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BAYESIAN NONMETRIC SUCCESSIVE CATEGORIES
MULTIDIMENSIONAL SCALING

Kensuke Okada∗ and Shin-ichi Mayekawa∗∗

A Bayesian nonmetric successive categories multidimensional scaling (MDS) method
is proposed. The proposed method can be seen as a Bayesian alternative to the maxi-
mum likelihood multidimensional successive scaling method proposed by Takane (1981),
or as a nonmetric extension of Bayesian metric MDS by Oh and Raftery (2001). The
model has a graded-response type measurement model part and a latent metric MDS
part. All the parameters are jointly estimated using a Markov chain Monte Carlo
(MCMC) estimation technique. Moreover, WinBUGS/OpenBUGS code for the pro-
posed methodology is also given to aid applied researchers. The proposed method is
illustrated through the analysis of empirical two-mode three-way similarity data.

1. Introduction

Applications of Bayesian inference to behaviormetric models have achieved much
success. The examples include exploratory factor analysis (Martin and McDonald,
1975; Press and Shigemasu, 1989), confirmatory factor analysis (Lee, 1989), item re-
sponse theory (Swaminathan and Gifford, 1982), and structural equation modeling
(Scheines, Hoijtink, and Boomsma, 1999; Lee and Xia, 2008).

Compared to these popular psychometric models, the introduction of Bayesian
estimation is still limited for multidimensional scaling(MDS), which is also a very
popular psychometric methodology. The initial study about Bayesian estimation in
the MDS model was conducted by DeSarbo, Kim, Wedel, and Fong (1998). They
proposed a Bayesian method for the spatial representation of pick any/J data, which
areobtained from multiple response questions. DeSarbo, Kim, and Fong (1999) pro-
posed a similar method for binary choice data. Although their work is valuable in
establishing a Bayesian approach for spatial representationof such two-mode two-way
type data, their method is not directly applicable to one-mode two-way or two-mode
three-way data, which are historically the most popular form of input data for MDS
analysis. Later, Oh and Raftery (2001) proposed the first general Bayesian MDS
method for one-mode two-way data. Their method can be considered as a Bayesian
alternative to the probabilistic metric MDS proposed by Ramsay (1977). Okada and
Shigemasu (2009) proposed a set of R functions for Bayesian metric MDS via the use
of WinBUGS. However, currently, no method (and of course, no computer program)
is available for the Bayesian MDS analysis of successive categories data.

Oh and Raftery (2001) pointed out that Bayesian inference for the MDS model has
many advantages. First, the distributional properties of the Bayesian analysis are ex-
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act for all sample sizes, and therefore need not be justified in terms of any asymptotic
assumption. On the other hand, justifications of maximum likelihood MDS rely on
an asymptotic theory, which may not be applicable in practice.

Second, in Bayesian inference, all the estimation results are given in the form of
posterior probability, which is quite easy to interpret. For example, once the poste-
rior distributions of the configuration matrix are derived, we can obtain the poste-
rior distributions of any function of the configuration, such as the distance matrix
(D = {dij}). Therefore, one can easily evaluate the posterior probability that the
distance is above some criterion c, that is, dij > c. The posterior probability is more
intuitive than the p value, which is the chance of observing a value as extreme as the
observed value given repeated sampling under the null hypothesis (Dunson, 2001).

Third, the Bayesian approach allows for the incorporation of meaningful prior infor-
mation of the parameters, if available, into the statistical inference. This can be done
by placing prior restrictions on the possible values of the parameters or by assigning
a prior distribution on the basis of the summary statistics obtained from previous
studies. It has been noted in many preceding studies that the incorporation of prior
knowledge results in simpler estimation procedures, smaller posterior standard devi-
ations, and improved predictive performance (e.g. Allenby, Arora, and Ginter, 1995;
Gamerman and Lopes, 2006; Gelman, Carlin, Stern, and Rubin, 2002; Scheines et al.,
1999).

We also note that in standard Bayesian context, hierarchical Bayesian extension
of existing models is simplified by the fact that inference is based on the marginal
posterior distribution, which can be determined using the Markov chain Monte Carlo
(MCMC) technique. On the other hand, the high-dimensional integrals that are usu-
ally required to determine the marginal likelihood function in maximum likelihood
estimation are often intractable, except for simple problems (see, e.g., Casella and
George, 1992). Another advantage is that Bayesian estimation using the MCMC al-
gorithm naturally handles missing data by treating it the same as other parameters
(Levy, 2009; Little and Rubin, 2002; Tan, Tian and Ng, 2009). For further discussions
of the benefit of Bayesian estimation, see e.g., Box and Tiao (1992), Carlin and Louis
(2008), Gamerman and Lopes (2006), Gelman et al. (2002), and Gill (2008).

In fields such as behaviormetrics and psychometrics, similarity data are typically
obtained from human judgment, and it is a common practice to obtain similarity data
on successive categories, such as an M-point rating scale (M = number of possible
grades). Therefore, Bayesian MDS for successive categories data would provide many
benefits (such as those stated above) to this field of research.

On the basis of such motivations, in this paper, we propose a Bayesian nonmetric
successive categories MDS procedure. The paper is constructed as follows. In Sec-
tion 2, following Takane (1981), the successive categories MDS model is introduced.
Section 3 defines the prior and presents MCMC estimation and post-processing tech-
niques. In Section 4, the proposed method is illustrated by real data analysis with and
without missing observations. Finally, conclusions are presented in Section 5. The
implementation of Bayesian inference has become easier with the advent of software
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such as WinBUGS and OpenBUGS. The BUGS code for the proposed model is given
in the Appendix.

2. Successive categories MDS model

This section introduces the successive categories MDS model proposed by Takane
(1981). Suppose the observed dissimilarity between objects i and j by subject k is
represented by oijk. (If the observed data are not two-mode three-way but one-mode
two-way data, oijk can be simply replaced by oij and the following discussion holds the
same.) In addition, in this paper, we suppose that the observed data takesuccessive
categorical values, oijk = m, with m = 1, . . . ,M.

On the other hand, we suppose that every individual k shares the same configura-
tion and has equal distances between objects behind the data. This implies that the
true distance,

dij =

√√√√ p∑
l=1

(xil − xjl)
2, (1)

does not contain the subscript k, where xil is the coordinate of stimulus i on dimension
l and p is the dimensionality of the space. Here, we suppose a standard additive error
model,

ωijk = dij + eijk,

eijk ∼ N
(
0, σ2

k

)
,

(2)

where eijk is an error term, σ2
k is its variance, and ωijk is the error-perturbed distance

for subject k. In successive categories modeling, categories of the observed data are
represented by a set of successive intervals, which are mutually exclusive and exhaus-
tive (i.e., each piece of data must fall into one and only one category), of the latent
variable ωijk. These intervals are demarcated by upper and lower boundaries. The
upper boundary of the m-th category, which coincides with the lower boundary of the
(m + 1)-th category, is denoted by bkm. If the values of the boundaries b = {bkm}
are given, the category of the observed data is determined by the magnitude of ωijk.
Specifically,

oijk = m if bk(m−1) < ωijk < bkm. (m = 1, . . . ,M). (3)

Without loss of generality, we set bk0 = −∞, bkM = +∞. Then, the probability
that the observed category of objects i and j for subject k is m, p (oijk = m), is given
by

p (oijk = m) =
∫ aijkm

aijk(m−1)

f (z) dz, (4)

where f(·) is the pdf of the standard normal distribution and
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z =
ωijk − dij

σk
,

aijk(m−1) =
bk(m−1) − dij

σk
,

aijkm =
bkm − dij

σk
.

(5)

The probability of a particular rating judgment is written as

pijk =
M∏

m=1

p(oijk = m)uijkm , (6)

where the indicator variable uijkm takes the value one when the observed dissimilarity
between objects i and j for subject k equals category m, and zero otherwise, i.e.,

uijkm =

{
1, (when oijk = m)

0. (otherwise)
(7)

Assuming the independence of the additive error terms, the joint likelihood function
of the model becomes

L (θ|O) =
∏
k

∏
i,j

pijk, (8)

where O denotes the observed data and θ denotes the parameters associated with
the model (i.e., X, σ2, and b). Note that from the psychometric viewpoint the above
specification resembles Samejima’s(1969) graded response model (GRM). It can be
said that the Takane’snonmetricMDS model is an extension of the metric MDS model
by using GRM as a measurement model.

3. Bayesian analysis of the model

3.1 Prior distribution

For Bayesian analysis of the model described in the previous section, the spec-
ification of the prior distributions isrequired. For the prior distribution of xi =
(xi1, . . . , xip)′, which corresponds to the i-th row of X, we use a multivariate normal
distribution with mean 0 and a diagonal covariance matrix Λ = diag{λ1, . . . , λp}.
Specifically,

xi ∼ N (0,Λ) , (9)

independently for i = 1, . . . ,n objects. For each element of Λ, an inverse gamma
hyperprior is considered

λl ∼ IG(αλ, βλ), (10)

independently for l = 1, . . . ,p. This inverse gamma is a natural conjugate distribution
of the normal variance parameter. The above specification is based on the Bayesian
metric MDS of Oh and Raftery (2001).
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For the prior distribution of b, for technical reasons (i.e., to satisfy the order re-
striction on b), the following reparameterization is introduced first:

b∗
km = bkm − bk(m−1). (11)

Then we consider the prior distribution,

b∗
k1 ∼ N(0, σ2

b), (12)

b∗
km ∼ G (αb, βb) , (m ≥ 2) (13)

where G denotes a gamma distribution. This type of specification has been used in
the literature of the Bayesian orderedprobit model (e.g., Lancaster, 2004).

For the prior distribution of σ2
k in Eq. (2), we again use the inverse gamma distri-

bution,
σ2

k ∼ IG(ασ, βσ). (14)

3.2 Posterior estimation

Based on the likelihood function (Eq. (8)) and prior distribution (Eqs. (9)–(13)),
the posterior distribution takes the form

π (θ|O) ∝ L (θ|O)π (θ) , (15)

where π (θ) denotes the product of prior distributions in Eqs. (9)–(13). Because the-
posterior distribution π (θ|O) is not known in closed form, an MCMC algorithm is
employed to generate samples from the posterior distribution. To achieve approxi-
mately the equilibrium distribution, the MCMC process should first be run for a given
number of iterations; this period is known as “burn-in.” Then, after a sufficiently long
burn-in run of the Markov chain, the algorithm generates random samples from the
posteriordistribution.

Significant progress in facilitating the routine implementation of the MCMC algo-
rithm has been made since the development and release of the BUGS software (Lunn,
Thomas, Best, and Spiegelhalter, 2000). Once the prior and likelihood are specified,
the BUGS program draws samples from the joint posterior distribution by using the
MCMC algorithm. As the proposal distribution of the Metropolis method, BUGS
automatically generates samples from a normal proposal distribution centered at the
current point with a self-tuning variance. Some reviews of BUGS can be found in
Cowles (2004), Lunn, Spiegelhalter, Thomas and Best (2009) and Ntzoufras(2009).
The BUGS code of the proposed method used in the analysis in the next section is
given in the Appendix.

Note that as a result of assuming Euclidean distance in Eq. (1) (which is the most
popular distance assumption in MDS), posterior samples of X would be invariant
under translation, rotation, and reflection about the origin unless strong informative
priors are used. Therefore, as in Oh and Raftery (2001), the convergence of D, rather
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than X, was checked. Moreover, instead of the rather ad hoc approach of calculat-
ing the approximate mode (which is the approach taken by Oh and Raftery, 2001),
post-processing was conducted after the MCMC sampling. The idea is to post-process
MCMC samples using an appropriate loss function, as proposed by Celeux, Hurn, and
Robert (2000) for mixture posterior distribution. In the current method, the following
loss function was minimized:

ρ = || X̄ −X(i)H(i)||2, (16)

where X(i) is the i-th MCMC sample of X, X̄ is the mean of all X(i)’s and is the target
matrix of Procrustes rotation, and H(i) is a rotation matrix to be estimated corre-
sponding to X(i). Tominimize the function in Eq. (16), an alternating least squares
algorithm was used. This algorithm works as follows:

(1) Rotate each X(i)’s by Procrustes rotation with target matrix X̄
(2) Update X̄ from the newly rotated X(i)’s
(3) Repeat steps (1) and (2) until convergence

4. Illustration

4.1 Real data analysis

Methods

The proposed Bayesian method is applied to the analysis of three-way similarity
judgment data. The similarity data on 10 major business districts in Tokyo were col-
lected by 21 university students. The similarity between all pairs of business districts
was rated on a 7-point scale (that is, M = 7). These data weretransformed to dis-
similarity by subtracting the rating from 8, and then used as inputs to the proposed
method.

For the values of hyperparameters, noninformative priors are used in the analy-
sis. All scale and shape hyperparameters of gamma and inverse gamma distributions
were set as 10−3 (Eqs. (10), (13), and (14)). The variance hyperparameter for normal
distribution was set as 106 (Eq. (12)). These settings seem to be adequate for nonin-
formative Bayesian analysis (see, e.g., Albert, 2009; Lancaster, 2004). The number of
dimensions p was fixed to 2. For the initial values of X and Λ, we applied the sugges-
tion of Oh and Raftery (2001). Specifically, we utilized classical MDS solutions for the
mean observed dissimilarity over the individual matrix as initial values of X. Also,∑

i,j
(ōij−δij)

2

n(n−1)/2 , where ōij is the mean observed dissimilarity and δij is the corresponding
distance obtained from classical MDS, is used as initial values of λl’s. For the rest of
the parameters, b∗

km’s and σ2
k’s, the vectors of 1’s are utilized as initial values.

In the estimation, the first 1,000 iterations of MCMC were discarded as burn-in and
the other 10,000 iterations were executed to construct posterior distributions. The
convergence of the chain was monitored and checked by Heidelberger and Welch’s
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Figure 1: Estimated posterior configurations and 95% credibility regions of Tokyo business dis-
tricts from the proposed method.

(1983) method, which uses the Cramer-von-Mises statistic to test the null hypothesis
that the sampled values are obtained from a stationary distribution by using CODA
package in R (Plummer, Best, Cowles, and Vines, 2006).The convergence of the post-
processing algorithm, which minimizes Eq. (16), is rapid; in fact in our analysis, each
element of X̄ did not change more than 10−6 after three iterations. It is confirmed
that after the post-processing, each element of X has an approximately unimodal and
equitailed posterior distribution.

Results

The resultant configuration is shown in Fig. 1. The small black squares represent
the posterior mean of X after post-processing, which was plotted in a two-dimensional
space, i.e., the posterior estimates of the business districts. The surrounding ellipses
represent 95% Bayesian credibility ellipses fitted to each postprocessed MCMC sample
(see, e.g., Calvetti and Somersalo, 2007). The region within each credibility ellipse is
interpreted as containing the true model parameter with 95% probability. Many for-
mer studies pointed out the usefulness of such a direct probabilistic statement about
parameter credibility regions obtained from Bayesian analysis; on the other hand, the
frequentistconfidence interval is not a probability of parameters and, therefore, its
interpretation requires the concept of repeated sampling (see, e.g., Berger, 2004).

The fact that the plot of such a posterior probability region is possible indicates
one of the advantages of Bayesian estimation. In addition, the result is easily under-
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Figure 2: Scatterplot of estimated distances and mean observed dissimilarity.

standable. Dimension 1 can be interpreted as a modern-traditional dimension, with
a cluster of modern business districts on one side (Ginza, Akasaka, and Roppongi)
and traditional old towns on the other (Asakusa and Ueno). Similarly, dimension 2
can be interpreted as a business-leisure dimension, with business towns on one side
(Shinagawa and Shimbashi) and leisure towns of youngsters on the other (Shibuya,
Shinjuku, and Ikebukuro).

Fig. 2 is a plot of the mean (with respect to k individuals) of the observed dissimi-
larity measure (oijk) versus the estimated distance (dij). The points lie approximately
on the diagonal line, apparently with no particular outliers. This fact can be the evi-
dence that the cognitive locations of the downtowns are well recovered by the proposed
model.

In Fig. 3, the posterior means of b∗
km’s are transformed back to bkm’s using the

relation of Eq. (11) and are plotted against the upper boundaries of successive cate-
gories for all participants. It is easily seen that large individual differences exist in the
threshold of categories, indicating the need for individual differences three-way data
analysis, such as the proposed method, instead of the still common practice of aver-
aging out the individual differences. For example, the person whose upper boundaries
for categories 5 and 6 are beyond the range of this graph would be unlikely to judge the
dissimilarity of two towns to be “6” and “7,” although the towns are reasonably dis-
similar. In addition, in this application, it is demonstrated that the estimated upper
boundaries of categories 3 and 4 do not differ much for most participants. Therefore,
these two categories might be merged to construct a 6-point scale, instead of 7, for



BAYESIAN NONMETRIC SUCCESSIVE CATEGORIES MDS 25

-5

-3

-1

1

3

5

7

9

b*[1] b*[2] b*[3] b*[4] b*[5] b*[6]

Value

Figure 3: Values of posterior means of bkm’s against upper boundary of successive categories for
each of the 21 individuals.

representing the same sort of cognitive difference of downtowns as observed here.

4.2 Analysis of missing data

Methods

Missing data are common in psychometrics. Although ideally one should aim to
avoid missing data, this is often impossible in practice. Therefore, one needs to ad-
dress the problem of missing data through statistical analysis. Bayesian methodology
based on MCMC estimation is a suitable candidate for this purpose (e.g., Little and
Rubin, 2002; Tan et al., 2009). In Bayesian analysis, each missing value is regarded as
a hidden variable and estimated simultaneously with estimation of other parameters.
One of the attractive features of MCMC estimation is that missing data are naturally
handled within its scheme; at each step, a value for each missing data value is drawn
on the basis of its conditional posterior distribution. Another attractive point is that
BUGS will do this automatically when the data contains some missing values. Note
that missing data in BUGS are treated as “missing at random,” that is, the missing-
datageneration mechanism does not depend on the missing values, but perhaps on
the observed values (Gelman et al., 2002).

To illustrate the proposed analysis in the missing data situation and to check the
effect of the number of missing elements, we conducted a simulation study. The same
data as in Section 4.1 were used; however, in this case, some predetermined number
of elements was marked as missing for each subject. The number of missing elements
per subject was manipulatedto from 1 to 6 (out of 10×9

2 ). For each condition of the
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number of missing element, 50 datasets with random missing elements were created.
Then, they were analyzed in the same manner as in the previous analysis. Note that
we can use the same code as in Section 4.1 to handle missing data. The settings of
hyperparameters and initial values were also the same as in the previous section.

Results

To evaluate the effect of missing elements in the observation, the normed distances
estimated from 50 datasets were plotted against the distances with no missing ele-
ments (i.e., the distances calculated from the result shown in Section 4.1); See Fig. 4.
Correlation coefficients between them were also calculated and are shown in the fig-
ure. These figures and the corresponding coefficients show that the estimation works
almost as well as when there exist one or two missing elements per subject (a, b).
As the number of missing elements per subject grows, the probability of over- and
under-estimation also grows. However, note that the correlation coefficient is still 0.91
for the condition of four missing elements per subject (d), which is large enough for
practical use. The correlation coefficient drops to 0.78 for the condition of six missing
elements per subject (f).

Although it may be dangerous to draw definite conclusions from a single set of
simulation runs, from the above result, it would appear that at least a few missing el-
ements per subject would not affect the result much. The proposed Bayesian method
can be applied to data with a few missing elements per subject.

5. Conclusions

In this paper, we proposed a Bayesian approach to nonmetric successive categories
multidimensional scaling. The model is a nonmetric extension of Oh and Raftery’s
(2001) Bayesian metric MDS, and can handle successive categories rating data. Our
proposed model can be utilized in psychometrics and social sciences, in which suc-
cessive categories rating data are common. In contrast to the standard least-squares
type of MDS, in Bayesian MDS, the posterior credibility regions, which indicate the
uncertainty of the parameters of each object in the resultant configuration, can be
plotted by ellipses, which give additional information to the analyst. The proposed
method can be easily implemented using BUGS software, which is currently a stan-
dard MCMC engine. Therefore, the applied users can easily use the proposed method
using the BUGS code given in the Appendix.

The determination of the initial values in MCMC estimation is important. We used
the estimates from two-mode classical MDS for parameters if possible, because classi-
cal MDS is easy to execute; for other parameters, we used rather ad hoc initial values.
Note that the maximum likelihood method also requires iterations and therefore need
to determine initial values. Therefore, the same prescriptions can be applied: change
initial values if the convergence criterion is not satisfied (Hoshino, 2001).

To deal with the identification problem of the MCMC samples of the configuration
parameter, we introduced a new post-processing approach. This approach is more in-
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(a) #missing = 1 per subject (b) #missing = 2 per subject

r = 0.98 r = 0.97 

(c) #missing = 3 per subject (d) #missing = 4 per subject

r = 0.93 r = 0.91 

(e) #missing = 5 per subject (f) #missing = 6 per subject

r = 0.87 r = 0.78 

Figure 4: Plots of distances with and without missing data in 50 replications.
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tuitive than the approximate mode approach used in a former study (Oh and Raftery,
2001) and is easier to implement using the BUGS estimation engine. Although fur-
ther empirical study would be required, the result of the real data analysis is so far
satisfactory.

Our model allows individual differences in category boundaries while keeping the
“perceptual spaces” common. It would be possible, if desired, to construct the indi-
vidual spaces by appropriately weighting the common space. However, as Carroll and
Chang (1970) stated, “for many purposes, the individual spaces may not be necessary
for an adequate comprehension of the data” (p.316).

It would be possible to expand the model presented above in numerous directions.
First, individual differences of the respondents can be better represented by introduc-
ing latent class-type approaches. One of the most popular models of this type would
be CLASCAL (Winsberg and De Soete, 1992), to which maximum likelihood esti-
mation is commonly employed. As the integration of Bayesian MDS and latent class
approaches have been drawing attention recently (e.g., Oh and Raftery, 2007; Park,
DeSarbo, and Liechty, 2008), latent class extension of the proposed model would also
be of interest. Second, when the number of items n increases, it is not easy to ask
participants to makesimilarityjudgmentsfor all n(n − 1)/2 pairs of items. In such a
case, subjects may be assigned to different subgroups of items. The idea of equating
in the item response theory or methods in the optimal design of experimentscould be
applied to this type of missing data problem in a Bayesian context. Third, although
there exist several methods for choosing the number of dimensions, such as several
information criteria or Bayes factors, it is not clear which one should be preferred in
this particular model. This would be an area worthy of future study.

Appendix. BUGS code

The BUGS code for estimating the parameters of the proposed model used in our
illustrative example is as follows:

model{
for( i in 2 : n ) {

for( j in 1 : i-1 ) {
for (k in 1:nind){

obs[i,j,k] ~ dcat(p[i,j,k,1:7])
p[i,j,k,1] <- phi((b1[k] - d[i,j])/sigma[k])
p[i,j,k,7] <- 1- phi((b1[k]+b2[k]+b3[k]+b4[k]+b5[k]

+b6[k]- d[i,j])/sigma[k])
p[i,j,k,2] <- phi((b1[k]+b2[k] - d[i,j])/sigma[k]) -

phi((b1[k] - d[i,j])/sigma[k])
p[i,j,k,3] <- phi((b1[k]+b2[k]+b3[k] - d[i,j])

/sigma[k]) - phi((b1[k]+b2[k] - d[i,j])/sigma[k])
p[i,j,k,4] <- phi((b1[k]+b2[k]+b3[k]+b4[k] - d[i,j])
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/sigma[k]) - phi((b1[k]+b2[k]+b3[k] -d[i,j])
/sigma[k])

p[i,j,k,5] <- phi((b1[k]+b2[k]+b3[k]+b4[k]+b5[k] -
d[i,j])/sigma[k]) - phi((b1[k]+b2[k]+b3[k]+b4[k] -
d[i,j])/sigma[k])

p[i,j,k,6] <-phi((b1[k]+b2[k]+b3[k]+b4[k]+b5[k]
+b6[k] - d[i,j])/sigma[k])-phi((b1[k]+b2[k]+b3[k]
+b4[k]+b5[k] - d[i,j])/sigma[k])

}
sqd[i,j] <- pow((X[i,1]-X[j,1]),2)+

pow((X[i,2]-X[j,2]),2)
d[i,j] <- sqrt(sqd[i,j])

}
}

for(l in 1 : ndim ) {
for(k in 1 : n ) {

X[k,l] ~ dnorm(0,invlambda[l])
}
invlambda[l] ~ dgamma(alpha.lam, beta.lam)
lambda[l] <- 1/ invlambda[l]

}for (k in 1:nind){
b1[k] ~ dnorm(0,tau.b)
b2[k] ~ dgamma(alpha.b,beta.b)
b3[k] ~ dgamma(alpha.b,beta.b)
b4[k] ~ dgamma(alpha.b,beta.b)
b5[k] ~ dgamma(alpha.b,beta.b)
b6[k] ~ dgamma(alpha.b,beta.b)
sigma[k] <- 1/sqrt(invsigma2[k])
invsigma2[k] ~ dgamma(alpha.sig,beta.sig)

}
alpha.lam <- 1.0E-3
beta.lam <- 1.0E-3
tau.b <- 1.0E-6
alpha.b <- 1.0E-3
beta.b <- 1.0E-3
alpha.sig <- 1.0E-3
beta.sig <- 1.0E-3
}
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