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Abstract 

Blind choice and parameterization of data mining tools often yield vague or completely misleading results. 
Interactive visualization enables not only extensive exploration of data but also better matching of 
clustering/classification schemes to the type of data being analyzed. The multidimensional scaling (MDS), 
which employs particle dynamics to the error function minimization, is a good candidate to be a computational 
engine for interactive data mining. However, the main disadvantage of MDS is both its memory and time 
complexity. We developed novel SUBSET algorithm of a lower complexity, which is competitive to the best, 
currently used, MDS algorithms in terms of efficiency and accuracy. SUBSET employs reduced dissimilarity 
matrix, which structure allows for efficient usage of both multi-core CPU and SIMD GPU processor 
architectures. Consequently, SUBSET enables visualization of datasets consisting of an order of 105 data items 
on a standard personal computer or laptop. We compare a few strategies of dissimilarity matrix reduction and 
we present typical timings obtained by respective MDS algorithms on selected multithread CPU and GPU 
architectures. 
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1. Introduction 

Data mining of large datasets consisting of data items Oi , (i=1,…,M), where  is an abstract data space, 
involves application of many machine learning tools such as classifiers, regression and clustering schemes. 
Many of them are specialized for analysis of a special case of  represented by Y space of multidimensional 
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feature vectors yi, Y={yi=(yi1,..yiN)}i=1,…,M, where N=dimY (see Fig.1a). However, in general, the data items Oi 
can have more sophisticated structures, which cannot be directly represented by the feature vectors. This 
problem can be partially overcome provided that it is possible to define a dissimilarity measure (Oi,Oj) 1 
between data items Oi and Oj. We assume that (.,.) is symmetric and (Oi,Oi)=0. Particularly, (,) can be a 
distance obeying also the condition of triangle inequality. In general, the  space topology is represented by 
dissimilarity matrix ={ ij}MxM. The vector representation of  can be derived by employing multidimensional 
scaling (MDS) procedure [1-3]. 
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Fig.1. Multidimensional scaling applied for visualization in 3-D Euclidean space X data from a) a multidimensional feature 
space Y, b) an abstract  space for which only dissimilarity matrix  is known (e.g., dissimilarity measure between shapes). 
 
Multidimensional scaling (MDS) (see e.g. [1,2,3]) is a bijection B: X of a “source” space of abstract items 

={Oi; i=1,…,M} onto a “target” vector space n X={xi=(xi1,..xin)}i=1,…,M, where n=dimX, which reproduce 
topological structure of  in X in respect to a given error criterion (see Fig.1b) .  

Let us define the Euclidean matrix d={dij}MxM in the target vector space X, where dij
 is the Euclidean 

distance between vectors xi and xj which correspond to Oi and Oj, respectively. We assume that to preserve 
topological structure of  in X an overall error F(|| -d||) should be minimized, where F(.) - called the “stress” 
function [1-3] - is an increasing function F: 1 1. The value of F(.) represents a discrepancy measure 
between dissimilarities  from  and corresponding distances d from X. The resulting matrix X=(x1, x2, x3, 
…,xM), which minimizes the “stress” function F(.), is the final outcome of multidimensional scaling. This way 
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each data item Oi can be represented in X by a corresponding feature vector xi. Having vector representations xi 
of data items Oi, one can employ classical machine learning algorithms for data mining without using 
complicated syntactic rules and languages.  

However, it is well known that the quality of a particular classification or clustering scheme depends 
strongly on data analyzed. Moreover, its parameters should also be optimized in the context of a specific data 
type. Blind selection and parameterization of classification/clustering schemes too often yield vague or 
completely misleading results. Therefore, much time has to be spent adapting the machine learning algorithms 
to data being processed. Interactive data visualization allowing for direct manipulation on data sets and instant 
observation of its effects of  (i.e., interactive data mining), can radically improve data understanding. It enables 
for finding the best match of classification/clustering procedures to data being explored and deeper penetration 
of their parameter space.  

As shown in [4], multidimensional scaling is a good candidate to be a methodological framework of 
interactive visualization. Because it allows for reconstructing the topology of an original data space defined by 
the dissimilarity matrix  in a target vector space X, we can use it particularly in dimensions which can be 
explored visually, i.e., dim X=3 or 2 (see Fig.1). In general, the distance matrix ={ ij}MxM  can be non-
Euclidean matrix of dissimilarities in an abstract target space, while d={dij}MxM is its corresponding Euclidean 
matrix in a low dimensional (3(2)-D) target space (see Fig.1b).  

In [5,6] we showed that: 
1. by representing every data item Oi by a corresponding point particle xi in 3(2)-D target space; 
2. by assuming that every two particles i and j interact with each other via semi-harmonic forces dependent 

on the discrepancy || ij-dij||  between corresponding particle distances in the source and the target spaces; 
3. by simulating Newtonian time evolution of initially random configuration of particles in a dissipative 

environment; 
the particle system converges to a stationary state with a minimal potential energy E(X) 
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The final particle configuration X={xi}i=1…M represents the result of MDS mapping into 3(2)-D target space. 
The values of k,m are the parameters of the error function F(.) (e.g. k=1 and m=2), which represents 
discrepancy error between dissimilarities  in the source space and corresponding Euclidean distances d in the 
target space. Assuming very slow dissipation of kinetic energy of the full particle system, the global minimum 
(or, at least, a “good” local minimum close to the global one) of F(.) will be reached. This minimization 
procedure fits perfectly for interactive visualization purposes mimicking self-adaptation process in course of 
simulation (see [4,5]). By changing the interaction potential (i.e., the type of discrepancy measure), interactive 
control of simulation parameters and by removing, inserting and stopping selected particles, one can easily 
penetrate data topology both controlling its relaxation dynamics and exploring interactively the final particle 
configuration.  

However, this robust heuristics - similarly to other MDS algorithms which employ full distance matrix for 
data representation - suffers O(M2) memory and time complexity. This fact disables interactive visualization of 
larger data sets consisting of M>105 items on up-to-the-date personal computers. As shown in [7,8] this 
situation can be improved by using supercomputers and HP clusters. Nevertheless, this computational problem 
remains too demanding for smaller computer systems. 

In general, to find analytically the minimum of criterion (1) the system of n M nonlinear equations in n-
dimensional target space should be solved. However, such the system is strongly overdetermined [6]. It means 
that just a subset S of all distances from  is sufficient to clearly define data topology. The proper choice of S 
with minimal number of distances, which preserve the topological structure of data, could considerable 
improve the computational efficiency of multidimensional scaling. 

In this paper we demonstrate that by using only a small fraction of distances from  and simultaneously 
preserving high coherence of data, we are able to increase the efficiency of MDS by orders of magnitude with a 
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small deterioration of the final result. In the following sections we present the result of integration of three 
factors which decide about MDS efficiency, i.e., robust heuristics for error minimization (i.e., particle method 
[4]), usage of incomplete dissimilarity matrix and efficient parallel algorithms. We compare typical timings of 
tests performed on multi-core CPU and GPU processors for a few strategies of valid distances selection. 

2. MDS with reduced dissimilarity matrix 

Let us assume that the feature vectors xi (i=1,…,M), represented by the points in N-D space, are connected by 
rigid bonds of the length of dissimilarity values between corresponding data items and the whole data set is 
fixed (cannot rotate and move) in . The minimal number of bonds which unambiguously defines such the 
system is approximately equal to:  

LMin = N M-N (N+1)/2   and  =LMin/LMax=
M

N
M

N
2

11
1

2 ,                           (2) 

assuming that M>N+1 and LMax=M (M-1)/2. Then for M=cN 
                       1/c,                                                                              (3) 

 
i.e., larger value of c (M>>N) means that smaller fraction of distances decides about topological structure of 
data. Therefore, the simplest method of reduction of O(M2) computational complexity is to calculate only a 
subset S={Dij, z=#Dij}, of z<<LMax selected dissimilarities from . According to (2) and (3) we can expect that 
the number of distances z taken in random from the full set of LMax distances allowing for unambiguous 
reconstruction data topology can be proportional to LMin. To check this presumption we selected three datasets 
representing various multidimensional data structures listed in Table 1. 
 

Table 1. The list of datasets used for tests: name, number of feature vectors M, dimensionality N and short description. 

Name #vectors M N Description 

H(1..,i,…256) i x 1024 
M 2.68 105 60 

These datasets were artificial generated. They consist of two equal clusters. One 
half of coordinates are randomly selected from interval [-1,1]. Remaining 
coordinates are randomly selected from interval [-1, 0] or [0, 1].  

WDBC 569 30 
The WDBC dataset was taken from the UCI Machine Learning Repository ([9]). 
Nine versions of this dataset were generated by choosing randomly the vectors 
from the original dataset. 

PENDIGITS 3498 16 
This is one of the UCI Machine Learning Repository [9] datasets. Each vector 
corresponds to one handwritten digit. Nine versions of this dataset were generated 
by choosing the vectors randomly from the original dataset. 

 
The Hi (i=1,…,256) test bed consists of multidimensional feature vectors grouped in two separated clusters 
while WDBC represents two adhering data clouds. The PENDIGITS data set consists of feature vectors 
belonging to several non-compact and blurred data structures. The number of feature vectors M in the test beds 
varied from hundreds to hundred of thousands.  

Each test has been performed ten times with various seeds initializing the uniform random number 
generator. On the basis of ten tests the values of the means and standard deviations of F(.) are controlled for 
each dataset. Every test run began with a ballot of distances that were used for computations. Thus, the subset S 
of z distances is selected. The quality of the results we estimate calculating the values of stress functions (Eq.1) 
assuming that wij=1; l=1; m=2, both for the reduced and full distance matrices. The ratio q(z), which is used to 
estimate the quality of the approximation, is calculated by using the following expression: 
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q(z)= F(reduced dissimilarity matrix)/F(full dissimilarity matrix) 100% .                           (4) 
 

It is equal to 100% when all the distances are used in MDS mapping and is larger than 100% for less accurate 
fit when z<LMax. Because, this stress function is not normalized (wij=1), the relative error component connected 
with large distances is much smaller than that computed for shorter distances. Typical results obtained for Hi, 
WDBC and PENDIGITS datasets are presented in Fig.2. The plots display the minimum number of distances z 
versus the size of dataset M needed to obtain the required quality of mapping q(z). The assumed values of q(z) 
are equal to 100%, 103%, 106%, and 109%, respectively.  
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RANDOM        (F=0.299) 

SUBSETS         (F=0.305) 

LANDMARKS (F=0.318) 

 
Fig.2. The minimum number of distances z needed to obtain the required quality of mapping q(z) versus M. The plots 
represent a) H2 b) WDBC and c) PENDIGITS datasets, respectively. In panel d) we display the results of particle based 
MDS mapping using 3 various choices of distances (only 1% of distances were chosen) for H256 data set (2.68 105 feature 
vectors). The value of stress F is given in parenthesis. 
 
As shown in Fig.2a-c, assuming relatively high quality of mapping (with F(.)=109%), z is nearly linear 
function of M for datasets, where M greatly outnumbers the dimensionality N of the feature space Y. This 
conclusion follows from Eq.3, which shows that for M>>N a lesser fraction of distances  is required to 
reconstruct the topologies of source feature spaces. Linear dependence of the number of distances z on M, 
sufficient for reconstruction of source Y space with a given quality q(z), is evident especially for diversified test 
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bed PENDIGITS and for two other datasets WDBC and H2 for M>500 and M>1000, respectively. This effect 
is even stronger for data consisting of many small distant clusters, such as PENDIGITS, and attenuated for 
topologies represented by two populated clusters (such as H2 and WDBC). This is because the histogram of 
distances for the former data set is shifted to the long distances while for the latter to the shorter ones. This 
substantial error component connected with improper reconstruction of shorter distances is greatly reduced for 
PENDIGITS dataset.  Comparing the results of MDS mapping using various ways of z distances selection we 
see clearly the advantage of a simple random choice. 

The final results of embedding of PENDIGITS dataset in 3-D Euclidean space are displayed in Fig.3. For 
F(.)=100% (left panel) full dissimilarity matrix was employed by MDS, while for F(.)=109% (right panel) only 
7% of distances were used. At the first sight, it seems that pictures in the two panels are identical. However, 
being more careful, one can notice that resulting clusters for q(z)=109% are more blurred.  

  

 

100% distances 7% distances 

a b 

c d

 
 
Fig.3 The results of multidimensional scaling of PENDIGITS dataset into 3D space for q(z)=100% (the left panel); and b) 
q(z)=109% (the right panel). The clusters corresponding to digits 0-4 and 5-9 are presented as separate projections a),b) and 
c),d), respectively. 
 
This effect can be seen even better in Fig.4. The picture of size 75x105 pixels was fragmented onto separate 
pixels, and scattered randomly in 2-D space. The Euclidean matrix  is only information about the proper 
location of the pixels. As shown in Fig.5, the MDS particle method [4,5] reconstructs properly the picture on 
the basis of reduced distance matrix. As shown in Fig.4, a fraction of pixel-to-pixel distances is needed to 
obtain the legible reconstruction. 
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(3.1x107) (2.5x104) (5.0x104) (7.5x104) (1.0x105) 

Fig.4. The results of multidimensional scaling of 7875 pixels of a 75x105 picture, initially scattered randomly in 2-D 
Euclidean space. The number of distances used for the picture reconstruction is given in the parenthesis.  The MDS based 
on virtual particle method was used. The results presented were obtained after 104 time-steps.  

3. MDS with reduced distance matrix on parallel processors 

The RANDOM algorithm presented in the previous section, though efficient and easy, it requires sparse 
random matrices representation to save CPU memory. The search for matrix elements in such the 
representation is very inefficient, especially on SIMD architectures requiring data locality such as GPU 
processors. This problem can be avoided by using more structured distance matrices such as in LANDMARK 
algorithm [10] (see Fig.5a). In this case all the distances are computed pairwise only between k selected vectors 
(landmarks), while for the rest of vectors only distances to the landmarks are calculated. The same strategy was 
applied in the fastest known MDS algorithm GLIMMER [11], which is based on Multigrid MDS [12] and 
Chalmers [13] algorithms and tuned to the GPU architecture by using low level GPU instructions. However, as 
we will show here, the result obtained by GLIMMER represents usually a local minimum of discrepancy 
function (1) instead of the global one. 
 

a b

 
 

Fig.5. Fragments of distances table used in a) LANDMARK/GLIMMER and b) SUBSET algorithms. 
 
To improve data locality we have developed a novel MDS particle based algorithm SUBSET which uses the 
distance matrix structure shown in Fig.5b. The input dataset is divided into p almost equal (small differences 
are allowed) subsets. All the distances inside the subsets are calculated. The data items belonging to each 
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subset are sorted according to their indices. The distances between each vector from each subset to the 
respective vectors (same position in the sorted list) from other subsets and their nearest predecessor and 
successor are computed. For terminal data items (with indices i=1 and i=M), periodic boundary conditions are 
applied. As shown in Fig.5b, for each of data item apart from all distances to the members of the same subset, 
additional distances to three data items from other subsets are computed. As shown in Fig.2d, the quality of the 
results obtained by SUBSET is comparable to that obtained for RANDOM distances setting. 
 

         

F T 

# vectors M # vectors M

a b 

FULL 
FULL 

Fig.6. The values of the stress function F(.) (1) (w=1, k=1, m=2) and simulation time T (in seconds) obtained for MDS 
mapping of H(i=1…256) (M  2.68 105 vectors) datasets into 3-D target space by using particle based MDS with full 
distance matrix (FULL), SUBSET and GLIMMER algorithms, respectively. The parallel versions of the algorithms 
implemented using OpenMP environment and run on 2xIntel Xeon X5670 (12 threads) were compared. 
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Fig.7. Timings comparison between CPU (OpenMP - 12 threads) and GPU (CUDA) implementations of SUBSET 
algorithm for H64 dataset (see Table 1).   
 
We have tested the algorithm using several various data sets both artificially generated and taken from UCI 
repository [9]. The parallel implementation of SUBSET run on 12 cores of 2 Intel Xeon X5670 CPU board in 
OpenMP environment give the speedup between 8.5 to 10, compared to its optimized serial version. In Fig.6 
we present typical results representing the values of stress function F(.) and timings as function of dataset size 
M for particle based MDS with full distance matrix (FULL) compared to SUBSET, RANDOM and GLIMMER 
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algorithms [11]. All of them were run on 12 threads of 2xIntel Xeon X5670 CPU board and were optimized in 
OpenMP environment. As shown in Fig.6, the performance of algorithms employing incomplete distance 
matrix (the same fraction of 2% distances were selected for each case) are very similar. However, GLIMMER 
algorithm reaches the highest discrepancy error. 
 

 
  

 

FULL  SUBSET 

GLIMMER  

F = 0.00039  0.000005;  T = 1166  37 F = 0.00044  0.000003;  T = 62  9.5 

F = 0.00136  0.000016;  T = 25  0.1 

RANDOM  

F = 0.00041  0.000018;  T = 56  20 
 

Fig.8. The results of MDS mapping of the “shuttle” dataset from UCI repository [9] (number of vectors M=0.58 105; 
dimensionality N=9) into 3-D target Euclidean space by using particle based MDS with full distance matrix (FULL), 
RANDOM, SUBSET and GLIMMER methods, respectively. The values of stress function F(.) (1) (w=1, k=1, m=1) and 
simulation time T (in seconds) on 2xIntel Xeon X5670 are shown.   
 
The advantage of SUBSET over RANDOM algorithm is evident when implemented on GPU board in CUDA 
environment. As shown in Fig.7, SUBSET algorithm is typically 3-4 times faster on GeForce GTX 460 board 
than on multi-core CPU. Meanwhile, the RANDOM algorithm is much slower on GPU than on CPU due to the 
lack of data locality. We have tested also the GPU version of GLIMMER. This GPU tuned version of MDS is 
more than 2 times faster than SUBSET. However, the discrepancy errors attained by GLIMMER are much 
greater than those obtained by SUBSET. Its weakness is demonstrated in Fig.8, where we show typical results 
of MDS mapping using particle based MDS (FULL, RANDOM and SUBSET algorithms) and GLIMMER 
algorithm. It is evident that the result of mapping is much better for our algorithm reproducing almost perfectly 
the best, i.e., giving minimal discrepancy error (FULL), MDS mapping result. 
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4. Conclusions 

To decrease the high computational complexity of classical multidimensional scaling algorithms we have 
developed a novel MDS algorithm SUBSET which uses incomplete dissimilarity matrix  for 
multidimensional data visualization. It is dedicated for efficient exploitation of multi-thread processors 
architectures. We have demonstrated that SUBSET, which employs particle method for the error function 
minimization, can be used as the robust computational engine for interactive visualization of relatively large 
datasets consisting of M~105 data items on up-to-the-date personal computers equipped with standard multi-
core CPU and GPU boards. By using only a fraction (a few percent of order) of distances between data items, a 
small increase of the MDS discrepancy error, compared to that obtained by MDS with full distance matrix, is 
observed. The regular structure of distance matrix used in SUBSET algorithm allows for increasing its 
performance 4 times on GeForce 460 GTX GPU board in comparison to its OpenMP parallel version run on 12 
cores of 2xIntel Xeon X5670 CPU board. Though slower than GPU tuned GLIMMER algorithm [11], 
SUBSET attains unbeatable small discrepancy error and allows for considerably better reconstruction of the 
source data space than GLIMMER. 
 
Acknowledgements. This research is supported by the Polish Ministry of Higher Education and Science in 
scope of the project NN519 443039 and by AGH grant No.11.11.120.777. We would like to thank Nvidia 
Company for donating the Authors with Tesla C1060 GPU. For tests we used public domain source code of 
GLIMMER downloaded from the web page: http://www.cs.ubc.ca/~sfingram/glimmer/. The UCI Machine 
Learning Repository is kindly acknowledged for providing us with test data sets used in this work. 
 
References 
 
[1] Young G., Householder A. S. Discussion of a set of points in terms of their mutual distances. 

Psychometrika, 3(1):19-22, 1938. 
[2] Torgerson W. S., Multidimensional scaling. 1. Theory and method, Psychometrika. 17:401-419, 1952. 
[3] Kruskal J., Multidimensional scaling by optimizing goodness-of-fit to a nonmetric hypothesis. 

Psychometrika 29:1-27, 1964. 
[4] Dzwinel W., B asiak J. Method of particles in visual clustering of multi-dimensional and large data sets. 

Future Generation Computer Systems 15:365-379, 1999. 
[5] Dzwinel W. Virtual particles and search for global minimum. Future Generation Computer Systems, 

12:371-389, 1997. 
[6] Kurdziel, M., Boryczko, K., Dzwinel W. Procrustes analysis of truncated least squares multidimensional 

scaling, Computing and Informatics. 31:1014-1440, 2012. 
[7] Pawliczek, P., Dzwinel, W., Yuen, DA. Comparison of CPU versus GPU in Multidimensional Scaling for 

Large Data Sets. J. Concurrency: Practice and Experience, submitted December 2012 
[8] Seung-Hee Bae, Judy Qiu and Fox, G. High Performance Multidimensional Scaling for Large High-

Dimensional Data Visualization. IEEE Transaction of Parallel and Distributed System, January 2012, (in 
press) 

[9] UCI Machine Learning Repository, http://archive.ics.uci.edu/ml/.  
[10] De Silva V., Tenenbaum J.B. Global versus local methods in nonlinear dimensionality reduction. 

Advances in Neural Information Processing Systems, 15:705-712, 2003. 
[11] Ingram S., Munzner T., Olano M., Glimmer: Multilevel MDS on the GPU. IEEE Transactions on 

Visualization and Computer Graphics, 15:249-261, 2009. 
[12] Bronstein M.M., Bronstein A.M., Kimmel R., Yavneh I. Multigrid multidimensional scaling. Numerical 

Linear Algebra with Applications, 13:149-171, 2006. 
[13] Chalmers M. A linear iteration time layout algorithm for visualising high dimensional data. IEEE 

Visualization '96. Proceedings, 127-131, 1996. 


