them in hierarchies. In the context of the
Web, the objects manipulated by the learning system are web documents, and the
class labels are usually topics or user preferences. Thus, a supervised web learning
system would build a mapping between documents and topics, while a clustering sys-
tem would group web documents or organize them in hierarchies according to their
topics.

A clustering system can be useful in web search for grouping search results
into closely related sets of documents. Clustering can improve similarity search by
focusing on sets of relevant documents. Hierarchical clustering methods can be used
to create topic directories automatically, directories that can then be labeled manu-
ally. On the other hand, manually created topic directories can be matched against
clustering hierarchies and thus the accuracy of the topic directories can be evalu-
ated. Clustering is also a valuable technique for analyzing the Web. Matching the

Data Mining the Web: Uncovering Patterns in Web Content, Structure, and Usage
By Zdravko Markov and Daniel T. Larose Copyright C© 2007 John Wiley & Sons, Inc.

61

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

62 CHAPTER 3 CLUSTERING

content-based clustering and the hyperlink structure can reveal patterns, duplications,
and other interesting structures on the Web.

There exist various types of clustering, depending on the way that clusters are
represented, the cluster properties, and the types of algorithms used for clustering.
Thus, there are four dimensions along which clustering techniques can be categorized:

1. Model-based (conceptual) versus partitioning. Conceptual clustering creates
models (explicit representations) of clusters, whereas partitioning simply enu-
merates the members of each cluster.

2. Deterministic versus probabilistic. Cluster membership may be defined as a
Boolean value (in deterministic clustering) or as a probability (in probabilistic
clustering).

3. Hierarchical versus flat. Flat clustering splits the set of objects into subsets,
whereas hierarchical clustering creates tree structures of clusters.

4. Incremental versus batch. Batch algorithms use the entire set of objects to create
the clustering, whereas incremental algorithms take one object at a time and
update the current clustering to accommodate it.

Clustering can be applied to any set of objects as long as a suitable representation
of these objects exists. The most common representation, which also works for other
machine learning and data mining methods (such as classification), is the attribute–
value (or feature–value) representation. In this representation a number of attributes
(features) are identified for the entire population, and each object is represented by
a set of attribute–value pairs. Alternatively, if the order of the features is fixed, a
vector of values (data points) can be used instead. The document vector space model
is exactly the same type of representation, where the features are terms.

Another approach to clustering considers documents as outcomes of random
processes and tries to identify the parameters of these processes. In our classifica-
tion this is a probabilistic model-based approach where each cluster is described
by the probability distribution that is most likely to have generated the documents
within it. In this generative document modeling framework, documents are random
events represented by the terms they contain. However, in contrast to the vector space
model, the terms here are not features (dimensions in the vector space); rather, they
are considered as elementary (atomic) random events. Another difference with the
vector space approach is that the generative models do not use similarity measures or
distances between documents or clusters.

By using the standard vector space representation, all clustering approaches
known from machine learning and data mining can be applied to document cluster-
ing. However, for various reasons (such as quality of results and efficiency) there are
several algorithms that are particularly important in this area. These are hierarchical
agglomerative clustering and k-means clustering. In the remainder of this chapter
we describe these algorithms briefly and focus on their use for document cluster-
ing (for more information on the algorithms, see Larose [1]). We also describe the
generative document modeling framework and a particular probabilistic clustering al-
gorithm called expectation maximization (EM). We conclude the chapter with a short
discussion on collaborative filtering (recommender systems), which is an area that

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

INTRODUCTION 63

uses clustering and involves not only documents but Web users, too. Approaches to
evaluation of the clustering quality and clustering models are discussed in Chapter 4.

Hierarchical Agglomerative Clustering

Hierarchical agglomerative clustering is a hierarchical partitioning approach to clus-
tering. It produces a nested sequence of partitions of the set of data points which
can be displayed as a tree with a single cluster, including all points at the root and
singleton clusters (individual points) at the leaves. The visualization of a hierarchical
partitioning tree is called a dendrogram. The dendrogram shown in Figure 3.1 dis-
plays the hierarchical partitioning of the set of numbers {1,2,4,5,8,10}. The height of
the lines connecting clusters indicates the similarity between clusters at this level. The
actual value of similarity can be seen on the vertical axis on the left. The similarity
measure used in this example is computed as (10 − d)/10, where d is the distance
between data points or cluster centers.

There are two approaches to generating a hierarchical partitioning, the first
called agglomerative. The algorithm starts with the data points and at each step merges
the two closest (most similar) points (or clusters at later steps) until a single cluster
remains. The second approach to hierarchical partitioning, called divisible, starts with
the original set of points and at each step splits a cluster until only individual points
remain. To implement this approach, we need to decide which cluster to split and how
to perform the split.

The agglomerative hierarchical clustering approach is more popular, as it re-
quires only the definition of a distance or similarity function on clusters or points.
For data points in the Euclidean space, the Euclidean distance is the best choice.
For documents represented as TFIDF vectors, the preferred measure is the cosine
similarity defined as

sim (d1, d2) = d1 · d2

‖d1‖ ‖d2‖
where d1 and d2 are the document vectors, · denotes the dot product, and ‖d1‖ and
‖d2‖ are the lengths of the vectors (L2 norms). If the vectors are normalized to unit
length, the similarity is just the dot product.

0.4

0.5

0.6

0.7

0.8

0.9

101 2 4 85
1

{{{1,2},{4,5}},{8,10}}

q=0.75

Similarity

Figure 3.1 Hierarchical partitioning
of the set {1,2,4,5,8,10}.

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

64 CHAPTER 3 CLUSTERING

What remains to be done is generalizing the similarity measure so that it also
applies to clusters. There are several options for this. Assume that S1 and S2 are two
sets (clusters) of documents. Then the similarity sim(S1, S2) can be defined in one of
the following ways:

� Similarity between cluster centroids: that is, sim (S1, S2) = sim (c1, c2), where
the centroid of cluster S is c = (1/|S|)∑d∈S d.

� The maximum similarity between documents from each cluster: that is,
sim (S1, S2) = maxd1∈S1,d2∈S2 sim (d1, d2). The algorithm that uses this mea-
sure is called nearest-neighbor clustering.

� The minimum similarity between documents from each cluster: that is,
sim (S1, S2) = mind1∈S1,d2∈S2 sim (d1, d2). The algorithm that uses this measure
is called farthest-neighbor clustering.

� The average similarity between documents from each cluster: that is,
sim (S1, S2) = (1/|S1| |S2|)

∑
d1∈S1,d2∈S2

sim (d1, d2).

Note that as defined above, the similarity between clusters also works for indi-
vidual documents, because each document d can be represented as a singleton cluster
{d}.

One of the objectives of clustering is to maximize the similarity between doc-
uments within clusters (intracluster similarity). The similarity between clusters that
are merged decreases with climbing up the hierarchy and reaches its lowest value at
the top (see the dendrogram in Figure 3.1). Therefore, to obtain a better overall quality
of clustering we may want to stop the process of merging clusters at some level of
the hierarchy before reaching the top. To implement this idea, control parameters
can be introduced. There two options for such parameters: to stop merging when a
desired number of clusters is reached or when the similarity between the clusters
to be merged becomes less than a specified threshold. The agglomerative clustering
algorithm defined below uses two control parameters (k and q) that account for both
options:

1. G ← {{d}|d ∈ S} (initialize G with singleton clusters, each containing a doc-
ument from S).

2. If |G| ≤ k, then exit (stop if the desired number of clusters is reached).

3. Find Si , Sj ∈ G such that (i, j) = arg max(i, j) sim (Si , Sj) (find the two closest
clusters).

4. If sim (Si , Sj) < q , exit (stop if the similarity of the closest clusters is less
than q).

5. Remove Si and Sj from G.

6. G = G ∪ {Si , Sj } (merge Si and Sj , and add the new cluster to the hierarchy).

7. Go to step 2.

S is the initial set of documents. The algorithm terminates in step 2 or 4 when the
stopping conditions are satisfied and returns the clustering in G. If k = 1 and q = 0,
G is the complete clustering tree, including its root. When k > 1 there are k top-level

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

INTRODUCTION 65

clusters. For example, with k = 3 or q = 0.75 the hierarchy in Figure 3.1 is cut off,
so that the top-level clustering includes three clusters: {1,2}, {4,5}, and {8,10}.

To implement agglomerative clustering efficiently we need to compute the
similarity between all pairs of document vectors once and for all and to store the results
in an interdocument similarity table. Thus, for n documents the space complexity of
this is O(n2). It can be shown that the time complexity of the algorithm is also O(n2).

Let us now see how hierarchical agglomerative clustering can help organize a set
of web documents. Consider our collection of web pages describing the departments
in the CCSU school of Arts and Sciences that we used in Chapter 1 to illustrate
web search approaches. We already have the TFIDF vector representation of the
documents in this collection. For the agglomerative clustering experiments we shall
use all 671 terms as features. Let us first see how the parameter q affects clustering.
Table 3.1 shows two horizontal trees representing clusterings obtained with q = 0
(left) and q = 0.04 (right), both from the nearest-neighbor algorithm (k is set to 0).
The documents appear as leaves in the tree. Nodes are numbered sequentially (the
root is marked as 1), and next to each node number the similarity between the clusters
that are merged into that node is shown in brackets. The level of the hierarchy is
indicated by the left indention. Thus, the smaller the indention, the higher the tree
level (the root has no indent). The nodes aligned at the same indention are siblings.

With q = 0 the algorithm always merges the closest clusters until the root is
reached, no matter how low the similarity between them is. By setting q = 0.04, we
avoid merging clusters with similarity below 0.04. These are clusters (on the left tree)
4 and 6 (that merge in 3) and 3 and 9 (that merge in 2). Thus, we get a hierarchy
with four clusters at the highest level (shown on the right tree): 2, 11, 13, and 16. The
similarity value at the root is not shown because it applies to two clusters only.

The similarity values suggest that the documents grouped together in clusters
at the bottom of the tree are those that are most similar. These clusters are also
quite intuitive. For example, Biology and Mathematics (cluster 10, right), grouped
with Psychology (cluster 9) and then with Physics (cluster 8), form a nice cluster
of similar science disciplines. Another nice grouping is the humanities cluster (4):
History, Philosophy, English, and Languages. The advantage of having a hierarchy is
that it also works as a flat clustering and at the same time shows the internal structure
of the clusters. Thus, the immediate successors of any single node (including the root)
represent a flat clustering of the documents at the leaves of the tree rooted at that node.

The hierarchy represents a generality/specificity relation between documents
based on the terms they contain. For example, each of the History–Philosophy pair
(cluster 5), and English–Languages pair (cluster 6) has some overlap of terms rep-
resenting a common topic, while their parent cluster (4) has an overlap with all
documents included, thus representing a more general topic that includes the two
subtopics. These observations suggest that hierarchical clustering can be used to cre-
ate topic directories. For example, the cluster of humanities can be seen as a starting
point in the process of creating a directory of documents related to humanitarian sci-
ences. The next steps would be to add more documents to the subclusters, which can
be done manually or by using the classification approaches discussed later.

It is interesting to see how the type of cluster similarity function affects the
clustering results. Table 3.2 shows two clusterings obtained with different cluster

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

66 CHAPTER 3 CLUSTERING

TABLE 3.1 Hierarchical Agglomerative Clusterings Produced by the
Nearest-Neighbor Algorithma

q = 0 q = 0.04

1 [0.0224143] 1 []
2 [0.0308927] 2 [0.0554991]
3 [0.0368782] 3 [0.0662345]
4 [0.0556825] 4 [0.0864619]
5 [0.129523] 5 [0.177997]

Art History
Theatre Philosophy

Geography 6 [0.186299]
6 [0.0858613] English
7 [0.148599] Languages

Chemistry 7 [0.122659]
Music Anthropology

8 [0.23571] Sociology
Computer 8 [0.0952722]
Political 9 [0.163493]

9 [0.0937594] 10 [0.245171]
10 [0.176625] Biology

Communication Mathematics
Economics Psychology

Justice Physics
11 [0.0554991] 11 [0.0556825]
12 [0.0662345] 12 [0.129523]

13 [0.0864619] Art
14 [0.177997] Theatre

History Geography
Philosophy 13 [0.0858613]

15 [0.186299] 14 [0.148599]
English Chemistry
Languages Music

16 [0.122659] 15 [0.23571]
Anthropology Computer
Sociology Political

17 [0.0952722] 16 [0.0937594]
18 [0.163493] 17 [0.176625]
19 [0.245171] Communication

Biology Economics
Mathematics Justice

Psychology
Physics

Average intracluster similarity = 0.4257 Average intracluster similarity = 0.4516

a q is the cluster similarity cut off parameter.

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

INTRODUCTION 67

TABLE 3.2 Hierarchical Agglomerative Clusterings Obtained Using
Different Cluster Similarity Functions

Farthest Neighbor: Intracluster Similarity:
sim (S1, S2) = max

d1∈S1,d2∈S2

sim (d1, d2) sim(S) = 1
|S|2

∑
di ,d j ∈S

sim (di , d j)

1 [0.098857] 1 [0.138338]
2 [0.108415] 2 [0.175903]
3 [0.126011] 3 [0.237572]
4 [0.129523] 4 [0.342219]
5 [0.142059] 5 [0.57103]
6 [0.148069] Art
7 [0.148331] Psychology
8 [0.148599] 6 [0.588313]
9 [0.169039] Communication
10 [0.17462] Economics
11 [0.176625] 7 [0.39463]
12 [0.201999] 8 [0.617855]
13 [0.202129] Computer
14 [0.223392] Political

15 [0.226308] 9 [0.622585]
16 [0.23571] Biology
Computer Mathematics
Political 10 [0.292074]

Economics 11 [0.519653]
Chemistry Justice

Anthropology Theatre
17 [0.245171] 12 [0.541863]
Biology Geography
Mathematics Physics

Communication 13 [0.209028]
Physics 14 [0.323349]

Psychology 15 [0.56133]
Music Anthropology

18 [0.177997] Sociology
History 16 [0.5743]
Philosophy Chemistry

19 [0.186299] Music
English 17 [0.357257]
Languages 18 [0.588999]

Art History
Theatre Philosophy

Sociology 19 [0.59315]
Geography English

Justice Languages

Average intracluster similarity = 0.304475 Average intracluster similarity = 0.434181

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

68 CHAPTER 3 CLUSTERING

similarity functions. The farthest-neighbor clustering shows an interesting pattern.
Although History and Philosophy, and English and Languages, are paired again (con-
firming their strong similarity), the rest of the tree is build by repeatedly grouping
a cluster with a single document. This is quite typical for this approach when ap-
plied to a set of documents with relatively uniform similarity distribution (not too
great variations in document-to-document similarity over the entire collection). The
explanation is in the way that similarity between clusters is computed. Assume, for
example, that the current clustering of four numbers is {{1,2}, {3,4},5}. The farthest
neighbor will put together {3,4} and 5, because the distance between them (5 − 3 =
2) is smaller (similarity is bigger) than the distance between {1,2} and {3,4} (4 −
1 = 3), whereas for the nearest-neighbor approach, {1,2} and {3,4} are at the same
distance (3 − 2 = 1) as {3,4} and 5 (5 − 4 = 1).

Generally, the farthest-neighbor algorithm works well when clusters are com-
pact and roughly equal in size, whereas the nearest-neighbor algorithm can deal with
irregular cluster sizes but is sensitive to outliers. For example, a small cluster or point
between two large and well-separated clusters may serve as a bridge between the
latter and thus produce strange results (this is known as the chain effect). In fact,
the nearest-neighbor and farthest-neighbor algorithms use two extreme approaches
to the computation of cluster similarity: the maximum and minimum measures. As
in many other cases involving minima and maxima, they tend to be overly sensitive
to some irregularities, such as outliers. A solution to these problems is the use of
averaging. Two of the similarity functions that we listed earlier use averaging: simi-
larity between centroids and average similarity. Interestingly, both functions provide
insights with respect to the quality of clustering.

In step 3 of the agglomerative clustering algorithm we find the two most similar
clusters, and in step 6 we merge them. When using average similarity, we take pairs
of documents from each cluster and compute the average similarity over all such
pairs. If, instead, we first merge the clusters and then compute the average pairwise
similarity between all documents in the merger, we get a comparable measure of how
close the two original clusters were. Most important, this measure also accounts for
the compactness of the cluster or the intracluster similarity, defined as follows:

sim (S) = 1

|S|2
∑

di ,d j ∈S

sim (di , d j)

The intracluster similarity may easily be computed once we have the cluster centroid.
Assuming that the document vectors are normalized to unit length and substituting
for sim (di , d j) in the formula above, we can see that the intracluster similarity is the
square length of the cluster centroid.

sim (S) = 1

|S|2
∑

di ,d j ∈S

di · d j =
(

1

|S|
∑
di ∈S

di

)
·
(

1

|S|
∑
d j ∈S

d j

)
= c · c = ‖c‖2

The right clustering tree shown in Figure 3.3 is produced by the intracluster similarity
function. The structure of the hierarchy is quite regular (no merges between clusters
and single documents) and shows a close range of intracluster similarities for each

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

k-MEANS CLUSTERING 69

level of clusters. This reveals a rather uniform distribution of our document vectors
in the TFIDF vector space.

Along with several other measures, intracluster similarity is widely used for
evaluating clustering quality. To evaluate the overall quality of a clustering hierarchy,
we take the average of intracluster similarity over all clusters. These measures are
shown in the last row of Tables 3.1 and 3.2. They show that the average similarity
measure produces the best clustering and that cutting off the hierarchy improves the
quality of clustering. In Chapter 4 we discuss other measures for evaluating clustering
quality (also called criterion functions for clustering).

k-MEANS CLUSTERING

Assume that we know in advance the number of clusters that the algorithm should
produce. Then a divisible partitioning strategy would be more appropriate to use
because the only decision that needs to be made is how to split clusters. This would
also make the method more efficient than agglomerative clustering, where all possible
candidates for merging should be evaluated. The best known approach that is based on
this idea is k-means clustering, a simple and efficient algorithm used by statisticians
for decades. The idea is to represent the cluster by the centroid of the documents that
belong to that cluster (the centroid of cluster S is defined as c = (1/|S|)∑d∈S d).
The cluster membership is determined by finding the most similar cluster centroid
for each document.

The algorithm takes a set of documents S and a parameter k representing the
desired number of clusters and performs the following steps:

1. Select k documents from S to be used as cluster centroids. This is usually done
at random.

2. Assign documents to clusters according to their similarity to the cluster cen-
troids (i.e., for each document, find the most similar centroid and assign that
document to the corresponding cluster).

3. For each cluster, recompute the cluster centroid using the newly computed
cluster members.

4. Go to step 2 until the process converges (i.e., the same documents are assigned
to each cluster in two consecutive iterations or the cluster centroids remain the
same).

The key point in the algorithm is step 2. In this step documents are moved
between clusters to maximize the intracluster similarity. The criterion function for
clustering is based on cluster centroids and is analogous to the sum of squared errors
in distance-based clustering, which uses the mean. Instead, we use centroids and
similarity here. Thus, the function is

J =
k∑

i=1

∑
dl∈Di

sim (ci , dl)

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

70 CHAPTER 3 CLUSTERING

where ci is the centroid of cluster Di and sim (ci , d j) is the cosine similarity between ci

and d j . Clustering that maximizes this function is called minimum variance clustering
(to avoid confusion, variance is defined with distance and maximizing similarity is
equivalent to minimizing distance).

The k-means algorithm produces minimum variance clustering but does not
guarantee that it always finds the global maximum of the criterion function. After
each iteration the value of J increases, but it may converge to a local maximum. Thus,
the result depends greatly on the initial choice of cluster centroids. Because this
choice is usually made at random, the clusterings obtained may vary from run to run.
A simple approach to dealing with this problem is to run the algorithm several times
with different random number seeds and then select the clustering that maximizes the
criterion function.

Let us illustrate the k-means clustering algorithm using our department col-
lection. Running the algorithm on the documents represented with all 671 features
gives interesting results. In almost all runs the algorithm converges after only two
iterations (for all k). This means that the initial choice of centroids in most cases fully
determines the clustering; that is, after the first assignment of documents to clusters
(step 2), the next assignment based on the newly computed centroids does not change
the cluster membership, and thus the algorithm terminates. This behavior of k-means
is typical for data without well-formed clusters. No wonder this happens with our
document collection: The experiments with agglomerative clustering showed that
with respect to their similarity, the documents are quite uniformly distributed in the
671-dimensional space.

To make things more interesting, we select six terms which best represent our
documents: history, science, research, offers, students, and hall. This selection is
made by using an entropy-based technique that we discuss in Chapter 5 along with
other feature selection methods. For now we need only a representation that separates
well the data points in vector space and thus may reveal clusters in the document
collection. Table 3.3 shows TFIDF vectors described in this way. Note the difference
with the sparsely populated Table 1.5 that we used in Chapter 1.

Let us set k = 2; that is, we want to find two clusters in this collection of
documents. The algorithm first selects two documents at random as cluster centroids
and then iterates assigning and reassigning documents to clusters. Let us, however,
select the initial centroids manually so that we see two interesting situations. The
first is when we use the two most similar documents for this purpose: Computer
Science and Chemistry. Their similarity (simply the dot product, because the vectors
are normalized to unit length) is 0.995461. Note that there are many very similar
documents, so there is a good chance for this also to happen at random. Table 3.4
shows how clusters and the criterion function change through the iterations.

Initially, the documents selected appear in different clusters (as originally spec-
ified), but very soon Chemistry and similar documents are moved to cluster A. Mean-
while, the quality of clustering (the values of the criterion function) increases. The
final clustering is unbalanced, however, and only cluster A seems to be compact with
respect to document similarity. Cluster B is large and quite sparse; it includes vectors
that are orthogonal, such as Criminal Justice and Economics (and many others, too)
as well as very close documents, such as English and Modern Languages (similarity

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

k-MEANS CLUSTERING 71

TABLE 3.3 TFDF Representation of the Department Document Collection
with Six Attributes

history science research offers students hall

Anthropology 0 0.537 0.477 0 0.673 0.177
Art 0 0 0 0.961 0.195 0.196
Biology 0 0.347 0.924 0 0.111 0.112
Chemistry 0 0.975 0 0 0.155 0.158
Communication 0 0 0 0.780 0.626 0
Computer Science 0 0.989 0 0 0.130 0.067
Criminal Justice 0 0 0 0 1 0
Economics 0 0 1 0 0 0
English 0 0 0 0.980 0 0.199
Geography 0 0.849 0 0 0.528 0
History 0.991 0 0 0.135 0 0
Mathematics 0 0.616 0.549 0.490 0.198 0.201
Modern Languages 0 0 0 0.928 0 0.373
Music 0.970 0 0 0 0.170 0.172
Philosophy 0.741 0 0 0.658 0 0.136
Physics 0 0 0.894 0 0.315 0.318
Political Science 0 0.933 0.348 0 0.062 0.063
Psychology 0 0 0.852 0.387 0.313 0.162
Sociology 0 0 0.639 0.570 0.459 0.237
Theatre 0 0 0 0 0.967 0.254

TABLE 3.4 k-Means Clustering with a Bad Choice of Initial Cluster Centroids

Iteration Cluster A Cluster B Criterion Function J

1 {Computer Science,
Political Science}

{Anthropology, Art, Biology,
Chemistry, Communication,
Criminal Justice, Economics,
English, Geography, History,
Mathematics, Modern
Languages, Music, Philosophy,
Physics, Psychology, Sociology,
Theatre}

1.93554 (cluster A) +
4.54975 (cluster B)
= 6.48529

2 {Chemistry, Computer
Science, Geography,
Political Science}

{Anthropology, Art, Biology,
Communication, Criminal
Justice, Economics, English,
History, Mathematics, Modern
Languages, Music, Philosophy,
Physics, Psychology, Sociology,
Theatre}

3.82736 (cluster A) +
10.073 (cluster B)
= 13.9003

3 {Anthropology,
Chemistry,
Computer Science,
Geography, Political
Science}

{Art, Biology, Communication,
Criminal Justice, Economics,
English, History, Mathematics,
Modern Languages, Music,
Philosophy, Physics,
Psychology, Sociology, Theatre}

4.60125 (cluster A) +
9.51446 (cluster B)
= 14.1157

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

72 CHAPTER 3 CLUSTERING

TABLE 3.5 k-Means Clustering with a Good Choice of Initial Cluster Centroids

Iteration Cluster A Cluster B Criterion Function J

1 {Anthropology, Biology,
Economics, Mathematics,
Physics, Political Science,
Psychology}

{Art, Chemistry,
Communication,
Computer Science,
Criminal Justice, English,
Geography, History,
Modern Languages,
Music, Philosophy,
Sociology, Theatre}

5.04527 (cluster A) +
5.99025 (cluster B)
= 11.0355

2 {Anthropology, Biology,
Computer Science,
Economics, Mathematics,
Physics, Political Science,
Psychology, Sociology}

{Art, Chemistry,
Communication, Criminal
Justice, English,
Geography, History,
Modern Languages,
Music, Philosophy,
Theatre}

7.23827 (cluster A) +
6.70864 (cluster B)
= 13.9469

3 {Anthropology, Biology,
Chemistry, Computer
Science, Economics,
Geography, Mathematics,
Physics, Political Science,
Psychology, Sociology}

{Art, Communication,
Criminal Justice, English,
History, Modern
Languages, Music,
Philosophy, Theatre}

8.53381 (cluster A) +
6.12743 (cluster B)
= 14.6612

0.98353). This is obviously a bad choice of initial cluster centroids, which in turn
illustrates well how sensitive the k-means algorithm is to any irregularities in data
(something that is true for all search algorithms that use local criterion functions).

For the second run we choose two least similar documents: Economics and Art.
Their similarity is 0, because they are orthogonal (in fact, there are more orthogonal
vectors in our data; see Table 3.3). Table 3.5 shows how the clusters are built around
these two documents in three iterations. Obviously, this choice of cluster centroids is
better because the clusters are compact and well balanced by size and content. Cluster
A collects all natural science–like documents, whereas cluster B collects the artlike
documents. Obviously, the choice of cluster centroids is quite good; the initial value
of the J function is high and does not change much through the iterations. The better
quality of this clustering is also indicated by the bigger final value of the criterion
function compared with the previous run. So it seems that this split of our department
collection makes sense, and we shall be using it in the next chapters for document
labeling and supervised learning.

Thinking of our primary goal in this chapter, organizing the web content, the
clustering experiment shown in Table 3.5 can be seen as an example of creating a
web directory. Assume that we know the topics of a small set of documents in a large
collection. Then we can use documents from this set as cluster centroids and run
k-means on the entire collection to obtain subsets according to the given topics. A
similar approach based on similarity but with labeled documents (nearest-neighbor

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

PROBABILTY-BASED CLUSTERING 73

classification) is discussed in the context of supervised learning in Chapter 5. The
k-means clustering algorithm is very popular because it is simple, efficient, and works
well in practice, especially when the clusters are big, balanced, and well separated.
By applying the algorithm recursively to the clusters obtained, k-means can easily be
extended to produce hierarchical clustering.

Although we have described agglomerative and k-means clustering as based
on cosine similarity between TFIDF vectors, these algorithms also work with other
similarity functions. Two additional similarity measures based on document content
have been discussed in Chapter 1: Jaccard similarity and document resemblance. The
latter is especially useful for clustering large portions of the Web, because it scales up
well and allows document resemblance to be computed efficiently using document
sketches.

Similarity can also be defined by using the link structure of web pages. In
Chapter 2 we outlined an approach to find similar pages based on the HITS algorithm
for computing hubs and authorities. Link-based similarity can be defined in other
ways, too. If d1 and d2 are nodes (documents) in the web graph, the similarity between
them can be defined to be:

� The length of the shortest path between d1 and d2

� The number of common ancestors of (pages with links to both) d1 and d2

� Number of common successors of (pages that are pointed by links in both) d1

and d2

One common approach to computing the overall similarity is to take the maxi-
mum of the content similarity (cosine, Jaccard, or resemblance) and a weighted sum
of the link-based similarities mentioned above.

PROBABILTY-BASED CLUSTERING

In probability-based clustering, a document is considered as a random event that
occurs according to different probability distributions depending on the cluster (or
class1) to which the document belongs. The parameters involved in this setting are:

� The document class labels (may be known or unknown)
� The parameters of the probability distribution for each cluster
� The way that terms are used in the document representation

The last two parameters are related because the terms are considered as random
variables, and the type of the latter determines the type of the probability distributions
used to model documents. Generally, there are three ways that a term can be used in
this model:

1 Here we use the terms class and cluster interchangeably depending on the context. Both terms mean
“topic” (or “category”), but if the labels are determined by using the group to which the document
belongs, we use cluster, otherwise we use class.

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

74 CHAPTER 3 CLUSTERING

1. As a binary variable, taking value 0 or 1 depending on whether or not the term
occurs in the document. This is the multivariate binary model, where documents
are binary vectors following a multivariate binary distribution.

2. As a natural number, indicating the number of occurrences (frequency) of
the term in the document. In this representation a document is a vector of
natural numbers and its probability is computed according to the multinominal
distribution.

3. A normally distributed continuous variable taking TFIDF values. The docu-
ments in this representation are TFIDF vectors (described in the section “Vector
Space Model” in Chapter 1) following a multivariate normal distribution.

The binary and multinominal distributions use the underlying document models
directly: set-of-words, and bag-of-words, respectively. Both ignore ordering between
terms but do not use much preprocessing, which may cause further loss of information
or misrepresentation. Therefore, they are considered more natural than the TFIDF
representation. It is also assumed that the probabilistic models take into account the
importance of the terms (which the IDF measure accounts for) and can even capture
the notion of stopwords.

All three models are commonly used for both probabilistic clustering and clas-
sification. Hereafter we illustrate the probabilistic clustering with the TFIDF model.
The binary and multinominal models are discussed in Chapter 5 in the context of
classification. The reason for this choice is the popularity of the normal distribution
and the fact that it works not only for documents but in many other domains, too. It
also has a nice visual representation that makes the approach easy to understand.

To start with, let us pick a term and represent each of our documents with a
single value, the TFIDF component in the document vector that corresponds to that
term. Because this value may describe documents of different classes (clusters), it may
have different distributions. Thus, in a collection of documents from different classes
we have a mixture of different distributions. In statistics this is called a finite mixture
model (finite, because we assume a finite number of distributions). An example of a
single-attribute two-class mixture is shown in Figure 3.2.

The data include the list of values of the term offers taken from our department
collection (see Table 3.3). The label (A or B) corresponds to the cluster, where the
document with that value of offers belongs to according to the k-means clustering
shown in Table 3.5. Thus, we have a mixture of two normal (Gaussian) distributions.
The graphs shown next to the data in Figure 3.2 are plots of the probability density
functions (bell-shaped curves) for these distributions. The distributions are defined by
their mean and standard deviations. The mixture model also includes the probability
of sampling for each class (the probability that a random value belongs to a particular
class). All these parameters are also shown in Figure 3.2. Using the mixture model,
we can define three problems: a finite mixture problem, a classification problem, and
a clustering problem.

Finite Mixture Problem

Given a labeled data set (i.e., we know the class for each attribute value) the problem
is to find the mean, standard deviation, and the probability of sampling for each

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

PROBABILTY-BASED CLUSTERING 75

Normal (Gaussian) Distribution

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1 1.5 2

P
ro

ba
bi

lit
y

D
en

si
ty

A
B

Class Mean Standard deviation Probability of sampling

A

B

mA = 0.132

mB = 0.494

sA = 0.229

sB = 0.449

P(A) = 0.55

P(B) = 0.45

A

B

A

A

B

A

B

B

A

A

B

B

B

B

A

A

A

A

A

B

0

0

0

0

0

0

0

0

0

0

0

0.780

0.980

0.135

0.490

0.928

0.658

0.387

0.570

0.961

Figure 3.2 Two-class mixture model for the term offers.

cluster. The solution to this problem is a straightforward application of the formulas.
The mean μC for each class C is the average value of the attribute (variable x) for
documents belonging to that class:

μC = 1

|C |
∑
x∈C

x

For our department data set we take all values with label A (Figure 3.2) and compute

μA = 1
11 (0 + 0 + 0 + 0 + 0 + 0 + 0.49 + 0 + 0 + 0.387 + 0.57) = 0.132

Similarly, for documents labeled B, we have

μB = 1
9 (0.961 + 0.780 + 0 + 0.980 + 0.135 + 0.928 + 0 + 0.658 + 0) = 0.494

The standard deviation formula is

σC =
√

1

|C |
∑
x∈C

(x − μC)2

In practice, however, the square root of the bias-corrected variance is used (the only
difference being that the denominator is |C | − 1). Thus, for our data set we have
σA = 0.229 and σB = 0.449.

The probability of sampling P(C) is computed as the proportion of instances
in class C to the size of the entire data set. That is,

P(A) = 11
20 = 0.55 P(B) = 9

20 = 0.45

The set of parameters we computed above actually describes our data set. In terms of
clustering, each tuple 〈μC , σC , P(C)〉 is a generative document model of cluster C.

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

76 CHAPTER 3 CLUSTERING

Classification Problem

Assume that we have already computed the mixture model for the attribute offers. That
is, the three parameters μC , σC , and P(C) are known for each class C. The problem
now is to find the classification of a document which has a given value x for the attribute
offers. To solve the problem we need to decide from which distribution the value x
comes, cluster A or B, which in turn will allow us to classify the document accordingly.
The idea is to compute the conditional probabilities P(A | x) and P(B | x). Then the
distribution that has the biggest probability is the one that x comes from.

If x comes from a discrete distribution (such as the binary distribution we
discussed earlier), we may easily compute P(C | x) by applying Bayes’ rule:

P(C | x) = P(x | C) P(C)

P(x)

where P(C) is known from the mixture model and P(x | C) is the probability of x
according to the document distribution in cluster C. Then the probability P(x | C)
would simply be the number of occurrences of x in cluster C divided by the total
number of documents in C. We use this approach later for classification. In the current
situation, however, x is the value of a continuous random variable. Then, strictly
speaking, the probability of a continuous random variable being exactly equal to any
particular real value is zero. A practical solution to this problem is to use the value of
the probability density function instead. That is,

fC (x) = 1√
2π σC

e−(x−μC)2/2σ 2
C

Of course, this is not exactly the probability we need, but it appears that it works for our
purposes. The reason is that in practice we never know the exact value of a variable.
Moreover, in computer arithmetic we always have some degree of approximation.
Then instead of P(x | C), we may use P(x − ε ≤ x ≤ x + ε | C), where ε is the
accuracy of computation. To compute the latter, we may now use the density function
for class C. This is the area under the bell-shaped curve between the points x − ε and
x + ε, which for small ε is 2ε fC (x). However, as we don’t know the accuracy ε (and
also because it is the same for all classes), we may simply ignore it and use the value
of the density function fC (x) instead, as an estimate of the likelihood that x comes
from distribution C. Thus, we arrive at a formula that works for the continuous case
(note that we use the symbol ≈ instead of =):

P(C |x) ≈ fC (x) P(C)

P(x)

One may think that computing P(x) causes similar problems; however, we don’t need
this probability because it appears in the expressions for all classes. We may calculate
only the numerators and thus compare likelihoods instead of probabilities. Further,
because the probabilities sum up to 1 [P(A | x) + P(B | x) = 1], we may normalize
the likelihoods by their sum. Then we will have the correct probabilities.

Let us illustrate the classification problem with a simple example. Assume that
we don’t know the class label of Communication. The value of the offers attribute
for this document is 0.78 (the fifth row in the data table in Figure 3.2). Thus, the

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

PROBABILTY-BASED CLUSTERING 77

problem is to compute P(A | 0.78) and P(B | 0.78), and whichever is bigger will
determine the class label of Communication. Plugging 0.78 and the corresponding
values for μA, σA and μB, σB (from Figure 3.2) in the formula for fC (x), we get
f A(0.78) = 0.032 and fB(0.78) = 0.725. Then

P(A|0.78) ≈ f A(0.78)P(A) = (0.032) (0.55) = 0.018

P(B|0.78) ≈ fB(0.78)P(B) = (0.725) (0.45) = 0.326

These likelihoods clearly indicate that the value 0.78 comes from the distribution of
cluster B (i.e., the Communication document belongs to class B). Further, we can
easily get the actual probabilities by normalization:

P(A | 0.78) = 0.018

0.018 + 0.326
= 0.05

P(B | 0.78) = 0.326

0.018 + 0.326
= 0.95

In fact, this classification is quite clear if we look at the plot of the densities in
Figure 3.2; the value of 0.78 is well under the “bell” of distribution B.

Let us, however, try another value, which may not be that conclusive for the
classification problem. Looking at the data table in Figure 3.2, we see that a value of 0
clearly cannot distinguish between the two classes. There are eight 0’s labeled with A
and three 0’s labeled with B. Doing the actual calculations results in P(A | 0) = 0.788
and P(B | 0) = 0.212. Thus, all documents will be classified as A, which means
three wrongly classified documents: Criminal Justice, Music, and Theatre (originally
labeled as B). Obviously, one attribute is not enough to make a correct classification.

The mixture model can easily be extended to more than one attribute provided
that the independence assumption is made. It states that the joint probability of all
attributes in a vector is calculated as a product of the probabilities of the individual
attributes; that is,

P(x1, x2, ..., xn | C) =
n∏

i=1

P(xi | C)

In terms of probability theory this means that the events of different attributes having
particular values are independent. For example, knowing the value of science in the
Music document should not tell us anything about the values of the other attributes in
that document. This may not be true, however. In the particular example, if science
is 0, we may expect that research is also 0 (because they often go together). In fact,
the independence assumption rarely holds (or it is difficult to prove, as this would
require a large amount of data), but despite that, the formula above works well in
practice. This is the reason that the independence assumption is also called naive
Bayes assumption. It plays a key role in the naive Bayes classification algorithm,
which we just described. We shall revisit this algorithm in Chapter 5 and illustrate its
use with different distributions, as we mentioned earlier.

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

78 CHAPTER 3 CLUSTERING

Using the same idea as in the one-dimensional case, we may estimate the
likelihood of the vector using the density functions for its components:

P(C | (x1, x2, ..., xn)) ≈
n∏

i=1

f i
C (xi)

P(C)

P((x1, x2, ..., xn))

Let us now illustrate how to use the naive Bayes assumption to classify the
Theatre document by using more attributes. The six-dimensional vector for The-
atre is (0,0,0,0,0.967,0.254). Then the problem is to compute the probabilities
P(A | (0, 0, 0, 0, 0.976, 0254)) and P(B | (0, 0, 0, 0, 0.976, 0254)). For estimating
the probabilities with likelihoods, we use the density functions for six attributes:
history, science, research, offers, students, and hall. Thus, we have

P(A | (0, 0, 0, 0, 0.976, 0.254) ≈ f 1
A(0) f 2

A(0) f 3
A(0) f 4

A(0) f 5
A(0.976) f 6

A(0.254)P(A)

P((0, 0, 0, 0, 0.976, 0254))

where f 1
A through f 6

A are the density functions of the attributes in the order in which
they are listed above. To compute these functions we need to compute the means and
the standard deviations for each of these attributes within cluster A. However, when
computing f 1

A(0), we run into a little problem. The density function is undefined for
history, because its standard deviation is 0 (all values in cluster A are the same). There
are different approaches to solving this problem. The simplest is to assume a prespec-
ified minimum value, say 0.05, which results in f 1

A(0) = 7.979. After completing the
calculations, we have

P(A | (0, 0, 0, 0, 0.976, 0.254))

≈ (7.979)(0.5)(0.423)(1.478)(0.007)(1.978)(0.55) = 0.019

Similarly, by using the parameters for cluster B (using the same fix for the zero
deviations of science and research), we compute the likelihood of class B.

P(B | (0, 0, 0, 0, 0.976, 0.254))

≈ (0.705)(7.979)(7.979)(0.486)(0.698)(1.604)(0.45) = 10.99

After normalization we have the following probabilities:

P(B | (0, 0, 0, 0, 0.976, 0.254)) = 0.019

0.019 + 10.99
= 0.002

P(B | (0, 0, 0, 0, 0.976, 0.254)) = 10.99

0.019 + 10.99
= 0.998

Clearly, the Theatre document belongs to class B, which is now the correct classifi-
cation because this is its original cluster.

Clustering Problem

So far we have discussed two tasks associated with our probabilistic setting: learning
(creating models given labeled data) and classification (predicting labels using mod-
els). Recall, however, that the cluster labels were created automatically by k-means
clustering. So a natural question is whether we can also get these labels automatically
within a probabilistic setting.

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

PROBABILTY-BASED CLUSTERING 79

Expectation maximization (EM) is a popular algorithm used for clustering in
the context of mixture models. EM was originally proposed by Demster et al. [2] for
the purposes of estimating missing parameters of probabilistic models. Generally, this
is an optimization approach, which given some initial approximation of the cluster
parameters, iteratively performs two steps: first, the expectation step computes the
values expected for the cluster probabilities, and second, the maximization step com-
putes the distribution parameters and their likelihood given the data. It iterates until
the parameters being optimized reach a fixpoint or until the log-likelihood function,
which measures the quality of clustering, reaches its (local) maximum.

To simplify the discussion we first describe the one-dimensional case (i.e., the
data collection is a set of values x1, x2 , . . . , xn of a normally distributed random
variable). The algorithm takes a parameter k (predefined number of clusters, as
in k-means) and starts with selecting (usually at random) a set of initial cluster
parameters μC , σC , andP(C) for each cluster C. It can also start by assigning labels
to the data points (again, at random), which will determine the cluster parameters
(as was done earlier for the mixture problem). Then the algorithm iterates through
the following steps:

1. For each xi and for each cluster C, the probability wi = P(C | xi) that xi be-
longs to cluster C is computed. For this purpose the likelihood of this event
is obtained using the approach described in the preceding section; that is,
wi ≈ fC (xi)P(C), where fC (xi) is the density function. As the members of
each cluster are not known explicitly, P(C) is computed as the sum of the
weights wi (from the preceding step) for cluster C normalized across all clus-
ters. Likelihoods wi are also normalized across clusters in order to get the correct
probabilities.

2. The standard formulas for mean and standard deviation are adjusted to use the
cluster membership probabilities wi as weights. Thus, the following weighted
mean and standard deviation are computed:

μC =
∑n

i=1
wi xi∑n

i=1
wi

σ 2
C =

∑n

i=1
wi (xi − μC)2∑n

i=1
wi

Note that the sums go for all values, not only for those belonging to the corresponding
cluster. Thus, given a sample size n, we have an n-component weight vector for each
cluster.

The iterative process is similar to that of k-means; the data points are redis-
tributed among clusters repeatedly until the process reaches a fixpoint. The k-means
algorithm stops when the cluster membership does not change from one iteration to
the next. k-Means uses “hard”2 cluster assignment, however, whereas the EM uses

2 In fact, there exist versions of k-means with soft assignment, which are special cases of EM.

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

80 CHAPTER 3 CLUSTERING

“soft” assignment—probability of membership. Consequently, EM may not be able
to reach the actual fixpoint; although it converges to it, the probabilities may keep
changing forever. Another indication that the algorithm is close to the fixpoint is when
the criterion function that measures the quality of clustering reaches a maximum. For
our probabilistic setting, this is the overall likelihood that the data come from distri-
butions defined with the parameters given. The overall likelihood is computed as a
product of the probabilities of all individual data points xi . As this product may in-
clude thousands of terms, we usually take a log to smooth its value and avoid possible
underflow. Thus, we get the log-likelihood criterion function:

L =
n∑

i=1

log
∑

A

P(xi | A)P(A)

Practically, each log is taken from the sum of the wi values for the corresponding
cluster, but before normalization (otherwise, the sum will be 1 and the log will be 0).

After each iteration the value of L increases, and when the difference between
two successive values becomes negligible, the algorithm stops. It is guaranteed that
the algorithm converges to a maximum of the log-likelihood function. This may be a
local maximum, however. To find the global maximum we may use the same technique
that was suggested for k-means—run the algorithm several times with different initial
parameters and choose the clustering that maximizes the log-likelihoods from each
run.

To illustrate the approach discussed so far, let us run the EM algorithm on
a sample from our department data with one attribute: students. Thus, we have a
vector (x1, x2 , . . . , x20) with values taken from the row students in Table 3.3. Let
us also choose k = 2; that is, we want to find two clusters A and B defined proba-
bilistically with their sets of parameters {μA, σA, P(A)} and {μB, σB, P(B)}. First,
we need to choose the initial cluster parameters. Let us use the labeling approach
for this purpose. For each value xi we toss a coin, and if it is a head, we assign la-
bel A; otherwise, we assign label B. In other words, we initialize the weight vectors
for clusters A and B with 1’s and 0’s, thus determining the probabilities of cluster
membership for each xi . Using the initial weight vectors, the algorithm computes
the cluster parameters, the weighted versions of μA, σA, P(A) and μB, σB, P(B).
In the next step these parameters are used to recompute the weight vectors, which
further, will determine the new cluster parameters, and so on. At each step the log-
likelihood function is computed so that the iterations stop when its maximum is
reached. The entire process with the values of all parameters involved is shown in
Table 3.6.

The first column shows the data vector (x1, x2 , . . . , x20). The next column
(iteration 0) shows the initial setting with the random choice of values for the weight
vectors of clusters A and B and the corresponding cluster parameters (in the lower
four rows): sum of weights, cluster probabilities (computed by normalizing the sum
of weights), weighted mean, and standard deviation. These parameters are used to
compute the weight vectors for iteration 1. The latter determine the cluster parameters
for iteration 1, which in turn are used to compute the weights for iteration 2, and so on.
In these terms the expectation step of the algorithm is the computation of the weight

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

TA
B

LE
3.

6
EM

It
er

at
io

n
s

o
n

O
n

e-
A

tt
ri

b
u

te
D

at
a

(A
tt

ri
b

u
te

st
u

d
en

ts
)

It
er

at
io

n:
0

1
2

3
4

5
6

D
at

a:
w

i
w

i
w

i
w

i
w

i
w

i
w

i

i
x i

A
B

A
B

A
B

A
B

A
B

A
B

A
B

1
0.

67
1

0
0.

99
0.

01
1

0
1

0
1

0
1

0
1

0
2

0.
19

1
0

0.
4

0.
6

0.
35

0.
65

0.
29

0.
71

0.
26

0.
74

0.
23

0.
77

0.
21

0.
79

3
0.

11
0

1
0.

41
0.

59
0.

29
0.

71
0.

19
0.

81
0.

13
0.

87
0.

1
0.

9
0.

09
0.

91
4

0.
15

0
1

0.
39

0.
61

0.
31

0.
69

0.
23

0.
77

0.
18

0.
82

0.
15

0.
85

0.
13

0.
87

5
0.

63
1

0
0.

99
0.

01
1

0
1

0
1

0
1

0
1

0
6

0.
13

0
1

0.
4

0.
6

0.
3

0.
7

0.
2

0.
8

0.
15

0.
85

0.
12

0.
88

0.
1

0.
9

7
1

1
0

1
0

1
0

1
0

1
0

1
0

1
0

8
0

0
1

0.
53

0.
47

0.
35

0.
65

0.
22

0.
78

0.
14

0.
86

0.
1

0.
9

0.
08

0.
92

9
0

1
0

0.
53

0.
47

0.
35

0.
65

0.
22

0.
78

0.
14

0.
86

0.
1

0.
9

0.
08

0.
92

10
0.

53
1

0
0.

92
0.

08
0.

99
0.

01
1

0
1

0
1

0
1

0
11

0
1

0
0.

53
0.

47
0.

35
0.

65
0.

22
0.

78
0.

14
0.

86
0.

1
0.

9
0.

08
0.

92
12

0.
2

1
0

0.
4

0.
6

0.
35

0.
65

0.
3

0.
7

0.
26

0.
74

0.
24

0.
76

0.
22

0.
78

13
0

1
0

0.
53

0.
47

0.
35

0.
65

0.
22

0.
78

0.
14

0.
86

0.
1

0.
9

0.
08

0.
92

14
0.

17
0

1
0.

39
0.

61
0.

32
0.

68
0.

25
0.

75
0.

2
0.

8
0.

17
0.

83
0.

15
0.

85
15

0
1

0
0.

53
0.

47
0.

35
0.

65
0.

22
0.

78
0.

14
0.

86
0.

1
0.

9
0.

08
0.

92
16

0.
31

1
0

0.
52

0.
48

0.
61

0.
39

0.
72

0.
28

0.
8

0.
2

0.
83

0.
17

0.
84

0.
16

17
0.

06
1

0
0.

45
0.

55
0.

3
0.

7
0.

18
0.

82
0.

12
0.

88
0.

09
0.

91
0.

07
0.

93
18

0.
31

0
1

0.
51

0.
49

0.
61

0.
39

0.
71

0.
29

0.
79

0.
21

0.
82

0.
18

0.
84

0.
16

19
0.

46
0

1
0.

82
0.

18
0.

95
0.

05
0.

99
0.

01
1

0
1

0
1

0
20

0.
97

1
0

1
0

1
0

1
0

1
0

1
0

1
0

∑ w
i

13
7

12
.2

7.
8

11
.1

8.
9

10
.2

9.
8

9.
6

10
.4

9.
2

10
.8

9.
1

10
.9

C
lu

st
er

pr
ob

ab
ili

ty
0.

65
0.

35
0.

61
0.

39
0.

56
0.

44
0.

51
0.

49
0.

48
0.

52
0.

46
0.

54
0.

45
0.

55
W

ei
gh

te
d

λ
0.

35
0.

19
0.

40
0.

14
0.

44
0.

11
0.

49
0.

10
0.

52
0.

09
0.

54
0.

09
0.

55
0.

09
W

ei
gh

te
d

σ
0.

35
0.

14
0.

34
0.

12
0.

33
0.

10
0.

32
0.

09
0.

31
0.

09
0.

30
0.

09
0.

29
0.

09

L
og

-l
ik

el
ih

oo
d

−2
.9

22
01

−1
.2

90
17

−0
.0

99
03

9
0.

47
88

8
0.

69
70

56
0.

76
91

24
0.

79
23

24

81

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

82 CHAPTER 3 CLUSTERING

-3

-2

-1

0

1

0 1 2 3 4 5 6
Iteration

L
o

g
-l

ik
el

ih
o

o
d

Figure 3.3 Log-likelihood graph for the example in Table 3.6.

vectors (including the initial vector, which is determined as a random expecta-
tion), while the maximization step is the computation of cluster parameters, which
is based on the probabilities expected (the weights) and is aimed at maximizing
them.

The last row in Table 3.6 shows the values of the log-likelihood function, which
measures the overall clustering quality and is also used as a stopping condition. A
graph of the function is shown in Figure 3.3. We see a sharp increase over the first
few iterations and then a slower increase in the later iterations, which is an indication
that the function reaches its (local) maximum. By setting a threshold of 0.03 for the
difference between two successive values of the log-likelihood, we can make the
algorithm stop at iteration 6.

The cluster parameters and weights show similar behavior: big changes over
the first few iterations and quick convergence in the later steps. This is also the most
commonly observed behavior of the EM algorithm in practice; generally, it converges
to a fixpoint very quickly, but unfortunately, the fixpoint may be a local maximum.
As we have already mentioned, the fix is to restart the algorithm several times with
different initial choice for the weights, and then choose the clustering that maximizes
the log-likelihood function.

So far we have examined probabilities only, but we can also see the actual
partitioning of documents into clusters. By determining the bigger one of the two
weights (i.e., probabilities) we can obtain the cluster membership of each xi : cluster
A or cluster B (the maximal wi in each pair is printed in boldface in Table 3.6). For
example, x8 = 0 belongs to cluster B in iteration 0 (with probability 1) and to cluster
A in iteration 1 (with probability 0.53). By looking back at the document vectors to
which these values belong, we obtain the document clusters. Thus, the initial (random)
clustering is

A = {Anthropology, Art, Communication, Justice, English, Geography,

History, Mathematics, Languages, Philosophy, Physics, Political,

Theatre}
B = {Biology, Chemistry, Computer, Economics, Music, Psychology,

Sociology}

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

PROBABILTY-BASED CLUSTERING 83

and the final one (after iteration 6) is

A = {Anthropology, Communication, Justice, Geography, Physics,

Psychology, Sociology, Theatre}
B = {Art, Biology, Chemistry, Computer, Economics, English, History,

Mathematics, Music, Languages, Philosophy, Political}
However, keeping in mind our general objective, organizing documents by

topic, the final clustering looks far from the natural document grouping that we may
have expected to see (e.g., the one obtained from k-means, shown in Table 3.5). And
the obvious reason for this is that we have used only one attribute to describe our
documents: the term students. Fortunately, the EM algorithm can also easily handle
multiple attributes. A simple way of doing this is to use the independence (naive Bayes)
assumption. We saw earlier how to compute the joint probability of multiple attributes
as a product of the individual probabilities. Thus, by making the following changes,
the algorithm can easily be generalized to cover multivariate normal distributions:

1. Maintain independently the weighted mean and standard deviation for each
attribute. Use the same formulas for their calculation.

2. When computing the weight wi (probability of xi), use the product of the density
functions of all attributes.

The computation of cluster probabilities (as normalized sums of weights) and the
overall loop of the algorithm remain unchanged.

Table 3.7 shows the results of two runs (with random choice of initial distribu-
tions) of the multivariate EM algorithm on our department data with the six attributes
that we selected earlier for our clustering experiments. The weights indicate the clus-
ter membership of each document (shown in boldface), and above the weight columns
we see the log-likelihood for each run. The table includes the labels obtained by the
k-means experiment (Table 3.5). This is also the labeling that we have assumed to be
the natural grouping of our documents according to their topic: natural sciences and
arts and humanities.

The result from the first run (EM1) is close to that obtained from k-means: only
three documents are labeled differently (Physics, Psychology, and Sociology). The
second run (EM2) shows six differences with the k-means clustering; however, the
log-likelihood is substantially higher. So we see here a situation in which the criterion
function is not in agreement with the natural topic-based grouping of our documents.
In fact, similar to k-means experiments, here we have chosen two clusterings, one
good and one bad, out of many others that can be obtained from EM with different
initial settings. It is important to note that especially in the multiple-attribute case, the
landscape of the log-likelihood function is very complex, which means that the EM
algorithm could possibly find many local maxima and consequently, many different
clusterings.

Another important observation is that in some cases our intuitive notion of
document topics may differ from that suggested by the criterion function for cluster-
ing. This is contrary to what we have seen in experiments with k-means clustering
(Tables 3.4 and 3.5), where the criterion function was in agreement with the document

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

84 CHAPTER 3 CLUSTERING

TABLE 3.7 Document Clustering with Multivariate EM Using Six Attributes

EM1: Log-Likelihood = 0.1334 EM2: Log-Likelihood = 4.8131
k-Means

Document Labels wi (Cluster A) wi (Cluster B) wi (Cluster A) wi (Cluster B)

Anthropology A 1 0 0.99999 0.00001
Art B 0 1 0.9066 0.0934
Biology A 0.99995 0.00005 1 0
Chemistry A 1 0 1 0
Communication B 0 1 0.96278 0.03722
Computer Science A 1 0 1 0
Criminal Justice B 0.0118 0.9882 0.98363 0.01637
Economics A 0.70988 0.29012 0.99999 0.00001
English B 0 1 0.81042 0.18958
Geography A 1 0 0.99999 0.00001
History B 0.01348 0.98652 0 1
Mathematics A 1 0 0.99999 0.00001
Modern Languages B 0 1 0.71241 0.28759
Music B 0.01381 0.98619 0 1
Philosophy B 0 1 0 1
Physics A 0.06692 0.93308 0.99999 0.00001
Political Science A 1 0 1 0
Psychology A 0.0368 0.9632 0.99999 0.00001
Sociology A 0.00016 0.99984 0.99982 0.00018
Theatre B 0.0023 0.9977 0.98818 0.01182

topic structure. A possible explanation for this is that the intracluster similarity crite-
rion may suit our topic structure better than the probabilistically defined log-likelihood
function.

COLLABORATIVE FILTERING
(RECOMMENDER SYSTEMS)

So far we have discussed approaches to content-based retrieval and clustering of doc-
uments, where the basic relation that is used in the document description is “document
contains term.” At some point we looked into the role of web users as a source of
feedback to improve the document ranking. However, we may consider web users
as entities in a relation such as the document–term relation. This may, for example,
be “web user likes web page.” Then we can build a user–document matrix and use
documents to describe users in terms of web pages they like. A more general approach
would be to consider persons and items again connected by the relation “person likes
item.” This is the approach taken in the area of collaborative filtering (also called
recommender systems) [3].

Assume that we have m persons and n items (e.g., books, songs, movies, web
pages). We arrange them in a m × n matrix M, where each row is a person, each
column is an item, and the cells represent the binary relation “likes.” Thus, if person i

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

COLLABORATIVE FILTERING (RECOMMENDER SYSTEMS) 85

likes item j, then M(i, j) = 1; otherwise, M(i, j) = 0. The problem is that many cells
are empty (i.e., we don’t know whether or not a person likes an item). The task of a
collaborative filtering system is to predict the missing values by using the rest of the
information in the matrix.

On-line shopping sites usually keep records of who purchased what. A person
who has purchased a couple of items identifies a vector in the person × item matrix,
which the collaborative filtering system fills in with predicted values. Thus, the system
may recommend to that person other items that he or she also may want to buy
(“customers who bought this also bought . . . ”).

A straightforward approach to solve the collaborative filtering task is to use
clustering. The items are used as features to represent persons as vectors (rows in
the person × item matrix). Then person vectors are clustered by using any clustering
algorithm that we have discussed so far (e.g., k-means or EM). Finally, the miss-
ing values are taken from the cluster representation, where each person belongs. A
problem in applying this approach involves the highly sparse data: In each person
vector there are many missing values. The probabilistic algorithms can easily handle
missing values; they are simply omitted from the computation of probabilities and the
algorithm proceeds as usual. In similarity-based clustering such as k-means, a little
adjustment is made for the missing feature values. They are assumed as least similar
or at maximal distance. However, there is still another problem: As people usually
have multiple interests, persons often appear in multiple clusters.

The clustering approach to collaborative filtering uses only the similarity be-
tween persons. However, the items may also be considered as vectors defined by
persons. Or more generally, persons and item may be considered as symmetric. The
basic idea is to cluster both persons and items at the same time. An EM-like algorithm
for this purpose can be sketched as follows:

1. Assign random cluster labels to persons and items.

2. Take a person and an item at random; then

a. Compute the probabilty that the person belongs to the person clusters.

b. Compute the probabilty that the item belongs to the item clusters.

c. Compute the probabilty that the person likes the item.

3. Esimate the maximum likelihood values of the foregoing probabilities.

4. If the parameter estimation is satisfactory, terminate; else, go to step 2.

Collaborative filtering is related to user profiling and web personalization. In
collaborative filtering, similarity between users is defined by items they like or dislike.
Thus, in the context of web, collaborative filtering is concerned basically with web
usage, whereas in user profiling and web personalization, users are modeled by using
the content of the web pages they like or dislike. For the latter, web documents are
represented by using the standard content-based approaches, such as those we have
used for clustering, and documents are labeled by user preferences. Then supervised
learning methods are applied to create models of the users, which in turn may be
used for personalized web services. We discuss supervised learning approaches in
Chapter 5.

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

86 CHAPTER 3 CLUSTERING

REFERENCES

1. Daniel Larose, Discovering Knowledge in Data: An Introduction to Data Mining, Wiley,
Hoboken, NJ, 2005.

2. A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data
via the EM algorithm, J. R. Stat. Soci. Ser. B, 39(1):1–38, 1977.

3. J. Breese, D. Heckerman, and C. Kadie, Empirical analysis of predictive algorithms for
collaborative filtering, in Uncertainty in Artificial Intelligence: Proceedings of the 14th
Conference, Morgan Kaufmann, San Francisco, CA, 1998, pp. 43–52.

EXERCISES

1. Collect a number of web pages by browsing a web directory, crawling a web domain, or
by web search. Use their topic categories (if available) or classify them (manually) into
two or more categories. Create a Weka data file to represent the collection. Follow the
steps below.

a. Make sure that in each category there are between 20 and 50 pages. Choose pages with
more text and less graphics.

b. After collecting each web page, convert it into plain text. For example, load the web
page in Internet Explorer and use the “Save As . . . ” option with “Save as type: Text
File (*.txt)” (or “Plain Text” in MS Word). Make sure that the size of the text file is
more than 1k and less than 10k.

c. Create a single text file in the Weka ARFF format (with attributes of type string) that
includes all text files extracted from the web pages (see the description of the ARFF
format at http://www.cs.waikato.ac.nz/∼ml/weka/). The content of each text
file should appear on a single line (remove all CR and LF characters) and must be
enclosed in quotation marks (“ ”). Add the page title at the beginning of the line and
the page category at the end. Then create a file header as follows:
@relation web pages in string format

@attribute web page name string

@attribute web page content string

@attribute web page class string

@data

"Internet Archive", "internet archive web moving...", info

...

The data section (the lines after @data) includes the actual web page text: one (long)
line per page.

A Weka data file created as explained above is available from the book series Web
site www.dataminingconsultant.com. The file name is “Top-100-websites.arff” and
contains 100 top-ranked web pages returned by Google search “web” on April 18, 2006.
The class is assigned (manually) as “prof” for web pages intended for IT profession-
als, and “info” for web pages that provide various types of information or direct web
services.

2. Load the data set created in Exercise 1 (or “Top-100-websites.arff”) in Weka, con-
vert it into binary, term-count, and TFIDF formats, and store each representation in a
separate ARFF file. Use the StringToWordVector filter and follow the steps explained

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

EXERCISES 87

in Exercises 3 and 4 of Chapter 1. The conversions of “Top-100-websites.arff” into
binary, term-count, and TFIDF formats are also available from the book series Web
site www.dataminingconsultant.com as “Top-100-websites-binary.arff,” “Top-100-
websites-counts.arff,” and “Top-100-websites-TFIDF.arff” correspondingly.

3. Load the binary data set and analyze the attributes by examining their visualization in
Weka’s preprocess mode.

a. What is the most frequent pattern observed in the attribute visualization window? What
does a pattern with a high 0-bar and low 1-bar tell about the sparsity of data? How
about the reverse pattern?

b. What do the class colors tell about the importance of an attribute for clustering? How
about the frequency distribution?

c. What would be the best pattern for the purposes of well-balanced clustering?

d. Compare the following attributes (from the data set “Top-100-websites-binary.arff”):
input, accounting, internet, web, support, software, and design. Analyze their bar
diagrams along the lines of previous questions.

4. Analyze the visualizations of the term counts and TFIDF attributes (using the correspond-
ing data sets created in Exercise 2). What changes with the representation? Why? Which
attributes would now be better for clustering, with thicker or thinner bars?

5. Perform clustering3 experiments using “Top-100-websites-binary.arff” with k-means and
two clusters (numClusters = 2). Ignore the class attribute.

a. Use different random number seeds (i.e., different initial cluster centroids) and see
how the results change. Explain why the algorithm is so sensitive to changes in the
initial settings.

b. Find the most balanced clustering and save the cluster assignments in a new data file.
Right-click on the result line in the result list window and choose “Visualize cluster
assignments.” Then use the “Save” button in the “Clusterer visualize” window; a new
attribute is added (as last) with values corresponding to the cluster membership of each
instance.

c. Load the file with the clustering results and visualize the original class attribute using
the new cluster attribute as color. Analyze the results (this explains how Weka performs
the classes-to-clusters evaluation discussed in Chapter 4).

6. Perform the experiments from Exercise 5, but with the term-counts (“Top-100-websites-
counts.arff”) and TFIDF (“Top-100-websites-TFIDF.arff”) representations of the data
set. Compare the results.

7. Remove all attributes except the following: website title, developers, support, partners,
developer, solutions, html, software, gov, national, design, and website class. Also ignore
the class attribute. Run the k-means and EM algorithms with two clusters using the three
data sets binary, term-counts, and TFIDF.

a. For k-means, examine the effect of changing the seed. Compare the behavior of the
algorithm with that on the full data set. Explain the difference.

b. Compare k-means and EM on the tree data sets. Analyze the class distribution over
clusters (see Exercise 5b and c). Which algorithm performs better on which data

3 Note that Weka requires a lot of memory to run with large data files, so make sure that all available
memory is used by setting the “–Xmx” command line parameter properly.

SPH SPH
JWDD053-03 JWDD053-Markov March 13, 2007 8:10 Char Count= 0

88 CHAPTER 3 CLUSTERING

sets? Explain why. Note that the Weka implementation of k-means uses Euclidean distance
(not cosine similarity) and EM assumes normal distribution.

c. For EM, examine the log-likelihood evaluation reported by Weka and compare it with
the accuracy-based evaluation obtained from visualization of cluster assignments (class
distribution over clusters).

d. For EM, examine how the log-likelihood changes with the number of iterations. Try max-
iterations = 1, 2, 3, . . . and observe the values of the log likelihood. Create a graph such as
the one shown in Figure 3.3. Experiment with different number of attributes (say, 1, 2, 3,
5, 10) and vary the random number seed. Comment on the results.

8. Remove all attributes except the website title, website class, and any other 10 attributes
different from those used in Exercise 7. Ignore the class attribute and run the k-means
and EM algorithms with two clusters using the three data sets binary, term-counts, and
TFIDF.

a. Perform the experiments, do the analysis, and answer the questions as described in
Exercise 7a–d.

b. Compare the results with those obtained in Exercise 7 and explain the differences
(examine the visualizations of the different sets of attributes used).

9. Using the TFIDF data sets, pick one attribute from those used in Exercise 7 and one from
those used in Exercise 8, and create a normal mixture model for each.

a. Apply the unsupervised instance filter RemoveWithValues to obtain the set of instances
from each class and then use the mean and standard deviation shown by Weka.

b. For each attribute, create graphs of the probability density functions within each class
(similar to that shown in Figure 3.2). This can be done in Microsoft Excel, for example.

c. By inspecting the normal density curves, determine which attribute is more relevant
for the classification task.

SPH SPH
JWDD053-04 JWDD053-Markov March 5, 2007 20:7 Char Count= 0

CHAPTER 4
EVALUATING CLUSTERING

APPROACHES TO EVALUATING CLUSTERING

SIMILARITY-BASED CRITERION FUNCTIONS

PROBABILISTIC CRITERION FUNCTIONS

MDL-BASED MODEL AND FEATURE EVALUATION

CLASSES-TO-CLUSTERS EVALUATION

PRECISION, RECALL, AND F-MEASURE

ENTROPY

APPROACHES TO EVALUATING CLUSTERING

Clustering algorithms group documents by similarity or create statistical models based
solely on the document representation, which in turn reflects document content. Then
the criterion functions evaluate these models objectively (i.e., using only the document
content). In contrast, when we label documents by topic we use additional knowledge,
which is generally not explicitly available in document content and representation.
Labeled documents are used primarily in supervised learning (classification) to create
a mapping between the document representation and the external notion (concept,
category, class) provided by the teacher through labeling. Preclassified documents
can also be used for selecting attributes (terms) that best represent the class (we
discuss this issue in Chapter 5). However, labeled documents can also be useful in
unsupervised setting. By matching manual labeling and automatic clustering, we can
achieve two goals:

1. If we know that our labeling is correct and reflects closely the content (repre-
sentation) of documents, we can evaluate the quality of clustering. For example,
considering the example from Table 3.7, we may decide that clustering EM1
is better than EM2 because the former has 15% errors and the latter has 30%
errors with respect to manual classification (labeling).

Data Mining the Web: Uncovering Patterns in Web Content, Structure, and Usage
By Zdravko Markov and Daniel T. Larose Copyright C© 2007 John Wiley & Sons, Inc.

89

SPH SPH
JWDD053-04 JWDD053-Markov March 5, 2007 20:7 Char Count= 0

90 CHAPTER 4 EVALUATING CLUSTERING

2. On the other hand, we may know that our algorithm works well and the rep-
resentation reflects accurately the content of documents. Then we can judge
the quality of manual labeling by comparing it to the clustering. For exam-
ple, a manually created topic directory can be evaluated and then extended or
modified accordingly by clustering.

The basic idea of clustering—grouping similar documents—also suggests crite-
ria for clustering quality. Any function that evaluates the degree of similarity between
documents within clusters can be used for this purpose. In some cases we would
also like to evaluate dissimilarity of objects placed in different clusters. One may
argue that probabilistic approaches use a different criterion for clustering. However,
it is again based implicitly on similarity. If documents have a high probability of
belonging to the same cluster, this is because they have features with close values: for
example, attribute values close to the mean for the cluster. The difference is that some
similarity approaches rely on pairwise similarity, or similarity of cluster members
to the cluster center, which is a kind of local measure. Probability approaches, on
the other hand, are always global; they take into account statistical properties, which
are computed on the entire sample of documents. We have already mentioned two
similarity-based functions, intracluster similarity and sum of squared errors, and one
probability-based function, log-likelihood. Hereafter we summarize the properties of
these functions and discuss further another probability-based criterion and a criterion
function based on classified data, called classes-to-clusters evaluation.

SIMILARITY-BASED CRITERION FUNCTIONS

One of the most popular criterion functions for clustering is the sum of squared
errors. Originally, it uses Euclidean distance and evaluates clustering, where each
cluster is represented by its center (centroid or mean in the case of numerical data).
Such clustering can be produced, for example, by the k-means algorithm. The idea of
this evaluation function is that the mean mi best represents cluster Di if it minimizes
the sum of the lengths of the “error” vectors x − mi for all x ∈ Di . Thus, the overall
evaluation of a clustering is the sum of these “intracluster errors” over all k clusters:

Je =
k∑

i=1

∑
x∈Di

‖x − mi‖2

where mi is the mean of Di ; that is,

mi = 1

|Di |
∑
x∈Di

x

By simple algebraic manipulation the mean can be eliminated from the expression
for Je, thus obtaining an equivalent form of the evaluation function based on pairwise
distance between cluster members:

Je = 1

2

k∑
i=1

1

|Di |
∑

x j ,xl∈Di

‖x j − xl‖2

SPH SPH
JWDD053-04 JWDD053-Markov March 5, 2007 20:7 Char Count= 0

SIMILARITY-BASED CRITERION FUNCTIONS 91

For document clustering the cosine similarity is used instead of distance, and the best
clustering should maximize the sum of centroid similarity function:

Js =
k∑

i=1

∑
d j ∈Di

sim (ci , d j)

where sim (ci , d j) is the cosine similarity between the cluster centroid ci of cluster
Di and the vector d j , defined by the cosine of the angle between the two vectors in
the TFIDF vector space. That is,

sim (ci , d j) = ci · d j

‖ci‖ ‖d j‖
The cluster centroid ci is the average vector in cluster Di :

ci = 1

|Di |
∑

d j ∈Di

d j

The equivalent form of this function based on pairwise similarity is then

Js = 1

2

k∑
i=1

1

|Di |
∑

d j ,dl∈Di

sim (d j , dl)

Another simple transformation shows that this function actually uses intracluster
similarity—one of the evaluation functions that control merging of clusters in hierar-
chical agglomerative clustering:

Js = 1

2

k∑
i=1

1

|Di |
∑

d j ,dl∈Di

sim (d j , dl) = 1

2

k∑
i=1

|Di | sim (Di)

where sim (Di) is the average pairwise similarity between members of cluster Di .
In summary, the similarity-based criterion function has two equivalent forms:

centroid and pairwise similarity, depending on the clustering approach in which it
is used. As we mentioned earlier, clustering that maximizes this function is called
minimum variance clustering. Therefore, the functions from this family are called
minimum variance criterion functions.

Another issue related to evaluating the quality of clustering is comparing clus-
terings with a different number of partitions or different hierarchical structures. In
partitioning, the criterion function grows with the number of clusters, reaching its
maximum at the extreme case of single-element clusters, whereas in hierarchical
clustering it decreases with climbing the hierarchy, reaching its smallest value at the
root (a single cluster for the entire sample). We illustrate the behavior of the mini-
mum variance criterion with four examples of clustering in our department domain.
Table 4.1 shows four horizontal trees, corresponding to different clusterings of our
20 documents obtained with the agglomerative approach (average similarity criterion
for merging clusters) and k-means with k = 2, 3, and 4.

The value of the sum of centroid similarity function is shown in brackets after
the node number. Note that this value corresponds to the cluster that includes all leaves
of the subtree rooted at the node. For example, node 3 from the agglomerative tree

SPH SPH
JWDD053-04 JWDD053-Markov March 5, 2007 20:7 Char Count= 0

TA
B

LE
4.

1
Su

m
o

fC
en

tr
o

id
Si

m
ila

ri
ty

Ev
al

u
at

io
n

o
fF

o
u

r
C

lu
st

er
in

gs

A
gg

lo
m

er
at

iv
e

k-
m

ea
ns

(
k

=
2)

k-
m

ea
ns

(
k

=
3)

k-
m

ea
ns

(
k

=
4)

1
[
1
2
.
0
2
5
3
]

1
[
1
2
.
0
2
5
3
]

1
[
1
2
.
0
2
5
3
]

1
[
1
2
.
0
2
5
3
]

2
[
9
.
4
3
9
3
2
]

2
[
8
.
5
3
3
8
1
]

2
[
2
.
8
3
8
0
6
]

2
[
3
.
8
1
7
7
1
]

3
[
5
.
6
4
8
1
9
]

A
n
t
h
r
o
p
o
l
o
g
y

H
i
s
t
o
r
y

A
r
t

4
[
4
.
6
5
2
2
]

B
i
o
l
o
g
y

M
u
s
i
c

C
o
m
m
u
n
i
c
a
t
i
o
n

5
[
3
.
8
7
4
2
]

C
h
e
m
i
s
t
r
y

P
h
i
l
o
s
o
p
h
y

E
n
g
l
i
s
h

6
[
2
.
9
5
3
2
2
]

C
o
m
p
u
t
e
r
S
c
i
e
n
c
e

3
[
6
.
0
9
1
0
7
]

M
o
d
e
r
n
L
a
n
g
u
a
g
e
s

7
[
1
.
9
9
7
7
3
]

E
c
o
n
o
m
i
c
s

A
n
t
h
r
o
p
o
l
o
g
y

3
[
5
.
4
4
4
1
6
]

C
h
e
m
i
s
t
r
y

G
e
o
g
r
a
p
h
y

B
i
o
l
o
g
y

B
i
o
l
o
g
y

C
o
m
p
u
t
e
r
S
c
i
e
n
c
e

M
a
t
h
e
m
a
t
i
c
s

C
h
e
m
i
s
t
r
y

E
c
o
n
o
m
i
c
s

P
o
l
i
t
i
c
a
l
S
c
i
e
n
c
e

P
h
y
s
i
c
s

C
o
m
p
u
t
e
r
S
c
i
e
n
c
e

M
a
t
h
e
m
a
t
i
c
s

G
e
o
g
r
a
p
h
y

P
o
l
i
t
i
c
a
l
S
c
i
e
n
c
e

G
e
o
g
r
a
p
h
y

P
h
y
s
i
c
s

A
n
t
h
r
o
p
o
l
o
g
y

P
s
y
c
h
o
l
o
g
y

M
a
t
h
e
m
a
t
i
c
s

P
s
y
c
h
o
l
o
g
y

8
[
1
.
9
8
3
4
7
]

S
o
c
i
o
l
o
g
y

P
o
l
i
t
i
c
a
l
S
c
i
e
n
c
e

S
o
c
i
o
l
o
g
y

C
r
i
m
i
n
a
l
J
u
s
t
i
c
e

3
[
6
.
1
2
7
4
3
]

4
[
7
.
1
2
1
1
9
]

4
[
2
.
8
3
8
0
6
]

T
h
e
a
t
r
e

A
r
t

A
r
t

H
i
s
t
o
r
y

9
[
5
.
4
4
4
1
6
]

C
o
m
m
u
n
i
c
a
t
i
o
n

C
o
m
m
u
n
i
c
a
t
i
o
n

M
u
s
i
c

1
0
[
2
.
8
1
6
7
9
]

C
r
i
m
i
n
a
l
J
u
s
t
i
c
e

C
r
i
m
i
n
a
l
J
u
s
t
i
c
e

P
h
i
l
o
s
o
p
h
y

1
1
[
1
.
9
7
3
3
3
]

E
n
g
l
i
s
h

E
c
o
n
o
m
i
c
s

5
[
5
.
6
4
8
1
9
]

P
s
y
c
h
o
l
o
g
y

H
i
s
t
o
r
y

E
n
g
l
i
s
h

A
n
t
h
r
o
p
o
l
o
g
y

S
o
c
i
o
l
o
g
y

M
o
d
e
r
n
L
a
n
g
u
a
g
e
s

M
o
d
e
r
n
L
a
n
g
u
a
g
e
s

C
h
e
m
i
s
t
r
y

M
a
t
h
e
m
e
t
i
c
s

M
u
s
i
c

P
h
y
s
i
c
s

C
o
m
p
u
t
e
r
S
c
i
e
n
c
e

92

SPH SPH
JWDD053-04 JWDD053-Markov March 5, 2007 20:7 Char Count= 0

1
2
[
2
.
9
0
3
8
3
]

P
h
i
l
o
s
o
p
h
y

P
s
y
c
h
o
l
o
g
y

C
r
i
m
i
n
a
l
J
u
s
t
i
c
e

1
3
[
1
.
9
6
1
8
7
]

T
h
e
a
t
r
e

S
o
c
i
o
l
o
g
y

G
e
o
g
r
a
p
h
y

B
i
o
l
o
g
y

T
h
e
a
t
r
e

P
o
l
i
t
i
c
a
l
S
c
i
e
n
c
e

E
c
o
n
o
m
i
c
s

T
h
e
a
t
r
e

P
h
y
s
i
c
s

1
4
[
5
.
4
0
0
6
1
]

1
5
[
2
.
8
3
8
0
6
]

1
6
[
1
.
9
8
0
6
6
]

H
i
s
t
o
r
y

M
u
s
i
c

P
h
i
l
o
s
o
p
h
y

1
7
[
3
.
8
1
7
7
1
]

1
8
[
2
.
9
7
6
3
4
]

1
9
[
1
.
9
9
1
7
5
]

E
n
g
l
i
s
h

M
o
d
e
r
n
L
a
n
g
u
a
g
e
s

A
r
t

C
o
m
m
u
n
i
c
a
t
i
o
n

14
.8

39
93

(c
lu

st
er

s
2

+
14

)
1
4
.
6
6
1
2

1
6
.
0
5
0
3
2

1
7
.
7
4
8
1
2

93

SPH SPH
JWDD053-04 JWDD053-Markov March 5, 2007 20:7 Char Count= 0

94 CHAPTER 4 EVALUATING CLUSTERING

TABLE 4.2

Partitioning Sum of Centroid Similarity

{2,14} 14.8399
{3,9,14} 16.493
{2,15,17} 16.0951
{4,8,9,14} 17.4804
{3,9,15,17} 17.7481
{4,8,9,15,17} 18.7356
{3,10,12,15,17} 18.0246
{4,8,10,12,14} 17.7569
{4,8,10,12,15,17} 19.0121

represents the cluster {Chemistry, Computer Science, Political Science, Geography,
Anthropology, Criminal Justice, Theatre} with the value of the sum of centroid sim-
ilarity 5.64819. Therefore, the value at the node is not equal to the sum of values at
the constituent clusters. This is also the reason that the value at the root (12.0253) is
the same for all clusterings. The idea of this representation is to show an evaluation
of each cluster individually. Then if we want to see the quality of a particular parti-
tioning, we simply sum up the evaluations of the constituent clusters. These sums for
top-level partitioning (the immediate successors of the root) are shown in the bottom
row of the table.

When analyzing the agglomerative clustering we first identify six clusters at the
lowest level that jointly cover the entire sample: 4, 8, 10, 12, 15, and 17. There are also
even smaller clusters; however, we do not consider them as the lowest-level samples,
because otherwise there would be individual documents at the same level, such as
cluster 7 and the document Political Science. Then we look at various combinations
of those basic clusters and see how the quality of the resulting partitioning changes.
All such combinations are shown in Table 4.2 along with the values of the centroid
similarity criterion function (the sum of those functions for the constituent clusters).
The table shows clearly that the criterion function increases with the number of
partitions. We have different combinations with the same number of partitions (three,
four and five). From those we can choose those with the highest value of similarity.
Intuitively, we want to create bigger clusters. However, when merging clusters, the
quality of clustering decreases. Therefore, we need a good balance between quality
and size. One way to ensure this is to look at the topics (if they are known). According
to its topic, cluster 8 belongs to cluster 14; however, the tree structure does not allow
merging it with the latter. So we can keep cluster 8 for top-level partitioning and
merge the other branches of the tree, thus obtaining the clustering {4,8,9,14}. If we
don’t know the topic structure, a better choice would be clusters at the same level of
the hierarchy (starting from the six lowest-level nontrivial clusters, because that is the
way the hierarchy was created). Such clusters are usually well balanced in size and
quality, too. A good choice according to this criterion is {3,9,14}.

For k-means clustering we use a different strategy to find the number of clusters.
We first run the algorithm with k = 5, 6, and 7 to get three additional data points and

SPH SPH
JWDD053-04 JWDD053-Markov March 5, 2007 20:7 Char Count= 0

PROBABILISTIC CRITERION FUNCTIONS 95

0

5

10

15

20

0 5 10 15 20

Number of clusters (k)

S
um

 o
f

ce
nt

ro
id

 s
im

ila
ri

ty

Figure 4.1 Graph of the sum of the centroid similarity function.

then plot the criterion function for k values from 1 to 20 (see Figure 4.1). The value
for k = 20 is clearly 20 because each document is a cluster with centroid similarity 1.
The plot shows a sharp increase in the criterion function with the first several values
of k, after which the curve goes almost flat. This is typical behavior of the criterion
function and suggests a way of choosing k. The general objective here is to maximize
the criterion function. However, this comes at the price of too many clusters. In such
situations a good balance is usually found at a point where the curve sharply changes
its slope. In our case this is the area around k = 5. Another candidate is k = 2, where
for the first time the increase in quality starts to slow down with k. Of course, these
considerations hold only in situation where we know very little about our data and
want to determine the best number of partitions. For the particular example of the
department documents, we have already assumed that the documents belong to two
topics. Therefore, the more reasonable choice is k = 2.

PROBABILISTIC CRITERION FUNCTIONS

In probabilistic clustering, a document is considered a random event. Then the cri-
terion functions use the probability or likelihood of documents combined in various
ways. The most commonly used expressions in this framework are:

� Probability of document:

P(d) =
∑

A

P(d | A)P(A)

� Probability of sample (assuming that documents are independent events):

P(d1, d2, . . . , dn) =
n∏

i=1

∑
A

P(di | A)P(A)

SPH SPH
JWDD053-04 JWDD053-Markov March 5, 2007 20:7 Char Count= 0

96 CHAPTER 4 EVALUATING CLUSTERING

� Log-likelihood (log of probability of sample):

L =
n∑

i=1

log
∑

A

P(di | A)P(A)

In practice, probabilities are replaced with likelihoods. The reason is that the
criterion functions are used for comparing different clusterings, and therefore the
correct probabilities are not needed. The log is taken mainly for practical reasons: it
turns the product into a sum, thus making the function less sensitive to sharp changes
of its arguments, and second, this helps avoid possible underflow. There is also a
conceptual reason to take a log of probability; according to Shannon’s information
theory, this is a quantitative measure of information. We look into this aspect of
criterion functions later in the chapter.

Another probabilistic approach looks into the probabilities of attributes having
particular values within clusters and across clusters. The idea proposed by Gluck
and Corter [1] is inspired by psychological experiments with the categorization of
objects. They suggest a function called category utility (CU), which measures both the
probability that two objects in the same category have attribute values in common and
the probability that objects from different categories have different attribute values.
Thus, according to the definition of clustering, maximizing CU means maximizing
intracluster similarity and minimizing intercluster similarity. The category utility
function was used in the incremental conceptual clustering system Cobweb [2] and in
related projects. Hereafter we discuss category utility as a criterion function because it
is useful intuitively for probabilistic clustering. The use of Cobweb for web document
clustering is outside the scope of our discussion.

Category utility is originally defined for nominal attributes (features) a j with
finite number of values vi j . To better explain the intuition behind this criterion, we
first consider the expression

∑
k

∑
i

∑
j

P(a j = vi j | Ck) P(Ck | a j = vi j) P(a j = vi j)

where the sums are taken over all categories (clusters) Ck , attributes a j , and values
vi j in the clustering that is being evaluated. The terms involved in the expression have
the following meaning:

� P(a j = vi j | Ck) is the probability that an object has value vi j for its attribute
a j given that it belongs to category Ck . The higher this probability, the more
likely it is that two objects in a category share attribute values.

� P(Ck | a j = vi j) is the probability that an object belongs to category Ck given
that it has value vi j for its attribute a j . The greater this probability, the less
likely that objects from different categories have attribute values in common.

� P(a j = vi j) works as a weight, assuring that frequent attribute values have a
stronger influence on the evaluation.

SPH SPH
JWDD053-04 JWDD053-Markov March 5, 2007 20:7 Char Count= 0

PROBABILISTIC CRITERION FUNCTIONS 97

Applying Bayes’ rule to P(Ck | a j = vi j) and substituting in the expression, we
get ∑

k

P(Ck)
∑

i

∑
j

P(a j = vi j | Ck) 2

Gluck and Corter have shown that the term
∑

i

∑
j P(a j = vi j | Ck) 2 represents the

expected number of attribute values that one can correctly guess for an arbitrary mem-
ber of cluster Ck using a probability matching strategy (guesses match the probability
of occurrence).

Assume now that we don’t know the categories (clusters) in our sample. Then the
number of correct guesses of attribute values expected will be

∑
i

∑
j P(a j = vi j) 2.

The basic idea of category utility is to measure the increase in the expected number
of attribute values that can be guessed correctly, given a set of n categories, over
the expected number of correct guesses without such knowledge. Thus, the final
expression for the function is

CU (C1, C2, . . . , Cn) = 1

n

∑
k

P(Ck)
∑

i

∑
j

[
P(a j = vi j | Ck) 2 − P(a j = vi j)

2
]

The expression is divided by n to allow comparison of clusterings with different
numbers of clusters. In fact, this addition to the formula cannot be justified proba-
bilistically because the information about the categories is already taken into account
by including the sum over categories weighted with the probability P(Ck). Rather,
the reason is that without the denominator, the formula gives preference to cluster-
ing with more categories. In the extreme case of singleton clusters, the probability
P(a j = vi j | Ck) is 1 for the single member of cluster Ck and 0 elsewhere, and thus
the numerator reaches its maximum of m −∑i

∑
j P(a j = vi j)2, where m is the

number of features. Therefore, the additional factor in the CU formula can be seen
as a heuristic for avoiding overfitting. This is essential for use of the function in the
clustering algorithm Cobweb, because the latter does not use a predefined number
of clusters. Cobweb is an incremental algorithm which takes an object at a time and
decides whether it should be accommodated in an existing cluster or added to the
hierarchy as a new cluster. This decision is made by computing the CU scores of
the two alternatives. So without this additional factor, Cobweb will always create
singleton clusters.

Let us now apply category utility to evaluate document clustering. As the func-
tion is originally defined for nominal attributes, we first use the Boolean represen-
tation of our document vectors. This will also illustrate the way that probabilities
over discrete variables are computed. Next, we discuss briefly an extension that
works for continuous normally distributed features and thus can be used for the
TFIDF document representation. The Boolean document representation with the six
terms that we have used so far for clustering is shown in Table 4.3. Given this data
set, let us evaluate the three clusterings shown in Table 3.7. First, let us consider
the intuitive topic-based labeling (also produced by k-means). The clusters are A =
{1,3,4,6,8,10,12,16,17,18,19} and B = {2,5,7,9,11,13,14,15,20}, where for brevity,
row numbers are used instead of document names. To simplify the notation we also
split the expression into subexpressions, which correspond to the category utility of

SPH SPH
JWDD053-04 JWDD053-Markov March 5, 2007 20:7 Char Count= 0

98 CHAPTER 4 EVALUATING CLUSTERING

TABLE 4.3 Six-Feature Boolean Representation of the Department Collection

history science research offers students hall

Document No. a1 a2 a3 a4 a5 a6

Anthropology 1 0 1 1 0 1 1
Art 2 0 0 0 1 1 1
Biology 3 0 1 1 0 1 1
Chemistry 4 0 1 0 0 1 1
Communication 5 0 0 0 1 1 0
Computer Science 6 0 1 0 0 1 1
Criminal Justice 7 0 0 0 0 1 0
Economics 8 0 0 1 0 0 0
English 9 0 0 0 1 0 1
Geography 10 0 1 0 0 1 0
History 11 1 0 0 1 0 0
Mathematics 12 0 1 1 1 1 1
Modern Languages 13 0 0 0 1 0 1
Music 14 1 0 0 0 1 1
Philosophy 15 1 0 0 1 0 1
Physics 16 0 0 1 0 1 1
Political Science 17 0 1 1 0 1 1
Psychology 18 0 0 1 1 1 1
Sociology 19 0 0 1 1 1 1
Theatre 20 0 0 0 0 1 1

individual clusters:

CU(A, B) = 1
2 [CU(A) + CU(B)]

where

CU (A) = P(A)

{
6∑

j=1

[
P(a j = 0 | A) 2 − P(a j = 0)2

]

+
6∑

j=1

[
P(a j = 1 | A) 2 − P(a j = 1)2

]}

CU (B) = P(B)

{
6∑

j=1

[
P(a j = 0 | B) 2 − P(a j = 0)2

]

+
6∑

j=1

[
P(a j = 1 | B) 2 − P(a j = 1)2

]}

The category probabilities are P(A) = 11/20 = 0.55 and P(B) = 9/20 = 0.45. The
probabilities of feature values are calculated as proportions of the value counts in the
entire data set. For example, P(a1 = 0) = 17/20 = 0.85 and P(a1 = 1) = 3/20 =
0.15. The conditional probabilities are computed as proportion of value counts within
clusters. For example, P(a1 = 0 | A) = 1 because all values in column a1 and the

SPH SPH
JWDD053-04 JWDD053-Markov March 5, 2007 20:7 Char Count= 0

PROBABILISTIC CRITERION FUNCTIONS 99

rows corresponding to the documents in cluster A are 0; whereas P(a1 = 0 | B) =
6/9 = 0.667, because in the rows of cluster B there are six 0’s out of a total of nine
values. Computing all probabilities similarly and substituting in the formulas, we
get CU (A) = 4.87295 and CU (B) = 1.80028. Then overall category utility is the
average of the two:

CU (A, B) = 1
2 (4.87295 + 1.80028) = 3.3366

So far we can see that cluster B looks better than cluster A, which is the opposite of what
the centroid similarity function suggests (see Table 3.5, iteration 3). This comes as
no surprise because the two functions rely on different aspects of clustering. We have
already mentioned that the sum of the centroid similarity measure looks locally into
the similarity within the cluster only, whereas CU has a global view on the similarity
within the cluster and dissimilarity with the rest of the documents belonging to the
other cluster. Note also that they use different representations: TFIDF and Boolean
(although this does not affect the ranking of the two clusters).

Let us now compute the CU score of the other two clusterings (EM1 and EM2).
For EM1 we obtain CU(A) = 3.72, CU(B) = 2.5466, and CU (A,B) = 3.1333. For
EM2 the scores are CU(A) = 4.7425, CU(B) = −0.3925, and CU (A,B) = 2.175.
Interestingly, these scores rank EM1 as better than EM2, which is contrary to the
log-likelihood ranking (see Table 3.7). The explanation here is that the log-likelihood
function only adds the likelihoods of all individual documents, whereas CU also takes
intercluster similarities into account. A further explanation is that cluster B in EM2
gets a negative CU score. According to the original meaning of CU, this is an in-
dication that intercluster similarity exceeds intracluster similarity. The strange thing
is that the cluster we are talking about, {History, Music, Philosophy}, looks good
because it shows up in many different clusterings (see, e.g., Table 4.1: agglomera-
tive and k-means with k = 3). The problem is, however, that this cluster, although
including highly similar members, is very small, and consequently, the intercluster
similarity of its three members to the much bigger cluster A prevails. In fact, this
is an advantage of the CU criterion function—it gives preference to more balanced
clusterings.

The category utility function can easily be extended to continuous attributes by
assuming normal distribution and replacing probabilities with densities (as we have
done to solve the mixture problem). Then the sums over the probabilities of feature
values correspond to integrals and the function is

CU(C1, C2, . . . , Cn) = 1

n

n∑
k=1

P(Ck)
∑

i

[∫
f (vik) dvik −

∫
f (vi) dvi

]

where f (·) is the probability density function for normal distribution (as defined in
Chapter 3.) After solving the integrals, we obtain

CU(C1, C2, . . . , Cn) = 1

n

n∑
k=1

P(Ck)
1

2
√

π

∑
i

(
1

σik
− 1

σi

)

where σik and σi are the standard deviations of attribute ai within cluster Ck and
in the entire sample correspondingly. The zero standard deviation causes the same

SPH SPH
JWDD053-04 JWDD053-Markov March 5, 2007 20:7 Char Count= 0

100 CHAPTER 4 EVALUATING CLUSTERING

problem as in the mixture problem—it produces an infinite value of CU. The solution
here is also the same as the one suggested for the mixture models: using a predefined
minimum value for the standard deviation.

MDL-BASED MODEL AND FEATURE EVALUATION

So far we have been discussing various approaches to creating and evaluating clus-
terings. Let us now look at this task from another perspective: finding regularities in
data, which is also regarded within the unsupervised setting for learning, to which
clustering belongs. Consider a cluster with a high category utility score. This means
that its members have a goodly number of attributes that share values. In other words,
there is a pattern that repeats within this cluster so the cluster can be described by this
pattern. Such a description may include the attribute values that are the same for all
members of the cluster and omit those that have different values. This type of descrip-
tion, common for concept learning, is called generalization by dropping conditions.
For example, the natural topic-based clustering of our department documents (the
labeling shown in Table 3.7) can be described by four pairs of values (in the Boolean
case) for the attributes science and research: (0,1), (1,0), (1,1), (0,0). These patterns
can be written as classification rules as follows:

H1 =

⎧⎪⎪⎨
⎪⎪⎩

R1: IF (science = 0) AND (research = 1) THEN class = A
R2: IF (science = 1) AND (research = 0) THEN class = A
R3: IF (science = 1) AND (research = 1) THEN class = A
R4: IF (science = 0) AND (research = 0) THEN class = B

We say that a rule covers a set of documents if the attribute values on the left-hand
side of the rule occur in those documents. Thus rule R1 covers documents 8, 16, 18,
and 19. The coverage of R2 is the set {4,6,10}, the coverage of R3 is {1,3,12,17}, and
the coverage of R4 is {2,5,7,9,11,13,14,15,20}. All four rules cover all documents
jointly and each is produced by generalizing the corresponding subset of documents.
The generalization is performed by dropping from that subset attributes that have
different values in the documents.

The set of rules above actually represents a mapping between documents and
classes (clusters). In other words, these rules are a hypothesis (model) that describes
(explains) the data. Let us denote the foregoing hypotheses as H1 and look for other
clustering hypotheses. If we pick an attribute, it can naturally split the set of documents
into two subsets (in the Boolean case), each including documents that share the same
value of that attribute. Thus, we can create simple hypotheses, such as

H2 =
{

R1: IF offers = 0 THEN class = A
R2: IF offers = 1 THEN class = B

This hypothesis partitions the data into two clusters:

A = {1,3,4,6,7,8,10,14,16,17,20}
B = {2,5,9,11,12,13,15,18,19}

SPH SPH
JWDD053-04 JWDD053-Markov March 5, 2007 20:7 Char Count= 0

MDL-BASED MODEL AND FEATURE EVALUATION 101

Note that H2 looks simpler than H1 in terms of description length. The idea is that
dropping more conditions produces simpler and more general hypotheses. In this re-
spect we have two extreme cases. One is when we put all documents in one cluster.
Then we have the simplest hypothesis of all with the empty set of conditions. This is
also the most general hypothesis. The other extreme is a set of 20 singleton clusters,
for which we need 20 rules with six conditions each: obviously the most complex
hypothesis, which is equivalent to the original data set. This hypothesis is the least
general and obviously overfits the data. Both situations are undesirable in learning be-
cause neither the most general nor the least general hypothesis provides a meaningful
description of the data that can be used for explanation or classification.

Minimum Description Length Principle

After all these considerations a natural question comes in mind: Is there any connection
between the simplicity of the hypothesis and the quality of the clustering it describes?
Interestingly, there is a natural answer to this question, known as Occam’s razor. In the
fourteenth century William of Occam formulated a very general principle stating that
“Entities are not to be multiplied beyond necessity.” In other words, among several
alternatives, the simplest is usually the best choice. Occam’s razor has proven its
validity in many areas; however, its application to formal decision making such as
clustering and classification requires a formal definition of simplicity. The minimum
description length (MDL) principle suggested by Rissanen [3] provides a formal
framework for the application of Occam’s razor. Hereafter we briefly describe the
basic idea behind the MDL principle and illustrate its use for evaluation of clustering
models and attribute selection.

Assume that we are given a data set D (e.g., our document collection) and a
set of hypotheses H1, H2, . . . , Hn , each describing D. The problem is to find the one
that best describes the data. Probabilistically thinking, we want to find the most likely
hypothesis given the data; that is,

Hi = arg max
i

P(Hi | D)

As direct estimation of the conditional probability P(Hi | D) is difficult, we apply
Bayes’ rule first:

P(Hi | D) = P(Hi)P(D | Hi)

P(D)

Then we take a negative logarithm of both sides of this equation. The result is

− log2 P(Hi | D) = − log2 P(Hi) − log2 P(D | Hi) + log2 P(D)

If we consider hypotheses and data as messages, we will be able to apply Shannon’s
information theory, which defines the information in a message as a negative logarithm
of its probability. As we use the log of base 2, this information is equal to the minimum
number of bits needed to encode the message. Thus, we arrive at the analog of Bayes’
rule, which uses code lengths:

L(Hi | D) = L(Hi) + L(D | Hi) − L(D)

SPH SPH
JWDD053-04 JWDD053-Markov March 5, 2007 20:7 Char Count= 0

102 CHAPTER 4 EVALUATING CLUSTERING

Now, our original goal of choosing a hypothesis turns into the following minimization
problem:

Hi = arg min
i

[L(Hi) + L(D | Hi) − L(D)]

The interpretation of L(Hi) and L(D) is the minimum number of bits needed
to encode the hypothesis and the data, and L(D|Hi) indicates the number of bits
needed to encode D if we know H. The latter term makes a great deal of sense if
we think of H as a pattern that repeats in D. Once we know the pattern, we don’t
have to encode all its occurrences; rather, we encode only the pattern itself and the
differences that identify each item in D; thus, the more regular the data, the shorter
the description length L(D|Hi). Of course, we have to balance this term with the
description length of H, because if H describes the data exactly (as in the situation
with 20 singleton clusters), L(D|Hi) will be 0 but L(Hi) will be large. Also, we can
exclude L(D) because it does not depend on the choice of hypotheses. Thus, we arrive
at the minimum description length principle: The best hypothesis should minimize the
expression L(Hi) + L(D|Hi).

MDL-Based Model Evaluation

Let us now apply MDL to hypotheses H1 and H2 discussed earlier. The key to ap-
plying MDL is to find some way of encoding the hypotheses and the data given the
hypotheses. The encoding scheme (i.e., the measurement units) should be the same
for both, because we are adding code lengths and want to keep the balance between
them. It is important to note that we don’t need the actual codes; only an estimate of
the code length is needed. One simple scheme used for this purpose is based on the
assumption that hypotheses and data are distributed uniformly and the probability of
occurrence of an item in a total of n alternatives is 1/n. Thus, the minimum code length
of the message informing us that a particular item has occurred is − log2 1/n = log2 n.
So what is left to be done is given a description language (e.g., rules) to count all
possible hypotheses and data items given each hypothesis. When doing so we omit
the technicalities of encoding the description language and the actual format of the
data and hypotheses, because it is assumed that both the sender and the recipient of
the message know that.

Let us first compute the MDL of hypothesis H1. In the Boolean representation
the description language consists of six attributes, each with two possible values, for
a total of 12 attribute–value pairs. Each rule of the hypothesis selects a subset of those
which are used to determine the documents covered by that rule. For example, rule R1

covers documents 8, 16, 18, and 19. Nine different attribute–value pairs occur in these
documents: {history = 0}, {science = 0}, {research = 1}, {offers = 0}, {offers = 1},
{students = 0}, {students = 1}, {hall = 0}, and {hall = 1}. Specifying this rule is
equivalent to selecting nine of 12 attribute–value pairs, which can be done in (12

9)
different ways. Thus, we need log2(12

9) bits to encode the right-hand side of rule R1.
In addition, we need one bit (a choice of one of two cluster labels—A or B, which is

SPH SPH
JWDD053-04 JWDD053-Markov March 5, 2007 20:7 Char Count= 0

MDL-BASED MODEL AND FEATURE EVALUATION 103

log2 2 = 1) to encode the class. In this way we have

L(R1) = log2

(
12
9

)
+ 1 = log2 220 + 1 = 8.78136 bits1

Similarly, we compute the code lengths of R2, R3, and R4 and obtain

L(R2) = log2

(
12
7

)
+ 1 = log2 792 + 1 = 10.6294

L(R3) = log2

(
12
7

)
+ 1 = log2 792 + 1 = 10.6294

L(R4) = log2

(
12
10

)
+ 1 = log2 66 + 1 = 7.04439

Using the additivity of information to obtain the code length of H1, we simply add
the code lengths of its constituent rules, thus, L(H1) = 37.0845.

To estimate the code size L(D|H1) we consider the message exchange setting,
where the hypothesis H1 has already been communicated. This means that the re-
cipient of that message already knows the subset of attribute–value pairs selected by
each rule. For example, rule R1 selects nine pairs (which takes L(R1) = 8.78136 bits
to encode). Then to communicate each document of those covered by R1, we need to
choose six (the pairs occurring in each document) out of those nine pairs. This choice
will take log2(9

6) bits to encode. As R1 covers four documents (8, 16, 18, 19), the code
length needed for all four will be

L({8, 16, 18, 19}|R1) = 4 × log2

(
9
6

)
= 4 × log2 84 = 25.5693

We compute similarly the code length of the subsets of documents covered by the
other rules:

L({4,6,10}|R2) = 3 × log2

(
7
6

)
= 3 × log2 7 = 8.4220

L({1,3,12,17}|R3) = 4 × log2

(
7
6

)
= 4 × log2 7 = 11.2294

L({2,5,7,9,11,13,14,15,20}|R4) = 9 × log2

(
10
6

)
= 9 × log2 210 = 69.4282

The code length needed to communicate all documents given hypothesis H1 will be
the sum of all these code lengths [i.e., L(D|H1) = 114.649]. Adding this to the code
length of the hypothesis, we obtain

M DL(H1) = L(H1) + L(D|H1) = 37.0845 + 114.649 = 151.733

1 The fractional value of bits is a theoretical minimum and works only for the purposes of evaluation. If it
comes to actual encoding, the minimal code length will be the nearest larger integer.

SPH SPH
JWDD053-04 JWDD053-Markov March 5, 2007 20:7 Char Count= 0

104 CHAPTER 4 EVALUATING CLUSTERING

Following the same steps, we compute the code lengths corresponding to hypothesis
H2. Thus,

MDL(H2) = L(H2) + L(D|H2) = 9.16992 + 177.035 = 186.205

According to the MDL principle, hypothesis H1 is better than hypothesis H2, which
in fact agrees with out intuitive understanding of the document sample. These figures
also illustrate well how MDL keeps track of the balance between the description
length of hypotheses and data. We have already seen that H1 is more complex (has
more rules and more conditions) than H2. Now this is confirmed by their description
lengths: L(H1) > L(H2). However, what happens with the code lengths of the data?
It is obvious (and quite intuitive) that if the hypothesis is simple, it takes more bits
to encode the data, and vice versa. In this respect it will be interesting to see what
the MDL principle says about the most general and most specific hypotheses that
we mentioned at the beginning of our discussion. The most general hypothesis (the
empty rule { }) does not restrict the choice of attribute–value pairs, so it selects 12 of
12 pairs, and thus its code length is

L({ }) = log2

(
12
12

)
+ 1 = 1

The code for the data given this hypothesis is just the prior code for the data without
knowing any hypotheses.

L(D|{ }) = L(D) = 20 × log2

(
12
6

)
= 20 × log2 924 = 197.035

The most specific hypothesis (let us call it S) has 20 rules, one for each document.
Each of these rules has on its right-hand side all attribute–value pairs of the single
document that it covers. Thus, it selects six pairs out of 12. Thus, the code length of
hypothesis S is

L(S) = 20 × (log2

(
12
6

)
+ 1) = 20 × (log2 924 + 1) = 217.035

The code lengths of { } and S are close, with S having slightly greater length because
of the need to encode the class label for each singleton cluster (document). The most
general and most specific hypotheses represent two extreme cases, both undesirable
in learning: overgeneralization and overspecialization (also called overfitting). The
MDL approach gives a slight preference to overgeneralization.

Note that the MDL of both H1 and H2 is smaller than the description length of the
data itself. This fact can be expressed in terms of data (or information) compression.
The principle of compression states that a good hypothesis should compress the data;
that is, the description length of the hypothesis plus the description length of the
data given the hypothesis should be less than the description length of the data itself.
Formally,

L(H) + L(D | H) < L(D)

SPH SPH
JWDD053-04 JWDD053-Markov March 5, 2007 20:7 Char Count= 0

MDL-BASED MODEL AND FEATURE EVALUATION 105

In other words, the best hypothesis should maximize the data compression:

Hi = arg max
i

[L(D) − L(Hi) − L(D|Hi)]

This may be seen as another way of expressing MDL; however, it also allows hy-
potheses to be evaluated on an absolute scale compared to data only (assuming the
same encoding scheme for hypotheses and data). Another important aspect of the data
compression principle is that compression allows us to evaluate data with respect to
the degree of regularity (or inversely, randomness) that it exhibits. For example, if we
are able to prove that no hypothesis can be found that provides a positive compression,
this will be an indication that the data are completely random. Also, the greater the
compression that can be achieved, the more regularity there is in data.

Feature Selection

We have already mentioned the importance of using the correct terms to represent
our documents. The TFIDF framework is designed especially for this purpose. Once
terms have been selected by their IF and IDF scores, they become features (attributes)
in the document representation. The problem is that there are still too many. Most
learning methods are designed to work with data where the number of data items
(documents) substantially exceeds the number of features. So we need to evaluate
further and select the features with respect to the specific learning task. Hereafter we
illustrate a simple MDL approach for unsupervised feature evaluation. Supervised
methods are discussed in Chapter 5.

As mentioned at the beginning of our discussion on MDL, an attribute can
naturally split a set of documents into subsets, each including documents that share
the same value of that attribute. We can consider this split as a clustering and evaluate
its MDL score. Doing this for each attribute will provide a ranking that can be used
to select the best attributes. We have already evaluated the attribute offers from our
six-attribute document sample. It was used to create hypothesis H2, which splits the
set of documents into two subsets. The MDL score of H2 was computed as 186.205.
The results of applying the same approach to the rest of the attributes are shown in
Table 4.4.

The table also shows the split produced by each attribute. The attributes are
ordered by their MDL score. The best attribute (with the lowest MDL) is science.
Note that the second-best attribute is research, which was used along with science
to create hypothesis H1, with an even better MDL score of 151.733. Combining
a predefined number of top-ranking attributes (with the lowest MDL score) is an
approach common to attribute selection.

Attribute selection is important for reducing the computational cost of both
clustering and classification. However, in terms of accuracy, it is more important to
classification than to clustering. Clustering reveals regularities in data and therefore is
not too sensitive to sparse vector spaces simply because sparsely populated attributes
cannot contribute significantly to any strong pattern. Whereas in classification, at-
tributes that are sparse or not representative for the data can be wrongly associated
with class labels because classification may disagree with the natural regularities in
data.

SPH SPH
JWDD053-04 JWDD053-Markov March 5, 2007 20:7 Char Count= 0

106 CHAPTER 4 EVALUATING CLUSTERING

TABLE 4.4 MDL Attribute Evaluation

Split

Attribute Value = 0 Value = 1 MDL

science 2, 5, 7, 8, 9, 11, 13, 14, 15, 16, 18,
19, 20

1, 3, 4, 6, 10, 12, 17 173.185

research 2, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 20 1, 3, 8, 12, 16, 17, 18, 19 179.564

students 8, 9, 11, 13, 15 1, 2, 3, 4, 5, 6, 7, 10, 12, 14, 16, 17,
18, 19, 20

182.977

history 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13,
16, 17, 18, 19, 20

11, 14, 15 183.023

offers 1, 3, 4, 6, 7, 8, 10, 14, 16, 17, 20 2, 5, 9, 11, 12, 13, 15, 18, 19 186.205

hall 5, 7, 8, 10, 11 1, 2, 3, 4, 6, 9, 12, 13, 14, 15, 16,
17, 18, 19, 20

186.205

MDL is an important tool for evaluating hypotheses and data and finds many
applications in data/web mining and machine learning. There are various forms of
MDL, depending on the encoding schemes. It is also used differently for supervised
and unsupervised learning. The approach we described here is designed for unsuper-
vised learning. In supervised learning the classification made by the hypothesis may
disagree with the predefined data labels. The task is, however, to communicate the
data along with their predefined labels. This is achieved by first sending the hypothesis
(encoded by using the technique that we discussed earlier) and then communicating
the exceptions (i.e., the data items that have been misclassified by the hypothesis).
Other approaches use entropy: an information theory measure that estimates the pu-
rity of data samples with respect to class labels. We discuss entropy-based hypothesis
evaluation in Chapter 5.

CLASSES-TO-CLUSTERS EVALUATION

Assume that the classification of the documents in a sample is known (i.e., each
document has a class label). Then any clustering of these documents can be evaluated
with respect to this predefined classification. It is important to note that the class labels
are not used in the process of clustering, but only for the purpose of evaluation of the
clustering results. This process is called classes-to-clusters evaluation and proceeds
as follows. Each cluster is assigned with the class label of the majority of documents
in it. Then the error is computed as the proportion of documents with different class
and cluster labels. Inversely, the accuracy is the proportion of documents with the
same class and cluster label.

Let us illustrate the classes-to-clusters evaluation approach with department
documents, each labeled as belonging to either class A or class B, according to its
topic. Table 4.5 shows the accuracy evaluation of six different clusterings obtained by

SPH SPH
JWDD053-04 JWDD053-Markov March 5, 2007 20:7 Char Count= 0

CLASSES-TO-CLUSTERS EVALUATION 107

TABLE 4.5 Classes-to-Clusters Evaluation

history science research offers students hall
14/20 16/20 17/20 14/20 14/20 12/20

A B B A B A A B B A B A
(11/17) (3/3) (9/13) (7/7) (9/12) (8/8) (8/11) (6/9) (4/5) (10/15) (3/5) (9/15)

1-A
2-B
3-A
4-A
5-B
6-A
7-B
8-A
9-B

10-A
12-A
13-B
16-A
17-A
18-A
19-A
20-B

11-B
14-B
15-B

2-B
5-B
7-B
8-A
9-B

11-B
13-B
14-B
15-B
16-A
18-A
19-A
20-B

1-A
3-A
4-A
6-A

10-A
12-A
17-A

2-B
4-A
5-B
6-A
7-B
9-B

10-A
11-B
13-B
14-B
15-B
20-B

1-A
3-A
8-A

12-A
16-A
17-A
18-A
19-A

1-A
3-A
4-A
6-A
7-B
8-A

10-A
14-B
16-A
17-A
20-B

2-B
5-B
9-B

11-B
12-A
13-B
15-B
18-A
19-A

8-A
9-B

11-B
13-B
15-B

1-A
2-B
3-A
4-A
5-B
6-A
7-B

10-A
12-A
14-B
16-A
17-A
18-A
19-A
20-B

5-B
7-B
8-A

10-A
11-B

1-A
2-B
3-A
4-A
6-A
9-B

12-A
13-B
14-B
15-B
16-A
17-A
18-A
19-A
20-B

splitting the set of documents using the values of single attributes (as shown in Table
4.4). For each attribute the two clusters are shown with their members as document
number–class label pairs. The cell on top of each cluster shows the cluster label (the
majority of class labels among its members) and the cluster accuracy as the proportion
of the documents with the majority label. In the row above we see the overall accuracy
for each clustering. The best clustering is produced by the attribute research, with
17 correctly classified documents out of 20, which makes 85% accuracy. The second
best clustering is produced by the science attribute (80% accuracy).

This example also illustrates an approach to error-based attribute evaluation.2

According to this approach, attributes are ranked by the classes-to-clusters accuracies
(or errors) of the splits based on their values. Note, however, that this is a supervised
method for attribute evaluation because it uses labeled data. Interestingly, the two best
attributes selected by error-based evaluation are the same as those preferred by the
unsupervised MDL evaluation approach. This is an indication that the classification

2 This approach to attribute evaluation is used in a simple but efficient algorithm for supervised learning
called OneR. It selects just one attribute and creates a set of classification rules based on the values of
that attribute. In our case, OneR will create the rules: IF research = 0, THEN class = B; IF research = 1,
THEN class = A.

SPH SPH
JWDD053-04 JWDD053-Markov March 5, 2007 20:7 Char Count= 0

108 CHAPTER 4 EVALUATING CLUSTERING

of the documents done manually agrees with similarity-based clustering produced by
single attributes.

PRECISION, RECALL, AND F-MEASURE

The overall error of clustering is computed by adding all differences between class and
cluster labels. However in some cases we need to look into the type of these differences,
because they may have different importance to the learning task. In machine learning
this issue is usually called error cost. For example, in an e-mail filtering system
the cost of classifying nonspam e-mails as spam is higher than classifying spam as
nonspam, because one would allow for some spam e-mails but could not afford to
miss important e-mails.

For a two-cluster problem there are two types of errors: A document from class
A is assigned to cluster B or a document from class B is assigned to cluster A.

Along with the two correct situations—both class and cluster labels are either
A or B—we have four possibilities. As the most common clustering and classification
problems involve two classes, they are usually called positive and negative. Also, the
original class labels are referred to as actual, and those determined by the clustering
(or classification) algorithm are called predicted. According to this terminology, the
classes-to-cluster evaluation assigns to each document one of the following four
labels:

� True positive (TP): actual positive and predicted as positive
� False positive (FP): actual negative but predicted as positive
� True negative (TN): actual negative and predicted as negative
� False negative (FN): actual positive but predicted as negative

The easiest way to see the structure of the error is to include the number of
documents falling in each of the categories above in a matrix called a confusion
matrix (also, contingency table) as follows:

Predicted (Clusters)

Actual (Classes) Positive Negative

Positive TP FN
Negative FP TN

In these terms the overall classes to clusters error and accuracy are the following:

error = FP + FN

TP + FP + TN + FN
accuracy = TP + TN

TP + FP + TN + FN

For example, the confusion matrices for the clusterings produced by the attributes
research and hall follow:

SPH SPH
JWDD053-04 JWDD053-Markov March 5, 2007 20:7 Char Count= 0

PRECISION, RECALL, AND F-MEASURE 109

research hall

Predicted (Clusters) Predicted (Clusters)

Actual (Classes) A B A B

A 8 3 9 2
B 0 9 6 3

Classes-to-clusters evaluation of a good clustering should produce a confusion
matrix in which most of the documents fall in the main diagonal cells (A–A, B–B),
such as the matrix for attribute research. The numbers outside the main diagonal
indicate errors. Two additional measures account for these errors: precision and re-
call. In fact, these are the same measures that are used in information retrieval (see
Chapter 1), where the actual labels correspond to relevant documents and the labels
predicted correspond to documents retrieved. Formally, we define precision and recall
as follows:

precision = TP

TP + FP
recall = TP

TP + FN

For example, for clustering with the attribute research, the precision is 1.0 and the
recall is 0.73. For the attribute hall, the precision is much lower, 0.6 but the recall is
higher, 0.82. The interpretation of these figures depends on the application domain.
For example, if we consider e-mail filtering, where the positive class means nonspam,
the latter clustering may be considered as better, because it would allow more nonspam
(82%), despite the fact that the overall accuracy of the former clustering is higher.

A confusion matrix can be built with more than two classes and clusters by using
more rows (for the classes) and more columns (for the clusters). Thus, we can define
a generalized confusion matrix for m classes and k clusters as shown in Table 4.6. The
number ni j in each cell indicates the number of documents from cluster j that belong
to class i. Now we can define recall and precision with respect to class i and cluster j

TABLE 4.6

Clusters

Classes 1 · · · j · · · k

1 n11 · · · n1 j · · · n1k

...
i ni1 . . . ni j . . . nik

...
m nm1 · · · nmj · · · nmk

SPH SPH
JWDD053-04 JWDD053-Markov March 5, 2007 20:7 Char Count= 0

110 CHAPTER 4 EVALUATING CLUSTERING

as follows:

P(i, j) = ni j∑m
i=1 ni j

R(i, j) = ni j∑k
j=1 ni j

If we set m = 2 and k = 2, the terms P(1,1) and R(1,1) correspond to the precision
and recall defined previously for a two-class clustering problem.

The problem of using precision and recall is the trade-off between them (see
the section “Evaluating Search Quality” in Chapter 1). For specific domains where
we know the error cost (e.g., e-mail filtering), this may not be a problem. However,
to evaluate clustering in other domains, such as topic directories, we need a single
criterion function such as the F-measure. This is a function that combines precision
and recall and is especially popular for evaluating text document clustering. With
respect to a specific pair of class and cluster (i, j), it is defined to be

F(i, j) = 2 P(i, j) R(i, j)

P(i, j) + R(i, j)

To get rid of the indices we take the maximum of F(i, j) over all clusters and then
sum across classes. As classes generally include different numbers of documents, we
weight their contribution to the sum with the proportion of documents in each. Thus,
we obtain the F-measure for the entire clustering.

F =
m∑

i=1

ni

n
max

j=1,...,k
F(i, j)

where ni =∑k
j=1 ni j (the number of documents belonging to class i, or row i total)

and n =∑m
i=1

∑k
j=1 ni j (the total number of documents in the sample).

As an illustration, let us see how the F-measure would evaluate two of the
clusterings shown in Table 4.4, those for attributes offers and students, which have
the same overall accuracy of 14/20 = 0.7. We start with the confusion matrices:

offers students

n11 = 8 n12 = 3 n11 = 10 n12 = 1
n21 = 3 n22 = 6 n21 = 5 n22 = 4

Then we compute the precision and recall, the F-measure for each cell, and the overall
F-measure for each clustering.

offers

P(1, 1) = 0.73, R(1, 1) = 0.73 P(1, 2) = 0.33, R(1, 2) = 0.27

F(1, 1) = 0.73 F(1, 2) = 0.30

P(2, 1) = 0.27, R(2, 1) = 0.33 P(2, 2) = 0.67, R(2, 2) = 0.67

F(2, 1) = 0.30 F(2, 2) = 0.67

F = 11
20 0.73 + 9

20 0.67 = 0.70

SPH SPH
JWDD053-04 JWDD053-Markov March 5, 2007 20:7 Char Count= 0

ENTROPY 111

students

P(1, 1) = 0.67, R(1, 1) = 0.91 P(1, 2) = 0.2, R(1, 2) = 0.09

F(1, 1) = 0.77 F(1, 2) = 0.12

P(2, 1) = 0.33, R(2, 1) = 0.56 P(2, 2) = 0.8, R(2, 2) = 0.44

F(2, 1) = 0.42 F(2, 2) = 0.57

F = 11
20 0.77 + 9

20 0.57 = 0.68

The F-measure shows that the clustering produced by the attribute offers is
slightly better than the clustering produced by the attribute students despite the fact that
they both have the same overall accuracy. Obviously, the F-measure provides a more
precise account for the error than does the overall accuracy. The explanation is that
the F-measure is actually the harmonic mean3 of precision and recall. The harmonic
mean is used for averaging rates (ratios of two quantities specified in different units,
such as distance/time and price/count). The precision and recall can be seen as rates,
although not of the same kind, but it seems that the harmonic mean works well for
averaging them.

ENTROPY

Let us now take a probabilistic approach by considering the class label as a random
event. This would allow us to evaluate its probability distribution in each cluster. The
probability of class i in cluster j can be estimated by the proportion of occurrences of
class label i in cluster j. Using the notation of the confusion matrix, this is

pi j = ni j∑m

i=1
ni j

In fact, this is exactly the precision P(i, j). As for the precision, the ideal situation
would be a one-to-one mapping between classes and clusters (i.e., pi j = 1 for each
cluster). However, this is rarely achieved, and therefore we try to minimize the entropy
of the class distribution in each cluster. The entropy is an information-based measure
of “impurity” and accounts for the average information of getting an arbitrary message
about the class label. It can also be interpreted as a measure of uncertainty or expected
surprise of the recipient of that message. Formally, the entropy in cluster j is defined as

Hj = −
m∑

i=1

pi j log pi j

A “pure” cluster, where all documents have a single class label, has an entropy of
0; the highest entropy is achieved when all class labels have the same probability

3 The harmonic mean H of n positive numbers x1, x2, . . . , xn is defined by 1/H = (1/n)
∑n

i=1 xi . For
n = 2 it can be written as H = 2x1x2/(x1 + x2).

SPH SPH
JWDD053-04 JWDD053-Markov March 5, 2007 20:7 Char Count= 0

112 CHAPTER 4 EVALUATING CLUSTERING

(the situation with the highest uncertainty). For example, for a two-class problem
the 50–50 situation has the highest entropy, −0.5 log 0.5 − 0.5 log 0.5 = 1. Similar
to the F-measure for evaluating the entire clustering, we sum up the entropies of
individual clusters weighted with the proportion of documents in each. That is,

H =
k∑

j=1

n j

n
Hj

where n j is the number of documents in cluster j and n is the total number of
documents. For example, computing the entropies of the clusterings discussed
previously for the attributes offers and students, we obtain the following results:

H (offers) = 11
20

(− 8
11 log 8

11 − 3
11 log 3

11

)+ 9
20

(− 3
9 log 3

9 − 6
9 log 6

9

)
= 0.878176

H (students) = 15
20

(− 10
15 log 10

15 − 5
15 log 5

15

)+ 5
20

(− 1
5 log 1

5 − 4
5 log 4

5

)
= 0.869204

Interestingly, the entropy of students is slightly lower, which means that this
clustering is slightly better than the one obtained with the attribute offers. These
results are the opposite of what the F-measure suggests. Which one of the two
evaluations is more trustworthy? Obviously, the values of the evaluation functions
are too close to be conclusive. The F-measure takes a weighted sum over classes,
whereas the entropy does this over clusters. It seems that the big cluster with 15
documents and relatively low entropy makes the students clustering prevail.

Similar to the error-based approach, the entropy measure can be used for at-
tribute evaluation. The entropy-based attribute evaluation, also known as information
gain [4], is one of most popular supervised attribute selection mechanisms. It also
plays a major role in a very popular algorithm for decision tree learning, ID3.

REFERENCES

1. M. A. Gluck and J. E. Corter, Information, uncertainty and the utility of categories, in
Proceedings of the 7th Annual Conference of the Cognitive Science Society, Lawrence
Erlbaum Associates, Mahwah, NJ, 1985, p. 283–287.

2. D. H. Fisher, Knowledge acquisition via incremental conceptual clustering, Mach. Learn.,
2:139–172, 1987.

3. J. Rissanen, Modeling by shortest data description, Automatica, 14:465–471, 1978.
4. J. Ross Quinlan, Induction of decision trees, Mach. Learn., 1(1):81–106, 1986.

EXERCISES

1. Show that the sum of squared errors is equivalent to the average pairwise distance between
cluster members. That is, derive

Je = 1

2

k∑
i=1

1

|Di |
∑

x j ,xl ∈Di

‖x j − xl‖2 from Je =
k∑

i=1

∑
x∈Di

‖x − mi‖2 and mi = 1

|Di |
∑
x∈Di

x

SPH SPH
JWDD053-04 JWDD053-Markov March 5, 2007 20:7 Char Count= 0

EXERCISES 113

2. Show that the centroid similarity is equivalent to the average pairwise similarity.

3. Run k-means with the binary and TFIDF data sets. Vary the random number seed and
comment on the results. Note that Weka uses Euclidean distance (not cosine similarity).

a. Observe the two parameters reported by Weka in the output window: number of iter-
ations and within-cluster sum of squared errors. Do you find any correlation between
them?

b. Monitor the clustering result and correlate the balanced and unbalanced clusterings
with the number of iterations and within a cluster sum of squared errors.

c. Apply the “Normalize” unsupervised instance filter and rerun the same experiments.
What changes? Comment on differences.

4. Use the six-attribute representation of the department data set (Table 4.3) and show all
steps in computing the MDL score of the hypothesis:

H =
{

R1: IF science = 0 THEN class = A
R2: IF science = 1 THEN class = B

a. Load the data set “Departments-binary.arff” and remove all attributes except those
used in the MDL calculation.

b. Use the Weka attribute statistics and visualization to determine the number of attribute–
value pairs for each rule of the hypothesis. Select the attribute used in the hypothesis
(science) and set each of the six attributes as class and examine the bar diagram. For
example, the screenshot in Fig. E4.4b illustrates the process of determining the number
of pairs with the attribute history in both clusters.
The left bar corresponds to {science = 0}, and its mixed class colors mean that the
instances in the corresponding cluster (A) include two different values of history. Thus,
we have two pairs to count: {history = 0} and {history = 1}. The right bar corresponds

Figure E4.4b

SPH SPH
JWDD053-04 JWDD053-Markov March 5, 2007 20:7 Char Count= 0

114 CHAPTER 4 EVALUATING CLUSTERING

to {science = 1} and the single color (blue, representing 0) means that there is only
one value for history in cluster B: {history = 0}. The counts in the statistics panel show
the number of instances in each cluster: 13 in cluster A and 7 in cluster B.

c. Do the MDL calculations as described in the section “MDL-Based Model and Feature
Evaluation” and verify the result with that shown in Table 4.4.

5. Use the data set “Top-100-websites-binary.arff” and select a small subset of attributes
(e.g., using a supervised selection method). Then compute the MDL score of the top three
attributes using the method described in Exercise 4.

6. Use the data set “Top-100-websites-binary.arff” and evaluate the attributes design, soft-
ware, and support individually and jointly using k-means (k = 2) with the classes-to-
clusters method.

a. Examine the clustering and its confusion matrix based on the values of each attribute.
To create such a clustering, remove all attributes except the one being evaluated and
run k-means with classes-to-clusters evaluation.

b. Run k-means with classes-to-clusters evaluation on the data set with all three attributes
and examine the clustering and confusion matrix.

c. Compare the clusterings and their confusion matrices produced by each attribute indi-
vidually and all three together. Note the cluster centroids. Rank attributes by the total
error. Comment on the importance of each attribute for the clustering quality.

d. Using the confusion matrices, compute the F-measure and the entropy for the same
clusterings. Rank the attributes accordingly and compare results with error-based rank-
ing (part c).

7. Rerun the experiments described in Exercise 6 but use the EM algorithm (k = 2). Note
the cluster representation. Analyze the results.

8. Rerun the experiments described in Exercise 6 (k-means with k = 2), but using the data
set “Top-100-websites-TFIDF.arff.” Note the cluster representation. Analyze the results.

9. Rerun the experiments described in Exercise 6, but using the data set “Top-100-websites-
TFIDF.arff” and the EM algorithm (k = 2). Note the cluster representation. Analyze the
results.

10. Compare the result from the experiments for evaluating the attributes design, software,
and support with the k-means and EM algorithms produced with the binary and TFIDF
data sets (Exercises 6 to 9). Comment on the similarities and differences.

SPH SPH
JWDD053-05 JWDD053-Markov March 9, 2007 11:44 Char Count= 0

CHAPTER 5
CLASSIFICATION

GENERAL SETTING AND EVALUATION TECHNIQUES

NEAREST-NEIGHBOR ALGORITHM

FEATURE SELECTION

NAIVE BAYES ALGORITHM

NUMERICAL APPROACHES

RELATIONAL LEARNING

GENERAL SETTING AND EVALUATION TECHNIQUES

In clustering we use the document class labels for evaluation purposes only. In clas-
sification they are, however, an essential part of the input to the learning system. The
objective of the system is to create a mapping (also called a model or hypothesis)
between a set of documents and a set of class labels. This mapping is then used to de-
termine automatically the class of new (unlabeled) documents. In a narrow sense the
latter process is called classification, while the general framework for classification
includes the model creation phase and other steps. Therefore, the general framework
is usually called supervised learning (also, learning from examples, concept learning)
and includes the following steps:

� Step 1: Data collection and preprocessing. At this step, documents are collected,
cleaned, and properly organized, the terms (features) identified, and a vector
space representation created. We discussed this process in Chapter 1. The only
difference here is that documents are labeled according to their topic, user
preference, or any other criterion that may be used to organize documents in
classes (categories). At this step the data may be divided into two subsets:
◦ Training set. This part of the data will be used to create the model. In some

cases this set is then split in two: the actual model construction subset and a
model validation subset needed to tune the learner parameters.

◦ Test set. This part of the data is used for testing the model.

Data Mining the Web: Uncovering Patterns in Web Content, Structure, and Usage
By Zdravko Markov and Daniel T. Larose Copyright C© 2007 John Wiley & Sons, Inc.

115

SPH SPH
JWDD053-05 JWDD053-Markov March 9, 2007 11:44 Char Count= 0

116 CHAPTER 5 CLASSIFICATION

� Step 2: Building the model. This is the actual learning (also called training) step,
which includes the use of the learning algorithm. It is usually an iterative and
interactive process that may include other steps and may be repeated several
times so that the best model is created:
◦ Feature selection
◦ Applying the learning algorithm
◦ Validating the model (using the validation subset to tune some parameters of

the learning algorithm)
� Step 3: Testing and evaluating the model. At this step the model is applied to

the documents from the test set and their actual class labels are compared to
the labels predicted. Note that at this step the document labels are used for
evaluation only (similar to the classes-to-cluster evaluation), which is not the
case at the earlier validation step, where the class labels are actually used by
the learning algorithm.

� Step 4: Using the model to classify new documents (with unknown class labels).

This four-step supervised learning scenario applies not only to web documents
but to any type of data instances. The web documents exhibit some specific properties,
however, which may require some adjustment or use of proper learning algorithms.
Here are the basic ones:

� Text and web documents include thousands of words. Even after the prepro-
cessing step, the resulting features are still too many. The real problem is not
the amount of data, but rather, the asymmetry between two basic parameters in
learning: the number of features and the number of instances. The terms sub-
stantially outnumber the documents, which makes the document space sparsely
populated.

� The document features inherit some of the properties of the natural language text
from which they are derived. Many features are irrelevant to the classification
task and they are often correlated. This violates two basic assumptions that
many learning algorithms rely on: the equal importance of all attributes and
their statistical independence.

� Documents are of different sizes and thus can best be represented by dif-
ferent numbers of features. However, the learning algorithms need uniform-
size vectors, which in turn contributes further to the sparsity of the instance
space.

All this increases the importance of feature selection, especially for similarity-
based methods, which are more sensitive to the problems mentioned above. Also,
this is the main reason for the popularity of probabilistic approaches to document
classification, which generally cope with these problems more easily. Further, in this
chapter we discuss one major similarity-based approach to classification, the nearest-
neighbor algorithm, and will see how feature selection affects its performance. Then
we present the most popular probabilistic approach to classification, the naive Bayes

SPH SPH
JWDD053-05 JWDD053-Markov March 9, 2007 11:44 Char Count= 0

GENERAL SETTING AND EVALUATION TECHNIQUES 117

algorithm. First we discuss briefly basic methods to evaluate the performance of
classification algorithms.

The main evaluation criterion for classifiers is the accuracy of classifica-
tion. This is the main approach used in supervised learning, which we explore
further in some detail. Other criteria include computational efficiency (time and
space complexity and scalability), ease of model interpretation, and simplicity
(Occam’s razor, MDL). The benchmark data comprise an important component
of any evaluation approach. For machine learning and data mining in general,
two of the most popular repositories of benchmark data are the UCI Machine
Learning Repository [1] and the UCI KDD Archive [2]. Although these repositories
include text and web data, there also exist separate data collections of this type. The
Reuters data (http://www.daviddlewis.com/resources/testcollections/
reuters21578/) and the TREC data (http://trec.nist.gov/data.html) are
often cited in this category.

There are two basic approaches to evaluating the accuracy of classification. They
both use the idea of splitting the available data into training and test sets and differ in the
way in which this split is made. In the holdout approach we reserve a certain amount
of data (usually, one-third) for testing and use the remainder (two-thirds) for training.
The major problem with this approach is that the samples may not be representative.
For example, some classes may be represented by very few documents or even by
no documents at all. The solution is called stratification: sampling for training and
test set within classes. This ensures that each class is represented with approximately
equal proportions in both subsets. A further improvement of the holdout method is the
repeated holdout. Accuracy/error estimates can be made more reliable by repeating
the process with different subsamples. This is achieved by random selection of the
training and test sets, repeating the process several times, and then averaging the
success/error rates.

In holdout, because of the random selection, different test sets may overlap or
some documents may never be used for testing. Cross-validation (CV) is an evaluation
method that provides a solution to this problem. In k-fold cross-validation we first
split the data into k subsets of equal size (usually, by random sampling and possibly
with stratification). Then each subset in turn is used for testing and the remainder for
training. The error estimates are averaged to yield an overall error estimate.

Stratified tenfold cross-validation is a standard method for evaluation. Extensive
experiments have shown that this is the best choice for geting an accurate estimate.
Repeated stratified cross-validation is even better: Tenfold cross-validation is repeated
10 times and the results are averaged. A special case of cross-validation is leave-one-
out cross-validation (LOO-CV). LOO-CV is an n-fold cross-validation, where n is the
number of training documents. That is, n classifiers are built for all possible (n − 1)-
element subsets of the training set and then tested on the remaining single document.
LOO-CV makes maximum use of the data and avoids random sampling. However,
it is very computationally expensive and stratification is not possible. Actually, this
method guarantees a nonstratified sample (there is only one instance in the test set).

Finally, we can include the cost of errors by computing precision and recall or
by combining them into the F-measure. We discussed this approach in Chapter 4.

SPH SPH
JWDD053-05 JWDD053-Markov March 9, 2007 11:44 Char Count= 0

118 CHAPTER 5 CLASSIFICATION

NEAREST-NEIGHBOR ALGORITHM

The nearest-neighbor algorithm is a straightforward application of similarity (or dis-
tance) for the purposes of classification. It predicts the class of a new document using
the class label of the closest document from the training set. Because it uses just one
instance from the training set, this basic version of the algorithm is called one-nearest
neighbor (1-NN). The closeness is measured by minimal distance or maximal simi-
larity. The most common approach is to use the TFIDF framework to represent both
the test and training documents and to compute the cosine similarity between the
document vectors.

Let us again consider our department document collection, represented as
TFIDF vectors with six attributes along with the class labels for each document,
as shown in Table 5.1. Assume that the class of the Theatre document is unknown.
To determine the class of this document, we compute the cosine similarity between
the Theatre vector and all other vectors. The results of these calculations are shown
in Table 5.2, which shows the documents sorted by their similarity to the document
being classified. The 1-NN approach simply picks the most similar document (the
first one from the top of the list), Criminal Justice, and uses its label B to predict
the class of Theatre. Obviously, this is a correct prediction because it coincides with
the actual class of the document. However, if we look at the nearest neighbor of
Theatre (Criminal Justice) we see only one nonzero attribute, which in fact produced
the prediction. This is just a tiny portion of our training data. Because of the sparsity

TABLE 5.1 TFDF Representation of Department Documents with Class Labels

history science research offers students hall Class

Anthropology 0 0.537 0.477 0 0.673 0.177 A
Art 0 0 0 0.961 0.195 0.196 B
Biology 0 0.347 0.924 0 0.111 0.112 A
Chemistry 0 0.975 0 0 0.155 0.158 A
Communication 0 0 0 0.780 0.626 0 B
Computer Science 0 0.989 0 0 0.130 0.067 A
Criminal Justice 0 0 0 0 1 0 B
Economics 0 0 1 0 0 0 A
English 0 0 0 0.980 0 0.199 B
Geography 0 0.849 0 0 0.528 0 A
History 0.991 0 0 0.135 0 0 B
Mathematics 0 0.616 0.549 0.490 0.198 0.201 A
Modern Languages 0 0 0 0.928 0 0.373 B
Music 0.970 0 0 0 0.170 0.172 B
Philosophy 0.741 0 0 0.658 0 0.136 B
Physics 0 0 0.894 0 0.315 0.318 A
Political Science 0 0.933 0.348 0 0.062 0.063 A
Psychology 0 0 0.852 0.387 0.313 0.162 A
Sociology 0 0 0.639 0.570 0.459 0.237 A
Theatre 0 0 0 0 0.967 0.254 ? (B)

SPH SPH
JWDD053-05 JWDD053-Markov March 9, 2007 11:44 Char Count= 0

NEAREST-NEIGHBOR ALGORITHM 119

TABLE 5.2 Documents Sorted by Similarity to Theatre

Document Class Similarity to Theatre

Criminal Justice B 0.967075
Anthropology A 0.695979
Communication B 0.605667
Geography A 0.510589
Sociology A 0.504672
Physics A 0.385508
Psychology A 0.343685
Mathematics A 0.242155
Art B 0.238108
Music B 0.207746
Chemistry A 0.189681
Computer Science A 0.142313
Biology A 0.136097
Modern Languages B 0.0950206
Political Science A 0.0762211
English B 0.0507843
Philosophy B 0.0345299
History B 0
Economics A 0

of the vector space, similar situations often occur in real web document collections
with thousands of attributes and documents. In fact, no matter how large the train-
ing set is, the 1-NN algorithm makes the prediction using a single instance, often
relying on few attributes. All this makes the algorithm extremely sensitive to noise
(wrong values of some attributes) and irrelevant attributes. Therefore, when using
1-NN, two assumptions have to be made: There is no noise, and all attributes are
equally important for the classification. The problem is that these assumptions are
not realistic, especially for large text document collections. Of course, this is where
feature selection may help (we discuss this in the next section). However, there also
exist extensions of 1-NN that address this problem: k-NN and distance-weighted
k-NN.

k-NN is a generalization of 1-NN, where the prediction is made by taking the
majority vote over the k nearest neighbors. The parameter k is selected to be a small odd
number (usually, 3 or 5). For example, 3-NN would again, classify Theatre as of class
B, because this is the majority label in the top three documents (B,A,B). However,
5-NN will predict class A, because the set of labels of the top five documents is
{B,A,B,A,A} (i.e., the majority label is A). Which prediction is more feasible? One
may suggest continuing with k = 7, 9 However, this is the wrong direction to
go, because we are taking votes from documents being less and less similar to the
document being classified. So the idea is to take votes only from close neighbors.
But because all k nearest neighbors are considered equally important with respect to
the classification, the choice of k is crucial. This is the reason that 1-NN is the most
popular version of the nearest-neighbor algorithms.

SPH SPH
JWDD053-05 JWDD053-Markov March 9, 2007 11:44 Char Count= 0

120 CHAPTER 5 CLASSIFICATION

The other extension, distance-weighted k-NN, actually builds on the problem
with the choice of the parameter k that we just mentioned. The basic idea is to weight
votes with the similarity (or distance) of the documents from the training set to the doc-
ument being classified. Instead of adding 1’s for each label, we may use a term that is
proportional to the similarity (or inversely proportional to the distance). The simplest
option is just the similarity function sim (X,Y). Other options are 1/[1 − sim(X,Y)]
or 1/[(1 − sim(X,Y)]2. For example, the distance-weighted 3-NN with the simplest
weighting scheme [sim (X,Y)] will predict class B for the Theatre document be-
cause the weight for label B (documents Criminal Justice and Communication)
is B = 0.967075 + 0.605667 = 1.572742, while the weight for Antropology is
A = 0.695979, and thus B > A. With the weighting scheme it makes sense to use a
larger k, even a k equal to the number of documents in the training set. For example,
for k = 19 (all documents excluding Theatre) the prediction for Theatre is A, because
the weight for A is 3.2269 and the weight for B is 2.198931.

The distance-weighting approach actually allows the algorithm to use not just
a single instance, but more or even all instances. In this respect it is interesting to
evaluate and compare the performance of various versions of NN. We use LOO-
CV for this purpose because it is the best choice for small data sets: Computational
complexity is not a concern and stratification is not needed because the algorithm
does not build a model. Table 5.3 summarizes the LOO-CV accuracy evaluation of
1-NN, 3-NN, 5-NN, and 19-NN with and without distance weighting on the document
collection shown in Table 5.1. To investigate the effect of more and possibly irrelevant
attributes, we run the same experiments with the complete set of 671 attributes. The
results show clearly that a small set of relevant attributes works much better than
all attributes. Another important observation is that distance weighting does not help
much. With a set of relevant attributes, the algorithm works perfectly with k = 1
and k = 3, and thus there is not much left to be improved. Only for k = 5 do we
see a little improvement. On the other hand, distance weighting makes no difference
in experiments with all attributes. Because of the sparseness of the vector space,
the range of similarity values is small (minimum = 0.022 and maximum = 0.245,
whereas for the six-attribute case, minimum = 0 and maximum = 0.995), and thus
weighted votes are not much different from nonweighted votes. Overall, 1-NN is a
clear winner in all cases. In general, we may expect improvement with k > 1 and
distance weighting only in situations with noise (obviously not present in out data)
and not too many irrelevant attributes.

The nearest-neighbor algorithm has been used successfully by statisticians for
more than 50 years. As a machine learning approach it falls in the category of

TABLE 5.3 LOO-CV of the Nearest-Neighbor Algorithm

No Distance Weighting Distance Weighting

Attributes 1-NN 3-NN 5-NN 19-NN 1-NN 3-NN 5-NN 19-NN

6 1.00 1.00 0.90 0.55 1.00 1.00 1.00 0.85
671 0.85 0.85 0.75 0.55 0.85 0.85 0.75 0.55

SPH SPH
JWDD053-05 JWDD053-Markov March 9, 2007 11:44 Char Count= 0

FEATURE SELECTION 121

instance-based learning [3] because the classification is based on a number of in-
stances from the training data. It is also considered as lazy learning, because the
model creation phase (step 2) does not involve any computation; rather, the instances
are simply stored. All the computation takes place during the classification step, when
similarity is calculated for each instance in the training set. This makes the algorithm
computationally expensive (to improve efficiency for large document collections such
as the Web, a smaller random sample called a window is used). In contrast, eager
learners do most of the computation during the learning phase when the model is
created. Then the use of the model for prediction is usually straightforward. Despite
these drawbacks, the nearest-neighbor algorithm is the most popular similarity-based
approach to text and web document classification.

FEATURE SELECTION

The objective of feature selection is to find a subset of attributes that best describe a
set of documents with respect to the classification task (i.e., the attributes with which
the learning algorithm achieves maximal accuracy). This simple definition suggests
a simple solution: to try all subsets and pick the one that maximizes accuracy. Un-
fortunately, this solution is impractical, due to the huge number of subsets that have
to be investigated (2n for n attributes). Therefore, we make a strong, but practical
assumption that attributes are independent. Now we can evaluate attributes individ-
ually and assume that the set of the best attributes selected in such a way would best
describe our documents collectively. This type of reasoning leads to an attribute selec-
tion approach called ranking. In ranking we evaluate each attribute individually and
then sort the list of attributes according to their evaluation score (rank). Then we pick
a predefined number of attributes from the top of the list. There are many attribute
evaluation schemes and we have already mentioned two in the context of clustering:
error-based and information gain attribute evaluation. In fact, these two schemes are
used mostly in classification but can also work in clustering when labeled data are
available. Hereafter we formally define information gain, describe a similarity-based
approach, and illustrate the effect of feature selection with the performance of the
nearest-neighbor algorithm.

First, we define entropy. Let S be a set of document vectors from k classes
C1, C2, . . . , Ck . Then the number of vectors in S is |S| = |S1| + |S2| + · · · + |Sk |,
where Si is the set of vectors belonging to class Ci . The entropy is the average
information needed to predict the class of an arbitrary vector in S. It is defined
to be

H (S) = −
k∑

i=1

P(Ci) log P(Ci)

where the probability of class Ci is calculated as the proportion of instances in it [i.e.,
P(Ci) = |Si |/|S|]. Assume now that attribute A has m values – v1, v2, . . . , vm . Then
A splits the set S into m subsets, A1, A2, . . . , Am , each including the documents that

SPH SPH
JWDD053-05 JWDD053-Markov March 9, 2007 11:44 Char Count= 0

122 CHAPTER 5 CLASSIFICATION

have value vi for A. The entropy in the split based on attribute A is defined to be

H (A1, A2, . . . , Am) =
m∑

i=1

|Ai |
|S| H (Ai)

where H (Ai) is the entropy of the class distribution in set Ai .
After splitting a set of documents the entropy in the split decreases. The best

split (produced by the best attribute) will put in each Ai documents from a single
class, and thus its entropy will be 0. The information gain [5] measures the quality of
a split (respectively an attribute) by the decrease of entropy: that is,

gain(A) = H (S) − H (A1, A2, . . . , Am)

In the section “Entropy” in Chapter 4 we illustrated computation of the entropy
of splits produced by the attributes offers and students on the Boolean data. For
numerical attributes (TFIDF) the information gain is computed after discretization
[6]. The attribute values are divided into intervals, so that the gain is maximized.

Another feature selection technique, called similarity-based (or instance-based)
feature selection [4], uses the idea of the nearest-neighbor algorithm. It assigns weights
as follows to attributes that reflect their relevance to the classification:

� For each vector a certain number of nearest neighbors from the same and
different classes called near hits and near misses, respectively, are found.

� If a near hit has a different value for a certain attribute, that attribute appears to
be irrelevant and its weight should be decreased.

� For near misses, attributes with different values are relevant and their weights
should be increased.

The algorithm for computing weights starts with equal weights for all attributes
(say, 0) and adjusts them repeatedly (adding or subtracting small amounts) as ex-
plained above. The vectors used to find near hits and misses are usually picked at
random. This allows ordering attributes by relevance. Let us use the nearest neigh-
bors of the Theatre vector (assuming now that we know its class label) and adjust
the relevance of some attributes. From Table 5.2 we determine that Criminal Justice
is a near hit and Anthropology is a near miss. Now let us look at the values of the
attributes in Table 5.4. The attributes history and offers have the same value in Theatre
and in the near hit and near miss, so there is no change in their weights. The attributes
science and research receive an increase, however, because they have different values
in the near miss Anthropology. Hall receives a decrease, because its value is different
in the near hit Criminal Justice.

TABLE 5.4 Attribute Values

history science research offers students hall Class

Anthropology 0 0.537 0.477 0 0.673 0.177 A
Criminal Justice 0 0 0 0 1 0 B
Theatre 0 0 0 0 0.967 0.254 B

SPH SPH
JWDD053-05 JWDD053-Markov March 9, 2007 11:44 Char Count= 0

FEATURE SELECTION 123

TABLE 5.5 Top 10 Ranking Attributes in the
Department Collection Selected by Two
Evaluation Measures

Rank InfoGain Similarity

1 research research
2 science offers
3 hall science
4 study concentrations
5 civilization courses
6 integral study
7 expression studies
8 oral based
9 craine theoretical

10 specific diverse

Table 5.5 shows the top 10 attributes from the set of 671 attributes of the depart-
ment documents collection ordered by info gain and by similarity-based evaluation.
Not surprisingly, the attributes research and science get the highest scores in both
rankings; we have already seen these attributes on top of the error-based and MDL
rankings. However there are also differences in the ranking produced by the two
schemes. In fact, except for the clear winners, research and science, only one other
attribute (study) appears in both top tens. Obviously, this happens because these two
attributes are very strongly correlated with the class.

The class distribution can be visualized by histograms. Because the attributes
we discuss are numerical, they are first discretized by simple binning (the actual
entropy and information gain are computed using a different type of discretization,
mentioned earlier). Figure 5.1 shows the histograms of the top 10 attributes selected
by InfoGain. The four best attributes show single class intervals (uniformaly colored
bars) or intervals with a dominant class, which indicate low entropy. The rest of the
attributes show one interval with 19 instances that follows closely the overall class
distribution (it corresponds to the value of 0), and another single class interval but
with just one instance (the only nonzero value of that attribute). The former one has
high entropy, whereas the latter has an entropy of zero. However, this contributes
too little to the overall information gain, because it is just one instance (the weight
coefficient is 1/20).

It is interesting to see how the nearest-neighbor algorithm works with these
two sets of attributes. Also, we may try to investigate how adding more attributes
with lower relevance affects performance. The experimental setting for this purpose
is the following. We use 1-NN and start with the top-ranked attribute (research). Then
at each later step we add the next attribute in the list and evaluate the classification
accuracy by LOO-CV. The results are shown in Figure 5.2.

The InfoGain graph illustrates very well the typical behavior of NN when the
number of attributes increases; adding attributes always lowers the accuracy unless
they are all relevant. Once the curve reaches a maximum accuracy of 100% with two
attributes (research and science), it stays at that level through a total of 50 attributes,

SPH SPH
JWDD053-05 JWDD053-Markov March 9, 2007 11:44 Char Count= 0

124 CHAPTER 5 CLASSIFICATION

Figure 5.1 Class distribution histograms of the best 10 attributes selected by InfoGain pro-
duced by Weka (http://www.cs.waikato.ac.nz/ml/weka/,[9]).

which means that all attributes being added are relevant. After that the additional
attributes generally lower the accuracy (with some fluctuations). The similarity curve
is more unstable; it reaches its maximum at three attributes (which again include
the two best, research and science) and then goes down quickly. This clearly shows
that many irrelevant attributes occur among the top-ranked attributes, which is an
indication that the ranking produced by this method is not as good as the one produced
by InfoGain. The explanation is that the similarity approach uses the underlying
mechanism of NN and thus suffers from the presence of irrelevant attributes, as the

1

2 3 5 10 20 30 50
100

200

300
400

500

600

671

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000
Number of attributes

L
O

O
-C

V
 a

cc
ur

ac
y

InfoGain Similarity

Figure 5.2 Accuracy of 1-NN with an increasing number of attributes.

SPH SPH
JWDD053-05 JWDD053-Markov March 9, 2007 11:44 Char Count= 0

NAIVE BAYES ALGORITHM 125

original NN does. Their effect is not critical, however, because of random sampling
and the large number of near hits and misses that are taken into account. Another
observation supported by the peak in the end of both graphs is that using all attributes
is a better choice than any subset that includes irrelevant attributes. The obvious
reasoning here is that this guaranties the presence of all relevant attributes.

NAIVE BAYES ALGORITHM

Let us now take the probabilistic approach and consider again the mixture modeling
framework that we discussed in Chapter 3. Hereafter we discuss the classification
problem, where the class labels are known and the objective is to create proba-
bilistic models, which can then be used to classify new documents. In the section
“Classification Problem” in Chapter 3 we assumed that the values of the TFIDF
attributes have normal (Gaussian) distribution and showed how to classify new docu-
ments using the naive Bayes approach. However, the TFIDF values of the document
attributes are computed using the information about term occurrences in documents,
which are the actual random events that we are trying to model. In statistics, there are
discrete distributions especially suitable for variables used for counting the number
of occurrences of certain events, that is, taking values from the set of natural numbers
(0, 1, 2, . . .). This is the Poisson distribution and the multinominal distribution (for
the multivariate case). In the Boolean representation, the random event is the pres-
ence of a term in the document (ignoring the number of occurrences), which can be
modeled by discrete probabilities. Hereafter we discuss two Bayesian classification
approaches: one based on the Boolean document representation and another based on
document representation by term counts.

Consider the set of Boolean document vectors shown in Table 5.6 and the task
of classifying the Theatre document given the rest of documents with known class
labels. The Bayesian approach determines the class of document x as the one that
maximizes the conditional probability P(C | x). According to Bayes’ rule,

P(C | x) = P(x |C) P(C)

P(x)

To compute P(x |C), we make the naive Bayes assumption that attributes are sta-
tistically independent. Given that x is a vector of n attribute values [i.e., x =
(x1, x2, . . . , xn)], this assumption leads to:

P(x | C) = P(x1, x2, . . . , xn | C) =
n∏

i=1

P(xi | C)

Each P(xi | C) is calculated as the proportion of documents from class C that include
attribute value xi . P(C) is the probability of sampling for class C, which is calculated
as the proportion of the training documents that fall in class C. P(x) is a common
denominator, which is not needed in the calculations if only the class label is to be
determined.

Now to find the class of the Theatre document, we compute the conditional
probability of class A and class B given that this document has already occurred. For

SPH SPH
JWDD053-05 JWDD053-Markov March 9, 2007 11:44 Char Count= 0

126 CHAPTER 5 CLASSIFICATION

TABLE 5.6 Boolean Document Vectors with Class Labels

history science research offers students hall Class

Anthropology 0 1 1 0 1 1 A
Art 0 0 0 1 1 1 B
Biology 0 1 1 0 1 1 A
Chemistry 0 1 0 0 1 1 A
Communication 0 0 0 1 1 0 B
Computer Science 0 1 0 0 1 1 A
Criminal Justice 0 0 0 0 1 0 B
Economics 0 0 1 0 0 0 A
English 0 0 0 1 0 1 B
Geography 0 1 0 0 1 0 A
History 1 0 0 1 0 0 B
Mathematics 0 1 1 1 1 1 A
Modern Languages 0 0 0 1 0 1 B
Music 1 0 0 0 1 1 B
Philosophy 1 0 0 1 0 1 B
Physics 0 0 1 0 1 1 A
Political Science 0 1 1 0 1 1 A
Psychology 0 0 1 1 1 1 A
Sociology 0 0 1 1 1 1 A
Theatre 0 0 0 0 1 1 ? (B)

class A we have

P(A | Theatre) = P(Theatre | A) P(A)

P(Theatre)
P(Theatre | A) = P(history = 0 | A) × P(science = 0 | A) × P(research = 0 | A)

× P(offers = 0 | A) × P(students = 1 | A) × P(hall = 1 | A)

To calculate each of the probabilities above, we take the proportion of the correspond-
ing attribute value in class A. For example, in the science column we have 0’s in four
documents out of 11 from class A. Thus, P(science = 0 | A) = 4/11. Similarly, we
calculate the rest of the terms in the product and obtain

P(Theatre | A) = 11
11 × 4

11 × 3
11 × 8

11 × 10
11 × 9

11 = 0.0536476

For class B we obtain

P(Theatre | B) = 5
8 × 8

8 × 8
8 × 2

8 × 4
8 × 5

8 = 0.0488281

The probabilities of classes A and B are estimated with the proportion of documents
in each: P(A) = 11/19 = 0.578947 and P(A) = 8/19 = 0.421053. Plugging all this
in the Bayes formula and then dropping the common denominator P(Theatre) results

SPH SPH
JWDD053-05 JWDD053-Markov March 9, 2007 11:44 Char Count= 0

NAIVE BAYES ALGORITHM 127

in the following probability estimates (likelihoods):

P(A | Theatre) = (0.0536476)(0.578947)

P(Theatre)
≈ 0.0310591

P(B | Theatre) = (0.0488281)(0.421053)

P(Theatre)
≈ 0.0205592

At this point we can make the decision that Theatre belongs to class A, because its like-
lihood is higher. Or we can normalize the likelihoods to get the correct probabilities:

P(A | Theatre) = 0.0310591

0.0310591 + 0.0205592
= 0.601707

P(B | Theatre) = 0.0205592

0.0310591 + 0.0205592
= 0.398293

Compared to the original class label of the document (B), this prediction is incorrect.
Interestingly, the same prediction was made by the 19-NN algorithm with weighting,
which uses the entire training set (as Bayes does), while the 1-NN prediction was B.
Although the prediction made by 1-NN is correct, it is based on a single document.
Assuming that we don’t have the original label (or are not sure that it has been
assigned correctly), these observations raise a question of which classification is more
feasible. The intuition suggests that the classification that uses more information
must be more feasible. Although the Boolean naive Bayes algorithm uses all training
documents (and thus may be assumed as more feasible than 1-NN), it ignores the
term counts. So our next step is to investigate how a Bayesian model based on term
counts will classify our test document.

Assume that there are m terms t1, t2, . . . , tm (corresponding to the attributes in
the document description) and n documents d1, d2, . . . , dn from class C. Let us denote
the number of times that term ti occurs in document d j as ni j , and the probability
with which term ti occurs in all documents from class C as P(ti |C). The latter can be
estimated with the number of times that ti occurs in all documents from class C over
the total number of terms in the documents from class C.

P(ti |C) =
∑n

j=1
ni j∑m

i=1

∑n

j=1
ni j

The multinominal distribution defines the probability of document d j given class C as

P(d j |C) =
(

m∑
i=1

ni j

)
!

m∏
i=1

P(ti |C)ni j

ni j !

This formula looks similar to the naive Bayes assumption. The basic differences are
the factorials. They are added to account for all possible orderings of each word (ni j !)
and all words in the document

[(∑m
i=1 ni j

)
!
]
. The reason for this is that according to

the bag-of-words model, the ordering of words is ignored.
Let us now see how the multinominal model will classify our test document The-

atre. Table 5.7 includes the original data for our six-attribute department collection,
where each cell includes the number of occurrences of the corresponding term in the
document. This is, in fact, the row data that we have used so far to represent documents

SPH SPH
JWDD053-05 JWDD053-Markov March 9, 2007 11:44 Char Count= 0

128 CHAPTER 5 CLASSIFICATION

TABLE 5.7 Term-Count Representation of the Department Collection

history science research offers students hall Class

Anthropology 0 1 1 0 4 1 A
Art 0 0 0 2 1 1 B
Biology 0 1 3 0 1 1 A
Chemistry 0 2 0 0 1 1 A
Communication 0 0 0 1 2 0 B
Computer Science 0 5 0 0 2 1 A
Criminal Justice 0 0 0 0 1 0 B
Economics 0 0 1 0 0 0 A
English 0 0 0 2 0 1 B
Geography 0 1 0 0 2 0 A
History 7 0 0 2 0 0 B
Mathematics 0 1 1 1 1 1 A
Modern Languages 0 0 0 1 0 1 B
Music 1 0 0 0 1 1 B
Philosophy 1 0 0 2 0 1 B
Physics 0 0 1 0 1 1 A
Political Science 0 5 2 0 1 1 A
Psychology 0 0 2 1 2 1 A
Sociology 0 0 1 1 2 1 A
Theatre 0 0 0 0 4 1 ? (B)

in various ways (TF, TFIDF, and Boolean). Now we use this information directly as a
representation of our documents. First we calculate the probabilities P(ti | C). Within
each class (rows with the corresponding label) we take the sum of the counts in the cor-
responding column and divide it by the total count for all columns. There are situations,
however, where the sum for a particular column is zero. This results in zero probabil-
ity P(ti | C), which when raised to a nonzero power may turn the entire product into
zero no matter what the values of the other terms in the product are. For example, this
happens with the term history and class A; that is, P(history | A) = 0. Consequently,
the documents, which have a nonzero count for history will have zero probability in
class A. That is P(History | A) = 0, P(Music | A) = 0, and P(Philosophy | A) = 0.
A common approach to avoid this problem is to use the Laplace estimator. The idea
is to add 1 to the frequency count in the numerator and 2 (or the number of classes, if
more than two) to the denominator. The Laplace estimator helps to deal with a zero
probability situation, which may also happen with the discrete probabilities in the
Boolean representation that we discussed earlier.

Now we compute the probabilities of each term given each class using the
Laplace estimator. For example, P (history | A) = (0 + 1)/(57 + 2) = 0.017 and P
(history | B) = (9 + 1)/(29 + 2) = 0.323. Plugging all these probabilities in the for-
mula results in

P(Theatre | A) = 5! × 0.0170

0!
× 0.2880

0!
× 0.220

0!
× 0.0680

0!
× 0.3054

4!
× 0.0171

1!

P(Theatre | B) = 5! × 0.3230

0!
× 0.03230

0!
× 0.03230

0!
× 0.3550

0!
× 0.1944

4!
× 0.1941

1!

SPH SPH
JWDD053-05 JWDD053-Markov March 9, 2007 11:44 Char Count= 0

NAIVE BAYES ALGORITHM 129

Similar to the Boolean case, we compute P(A | Theatre) and P(B | Theatre) by using
only the numerator of the Bayes rule and then normalize the likelihoods. The calcula-
tions can be simplified further by omitting the factorial in front of the product because
it occurs in both classes and will disappear in the normalization process. Thus, we
obtain P(A | Theatre) ≈ 0.0000354208 and P(B | Theatre) ≈ 0.00000476511, and
after normalization, P(A | Theatre) = 0.88 and P(B | Theatre) = 0.12. The winner is
class A, with even more significant advantage over the boolean case (0.60 to 0.40).

Interestingly, when classifying Theatre using all documents for training (in-
cluding Theatre itself) we get the same prediction. This may be an indication that the
class label is not assigned properly. Further evidence for this is that the same kind
of misclassification happens with the Criminal Justice document, which appeared
to be most similar to Theatre in the NN experiment. In fact, these are the only two
misclassifications in the LOO-CV evaluation, which thus produces 90% accuracy.

Finally, we compare the performance of the three versions of the naive Bayes
algorithm that we have discussed so far: with TFIDF attributes (normal distribution),
with Boolean attributes (discrete distribution), and with term counts (multinominal
distribution). The data representation used by each of these algorithms is illustrated
by the six-attribute samples shown in Tables 5.1, 5.6 and 5.7, respectively. We use
an experimental setting similar to that used earlier for nearest-neighbor evaluation.
For each representation the attributes are ranked by the information gain method,
and samples with an increasing number of attributes (decreasing rank) are used for
LOO-CV evaluation of the corresponding version of naive Bayes. The results of the
experiments are shown in Figure 5.3.

The clear winner in this experiment is the multinominal Bayes. For all samples
with 3 to 100 attributes it achieves 100% accuracy and after that stays well above the
others and achieves the highest accuracy (85%) with all attributes. Next best is the
Boolean naive Bayes. It also achieves relatively high accuracy up to 100 attributes, but
then its accuracy curve goes down quickly and reaches 55% with all attributes. Note
that 55% is the accuracy of the majority predictor that assigns class labels according
to their probability in the training set. Thus, accuracies lower than 55% indicate poor

1

2

3 5 10 20 30 50 100

200 300
400

500

600
671

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

Number of attributes

L
O

O
-C

V
 a

cc
ur

ac
y

TFIDF Boolean Mutlinominal

Figure 5.3 Naive Bayes accuracy with three different data representations.

SPH SPH
JWDD053-05 JWDD053-Markov March 9, 2007 11:44 Char Count= 0

130 CHAPTER 5 CLASSIFICATION

performance, which is also the case with the TFIDF naive Bayes for 500 and more
attributes.

The drop of the multivariate curve at two attributes (25% accuracy) illustrates
an interesting conceptual difference between the multivariate and Boolean cases.
This situation may seem counterintuitive, because the two attributes in question are
research and science, the top two in the relevance ranking. The key to understanding
this is the way that attribute probability P(ti | C) is used. In multivariate Bayes it is
raised to a power equal to the term count. The terms research and science both have 0
counts in class B, which means that their probabilities are both 1. Thus the product is
1 (ignoring the factorial in front), and when multiplied by the class probability, which
is greater for class A, all documents from class B are misclassified. The reasoning
behind this is that if a term count is 0, the corresponding attribute is ignored from
the process of classification (its probability becomes 1 and thus it does not affect
the value of the product in any way). This allows the other attributes to make their
contribution to document probability. However, in the present situation there are no
other attributes, and thus the document probability is determined solely by the class
probability. In the Boolean case, a term count of zero is treated differently. Zero is
a legitimate nominal value whose occurrences in the document vectors are counted
(just like the occurrence of 1), and thus it obtains a proper discrete probability, which
is then used to compute the document probability. This may be seen as an advantage
of the Boolean (nominal) naive Bayes because the absence of a term has the same
importance for the overall classification as its presence does.

The experimental results from the evaluation of the three versions on naive
Bayes can be explained easily if we look into the underlying document model-
ing framework: the bag-of-words approach, where the only information used is the
number of occurrences of words in documents. Multinominal Bayes shows the best
performance because it incorporates this information directly into the classification
mechanism. The next-best algorithm, Boolean naive Bayes, uses only a part of this
information—whether or not a word occurs in the document—whereas the TFIDF
framework transforms the representation and changes the types of the attributes
(counts into continuous values). Then it assumes that the resulting data have a normal
distribution, which may not be true. So the poor performance of TFIDF Bayes in our
experiments comes as no surprise. In fact, the objective of the TFIDF transforma-
tion is to represent documents as points (or vectors) in a metric vector space, with
the underlying assumption that similar documents are represented by close points in
the vector space. Therefore, the TFIDF representation is suitable for similarity- and
metric-based approaches to classification. If we look at the performance evaluation
of the nearest-neighbor algorithm (Figure 5.2), we see that its accuracy is comparable
to the accuracy of multinominal Bayes. In the next section we discuss a metric-based
approach to classification, linear regression, that also uses the TFIDF representation.

To summarize, the multinominal naive Bayes algorithm is suitable for domains
with large vocabularies, such as the Web. It may work relatively well without the
need for selecting a small subset of relevant attributes. Although it is based on the
independence assumption, which is almost never present in real data, the naive Bayes
algorithm works surprisingly well in practice. A possible explanation is that classifi-
cation doesn’t require accurate probability estimates as long as maximum probability

SPH SPH
JWDD053-05 JWDD053-Markov March 9, 2007 11:44 Char Count= 0

NUMERICAL APPROACHES 131

is assigned to the correct class. Another advantage of naive Bayes is that it is more effi-
cient than nearest neighbor, because the probabilities may be precomputed at learning
time and used in the actual classification, which will then be straightforward. Also,
there is no need to store all training documents.

NUMERICAL APPROACHES

In the TFIDF vector space framework, we have used cosine similarity primarily as
a measure of document similarity. However, the same vector representation allows
documents to be considered as points in a metric space, where the similarity is defined
by the Euclidean distance. In these terms the classification problem can be expressed
as a separation problem. That is, given a set of points, the objective is to find a surface
that divides the space in two parts, so that the points that fall in each part belong to a
single class. Linear regression, the most popular approach based on this idea, uses a
hyperplane as a separating surface.

Linear regression is a standard technique for numerical prediction. It works
naturally with numerical attributes (including the class). The class value C predicted
is computed as a linear combination of the attribute values xi as follows:

C = w0 + w1x1 + · · · + wm xm

The objective is to find the coefficients wi given a number of training instances xi

with their class values C .
There are several approaches to the use of linear regression for classification

(predicting class labels). One simple approach to binary classification is to substitute
class labels with the values −1 and 1. Then the predicted class is determined by
the sign of the linear combination. For example, consider our six-attribute document
vectors (Table 5.1). Let us use −1 for class A and 1 for class B. Then the task is to
find seven coefficients w0, w1, . . . , w6 which satisfy a system of 19 linear equations
(we leave the Theatre vector for testing):

−1=w0 + w1×0 + w2×0.537 + w3×0.477 + w4×0 + w5×0.673 + w6×0.177

1=w0 + w1×0 + w2×0 + w3×0 + w4×0.961 + w5×0.195 + w6×0.196
...

−1=w0 + w1×0 + w2×0 + w3×0.639 + w4×0.570 + w5×0.459 + w6×0.237

The solution for the vector of coefficients (w0, w1, . . . , w6) is

(1.1397, −0.0549, −1.8396, −1.9736, −0.0175, −0.3912, −0.623)

Let us now compute the class value of Theatre:

1.1397 + 0 + 0 + 0 + 0 + −0.3912 × 0.967 + −0.623 × 0.254 = 0.603168

The result is positive, and thus the class predicted for Theatre is B. This prediction
is correct and also agrees with the prediction of 1-NN, the vector-space classification
approach that we discussed earlier.

SPH SPH
JWDD053-05 JWDD053-Markov March 9, 2007 11:44 Char Count= 0

132 CHAPTER 5 CLASSIFICATION

-0.5

0

0.5

1

-0.5 0 0.5 1

research

sc
ie

nc
e

Class A

Class B

Separating
hyperplane

Support vectors

Optimal
hyperplane

Figure 5.4 Classification by linear regression and SVM.

We are not going into the details of how the coefficients are derived. We only
mention that there exist standard numerical analysis techniques for this purpose. The
idea is to minimize the squared error, which is the sum of the squared difference
between the predicted and actual class values through all training instances. Gener-
ally, a solution exists if there are more instances than attributes. Of course, in some
cases the squared error may be too large, so that no correct predictions can be made
even on the training set. This happens when classes are not linearly separable, that
is, cannot be separated by a hyperlane (or line in two dimensions). The simplest
example of this is the XOR problem, defined with two attributes, x and y, and a
class value equal to the Boolean function x ⊕ y (0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1,
1 ⊕ 1 = 0).

Figure 5.4 shows a two-dimensional projection of the six-dimensional vector
space that we used in the example. The documents are plotted as points and their
classes are indicated by different markers. All points from class B collapse into one
point: (0,0). The separating hyperplane found by the linear regression algorithm is
shown as a dashed line. Its equation includes the coefficients wi from the linear
combination that we found earlier:

1.1397 − 0.0549x1 − 1.8396x2 − 1.9736x3 − 0.0175x4 − 0.3912x5 − 0.623x6 = 0

There are various extensions of the linear regression approach to classification. We
discuss two that are particularly important: the maximum margin hyperplane and
support vector machines (SVM).

A maximum margin hyperplane is a special kind of separating hyperplane with
the maximum distance from the nearest points. The idea of such a hyperplane is
illustrated in Figure 5.4. The nearest points to it, called support vectors (marked
with circles in the figure), are at the same distance from the hyperplane. There is
always at least one support vector from each class. The use of a maximum margin
hyperplane makes the learning algorithm more stable and less sensitive to irrelevant
instances because only the support vectors determine the position and orientation of

SPH SPH
JWDD053-05 JWDD053-Markov March 9, 2007 11:44 Char Count= 0

RELATIONAL LEARNING 133

the hyperplane; other instances are ignored. For the same reason, this approach helps
avoiding overfitting.

The support vector machine (SVM) approach addresses the biggest disad-
vantage of linear regression: its inability to represent nonlinear boundaries between
classes. The basic idea is to use a nonlinear mapping (called a kernel), which trans-
forms the original vector space with nonlinear class boundaries into a new (usually
higher-dimensional) space where the class boundaries are linear. SVMs are also com-
bined with the maximum margin hyperplane approach, which makes them the most
accurate classifier, especially suitable for nonlinear cases. It is also considered as
the most accurate text classifier. Its basic disadvantage is that training algorithms for
SVMs are computationally expensive.

RELATIONAL LEARNING

All classification methods that we have discussed so far are based solely on the docu-
ment content and more specifically on the bag-of-words model. Thus, many additional
document features, such as the internal HTML structure, language structure, and in-
terdocument link structure, are ignored. All this may, however, be a valuable source of
information for the classification task. The basic problem with incorporating this in-
formation into the classification algorithm is the need for uniform representation. For
example, content-based classification works well with vector-space representation,
while hyperlink-based classification can be implemented by using graph models (e.g.,
subgraph isomorphism). In this section we discuss briefly an approach that allows
various types of information to be represented in a uniform way and used for web
document classification. The idea is known as relational learning or first-order learn-
ing. Another, narrower term also used in this context is inductive logic programming
(ILP), which uses the language of logic programming (or Prolog) as a representation
language for learning.

Let us start by extending our content-based approach to a relational repre-
sentation. In our domain we have documents d and terms t connected with the
basic relation contains. That is, if term t occurs in document d, the relation con-
tains(d, t) is true. To represent the document class, we may use the unary relations
class A(d) and class B(d). For example, the Boolean document representation with
six attributes (from Table 5.6) is expressed in relational form by the set of relations
(facts) shown partially in Figure 5.5 (some of the “contains” facts are omitted for
brevity).

This set is called background knowledge and is used by the relational learning
system to generate clauses (also called rules) for the target relations. The target
relations for our task are class A and class B. Thus, the system generates the following
clauses:

class A(D) :- contains(D, research).

class A(D) :- contains(D, science).

class B(D) :- not contains(D, science), not contains(D, research).

SPH SPH
JWDD053-05 JWDD053-Markov March 9, 2007 11:44 Char Count= 0

134 CHAPTER 5 CLASSIFICATION

class A(‘Anthropology’).
class A(‘Biology’).
class A(‘Chemistry’).
class A(‘Computer Science’).
class A(‘Economics’).
class A(‘Geography’).
class A(‘Mathematics’).
class A(‘Physics’).
class A(‘Political Science’).
class A(‘Psychology’).
class A(‘Sociology’).

class B(‘Art’).
class B(‘Communication’).
class B(‘Criminal Justice’).
class B(‘English’).
class B(‘History’).
class B(‘Modern Languages’).
class B(‘Music’).
class B(‘Philosophy’).
class B(‘Theatre’).

contains(‘Anthropology’, science).
contains(‘Anthropology’, research).
contains(‘Anthropology’, students).
contains(‘Anthropology’, hall).
contains(‘Art’, offers).
contains(‘Art’, students).
contains(‘Art’, hall).
contains(‘Biology’, science).
...
contains(‘Theatre’, students).
contains(‘Theatre’, hall).

Figure 5.5 Background knowledge for relational learning.

The notation used here is based on Prolog syntax, where “:-” indicates implication
(←), “,” indicates logical conjunction, and “not” indicates logical negation. Strings
beginning with an uppercase letter are variables and those beginning with a lowercase
letter or in single quotes are constants. Thus, these clauses read: “If a document
contains science, its class is A. If a document contains research, its class is A. If a
document does not contain science and does not contain research, its class is B.” Note
that this is exactly the meaning of the hypothesis H1 that we discussed in Chapter 4
in the context of model-based clustering. Note also that the relational description is
more concise and easily readable. In H1 we had to list all possible combinations of
values of the attributes science and research, whereas here we only specify explicitly
what is true and all other possibilities are assumed to be false. This useful technique
is based on the closed world assumption (CWA) and plays an important role in the
definition of logical negation in Prolog. It is used in the third clause, where “not
contains(D, science)” means that “contains(D, science)”, where D has the value of a
particular document, is not present in (or more precisely, does not logically follow
from) the background knowledge.

There are various algorithms for first-order learning. Hereafter we describe
briefly the algorithm FOIL [7], which is simple and efficient and uses an entropy-
based technique to guide the search for clauses similar to the one we have discussed
earlier for attribute evaluation.

Let us look into the process of generation of the clauses for the “class A”
relation. The instances of this relation (shown in the first column in Figure 5.5) are
called positive examples. Given the positive examples, the algorithm automatically
generates a set of negative examples by using the CWA approach (there is also an
option that allows specifying them explicitly). The negative examples are instances
of the same relation, where its argument takes all values from the contrasting class
B (Art, Communication, Criminal Justice, etc.). The objective of the learning system
is to find clauses that cover1 all positives and do not cover any negatives (the latter
condition may be relaxed in the presence of noise, i.e., some percentage of negative
examples may be covered, too).

1 A clause covers an example if there are substitutions for its variables such that when applied the clause
head coincides with the example and each of its body literals occurs in (or follows from) the background
knowledge.

SPH SPH
JWDD053-05 JWDD053-Markov March 9, 2007 11:44 Char Count= 0

RELATIONAL LEARNING 135

TABLE 5.8 Literals and Examples Covered

Candidate Number of Number of
Literal Positives Covered Negatives Covered

contains(D, history). 0 3
contains(D, science). 7 0
contains(D, research). 8 0
contains(D, offers). 3 6
contains(D, students). 10 5
contains(D, hall). 9 6

The algorithm works in general to specific fashion starting from the most general
hypothesis, “class A(D).” It covers all positives, however all negatives too. Therefore,
it should be specialized by adding body literals. The candidates are generated using
relations and arguments from the background knowledge. Also, they have to include
the variable D, because otherwise the coverage does not change. For example, a
clause such as “class A(D) :- contains(X, history)” is equivalent to “class A(D).” The
potential candidate literals along with the number of positive and negative examples
covered by the clause after adding the literal are shown in Table 5.8.

After generating all candidates, the algorithm computes an information gain
evaluation function, which selects the best literal. We are not going into the details,
but the idea is to maximally reduce the total number of bits needed to encode the
classification of all positive examples covered by the clause. In the particular case,
“contains(D, research)” and “contains(D, science)” are the clear winners (no negatives
covered), which comes at no surprise because the attributes research and science are
also on top of the entropy ranking that we discussed earlier in the chapter. Thus, the
algorithm picks “contains(D, research)” and creates the clause

class A(D) :- contains(D, research).

This clause does not cover negative examples, so it needs no further specialization
and the algorithm stops looking for more literals to add. Otherwise, the clause would
have to be extended with more literals until it covers no negative examples. This
terminates the inner loop of the algorithm, which at each run creates a single clause.

If the clause found by the inner loop covered all positive examples, the algorithm
would stop. However, it covers only eight. Therefore, more clauses are needed to
cover the rest of the positive examples. The eight examples already covered are
excluded from the original set of positives and the algorithm enters the inner loop
again with the remaining ones: {class A(‘Chemistry’), class A(‘Computer Science’),
class A(‘Geography’)}. Now it finds the clause “class A(D) :- contains(D, science),”
which happens to cover all remaining examples.

To simplify the discussion, we omitted the fact that negated literals such as “not
contains(D, science)” are also considered as candidates and evaluated in the same
way as the nonnegated literals. This is how the clause for relation “class B” has been
found.

After being generated, the clauses for the target relation can be used to classify
new documents. For this purpose the new document is first represented as a set of

SPH SPH
JWDD053-05 JWDD053-Markov March 9, 2007 11:44 Char Count= 0

136 CHAPTER 5 CLASSIFICATION

directory page(‘Departments’).
directory page(‘Dept. Directory’).
department page(‘Theatre’).
...
faculty(johnson).
...
staff(perrotta).
...
chairperson(johnson, ’Theatre’).

contains(‘Theatre’, johnson).
contains(‘Theatre’, students).
contains(‘Theatre’, hall).
...
contains(‘Dept. Directory’, johnson).
contains(‘Dept. Directory’, perrotta).
...

link to(‘Departments’, ’Anthropology’).
link to(‘Departments’, ’Biology’).
...
link to(‘Departments’, ’Theatre’).
...
link to(‘Departments’, ’Dept. Directory’).
...

Figure 5.6 Background knowledge for the department domain.

relations “contains” with the terms that it includes. Then a deductive system (e.g.,
Prolog) checks which of the relations “class A” and “class B” with the document
specified as an argument is covered. Because the clauses are easy to read and under-
stand, the definition of the target relation also provides an explanation of the class of
documents in terms of the relations from the background knowledge. This is essen-
tially the knowledge discovery step (turning data into knowledge) in the process of
web mining.

There are various ways in which the relational language can be used to represent
web data and knowledge. The approach that we have used defines objects as one-
argument relations such as “class A(‘History’)” and relations among objects as two-
argument predicates such as “contains(‘Art’, students)”. This approach also allows
us to represent the web hyperlink structure as well as types (or categories) of web
pages, terms, and other objects involved in the representation. We illustrate this idea
by representing the domain of our department example.

Consider the web graph that includes the neighborhood of the department page
(‘Departments’) shown in Figure 1.3. This page has links to our 20 well-known
department pages and also a link to a school directory page that lists the department
chairs and contact information (‘Dept. Directory’). Figure 5.6 shows some of the
relations from the background knowledge that describe this domain. The web pages
are classified into two categories: directory page and department page. Categories
(faculty, staff) are also associated with terms that represent personal names.

Assume that we want to generate a definition for the relation “chairperson”
using the other relations available. First we have to specify a number of positive
examples, that is, instances of the target relation, such as “chairperson (johnson,
‘Theatre’).” The negative examples will be instances of the target relation, which
are logically false (should not follow from the background knowledge): for example,
“chairperson(perrotta, ‘Theatre’)” and “chairperson(johnson, ‘Biology’).” Given all
this information, a relational learning system such as FOIL will generate a rule like
the following:

chairperson(X, D) :- department page(D), contains(D, X), link to(D1, D),

link to(D1, D2), directory page(D2), contains(D1, X).

The literals “department page(D),” “contains(D, X),” and “contains(D1, X)” ensure
that the chairperson’s name is mentioned in the department description page D (see
the text of such a page in Figure 1.4) as well as in the department directory page

SPH SPH
JWDD053-05 JWDD053-Markov March 9, 2007 11:44 Char Count= 0

REFERENCES 137

D1. The “link to” literals check if the department directory page D2 belongs to that
particular school (with departments listed in page D1) where department D belongs.
If another person’s name (e.g., the department secretary, whose name also occurs in
the department directory) is included in some department description, an additional
body literal may be needed, such as “faculty(X)”.

This clause can now replace the positive examples, instances of “chairperson(X,
D).” Most important, adding the clause to the background knowledge will allow a
deductive reasoning system (such as Prolog) to answer questions about the truth
value of other instances of “chairperson” not defined explicitly as positive or negative
examples. The system may also infer the objects for which the relation is true. For
example (the Prolog answer is given in italics):

?- chairperson(X, ‘Computer Science’).

X = calvert

?- chairperson(craine, D).

D = ‘Mathematics’

This simple example illustrates the process of learning knowledge bases from
the Web, which is one of the important objectives of web mining. A major project in
this area is Carnegie Mellon University’s Web->KB project [8]. The ultimate goal of
this and similar projects is to create knowledge bases automatically that will make
the information on the Web available in formalized, computer-understandable form
so that it can be used for advanced information retrieval and problem solving.

REFERENCES

1. D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI Repository of Machine Learning
Databases, Department of Information and Computer Science, University of California,
Irvine, CA; 1998, http://www.ics.uci.edu/∼mlearn/MLRepository.html.

2. S. Hettich and S. D. Bay. The UCI KDD Archive, Department of Information and Computer
Science, University of California, Irvine, CA; 1999, http://kdd.ics.uci.edu.

3. David W. Aha, Dennis F. Kibler, and Marc K. Albert, Instance-based learning algorithms,
Mach. Learn., 6:37–66, 1991.

4. I. Kononenko, Estimating attributes: analysis and extensions of RELIEF, in Proceedings of
the European Conference on Machine Learning, 1994.

5. J. Ross Quinlan, Induction of decision trees, Mach. Learn., 1(1):81–106, 1986.
6. U. M. Fayyad and K. B. Irani, Multi-interval discretisation of continuous-valued attributes

for classification learning, in Proceedings of the 13th International Joint Conference on
Artificial Intelligence, Morgan Kaufmann, San Francisco, CA, 1993.

7. J. Ross Quinlan, Learning logical definitions from relations, Mach. Learn., 5:239–266, 1990.
8. Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew McCallum, Tom M. Mitchell, Kamal

Nigam, and Seán Slattery, Learning to construct knowledge bases from the World Wide
Web, Artif. Intell., 118(1–2): 69–113, 2000, http://www.cs.cmu.edu/∼webkb/.

9. Ian H. Witten and Eibe Frank, Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd ed., Morgan Kaufmann, San Francisco, CA, 2005.

SPH SPH
JWDD053-05 JWDD053-Markov March 9, 2007 11:44 Char Count= 0

138 CHAPTER 5 CLASSIFICATION

EXERCISES

1. Use the k-nearest neighbor algorithm (Weka’s IBk) with the binary, term-count,
and TFIDF data sets (the files “Top-100-websites-binary.arff,” “Top-100-websites-
counts.arff,” and “Top-100-websites-TFIDF.arff,” available from the book series Web
site, www.dataminingconsultant.com). Vary the parameter k, the weighting scheme,
and the normalization. Examine how each of these parameters affects the classification
accuracy measured with 10-fold cross-validation (create graphs whenever possible). Find
the setting that produces maximal accuracy. Comment on it.

2. Use the data set that produced maximal accuracy in Exercise 1 and apply information
gain (Weka’s InfoGainAttributeEval) and similarity (Weka’s ReliefFAttributeEval) at-
tribute evaluation. This can be done through Weka’s attribute selection panel (to examine
the attribute ranking) or in preprocess mode through filters (to actually rank and select
attributes).

a. Use IBk with the parameter setting that produced maximal accuracy in Exercise 1.
Apply each of the filters and then run the algorithm with an increasing number of
attributes chosen from the beginning of the ranked list. Use a proper logarithmic
scale for the number of attributes and plot the accuracies in a graph similar to Figure
5.2. Which attribute selection method works better? Comment on this. Determine the
optimal number of attributes for classification.

b. Use IBk with k-NN=1. Apply each of the filters and then run the algorithm with the
increasing number of attributes chosen from the beginning of the ranked list. Use a
logarithmic scale for the number of attributes and plot the accuracies in a graph similar
to that of Figure 5.2. Which attribute selection method works better? Comment on this.
Determine the optimal number of attributes for classification.

c. Compare the results in the experiments in parts a and b. Explain the differences.

3. Use the naive Bayes algorithm (Weka’s NaiveBayes) with the binary, term-count,
and TFIDF data sets (the files “Top-100-websites-binary.arff,” “Top-100-websites-
counts.arff,” and “Top-100-websites-TFIDF.arff,” available from the book series Web
site www.dataminingconsultant.com). Compare the accuracies (produced with 10-
fold cross-validation) and comment on the results.

4. Use the multinominal naive Bayes algorithm (Weka’s NaiveBayesMultinomial) with
the binary, term-count, and TFIDF data sets (the files “Top-100-websites-binary.arff,”
“Top-100-websites-counts.arff,” and “Top-100-websites-TFIDF.arff,” available from the
book series Web site, www.dataminingconsultant.com). Compare the accuracies
(produced with 10-fold cross-validation) and comment on the results.

5. Using the results from the experiments in Exercises 3 and 4, compare the performance of
the two versions of naive Bayes (normal distribution and multinominal distribution) on
each of the data sets. Comment on the results.

6. Run the SVM algorithm (Weka’s SMO) on the TFIDF data set “Top-
100-websites-TFIDF.arff” (available from the book series Web site,
www.dataminingconsultant.com). Try the full set of attributes as well as
subsets selected by InfoGain. Compare the 10-fold cross validation accuracies.
Comment on the results.

7. Review the results achieved by k-NN, naive Bayes, and SVM on the binary, term-
count, and TFIDF data sets (Exercises 1 to 6) and find the best algorithm and the best

SPH SPH
JWDD053-05 JWDD053-Markov March 9, 2007 11:44 Char Count= 0

EXERCISES 139

representation in terms of classification accuracy. Also examine the run times, the time
taken to build the model (reported by Weka in the classifier output window) and the total
run time, including the testing step (available from the Log). Comment on this.

8. Experiment with Weka’s “Supplied test set” test option. Remove a number of instances
from a data set (say, “Top-100-websites-binary.arff”) and store them in a new data file
(test file) with the same header as that of the original file. Then load the new file through
the “Set” option in the Weka classify panel. Run a classifier and examine the classifier
errors through the “Visualize classifier errors” option (right-click on the result line). In
this option, Weka shows the actual and predicted class labels for each instance (click on
an instance to see them; the squares indicate errors) or allows saving this information on
a file. This is how new instances with unknown labels can be classified. Use any label
(or just a guess) in the test data set and Weka will provide the classification of the test
instances by showing the labels predicted.

9. (Advanced project: web page classification) Develop an approach to using the model
created by Weka on the training data to classify new web pages by topic.

a. Create a data set using a collection of web pages labeled manually by topic. Follow
the approach suggested in Exercise 1 of Chapter 3 or use the file “Top-100-websites-
binary.arff.”

b. Using experiments with feature selection, identify a subset of terms that will be used
both for creating the model and classification of new web pages.

c. Find a proper application or write a program (e.g., using the open source of Weka) which
given a web document and the set of terms generates a binary vector representation of
the documents in ARFF format. This will be the Weka test file.

d. Use the Weka test set option (described in Exercise 8) to classify the new web docu-
ments.

10. (Advanced project: intelligent web browser) Follow the steps of Exercise 9 but with
the web pages labeled according to user preferences. In the collection phase, the web
user while browsing the web pages labels them as like/dislike or uses a numerical scale
depending on whether he or she finds their text content interesting. Then after the training
(model creation) phase, new web pages will automatically be classified and presented to
the web user with the label predicted. All this can be built in an “intelligent” web browser
that will learn its user preferences automatically and then give recommendations about
the interestingness of pages that the user is about to visit. Another application of this
approach is user profiling: i.e. learning user models and identifying web users by their
preferences.

SPH SPH
JWDD053-06 JWDD053-Markov March 9, 2007 11:36 Char Count= 0

PARTIII
WEB USAGE MINING

I n earlier chapters, we learned about web structure mining and web con-
tent mining. Next, we begin to learn about web usage mining, defined by

Srivastava et al. [3] as follows: “Web usage mining is the application of data
mining techniques to discover usage patterns from Web data, in order to un-
derstand and better serve the needs of Web-based applications.” Note that
web usage mining differs from web structure mining and web content min-
ing, in that web usage mining reflects the behavior of humans as they interact
with the Internet. Because of this, web usage mining is of intense interest
for e-marketing and e-commerce professionals. Analysis of user behavior can
provide insights leading to customization and personalization of a user’s web
experience.

Data Mining the Web: Uncovering Patterns in Web Content, Structure, and Usage
By Zdravko Markov and Daniel T. Larose Copyright C© 2007 John Wiley & Sons, Inc.

SPH SPH
JWDD053-06 JWDD053-Markov March 9, 2007 11:36 Char Count= 0

CHAPTER 6
INTRODUCTION TO WEB
USAGE MINING

DEFINITION OF WEB USAGE MINING

CROSS-INDUSTRY STANDARD PROCESS FOR DATA MINING

CLICKSTREAM ANALYSIS

WEB SERVER LOG FILES

COMMON LOG FORMAT

EXTENDED COMMON LOG FORMAT

MICROSOFT IIS LOG FORMAT

AUXILIARY INFORMATION

DEFINITION OF WEB USAGE MINING

Using standard data mining techniques such as clustering and association rules [2], a
particular user may be associated with other users exhibiting similar behavior patterns
and preferences. Then this user may be offered specialized links and sales opportu-
nities tailored to his or her own preferences, based on information provided by the
clustering or association rule algorithms. For example, the e-vendor may provide a
choice of items to the user based on items the user has already browsed. “Customers
who bought this book also bought . . . ” (from Amazon.com, arguably the world leader
in applied web usage mining). Recommendation making is one of the most common
applications of knowledge gained through web usage mining.

Further, web usage mining offers a “reality check” to the developers of a Web
site, sometimes indicating that the actual user behavior differs from the behavior
expected as reflected in the design of the Web site. For example, web usage analysis
may indicate that many customers are clicking from horror movies to a navigational
page to science fiction movies. The web developers could use this information to add

Data Mining the Web: Uncovering Patterns in Web Content, Structure, and Usage
By Zdravko Markov and Daniel T. Larose Copyright C© 2007 John Wiley & Sons, Inc.

143

SPH SPH
JWDD053-06 JWDD053-Markov March 9, 2007 11:36 Char Count= 0

144 CHAPTER 6 INTRODUCTION TO WEB USAGE MINING

a direct link to science fiction movies from the horror movies page so that the user is
not required to click through the navigation page.

Web usage mining can take place at several different levels. For example, as
indicated above, developers may be interested in the sequence of clicks by a single
user, in order to provide that user with a specialized experience. On the other hand,
developers may be interested in the aggregate behavior of a large number of users,
say, all users within a one-week period, in order to assess issues such as ease of
navigation.

CROSS-INDUSTRY STANDARD PROCESS
FOR DATA MINING

Like data mining, web usage mining may be viewed in the context of the Cross-
Industry Standard Process for Data Mining (CRISP–DM). According to CRISP–DM,
a given data mining project has a life cycle consisting of six phases, as illustrated in
Figure 6.1. Note that the phase sequence is adaptive. That is, the next phase in
the sequence often depends on the outcomes associated with the previous phase.
The most significant dependencies between phases are indicated by the arrows. For
example, suppose that we are in the modeling phase. Depending on the behavior and

Figure 6.1 CRISP–DM is an iterative, adaptive process.

SPH SPH
JWDD053-06 JWDD053-Markov March 9, 2007 11:36 Char Count= 0

CROSS-INDUSTRY STANDARD PROCESS FOR DATA MINING 145

characteristics of the model, we may have to return to the data preparation phase
for further refinement before moving forward to the model evaluation phase. The six
phases are as follows.

1. Business understanding phase. The first phase in the CRISP–DM standard
process may also be termed the research understanding phase.

a. Clearly enunciate the project objectives and requirements in terms of the
business or research unit as a whole.

b. Translate these goals and restrictions into the formulation of a data mining
problem definition.

c. Prepare a preliminary strategy for achieving these objectives.

2. Data understanding phase

a. Collect the data.

b. Use exploratory data analysis to familiarize yourself with the data, and dis-
cover initial insights.

c. Evaluate the quality of the data.

d. If desired, select interesting subsets that may contain actionable patterns.

3. Data preparation phase

a. This labor-intensive phase covers all aspects of preparing the final data set,
used for all subsequent phases, from the initial raw data.

b. Select the cases and variables that you want to analyze and that are appropriate
for your analysis.

c. Perform transformations on certain variables, if needed.

d. Clean the raw data so that they are ready for the modeling tools.

4. Modeling phase

a. Select and apply appropriate modeling techniques.

b. Calibrate model settings to optimize results.

c. Often, different techniques may be used for the same data mining problem.

d. Looping back to the data preparation phase may be required to bring the
form of the data into line with the specific requirements of a particular data
mining technique.

5. Evaluation phase

a. The modeling phase has delivered one or more models. These models must
be evaluated for quality and effectiveness before we deploy them for use in
the field.

b. Determine whether the model in fact achieves the objectives set for it in
phase 1.

c. Establish whether some important facet of the business or research problem
has not been accounted for sufficiently.

d. Finally, come to a decision regarding use of the data mining results.

SPH SPH
JWDD053-06 JWDD053-Markov March 9, 2007 11:36 Char Count= 0

146 CHAPTER 6 INTRODUCTION TO WEB USAGE MINING

6. Deployment phase

a. Model creation does not signify completion of the project. We need to make
use of models created according to business objectives.

b. Provide an example of simple deployment: Generate a report.

c. Provide an example of more complex deployment: Implement a parallel data
mining process in another department.

d. For businesses, the customer often carries out the deployment based on the
model.

For more on CRISP–DM, see Chapman et al. [1], Larose [2], or www.crisp-
dm.org. In this section we demonstrate web usage mining through the CRISP–
DM context. In this chapter we examine the types of web log data that web us-
age miners usually work with; this is part of the data understanding phase in
CRISP–DM. In Chapter 7, we discuss data preparation for web usage mining,
which is clearly part of the data preparation phase. In Chapter 8, we examine ex-
ploratory data analysis for web usage mining, which is also part of the data under-
standing phase. In Chapter 9, we look at several different modeling methods and
briefly discuss evaluative methods; these are part of the modeling and evaluation
phases.

Another framework for web usage mining is that proposed by Srivastava et al.
[3]. This process consists of four phases: the input stage, the preprocessing stage, the
pattern discovery stage, and the pattern analysis stage.

1. Input stage. At the input stage, three types of raw web log files are retrieved—
access logs, referrer logs, and agent logs—as well as registration information
(if any) and information concerning the site topology. In this chapter we discuss
these data sources and become familiar with the type of web log data used in
web usage mining.

2. Preprocessing stage. The raw web logs do not arrive in a format conducive
to fruitful data mining. Therefore, substantial data preprocessing must be ap-
plied. The most common preprocessing tasks are (1) data cleaning and fil-
tering, (2) de-spidering, (3) user identification, (4) session identification, and
(5) path completion. In Chapter 7, we look more closely at each of these
tasks.

3. Pattern discovery stage. Once these tasks have been accomplished, the web
data are ready for the application of statistical and data mining methods for the
purpose of discovering patterns. These methods include (1) standard statisti-
cal analysis, (2) clustering algorithms, (3) association rules, (4) classification
algorithms, and (5) sequential patterns. We examine methods and models for
pattern discovery in Chapters 8 and 9.

4. Pattern analysis stage. Not all of the patterns uncovered in the pattern discovery
stage would be considered interesting or useful. For example, an association
rule for an online movie database that found “If Page = Sound of Music then
Section = Musicals” would not be useful, even with 100% confidence, since this
wonderful movie is, of course, a musical. Hence, in the pattern analysis stage,

SPH SPH
JWDD053-06 JWDD053-Markov March 9, 2007 11:36 Char Count= 0

CLICKSTREAM ANALYSIS 147

human analysts examine the output from the pattern discovery stage and glean
the most interesting, useful, and actionable patterns. This stage is discussed in
Chapter 9.

CLICKSTREAM ANALYSIS

Web usage mining is sometimes referred to as clickstream analysis. A clickstream is
the aggregate sequence of page visits executed by a particular user navigating through
a Web site. In addition to page views, clickstream data consist of logs, cookies,
metatags, and other data used to transfer web pages from server to browser. When
loading a particular web page, the browser also requests all the objects embedded
in the page, such as .gif or .jpg graphics files. The problem is that each request is
logged separately. All of these separate hits must be aggregated into page views at the
preprocessing stage. Then a series of page views can be woven together into a session.
Thus, clickstream data require substantial preprocessing before user behavior can be
analyzed.

Nevertheless, once the clickstream data have been preprocessed, analysts can
begin to tackle questions such as the following:

� Which web page is the most common point of entry for users?
◦ Are visitors entering through the gateway constructed by the Web site devel-

opers, or are they somehow bypassing the gateway and landing in the middle
of the Web site?

� In which order have the pages been viewed?
◦ Is this page sequencing as the developers might have expected, or is there

something the users are trying to tell us about how the Web site should be
structured?

� Which other Web sites referred the users to your Web site?
◦ Which referrer sites are providing us with the greatest number of re-

ferrals? Which unproductive referrer sites should our marketers consider
reassessing?

� How many web pages have been viewed in the typical visit?
◦ If we find that users tend to “cut and run” after just a couple of page views,

should we perhaps consider an extensive redesign of the site to make it more
user friendly?

� How long does the typical visitor stay on our Web site?
◦ Similar to the previous question, if we find that the total clock time spent by

users on our site is less than expected, perhaps we should ask ourselves why.
� Which web page is the most common departure point for users?

◦ Should the developers examine why customers are leaving at this point? Is
this page a natural point of departure, or is there some other reason why the
page is detracting from the user’s experience?

SPH SPH
JWDD053-06 JWDD053-Markov March 9, 2007 11:36 Char Count= 0

148 CHAPTER 6 INTRODUCTION TO WEB USAGE MINING

WEB SERVER LOG FILES

Before we can begin clickstream analysis, we must familiarize ourselves with the
types of data forms available for the analysis of clickstream behavior. Web usage
information takes the form of web server log files, or web logs. For each request
from a user’s browser to a web server, a response is generated automatically, called
a web log file, log file, or web log (not to be confused with blogs, of course, which
are essentially web journals, sometimes called web logs). This response takes the
form of a simple single-line transaction record that is appended to an ASCII text
file on the web server. This text file may be comma-delimited, space-delimited, or
tab-delimited.

A sample web log is the excerpt, shown in Figure 6.2, from the ven-
erable EPA web log data available from the Internet Traffic Archive at
http://ita.ee.lbl.gov/html/traces.html. Each line in this file represents
a particular action requested by a user’s browser, received by the EPA web server
in Research Triangle Park, North Carolina. Each line (record) contains the fields
described below.

141.243.1.172 [29:23:53:25] “GET /Software.html HTTP/1.0” 200 1497
query2.lycos.cs.cmu.edu [29:23:53:36] “GET /Consumer.html HTTP/1.0” 200 1325
tanuki.twics.com [29:23:53:53] “GET /News.html HTTP/1.0” 200 1014
wpbfl2-45.gate.net [29:23:54:15] “GET /default.htm HTTP/1.0” 200 4889
wpbfl2-45.gate.net [29:23:54:16] “GET /icons/circle logo small.gif HTTP/1.0”

200 2624
wpbfl2-45.gate.net [29:23:54:18] “GET /logos/small gopher.gif HTTP/1.0” 200 935
140.112.68.165 [29:23:54:19] “GET /logos/us-flag.gif HTTP/1.0” 200 2788
wpbfl2-45.gate.net [29:23:54:19] “GET /logos/small ftp.gif HTTP/1.0” 200 124
wpbfl2-45.gate.net [29:23:54:19] “GET /icons/book.gif HTTP/1.0” 200 156
wpbfl2-45.gate.net [29:23:54:19] “GET /logos/us-flag.gif HTTP/1.0” 200 2788
tanuki.twics.com [29:23:54:19] “GET /docs/OSWRCRA/general/hotline HTTP/1.0”

302 -
wpbfl2-45.gate.net [29:23:54:20] “GET /icons/ok2-0.gif HTTP/1.0” 200 231
tanuki.twics.com [29:23:54:25] “GET /OSWRCRA/general/hotline/ HTTP/1.0”

200 991
tanuki.twics.com [29:23:54:37] “GET /docs/OSWRCRA/general/hotline/95report

HTTP/1.0” 302 -
wpbfl2-45.gate.net [29:23:54:37] “GET /docs/browner/adminbio.html HTTP/1.0”

200 4217
tanuki.twics.com [29:23:54:40] “GET /OSWRCRA/general/hotline/95report/

HTTP/1.0” 200 1250
wpbfl2-45.gate.net [29:23:55:01] “GET /docs/browner/cbpress.gif HTTP/1.0”

200 51661
dd15-032.compuserve.com [29:23:55:21] “GET /Access/chapter1/s2-4.html

HTTP/1.0” 200 4602

Figure 6.2 Sample web log from the EPA Web site.

SPH SPH
JWDD053-06 JWDD053-Markov March 9, 2007 11:36 Char Count= 0

WEB SERVER LOG FILES 149

Remote Host Field

This field consists of the Internet IP address of the remote host making the request,
such as “141.243.1.172”. If the remote host name is available through a DNS lookup,
this name is provided, such as “wpbfl2-45.gate.net.”

To obtain the domain name of the remote host rather than the IP address,
the server must submit a request, using the Internet domain name system (DNS) to
resolve (i.e., translate) the IP address into a host name. Since humans prefer to work
with domain names and computers are most efficient with IP addresses, the DNS
system provides an important interface between humans and computers. For more
information about DNS, see the Internet Systems Consortium, www.isc.org.

Date/Time Field

The EPA web log uses the following specialized date/time field format:
“[DD:HH:MM:SS],” where DD represents the day of the month and HH:MM:SS
represents the 24-hour time, given in EDT. In this particular data set, the DD por-
tion represents the day in August, 1995 that the web log entry was made. How-
ever, it is more common for the date/time field to follow the following format:
“DD/Mon/YYYY:HH:MM:SS offset,” where the offset is a positive or negative con-
stant indicating in hours how far ahead of or behind the local server is from Greenwich
Mean Tim (GMT). For example, a date/time field of “09/Jun/1988:03:27:00 -0500”
indicates that a request was made to a server at 3:27 a.m. on June 9, 1988, and the
server is 5 hours behind GMT.

HTTP Request Field

The HTTP request field consists of the information that the client’s browser has
requested from the web server. The entire HTTP request field is contained within
quotation marks. Essentially, this field may be partitioned into four areas: (1) the
request method, (2) the uniform resource identifier (URI), (3) the header, and (4) the
protocol. The most common request method is GET, which represents a request to
retrieve data that are identified by the URI. For example, the request field in the
first record in Figure 6.2 is “GET /Software.html HTTP/1.0,” representing a request
from the client browser for the web server to provide the web page Software.html.
Besides GET, other requests include HEAD, PUT, and POST. For more information
on the latter request methods, refer to the W3C World Wide Web Consortium at
www.w3.org.

The uniform resource identifier contains the page or document name and the
directory path requested by the client browser. The URI can be used by web usage
miners to analyze the frequency of visitor requests for pages and files. The header sec-
tion contains optional information concerning the browser’s request. This information
can be used by the web usage miner to determine, for example, which keywords are
being used by visitors in search engines that point to your site. The HTTP request field
also includes the protocol section, which indicates which version of the HyperText
Transfer Protocol (HTTP) is being used by the client’s browser. Then, based on the
relative frequency of newer protocol versions (e.g., HTTP/1.1), the web developer

SPH SPH
JWDD053-06 JWDD053-Markov March 9, 2007 11:36 Char Count= 0

150 CHAPTER 6 INTRODUCTION TO WEB USAGE MINING

may decide to take advantage of the greater functionality of the newer versions and
provide more online features.

Status Code Field

Not all browser requests succeed. The status code field provides a three-digit response
from the web server to the client’s browser, indicating the status of the request, whether
or not the request was a success, or if there was an error, which type of error occurred.
Codes of the form “2xx” indicate a success, and codes of the form “4xx” indicate
an error. Most of the status codes for the records in Figure 6.2 are “200,” indicating
that the request was fulfilled successfully. A sample of the possible status codes that
a web server could send follows.

� Successful transmission (200 series)
◦ Indicates that the request from the client was received, understood, and com-

pleted.
� 200: success
� 201: created
� 202: accepted
� 204: no content

� Redirection (300 series)
◦ Indicates that further action is required to complete the client’s request.

� 301: moved permanently
� 302: moved temporarily
� 303: not modified
� 304: use cached document

� Client error (400 series)
◦ Indicates that the client’s request cannot be fulfilled, due to incorrect syntax

or a missing file.
� 400: bad request
� 401: unauthorized
� 403: forbidden
� 404: not found

� Server error (500 series)
◦ Indicates that the web server failed to fulfill what was apparently a valid

request.
� 500: internal server error
� 501: not implemented
� 502: bad gateway
� 503: service unavailable

SPH SPH
JWDD053-06 JWDD053-Markov March 9, 2007 11:36 Char Count= 0

EXTENDED COMMON LOG FORMAT 151

Transfer Volume (Bytes) Field

The transfer volume field indicates the size of the file (web page, graphics file, etc.),
in bytes, sent by the web server to the client’s browser. Only GET requests that have
been completed successfully (Status = 200) will have a positive value in the transfer
volume field. Otherwise, the field will consist of a hyphen or a value of zero. This field
is useful for helping to monitor the network traffic, the load carried by the network
throughout the 24-hour cycle.

COMMON LOG FORMAT

Web logs come in various formats, which vary depending on the configuration of the
web server. The common log format (CLF or “clog”) is supported by a variety of web
server applications and includes the following seven fields:

� Remote host field
� Identification field
� Authuser field
� Date/time field
� HTTP request
� Status code field
� Transfer volume field

Identification Field

This field is used to store identity information provided by the client only if the web
server is performing an identity check . However, this field is seldom used because the
identification information is provided in plain text rather than in a securely encrypted
form. Therefore, this field usually contains a hyphen, indicating a null value.

Authuser Field

This field is used to store the authenticated client user name, if it is required. The
authuser field was designed to contain the authenticated user name information that
a client needs to provide to gain access to directories that are password protected. If
no such information is provided, the field defaults to a hyphen.

EXTENDED COMMON LOG FORMAT

The extended common log format (ECLF) is a variation of the common log format,
formed by appending two additional fields onto the end of the record, the referrer field,
and the user agent field. Both the common log format and the extended common

SPH SPH
JWDD053-06 JWDD053-Markov March 9, 2007 11:36 Char Count= 0

152 CHAPTER 6 INTRODUCTION TO WEB USAGE MINING

log format were created by the National Center for Supercomputing Applications
(http://www.ncsa.uiuc.edu/).

Referrer Field

The referrer field lists the URL of the previous site visited by the client, which linked
to the current page. For images, the referrer is the web page on which the image
is to be displayed. The referrer field contains important information for marketing
purposes, since it can track how people found your site. Again, if the information is
missing, a hyphen is used.

User Agent Field

The user agent field provides information about the client’s browser, the browser
version, and the client’s operating system. Importantly, this field can also contain
information regarding bots, such as web crawlers. Web developers can use this
information to block certain sections of the Web site from these web crawlers, in the
interests of preserving bandwidth. Further, this field allows the web usage miner to
determine whether a human or a bot has accessed the site, and thereby to omit the bot’s
visit from analysis, on the assumption that the developers are interested in the behavior
of human visitors. This is known as de-spidering and is discussed further in Chapter 7.

Example of a Web Log Record

Consider the following example of an extended common log format (ECLF). For
privacy purposes, the URL has been partly masked.

149.1xx.120.116 -- smithj [28/OCT/2004:20:27:32

-5000] ``GET /Default.htm HTTP/1.1'' 200

1270 ``http:/www.dataminingconsultant.com/''

``Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.0)''

� Remote host: 149.1xx.120.116
� Identification: –
� Authuser: smithj
� Date/time: [28/OCT/2004:20:27:32 -5000]
� Request: “GET /Default.htm HTTP/1.1”
� Status code: 200
� Transfer volume: 1270
� Referrer: “http:/www.dataminingconsultant.com/”
� User agent: “Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+NT+5.0)”

Consider Figure 6.3, which contains a subset of the records from Figure 6.2 for
the user at wpbfl2-45.gate.net. Note that the first record is a request for the server to
provide default.htm (the label often used for the home page of a Web site). However,

SPH SPH
JWDD053-06 JWDD053-Markov March 9, 2007 11:36 Char Count= 0

MICROSOFT IIS LOG FORMAT 153

wpbfl2-45.gate.net [29:23:54:15] “GET /default.htm HTTP/1.0” 200 4889
wpbfl2-45.gate.net [29:23:54:16] “GET /icons/circle logo small.gif HTTP/1.0”

200 2624
wpbfl2-45.gate.net [29:23:54:18] “GET /logos/small gopher.gif HTTP/1.0” 200 935
wpbfl2-45.gate.net [29:23:54:19] “GET /logos/small ftp.gif HTTP/1.0” 200 124
wpbfl2-45.gate.net [29:23:54:19] “GET /icons/book.gif HTTP/1.0” 200 156
wpbfl2-45.gate.net [29:23:54:19] “GET /logos/us-flag.gif HTTP/1.0” 200 2788
wpbfl2-45.gate.net [29:23:54:20] “GET /icons/ok2-0.gif HTTP/1.0” 200 231

Figure 6.3 Single click turns into multiple hits.

note that over the next 5 seconds, a further series of requests are made, all of which are
for .gif image files. These six image files are stored on the server and must be provided
to the client browser, which aligns them in their proper places on the default.htm web
page.

Thus, we see that a web page is actually a collection of objects, each of which
must be requested from the Web server. On sophisticated Web sites, the web server
may forward requests to other servers, such as ad servers, shopping cart servers, and
so on. Thus, when a user makes a single click on a link to request a single web page,
this request results in multiple hits on the web server, one line in the log file for each
document or object requested. The collection of hits in Figure 6.3 represents a single
page view, which is discussed in Chapter 7. It is clear from Figure 6.3 that these
log file records belong together, resulting from the actions of a single user. However,
Figure 6.2 shows that the web server may be receiving many hits from other clients at
nearly the same time. Thus, the hits associated with one particular client or even one
particular page view are not recorded in sequence. Thus, the web usage miner must
first preprocess the data to uncover the page views within the data, as we discuss in
Chapter 7.

MICROSOFT IIS LOG FORMAT

There are other log file formats besides the common and extended common log file
formats. The Microsoft IIS log format includes the following fields:

� Client IP address
� User name
� Date
� Time
� Service and instance
� Server name
� Server IP
� Elapsed time

� Client bytes sent
� Server bytes sent
� Service status code
� Windows status code
� Request type
� Target of operation
� Parameters

SPH SPH
JWDD053-06 JWDD053-Markov March 9, 2007 11:36 Char Count= 0

154 CHAPTER 6 INTRODUCTION TO WEB USAGE MINING

The IIS format records more fields than the other formats, so that more in-
formation can be uncovered. For example, the elapsed processing time is included,
along with the bytes sent by the client to the server; also, the time recorded is local
time. Note that web server administrators need not choose any of these formats; they
are free to specify which fields they believe are most appropriate for their purposes.
Now that we have been introduced to the type of data used for web usage mining, in
Chapter 7, we must learn how to preprocess this raw web log data to make it ready
for the exploratory methods in Chapter 8 and the modeling algorithms and methods
in Chapter 9.

AUXILIARY INFORMATION

Besides web logs, further auxiliary information may be available in the form of user
registration information, user demographic information, and so on. These data usually
reside on separate servers from the web log data and will need to be merged with the
web logs before preprocessing can be done. Finally, to perform the preprocessing task
known as path completion, the analyst will need to have knowledge of the topology
or structure of the Web site, the network of hierarchies and relationships among the
web pages, and so on. We discuss path completion in Chapter 7.

REFERENCES

1. Peter Chapman, Julian Clinton, Randy Kerber, Thomas Khabaza, Thomas Reinart,
Colin Shearer, and Rudiger Wirth, CRISP–DM Step-by-Step Data Mining Guide, 2000,
http://www.crisp-dm.org/.

2. Daniel Larose, Discovering Knowledge in Data: An Introduction to Data Mining, Wiley,
Hoboken, NJ, 2005.

3. Jaideep Srivastava, Robert Cooley, Mukund Deshpande, and Pang-Ning Tan, Web usage
mining: discovery and applications of usage patterns from web data, SIGKDD Explor.,
1(12), Jan. 2000.

EXERCISES

1. Each of these fields belongs to the common log format except:

a. Host

b. Agent

c. Transfer volume

d. Authuser

2. The most common method for the HTTP request field is:

a. Get

b. Post

SPH SPH
JWDD053-06 JWDD053-Markov March 9, 2007 11:36 Char Count= 0

EXERCISES 155

c. Head

d. Put

3. A search engine hit, including the keywords they used to locate your site, would be located
in which field?

a. Authuser

b. Request

c. Agent

d. None of the above

4. The following web log entry is in which format? 207.86.139.145 - jwb

[09/Sep/1997:10:47:43 -0800] ``GET /www.ping/index.htm HTTP/1.0"

200 954

a. CLF

b. ECLF

c. MIIS

d. None of the above

5. The directory path and object name being requested by the client browser is contained in
which of the following?

a. HTTP request field

b. URI

c. CLF

d. All of the above

SPH SPH
JWDD053-07 JWDD053-Markov March 8, 2007 23:22 Char Count= 0

CHAPTER 7
PREPROCESSING FOR WEB
USAGE MINING

NEED FOR PREPROCESSING THE DATA

DATA CLEANING AND FILTERING

DE-SPIDERING THE WEB LOG FILE

USER IDENTIFICATION

SESSION IDENTIFICATION

PATH COMPLETION

DIRECTORIES AND THE BASKET TRANSFORMATION

FURTHER DATA PREPROCESSING STEPS

NEED FOR PREPROCESSING THE DATA

As we mentioned in Chapter 6, raw web log data must first be preprocessed before
modeling may be applied fruitfully. Consider that, to apply data mining models, the
input data format would ideally contain, among other things, information regarding:

� The page views
� The identification of each user
� The user session, specifically:

◦ Which pages were viewed?
◦ In which order?
◦ For how long?

Unfortunately, the raw web log files cannot be used directly for modeling pur-
poses without preprocessing. Why do we need to preprocess the data? Preprocessing
is needed in order to:

Data Mining the Web: Uncovering Patterns in Web Content, Structure, and Usage
By Zdravko Markov and Daniel T. Larose Copyright C© 2007 John Wiley & Sons, Inc.

156

SPH SPH
JWDD053-07 JWDD053-Markov March 8, 2007 23:22 Char Count= 0

NEED FOR PREPROCESSING THE DATA 157

� Clean up the data. That is, filter out from the data set the automatic requests
(e.g., for graphics files) generated by the web page, which were not specifically
requested by the user.

� Rid the web log file of nonhuman access behavior. Spiders, crawlers, and other
automatic web bots are constantly crawling around the World Wide Web, per-
forming exhaustive searches of Web sites. The behavior of the bots differs
qualitatively from human behavior and is not considered interesting from a
web usage mining standpoint.

� Identify each distinct user. The free-form structure of the Internet means that
most user accesses to most Web sites are done anonymously. The web usage
miner combines IP address information with available cookie and registration
information in order to identify each user.

� Identify the user session. That is, for each visit, determine which pages were
requested, the order of the requests, and the duration of each page view. Also,
try to estimate when the user left the Web site.

� Perform path completion. Many people use the “Back” button on their browsers
to return to a page viewed previously. When this happens, the browser returns
to a page that has previously been cached locally rather than accessing the web
server again. This leads to “holes” in the web server’s record of the user’s path
through the Web site. Knowledge of site topology must be applied to complete
these paths.

In this chapter we examine each of these preprocessing tasks in turn. We use
two data sets to demonstrate some of these tasks: the EPA web log file and the CCSU
web log file. The EPA data are the same EPA web log data that we met in Chapter
6. So that the reader may learn web usage mining by doing web usage mining, we
have made this data set available on the book series Web site. The EPA web log file
contains only five fields, which helps to soften our learning curve. Even though this
file is somewhat old (1995), the methods that we demonstrate for this simple data set
can be extrapolated to larger, more complex web log formats later.

The second data set we shall work with is the CCSU web log file, the web log
file for the Central Connecticut State University Web site, www.ccsu.edu, for the
date October 28, 2004. For privacy purposes, the client IP address and the client user
name have been altered and the query search strings have been omitted. The CCSU
server IP address and server port fields have been omitted because they contain only
one (or nearly only one) value. Unfortunately, for privacy purposes, this data set will
not be made available for download. The CCSU web log file contains the following
11 fields:

� Date
� Time
� Client IP address (altered for privacy)
� Client user name (altered for privacy)
� CCSU server IP address (omitted due to singular value)

SPH SPH
JWDD053-07 JWDD053-Markov March 8, 2007 23:22 Char Count= 0

158 CHAPTER 7 PREPROCESSING FOR WEB USAGE MINING

� CCSU server port (omitted due to nearly singular value)
� Request method
� Request URI stem (i.e., page requested)
� Request query search string (omitted for privacy)
� Status code
� Client user agent

DATA CLEANING AND FILTERING

Recall that the EPA web log file contains the following fields:

� Remote host field (IP Address)
� Date/time field
� HTTP request
� Status code field
� Transfer volume field

Figure 7.1 shows the first 20 records (of a total of 47,747 records) in the web
log, in raw form, before any preprocessing has been applied. The first web log entry
represents a request from a user at IP address 141.243.1.172, at 11:53:25 p.m. on
August 29, 1995 (remember that the specialized date format of this data set provides
only the date DD in August 1995 when the web log entry was made). The user’s
browser requested the web server to GET the page “/Software.html” using protocol
version HTTP 1.0. The status code “200” represents a success, with a resulting transfer
volume of 1497 bytes. The next hit on the web server occurred 11 seconds later, from
a different user, and the next hit after that occurred another 17 seconds later from still
another user.

Figure 7.1 EPA web log file, first 20 records of raw, unpreprocessed data.

SPH SPH
JWDD053-07 JWDD053-Markov March 8, 2007 23:22 Char Count= 0

DATA CLEANING AND FILTERING 159

Now note that these fields are all formatted as text, since the raw web logs are
text files. Also, note that some fields contain more than a single piece of information.
For example, the date/time field naturally contains two variables, the date and the
time. The HTTP request field contains the request method, the uniform resource
identifier (i.e., page or document requested), the protocol version, and optionally,
some search information. Before we can perform any analysis, we must extract these
masked variables.

Thus, the first step in web log preprocessing is the variable extraction step:

Data Cleaning/Filtering Step 1: Variable Extraction

1. From the date/time field, extract the date variable.

2. From the date/time field, extract the time variable.

3. From the HTTP request field, extract the request method.

4. From the HTTP request field, extract the page (URI).

5. From the HTTP request field, extract the protocol version.

These extractions may be accomplished using the string manipulation functions
of your software. Next, it is useful to create a date/time stamp using both the date and
time variables so that the software recognizes that 12:01 a.m. (00:01) on August 30 oc-
curs later than 11:59 p.m. (23:59) on August 29. Of course, different software packages
encode date information differently. One way to create the time/stamp is as follows.

Data Cleaning/Filtering Step 2: Creating a Time Stamp

1. First find out how many days there are between the web log entry date and the
software’s baseline date.

2. Multiply this number of days by 86,400, which represents the number of seconds
in a 24-hour day.

3. Find the time in seconds since midnight that is represented by the time in the
web log entry.

4. Add (2) and (3).

The result of (1) through (4) is to create a time stamp, an integer-typed variable
that represents the number of seconds elapsed since midnight of the baseline date.
The time stamp is useful for estimating the duration of the user’s visit to the Web
site and for maintaining the sequence of web requests across days. Figure 7.2 shows
the results from our variable extraction and time stamp creation. Note that the time
stamp for the second entry is 11 greater than that of the first entry, representing the
11 seconds elapsed between the two entries. (The baseline date for this example is
January 1, 1995.)

Turning to the CCSU web log data, Figure 7.3 shows the first 20 records (of a
total of 193,704 records) in the web log, containing the eight remaining fields in raw
form, before preprocessing. The first web log entry represents a request from a user at
IP address 549.152.17.23, at 12:00:02 a.m. on October 28, 2004. The user’s browser
requested the web server to GET the default web page at “/athletictraining/Services/.”
The status code “302” represents a dynamic redirection message; that is, the user’s

SPH SPH
JWDD053-07 JWDD053-Markov March 8, 2007 23:22 Char Count= 0

160 CHAPTER 7 PREPROCESSING FOR WEB USAGE MINING

Figure 7.2 EPA data: extracted variables and time stamp for the first 20 entries.

browser will be redirected to another address. This client’s browser is Microsoft
Internet Explorer 6.0, and the client’s browser is Windows NT (5.1). The next hit on
the web server occurred 4 seconds later, from a different user. The status of 304 for this
second client represents a “conditional GET,” indicates that the server is checking if
the document in cache is the current version, and asks the browser to open the cached
version.

Note that entries 2 to 7 of Figure 7.3 are all from the same IP address,
50.2.32.186. The original request for the /Default.htm page prompted requests for
all the other objects that reside on that page, such as the header and the navigation
bar, lines 4 and 6, respectively. To simplify the web usage mining process, these
ancillary requests should be filtered out, since they are performed automatically by
the browser; the user is only aware that he or she requested the single web page
/Default.htm. Also, note that the CCSU web log data need not undergo the date/time
variable extraction step, since it already includes separate fields for date, time, request

Figure 7.3 CCSU data: first 20 records of raw, unpreprocessed data.

SPH SPH
JWDD053-07 JWDD053-Markov March 8, 2007 23:22 Char Count= 0

DATA CLEANING AND FILTERING 161

TABLE 7.1 Most Popular Page Extensions in the
EPA Web Log

Page Extension Count of Web Log Entries

.gif 22,094
None 13,546
.html 8,609
.xbm 850
.htm 341
.pdf 107
.exe 82
.zip 69
.txt 68
.wp 52
.jpg 25

method, and page. It still needs the time stamp step, however, and it was applied here
(not shown) using a baseline date of January 1, 2000.

Page Extension Exploration and Filtering

Although we have extracted and derived new variables for the EPA data, the web log
is still rather raw and difficult to interpret directly. For example, the web log entries
are not sorted by IP address, making it difficult to examine the behavior of individual
users. Also, it is not clear whether all 47,747 records indicate actual user clicks, or
whether there are large numbers of requests generated automatically by the browser’s
call to a web page.

We therefore explore the page extensions in the EPA web log file to determine
whether any extensions should be removed. Restricting ourselves to the GET method,
the 11 most popular page extensions are shown in Table 7.1. The web usage miner
should peruse these page extensions and determine which extensions may be consid-
ered irrelevant from a user-behavior point of view. Typically, graphics file extensions
(e.g., .gif, .xbm, .jpg) may safely be removed, unless either (1) the Web site considers
graphics to be content and wishes to track downloads of the graphics files, or (2) the
analyst is interested in tracking bandwidth consumption. The pages with no exten-
sions represent the requests for the default page for a particular directory, such as
“GET /” for the default page in the root directory or “GET/Access/” for the default
page in the “/Access/” directory.

Since we assume that the EPA Web site does not consider graphics to be content,
and since we are not (at the moment) interested in tracking bandwidth usage, we
proceed to eliminate the entries in the web log that contain these graphics extensions:
.gif, .xbm, and .jpg. This reduces the size of our database by about half, thereby
simplifying our analysis tasks. This process is known as filtering, since we are filtering
out from the web log file those entries that are not relevant to the analytical problems
of interest. We retain only the following page extensions: .doc, .exe, .gz, .htm, .html,
.pdf, .ps, .tar, .txt, .wp, .wpd, .zip, and the empty page extension indicating a directory
(e.g., record 4 in Table 7.2).

SPH SPH
JWDD053-07 JWDD053-Markov March 8, 2007 23:22 Char Count= 0

162 CHAPTER 7 PREPROCESSING FOR WEB USAGE MINING

TABLE 7.2 Most Popular Page Extensions in the
CCSU Web Log

Page Extension Count of Web Log Entries

.gif 64,443

.jpg 55,615

.htm 35,400

.js 15,900
None 4096
.JPG 3737
.pdf 1381
.css 1346
.ico 1105
.asp 906
.exe 838

Figure 7.4 contains the first 20 entries in the EPA web log file after page
extension filtering has been applied. Note in the shaded column that no graphics files
remain. To recapitulate, the data cleaning and filtering portion of the preprocessing
phase consists of the following three steps: (1) variable extraction, (2) time stamp
derivation, and (3) page extension exploration and filtering. For web logs with a
richer collection of fields, of course, further cleaning, derivation, and filtering is both
possible and appropriate.

For the CCSU web log data, Table 7.2 contains a list of the 10 (out of 41)
most popular page extensions. We shall filter the CCSU data, retaining only the
following page extensions: .htm, .pdf, .asp, .exe, .txt, .doc, .ppt, .xls, and .xml. In
this way, 143,185 web log entries are filtered out, leaving 48,385 entries remaining
for downstream analysis. Note that here we are including the results from the GET
requests only.

Figure 7.4 After filtering, no graphics files remain in the web log file.

SPH SPH
JWDD053-07 JWDD053-Markov March 8, 2007 23:22 Char Count= 0

DE-SPIDERING THE WEB LOG FILE 163

DE-SPIDERING THE WEB LOG FILE

Web search engines need the most current information available from the World
Wide Web to provide this information to their customers. Therefore, they dispatch
spiders, crawlers, and other automatic web bots to crawl around the Web performing
exhaustive searches of Web sites. The behavior of these bots differs qualitatively from
human behavior; for example, the bot may request, in order, every possible link from
the Web site, one after the other. This behavior is not considered interesting from a
web usage mining standpoint. In fact, if this behavior is retained in the web log file,
the resulting analysis will not represent an accurate appraisal of how humans use the
Web site. Therefore, the web usage miner needs to try to rid the web log file of these
types of nonhuman access behavior.

The most direct method of eliminating bots, spiders, and crawlers from the
web log file is to identify the spider’s name in the user agent field, when supplied.
For contact purposes, the bots often also include a URL or an e-mail address. The
webmaster may ask the operator of the crawler not to gather information from certain
portions of the Web site, to avoid wasting bandwidth. An example of a crawler bot is
the Google bot; to learn more, including how to ask Google not to visit certain parts of
your Web site, visit the Google bot site at http://www.google.com/bot.html.
Other crawlers include the MSN bot (search.msn.com/msnbot.htm), and Yahoo!
Slurp (help.yahoo.com/help/us/ysearch/slurp/). Once sessionizing has
been completed, a second level of de-spidering may be applied by identifying the
types of access behavior patterns that are typical of spiders, crawlers, and bots.

Since the EPA web log data set does not contain a user agent field, we turn
instead to the CCSU web log data to provide a demonstration of de-spidering. Consider
Figure 7.5, which contains a lis of the most popular user agents for the CCSU web
log data. Note the presence of three different crawlers and bots, including the Google
bot (two different types of entries), Yahoo! Slurp, and the Scirus crawler. Scirus
(www.scirus.com) is a web crawler “for scientific information only.” Further, there
appears to be an automatic “Servers Alive URL check” routine running. These web
log entries, along with all the bot and crawler entries, should be filtered out before
proceeding to model human behavior on the Web site. Here we did so, filtering out

Figure 7.5 Most popular user agents for the CCSU web log file.

SPH SPH
JWDD053-07 JWDD053-Markov March 8, 2007 23:22 Char Count= 0

164 CHAPTER 7 PREPROCESSING FOR WEB USAGE MINING

Figure 7.6 Over 10% of the CCSU web log entries are from bots, crawlers, and spiders.

5201 entries from recognized bots, spiders, and crawlers, leaving us with 43,184
entries. A bar chart of the “bot” vs. “not bot” entries is provided in Figure 7.6.

USER IDENTIFICATION

Here, the goal is to identify each distinct user. Ideally, this would be accomplished
easily if the user provided his or her registration information, such as user name and
password, each time the Web site was accessed. Unfortunately, the free-form structure
of the Internet means that most user accesses to most Web sites are done anonymously,
so that registration information is not available. Another way of describing this situa-
tion is to say that the Internet is essentially stateless, meaning that each request for a
web page gets treated as an isolated event, unrelated to all other requests for the site’s
web pages. User identification is one way of introducing a state into this stateless
system.

Another means of identifying users is the use of cookies. A cookie is an arbitrary
text string, usually set by a web server, containing whatever information the server
wishes to place. In this way, cookies can be used to connect current web page accesses
to previous accesses. In addition to tracking user access, the most common uses for
cookies are:

� To avoid requiring returning registered users from signing in again each time
they access the site

� To personalize the user’s experience: for example, with individualized recom-
mendations

� To maintain the user’s shopping cart for e-commerce sites

However, many users are concerned that the abuse of cookie information can lead to
violations of privacy. Further, cookies can be blocked or cleared by the user. Therefore,
the web usage miner needs recourse to other strategies for identifying users.

The remote host field, or IP address field, may in principle be used to identify
users. However, the widespread use of proxy servers, corporate firewalls, and local
caches renders problematic the use of the IP address as a substitute for user identifica-
tion. For example, several users may be accessing the same site, using a proxy server,
which will provide the web server with the same IP address for each user. To provide
an example of how sparse the user name field is for a typical Web site, we show a
table of the most common values for this field in the CCSU web log data, given in
Table 7.3. The server name has been changed, as have the user names provided here.
Note that over 99.5% of the user names are blank, taking the “-” value in the web

SPH SPH
JWDD053-07 JWDD053-Markov March 8, 2007 23:22 Char Count= 0

USER IDENTIFICATION 165

TABLE 7.3 Most Common Values for the User Name Field,
CCSU Data

Value Proportion Count

— 0.9955034 192,833
CCSU Server\smith 0.001115 216
CCSU Server\jones 0.000780 151
CCSU Server\akhbar 0.000614 119
CCSU Server\ivanov 0.000361 70
CCSU Server\chang 0.000217 42
CCSU Server\feliciano 0.000186 36
CCSU Server\chagnon 0.000181 35
CCSU Server\johnson 0.000176 34
CCSU Server\washington 0.000134 26
CCSU Server\rivera 0.000129 25

log entry. Since users by and large do not provide their own identification, we should
seek alternative methods to identify them.

Next, consider Table 7.4, containing an excerpt from the fictional web log for
an imaginary Web site. Note that all the IP addresses are the same, which would at
first glance seem to indicate that all the entries are from the same user. However, such
a conclusion would be mistaken. We shall use the following heuristic, which seems
to be a reasonable assumption: If the agent field differs for two web log entries, the
requests are from two different users. Although this assumption ignores users who
access the same Web site with two different browsers on the same machine, this sort
of behavior is relatively rare.

Consider the sample web log file for an imaginary Web site in Table 7.4. Ap-
plying this heuristic to the entries in the table, we can discern that there are at least
two users represented here, one using Windows NT and MS Internet Explorer, the
other using Linux and Firefox. Based on this, we can postulate the following paths
through the Web site taken by each user:

� User 1: A → B → E → K → I → O → E → L
� User 2: A → C → G → M → H → N

However, do you see a problem with these reconstructions? If we apply the information
available from the referrer field, along with the Web site topology, we can uncover
the highly likely result that “user 1” here is actually two different users. Why is this?
Follow the referrer field along user 1’s path through the Web site. We see that access
to B.html has been referred from A.html, access to E.html referred from B.html, and
access to K.html referred from E.html.

However, unexpectedly, there is no referrer shown for the page I.html request.
Also, consider the Web site topology shown in Figure 7.7. The arrows indicate link
directionality. There is no direct link between K.html and I.html. Thus, it appears
highly unlikely that the user who was traversing A → B → E → K then proceeded to
I. It is more likely that this request for page I.html came from a third user, who accessed
the page directly, probably by entering the URL directly into the browser using the

SPH SPH
JWDD053-07 JWDD053-Markov March 8, 2007 23:22 Char Count= 0

TA
B

LE
7.

4
Sa

m
p

le
W

eb
Lo

g
Fi

le
fo

r
an

Im
ag

in
ar

y
W

eb
Si

te

IP
A

dd
re

ss
T

im
e

M
et

ho
d

R
ef

er
re

r
A

ge
nt

98
7.

65
4.

32
.1

00
:0

0:
02

“G
E

T
A

.h
tm

lH
T

T
P/

1.
1”

—
M

oz
ill

a/
4.

0
(W

in
do

w
s

N
T

5.
1,

M
SI

E
6.

0)
98

7.
65

4.
32

.1
00

:0
0:

05
“G

E
T

B
.h

tm
lH

T
T

P/
1.

1”
A

.h
tm

l
M

oz
ill

a/
4.

0
(W

in
do

w
s

N
T

5.
1,

M
SI

E
6.

0)
98

7.
65

4.
32

.1
00

:0
0:

06
“G

E
T

A
.h

tm
lH

T
T

P/
1.

1”
—

M
oz

ill
a/

5.
0

(L
in

ux
1.

0,
Fi

re
fo

x/
0.

9.
3)

98
7.

65
4.

32
.1

00
:0

0:
10

“G
E

T
E

.h
tm

lH
T

T
P/

1.
1”

B
.h

tm
l

M
oz

ill
a/

4.
0

(W
in

do
w

s
N

T
5.

1,
M

SI
E

6.
0)

98
7.

65
4.

32
.1

00
:0

0:
17

“G
E

T
K

.h
tm

lH
T

T
P/

1.
1”

E
.h

tm
l

M
oz

ill
a/

4.
0

(W
in

do
w

s
N

T
5.

1,
M

SI
E

6.
0)

98
7.

65
4.

32
.1

00
:0

0:
20

“G
E

T
C

.h
tm

lH
T

T
P/

1.
1”

A
.h

tm
l

M
oz

ill
a/

5.
0

(L
in

ux
1.

0,
Fi

re
fo

x/
0.

9.
3)

98
7.

65
4.

32
.1

00
:0

0:
27

“G
E

T
I.

ht
m

lH
T

T
P/

1.
1”

—
M

oz
ill

a/
4.

0
(W

in
do

w
s

N
T

5.
1,

M
SI

E
6.

0)
98

7.
65

4.
32

.1
00

:0
0:

36
“G

E
T

G
.h

tm
lH

T
T

P/
1.

1”
C

.h
tm

l
M

oz
ill

a/
5.

0
(L

in
ux

1.
0,

Fi
re

fo
x/

0.
9.

3)
98

7.
65

4.
32

.1
00

:0
0:

49
“G

E
T

0.
ht

m
lH

T
T

P/
1.

1”
I.

ht
m

l
M

oz
ill

a/
4.

0
(W

in
do

w
s

N
T

5.
1,

M
SI

E
6.

0)
98

7.
65

4.
32

.1
00

:0
0:

57
“G

E
T

M
.h

tm
lH

T
T

P/
1.

1”
G

.h
tm

l
M

oz
ill

a/
5.

0
(L

in
ux

1.
0,

Fi
re

fo
x/

0.
9.

3)
98

7.
65

4.
32

.1
00

:0
3:

15
“G

E
T

H
.h

tm
lH

T
T

P/
1.

1”
—

M
oz

ill
a/

5.
0

(L
in

ux
1.

0,
Fi

re
fo

x/
0.

9.
3)

98
7.

65
4.

32
.1

00
:0

3:
20

“G
E

T
N

.h
tm

lH
T

T
P/

1.
1”

H
.h

tm
l

M
oz

ill
a/

5.
0

(L
in

ux
1.

0,
Fi

re
fo

x/
0.

9.
3)

98
7.

65
4.

32
.1

00
:3

1:
27

“G
E

T
E

.h
tm

lH
T

T
P/

1.
1”

K
.h

tm
l

M
oz

ill
a/

4.
0

(W
in

do
w

s
N

T
5.

1,
M

SI
E

6.
0)

98
7.

65
4.

32
.1

00
:3

1:
34

“G
E

T
L

.h
tm

lH
T

T
P/

1.
1”

E
.h

tm
l

M
oz

ill
a/

4.
0

(W
in

do
w

s
N

T
5.

1,
M

SI
E

6.
0)

So
ur

ce
:

A
da

pt
ed

fr
om

re
f.

1.

166

SPH SPH
JWDD053-07 JWDD053-Markov March 8, 2007 23:22 Char Count= 0

USER IDENTIFICATION 167

B

A

C

Navigation Page

Content Page

D

I J

PONM

G H

LK

E F

Figure 7.7 Topology of the imaginary Web site, showing links. (Adapted from ref. 1.)

same browser version and operating system. Further, note that the only way to access
page O.html is from I.html. The referrer information supports the inference that this
third user clicked from I.html to O.html. Thus, it appears that we have evidence in
this web log file for the presence of three distinct users:

� User 1: A → B → E → K → E → L
� User 2: A → C → G → M → H → N
� User 3: I → O

User Identification Procedure

In general, the following procedure could be used to identify users:

1. Sort the web log file by ID address and then by time stamp.

2. For each distinct ID address, identify each agent as belonging to a different
user.

3. For each user identified in step 2, apply path information garnered from the
referrer field and the site topology to determine whether this behavior is more
likely the result of two or more users.

4. To identify each user, combine the user identification information from steps
1 to 3 with available cookie and registration information.

SPH SPH
JWDD053-07 JWDD053-Markov March 8, 2007 23:22 Char Count= 0

168 CHAPTER 7 PREPROCESSING FOR WEB USAGE MINING

SESSION IDENTIFICATION

Next we turn to the important concept of a user session, which may be defined roughly
as the set of web pages viewed by a particular user for a particular purpose. Baglioni
et al. [2] recommend the reference length approach, where it is assumed that the
length of time that a user spends on a web page is proportional to the interest of the
user in the page’s content. The reference length approach allows us to distinguish
between navigational pages, which contain only links and no content, and content
pages, which contain the information desired by the user.

Define the time delay dA→B to be the time difference between the request for
page A and the request for page B. Then, in the absence of other information, for a
given time threshold t, we may provisionally classify page A to be a content page if
dA→B > t, and a navigational page otherwise. Baglioni et al. then define a user session
to be “a sequence of navigational URLs followed by one content URL.” However, this
definition is too restrictive for our purposes, since conceivably the user could move
from content page to navigation page to content page in the same session.

The concept of user session is important because it corresponds to what is often
considered to be a “visit” to a site. As the web usage miner should not be expected
to divine the purpose of a user visiting the site, standardized heuristics are available.
For example, suppose that a particular user makes two visits to a particular Web site
twice within a 24-hour period. Suppose that the visits are 6 hours apart. If the user
identification methods examined earlier are applied to the web log for this 24-hour
period, the two visits will be sorted together and identified with this user. But clearly,
a distinction should be made between the two visits. This is where sessionizing, or
session identification, comes in. Sessionizing is a process by which the aggregate
page requests made by a particular user over a long period of time are partitioned into
individual sessions.

Perhaps the most straightforward sessionizing method is simply to apply a time-
out after a certain length of time has passed since the user’s last request. For example,
using empirical data, Catledge and Pitkow [3] determined a timeout threshold of
25.5 minutes. Many web usage analysts and commercial applications set the timeout
threshold at 30 minutes. A session identification algorithm can then apply this timeout
threshold to the web log data and define a new session to be started whenever the
difference between two requests exceeds the threshold.

For example, consider again Table 7.4, which contains the sample web log for
our imaginary Web site. Note that for user 1, there is more than a 30-minute delay
between the request for page K.html (at time 00:00:17) and the second request for page
E.html (at time 00:31:27). The sessionizing algorithm would therefore presumably
identify the second request for page E.html as the start of a new session, giving us the
following four sessions from this web log:

� Session 1 (user 1): A → B → E → K
� Session 2 (user 2): A → C → G → M → H → N
� Session 3 (user 3): I → O
� Session 4 (user 1): E → L

SPH SPH
JWDD053-07 JWDD053-Markov March 8, 2007 23:22 Char Count= 0

SESSION IDENTIFICATION 169

Session Identification Procedure

The session identification procedure may be summarized as follows:

1. For each distinct user identified in the preceding section, assign a unique session
ID.

2. Define the timeout threshold t .

3. For each user, perform the following:

a. Find the time difference between every two consecutive web log entries.

b. If this difference exceeds the threshold t , assign a new session ID to the later
entry.

4. Sort the entries by session ID.

Returning to the EPA web log data, we apply this session identification proce-
dure to the cleaned and filtered EPA web log data. First, we assign a unique session
ID to each user identified. (Since this data set contains neither the referrer nor the
agent fields, we default to assigning users by IP address only.) Then we define a time-
out threshold of 30 minutes (1800 seconds) for defining the start of a new session.
Finally, for each user, we determine whether any requests are delayed by more than
30 minutes; if so, a new session ID is issued. Finally, the entries are sorted by session
ID. A portion of the results are provided in Figure 7.8 All entries in the figure are
from the same user. However, note the difference in time stamp between the shaded
entries: 20878108 – 20872908 = 5200 seconds = 86.67 minutes, exceeding the time-
out threshold of 30 minutes. Therefore, the algorithm assigned a new session ID,
“Session 21,” starting at this entry.

Figure 7.8 Session identification for EPA web log data.

SPH SPH
JWDD053-07 JWDD053-Markov March 8, 2007 23:22 Char Count= 0

170 CHAPTER 7 PREPROCESSING FOR WEB USAGE MINING

The web log files record the time whenever a request from the web server is
made. However, when the user leaves the site, no record of this is made on the original
web server; instead, the time is recorded on whatever server hosts the next Web site
the user visited. This situation makes it difficult to estimate when the session ended
or how long the session lasted.

It is possible that the user left the site immediately to check the sports scores;
on the other hand, the user may have remained on the last page for up to an hour.
Using only the web log data, there is no way to tell for sure. If we assume that the
session ended when no web entry was logged before the timeout threshold of 30
minutes, this is perhaps overestimating the session length. On the other hand, if we
define the end of the session to occur when the last page was logged, this is certainly
underestimating the session length. Neither solution is entirely satisfactory. Perhaps
a better solution is to assign the last page a duration similar to the duration of other
users who visited the same number of pages. Can you think of any other solutions to
this problem? You are invited to do so in the exercises.

PATH COMPLETION

Not all page views seen by the user are recorded in the web server log. For example,
many people use the “Back” button on their browsers to return to a page viewed
previously. When this happens, the browser returns to a page that was previously
cached locally rather than accessing the web server again. This leads to “holes,”
missing pages, in the web server’s record of the user’s path through the Web site.
Knowledge of site topology must be applied to complete these paths, in a process
known as path completion.

Once the missing pages have been identified, they are inserted into the session
file along with an estimate of the duration spent on the missing page. These duration
estimates may be classified according to whether the missing page is a navigation
page, with a shorter duration estimate, or a content page, with a longer duration
estimate.

Consider again session 2 identified in the preceding section:

� Session 2 (user 2): A → C → G → M → H → N

Note from the topology in Figure 7.6 that there is no direct link between page
M.html and page H.html. Therefore, the user is presumed to have hit the “Back”
button on the browser twice, retracing the path back through page G.html to page
C.html, where a direct link to H.html can be found. Therefore, the path completion
process leads us to insert “→ G → C ” into the session path for session 2, giving us
the following “final” forms for the four sessions:

� Session 1 (user 1): A → B → E → K
� Session 2 (user 2): A → C → G → M → G → C → H → N
� Session 3 (user 3): I → O
� Session 4 (user 1): E → L

SPH SPH
JWDD053-07 JWDD053-Markov March 8, 2007 23:22 Char Count= 0

DIRECTORIES AND THE BASKET TRANSFORMATION 171

DIRECTORIES AND THE BASKET TRANSFORMATION

The directory structure of a Web site may contain information that will prove useful
when the time comes to do some modeling, such as finding which pages are associated
with which other pages, and so on. It is therefore helpful to derive a new variable
that contains the top directory, or first directory, of the page requested. Then, if we
wish, we may aggregate the pages by directory, and analyze patterns and trends by
directory.

Figure 7.9 contains a list of the most commonly requested directories for the
CCSU Web site, with the root directory accounting for 48.8% of the requests. Note
the “/datamining” directory, with 274 requests. This is the Web site for Data Mining
@CCSU, the program offering a master of science in data mining with all classes com-
pletely online. The program director is the author. See www.ccsu.edu/datamining
(of course) for more information.

At present, the data are not in a format that is easy for most data mining
algorithms to work with. What we would prefer would be to transform the values in
the web log entries into a collection of flag variables, each flag variable indicating, for
example, whether or not a particular page or directory were requested. This collection
of flag variables would represent a single session using a single record, which is much
more appropriate than the web log file structure for most data mining algorithms. This

Figure 7.9 Directories requested most from the CCSU Web site.

SPH SPH
JWDD053-07 JWDD053-Markov March 8, 2007 23:22 Char Count= 0

172 CHAPTER 7 PREPROCESSING FOR WEB USAGE MINING

Figure 7.10 Web pages requested most from the CCSU Web site.

procedure is called the basket transformation because the collection of flag variables
are considered to comprise the basket of information about a particular session, all
summarized in one record.

Before applying the basket transformation, the web usage miner should try to
get an idea of which variables might be important for analysis farther downstream. For
example, it would make sense for the variable we just derived, the first directory, to
be important for association rules, since presumably pages within a single directory
would be likely to be requested together. Thus, we shall create flag variables for
each of the directories found in Figure 7.9, which contains all the directories that
have 0.5% or more of the page requests. We also create flag variables for each of
the pages found in Figure 7.10, which contains all pages that have 0.5% or more
requests.

A flag variable is a special case of an indicator variable (also known as a dummy
variable), for use when we wish to indicate whether or not a record has a particular
characteristic. A flag variable is a binary 0/1 variable which takes the value 1 if the
observation belongs to a given category, and 0 otherwise. For example, to indicate
whether or not a particular session included a request for the “/academics.html” web
page, we define the following flag variable:

Page /academics.html =
{

T if session included /academics.html page
F otherwise

Figure 7.11 shows an intermediate stage of this basket transformation on the
page variable for a few of the sessions. Note that whenever the page variable takes
a particular value, the corresponding flag variable takes on a value T (true), and
F (false) otherwise. For a particular page or directory, only a single flag variable
may take a true value. For the first page in Session 0, /Default.htm, the flag variable
Page /Default.htm is the only one to take on a true value. Similarly, Page /Future.htm

SPH SPH
JWDD053-07 JWDD053-Markov March 8, 2007 23:22 Char Count= 0

DIRECTORIES AND THE BASKET TRANSFORMATION 173

Figure 7.11 Creating flag variables for web pages with frequency > 0.5%.

is the only one to show a true value for the second page in the session, Future.htm.
Note that there are no flag variables turned on for the third and fourth pages in this
session, since these variables evidently did not make it to the 0.5% threshold for
inclusion as flag variables.

The web usage miner should check a few of the flag variables to make sure
that they are being transformed accurately. To do this, simply check the frequency
distribution of the flag variable against the proportions found in Figure 7.9 and 7.10.
For example, the frequency distribution of the flag variable “first dir /datamining/”
is given in Figure 7.12. Note that the count and proportion of true records in Figure
7.12 are exactly the same as for the directory /datamining/ given in Figure 7.9.

Figure 7.11 is not in the final basket transformation format, since there is more
than one record per session. The final step is to aggregate the flags over each session.
The rule here is as follows, for each session: “For a given page A, if a true value
occurs for page A anywhere in the session, the aggregate value for page A in the
basket transformation format is true.” Programmers would state that we are “OR-ing”
the individual web log entry flags to give us the session flag. For the session flag to
be false, all individual entry flags would have to be false.

An excerpt from the resulting basket-transformed CCSU web log is shown in
Figure 7.13. Note that there is only one record per session; note also that more than
one flag variable can take on a true value, since the session represents more than
one page. Later, when we move to modeling, the data mining algorithms will greatly
prefer the data in this form.

Figure 7.12 Frequency distribution of “first dir /datamining/.”

Figure 7.13 Excerpt from the basket-transformed CCSU web log.

SPH SPH
JWDD053-07 JWDD053-Markov March 8, 2007 23:22 Char Count= 0

174 CHAPTER 7 PREPROCESSING FOR WEB USAGE MINING

FURTHER DATA PREPROCESSING STEPS

In this chapter we presented specialized preprocessing methods for handling web log
data. Once these methods have been completed, the web usage miner must still apply
the usual data mining preprocessing steps [4, Chapt. 2]. Space constraints prevent us
from describing these steps. Suffice to list some of them:

� Data quality monitoring
� Handling missing data
� Identifying misclassifications
� Identifying outliers using both graphical and numerical methods
� Normalization and standardization

For more on data preprocessing for data mining, see Larose [4] or Pyle [5].

REFERENCES

1. R. Cooley, B. Mobasher, and J. Srivastava, Data preparation for mining world wide web
browsing patterns, Journal of Knowledge and Information System, 1(1): 5–32, 1999.

2. M. Baglioni, U. Ferrara, A. Romei, S. Ruggieri, and F. Turini, Preprocessing and mining
web log data for web personalization, Advances in Artificial Intelligence, Volume 2829,
Springer, Berlin, 2003.

3. L. Catledge and J. Pitkow, Characterizing browsing strategies in the world wide web, Com-
puter Networks and ISDN Systems, 27: 1065–1073, 1995.

4. Daniel Larose, Discovering Knowledge in Data: An Introduction to Data Mining, Wiley,
Hoboken, NJ, 2005.

5. Dorian Pyle, Data Preparation for Data Mining, Morgan Kaufmann, San Francisco, CA,
1999.

EXERCISES

1. The series of requests for pages received by Web site servers is known as what?

a. Clickstream

b. Sessionization

c. Path completion

d. Spamming

2. Which of the following is not a part of the web log preparation process?

a. De-spidering

b. Sessionization

c. Path completion

d. Reporting

SPH SPH
JWDD053-07 JWDD053-Markov March 8, 2007 23:22 Char Count= 0

EXERCISES 175

3. What is the best way of estimating when a session has ended?

a. Session over if there has been no page request for 30 minutes.

b. Session over when the last page is requested.

c. Session over when your spouse calls demanding that you get off the Internet.

d. None of the above.

4. Why are many page requests never recorded in the server log?

a. The server is a Mac and it does not stoop to record PC hits.

b. Caching

c. Spiders

d. Sessionization

5. Suggest two creative solutions to estimating the length of stay on the last page.

Hands-on Analysis

6. For the following web log data sets, download the data, and perform the web log pre-
processing steps given below. The full data sets are available from the Internet traces
web site, http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html. We use only
a subset of the data. The data subsets are available from the book series web site,
www.dataminingconsultant.com.
� The NASA-HTTP web log data. We use only the first 131,904 records.
� The Calgary-HTTP web log data. We use only the first 65,536 records.

a. Extract the date and time variables, if needed.

b. Extract the method, page, and protocol version variables, if needed.

c. Create a time stamp that represents the number of seconds elapsed since a particular
convenient date, such as January 1, 1995. (For Clementine users, don’t forget to set
the proper time format in file > stream properties.)

d. Perform filtering.

(1) Construct a table of the 10 most popular page extensions, with their counts.

(2) Filter out all but the following extensions: .htm, .html, .pdf, .asp, .exe, .txt, .doc,
.ppt, .xls, and .xml. Retain records with empty page extensions.

(3) Explain clearly why we are doing all this.

e. De-spider the data.

(1) Construct a table of all of the bots and crawlers.

(2) Report the relative proportions of these hits.

(3) Eliminate all bots, spiders, and crawlers from the data.

(4) Clearly explain why we are doing this.

f. Try to perform user identification.

(1) Discuss how much the user name field helps us.

(2) Is there a referrer field?

(3) Do we have the site topology?

SPH SPH
JWDD053-07 JWDD053-Markov March 8, 2007 23:22 Char Count= 0

176 CHAPTER 7 PREPROCESSING FOR WEB USAGE MINING

g. (Extra credit)

(1) Perform some path completion using the actual entries. Document your work
clearly.

(2) Construct an “empirical” topology by visiting the site yourself.

h. Apply session identification.

(1) Use the unique IP addresses and a timeout threshold of 30 minutes.

(2) Provide a table of some of your results, sorted by session ID and time stamp.

i. Apply the basket transformation to the directory structure of the web log entries.

(1) Make a table of the 20 directories with the greatest number of hits.

(2) Make a table of the web pages requested most.

(3) Derive flag variables for these 20 directories and all pages showing at least 0.5%
frequency of hits.

(4) Provide documentation that your basket transformation is working, such as a table
of some sessions with the pages shown along with the flag variables.

(5) Provide a table showing the final form of your basket transformation, which should
contain only one entry per session.

j. Discuss the difficulty we face when estimating the duration of the last page of a session.
Suggest a creative means of estimating the duration of the last page of a session.

k. Identify and handle missing data.

l. Identify outliers.

SPH SPH
JWDD053-08 JWDD053-Markov March 13, 2007 8:21 Char Count= 0

CHAPTER 8
EXPLORATORY DATA ANALYSIS
FOR WEB USAGE MINING

INTRODUCTION

NUMBER OF VISIT ACTIONS

SESSION DURATION

RELATIONSHIP BETWEEN VISIT ACTIONS AND SESSION DURATION

AVERAGE TIME PER PAGE

DURATION FOR INDIVIDUAL PAGES

INTRODUCTION

Now that the heavy lifting of web log preprocessing has been completed, and before
we begin modeling the web usage data, it is helpful to perform some exploratory data
analysis (EDA). One can learn quite a lot about user behavior using some simple
EDA techniques, as discussed in Chapter 3 of Discovering Knowledge in Data [1]. In
general, EDA allows the analyst to probe deeper into the data set, inspect the interre-
lationships among the variables, and reveal interesting subsets of the records. Fruitful
areas for further investigation downstream could be indicated, based on relationships
uncovered in the EDA process, using simple graphs and tables. In this chapter we use
exploratory methods to delve into the EPA data set.

NUMBER OF VISIT ACTIONS

Later, when we begin profiling visitors to the Web site, one of the factors may be
the visit length, in terms of how many visit actions (e.g., page requests) are made by
users on the site, where visit is a synonym for session. Also, we would be interested in
obtaining some site statistics regarding the aggregate behavior of visitors in terms of

Data Mining the Web: Uncovering Patterns in Web Content, Structure, and Usage
By Zdravko Markov and Daniel T. Larose Copyright C© 2007 John Wiley & Sons, Inc.

177

SPH SPH
JWDD053-08 JWDD053-Markov March 13, 2007 8:21 Char Count= 0

178 CHAPTER 8 EXPLORATORYDATAANALYSIS FOR WEB USAGE MINING

0.0

800

600

400

200

0
5.0 10.0 15.0 20.0 25.0

Visit Actions

C
ou

nt

30.0 35.0 40.0 45.0 50.0

Summary Statistics,
Visit Actions, EPA

Mean 7.9
Median 3.0
Mode 1
Stan. Dev. 12.3
Minimum 1
Maximum 188

Figure 8.1 Distribution of visit actions, EPA.

the numbers of visit actions, such as the mean number of visit actions per session. The
number of visit actions is simply the count of the web log entries for each session ID.

Figure 8.1 includes summary statistics for visitors to the EPA Web site. The
mean number of user requests per session is almost eight, which seems like a fairly
healthy number—good news for web developers. However, comparison with other
statistics reveals evidence that the distribution of visit actions is strongly right-skewed.
For example, the mean is higher than the median, the mode is the same as the minimum,
and the maximum is very large.

Figure 8.1 confirms our deduction that the distribution is right-skewed. (To
increase granularity, the visit actions above 50 have been omitted from the graph.
Inclusion of these records would have made the graph even more right-skewed.)
What this shows us is that the great majority of sessions last fewer than five actions,
half last three or fewer, and a disappointingly large number of sessions consist of only
a single page request. This is not such good news for web developers. Why are visitors
leaving so soon? Is the site sufficiently user friendly? How can we change the site to
tempt visitors to linger? Actually, the developers should not be too unhappy, since
the majority of visits to most Web sites worldwide contain fewer than 10 actions.

For the CCSU web log data, the distribution of visit actions is even more strongly
right-skewed (Figure 8.2, capped at 50 actions). The summary statistics for the visit
actions are included in the figure. Broadly, the visit action behavior is somewhat
similar to that of the EPA Web site, with the minimum, median, and mode values
equal to just one visit action. The mean for the EPA site is higher, however. The reason
for this may be that the EPA data were not de-spidered; search engines and spiders
often systematically traverse an entire site, thereby increasing the mean visit length.

SESSION DURATION

Apart from the number of user clicks per session, another important variable is the
time duration per session that the user spent on the Web site. Unfortunately, because

SPH SPH
JWDD053-08 JWDD053-Markov March 13, 2007 8:21 Char Count= 0

SESSION DURATION 179

0.0

6,000

5,000

4,000

3,000

2,000

1,000

0
5.0 10.0 15.0 20.0 25.0

Visit Actions

C
ou

nt

30.0 35.0 40.0 45.0 50.0

Summary Statistics,
Visit Actions, CCSU

Mean 3.6
Median 1.0
Mode 1
Stan. Dev. 9.4
Minimum 1
Maximum 569

Figure 8.2 Distribution of visit actions, CCSU.

we do not know how long the user spent on the last page of a session, the exact
amount of time per session will prove to be elusive. Thus, when we calculate the
session duration, we need to restrict the sessions to those that contained more than
a single action; otherwise, there is no measured duration at all for a single web log
entry.

Session Duration Calculation Procedure

The process for calculating the session duration is as follows:

1. Select only those sessions that contain more than a single action.

2. For each session, do the following:

a. Select only the first and last page requests.

b. Find the session time by subtracting the time stamp of the first page request
from the time stamp of the last page request.

It is important to note, of course, that this method of calculating session duration
inevitably leads to an underestimate of the total session duration, since the time spent
on the last page is not counted. Once the session duration has been calculated, we may
explore further the behavior of this new statistic. For the reasons discussed above,
we restrict our analysis to those users who requested more than one page. Figure 8.3
contains the summary statistics for session duration for the EPA data.

The mean session duration is 752.4 seconds, or 12.54 minutes. Again, this seems
pretty encouraging, until we remember that for right-skewed data (see Figure 8.3) the
median is a better summary statistic than the mean. The median session duration is
317 seconds, or about 5.28 minutes, which is a more realistic estimate of the typical
session duration, among those who requested more than one page. Figure 8.3 shows
the distribution of session duration (also known as visit time) for multipage sessions.
Again, to increase granularity, the upper tail has been clipped at 4000 seconds for this
graph.

SPH SPH
JWDD053-08 JWDD053-Markov March 13, 2007 8:21 Char Count= 0

180 CHAPTER 8 EXPLORATORYDATAANALYSIS FOR WEB USAGE MINING

0.0

600

400

200

0
500.0 1000.0 1500.0 2000.0 2500.0

Visit_time

C
ou

nt

3000.0 3500.0 4000.0

Summary Statistics,
Session Duration,
EPA, Multipage Visits

Mean 752.0
Median 317.0
Mode 34
Stan. Dev. 1208
Minimum 1
Maximum 19,636

Figure 8.3 Distribution of session duration, EPA, and multipage visits.

Does this mean that the typical session lasted about 5.28 minutes? Well, this
statistic represents only those who clicked through at least two pages. It is probably a
fair assumption that those users (sessions) that only visited one page typically spent
less than 5.28 minutes on this single page. Therefore, this 5.28 minutes probably
overestimates the median session duration for all sessions, although we cannot know
for sure.

The CCSU session duration again exhibits broadly similar behavior, as shown
in Figure 8.4. Note that the mean session duration for the CCSU data is higher than
that of the EPA data, even though the mean visit actions for the CCSU data is less
than half that of the EPA data. This may indicate further evidence for the presence
of unaccounted-for web crawler activity on the EPA Web site, which would produce
many hits of short duration. This also indicates evidence that the mean time per page

0.0

2,000

1,500

1,000

500

0
500.0 1000.0 1500.0 2000.0 2500.0

Session Duration

C
ou

nt

3000.0 3500.0 4000.0

Summary Statistics,
Session Duration,
CCSU, Multipage Visits

Mean 776.4
Median 301
Mode 2
Stan. Dev. 1449
Minimum 1
Maximum 45,800

Figure 8.4 Distribution of session duration, CCSU, multipage visits.

SPH SPH
JWDD053-08 JWDD053-Markov March 13, 2007 8:21 Char Count= 0

RELATIONSHIP BETWEEN VISIT ACTIONS AND SESSION DURATION 181

for visitors to the CCSU Web site is longer than for visitors to the EPA Web site. In
the next section we investigate this result further.

The low mode (2) for the CCSU data may or may not be noteworthy, since
the mode can be an unstable statistic in certain situations. The maximum session
duration for the CCSU data represents a session of over 12 hours in length, with no
break of 30 minutes or longer. This is the same session that performed the maximum
569 actions, of which, as it turned out, 430 were requests for the CCSU Web site
default page. Perhaps the web analyst may wish to take another look at this user, to
better understand this type of behavior.

RELATIONSHIP BETWEEN VISIT ACTIONS AND
SESSION DURATION

Next, we turn to the relationship between session duration and the number of visit
actions. For example, would it make sense that on average, an increase in the number
of user actions per session is associated with an increase in the session duration? The
type of graph that would help here is a scatter plot of the relationship between session
duration (y, vertical axis) and visit actions (x, horizontal axis), shown in Figure 8.5
(visit actions capped at 80 to enhance granularity). As expected, there appears to be
evidence of a positive association, or correlation, between the number of visit actions
and the duration of the session.

It would be nice if we could somehow quantify this association. That is, an
additional page request is associated with how much of an increase in session duration,
on average? A handy tool for ascertaining this is regression analysis [2, Chap. 2]. In
simple linear regression, a straight line is used to approximate the relationship between
a single numerical predictor variable and a single numerical response variable.

0

2000

0

12000

10000

8000

6000

4000

10 20 30 40 50

VisitActions

S
es

si
on

 D
ur

at
io

n

60 70 80

Figure 8.5 Scatter plot of session duration vs. session actions, EPA data, showing evidence
of positive association. The estimated regression line is shown.

SPH SPH
JWDD053-08 JWDD053-Markov March 13, 2007 8:21 Char Count= 0

182 CHAPTER 8 EXPLORATORYDATAANALYSIS FOR WEB USAGE MINING

TABLE 8.1 Regression Coefficients for Relationship Between Session Duration and Session
Actions, EPA Dataa

Unstandardized Coefficients
Standardized Coefficients

Model B Std. Error β t Sig.

1 (Constant) 112.073 25.235 4.441 0.000
Visit Actions 59.330 1.451 0.671 40.901 0.000

a Dependent variable: session duration.

Applying regression analysis to the relationship between session duration and
visit actions gives us the results shown in Table 8.1. The estimated regression equation
is therefore:

“The estimated session duration equals 112.073 seconds plus 59.33

seconds times the number of visit actions.”

The line

estimated duration = 112.073 + 59.33 (actions)

is graphed in Figure 8.5.
We may use this estimated regression equation to make predictions for the ses-

sion duration, given a particular number of visit actions. For example, a session con-
sisting of 10 actions would have an estimated duration of 112.073 + (59.33)(10) =
705.373 seconds, or about 11.76 minutes. Also, the interpretation of the value for
the regression slope is useful. Here the slope estimate is 59.33 seconds, meaning
that for every additional visit action (page request), the estimate increase in session
duration is 59.33 seconds (always remembering that we are talking about sessions
with more than one page request). Note that this is not simply an average time per
page, but rather, the slope of the regression line, which has a y-intercept of 112
seconds. The literal meaning of the y-intercept is the estimated duration for a ses-
sion of zero actions, but this literal meaning does not make sense in the present
context.

The relationship between session duration and session actions for the CCSU
data is similar to that for the EPA data. Figure 8.6 is a scatter plot of session duration
against session actions, with an estimated regression line overlay. Here the estimated
regression equation is

estimated duration = 310.496 + 73.675 (actions)

as shown by Table 8.2. The interpretation of the slope value 73.675 is that for each
additional action (page view), the estimated increase in session duration is about 74
seconds. This is somewhat greater than the 59.33 seconds for the EPA data set, and
supports the surmise in the preceding section that CCSU visitors spent more time per
page than was spent by EPA visitors.

SPH SPH
JWDD053-08 JWDD053-Markov March 13, 2007 8:21 Char Count= 0

AVERAGE TIME PER PAGE 183

0

2000

0

12000

10000

8000

6000

4000

10 20 30 40 50

VisitActions

S
es

si
on

 D
ur

at
io

n

60 70 80

Figure 8.6 Scatter plot of session duration vs. visit actions, CCSU data. The estimated
regression line is shown.

TABLE 8.2 Regression Coefficients for Relationship Between Session Duration and
Session Actions, CCSU Dataa

Unstandardized Coefficients
Standardized Coefficients

Model B Std. Error β t Sig.

1 (Constant) 310.496 15.903 19.524 0.000
VisitActions 73.675 1.102 0.660 66.869 0.000

a Dependent variable: session duration.

AVERAGE TIME PER PAGE

Next, we calculate the average time per page over all sessions. This is found by
deriving a new variable for each session:

average time per page = session duration

number of visit actions − 1

Why do we subtract 1 from the number of visit actions? Because the last page visited
is not counted as part of the session duration but is counted in the number of visit
actions. The summary statistics for the average time per page are provided in Figure 8.7
So here we have an overall mean of 118.6 seconds per page across all sessions. The
figure shows that the distribution is again right-skewed, however, meaning that the
median is perhaps a better summary of the average time per page across all sessions.
(Observations over 600 have been clipped for the graph only.) This median time
per page of 53.6 seconds is not far from our earlier regression slope estimate of
59.33 seconds. It seems that, typically, visitors to the EPA Web site are spending

SPH SPH
JWDD053-08 JWDD053-Markov March 13, 2007 8:21 Char Count= 0

184 CHAPTER 8 EXPLORATORYDATAANALYSIS FOR WEB USAGE MINING

0

500

400

300

200

100

0.0 100.0 200.0 300.0 400.0
Time_per_page

C
ou

nt

500.0 600.0

Summary Statistics,
Average Time per Page,
EPA, Multipage Visits

Mean 118.6
Median 53.6
Mode 17
Stan. Dev. 199
Minimum 1
Maximum 1677

Figure 8.7 Distribution of average time per page, EPA multipage sessions.

about 1 minute per page. This average of about 1 minute per page is aggregated over
both navigation pages and content pages. Later we investigate whether there is a
difference in average time per page between the various types of pages.

The distribution of average time per page for the CCSU multipage sessions
shown in Figure 8.8 indicates a right-skewed distribution with both a heavier tail and
a more pronounced spike at the left bound than for the EPA data set. This greater
spread is reflected in the larger value for the standard deviation, 369 vs. 199, as seen
from the summary statistics in the figure. The mean and median are both larger for
the CCSU data than for the EPA data, reinforcing our earlier findings that the average
time per page was longer for visitors to the CCSU Web site. Note that the median of
about 80 seconds per page is not far from the regression slope estimate of 74 seconds
for each additional page.

0

2,000

1,500

1,000

500

0.0 100.0 200.0 300.0 400.0
Time_per_page

C
ou

nt

500.0 600.0

Summary Statistics,
Average Time per Page,
CCSU, Multipage Visits

Mean 259.0
Median 79.9
Mode 2
Stan. Dev. 369
Minimum 0.1
Maximum 1,800

Figure 8.8 Distribution of average time per page, CCSU multipage sessions.

SPH SPH
JWDD053-08 JWDD053-Markov March 13, 2007 8:21 Char Count= 0

DURATION FOR INDIVIDUAL PAGES 185

Figure 8.9 Lowest average times per page, CCSU data.

The minimum average time per page for the CCSU data is worrisome, however,
with a value of only 0.1 second per page. Further investigation is called for. Figure
8.9 provides a listing of the 20 lowest average times per page across all CCSU
sessions. Note that the first record in the figure, Session ID 7325, represents a session
of 22 page requests in 2 seconds. That’s some mighty fast clicking! Similarly, the
second record represents a session (ID 1192) that requested 36 pages in 8 seconds.
Presumably, these sessions were not the result of human activity, but rather the result
of bots, which somehow eluded the bot-catching net we applied in the de-spidering
section. The third record also stretches the bounds of credulity with its 14 actions in 4
seconds, but the user agent field does not identify it as a crawler or bot, so we choose to
overlook this.

However, we must return to the preprocessing stage to eliminate the entries
made by the two crawlers we uncovered here, htdig and Scooter. Note that this oc-
currence underscores the interactive nature of the web usage mining process. The
web usage miner should be prepared to iterate between phases, such as the pre-
processing phase and the exploratory phase, in order to fine tune the data and the
models.

DURATION FOR INDIVIDUAL PAGES

Visits to most Internet Web sites tend to be rather short in terms of page requests;
most visits last for fewer than a dozen actions. Thus, if the web usage miner is
interested in profiling the visitors, for example, for the purpose of making a sales
recommendation, such profiling should perhaps be done as quickly as possible. In
this section we derive attributes labeling the first three pages requested by the user in
each session. Later, the analyst may wish to use labels such as these to form purchase
or link recommendations.

SPH SPH
JWDD053-08 JWDD053-Markov March 13, 2007 8:21 Char Count= 0

186 CHAPTER 8 EXPLORATORYDATAANALYSIS FOR WEB USAGE MINING

Also in this section we explore the duration for each of the first three pages
visited. To find the duration for the first n pages of a session, use the following
procedure.

1. Sort the web log by session ID and then by time stamp.

2. For each session, do the following:

a. Label the first page visited, page1.

b. For page i = 2, . . . , n:

i. Label each page visited, pagei .

ii. Find the duration of pagei−1 by subtracting the time stamp of pagei−1

from the time stamp of pagei .

We surmise that the duration of navigation pages will be less than that of content
pages, overall. Unfortunately, we lack precise knowledge as to either the topology of
the Web site or to which pages are navigation and which pages are content. Recall from
Chapter 7 that we retained entries with the following extensions, on the assumption
that these extensions indicated some sort of content: .doc, .exe, .gz, .htm, .html, .pdf,
.ps, .tar, .txt, .wp, .wpd, and .zip. Entries with an empty page extension, indicating
a directory default page, were assumed to be navigation pages. However, note that
these are assumptions, not facts. The site may not even be divided formally into
navigation and content pages. Nevertheless, a brief exploration may shed some light
on the situation.

If we find that the mean duration of our content pages is greater than that of
our navigation pages, this would represent evidence in support of our categorization
scheme. Table 8.3 provides the mean page duration for each of the first two pages
visited, across all sessions, broken down as follows: the overall mean duration for
all pages, the mean duration for the navigation pages, and the mean duration for the
content pages. For each page, the content pages had a longer mean duration than
the navigation pages. This supports our categorization of the pages as such. Now
a statistician looks at this type of data and immediately thinks: two-sample t-test.
Certainly, we could carry out that type of statistical inference on these data, and we
may indeed find significance. But we are here in the exploratory phase of the process,
where inference does not belong. Also, the role of statistical inference in data mining
as a whole is rather problematic. The huge sample sizes extant in most data mining
problems leads inevitably to findings of significance, even for the smallest effect sizes.

TABLE 8.3 Mean Page Duration for the First Two Pages Visited,
EPA Data

Page 1 Duration Page 2 Duration

Overall Navigation Content Overall Navigation Content

135.5 126.6 162.5 96.7 88.7 123.1

SPH SPH
JWDD053-08 JWDD053-Markov March 13, 2007 8:21 Char Count= 0

DURATION FOR INDIVIDUAL PAGES 187

20

0

100

80

60

40

0.0 100.0 200.0 300.0 400.0

Page 2 Duration

Page Extension
Class

Content

Nevigation

P
er

ce
nt

500.0 600.0

Figure 8.10 Page 2 durations, by navigation and content pages, EPA data.

For these reasons we approach hypothesis tests and other inferential methods with
caution. Anyway, at this stage we are still exploring.

Figure 8.10 shows a graph of the page 2 durations, categorized by navigation or
content page. (Note that the histogram is normalized for each category, so that each
bar is the same size. This increases the contrast for the low-count areas. Also, the
durations have been capped at 600 seconds to increase granularity.) Note that although
navigation pages predominate overall, the proportion of lighter regions (content pages)
gradually are increase as the duration increases. That is, as duration increases, page
2 is more and more likely to be a content page.

The summary statistics for the CCSU data, shown in Table 8.4, support the
findings that the content pages have a higher mean duration than the navigation pages.
Also, the second page has a shorter duration than the first page for both data sets. The
difference in duration between the content and navigation pages is consistent but not
overwhelming. This is perhaps because many web pages actually contain elements
of both navigation and content.

TABLE 8.4 Mean Page Duration for First Two Pages Visited,
CCSU Data

Page 1 Duration Page 2 Duration

Overall Navigation Content Overall Navigation Content

277.5 239.7 278.3 241.8 178.4 243.8

SPH SPH
JWDD053-08 JWDD053-Markov March 13, 2007 8:21 Char Count= 0

188 CHAPTER 8 EXPLORATORYDATAANALYSIS FOR WEB USAGE MINING

REFERENCES

1. Daniel Larose, Discovering Knowledge in Data: An Introduction to Data Mining, Wiley,
Hoboken, NJ, 2005.

2. Daniel Larose, Data Mining Methods and Models, Wiley, Hoboken, NJ, 2006.

EXERCISES

Hands-on Analysis

For the following web log data sets, download the data and perform the web log
exploratory steps given below. (Note: Some steps may not be applicable to a par-
ticular data set.) The full data sets are available from the Internet traces Web site,
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html. We use only a sub-
set of the data. The data subsets are available from the book series Web site,
www.dataminingconsultant.com.
� The NASA-HTTP web log data. We use only the first 131,904 records.
� The Calgary-HTTP web log data. We use only the first 65,536 records.

(Note: For some histograms and scatter plots, it may be helpful to omit temporarily values
above a certain very high threshold, to increase the granularity of the plot. Otherwise,
the plot looks almost unary. When you do so, do not delete these records, simply omit
them from the plot. Also, report the threshold you used and the number and proportion
of records omitted.)

1. Examine the visit actions. Before you get too far into this, examine Exercise 4.

a. Provide a histogram of the number of visit actions per session.

b. Provide summary statistics, including mean, standard deviation, median, mode, min,
and max.

2. Examine session duration.

a. Consider sessions consisting of a single action only. What empirical evidence do we
have regarding the duration of such sessions? Thus, when finding session duration, we
need to restrict ourselves to the sessions that contain more than one action.

b. Calculate the session duration for such sessions.

c. Make a histogram of session duration, reporting the same statistics as in the preceding
exercise.

d. Do you think these results underestimate or overestimate the true session duration
across all sessions? Why?

3. Explore the relationship between visit actions and session duration.

a. Use a scatter plot and a simple linear regression model. Logically, which variable
should be the predictor and which should be the response?

b. Find the estimated regression equation.

c. In your scatter plot, overlay the estimated regression line.

d. Interpret clearly, so that a nonspecialist could understand, the meaning of the y-intercept
and slope coefficients and whether they make sense in the present context.

SPH SPH
JWDD053-08 JWDD053-Markov March 13, 2007 8:21 Char Count= 0

EXERCISES 189

4. Calculate the average time per page.

a. Show the formula you are using to derive this.

b. Construct a histogram of the average time per page, and report the usual summary
statistics. Comment.

c. Compare the intuitive interpretation of the average time per page with that of the
estimated slope in the preceding question.

5. Do the following.

a. Provide a table of the 20 sessions with the shortest average time per page. This
is a way of checking whether you have found and eliminated all the nonhuman
visitors.

b. If the average time per page for any session is less than 0.5 second, this is evidence
that this user is exhibiting nonhuman behavior. Therefore, delete these sessions and
redo all the work since the de-spidering step.

c. If you seriously think that a particular session with smaller than 0.5 second average
time per page is human generated, provide documentation (including all session pages),
and a darn good argument.

6. For each applicable session, find the duration of the first two pages, if any.

a. Provide a histogram of the duration for the first page.

b. Provide the usual statistics for the durations of both pages.

c. Compare and comment.

7. Consider how we can use the page extensions to determine whether the page is a navigation
page or a content page.

a. Go ahead and classify the empty page extension as indicating a navigation page, and
all the other (remaining) extensions as indicating a content page. (If you have a better
idea of how to do this, I am all ears.)

b. Compare the mean page duration for each of the first two pages visited, broken down
by navigation vs. content.

c. Provide a normalized histogram of mean page duration for each of the first two pages,
with an overlay of navigation vs. content.

d. Discuss whether this stuff is providing evidence in support of our method of classifying
navigation vs. content.

8. Construct a bar graph of the visits per hour over the course of 24 hours.

9. Construct a bar graph of the visitors per hour over the course of 24 hours.

10. Summarize the visits using the following statistics.

a. Total number of visits

b. Average visit length

c. Median visit length

11. Summarize the visitors using the following statistics.

a. Total number of unique visitors

b. Number of visitors who visited more than once that day

c. Average number of visits per visitor

SPH SPH
JWDD053-08 JWDD053-Markov March 13, 2007 8:21 Char Count= 0

190 CHAPTER 8 EXPLORATORYDATAANALYSIS FOR WEB USAGE MINING

12. Summarize the hits using the following statistics.

a. Successful hits for the entire site

b. Home page hits

13. Summarize the page views using the following statistics.

a. Total number of page views

b. Average number of page views per visit

14. Construct a table of the top 20 domain names as measured by visits and by hits.

15. Construct a table of the top seven domain types (e.g., .com) as measured by visits and by
hits.

16. Construct a bar graph of the average visit length over the course of 24 hours.

17. Construct a table of the top 10 visitors, by visits (e.g., wireless.ccsu.edu Mozilla/4.0.).

18. Construct a table of the number of unique visitors, by number of visits (1 through 9).

19. Construct a table of the top 10 pages, by visits and by page views.

20. Construct a table of the top 10 directories, by visits and by hits.

21. Construct a table of the top 10 file types (e.g., .gif), by number of times accessed.

22. Construct a table of the top 10 files downloaded, by number of downloads and by visits.

23. Construct a table of the top 10 entry pages, by visits.

24. Construct a table of the top 10 exit pages, by visits.

25. Construct a table of the top 10 single access pages, by visits.

26. Find all paths of length two or three pages that have been visited 24 or more times.

27. Construct a table of all 404 client errors (e.g., 404 not found), by hits.

28. Construct a table of the top 10 files that were not found and reported, by hits.

29. Construct a table of the frequency of internal server errors, by hits, for each of 24 hours.

30. Construct a table of the number of pages viewed (0 to 12), by visits.

31. Construct a table of the visit duration in minutes (0 to 1 minute, 1 to 2 minutes, etc.), by
visits.

32. Construct a table of the top six browsers, by visits and by hits.

33. Find the top three spiders, by visits and by hits.

34. Construct a table of all platforms (e.g., Windows XP), by visits.

SPH SPH
JWDD053-09 JWDD053-Markov March 10, 2007 15:7 Char Count= 0

CHAPTER 9
MODELING FOR WEB USAGE
MINING: CLUSTERING,
ASSOCIATION, AND
CLASSIFICATION

INTRODUCTION

MODELING METHODOLOGY

DEFINITION OF CLUSTERING

THE BIRCH CLUSTERING ALGORITHM

AFFINITY ANALYSIS AND THE A PRIORI ALGORITHM

DISCRETIZING THE NUMERICAL VARIABLES: BINNING

APPLYING THE A PRIORI ALGORITHM TO THE CCSU WEB LOG DATA

CLASSIFICATION AND REGRESSION TREES

THE C4.5 ALGORITHM

INTRODUCTION

After data preprocessing and exploratory data analysis have been completed, we can
finally begin the modeling phase. This is the favorite part for many web usage miners,
since it allows them to apply the range of their data mining skills and attack the
problem at hand using an array of data mining methods, algorithms, and models. In
many ways, the modeling phase also represents the beginning of the “payoff” for all
the analytic effort expended throughout the web mining process, for it is here that
patterns and trends that can be actionable and profitable for the end user may be
uncovered.

Data Mining the Web: Uncovering Patterns in Web Content, Structure, and Usage
By Zdravko Markov and Daniel T. Larose Copyright C© 2007 John Wiley & Sons, Inc.

191

SPH SPH
JWDD053-09 JWDD053-Markov March 10, 2007 15:7 Char Count= 0

192 CHAPTER 9 MODELING FOR WEB USAGE MINING

In this chapter we cover three main modeling techniques: clustering, association
rules, and classification. We begin by describing clustering, which should normally
be the first modeling method applied by the web usage miner or by the data miner in
general. We then move to association rules, which, like clustering, is an undirected
or unsupervised method, meaning that the analyst need not define a target variable.
The search for association rules is sometimes called affinity analysis or market bas-
ket analysis. Finally, we turn to classification methods, where the web usage miner
uses a variety of models to make predictions based on the patterns uncovered in the
data.

Data mining methods may be categorized as either supervised (directed) or
unsupervised (undirected). In unsupervised methods, no target variable is identified
as such. Instead, the data mining algorithm searches for patterns and structure among
the variables. The most common unsupervised data mining method is clustering.
Another data mining method, which may be supervised or unsupervised, is association
rule mining. In market basket analysis, for example, one may simply be interested
in “which items are purchased together,” in which case no target variable would be
identified. We cover association rule mining later in the chapter.

Most data mining methods are supervised methods, however, meaning that (1)
there is a particular prespecified target variable, and (2) the algorithm is given many
examples where the value of the target variable is provided, so that the algorithm
may learn which values of the target variable are associated with which values of
the predictor variables. All classification methods are supervised methods, including
the methods we use in this chapter: classification and regression trees and the C4.5
algorithm.

MODELING METHODOLOGY

Most supervised data mining methods apply the following methodology for building
and evaluating a model. First, the algorithm is provided with a training set of data,
which includes the preclassified values of the target variable in addition to the predictor
variables. For example, if we are interested in classifying income bracket, based on
age, gender, and occupation, our classification algorithm would need a large pool of
records, containing complete (as complete as possible) information about every field,
including the target field, income bracket. In other words, the records in the training
set need to be preclassified. A provisional data mining model is then constructed using
the training samples provided in the training data set.

However, the training set is necessarily incomplete; that is, it does not include
the “new” or future data that the data modelers are really interested in classifying.
Therefore, the algorithm needs to guard against “memorizing” the training set and
blindly applying to the future data all patterns found in the training set. For example,
it may happen that all customers named “David” in a training set may be in the high-
income bracket. We would presumably not want our final model to be applied to new
data, to include the pattern, “If the customer’s first name is David, then the customer
has high income.” Such a pattern is a spurious artifact of the training set and needs to
be verified before deployment.

SPH SPH
JWDD053-09 JWDD053-Markov March 10, 2007 15:7 Char Count= 0

DEFINITION OF CLUSTERING 193

Therefore, the next step in supervised data mining methodology is to examine
how the provisional data mining model performs on a test set of data. In the test
set, a holdout data set, the values of the target variable are temporarily hidden from
the provisional model, which then performs classification according to the patterns
and structure it learned from the training set. The efficacy of the classifications are
then evaluated by comparing them against the true values of the target variable. The
provisional data mining model is then adjusted to minimize the error rate on the
test set.

The adjusted data mining model is then applied to a validation data set, an-
other holdout data set, where again, the values of the target variable are hidden
temporarily from the model. The adjusted model is itself then adjusted, to mini-
mize the error rate on the validation set. Estimates of model performance for future,
unseen data can then be computed by observing various evaluative measures ap-
plied to the validation set. Such model evaluation techniques are discussed in Larose
[1, Chapter 11].

Although we have discussed the training/test/validation partition methodology
in the context of supervised methods, this methodology also applies to unsupervised
methods. Data miners and web usage miners should check the validity of their clus-
tering solutions and association rules by partitioning the data set and deriving broadly
similar clusters and rules across all partitions. Otherwise, the clusters and rules lack
validity and are due to “noise” rather than true patterns.

DEFINITION OF CLUSTERING

Clustering refers to the grouping of records, observations, or cases into classes of
similar objects. A cluster is a collection of records that are similar to one another and
dissimilar to records in other clusters. Clustering differs from classification in that
there is no target variable for clustering. The clustering task does not try to classify,
estimate, or predict the value of a target variable. Instead, clustering algorithms seek
to segment the entire data set into relatively homogeneous subgroups or clusters,
where the similarity of the records within the cluster is maximized, and the similarity
to records outside this cluster is minimized (see Figure 9.1).

Clustering is often performed as a preliminary step in a data mining process,
with the resulting clusters being used as further inputs into a different technique
downstream, such as neural networks. Due to the enormous size of many present-day
databases, it is often helpful to apply clustering analysis first, to reduce the search
space for the downstream algorithms. In this chapter we examine the BIRCH or
two-step clustering algorithm. For more information on clustering, see Chapter 3
or ref. [1].

For optimal performance, the analyst should normalize or standardize the nu-
merical variables for clustering, association, and classification. In this way, no partic-
ular variable or subset of variables dominates the analysis. Analysts may use either
the min-max normalization

X∗ = X − min(X)

range(X)

SPH SPH
JWDD053-09 JWDD053-Markov March 10, 2007 15:7 Char Count= 0

194 CHAPTER 9 MODELING FOR WEB USAGE MINING

Between-cluster variation:

Within-cluster variation:

Figure 9.1 Clusters should have small within-cluster variation compared to between-cluster
variation.

or the Z-score standardization:

X∗ = X − mean(X)

SD(X)

All clustering methods have as their goal the identification of groups of records such
that the similarity within the group is very high and the similarity to records in other
groups is very low. In other words, as shown in Figure 9.1, clustering algorithms
seek to construct clusters of records such that the between-cluster variation is large
compared to the within-cluster variation. This is somewhat analogous to the concept
behind analysis of variance (e.g., [2]).

THE BIRCH CLUSTERING ALGORITHM

The BIRCH algorithm [3] requires only one pass through the data set and therefore
represents a scalable solution for very large data sets. The algorithm contains two
main steps and hence is termed two-step clustering in Clementine. In the first step, the
algorithm preclusters records into a large number of small subclusters by constructing
a cluster feature tree. In the second step, the algorithm combines these subclusters
into higher-level clusters which represent the algorithm’s clustering solution.

One benefit of Clementine’s implementation of the algorithm is that unlike k-
means and Kohonen clustering, the analyst need not prespecify the desired number
of clusters. Thus, BIRCH clustering represents a desirable exploratory tool when
just beginning to undertake the modeling phase. A detailed case study that uses the
BIRCH algorithm in part is provided in Larose [4, Chapter 7]. For more information
on other clustering methods, including k-means clustering, Kohonen networks, and
hierarchical clustering methods, see Larose [1].

To provide an example of how clustering may be applied to a real-world data
set, we apply the BIRCH algorithm to the CCSU web log data set. Because later we

SPH SPH
JWDD053-09 JWDD053-Markov March 10, 2007 15:7 Char Count= 0

THE BIRCH CLUSTERING ALGORITHM 195

Session Actions

cluster-2 cluster-1

Session Duration

Cluster-2 Cluster-1

Count

Mean

Session

Action

Mean

Session

Action

5748

(99.2%)

79

(0.8%)

5.7 78.6

710 9106

Figure 9.2 Two clusters found by the BIRCH algorithm.

will be interested in association among pages, we restrict our analysis to sessions of
two or more session actions. For explanatory purposes we restrict our input variables
to two: session duration and session actions. Using only these two variables as in-
put, the BIRCH algorithm uncovered two clusters, which are described in Figure 9.2.
Cluster 2 dominates, with 99.2% of the sessions (all data are session-level), consisting
of sessions that have moderate numbers of actions (mean 5.7) and are of relatively
moderate duration (mean about 12 minutes). Cluster 1 is a very small cluster, con-
taining only 0.8% of the sessions, which have a very large number of actions (mean
78.6) and a long duration (mean over 2.5 hours).

Figure 9.3 provides a view of how cluster membership varies across the scatter
plot of duration vs. action values. The fewer, darker points of cluster 2 have either many

0

8000

6000

4000

2000

100 20 30 40
Session Actions

S
es

si
on

 D
ur

at
io

n

50 60 70 80 90

BIRCH Cluster
cluster-1
cluster-2

Figure 9.3 Scatter plot of session duration vs. session actions, with cluster membership
overlay.

SPH SPH
JWDD053-09 JWDD053-Markov March 10, 2007 15:7 Char Count= 0

196 CHAPTER 9 MODELING FOR WEB USAGE MINING

actions or high duration or both. The many, lighter points of cluster 1 are all huddled
within the curved line superimposed on the plot. (This line is for illustration only and
does not have a mathematical relationship with the algorithm results.) We illustrate
clustering using only two numerical variables because it is difficult to demonstrate
cluster membership graphically in higher dimensions.

Next we apply the BIRCH clustering algorithm to a large set of session-level
variables from the CCSU web log data. These variables include the following:

� Session duration
� Session actions
� Average time per page
� Page 1 duration
� Page 2 duration
� All the “first directory” (top directory) flag variables
� All the “page” flag variables

The BIRCH algorithm, which is free to select the most appropriate number of
clusters, again found two clusters in this large data set. An excerpt of the graphic
description of the variables, by cluster, is provided in Figure 9.4.

The web usage miner should carefully review such graphs, seeking variables
that take appreciably different values or proportions from cluster to cluster. These
variables will then by selected for more detailed scrutiny. From Figure 9.4 we see im-
mediately that the numerical variables time per page and session actions have notably
different values between the two clusters. Session duration has a smaller change, but
may be worth a look. The flag variables Page /search/ and Page /search/Default.htm
have proportions of false and true that seem to differ by cluster. Table 9.1 present a
complete list of variables that have apparent cluster differences, along with the mean
value (if a numerical variable) or the proportion of true values (if a flag variable).
Cluster 2 is the larger cluster, containing 4857 session records; cluster 1 contains
937 records. This enables us provisionally to identify cluster 2 as the more “typical”
cluster, containing almost 84% of the records. Our cluster descriptions therefore con-
centrate on discriminating how cluster 1 sessions differ systematically from a typical
session.

Based on the observed means and proportions in Table 9.1, we may label cluster
1 as “Index and Search Users.” The index pages are requested by these users at a rate
thousands of times greater than that of the typical user, and similarly for the search
pages. The top directories “Index” and “Search” are requested at a much higher
rate for cluster 1 users than for the typical user. Cluster 1 sessions also have more
than double the session actions than the typical session (13.8 vs. 5.0), although the
session duration is not that much more (983 vs. 741) because the average time per
page is a fraction of that of the typical session (79 vs. 290). The typical user, on
the other hand, almost never accesses either the search or the index pages. Thus, the
BIRCH clustering algorithm has uncovered some interesting differences between the
two session clusters. Perhaps the CCSU web masters could apply this knowledge to
enhance the online experience for both types of users.

SPH SPH
JWDD053-09 JWDD053-Markov March 10, 2007 15:7 Char Count= 0

AFFINITY ANALYSIS AND THE A PRIORI ALGORITHM 197

cluster-2 duster-1

Page_/academics.html

Page_/admission/PDF/Application.pdf

Prms/Central Pipeline_Registration_Guide_for_Students.pdf

Page_/search/

Page_/search/Default.htm

Session Actions

Session Duration

Time_per_page

Figure 9.4 Graphic description of variables, by cluster.

AFFINITY ANALYSIS AND THE A PRIORI ALGORITHM

Affinity analysis refers to the study of attributes or characteristics that “go together.”
Methods for affinity analysis, also known as market basket analysis, seek to uncover
associations among these attributes; that is, it seeks to uncover rules for quantifying
the relationship between two or more attributes. Association rules take the form “If
antecedent, then consequent,” along with a measure of the support and confidence
associated with the rule. For example, a particular supermarket may find that of the
1000 customers shopping on a Thursday night, 200 bought diapers, and of those 200
who bought diapers, 50 bought beer. Thus, the association rule would be: “If buy

SPH SPH
JWDD053-09 JWDD053-Markov March 10, 2007 15:7 Char Count= 0

198 CHAPTER 9 MODELING FOR WEB USAGE MINING

TABLE 9.1 Variables that Differ Appreciably by Cluster

Variable Cluster 1 Cluster 2

Page /Index/ 0.6949 0.0073
Page /Index/C.htm 0.1908 0.0042
Page /Index/Default.htm 0.6961 0.0022
Page /search/ 0.3663 0.0006
Page /search/Default.htm 0.3757 0.0006
First dir/search/ 0.3934 0.0053
First dir/Index/ 0.7256 0.0273
Session Actions 13.8 5.0
Session Duration 983 741
Average Time per Page 79 290
Page 1 duration 119 290
Page 2 duration 65 146

diapers, then buy beer” with a support of 50/1000 = 5% and a confidence of 50/200
= 25%.

What types of algorithms can we apply to mine association rules from a par-
ticular data set? The daunting problem that awaits any such algorithm is the curse of
dimensionality: The number of possible association rules grows exponentially in the
number of attributes. Specifically, if there are k attributes and we limit ourselves to bi-
nary attributes and account only for the positive cases (e.g., Buy diapers = yes), there
are on the order of k · 2k−1 possible association rules. Consider that a typical applica-
tion for association rules is market basket analysis and that there may be thousands
of binary attributes (Buy beer? Buy popcorn? Buy milk? Buy bread? etc.) , the search
problem appears at first glance to be utterly hopeless. For example, suppose that a
tiny convenience store has only 100 different items and a customer could either buy or
not buy any combination of those 100 items. Then there are 100 × 299 ∼= 6.4 × 1031

possible association rules that await your intrepid search algorithm.
The a priori algorithm for mining association rules, however, takes advantage

of structure within the rules themselves to reduce the search problem to a more
manageable size. Before we examine the a priori algorithm, which was developed
by Agrawal et al. [5], however, let us consider some basic concepts and notation for
association rule mining.

Let D denote a set of transactions, where each transaction T in D represents a
set of items contained in I, the set of all items. Suppose that we have a particular set of
items A (e.g., Page /Default.htm and Page /search/), and another set of items B (e.g.,
Page /index/). Then, an association rule takes the form if A then B (i.e., A ⇒ B),
where the antecedent A and the consequent B are proper subsets of I, and A and B are
mutually exclusive. This definition would exclude, for example, trivial rules such as
if Page /Default.htm and Page /search/, then Page /Default.htm.

The support s for a particular association rule A ⇒ B is the proportion of
transactions in D that contain both A and B. That is,

support = P(A ∩ B) = number of transactions containing both A and B

total number of transactions

SPH SPH
JWDD053-09 JWDD053-Markov March 10, 2007 15:7 Char Count= 0

DISCRETIZING THE NUMERICAL VARIABLES: BINNING 199

The confidence c of the association rule A ⇒ B is a measure of the accuracy of the
rule, as determined by the percentage of transactions in D containing A that also
contain B. In other words,

confidence = P(B|A) = P(A ∩ B)

P(A)

= number of transactions containing both A and B

number of transactions containing A

Analysts may prefer rules that have either high support or high confidence,
and usually both. Strong rules are those that meet or surpass certain minimum sup-
port and confidence criteria. For example, an analyst interested in finding which
supermarket items are purchased together may set a minimum support level of
20% and a minimum confidence level of 70%. On the other hand, a fraud detec-
tion analyst or a terrorism detection analyst would need to reduce the minimum
support level to 1% or less, since comparatively few transactions are either fraudu-
lent or terror-related. For more on association rules, including the derivation of the
a priori algorithm and the GRI (generalized rule induction) algorithm, see ref. 1
Chapter 10.

Note that what Clementine calls “Support” for the a priori algorithm is actually
not what we defined support to be (following Han and Kamber [7]; Hand et al. [8] and
other texts). Instead, what Clementine calls “Support” is the proportion of occurrences
of the antecedent alone rather than the antecedent and the consequent. (Not helpfully,
Clementine’s GRI and a priori algorithms define “Support” one way, and its CARMA
and sequence nodes define it another way.) To find the actual support for the association
rule using the Clementine results for the GRI and a priori algorithms, multiply the
reported “Support” times the reported confidence. In Version 9.0, Clementine began
supplying the “Rule Support” measure, which is the equivalent of the usual support
measure used in the literature.

Unfortunately, the a priori algorithm does not admit numerical variables, ei-
ther as input variables or consequents. The GRI method does admit numerical vari-
ables as input, but since the a priori algorithm enjoys more widespread use, we
shall provide an example using the a priori algorithm applied to the CCSU Web site
data.

DISCRETIZING THE NUMERICAL VARIABLES: BINNING

Since we would like to keep our numerical variables in the model, we need to trans-
form these numerical variables into categorical variables by the discretization process
known as binning. We shall separate each of the three numerical variables session
actions, session duration, and average time per page into three bins: Low, Medium,
and High. Once binned, these variables can then be used by the a priori algorithm as
both input and output.

Consider Figure 9.5, a histogram of session actions with cluster overlay.
(Note that cluster 2 tends to gain in proportion gradually as the number of session

SPH SPH
JWDD053-09 JWDD053-Markov March 10, 2007 15:7 Char Count= 0

200 CHAPTER 9 MODELING FOR WEB USAGE MINING

0

1,500

1,000

500

5.000 10.000 15.000

Session Actions

C
ou

nt

20.000 25.000

cluster-2

BIRCH Cluster
cluster-1

Figure 9.5 Histogram of session actions with cluster overlay, showing bands dividing low,
Medium, and High categories.

action increases.) The two vertical lines indicate where the boundaries were drawn.
Clementine allows the user to place these boundaries and then uses these boundaries
automatically to create a derive node that creates a categorical variable, in this case
called “Session Actions Bin,” that takes on the following values:

Session Actions Bin =
⎧⎨
⎩

Low if Session Actions ≤ 2
Medium if 3 ≤ Session Actions < 7
High if Session Actions ≥ 7

Figure 9.6 shows the distribution of this newly derived categorical variable, Session
Actions Bin. This graph shows more clearly that the proportion of cluster 2 sessions
grows as the number of actions moves from low to high. In the absence of a target
variable, it is probably desirable for the proportions of records not be severely unequal
among the bins. When binning for classification or prediction, however, one should
try to arrange the boundaries for the predictor variable where its relationship with the
target variable undergoes a change point [4, Chap. 4].

Figure 9.6 Distribution of session actions bin, with cluster overlay.

SPH SPH
JWDD053-09 JWDD053-Markov March 10, 2007 15:7 Char Count= 0

APPLYING THE A PRIORI ALGORITHM TO THE CCSU WEB LOG DATA 201

Using similar methodology, we also discretized session duration and average
time per page, creating new categorical variables as follows:

Session Duration Bin =
⎧⎨
⎩

Low if Session Duration < 150
Medium if 150 ≤ Session Duration ≤ 900
High if Session Duration > 900

Time per Page Bin =
⎧⎨
⎩

Low if Time per Page < 68
Medium if 68 ≤ Time per Page < 504
High if Time per Page ≥ 504

APPLYING THE A PRIORI ALGORITHM TO THE
CCSU WEB LOG DATA

We are now ready to apply the a priori algorithm to the CCSU web log data, seeking to
uncover some actionable association rules. Figure 9.7 provides a list of the association
rules uncovered by the a priori algorithm, sorted by “rule support” (support). Consider
the second rule in the list. The antecedent is Page /Default.htm and the consequent is
cluster 2. The form of the rule is therefore

Page /Default.htm ⇒ cluster 2

The support of the rule is 69.468%, meaning that the rule applies to almost 70%
of the sessions in the data; this is an extremely high level of support. What does a
confidence of 82.564% mean? There are a total of 5794 sessions (not shown). Of
these 5794 sessions, 4875 fulfilled the antecedent condition; that is, they requested
the Default.htm page at some point. Of these 4875 sessions, 82.564% of them, or
4025 sessions, belong to cluster 2.

In general, this 82.564% represents fairly solid confidence. Does that mean that
this association rule is useful? No. In fact, this particular rule is worse than useless.
Remember that 83.8% of sessions belong to cluster 2. Therefore, with no information
at all, we could, completely blindly, select a session (that contains Page /Default.htm)
at random and be almost 83.8% confident that the session would belong to cluster 2.
The problem is that we need to restrict the rules generated by the a priori algorithm
to those that might in fact be useful. We therefore choose the option that selects rules

Figure 9.7 Association rules for the CCSU web log data, sorted by support.

SPH SPH
JWDD053-09 JWDD053-Markov March 10, 2007 15:7 Char Count= 0

202 CHAPTER 9 MODELING FOR WEB USAGE MINING

Figure 9.8 Association rules chosen using the confidence difference criterion.

based on the confidence difference between the prior probability of randomly selecting
the consequent (the prior) and the posterior probability of selecting the consequent
given the antecedent (the posterior). Those rules that provide the greatest increase in
the quantity (posterior – prior) are preferred. Figure 9.8 presents a selection of such
association rules, again sorted by support. Note that the rule mentioned above does
not appear in this updated listing because its posterior confidence (82.564%) is less
than its prior confidence (83.8%).

Consider the first rule in the list. The antecedent is Session Duration = Low
and the consequent is Time per Page = Low. The form of the rule is therefore

Session Duration = Low ⇒ Time per Page = Low

The support is 36.607%, which is far less than the earlier rule we looked at but still
not too bad. If we can design an intervention that will affect 36% of our visitors, we
should by all means consider it. The (posterior) confidence is 91.541%, which is very
nice. Now, is this rule useful? We check the prior proportion of the consequent and
find that 47.62% (prior confidence, not shown) of sessions have a low time per page.
Thus, our ability to predict a session with a low average time per page has been greatly
enhanced by this simple association rule, with confidence increasing from 47.62% to
91.541%. This association rule is quite useful from a mathematical point of view. But
the final arbiter of usefulness is the degree to which a rule can help solve a business
or research problem. From this point of view, the usefulness of this rule is yet to be
determined.

SPH SPH
JWDD053-09 JWDD053-Markov March 10, 2007 15:7 Char Count= 0

APPLYING THE A PRIORI ALGORITHM TO THE CCSU WEB LOG DATA 203

TABLE 9.2 Some Association Rules for Identifying Sessions with Low Duration

Rule Confidence Support

Time per Page = Low
and Cluster 2

}
⇒ Session Duration = Low 82.146% 30.255%

Time per Page = Low
and Cluster 2
and Page /Default.htm

⎫⎬
⎭⇒ Session Duration = Low 80.825% 22.989%

Time per Page = Low
and Session Actions = Medium

}
⇒ Session Duration = Low 90.694% 17.829%

Now suppose that the CCSU marketing administrators were interested in identi-
fying users who do not spend a long time on the CCSU Web site, in order to consider
strategies and interventions that would help to prolong their stay. How could we
use the association rules to identify such users? Since the task is to identify ses-
sions with short duration, we should select association rules where the consequent
is Session Duration = Low. Such rules, chosen from Figure 9.8 are provided in
Table 9.2. The common thread among these three rules is the presence of Time per
Page = Low. Membership in cluster 2 is also predictive of a short session, especially
in conjunction with short Time per Page. If marketers could design interventions that
would increase the average time per page, this might increase the duration of these
short sessions.

Before we leave association rules, we need to consider the difference between
models and patterns. A model is a global description or explanation of a data set,
taking a high-level perspective. Models may be descriptive or inferential. Descriptive
models seek to summarize the entire data set in a succinct manner. Inferential models
aim to provide a mechanism that enables the analyst to generalize from samples to
populations. Either way, the perspective is global, encompassing the entire data set.
On the other hand, patterns are essentially local features of the data. Recognizable
patterns may in fact hold true for only a few variables or a fraction of the records in
the data.

Classification methods, which we are about to examine, deal with global model
building. Association rules, on the other hand, are particularly well suited to uncov-
ering local patterns in the data. As soon as one applies the if clause in an association
rule, one is partitioning the data so that, usually, most of the records do not apply. Ap-
plying the if clause “drills down” deeper into the data set, with the aim of uncovering
a hidden local pattern, which may or may not be relevant to the bulk of the data.

For example, consider the following association rule from Table 9.2:

Time per Page = Low
and Cluster 2

}
⇒ Session Duration = Low

with confidence 82.146% and support 30.255%. We see that this association rule ap-
plies to only 30.255% of the records and ignores the remaining 69.745% of the data
set. Even among these records, the association rule ignores most of the variables, con-
centrating on only two antecedent variables and one consequent variable. Therefore,

SPH SPH
JWDD053-09 JWDD053-Markov March 10, 2007 15:7 Char Count= 0

204 CHAPTER 9 MODELING FOR WEB USAGE MINING

this association rule cannot claim to be global, and cannot be considered a model in
the strict sense. It represents a pattern that is local to these records and these variables.

Then again, finding interesting local patterns is one of the most important
goals of data mining. Sometimes, uncovering a pattern within data can lead to the
deployment of new and profitable initiatives. The discovery of useful local patterns
could lead to profitable policy changes. Short of this, identifying local patterns could
help the analyst consider which variables are most important for the classification
or predictive modeling phase. As such, the use of association rules takes on a more
exploratory role. In this case we might expect the time per page variable to take a
leading role in our classification models for predicting sessions of short duration. We
shall see if this expectation is borne out.

CLASSIFICATION AND REGRESSION TREES

Perhaps the most common data mining task is that of classification. In classification,
there is a target categorical variable (e.g., session duration bin), which is partitioned
into predetermined classes or categories, such as high, medium, and low duration.
The data mining model examines a large set of records, typically called the training
data set, where each record contains information on the target variable as well as a
set of input or predictor variables. The model then looks at new data, where the value
of the target variable is unknown, and assigns a classification based on the patterns
observed in the training set. For more on classification, see Chapter 5 or ref. 1.

One attractive classification method involves construction of a decision tree.
A decision tree is a collection of decision nodes, connected by branches, extending
downward from the root node until terminating in leaf nodes. Beginning at the root
node, which by convention is placed at the top of the decision tree diagram, attributes
are tested at the decision nodes, with each possible outcome resulting in a branch.
Each branch then leads either to another decision node or to a terminating leaf node.
To apply a decision tree, the target variable should be categorical. Thus, decision
trees represent a framework for classification. Figure 9.9 represents a simple decision
tree for a good risk/bad risk credit classification. The root decision node is based on
savings. Records with low savings flow to another decision node, which examines
assets. Records with high savings flow to another decision node, which examine
income. For this data set, records with medium savings flow directly to the leaf node,
classifying them as good credit risks.

Decision trees seek to create a set of leaf nodes that are as “pure” as possible,
that is, where each of the records in a particular leaf node has the same classification.
In this way the decision tree may provide classification assignments with the highest
measure of confidence available. However, how does one measure “uniformity,” or
conversely, how does one measure “heterogeneity”? Different methods for measuring
leaf node purity lead to different decision tree algorithms, such as CART or the C4.5
algorithm.

Classification and regression trees (CARTs) were first suggested by Breiman
et al. [9] in 1984. The decision trees produced by CARTs are strictly binary, con-
taining exactly two branches for each decision node. CARTs recursively partition the
records in a training data set into subsets of records with similar values for the target

SPH SPH
JWDD053-09 JWDD053-Markov March 10, 2007 15:7 Char Count= 0

CLASSIFICATION AND REGRESSION TREES 205

Assets = Low? Income <= $30K?
Good Credit Risk

Savings = HighSavings = Low
Savings = Med

Yes No Yes No

Root Node
Savings = Low, Med, High?

Bad Risk Good Risk Bad Risk Good Risk

Figure 9.9 A Simple decision tree.

attribute. The CART algorithm grows the tree, for each decision node, by conduct-
ing an exhaustive search of all available variables and all possible splitting values,
selecting the optimal split according to the following criteria of Kennedy et al. [10].

Let
(s|t) represent the Gini index, a measure of the “goodness” of a candidate
split s at node t, where

(s|t) = 2PL PR

no. classes∑
j=1

|P(j |tL) − P(j |tR)|

and where

tL = left child node of node t
tR = right child node of node t

PL = number of records at tL

number of records in training set

PR = number of records at tR

number of records in training set

P(j |tL) = number of class j records at tL

number of records at t

P(j |tR) = number of class j records at tR

number of records at t

Then the optimal split is whichever split maximizes the Gini index over all possible
splits at node t. More information about decision trees and the CART algorithm may
be found in ref. 1. If the CCSU marketing administrators are interested in identifying
sessions with short duration, we apply CARTs to the CCSU web log data set, with
session duration bin as the target variable.

Earlier, the a priori algorithm uncovered a strong association between the av-
erage time per page and the session duration. This is not surprising, since session

SPH SPH
JWDD053-09 JWDD053-Markov March 10, 2007 15:7 Char Count= 0

206 CHAPTER 9 MODELING FOR WEB USAGE MINING

duration is used to calculate the average time per page. To avoid this dependence, we
shall not include the average time per page as a predictor variable in our decision tree
for classifying session duration. Similarly, we shall not use the clusters we uncovered
above as inputs to the decision tree, since the target variable, session duration, was
included as an input to the clustering algorithm.

An excerpt from the resulting decision tree is shown in Figure 9.10. The root
node, labeled $R-Session Duration Bin, shows the original proportions of the session
duration bin classes, such as Low with 39.99% of the records, or 2317 sessions. Just
under the root node is the root node split. In any decision tree, the root node split is
the most important split in the decision tree. In general, the higher up the decision
tree a split is, the more important it is, in terms of its ability to predict the outcomes
of the target variable. Here, the root node split is made on the variable time gap1,
which measures the duration that the user spent on the first page accessed during that
session. The split is

T ime gap1 ≤ 147.50 seconds vs. T ime gap1 > 147.50 seconds

In a decision tree, all of the records flow down from the root node and are tested at
each decision node, flowing down to the branches for which the particular field takes
the value indicated. Here, all records that have time gap1 of not more than 147.50
seconds flow to the left branch (node 1), while all records that have time per page of
more than 147.50 seconds flow to the right branch (node 14).

Note how the purity of node 14 is increased from the root node, since almost all
records with low duration have been filtered out from the right branch already (only
three low-duration records are left, 0.15%). Node 1’s purity has also been increased,
but less significantly. However, taken together, these nodes represent the optimal
increase in purity over all possible splits found by the Gini index. For records in
the left branch (time gap1 at most 147.50 seconds), the second split is made on the
variable session actions:

Session Actions ≤ 7.50 vs. Session Actions > 7.50

On the other hand, for records in the right branch (time gap1 greater than 147.50
seconds), the second split is again made on the variable time gap1.

One of the most attractive aspects of decision trees lies in their interpretability,
especially with respect to the construction of decision rules. Decision rules can be
constructed from a decision tree simply by traversing any given path from the root
node to any leaf. A complete set of decision rules generated by a decision tree is
equivalent (for classification purposes) to the decision tree itself. Decision rules come
in the form: if antecedent, then consequent. For decision rules, the antecedent consists
of the attribute values from the branches taken by the particular path through the tree.
The consequent consists of the classification value for the target variable given by
the particular leaf node. The support of the decision rule refers to the proportion of
records in the data set that rest in that particular terminal leaf node. The confidence of
the rule refers to the proportion of records in the leaf node for which the decision rule is
true.

SPH SPH
JWDD053-09 JWDD053-Markov March 10, 2007 15:7 Char Count= 0

Fi
gu

re
9.

10
C

A
R

T
de

ci
si

on
tr

ee
fo

r
cl

as
si

fy
in

g
se

ss
io

n
du

ra
tio

n
(e

xc
er

pt
).

207

SPH SPH
JWDD053-09 JWDD053-Markov March 10, 2007 15:7 Char Count= 0

208 CHAPTER 9 MODELING FOR WEB USAGE MINING

In Figure 9.8, only one node, node 22, is a terminal leaf node; all other nodes
are decision nodes (the tree continues off the page, not shown). Thus, we may use
node 22 to produce the following decision rule:

Leaf
Node Decision Rule Confidence Support

22
T ime gap1 > 147.50
and T ime gap1 > 898.50

⎫⎬
⎭⇒ Session Duration = High 100% 11.1% = 643/5794

(Yes, this rule does simplify to Time gap1 > 898.50 ⇒ Session Duration =
High, which is perhaps not surprising, since we earlier defined high session to be
of more than 900 seconds.) Note the similarity in format of decision rules to the
association rules we mined earlier.

THE C4.5 ALGORITHM

The C4.5 algorithm is J. Ross Quinlan’s [11] extension of his own ID3 algorithm for
generating decision trees. Just as with CART, the C4.5 algorithm visits each deci-
sion node recursively, selecting the optimal split, until no further splits are possible.
However, there are interesting differences between CART and C4.5. Unlike CART,
the C4.5 algorithm is not restricted to binary splits. Whereas CART always produces
a binary tree, C4.5 produces a tree of more variable shape. For categorical attributes,
C4.5 by default produces a separate branch for each value of the categorical attribute.
This may result in more “bushiness” than desired, since some values may have low
frequency or may naturally be associated with other values. The C4.5 method for
measuring node homogeneity, which is quite different from CART’s, is examined in
detail below.

The C4.5 algorithm uses the concept of information gain or entropy reduction
to select the optimal split. Suppose that we have a variable X whose k possible values
have probabilities p1, p2, . . . , pk . What is the smallest number of bits, on average
per symbol, needed to transmit a stream of symbols representing the values of X
observed? The answer, called the entropy of X, is defined as

H (X) = −
∑

j

p j log2(p j)

C4.5 uses this concept of entropy as follows. Suppose that we have a candidate split S,
which partitions the training data set T into several subsets T1, T2, . . . , Tk . The mean
information requirement can then be calculated as the weighted sum of the entropies
for the individual subsets:

HS(T) = −
k∑

i=1

Pi HS(Ti)

where Pi represents the proportion of records in subset i. We may then define our
information gain to be Gain(S) = H (T) − HS(T), that is, the increase in information
produced by partitioning the training data T according to this candidate split S. At each

SPH SPH
JWDD053-09 JWDD053-Markov March 10, 2007 15:7 Char Count= 0

Fi
gu

re
9.

11
C

A
R

T
de

ci
si

on
tr

ee
fo

r
cl

as
si

fy
in

g
se

ss
io

n
du

ra
tio

n
(e

xc
er

pt
).

209

SPH SPH
JWDD053-09 JWDD053-Markov March 10, 2007 15:7 Char Count= 0

210 CHAPTER 9 MODELING FOR WEB USAGE MINING

decision node, C4.5 chooses the optimal split to be the split which has the greatest
information gain, Gain(S). For more information on the C4.5 algorithm, see ref. 1.

Applying the C4.5 algorithm (actually, Clementine uses C5.0, an update) to the
CCSU data set, with session duration bin as the target variable, we generate the deci-
sion tree shown in Figure 9.11. First, it is quite similar in general structure to the CART
tree above, with Time gap1 producing the root node split. But Time gap2 takes the
place of session actions for the second-level split for sessions with shorter Time gap1.
Such similarity may be considered remarkable, considering that these two algorithms
use completely different methods for determining node purity and thus where the
splits should go. Yet the two algorithms have produced convergent models. We call
this happy situation a convergence of models or a confluence of evidence. Such conver-
gence reinforces our trust in the models. Other classification methods are available,
including neural networks [1, Chap. 7] and logistic regression models [1, Chap. 4].

These classification models should be evaluated and verified using the train-
ing/test/validation methodology mentioned earlier. Further, model comparisons
should be made, using lift charts, gains charts, error rates, false positives, and false
negatives. A cost–benefit table should be constructed based on the realistic costs
involved in each instance. The best model will optimize the cost–benefit table, pro-
ducing the greatest gain for the least cost. For more on model evaluation techniques,
see ref. 1, Chap. 11 and ref. 4, Chap. 7.

Space constraints prevent our exploration of more complex web log files such
as those used in e-commerce for online purchases. In the case of e-commerce, we
would be interested in predicting which users are likely to make a purchase online,
in which case the attribute “Made a Purchase” would become the target variable. The
methods and techniques discussed here could easily be extended to the e-commerce
scenario, or to many other web usage mining situations.

REFERENCES

1. Daniel Larose, Discovering Knowledge in Data: An Introduction to Data Mining, Wiley,
Hoboken, NJ, 2005.

2. Robert Johnson and Patricia Kuby, Elementary Statistics, Brooks-Cole, Toronto, Ontario,
Canada, 2004.

3. Tian Zhang, Raghu Ramakrishnan, and Miron Livny, BIRCH: an efficient data clustering
method for very large databases, presented at SIGMOD’96, Montreal, Quebec, Canada,
1996.

4. Daniel Larose, Data Mining Methods and Models, Wiley, Hoboken, NJ, 2006.
5. Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami, Mining association rules be-

tween sets of items in large databases, in Proceedings of the 1993 ACM SIGMOD Inter-
national Conference on Management of Data.

6. J. MacQueen, Some methods for classification and analysis of multivariate observations,
in Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability,
Vol. 1, pp 281–297, University of California Press, Berkeley, CA, 1967.

7. Jiawei Han and Micheline Kamber, Data Mining Concepts and Techniques, Morgan Kauf-
mann, San Francisco, CA, 2001.

8. David Hand, Heikki Mannila, and Padhraic Smith, Principles of Data Mining, MIT Press,
Cambridge, MA, 2001.

SPH SPH
JWDD053-09 JWDD053-Markov March 10, 2007 15:7 Char Count= 0

EXERCISES 211

9. Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone, Classification and
Regression Trees, Chapman & Hall/CRC Press, Boca Raton, FL, 1984.

10. Ruby L. Kennedy, Yuchun Lee, Benjamin Van Roy, Christopher D. Reed, and Richard P.
Lippman, Solving Data Mining Problems Through Pattern Recognition, Pearson Educa-
tion, Upper Saddle River, NJ, 1995.

11. J. Ross Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, San Francisco,
CA, 1992.

EXERCISES

1. Compare the first two rules in Table 9.2. Note that the antecedent of the second rule is
a refinement (more specific specification) of the antecedent of the first rule. In general,
describe the relationship between the support values for such rules.

Hands-on Analysis

2. For the following web log data sets, download the data and perform the web log
preprocessing steps given below. (Note: Some steps may not be applicable to a
particular data set.) The full data sets are available from the Internet traces Web
site, http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html. We use only a
subset of the data. The data subsets are available from the book series Web site,
www.dataminingconsultant.com.
� The NASA-HTTP web log data. We use only the first 131,904 records.
� The Calgary-HTTP web log data. We use only the first 65,536 records.
Important: For your work in the following exercises, provide evidence that the solutions
are consistent across both the training and the test data set.

a. Clustering

(1) Apply BIRCH (two-step) clustering to the web log data. Allow the algorithm to
select its own optimal number of clusters. If the BIRCH algorithm is not available,
use k-means or some other method.

(2) Provide graphical and statistical summaries of the clusters in terms of the fol-
lowing variables: session duration, session actions, average time per page, page 1
duration, page 2 duration, all the top directory flag variables, and all the page flag
variables.

(3) Provide solid profiles of each cluster, including a label for each.

(4) Provide scatter plots examining two-way relationships within the data, with cluster
overlay.

(5) Discuss two or three of the interesting findings that you uncover.

b. Binning

(1) In preparation for the application of affinity analysis (association rules) and classi-
fication, discretize the numerical variables (bin them), into low, medium, and high
values, making sure that the counts per bin are not severely unequal.

(2) For each binning, show your boundaries, such as the following example:

Time per Page Bin =
⎧⎨
⎩

Low if Time per Page < 68
Medium if 68 ≤ Time per Page < 504
High if Time per Page ≥ 504

SPH SPH
JWDD053-09 JWDD053-Markov March 10, 2007 15:7 Char Count= 0

212 CHAPTER 9 MODELING FOR WEB USAGE MINING

(3) Provide a normalized distribution of the bins with a cluster overlay. Comment on
each.

c. A Priori Algorithm

(1) Apply the a priori algorithm to uncover association rules. Report your minimum
confidence and support levels.

(2) Provide a table of the top 10 rules, sorted by rule support.

(3) Choose two of these rules and demonstrate how they are rather uninteresting.

(4) Identify the three rules with the highest rule support for identifying sessions with
low duration. Discuss.

(5) Report the two rules you consider to be most interesting and/or actionable from
the point of view of the Web site’s developers or marketers. Discuss.

d. CART

(1) Suppose that marketing administrators are interested in identifying sessions with
short duration. Apply CART to the CCSU web log data set, with session duration
bin as the target variable.

(2) Provide a graphical excerpt from the resulting decision tree, showing the first three
or four levels.

(3) Report on the most important splits, discussing these results.

(4) Provide three useful decision rules from this tree.

INDEX

a priori algorithm, 201–204
Association rules for web usage mining,

197–204
Authorities and hubs, 9, 53–55
Average time per page, 183–185

Background knowledge, 133
Basket transformation, 171–183
Bayes rule, 76, 125
Between-cluster variation, 194
Binning, 199–201
BIRCH clustering algorithm, 193–197
Boolean representation, 16, 21

C4.5 algorithm, 208–210
Classes-to-clusters evaluation, 106–108
Classification, 115–139

feature selection, 121–125
entropy, 121–122
InfoGain, 123–124
information gain, 122
similarity-based feature selection, 122

general setting and evaluation techniques,
115–117

cross-validation (CV), 117
holdout approach, 117
supervised learning framework,

115–116
naive Bayes algorithm, 125–131

Bayes rule, 125
Laplace estimator, 128
naive Bayes assumption, 125

nearest-neighbor algorithm, 118–120
k-nearest-neighbor (k-NN), 119

distance-weighted, 120
one-nearest-neighbor (1-NN), 118

numerical approaches, 131–133
linear combination, 131

linearly separable, 132
maximum margin hyperplane, 132
separating hyperplane, 132
support vector machine (SVM), 133

relational learning, 133–137
background knowledge, 133
closed world assumption, 134
target relations, 133

Classification and regression trees (CART),
204–208

branches, 204
decision nodes, 204
decision rules, 206, 208
decision tree, 204
GINI index, 205
leaf node, 204
root node, 204
root node split, 206

Classification for web usage mining,
204–210. See also Web usage
mining

Classification problem, 76–78
Clementine, xiv
Clickstream analysis, 147–148
Closed world assumption, 134
Clustering, 61–88

agglomerative algorithm, 64
collaborative filtering (recommender

systems), 84–85
definition of, 193–194
evaluating, see Evaluating clustering
farthest-neighbor, 64
hierarchical agglomerative, 63–69

agglomerative algorithm, 64
cosine similarity, 63
dendrogram, 63
farthest-neighbor, 64
nearest-neighbor, 64

Data Mining the Web: Uncovering Patterns in Web Content, Structure, and Usage
By Zdravko Markov and Daniel T. Larose Copyright C© 2007 John Wiley & Sons, Inc.

213

214 INDEX

Clustering (Continued)
similarity

average, 64
between cluster centroids, 64
intracluster, 64, 68
minimum, 64

k-means, 69–73
k-means algorithm, 69
minimum variance, 70

minimum variance, 70
nearest-neighbor, 64
probability-based, 73–84

Bayes rule, 76
classification problem, 76–78
clustering problem, 78–84
expectation maximization (EM)

algorithm, 79
finite mixture problem, 74–75
independence assumption, 77
labeled data set, 74
log-likelihood criterion function, 80
mean, class, 75
naive Bayes, 77
optimization, 79
probability density function, 76
probability of sampling, 75
standard deviation, class, 75

problem, 78–84
for web usage mining, 193–197

Collaborative filtering, 84–85
Common log format, 151
Companion website, xiv
Confidence difference method, 202
Cookies, 164
Cosine similarity, 24, 25, 36–38, 63
Crawling the web, 6–12

address resolution, 11
authority, 9
breadth first crawling, 8, 10
depth first crawling, 8, 9
guard, 11
guided search, 12
html, 6
hub, 8
robot exclusion protocol, 12
text repository, 11
uninformed graph search, 12
url format, 6
web archive, 12
web basics, 6
web crawlers, 7–12

web as directed graph, 7
webSPHINX, 8–10

Cross-industry standard process for data
mining (CRISP-DM), 144–147

business (research) understanding phase,
145

data understanding phase, 145
data preparation phase, 145
deployment phase, 146
evaluation phase, 145
input stage, 146
modeling phase, 145
pattern analysis stage, 146
pattern discovery stage, 146
preprocessing stage, 146

Cross-validation (CV), 117

Data cleaning and filtering, 158–162
Data compression, 104
Data mining, xi
Data Mining the Web: Uncovering Patterns

in Web Content, Structure and
Usage

how book is structured, xi
why book is needed, xii
white-box approach, xii
as textbook, xv

Decision rules, 206, 208
Decision tree, 204
Dendrogram, 63
De-spidering the web log file, 163–164
Directories, 171–173
Document ranking, 23–26
Document representation, 15–18
Document resemblance, 41–42

Entropy, 111–112, 121–122, 208
Entropy reduction, 208
Euclidian distance, 24
Evaluating clustering, 89–114

classes-to-clusters evaluation, 106–108
error-based attribute evaluation,

107
OneR, 107

entropy, 111–112
MDL-based model and feature evaluation,

100–106. See also Minimum
description length (MDL) model

precision, recall, and F-measure,
108–111

confusion matrix, 108

INDEX 215

contingency table, 108
error cost, 108
false negative, 108
false positive, 108
F-measure,110
harmonic mean, 111
precision, 109
recall, 109
true negative, 108
true positive, 108

probabilistic criterion functions, 95–100.
See also Probabilistic criterion
functions

similarity-based criterion functions,
90–95. See also Similarity-based
criterion functions

Evaluating search quality, 32–35
precision, 32

average, 33
interpolated, 34

recall, 32
Expectation maximization (EM) algorithm,

79
Exploratory data analysis (EDA), 177

average time per page, 183–185
duration for individual pages, 185–187

page duration calculation procedure,
186

number of visit actions, 177–178
page requests, 177
visit actions, 177

relationship between visit actions and
session duration, 181–183

regression analysis, 181
regression equation, 182
slope, 182

session duration, 178–181
session duration calculation procedure,

179
visit time, 179

for web usage mining, 177–190
Extended common log format, 151–153

F-measure,110
Feature selection, 105–106, 121–125
Finite mixture problem, 74–75
Flag variable, 172

Generalized rule induction (GRI) algorithm,
199

GINI index, 205

Holdout approach, 117
Hyperlink-based ranking, 47–58

authorities and hubs, 53–55
topic distillation, 53

enhanced techniques for page ranking,
56–57

nepotism links, 56
outliers, 57
topic drift, 56
topic generalization, 56

link-based similarity search, 55–56
pagerank, 50–53

pagerank algorithm, 52
pagerank score, 50
random walk, 50

social networks analysis, 48–49
eigenvalue, 48
eigenvector, 48
fixed point, 48
power iteration method, 49
prestige, 48

Independence assumption, 77
Indexing and keyword search, 13–32

advanced text search, 28–29
anchor tag, 31
anchor text, 30, 31
approximate string matching, 29
bag-of-words representation, 17
Boolean representation, 16, 21
B-trees, 19
directory page, sample, 14
document ranking, 23–26
document representation, 15–18
dot product, 24
Euclidian distance, 24
feature selection, 26
formal representation, 16
hash tables, 19
headings, 30
implementation considerations, 19
information retrieval (IR), 13
inverse document frequency (IDF),

22
inverted index, 17
keyword search, 13
metatags, 30
metric function, 24
n-grams, 29, 42
parameters, 16
part-of-speech tagging, 17

216 INDEX

Indexing and keyword search (Continued)
phrase dictionary, 29
phrase search, 28–29
proximity measure, 23–24
pseudorelevance feedback, 27
query time, 20
query vector, 23–24
relevance feedback, 26–28
relevance ranking, 13, 20
Rocchio’s method, 27
structured data, 13
Structured Query Language (SQL), 13
tagging, 29
terms, 16
term frequency (TF), 17, 21
term-document matrix, 17
term-document matrix examples, 18, 19
text corpus, 16
TFIDF, 22
tokenizing documents, 15
vector space model, 21–23
using html structure in keyword search,

30–31
web document, sample, 15

Indicator variable, 172
InfoGain, 123–124
Information gain, 122, 208
Information retrieval and web search, 1–46

crawling the web, 6–12. See also
Crawling the web

evaluating search quality, 32–35. See also
Evaluating search quality

indexing and keyword search, 13–32. See
also Indexing and keyword search

similarity search, 36–42. See also
Similarity search

web challenges, 3–5
semantic web, 5
topic directories, 5
web growth, 3
web search engines, 4

Jaccard similarity, 38–41

k-nearest-neighbor (k-NN), 119
distance-weighted, 120

Laplace estimator, 128
Link-based similarity search, 55–56
Log-likelihood criterion function, 80
Linearly separable, 132

Microsoft IIS log format, 153–154
Min-max normalization, 193
Minimum descriptive length (MDL) model,

100–106
data compression, 104
feature selection, 105–106
generalization by dropping conditions,

100
MDL-based model evaluation, 102–105
minimum description length principle,

101–102
Occam’s razor, 101

Modeling for web usage mining, 191–212
affinity analysis and the a priori

algorithm, 197–199
affinity analysis, 197
antecedent, 197
association rule, 198
confidence, 198, 199
consequent, 197
generalized rule induction (GRI)

algorithm, 199
market basket analysis, 197
support, 198, 199

applying the a priori algorithm to the
CCSU web log data, 201–204

confidence difference method, 202
model, 203
pattern, 203
posterior probability, 202
prior probability, 202

BIRCH clustering algorithm, 193–197
C4.5 algorithm, 208–210

confluence of evidence, 210
convergence of models, 210
entropy, 208
entropy reduction, 208
information gain, 208

classification and regression trees
(CART), 204–208. See also
Classification and regression trees

clustering, definition of, 193–194
between-cluster variation, 194
min-max normalization, 193
within-cluster variation, 194
z-score standardization, 194

discretizing the numerical variables,
199–201

binning, 199
methodology, 192–193

INDEX 217

test set, 193
training set, 192
validation set, 193

Modeling methodology, 192–193

n-grams, 29, 42
Naive Bayes algorithm, 77, 125–131
Naive Bayes assumption, 125
Nearest-neighbor algorithm, 118–120
Numerical approaches, 131–133

Occam’s razor, 101
One-nearest-neighbor (1-NN), 118

Page duration, 185–187
Page extension, exploration, and filtering,

161–162
Page requests, 177
Pagerank, 50–53
Path completion, 170
Posterior probability, 202
Power iteration method, 49
Precision, 32, 109
Preprocessing for web usage mining,

156–176
data cleaning and filtering, 158–162

page extension, exploration and
filtering, 161–162

time stamp, creating, 159
variable extraction, 159

de-spidering the web log file, 163–164
crawlerbot, 163

directories and the basket transformation,
171–173

basket transformation, 172
flag variable, 172
indicator variable, 172

further data preprocessing steps, 174
need for, 156–158
path completion, 170
session identification, 167–170

reference length approach, 167
session identification procedure, 169
site visit, 167
time delay, 167
user session, 167

user identification, 164–167
cookies, 164
user identification procedure, 167

Prestige, 48

Prior probability, 202
Probability density function, 76
Probabilistic criterion functions, 95–100

category utility, 96
probability matching strategy, 97
Cobweb clustering algorithm, 97

Proximity measure, 23–24

Query vector, 23–24

Recall, 32, 109
Recommender systems, 84–85
Reference length approach, 167
Regression analysis, 181
Relational learning, 133–137
Relevance feedback, 26–28
Relevance ranking, 13, 20
Rocchio’s method, 27

Session duration, 178–181
Session identification, 167–170
Similarity

intracluster, 64, 68
minimum, maximum, or average, 64

Similarity based criterion functions, 90–95
intracluster errors, 90
intracluster similarity, 91
pairwise distance, 90
sum of centroid similarity, 91
sum of squared errors (SSE), 90

Similarity based feature selection, 122
Similarity between cluster centroids, 64
Similarity search, 36–42

bag-of-words approach, 41
cluster hypothesis, 36
cosine similarity, 24, 25, 36–38
document resemblance, 41–42
jaccard coefficient, 38–39
jaccard metric, 39
jaccard similarity, 38–41
resemblance, 42
set-of-words approach, 41
shingles, 42
sketch, 42

Site visit, 167
Social networks analysis, 48–49
Software

WEKA, xiv
Clementine, xiv

Supervised learning framework, 115–116

218 INDEX

Support, 198, 199
Support vector machine (SVM), 133

Target relations, 133
Term frequency (TF), 17
Time stamp, creating, 159

User identification, 164–167
User session, 167

Variable extraction, 159
Vector space model, 21–23
Visit actions, 177
Visit time, 179

Web content mining, 59–139
Web search, 1–46
Web server log files (web logs), 148–151
Web structure mining, 1–58
Web usage mining, 141–212

definition of, 143–144
exploratory data analysis (EDA),

177–190. See also Exploratory
data analysis

introduction to, 143–155
auxiliary information, 154
clickstream analysis, 147–148
common log format, 151

authuser field, 151
identification field, 151

cross-industry standard process for data
mining (CRISP-DM), 144–147.
See also Cross-industry standard
process for data mining

extended common log format, 151–153
referrer field, 152
user agent field, 152
web log record, example of, 153

web server log files, 148–151
date/time field, 149
HTTP request field, 149
remote host field, 149
status code field, 150
transfer volume (bytes) field, 151
web log file, 148

Microsoft IIS log format, 153–154
modeling for, 191–212. See also

Modeling for web usage mining
preprocesssing for, 156–176. See also

Preprocessing for web usage
mining

WEKA, xiv
White box approach, xii
Within-cluster variation, 194

Z-score standardization, 194

