
Abstract
This paper presents a simple learning rule for recognition of 
mouse dragged character on our computer screen using artificial 
neural network. We use Kohonen self organization map for pattern 
classification which employs unsupervised learning algorithm. The 
results are quite encouraging in terms of percentage of characters 
being successfully recognized. One advantage of proposed scheme 
is that the system is quite tolerant to changing conditions and 
inputs. The system consistently learns. Moreover the recognition 
ratio is excellent in the proposed system.
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I. Introduction
Character recognition is the process to classify the input character 
according to the predefine character class. With increasing the 
interest of computer applications, modern society needs the 
input text into computer readable form. This research is a simple 
approach to implement that dream as the initial step to convert 
the input text into computer readable form. Some research for 
hand written characters are already done by researchers with 
artificial neural networks. In this paper we use Kohonen neural 
network. A net work, by its self organizing properties, is able to 
infer relationships and learn more as more inputs are presented 
to it [1]. 
The Kohonen Self-Organizing Map (SOM) designed by Tuevo 
Kohonen is a variation of the traditional Artificial Neural Network. 
It is a third generation neural network, meaning that many of 
its functional characteristics are thought to mirror those found 
in biological fact. An SOM consists of a collection of nodes of 
neurons that are each connected to every other node and each 
node has associated with it a set of input weights w. The SOM 
also has associated with it a metric for determining which nodes 
are in the neighborhood N of a given node.
When the network is presented with a vector xi at its input, it 
computes the neural response sj of the node j using the formula: 
Sj=wj * xi      (1) 
Normalize both wj and xi before computing the dot product, sj, 
and refer to the node that produces the largest value of s as node 
k. Since the dot product of the normalized wk and xi vectors is 
the cosine of the angle between them, we can conclude that the 
winning node is the one with the weight vector closest to the 
input vector in its spatial orientation. We can then say that node 
k giving the largest s is closest to recognizing the input vector. 
We allow the nodes to learn by applying a ∆w to their weights 
using the formula: 
∆wk=α(xi-wk)     (2)
Where α is a constant in the range [0,1] called the learning constant. 
The learning process is applied to the maximum response neuron 
and neurons in its defined neighborhood. 
This training process can be described by the following algorithm 
[1]:

1.  A cycle: for every input vector xi 
[a]  Apply vector input to the network and evaluate the dot 

products of the normalized weights on each node and a 
normalized input vector. Call these dot products s. 

[b]   Find the node k with the maximal response sk. 
[c]  Train node k, and all the nodes in some neighborhood of k, 

according to the learning equation above. 
[d]  Calculate a running average of the angular distance between 

the values of wk and their associated input vectors. 
[e]  Decrease the learning rate, . 

2. After every M cycles, called the period, decrease the size of 
the neighborhood N. 

3. Repeat steps 1-2 for some finite period of time or until the 
average angular distance. One advantage to this scheme is that 
the system is quite tolerant to changing conditions and inputs. 
The system consistently learns. Moreover the recognition ratio 
is excellent in the proposed system. 

II. The Proposed System
The overall method of the implemented system is illustrated in 
fig.1 :

Fig.1: Overall model of implemented System

A. Input Image
The input to the recognition system is acquired by simply dragged 
the mouse on the text screen. Ignoring the concept of colored 
paper or character, the black part of the image is considered as the 
character and the white part is considered as the paper.

B. Feature Extraction and Preprocessing
Feature extraction is the process of extracting essential information 
contain from the image segment containing a character. It plays 
a vital role in the whole recognition process. This effectively 
reduces the number of computation and hence reduce the learning 
time in the training session of the neural network and faster the 
recognition process [1, 4]. 

C. Drawing Images
Though not directly related to neural networks, the process by which 
the user is allowed to draw the characters on the computer screen 
using mouse dragging is an important aspect this paper. Most of 
the actual drawing is handled by the process MouseMotionEvent. 
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If the mouse is being drug, then a line will be drawn from the last 
reported mouse drag position to the current mouse position. It is 
not enough to simply draw a dot. The mouse moves faster than the 
program has time to accept & process all values for. By drawing 
the line, we will cover any missed pixels as best we can. The line 
is drawn to the off-screen image, and then updated to the users 
screen. This is done with the following lines of code.
   
entryGraphics.setColor(Color.black);
entryGraphics.drawLine(lastX,lastY,e.getX(),e.getY());
getGraphics().drawImage(entryImage,0,0,this);
lastX = e.getX();
lastY = e.getY();

As the program runs, this method is called repeatedly. As a result 
whatever the user is drawing is saved in the off-screen image. 
Next section demonstrates how to down sample an image. The 
off-screen image is accessed as an array of integers, allowing us 
to work on the image data directly.
Down-sampling the Image: Every time a letter is drawn for either 
training or recognition, it must be down-sampled. In this section 
we will examine the process by which this down-sampling occurs. 
However, before we discuss the down-sampling process, we 
should discuss how these down-sampled images are stored. 
When you draw an image, the first thing the program does; it 
draws a box around the boundary of your letter. This allows the 
program to eliminate all of the white space around your letter. This 
process is done inside of the down-sample method of the Entry.
java class. As you drew a character this character was also drawn 
onto the entryImage instance variable of the entry object. In order 
to crop this image, and eventually down-sample it, we must grab 
the bit pattern of the image. This is done using a PixelGrabber 
class as shown here.
int w = entryImage.getWidth(this);
int h = entryImage.getHeight(this);
PixelGrabber grabber = new PixelGrabber (entryImage, 0, 0, w, 
h,true);  
grabber.grabPixels();
pixelMap = (int[])grabber.getPixels();
After this code completes, the pixelMap variable, which is an 
array of int datatypes, now contains the bit pattern of the image. 
The next step is to crop the image and remove any white space. 
Cropping is implemented by dragging four imaginary lines from 
the top, left, bottom and right sides of the image. These lines will 
stop as soon it crosses an actual pixel. By doing this, these four 
lines snap to the outer edges of the image. The hLineClear and 
vLineClear methods both accept a parameter that indicates the 
line to scan, and returns true if that line is clear.
Performing the Down-sample: Now that the cropping has taken 
place, the image must be actually down-sampled. This involves 
taking the image from a larger resolution to a 5X7 resolution. To 
see how to reduce an image to 5X7, think of an imaginary grid 
being drawn over top of the high-resolution image. This divides 
the image into quadrants, five across and seven down. If any 
pixel in a region is filled, then the corresponding pixel in the 5X7 
down-sampled image is also filled it. Most of the work done by 
this process is accomplished inside of the “downSampleQuadrant” 
method. This method is shown here.
  Protected boolean downSampleQuadrant(int x, int y)
  {
    int w = entryImage.getWidth(this);    
    int startX = (int)(downSampleLeft+(x*ratioX));
    int startY = (int)(downSampleTop+(y*ratioY));

int endX = (int)(startX + ratioX);
int endY = (int)(startY + ratioY);

for ( int yy=startY;yy<=endY;yy++ )
{for ( int xx=startX;xx<=endX;xx++ )
{int loc = xx+(yy*w);
if ( pixelMap[ loc  ]!= -1 )
{return true;}
{return false;}
 
The downSampleRegion method accepts the region number 
that should be calculated. First the starting and ending x and y 
coordinates must be calculated. To calculate the first x coordinate 
for the specified region first the downSampleLeft is used, this is 
the left side of the cropping rectangle. Then x is multiplied by 
“ratioX”, which is the ratio of how many pixels make up each 
quadrant. This allows us to determine where to place startX. The 
starting y position, start Y, is calculated by similar means. Next 
the program loops through every x and y covered by the specified 
quadrant. If even one pixel is determined to be filled, then the 
method returns true, which indicates that this region should be 
considered filled. The downSample Region method is called in 
succession for each region in the image. This results in a sample of 
the image, stored in the SampleData class. The class is a wrapper 
class that contains a 5X7 array of Boolean values. It is this structure 
that forms the input to both training and character recognition. 

III. Learning and Recognition (using Kohonen Self 
Organization Map)
The Kohenen network has two layers, an input layer and a Kohonen 
out layer. The input layer is a size determined by the user and 
much match the size of each row (pattern) in the input data file. 
A kohonen feature map may be used by it self or as a layer of 
another neural network. A kohonen layer is composed of neurons 
that compete with each other. The kohonen SOM use winner take 
all strategy. Inputs are feed into each of the neurons in the kohonen 
layer (from the input layer). Each neuron determines its out put 
according to a weighted sum formula: Output = ∑ wij xj   The 
weights and the inputs are usually normalized which mean that 
the magnitude of the weight and input vectors are set equal to one. 
The neuron with the largest output is winner. The neuron has a 
final output of 1. All other neurons in the layer have an output of 
zero. Different input patterns end up with firing different wining 
neurons. Similar or identical input patterns classify to the same 
output neuron. Only winning neurons and their neighbor’s par in 
learning for a given input pattern [3].

A. How a Kohonen Network Learns
There several steps involved in this learning process. Overall the 
process for training a Kohonen neural network involves stepping 
through several epochs until the error of the Kohonen neural 
network is below acceptable level. The training process for the 
Kohonen neural network is competitive. For each training set 
one neuron will “win”. This winning neuron will have its weight 
adjusted so that it will react even more strongly to the input the 
next time. As different neurons win for different patterns, their 
ability to recognize that particular pattern will be increased [3]. 
Learning Rate: The learning rate is a constant that will be used by 
the learning algorithm. The learning rate must be a positive number 
less than 1. Typically the learning rate is a number such as .4 or .5. 
Generally setting the learning rate to a larger value will cause the 
training to progress faster. Though setting the learning rate to too 
large a number could cause the network to never converge. This 
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is because the oscillations of the weight vectors will be too great 
for the classification patterns to ever emerge. Another technique 
is to start with a relatively high learning rate and decrease this 
rate as training progresses. This allows initial rapid training of the 
neural network that will be “fine tuned” as training progresses. The 
learning rate is just a variable that is used as part of the algorithm 
used to adjust the weights of the neurons. 

B. Adjusting Weights
The entire memory of the Kohonen neural network is stored 
inside of the weighted connections between the input and output 
layer. The weights are adjusted in each epoc. An epoch occurs 
when training data is presented to the Kohonen neural network 
and the weights are adjusted based on the results of this item of 
training data. The adjustments to the weights should produce a 
network that will yield more favorable results the next time the 
same training data is presented. Epochs continue as more and 
more data is presented to the network and the weights are adjusted. 
Eventually the return on these weight adjustments will diminish 
to the point that it is no longer values to continue.

IV. Proposed Algorithm 

A. Initialize network
For each node I set the initial weight vector Wi (0) to be random. 
Set the initial neighborhood Ni (0) to a large value.

B. Present input
In this we fed input in the form of binary pixels of 1 for white and 
zero for black pixel. As a result, the program feeds it the value 
of 0.5 for a white pixel and -0.5 for a white pixel. This array of 
35 values is fed to the input neurons. This is done by passing the 
input array to the Kohonen’s “winner” method. This will return 
which of the 35 neurons won, this is stored in the “best” integer. 
Calculating winning node Calculating winning node c based on 
the maximum activation among all p neurons participating  
In a competition  C= max∑Wij Xi
So the neuron with the largest activation is the winner. The neuron 
has the final output of 1 or this is the firing neuron. All other 
neurons in the layer have an output of zero.

C. Update weights
The original method for calculating the changes to weights, which 
was proposed by Kohonen, is often called the additive method. 
This method uses the following equation.

The variable x is the training vector that was presented to the 
network. The variable is the weight of the winning neuron, 
and the variable is the new weight. The double vertical bars 
represent the vector length. 

D. Training the Sample Program to Recognize Letters
The program may not be able to recognize any one’s handwriting 
because it is initially trained for particular handwriting only.  Two 
choices have been provided as to how to train the neural network 
program. First, you can choose to start from a blank training set 
and enter all 26 letters for yourself. You can also choose to start 
from my training set. If you start from my training set you can 
replace individual letters. This would be a good approach if the 
network were recognizing most of your characters, but failing on 

a small set. You could retrain the neural network for the letters 
that the program was failing to understand. To delete a letter that 
the training set already has listed you should select that letter and 
press the “Delete” button on the OCR application. Not that this 
is the GUI’s “Delete” button and not the delete button on your 
computer’s keyboard. To add new letters to the training set you 
should draw your letter in the drawing input area. Once your 
letter is drawn you can click the “Add” button. This will prompt 
you for the actual letter that you just drew. What ever character 
you type for this prompt will be displayed to you when the OCR 
application recognizes the letter that you just drew. Now that you 
have your training set complete you should save it. This is done 
by clicking the “Save” button on the OCR application. This will 
save the training set to the file “sample.dat”. If you already have 
a file named sample.dat, it will be overwritten. Because of this it 
is important to make a copy of your previous training file if you 
would like to keep it. If you exit the OCR application without 
saving your training data, it will be lost. When you launch the 
OCR application again you can now click “Load” to retrieve the 
data you previously stored to the sample.dat file.

V. Experimental Result
The complexity of the problem is greatly increased by noise in 
data and by an almost infinite variability of hand writing as a 
result of the writer and the nature of the writing .A single letter 
may be written & represented in many ways as shown below for 
character ‘A’, ‘D’ & ‘E’. The level of complexity is more when 
the character is to be drawn on computer screen using mouse

.
   Fig. 2: 
Following table depicts the percentage/rate of success in recognition 
of above drawn characters in different styles.
Table 1:

Character 
Drawn

No of 
Patterns 
Given

#Recognized #Not 
Recognized

Rate (%) of 
Recognition

A 5 4 1 80
D 5 4 1 80
E 5 4 1 80

   Fig. 3:
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IV. Conclusion
Recognition of handwritten characters has been a considerable 
interest to researchers working on OCR. The complexity of the 
problem is greatly increased by noise in data and by an almost 
infinite variability of hand writing as a result of the writer and 
the nature of the writing. Here we have developed a generalized 
recognition system for hand written character. The rate of success 
has been found to be between 75% to 80% which is fairly 
significant. Some time humans can’t even recognize their own 
handwritings and the handwritten character varies from man to 
man and depends on many factors i.e. emotion, pen pressure, 
and environment. This is why; it is too difficult to get accurate 
efficiency. Though it is problematic if a man follows standard 
writing rules, the filtering and feature extraction is done more 
accurately, and then it is possible to recognize the handwritten 
text into computer readable form in more precise manner.
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