
Abstract
This paper presents a simple learning rule for recognition of
mouse dragged character on our computer screen using artificial
neural network. We use Kohonen self organization map for pattern
classification which employs unsupervised learning algorithm. The
results are quite encouraging in terms of percentage of characters
being successfully recognized. One advantage of proposed scheme
is that the system is quite tolerant to changing conditions and
inputs. The system consistently learns. Moreover the recognition
ratio is excellent in the proposed system.

Keywords
Artificial Neural networks, Kohonen network, paper, hand written
character recognition, mouse dragging etc.

I. Introduction
Character recognition is the process to classify the input character
according to the predefine character class. With increasing the
interest of computer applications, modern society needs the
input text into computer readable form. This research is a simple
approach to implement that dream as the initial step to convert
the input text into computer readable form. Some research for
hand written characters are already done by researchers with
artificial neural networks. In this paper we use Kohonen neural
network. A net work, by its self organizing properties, is able to
infer relationships and learn more as more inputs are presented
to it [1].
The Kohonen Self-Organizing Map (SOM) designed by Tuevo
Kohonen is a variation of the traditional Artificial Neural Network.
It is a third generation neural network, meaning that many of
its functional characteristics are thought to mirror those found
in biological fact. An SOM consists of a collection of nodes of
neurons that are each connected to every other node and each
node has associated with it a set of input weights w. The SOM
also has associated with it a metric for determining which nodes
are in the neighborhood N of a given node.
When the network is presented with a vector xi at its input, it
computes the neural response sj of the node j using the formula:
Sj=wj * xi (1)
Normalize both wj and xi before computing the dot product, sj,
and refer to the node that produces the largest value of s as node
k. Since the dot product of the normalized wk and xi vectors is
the cosine of the angle between them, we can conclude that the
winning node is the one with the weight vector closest to the
input vector in its spatial orientation. We can then say that node
k giving the largest s is closest to recognizing the input vector.
We allow the nodes to learn by applying a ∆w to their weights
using the formula:
∆wk=α(xi-wk) (2)
Where α is a constant in the range [0,1] called the learning constant.
The learning process is applied to the maximum response neuron
and neurons in its defined neighborhood.
This training process can be described by the following algorithm
[1]:

1. A cycle: for every input vector xi
[a] Apply vector input to the network and evaluate the dot

products of the normalized weights on each node and a
normalized input vector. Call these dot products s.

[b] Find the node k with the maximal response sk.
[c] Train node k, and all the nodes in some neighborhood of k,

according to the learning equation above.
[d] Calculate a running average of the angular distance between

the values of wk and their associated input vectors.
[e] Decrease the learning rate, .

2. After every M cycles, called the period, decrease the size of
the neighborhood N.

3. Repeat steps 1-2 for some finite period of time or until the
average angular distance. One advantage to this scheme is that
the system is quite tolerant to changing conditions and inputs.
The system consistently learns. Moreover the recognition ratio
is excellent in the proposed system.

II. The Proposed System
The overall method of the implemented system is illustrated in
fig.1 :

Fig.1: Overall model of implemented System

A. Input Image
The input to the recognition system is acquired by simply dragged
the mouse on the text screen. Ignoring the concept of colored
paper or character, the black part of the image is considered as the
character and the white part is considered as the paper.

B. Feature Extraction and Preprocessing
Feature extraction is the process of extracting essential information
contain from the image segment containing a character. It plays
a vital role in the whole recognition process. This effectively
reduces the number of computation and hence reduce the learning
time in the training session of the neural network and faster the
recognition process [1, 4].

C. Drawing Images
Though not directly related to neural networks, the process by which
the user is allowed to draw the characters on the computer screen
using mouse dragging is an important aspect this paper. Most of
the actual drawing is handled by the process MouseMotionEvent.

Hand-Written Character Recognition
Using Kohonen Network

Dr. Pankaj Agarwal
Dept. of Computer Sc, IMS Engineering College, Ghaziabad, U.P, India

 112 InternatIonal Journal of Computer SCIenCe and teChnology

IJCSt Vol. 2, ISSue 3, September 2011 I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

If the mouse is being drug, then a line will be drawn from the last
reported mouse drag position to the current mouse position. It is
not enough to simply draw a dot. The mouse moves faster than the
program has time to accept & process all values for. By drawing
the line, we will cover any missed pixels as best we can. The line
is drawn to the off-screen image, and then updated to the users
screen. This is done with the following lines of code.

entryGraphics.setColor(Color.black);
entryGraphics.drawLine(lastX,lastY,e.getX(),e.getY());
getGraphics().drawImage(entryImage,0,0,this);
lastX = e.getX();
lastY = e.getY();

As the program runs, this method is called repeatedly. As a result
whatever the user is drawing is saved in the off-screen image.
Next section demonstrates how to down sample an image. The
off-screen image is accessed as an array of integers, allowing us
to work on the image data directly.
Down-sampling the Image: Every time a letter is drawn for either
training or recognition, it must be down-sampled. In this section
we will examine the process by which this down-sampling occurs.
However, before we discuss the down-sampling process, we
should discuss how these down-sampled images are stored.
When you draw an image, the first thing the program does; it
draws a box around the boundary of your letter. This allows the
program to eliminate all of the white space around your letter. This
process is done inside of the down-sample method of the Entry.
java class. As you drew a character this character was also drawn
onto the entryImage instance variable of the entry object. In order
to crop this image, and eventually down-sample it, we must grab
the bit pattern of the image. This is done using a PixelGrabber
class as shown here.
int w = entryImage.getWidth(this);
int h = entryImage.getHeight(this);
PixelGrabber grabber = new PixelGrabber (entryImage, 0, 0, w,
h,true);
grabber.grabPixels();
pixelMap = (int[])grabber.getPixels();
After this code completes, the pixelMap variable, which is an
array of int datatypes, now contains the bit pattern of the image.
The next step is to crop the image and remove any white space.
Cropping is implemented by dragging four imaginary lines from
the top, left, bottom and right sides of the image. These lines will
stop as soon it crosses an actual pixel. By doing this, these four
lines snap to the outer edges of the image. The hLineClear and
vLineClear methods both accept a parameter that indicates the
line to scan, and returns true if that line is clear.
Performing the Down-sample: Now that the cropping has taken
place, the image must be actually down-sampled. This involves
taking the image from a larger resolution to a 5X7 resolution. To
see how to reduce an image to 5X7, think of an imaginary grid
being drawn over top of the high-resolution image. This divides
the image into quadrants, five across and seven down. If any
pixel in a region is filled, then the corresponding pixel in the 5X7
down-sampled image is also filled it. Most of the work done by
this process is accomplished inside of the “downSampleQuadrant”
method. This method is shown here.
 Protected boolean downSampleQuadrant(int x, int y)
 {
 int w = entryImage.getWidth(this);
 int startX = (int)(downSampleLeft+(x*ratioX));
 int startY = (int)(downSampleTop+(y*ratioY));

int endX = (int)(startX + ratioX);
int endY = (int)(startY + ratioY);

for (int yy=startY;yy<=endY;yy++)
{for (int xx=startX;xx<=endX;xx++)
{int loc = xx+(yy*w);
if (pixelMap[loc]!= -1)
{return true;}
{return false;}

The downSampleRegion method accepts the region number
that should be calculated. First the starting and ending x and y
coordinates must be calculated. To calculate the first x coordinate
for the specified region first the downSampleLeft is used, this is
the left side of the cropping rectangle. Then x is multiplied by
“ratioX”, which is the ratio of how many pixels make up each
quadrant. This allows us to determine where to place startX. The
starting y position, start Y, is calculated by similar means. Next
the program loops through every x and y covered by the specified
quadrant. If even one pixel is determined to be filled, then the
method returns true, which indicates that this region should be
considered filled. The downSample Region method is called in
succession for each region in the image. This results in a sample of
the image, stored in the SampleData class. The class is a wrapper
class that contains a 5X7 array of Boolean values. It is this structure
that forms the input to both training and character recognition.

III. Learning and Recognition (using Kohonen Self
Organization Map)
The Kohenen network has two layers, an input layer and a Kohonen
out layer. The input layer is a size determined by the user and
much match the size of each row (pattern) in the input data file.
A kohonen feature map may be used by it self or as a layer of
another neural network. A kohonen layer is composed of neurons
that compete with each other. The kohonen SOM use winner take
all strategy. Inputs are feed into each of the neurons in the kohonen
layer (from the input layer). Each neuron determines its out put
according to a weighted sum formula: Output = ∑ wij xj The
weights and the inputs are usually normalized which mean that
the magnitude of the weight and input vectors are set equal to one.
The neuron with the largest output is winner. The neuron has a
final output of 1. All other neurons in the layer have an output of
zero. Different input patterns end up with firing different wining
neurons. Similar or identical input patterns classify to the same
output neuron. Only winning neurons and their neighbor’s par in
learning for a given input pattern [3].

A. How a Kohonen Network Learns
There several steps involved in this learning process. Overall the
process for training a Kohonen neural network involves stepping
through several epochs until the error of the Kohonen neural
network is below acceptable level. The training process for the
Kohonen neural network is competitive. For each training set
one neuron will “win”. This winning neuron will have its weight
adjusted so that it will react even more strongly to the input the
next time. As different neurons win for different patterns, their
ability to recognize that particular pattern will be increased [3].
Learning Rate: The learning rate is a constant that will be used by
the learning algorithm. The learning rate must be a positive number
less than 1. Typically the learning rate is a number such as .4 or .5.
Generally setting the learning rate to a larger value will cause the
training to progress faster. Though setting the learning rate to too
large a number could cause the network to never converge. This

 InternatIonal Journal of Computer SCIenCe and teChnology 113

I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

IJCSt Vol. 2, ISSue 3, September 2011

is because the oscillations of the weight vectors will be too great
for the classification patterns to ever emerge. Another technique
is to start with a relatively high learning rate and decrease this
rate as training progresses. This allows initial rapid training of the
neural network that will be “fine tuned” as training progresses. The
learning rate is just a variable that is used as part of the algorithm
used to adjust the weights of the neurons.

B. Adjusting Weights
The entire memory of the Kohonen neural network is stored
inside of the weighted connections between the input and output
layer. The weights are adjusted in each epoc. An epoch occurs
when training data is presented to the Kohonen neural network
and the weights are adjusted based on the results of this item of
training data. The adjustments to the weights should produce a
network that will yield more favorable results the next time the
same training data is presented. Epochs continue as more and
more data is presented to the network and the weights are adjusted.
Eventually the return on these weight adjustments will diminish
to the point that it is no longer values to continue.

IV. Proposed Algorithm

A. Initialize network
For each node I set the initial weight vector Wi (0) to be random.
Set the initial neighborhood Ni (0) to a large value.

B. Present input
In this we fed input in the form of binary pixels of 1 for white and
zero for black pixel. As a result, the program feeds it the value
of 0.5 for a white pixel and -0.5 for a white pixel. This array of
35 values is fed to the input neurons. This is done by passing the
input array to the Kohonen’s “winner” method. This will return
which of the 35 neurons won, this is stored in the “best” integer.
Calculating winning node Calculating winning node c based on
the maximum activation among all p neurons participating
In a competition C= max∑Wij Xi
So the neuron with the largest activation is the winner. The neuron
has the final output of 1 or this is the firing neuron. All other
neurons in the layer have an output of zero.

C. Update weights
The original method for calculating the changes to weights, which
was proposed by Kohonen, is often called the additive method.
This method uses the following equation.

The variable x is the training vector that was presented to the
network. The variable is the weight of the winning neuron,
and the variable is the new weight. The double vertical bars
represent the vector length.

D. Training the Sample Program to Recognize Letters
The program may not be able to recognize any one’s handwriting
because it is initially trained for particular handwriting only. Two
choices have been provided as to how to train the neural network
program. First, you can choose to start from a blank training set
and enter all 26 letters for yourself. You can also choose to start
from my training set. If you start from my training set you can
replace individual letters. This would be a good approach if the
network were recognizing most of your characters, but failing on

a small set. You could retrain the neural network for the letters
that the program was failing to understand. To delete a letter that
the training set already has listed you should select that letter and
press the “Delete” button on the OCR application. Not that this
is the GUI’s “Delete” button and not the delete button on your
computer’s keyboard. To add new letters to the training set you
should draw your letter in the drawing input area. Once your
letter is drawn you can click the “Add” button. This will prompt
you for the actual letter that you just drew. What ever character
you type for this prompt will be displayed to you when the OCR
application recognizes the letter that you just drew. Now that you
have your training set complete you should save it. This is done
by clicking the “Save” button on the OCR application. This will
save the training set to the file “sample.dat”. If you already have
a file named sample.dat, it will be overwritten. Because of this it
is important to make a copy of your previous training file if you
would like to keep it. If you exit the OCR application without
saving your training data, it will be lost. When you launch the
OCR application again you can now click “Load” to retrieve the
data you previously stored to the sample.dat file.

V. Experimental Result
The complexity of the problem is greatly increased by noise in
data and by an almost infinite variability of hand writing as a
result of the writer and the nature of the writing .A single letter
may be written & represented in many ways as shown below for
character ‘A’, ‘D’ & ‘E’. The level of complexity is more when
the character is to be drawn on computer screen using mouse

.
 Fig. 2:
Following table depicts the percentage/rate of success in recognition
of above drawn characters in different styles.
Table 1:

Character
Drawn

No of
Patterns
Given

#Recognized #Not
Recognized

Rate (%) of
Recognition

A 5 4 1 80
D 5 4 1 80
E 5 4 1 80

 Fig. 3:

 114 InternatIonal Journal of Computer SCIenCe and teChnology

IJCSt Vol. 2, ISSue 3, September 2011 I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

IV. Conclusion
Recognition of handwritten characters has been a considerable
interest to researchers working on OCR. The complexity of the
problem is greatly increased by noise in data and by an almost
infinite variability of hand writing as a result of the writer and
the nature of the writing. Here we have developed a generalized
recognition system for hand written character. The rate of success
has been found to be between 75% to 80% which is fairly
significant. Some time humans can’t even recognize their own
handwritings and the handwritten character varies from man to
man and depends on many factors i.e. emotion, pen pressure,
and environment. This is why; it is too difficult to get accurate
efficiency. Though it is problematic if a man follows standard
writing rules, the filtering and feature extraction is done more
accurately, and then it is possible to recognize the handwritten
text into computer readable form in more precise manner.

References
[1] O, Trier, A.K. Jain, T. Taxt. "Feature extraction methods for

character recognition", pattern recognition, 29(4): 641-662,
1996

[2] Vallu Rao, Hayagriva Rao, "C++ Neural Networks and Fuzzy
logic". International Edition, 1996

[3] Vuokko Vuori, Erkki Oja, "Analysis of different writings
styles with the self organizing map". In Proceedings of the 7th
International Conference on neural information processing.
Vol. 2., 2000, pp 1243-1247. November 2000

[4] Davis, R.H., Lyall, "Recognition of hand written character – A
review", Image and vision computing 4,4, (1986) 208-218

Pankaj Agarwal received his doctorate from
Jamia Millia Islamia Central University,
New Delhi, India. His research interests
include Soft Computing, Computational
Algorithms & Bioinformatics. He has
published more than 25 research papers
in various international journals &
conferences of repute & has 5 books to his
credit. He is presently associated with IMS

Engineering College, Ghaziabad, U.P, India
in Department of Computer Science & Engineering as Professor
& Head & Dean , Room No A-108

 InternatIonal Journal of Computer SCIenCe and teChnology 115

I S S N : 2 2 2 9 - 4 3 3 3 (P r i n t) | I S S N : 0 9 7 6 - 8 4 9 1 (O n l i n e)

w w w . i j c s t . c o m

IJCSt Vol. 2, ISSue 3, September 2011

