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1 INTRODUCTION: HISTORY OF PRINCIPAL COMPO- 
NENT ANALYSIS 

Principal component analysis (PCA) in many 
ways forms the basis for multiv~ate data analy- 
sis. PCA provides an approximation of a data 
table, a data matrix, X, in terms of the product of 
two small matrices T and P’. These matrices, T 
and P’, capture the essential data patterns of X. 

Plotting the columns of T gives a picture of the 
dominant “object patterns” of X and, analo- 

gously, plotting the rows of P’ shows the comple- 
mentary “ variable patterns”. 

Consider, as an example, a data matrix contain- 
ing absorbances at K = 100 frequencies measured 
on N = 10 mixtures of two chemical constituent. 
This matrix is well approximated by a (10 X 2) 
matrix T times a (2 x 100) matrix P’, where T 
describes the concentrations of the constituents 
and P describes their spectra. 

PCA was first formulated in statistics by Pear- 
son [l], who formulated the analysis as finding 
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“lines and planes of closest fit to systems of 
points in space”. This geometric interpretation 

will be further discussed in Section 4. PCA was 
briefly mentioned by Fisher and MacKenzie [2] as 

more suitable than analysis of variance for the 
modelling of response data. Fisher and MacKen- 
zie also outlined the NIPALS algorithm, later 

rediscovered by Wold [3]. Hotelling [4] further 
developed PCA to its present stage. In the 1930s 
the development of factor analysis (FA) was 
started by Thurstone and other psychologists. This 
needs mentioning here because FA is closely re- 
lated to PCA and often the two methods are 
confused and the two names are incorrectly used 
interchangeably. 

Since then, the utility of PCA has been redis- 

covered in many diverse scientific fields, resulting 
in, amongst other things, an abundance of redun- 

dant terminology. PCA now goes under many 
names. Apart from those already mentioned, sin- 
gular value decomposition (SVD) is used in 
numerical analysis [5,6] and Karhunen-LoCve ex- 
pansion [7,8] in electrical engineering. Eigenvector 
analysis and characteristic vector analysis are often 
used in the physical sciences. In image analysis, 
the term Hotelling transformation is often used 
for a principal component projection. Correspon- 
dence analysis is a special double-scaled variant of 
PCA that is much favoured in French-speaking 
countries and Canada and in some scientific fields. 

Many good statistical textbooks that include 
this subject have been published, e.g., by Gnana- 
desikan [9], Mardia et al. [lo], Johnson and 
Wichern [ll] and Joliffe [12]. The latter is devoted 
solely to PCA and is strongly recommended for 
reading. 

In chemistry, PCA was introduced by 
Malinowski around 1960 under the name prin- 
cipal factor analysis, and after 1970 a large num- 
ber of chemical applications have been published 
(see Malinowski and Howery [13]), and Kowalski 
et al. [14]). 

In geology, PCA has lived a more secluded life, 
partly overshadowed by its twin brother factor 
analysis (FA), which has seen ups and downs in 
the past 15-20 years. The one eminent textbook in 
this field of geological factor analysis is that by 
Joreskog, Klovan and Reyment [15]. Davis [16], 
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who has set the standards for statistics and data 
analysis in geology for more than a decade, also 

included a lucid introduction to PCA. 

2 PROBLEM DEFINITION FOR MULTIVARIATE DATA 

The starting point in all multivariate data anal- 
ysis is a data matrix (a data table) denoted by X. 
The N rows in the table are termed “objects”. 
These often correspond to chemical or geological 
samples. The K columns are termed “variables” 
and comprise the measurements made on the ob- 
jects. Fig. 1 gives an overview of the different 
goals one can have for analysing a data matrix. 

These are defined by the problem at hand and not 
all of them have to be considered at the same 

time. 
Fig. 2 gives a graphical overview of the matrices 

and vectors used in PCA. Many of the goals of 
PCA are concerned with finding relationships be- 
tween objects. One may be interested, for exam- 
ple, in finding classes of similar objects. The class 
membership may be known in advance, but it may 
also be found by exploration of the available data. 
Associated with this is the detection of outliers, 
since outliers do not belong to known classes. 

A matrix of data, measured for N 

SIMPLIFICATION 
DATA REDUCTION 

MODELING 
OUTLIER DETECTION 

VARIABLE SELECTIOn 
CLASSIFICATION 

PREDICTION 
UNMIXING 

Fig. 1. Principal component analysis on a data matrix can have 
many goals. 
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X= lii+TP’+E 
Fig. 2. A data matrix X with its first two principal components. 
Index i is used for objects (rows) and index k for variables 

(columns). There are N objects and K variables. The matrix E 

contains the residuals, the part of the data not “explained” by 
the PC model. 

Another goal could be data reduction. This is 

useful when large amounts of data may be ap- 
proximated by a moderately complex model struc- 
ture. 

In general, almost any data matrix can be sim- 
plified by PCA. A large table of numbers is one of 
the more difficult things for the human mind to 
comprehend. PCA can be used together with a 
well selected set of objects and variables to build a 
model of how a physical or chemical system be- 
haves, and this model can be used for prediction 
when new data are measured for the same system. 
PCA has also been used for unmixing constant 
sum mixtures. This branch is usually called curve 

resolution [17,18]. 
PCA estimates the correlation structure of the 

variables. The importance of a variable in a PC 
model is indicated by the size of its residual 
variance. This is often used for variable selection. 

Fig. 3 gives a graphical explanation of PCA as 
a tool for separating an underlying systematic 

Fig. 3. The data matrix X can be regarded as a combination of 
an underlying structure (PC model) M and noise E. The 
underlying structure can be known in advance or one may have 

to estimate it from X. 

data structure from noise. Fig. 4a and b indicate 

the projection properties of PCA. With adequate 
interpretation, such projections reveal the domi- 
nating characteristics of a given multivariate data 
set. 

Fig. 5 contains a small (3 x 4) numerical illus- 
tration that will be used as an example. 

(0) 

El 
X 

lb) 

clli P’ 
Fig. 4. (a) Projecting the matrix X into a vector I is the same as 
assigning a scalar to every object (row). The projection is 
chosen such that the values in r have desirable properties and 

that the noise contributes as little as possible. (b) projecting the 

matrix X into a vector p’ is the same as assigning a scalar to 
every variable (column). The projection is chosen such that the 

values in p’ have desirable properties and that the noise 
contributed as little as possible. 
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4 3 4 3 

5 5 6 4 

scaling weights 

scaled 

test objects Xt 

Xt -x , scaled 

Fig. 5. A training data matrix used as an illustration. Two 
extra objects are included as a test set. The actions of mean- 
centring and variance-scaling are illustrated. 

3 A CHEMICAL EXAMPLE 

Cole and Phelps [19] presented data relating to 
a classical multivariate discrimination problem. 

On 16 samples of fresh and stored swedes (vegeta- 
bles), they measured 8 chromatographic peaks. 
Two data classes are present: fresh swedes and 
swedes that have been stored for some months. 

The food administration problem is clear: can we 
distinguish between these two categories on the 
basis of the chromatographic data alone? 

Fig. 6 shows the PC score plot (explained later) 
for all 16 samples. Two strong features stand out: 
sample 7 is an outlier and the two classes, fresh 
and stored, are indeed separated from each other. 
Fig. 7 shows the corresponding plot calculated on 
the reduced data set where object 7 has been 
deleted. Here the separation between these two 
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w 
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Fig. 6. Plot of the first two PC score vectors (t, and 1s) of the 
Swede data of Cole and Phelps [19]. The data were logarithmed 
and centred but not scaled before the analysis. Objects l-7 
and 15 are fresh samples, whereas 8-14 and 16 are stored 
samples. 

data classes is even better. Further details of the 
analysis of this particular data set will be given 

below. 

M 
0 

A 

Fig. 7. PC plot of the same data as in Fig. 6 but calculated 
after object 7 was deleted. 



Tutorial n 

4 GEOMETRIC INTERPRETATION OF PRINCIPAL 
COMPONENT ANALYSIS 

A data matrix X with N objects and K varia- 
bles can be represented as an ensemble of N 
points in a K-dimensional space. This space may 
be termed M-space for measurement space or 
multivariate space or K-space to indicate its di- 
mensionality. An M-space is difficult to visualize 
when K > 3. However, mathematically, such a 
space is similar to a space with only two or three 
dimensions. Geometrical concepts such as points, 
lines, planes, distances and angles all have the 
same properties in M-space as in 3-space. As a 
demonstration, consider the following BASIC pro- 
gram, which calculates the distance between the 
two points Z and J in 3-space: 

100 KDIM = 3 

110 DIST = 0 

120 FOR L = 1 TO KDIM 

130 DIST = DIST + (X(1, L) - X(J, L)) * *2 

140 NEXT L 

150 DIST = SQR(DIST) 

How can be change this program to calculate the 
distance between two points in a space with, say, 7 
or 156 dimensions? Simply change statement 100 
to KDIM = 7 or KDIM = 156. 

A straight line with direction coefficients P(K) 
passing through a point with coordinates C(E() 
has the same equation in any linear space. All 
points (I) on the line have coordinates X( I, K) 
obeying the relationship (again in BASIC nota- 
tion) 

X(1, K) = C(K) + T(1) *P(K) 

Hence, one can use 2-spaces and 3-spaces as illus- 
trations for what happens in any space we discuss 
henceforth. Fig. 8 shows a 3-space with a point 
swarm approximated by a one-component PC 
model: a straight line. A two-component PC model 
is a plane - defined by two orthogonal lines - 
and an A-components PC model is an A-dimen- 
sional hyperplane. From Fig. 8 it may be realized 
that the fitting of a principal component line to a 
number of data points is a least squares process. 

Lines, planes and hyperplanes can be seen as 

31: 

1 

1 

Fig. 8. A data matrix X is represented as a swarm with N 
Points in a K-dimensional space. This figure shows a 3-space 

with a straight line fitted to the points: a one-component PC 
model. The PC score of an object ( ri) is its orthogonal projec- 

tion on the PC line. The direction coefficients of the line from 

the loading vector pk. 

spaces with one, two and more dimensions. Hence, 

we can see PCA also as the projection of a point 
swarm in M-space down on a lower-dimensional 
subspace with A dimensions. 

Another way to think about PCA is to regard 
the subspaces as a windows into M-space. The 
data are projected on to the window, which gives a 
picture of their configuration in M-space. 

5 MATHEMATICAL DEFINITION OF PRINCIPAL COM- 
PONENT ANALYSIS 

The projection of X down on an A-dimensional 
subspace by means of the projection matrix P’ 
gives the object coordinates in this plane, T. The 
columns in T, f,, are called score vectors and the 
rows in P’, pi, are called loading vectors. The 
latter comprise the direction coefficients of the PC 
(hyper) plane. The vectors r, and p. are orthogo- 
nal, i.e., p,!pj = 0 and t,!tj = 0, for i f j. 

The deviations between projections and the 
original coordinates are termed the residuals. These 
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are collected in the matrix E. PCA in matrix form 

is the least squares model: 

X=lx+TP’+E 

Here the mean vector X is explicitly included in 
the model formulation, but this is not mandatory. 
The data may be projected on a hyperplane pass- 
ing through the origin. Fig. 9 gives a graphical 
representation of this formula. 

The sizes of the vectors t, and p, in a PC 

dimension are undefined with respect to a multi- 
plicative constant, c, as tp = (tc)( p/c). Hence it is 
necessary to anchor the solution in some way. 
This is usually done by normalizing the vectors p, 
to length 1.0. In addition, it is useful to constrain 
its largest element to be positive. In this way, the 
ambiguity for c = - 1 is removed. 

An anchoring often used in FA is to have the 

length of p, be the square root of the correspond- 
ing eigenvalue I,. This makes the elements in p, 
correspond directly to correlation coefficients and 
the score vectors t, be standardized to length 1.0. 

It is instructive to make a comparison with the 

singular value decomposition (SVD) formulation: 

X=l.f+UDV’+E 

In this instance, V’ is identical with P’. U con- 

tains the same column vectors as does T, but 
normalized to length one. D is a diagonal matrix 
containing the lengths of the column vectors of T. 
These diagonal elements of D are the square roots 

of the eigenvalues of X’X. 
In the statistical literature, PCA has two slightly 

different meanings. Traditionally, PCA has been 

Fig. 9. A data matrix X can be decomposed as a sum of 
matrices Mi and a residual E. The M, can be seen as consist- 
ing of outer products of a score vector t, and a loading vector 

, 
PI. 

viewed as an expansion of X in as many compo- 
nents as min(N, K). This corresponds to ex- 

pressing X in new orthogonal variables, i.e., a 
transformation to a new coordinate system. The 
one which is discussed here refers to PCA as the 
approximation of the matrix X by a model with a 
relatively small number of columns in T and P. 
The possibility of deciding on a specific cut-off of 
the number of components gives a flexible tool for 
problem-dependent data analysis: several contri- 
butions to this issue make ample use of these PCA 
facilities. 

A basic assumption in the use of PCA is that 
the score and loading vectors corresponding to the 
largest eigenvalues contain the most useful infor- 
mation relating to the specific problem, and that 
the remaining ones mainly comprise noise. There- 

fore, these vectors are usually written in order of 
descending eigenvalues. 

Often the obtained PC model is rotated by the 
rotation matrix R to make the scores and loading 
easier to interpret. This is possible because of the 

equivalence 

TP’ = m-‘P’ = SQ’ 

The FA literature contains numerous discussions 
about various rotation schemes, which we refrain 
from adding to here because the choice of rotation 
is very problem specific and often problematic. 

Once the PC model has been developed for a 
“training matrix”, new objects or variables may 
be fitted to the model giving scores, t, for the new 
objects, or loadings, p, for the new variables, 
respectively. In addition, the variance of the resid- 
uals, e, is obtained for each fitted item, providing 
a measure of similarity between the item and the 
“training data”. If this residual variance is larger 

than that found in the training stage, it can be 

concluded that the new object (or variable) does 
not belong to the training population. Hypothesis 
tests can be applied to this situation. The residuals 
may alternatively be interpreted as residual dis- 
tances with respect to a pertinent PC model. 

The formulae for a new object x are as follows: 
multiply by the loadings from the training stage of 
obtain the estimated scores t: 

t=xP 
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Factor Analysis Eigenvalues 

ExplaIned SS 

54.9 % ’ q Explained Variance 
45.1 % 2 

Fig. 10. Results for the PC model built from the training set in 
Fig. 5. 

x is projected into the A-dimensional space that 
was developed in the training stage. 

Calculated the residuals vector e: 

e-x-rP’ore=x(I-PP’) 

Here I is the identity matrix of size K. This 

calculation of the new scores t, or loadings p, is 
equivalent to linear regression because of the or- 

thogonality of the vectors. 
Figs. 10 and 11 show the results of a PCA of 

the (3 X 4) matrix in Fig. 5. 

Traimng 

Test 

Fig. 11. Scores obtained for training and test set in Fig. 5. 

6 STATISTICS; HOW TO USE THE RESIDUALS 

This section describes two different, but re- 
lated, statistics of a data matrix and its residuals, 
the usual variance statistics and influence statistics 

(leverage). 
The amount of explained variance can be ex- 

pressed in different ways. In FA the data are 

always scaled to unit variance and the loadings are 
traditionally calculated by diagonalization of the 

correlation matrix X’X. To obtain a measure cor- 
responding to the factor analytical eigenvalue, in 

PCA one may calculate the fraction of the ex- 
plained sum of squares (SS) multiplied by the 
number of variables, K. Thus, in Fig. 13 the first 
PC explains 83.1% of the SS. Hence the first 
eigenvalue is 0.831 X 4 = 3.324. 

For a centred matrix (column means sub- 
tracted), the variance is the sum of squares (SS) 
divided by the number of degrees of freedom. 
Sums of squares can be calculated for the matrix 
X and the residuals E. The number of degrees of 
freedom depends on the number of PC dimen- 
sions calculated. It is (N - A - l)( K - A) for the 

Ath dimension when the data have been centred 
(column averages subtracted), otherwise (N - 

A)( K - A). It is also practical to list the residual 
variance and modelling power for each variable 
(see Fig. 10). 

The modeling power is defined as explained 
standard deviation per variable (1 - s,Js~~)_ A 
variable is completely relevant when its modeling 
power is 1. Variables with a low modeling power, 
below ca. (A/K), are of little relevance. This 
follows from the eigenvalue larger than one rule of 
significance (see below). 

The total sum of squares and the sums of 
squares over rows and columns can all be used to 
calculate variance statistics. These can be shown 
as histograms and allow one to follow the evolu- 
tion of the PCA model as more dimensions are 
calculated. Fig. 12 gives an idea of how this would 
look in the case of variable statistics. 

The topic of influential data has been intro- 
duced recently, mainly in multiple regression anal- 
ysis [20-231. A measure of influence that can be 
visualized geometrically is leverage. The term 
leverage is based on the Archimedian idea that 
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UNEXPLAINED 
VARIANCE 

PC 0 

PC I 

I PC2 

IPC3 

VARIABLE NURSER --) 

Fig. 12. Statistics for the variables. The data are shown as 

histogram bars representing the variance per variable for 

mean-centred and variance-scaled data. With 0 PCs, all varia- 

bles have the same variance. For PC models with increasing 

dimensionality, the variance of the variables is used up. The 
hatched bar shows a variable that contributes little to the PC 

model. A similar reasoning can be. used for object variances. 

anything can be lifted out of balance if the lifter 
has a long enough lever. 

The least squares method used for fitting prin- 
cipal components to object points in M-space 
makes leverage useful for PCA. Fig. 13 shows an 

Fig. 13. Leverage. A point of high leverage (indicated by a 
square) can rotate the principal component axis over an angle 

rb. 

illustration of the effect of a high leverage point 
on a principal component. It can be seen that high 
leverage is not necessarily bad. A high leverage 
observation falling near a PC axis only reinforces 
the PC model. A high leverage observation lying 
far away from a PC line causes a rotation of the 
PC. 

Leverage is calculated as follows [24,25]: 

Ha = T(T’T) -IT’ 

The diagonal element tr,, of He is the leverage for 
the i th object. The hi values are between 0 and 1. 

For the variables, leverage is calculated as 

H, = PP’ 

The diagonal elements h,, of JZ, are the leverages 
for the variables. 

The interpretation of leverage is closely related 
to the concepts of outliers and of construction of a 
set of samples, i.e., the experimental (or sampling) 
design. 

7 PLOTS 

Perhaps the most common use of PCA is in the 
conversion of a data matrix to a few informative 
plots. By plotting the columns t, in the score 
matrix T against each other, one obtains a picture 
of the objects and their configuration in M-space. 
The first few component plots, the i,-t, or t,-t,, 
etc., display the most dominant patterns in X. As 
was commented upon above, this tacitly assumes 
that the directions of maximum variance represent 
the directions of m~mum info~ation, This need 
not apply to all types of data sets, but it is a well 
substantiated empirical finding. 

Fig. 14 shows the loading plot corresponding to 
fig. 6 for the swedes example. In this plot one can 
directly identify which variables cause No. 7 to be 
an outlier and which variables are responsible for 
the separation of the two classes, fresh and stored. 
The directions in Fig. 6 correspond directly to the 
directions in Fig. 14. The horizontal direction 
separates No. 7 from the others in Fig. 6. Hence, 
variables far from zero in the horizontal direction 
in Fig. 14 (Nos. 5 and 6) are those responsible for 
this. Analogously, the vertical direction in Fig. 6 
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Loading plot (pi-p21 of log SWEDES 
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N 
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0 

-1 

Da 

D2 

D5 

Fig. 14. Plot of the first two loading vectors (p, and p2) corresponding to Fig. 6. 

N 
P 

pf 

Merged score and loading plots of log SWEOES 
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Fig. 15. Figs. 6 and 14 superimposed (origin in the same place). The loadings (triangles) are scaled up by a factor of 3. 
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separates the two classes. Hence, variables verti- 
cally far from zero in Fig. 7 (all except No. 2, but 
mainly 1, 3, 7 and 8) contribute to this separation. 

One may also superimpose these two plots (Figs. 
6 and 14) to obtain Fig. 15, which simultaneously 
displays both the objects and the variables. This 
type of plot is common in correspondence analy- 
sis, but can also be accomplished by ordinary 

PCA. It is largely a matter of choice whether one 

wishes to inspect these two complementary plots 
in one or two separate figures. For larger data sets 
it is probably best to keep the two plots separate 

to improve clarity. 

8 APPLICATIONS OF PRINCIPAL COMPONENT ANAL- 
YSIS 

PCA can be applied to any data matrix (prop- 
erly transformed and scaled, see Section 9). This is 
also recommended as an initial step of any multi- 
variate analysis to obtain a first look at the struc- 
ture of the data, to help identify outliers, delineate 

classes, etc. However, when the objective is classi- 
fication (pattern recognition levels 1 or 2 [26]) or 
relating one set of variables to another (e.g., 
calibration), there are extensions of PCA that are 
more efficient for these problems. 

Here a rather partisan view of PCA is pre- 
sented. It reflects the experience that well consid- 
ered projections encompass a surprisingly large 
range of typical scientific problem formulations 

[27,28]. 

8.1 Overview (plots) of any data table 

The score plot of the first two or three score 
vectors, 1,) shows groupings, outliers and other 

strong patterns in the data. This can be seen in the 
score plot of the swedes data. Many other appli- 
cations can be found in this issue. 

8.2 Dimensionality reduction 

As pointed out by Frank and Kowalski [29], 
two main groups of FA and PCA applications can 
be seen in analytical chemistry, namely the extrac- 
tion of the underlying factors - the latent varia- 
bles - and the resolution of spectra of multi- 
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component mixtures. In two-dimensional high- 

performance liquid chromatographic analysis, for 
instance, this is a way to find the smallest number 
of species in a sample. Reviews of the numerous 
applications of these types can be found in 

Kowalski et al. [14] and Malinowski and Howery 

1131. 
The first few score vectors, t,, may be seen as 

latent variables that express most of the informa- 
tion in the data. This has recently been used to 
find “principal properties” of amino acids, 
solvents and catalysts, which then later find use in 
the quantitative description of the selection of 
these entities [30,31]. See Fig. 16 for an example. 

PCA and FA are used in many other types of 
applications. As PC models can be also calculated 

for matrices with incomplete data, PCA may be 
used to predict the values for the “holes” in a data 
matrix. This, however, is more efficiently done 
with partial least quares analysis, mentioned in 

Section 11. 

7 
t 16 

* 

Fig. 16. Plot of the first and second PC score vectors of a table 
with 20 properties for the 20 common “natural” amino acids. 
The grouping indicates a relationship between the physical- 
chemical properties of the amino acids and which nucleotide is 
used in the second codon in the amino acid synthesis (adeno- 

sine, uracil and cytosine). The amino acids coded for by 
guanine (G) do not seem to participate in this relationship [46]. 
These PC score vectors numerically describe the structural 
change within families of peptides and thus constitute a basis 

for structure-activity relationships for peptides 1301. 
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8.3 Similarity models 

Wold [32] showed that a PC model has the 
same approximation property for a data table of 
similar objects as does a polynomial for bivariate 
data in a limited interval; the PC model can be 
seen as a Taylor expansion of a data table. The 
closer the similarity between the objects, the fewer 
terms are needed in the expansion to achieve a 
certain approximation goodness. The prerequisites 
for this interpretation of PCA are a few assump- 

tions about differentiability and continuity of the 
data generating process, which have been found to 
hold in many instances. This explains, at least 
partly, the practical utility of PCA. 

Hence, a pattern recognition method may be 
based on separate PC models, one for each class 

of objects. New objects are classified according to 
their fit or lack of fit to the class models, which 
gives a probabilistic classification. This is the basis 
for the SIMCA method (Soft Independent Model- 
ing of Class Analogies) [33]. If one wishes to 
distinguish optimally between the two classes of 
swedes, a PC model can be fitted to each of the 
classes. The results show that indeed there is simi- 
larity within the classes (two- or three-component 
models adequately describe the data) and that the 
classes are well separated (fresh samples fit the 
“stored class” badly and vice versa); see Wold et 
al. [34]. 

9 DATA PRE-TREATMENT 

The principal components model parameters 
depend on the data matrix, its transformation and 
its scaling. Hence, these must be explicitly de- 
fined. 

First, the data matrix: In statistics it is usually 
customary to put all available data into the matrix 
and analyse the lot. This conforms with the 
convention that all data reflect legitimate phe- 
nomena that have been sampled. When one has 
full control over the sampling, or over the experi- 
mental design, this approach may be correct. 

Practical experience from many sciences often 
outlines a less ideal reality, however. One is fre- 
quently faced with outlying data in real data sets. 

One also often knows certain pertinent external 

facts (such that cannot be coded into the data 
matrix itself) relating to the problem formulation. 

In chemistry, for example, one often has one set of 
objects (e.g., analytical samples) about which cer- 
tain essential properties are known. In the swedes 
example, for instance, there were 16 samples that 
were known or assumed to be either fresh or 
stored. The analysis confirmed this, but the PCA 
recognized that one sample did not comply. This 
type of external information can be used to com- 
pute a polished PC model. On may subsequently 
investigate new objects and project them on to the 
same scores plot without letting the new samples 
influence the PC model as such. 

Hence, it is practical to distinguish between a 
training set that is used for calculating problem- 

dependent PC models and a test set of objects that 
are later subjected to the same projection as that 

developed in the training phase. 
From the least squares formulation of the PC 

models above it is seen that the scores, t, can be 
viewed as linear combinations of the data with the 

coefficients p’. Conversely, the loadings, p’, can 
also to be understood as linear combinations of 
the data with the coefficients t. This duality has 
resulted in the coining of the term bilinear model- 
ing (BLM) [35]. From this follows that if one 
wishes to have precise r-values, i.e., precise infor- 
mation about the objects, one should have many 
variables per object and vice versa. The rule for 
multiple regression that the number of variables 
must be much smaller that the number of objects 
does not apply to PCA. 

As PCA is a least squares method, outlier 
severely influence the model. Hence it is essential 
to find and correct or eliminate outliers before the 
final PC model is developed. This is easily done 
by means of a few initial PC plots; outliers that 
have a critical influence on the model will reveal 
themselves clearly. Irrelevant variables can also be 
identified by an initial PC analysis (after taking 
care of outliers). Variables with little explained 

variance may be removed without changing the 
PC model. However, usually it does not matter if 
they are left in. The reduction of the data set 
should be made only if there is a cost (computa- 
tional or experimental) connected with keeping 
the variables in the model. 
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Second, the data matrix can be subjected to 
transformations that make the data more symmet- 
rically distributed, such as a logarithmic transfor- 
mation, which was used in the swedes example 
above. Taking the logarithm of positively skewed 

data makes the tail of the data distribution shrink, 
often making the data more centrally distributed. 

This is commonly done with chromatographic data 
and trace element concentration data. Autocorre- 
lation or Fourier transforms are recommended if 

mass spectrometric data are used for classification 
purposes [36]. There exist a great many potential 
transformations that may be useful in specialized 
contexts. Generally, one should exercise some dis- 
cipline in applying univariate transformations with 
different parameters for different variables, lest a 
“shear” be introduced in the transformed covari- 
ante (correlation) matrix relative to that pertain- 

ing to the original data. 
Centring the data by subtracting the column 

averages corresponds to moving the coordinate 
system to the centre of the data. 

Third, the scaling of the data matrix must be 
specified. Geometrically, this corresponds to 

changing the length of the coordinate axes. The 
scaling is essential because PCA is a least squares 
method, which makes variables with large variance 
have large loadings. To avoid this bias, it is 
customary to standardize the data matrix so that 
each column has a variance 1.0. This variance 
scaling makes all coordinate axes have the same 
length, giving each variable the same influence on 
the PC model. This is reasonable in the first stages 
of a multivariate data analysis. This scaling makes 
the PC loadings be eigenvectors of the correlation 
matrix. 

Variance scaling can be recommended in most 
instances, but some care must be taken if variables 

that are almost constant have been included in the 
data set. The scaling will then scale up these 
variables substantially. If the variation of these 
variables is merely noise, this noise will be scaled 
up to be more influential in the analysis. Rule: If 
the standard deviation of a variable over the data 
set is smaller than about four times its error of 
measurement, leave that variable unscaled. The 
other variables may still be variance scaled if so 
desired. 

When different types of variables are present, 
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say 6 infrared absorbances and 55 gas chromato- 
graphic peak sizes, a blockwise scaling may be 
performed so that the total variance is the same 
for each type of variables with autoscaling within 

each block. This is accomplished by dividing each 
variable by is standard deviation times the square 
root of the number of variables of that type in the 

block. 

When both objects and variables are centred 
and normalized to unit variance, the PCA of this 

derived matrix is called correspondence analysis. 
In correspondence analysis the “sizes” of the ob- 
jects are removed from the model. This may be 
desirable in some applications, e.g., contingency 
tables and the like, but certainly not in general. 
This double-scaling/ centring in effect brings 
about a complete equivalence between variables 
and objects, which can confuse the interpretation 
of the results of the data analysis. The loading and 
score plots can now be superimposed. However, 
with proper scaling this can also be done with 
ordinary PCA, as shown in Fig. 15. 

The treatment of missing data forms a special 
topic here. There may often be “holes” in the data 
matrix. The treatment of these can proceed mainly 

in two ways. One is to “guess” a value from 
knowledge of the population of objects or of the 
properties of the measuring instrument. A simple 

guess that does not affect the PCA result too 
much is to replace the missing value with the 
average for the rest of the column. Secondly, the 
PC algorithm may be able to cope with missing 
values (see Appendix). This allows the calculation 
of a model without having to fill in the missing 
value. 

No matter how missing values are dealt with, 
an evaluation of the residuals can give extra hints. 

Objects (or variables) with missing values that 
show up as outliers are to be treated with suspi- 
cion. As a rule of thumb, one can state that each 
object and variable should have more than five 
defined values per PC dimension. 

10 RANK, OR DIMENSIONALITY, OF A PRINCIPAL 

COMPONENTS MODEL 

When PCA is used as an exploratory took, the 
first two or three components are always ex- 
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tracted. These are used for studying the data 
structure in terms of plots. In many instances this 
serves well to clean the data of typing errors, 
sampling errors, etc. This process sometimes must 
be carried out iteratively in several rounds in 
order to pick out successively less outlying data. 

When the purpose is to have a model of X, 
however, the correct number of components, A, is 
essential. Several criteria may be used to de- 
termine A. 

It should be pointed out here that rank and 
dimensionality are not used in the strict mathe- 
matical sense. The ideal case is to have a number 
A of eigenvalues different from zero [A smaller or 
equal to min( K, N)] and all the others being zero. 
Measurement noise, sampling noise or other irreg- 
ularities cause almost all data matrices to be of 
full rank [A = min( K, N)]. This is the most dif- 
ficult aspect of using PC models on “noisy” data 
sets. 

Often, as many components are extracted as 
are needed to make the variance of the residual of 
the same size as the error of measurement of the 
data in X. However, this is based on the assump- 
tion that all systematic chemical and physical vari- 
ations in X can be explained by a PC model, an 
assumption that is often dubious. Variables can be 
very precise and still contain very little chemical 
information. Therefore, some statistical criterion 
is needed to estimate A. 

A criterion that is popular, especially in FA, is 
to use factors with eigenvalues larger than one. 
This corresponds to using PCs explaining at least 
one K th of the total sum of squares, where K is 
the number of variables. This, in turn, ensures that 
the PCs used in the model have contributions 
from at least two variables. Joreskog et al. [15] 
discussed aspects in more detail. 

Malinowski and Howery [13] and others have 
proposed several criteria based on the rate of 
decrease of the remaining residual sum of squares, 
but these criteria are not well understood theoreti- 
cally and should be used with caution [10,15]. 

Criteria based on bootstrapping and cross- 
validation (CV) have been developed for statistical 
model testing 1371. Bootstrapping uses the residu- 
als to simulate a large number of data sets similar 
to the original and thereafter to study the distribu- 

tion of the model parameters over these data. 
With CV the idea is to keep parts of the data 

out of the model development, then predict the 
kept out data by the model, and finally compare 
the predicted values with the actual values. The 
squared differences between predicted and ob- 
served values are summed to form the prediction 
sum of squares (PRESS). 

This procedure is repeated several times, keep- 
ing out different parts of the data until each data 
element has been kept out once and only once and 
thus PRESS has one contribution from each data 
element. PRESS then is a measure of the predic- 
tive power of the tested model. 

In PCA, CV is made for consecutive model 
dimensions starting with A = 0. For each ad- 
ditional dimension, CV gives a PRESS, which is 
compared with the error one would obtain by just 
guessing the values of the data elements, namely 
the residual sum of squares (RSS) of the previous 
dimension. When PRESS is not significantly 
smaller than RSS, the tested dimension is consid- 
ered insi~ficant and the model building is 
stopped. 

CV for PCA was first developed by Wold [38], 
using the NIPALS algorithm (see Appendix) and 
later by Eastment and Krzanowski [39], using 
SVD for the computations. Experience shows that 
this method works well and that with the proper 
algorit~s it is not too computation~ly demand- 
ing. CV is slightly conservative, i.e., leads to too 
few components rather than too many. In practi- 
cal work, this is an advantage in that the data are 
not ove~nte~reted and false leads are not created. 

11 EXTENSIONS; TWO-BLOCK REGRESSION AND 
MANY-WAY TABLES 

PCA can be extended to data matrices divided 
into two or more blocks of variables and is then 
called partial least squares (PLS) analysis (partial 
least squares projection to latent structures). The 
two-block PLS regression is related to multiple 
linear regression, but PLS applies also to the case 
with several Y-variables. See, e.g., Geladi and 
Kowalski [40], for a tutorial on PLS. Wold et al. 
[41] detailed the theoretical background for PLS 

49 



n Chcmometrics and Intelligent Laboratory Systems 

regression. Several contributions to the present 
issue illustrate the diverse application potential for 
PLS modeling and prediction. 

Multivariate image analysis can use PCA be- 
neficially, as explained by Esbensen et al. [42]. 
Multivariate image analysis is important in the 
chemical laboratory [43] and Geographical Infor- 
mation Systems (GIS). 

PCA and PLS have been extended to three-way 
and higher order matrices by Lohmiiller and Wold 
1441, and others. See the expository article by 
Wold et al. [45] for the theoretical background 
and application possibilities for these new bilinear 
concepts. 

12 SUMMARY 

Principal component analysis of a data matrix 
extracts the dominant patterns in the matrix in 
terms of a complementary set of score and loading 
plots. It is the r~ponsibility of the data analyst to 
formulate the scientific issue at hand in terms of 
PC projections, PLS regressions, etc. Ask yourself, 
or the investigator, why the data matrix was col- 
lected, and for what purpose the experiments and 
measurements were made. Specify before the anal- 
ysis what kinds of patterns you would expect and 
what you would find exciting. 

The results of the analysis depend on the scal- 
ing of the matrix, which therefore must be speci- 
fied. Variance scaling, where each variable is scaled 
to unit variance, can be recommended for general 
use, provided that almost constant variables are 
left unscaled. Combining different types of varia- 
bles warrants blockscaling. 

In the initial analysis, look for outliers and 
strong groupings in the plots, indicating that the 
data matrix perhaps should be “polished” or 
whether disjoint modeling is the proper course. 

For plotting purposes, two or three principal 
components are usually sufficient, but for model- 
ing purposes the number of significant compo- 
nents should be properly determined, e.g. by 
cross-validation. 

Use the resulting principal components to guide 
your continued investigation or chemical experi- 
mentation, not as an end in itself. 
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APPENDIX 

Denoting the centred and scaled data matrix by 
U, the loading vectors p, are eigenvectors to the 
covariance matrix U'U and the score vectors t, 
are eigenvectors to the association matrix UU’. 
Therefore, principal components have earlier been 
computed by diagonalizing U’U or UU’. How- 
ever, singular value decomposition [5] is more 
efficient when all PCs are desired, while the 
NIPALS method ]3] is faster if just the first few 
PCs are to be computed. The NIPALS algorithm 
is so simple that it can be formulated in a few 
lines of programming and also gives an interesting 
interpretation of vector-matrix multiplication as 
the partial least squares estimation of a slope. The 
NIPALS algorithm also has the advantage of 
working for matrices with moderate amounts of 
randomly distributed missing observations. 

The algorithm is as follows. First, scale the data 
matrix X and subtract the column averages if 
desired. Then, for each dimension, u: 

(i) From a start for the score vector t, e.g., the 
column in X with the largest variance. 

(ii) Calculate a loading vector as p’ = t’X/t’t. 
The elements in p can be interpreted as the slopes 
in the linear regressions (without intercept) of t on 
the corresponding column in X. 

(iii) Normalize p to length one by multiplying 
by c = l/e (or anchor it otherwise). 

(iv) Calculate a new score vector 2 = Xp/p’p. 
The ith element in t can be interpreted as the 
slope in the linear regression of p’ on the ith row 
in X. 

(v) Check the convergence, for instance using 
the sum of squared differences between all ele- 
ments in two consecutive score vectors. If conver- 
gence, continue with step vi, otherwise return to 
step ii. If convergence has not been reached in, 
say, 25 iterations, break anyway. The data are 
then almost (h~er)spheri~, with no strongly 
preferred direction of maximum variance. 

(vi) Form the residual E = X - tp’. Use E as X 
in the next dimension. 

Inserting the expression for t in step iv into 
step ii gives p = X’Xp * c/t’t (c is the normaliza- 
tion constant in step iii). Hence p is an eigenvec- 
tor to X’X with the eigenvalue t’t/c and we see 
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that the NIPALS algorithm is a variant of the 
power method used for matrix diagonalization 
(see, e.g., Golub and VanLoan [5]). As indicated 
previously, the eigenvalue is the amount of vari- 
ance explained by the corresponding component 
multiplied by the number of variables, K. 
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