

NUMERICAL

rjOfi

L E A S T

METHODS

S Q U A R E S
P R O B L E M S

This page intentionally left blank

AKE BJORCK
Linkoping University
Linkoping, Sweden

Society for Industrial and Applied Mathematics
Philadelphia

slam..

| J»J [\

1\ T IT T "TV HT TT^ "TOv Tf /T~^\ A TTNUMERICAL
METHODS

SQUARES

PROBLEMS

L E A S T

Copyright © 1996 by the Society for Industrial and Applied Mathematics.

10987654

All rights reserved. Printed in the United States of America. No part of this book may be
reproduced, stored, or transmitted in any manner without the written permission of the
publisher. For information, write to the Society for Industrial and Applied Mathematics,
3600 University City Science Center, Philadelphia, PA 19104-2688.

Library of Congress Cataloging-in-Publication Data

Bjorck, Ake, 1934-
Numerical methods for least squares problems / Ake Bjorck.

p. cm.
Includes bibliographic references (p. -) and index.
ISBN 0-89871-360-9 (pbk.)
1. Equations, Simultaneous—Numerical solutions. 2. Least squares. I Title.

QA214.B56 1996
512.9'42—dc20 96-3908

Portions were adapted with permission from Handbook of Numerical Analysis, Volume I,
Least Squares Methods by Ake Bjorck, © 1990, North-Holland, Amsterdam.

siam_. is a registered trademark.

Dedicated to

Germund Dahlquist

and

Gene H. Golub

This page intentionally left blank

Contents

Preface xv

1. Mathematical and Statistical Properties of Least Squares
Solutions 1
1.1 Introduction 1

1.1.1 Historical remarks 2
1.1.2 Statistical preliminaries 2
1.1.3 Linear models and the Gauss-Markoff theorem 3
1.1.4 Characterization of least squares solutions 5

1.2 The Singular Value Decomposition 9
1.2.1 The singular value decomposition 9
1.2.2 Related eigenvalue decompositions 11
1.2.3 Matrix approximations 12
1.2.4 The sensitivity of singular values and vectors 13
1.2.5 The SVD and pseudoinverse 15
1.2.6 Orthogonal projectors and angles between subspaces 17

1.3 The QR Decomposition 19
1.3.1 The full rank case 19
1.3.2 Rank revealing QR decompositions 21
1.3.3 The complete orthogonal decomposition 23

1.4 Sensitivity of Least Squares Solutions 24
1.4.1 Vector and matrix norms 24
1.4.2 Perturbation analysis of pseudoinverses 26
1.4.3 Perturbation analysis of least squares solutions 27
1.4.4 Asymptotic forms and derivatives 32
1.4.5 Componentwise perturbation analysis 32
1.4.6 A posteriori estimation of errors 34

2. Basic Numerical Methods 37
2.1 Basics of Floating Point Computation 37

2.1.1 Rounding error analysis 37
2.1.2 Running rounding error analysis 39

vii

viii CONTENTS

2.1.3 Stability of algorithms 40
2.2 The Method of Normal Equations 42

2.2.1 Forming the normal equations 42
2.2.2 The Cholesky factorization 44
2.2.3 Conditioning and scaling 49

2.3 Elementary Orthogonal Transformations 51
2.3.1 Householder transformations 51
2.3.2 Givens transformation 53
2.3.3 Fast Givens transformations 56

2.4 Methods Based on the QR Decomposition 58
2.4.1 Householder and Givens QR decomposition 58
2.4.2 Gram-Schmidt orthogonalization 60
2.4.3 Least squares by Householder QR decomposition 63
2.4.4 Least squares problems by MGS 64
2.4.5 Gram-Schmidt with reorthogonalization 66
2.4.6 Hybrid algorithms 69
2.4.7 Block algorithms 71

2.5 Methods Based on Gaussian Elimination 73
2.5.1 The Peters-Wilkinson method 73
2.5.2 Pseudoinverse solutions from LU decompositions 76
2.5.3 The augmented system method 77

2.6 Computing the SVD 81
2.6.1 SVD and least squares problems 81
2.6.2 Transformation to bidiagonal form 81
2.6.3 The QR algorithm for real symmetric matrices 83
2.6.4 The QR algorithm for the SVD 85
2.6.5 Zero shift QR algorithm 90
2.6.6 Jacobi methods for the SVD 92
2.6.7 Singular values by spectrum slicing 96

2.7 Rank Deficient and Ill-Conditioned Problems 99
2.7.1 SVD and numerical rank 99
2.7.2 Truncated SVD solutions and regularization 100
2.7.3 QR decompositions with column pivoting 103
2.7.4 Pseudoinverse solutions from QR decompositions 106
2.7.5 Rank revealing QR decompositions 108
2.7.6 Complete orthogonal decompositions 110
2.7.7 Subset selection by SVD and RRQR 113

2.8 Estimating Condition Numbers and Errors 114
2.8.1 The LINPACK condition estimator 114
2.8.2 Hager's condition estimator 116
2.8.3 Computing the variance-covariance matrix 118

2.9 Iterative Refinement 120
2.9.1 Iterative refinement for linear systems 120
2.9.2 Extended precision iterative refinement 121

CONTENTS ix

2.9.3 Fixed precision iterative refinement 124

3. Modified Least Squares Problems 127
3.1 Introduction 127

3.1.1 Updating problems 127
3.1.2 Modified linear systems 128
3.1.3 Modifying matrix factorizations 129
3.1.4 Recursive least squares 131

3.2 Modifying the Full QR Decomposition 132
3.2.1 Introduction 132
3.2.2 General rank one change 132
3.2.3 Deleting a column 133
3.2.4 Appending a column 135
3.2.5 Appending a row 136
3.2.6 Deleting a row 137
3.2.7 Modifying the Gram-Schmidt decomposition 138

3.3 Downdating the Cholesky Factorization 140
3.3.1 Introduction 140
3.3.2 The Saunders algorithm 141
3.3.3 The corrected seminormal equations 142
3.3.4 Hyperbolic rotations 143

3.4 Modifying the Singular Value Decomposition 145
3.4.1 Introduction 145
3.4.2 Appending a row 145
3.4.3 Deleting a row 147

3.5 Modifying Rank Revealing QR Decompositions 149
3.5.1 Appending a row 149
3.5.2 Deleting a row 152

4. Generalized Least Squares Problems 153
4.1 Generalized QR Decompositions 153

4.1.1 Introduction 153
4.1.2 Computing the GQR and PQR 153

4.2 The Generalized SVD 155
4.2.1 The CS decomposition 155
4.2.2 The generalized SVD 157
4.2.3 Computing the GSVD 159

4.3 General Linear Models and Generalized Least Squares 160
4.3.1 Gauss-Markoff linear models 160
4.3.2 Generalized linear least squares problems 162
4.3.3 Paige's method 164

4.4 Weighted Least Squares Problems 165
4.4.1 Introduction 165
4.4.2 Methods based on Gaussian elimination 166
4.4.3 QR decompositions for weighted problems 168

x CONTENTS

4.4.4 Weighted problems by updating 171
4.5 Minimizing the lp Norm 172

4.5.1 Introduction 172
4.5.2 Iteratively reweighted least squares 173
4.5.3 Robust linear regression 175
4.5.4 Algorithms for l1 and l approximation 175

4.6 Total Least Squares 176
4.6.1 Errors-in-variables models 176
4.6.2 Total least squares problem by SVD 177
4.6.3 Relationship to the least squares solution 180
4.6.4 Multiple right-hand sides 181
4.6.5 Generalized TLS problems 182
4.6.6 Linear orthogonal distance regression 184

5. Constrained Least Squares Problems 187
5.1 Linear Equality Constraints 187

5.1.1 Introduction 187
5.1.2 Method of direct elimination 188
5.1.3 The nullspace method 189
5.1.4 Problem LSE by generalized SVD 191
5.1.5 The method of weighting 192
5.1.6 Solving LSE problems by updating 194

5.2 Linear Inequality Constraints 194
5.2.1 Classification of problems 194
5.2.2 Basic transformations of problem LSI 196
5.2.3 Active set algorithms for problem LSI 198
5.2.4 Active set algorithms for BLS 201

5.3 Quadratic Constraints 203
5.3.1 Ill-posed problems 203
5.3.2 Quadratic inequality constraints 205
5.3.3 Problem LSQI by GSVD 206
5.3.4 Problem LSQI by QR decomposition 208
5.3.5 Cross-validation 211

6. Direct Methods for Sparse Problems 215
6.1 Introduction 215
6.2 Banded Least Squares Problems 217

6.2.1 Storage schemes for banded matrices. . 218
6.2.2 Normal equations for banded problems 219
6.2.3 Givens QR decomposition for banded problems 221
6.2.4 Householder QR decomposition for banded problems. . . . 222

6.3 Block Angular Least Squares Problems 224
6.3.1 Block angular form 224
6.3.2 QR methods for block angular problems 225

6.4 Tools for General Sparse Problems 227

CONTENTS xi

6.4.1 Storage schemes for general sparse matrices 227
6.4.2 Graph representation of sparse matrices 230
6.4.3 Predicting the structure of ATA 231
6.4.4 Predicting the structure of R 232
6.4.5 Block triangular form of a sparse matrix 234

6.5 Fill Minimizing Column Orderings 237
6.5.1 Bandwidth reducing ordering methods 237
6.5.2 Minimum degree ordering 238
6.5.3 Nested dissection orderings 240

6.6 The Numerical Cholesky and QR Decompositions 242
6.6.1 The Cholesky factorization 242
6.6.2 Row sequential QR decomposition 242
6.6.3 Row orderings for sparse QR decomposition 244
6.6.4 Multifrontal QR decomposition 245
6.6.5 Iterative refinement and seminormal equations 250

6.7 Special Topics 252
6.7.1 Rank revealing sparse QR decomposition 252
6.7.2 Updating sparse least squares solutions 254
6.7.3 Partitioning for out-of-core solution 255
6.7.4 Computing selected elements of the covariance matrix. . . . 256

6.8 Sparse Constrained Problems 257
6.8.1 An active set method for problem BLS 257
6.8.2 Interior point methods for problem BLS 262

6.9 Software and Test Results 264
6.9.1 Software for sparse direct methods. 264
6.9.2 Test results 266

7. Iterative Methods For Least Squares Problems 269
7.1 Introduction 269

7.1.1 Iterative versus direct methods 270
7.1.2 Computing sparse matrix-vector products 270

7.2 Basic Iterative Methods 274
7.2.1 General stationary iterative methods 274
7.2.2 Splittings of rectangular matrices 276
7.2.3 Classical iterative methods 276
7.2.4 Successive overrelaxation methods 279
7.2.5 Semi-iterative methods 280
7.2.6 Preconditioning 283

7.3 Block Iterative Methods 284
7.3.1 Block column preconditioners 284
7.3.2 The two-block case 286

7.4 Conjugate Gradient Methods 288
7.4.1 CGLS and variants 288
7.4.2 Convergence properties of CGLS 290

xii CONTENTS

7.4.3 The conjugate gradient method in finite precision 292
7.4.4 Preconditioned CGLS 293

7.5 Incomplete Factorization Preconditioners 294
7.5.1 Incomplete Cholesky preconditioners 294
7.5.2 Incomplete orthogonal decompositions 297
7.5.3 Preconditioners based on LU factorization 299

7.6 Methods Based on Lanczos Bidiagonalization 303
7.6.1 Lanczos bidiagonalization 303
7.6.2 Best approximation in the Krylov subspace 306
7.6.3 The LSQR algorithm 307
7.6.4 Convergence of singular values and vectors 309
7.6.5 Bidiagonalization and total least squares 310

7.7 Methods for Constrained Problems 312
7.7.1 Problems with upper and lower bounds 312
7.7.2 Iterative regularization 314

8. Least Squares Problems with Special Bases 317
8.1 Least Squares Approximation and Orthogonal Systems 317

8.1.1 General formalism 317
8.1.2 Statistical aspects of the method of least squares 318

8.2 Polynomial Approximation 319
8.2.1 Triangle family of polynomials 319
8.2.2 General theory of orthogonal polynomials 320
8.2.3 Discrete least squares 321
8.2.4 Vandermonde-like systems 323
8.2.5 Chebyshev polynomials 325

8.3 Discrete Fourier Analysis 328
8.3.1 Introduction 328
8.3.2 Orthogonality relations 329
8.3.3 The fast Fourier transform 330

8.4 Toeplitz Least Squares Problems 332
8.4.1 Introduction 332
8.4.2 QR decomposition of Toeplitz matrices 333
8.4.3 Iterative solvers for Toeplitz systems 334
8.4.4 Preconditioners for Toeplitz systems 335

8.5 Kronecker Product Problems 336

9. Nonlinear Least Squares Problems 339
9.1 The Nonlinear Least Squares Problem 339

9.1.1 Introduction 339
9.1.2 Necessary conditions for local minima 340
9.1.3 Basic numerical methods 341

9.2 Gauss-Newton-Type Methods 342
9.2.1 The damped Gauss-Newton method 343
9.2.2 Local convergence of the Gauss-Newton method 345

fitting

CONTENTS xiii

9.2.3 Trust region methods 346
9.3 Newton-Type Methods 348

9.3.1 Introduction 348
9.3.2 A hybrid Newton method 348
9.3.3 Quasi-Newton methods 349

9.4 Separable and Constrained Problems 351
9.4.1 Separable problems 351
9.4.2 General constrained problems 353
9.4.3 Orthogonal distance regression 354
9.4.4 Least squares fit of geometric elements 357

Bibliography 359

Index 401

This page intentionally left blank

Chapter 1

A basic problem in science is to fit a model to observations subject to errors. It
is clear that the more observations that are available the more accurately will
it be possible to calculate the parameters in the model. This gives rise to the
problem of "solving" an overdetermined linear or nonlinear system of equations.
It can be shown that the solution which minimizes a weighted sum of the squares
of the residual is optimal in a certain sense. Gauss claims to have discovered the
method of least squares in 1795 when he was 18 years old. Hence this book also
marks the bicentennial of the use of the least squares principle.

The development of the basic modern numerical methods for solving linear
least squares problems took place in the late sixties. The QR decomposition
by Householder transformations was developed by Golub and published in 1965.
The implicit QR algorithm for computing the singular value decomposition (SVD)
was developed about the same time by Kahan, Golub, and Wilkinson, and the
final algorithm was published in 1970. These matrix decompositions have since
been developed and generalized to a high level of sophistication. Great progress
has been made in the last decade in methods for generalized and modified least
squares problems and in direct and iterative methods for large sparse problems.
Methods for total least squares problems, which allow errors also in the system
matrix, have been systematically developed.

Applications of least squares of crucial importance occur in many areas of
applied and engineering research such as statistics, geodetics, photogrammetry,
signal processing, and control. Because of the great increase in the capacity for
automatic data capturing, least squares problems of large size are now routinely
solved. Therefore, sparse direct methods as well as iterative methods play an
increasingly important role. Applications in signal processing have created a great
demand for stable and efficient methods for modifying least squares solutions
when data are added or deleted. This has led to renewed interest in rank
revealing QR decompositions, which lend themselves better to updating than the
singular value decomposition. Generalized and weighted least squares problems
and problems of Toeplitz and Kronecker structure are becoming increasingly
important.

xv

Preface

xvi PREFACE

Chapter 1 gives the basic facts and the mathematical and statistical back-
ground of least squares methods. In Chapter 2 relevant matrix decompositions
and basic numerical methods are covered in detail. Although most proofs are
omitted, these two chapters are more elementary than the rest of the book and
essentially self-contained. Chapter 3 treats modified least squares problems and
includes many recent results. In Chapter 4 generalized QR and SVD decompo-
sitions are presented, and methods for generalized and weighted problems sur-
veyed. Here also, robust methods and methods for total least squares are treated.
Chapter 5 surveys methods for problems with linear and quadratic constraints.
Direct and iterative methods for large sparse least squares problems are covered
in Chapters 6 and 7. These methods are still subject to intensive research, and
the presentation is more advanced. Chapter 8 is devoted to problems with special
bases, including least squares fitting of polynomials and problems of Toeplitz and
Kronecker structures. Finally, Chapter 9 contains a short survey of methods for
nonlinear problems.

This book will be of interest to mathematicians working in numerical linear
algebra, computational scientists and engineers, and statisticians, as well as
electrical engineers. Although a solid understanding of numerical linear algebra
is needed for the more advanced sections, I hope the book will be found useful in
upper-level undergraduate and beginning graduate courses in scientific computing
and applied sciences.

I have aimed to make the book and the bibliography as comprehensive and
up-to-date as possible. Many recent research results are included, which were
only available in the research literature before. Inevitably, however, the content
reflects my own interests, and I apologize in advance to those whose work has not
been mentioned. In particular, work on the least squares problem in the former
Soviet Union is, to a large extent, not covered.

The history of this book dates back to at least 1981, when I wrote a survey
entitled "Least Squares Methods in Physics and Engineering" for the Academic
Training Programme at CERN in Geneva. In 1985 I was invited to contribute
a chapter on "Least Squares Methods" in the Handbook of Numerical Analysis,
edited by P. G. Ciarlet and J. L. Lions. This chapter [95] was finished in 1988
and appeared in Volume 1 of the Handbook, published by North-Holland in 1990.
The present book is based on this contribution, although it has been extensively
updated and made more complete.

The book has greatly benefited from the insight and knowledge kindly
provided by many friends and colleagues. In particular, I have been greatly
influenced by the work of Gene H. Golub, Nick Higham, and G. W. Stewart. Per-
Ake Wedin gave valuable advice on the chapter on nonlinear problems. Part of
the Handbook chapter was written while I had the benefit of visiting the Division
of Mathematics and Statistics at CSIRO in Canberra and the Chr. Michelsen
Institute in Bergen.

PREFACE xvii

Thanks are due to Elsevier Science B.V. for the permission to use part of
the material from the Handbook chapter. Finally, I thank Beth Gallagher and
Vickie Kearn at SIAM for the cheerful and professional support they have given
throughout the copy editing and production of the book.

Ake Bjorck
Linkoping, February 1996

This page intentionally left blank

Mathematical and Statistical Properties of Least
Squares Solutions

De tous les principes qu'on peut proposer pour cet objet, je pense
qu'il n'en est pas de plus general, de plus exact, ni d'une application
plus facile que celui qui consiste a rendre minimum la somme de carres
des erreurs.1

Adrien Marie Legendre, Nouvelles methodes pour la determination
des orbites des cometes. Appendice. Paris, 1805.

1.1. Introduction
The linear least squares problem is a computational problem of primary impor-
tance, which originally arose from the need to fit a linear mathematical model to
given observations. In order to reduce the influence of errors in the observations
one would then like to use a greater number of measurements than the number
of unknown parameters in the model. The resulting problem is to "solve" an
overdetermined linear system of equations. In matrix terms, given a vector
b E Rm and a matrix A G Rmxn, ra > n, we want to find a vector x e Rn such
that Ax is the "best" approximation to b.

EXAMPLE 1.1.1. Consider a model described by a scalar function y(t) =
/(x, £), where x € Rn is a parameter vector to be determined from measurements
(yi, £j), i — 1, . . . , ra, ra > n. In particular, let f (x , t) be linear in x:

Chapter 1

Then the equations yi — Y^j=\xj(t)j(U}-l i = l , . . . , ra form an overdetermined
linear system Ax = 6, where a^- = 4>j(ti) and 6^ = yi.

There are many possible ways of defining the "best" solution. A choice which
can often be motivated for statistical reasons (see below) and which also leads
to a simple computational problem is to let x be a solution to the minimization
problem

lOf all the principles that can be proposed, I think there is none more general, more exact, and
more easy of application, than that which consists of rendering the sum of the squares of the errors a
minimum.

1

[1.1.1)

2 CHAPTER 1. MATHEMATICAL PROPERTIES

where || • ||2 denotes the Euclidean vector norm. We call this a linear least
squares problem and x a linear least squares solution of the system Ax = b.
We refer to r = b — Ax as the residual vector. A least squares solution minimizes
IHIi = Y%l=irii i-e-> the sum of the squared residuals. If rank (A) < n, then
the solution x to (1.1) is not unique. However, among all least squares solutions
there is a unique solution which minimizes ||a:||2; see Theorem 1.2.10.

1.1.1. Historical remarks. Laplace in 1799 used the principle of minimizing
the sum of the absolute errors]C^i \ri\i with the added condition that the sum of
the errors be equal to zero; see Goldstine [363, 1977]. He showed that the solution
x must then satisfy exactly n out of the m equations. Gauss argued that since,
by the principles of probability, greater or smaller errors are equally possible in
all equations, it is evident that a solution which satisfies precisely n equations
must be regarded as less consistent with the laws of probability. He was then
led to the principle of least squares. The algebraic procedure of the method of
least squares was first published by Legendre [523, 1805]. It was justified as a
statistical procedure by Gauss [320, 1809], where he (much to the annoyance of
Legendre) claimed to have discovered the method of least squares in 1795.2

Most historians agree that Gauss was right in his claim. Gauss used the least
squares principle for analyzing survey data and in astronomical calculations. A
famous example is when Gauss successfully predicted the orbit of the asteroid
Ceres in 1801. The method of least squares quickly became the standard
procedure for analysis of astronomical and geodetic data. There are several good
accounts of the history of the invention of least squares and the dispute between
Gauss and Legendre; see Placket [660, 1972], Stigler [757, 1977], [758, 1981], and
Goldstine [363, 1977].

Gauss gave the method a sound theoretical basis in -'Theoria Combinationis"
[322, 1821], [323, 1823]. These two memoirs of Gauss, which contain his definitive
treatment of the area, have recently been collected for the first time in an English
translation by Stewart [325, 1995]. Gauss proves here the optimality of the least
squares estimate without any assumptions that the random variables follow a
particular distribution. This contribution of Gauss was somehow neglected until
being rediscovered by Markoff [566, 1912]; see Theorem 1.1.1.

1.1.2. Statistical preliminaries. Let y be a random variable having the
distribution function F(y), where F(y) is nondecreasing, right continuous, and

The expected value and the variance of y is then defined as

2 "Our principle, which we have made use of since 1795, has lately been published by Legendre...,"
C. F. Gauss, Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections,
Hamburg [320, 1809].

1.1. INTRODUCTION 3

Let y = (? / i , . . . , yn)
T be a vector of random variables and let // = (/ / i , . . . , //n),

where /^ = £(yi). Then we write JJL = £(y). If y% and T/J have the joint distribution
F (y i , y j) the covariance GIJ between yi and yj is defined by

Note that Oij = £(yiyj) — /j,i/j,j. The variance-covariance matrix V G Rnxn of ?/
is defined by

We now prove some properties which will be useful in the remainder of the
book.

LEMMA 1.1.1. Let z = Fy, where F G Rrxn is a given matrix and y a random
vector with £(y) — a and covariance matrix V. Then

Proof. The first property follows directly from the definition of expected
value. The second is proved as

In the special case when F = fT is a row vector, then z = fTy is a linear
functional of y and V(z] = n^b^fe. The following lemma is given without proof.

LEMMA 1.1.2. Let A G Rnxn be a symmetric matrix and consider the
quadratic form y1Ay, where y is a random vector with expected value n and
covariance matrix V. Then

where trace (AV) denotes the sum of diagonal elements of AV.

1.1.3. Linear models and the Gauss—Markoff theorem. In linear statis-
tical models one assumes that the vector 6 G Rm of observations is related to the
unknown parameter vector x G Rn by a linear relation

where A G Rmxn is a known matrix and e is a vector of random errors. In the
standard linear model we have

i.e., the random variables €i are uncorrelated and all have zero means and the
same variance. We also assume that rank (A) — n.

We make the following definitions.

(1.1.2)

(1.1.3)

4 CHAPTER 1. MATHEMATICAL PROPERTIES

DEFINITION 1.1.1. A function g(y) of the random vector y is an unbiased
estimate of a parameter 0 if £(g(y)) = 6. When such a function exists, then 0 is
called an estimable parameter.

DEFINITION 1.1.2. Let c be a constant vector. Then the linear function
g — cTy is called a minimum variance unbiased estimate of 0 if £(g] = 0, and
V(g] is minimized over all linear estimators.

The following theorem by Gauss placed the method of least squares on a
sound theoretical basis without any assumption that the random errors follow a
normal distribution.

THEOREM 1.1.1. The Gauss-Markoff theorem. Consider the linear model
(1.1.2), where A E Rmxn is a known matrix of rank n, b = 6 + e, where e is
a random vector with mean and variance given by (1.1.3). Then the best linear
unbiased estimator of any linear function CTX is CTX, where x is the least squares
estimator, obtained by minimizing the sum of squares \\Ax — b\\\. Furthermore,
£(s2) = cr2, where s2 is the quadratic form

Proof. For a modern proof see Zelen [850, 1962, pp. 560-561].

COROLLARY 1.1.1. The variance-covariance matrix of the least squares
estimate x is

Proof. Since x = (ATA) lATb it follows from Lemma 1.1.1 that

The residual vector r = b — Ax satisfies ATr = 0, and hence there are n linear
relations among the m components of r. It can be shown that the residuals r,
and therefore also the quadratic form s2, are uncorrelated with x, i.e.,

In the general univariate linear model the covariance matrix is V(e) =
&2W, where W e R,mxm is a positive semidefinite symmetric matrix. If A has
rank n and W is positive definite then the best unbiased linear estimate for x
was shown by Aiken [4, 1934] to be the solution of

General linear models are considered in Section 4.3.1, and special methods for
the corresponding generalized least squares problems are treated in Sections 4.3
and 4.4. It is important to note that for singular W the best unbiased linear
estimate of x can not always be obtained by replacing W~l in (1.1.6) by the
Moore-Penrose pseudoinverse W^\

(1.1.4)

(1.1.6)

(1.1.5)

1.1. INTRODUCTION 5

In some applications it might be more adequate to consider the more general
minimization Drohlem

EXAMPLE 1.1.2. To illustrate the effect of using a Holder norm with p ^ 2,
we consider the problem of estimating the scalar 7 from m observations y e Rm.
This is equivalent to minimizing \\A^ — y\\p, with A = (1,1,.. . , 1)T. It is easily
verified that if y\ > y^ > • • • > ym-, then the solution for some different values p
are

where the Holder vector p-norms || • ||p are defined by

The Euclidian norm corresponds to p = 2, and in the limiting case

These estimates correspond to the median, mean, and midrange, respectively.
Note that the estimate 71 is insensitive to extreme values of ̂ . This property
carries over to more general problems, and a small number of isolated large errors
will usually not change the l\ solution. For a treatment of problem (1.1.7) when
p ̂ 2 see Section 4.5.

1.1.4. Characterization of least squares solutions. We begin by charac-
terizing the set of all solutions to the least squares problem (1.1.1).

THEOREM 1.1.2. Denote the set of all solutions to (1.1.1) by

Then x G S if and only if the following orthogonality condition holds:

Proof. Assume that x satisfies ATr = 0, where f = b — Ax. Then for any
x £ Rn we have r = b — Ax = r + A(x — x) = f + Ae. Squaring this we obtain

which is minimized when x = x.
On the other hand suppose ATr = z ^ 0, and take x = x + ez. Then

r = r — cAz, and

(1.1.7)

(1.1.8)

(1.1.9)

(1.1.10)

(1.1.11)

CHAPTER 1. MATHEMATICAL PROPERTIES

FIG. 1.1.1. Geometric interpretation of least squares property.

for sufficiently small e. Hence x is not a least squares solution.

The range (or column space) of a matrix A G Rmxn is denned to be

The set of solutions to ATy = 0 is a subspace called the nullspace of AT and
denoted by

and is the orthogonal complement in Rm to the space 7£(A). These are two of
the four fundamental subspaces of the matrix A] see Section 1.2. Theorem 1.1.2
asserts that the residual vector r = b — Ax of a least squares solution lies in
N(AT). Hence any least squares solution x uniquely decomposes the right-hand
side 6 into two orthogonal components

This geometric interpretation is illustrated for n = 2 in Figure 1.1.1.
From (1.1.11) it follows that a least squares solution satisfies the normal

equations

The matrix ATA € Rnxn is symmetric and nonnegative definite. The normal
equations are always consistent since

Furthermore we have the following theorem.
THEOREM 1.1.3. The matrix ATA is positive definite if and only if the

columns of A are linearly independent, i.e., rank(^4) — n.
Proof. If the columns of A are linearly independent, then x ^ 0 => Ax ^ 0

and therefore x ^ 0 =>• xTATAx = HArlli > 0. Hence ATA is positive definite.
On the other hand, if the columns are linearly dependent then for some XQ 7^ 0
we have AXQ = 0 and so XQATAXQ = 0, and ATA is not positive definite.

6

(1.1.14)

(1.1.15)

1.1. INTRODUCTION 7

From Theorem 1.1.3 it follows that if rank (A) — n, then the unique least
squares solution x and the corresponding residual r — b — Ax are given by

If S C Rm is a subspace, then PS G Rmxm is the orthogonal projector
onto S if n(Ps) = S, and

and (I — PS] is the projector for the subspace complementary to that of S.
Let PI and PI be orthogonal projectors onto S. Then using (1.1.17) we have

for all 2 <E Rm

It follows that PI = PI, and hence the orthogonal projector is unique.
From the geometric interpretation (see Figure 1.1.1) Ax is the orthogonal

projection of b onto 1l(A). We have r = (/ — Pji(A))bi and in the full rank case

If rank (^4) < n then A has a nontrivial nullspace and the least squares
solution is not unique. If x is a particular least squares solution then the set
of all least squares solutions is

If x J_ M(A) then \x\\2 = H^Hi + lklliL and therefore x is the unique least squares
solution of minimum norm.

The problem of computing the minimum norm solution y G Rm to an
underdetermined system of linear equations

where A € Rmxn, occurs as a subproblem in optimization algorithms. If
rank (A) = n, then the system ATy = c is consistent and the unique solution
of (2.5) is given by the normal equations of the second kind

that is, y = A(ATA) 1c.
The classical method for solving the normal equations is based on the

following matrix factorization.

(1.1.16)

(1.1.17)

(1.1.18)

(1.1.19)

(1.1.20)

8 CHAPTER 1. MATHEMATICAL PROPERTIES

THEOREM 1.1.4. Cholesky Decomposition. Let the matrix C e Rn*n be
symmetric and positive definite. Then there is a unique upper triangular matrix
R with positive diagonal elements such that

R is called the Cholesky factor ofC and (1.1.21) is called the Cholesky factoriza-
tion.

Proof. The proof is by induction on the order n of C. The result is trivial for
n = 1. Assume that (1.1.21) holds for all positive definite matrices of order n.
Consider the positive definite matrix C of order n + 1, and seek a factorization

C is a principal minor of C and hence positive definite. By the induction
hypothesis the factorization C = RTR exists and thus (1.1.22) holds provided
r and p > 0 satisfy

Since RT has positive diagonal elements and is lower triangular, r = R Tm is
uniquely determined. Now, from the positive definiteness of C it follows that

Hence also p = (7 — rrr)1/2 is uniquely determined.
Another characterization of the least squares solution is given in the following

theorem.
THEOREM 1.1.5. Assume that A e Rmxn has rank n. Then the symmetric

linear system

is nonsingular and gives the condition for the solution of both the primal and dual
least squares problem

Proof. The system (1.1.24), often called the augmented system, can be
obtained by differentiating (1.1.25) to give AT(b — Ax) = c, and setting y to be
the residual y — b — Ax. The system can also be obtained by differentiating the
Lagrangian

of (1.1.26), and equating to zero. Here x is the vector of Lagrange multipliers.

(1.1.21)

(1.1.22)

(1.1.24)

(1.1.25)

(1.1.26)

1.2. THE SINGULAR VALUE DECOMPOSITION 9

Setting c = 0 in (1.1.25) gives the linear least squares problem (1.1.2).
Setting b = 0 in (1.1.26) gives the problem of minimum 2-norm solution of an
underdetermined linear system ATy = c\ see (1.1.19).

1.2. The Singular Value Decomposition
1.2.1. The singular value decomposition. The singular value decomposi-
tion (SVD) of a matrix A e Rmxn is a matrix decomposition of great theoretical
and practical importance for the treatment of least squares problems. It provides
a diagonal form of A under an orthogonal equivalence transformation. The his-
tory of this matrix decomposition goes back more than a century; see the very
interesting survey of the early history of the SVD by Stewart [750, 1993]. How-
ever, only recently has the SVD been as much used as it should. Now it is a main
tool in numerous application areas such as signal and image processing, control
theory, pattern recognition, time-series analysis, etc.

Because applications exist also for complex matrices we state the theorem
below for matrices with complex elements. (The matrix AH will denote the
matrix formed by conjugating each element and taking the transpose.)

THEOREM 1.2.1. Singular Value Decomposition. Let A e Cmxn be a matrix
of rank r. Then there exist unitary matrices U G CmXTn and V e Cnxn such that

where E G Rmxn, EI = diag (<TI, ai,..., 0y), and

<r\ > 0"2 > • • • > oy > 0.

The o~i are called the singular values of A, and if we write

the Ui and Vi are, respectively, the left and right singular vectors associated with
Oi, i = l,...,r.

Proof. (See Golub and Van Loan [389, 1989].) Let v\ e Cn be a vector such
that

where a is real and positive. The existence of such a vector follows from the
definition of a matrix subordinate norm \\A\\. If a = 0, then A = 0, and we
can take S = 0 and U and V arbitrary unitary matrices. Therefore assume that
a > 0, and take u\ = (l/a)Av\ 6 Cm, \\vi\\2 = 1. Let the matrices

be unitary. (Recall that it is always possible to extend a unitary set of vectors to
a unitary basis for the whole space.) Since U^ Av\ = crU^ui — 0 it follows that
UHAV has the following structure:

where WH = nf AVi, and B = U{*AVi e C^™"1^""1). Prom the two inequalities

(1.2.1)

(1.2.2)

10 CHAPTER 1. MATHEMATICAL PROPERTIES

it follows that \\Ai\\2 > (v2 + wHw)^2. But since U and V are unitary,
\\Ai \\2 = \\A\\2 = cr, and thus w — 0. The proof can now be completed by
an induction argument on the smallest dimension min(m, n).

A rectangular matrix A G Rmxn represents a linear mapping from Cn to Cm.
The significance of Theorem 1.2.1 is that it shows that there is an orthogonal basis
in each of these spaces, with respect to which this mapping is represented by a
generalized diagonal matrix E with real elements. Methods for computing the
SVD are described in Section 2.6.

The SVD of A can be written

By this a matrix A of rank r is decomposed into a sum of r = rank (.A) matrices
of rank one.

The singular values of A are unique. The singular vector vj5 j < r, will be
unique only when dj is a simple eigenvalue of AH A. For multiple singular values,
the corresponding singular vectors can be chosen as any orthonormal basis for
the unique subspace that they span. Once the singular vectors Vj, 1 < j < r,
have been chosen, the vectors Uj, 1 < j• < r, are uniquely determined from

Similarly, given ttj, 1 < j < r, the vectors Vj, 1 < j < r, are uniquely determined
from

The SVD gives complete information about the four fundamental subspaces
associated with A. It is easy to verify that

and we find the well-known relations

Note that with V = (Vi, V^) and z € Cn r an arbitrary vector,

gives the general solution to the homogeneous linear system Ax = 0. This result
is often useful in optimization problems.

(1.2.3)

(1.2.4)

(1.2.5)

(1.2.7)

(1.2.8)

(1.2.9)

where

(1.2.6

1.2. THE SINGULAR VALUE DECOMPOSITION 11

1.2.2. Related eigenvalue decompositions. There is a close relationship
between the SVD and the Hermitian (or real symmetric) eigenvalue problem from
(1.2.1) it follows that

and thus of, . . . ,0f, are the nonzero eigenvalues of the Hermitian and positive
semidefinite matrices AH A and AAH, and Vj and Uj are the corresponding
eigenvectors. For a proof of the SVD using this relationship, see Stewart [729,
1973, p. 319].

A matrix A e Cnxn is Hermitian if AH = A. A Hermitian matrix A has
real eigenvalues AI, . . . , An, and then AHA = A2 as real nonnegative eigenvalues
equal to A2, i = 1,... , n. Hence, (1.2.10) shows that for a Hermitian matrix the
singular values are given by &i = |A$|, i = 1,..., n.

In principle, the SVD can be found from the eigenvalue decomposition of the
two Hermitian matrices AHA and AAH. However, this does not lead to a stable
algorithm for computing the SVD.

EXAMPLE 1.2.1. Consider the case n = 2,

Here,

and ||ai||2 = \\&2\\2 = 1- Here 7 is the angle between the vectors a\ and 02- The
matrix

has eigenvalues AI = 2cos2(7/2), A2 = 2sin2(7/2), and so,

The eigenvectors of ATA,

are the right singular vectors of A. The left singular vectors can be determined
from (1.2.5).

Numerically, if 7 is less than the square root of machine precision then
cos 7 « 1 — 72/2 = 1, and ATA has only one nonzero eigenvalue equal to 2.
Thus the smallest singular value of A has been lost!

(1.2.10)

12 CHAPTER 1. MATHEMATICAL PROPERTIES

The following relationship between the S VD and a Hermitian eigenvalue prob-
lem, which can easily be verified, was exploited by Lanczos [513, 1961, Chap. 3].

THEOREM 1.2.2. Let the SVD of A e Cmxn be A = UYVH, where
E = diag(£i, 0),

Then

where P is unitary

Hence the eigenvalues ofC are ±<TI, ±0*2,..., ±crr, and zero repeated (ra+n—2r)
times, where r = rank (A).

1.2.3. Matrix approximations. The singular value decomposition plays an
important role in a number of matrix approximation problems. In the theorem
below we consider the approximation of one matrix by another of lower rank.
Several other results can be found in Golub [365, 1968] and in Golub and Van
Loan [389, 1989, Chap. 12.4].

THEOREM 1.2.3. Let A e Cmxn have rank (A) = r, and the SVD

Let B e M™xn, where M™*n is the set of matrices in Cmxn of rank k < r.
Then

is obtained for X = B, where

Proof. See Golub and Van Loan [389, 1989, Chap. 2.5.4] and Mirsky [578,
1960].

As a special case of this theorem it follows that if rank (A) = n, then o~n is
the shortest distance from A to the set of singular matrices in the spectral norm.

REMARK 1.2.1. The theorem was originally proved for the Frobenius norm
(see (1.4.7)). For this norm the minimum distance is

and the solution is unique; see Eckhart and Young [261, 1936]. A generalization
of the Eckhart-Young theorem is given by Golub, Hoffman, and Stewart [369,
1987]-

(1.2.11)

(1.2.12)

1.2. THE SINGULAR VALUE DECOMPOSITION 13

Closely related to the singular value decomposition is the polar decompo-
sition.

THEOREM 1.2.4. Polar Decomposition. Let A 6 Cmxn, m>n. Then there
exist a matrix Q € Cmxn and a unique Hermitian positive semidefinite matrix
H e Cnxn such that

If rank (A) — n then H is positive definite and Q is uniquely determined.
Proof. Let A have the singular value decomposition

where U and V are unitary and a\ > 0% > • • • > an > 0. It follows that A = QH.
where

and Ui = (ui,...,un).

The polar decomposition can be regarded as a generalization to matrices of
the complex number representation z = ret6, r > 0. Since H2 = VE2VH = AHA
it follows that H equals the unique Hermitian positive semidefinite square root
of AH A,

The unitary factor U in the polar decomposition possesses a best approximation
property described in the following theorem from Higham [453, 1986].

THEOREM 1.2.5. Let A,B € Cmxn and let BHA e Cnxn have the polar
decomposition BHA = UH. Then, for any unitary Z £ Cnxn,

where \ - \ \ p denotes the Frobenius norm. In the special case in which m = n and
B = I we have

and the minimum is

where ai = cri(A).
Hence the nearest unitary matrix to A £ cnxn is the unitary factor of

the polar decomposition. Fan and Hoffman [286, 1955] showed that (1.2.15)
holds for any unitarily invariant norm. Higham [453, 1986] also discusses the
approximation properties of the Hermitian factor H.

1.2.4. The sensitivity of singular values and vectors. Like the eigenval-
ues of a real Hermitian matrix, the singular values of a general matrix have a
minmax characterization.

(1.2.13)

(1.2.14)

(1.2.15)

14 CHAPTER 1. MATHEMATICAL PROPERTIES

THEOREM 1.2.6. Let A e Rmxn have singular values

and S be a linear subspace o/Rn. Then

Proof. The result is established in almost the same way as for the
corresponding eigenvalue theorem, the Courant-Fischer theorem; see Wilkinson
[836, 1965, pp. 99-101].

The minmax characterization of the singular values may be used to establish
results on the sensitivity of the singular values of A to perturbations.

THEOREM 1.2.7. Let A and A = A+E e Rmxn, m>n, have singular values

Proof. See Stewart [729, 1973, pp. 321-322].

The result (1.2.18) is known as the Wielandt-Hoffman theorem for singular
values. The theorem shows the important fact that the singular values of a matrix
A are well-conditioned with respect to perturbations of A. Perturbations of the
elements of a matrix produce perturbations of the same, or smaller, magnitude
in the singular values. This is of great importance for the use of the SVD to
determine the "numerical rank" of a matrix; see Section 2.7.1.

The next result gives a perturbation result for singular vectors.
THEOREM 1.2.8. Let A e Rmxn, m > n, have singular values cr\ > &2 >

•" > o~n and singular vectors Ui,Vi, i = l , . . . ,n. Let &i, Ui, and Vi be the
corresponding values for A = A + E. Then if \\E\\2 < li it holds

where 7^ is the absolute gap between ai and the other singular values,

Proof. A more general result is given in Golub and Van Loan [389,
1989, Thm. 8.3.5].

Sharper perturbation results can be given for singular values and vectors of
bidiagonal matrices; see Theorem 2.6.2.

It is well known that the eigenvalues of the leading principal minor of order
(n — I) of a Hermitian matrix A G Rnxn interlace the eigenvalues of A; see
Wilkinson [836, 1965, p. 103]. A similar theorem holds for singular values.

(1.2.16)

(1.2.17)

(1.2.18)

(1.2.19)

(1.2.20)

1.2. THE SINGULAR VALUE DECOMPOSITION 15

THEOREM 1.2.9. Let A be bordered by a column u G Rm,

Then the ordered singular values o~i of A separate the ordered singular values di
of A as follows:

Similarly, if A is bordered by a row v e Rn,

Proof. The theorem is a consequence of the minmax characterization of the
singular values in Theorem 1.2.6; cf. Lawson and Hanson [520, 1974, p. 26]. I

1.2.5. The SVD and pseudoinverse. The SVD is a powerful tool for
solving the linear least squares problem. This is because the unitary matrices
that transform A to diagonal form (1.2.1) do not change the /2-norm of vectors.
We have the following fundamental result, which applies to both overdetermined
and underdetermined linear systems.

THEOREM 1.2.10. Consider the general linear least squares problem

where A G Cmxn and rank (^4) = r < min(m, n). This problem always has a
unique solution, which can be written in terms of the SVD of A as

Proof. Let

where z\,c\ € Cr. Then

Thus, the residual norm will be minimized for zi arbitrary and z\ = Er
 lc\. The

choice z^ = 0 minimizes \\z\\2, and therefore ||x||2 = ||V2||2 as well. |
DEFINITION 1.2.1. We write (1.2.22) as x = A^b, where

is called the pseudoinverse of A, and the solution (1.2.22) is called the
pseudoinverse solution.

(1.2.22)

(1.2.21)

(1.2.23)

16 CHAPTER l. MATHEMATICAL PROPERTIES

It follows easily from Theorem 1.2.10 that At minimizes \\AX — I\\p. For
computing the pseudoinverse solution it suffices to compute E, V, and the vector
c = UHb. The pseudoinverse of a scalar is

This shows the important fact that the pseudoinverse At is not a continuous
function of A, unless we allow only perturbations which do not change the rank of
A. The pseudoinverse can also be uniquely characterized by the two geometrical
conditions

The matrix At is often called the Moore-Penrose inverse. E. H. Moore
introduced the general reciprocal in 1920. It was rediscovered by Bjerhammar
[83, 1951] and Penrose [655, 1955], who gave the following elegant algebraic
characterization.

THEOREM 1.2.11. Penrose's conditions. The pseudoinverse X = A^ is
uniquely determined by the following four conditions.

It follows in particular that At in (1.2.23) does not depend on the particular
choice of U and V in the SVD. It can be directly verified that At given by (1.2.23)
satisfies these four conditions. If only part of the Penrose conditions hold, the
corresponding matrix X is called a generalized inverse. Such inverses have been
extensively analyzed; see Nashed [596, 1976].

The pseudoinverse can be shown to have the following properties.

Proof. The statements easily follow from (1.2.23). See also Penrose [655,
i955]-

The pseudoinverse does not share some other properties of the ordinary
inverse. For example, in general

THEOREM 1.2.12.

8. A, AH. At, and At A all have rank equal to trace (At A).

(1.2.24)

(1.2.25)

(1.2.26)

1.2. THE SINGULAR VALUE DECOMPOSITION 17

EXAMPLE 1.2.2. If we take A = (I 0) and B = (1 1)T, then AB = 1,

and

In the special case in which A G Cmxn, rank (A) = n,

The first expression follows from Theorems 1.1.2 and 1.1.3 and relates to the least
squares solution in the case of full column rank. The second expression follows
using property 2 in Theorem 1.2.12 and relates to the minimum norm solution
to an underdetermined system of full row rank.

Necessary and sufficient conditions for the relation (AB)^ — B^A^ to hold
have been given by Greville [399, 1966]. The following theorem gives useful
sufficient conditions.

THEOREM 1.2.13. Assume that A € Cmxr, B e Crxn, where rank(A) =
rank (B) = r. Then it holds that

Proof. The last equality follows from (1.2.27). The first equality is verified
by showing that the four Penrose conditions are satisfie

1.2.6. Orthogonal projectors and angles between subspaces. An im-
portant property of the pseudoinverse is that it gives simple expressions for the
orthogonal projections onto the four fundamental subspaces of A:

These expressions are easily verified using the Penrose conditions (1.2.26).
If the columns of a matrix U are orthonormal then UHU = I, and P-R(U] —

UUH satisfies (1.1.17). Using (1.2.10) we can therefore express the projections
(1.2.29) in terms of the singular vectors of A as

where U\ = (u\,..., ur) and V\ = (i > i , . . . , vr).

(1.2.27)

(1.2.28)

(1.2.29)

(1.2.30)

18 CHAPTER 1. MATHEMATICAL PROPERTIES

DEFINITION 1.2.2. Let SA = *R>(A) and SB = K(B} be two subspaces ofCm

where without restriction we assume that p = dim(SA) > dim (83) = q > 1.
The principal angles Ok, between SA and SB and the corresponding principal
vectors life, f fc, k = 1,..., q, are recursively defined by

subject to the constraints

Note that for k = 1, the constraints are empty, and 9\ is the smallest principal
angle between SA and SB- The principal vectors need not be uniquely defined,
but the principal angles always are. Principal angles and vectors have important
applications, e.g., in statistics.

If p = q the subspaces have the same dimension. In this case the distance
between the subspaces SA and SB is defined to be

where 9p is the largest principal angle.
The relationship between principal angles and the SVD is given in the

following theorem.
THEOREM 1.2.14. Assume that QA e Rmxp and QB e RmX(? form unitary

bases for the two subspaces SA and SB- Consider the SVD

where a\ > a<i > • • • > o~q, Y
HY = ZHZ — Iq. Then the principal angles and

principal vectors are given by

Proof. The proof follows from the minmax characterization of the singular
values and vectors; see Theorem 1.2.6.

It can also be shown that the nonzero singular values of (PsA — PSB)> where
PSA = QAQA and PSB — QBQB are tne orthogonal projectors, equal sin(^),
k = 1,. . . , q. This gives the alternative definition

Methods for computing principal angles and vectors, and applications are
discussed in Bjorck and Golub [111, 1973] and Golub and Zha [394, 1994].

(1.2.31)

(1.2.32)

(1.2.33)

(1.2.34)

(1.2.35)

1.3. THE QR DECOMPOSITION 19

1.3. The QR Decomposition
1.3.1. The full rank case. The SVD of A gives the solution of the general
rank deficient least squares problem (1.2.21). However, in many applications it is
too expensive to compute the SVD, and one has to use simpler decompositions.
Among these the most important are the QR and related decompositions.

Let A e Rmxn and b e Rm, and let Q € Rmxm be an orthogonal matrix.
Since orthogonal transformations preserve the Euclidean length it follows that
the linear least squares problem

is equivalent to (1.1.1). We now show how to choose Q so that the problem
(1.3.1) becomes simple to solve.

THEOREM 1.3.1. QR Decomposition. Let A e Rrnxn,m > n. Then there is
an orthogonal matrix Q £ Rmxm such that

where R is upper triangular with nonnegative diagonal elements. The decomposi-
tion (1.3.2) is called the QR decomposition of A, and the matrix R will be called
the R-factor of A.

Proof. The proof is by induction on n. Let A be partitioned in the form
A = (0,1,^2), 0,1 e Rm, and put p — ||ai||2- Let U = (y,Ui) be an orthogonal
matrix with y — a\/p if ai ^ 0, and y = e.\ otherwise. Since U^y = 0 it follows
that

where p = \\ai\\2, r = A%y.
For n = 1, A^ is empty and the theorem holds with Q = U and R = p, a

scalar. Assume now that the induction hypothesis holds for n — 1. Then there is
an orthogonal matrix Q such that QTB = (̂ J , and (1.3.2) will hold if we define

The proof of Theorem 1.3.1 gives a way to compute Q and R, provided we can
construct an orthogonal matrix U = (y, U\) given its first column. Several ways
to perform this construction using elementary orthogonal transformations are
given in Section 2.2.1. The systematic use of orthogonal transformations to reduce
matrices to simpler form was initiated by Givens [361, 1958] and Householder
[475, 1958]. The application to linear least squares problems is due to Golub
[364, 1965], although Householder [475] discussed least squares.

Note that from the form of the decomposition (1.3.2) it follows immediately
that R has the same singular values and right singular vectors as A. A relationship
between the Cholesky factorization of ATA and the QR decomposition of A is
given next.

(1.3.1)

(1.3.2)

20 CHAPTER 1. MATHEMATICAL PROPERTIES

THEOREM 1.3.2. Let A e Rmxn have rank n. Then if the R-factor in the QR
decomposition of A has positive diagonal elements it equals the Cholesky factor
ofATA.

Proof, If rank (A) = n, then by Theorem 1.1.4 the Cholesky factor of ATA is
unique. Now from (1.3.2) it follows that

which concludes the proof.

Assume that rank (A) = n, and partition Q in the form

Then by (1.3.2) and nonsingularity of R we have

Hence we can express Q\ uniquely in terms of A and R. However the matrix Q<2
will not, in general, be uniquely determined.

From (1.3.4) it follows that

which shows that the columns of Q\ and $2 form orthonormal bases for Tl(A)
and its complement. It follows that the corresponding orthogonal projections are

We now show how to use the QR decomposition (1.3.2) to solve the augmented
system (1.1.24). As shown in Theorem 1.1.5, this includes as special cases both
the solution of the linear least squares problem (b = 0) and the minimum norm
solution of an underdetermined system (c = 0).

THEOREM 1.3.3. Let A e Rmxn,m > n, b e Rm, and c € Rn be given.
Assume that rank (A] = n, and let the QR decomposition of A be given by (1.3.2).
Then the solution to the augmented system

can be computed from

Proof. The augmented system can be written y + Ax = 6, ATy = c, and using
the factorization (1.3.2),

(1.3.3)

(1.3.4)

(1.3.5)

(1.3.6)

(1.3.7)

(1.3.8)

1.3. THE QR DECOMPOSITION 21

Multiplying the first equation with QT and the second with R T we get

Using the second equation to eliminate the first n components of QTy in the first
equation, we can solve for x. The last ra — n components of QTy are obtained
from the last m — n equations in the first block.

Taking c = 0 and r = y = b — Ax in (1.3.7)-(1.3.8) it follows that the solution
to the least squares problem minx \\Ax — b\\2 is obtained from

In particular, ||r||2 = \\d2\\2- Taking b = 0, we find that the solution to the
problem min ||y||2 such that ATy — c is obtained from

It follows that when A has full rank n the pseudoinverses of A and AT are given
by the expressions

1.3.2. Rank revealing QR decompositions. According to Theorem 1.3.1
any matrix A £ Rmxn has a QR decomposition. However, as illustrated in the
following example, if rank (A) < n, then the decomposition is not unique.

EXAMPLE 1.3.1. For any c and 5 such that c2 + s2 — 1 we have

Here rank (A) = I < 2 = n. Note that the columns of Q no longer provide
orthogonal bases for R(A) and its complement.

We now show how the QR decomposition can be modified for the case when
rank (A) < n. (Note that this includes the case when ra < n.)

THEOREM 1.3.4. Given A G Rmxn with rank (A) = r there is a permutation
matrix H and an orthogonal matrix Q G Rmxm such that

where RU G Rrxr is upper triangular with positive diagonal elements.

(1.3.9

(1.3.10

(1.3.11

(1.3.12)

22 CHAPTER 1. MATHEMATICAL PROPERTIES

Proof. Since rank (A) = r, we can always choose a permutation matrix II
such that AH = (A i ^ A z) , where A\ e Rmxr has linearly independent columns.
Let

be the QR decomposition of A\, where Q\ G Rmxr. By Theorem 1.3.2, Q\ and
-Rii are uniquely determined, and R\\ has positive diagonal elements. Put

From rank (QTATV) = rank (^4) = r it follows that #22 = 05 since otherwise QTAH
would have more than r linearly independent rows. Hence the decomposition
must have the form (1.3.12).

The decomposition (1.3.12) is not in general unique. Several strategies for
determining a suitable column permutation II are described in Section 2.7. When
II has been chosen, Q\, R\\, and Ri2 are uniquely determined.

Also, when A has full column rank, but is close to a rank deficient matrix,
QR decompositions with column permutations are of interest.

THEOREM 1.3.5. (See H. P. Hong and C. T. Pan [473, 1992].) Let A <E Rmxn,
(m > n), and r be any integer 0 < r < n. Then there exists a permutation matrix
H such that the QR factorization has the form

A QR decomposition of the form (1.3.13)-(1.3.14) is called a rank revealing
QR (RRQR) decomposition. If oy+i = 0 we recover the decomposition (1.3.12).
Although the existence of a column permutation so that the corresponding QR
decomposition satisfies (1.3.14) has been proved, it is still an open question if
an algorithm of polynomial complexity exists for finding such a permutation;
see Section 2.7.5. (Note that an exhaustive search for H has combinatorial
complexity!)

REMARK 1.3.1. From (1.3.13) it follows that

Hence if #22 = 0, a dimensional argument shows that the nullspace of AH is
given by

(1.3.13)

(1.3.14)

(1.3.15)

1.3. THE QR DECOMPOSITION 23

1.3.3. The complete orthogonal decomposition. For some applications it
will be useful to carry the reduction in (1.3.12) one step further, using orthogonal
transformations from the right as well. By performing a QR decomposition of
the transpose of the triangular factor, the off-diagonal block can be eliminated:

We then obtain a decomposition of the following form.
DEFINITION 1.3.1. A complete orthogonal decomposition of A e Rmxn

with rank (A) = r is a decomposition of the form

where Q 6 JR
Tnxm and V € Rn*n are orthogonal matrices and T € Rrxr is upper

or lower triangular with positive diagonal elements.

Obviously, a decomposition of the form (1.3.17) is not unique. For example,
the SVD of A is one example of a complete orthogonal decomposition. The form
closest to the SVD that can be achieved by a finite algorithm is the bidiagonal
decomposition

where B is a bidiagonal matrix with nonnegative diagonal elements; see Section
2.6.2.

From Theorem 1.2.12 it follows that the pseudoinverse of A can be expressed
in terms of the decomposition (1.3.17) as

Further, partitioning the orthogonal matrices in (1.3.17) by rows we have

It follows that the complete orthogonal decomposition, like the SVD, provides
orthogonal bases for the fundamental subspaces of A.

For many computational purposes the complete QR decomposition (1.3.17) is
as useful as the SVD. An important advantage over the SVD is that the complete
QR decomposition can be updated much more efficiently than the SVD when A is
subject to a change of low rank; see Section 3.5. Different methods for computing
the various QR decompositions are described in Sections 2.4 and 2.7.

(1.3.16)

(1.3.17)

(1.3.18)

(1.3.19)

24 CHAPTER 1. MATHEMATICAL PROPERTIES

1.4. Sensitivity of Least Squares Solutions
In this section we give results on the sensitivity of pseudoinverses and least squares
solutions to perturbations in A and b. Many of the results below were first given
by Wedin [824, 1973]. Stewart in [731, 1977] gives a unified treatment with
interesting historical comments on the perturbation theory for pseudoinverses
and least squares solutions. A more recent and excellent source of information is
Stewart and Sun [754, 1990, Chap. 3].

1.4.1. Vector and matrix norms. In perturbation and error analyses it is
useful to have a measure of the size of a vector or a matrix. Such measures are
provided by vector and matrix norms, which can be regarded as generalizations
of the absolute value.

A vector norm is a function || • || : Cn —» R that satisfies the following three
conditions:

The most common vector norms are the Holder p-norms

The /p-norms have the property that \\x\\p = \\ \x\ \\p. Vector norms with this
property are said to be absolute. The three most important particular cases are
p =; 1,2 and the limit when p —> oo:

The vector 2-norm is the Euclidean length of the vector, and is invariant under
unitary transformations, i.e.,

if Q is unitary. Another important property is the Holder inequality

The special case with p = q = 2 is called the Cauchy-Schwarz inequality.
A matrix norm is a function || • || : Cmxn —> R that satisfies analogues of the

three vector norm properties. A matrix norm can be constructed from any vector
norm by defining

(1.4.1)

(1.4.2)

(1.4.3)

1.4. SENSITIVITY OF LEAST SQUARES SOLUTIONS 25

This norm is called the matrix norm subordinate to the vector norm. Prom the
definition it follows directly that

It is an easy exercise to show that subordinate matrix norms are submulti-
plicative, i.e., whenever the product AB is defined it satisfies the condition
\\AB\\ < \\A\\\\B\\-

The matrix norms subordinate to the vector p-norms are especially important.
For these it holds that \\In\\p — 1- Formulas for \\A\\p are known only for
p — 1,2, oo. It can be shown that

respectively. Hence these norms are easily computable, and it holds that
\\A\\i = \\AH\\00. The 2-norm, also called the spectral norm, is given by

Since the nonzero singular values of A and AH are the same it follows that
\\A\\2 — ||A^||2. The spectral norm is expensive to compute, but a useful upper
bound is

It is well known that on a finite-dimensional space two norms differ by at
most a positive constant, which only depends on the dimension. For the vector
p-norms it holds that

Another way to proceed in defining norms for matrices is to regard Cmxn as
an mn-dimensional vector space and apply a vector norm over that space. With
the exception of the Frobenius norm derived from the vector 2-norm,

such norms are not much used. Note that \\A \\p = ||^||F- Useful alternative
characterizations of the Frobenius norm are

The Frobenius norm is submultiplicative, but is often larger than necessary, e.g.,
\\I\\F — n1/2. This tends to make bounds derived in terms of the Frobenius norm

(1.4.4)

(1.4.5)

(1.4.7)

(1.4.8)

26 CHAPTER 1. MATHEMATICAL PROPERTIES

not as sharp as they might be. From (1.4.8) we also get lower and upper bounds
for the matrix 2-norm

An important property of the Frobenius norm and the 2-norm is that they
are invariant with respect to orthogonal transformations, i.e., for all unitary
matrices Q and P (QHQ = I and PHP = I) of appropriate dimensions we
have ||QAPH|| = ||A||. We finally remark that the l-,oo-, and Frobenius norms
satisfy

but for the 2-norm the best result is that || |A| ||2 < n1/2^!^.

1.4.2. Perturbation analysis of pseudoinverses. We first give some
perturbation bounds for the pseudoinverse. We consider a matrix A G Rmxn

and let B = A + E be the perturbed matrix. The theory is complicated by the
fact that A^ varies discontinuously when the rank of A changes; cf. (1.2.24).

THEOREM 1.4.1. //rank (A + E) ^ rank (A) then

Proof. See Wedin [824, 1973].

EXAMPLE 1.4.1. By Theorem 1.4.1, when the rank changes the perturbation
in A^ may be unbounded when \\E\\2 —> 0. A trivial example of this is obtained
by taking

where a > 0, e ̂ 0. Then 1 = rank (A) ^ rank (A + E) = 2,

and \\(A + £)T - ^\\2 = H'1 - l/l|£||2.
In case the perturbation E does not change the rank of A, such unbounded

growth of (A + E)i cannot occur.
THEOREM 1.4.2. //rank (A + E) = rank (A) = r, and rj = \\A*\\2\\E\\2 < 1,

then

Proof. From the assumption and Theorem 1.2.7 it follows that

which implies (1.4.9).

We now characterize perturbations for which the pseudoinverse is well
behaved. An acute perturbation of A is a perturbation such that the column
and row spaces of A do not alter fundamentally.

(1.4.9)

1.4. SENSITIVITY OF LEAST SQUARES SOLUTIONS 27

DEFINITION 1.4.1. The subspaces 1^(A) and 7l(B) are said to be acute if the
corresponding orthogonal projections satisfy

Further, the matrix B = A + E is said to be an acute perturbation of A if Tl(A)
and 7£(J3) a well as 7£(ylT) and H(BT} are acute.

Acute perturbations can be characterized by the following theorem.
THEOREM 1.4.3. The matrix B is an acute perturbation of A if and only if

Proof. See Stewart [731, 1977].

Let A and B = A + E be square nonsingular matrices. Then, from the
well-known identity B~l - A~l = -B~lEA~l, it follows that

The following generalization of this result can be proved by expressing the
projections in terms of pseudoinverses using the relations in (1.2.29):

This identity can be used to obtain bounds for \\B^ — A^\\ in the general case.
For the case when rank (B} = rank (A) the following theorem applies.

THEOREM 1.4.4. // B = A + E and rank (B) = rank (A), then

where p, = 1 for the Frobenius norm \\ • ||_p, and for the spectral norm \\ • \\2,

Proof. For the || • [(2 norm, see Wedin [824, 1973]. The result that IJL = I for
the Frobenius norm is due to van der Sluis and Veltkamp [784, 1979].

From the results above we deduce the following corollary.
COROLLARY 1.4.1. A necessary and sufficient condition that

is that lim£_>o rank (A + E) — rank (A).

1.4.3. Perturbation analysis of least squares solutions. We now con-
sider the effect of perturbations of A and 6 upon the pseudoinverse solution
x = A^b. In this analysis the condition number of a rectangular matrix
A 6 Rmxn plays a significant role. The following definition generalizes the con-
dition number of a square nonsingular matrix.

(1.4.10)

(1.4.12)

(1.4.11)

(1.4.13)

28 CHAPTER 1. MATHEMATICAL PROPERTIES

DEFINITION 1.4.2. The condition number ofAe Rmxn (A ̂ 0) is

where 0 < r = rank (^4) < min(m, n), and a\ > a^ > •• • > ar > 0, are the
nonzero singular values of A.
The last equality in (1.4.14) follows from the relations \\A\\2 = <TI, \\A*\\2 = a'1.

In the following we denote the perturbed A and 6 by

and the perturbed solution x = A*b = x + 6x. We start by deriving the first-
order perturbation estimate for least squares solutions when rank (A) = n. Then
if ||&A||2 < o~n we have rank (A + 6A) = n, and the perturbed solution x + 8x
satisfies the normal equations

Subtracting AT(Ax — b) = 0, and neglecting second-order terms, we get

where A^ = (ATA) 1AT and r = b — Ax.
In the special case when only the right-hand side is perturbed, i.e., 6A = 0,

no second-order terms occur, and the exact perturbation equals

where we have split 6b into orthogonal components

Hence the perturbation 6x depends only on the component of 6b in *R,(A).
From the SVD of A we have A* = V&UT, (ATA)~l = V(ZTV)-1VT, and it

follows that

Using (1.4.17) and taking norms in (1.4.16) we obtain the first-order result

Since l/crn = /c(A)/||A||2 the last term here is proportional to K2(A). Golub and
Wilkinson [393, 1966] were the first to note that such a term occurs when r ^ 0.
In van der Sluis [781, 1975] a geometrical explanation for the occurrence of this
term is given, and lower bounds for the worst perturbation are also derived.

EXAMPLE 1.4.2. (See van der Sluis [781, 1975] and Figure 1.4.1.) Let
A = (01,02) be the matrix in Example 1.2.1, and assume that the angle

(1.4.14)

(1.4.15)

(1.4.16)

(1.4.17)

(1.4.18)

1.4. SENSITIVITY OF LEAST SQUARES SOLUTIONS 29

7 = arccos(a^a2) is small. Choose perturbations 8a\ and 6a-2 of size ||<5ai||2 =
||£a2||2 = c, so that the plane S = span(ai+^oi, 02+602) is obtained by rotation of
the plane S = span(ai, 02) around the bisector u\ = \(a\ + 0,2), which according
to Example 1.2.1 is an approximate left singular vector. If 8a\ and 8a-2 are
orthogonal to S and of opposite direction, then the angle of rotation will be
0 sa e/(^7). Now let c = Psb be the orthogonal projection of b onto S and
assume that the approximate direction of c is along u\. Then c = P§b is obtained
by rotating the residual vector r through the angle 9 and hence

Further, the direction of c — c will be approximately along u^ = ^(0-2 — ai)- Since
6a\ + da-2 = 0 we have 6Ax ~ 0 and hence

It follows that

which is what we wished to show. This example illustrates that the occurrence
of K2 is due to two coinciding events: rotation of the projection plane around
a dominant left singular vector produces a large change in r, and this has the
direction of the minimal left singular vector.

FIG. 1.4.1. Exhibiting the squaring of K,(A).

We now give a more refined perturbation analysis, which follows that of Wedin
[824, 1973] and applies to both overdetermined and underdetermined systems. In
order to be able to prove any meaningful result we assume that the two conditions

are satisfied. Note that if rank (A) = mm(ra, ri) then the condition 77 < 1 suffices
to guarantee that rank (A + 6A) = rank (A}.

In the analysis we will need an estimate for the largest principal angle between
the fundamental subspaces of A and A. (For a definition of the principal angles
between two subspaces see Definition 1.2.2.)

(1.4.19)

30 CHAPTER 1. MATHEMATICAL PROPERTIES

THEOREM 1.4.5. Let A = A + 8A and assume that the conditions in (1.4.19)
are satisfied. Then if x(') denotes any of the four fundamental subspaces,

Proof. The result follows from Lemma 4.1 in Wedin [824, 1973].

We decompose the error 8x as follows:

or, using P^(A) =1 - A^A,

We separately estimate each of the three terms in this decomposition of 6x. Using
Theorem 1.4.2 and the assumption (1.4.25) it follows that

(We remark that a sharper estimate can be obtained by substituting for ||<56||2 in
(1.4.22)

Since r J_ 'R(A) we have r = Pj^f(AT)ri and, using (1.2.29), we can write the
second term as

Now, by definition, ||^(^)^V(^T)ll2 = sin6>max(7?.(A),7^(A)), where 0max is the

largest principal angle between the two subspaces H(A) and H(A).
Similarly, since x = PK(AT)XI we can write the third term

and

Using Theorem 1.4.5 to estimate (1.4.23) and (1.4.24) we arrive at the
following result.

THEOREM 1.4.6. Assume that rank (A + 6A) = rank (A), and let

Then if rj = K,€A < 1 the perturbations 6x and 6r in the least squares solution x
and the residual r = b — Ax satisfy

and

(1.4.25)

(1.4.27)

(1.4.24)

(1.4.22)

(1.4.23)

(1.4.20)

(1.4.21)

(1.4.26)

1.4. SENSITIVITY OF LEAST SQUARES SOLUTIONS 31

Proof. The estimate (1.4.26) follows from above, and (1.4.27) is proved using
the decomposition

and using

REMARK 1.4.1. The last term in (1.4.26) (and therefore also in (1.4.27))
vanishes if rank (A) = n, since then M(A) = {0}. If the system is compatible,
e.g., if rank (A) = m, then r = 0 and the term involving K? in (1.4.26) vanishes.
For rank (A) = n, and e& = 0, the condition number of the least squares problem
can be written as

Note that the conditioning depends on r and therefore on the right-hand side!
REMARK 1.4.2. When rank (A) = n there are perturbations 6A and

6b such that the estimates in Theorem 1.4.6 can almost be attained for an
arbitrary matrix A and vector 6. This can be shown by considering first-order
approximations of the terms (see Wedin [824, 1973]).

REMARK 1.4.3. It should be stressed that the perturbation analysis above
is based on the class of perturbations defined by (1.4.25) and relevant only if
the errors in the components of A and 6 are roughly of equal magnitude. For
example, if the columns of A have widely different norms, then a more relevant
class of perturbations often is

Similarly, if the norm of the perturbation bounds for the rows in A differ widely,
then (1.4.26) and (1.4.27) may considerably overestimate the perturbations.
However, scaling the rows in (A, b) will change the least squares problem.

A sharper estimate is usually obtained by scaling the columns of A so that
the relative perturbation bound in all columns is the same:

In particular, if 6j = e, Vj, then this scales the matrix so that all column norms
are equal. The following result by van der Sluis [780, 1969, Thm. 4.3] shows
that this scaling approximately minimizes K(A) over all diagonal scalings. (Note,
however, that scaling the columns changes the norm in which the error in x is
measured.)

THEOREM 1.4.7. Let C 6 Rnxn be symmetric and positive definite, and
denote by T> the set of n x n nonsingular diagonal matrices. Then if in C all
diagonal elements are equal, and C has at most q nonzero elements in any row,
it holds that

(1.4.28)

(1.4.29)

32 CHAPTER 1. MATHEMATICAL PROPERTIES

If this result is applied with q = n to the matrix of normal equations ATA, it
follows that if all columns in A have unit length, then

1.4.4. Asymptotic forms and derivatives. Derivatives of orthogonal pro-
jectors and pseudoinverses were first considered by Golub and Pereyra [378, 1973]-
Stewart [731, 1977] gives asymptotic forms and derivatives for orthogonal projec-
tors, pseudoinverses, and least squares solutions.

If A = A(T) is differentiate and varies without changing rank, then the
projection Pji(A) l$ differentiate and

For the pseudoinverse,

Finally, for the least squares solution x = A^b, we obtain

1.4.5. Componentwise perturbation analysis. There are several draw-
backs with a normwise perturbation analysis. As already mentioned, it can give
huge overestimates when the corresponding problem is badly scaled. Using norms
we ignore how the perturbation is distributed among the elements of the matrix
and vector. For these reasons componentwise perturbation analysis is of interest.
An excellent survey of the theory and history behind such an analysis is given by
Higham [466, 1994].

In this section we derive perturbation results and condition numbers corre-
sponding to componentwise errors in A and 6 for the least squares problem. A
similar analysis is given in Arioli et al. in [21, 1989]. We assume that we have
componentwise bounds on the perturbations in the data

where e^ > 0 and fi > 0 are known. In order to write such componentwise
bounds in a simple way we define the absolute value of a matrix A and vector b
by

(1.4.30)

1.4. SENSITIVITY OF LEAST SQUARES SOLUTIONS 33

We introduce the partial ordering "<" for matrices A, B and vectors z, ?/, which
is to be interpreted componentwise:

It is easy to show that if C = AB, then

and hence \C\ < \A\ \B\. A similar rule holds for matrix-vector multiplication.
With these notations we can write the componentwise bounds above as

where E > 0, / > 0. Taking E = \A\ and / = |6| in (1.4.31) corresponds to
componentwise relative error bounds for A and b.

We first derive estimates for the perturbations in the solution of a nonsingular
square system Ax = b. The basic identity for this perturbation analysis is

Assuming that \A l \6A\ < 1, taking absolute values gives the inequality

The matrix (I -\A l\\8A\) is guaranteed to be nonsingular if
For perturbations satisfying (1.4.31) we obtain

Provided that UKE(A) < 1, KE(A) = \\ l^"1!^!!, we get from (1.4.32) for any
absolute norm the perturbation bound

For the special case of componentwise relative error bounds (E = |.A|),

is the Bauer—Skeel condition number of A (also denoted by cond(A)). It is
possible for K\A\(A) to be much smaller than K(A). It can be shown that «|A|(^4)
and the bound (1.4.33) for E = \A\ are invariant under row scalings.

We now consider a componentwise error analysis for the linear least squares
problem. For simplicity we will neglect error terms of order a;2. From (1.4.16)
we obtain

(1.4.32)

(1.4.33)

(1.4.34)

(1.4.35)

(1.4.31)

34 CHAPTER 1. MATHEMATICAL PROPERTIES

and for the special case of componentwise relative perturbations,

It follows that

(1.4.36)

Hence
(1.4.37)

can be taken as an approximate condition number for componentwise relative
perturbations. In the general case when m > n, cond(A) often depends only
weakly on the row scaling D, but in a way which is complicated to describe. For
stiff problems, where some rows are scaled with a large weight w, cond(^4) usually
tends to a limit value when w —» oo, whereas K(A) grows linearly with w; see
Bjorck [97, 1991].

1.4.6. A posteriori estimation of errors. Let x be an approximate solution
of the least squares problem minx \\Ax — 6||2, where A 6 Rmxn, m>n. Consider
the problem of finding the smallest perturbation E such that x exactly solves the
problem minx \\(A + E}x — 6||2. For a consistent linear system Ax = b Rigal and
Caches [686, 1967] showed that the perturbation E of smallest /2-norm is given
by the rank one perturbation

The corresponding norm \\E\\z = ||r||2||#||2 is called the normwise backward
error.

How to find the normwise backward error for an inconsistent least squares
problem was an open problem for a long time. Stewart [733, 1977] showed that
for the two perturbations

(1.4.39)

x solves the perturbed least squares problems exactly. The corresponding norms
are

The first is small when the residual r is almost orthogonal to the column space of
A. The second is small when f is almost equal to the exact residual r. However,
it is possible for x to be a solution of a slightly perturbed least squares problem
and yet for both ||£"i||2 and H-E^lh to be orders of magnitude larger than the
norm of the perturbation.

Recently Walden, Karlsson, and Sun [811, 1995] gave an explicit representa-
tion for the set E of all perturbation matrices E such that x exactly solves

They also found an expression for the E G £ which minimizes ||#||F- The
corresponding solution when perturbations in both A and b are allowed is given
in the following theorem.

(1.4.38)

1.4. SENSITIVITY OF LEAST SQUARES SOLUTIONS 35

THEOREM 1.4.8. Let A € Rmxn, m > n, b € Rm, and x be an approximate
least squares solution. The normwise backward error

is given by

(1.4.40)

where

The parameter r in Theorem 1.4.8 allows some flexibility. For example, taking
the limit r —> oo gives the case when only A is perturbed. Then // = 1, and
(1.4.40) becomes

Note that the required backward error is no larger than the backward error ||£Q||F
for a consistent system, where £"0 is given by (1.4.38). It is strictly smaller if
A* < 0. Note that a sufficient condition for A* < 0 is r 0 1?,(A).

The expressions for rjp in the theorem are elegant but unsuitable for
computation since they can suffer from cancellation when A* < 0. Higham [467,
1996, Chap. 15] has suggested the alternative formula,

where

This is more computationally reliable, but still expensive to compute. Simpler
lower and upper bounds are given in Walden, Karlsson, and Sun [811, 1995].
Optimal backward error bounds for linear least squares problems with multiple
right-hand sides have been given by Sun [767, 1995].

Given an arbitrary approximate least squares solution x the componentwise
backward error is the smallest u > 0 in

such that x is the exact solution of the perturbed problem

For a consistent linear system b e 'fc(A), Oettli and Prager [603, 1964] showed
that

(1.4.41)

36 CHAPTER 1. MATHEMATICAL PROPERTIES

where 0/0 should be interpreted as 0, and £/0 (C ^ 0) as infinity. (The latter case
means that no finite u> satisfying (1.4.41) exists.) Together with the perturbation
result (1.4.36) this can be used to compute an a posteriori bound on the error in
a given approximate solution x.

Unfortunately there is no similar result for the inconsistent linear least squares
problem. One approach could be to apply the Oettli-Prager bound to the
augmented system (1.1.24). Here there are no perturbations in the diagonal
blocks of the augmented system matrix and in the last zero vector in the
augmented right-hand side. However, a result by Kielbasiriski and Schwetlick
[505, 1988, Lemma 8.2.11] shows that allowing unsymmetric perturbations in
the blocks A and AT has little effect on the backward error. Also, by a
slight modification of the perturbation analysis in the previous section we can
accommodate a perturbation to the first diagonal block; see also Higham [461,
1990]. Hence, for an a posteriori error analysis, it makes sense to take the relative
backward error of a computed solution f, x to be the smallest nonnegative number
(jj such that

and

(1.4.42)

Using the result of Oettli and Prager, u;(f ,x] = max^i,^), where

(1.4.43)

gives the backward error for a computed solution r and x.
If we only have a computed x it may be feasible to put f = b — Ax and apply

the result above. With this choice we have u\ — 0 (exactly) and hence

However, in the case of a nearly consistent least squares problem, f l (b — Ax) will
mainly consist of roundoff, and will not be accurately orthogonal to the range
of A. Hence, although x may have a small relative backward error, U2 will not
be small. This illustrates a fundamental problem in computing the backward
error: for x to have a small backward error it is sufficient that either (b — Ax) or
AT(b — Ax) be small, but neither of these conditions is necessary.

Basic Numerical Methods

2.1. Basics of Floating Point Computation
2.1.1. Rounding error analysis. A floating point number system consists
of numbers x which can be represented as

(2.1.1)

where m is the mantissa, e the exponent, and t the number of digits carried in
the mantissa, and 0 < di < (3. The integer j3 is the base (usually (3 = 2). The
mantissa is usually normalized so that 1 < |ra| < /3, and the exponent satisfies
L < e < U. Hence, the floating point number system is characterized by the set
(P,t,L,U).

The result of arithmetic operations on floating point numbers cannot generally
be represented exactly as floating point numbers. Rounding errors will arise
because the computer can only represent a subset F of the real numbers. The
elements of this subset are referred to as floating point numbers. Error estimates
can be expressed in terms of the unit roundoff n, which for the floating point
system (2.1.1) may be defined as

and equals the maximum relative error in storing a number. (Sometimes u
is defined as the smallest floating point number e such that //(I + e) > 1.
However, with this definition the precise value of u varies even among different
implementations of the standard IEEE arithmetic.)

To derive error estimates of matrix computations the standard model of
floating point arithmetic is used. We denote the stored result of any floating
point calculation C as f l (C) . The assumption in the standard model is that for
any x, y 6 F,
(2.1.2)

where op = + , — , * , / . Normally it is assumed that (2.1.2) also holds for the
square root operation. A thorough presentation of floating point arithmetic is
given by Higham [467, 1996, Chap. 2.1.1].

37

Chapter 2

38 CHAPTER 2. BASIC NUMERICAL METHODS

Consider a finite algebraic algorithm which from the data (ai , . . . ,a r) ,
through intermediate values (ci , . . . , cs), computes a solution (u > i , . . . , wt). There
are two basic forms of error analysis for such an algorithm, both of which are
useful.

1. In classical forward error analysis one attempts to find bounds for the
errors in the intermediate values \Ci — Cj|, and finally bounds for \Wi — wi .

2. In backward error analysis one attempts to determine a modified set of
data (ii such that the computed solution Wi is the exact solution, and give
bounds for \di—di\. There may be an infinite number of such sets; sometimes
there is just one and it can happen, even for very simple algorithms, that
no such set exists. Notice that no reference is made to the exact solution
for the original data.

Backward error analysis was pioneered by J. H. Wilkinson in the late fifties.
When it applies, it tends to be very markedly superior to forward analysis.
It usually also gives better insight into the stability (or lack thereof) of the
algorithm, which often is the primary purpose of a rounding error analysis.

To yield error bounds for the solution, the backward error analysis has to be
complemented with a perturbation analysis. The condition number K(O) for
the problem of computing w from data a is defined as

Note that K(CL) is a function of the input data a and depends on the choice of
norms in the data space and solution space. For sufficiently small e we have the
estimate for the perturbations in the output

If K(O) is "large" the problem is said to be ill-conditioned. The definition of
large may differ from problem to problem and depends on the accuracy of the
data and the accuracy needed in the solution.

By repeatedly using the formula for floating point multiplication one can show
that the computed product fl(x\x-2 • • • xn] is exactly equal to

where \€i\ < it, i = 2,3, . . . ,n. This can be interpreted as a backward error
analysis] we have shown that the computed product is the exact product of
factors x\, Xi = Xi(l + e^), i = 2 , . . . ,n. It also follows from this analysis that

where

2.1. BASICS OF FLOATING POINT COMPUTATION 39

and the last inequality holds if the condition (n — l)u < 0.1 is satisfied. This
bounds the forward error in the computed result.

Similar results can easily be derived for basic vector and matrix operations;
see Wilkinson [836, 1965, pp. 114-118]. For an inner product xTy we have

where

Hence, the computed result is the exact inner product of x and y, where
yt = yi(l + 8i). Useful consequences of this result are

(2.1.3)

This result is easily generalized to yield a forward error analysis of matrix-matrix
multiplication. However, for this case there is no backward error analysis, since
the rows and columns of the two matrices participate in many inner products!

2.1.2. Running rounding error analysis. A different approach to rounding
error analysis is to perform the analysis automatically, for each particular
computation, i.e., to perform a running error analysis. This gives an a posteriori
error analysis, as compared to the a priori error analysis discussed above. An
example is the use of interval analysis for which special-purpose hardware and
software now exist.

A simple form of a posteriori analysis, called running error analysis, was used
in the early days of computing by Wilkinson; see [842, 1986]. To illustrate his
idea we rewrite the basic model for floating point arithmetic as

These relations are satisfied for most implementations of floating point arithmetic.
Then the actual error can be estimated as \fl(x op y) — x op y\ < u \ f l (x op y) \ .
Note that the error is now given in terms of the computed result and is available
in the computer at the time the operation is performed. A running error analysis
can often be easily implemented by taking an existing program and modifying
it so that as each arithmetic operation is performed, the absolute value of the
computed results is added into the accumulating error bound.

EXAMPLE 2.1.1. The inner product fl(xTy} and a running error bound is
computed by the program

40 CHAPTER 2. BASIC NUMERICAL METHODS

For the final error we have the estimate \fl(xTy) — xTy\ < TJU.

Note that a running error analysis takes advantage of cancellations in the
sum. This is in contrast to the previous a priori error estimates, where the error
estimate is the same for all distributions of signs of the elements xi and yi.

2.1.3. Stability of algorithms. We say that an algorithm for computing the
result w is forward stable for the data a if the computed solution w is close to
the exact solution,

where c\ is a not-too-large constant. Similarly, we say that an algorithm is
backward stable for the data a if the computed solution w is the exact solution
of a slightly perturbed problem with data a such that

where c^ is a not-too-large constant and u is a measure of the precision used in
the computations. We would like these estimates to hold not only for a single
problem, but for some class of input data. We are usually satisfied if we can prove
forward or backward stability for the norm || • |J2 or || • ||oo, although we may like
the estimates to hold elementwise,

Forward stability guarantees an accurate solution. However, very few
algorithms are forward stable. For a backward stable algorithm we are not
guaranteed to get an accurate solution. We can only show that

where K.(X) is the condition number for the problem. However, if the perturba-
tions a — a are within the uncertainties of the given data, the computed solution
is as good as our data warrants) Therefore, backward stability is usually very
satisfactory. As we shall see in the next section, although many important algo-
rithms are not backward stable, they are mixed stable. By this we mean that
the computed solution w is close to the exact solution w of a slightly perturbed
problem with data a, where a satisfies (2.1.2) and

Stability of algorithms for solving systems of linear equations Ax — b is
defined similarly. The following definition of backward stability is the one
introduced by Wilkinson [836, 1965]. Forward and mixed stability are defined
analogously.

DEFINITION 2.1.1. A numerical algorithm for solving systems of linear
equations Ax = b is backward stable for a class of matrices A if for each
A 6 A and for each b the computed solution x satisfies Ax — b where A and b
are close to A and b.

2.1. BASICS OF FLOATING POINT COMPUTATION 41

For example, the Cholesky algorithm is backward stable for the class of
symmetric positive definite matrices. An important property of backward stable
algorithms is given in the following theorem.

THEOREM 2.1.1. An algorithm for solving Ax = b is backward stable
according to Definition 2.1.1 if and only if the computed solution has a small
residual
(2.1.4)

Proof. If (2.1.4) holds we define for the 2-norm

Then it holds exactly that (A + 6A)x = Ax + r — 6, where

We can take 6b = 0, and hence the algorithm is stable by Definition 2.1.1. On
the other hand, if Ax — 6, we have b — Ax — (A — A)x + 6 — 6, and if

then an estimate of the form (2.1.4) for the norm of the residual holds.

Note that in Definition 2.1.1 it is not required that A be in class A. If the
system comes from a physical problem such that A always belongs to some class
A, then we have not solved a nearby physical problem unless the perturbed A
also is in A. For example, if A is Toeplitz we would also like A to be Toeplitz.
Therefore, the following alternative definition of stability has been suggested
(Bunch [134, 1987]).

DEFINITION 2.1.2. A numerical algorithm for solving linear equations is
strongly backward stable for a class of matrices A if for each A G A and
for each b the computed solution x satisfies Ax = b, where A and b are close to
A and b, and A is in A.

Strong forward stability does not seem to be a useful concept, since any known
structure of the solution can usually be imposed. Although many algorithms are
known to be strongly backward stable, it may be difficult to prove strong stability
for other important algorithms. For example, only recently did Bunch, Demmel,
and Van Loan [135, 1989] prove that Gaussian elimination with partial pivoting
is strongly backward stable for the class of symmetric positive definite systems,
the difficulty being to show that A is symmetric. In this particular case one can
also argue that since the condition number for unsymmetric perturbations of a
symmetric system is the same as for symmetric perturbations, backward stability
is sufficient. Hence Definition 2.1.1 often seems the more useful one.

Many important algorithms for solving linear systems (for example, most
iterative methods) are not backward stable. Therefore, the following weaker
form of stability is needed.

42 CHAPTER 2. BASIC NUMERICAL METHODS

DEFINITION 2.1.3. An algorithm for solving Ax = b is acceptable-error
stable for a class of matrices A if the computed solution x satisfies

It is straightforward to show that backward stability implies stability, but the
converse is not true.

Many users are satisfied if the algorithm they use produces accurate solutions
for well-conditioned problems. The following definition of weak stability has been
suggested by Bunch [134, 1987].

DEFINITION 2.1.4. An algorithm for solving Ax = b is weakly stable for a
class of matrices A if for each well-conditioned A in A the computed solution x
is such that \\x — x\\/\\x\\ is small.

Bunch notes that weak stability "may be sufficient for giving confidence that
an algorithm may be used successfully."

2.2. The Method of Normal Equations
2.2.1. Forming the normal equations. In Section 1.1.4 it was shown that
when A has full column rank the solution x to the least squares problem (1.1.1)
satisfies the normal equations

(2.2.1)

Similarly the solution y to the minimum norm problem (1.1.19) can be obtained
from the normal equations of the second kind

(2.2.2)

In this section we discuss numerical methods, which date back to Gauss, based on
forming and solving the normal equations. We assume here that rank (A) = n,
and defer treatment of rank deficient problems to Section 2.7. Then by Theorem
1.2.2 the matrix ATA is positive definite and the least squares problem has a
unique solution.

The first step in the method of normal equations for the least squares problem
is to form the matrix and vector

(2.2.3)

Since the cross-product matrix C is symmetric it is only necessary to compute
and store its upper triangular part. If A is partitioned by columns

the relevant elements in C and d are given by

(2.2.4)

2.2. THE METHOD OF NORMAL EQUATIONS 43

The column-oriented scheme is not suitable for large problems, where the
matrix A is held in secondary storage, since each column needs to be accessed
many times. By sequencing the operations differently we can obtain a row-
oriented algorithm for forming the normal equations, which uses only one pass
through the data and no more storage than that needed for ATA and ATb.
Partitioning A by rows, i.e.,

where of denotes the ith row of A, we can write

(2.2.5)

Here C is expressed as the sum of ra matrices of rank one, and d as a linear
combination of the rows of A. Again, only the upper triangular part of A is
computed and stored.

We call (2.2.4) the inner product form and (2.2.5) the outer product form
of the normal equations. Row-wise accumulation of C and d using (2.2.5) is
advantageous to use if the data A and b are stored row by row on secondary
storage. The outer product form is also preferable if the matrix A is sparse; see
Section 6.6.1.

REMARK 2.2.1. If m > n, then the number of elements in the upper
triangular part of (7, which is \n(n + 1), is much smaller than ran, the number
of elements in A. In this case the formation of C and d can be viewed as a data
compression.

The number of multiplicative operations needed to form the matrix ATA
is \n(n + l)rn. In the following, to quantify the operation counts in matrix
algorithms we will use the concept of a flop. This will be used to mean roughly
the amount of work associated with the statement

i.e., it comprises a floating point add, a floating point multiply, and some
subscripting.1 Thus we will say that forming ATA and ATb requires

or approximately ^n2m flops if n ^> 1. It should be stressed that on modern
computers a flop may not be an adequate measure of work.

We now consider rounding errors made in the formation of the system of
normal equations and their effect on the computed solution. For the computed
elements in the matrix C = ATA we have

1In several recent textbooks (e.g., Golub and Van Loan [389, 1989]) a flop is instead defined as a
floating point add or multiply, doubling all the flop counts.

44 CHAPTER 2. BASIC NUMERICAL METHODS

where \6k\ < 1.06(ra + 2 — k}u, and u is the unit roundoff. It follows (cf. 2.1.3)
that the computed matrix satisfies C = C + E1, where

(2.2.6)

A similar estimate holds for the rounding errors in the computed vector ATb.
Note that it is not generally possible to show that C = (A + E)T(A + E] for
some error matrix E unless we allow E to be proportional to K,(A). That is, the
rounding errors in forming the matrix ATA are not generally equivalent to small
perturbations of the initial data matrix A. We deduce that the solution computed
by the method of normal equations does not generally equal the exact solution to
a problem where the data A and b have been perturbed by small amounts. Hence
the method of normal equations is not backward stable in the sense of Definition
2.1.1.

It is possible to accumulate the inner products in (2.2.4) in double precision.
Then the only rounding errors in the computation of C and d will be when the
double precision results are rounded to single precision. However, even this might
lead to a serious loss of accuracy. As the following example illustrates, when ATA
is ill-conditioned it might be necessary to use double precision in both forming
and solving the normal equations in order to avoid loss of significant information.

EXAMPLE 2.2.1. It is important to note that information in the data matrix
A may be lost when ATA is formed unless sufficient precision is used. As a simple
example, consider the matrix in Lauchli [517, 1961]:

Assume that e = 10~3 and that six decimal digits are used for the elements of
ATA. Then, since 1 + e2 = 1 + 10~6 is rounded to 1 we lose all information
contained in the last three rows of A.

More generally, a similar loss of accuracy will occur in forming the normal
matrix

when e < v^, where u is the unit roundoff.

2.2.2. The Cholesky factorization. We now consider the solution of the
symmetric positive definite system of normal equations (2.2.1). Gauss solved
the normal equation by elimination, preserving symmetry, and solving for x by
back-substitution. This method is closely related to computing the Cholesky
factorization

(2.2.7)

2.2. THE METHOD OF NORMAL EQUATIONS 45

where R is upper triangular with positive diagonal elements, and solving two
triangular systems for the least squares solution x

(2.2.8)

Similarly the solution to the normal equations of second kind (2.2.2) can be
computed from y = Az, where

(2.2.9)

A constructive proof of the existence of this factorization was given in Theorem
1.1.4. The Cholesky factorization was developed to solve least squares problems
in geodetic survey problems, and was first published by Benoit [61, 1924].2 (In
statistical applications it is often known as the square root method, although the
proper square root of A should satisfy B2 = A.}

When the Cholesky factor R of the matrix ATA has been computed, the
solution of (2.2.8) requires a forward and a backward substitution which takes
about 2- l/2n2 = n2 flops. The total work required to solve (1.1.1) by the method
of normal equations is ^ran2 + |n3 + O(mri) flops.

The Cholesky factorization can be used in a slightly different way to solve
the least squares problem.

THEOREM 2.2.1. Consider the bordered matrix

(2.2.10)

and let the corresponding cross-product matrix and its Cholesky factor be

Then the least squares solution and the residual norm are obtained from

(2.2.11)

Proof. By equating ATA and RTR it follows that R is the Cholesky factor of
ATA and that

From (2.2.8) it follows that x satisfies the first equation in (2.2.11). Further, since
r = b — Ax is orthogonal to Ax,

and hence

Working with the bordered matrix (2.2.10) often simplifies other methods for
solving least squares problems as well. Note that if b £ R(A), then p — 0 and R
is singular.

2Sometimes this factorization is attributed to Banachiewicz [34, 1938].

46 CHAPTER 2. BASIC NUMERICAL METHODS

We now describe several variants of an algorithm for computing the Cholesky
factorization. Here and in the following we express our algorithms in a
programming-like language, which is precise enough to express important algo-
rithmic concepts, but permits suppression of unimportant details. The notations
should be self-explanatory.

ALGORITHM 2.2.1. CHOLESKY FACTORIZATION (COLUMNWISE VERSION).
Given a symmetric positive definite matrix M 6 Rnxn the following algorithm
computes the unique upper triangular matrix R with positive diagonal elements
such that C = RTR:

The algorithm requires about n3/6 flops. Note that R is computed column
by column and that the elements rij can overwrite the elements Cij. At any stage
we have the Cholesky factor of a leading principal minor of A. It is also possible
to sequence the algorithm so that R is computed row by row.

ALGORITHM 2.2.2. CHOLESKY FACTORIZATION (ROW-WISE VERSION).

The two versions of the Cholesky algorithm are numerically equivalent, i.e.,
they will compute the same factor R, even taking rounding errors into account.
We remark that from

it follows that the elements in R are bounded in terms of the diagonal elements
in C. This is essential for the numerical stability of the Cholesky factorization.
The different sequencing in these two versions of the Cholesky factorization is
illustrated in Figure 2.2.1. For a further discussion of the different ways of

2.2. THE METHOD OF NORMAL EQUATIONS 47

sequencing the operations in the Cholesky factorization, see George and Liu [336,
1981, pp. 15-20].

FIG. 2.2.1. Computed part of the Cholesky factor R after k steps in the row-wise
and columnwise algorithm.

We finally describe a version of Cholesky factorization, which has the
advantage that it can be adapted to use diagonal pivoting. Although the Cholesky
factorization is stable without pivoting, this is needed when C is only positive
semidefinite, i.e., xTCx > 0 whenever x ^ 0. An important application of
pivoting in the Cholesky factorization is to rank deficient least squares problems;
see Section 2.7.

ALGORITHM 2.2.3. CHOLESKY FACTORIZATION (OUTER PRODUCT VER-
SION).

Algorithm 2.2.3 also differs in that it produces a factorization of the form
C = RTDR, where D is diagonal and R is unit upper triangular, i.e., has
unit elements on its diagonal. Since this algorithm does not require square
roots, it may be slightly faster. The Cholesky factorization can be obtained
by taking d^ = (<4fc) in Algorithm 2.2.3, which has the advantage of retaining
compatibility with the QR decomposition of A.

Note that the elements in R and D can overwrite the elements in the upper
triangular part of C. Pivoting can be incorporated in this algorithm by choosing,
at each stage, the pivot as the maximal diagonal element in the current reduced

48 CHAPTER 2. BASIC NUMERICAL METHODS

matrix. In the fcth step we compute the quantities

(2.2.12)

select an index p such that

and interchange rows and columns k and p. Obviously, this will maximize the
(k)diagonal element r^k- The quantities sy- ' can be recursively updated, which

lowers the overhead of pivoting to O(n2) flops. Note that

i.e., a permutation of the columns of A is equivalent to a symmetric permutation
of rows and columns of the matrix C.

Block versions of the Cholesky algorithm can be developed, which are more
efficient in high performance computing since the main work is performed as
matrix-matrix multiplications. Such algorithms are also useful when the matrix
C is too large to be stored in the main memory. If, for simplicity, we assume that
C can be partitioned into N x N blocks with square diagonal blocks, we get the
following algorithm using a block row-wise order.

ALGORITHM 2.2.4. BLOCK CHOLESKY FACTORIZATION.

Note that the diagonal block Rn is obtained by computing the Cholesky
factorization of the matrix

The multiplication with Rjj in the computation of X = Rjj is performed by
solving the triangular systems of the form RjjX = CT by forward substitution:

An operation count shows that for large N the main work in the block Cholesky
algorithm is in the matrix-matrix multiplications R^jRiti-

2.2. THE METHOD OF NORMAL EQUATIONS 49

2.2.3. Conditioning and scaling. A detailed error analysis for the Cholesky
factorization is carried out in Wilkinson [838, 1968]. We state the main result
below.

THEOREM 2.2.2. Let C € #nxn be a symmetric positive definite matrix.
Provided that
(2.2.13)

the Cholesky factor of C can be computed without breakdown, and the computed
R will satisfy
(2.2.14)

Hence, R is the exact Cholesky factor of a matrix close to C.
Proof. See Wilkinson [838, 1968).
For large n the constants 2 and 2.5 in (2.2.13) and (2.2.14) can be improved

to 1 and |, respectively.
Let C = ATA be positive definite and C = RTR its Cholesky factorization.

Then
(2.2.15)

which bounds the elements in R without requiring any pivoting. Hence by
Theorem 2.2.2 the Cholesky algorithm for computing R from C is backward
stable. However, since K,(C) = ft2(A), the Cholesky algorithm may fail, i.e.,
square roots of negative numbers may arise, even when K>(A) is of the order of
^/u. This squaring of the condition number will cause a loss of accuracy in the
method of normal equations when A is ill-conditioned.

To assess the errors in the least squares solution x computed by the method
of normal equations, we make the simplifying assumption that no rounding errors
occur during the formation of ATA and ATb. We also neglect errors coming from
the solution of the triangular systems (2.2.8), which usually are small. (For an
analysis of rounding errors in the solution of triangular systems, see Higham [459,
1989].) Then from Theorem 2.2.2 the computed solution x satisfies

A perturbation analysis then shows that

(2.2.16)

Examples are sometimes given where the errors in the method of normal
equations are much smaller than the bounds in (2.2.16). Usually these results
are a consequence of the fact that the error bounds can often be sharpened
significantly by a scaling argument. By carefully studying the proof of Theorem
2.2.2 it is seen that if C = ATA the requirement (2.2.13) can be replaced with
2n3/2u(«')2 < 0.1, where

(2.2.17)

50 CHAPTER 2. BASIC NUMERICAL METHODS

is the minimum condition number under a diagonal scaling. Similarly, the bound
(2.2.16) can be improved to

(2.2.18)

Note that these improvements are achieved without explicitly carrying out any
scaling in the algorithm; see Bjorck [88, 1978]. Moreover, from Theorem 1.4.7
it follows that choosing D so that the columns in AD have unit length is nearly
optimal.

EXAMPLE 2.2.2. The matrix A e R2lx6 with elements

arises when fitting a fifth-degree polynomial p(t) = XQ + x\t + o^2 H + %st5

to observations at points ti — 0 ,1 , . . . , 20. The condition numbers are

Thus, by scaling, the condition number is reduced by more than three orders of
magnitude.

Sometimes ill-conditioning is caused by an unsuitable formulation of the
problem. Then a different choice of parametrization can significantly reduce the
condition number. For example, in approximation problems one should try to use
orthogonal, or nearly orthogonal, base functions; see Chapter 7. An important
example occurs in linear regression.

EXAMPLE 2.2.3. In linear regression we want to fit the linear model y(t] =
a + fit to given data (?/i, ti), i = 1,..., m. This leads to an overdetermined linear
system

From the normal equations

we obtain the solution

where y and t are the mean values y — (Y^ZLi yi)/mi t = (iC^Li ̂)/m- Note that
the point (y, t) lies on the fitted line.

A more accurate formula for j3 is obtained by making the change of variable
f = t — f, and writing the model as y(t) = 5t + fit. Then ££1 U = 0, i.e., the

2.3. ELEMENTARY ORTHOGONAL TRANSFORMATIONS 51

two columns in A are orthogonal and the matrix of normal equations is diagonal.
Using the identity

(2.2.19)

When the elements in A and b are the original data, ill-conditioning cannot
be avoided by choosing another parametrization. The accuracy of the computed
normal equation solution may then depend on the square of the condition number
of A. In view of the perturbation result in Theorem 1.4.6 this is not consistent
with the mathematical sensitivity of small residual problems. We conclude that
the normal equations approach can introduce errors much greater than those of a
backward stable algorithm. For mildly ill-conditioned problems this can be offset
by fixed precision iterative refinement; see Section 2.9.2.

In the next several sections we review methods for solving least squares
problems which work directly with A. In particular, the methods based on
orthogonalization will be shown to have very satisfactory stability properties.

2.3. Elementary Orthogonal Transformations
The QR decomposition of A 6 Rmxn, ra > n, is a decomposition of the form

(2.3.1)

where Q € Rmxm is orthogonal and R e Rnxn upper triangular. The matrix R
is called the ^-factor of A. To develop algorithms for computing Q and R we
first consider the following standard task.

Given a nonzero vector a € -Rm, find an orthogonal matrix U such that

(2.3.2)

where e\ is the first unit vector. From (2.3.2) it follows that a = oUe.\, i.e.,
the first column in U is given by y = a/||a||2; compare the proof of Theorem
1.3.1. The construction of such a matrix U plays an important part in developing
numerical methods in linear algebra.

2.3.1. Householder transformations. We now show how to solve the
construction in (2.3.2) using certain elementary orthogonal matrices. A matrix
P of the form

(2.3.3)

is called a Householder transformation, and u a Householder vector. The
name derives from A. S. Householder, who in [475, 1958] initiated their use in
numerical linear algebra. It is easily verified that P is orthogonal and symmetric,

we find

52 CHAPTER 2. BASIC NUMERICAL METHODS

FIG. 2.3.1. Reflection of a vector a in a hyperplane with normal u.

and hence P2 = /. The product of P with a given vector x can easily be found
without explicitly forming P itself, since

Note that Pu = —u so that P reverses u and Pa £ span {a, u}. Hence the effect
of the transformation is to reflect the vector x in the hyperplane with normal
vector u] see Figure 2.3.1. Therefore, P is also called a Householder reflector.

We now show how to choose u to find a Householder transformation P which
solves the standard task. From Figure 2.3.1 it is seen that if we take

(2.3.4)

then Pa = ±oe.\. Further, with OL\ = aTe\ we have

(2.3.5)

so that 7 = a(a ^ ct\). If a is close to a multiple of ei, then a ~ |ai| and
cancellation may occur in (2.3.6). This can lead to a large relative error in 7, and
to avoid this, one usually takes

(2.3.6)

ALGORITHM 2.3.1. Let a be a vector with ||a||2 = cr and oTei = QI.
Construct a Householder transformation P — (I — UUT/7) such that Pa =
sign(o:i)<7ei = <r, where a — — sign(c*i)cr.

2.3. ELEMENTARY ORTHOGONAL TRANSFORMATIONS 53

REMARK 2.3.1. The choice of sign in Algorithm 2.3.1 has the small drawback
that the vector a = e\ will be mapped onto —e\. The other choice, u =
a — sign(ai)crei, may give rise to numerical cancellation in (a — cx.\\}. It has been
pointed out by Parlett [651, 1980, p. 91] that this can be avoided by rewriting
the formulas in the form

If A — (a i , . . . , an) G Rmxn is a matrix, the product PA is computed as

(2.3.7)

Thus P need not be formed explicitly, and the product can be computed in 2mn
flops. Writing the product as

shows that A is altered by a matrix of rank one, when premultiplied by a
Householder transformation. An analogous algorithm exists for postmultiplying
A by a Householder matrix

We define a complex Householder transformation to have the form

(2.3.8)

It can be verified that P is unitary and Hermitian, PHP = 7, PH — P. To
determine u € Cn such that Px = fcei, where

we take
(2.3.9)

Hence the unitary matrix e~l0ilP reduces the arbitrary vector x to real form,
e-ialpx = _aei

2.3.2. Givens transformations. We next consider orthogonal matrices rep-
resenting plane rotations. These are also called Givens rotations after W.
Givens [361, 1958]. In two dimensions the matrix representing a rotation clock-
wise through an angle 9 is

(2.3.10)

54 CHAPTER 2. BASIC NUMERICAL METHODS

In n dimensions the matrix representing a rotation in the plane spanned by the
unit vectors ei and ej,i < j, is a rank two modification of the unit matrix In:

When a column vector a = (ai, . . . ,an}
T is premultiplied by Rij(9), we obtain

Rij(0)a = b = (f t , . . . , (3n)
T, where fa = ak, k ̂ i,j, and

(2.3.12)

Thus a plane rotation may be multiplied into a vector at a cost of two additions
and four multiplications. If in (2.3.12) we set

(2.3.13)

then

i.e., we have introduced a zero in the jth component of the vector a. A
more robust algorithm for computing the Givens rotation is given below. This
computes c, s, and a to nearly full machine precision, barring underflow and
overflow, which can only occur if the true value of a itself would overflow.

ALGORITHM 2.3.2. Construct c, s, a in a Givens rotation such that
-SOL + eft = 0:

2.3. ELEMENTARY ORTHOGONAL TRANSFORMATIONS 55

Premultiplication of a matrix A G Rmxn with a Givens rotation Rij will only
affect the two rows i and j in A, which are transformed according to

The product requires 4n multiplications and 2n additions. Similarly, postmulti-
plying A with Rij will only affect columns i and j.

Givens rotations can be used in several different ways to solve the standard
task (2.3.2). We can take

where the Givens rotation R\k is determined to zero the kth component in the
current vector. Note that R\k only affects the components 1 and k and hence
previously introduced zeros will not be destroyed. Another possibility is to take

where Rk-i,k is chosen to zero the fcth component. This demonstrates the greater
flexibility of Givens rotations compared to Householder reflections.

It is essential to note that the matrix Rij need never be explicitly formed, but
can be represented by the numbers c and s. When a large number of rotations
need to be stored it is more economical to store just a single number. This can be
done in a numerically stable way using a scheme devised by Stewart [730, 1976].
The idea is to save c or s, whichever is smaller. To distinguish between the two
cases we store the reciprocal of c and treat c = 0 as a special case. Thus, for the
matrix (2.3.10) we define the scalar

(2.3.14)

Given p the numbers c and s can be retrieved up to a common factor ±1 by

We use this scheme because the formula v7! — £2 gives poor accuracy when \x\ is
close to unity.

It is also possible to construct unitary plane rotations; see Wilkinson [836,
1965, Sec. 43-44]. We define the matrix R by

(2.3.15)

56 CHAPTER 2. BASIC NUMERICAL METHODS

where \c 2 + |s|2 = 1. When a = /3 — 0 the matrix is real and orthogonal. For
any vector x e Cn, given i and j > i, we can choose a unitary plane rotation so
that (Rx)i is real and nonnegative and (Rx)j = 0. From

we obtain
(2.3.16)

Then we have

If we do not require (Rx]i to be real, we can drop the parameter a in (2.3.15).

2.3.3. Fast Givens transformations. Gentleman [329, 1973] and Hammar-
ling [422, 1974] showed how to reduce the arithmetic when using Givens trans-
formations. We first describe the version used in the Basic Linear Algebra Sub-
programs (BLAS); see Lawson et al. [522, 1979].

Assume that we want to perform the Givens transformation

where 72 + cr2 = 1, and the transformation is constructed to zero the element /3
in A. In fast rotations, the number of multiplications is reduced by keeping the
matrix A in the scaled form

(2.3.17)

These two factors are then updated separately. The rotation may then be
represented in the factored form

In actual computation, in order to avoid square roots, D2 is stored rather than
D. There are several ways to choose the diagonal matrix D so that two elements
in P exactly equal unity. This will eliminate In multiplications when forming
the product PA'.

Consider first the case |7| > \cr, i.e., \0\ < 7T/4. Then

and D2 = 72£>2. Since

2.3. ELEMENTARY ORTHOGONAL TRANSFORMATIONS 57

we have

(2.3.18)

Hence we only need the squares of the scale factors d\ and d^. These may be
updated using the identity 72 = (1 -f <r2/72)~1, giving

(2.3.19)

Thus we have also managed to eliminate the square root in the Givens transfor-
mation.

Similar formulas are easily derived for the other case (7! < |<j|, i.e., \6\ > Tr/4.
We write

This gives

(2.3.20)

and further we have

(2.3.21)

When using these modified Givens transformations the square of the scale
factors is always updated by a factor in the interval [^,1]. Thus after many
transformations the elements in D may underflow. Therefore the size of the scale
factors has to be monitored and occasional rescalings done. This can decrease the
efficiency substantially, and although we have eliminated half the multiplications,
the fast Givens transformations are not twice as fast in practice. Depending on
the computer they tend to be more efficient by factors varying between 1.2 and
1.6.

Recently, self-scaling fast rotations, which obviate the rescalings, have been
developed by Anda and Park [14, 1994]. They write the fast rotation in a modified
form such that the diagonal scalings are updated by

where c = cos(0). Thus the value c2 is multiplied into one diagonal element
and divided into the other, and the diagonal elements no longer decrease
monotonically. In [14] four variations of the modified fast rotation are developed
for the case of large and small rotation angles and the cases when the ordering of
the rows is reversed. The decision among these four variants is made to diminish
the larger diagonal element while decreasing the smaller.

58 CHAPTER 2. BASIC NUMERICAL METHODS

2.4. Methods Based on the QR Decomposition
In Theorem 1.3.3 it was shown how the solutions of the primal and dual least
squares problems

(2.4.1)

(2.4.2)

where A G Rmxn has full column rank, could be obtained from the QR
decomposition of A. In this chapter we give several algorithms for computing the
QR decomposition (QRD) and the resulting algorithms for solving least squares
problems.

2.4.1. Householder and Givens QR decomposition. We now describe
how the QR decomposition of a matrix A e Rmxn of rank n can be computed
using a sequence of Householder or Givens transformations. We let A^ = A,
and compute a sequence of matrices

Here P^ is an orthogonal matrix chosen to zero the elements below the main
diagonal in the Arth column of the reduced matrix A^. Hence the matrix A^k+l^
will be triangular in its first k columns, i.e., it has the form

(2.4.3)

with RU 6 Rfcxfc upper triangular.
If we put

then we should choose P/~ = diag (Ik-i, Pk), where

Note that in this step only the matrix A^> is transformed, and (#11, RU) are the
first (k — I) rows in the final matrix R. It follows that

and hence

The key construction is to find an orthogonal matrix Pk which satisfies (2.4.4).
However, this is just the standard task (2.3.2) with a = aj.'. Using (2.3.4) arid
(2.3.6) to construct P^ as a Householder matrix we get the following algorithm.

2.4. METHODS BASED ON THE QR DECOMPOSITION 59

ALGORITHM 2.4.1. QRD BY HOUSEHOLDER TRANSFORMATIONS. Given a
matrix A^ = A G Rmxn of rank n, the following algorithm computes R and
Householder matrices:

so that Q = PiPf-Pn.

This factorization requires n2(m — ̂ n) flops, which can be compared to the
method of normal equations which uses |n2(m + ^n) flops. Hence, for ra = n
both methods require the same work but for m ^> n the QR method is twice as
expensive.

REMARK 2.4.1. Note that the vectors u^, k = 1 ,2 , . . . , n, can overwrite the
elements on and below the main diagonal of A. Thus, all information associated
with the factors Q and R can be kept in A and two extra vectors of length n for
(ni, - • • , rnn) and (71,... L7n).

REMARK 2.4.2. Let R denote the computed R. It can be shown that there
exists an exactly orthogonal matrix Q (not the computed Q} such that

(2.4.5)

where the error constant c\ = ci(m,n) is a polynomial in m and n, and
|| • ||p denotes the Frobenius norm. Golub and Wilkinson [393, 1966] show that
c\ = 12.5n if inner products are accumulated in double precision.

Normally it is more economical to keep Q in factored form and access it
through (3^ and u^k\k = l , 2 , . . . , n , than to compute Q explicitly. If Q is
explicitly required it can be computed by taking Q^ = / and computing
Q = Q("+1) by

If we take advantage of the property that P^ = diag(/fc_i,Pfc) this requires
2n(m(m — n) + ^n2) flops. Alternatively, we can compute

separately in n2(m — ̂ n) and n(m — n)(2ra — n) flops, respectively.

60 CHAPTER 2. BASIC NUMERICAL METHODS

An algorithm similar to Algorithm 2.4.1 but using Givens rotations can easily
be developed. In this algorithm the matrix Pk in (2.4.4) is constructed as a
product of (m — k) Givens rotations.

ALGORITHM 2.4.2. QRD BY GIVENS TRANSFORMATIONS. Given a matrix
A e Rmxn, ra > n, of rank n the following algorithm overwrites A with QTA =

(R\\o)

The algorithm uses the procedure in Algorithm 2.3.2 to construct the Givens
rotations, and requires a total of 2n2(m — |n) multiplications.

REMARK 2.4.3. Using Stewart's storage scheme (2.3.14) for the rotations
Rij(0) we can store the information defining Q in the zeroed part of the matrix
A. As for the Householder algorithm it is advantageous to keep Q in factored
form.

REMARK 2.4.4. The error properties of Algorithm 2.4.2 are as good as for the
algorithm based on Householder transformations. Wilkinson [836, 1965, p. 240]
showed that for m = n the bound (2.4.5) holds with c\ — 3n3/2. Gentleman [330,
1975] has improved this error bound to c\ = 3(m + n — 2), ra > n, and notes that
actual errors are observed to grow even more slowly.

2.4.2. Gram-Schmidt orthogonalization. Let A £ Rmxn, m > n =
rank (^4). The Gram-Schmidt orthogonalization produces Q\ E Rmxn and
R 6 Rnxn in the factorization

(2.4.6)

where Qi has orthogonal columns and R is upper triangular. The columns of Q\
in the factorization are obtained by successively orthogonalizing the columns of
A. In this paper we survey a number of numerical properties of Gram-Schmidt
orthogonalization. We show that in spite of a sometimes bad reputation the
Gram-Schmidt algorithm has a number of remarkable properties that make it
the algorithm of choice in a variety of applications.

In this section we give several computational variants of Gram-Schmidt
orthogonalization. These different versions have an interesting history. The

2.4. METHODS BASED ON THE QR DECOMPOSITION 61

"modified" Gram-Schmidt (MGS) algorithm was already derived by Laplace [515,
1816, §2] as an elimination method using weighted row sums; see Farebrother
[288, 1988, Chap. 4]. However, Laplace did not interpret his algorithm in terms
of orthogonalization, nor did he use it for computing least squares solutions!
Bienayme [73, 1853] gave a similar derivation of a slightly more general algorithm;
see Bjorck [101, 1994]. The idea of elimination with weighted row combinations
also appears in Bauer [57, 1965], but without reference to earlier sources. What
is now called the "classical" Gram-Schmidt (CGS) algorithm first appeared
explicitly later in a paper by Schmidt [711, 1908, p. 61], which treats the solution
of linear systems with infinitely many unknowns. The orthogonalization is used
here as a theoretical tool rather than a computational procedure.

The bad reputation of Gram-Schmidt orthogonalization as a numerical
algorithm has arisen mostly because of the (sometimes catastrophic) loss of
orthogonality which can occur in the classical algorithm. However, for MGS
the loss of orthogonality can be shown to occur in a predictable manner, and be
directly proportional to the K,(A}.

In the modified Gram—Schmidt (MGS) algorithm a sequence of matrices,
A = A(l\ A^,..., A^ = Qi G Rmxn, is computed, where A^ has the form

and a^. , . . . , an have been made orthogonal to g i , . . . , 0fc_i, which are final
columns in Q\. In the Arth step we first obtain q^ by normalizing the vector

(k)
n •ak •
(2.4.7)

We then orthogonalize aj^,..., an against q^:

(2.4.8)

Equivalently, this can be written

(2.4.9)

where P^ is the orthogonal projection onto the complement of q^. The unnor-
malized vector q^ is just the orthogonal projection of a^ onto the complement of
span[ai, 0 2 , . . . , flfc-i] — span[gi,#2, • • • > Qk-i]- After k steps we have obtained the
first k columns of Q and the first k rows of R in the QR factorization. After n
steps we have obtained the factorization A = QiR, where the columns of Q\ are
orthonormal by construction. Since R has positive diagonal elements it equals,
in exact computation, the unique upper triangular Cholesky factor of ATA. The
MGS algorithm requires mn2 flops, and is summarized below.

ALGORITHM 2.4.3. MGS (ROW-ORIENTED VERSION). Given A e #™x«
with rank(yl) = n the following algorithm computes the factorization A = Q\R:

62 CHAPTER 2. BASIC NUMERICAL METHODS

It is possible to get a column-oriented version of the MGS algorithm by
interchanging the two loops in Algorithm 2.4.3 so that the elements of R are
instead computed column by column.

ALGORITHM 2.4.4. MGS (COLUMN-ORIENTED VERSION). Given A^ ~ A e
Rmxn with rank(A) = n the following algorithm computes Q\ and R in the
factorization A = Q\R.

The column-oriented version of the MGS Algorithm 2.4.4 was used by
Rutishauser [694, 1967]; see also Gander [316, 1980]. It was independently derived
by Longley [543, 1981].

REMARK 2.4.5. There is no numerical difference between the column- and
row-oriented versions of the MGS algorithm. Since the operations and rounding
errors are the same they will produce exactly the same numerical results.
However, for treating rank deficient problems column pivoting is necessary (see
Section 2.7.3) and then the row-oriented version is preferable.

REMARK 2.4.6. A square root-free version of MGS orthogonalization results
if the normalization of the vectors qk is omitted. In this version one computes Qi
and R so that A = Q\R and R unit upper triangular. The changes in Algorithm
2.4.4 are to put

and subtract fikqi instead of r^<&.

2.4. METHODS BASED ON THE QR DECOMPOSITION 63

Another way to derive the Gram-Schmidt factorization is as follows. Assume
that qi,...,qk have been determined. Then, by the orthonormality of the <&, we
have rue = gfW, fe = 1,.. . , fc — 1, and we can solve for q^:

This leads to the CGS algorithm, where the factors Q\ and R are generated
column by column.

ALGORITHM 2.4.5. CLASSICAL GRAM-SCHMIDT. Given A e Rmxn with
rank(A) = n the following algorithm computes for k = 1 ,2 , . . . , n the column q^
of Qi and the elements r i / t , . . . , r^k of R in the factorization A = Q\R:

REMARK 2.4.7. In CGS the main work can be performed as a matrix-vector
multiplication

where Qk-i = (qi, • . • , qk-i) and r/t is the kth column in R (excluding the diagonal
element). Hence CGS is better adapted to parallel computing than MGS.

For n > 2 the CGS algorithm is numerically different from the modified
versions 2.4.3 and 2.4.4. The important difference between the algorithms is
that in the modified Algorithm 2.4.3 the projections r^qi are subtracted from
afc as soon as they are computed. CGS should not be used numerically without
reorthogonalization; see Section 2.4.5. The superiority of the MGS algorithm
over CGS for solving least squares problems was experimentally established by
Rice [684, 1966], and proved by Bjorck [85, 1967].

2.4.3. Least squares by Householder QR decomposition. An algorithm
for solving the linear least squares problem

(2.4.10)

based on the Householder QR decomposition was first developed in an important
paper by Golub [364, 1965]. This paper, which also discusses column pivoting,

64 CHAPTER 2. BASIC NUMERICAL METHODS

iterative refinement, regularization, and updating, started a new epoch in least
squares methods.

Golub's method is easily generalized to apply to the more general problems
(2.4.1)-(2.4.2).

ALGORITHM 2.4.6. GOLUB'S METHOD. Given A e Rmxn with rank(^l) = n,
6 G Rm, and c <E Rn, compute R and Pi,P2,...,Pn by Algorithm 2.4.1. Then
compute 2, d, z, and y by

(2.4.11)

(2.4.12)

In the standard least squares problem (2.4.10) we have c = 0, which implies
z = 0. Further, the residual vector r — b — Ax equals ?/, and hence \\r\\2 = \\d2\\2-
To compute d = QTb in (2.4.11) requires (2mn — n2) flops, and thus x can
be computed in (2mn — n2/2) flops. For the minimum norm problem we have
6 = 0, which implies d = 0. In this special case two triangular solves and one
multiplication with Q are required, which takes 2mn flops.

REMARK 2.4.8. Golub's method for solving the standard least squares
problem is normwise backward stable. The computed solution x can be shown
to be the exact solution of a slightly perturbed least squares problem

where the perturbations satisfy the bounds

(2.4.13)

and c = (6m — 3n + 41)n; see Lawson and Hanson [520, 1974, pp. 90 ffj.

Golub's method is also normwise backward stable in the special case when
6 = 0; see Higham [467, 1996, Chap. 16]. The stability properties of Golub's
method in the general case, b ̂ 0, c ̂ 0, are discussed by Bjorck and Paige [114,
1994]-

2.4.4. Least squares problems by MGS. We now consider the use of the
MGS algorithm for solving the linear least squares problem. It is important to
note that because of the loss of orthogonality in Q\ that takes place also in MGS,
computing d\ = Q^b and then x from Rx = d\ will not give an accurate solution.
Fortunately, a backward stable algorithm can be derived by applying the MGS
algorithm to the bordered matrix (A, b) to compute the decomposition

(2.4.14)

Then the solution to the linear least squares problem min^ \\Ax — b\\2 is given by

(2.4.15)

2.4. METHODS BASED ON THE QR DECOMPOSITION 65

To show that (2.4.15) holds, we have from (2.4.14),

If Qn+i is orthogonal to Q\, then the minimum of \\Ax — b\\2 occurs when Rx — z
and the residual is pqn-\-\- Note that it is not necessary to assume that Q\ is
orthogonal for this conclusion to hold. The resulting algorithm can be written as
follows.

ALGORITHM 2.4.7. LINEAR LEAST SQUARES SOLUTION BY MGS. Carry
out MGS on A e Rmxn, rank(A) = n, to give Qi = (q\,..., qn) and R, and put
b^ = b. Compute the vector z = (z i , . . . , zn)

T by

The backward stability of Algorithm 2.4.7 can be proved by interpreting the
MGS algorithm for QR decomposition as Householder's method applied to the
matrix A augmented with a square matrix of zero elements on top; see Bjorck and
Paige [113, 1992]. We now outline this relationship. The Householder method
computes the decomposition

(2.4.16)

where P^ = / — 2/Ofci)^/||'Ofc||2, k = 1 ,2 , . . . ,n, are Householder transformations.
Because of the special structure of the augmented matrix the vectors v/- have the
form

where e^ is the kth unit vector, and we have chosen the sign so that R has a
positive diagonal. It follows that

(2.4.17)

where g& = Qk/rkk, and since the first n rows are initially zero, the scalar products
of the vector v^ with later columns will only involve q^. Using this observation it
is easily verified that the quantities r\~j and q^ are numerically equivalent to the
quantities in the MGS method (2.4.16)-(2.4.17).

Because of the numerical equivalence outlined above the backward error
analysis for the Householder QR decomposition can be applied to the MGS
algorithm. It follows (see Bjorck and Paige [113, 1992]) that there exists an
exactly orthonormal matrix Q 6 Rmxn such that for the computed matrix R,

(2.4.18)

66 CHAPTER 2. BASIC NUMERICAL METHODS

where c = c(m, n) are constants depending on the m, n and the details of the
arithmetic.

To solve a least squares problem we then apply the orthogonal transformations
also to the right-hand side,

Again, using the special form of the Householder matrices P^, it follows that
this is numerically equivalent to Algorithm 2.4.7 and gives d\ = z. Hence
Algorithm 2.4.7 is a backward stable method for solving the linear least squares
problem. Indeed, according to numerical experiments of Jordan [492, 1968]
and Wampler [813, 1970] it seems to be slightly more accurate than other
orthogonalization methods. In [658, 1970] Peters and Wilkinson write "Evidence
is accumulating that the modified Gram-Schmidt method gives better results
than Householder.... The reasons for this phenomenon appear not to have been
elucidated yet." A possible explanation could be that Householder may be
sensitive to row permutations of A (see Section 4.4.3), whereas MGS is (almost)
numerically invariant under row permutations.

Using the equivalence, we can also derive a backward stable algorithm for
computing the minimum norm solution of an underdetermined linear system,

ALGORITHM 2.4.8. MINIMUM NORM SOLUTION BY MGS. Carry out MGS
on AT G Rmxn, with rank(^4) = n to give Q\ = (q\,... ,qn) and R. Then the
minimum norm solution y = y^> is obtained from:

REMARK 2.4.9. Note that if the columns of Qi are orthogonal, then LJ —
(u > i , . . . , wn) = 0, but otherwise u will compensate for the lack of orthogonality.

2.4.5. Gram—Schmidt with reorthogonalization. The Gram-Schmidt
algorithm explicitly computes the matrix Qi, which theoretically provides an
orthogonal basis for R(A). This is in contrast to other numerical methods for
computing the QR decomposition, in which Q is implicitly defined as a product of
Householder or Givens matrices. However, due to roundoff, there will generally be
a gradual loss of orthogonality in the computed columns of Qi, and the computed
matrix Q\ will not be orthogonal to working accuracy. In the MGS algorithm
the loss of orthogonality can be bounded in terms of «(A),

2.4. METHODS BASED ON THE QR DECOMPOSITION 67

where c\ and 02 are constants and u is the machine precision; see Bjorck and
Paige [113, 1992]. However, in the CGS algorithm, the computed vectors qk
may depart from orthogonality to an almost arbitrary extent. As pointed out by
Gander [316, 1980], even computing Q\ via the Cholesky decomposition of ATA
seems superior to CGS. A rounding error analysis for the CGS algorithm with
reorthogonalization has been given by Abdelmalek [1, 1971].

The more gradual loss of orthogonality in the computed vectors qi for MGS
is illustrated in the example below from Bjorck [85, 1967].

EXAMPLE 2.4.1. Let A be the matrix in Example 2.2.1 and assume that e
is so small that f l (l + e2) = 1. If no other rounding errors are made then the
orthogonal matrices computed by CGS and MGS, respectively, are

For simplicity we have omitted the normalization of Q. It is easily verified that
the maximum deviation from orthogonality of the computed columns are

The condition number of A is K — e~l(3 + e2)1/2 w e~l\/3, and our assumption
above implies that e2 < u (u is the unit roundoff). It follows that for MGS
|<7-f<?i < *£-K,(A}u, but for CGS orthogonality has been completely lost.

The reason why the computed columns of Qi may depart from orthogonality
is that cancellation may take place when the orthogonal projection on qi is
subtracted. In Algorithm 2.4.3 cancellation will occur in the statement a^ =

(*) -r
o>k -fikQi n

(2.4.19)

for some small constant a. To exhibit the loss of orthogonality we consider a case
of orthogonalizing two vectors.

EXAMPLE 2.4.2. (See Rutishauser [696, 1976, pp. 96-97].) For the matrix

we get using either of the Gram-Schmidt algorithms and four-digit computation,

68 CHAPTER 2. BASIC NUMERICAL METHODS

Severe cancellation has taken place since ||a2 \\2 = 0.07746 <C ||«2|b = 112.0.
This leads to a serious loss of orthogonality between q\ and q%,

In some applications it is important to compute Q\ and R such that Q\R
accurately represents A, and Q\ is accurately orthogonal. This is the orthogonal
bases problem. Then it is necessary to reorthogonalize the computed vectors
Qk-

EXAMPLE 2.4.3. Continuing the previous example we compute using four-
digit computation 6ri2 = qfa^ = —0.007022 and reorthogonalize by taking

Note that the correction 6r\2 is too small to affect r\% = 112.0. The new vector
q-i is now accurately orthogonal to <7i,

and we normalize to get q2 = (0.7949, -0.4910,0.3040, -0.1870

In the above example one reorthogonalization was sufficient. It can be
shown, in a sense made more precise below, that this is true in general. Thus,
reorthogonalization will at most double the cost of the Gram-Schmidt method.

We now describe the Kahan-Parlett algorithm (see Parlett [651,
1980, pp. 105-110]) which is based on unpublished notes of Kahan on the fact
that "twice is enough." Given vectors 91, ||<?i||2 = 1> and ^2, we want to compute

(2.4.20)

Assume that we can perform the computation (2.4.20) with an error

for some small positive e independent of q\ and 02, e.g., € = O(u). Let a be a
fixed value in the range 1.2e < a < 0.83 — e. Then a vector fa is computed as
follows:

where f l denotes floating point computation. If H^lb > a||a2||2» then put qi = q^\
else reorthogonalize #2?

If II921|2 > «|1921|2 then accept q^ := <?25 else accept qi := 0. The computed fc
then satisfies

(2.4.21)

2.4. METHODS BASED ON THE QR DECOMPOSITION 69

Note that when a is large, say 0.5, then the bounds (2.4.21) are very good but
reorthogonalization will occur more frequently. If a is small reorthogonalization
will be rarer, but the bound on orthogonality will be less good. (Rutishauser
[694, 1967] used a = 0.1.)

Hoffmann [471, 1989] has given an error analysis for both the classical and
modified Gram-Schmidt methods with reorthogonalization. He concludes that
when Qi is required to be orthogonal to full working precision we should choose
a = 0.5. In this case the iterative classical method is not inferior to the iterative
modified method. If less than full precision orthogonality is wanted, then the
modified version is better. For the iterated MGS method it has been observed
that for all values of a orthogonality is bounded roughly by e/a. The solution of
the orthogonal basis problem with Householder's method requires 2(mn2 — n3/3)
flops. Hence, if the average number of reorthogonalizations needed is f, then the
Gram-Schmidt method requires fewer operations when v < 2 — 2n/(3ra).

Ruhe [690, 1983] analyzes iterated classical and modified Gram-Schmidt
methods for orthogonalizing a vector a,j against vectors Q = (< / i , . . . , #j-i), which
need not be accurately orthogonal. The resulting vector is qj = aj—Qrj, where TJ
is given by the solution to the linear system QTQrj = QTCLJ. The iterated classical
algorithm is shown to correspond to the Jacobi iterative method for solving this
system, and the MGS method to the Gauss-Seidel iterative method. Ruhe also
generalizes the MGS algorithm to oblique projections, which have applications
to orthogonalization in elliptic norms and to bi-orthogonalization.

Molinari [581, 1977] points out that there are special situations where
even better orthogonality is required than what can be obtained by one
reorthogonalization. He gives an Algol procedure for "superorthogonalization"
which, depending on a parameter, may carry out several reorthogonalizations.

2.4.6. Hybrid algorithms. Sometimes it may be advantageous to carry out
a partial QR decomposition, where only the first k < n columns are reduced to
upper triangular form. If we have computed

(2.4.22)

then by orthogonality

Hence, if we solve the reduced least squares problem for x^

(2.4.23)

x\ is obtained by back-substitution from

(2.4.24)

70 CHAPTER 2. BASIC NUMERICAL METHODS

Note that any method, e.g., the normal equations, can be used to solve the
reduced problem (2.4.23). Such hybrid methods are of interest when the reduced
problem is more well-conditioned than the initial least squares problem.

A similar hybrid algorithm based on MGS is easily derived. Assume that
after k steps of MGS we have obtained the partial decomposition

Then the least squares problem decomposes into (compare (2.4.23))

where x — (x\,x<i)r. The reduced least squares subproblem may be solved, e.g,
by the method of normal equations; see Foster [310, 1991]. A special example
occurs in regression analysis, where often the first column of A equals the vector
(1,1,...,1)T . Taking k — 1 in the above partial decomposition is equivalent to
"subtracting out the means."

If A is large and sparse, then it is often uneconomical to store and access Q
or Q\. If A is stored, then a possibility for the treatment of additional right-hand
sides is to use the seminormal equations (SNE)

(2.4.25)

A similar approach was suggested by Saunders [701, 1972] for use in sparse linear
programs to solve the minimum norm problem min^ ||z||2, subject to ATx = b.
Instead of computing x from RTy = 6, x = Q\y, he used

(2.4.26)

The method of seminormal equations for the minimum norm problem was
analyzed by Paige [623, 1973]. He proved that the method (2.4.26) is numerically
quite satisfactory and that "the bound on the error in x is proportional to KU
rather than K?U as has often been thought." (Here K denotes the condition
number of .A, and u the machine precision.)

A similar analysis for the SNE method (2.4.25) given by Bjorck [91, 1987]
shows that unfortunately the satisfactory properties of the SNE method for the
minimum norm problem do not carry over. The error in x for the SNE method
is of the same size as that for the method of normal equations, even though
an ^-factor of better quality than that obtained from a Cholesky factorization
of ATA is used. By adding a correction step to the SNE we get a method
(CSNE) which, although not backward stable, is much more satisfactory. Here
the corrected solution is computed by performing one step of iterative refinement
in fixed precision of the solution computed by SNE. The CSNE method is further
discussed in Sections 2.9.3 and 6.6.5. An analysis which applies to the more
general least squares problems (2.4.1)-(2.4.2) is given in Bjorck and Paige [114,
1994]-

2.4. METHODS BASED ON THE QR DECOMPOSITION 71

2.4.7. Block algorithms. Many current computing architectures require
code that is dominated by matrix-matrix multiplication in order to attain
near-peak performance. This explains the current interest in developing block
algorithms, where the main work can be done by so-called Level 3 BLAS; see
Dongarra et al. [229, 1990]. Schreiber and Van Loan [713, 1989] describe an
efficient block version of the Householder QR decomposition, which is currently
implemented in LAPACK; see [16, 1995].

Assume that the matrix A G Rmxn, is partitioned into p blocks of columns

(2.4.27)

where for simplicity we assume that n — Np. In the first step we compute the
Householder QR decomposition

where H^ = / — UkU^/'jk are Householder reflections. The remaining columns of
A are then updated through premultiplication by Q^,

(2.4.28)

The block algorithm requires that this updating be performed as a matrix
multiplication. We now show that Q\ can be expressed in the form

where U\ G Hpxp is upper triangular. We need the following simple result.
LEMMA 2.4.1. Given a matrix Q = (I - PUPT) G Rmxm, and a vector

u G Rm, we have

(2.4.29)

where
(2.4.30)

Proof. The result follows by identifying terms in the expression

The formulas (2.4.29)-(2.4.30) can be used to recursively generate

by taking P := ^1/̂ /7!, U := 1, and for k = 2 , . . . ,p, computing

72 CHAPTER 2. BASIC NUMERICAL METHODS

This requires about ^r2(m + gr) flops. Now (2.4.28) can be performed as

This requires 2(n — p)(mp+ \p2) flops, and can be expressed in Level 3 BLAS as
two matrix-matrix multiplications and one rank p update. In the next step we
compute the QR decomposition of A^ , generate Q% = I — /W2-P;T, anc^ aPPty
it to the rest of the block columns, etc. All the remaining steps are similar, and
the total operation count becomes:

/1L\

1. Compute the QR decompositions of A^ : mnp flops.

2. Generate the matrices Uk' \np(m + ^p) flops.

3. Apply reflections (Level 3 BLAS): (n2 — np)(m + \p) flops.

In practice, typically p = 16 or p = 32 and p < O.ln, and then the overhead
3ranp/2 + n2p/4 is small compared to ran2. The traditional column pivoting
strategy cannot be used with the block algorithm since it requires the update
of all remaining columns at every step. Bischof [75, 1989] suggests a local
pivoting strategy based on an incremental condition estimator. Columns which
are found to be nearly linearly dependent on the space spanned by previously
chosen columns are rejected and permuted to the end of the matrix. In numerical
tests this pivoting strategy correctly identified the rank of A and generated a well-
conditioned matrix R. It was also observed that the pivoting did not introduce
much extra overhead compared to the block algorithm without pivoting currently
implemented in LAPACK.

An analogous block version of MGS can easily be developed. In the first
step a factorization A\ = QiRiii Qi — (< 7 i > - •••>&) ls computed. In MGS the
remaining block columns are updated by

Here Pf can again be expressed in the form PI = I — Q\U\Q^ using Lemma
2.4.1.

An even simpler version can be obtained by using a GS decomposition of
the column blocks where the matrix Qk in the decomposition Ak = QkRkk is
orthogonal to working accuracy. This is achieved by reorthogonalization (see
Section 2.4.5) and then Uk = I and Pk = / — QkQ%- Reorthogonalization will
increase the operation count in step 1 with mnr flops. On the other hand, we
save about \mnr flops in step 2 and n2r/4 flops in step 3. Also, the storage space
nr/2 for the matrices Uk is saved. This method has been analyzed by Jalby and
Philippe [484, 1991].

In CGS a new vector is simultaneously orthogonalized against previously
computed vectors, and the decompositions of Ak can also be performed by Level
3 BLAS. Hence CGS may be preferred to the MGS algorithm in this context.

2.5. METHODS BASED ON GAUSSIAN ELIMINATION 73

Malard [559, 1992, Chap. 5] describes block MGS algorithms for local memory
multiprocessors. Parallel algorithms for MGS and QR decompositions on message
passing systems in which the matrix is distributed by blocks of rows are discussed
in O'Leary and Whitman [610, 1990].

2.5. Methods Based on Gaussian Elimination
2.5.1. The Peters—Wilkinson method. Standard algorithms for solving
nonsymmetric linear systems Ax = b are usually based on Gaussian elimination
with partial pivoting. Several extensions of this method to solving least squares
problems have been suggested; see, e.g., Ben-Israel and Wersan [59, 1963],
Tewarson [774, 1968], and the excellent survey by Noble [602, 1976]. Peters and
Wilkinson [658, 1970] developed methods based on Gaussian elimination from a
uniform standpoint.

A rectangular matrix A 6 Rmxn, m > n, can be reduced by Gaussian
elimination with partial pivoting to an upper triangular form U. In general
column interchanges are needed to ensure numerical stability. In the full rank
case, rank (A) — n, the resulting LU factorization becomes

where LI G Rnxn is unit lower triangular and U G Rnxn is upper triangular
and nonsingular. Thus the matrix L has the same dimensions as A and a lower
trapezoidal structure. Computing this factorization requires ^n2(ra — |n) flops.

Using the LU factorization (2.5.1) and setting x = II^x, b = Ilife, the least
squares problem min^ \\Ax — b\\2 is reduced to

(2.5.2)

If partial pivoting by rows is used in the factorization (2.5.1), then L is usually
a well-conditioned matrix. In this case the solution to the least squares problem
(2.5.2) can be computed from the normal equations

without substantial loss of accuracy. This is the approach taken by Peters and
Wilkinson [658, 1970]. The following example shows that this is a more stable
method than using the normal equation ATAx = ATb.

EXAMPLE 2.5.1. (Noble [602, 1976]) Consider the matrix A and its general-
ized inverse

The (exact) matrix of normal equations is

(2.5.1)

74 CHAPTER 2. BASIC NUMERICAL METHODS

If e < <*/u, then in floating point computation //(3 + 2e2) = 3, and the computed
matrix fl(ATA) has rank one. However, in the LU factorization of A

Here L is well-conditioned, and the pseudoinverse can be stably computed from
At = U~l(LTL)-lLT.

Forming the symmetric matrix LTL requires ^n2(m — |n) flops, and com-
puting its Cholesky factorization takes n3/6 flops. Hence, neglecting terms of
order n2, the total number of flops to compute the least squares solution by the
Peters-Wilkinson method is n2(ra — |n). This is always more expensive than the
method of normal equations applied to ATA.

Sautter [704, 1978] has shown that when m—n < n an algebraic reformulation
is advantageous. If we let T = L^L^ and L\y — z, problem (2.5.2) becomes

The solution z can be computed from

(2.5.3)

The last expression can be evaluated more efficiently if m—n < n and leads to the
most efficient method for solving slightly overdetermined least squares problems.
(Note that for m = n + 1 the inversion in (2.5.3) is reduced to a division.)

Methods based on the factorization (2.5.1) for solving the minimum norm
problem min||2/||2, subject to ATy = c can be similarly developed. Setting
c = TL^c and y = HI?/, we have

For the case m — n < n we note that from UTLTy = c we have

(2.5.4)

Hence 3/2 can be obtained as the solution to the least squares problem

2.5. METHODS BASED ON GAUSSIAN ELIMINATION 75

or using the normal equations,

(2.5.5)

The reformulation used above for the almost square case follows from a useful
identity, which holds for any matrix S of dimension r x (n — r) of rank r:

(2.5.6)

This identity is easily proved using the Woodbury formula (3.1.6). It can be
interpreted as an algebraic relation between certain pseudoinverses.

THEOREM 2.5.1. For any matrix S e Rrx(n-r) we have (Ir S)* = C, where

(2.5.7)

The above theorem reduces the computation of the pseudoinverse of a matrix
of rank p to the computation of the pseudoinverse of a matrix of rank (n — p}. If
n — p <C p, there is a great gain in efficiency.

Several methods combining LU factorization and orthogonalization methods
have been given in the literature. Tewarson [774, 1968] suggested that the least
squares problem in (2.5.2) is solved by an orthogonal reduction of L to lower
triangular form. Thus the solution is obtained by solving Ly = c\ by forward
substitution, where

Cline [172, 1973] developed such an algorithm, which uses Householder transfor-
mations to perform this reduction of L. The fcth Householder transformation P^
is here chosen to affect only rows fc, n 4-1, . . . , m and zero elements in column k
below row n. These transformations require n2(m - n) flops. The total number
of flops required for computing the least squares solution x by Cline's method
is about n2(|ra — |n) flops. Since the method of normal equations using the
Cholesky factorization on ATA requires n2(^ra -I- ^n) flops Cline's method uses
fewer operations if m < |n. (The Golub method requires n2(m — |n) flops, and
this is more if ra < |n.) Hence for slightly overdetermined least squares prob-
lems, the elimination method combined with Householder transformations is very
efficient.

A version solving (2.5.2) with the MGS method has been analyzed by
Plemmons [662, 1974]. If the lower triangular structure of L is taken advantage of
then this method requires n2(|ra — |n) flops, which is slightly more than Cline's
variant. Similar methods for the underdetermined case (m < n) based on the LU
decomposition of A have been studied by Cline and Plemmons [176, 1976].

Sometimes it may suffice to compute a partial LU factorization. If the
Gaussian elimination is stopped after p < n steps, the resulting factorization
is
(2.5.8)

76 CHAPTER 2. BASIC NUMERICAL METHODS

where the first p rows of the matrix Lp have nonzeros only in a unit lower triangle
and the last n — p rows of Up equal the last n — p rows of the unit matrix /„,

(2.5.9)

For some problems K,(Lp) <C K,(A) already for p <C n. Then p steps of Gaussian
elimination suffice, and we can solve the transformed problem

(2.5.10)

using the method of normal equations. This approach can be useful for weighted
least squares problems where the first p equations have a large weight. For such
problems it is important to scale the matrix Lp in (2.5.10) so that its columns have
equal norm; see Section 4.5.2. Such a method for solving sparse and weighted
least squares problems is discussed by Bjorck and Duff in [104, 1980].

2.5.2. Pseudoinverse solutions from LU decompositions. Peters and
Wilkinson [658, 1970] also considered the case when rank (A) = r < n, and
showed how pseudoinverse solutions can be computed from LU factorizations. In
case the rank is not known beforehand the pivoting strategy is important, and
partial pivoting alone will not be sufficient. After p steps the matrix A = AQ has
been transformed into a matrix Ap, which is m x n and of the form

In complete pivoting if aqs is the element in Ap of largest magnitude, we would
interchange columns s and p + 1 and rows q and p + 1. Moreover if \aqs\ < tol,
where tol is a tolerance, then Ap is regarded as zero and the elimination stopped.
Otherwise aqs is used as a pivot in the next elimination step.

Instead of complete pivoting, it will usually be sufficient to use partial pivoting
with a linear independence check. Let ag,p+i be the element of largest magnitude
in column p + 1. If |agj>+i| < tol, column p + 1 is considered to be linearly
dependent and is placed last. We then go on to column p + 2, etc. Sautter [704,
1978] gives a detailed analysis of stability and rounding errors of the LU algorithm
for computing pseudoinverse solutions. Rank revealing LU decompositions have
more recently been studied by Hwang, Lin, and Yang in [481, 1992].

Assume that we have computed the LU factorization

(2.5.11)

where LU, U\\ 6 Rrxr are triangular and nonsingular. This can be written

2.5. METHODS BASED ON GAUSSIAN ELIMINATION 77

where T and S can be computed by back-substitution

We then get for the pseudoinverse solution

(2.5.12)

Here the pseudoinverse (Ir Sy of rank r can be reduced using Theorem 2.5.1
to the pseudoinverse

of rank n — r. If n — r -C r this is a great savings. If m — r < r a similar reduction
can be applied to compute

Note the symmetry in the treatment of the L and U factors!

2.5.3. The augmented system method. As remarked in Section 1.1.4, the
normal equations (1.2.3) and the defining equations for the residual r = b — Ax
combine to form an augmented system of m + n equations

(2.5.13)

The use of this system for solving least squares problems seems first to have been
suggested by Siegel [720, 1965]. The system (2.5.13) is square and symmetric but
indefinite if A ^ 0. It is nonsingular if and only if rank (A) = n.

We first note that if m steps of symmetric Gaussian elimination with pivots
chosen from the diagonal block / are applied to the system (2.5.13), then the
reduced block upper triangular system simply is

Hence, for this choice of pivots we just recover the normal equations. To get a
more stable method it is necessary that pivots also be chosen outside the block
I.

For a general symmetric indefinite matrix M a factorization LDLT may not
exist and can be unstable, even when symmetric row and column permutations
are used at each stage to choose the largest diagonal element in the reduced matrix
as a pivot. However, a stable symmetric factorization can always be found if 2 x 2
symmetric block pivots are also used. We now describe the Bunch-Kaufman
pivoting scheme. [136, 1977] It suffices to consider the first stage of elimination,
since all later stages proceed similarly.

78 CHAPTER 2. BASIC NUMERICAL METHODS

An efficient pivotal strategy is needed that guarantees control of element
growth without requiring too much search. The constraint of symmetry allows
row and column permutations, which bring any diagonal element d\ = 6rr, or
any 2 x 2 submatrix of the form

to the pivot position. Using the 2x2 submatrix as a pivot is equivalent to a double
step of Gaussian elimination, pivoting first on brs and then on bsr. It is easily
seen that such a double step preserves symmetry, and hence only the elements
on and below the main diagonal of the reduced matrix need to be computed.
Ultimately, a factorization A = LDLT is obtained in which D is block diagonal
with, in general, a mixture of 1 x 1 and 2 x 2 blocks, and L is unit lower triangular
with lk+i,k = 0 when B^ is reduced by a 2 x 2 pivot.

A possible strategy would be to search until two columns r and s have been
found for which the common element brs bounds in modulus the other off-diagonal
elements in the r and s columns. Then a 2 x 2 pivot on these two columns or
the largest in modulus of the two diagonal elements as a 1 x 1 pivot is taken,
according to the test

The number p has here been chosen so as to minimize the bound on the
growth per stage of elements of B, allowing for the fact that two stages are
taken by a 2 x 2 pivot. With this choice the element growth is bounded by
9n < (1 + l/P)71"1 < (2-57)n-1. No example is known where significant element
growth occurs at every step. This bound can be compared to the bound 2n~1,
which holds for Gaussian elimination with partial pivoting.

The above bound for element growth can be achieved with fewer comparisons,
using the following strategy due to Bunch and Kaufman. First determine the off-
diagonal element of largest magnitude in the first column,

If |&ii I > P^t then take &n as a pivot. Else, determine the largest off-diagonal
element in column r,

If |&n| > p)?/&, then again take b\\ as a pivot; else if \brr > pa, take brr as a
pivot. Otherwise take the 2 x 2 pivot corresponding to the off-diagonal element
b\r. Note that at most two columns need to be searched in each step, and at
most n2 comparisons are needed in all.

When the factorization M = LDLT has been obtained the solution o f M z = d
is obtained in the three steps

2.5. METHODS BASED ON GAUSSIAN ELIMINATION 79

It has been shown by Higham [468, 1995] that for stability it is necessary to solve
the 2 x 2 systems arising in Dw — v using partial pivoting or the explicit 2 x 2
inverse. The proof of this is nontrivial and makes use of the special relations
satisfied by the elements of the 2 x 2 pivots in the Bunch-Kaufman pivoting
scheme.

Whenever a 2 x 2 pivot is used, it' holds that bubrr < p2\bir
 2 < \bir

 2.
It follows that the corresponding 2 x 2 block in D has a negative determinant
<§lr = b\\brr—b\r < 0. Since 5\r equals the product of the eigenvalues, a 2x2 block
in D corresponds to a positive and a negative eigenvalue. It follows that when B
is positive definite, then all pivots chosen by the Bunch-Kaufman strategy will
be 1 x 1.

Unfortunately, the Bunch-Kaufman pivoting scheme does not generally give
a stable method for the least squares problem, since the perturbations introduced
by roundoff do not respect the structure of the augmented system. This can be
made clear by introducing the scaled vector s = oTlr\ the augmented system can
then be written

(2.5.14)

where we assume that

Using the pivoting scheme described above, the choice of pivots will depend on
the value of a. Note that the scaling parameter a only affects the accuracy by
influencing the choice of pivots.

For sufficiently large values of a the Bunch-Kaufman scheme will choose the
first ra pivots from the diagonal (1,1) block. The resulting reduced system equals
the normal equations, which is not a backward stable method. Using smaller
values of a will introduce 2 x 2 pivots of the form

which may improve the stability. This raises the question of the optimal choice
of a for stability.

The eigenvalues A of Ma can be expressed in terms of the singular values cr^,
i = 1 , . . . , n of A; see Bjorck [84, 1967]. If Maz = Az, z = (s, x)T ^ 0, then

or eliminating s, aXx + ATAx = X2x. Hence, if x ^ 0 then x is an eigenvector
and (A2 — aA) an eigenvalue of ATA. On the other hand, x = 0 implies that

80 CHAPTER 2. BASIC NUMERICAL METHODS

It follows that the ra + n eigenvalues of Ma are

If TBnk(A) = r < n, then the eigenvalue a has multiplicity (m — r), and 0 is an
eigenvalue of multiplicity (n — r). From this it is easily deduced that if crn > 0
then

is attained for

Because of the above result a (or <jn) has been suggested as the optimal scaling
factor in the augmented system method. Minimizing K2(Ma] will minimize the
forward bound for the error in za,

However, a also influences the norm in which the error is measured.
A more refined error analysis which instead minimizes a bound for the errors

in x and y separately has been given by Bjorck [99, 1992]. It is shown that upper
bounds for roundoff errors in the computed solution satisfy

(2.5.15)

where c is a low degree polynomial, g the growth factor, and

Here if x ^ 0, then f (a) is minimized for

(2.5.16)

The corresponding minimum value of f (a) is

(2.5.17)

Taking a = an we find

i.e., using a = <jn will at most double the error bound.
We recall that an acceptable-error stable algorithm is defined as one which

gives a solution whose error size is never significantly worse than the error bound
obtained from a tight perturbation analysis. It can be shown that the augmented
system method is acceptable-error stable both with a = <jn and a — aopt-

2.6. COMPUTING THE SVD 81

2.6. Computing the SVD
2.6.1. SVD and least squares problems. If the singular value decomposi-
tion (SVD) A = UEVT e Rmxn is known, then by Theorem 1.2.10 the minimum
norm least squares solution of minx \\Ax — b\\2 is given by

where rank (A) = r < n. Here Sr — diag (cri , . . . , oy), V, and UTb are required,
but U need not be explicitly formed.

The lack of an efficient and stable numerical method for computing the SVD
until the late sixties is the main reason why the SVD was not widely used as
a computational tool much earlier. The singular values of A are equal to the
positive square roots of the eigenvalues of the symmetric matrix ATA and AAT,
and the matrices U and V of left and right singular vectors are the corresponding
eigenvectors. However, forming ATA or AAT explicitly will lead to a severe loss of
accuracy in the smaller singular values. Therefore, this approach will not directly
lead to stable numerical methods for computing the SVD.

A stable algorithm for the SVD was first outlined by Golub and Kahan [370,
1965]. They suggested that the matrix A first should be reduced to bidiagonal
form by Householder transformation of a Lanczos process. The singular values
and vectors can then be computed as eigenvalues and eigenvectors of a special
tridiagonal matrix, by a method based on Sturm sequences. Later, Golub [365,
1968] gave an adaptation of the QR algorithm for computing the SVD of the
bidiagonal matrix, and described a simplified interpretation of this process due
to Wilkinson. The final form of the QR algorithm for computing the SVD was
given by Golub and Reinsch [382, 1970]. Basically this is still the method of choice
for dense matrices A, and is described in detail below. Later in this section we
describe Jacobi-type methods for computing the SVD and some newer methods
for computing singular values of bidiagonal matrices to high relative accuracy.

2.6.2. Transformation to bidiagonal form. In the Golub-Reinsch method
the first step in computing the SVD is to reduce A to upper bidiagonal
form. This reduction can be performed using a finite sequence of Householder
transformations from left and right as follows.

It is no restriction to assume that ra > n, since otherwise we consider
AT. We compute a sequence of matrices, A = A^, A^\ ... ,A(n~l\ where
^(fc+i) __ QkAWpk, and Qk and Pfc are Householder matrices. After the first
step we have

(2.6.1)

82 CHAPTER 2. BASIC NUMERICAL METHODS

Here Q\ is chosen so that Q\A has zeros in the first column under the main
diagonal. PI is then chosen to zero the last n — 2 elements in the first row. The
first column is obviously not touched by PI, which only affects the last n — 1
columns. All later steps are similar. In the kth step we take A^k+1^ = QkA^Pk,
where Qk is chosen to zero the last m — k elements in the kth column and P& the
last n — k — 1 elements in the fcth row of the matrix A^. After n steps we have
the required form

(2.6.2)

where

Since QB and PB are orthogonal the singular values of B equal those of A.
The above reduction requires 2n2(m — ̂ n) flops and was first described by

Golub and Kahan [370, 1965]. The Householder vectors associated with QB can
be stored in the lower triangular part of A, and those associated with PB, in the
upper triangular part of A. If QB and PB are explicitly required they can be
accumulated in 2n(m(m — n) + ^n2) and |n3 flops, respectively.

A similar algorithm will reduce a complex matrix A £ Cmxn to real bidiagonal
form using a sequence of complex Householder transformations; see (2.3.8)-
(2.3.9). An algorithm for the singular value decomposition of a complex matrix
is given by Businger and Golub in [143, 1969].

A modified algorithm for computing the bidiagonal decomposition (2.6.2) of
A, which is more efficient when ra > |n, has been developed by Chan [151, 152,
1982]. The idea, also mentioned in Lawson and Hanson [520, 1974, pp. 119, 122],
is to begin by computing the QR decomposition of A:

(2.6.3)

If the SVD algorithm is then applied to R to get R = URYVT, then the SVD of
A is given by

(2.6.4)

The QR decomposition and Householder reduction to bidiagonal form here take
n2(m — ̂ n) and |n3 operations, respectively. Hence the modified reduction to
bidiagonal form requires n2(m + n) flops.

Using Householder transformations it is not possible to take advantage of
the triangular structure when reducing R to bidiagonal form. Using instead
Givens transformations, this can be done as follows. In the first step the elements
rin, • • • i ri3 in the first row are annihilated in this order. To zero out the element

2.6. COMPUTING THE SVD 83

TIJ a Givens rotation GJ-IJ is applied from the right. This introduces a new
nonzero element rj,j-i, which is annihilated by a rotation GJ-IJ from the left.
The first few rotations in the process are pictured below:

(Here © denotes the element to be zeroed, and fill-in elements are denoted +.)
Since two Givens rotations are needed to zero each element, the operation

count is the same as that for the Householder reduction. If the product of the
transformations needs to be accumulated, the Givens reduction will require more
work, unless fast Givens transformations are used. A thorough analysis of the
computational details is given in Chan [151, 1982].

The reduction by Householder transformations is stable in the following
sense. The computed B can be shown to be the exact result of an orthogonal
transformation from left and right of a matrix A + E, where

and c is a constant of order unity. Moreover, if we use the information stored to
generate the products QB = Qi • • • Qn and PB — PI • • • Pn-2 then the computed
result is close to the matrices Q and P which reduce A + E. This will guarantee
that the singular values and transformed singular vectors of B are accurate
approximations to those of a matrix close to A.

2.6.3. The QR algorithm for real symmetric matrices. We first briefly
review the implicit QR algorithm for a real symmetric matrix A E Rnxn, on which
the SVD algorithm is based. In this a sequence of matrices A = AQ, Ai,A2,... is
computed by

(2.6.5)

where Qk is orthogonal, Rk is upper triangular,, and r/t is a shift. Hence in each
step we first compute the QR decomposition of the matrix A^ — r^I. We then
multiply the factors in reverse order and add back the shift. From (2.6.5) it
follows that

Hence each QR iteration is an orthogonal similarity transformation, and thus
the QR iteration preserves the eigenvalues. Under rather general conditions
Ak will tend to a diagonal matrix A whose elements are the eigenvalues of A.
For an account of the convergence theory of the symmetric QR algorithm see

84 CHAPTER 2. BASIC NUMERICAL METHODS

Parlett [651, 1980]. The eigenvectors of A are found by accumulating the product
Pk — QoQi • ' ' Qki k — 1,2,... , of the transformations.

The cost for one QR iteration for a full symmetric matrix A £ Rnxn is about
4n3/3 flops, which is too much to make it a practical algorithm. However, a
real symmetric matrix A can be reduced to symmetric tridiagonal form by an
orthogonal similarity transformation

(2.6.6)

The QR algorithm can now be applied to the reduced matrix. It is easily verified
that the QR algorithm preserves symmetric tridiagonal form; that is, if T is
symmetric tridiagonal, then so is T", where

(2.6.7)

This reduces the cost of each QR step to only O(n) flops per iteration.
If r approximates an eigenvalue of A, then it follows from the convergence

theory that the elements an in the last row and last column of T in (2.6.6) will
approach zero very quickly. When an = 0, 5n must be an eigenvalue, and the
QR iterations can be continued on the deflated matrix obtained by deleting the
last row and column in T. The shift T is usually determined as the eigenvalue A
closest to 6n of the submatrix

which is called the Wilkinson shift. This shift gives guaranteed global
convergence and almost always local cubic convergence, although quadratic
convergence might be possible. The Wilkinson shift may not give the eigenvalues
in monotonic order. There are many other possible schemes for choosing the
shift; see Parlett [651, 1980, Chap. 8].

We say that T is unreduced if all off-diagonal elements o^, k = 2 , . . . , n, are
nonzero. Let T be unreduced and A an eigenvalue of T. Then rank(T—XI) = n—l
(the submatrix obtained by crossing out the first row and last column of T — XI
has nonzero determinant). Hence there is only one eigenvector corresponding to
A and so A must have multiplicity one. Thus all eigenvalues of an unreduced
symmetric tridiagonal matrix are distinct. In the following we assume that T is
unreduced, since otherwise it can be split up into smaller unreduced tridiagonal
matrices. For such matrices the following important uniqueness theorem holds,
which is the basis for the implicit QR algorithm.

THEOREM 2.6.1. Let Q = (#i , . . . ,gn) and V — (vi,...,vn) be orthogonal
matrices such that both QTAQ = T and VTAV = S are real, symmetric
tridiagonal matrices. Ifv\ = q\ and T is unreduced then Vi = ±% i = 2 , . . . , n.

2.6. COMPUTING THE SVD 85

In the QR step (2.6.7) the first transformation PI = R\2 is chosen so that
P\t\ = ±||ii||2ei, where t\ is the first column in T — T/,

The transformation is determined by a call to Algorithm 2.4.2 to set up a Givens
rotation. The result of applying this transformation is pictured below (for n = 5)

To preserve the tridiagonal form we now choose the transformation PI = R<z$ to
zero out the element +, and postmultiply to get

We continue to chase the element + down, with transformations P% = #34,
and after Pn-i = Rn-i,n it disappears. We have then obtained a symmetric
tridiagonal matrix QTTQ, where the first column in Q is PiP^ • • • Pn-iei — -Piei>
which by Theorem 2.6.1 must be the matrix T'.

The simplest way to check when convergence has taken place is to use the
criterion

where the elements refer to the current values. If this is satisfied we set c^ to
zero. The tridiagonal matrix is then split into two smaller tridiagonal matrices,
and the QR algorithm applied to each of them. This criterion is sufficient to
ensure backward stability of the algorithm in the normwise sense.

2.6.4. The QR algorithm for the SVD. We start with describing a QR
algorithm without shift for computing the SVD of a triangular matrix #, which
has been discussed by Chandrasekaran and Ipsen [157, 1992]. Although this
algorithm is not advocated as a practical algorithm for computing the SVD, it
gives insight into the relationship between the QR algorithm for the SVD and
that for the symmetric eigenvalue problem. The algorithm starts with RQ = R,
and for k = 0 ,1 ,2 , . . . computes the Rk+i from the QR decomposition:

(2.6.8)

Hence, in the first iteration, the QR decomposition of the lower triangular matrix
RO — QiRi is computed. In the second iteration, the QR decomposition

86 CHAPTER 2. BASIC NUMERICAL METHODS

RT = Q^Ri of the transpose of the resulting upper triangular matrix R\ is
determined. Then R<2 is related to the original matrix by

and hence R^ has the same singular values as RQ. These two transformations are
mathematically equivalent to one step of the unshifted QR algorithm (see Section
2.6.4) applied to R^Ro = ATA, since

(2.6.9)

The transformations simultaneously amount to one step of the unshifted QR
algorithm to R^R^ = AAT, since

This has been achieved without explicitly forming ATA or AAT. The algorithm
is of interest in refining complete orthogonal decompositions; see Section 2.7.

If we start by reducing A to a bidiagonal matrix B, the algorithm described
above can then be applied to B. We now describe a practical algorithm, which
works on B using an implicit shift technique. We first notice that if in (2.6.2),
ei = 0, then the matrix B breaks into two upper bidiagonal matrices, for which
the singular values can be computed independently. If <& = 0, then B has a
singular value equal to zero. Applying a sequence G^+i, G»,»+2j • • • , Gi>n of Givens
rotations from the left the ith row is zeroed out, and again the matrix breaks up
into two parts. Hence we may, without loss of generality, assume that none of the
elements <ji, <&, e^, i = 2 , . . . , n are zero. This assumption implies that the matrix
BTB has nondiagonal elements QJ+I = qi€i+\ ^ 0, and hence is unreduced. It
follows (see Parlett [651, 1981, Sec. 7.7]) that all eigenvalues of BTB are positive
and distinct, and hence for the singular values of B we have

When the bidiagonal matrix B has been computed we could proceed by
forming the symmetric matrix

whose eigenvalues are ±<Ji, i — 1,... ,n. After reordering rows and columns by
an odd/even permutation C becomes a symmetric tridiagonal matrix with zeros
on the main diagonal,

(2.6.10)

2.6. COMPUTING THE SVD 87

where P is the permutation matrix whose columns are those of the identity in
the order (1, n + 1,2, n + 2, . . . , n, 2n). The implicit QR algorithm could then be
applied to this special tridiagonal matrix.

A disadvantage of applying the QR algorithm to T is that the dimension is
essentially doubled. However, a closer inspection reveals that this algorithm is
equivalent to an algorithm where the iterations are carried out directly on B.
It is also equivalent to an implicit version of the QR algorithm applied to the
symmetric tridiagonal matrix T = BTB, which we now describe.

Forming BTB would lead to a severe loss of accuracy in the small singular
values. It is therefore essential to work directly with the matrix B. To determine
the Wilkinson shift Golub and Reinsch [382, 1970] used the lower right 2 x 2
submatrix in BTB. A more robust way to compute the shift is to r — cr2, where
a is the smallest singular value of the 2 x 2 upper triangular submatrix in B,

An algorithm for computing the singular values of such a matrix to full relative
accuracy has been given by Demmel and Kahan [218, 1990]; see (2.6.20).

In the implicit shift QR algorithm for BTB we determine a Givens rotation
TI = Ri2 so that

where ti is the first column in BTB and T is the computed shift. This rotation
can be determined by a call to the subroutine named givrot in Algorithm 2.4.2.
Next we should apply a sequence of Givens transformations such that

is tridiagonal, but we wish to avoid doing this explicitly. Let us start by applying
the transformation TI to B. Then we get (take n = 5)

If we now premultiply by a Givens rotation Sf = #12 to zero out the + element,
this creates a new nonzero element in the (1,3) position. To preserve the
bidiagonal form we then choose the transformation T^ = #23 to zero out the
element +:

88 CHAPTER 2. BASIC NUMERICAL METHODS

We can now continue to chase the element + down, with transformations
alternately from the right and left until we get a new bidiagonal matrix

But then the matrix

is tridiagonal, where the first column of P equals the first column of T\. If T is
unreduced T must be the result of one QR iteration on T with shift equal to a.

The subdiagonal entries of T equal qi&i+\, i = 1,..., n — 1. If some element
6j+i is zero, then the bidiagonal matrix splits into two smaller bidiagonal matrices

If qi = 0, then we can zero the ith row by premultiplication by a sequence of
Givens transformations .R^+i,..., Ri,n,

 and the matrix then splits as above. In
practice, two convergence criteria are used. After each QR step if

where u is the machine unit, we set e^+i = 0. We then find the smallest p and
the largest q such that B splits into quadratic subblocks

of dimensions p, n — p — g, and g, where B% is diagonal and B<2 has a nonzero
subdiagonal.

Second, if diagonal elements in B^ satisfy

(2.6.13)

set qi — 0, zero the superdiagonal element in the same row, and repartition B.
Otherwise continue the QR algorithm on B^. A justification for these tests is that
roundoff in a rotation could make the matrix indistinguishable from one with a
qi or Cj+i equal to zero. Also, the error introduced in the singular values by the
tests is not larger than some constant times it||.0||2.

When all the superdiagonal elements in B have converged to zero we have

(2.6.14)

Hence the SVD of A is

(2.6.15)

2.6. COMPUTING THE SVD 89

Usually less than 2n iterations are needed in the second phase. One QR iteration
requires 14n multiplications and 2n calls to givrot. Accumulating the rotations
into U requires 6mn flops. Accumulating the rotations into V requires 6n2 flops.

An important implementation issue is that the bidiagonal matrix is often
graded, i.e., the elements may be large at one end and small at the other.
For example, if in the Chan SVD, column pivoting is used in the initial QR
decomposition, then the matrix is usually graded from large at upper left to
small at lower right, as illustrated below:

The QR algorithm tries to converge to the singular values from smallest to largest,
and "chases the bulge" from top to bottom. Convergence will then be fast.
However, if B is graded the opposite way then the QR algorithm may require
many more steps. To avoid this the rows and columns of B should in this case
be reversed before the QR algorithm is applied. Many implementations of the
algorithm check for the direction of grading. If the matrix breaks up into diagonal
blocks which are graded in different ways, the bulge is chased in the appropriate
direction.

If singular vectors are desired, the cost of a QR iteration goes up to 4n2

flops, and the overall cost, to O(ran2). To reduce the number of QR iterations
where transformations are accumulated, we can first compute the singular values
without accumulating singular vectors. If we then run the QR algorithm a second
time with shifts based on the computed singular values (perfect shifts) convergence
occurs in one iteration. This may reduce the cost of the overall computations by
about 40%. However, if fewer than 25% of the singular vectors are wanted, then
inverse iteration should be used instead. The drawback of this approach is the
difficulty of getting orthogonal singular vectors to clustered singular values.

The QR-SVD algorithm can be shown to be normwise backward stable, i.e.,
the computed singular values E = diag (o^) are the exact singular values of a
nearby matrix A -f 8A, where ||&A||2 < c(m,n) • ua\. Here c(m,n) is a constant
depending on m, n> and the machine unit u. From Theorem 1.2.7 it follows that

Thus, if A is nearly rank deficient this will always be revealed by the computed
singular values. Note, however, that the smaller singular values may not be
computed with high relative accuracy.

For a detailed description of the SVD algorithm we refer to Golub and Reinsch
[382, 1970] and Dongarra et al. [228, 1979, Chap. 11]. Chan in [152, 1982]
compares the operation count for the two variants of SVD algorithms in four
different cases depending on whether U and V are explicitly required, where
U = (t/i,t/2)- Only the highest order terms in m and n are kept, and so the

90 CHAPTER 2. BASIC NUMERICAL METHODS

results are correct for relatively large dimensions. It is assumed that the iterative
phase of the SVD takes on average two complete QR iterations per singular value.
In Table 2.6.1 C = 4 if standard Givens transformations are used, and C = 2 if
"fast" Givens transformations are used.

TABLE 2.6.1
Comparison of multiplications for SVD algorithms.

Case Required Golub-Reinsch SVD Chan SVD

Here case a arises in the computation of the pseudoinverse, case c in least
squares applications, and case d in the estimation of condition numbers and
rank determination.

2.6.5. Zero shift QR algorithm. Recently Demmel and Kahan [218, 1990]
have shown how all singular values of bidiagonal matrices may be computed with
high relative accuracy. This is theoretically possible because of the following
perturbation result.

THEOREM 2.6.2. Let B G finxn be a bidiagonal matrix and suppose \8B\ <
uj\B\. Let cr\ > • • • > crn be the singular values of B, and let a\ > • • • > an be the
singular values of B = B -\- 8B. Then if rj = (In — l)uj < 1,

(2.6.16)

and

(2.6.17)

where the relative gap between singular values is

(2.6.18)

Proof. See Demmel and Kahan [218, 1990].

The Demmel-Kahan algorithm is a hybrid of the conventional shifted QR
algorithm and a new, stable implementation of QR with a zero shift. As in the
standard QR algorithm the singular vectors are also available.

A zero shift algorithm introduces simplifications in the QR step as follows.
By (2.6.11), if r = 0, the first transformation is determined so that

2.6. COMPUTING THE SVD 91

Hence, after the first rotation we have an extra zero in the (1,2) position:

This zero will propagate through the algorithm, so that after two more rotations
we have an extra zero in the (2,3) position,

The work in one QR iteration is thereby reduced to only 4n multiplications and
2n calls to givrot. Remarkably this algorithm uses no addition or subtractions,
and hence the zero shift QR algorithm has the property that it computes each
entry of the transformed matrix to high relative accuracy.

ALGORITHM 2.6.1. THE DEMMEL-KAHAN ZERO SHIFT QR ALGORITHM.
The algorithm performs one step of the implicit zero shift QR algorithm on the
bidiagonal matrix B in (2.6.2):

The zero shift QR algorithm is only used on deflated submatrices of B
whose condition number K = ffmax/^mm is so large that the standard shifted
QR algorithm would make unacceptably large changes in the computed <7min.

92 CHAPTER 2. BASIC NUMERICAL METHODS

Although the zero shift algorithm only has linear convergence, it will converge
quickly since crmjn/<7max is very small.

The Demmel-Kahan algorithm will compute the smallest singular values to
maximal relative accuracy and the others to maximal absolute accuracy. Their
algorithm represents a major improvement over the original SVD algorithm as
implemented in the LINPACK library. The new algorithm is generally faster,
and occasionally much faster than the standard algorithm. The zero shift step
has several remarkable features. It uses only about a third as many operations
as the standard shift version. Further, since no additions or subtractions
occur, possible errors from cancellation are avoided. Other important features
of the Demmel-Kahan algorithm are stricter convergence criteria and a very
sophisticated algorithm for computing accurate singular values and vectors of an
upper triangular 2 x 2 matrix; see Section 2.6.6.

Fernando and Parlett [291, 1994] have given an algorithm based on a variant
of the qd-algorithm of Rutishauser [692, 1954]. This algorithm can exploit shift
strategies that are at least quadratically convergent, while preserving maximal
relative accuracy for all the singular values of the bidiagonal matrix. The error
bounds for their algorithm are significantly smaller than those for the Demmel-
Kahan approach. However, there are some difficulties when the singular vectors
also are desired. A related algorithm using an orthogonal qd-algorithm has been
given by von Matt [809, 1995]. This algorithm achieves the same high accuracy
for the singular values and has no difficulties with computing both the left and
right singular vectors.

2.6.6. Jacob! methods for the SVD. Before the advent of the QR
algorithm two different Jacobi-type methods for computing the SVD were
developed. In Kogbetliantz's method [506, 1955] the "norm" of the off-
diagonal elements in A is successively reduced by a sequence of two-sided Givens
transformations. Hestenes [449, 1958] developed an algorithm using one-sided
Givens transformations. These methods have several features which have made
them very popular algorithms for implementation on machines with parallel
architectures. These Jacobi-type algorithms are slower than the QR algorithm,
but can compute singular values of a general matrix more accurately than any
algorithm based on the bidiagonal reduction in Section 2.6.2; see Drmac [233].

In Hestenes' method one-sided Givens transformations are used to find an
orthogonal matrix V such that the matrix AV has orthogonal columns. Then
AV = UT, and the SVD of A is readily obtained. In Hestenes' original algorithm
the columns are explicitly interchanged so that the final columns of AV appear
in order of decreasing norm. The basic step rotates two columns:

(2.6.19)

The parameters c, s are determined so that the rotated columns are orthogonal,
or equivalently so that

2.6. COMPUTING THE SVD 93

is diagonal. This is a 2 x 2 symmetric eigenproblem and can be solved by a Jacobi
transformation. However, this approach may lead to numerical problems since
we are squaring part of the matrix. To determine the rotation we instead first
compute the QR factorization

and then the 2 x 2 SVD R = UY^VT using one of the algorithms given below.
Since (ap, aq}V = (gi, q2)U11 will then have orthogonal columns, V is the desired
rotation in (2.6.19).

A normwise backward stable algorithm for computing the SVD of an upper
triangular 2 x 2 matrix

is outlined in Golub and Van Loan [389, 1989, Problem 8.5.1). In the first step
a Givens rotation is determined to symmetrize the matrix R. In the second step
the symmetric matrix B is diagonalized by a Jacobi transformation.

A method which always gives high relative, accuracy in the singular values and
vectors has been developed by Demmel and Kahan. They note that the singular
values are given by the explicit expression

(2.6.20)

of which the larger is cr\ and the smaller 02 = In 1^*221/01- The right singular
vector (—5r, cr) is parallel to (r^ — <J\,T'\\r\-i) and the left singular vectors are
determined by (c/, s\] = (ruCr — ri2Sr,r22Sr)/cri. These expressions should not
be used directly, since they suffer from possible over/underflow in the squared
subexpressions. However, the computation can be reorganized to provide results
with nearly full machine precision. A Fortran code and a sketch of its error
analysis are given in the appendix of Bai and Demmel [32, 1993].

Note that the SVD produced by Hestenes' method will by construction have
U orthogonal to working accuracy. However, loss of orthogonality in V may
occur, and the columns of V should be reorthogonalized using a Gram-Schmidt
process at the end.

Clearly, Hestenes' algorithm is mathematically equivalent to applying Jacobi's
method to diagonalize C — ATA, and hence its convergence properties are the
same. Convergence of Jacobi's method is related to the fact that in each step the
sum of squares of the off-diagonal elements

94 CHAPTER 2. BASIC NUMERICAL METHODS

is reduced. There are various strategies for choosing the order in which the off-
diagonal elements are annihilated. In a cyclic Jacobi method, the off-diagonal
elements are annihilated in some predetermined order, each element being rotated
exactly once in any sequence of N — n(n — l)/2 rotations called a sweep. For
sequential computers the most popular cyclic ordering is the row-wise scheme,
i.e., the rotations are performed in the order

(2.6.21)

which is cyclically repeated. In practice, with the cyclic Jacobi method not
more than about five sweeps are needed to obtain singular values of more than
single precision accuracy even when n is large. The number of sweeps grows
approximately as 0(logn).

Convergence of any cyclic Jacobi method can be guaranteed if any rotation
is omitted for which the off-diagonal element is smaller in magnitude than some
threshold. To ensure a good rate of convergence this threshold tolerance should
be successively decreased after each sweep. It has been shown that the rate
of convergence is ultimately quadratic, so that for k large enough, we have
S(Ck+i) < cS(Ck)2 for some constant c. The iterations are repeated until
S(Ck} < 8\\C\\p, where 6 is a tolerance, which can be chosen equal to the
machine unit u. The Bauer-Fike theorem (see Golub and Van Loan [389,
1989, Thm. 7.2.2]) then shows that the diagonal elements of Ck then approximate
the eigenvalues of ATA with an error less than £||C||.F-

Parallel implementation can take advantage of the fact that noninteracting
rotations, (p^, <&) and (pj,qj), where pi, qi and Pj,qj are distinct, can be performed
simultaneously. If n is even n/2 transformations can be performed simultaneously,
and a sweep needs at least n — 1 such parallel steps. Several parallel schemes
which use this minimum number of steps have been constructed. These can be
illustrated in the n = 8 case by

The rotations associated with each row of the above can be calculated simulta-
neously.

Hestenes' method works on general real (or complex) matrices A G Rmxn,
ra > n. In the following we can assume without restriction that m — n. If m > n
we first compute the QR decomposition of A and apply the algorithm to the
upper triangular matrix R e Rnxn. Indeed, an initial QR decomposition of A
can be recommended also when m — n, since it tends to speed up convergence
and simplifies the transformations.

2.6. COMPUTING THE SVD 95

In Kogbetliantz's method applied to a square matrix A the elementary step
consists of two-sided Givens transformations

(2.6.22)

where Jpq(4>) and Jpq(
f^} are determined so that a'pq = a'qp = 0. Note that only

rows and columns p and q in A are affected by the transformation. The rotations
Jpq((f>) and Jpq(^} are determined by computing the SVD of a 2 x 2 submatrix

The assumption of nonnegative diagonal elements is no restriction, since we
can change the sign of these by premultiplication with an orthogonal matrix
diag(±l,±l).

Since the Frobenius norm is invariant under orthogonal transformations it
follows that

This relation is the basis for a proof that the matrices generated by Kogbetliantz's
method converge to a diagonal matrix containing the singular values of A.
Orthogonal systems of left and right singular vectors can be obtained by
accumulating the product of all the transformations. Convergence is analyzed
in Paige and Van Dooren [640, 1986] and Fernando [290, 1989].

It can be shown that if Kogbetliantz's method is applied to a triangular
matrix then after one sweep of the row cyclic algorithm (2.6.21) an upper
(lower) triangular matrix becomes lower (upper) triangular. Below we picture
the annihilation of the elements in the first row for n = 4, using Jacobi rotations
in the order (1,2), (1,3), (1,4):

The switching between upper and lower triangular format can be avoided by a
simple permutation scheme; see Fernando [290, 1989]. This makes it possible
to reorganize the algorithm so that at each stage of the recursion one needs
only to store and process a triangular matrix. The reorganization of the row
cyclic scheme is achieved by the following algorithm (see also Luk [551, 1986] and
Charlier, Vanbegin, and Van Dooren [161, 1988]):

96 CHAPTER 2. BASIC NUMERICAL METHODS

Here Pi denotes a permutation matrix that interchanges column (or rows) i and
i -f 1. The permutations will shuffle the rows and columns of Ak so that each
index pair (ik,jk} in the row cyclic scheme becomes an adjacent pair of the
type (ik,ik + 1) when it is its turn to be processed. The permutations involved
are performed simultaneously with the rotations at no extra cost. Note also
that in this scheme only rotations on adjacent rows and columns occur. Below
we picture the annihilation of the elements in the first row for n = 4 for the
reorganized scheme. After the elimination of do the first and second rows and
columns are interchanged. Element 61 is now in the first superdiagonal and can
be annihilated. Again, by interchanging rows and columns 3 and 4, c<i is brought
to the superdiagonal and can be eliminated. The resulting matrix is still upper
triangular!

In the triangular version of Kogbetliantz's method the main transformation
is reduced to finding the SVD of an upper triangular 2 x 2 matrix. This can
be solved using the method by Demmel and Kahan described above. Because
of its simplicity Kogbetliantz's algorithm has been adapted for the computation
of generalized singular value decompositions; see Paige [633, 1986], Heath et al.
[444, 1986], and Bai and Demmel [32, 1993]. Kogbetliantz's algorithm has been
implemented on systolic arrays used for real-time signal processing; see Luk [551,
1986].

2.6.7. Singular values by spectrum slicing. Let A be a real symmetric
matrix. The transformation A = TTAT is called a congruence transformation
of A. Congruence transformations do not, in general, preserve the eigenvalues of
A. However, Sylvester's famous law of inertia says that the signs of eigenvalues
are preserved by congruence transformations

THEOREM 2.6.3. Sylvester's Law of Inertia. Let A be Hermitian and define
the inertia of A to be the number triple in(A) = (TT, z/, 6} of positive, negative,
and zero eigenvalues of A. Then ifT is nonsingular A and A = THAT have the
same inertia.

Proof. See Golub and Van Loan [389, 1989, Thm. 8.1.12].

Sylvester's law of inertia leads to a simple and important method called
spectrum slicing for counting the eigenvalues greater than a given real number
a of a real symmetric matrix A. Assume that symmetric Gaussian elimination
can be carried through for A — al, yielding the factorization

where L is a unit lower triangular matrix. Then A — al is congruent to D, arid
hence by Sylvester's Law of Inertia the number of eigenvalues of A greater than

2.6. COMPUTING THE SVD 97

a equals the number of positive elements 7r(D) in the sequence d i , . . . , dn.
EXAMPLE 2.6.1. The LDLT factorization

shows that the matrix A has two eigenvalues greater than 1.

The LDLT factorization may fail to exist if A — crl is not positive definite.
This will happen, for example, if we choose the shift a = 2 for the matrix in the
example above. Then an — a = 0, and the first step in the factorization cannot
be carried out. A closer analysis shows that the factorization will fail if and only
if a equals an eigenvalue to one or more of the n — 1 leading principal submatrices
of A. If a is chosen in a small interval around each of these values, big growth of
elements occurs and the factorization may give the wrong count. In such cases
one should perturb a by a small amount and restart the factorization from the
beginning.

When A is a symmetric tridiagonal matrix the procedure outlined above
becomes particularly efficient and reliable. Here the factorization is T — crl =
LDLT', where L is unit lower bidiagonal and D = diag(di, . . . , dn). The
remarkable fact is that if we only take care to avoid over/underflow, then element
growth will not affect the accuracy of the slice. We can apply this procedure to
the special symmetric tridiagonal matrix T in (2.6.10). The algorithm can be
simplified by taking advantage of the zero diagonal. Also, we need only consider
the nonnegative part of the spectrum.

ALGORITHM 2.6.2. SPECTRUM SLICING FOR SINGULAR VALUES. Let
(/ i , . . . , qn and 62,. • . , en be the elements of the special tridiagonal matrix T in
(2.6.10). The algorithm generates the number TT of singular values of T greater
than a given value a > 0.

REMARK 2.6.1. To prevent breakdown of the recursion the algorithm should
be modified so that a small \dk\ is replaced by ^/uj, where u is the underflow
threshold.

One slice in using Algorithm 2.6.2 requires only In flops, and it is not
necessary to store the elements d\~. The number of multiplications can be halved
by computing a\ initially, but this may cause unnecessary over/underflow.

98 CHAPTER 2. BASIC NUMERICAL METHODS

A roundoff error analysis shows that, assuming that no over/underflow occurs,
the computed values dk satisfy exactly (let a\ — 0)

where |e^| < u- Hence, the computed number TT is the exact number of singular
values greater than a of a tridiagonal matrix T', where T" has elements satisfying

which is a very satisfactory backward error bound. Combined with Theorem 2.6.2
it shows that the bisection algorithm computes singular values of a bidiagonal
matrix B with small relative errors.

The above technique can be used to locate any individual singular value a^
of B] cf. the bisection algorithm by Barth, Martin, and Wilkinson [56, 1967].
Assume we have two values 07 and au such that for the corresponding diagonal
factors we have

Then cr^ lies m the interval [07, cru), and using p steps of the bisection method cr^
can be located in an interval of length (cru — <j/)/2p. The initial interval can be
determined from Gershgorin's theorem. For the tridiagonal matrix (2.6.10) all
the singular values are contained in the interval

An alternative suggested by Golub and Kahan [370, 1965] is to use, instead
of the sequence of pivot elements d\,..., dn, the Sturm sequence of characteristic
polynomials PJ of leading principal minors of T. If T — 07 = LDLT then

and we have the relation dj(a) — —pj(cr)/pj_i((j). The principal minors can be
computed directly from a linear three-term recurrence but this may suffer severe
under/overflow problems.

An algorithm based on similar recursions as in spectrum slicing for computing
the singular values of a bidiagonal matrix has been given by Li, Rhee, and Zeng
[528, 1995]. This uses Laguerre's iteration instead of bisection and a divide-and-
conquer technique, which makes it more efficient and inherently parallel.

We finally mention that so-called divide-and-conquer methods also show great
promise for computing singular values in parallel; see Jessup and Sorenson [489,
1992] and Gu and Eisenstat [403, 1992].

2.7. RANK DEFICIENT PROBLEMS 99

2.7. Rank Deficient and Ill-Conditioned Problems
Because of roundoff errors, any numerical scheme for computing the pseudoinverse
of a matrix A will, at best, produce the pseudoinverse of a perturbed matrix
A + E. However, Theorem 1.4.1 states that if a matrix A + E is close to A,
but has rank different than A, then its pseudoinverse (A + E}^ will be different
from A^, and the smaller E is, the greater the difference will be. Therefore, the
rank of A must be explicitly determined before we can compute its pseudoinverse
numerically. A similar conclusion holds for solving least squares problems which
are rank deficient or ill-conditioned.

The discontinuity of the pseudoinverse also means that the mathematical
notion of rank is not appropriate in numerical computations. For example, if
the exact matrix A has (mathematical) rank k < n, then the perturbed matrix
A = A + E most likely has full rank n. However, if E is small then A is very
close to a rank deficient matrix and should be considered as numerically rank
deficient. It is important that this is recognized, since overestimating the rank
of A can lead to a computed solution of very large norm, since then components
corresponding to small (numerically zero) singular values are included. A good
discussion of numerical rank deficiency is given by Stewart [744, 1984).

2.7.1. SVD and numerical rank. Prom the above considerations it follows
that the numerical rank assigned to matrix A should depend on a tolerance
which reflects the error level. We make the following definition in terms of the
singular values of A.

DEFINITION 2.7.1. A matrix A is said to have numerical 8-rank equal to k if

(2.7.1)

It follows from this definition, using Theorem 1.2.3, that if k < n then

(2.7.2)

where a^ i = 1,2,..., min(m, n] are the singular values of A, and this infimum is
attained for the matrix

Hence a matrix A has numerical <5-rank k if and only if

(2.7.3)

The definition (2.7.3) is satisfactory only when there is a well-defined gap between
a~k+i and erfc. If the exact matrix A is rank deficient but well-conditioned, then
this should be the case.

The choice of the parameter 6 in (2.7.3) is not always an easy matter. Let
the error in the matrix A be E = (&ij)- Assume that the absolute size of the

100 CHAPTER 2. BASIC NUMERICAL METHODS

elements eij in the error matrix are all about the same size, and that e^| < e,
for all i,j. Then, since

a reasonable choice in (2.7.3) is to take 6 = (ran)1//2e. If the absolute size of the
elements e^ are not about the same, one could try to scale rows and columns of
A so that they become nearly equal; see the discussion in Dongarra et al. [228,
1979, pp. 1.10-12]. Note that any diagonal scaling D\AD<i will induce the same
scaling D\ED<2 of the error matrix. However, in the least squares setting scaling
the rows of A is normally not allowed, since it would change the solution to the
least squares problem. For an interval analysis approach to rank determination,
see Manteuffel [564, 1981].

There are matrices for which no gap exists for any k. Suppose, e.g.,
that <Ji+i = 0.9<7j, i = 1,2,... , n — 1. In this case the rank of the matrix
obviously is not well determined. Problems which yield matrices that lack a
well-determined numerical rank often are discretizations of continuous ill-posed
problems. Examples of such problems are Laplace transformation, inverse heat
equation, and digital image restoration. For such difficult problems additional
information is usually needed to get a meaningful solution. Often a quadratic
constraint on the solution is added in order to get a more well-conditioned
problem; see Section 5.3.

2.7.2. Truncated SVD solutions and regularization. We now consider
solving the linear least squares problem

(2.7.4)

where the matrix A is ill-conditioned and possibly rank deficient. The Gauss-
Markoff theorem (Theorem 1.1.1) states that the least squares solution is the best
unbiased linear estimator of £, in the sense that it has minimum variance. If A
is ill-conditioned this minimum variance is still large. If the estimator is allowed
to be biased, the variance can be drastically reduced. One way to achieve this is
to compute the truncated SVD solution.

Assume that the singular value decomposition of A is

Given 6 and using Definition 2.7.1 we assign a numerical rank k to A. Setting to
zero all singular values <jj, i > k, the corresponding solution can then be written
as an expansion in the right singular vectors

2.7. RANK DEFICIENT PROBLEMS 101

which is the truncated SVD (TSVD) solution. The TSVD solution solves the
related least squares problem

where Ak is the best rank k approximation of A. From Definition 2.7.1 it follows
that

and
(2.7.6)

is called the numerical nullspace of A.
An alternative to TSVD is Tikhonov regularization, introduced by

Tikhonov [775, 1963]. Here one considers the regularized problem

(2.7.7)

where D = diag (d i , . . . , dn] is a positive diagonal matrix. The problem (2.7.7),
also called a damped least squares, is equivalent to the least squares problem

where the matrix A has been modified by appending the matrix rD. When r > 0
this problem is always of full column rank and has a unique solution.

If D = I the singular values of the modified matrix in (2.7.8) are equal to
&i — (c/l + T2)1/2, i = 1, . . . , n. In this case the solution can be expressed in terms
of the SVD as

(2.7.9)

The quantities /; are often called filter factors. Notice that as long as r <C o~i
we have fi « 1, and if r ^> &i then fi <C 1. This establishes a relation to the
truncated SVD solution (2.7.5), and X(T] will approximately equal the truncated
SVD solution for 6 = r.

An advantage of the regularized problem (2.7.8) is that its solution can be
computed from the QR decomposition

(2.7.10)

This can be obtained by a small modification of any of the methods described
in Section 2.4. As an example, consider the Householder QR factorization. The
shape of the transformed matrix after k = 2 steps is shown (m = n = 4):

102 CHAPTER 2. BASIC NUMERICAL METHODS

Notice that the first two rows of D have filled in, but the remaining rows of D are
still not touched. For each step k = 1,. . . , n there are ra elements in the current
column to be annihilated. Therefore the operation count for the Householder
QR decomposition will increase with n3/3 to ran2 flops. A similar increase in
operations occurs in Givens or MGS QR decompositions.

If there is no a priori information which can be used to establish the numerical
rank, or in the case of regularization the value of the parameter r, then the so-
called L-curve method can be useful. It derives its name from a plot of the curve
(\\b—Axr\\, \\XT\\} in a doubly logarithmic scale, which typically forms an L-shaped
curve. The idea is to choose the regularization parameter T near the "corner"
of this L-curve, since this represents a compromise between a small residual and
a small solution; see Hansen [432, 1992). Using this curve for determining the
optimal regularization parameter seems to have been suggested first by Lawson
and Hanson [520, 1974, Chap. 26].

Even with regularization we may not be able to compute the solution of an
ill-conditioned problem with the accuracy that the data allows. In those cases
it is possible to improve the solution by the following iterated regularization
scheme due to Riley [687, 1956] and analyzed by Golub [364, 1965]. Take x^ = 0,
and compute a sequence of approximate solutions by

where 8x^q' solves the least squares problem

This iteration may be implemented very effectively since only the QR decomposi-
tion (2.7.10) (with D = I) is needed. The convergence of iterated regularization
can be expressed in terms of the SVD of A.

Thus for q = 1 we have the standard regularized solution and as q —> oo
x(q) __). ^tfr. A related scheme has been suggested by Rutishauser [695, 1968].

(2.7.11)

(2.7.12)

2.7. RANK DEFICIENT PROBLEMS 103

2.7.3. QR decompositions with column pivoting. The SVD is in general
the most reliable method for determining the numerical rank of a matrix.
However, in practice, the QR decomposition often works as well and requires
less work. Further, if a basic solution is wanted rather than the minimal norm
solution (see Section 1.3.3) then the QR decomposition is the relevant tool.

To compute a QR decomposition which reveals the rank of A, we first consider
modifying the algorithms given in Section 2.4 by introducing column pivoting.
A QR decomposition with column pivoting was first introduced by Golub [364,
1965]. We now show how to incorporate this standard column pivoting scheme
into the QR decomposition by Householder transformations.

Suppose that after (k — 1) steps in Algorithm 2.4.1 we have computed

(2.7.13)

where Rn is upper triangular, Q — P\ • • • Pk-i is a product of Householder
matrices, and H = HI • • • Hfc_i is a product of elementary permutation matrices.
We let

and choose the permutation matrix H^ to interchange columns p and fc, where p
is the smallest index that satisfies

Hence the pivoting scheme is equivalent to searching for the column of largest
(k)norm in the submatrix A22 • In particular, in the first step the column of largest

norm in A is selected as the pivot column. Obviously, for this column pivoting
to work it is essential that the columns of A are well scaled.

With the column pivoting scheme described above, the diagonal elements in
R will form a nonincreasing sequence r\\ > r^i > • • • > rnn. It is easily shown
that in fact the elements in R will satisfy the stronger inequalities

(2.7.14)

In particular, this implies that if r^k — 0? then TIJ — 0, z, j > k.
(k)REMARK 2.7.1. If the column norms in A22 are recomputed at each stage,

then column pivoting will increase the operation count of the Algorithm 2.4.1 by
one-half. An alternative is to compute the norms of the columns of A initially:

(2.7.15)

and then update these values for k = 1 ,2 , . . . , r -f 1 using the recursion

(2.7.16)

104 CHAPTER 2. BASIC NUMERICAL METHODS

(Naturally, the s^ ''s must be interchanged if the columns of A22 are inter-
changed.) Using (2.7.16) will reduce the overhead of column pivoting to O(mn)
operations. However, some care must be taken to avoid numerical problems; see
Dongarra et al. [228, 1979, pp. 9.16-9.18].

REMARK 2.7.2. The pivoting scheme will in the fcth step select a pivot column
which maximizes the diagonal element r^. This is equivalent to choosing at the
fcth step a pivot column with largest distance to the subspace

where Ak-i is the submatrix of A formed by the columns corresponding to the
first k — 1 selected pivots. In other words the pivot column maximizes

(2.7.17)

Note that this column pivoting scheme applies to pivoting in the QR decomposi-
tion of A as well as in the Cholesky factorization of ATA.

REMARK 2.7.3. Column pivoting can similarly be implemented in the row-
wise version of the MGS method, Algorithm 2.4.5. Here, after (k — 1) steps, we
have transformed the nonpivotal columns according to

(k}It follows that Oj ' is just the orthogonal projection of a,j onto the orthogonal
complement of 7£(Afc_i) = span{gi,..., qk-i}- Hence, in the kih step we should
maximize

These quantities can be updated by the same formulas (2.7.16) as for the
Householder and Cholesky algorithms, but again some care is necessary to avoid
numerical cancellation.

Suppose that in the decomposition (2.7.13) we have

(2.7.18)

for some small tolerance e > 0. It follows that by putting A22 = 0, we introduce
a perturbation Ek in the original matrix A such that A + Ek has rank k — 1, and
\\Ek\\2 < <5- Hence A has numerical <5-rank equal to at most k — l. From (2.7.14)
it follows that

In particular we have
(2.7.19)

2.7. RANK DEFICIENT PROBLEMS 105

Hence, if
(2.7.20)

then (2.7.18) holds with e = (n - k + l)1/2^ Hence the criterion (2.7.20) can be
used to determine an upper bound for the numerical rank.

REMARK 2.7.4. Above it was assumed that rounding errors in the QR
decompositions can be neglected. From the rounding error analysis of the
Householder algorithm (cf. Remark 2.4.2) we know that A^ is exactly ortho-
gonally equivalent to A + £/-, where

(2.7.21)

Using Theorem 1.2.7 we get from (2.7.18)-(2.7.21)

Hence if (2.7.18) is satisfied, then A has numerical. <5-rank at most equal to
r = k — 1, for

Although the pivoting strategy described has been found to seldom fail in
practice, it cannot be guaranteed to reveal the rank of A. Although it is true
that if the algorithm with column pivoting for the QR decomposition terminates
with a small diagonal element r/^, then A is close to a matrix of rank k — 1, the
converse does not hold. As the following example shows, a triangular matrix R
can be nearly rank deficient without any diagonal element r^ being small.

EXAMPLE 2.7.1. (See Kahan [495, 1966, pp. 791-792].) Consider the upper
triangular matrix

The matrix Rn is upper triangular, and it can be verified that it satisfies the
inequalities (2.7.14). Therefore Rn is invariant under the algorithm for QR
decomposition with column pivoting. For n=100,c = 0.2 the smallest singular
value is an = 0.368 • 10~8, but rnn — sn~l = 0.133. Hence, the near singularity
of Rn is not revealed!

The inequalities (2.7.19) give upper and lower bounds for cri(R) in terms of
rn. For the smallest singular value o~n(R) we have, assuming that rnn ̂ 0,

since the diagonal elements of R J equal r^1, i = l , . . . ,n . Hence \rnn\ is an
upper bound for <jn. If the elements of R satisfy (2.7.14), then we also have the
lower bound

(2.7.22)

(2.7.23)

106 CHAPTER 2. BASIC NUMERICAL METHODS

For a discussion of this lower bound, which was first given in Faddeev,
Kublanovskaya, and Faddeeva [284, 1968], we refer to the excellent survey by
Higham [455, 1987]. The matrices Rn in Example 2.7.1 show that this lower
bound can almost be attained.

2.7A. Pseudoinverse solutions from QR decompositions. Suppose we
have obtained a QR decomposition of the form

(2.7.24)

with RU nonsingular. Then it is easily verified that an explicit basis for the
nullspace of .AIT is given by the columns of the matrix

(2.7.25)

Using the decomposition (2.7.24) the least squares problem (2.7.4) becomes

(2.7.26)

where d = QT6, and x = UTx have been partitioned conformably. It is easily seen
that for any given #2 we can always determine x\ so that the first r components of
the residual vector in (2.7.26) is zero. It follows that #2 can be chosen arbitrarily,
and that the general solution of (2.7.26) can be written

In particular, if we take x^ = 0, we obtain the solution

(2.7.28)

with at most r = rank (A) nonzero components corresponding to the r columns in
AI, where AU = (A\,Ai}. Any such solution, where Ax only involves at most r
columns of A, is called a basic solution. In several applications a basic solution
is desired, e.g., when the columns of A represent factors in a linear model, and
the vector of observations b should be fitted using as few variables as possible.

In order to simplify notations we assume in the following that in (2.7.13) we
have II = /. This is no restriction, since the permutation of the columns of A can
always be assumed to have been carried out in advance. The QR decomposition
(2.7.13) can also be used to compute the pseudoinverse solution to (2.7.4). This
solution minimizes \\x\\2, which by (2.7.27) is equivalent to the linear least squares
problem

(2.7.29)

2.7. RANK DEFICIENT PROBLEMS 107

where we have put p = n — r. Note that this has the form of a regularized least
squares problem; see Section 2.7.2. S and Xb can be computed in about |r2(p+l)
flops by back-substitution in

Note that S and x^ can overwrite R\2 and d\.
Since the matrix in (2.7.29) always has full column rank, X2 can be computed

from the normal equations

using a Cholesky factorization of (STS + In~r)- This method, which is further
studied by Deuflhard and Sautter [227, 1980], takes about \rp(p+ 1) + |p3 flops.
When X2 has been determined, then we have x\ = x^ — Sx^- Alternatively,
(2.7.29) can be solved using the QR decomposition

(2.7.30)

Here RS is nonsingular, and it follows that X2 = R^fi- This algorithm is
only slightly less efficient than using the normal equations and takes rp2 flops.
Both methods have good stability provided that column pivoting has chosen
#11 so that K(RU] is not much larger than K,(A). This is usually the case if
standard column pivoting is used, although counterexamples can be constructed
where K(RU) ~ 2HK,(A). An alternative method which is backward stable can be
obtained by using a complete orthogonal decomposition of A; see Section 2.7.6.

The pseudoinverse solution will minimize \\x\\2- It should be stressed that
this is not always a good way to resolve rank deficiency, and the following more
general approach is often to be preferred. For a given matrix B G RPXH with
linearly independent rows, consider the problem

(2.7.31)

Substituting the general solution (2.7.27) we find that (2.7.31) is equivalent to

(2.7.32)

which is a linear least squares problem of dimension p x (n ~ r}. If this problem
is not rank deficient, then (2.7.31) has a unique solution which can be computed
by solving (2.7.32) for xi and then substituting the solution in (2.7.27).

EXAMPLE 2.7.2. The special case B = I gives the minimal norm solution.
Often one wants to choose B so that ||-Bx||2 is a measure of the smoothness of
the solution x. For example, we can let B be a discrete approximation to the
second derivative operator,

(2.7.33)

108 CHAPTER 2. BASIC NUMERICAL METHODS

2.7.5. Rank revealing QR decompositions. According to Theorem 1.3.5,
if A 6 Rmxn, m>n, then there exists for any 0 < k < n a rank revealing column
permutation II such that the QR decomposition of AH has the form

(2.7.34)

where ffk(Rii) > \Ok, 11-^22Ih < c&k+i, and c < ̂ r(n - r) + min(r, n - r), where
ra > n and 0 < r < n. Thus c < (n + l)/2. In particular, if A has numerical
£-rank equal to fc, then there is a column permutation such that H/folh < c6-
If H/222 Ih is small then the matrix W in (2.7.25) gives a basis for the numerical
nullspace, since

A systematic study of algorithms for determining rank revealing QR (RRQR)
decompositions is found in Chandrasekaran and Ipsen [159, 1994]. We here
describe an algorithm developed by Chan [153, 1987] for computing a rank
revealing QR decomposition. (A similar algorithm was proposed independently
by Foster [308, 1986].) The algorithm proceeds in three steps. First we
compute any QR decomposition of A. Then an approximate right singular
vector corresponding to the smallest singular value of R is computed, and a
column permutation II is determined by inspecting its elements. The initial QR
factorization is then updated to give the QR decomposition for AH. This process
is repeated until a rank revealing decomposition is obtained.

The idea of finding column permutations from singular vectors was first used
in a procedure for subset selection by Golub, Klema, and Stewart [371, 1976]; see
Section 2.7.6. Here we need the following simple result.

LEMMA 2.7.1. (See Chan [153, 1987].) Let the vector v, \\v\\2 = 1, satisfy
\\Av\\2 = e, and let H be a permutation such that ifHTv = w, then wn\ = \\W\\OQ-
If

is the QR decomposition of AH, then \rnn\ < n1/2e.
Proof. Since \wn\ = IMIoo an(^ 1Mb = 1Mb = 1> i* follows that \wn\ > n"1/2.

Further,

and since the last component of the vector Rw is rnniun we have

from which the lemma follows.
In particular, if we take v = vn, where vn is the right singular vector

corresponding to the singular value an(A), we have Av — &nun, and hence from
Lemma 2.7.1
(2.7.35)

2.7. RANK DEFICIENT PROBLEMS 109

Chan suggests that an approximation w to vn is computed by one or two steps
of inverse iteration applied implicitly to RTR: for i — 1 ,2 , . . . ,

(2.7.36)

Usually two steps suffice if an efficient condition estimator (see Section 2.8.1) is
used to select the initial vector w/1). Since only two triangular solves are needed
in each iteration, this step only costs O(n2) flops.

From w an elementary permutation matrix II is determined as above. Then
the QR decomposition RU = QR is computed, which gives

an RRQR decomposition of AH. The QR decomposition of RU can be computed
in less than 2n2 flops using updating techniques to be described in Section 3.2.
Hence the computational complexity of the RRQR decomposition is only slightly
larger than that of the standard QR decomposition.

Chan [153, 1987] has extended the above procedure to the case when
rank (A) < n — 1, by repeatedly applying the one-dimensional algorithm to
smaller and smaller leading blocks of R. He shows that the resulting algorithm
is guaranteed to work for matrices of small rank deficiency, and that it is very
likely to work also for large rank deficiency.

Let r be a user tolerance, and for k = n, n — 1,... do:

1. Partition

and determine 6k = crmin(JRn) and the corresponding right singular
vector w/f.

2. If 6f~ > T then set rank (A) = k and finish.

3. Determine a permutation matrix P such that \(PTWk}k\ — ||-PTWfc||oo-
4. Compute the QR decomposition R\\P — QR\\, and update

5. Let Wk = (n) , assign to the kth column of W', and update

where W^ is upper triangular and nonsingular.

By the interlacing property of singular values, Theorem 1.2.9, it follows that
the 6i are nonincreasing and that the singular values <jj of A satisfy 6i < a^,
k + I < i < n. Chan [153, 1987] proves the following upper and lower bounds.

ALGORITHM 2.71.1RRQR.Compute any QR decomposition AII- Q

110 CHAPTER 2. BASIC NUMERICAL METHODS

(i) (i)THEOREM 2.7.1. Let R^ and W2 denote the lower right sub-matrices of
dimension (n — i + 1) x (n — i + l) of R^2 and ^2? respectively. Let di denote the
smallest singular value of the leading principal i x i submatrices of R. Then for
i = k + 1,... , n,

Hence H-R^lb are easily computable upper bounds for 0{. Further, the
outermost bounds in the theorem show that if \\(W^\ }~l\\2 is not large then
6i and H-ft^lh are guaranteed to be tight bounds, and hence the decomposition
will have revealed the rank.

The matrix W determined by the RRQR algorithm satisfies

(2.7.37)

Therefore K(TIW) in the RRQR algorithm is a good approximation to the
numerical nullspace Nk(A). A more accurate and orthogonal basis for J\fk(A]
can be determined by simultaneous inverse iteration with RTR starting with W.
If R has zero or nearly zero diagonal elements a small multiple of the machine
unit is substituted. The use of RRQR decompositions for computing truncated
SVD solutions is discussed by Chan and Hansen [154, 1990].

If the matrix A has low rank rather than low rank deficiency, it is more
efficient to build up the rank revealing QR decomposition from estimates of
singular vectors corresponding to the large singular values. Such algorithms are
described by Chan and Hansen in [156, 1994].

2.7.6. Complete orthogonal decompositions. The RRQR decomposition
has the advantage over the SVD that it is cheaper to compute and can be cheaply
updated; see Section 3.2. However, it is less suitable in applications where a basis
for the approximate nullspace is needed since the matrix W in (2.7.25) cannot
easily be updated.

The decomposition (2.7.34) can be carried one step further to obtain a
complete orthogonal decomposition of A. Assume first that #22 = 0, and
postmultiply by a sequence of Householder transformations such that

Here Pj = I — ̂ lujuj, j = fc, k — 1, . . . , 1, where Uj has nonzero elements only
in positions j, k -f 1,... , n and chosen so that the elements in row j of R\% are
annihilated. These transformations require k2(n — k} flops. Then we obtain

(2.7.38)

2.7. RANK DEFICIENT PROBLEMS 111

Hanson and Lawson [437, 1969] first suggested the use of a complete orthogonal
decomposition to solve rank deficient least squares problems. It has the advantage
that it explicitly provides an orthogonal basis for the nullspace of A, and a
representation for the pseudoinverse.

THEOREM 2.7.2. Assume that we have a complete orthogonal decomposition
(2.7.38) of A. Then ifV = (Vi, 1/2), V<2 gives an orthogonal basis for the nullspace
of A, and the pseudoinverse of A is

(2.7.39)

Proof. It is immediately verified that AV<2 — 0, and a dimensional argument
shows that V<2 spans the nullspace of A. Using the orthogonal invariance of the
/2-norm it follows that V\R~1Q^b gives the minimum norm solution of the least
squares problem min^ \\Ax — b\\%. Since the pseudoinverse is uniquely defined by
this property, the theorem follows.

We define a rank revealing complete orthogonal decomposition to have the
form

(2.7.40)

where U and V are orthogonal matrices, Rn € Rfcxfc, and

(2.7.41)

This is also often called a rank revealing URV decomposition. Prom (2.7.40) we
have

Hence the orthogonal matrix V-2 can be taken as an approximation to the
numerical nullspace A/fc.

Stewart [749, 1992] has shown how to compute a rank revealing complete
orthogonal decomposition from an RRQR decomposition (2.7.38). Let wn be
the last column in the matrix W giving the numerical nullspace. Determine a
sequence of Givens rotations that eliminates the first n — 1 components of wn,

Next an orthogonal matrix P such that PTRQ is upper triangular is determined.
This is done by applying the rotations G\i,..., Gn-\^n from the right to R as
shown below. When a rotation GJ-IJ is applied to two columns of .R a nonzero
element is introduced just below the diagonal of R. A left rotation can be used
to eliminate this nonzero and restore the triangular form.

112 CHAPTER 2. BASIC NUMERICAL METHODS

This process requires O(n2) multiplications. We now have

If ||/faun||2 < |^nn|? then since P is orthogonal it follows that

This bounds the norm for the last column of the transformed matrix R. If
|rn_i tn_i| is small we can continue this deflation on the principal submatrix of
order n — 1 of R.

Stewart [748, 1991] has suggested a refinement process for the decomposition
(2.7.40), which reduces the size of the block #12, and increases the accuracy in the
nullspace approximation. The refinement step can be viewed as one step of the
unshifted QR algorithm, (2.6.9), and can be iterated. It will converge quickly if
there is a large relative gap between the singular values a^ and <7fc+i. Alternatively
one can work with the corresponding decomposition of lower triangular form, the
rank revealing ULV decomposition

For this decomposition with the partitioning V — (Vi, V^),

Hence the size of ||L2i||F does not adversely affect the nullspace approximation.
Suppose we have a rank revealing decomposition

where L\\ and £22 are lower triangular and

(Note that such a decomposition can be obtained from a rank revealing QR
decomposition by reversing the rows and columns of the /^-factor.) Then a rank
revealing ULV decomposition can be obtained by a similar procedure as shown
above for the URV decomposition. Suppose we have a vector w such that ||u>TL||2
is small. Then, as before, w is first reduced to the unit vector en,

The sequence of Givens rotations are then applied to L from the left, and extra
rotations from the right used to preserve the lower triangular form; see Stewart
[752, 1993].

2.7. RANK DEFICIENT PROBLEMS 113

2.7.7. Subset selection by SVD and RRQR> Given a matrix A e Rmxn

the subset selection problem is the problem of determining the k < n most
linearly independent columns of A. In other words we want to find a permutation
II such that the k first columns of AH are as well-conditioned as possible. The
RRQR algorithm can be used to compute a solution to this problem. A basic
solution to the least squares problem minx \\Ax — b\\2 can then be computed from
the QR decomposition of the k columns selected from A.

We now consider an SVD-based algorithm for solving the subset selection
problem given by Golub, Klema, and Stewart [371, 1976]; see also Golub and
Van Loan [389, 1989, Sec. 12.2].

ALGORITHM 2.7.2. SUBSET SELECTION BY SVD. Given A e Rmxn, b e Rm,
the following algorithm computes a permutation matrix II such that the first k
columns of AH are sufficiently independent and a vector z G Rfc which solves

1. Compute S and V in the SVD of A,

A = UXVT, £ = diag(<7i , . . . ,<7 n) ,

and use it to determine the numerical rank k of A.

2. Partition the matrix of right singular vectors according to

and use QR with column pivoting to compute

3. Let II/ be the permutation matrix which performs the interchange

Set AH — (B\,B<2) where II = II/IHI/, II is the permutation matrix from step 2,
and BI 6 Rmxr. Compute the QR decomposition of B\ and solve

If the Chan SVD algorithm, which computes the QR decomposition of A as
an intermediate step, is used in step 1, Householder QR in step 2 and updating
techniques in step 3, then this algorithm requires a total of ran2 + 19n3/3 — n2k +
4k3/3 flops. The key step is step 2, where the permutation n will tend to make
V22 well-conditioned, where

114 CHAPTER 2. BASIC NUMERICAL METHODS

It can be shown (Golub and Van Loan [389, 1989, Thm. 12.2.1]) that the singular
value ak(Bi) is bounded by

(2.7.43)

which is the theoretical basis for this selection strategy.
A comparison between the RRQR and the above SVD-based algorithms is

given by Chan and Hansen [155, 1992]. Although in general the methods will not
necessarily compute equivalent solutions, the subspaces spanned by the two sets
of selected columns are still almost identical whenever the ratio &k+i/crk is small.

2.8. Estimating Condition Numbers and Errors
In Sections 1.4.2 and 1.4.4 we gave normwise and componentwise perturbation
bounds for the solution to least squares problems. The bounds for the normwise
perturbation in x depend critically on the condition number n(A) = ai(A)/crn(A).
However, unless the SVD of A is available, the computation of vn(A) is more
demanding than the computation of the least squares solution x. Hence there is
a need for efficient and reliable methods to estimateK(A). Since the condition
number is invariant under an orthogonal transformation we have

where R is the upper triangular factor in the QR decomposition of A. Hence a
bound for K(A) can be obtained from R~l. However, to compute R~l requires
n3/6 flops, and would significantly increase the work. In this section we discuss
methods to estimate the condition number of a triangular matrix R, which only
require O(n2) flops. An excellent survey of such condition estimators is given by
Higham [455, 1987].

2.8.1. The LINPACK condition estimator. Combining the estimates
(2.7.19) and (2.7.22) we obtain the lower bound

(2.8.1)

As shown by Example 2.7.1, this is not entirely reliable as a condition estimate
since \rnn\ may considerably overestimate the smallest singular value <jn even
when column pivoting is used in the QR decomposition. However, there is much
empirical evidence to suggest that it is very rare for the lower bound in (2.8.1)
to considerably differ from K,(A). In extensive numerical testing by Stewart [736,
1980] on randomly generated test matrices the bound usually underestimated the
condition number only by a factor of 2-3 and never by more than 10.

The number p = \rnn\ has a nice interpretation: it is the norm of the smallest
perturbation of the last column in A that will make A exactly rank deficient.
Stewart [744, 1984] has suggested computing the set of numbers {pi,p2, • • • , p n }
for a sequence of permutations, which moves each column of A to the last position,
using the updating techniques referred to above.

2.8. ESTIMATING CONDITION NUMBERS AND ERRORS 115

We now describe a condition estimator given by Cline et al. [175, 1979].
It is included in the LINPACK collection as the Fortran subroutine STRCO
(Dongarra et al. [228, 1979]), and therefore often referred to as the LINPACK
condition estimator. The basic algorithm is as follows:

1. Choose a vector d such that ||2/||/||d|| is large where RTy = d.

2. Solve Rz — y, and estimate

In STRCO the norm is the 1-norm, but the algorithm can be used also for the
2-norm or oo-norm.

In the LINPACK estimator we have RTRz = d, and hence

(2.8.2)

Hence the LINPACK estimator is equivalent to performing one step of inverse
iteration with ATA. If R = U^VT is the SVD of R, expanding d in terms of the
right singular vectors V, we have

Hence, provided an, the component of d along un, is not very small, the vector z
is likely to be dominated by its component of i>n, and

(2.8.3)

will usually be a good estimate of a~l.
In the LINPACK algorithm the vector d is chosen as

where the sign of dj is determined adaptively at the stage when yj is computed.
We note that the equation Ry = d can be solved by a column-oriented version of
back-substitution:

At the jith step the element dj = ±1 is chosen so as to maximize a weighted sum
of dj — Sj and the partial sums Sj-i , . . . , si, which are to be computed in this step.

116 CHAPTER 2. BASIC NUMERICAL METHODS

For details of this strategy see Cline et al. [175, 1979]. This estimator requires
only about 2n2 flops. Examples of parametrized matrices have been constructed
for which the LINPACK estimate can underestimate the true condition number
by an arbitrarily large factor. However, in practice it performs very reliably and
produces good order of magnitude estimates; see Higham [455, 1987].

O'Leary [605, 1980] has suggested a modification to the LINPACK condition
estimator, which can improve the estimate. She estimates HT^Hi by

which also makes use of information from the first step. Cline, Conn, and Van
Loan [174, 1982] have described a generalization of the LINPACK algorithm
which incorporates a "look-behind" technique, which allows for the possibility of
modifying previously chosen dj's, and gives an algorithm for the 2-norm which
requires 5n2 flops.

Another possibility (already mentioned in Cline et al. [175, 1979]) is to choose
the vector d as a random vector of unit length and perform several steps of inverse
iteration,

As an estimate of the condition,

is used. Higham [455, 1987] reports that there is often a significant improvement
in 72 over 71, and suggests that the number of steps p is chosen adaptively.

The condition estimator will detect near rank deficiency of the matrix A even
in the (unusual) case when this is not revealed by a small diagonal element in
R. This is important, since failure to detect near rank deficiency can lead to
meaningless solutions of very large norm, or even to failure of the algorithm.

2.8.2. Hager's condition estimator. Hager [420, 1984] has given an algo-
rithm for estimating the 1-norm (or oo-norm) of a matrix B G Rnxn. Hager's
algorithm is based on convex optimization and uses the observation that \\B\\i is
the maximal value of the convex function

over the convex set S = {x e Rn | \\x\\i < I } . From convexity results it follows
that the maximum is attained at one of the vertices e^, j = l , . . . ,n , of S.
From this observation Hager derives the following algorithm for finding a local
maximum that with high probability is also the global maximum.

2.8. ESTIMATING CONDITION NUMBERS AND ERRORS 117

ALGORITHM 2.8.1. HAGER'S NORM ESTIMATOR. Given a matrix B e Rnxn

this algorithm computes y = Bx such that 7 = IMI i / l l x l l i < l l^ l l i - Let
e — (1,1,. . . , 1)T, €j be the jth unit vector, and £ = sign(?/) where & = ±1
according to whether yi > 0 or yi < 0. Set x = e/n and repeat:

The algorithm tries to maximize the function f(x] = ||Bx||i subject to
||a;||i = 1. The vector z computed at each step can be shown to be a subgradient
of / at x. From convexity properties,

Hence if Zj\ > ZTX for some j, then / can be increased by moving from x to the
vertex ej of S. If, however, ||-z||<x> < ZTX, and if yj / 0 for all j, then x can be
shown to be a local maximum point for / over S.

The estimates produced by Hager's algorithm are generally sharper than
those produced by the LINPACK estimator. Its results are frequently exact,
usually good (7 > 0.1||£?||i), but sometimes poor. The algorithm almost always
converges after at most four iterations, and Higham [461, 1990] recommends that
between two and five iterations be used. The cost for estimating ||-R||i for a
triangular matrix R is then approximately 3n2 flops in practice. Note that if
Hager's algorithm is applied to BT we obtain an estimate of ||-B||oo-

Higham has made several modifications to Hager's norm estimator, which
improves its performance. In [458, 1988] he gives two Fortran 77 codes
implementing the modified algorithm for the 1-norm of a real or complex matrix.
This algorithm is used for all the condition number estimations in LAPACK; see
[16, 1995]. For further details and comments on the algorithm, see Hager [420,
1984] and Higham [462, 1990].

An important feature of Hager's norm estimator is that to estimate H^?"1]!!
we only need to be able to solve linear systems By — x and BTz = £. This
feature makes it useful for estimating the componentwise error bounds given in
Section 1.4.4. For the least squares problem the bound (1.4.25) can be written
in the form ||&c||oo < u;cond(A, fo)^)^, where

and

(2.8.4)

(2.8.5)

118 CHAPTER 2. BASIC NUMERICAL METHODS

It is possible to get an inexpensive and reliable estimate of Kr(A, b) using Hager's
algorithm. The key idea is to note that the terms in (2.8.4) are all of the form
Ill-^bllocn where g > 0. Following Arioli, Demmel, and Duff [20, 1989] we let
G = diag (g). Then g = Ge where e is a, column vector of all ones, and using the
properties of the /oo-norm we have

Hence Hager's algorithm can be applied to estimate |||5|̂ ||oo provided that
matrix-vector products BGx and GTBTy can be computed efficiently. Hence
to estimate cond (A, 6) we need to be able to compute matrix-vector products
of the forms A^x, (A^)Ty, and (ATA)~lx. This can be done efficiently if, for
example, the QR decomposition of A is known.

2.8.3. Computing the variance-covariance matrix. Consider the linear
statistical model
(2.8.6)

Assume that rank (A) = n, and that the random vector e has zero mean and
variance-covariance matrix cr2/, i.e., £(e) = 0 and V(e) = cr2/. Then by Theorem
1.1.1 (the Gauss-Markoff theorem) the least squares estimate x is the linear
unbiased estimator of x with minimum variance equal to

(2.8.7)

where R is the Cholesky factor of ATA. An unbiased estimate of d2 is given by

(2.8.8)

In order to assess the accuracy of the computed estimate of x it is often required to
compute the matrix Vx or part of it. In particular the variance of the component
Xi is given by the diagonal element va in Vx.

The residual vector f = b — Ax has variance-covariance matrix equal to

(2.8.9)

where Q = (Qi, Q^} is the orthogonal matrix in the QR decomposition of A. The
normalized residuals

are often used to detect and identify single or multiple bad data, which is assumed
to correspond to large components in f.

In many situations the matrix Vx only occurs as an intermediate quantity in
a formula. For example, the variance of a linear functional (p — fTx is equal to

(2.8.10)

where z = R~Tf. Thus the variance may be computed by solving the triangular
system RTz = f and forming ZTZ. This is a more stable and efficient approach
than using the expression involving Vx.

2.8. ESTIMATING CONDITION NUMBERS AND ERRORS 119

To compute Vx = (?2CX in the nonsingular case we can first compute the
inverse S = R~l and then form Cx = SST. The matrix S satisfies the triangular
system RS = I. It follows that S is also upper triangular, and its elements can
be computed by the following algorithm:

Here the elements of S can overwrite the corresponding elements of R in storage.
The algorithm requires n3/6 flops.

The elements of diag (Cx) = diag (SST) are just the 2-norms squared of
the rows of S and can be computed in a further n2/2 flops by GU = X^^s^-,
i ~ 1 ,2 , . . . , n. The matrix Cx is symmetric, and therefore we need only compute
its upper triangular part. This takes n3/6 flops and can be sequenced so that the
elements of Cx overwrite those of S.

In case Cx is needed there is an alternative way of computing Cx without
inverting R. We have from (2.8.10), multiplying by R from the left,

(2.8.11)

The diagonal elements of R~T are simply r^!, k = n , . . . , 1, and since R~T is
lower triangular it has ^n(n — 1) zero elements. Hence, ^n(n + 1) elements of
R~~T are known and the corresponding equations in (2.8.11) suffice to determine
the elements in the upper triangular part of the symmetric matrix Cx.

To compute the elements in the last column cn of Cx we solve the system

by back-substitution. This gives

(2.8.12)

By symmetry cni = Qn, i = n — 1, . . . , 1, so we also know the last row of Cx.
Now assume that we have computed the elements Cij = Cji, j = n,..., k + 1,
i < j. We next determine the elements c^, i < k. We have

120 CHAPTER 2. BASIC NUMERICAL METHODS

and since the elements C(-j — Cjfc, j = k + 1,. . . , n, have already been computed,

(2.8.13)

Similarly, for i = k — 1,. . . , 1,

(2.8.14)

Using the formulas (2.8.12)-(2.8.14) all elements of Cx can'be computed in about
n3/3 flops. For the case when the Cholesky factor R is sparse it is possible to use
the above algorithm to compute elements of Cx in positions where R has nonzero
elements very efficiently] see Section 6.7.4. Note that since R is nonsingular these
include the diagonal elements of Cx.

2.9. Iterative Refinement
2.9.1. Iterative refinement for linear systems. In iterative refinement a
computed solution to a linear problem is regarded as an initial approximation
to the true solution and is corrected in an iterative process. Let x be any
approximate solution to the linear system of equations Ax = b. Then the process
of iterative refinement can be described as follows: put x^ — x, and

When x has been computed by a direct method the same factorization can be used
to solve the sequence of systems A6^ = r^s\ s = 1, 2, Hence, the arithmetic
cost of the refinement is quite small compared to the cost of computing the
initial approximation. However, the refinement requires that the data A and b
be saved. This extra storage requirement can make the technique fairly costly
for large matrices. Note the possibility of using extended precision 62 <C ei for
accumulating the inner products in computing the residuals r(s); these are then
rounded to precision ei before solving for 6^.

The behavior of iterative refinement using double precision residuals has been
summed up in popular terms by Wilkinson [840, 1977] as follows:

• If A is almost singular to the working precision the first solution has no
correct significant digits, and the same is true of all subsequent refined
solutions. The matrix A is too ill-conditioned (possibly singular) for
solution to be possible without working to higher precision in the factoring.

2.9. ITERATIVE REFINEMENT 121

• If A is not too ill-conditioned the first solution has some accuracy. Let
us assume that \\x — x||/||a:|| « (3~k in some natural norm, where we are
concerned with a t-digit floating point computation with base (3. Then
the relative error diminishes by a factor of roughly /3~k with each step of
refinement until we reach a stage at which ||^c||/||^c|| < /3~~*, when we may
say that the solution is correct to working precision.

Note that although the computed solution improves progressively with each
iteration, this is not reflected in a corresponding decrease in the norm of the
residual, which stays about the same when the solution is based on the LU
factorization.

There are at least two distinct uses of iterative refinement with double
precision residuals:

1. To compute a more accurate solution, e.g., in the case where A and b are
exactly known and A is ill-conditioned.

2. The difference x^ — x^ usually gives a very good estimate of the effect
of relative changes in the data A, b of the order of the machine precision.

The first use may not be very important in practice if a backward stable
method has been used. Since most problems involve inexact data, obtaining
highly accurate solutions may not be justified. The second property offers a useful
alternative to condition estimators for estimating the accuracy and reliability of
computed solutions.

2.9.2. Extended precision iterative refinement. A straightforward gen-
eralization of iterative refinement to improve a computed solution x to the linear
least squares problem (1.1) is as follows: put x^ = x, and

The correction vector is itself the solution to a linear least squares problem, and
if x has been computed from the QR decomposition of A, the same factorization
can be used to solve for 6^s\

This scheme is implemented in the procedure by Businger and Golub [142,
1965] and analyzed by Golub and Wilkinson [393, 1966]. They found that it
performed well only when the true residual vector r = b — Ax was sufficiently
small, and noted in particular "whatever precision of computation is used there
will be right-hand sides for which iterative refinement will never give solutions
which are correct to working accuracy. This is in striking contrast with the linear
equation case."

122 CHAPTER 2. BASIC NUMERICAL METHODS

The key to a more successful algorithm for iterative refinement of least squares
solutions is to use the augmented system of ra + n equations

(2.9.1)

and to simultaneously refine both y and x. For the least squares problem we have
c = 0 and the residual r = y = b — Ax. We now describe this scheme, which was
developed and analyzed in Bjorck [84, 110, 1967]. To make the description more
compact we take as initial approximations

(2.9.2)

ALGORITHM 2.9.1. EXTENDED PRECISION ITERATIVE REFINEMENT. As-
sume that we have computed the QR decomposition of A by Householder. Take
y(°) = 0, x^ = 0, and compute a sequence of fixed precision approximations
?/s+1), #(s+1), s = 0,1, . . . , where the 5th iteration consists of three steps:

1. Compute the residual vectors to the system (2.9.1):

(2.9.3)

where f l i (E } indicates that the expression E is computed using extended
precision accumulation of the inner products defining E.

2. Using fixed precision, solve for the corrections 6r^ and 6x^ from

(2.9.4)

using Golub's method, Algorithm 2.4.6.

3. Compute the new approximations

(2.9.5)

REMARK 2.9.1. Because of the special initial values (2.9.2) we have /(°) = 6
and p(°) = 0. It follows that h = 0 and yM and x^ will just be the solution
computed by QRD. If for convenience we drop the superscript, Algorithm 2.4.6
for the system (2.9.4) becomes

(2.9.6)

Assuming that Q is stored as a product of Householder transformations, for s > I
the solution in step 2 takes 4mn — n2 flops.

2.9. ITERATIVE REFINEMENT 123

REMARK 2.9.2. The system (2.9.4) can also be solved by the MGS decompo-
sition. Using the interpretation of MGS as a Householder method, one obtains the
following algorithm. Assume that we have computed R and Qi = (#1, <?2> • • • ? <?n)
by MGS. The first and last steps are the same as in (2.9.6). We compute
c = (GI, . . . , cn)

T and d = d^n+l^ by orthogonalizing d^ = f against q^, for
k = 1,2,. ..,71,
(2.9.7)

Then 8y = d^ is obtained by backward recursion,

(2.9.8)

for k = n, n — 1 , . . . , 1. This algorithm improves that given by Bjorck [86, 1968].
It requires 4mn + n2 flops, and can be proved to give accuracy similar to that of
Golub's method; see Bjorck and Paige [113, 1992].

An error analysis of the iterative refinement method (2.9.3)-(2.9.5) has been
given by Bjorck [84, 1967], [86, 1968]. It is shown that the initial rate of
improvement of the solution is linear with rate

(2.9.9)

s — 2,3, . . . , where c = c(m,n) is an error constant. This convergence rate
is similar to that for the linear system case, even though the condition of the
least squares problem involves a term proportional to K?(A)\ Hence, in a sense,
iterative refinement is even more satisfactory for large residual least squares
problems, and may give solutions to full single precision accuracy even when
the initial solution may have no correct significant figuresl

REMARK 2.9.3. The estimate in (2.9.9) can be improved by substituting for
K(A),

where D is a positive diagonal matrix. This rate of convergence is achieved even
without actually carrying out the scaling of A by the optimal D.

EXAMPLE 2.9.1. (See Bjorck and Golub [110, 1967].) To illustrate the method
of iterative refinement we consider the linear least squares problem where A is
the last six columns of the inverse of the Hilbert matrix H& G R8x8, which has
elements

Two right-hand sides b\ and 62 are chosen so that the exact solution equals

For b = bi the system Ax = b is compatible; for 6 — ̂ 2 the norm of the residual
r = b — Ax equals 1.04 • 107. Hence for b^ the term proportional to K?(A) in the
perturbation bound (1.4.25) dominates.

124 CHAPTER 2. BASIC NUMERICAL METHODS

The refinement algorithm (2.9.2)-(2.9.5) was run on a computer with unit
roundoff u = 1.46 • KT11. The systems (2.9.4) were solved by the method (2.9.6)
using a QR decomposition computed using Householder transformations. We
stress that it is essential that double precision accumulation of inner products
be used in step (i), but otherwise all computations can be performed in fixed
precision. We give below the first component of the successive approximations
x(s)^ r(s)s — i} 2 ,3 . . . for the right-hand sides 61 and 62-

We observe a gain of almost three digits accuracy per step in the approximations
to x\ and r\ for both right-hand sides 61 and 62- This is consistent with the
estimate (2.9.9) since

For the right-hand side b\ the approximation x\ is correct to full fixed precision
accuracy. It is interesting to note that for the right-hand side 62 the effect of the
error term proportional to UK?(A) is evident in that the computed solution x[
is in error by a factor of 103. However, x[' has eight correct digits and r[is
close to the true value 2.8 • 106.

2.9.3. Fixed precision iterative refinement. In most early descriptions of
iterative refinement it is stressed that it is absolutely essential that the residuals
be computed with a higher precision than that of the rest of the computation.
However, more recently, Skeel [722, 1980] proved that for linear systems solved
by Gaussian elimination and partial pivoting, iterative refinement with fixed
precision residual will give improved stability. More precisely, he showed that
if A is not too ill-conditioned, and if the components of the vector \A\\x do
not vary too much, then the solution computed by Gaussian elimination with
one step of iterative refinement will have a componentwise relative backward
error on the order of machine precision. We here consider similar refinement
processes for linear least squares problems and for minimum norm solutions of
underdetermined systems.

When fixed precision is used to compute the residuals in (2.9.3) the roundoff
errors in the computation of the vectors / and g become more important. We
now show that these are equivalent to small componentwise perturbations in the

2.9. ITERATIVE REFINEMENT 125

nonzero blocks of the augmented matrix. By a standard backward error analysis
it follows that

where 61 is diagonal and hence

(2.9.10)

(2.9.11)

and the inequalities are to be interpreted componentwise. It follows that the
computed residuals / and g are the exact residuals corresponding to the perturbed
system

where the perturbations satisfy the componentwise bounds derived above. A
perturbation \8I\ can be considered as a small perturbation in the weights of the
rows of Ax — b.

Roundoff errors also occur in solving the equations (2.9.8), and we will get
a small componentwise relative backward error only if the iterative refinement
converges and the roundoff errors in the solution of the final corrections are
negligible. Higham [464, 1991] has shown that although results are weaker
for least squares problems than for square linear systems, iterative refinement
improves a componentwise measure of backward stability.

In fixed precision the general algorithm for iterative refinement can be
simplified for the least squares problem. The resulting algorithm only requires
one matrix-vector multiplication each with A and AT, and the solution of two
triangular systems.

ALGORITHM 2.9.2. FIXED PRECISION ITERATIVE REFINEMENT (c = 0). Set
x0 = 0, TO — 0. For s = 0,1, 2 , . . . until convergence do

Fixed precision iterative refinement is of most interest when a method which
is not backward stable has been used. For example, it can be very efficient for
improving a solution obtained from the normal equations. Then R is computed
by Cholesky factorization of the matrix ATA, and the first step, i = 0, is
identical to the method of normal equations. However, with R from the Cholesky
factorization the favorable rate of convergence in (2.9.9) is not obtained; see
Bjorck [88, 1978]. Instead we have

126 CHAPTER 2. BASIC NUMERICAL METHODS

However, if several steps of refinement are carried out, this will also lead to good
accuracy for a large class of problems; see the discussion in Section 6.6.5.

Another application of fixed precision iterative refinement is to sparse
problems, where R has been computed by a sparse QR decomposition, but the
matrix Q has not been saved. Then the system of seminormal equations

(2.9.12)

is often used to solve a least squares problem. It was shown in Bjorck [91,
1987] that the solution computed by (2.9.12) is in general no more accurate than
a solution obtained from the normal equations using the Cholesky factorization.
However, one refinement step is usually sufficient to get the same error level as for
a backward stable method. We refer to the algorithm with one step of refinement
as the corrected seminormal equations (CSNE). A more detailed discussion of this
algorithm is given in Section 6.6.5.

Iterative refinement can also be used to improve computed solutions to the
minimum norm problem

which corresponds to the special case b = 0 in the augmented system (2.9.1). For
fixed precision refinement the general algorithm can be simplified for this special
case as follows.

ALGORITHM 2.9.3. FIXED PRECISION ITERATIVE REFINEMENT (b = 0). Set
yo — 0, XQ = 0. For s = 0 ,1 ,2 , . . . until convergence do

For sparse least squares a method based on the factorization of the augmented
system has been considered by Arioli, Duff, and de Rijk [21, 1989]. As described
in Section 2.5.3, 1 x 1 and 2 x 2 diagonal pivots are used. Here the optimal
scaling cannot be obtained a priori. The corresponding loss of accuracy can often
be compensated for by the use of fixed precision iterative refinement.

Modified Least Squares Problems

3.1. Introduction
3.1.1. Updating problems. It is often desired to solve a sequence of modi-
fied least squares problems

(3.1.1)

where in each step rows of data in (A, 6) are added, deleted, or both. This need
arises, e.g., when data are arriving sequentially. In various time-series problems
a window moving over the data is used; when a new observation is added, an
old one is deleted as the window moves to the next step in the sample. In
other applications columns of the matrix A may be added or deleted. Such
modifications are usually referred to as updating (downdating) of least squares
solutions.

Important applications where modified least squares problems arise include
statistics, optimization, and signal processing. In statistics an efficient and stable
procedure for adding and deleting rows to a regression model is needed; see
Chambers [147, 1971]. In regression one also wants to examine different regression
models, which can be achieved by adding and deleting columns (or permuting
columns) in the model.

Applications in signal processing often require near real-time solutions, and
the following requirements are critical; see Alexander, Pan, and Plemmons [9,
1988].

1. The modification should be performed with as few operations and as little
storage requirement as possible. Recomputing the QR decomposition is too
costly since it requires O(ran2) operations.

2. To make it possible to use a computer with short word-length, the solution
should be accurate up to the limitations of data and conditioning of the
problem; i.e., a stable numerical method must be used.

However, methods based on the normal equations and/or updating of the
Cholesky factorization are still used in statistics and signal processing, although
they do not fulfill the second requirement. An example is the recursive least
squares algorithm given in Section 3.1.4.

127

Chapter 3

128 CHAPTER 3. MODIFIED LEAST SQUARES PROBLEMS

3.1.2. Modified linear systems. We first review some classical results for
solving linear systems, where the matrix has been modified by a correction of low
rank. Let A e Rnxn, and consider a system where A has been modified by a
correction of rank p,

where A G Rnxn and D e Rpxp are square matrices. If A is nonsingular we can
factor M into the product of a block lower and a block upper triangular matrix

This is equivalent to block Gaussian elimination, and the matrix S is called
the Schur complement of A in M. From M"1 = (LU)~l = U~lL~l, using
formulas for the inverses of 2 x 2 block triangular matrices, we get the Schur-
Banachiewicz inverse formula

Similarly, if D is assumed to be nonsingular we can factor M into a product of a
block upper and a block lower triangular matrix

where T is the Schur complement of D in M. This is equivalent to block Gaussian
elimination in reverse order. From this an alternative expression for M~l can be
derived,

By equating the (1,1) block in the inverse M"1 we get the useful relation

(3.1.4)

which is often called the Woodbury formula. This formula, which assumes
that both A and D are nonsingular, provides the inverse of A after it is modified

where D is a nonsingular diagonal matrix. The modified linear system (3.1.2) is
closely related to the bordered system

Indeed, by eliminating 0 it can be verified that x satisfies the linear system (3.1.2).
We now give some formulas for the inverse of a bordered matrix

(3.1.2)

(3.1.3)

3.1. INTRODUCTION 129

by a matrix of rank p, is very useful when p <C n. If we apply this formula to
(3.1.3) we obtain

(3.1.5)

Hence the solution to the modified system (3.1.2) can be obtained from

If an LU factorization of A is available, computing W — A~1U requires n2p
flops, (D~l + FTW) and its LU factorization takes np2 +p3/3 flops, and finally
2np + p2 flops for computing VTx and the correction to x. If p <C n this is
computationally advantageous compared to solving the system from scratch. In
case A is symmetric and U = V the formula simplifies further.

If we specialize the relation (3.1.5) to the case p = 1, when

(3.1.6)

we obtain the Sherman-Morrison formula.

(3.1.7)

Hence the solution to the modified system (3.1.6) can be obtained from

(3.1.8)

For the history of these and similar updating formulas and a survey of various
applications, see Hager [421, 1989].

If A is either a rectangular or square singular matrix, and we want the least
squares solution, then it is not always possible to obtain similar formulas with
A"1 replaced by A^ where A^ denotes the pseudoinverse of A. For the case p = 1
Meyer [577] gives explicit expressions for (A + uvH)^. He shows that there are six
different cases depending on which of the three conditions u 6 7£(-A), v € *R,(AH),
and 1 + vHA^u ^ 0 are satisfied. Generalizations of Meyer's results to p > 1 are
not known

3.1.3. Modifying matrix factorizations. Solving a modified system by the
Woodbury or Sherman-Morrison formula will not always lead to stable methods.
Stability will be a problem whenever the unmodified problem is worse-conditioned
than the modified problem. In general, methods which instead rely on modifying
a matrix factorization of A are to be preferred. The first systematic use of such
algorithms seems to have been in optimization. Numerous aspects of updating
various matrix factorizations are discussed in Gill et al. [354, 1974].

There is a simple relationship between the problem of updating matrix
factorizations and that of updating the least squares solutions. Recall that, by
Theorem 2.2.1, if A has full column rank and the ^-factor of the matrix (A, b] is

(3.1.9)

130 CHAPTER 3. MODIFIED LEAST SQUARES PROBLEMS

then the solution to the least squares problem (3.1.1) is given by

(3.1.10)

The upper triangular matrix (3.1.9) can be computed either from the QR
decomposition of (A, b) or as the Cholesky factor of (A, b)T(A, b). Hence,
updating algorithms for matrix factorizations applied to (A, b) give updating
algorithms for least squares solutions.

The updating of the Householder QR decomposition of A, where Q is stored
as a product of Householder transformations, is not feasible. This is because there
seems to be no efficient way to update a product of Householder transformations,
e.g., when a row is added. In Section 3.2 we give algorithms for updating the
factorization

(3.1.11)

where Q G Rmxm is stored explicitly as an m x m matrix. These updating
algorithms require 0(ra2) multiplications, and are almost normwise backward
stable; see the error analysis given by Paige [629, 1980). In many applications it
suffices to update the "Gram-Schmidt" QR decomposition

(3.1.12)

where Q\ G Rmx™ consists of the first n columns of Q. In Section 3.2.7 we
describe stable updating algorithms for this decomposition, developed by Daniel
et al. [202, 1976]. These only require O(mn) storage and operations. A set
of FORTRAN routines implementing these algorithms is given by Reichel and
Gragg [678, 1990].

In some applications, e.g., when A is large and/or sparse, one would like
to update only the ^-factor without the extra cost of storing and updating the
matrix Q. Such algorithms, as shown in Section 3.5, are inherently less stable
than methods that update both Q and R. However, they can be stabilized by a
refinement technique using the original data matrix A.

All known updating algorithms for the singular value decomposition (SVD)

where U G Rmxm and V G Rnxn, require O(mn2) flops, which is the same order
as recomputing the SVD from scratch. However, since the order constant is less,
there is still a gain. Bunch and Nielsen [138, 1978] have developed methods for
updating the SVD of A, when A is modified by adding or deleting a row or
column. Also, algorithms for solving the correspondingly modified least squares
problems are developed. These updating methods, however, all require O(n3)
operations when A G Rmxn, ra > n.

For applications where the matrix A may not have full numerical column
rank, a rank revealing QR decomposition, or a complete QR decomposition can
be updated. This is a more difficult problem, but intensive work on updating
algorithms for such decompositions has recently begun.

3.1. INTRODUCTION 131

3.1.4. Recursive least squares. The solution to the least squares problem
(3.1.1) satisfies the normal equations

(3.1.13)

where we assume that A 6 Rmxn and rank (A) = n. If the observation

(3.1.14)

is added, then the updated solution x satisfies the modified normal equations

(3.1.15)

A straightforward method for computing x is based on updating the matrix

(3.1.16)

Since the matrix C is the scaled covariance matrix such a method is called a
covariance matrix method. Since C~1 = C~l+wwT we have by the Sherman-
Morrison formula (3.1.7)

(3.1.17)

Adding a term WWTX to both sides of (3.1.13) and subtracting from (3.1.15) gives

Solving for the updated solution gives the following basic formula:

(3.1.18)

Equations (3.1.17)-(3.1.18) define a recursive least squares (RLS) algorithm
associated with the Kalman filter. The vector u — Cw, which weights the
predicted residual (3 — WTX of the new observation, is called the Kalman gain
vector.

As pointed out by Pan and Plemmons [645, 1989] the equations (3.1.17)-
(3.1.18) can with slight modifications be used also for deleting the observation
(3.1.14). We have

(3.1.19)

provided that 1 — WTU ^ 0.
The simplicity and recursive nature of this updating algorithm has made it

very popular for many applications. The main disadvantage of the RLS algorithm
is its serious sensitivity to roundoff errors. The updating algorithms based on
orthogonal transformations developed in the following sections are generally to
be preferred.

132 CHAPTER 3. MODIFIED LEAST SQUARES PROBLEMS

3.2. Modifying the Full QR Decomposition
3.2.1. Introduction. In this section algorithms are given for updating the
QR decomposition (3.1.11) for three important kinds of modifications.

1. General rank one change of A.

2. Deleting (adding) a column of A,

3. Adding (deleting) a row of A.

We will see that deleting a column and adding a row are "easy" operations,
whereas adding a column and deleting a row are more delicate operations. This
is because in the latter cases the modified matrix may become rank deficient, and
if we are close to this case the problem becomes ill-conditioned.

We stress again that the algorithms for updating and downdating the QR
decomposition can be used to add and remove equations from a least squares
problem by applying them to the augmented matrix (A, b). More details on this
use can be found in Dongarra et al. [228, 1979, Chap. 10).

The algorithms given in this section can be modified in a straightforward
fashion to treat cases where a block of rows/columns are added or deleted. Such
block algorithms are more amenable to efficient implementation on vector and
parallel computers. Block methods for downdating are studied in Elden and Park
[274, 1994] and Olszanskyj, Lebak, and Bojanczyk [611, 1994].

3.2.2. General rank one change. Assume that we know the complete QR
decomposition (3.1.11) of the matrix A G Rmxn. We want to compute the
decomposition

(3.2.1)

where u G Rm and v G Rn are given. For simplicity we assume that rank(A) =
rank(A) = n, so that R and R are uniquely determined.

We first compute w = QTu G Rm, so that

(3.2.2)

Next we determine a sequence of Givens rotations Jk = Gk,k+i(Qk), k =
m — 1,..., 1 such that

Note that these transformations zero the last m — 1 components of w from
bottom up. (For details on how to compute Jk see Algorithm 2.3.1.) If these
transformations are applied to the ^-factor in (3.2.2) we obtain

(3.2.3)

3.2. MODIFYING THE FULL QR DECOMPOSITION 133

(Note that Jn+i,..., Jm-i have no effect on R.) Because of the structure of the
Givens rotations the matrix H will be an upper Hessenberg matrix, i.e., H is
triangular except for extra nonzero elements hk+i,k, k = 1,2,. . . , n (e.g., m = 6,
n = 4),

Since only the first row of H is modified by the term a.e\vT, H is also
upper Hessenberg. Then we can determine Givens rotations Jfc = Gk,k+i(<j>k],
k = 1,..., n, which zero the element in position (k + 1, fc), so that

(3.2.4)

is upper triangular. Finally the transformations are accumulated into Q to get

Q and R now give the desired decomposition (3.2.1). The work needed for this
update is as follows: computing w = QTu takes m2 flops. Computing H and
R takes 4n2 flops and accumulating the transformations Jfc and J^ into Q takes
4(ra2 + mn) flops for a total of 5m2 4- 4mn + 4n2 flops. Hence the work has been
decreased from O(mn2) to O(m2). However, if n is small updating may still be
more expensive than computing the decomposition from scratch.

To update a least squares solution we apply the procedure above to compute
the QR decomposition of

Given the QR decomposition of A = (ai , . . . , an) G Rmxn, it is often required
to compute the QR decomposition of a matrix A obtained from A by adding or
deleting a column. An important application occurs in active set methods for
solving least squares problems with inequality constraints; see Section 3.5. The
algorithms developed below apply with trivial modifications to computing the
QR decomposition of (A, b) when a column is deleted/added.

3.2.3. Deleting a column. We first observe that the QR decomposition
behaves nicely under partitioning. Assume that

where

134 CHAPTER 3. MODIFIED LEAST SQUARES PROBLEMS

From this the QR decomposition of A\ is trivially obtained by deleting the n — p
trailing columns from the decomposition.

Suppose now that we want to compute the QR decomposition of the matrix
resulting from deleting the kth column in A, k < n,

Prom the above observation it follows that this decomposition can readily be
obtained from the QR decomposition of the permuted matrix

(3.2.5)

where PL is a permutation matrix which performs a left circular shift of the
columns a^ , . . . , on. The matrix RP^ will have the structure

where Rn € R(*-I)X(*-I) and R33 G R(»-*)*(n-fc) are upper triangular (k = 3,
n = 5),

Hence it is possible to determine a sequence of Givens rotations Gk = Rk,k+i so

that

is upper triangular (cf. (3.2.4)). Note that the last column will fill in. With

we have the updated decomposition

The required QR decomposition of A is then obtained by deleting the last column
in A and R.

We remark that more generally one may want to compute the QR decompo-
sition of

i.e., of the matrix resulting from a left circular shift applied to the columns
afc, . . . ,ap ; cf. Dongarra et al. [228, 1979, p. 10.2]. This can be done by an
obvious extension of the above algorithm.

3.2. MODIFYING THE FULL QR DECOMPOSITION 135

3.2.4. Appending a column. We now consider the problem of computing
the QR decomposition of a matrix where the column an+i has been appended in
the fcth position,

(3.2.6)

where PR is a permutation matrix which performs a right circular shift on the
columns a^, . . . , an+i.

We first compute the QR decomposition of A = (A, an+i) from that of A.
This is straightforward using, e.g., Householder's method, since this algorithm
can be used to process A a column at a time. We form the vector i/;,

and construct a Householder transformation Pn such that

(3.2.7)

This gives the decomposition

The matrix RPR now has the structure

where Ru € R(*-I)X(*-I) and R22 € R(n-fc)x(n-*0 are upper triangular, e.g.,

(k = 3, n = 4). We determine Givens rotations Ji = Gi_i,j, i — n , . . . , fc, to zero
the last n — k 4-1 elements in the kth column of RPR. Then

is upper triangular and the updated .R-factor is given by

(3.2.8)

136 CHAPTER 3. MODIFIED LEAST SQUARES PROBLEMS

The QR decomposition of A in (3.2.6) becomes

Again, the above method easily generalizes to compute the QR decomposition of

i.e., of the matrix resulting from a right circular shift of the columns a j f c , . . . ,ap.
It is important to note that when a column is deleted the new .R-factor can

be computed without Q being available. However, when a column is added it is
essential that Q be known in the above algorithm. When a column is deleted,
then from the interlacing property (Theorem 1.4.2) it follows that the smallest
singular value will not decrease. On the other hand, when a column is added,
the smallest singular value will not increase, and indeed the new triangular factor
may become singular.

3.2.5. Appending a row. Given the QR decomposition (3.1.11) of a matrix
A G Rmxn we first consider the problem of computing the QR decomposition of

(3.2.9)

where a row WT has been appended. Prom (3.1.11) we have

The updated Q-factor becomes

Note that R can be updated without Q being available. Also from the interlacing
property (Theorem 1.4.2) it follows that the smallest singular value of R will
increase, and hence this procedure is stable. This scheme requires 2n2 + O(n)
multiplications if standard Givens rotations are used.

where nn+ijm-|-i denotes a permutation matrix interchanging the rows n + 1 and
ra 4- 1. The updating consists of n Givens rotations Jk — Gk,n+i, k = 1,..., n,
the fcth of which annihilates the fcth element in the last row to get

3.2. MODIFYING THE FULL QR DECOMPOSITION 137

3.2.6. Deleting a row. One way of incorporating changes in data is the
sliding window method. Here, when a new data row has been added, an old data
row is deleted. Another instance when a data row has to be removed is when it
has somehow been identified as faulty.

We now consider modifying the QR decomposition when a row is deleted,
which is the downdating problem. This corresponds to the problem of deleting
the effects of an observation in a least squares problem. There is no loss of
generality in assuming that the first row of A is to be deleted. To delete the fcth
row we merely apply the algorithm below with A and Q replaced by IIi^A and
IIi^Q, where HI^ is a permutation matrix interchanging rows 1 and k.

We wish to obtain the QR decomposition of the matrix A G R(m~1)Xn when

(3.2.10)

is known. We now show that this is equivalent to finding the QR decomposition
of (ei, A), where a dummy column e\ = (1,0,.. . , 0)T has been added. We have

where qT = (gf,^) G Rm is the first row of Q. We now determine Givens
rotations Jk = Gk,k+i, k = m — !,...,!, so that

(3.2.11)

Then we have

(3.2.12)

where the matrix R is upper triangular. Note that the transformations
Jn+i,. . . , Jm-i will not affect R. Further, if we compute

it follows from (3.2.11) that the first row of Q equals cte{. Since Q is orthogonal
it must have the form

with |a| = 1 and Q <E R(™-I)X(™-I) orthogonal. Hence, from (3.2.10),

and hence the desired decomposition is

This algorithm for downdating is a special case of the rank one change algorithm,
and is obtained by taking u = —e\, VT = a^ in (3.2.1).

138 CHAPTER 3. MODIFIED LEAST SQUARES PROBLEMS

3.2.7. Modifying the Gram-Schmidt decomposition. In many appli-
cations, especially if m ^> n, it is too costly to save and modify the full QR
decomposition. When we use the Gram-Schmidt (GS) QR decomposition,

(3.2.13)

then the storage requirement is reduced to ran for Q\ from ra2, which is required
for the full Q-factor.

Daniel et al. [202, 1976] develop stable algorithms for modifying the GS
decomposition of a matrix A when A is changed by a matrix of rank one, or
when a row or column is added or deleted. A principal tool of the algorithms is
the GS process used with reorthogonalization to ensure orthogonality to working
precision. A slightly simplified algorithm given in Reichel and Gragg [678, 1990]
relies on the fact that in the full rank case one reorthogonalization is always
enough; see also Parlett [651, 1980].

The algorithms given in Section 3.2.3 (and 3.2.5) for updating the full
QR decomposition when deleting a column (adding a row) apply with trivial
modifications to the GS decomposition as well. Adding a column is also
straightforward, using the columnwise GS algorithm with reorthogonalization;
see Algorithms 2.4.3 and 2.4.4. Here we consider the more delicate problems of
deleting a row.

Assume that we have the QR factorization

(3.2.14)

and want to delete the first row ZT = a{. Note that (3.2.14) can be written as

(3.2.15)

Following Daniel et al. [202, 1976] we first apply the GS algorithm (with reorthog-
onalization) so that the appended column e\ = (1,0,.. .,0)T is orthogonalized
to

Because of the special form of the appended column, the result has the form

(3.2.16)

where 1 = qf qi + (7)2. Using

and we now determine a sequence of plane rotations «/&, A; = n,n — !,...,!, in
the plane (fc, n + 1) such that

(3.2.17)

(3.2.15)

3.2. MODIFYING THE FULL QR DECOMPOSITION 139

where Jk is chosen to annihilate the kth component in (q£ 7). Since orthogonal
transformations preserve length we can make r = 1, and because the transformed
matrix has orthonormal columns, h = 0. Thus we have

where

(3.2.18)

with R upper triangular. Hence the downdated QR decomposition becomes

(3.2.19)

As mentioned, it is necessary to perform reorthogonalization when the Gram-
Schmidt algorithm is used to orthogonalize e\ to Q\ in (3.2.15). Let v = e,\—Qiq\.
If ||v||2 > l/\/2 then take v := v/\\v\\2', else reorthogonalize

If ||i/||2 > |H|2/\/2, then take

Otherwise e\ is (numerically) linearly dependent on the columns of Q\. Then we
take 7 := 0 and determine h € R/""1) orthogonal to Qi» see Daniel et al. [202,
!976]-

With one reorthogonalization, the GS downdating algorithm requires about
7mn 4- 2.5n2 flops. This can be reduced to 5mn + 1.5n2 flops when fast scaled
rotations are used in (3.2.17) and (3.2.18). Note that the data matrix A is never
needed; to delete the first row of A, only the ^-factor and the corresponding row
in Qi are needed. Thus, the storage requirement is about ran + 0.5n2 for Q\ and
R.

The reason for the reorthogonalization step in the GS downdating algorithm
is that in the modified Gram-Schmidt (MGS) QR decomposition the computed
Qi will not be accurately orthogonal when the condition number of A is large.
Yoo and Park [846, 1996] have devised an accurate MGS downdating algorithm
that does not use reorthogonalization. This is based on a relation between MGS
applied to A e Rmxn and Householder QR on A augmented with an n x n zero
matrix on top shown by Bjorck and Paige [113, 1992].

Let MGS applied to A gives the decomposition

Suppose first that the columns in Q\ are exactly orthonormal. Then this
decomposition is equivalent to the Householder QR decomposition

140 CHAPTER 3. MODIFIED LEAST SQUARES PROBLEMS

where

(3.2.20)

and Pk = I- ukul, u^ = (-el ql).
The outlined equivalence also holds numerically. However, if Qi = (q\ ... qn)

is the computed factor Qi in MGS, the departure of Qf Qi can be significant.
Then, instead of (3.2.20) in the equivalent Householder decomposition, we have

(3.2.21)

where Pk = I — UkV%, v% = (—e^ q£). The key idea in the downdating algorithm
is that downdating the GS decomposition when the first row in A is deleted can
be done by downdating the equivalent Householder decomposition, deleting the
(n + 1) st row in

However, this can be done stably if the (n + l)st row in P is available. It can be
shown (see Bjorck and Paige [113, 1992]) that

where Mi = I — q\q^', i = 1,... ,n. Using these expressions, it is possible to
recursively evaluate Pi\e\ and Piie\ in O(ran) operations. Yoo and Park [846,
1996] give a detailed description of such a Householder GS downdating algorithm
which uses 10ran+2n2 flops. They present numerical results which show that this
algorithm can be much more accurate than previous GS downdating algorithms.

3.3. Downdating the Cholesky Factorization
3.3.1. Introduction. Suppose that the factor R £ Rnxn is given from a
Cholesky factorization of ATA (or QR decomposition of A), where

In the Cholesky downdating problem we want to find the Cholesky factor of R
such that

This problem is analytically the same as that considered in Section 3.2.6, except
that Q is not used.

3.3. DOWNDATING THE CHOLESKY FACTORIZATION 141

In this formulation the downdating problem is inherently more ill-conditioned
than if Q is also available. The problem is that if the elements in the row ZT

dominate those of A, then there is not sufficient information stored in R about R.
The best we can hope for is that the downdating method is backward stable in the
sense that it computes the exact Cholesky factor of (R+E)T(R+E)—(z+e)(z+e)T

with ||E\\ and \\e\\ small. It is important to note that this does not guarantee that
we obtain an R that is the exact Cholesky factor of (A -\- E)T(A + E) for some
small \\E\\\

3.3.2. The Saunders algorithm. In the downdating algorithm the first row
of Q played an essential role. If Q is not available the following algorithm due to
Saunders [701, 1972] can be used. It is implemented in LINPACK as subroutine
SCHDD (see Dongarra et al. [228, 1979, Chap. 10]), and often referred to as
the LINPACK algorithm. A rounding error analysis of this method is given in
Stewart [734, 1979].

The first row of the QR decomposition (3.2.10) can be written

where q has been partitioned conformably with the ^-factor. Hence we can obtain
qi by solving

and then, since q is of unit length,

(3.3.1)

The transformations Jn+i, • • • , Jm-\ m (3.2.11) will only have the effect of
computing

and, as remarked above, will not affect R. Thus, we may determine the Givens
transformations Jfc, k = 1,..., n, by

and obtain the updated factor R as in (3.2.12).
We note that if 7 « u1/2, where u is the unit roundoff, then 7 cannot be

computed stably from (3.3.1) because of severe cancellation in the subtraction
1 ~ Ikilli ^ u' Therefore, this algorithm will not be as stable as that using
information from Q. The possible failure of the Saunders algorithm can be
illustrated by the following simple example from Bjorck, Elden, and Park [106,
1994]-

142 CHAPTER 3. MODIFIED LEAST SQUARES PROBLEMS

EXAMPLE 3.3.1. Consider the least squares problem min \\Ax — b\\2, where

and u is the unit roundoff. We may think of the first row of A as an outlier. The
QR decomposition of A, correctly rounded to single precision, is

where e = 1/r. The Saunders algorithm will compute

Hence it gives the downdated factor R = 0, and the downdated least squares
solution is not defined. It is easily verified that if we downdate using Q we get
the correct result R = 1 and the downdated solution x =

Sun [766, 1995] gave a first order perturbation analysis of the block downdat-
ing problem for the Cholesky factor

This bound was later improved by Chang and Paige [160, 1996].
THEOREM 3.3.1. Let R,E <E Rnxn be upper triangular and Z,F € Rnxr.

Assume that the Cholesky factorization RTR — ZZT = RTR exists and define
V = R~TZ. Let a > 0 be small enough so that the factorization

exists for all e € (—a, a). Then we have the bound

(3.3.2)

The above perturbation analysis shows that using R to form the downdating
transformations may be a much more ill-conditioned problem than downdating
the original matrix A. This is because the original row in A is not perturbed in
the same way as the vector (q[7), which is computed by solving a triangular
system to determine the downdating transformation in the Saunders algorithm.
Hence, any method that uses R alone to recover the necessary elements of Q
cannot be backward stable in the same sense as the downdating algorithms that
use Q directly.

3.3.3. The corrected seminormal equations. In Example 3.3.1 the infor-
mation from the second row in A is not present in R, only in Q, and therefore no
method working only from R can hope to do better. However, for the case when A

3.3. DOWNDATING THE CHOLESKY FACTORIZATION 143

is available a more accurate method for adding a column (or deleting a row) can
be developed based on the corrected seminormal equations (CSNE); see Bjorck
[91, 1987].

Assume first that we want to compute the .R-factor in the QR decomposition
of (A, an+i); cf Section 3.2.4. Then we compute the vector u and scalar 7 in
(3.2.7) as follows. A vector z is computed as the solution to the least squares
problem

using CSNE. That is, we solve RTRz — ATan+i, compute a correction 6z from

and take z = z + bz. Then u and 7 are obtained from

and the updating of R proceeds as in Section 3.2.4.
Since deleting a row is equivalent to adding the special column ei, the

method of CSNE can also be used for the downdating problem. This leads to
a modification of the Saunders algorithm, where the vector q\ is constructed as
follows. Let v be the solution to

and R the .R-factor of A. Then the .R-factor of (A, e\) is

.(3.3.3)

The downdated .R-factor is then obtained by applying orthogonal transformations
to transform the last column into the vector e\.

A similar procedure can be used to downdate the augmented .R-factor (3.1.9)
by solving the least squares problem

using the CSNE. This leads to a downdating algorithm for least squares problems.
However, the modifications are not trivial partly because the condition number
of the augmented .R-factor is large when p is small. For details we refer to the
description in Bjorck, Elden, and Park [106, 1994].

3.3.4. Hyperbolic rotations. We describe here another downdating algo-
rithm using only #, which is of interest because it is recursive, requires fewer
operations than the Saunders algorithm, and is better suited to parallel implemen-
tation. It is algorithmically very similar to the method for adding a row, and was
originally suggested by Golub [366, 1969]. This is based on the observation that

144 CHAPTER 3. MODIFIED LEAST SQUARES PROBLEMS

deleting the row WT is formally equivalent to adding the row iw1', where i2 = —I.
Hence the algorithm from Section 3.2.2, which uses a sequence of Givens rota-
tions for adding a row, can be applied. The resulting algorithm can be expressed
entirely in real arithmetic; see Lawson and Hanson [520, 1974, pp. 229-231).

A more modern description of this algorithm (see, e.g., [9, 1988]) is in terms
of so-called hyperbolic rotations, which are of the form

(3.3.4)

where c2 — s2 = 1. (Note that the condition number of H in (3.3.4) is not
bounded.) A hyperbolic rotation in the plane (i , j) can be used to zero the
component Xj of a vector x provided that \Xi\ > \Xj\. The jth component of
HijX is zero if

Hyperbolic rotations have been generalized in Rader and Steinhardt [673, 1988]
to hyperbolic Householder transformations, designed to zero several components
at a time in a vector x.

An error analysis given by Bojanczyk et al. [123, 1987] indicates that the
stability properties of the algorithm using hyperbolic rotations is inferior to that
of the following variant suggested by Chambers [147, 1971]. Chambers noted
that it is possible to recreate the steps that would have updated R with the row
WT to obtain R. Let the last row after k — 1 steps be w^k~l\ Then the kth step
operates on rows k and n + 1 as follows, for j = fc,..., n:

(3.3.5)

(3.3.6)
/LA

The angle Ok is chosen to make w^,' = 0, i.e.,

(see Algorithm 2.3.1 for a more precise
The downdating uses the same equations. Considering R and WT as known

and R to be determined, and assuming r^ > wk , we can compute

Rearranging the equation (3.3.6) gives for j = k + 1,..., n

(3.3.7)

(3.3.8)

This combines a hyperbolic rotation in the first equation with a Givens rotation
in the second, and allows us to compute fkj and Wj given r^j and Wj ~ . In
Stewart [753, 1994] it is shown that the downdating via hyperbolic transformation
is neither forward nor backward stable, whereas downdating using (3.3.7)-(3.3.8)
is relationally stable in a certain sense.

description).

3.4. MODIFYING THE SINGULAR VALUE DECOMPOSITION 145

3.4. Modifying the Singular Value Decomposition
3.4.1. Introduction. The singular value decomposition (SVD) of a matrix
A 6 Rmxn, ra > n, of rank r < n can be written

(3.4.1)

where U € Rmxn and V G Rnxn are orthogonal, £ = diag(<ri ,<72 , . . . ,<Jn) e
Rmxn, and a\ > <72 > • • • > crn > 0. The SVD is of great importance, e.g., for
determining the numerical rank of A and for solving rank deficient least squares
problems involving A.

Assume that the SVD of A has been computed. When A is modified by
appending or deleting a row or a column we would like to take advantage of this
to reduce the amount of work necessary to compute the SVD of the modified
matrix. Alternatively, if the SVD of A has been used to solve the least squares
problem (3.1.1),

we would like to update V, S, and c, which allows us to update x.
We first note that in the SVD rows and columns are treated the same. Hence

appending or deleting a column in A can be treated by appending or deleting a
row in AT. This simplifies the updating problem in that only modifications of
rows need be considered. (Of course, in the least squares updating, there is a
lack of symmetry.) The general rank one change is more difficult.

The problem of updating the SVD was first considered by Businger [141,
1970], and is related to the technique used above for updating the QR decompo-
sition; see also Barlow, Zha, and Yoon [46, 1993]. Bunch and Nielsen [138, 1978]
develop updating methods related to updating symmetric eigendecompositions.
Related schemes are given by Gu and Eisenstat [404, 1993], [407, 1995]. Unfortu-
nately, all known exact updating schemes require on the order of ran2 operations,
which is the same order as recomputing the SVD from scratch. However, since
the order constant is smaller there is still a gain. Moonen and Van Dooren [582,
1993] and Moonen, Van Dooren, and Vandewalle [583, 1992], have considered
updating algorithms that approximate the SVD. The idea is to append (delete)
a row, reduce to triangular form, and then use a Jacobi-type sweep to restore
approximate diagonality. These algorithms are suitable for the implementation
on systolic arrays.

3.4.2. Appending a row. Given the SVD of A we first consider the problem
of computing the SVD when a row WT is appended:

(3.4.2)

One approach to this updating problem is to use the relationship between the
SVD of A and the symmetric eigenvalue problem for ATA. From

146 CHAPTER 3. MODIFIED LEAST SQUARES PROBLEMS

where p = \\w\\2, z = VTw/p, it follows that E2 and V are the solution to a
symmetric eigenvalue problem modified by a perturbation of rank one. Efficient
algorithms for solving such problems have been given by Golub [367, 1973]. These
are based on the observation that the eigenvalues of the matrix

(3.4.3)

d\ > d<i > • • • > dn, are the zeros of p(A), where

(3.4.4)

Since by the interlacing property (Theorem 1.2.9)

good initial approximations to the roots are known, and (3.4.4) can be solved
by a method based on rational approximation safeguarded with bisection. The
details of this algorithm are quite subtle. A stopping criterion together with a
reformulation of (3.4.4) which allows an iterative method to satisfy it are given
by Gu and Eisenstat [404, 1993].

When the modified eigenvalues di — of have been calculated, the correspond-
ing eigenvectors of the modified eigenproblem (3.4.3) can be found by solving

Provided that Di is nonsingular (this can be assured by an initial deflation) we
have

(Note that forming D^lz explicitly should be avoided in practice, and a different
scheme is used by Bunch and Nielsen [138].) The updated right singular vectors
are V = VX, where X = (x i , . . . , xn). If the matrix A (or A) is still available
the updated left singular vectors U can be found from

An alternative approach for appending a row is given by Businger [141, 1970].
We have

where N.n+i,m+i denotes a permutation matrix interchanging the rows n + 1 and
m + 1, and L is a special lower triangular matrix. Businger's updating algorithm
consists of two major phases. The first phase is a finite process that transforms
L € R,("+1)xn into upper bidiagonal form using Givens transformations from left
and right,

3.4. 147

The second phase is an implicit QR diagonalization of B (see Section 2.6.3),
which reduces B to diagonal form S.

In phase 1 there are n — 1 major steps, of which the fcth eliminates the kth
element of wTV using a chasing scheme of Givens rotations on rows and columns.
The elimination in phase 1 is pictured below for n = 5 and k = 3.

Phase 1 uses l + 2 + - - - + (n — 1) = n2/2 rows and the same number of column
rotations. Most of the computing work goes into applying these rotations to U
and F, which requires 2n2(ra + n) flops if standard Givens rotations are used.
For the least squares updating we only need to update V, S, and c = t/T6,
and the dominating term is then reduced to 2n3 flops. Zha [853, 1992] has
shown that the work can be halved by using a two-way chasing scheme in the
reduction to bidiagonal form. Phase 2 typically requires about n3 additions and
2n3 multiplications.

Note that £ and V can be updated without U being available. From the
interlacing property (Theorem 1.4.2) it follows that the smallest singular value
will increase, and hence the rank cannot decrease.

3.4.3. Deleting a row. We now consider modifying the SVD when a row is
deleted. There is no loss of generality in assuming that the first row of A is to be
deleted, i.e., we wish to determine the SVD of the matrix A £ R(m~1)xn when
we know the SVD

(3.4.5)

We first note that the problem can be reduced to a modified eigenvalue problem
of the form

(3.4.6)

MODIFYING THE SINGULAR VALUE DECOMPOSITION

148 CHAPTER 3. MODIFIED LEAST SQUARES PROBLEMS

The interlacing property now gives d\ > d\ > d^ > • • • > dn-i > dn > dn > 0.
Hence the Bunch-Nielsen scheme is readily adapted to solving this problem.

Businger reduces the downdating problem to that of adding a row \f—\. ZT.
This approach has the advantage that it does not require U, but as shown in
Section 3.3.4, it is unstable. Park and Van Huffel [650] have given a backward
stable algorithm based on finding the SVD of (ei, A), where e\ is an added dummy
column. Then

where (wf, u^) is the first row of U. We first determine row and column Givens
rotations so that

(3.4.7)

where the matrix B is upper bidiagonal. This is achieved by a chasing scheme
similar to that used when adding a row. The desired bidiagonal form is built
from bottom to top while nonzeros are chased away to the lower-right corner.
We picture the reduction below for k = 3, n = 4:

A total of (n — I)2 + 1 plane rotations are needed.
By construction the first column of G\UT equals e^, and by orthogonality

this matrix must have the form

with U orthogonal. Further, since no rotation from the right involves the first
column the transformed matrix has the form

3.5. MODIFYING RANK REVEALING QR DECOMPOSITIONS 149

It now follows from (3.2.10) that

This gives the bidiagonal reduction of the downdated A,

In the second phase the implicit QR diagonalization is used to reduce B to
diagonal form £ and update U and V.

3.5. Modifying Rank Revealing QR Decompositions
3.5.1. Appending a row. The difficulties of updating the SVD have led to a
renewed interest in rank revealing QR decompositions and complete orthogonal
decompositions, which can be updated more cheaply. These are effective in
exhibiting the rank and nullspace of A, and can be thought of as compromises
between the SVD and QR decompositions.

In Section 2.7.4 we defined a rank revealing complete orthogonal decomposi-
tion (CQRD) as a decomposition of the form

(3.5.1)

where U and V are orthogonal matrices, and R e Rfcxfc and G € R/"i-fc)x(n-fc)
are upper triangular. Further, for some constant c,

where o\ > 02 > • • • > on are the singular values of A. This is also often called a
rank revealing URV decomposition; see Stewart [749, 1992]. For the factorization
to be useful it should hold that o> >• <Jfc+i, and the numerical rank of A should
equal k.

The CQRD has the advantage that it can be updated when a row is added
to A, by an algorithm which only requires O(n2) operations. Assume that we
are given a tolerance 8 so that we can accept the decomposition (3.5.1) as rank
revealing provided that

(3.5.2)

Given the CQRD (3.5.1) of A we want to compute this decomposition for

150 CHAPTER 3. MODIFIED LEAST SQUARES PROBLEMS

Following the algorithm given by Stewart [749, 1992], we write

(3.5.3)

where wTV = (xTyT). In the simplest case the relation

(3.5.4)

is satisfied. Then it suffices to reduce the matrix in (3.5.3) to upper triangular
form by a sequence of left Givens rotations, as described in Section 3.2.5. Note
that the updated matrix R cannot become effectively rank deficient, since all its
singular values will increase.

If (3.5.4) is not satisfied we first reduce yT in (3.5.3) so that it becomes
proportional to ef, while keeping the upper triangular form of G. This can be
done by a sequence of right and left Givens rotations as illustrated below. (Note
that here the /'s represent entire columns of F.}

Here a — \\y\\2, and R and XT are not involved in this part of the reduction.
After this step the matrix has been reduced to the form

This matrix is then reduced to triangular form using left Givens rotations as in
Section 3.2.5, and k is increased by 1. Finally, the new R is checked for degeneracy
and possibly reduced by deflation, as described in Section 2.7.5. This completes
the updating of the decomposition. The complete update takes O(n2) operations.

Stewart [752, 1993] has pointed out that although the decomposition (3.5.1)
is very satisfactory for recursive least squares problems, it is less suited for

3.5. MODIFYING RANK REVEALING QR DECOMPOSITIONS 151

applications where an approximate nullspace is to be recursively updated. Let
(C/i, U%) and (Vi, Vjj) be partitionings of U and V conformally with (3.5.1). Then
we have
(3.5.5)

Hence the orthogonal matrix V^ can be taken as an approximation to the
numerical nullspace A4- On the other hand we have that ||f/jA||2 = ||G||2,
and therefore the last n — k singular values of A are less than or equal to ||G||2.
Thus, V'i is not the best available approximate nullspace, since F is also involved
in the bound (3.5.5).

As mentioned in Section 2.7.5 this problem can be resolved by working instead
with the corresponding rank revealing ULV decomposition

(3.5.6)

where L and E have lower triangular form, and

For this decomposition, ||AV2||2 = H^||F, where V — (Vi, Vfc) is a conformal
partitioning of V. Hence the size of \\H\\2 does not affect the nullspace
approximation.

Stewart [752, 1993] has presented an updating scheme for the decomposition
(3.5.6). With wTV = (xT,yT], the problem reduces to updating

The main difference compared to the scheme for updating the URV decomposition
is that there is now not the same simplification when A/z/2 + \\y\\2 < <*>• We first
reduce yT to ||2/||2^ by right rotations while keeping the triangular form of E.
At the end of this reduction the matrix has the form

This matrix can be reduced to lower triangular form by a sequence of left
rotations, and k is increased by 1. (For the case above we would use Q =
^16^26^36^46-) In case there has been no effective increase in rank, a deflation
process has to be applied.

If

152 CHAPTER 3. MODIFIED LEAST SQUARES PROBLEMS

then the rank cannot increase. In that case we perform the reduction, but skip
the first rotation (G^). This gives us a matrix of the form

The y elements above the main diagonal can be eliminated using right rotations.
This fills out the last row again, but now with elements the same size as y. Now
the last row can be reduced by the procedure described above without destroying
the rank revealing structure; see again Stewart [752, 1993].

We have seen that the updating of the rank revealing ULV decomposition
is more involved than that for the URV decomposition. Hence, even if the
refinement steps in the decomposition URV are an added complication it is not
clear under what circumstances one of these two decompositions is to be preferred
to the other.

3.5.2. Deleting a row. In some applications one wants to delete old data
from the problem, and hence to downdate the rank revealing orthogonal
decomposition. This problem is closely related to the problem of downdating
the usual QR decomposition, which has been discussed at length in Sections
3.2.6-3.2.7 and 3.3.

When downdating the rank revealing URV decomposition (3.5.1) a complica-
tion is that when ra » n, the extra storage for U € Rmxm may be prohibitive,
and only V and the triangular factor are stored. Then we must use methods re-
lated to those described in Section 3.3 like the Saunders (LINPACK) algorithm,
possibly stabilized with the CSNE algorithm (Section 3.3.3). Other possible al-
gorithms are based on the use of hyperbolic rotations as modified by Chambers;
see Section 3.3.4. Neither of these methods will be as satisfactory as methods
using U (cf. Section 3.2.6) or Gram-Schmidt-based methods using U\ described
in Section 3.2.7. Because there are so many possible variants we will not describe
methods in detail here, but refer to work by Park and Elden [649, 1995] and
Barlow, Yoon, and Zha [45, 1996).

Generalized Least Squares Problems

4.1. Generalized QR Decompositions
4.1.1. Introduction. In Section 1.1.3 we introduced the general univariate
linear model, where the covariance matrix was proportional to a semidefinite
symmetric matrix W 6 Rmxm. When W is positive definite we can write
W — BBT, and if A has full column rank the best linear unbiased estimate
(BLUE) for x is the solution of the generalized least squares problem

(4.1.1)

This problem now involves two matrices A and 5, and in general models, both
can be rank deficient. In this section we consider generalized QR decompositions,
which can be used to solve such problems in a stable manner.

4.1.2. Computing the GQR and PQR. In many applications an effective
computational tool is the QR decomposition of a matrix

(4.1.2)

for given A and B. We refer to this as a product QR decomposition (PQR).
In principle the PQR could be computed by first explicitly forming the matrix C.
However, in order to obtain a computed result which is backward stable in the
sense that it corresponds to the exact result to nearby data A + 6A and B + 8B
this must be avoided.

Similar considerations apply to computing the QR decompositions for a
matrix of the form

(4.1.3)

for given A and nonsingular B. Such a QR decomposition will be called a
generalized QR decomposition (GQR), as suggested by Hammarling [423,
1985]. (It is also called the quotient QR decomposition.) When B is singular
or not square then C does not exist. We would like the GQR to be defined for
general matrices A £ Rmxn and B £ R/

mxP with the same number of rows.

153

Chapter 4

154 CHAPTER 4. GENERALIZED LEAST SQUARES PROBLEMS

To construct the GQR in the general case we proceed in two steps. First
we compute a rank revealing QR decomposition of A; see Section 2.7.4. If the
numerical rank (A) = r, then we obtain

(4.1.4)

where Q is orthogonal, H is a permutation matrix, and U\\ G Rrxr is upper
triangular and nonsingular. The orthogonal transformation QT

A is then applied
also to B:

Next an orthogonal matrix Q is constructed so that

(4.1.5)

where rank(£2) = q, t = r + q, Rn £ R rxfcl, #22 € R(n~9)xfc2 are upper
trapezoidal, and rank(-Rn) = &i, rank (#22) = &2- If rank(B) = p there will be
no zero columns. Note that row interchanges can be performed on the block B<2
if Q is modified accordingly.

If B is square (p = ra) and nonsingular then so is R, and from (4.1.4)-(4.1.5)
we have

(4.1.6)

which is the QR decomposition of B~1AH. Even in this case one should avoid
computing R, since in most applications it is not needed and it is usually more
effective to use RU and U separately. Another advantage of keeping R\\ and U
is that the corresponding decompositions (4.1.4)-(4.1.5) can be updated by the
standard methods described in Chapter 3 when columns or rows are added or
deleted from A and B. Even when S is defined by (4.1.6) it cannot generally be
updated in a stable way.

Another approach to handling the case when B is not square or singular
would be to define the GQR as the QR decomposition of B^A, where B^ denotes
the pseudoinverse of B. It has been pointed out by Paige [634, 1990] that this
will not be very useful since it does not produce the correct solution for many of
the applications of the GQR.

The PQR decomposition of A € Rmxn and B 6 Rmxp can be computed in
a similar manner. We again use (4.1.4) as the first step, and then replace (4.1.5)
by

(4.1.7)

4.2. THE GENERALIZED SVD 155

where Ln 6 R9Xn, L22 € R^-s)*^ and rank(Ln) - n, rank(L22) = r2. This
gives the product PQR since

(4.1.8)

with LT 6 R r iXn upper trapezoidal. Again one should avoid computing LT,
since it is not needed in most applications and it usually leads to more accurate
methods if L\\ and U are kept separate. (A trivial example of this is the case
when B = A.)

An excellent survey of the use of the GQR decomposition for solving
different generalized least squares problems is given by Paige in [634, 1990].
The applications include the preprocessing stage in computing the generalized
SVD of A and 5, generalized least squares problems (4.1.1), and equality-
constrained linear least squares problems. Implementation aspects are considered
in Anderson, Bai, and Dongarra [18, 1991], and some generalizations discussed by
De Moor and Van Dooren [212, 1992]. Luk and Qiao [553, 1994] have developed
rank revealing GQR decompositions.

4.2. The Generalized SVD
We shall introduce a generalized singular value decomposition (GSVD) for
two matrices A € Rmxn and B 6 RPxn with the same number of columns. The
GSVD and its application to certain constrained least squares problems was first
studied by Van Loan [796, 1976]. Paige and Saunders [637, 1981] extended the
GSVD to handle all possible cases, and gave a computationally more amenable
form.

4.2.1. The CS decomposition. In the special case when A and B are blocks
of a partitioned matrix having orthonormal columns the GSVD simplifies to the
CS decomposition, which is of interest in its own right.

THEOREM 4.2.1. CS Decomposition. Let Q € R(m+p)xn have orthonormal
columns, and be partitioned as

(4.2.1)

i.e., QTQ = Q^Qi + Q%Q2 = In- Then there are orthogonal matrices U\ €
Rmxm, J72 e Rpxp, and V G Rnxn, and square nonnegative diagonal matrices

(4.2.2)

satisfying C2 + S2 = Iq such that

(4.2.3)

156 CHAPTER 4. GENERALIZED LEAST SQUARES PROBLEMS

has one of the following forms:

The diagonal elements ci and Si are

where without loss of generality, we may assume that

Proof. (See Stewart [738, 1982].) To construct E/i, V, and C, note that since
C/i and V are orthogonal and C is a nonnegative diagonal matrix, (4.2.3) is the
SVD of Q\. Hence the elements c$ are the singular values of Q\. If we put
Qi = QiV, then the matrix

has orthonormal columns. Thus

which implies that Q^Q^ = In — C2 is diagonal and hence the matrix Q% =
(q[, . . . , qn ') has orthogonal columns.

We assume that the singular values Ci — cos(^) of Q\ have been ordered
/o\ (n\

according to (4.2.1) and that cr < cr+i = 1. Then the matrix t/2 = (u\ ; , . . . , Up)
is constructed as follows. Since \\QJ \\2 = I — cj ^ 0, j < r we take

and fill the possibly remaining columns of f/2 with orthonormal vectors in
the orthogonal complement of l^(Qi}- From the construction it follows that
C/2 G Rpxp is orthogonal and that

with

The assumption ra > n in the theorem is made for notational convenience
only. Stewart [738, 1982] treats the general case, which gives rise to four

4.2. THE GENERALIZED SVD 157

different forms corresponding to cases where Qi and/or Qi have too few rows
to accommodate a full diagonal matrix of order n.

The proof of the CS decomposition is constructive. In particular C/i, V, and
C can be computed by a standard SVD algorithm. However, the algorithm for
computing C/2 is unstable when some singular values Ci are close to 1. Stewart
[738, 1982] and Van Loan [798, 1985] describe two modified stable algorithms for
computing the CS decomposition.

The CS decomposition can be stated in a related form which is often useful.
Let Q € Rmxm be orthogonal and consider the partitioning

Then there exist orthogonal matrices U\,V\ € R7*-7 and C/2, Vz € Rfcxfc such that

(4.2.4)

where

The decomposition (4.2.4) can be proved in a way similar to the proof of
Theorem 4.2.1. A proof of a slightly more general decomposition, where Qn
and Q22 are not required to be square matrices, is given in Paige and Saunders
[637, 1981]. Stewart [732, 1977] first put forward an explicit form of the CS
decomposition, although it is implicit in the works by Davis and Kahan [203,
1970] and Bjorck and Golub [111, 1973]. For an account of the history and
development of the CS decomposition, see Paige [635, 1994]-

Note that the decomposition (4.2.4) treats rows and columns of Q in a
symmetric way. The matrix on the right-hand side of (4.2.4) is a generalization
of a Givens rotations matrix (see (2.3.9)) and its transpose is its inverse. As
remarked by Stewart [732, 1977], the decomposition (4.2.4) "often enables one to
obtain routine computational proofs of geometric theorems that would otherwise
require considerable ingenuity to establish."

4.2.2. The generalized SVD. The CS decomposition enables us to give a
constructive development of the GSVD of two matrices A and B with the same
number of columns. The assumption m > n in the theorem is made for notational
convenience only. For a general formulation and proof, see Paige and Saunders
[637, 1981].

THEOREM 4.2.2. The Generalized Singular Value Decomposition (GSVD).
Let A e Rmxn, m > n, and B € Rpxn be given matrices. Assume that

158 CHAPTER 4. GENERALIZED LEAST SQUARES PROBLEMS

Then there exist orthogonal matrices UA £ Rmxm and UB € Rpxp and a matrix
Z e Rfcxn of rank k such that

(4.2.5)

where

DA = diag(ai,..., afc), DB = diag(/?i,..., /?g), 4 = min(p, fc).

Further, we have

and the singular values of Z equal the nonzero singular values of M.
Proof. Let the SVD of M be

where Q and P are orthogonal matrices of order (m+p) and n, respectively, and

Set t = m + p — k and partition Q and P as follows:

Then the SVD of M can be written

(4.2.6)

Now let

be the CS decomposition of Qu and Q^i- Substituting this into (4.2.6) we obtain

and (4.2.5) follows with

Here a\ > • • • > crfc > 0 are the singular values of Z.

When B e Rnxn is square and nonsingular the GSVD of A and B corresponds
to the SVD of AB'1. However, when A or B is ill-conditioned, then computing
AB~l would usually lead to unnecessarily large errors, so this approach is to be
avoided. It is important to note that when B is not square, or is singular, then
the SVD of AB^ does not always correspond to the GSVD.

4.2. THE GENERALIZED SVD 159

4.2.3. Computing the GSVD. Two stable algorithms for computing the
GSVD were developed by Stewart [738, 1982], [740, 1983] and Van Loan [798,
1985]. Their algorithms resemble the proof of Theorem 4.2.2, but in the first
phase a QR decomposition is used instead of the SVD. The second phase is to
compute the CS decomposition.

A different algorithm was proposed by Paige [633, 1986]. In the first phase of
the algorithm A and B are reduced to the following generalized triangular form:

where U\\ is nonsingular upper triangular, R\\ is upper triangular, r = rank(^l),
t = r + q, and if q > 0 then #22 is nonsingular upper triangular. This
transformation can be done first by a rank revealing QR decomposition with
column pivoting of the matrix A. Second, the columns of B are permuted in
the same way, and then a QR decomposition is performed on B, where column
pivoting is used on the block of the last p — r rows and n — r columns of B, and
q is the rank of this block. Another approach begins by applying a reduction by
Bai and Zha [33, 1993], which extracts a regular pair (A, B), with A and B upper
triangular and B nonsingular, from a general matrix pair. In the second phase the
GSVD of two nxn upper triangular matrices is computed by a Kogbetliantz-type
method; see Section 2.6.6.

The GSVD is also called the quotient SVD or QSVD. Heath et al. [444, 1986]
give a generalized Kogbetliantz algorithm for computing the SVD of the product
BTA. It accurately computes very small singular values of the product BTA.
Another variation of Paige's algorithm has been given by Bai and Demmel [32,
1993]. This contains a new preprocessing step to reduce A and B to the above
upper triangular form. The second innovation is a new 2 x 2 triangular GSVD
algorithm, which is proved to be stable and accurate.

The Kogbetliantz-type algorithms for the GSVD extend fairly easily to
products and quotients of several matrices. Since the method of choice for
computing the standard SVD is the implicit QR algorithm, extensions of this
method should also be promising for the GSVD. Such a QR-like algorithm for
computing the SVD of a product or quotient of two or more matrices has been
outlined by Golub, Solna, and Van Dooren [384, 1995]. We discuss here the
problem of computing the SVD of a product of two matrices

i.e., a product or quotient of two matrices. Consider the expression

(4.2.7)

160 CHAPTER 4. GENERALIZED LEAST SQUARES PROBLEMS

where U,V, and Q\ are orthogonal matrices. We can here choose Q\ and Qi
so that Q?A{Qi-i = Ti, i = 1,2, are upper triangular. But then it holds that
Q^AfQi-i = T?' is also upper triangular for si = ±1. It can be shown that
the remaining orthogonal matrix QQ leaves enough freedom to diagonalize the
product A. It is shown in [384, 1995] how to implicitly construct the matrices
Qi, i — 0,1,2, so that the product (4.2.7) is the bidiagonalization of A. Typically
the bidiagonal matrix will be graded, and will allow small singular values to
be computed with high relative precision by the QR algorithm. The method
generalizes to the product and/or quotient of an arbitrary number of matrices.

4.3. General Linear Models and Generalized Least Squares
4.3.1. Gaiiss-Markoff linear models. Let A G Rmxn,m > n, be a known
matrix, b G Rm a known vector, and x G Rn an unknown parameter vector which
is to be estimated. The general Gauss-Markoff linear model has the form

(4.3.1)

where e is a random vector with zero mean and covariance matrix <J2W, and W
is a symmetric nonnegative definite matrix. For W = I we get the special linear
model discussed in Section 1.1.3. In this section we will treat the general case,
when both matrices A and W may be rank deficient. The special case when
W is a positive diagonal matrix, weighted linear models, will be discussed in
Section 4.5.

We will assume that W is given in factored form

(4.3.2)

If W is initially given, then B can be computed as the Cholesky factor of W. We
replace (4.3.1) by the equivalent model

(4.3.3)

where the random vector u G Rp has covariance matrix cr2/. We now show how
the generalized singular value decomposition can be used to analyze the model
(4.3.3). The following analysis is based on the work by Paige [632, 1985].

Since the matrices A and B have the same number of rows a slightly modified
version of the generalized singular value decomposition of Section 4.2.2 can be
applied to AT G Rnxm and BT G Rpxm. We state the resulting decomposition
using slightly different notations.

THEOREM 4.3.1. Assume that

where it follows from the assumptions that r < n, s < p, k <r + s. Then there
exist orthogonal matrices U G Rnxn and V G Hpxp and a matrix Z G Rmxfc of
rank k such that

(4.3.4)

4.3. GENERAL LINEAR MODELS AND GENERALIZED LEAST SQUARES 161

(4.3.5)

where q = r + s — k,

(4.3.6)

and D\ + D\ = Iq.
Note that the row partitionings in (4.3.4) are the same. If we partition the

orthogonal matrices U and V conformably with the column blocks on the right-
hand sides in (4.3.4),

then we note that AU\ = 0, BV% = 0, and hence U\ and Va span the nullspaces
of A and J5, respectively. The decomposition (4.3.4) separates out the common
column space of A and B. We have AU^ — ZDA and BV2 = ZDs, and thus
AU^DB = BV2DA. Since DA > 0 and DB > 0 it follows that

and has dimension q. For the special case B = I we have s — k = m and then
q = rank(.A).

Now let the QR decomposition of the matrix Z in (4.3.4) be

(4.3.7)

where R £ Rfcxfc is upper triangular and nonsingular. In the model (4.3.3) we
make the orthogonal transformations of the variables

(4.3.8) x = UTx, u = VTu.

Then, using (4.3.4) and (4.3.7) the model (4.3.3) becomes

(4.3.9)

where Xi = U^Xi, Ui = V?Ui, i = 1,2,3.
It immediately follows that the model is correct only if Q^b = 0, which is

equivalent to the condition b G 7£(.A, B). If this condition is not satisfied, then 6
could not have come from the model.

The remaining part of (4.3.9) can now be written

(4.3.10)

162 CHAPTER 4. GENERALIZED LEAST SQUARES PROBLEMS

where we have partitioned R and c = Q^b conformably with the block rows of
the two block diagonal matrices in (4.3.9).

We first note that x\ has no effect on 6, and therefore cannot be estimated.
The decomposition

splits x into a nonestimable part xn and an estimable part xe. Further, £3 can
be determined exactly from

Note that £3 has dimension k — s = rank(A, B] — rank(B), so that this can only
occur when rank (5) < ra.

The second block row in (4.3.10) gives the linear model

where from (4.3.8) we have that V(u2) = &2I- Here the right-hand side is known
and the best linear unbiased estimate of x^ is

(4.3.11)

The error satisfies DA^Z ~ ^2) = Ae^2> and hence the error covariance is

and so has uncorrelated components.
The random vector us has no effect on b. The dimension of £3 is p — s —

p — rank(.B), and so is zero if B has independent columns. Finally the vector
ui can be solved exactly from the system (4.3.10). Since HI has zero mean and
covariance matrix a21 it can be used in estimating a1. Note that u\ has dimension
k — r = rank(A, B) — rank(A).

REMARK 4.3.1. The GSVD could be used to compute the estimate (4.3.11)
and its error covariance matrix. However, a reliable and more efficient method
has been given by Paige [628, 1979]- This method will be described for the case
of a positive definite W in Section 4.3.3.

4.3.2. Generalized linear least squares problems. The best linear unbi-
ased estimate (BLUE) of any estimable function of x in the general linear model
(4.3.3) is given by the solution to

(4.3.12)

which is a generalized least squares problem. In the case when W = BBT G
fgmxm jg pOSitive definite this problem reduces to that of finding a vector x G Rn

that solves
(4.3.13)

4.3. GENERAL LINEAR MODELS AND GENERALIZED LEAST SQUARES 163

The solution to this problem gives the least squares estimate of the vector x in
the linear model

(4.3.14)

Problems where W is singular correspond to linear least squares problems with
linear constraints, and will be treated in Section 5.1.

The solution of problem (4.3.13) is given by the normal equations

(4.3.15)

If ATW~1A = RTR is the Cholesky factorization of the matrix of normal
equations then the variance-covariance matrix of the least squares solution is
<J2CX, where

Introducing the vector y = W~l(b — Ax) the normal equations are equivalent
to the augmented linear system

(4.3.16)

Rao [675, 1973] called the matrix in (4.3.16) the fundamental matrix, and
showed in theory how to obtain the solution from a generalized inverse of
the fundamental matrix. Wedin [828, 1985] gives a unified treatment and a
perturbation analysis of generalized and constrained least squares problems based
on the system (4.3.15).

If a given W is symmetric positive definite, it has a factorization

(4.3.17)

where B is nonsingular. Then (4.3.13) is equivalent to

(4.3.18)

Often B itself is given rather than W. In such cases forming W can lose important
information, and could cause the computed W to be singular even when B has
full rank. In general it is preferable to work with B instead of W. Even if B is
not given, we can compute B = L from the Cholesky factorization W — LLT\
see Section 2.2.2.

The problem (4.3.18) can be transformed into a standard least squares
problem by computing A = B~1A, and b = B~lb. When B is at all ill-conditioned
this is not a stable computational approach, and instead the GQR decomposition
of A and B should be used.

164 CHAPTER 4. GENERALIZED LEAST SQUARES PROBLEMS

4.3.3. Paige's method. A stable algorithm for the generalized linear least
squares problem (4.3.12) has been given by Paige [627, 1979], [628, 1979].
Although this algorithm allows for rank deficiency in A and B we consider here
only the case when B is nonsingular and A has full rank n. For a treatment of
the general case we refer to Paige [627, 1979] and Section 4.3.1.

Paige's method begins with computing the QR decomposition of A,

(4.3.19)

and then applies the orthogonal transformation QT also to b and B

The constraints in (4.3.12) can now be written in partitioned form

(4.3.20)

For any vector v 6 Rm we can always determine x so that the first block of these
equations is satisfied. An orthogonal matrix P G Rmxm is then determined such
that

(4.3.21)

where the matrix S is upper triangular. By the nonsingularity of B it follows
that C-2 will have linearly independent rows, and hence the matrix S will be
nonsingular. Note that (4.3.21) after reversing the rows and columns is just the
QR decomposition of Cj. Now the second set of constraints in (4.3.20) becomes

(4.3.22)

Since P is orthogonal we have ||i>||2 — \\u\\2 and so the minimum in (4.3.12) is
found by taking

where P = (Pi,/^)- Finally x is obtained by solving the triangular system
RX = CI- Civ in (4.3.20).

Paige's algorithm (4.3.19)-(4.3.22) requires a total of about 2m3/3 + m2n
flops. If m > n the work in the QR decomposition of C% dominates. It can be
shown that the computed solution is an unbiased estimate of x for the model
(4.3.12) with covariance matrix <J2C, where

(4.3.23)

Paige [627, 1979] obtains a perturbation analysis for the problem (4.3.18) by
using the formulation (4.3.12), and gives a rounding error analysis to show that

4.4. WEIGHTED LEAST SQUARES PROBLEMS 165

the above algorithm is numerically stable. The algorithm can be generalized in a
straightforward way to rank deficient A and B. For details see Paige [627, 1979].

The algorithm above does not take advantage of any special structure the
matrix B may have. If B has been obtained from the Cholesky factorization
W = BBT it is of lower triangular form. In this case, and also when W is
diagonal, it is advantageous to carry out the two QR decompositions in (4.3.19)
and (4.3.21) together, maintaining the lower triangular form throughout. Paige
[628, 1979] has given such a variation of the algorithm using a "zero chasing
technique," with a careful sequencing of Givens transformations. With fast
Givens rotations this requires a total of about m2n + 2mn2 — 4n3/3 flops.

REMARK 4.3.2. In some applications, notably from interior point methods,
one needs to solve a sequence of problems of the form (4.3.12), with A constant
but B = Bk, k = 1,... ,p. The QR decomposition (4.3.19) can then be computed
once and for all. In case m = n this reduces the work for solving an additional
problem from 5n3/3 to n3.

4.4. Weighted Least Squares Problems
4.4.1. Introduction. In this section we consider the special linear model
(4.3.1) where the components in the random error vector e are uncorrelated.
In this case the covariance matrix W is a positive diagonal matrix

The corresponding least squares problem, mmx(Ax — b}TW~~l(Ax — 6), can be
written as a weighted linear least squares problem

(4.4.1)

where we have introduced the diagonal weight matrix

In many cases it is possible to solve (4.4.1) as a standard linear least squares
problem

However, in applications where the weights d\,..., dm vary widely in size this is
not generally a numerically stable approach.

Note that the weight matrix in (4.4.1) is not unique. Therefore we will in the
following assume that the matrix A has been row equilibrated, that is,

We also assume here and in the following that the rows of A are ordered so that
the weights satisfy
(4.4.2)

166 CHAPTER 4. GENERALIZED LEAST SQUARES PROBLEMS

Then di/dm = 7 » 1 corresponds to the case when some components of the
error vector in the linear model have much smaller variance than the rest, and
we call such weighted problems stiff. Note that in the limit when some di tend
to infinity, the corresponding ith equation becomes a linear constraint.

For stiff problems the condition number K,(DA) will be large. An upper bound
is given by

It is important to note that this does not mean that the problem of computing
x from given data {D,A,b} is ill-conditioned. For the weighted problem (4.4.1)
the perturbations in DA and Db will have a special form, and the normwise
perturbation analysis given in Section 1.4.2 is not relevant; see Remark 1.4.3.
However, that K,(DA) ^> 1 correctly warns us that special care may be needed in
solving stiff weighted linear least squares problems.

REMARK 4.4.1. Problems with extremely ill-conditioned weight matrices
arise, e.g., in electrical networks, certain classes of finite element problems,
and interior point methods for constrained optimization. Vavasis [806, 1994]
and Hough and Vavasis [474, 1994] have developed special methods for such
applications, which satisfy a strong type of stability.

It is easily seen that in general the method of normal equations is not well
suited for solving stiff problems. To illustrate this, we consider the important
special case where only the first p equations are weighted:

(4.4.3)

AI e RPxn and A<i € R(m~p)xn. Such problems occur, for example, when the
method of weighting is used to solve least squares problems with the linear
equality constraints A\x — &i; see Section 5.1.4. For this problem the matrix
of normal equations becomes

If 7 > it"1/2 (u is the unit roundoff) and A^Ai is dense, then B = ATA will be
completely dominated by the first term and the data contained in A^ may be lost.
However, if the number p of very accurate observations is less than n, then the
solution depends critically on the less precise data in AI. (The matrix in Example
2.2.1 is of this type.) We conclude that for weighted least squares problems with
7 ^> 1 the method of normal equations generally is not well behaved.

4.4.2. Methods based on Gaussian elimination. In Section 2.5 several
methods based on a preliminary factorization by Gaussian elimination were
discussed. In the Peters-Wilkinson method (see Section 2.5.1) A is first reduced
by Gaussian elimination to upper triangular form. It was pointed out by Bjorck
and Duff [104, 1980] that this method is suitable for weighted problems.

4.4. WEIGHTED LEAST SQUARES PROBLEMS 167

Assume that rank(.<4i) = p, and that p steps of Guassian elimination are
performed on the weighted matrix A = DA using row and column pivoting.
Then the resulting factorization can be written

(4.4.4)

where HI and 112 are permutation matrices,

LH e Rpxp is unit lower triangular, and U\\ € Rpxp unit upper triangular.
Assuming that A has full rank, D is nonsingular. Then (4.4.1) is equivalent to

This least squares problem is usually well-conditioned, since any ill-conditioning
in A is usually reflected in U. We illustrate the method in a simple example.

EXAMPLE 4.4.1. In Example 2.2.1 it was shown that the method of normal
equations failed for the problem of Lauchli [517, 1961]. After multiplication with
7 = e~l this becomes

which is of the form (4.4.3) with p = 1. After one step of Gaussian elimination
we obtain the factorization A = L\D\U\, where

It is easily verified that L\ is well-conditioned, and the solution can be accurately
obtained by solving L^L\y = L^b, and back-substitution D\Uix =

In general, for a problem of the form (4.4.3) the LU factorization (4.4.4) will
have the form

(4.4.5)

where the blocks Ly and Uy are 0(1), and L22 € R(m~P)x(n-p) is the reduced
matrix. The normal equations for y — (DU)x then equal LTLy = LTb, where

168 CHAPTER 4. GENERALIZED LEAST SQUARES PROBLEMS

For 7 3> 1 the matrix LTL is almost block diagonal and its condition number is
to first approximation independent of 7. If we let Rn and #22 be the Cholesky
factors of L^Lu and 1/22^22? respectively, then the Cholesky factor of LTL will
have the form

cf. Stewart [742, 1984]. After solving RRTy = LTb the least squares solution is
obtained from DUx = y, giving

For the weighted least squares problem the augmented system (4.3.16) has
the form

(4.4.6)

where W = D"2. The scaling factor a has been introduced for stability reasons;
see Section 2.5.2. As before we assume that D has been chosen so that A is
row equilibrated, which will tend to lower the condition of A. Further results
on the prescaling of A before using the augmented system method are given
in Duff [239, 1994]. The system can be solved by using the Bunch-Kaufman
factorization described in Section 2.5.2. An advantage with this formulation is
that linear constraints can be treated by letting Wi = 0 in (4.4.6).

A problem with this approach is that it is not easy to get an a priori estimate
of the optimal value of a for stability. A second drawback with the method
outlined in this section is that it works with a system of order m + n, which may
be much larger than n. Therefore, the main use of this method seems to be for
sparse problems, where the sparsity of the block / can be taken into account; see
Arioli, Duff, and de Rijk [20, 1989].

4.4.3. QR decompositions for weighted problems. We now consider
the use of methods based on the QR decomposition of A for solving weighted
problems. We first examine the Householder QR method, and show by an
example that this method can give poor accuracy for stiff problems unless the
algorithm is extended to include row interchanges.

EXAMPLE 4.4.2. (See Powell and Reid [670, 1969].) Consider the problem
mina; || Ac — 6|J2, where

with exact solution equal to x = (1,1,1). Using exact arithmetic we obtain
after the first step of QR decomposition of A by Householder transformations

4.4. WEIGHTED LEAST SQUARES PROBLEMS 169

(Algorithm 2.4.1) the reduced matrix

If 7 > u~l the terms —21/2 and — 2"1/2 in the first and second rows are lost.
However, this is equivalent to the loss of all information present in the first row
of A. This loss is disastrous because the number of rows containing large elements
is less than the number of components in z, so there is a substantial dependence of
the solution x on the first row of A. (However, compared to the method of normal
equations, which fails already when 7 > u"1/2, this is an improvement!)

Van Loan [799, 1985] has given several examples illustrating that solving

(4.4.7)

instead of (4.4.3) with Householder will give bad accuracy for large values of 7.
It is also essential that column pivoting is performed when QR decomposition

is used for weighted problems. Van Loan [799, 1985] gives an example of the form
(4.4.3), where

to illustrate the need for column pivoting. Stability is lost here without column
pivoting because the first two columns of the matrix A\ are linearly dependent.
When column pivoting is introduced this difficulty disappears.

Powell and Reid [670, 1969] extended the Householder algorithm to include
row interchanges. In each step a pivot column is first selected in the reduced
matrix, and then the element of largest absolute value in the pivot column is
permuted to the top. Powell and Reid give an error analysis for this algorithm
which shows that it has good stability properties for stiff problems as well.

It seems that there is no need to perform row pivoting in Householder
QR, provided that the rows are sorted after decreasing row norm before the
factorization, so that the weights satisfy (4.4.2). For example, if in Example
4.4.2 the two large rows are permuted to the top of the matrix A, then the
Householder algorithm works well.

An approach related to that of Powell and Reid is taken by Gulliksson and
Wedin [413, 1992]. They use scaled Householder transformations P which are W
invariant, i.e., satisfy

(4.4.8)

It is easy to verify that P must have the form

170 CHAPTER 4. GENERALIZED LEAST SQUARES PROBLEMS

i.e., P is a reflector. Note that W~l^PW1^2 is an orthogonal reflector.
A sequence of W invariant reflectors is used to transform ^4H, where II is a

permutation matrix, to upper triangular form,

This is equivalent to the ordinary QR factorization

When W > 0 this method is equivalent to the algorithm of Powell and Reid.
However, this approach generalizes simply to the case when W has the form
W = diag (0, W<z), which corresponds to a constrained least squares problem. A
backward error analysis of this method has been given by Gulliksson [410, 1995].

In contrast to the Householder QR method, the modified Gram-Schmidt
(MGS) method is numerically invariant under row interchanges (except for effects
deriving from different summation orders in the computed inner products). In
particular, for problems of the special form (4.4.3) MGS will give accurate
solutions independent of row ordering if 7 is chosen optimally. However, as
illustrated by the numerical results by Anda and Park [15, 1996], MGS will lose
accuracy for very large values of 7. Gulliksson [411, 1995] has made a detailed
study of the numerical stability of MGS for weighted problems.

Anda and Park [15, 1995] have studied the use of Givens QR algorithms for
stiff least squares problems, and developed self-scaling fast plane rotations for
such problems. They show that both fast and standard Givens rotations produce
accurate results regardless of row sorting.

The following example from [15] illustrates the effect of row sorting in Givens
rotation. Let 7 ^> 1, and

The Givens transformations that zero the elements a'qp and a'qp in A' = GA, and
A1 = GA, respectively, are (see (2.3.13))

where o = Jcfyp + 72&2,7> and o — v/T2^ + a%p- In each case the more heavily
weighted row of the resulting matrix GA and GA is in top position regardless of
its initial position. Hence a sequence of rotations will move rows of large norms to
the top of the matrix. The numerical results of Anda and Park also showed that
the self-scaling rotations maintained high accuracy for extremely large values of
7. Their tests also showed no significant difference in accuracy between different
rotation order ings.

4.4. WEIGHTED LEAST SQUARES PROBLEMS 171

4.4.4. Weighted problems by updating. A stable method for solving the
stiff least squares problem of the special form (4.4.3) can be based on updating
the solution to the unweighted problem. Let a* (7) be the solution to problem
(4.4.3) with weight 7 > 1, and let r(^) = b — Ax(^} be the corresponding residual
vector, where

We now relate #(7) and 7*1(7) — &i ~ ^ix(l) to the corresponding quantities a*(l).
and ri(l) for the unweighted problem. The normal equations for the weighted
problem can be written

where 72 = 72 — 1. Subtracting the normal equations for 7 = 1 and solving for
6x = #(7) — a*(l) gives

Using the Woodbury formula (3.1.6) we obtain after some calculation

(4.4.9)

When 7*1(7) is known we can obtain #(7) from

(4.4.10)

If p <C m, then the extra work in the updating steps (4.4.9) and (4.4.10)
is small. If the factorization ATA — RTR is known (from Cholesky or QR
factorization) it follows that

where Si G RPxn can be computed by forward substitution. We can then
compute 7*1(7) and the correction 07(7) — x(l] by solving

(4.4.11)

(4.4.12)

Thus we only need to solve a (small) p x p system, form 5^7*1(7), and perform a
back-substitution. If the matrix A is not too ill-conditioned the method of normal
equations might be used to compute the solution to the unweighted problem and
determine R. On the other hand, if the matrix B is ill-conditioned, it is better
to solve the p x p system in (4.4.11) by QR factorization, noting that

It follows from (4.4.11) that if rank(Ai) = p, then for large values of 7 the
residual 7*1(7) will t>e proportional to 7~2. If we let 7 —> oo we obtain a solution
of a constrained problem which satisfies A\x — bi exactly. In this case the above
algorithm simplifies; see Section 5.1.5.

172 CHAPTER 4. GENERALIZED LEAST SQUARES PROBLEMS

4.5. Minimizing the lp Norm
4.5.1. Introduction. In some applications it might be more adequate to
minimize some other norm than the /2 norm of the residual r = b — Ax. We
consider the Holder vector /p-norms || • ||p, which are defined by

where the Euclidian norm corresponds to p = 2. In the limiting case p —> oo we
take
(4.5.2)

Using these norms leads to the more general minimization problems

(4.5.3)

and for p = oo
(4.5.4)

where a? is the ith row of the matrix A.
The effect of using a Holder norm with p ^ 2 was illustrated in Example

1.1.2 by considering the problem of estimating the scalar 7 from m observations
y £ Rm. The estimates were shown to correspond to the median, mean, and
midrange, respectively. In particular, the estimate 71 does not depend on extreme
values of yi. This property carries over to more general problems, and a small
number of isolated large errors will generally not change the l\ solution. However,
for p = 1 the solution may not be unique, while for 1 < p < oo there exists exactly
one lp solution. Thus it may be desirable to obtain the lp solution for a noninteger
value of p > 1.

In Section 1.1.1 it was mentioned that Laplace in 1799 used the principle of
l\ approximation. It can be shown that the solution then must satisfy at least n
equations exactly. Likewise, the l^ solution has the property that the absolute
error in at least n equations equals the maximum error. The advantage of the
li solution is that it is robust in that a small number of isolated large errors do
not usually change the solution. However, a similar effect is also achieved with p
greater than but close to 1.

Often it is preferable to solve the approximation problem

(4.5.5)

for noninteger values of p. Here p = I is excluded because for this case the
function i/)(x) in (4.5.5) is only piecewise differentiable. Further, the l\ solution
may not be unique since for 1 < p < 2 the problem is strictly convex and hence
has exactly one solution.

(4.5.1)

4.5. MINIMIZING THE lp NORM 173

4.5.2. Iteratively reweighted least squares. For solving the lp norm
problem when 1 < p < 2, the iteratively reweighted least squares (IRLS)
method (see Osborne [618, 1985]) is widely used. This approach reduces the
problem to the solution of a sequence of weighted least squares problems, which
is attractive since methods and software for weighted least squares are generally
available; see Section 4.4.

We start by noting that, provided that \ri(x)\ = \b — Ax\i > 0, i = 1,... , ra,
the problem (4.5.3) can be restated in the form

(4.5.6)

This can be interpreted as a weighted least squares problem

(4.5.7)

where here and in the following the notation diag(|r|), r 6 Rm, denotes the
diagonal matrix with ith component |rj|.

The diagonal weight matrix D(r)^p~<2^2 in (4.5.7) depends on the unknown
solution a:, but we can attempt to use the following iterative method.

ALGORITHM 4.5.1. IRLS FOR lp APPROXIMATION 1 < p < 2. Let x^ be
an initial approximation such that r^ — (b — Ax^)i ^ 0, i — 1,..., ra.

Since

a;(fc+1) in IRLS solves minx \\Dk(b — Ax)\\2 but the implementation above is to be
preferred. It should be pointed out that the iterations can be carried out entirely
in the r space without the x variables. Upon convergence to a residual vector ropt
the corresponding solution can be found by solving the consistent linear system
Ax = b-ropi.

It has been assumed that in the IRLS algorithm, at each iteration r\' ^ 0,
i = 1,..., n. In practice this cannot be guaranteed, and it is customary (see Li
[529, 1993]) to modify the algorithm so that

174 CHAPTER 4. GENERALIZED LEAST SQUARES PROBLEMS

where u is the machine precision and eT = (1,. . . , 1) is the vector of all ones.
Methods for solving weighted problems have been described in Section 4.5.

Because the weight matrix Dk is not constant, the simplest implementations of
IRLS recompute, e.g., the QR factorization of DkA in each step. It is also possible
to use updating techniques; see O'Leary [606, 1990].

We now compare IRLS with the Newton method for minimizing i/j(x) = 0(r),
r = b — Ax, where i^(x) is the function in (4.5.6). The gradient of </>(r) is a vector
y with elements

and the Hessian is a diagonal matrix D = diag (di) with entries

It follows that the gradient g and Hessian matrix H of second derivatives of ^(x]
are given by
(4.5.8)

Hence the step s for Newton's method satisfies Hs — —g. Apart from the factor
(p — 1) this is just the normal equations for the weighted least squares problem
(4.5.7), and the Newton step for minimizing ̂ (x) is related to the IRLS step by

Since the Newton step is always a descent direction for the objective function
^(x] it follows that the same is true for the step obtained from the IRLS method.
However, because IRLS for p < 2 does not take a full Newton step, it is at best
only linearly convergent.

Conditions for convergence of IRLS are discussed by Osborne [618, 1985]. It
is shown that in the lp case any fixed point of the IRLS iteration satisfies the
necessary conditions for a minimum of ip(x). It is shown that the IRLS method
is convergent for 1 < p < 3, and also for p = 1 provided that the l\ approximation
problem has a unique nondegenerate solution.

Taking a full Newton step may lead to divergence, and hence the Newton
method must be combined with a line search to be globally convergent and achieve
local quadratic convergence. Such a line search procedure has been developed by
Li [529, 1993], who calls the corresponding method IRLSL. This method will also
converge quickly for p in the range 2 < p < oo. However, for p close to 1 even
the IRLSL method converges slowly, which is related to the fact that for p = I
the objective function ^(x] is not differentiate.

The IRLS method can be extremely slow when p is close to unity. Recently
Li [529, 1993], [530, 1993] has developed a method called GNCS based on a
globalized Newton method using the complementary slackness condition for the
l\ problem. Far from the solution this algorithm behaves like the IRLSL method.
Close to the solution it behaves like a Newton method for an extended nonlinear

4.5. MINIMIZING THE lp NORM 175

system of equations capturing the necessary conditions both when p = I and
when p > 1. The problem of unbounded second derivatives is handled by a simple
technique connected to the line search. The method is globally convergent and
the local convergence is superlinear if there are no zero residuals at the solution.
Li reports that GNCS is better than IRLSL when p < 1.5.

4.5.3. Robust linear regression. In robust linear regression possible "out-
siders" among the data points are identified and given less weight. For a general
treatment of robust statistical procedures, see Huber [478, 1981]. The most pop-
ular among the robust estimators is Huber's M-estimator [478, 1981], which uses
the least squares estimator for "normal" data but the li norm estimator for data
points that disagree too much with the normal picture. More precisely, the Huber
M-estimate minimizes the objective function

(4.5.9)

where

(4.5.10)

7 is a tuning parameter, and a a scaling factor which depends on the data to
be estimated. In the following we assume that a is a constant, and then it is no
restriction to take a = 1.

Like the lp estimator for 1 < p < 2, the Huber estimator can be viewed as a
compromise between /2 and li approximation. For large values of 7 it will be close
to the least squares estimator; for small values of 7 it is close to the l\ estimator.
A great deal of work has been devoted to developing methods for computing the
Huber M-estimator; see, e.g., Clark and Osborne [170, 1986], Ekblom [266, 1988],
and Madsen and Nielsen [555, 1990]

O'Leary [606, 1990] has studied different implementations of Newton-like
methods. The Newton step s for minimizing "0(x) m (4.5.9) (a = 1) is given
by the solution of

where

This is similar to (4.5.8) for lp approximation. O'Leary recommends that at the
initial iterations the cutoff value 7 in the Huber function (4.5.10) is decreased
from a very large number to the desired value. This has the effect of starting
the iteration from the least squares solution and helps prevent the occurrence of
rank deficient Hessian matrices H.

4.5.4. Algorithms for l\ and l^ approximation. Minimization in the l\
or IQO norm is complicated by the fact that for these values of p the function

176 CHAPTER 4. GENERALIZED LEAST SQUARES PROBLEMS

^)(x) = \\Ax — b\\v is not difFerentiable. In spite of this there are several good,
but more costly, computational methods available for these problems.

For the /i problem methods which use linear programming techniques have
been given by Barrodale and Roberts [50, 1973], [51, 1978]. Their method has
been implemented in the Harwell Subroutine Library. Other methods are based
on projected gradient techniques; see Bartels, Conn, and Sinclair [54, 1978] for
the li problem, and Bartels and Conn [52, 1980] for the l^ problem. The general
idea in these methods is to use descent methods that explicitly find the correct
subset of zero residuals, p = 1, and maximum residuals, p = oo.

A globally convergent Newton algorithm for the l\ problem has been proposed
in Coleman and Li [180, 1992]. This algorithm is superlinearly convergent for
p = 1 when there are no zero residuals at the solution. A similar method for the
/oo problem is given in Coleman and Li [181, 1992].

Madsen and Nielsen [556, 1993] develop a finite algorithm for l\ estimation
based on smoothing. At each iteration the nondifferentiable function ^{x}^ p = 1,
in (4.5.6) is replaced by the smooth Huber function (4.5.10) for some threshold
parameter 7. The parameter 7 is successively reduced until, when it is small
enough, the l\ solution can be detected. In comparison with the simplex-type
method of Barrodale and Roberts [50, 1973], their implementation is significantly
faster.

4.6. Total Least Squares
4.6.1. Errors-in-variables models. In the standard linear model (see Sec-
tion 1.1.3) one assumes that the vector b £ Rm is related to the unknown param-
eter vector x £ Rn by a linear relation

(4.6.1)

where A 6 Rmxn is an exactly known matrix and r a vector of random errors
which are uncorrelated and have zero means and the same variance, i.e., £(r) = 0,
V(r) = cr2/. These assumptions are frequently unrealistic since sampling or
modeling errors often also affect the matrix A. We now consider a more general
linear model, where random errors also occur in the data matrix A. In the
errors-in-variables model one assumes a linear relation

(4.6.2)

where the rows of the error matrix (E, r} are independently and identically
distributed with zero mean and the same variance. If this assumption is not
satisfied, the data (A, b] can be premultiplied in advance by an appropriate
matrix D € Rmxm, such that the data (DA, Db) satisfy the assumptions.

The errors-in-variable model, also known as latent root regression, has been
used in statistics for a long time. Orthogonal distance regression with n = I
was already studied in 1878 by Adcock [2, 1878]. (This special case is treated in
Section 4.6.6.) Much later, multivariate problems were treated in the statistical

4.6. TOTAL LEAST SQUARES 177

literature. For more on the history, see [791, 1989]. The first numerically stable
algorithm for the model (4.6.2) was given by Golub and Van Loan [388, 1980], who
also coined the name total least squares (TLS) problem. They analyzed the
problem in terms of the SVD of the augmented matrix (A, b). A very complete
survey of the theoretical and computational aspects of the TLS problem is given
in the excellent monograph by Van Huffel and Vandewalle [792, 1991]. They
claim that in typical applications, gains of 10-15% in accuracy can be obtained
by using TLS instead of standard least squares methods.

To compute estimates of the true but unknown parameters x in the model
(4.6.2) one solves the TLS problem

(4.6.3)

where \\-\\F denotes the Frobenius matrix norm. We note that the constraint in
(4.6.3) implies that b + r 6 Tl(A + E}. If a minimizing (£?, r) has been found for
the problem (4.6.3) then any x satisfying (A + E)x = b + r is said to solve the
TLS problem.

In [791, 1989] the more general model is also considered, where the covariance
matrix C of the rows are known, up to a factor of proportionality. A simple
special case is when the rows of A have a common covariance matrix cr2/, but
the variance of the errors in the components of 6 is (a/0)2. This leads to the TLS
problem

When 9 is small larger perturbations in b will be allowed, and in the limit 0 —» 0
we get the ordinary least squares solution.

4.6.2. Total least squares problem by SVD. We first note that the
constraint in (4.6.3) can be written

(4.6.4)

This shows that the TLS solution has the property that the matrix (A+E, fe+r) is
rank deficient and that (x, — 1)T is a right singular vector corresponding to a zero
singular value. Hence the TLS problem involves finding a perturbation matrix
(E, r) having minimal Frobenius norm, which lowers the rank of the matrix
(A 6).

We now show that the TLS problem can be analyzed in terms of the SVD of
(A, b). Let

178 CHAPTER 4. GENERALIZED LEAST SQUARES PROBLEMS

are the singular values of (A, b). By Theorem 1.2.9 the singular values of A,

interlace those of (A, 6), i.e.,

(4.6.5)

Assume that rank (A) = n, or equivalently that an > 0. If ffn+i — 0? then
it follows that b £ R(A}. In this case the original system of equations Ax = b is
compatible, and we can take (E, r) = 0. If crn+i > 0, then 6 ̂ R(A) and from
the Eckhart and Young theorem (see Remark 1.2.1 to Theorem 1.2.3) we have

(4.6.6)

If it holds that

then the minimum is attained for any rank one perturbation of the form

(4.6.7)

where i>fc+i , . . . , vn+i are right singular vectors corresponding to <Jk+i, • • • > 0n+i-
If en+i = (0, ...,0,1)T is orthogonal to S then the TLS problem has no

solution. Assume that we can find a unit vector v in S whose (n-fl)st component
7 is nonzero. Then with

(4.6.8)

we have

\ /

Hence (A -f- E)x = b + r, which shows that x solves the TLS problem. Using
(4.6.8) the minimizing perturbation can be written

where
(4.6.9)

When (Tn+i is a repeated singular value, i.e., k < n in (4.6.6), the TLS problem
may have many solutions. In this case, a unique minimum norm TLS solution
can be determined as follows. Let Q be an orthogonal matrix of order n — k + 1
such that

(4.6.10)

7 T^ 0. If we set x = — 7~1z then it is easy to show that all other solutions to
the TLS problem have larger norms. Here Q can be taken as the Householder
transformation which zeros all leading elements in the last row.

We now introduce a sufficient condition for the TLS problem (4.6.3) to have
a unique solution.

4.6. TOTAL LEAST SQUARES 179

THEOREM 4.6.1. Let the singular values of A be a\ > 02 > • • • > vn > 0. //
0"n > &n+i then the TLS problem has a unique solution.

Proof. The interlacing property (4.6.5) implies that if an > <rn+i then crn+1

is not a repeated singular value of (A, b) and vn+\ is unique up to a factor
±1. Assume now that vn+i = (y 0)T. Then (A, b)vn+i — Ay = <rn+iun+i, where
an+i = \\Ay\\2 > <Jn. But by the interlacing property this implies that <7n = 0-n+i,
which is a contradiction. Hence vn+1 must have a nonzero last component and a
TLS solution exists.

When all vectors in S = span[vfc+i,... ,vn+i] nave a zero last component,
vn+ij = 0, j = fc + l , . . . ,n + l, the problem is called nongeneric and the TLS
problem fails to have a solution. Two different such cases may occur.

If rank(A) < n then an = an+i = 0, and the TLS problem has a solution
only in the trivial case when b e H(A). Consider the example

Here the singular vector corresponding to 03 = 0, which is v$ = (1, —1, 0)/\/2,
only gives information about the rank deficiency in A. Note also that since
b e 1l(A + E) for E — diag(0, e) and any e ̂ 0, there does not exist a smallest
value of | |(E,r)\\p- The case when rank(A) < n can be treated by adding the
extra condition

to the problem (4.6.3). Alternatively, we can select a subset of linearly
independent columns A\ of A, and solve a reduced TLS problem with data
(Ai, b). In the example above we can take A\ = ai, the first column in A.
More generally, we can use the technique of subset selection described in Section
2.7.3.

Another nongeneric case can occur when the set of data is highly conflicting.
Let, for example, n — 1 and

Here (A, b) is already in diagonal form and has a unique smallest singular value
equal to ^2 = 1. Clearly ^22 = 0 since v^ = e\ is orthogonal to e^. The unique
minimizing (E, r) gives

so the perturbed system is not compatible. However, an arbitrary small
perturbation e in the (2,1) element will give a compatible system with large
solution x = 2/e. Hence in this case there is no solution to the TLS problem.

180 CHAPTER 4. GENERALIZED LEAST SQUARES PROBLEMS

4.6.3. Relationship to the least squares solution. We now consider the
conditioning of the TLS problem and its relationship to the least squares problem.
To ensure unique solutions to both the TLS and the least squares problems
we assume that crn > crn+i and we denote those solutions by XTLS and XLS-,
respectively. The vector (XTLS, ~1)T is an eigenvector of (A, b)T(A, b) with the
associated eigenvalue cr^+1, i.e.,

As pointed out by Golub and Van Loan [388, 1980], the first block row of this
equation can be written

(4.6.11)

Since here a positive multiple of the unit matrix is subtracted from ATA the TLS
problem is a deregularization of the least squares problem; cf. Section 2.7.2. Since

(4.6.12)
a

the TLS problem is always worse conditioned than the LS problem.
The least squares solution satisfies the normal equations ATAxis = ATb, arid

thus

(4.6.13)

Subtracting this from equation (4.6.11) and solving for the difference we obtain

Taking norms and using (4.6.9) we obtain

i.e., XTLS and XLS agree up to second-order terms in the error. This was first
shown by van der Sluis and Veltkamp [784, 1979]; see also Stewart [743, 1984].
Stewart also proves that up to terms of second order in the error (E, r) the
estimate XTLS is insensitive to column scalings of A, or more generally to linear
transformations of the variables,

4.6. TOTAL LEAST SQUARES 181

4.6.4. Multiple right-hand sides. There are several generalizations of the
TLS problem. Golub and Van Loan [389, 1989, Sec. 12.3] consider the TLS
problem with multiple right-hand sides

(4.6.14)

where B € Rmxd. Writing this,

it follows that we now seek a perturbation (E, F) that reduces the rank of the
matrix (A, B) by d. We call this a multidimensional TLS problem. As remarked
before, for this problem to be meaningful the rows of the error matrix (£", F)
should be independently and identically distributed with zero mean and the same
variance.

We remark that the multidimensional problem is different from solving d one-
dimensional TLS problems with right-hand sides & i , . . . , 6^. This is because in the
multidimensional problem we require that the matrix A be similarly perturbed
for all right-hand sides. This is in contrast to the usual least squares solution and
may lead to improved predicted power of the TLS solution.

The solution to the TLS problem with multiple right-hand sides can be
expressed in terms of the SVD

(4.6.15)

where C7, E, and V are partitioned conformally with (A, B). The minimizing
perturbation is given by

for which

Let the singular values of A be di, i = 1,... , n. If <rn > <7n+i then it can be
shown that the matrix ¥22 G Rdxd is nonsingular, and hence the unique solution
to the TLS problem is given by

see Golub and Van Loan [389, 1989, pp. 577-578]. This condition also ensures
that an > (Tn+i-

Otherwise assume that a\^ > crk+i = ••• = crn+i, k < n, and let Q be a
product of Householder transformations such that

182 CHAPTER 4. GENERALIZED LEAST SQUARES PROBLEMS

where T e Hdxd is upper triangular. If T is nonsingular, then the TLS solution
of minimum norm is given by

We remark that if m > 5(n + d)/3 then in general it saves operations to
transform the TLS problem into upper triangular form. Let Q be an orthogonal
matrix such that

where RU € Rnxn and £22 £ Rrfxrf are upper triangular. Since R has the same
singular values and right singular vectors as (^4, B) we can solve the TLS problem
by computing the SVD of R.

In the TLS algorithm one requires only the computation of a basis of the right
singular subspace of (A, B) corresponding to its smallest singular values. For this
case a partial SVD (PSVD) algorithm is given by Van Huffel, Vandewalle, and
Haegemans [793, 1987], which can be up to three times faster than the standard
SVD algorithm. This algorithm can also be used for solving homogeneous linear
systems Ax = 0. Fortran codes for the TLS problem are available via netlib; see
Dongarra and Grosse [231, 1987].

The SVD is the classical tool for solving TLS problems. However, the SVD is
computationally expensive and Van Huffel and Zha [795, 1993] have developed a
more efficient algorithm, which uses instead a rank revealing complete orthogonal
decomposition.

4.6.5. Generalized TLS problems. In many parameter estimation prob-
lems, some of the columns are known exactly. In Van Huffel and Vandewalle
[791, 1989] the TLS problem and the TLS algorithm are generalized for this case.
It is no restriction to assume that the error-free columns are in leading positions
in A. In the multivariate version of this mixed LS-TLS problem one has a
linear relation

where A = (A\, A<z) G Rmxn, n = n\ + n^. It is assumed that the rows of the
errors (E^ F) are independently and identically distributed with zero mean and
the same variance. The mixed LS-TLS problem can then be expressed

(4.6.16)

When AI is empty, this reduces to solving an ordinary least squares problem.
When AI is empty this is the standard TLS problem. Hence this mixed problem
includes both extreme cases.

Using a generalization of the Eckhart-Young Theorem 1.2.3, Golub, Hoffman,
and Stewart [369, 1987] proved that the solution can be obtained by computing

4.6. TOTAL LEAST SQUARES 183

a QR factorization of A and then solving a TLS problem of reduced dimension.
The following algorithm is based on that given by Van Huffel and Vandewalle
[792, 1991, Sec. 3.6.3].

ALGORITHM 4.6.1. SOLVING MIXED LS-TLS PROBLEMS. Let A =
(Ai, A2) € Rmxn, n = ni + n2, m > n, and B € Rmxd. Assume that the
columns of A\ are linearly independent. Then the following algorithm solves the
mixed LS-TLS problem (4.6.16).

Step 1. Compute the QR decomposition

where Q is orthogonal, and Ru € Rnixni, R22 € R("2+d)x(n2+d) are upper

triangular. If n\ = n, then the solution X is obtained by solving RuX = R±2

(usual least squares); otherwise continue (solve a reduced TLS problem).

Step 2. Compute the SVD of R22

where the singular values are ordered in decreasing order of magnitude.

Step 3a. Determine k < n2 such that

and set V22 = (t>fc+i» • • • , ^n2+d)- If fti > 0 then compute V2 by back-substitution
from

else set V2 = V22.

Step 3b. Perform Householder transformations such that

where F e Rdxd is upper triangular. If F is nonsingular then the solution X is
obtained from

Otherwise the TLS problem is nongeneric and has no solution.
A more general version of this algorithm is given in [791, 1989], where it is

assumed that the covariance matrix C = £(ATA) of the errors A G Rmx(n2+d)
is known. This algorithm uses the GSVD of the matrix pair (R22,Rc), where
C = R^Rc, i.e., RC is the Cholesky factor of C.

An even more general problem is the restricted TLS problem introduced
by Van Huffel and Zha in [794, 1991]. Here it is assumed that

184 CHAPTER 4. GENERALIZED LEAST SQUARES PROBLEMS

where AQ, BQ are the error-free data and E* represents a restricted perturbation
of the form

where C and D are known and E £ Hpxq is unknown. The problem then
considered is that of finding a matrix (AA, AB) = DEC such that

and 11 .E||F is minimal.
De Moor [208, 1993] studies more general structured and weighted total least

squares problems. He shows that applications in systems and control include
total least squares with relative errors and/or fixed elements. These problems
can be solved via a nonlinear GSVD.

We finally mention that Watson [820, 1984] has considered the approximation
problem where \\(E, r)\\p is minimized for the class of matrix norms defined by

Hence the TLS solution minimizes the sum of squares orthogonal distances

and therefore is a special case of orthogonal distance regression; see Section 9.4.3.
We now consider a slightly more general orthogonal distance regression

problem. Let yi 6 Rn, i — l ,2 , . . . , ra , be m > n given points. We want to
determine a hyperplane in R71,

such that the sum of squares of the orthogonal distances from the given points to
M is minimized. For any hyperplane M the orthogonal projections of the points
yi onto M are given by

4.6.6. Linear orthogonal distance regression. A geometrical interpreta-
tion of the TLS problem (4.6.3) can be obtained as follows; cf. Golub and Van
Loan [389, 1989, Sec. 12.3.3]. The quantity

where aj is the ith row of ^4, is the square of the orthogonal distance from the

point to the plane through the origin

(4.6.17)

4.6. TOTAL LEAST SQUARES 185

It is readily verified that the point Z{ lies on M and the residual Zi — yi is parallel
to c and hence orthogonal to M. It follows that the problem is equivalent to
minimizing

This problem can be written in matrix form

(4.6.18)

where

For fixed c, this expression is minimized when the residual YTc — he is orthogonal
to e, i.e., eT(YTc — he) = 0. Since eTe = m

(4.6.19)

where

is the mean value of the given points. This shows that h is determined by the
condition that the mean value y lies on the optimal plane M.

We now subtract the mean value y from the points and form the matrix

Since by (4.6.19)

we have reduced the problem (4.6.18) to

(4.6.20)

By the min-max characterization, Theorem 1.2.6, the solution to (4.6.20) is
c — un, where un is the left singular vector of Y corresponding to the smallest
singular value an. The minimum is given by

The fitted points z^ can be obtained by

(4.6.21)

i.e., by first orthogonalizing the shifted points ^ against c = un, and then adding
the mean value back.

186 CHAPTER 4. GENERALIZED LEAST SQUARES PROBLEMS

As an example we consider the problem of fitting by orthogonal regression m
pairs of points (x^, yi) € R2, i = 1,..., m, to a straight line

We compute the SVD of the matrix

where 02 > o\ > 0. Then the coefficients in the equation of the straight line are
given by

If <J2 = 0 but a\ > 0 the matrix Y has rank one. In this case the given points
lie on a straight line. If cr\ = a^ — 0, then Y = 0, and Xi = x, yi = y for all
i = 1, . . . , m. Note that u<2 is uniquely determined if and only if a\ 7^ 02- It is
left to the reader to discuss the case <j\ = a^ ^ 0!

Note that in contrast to the TLS problem the orthogonal regression problem
always has a solution. The solution is unique when crn-\ ^ crn, and the minimum
sum of squares equals cr2. We have an — 0, if and only if the given points ?/j,
i = 1 , . . . , m, all lie on the hyperplane M. In the extreme case, all points coincide.
Then Y = 0, and any plane going through y is a solution.

The above method solves the problem of fitting an (n — l)-dimensional
manifold to a given set of points in R. It is readily generalized to the fitting of
an (n — p)-dimensional manifold by orthogonalizing the shifted points y against
the p left singular vectors of Y corresponding to the p smallest singular values.

Constrained Least Squares Problems

5.1. Linear Equality Constraints
5.1.1. Introduction. In this section we consider least squares problems in
which the unknowns are required to satisfy a subsystem of linear equations
exactly. Such problems arise, e.g., in curve and surface fitting where the curve
may be required to interpolate certain data points. Least squares problems with
inequality constraints are treated in Section 5.2, where it is shown how these can
be reduced to solving a sequence of problems with equality constraints.

PROBLEM LSE. Least Squares with Equality Constraints. Given matrices
A e Rmxn and B <E Rpxn find a vector x G Rn which solves

(5.1.1)

Problem LSE obviously has a solution if and only if the linear system Bx = d
is consistent. A sufficient condition for this is that B has linearly independent
rows, i.e., rank (B} = p, since then Bx = d is consistent for any right-hand side
d.

A solution to (5.1.1) is unique if and only if

(5.1.2)

The second condition in (5.1.2) is equivalent to

(5.1.3)

i.e., the nullspaces of A and B intersect only trivially. If the condition (5.1.3)
is not satisfied, then there is a vector z ^ 0 such that Az = Bz = 0. Then
if x solves (5.1.1) x + z is a different solution and it follows that the condition
(5.1.3) is necessary for uniqueness. A constructive proof that (5.1.2) is sufficient
to ensure that the problem (5.1.1) has a unique solution is given in Section 5.1.3.
In the case of nonuniqueness there always is a unique solution of minimum norm.

A robust algorithm for problem LSE should check for possible inconsistency
of the constraint equations Bx = d. If it is not known a priori that the constraints

187

Chapter 5

188 CHAPTER 5. CONSTRAINED LEAST SQUARES PROBLEMS

are consistent, then (5.1.1), as suggested by Leringe and Wedin [525, 1970], may
be reformulated as a sequential least squares problem

(5.1.4)

This problem always has a unique solution of minimum norm. Most of the
methods described in the following for solving problem LSE can be adapted to
solve (5.1.4) with little modification.

The most natural way to solve problem LSE is to derive an equivalent
unconstrained least squares problem of lower dimension. There are basically two
different ways to perform this reduction: direct elimination and the nullspace
method. These methods are described below.

5.1.2. Method of direct elimination. In the method of direct elimination
we start by reducing the matrix B to upper trapezoidal form. It is essential that
column pivoting be used in this step. In order to be able to also solve the more
general problem (5.1.4) we will compute a QR decomposition of B. By Theorem
1.3.4 there is an orthogonal matrix QB G Hpxp and a permutation matrix HB
such that

(5.1.5)

where r — rank(J3) < p and RU is upper triangular and nonsingular.
If we also apply Q'g to the vector d the constraints become

(5.1.6)

where x — H^a: and d<2 = 0 if and only if the constraints are consistent.
We also apply the permutation Tip to the columns of A and partition the

resulting matrix conformably with (5.1.5):

(5.1.7)

where A = Alls- We now eliminate the variables x\ from (5.1.7) using (5.1.6).
Substituting x\ = R^(d\ — #12^2) we get

where
(5.1.8)

Hence the reduced unconstrained least squares problem

(5.1.9)

is equivalent to the original problem LSE.

5.1. LINEAR EQUALITY CONSTRAINTS 189

The solution to the unconstrained problem (5.1.9) can be obtained from the
QR decomposition of A-2. We now show that if the condition (5.1.2) holds then
rank(^2) = n — r and (5.1.9) has a unique solution. If rank(^2) < n — r then
there is a vector v 7^ 0 such that

If we let u — —R^Ri?>v, then

Hence the vector

is a null vector to both B and A, and (5.1.2) does not hold.
If (5.1.2) holds then we can compute the QR decomposition

where R^ G R,(n-r)x(n-r) is upper triangular and nonsingular.
We then compute x from the triangular system

(5.1.10)

Then x = UBX solves problem LSE.
The coding of the algorithm outlined above can be kept remarkably compact,

as is illustrated by the Algol program given in Bjorck and Golub [110, 1967].
Note that the reduction in (5.1.8) can be interpreted as performing r steps of
Gaussian elimination on the system

REMARK 5.1.1. The set of vectors x = n#x, where x satisfies (5.1.6) is
exactly the set of vectors which minimize ||Bx—d\\2. Thus, the algorithm outlined
above actually solves the more general problem (5.1.4). If condition (5.1.2) is not
satisfied, then the reduced problem (5.1.9) does not have a unique solution. Then
column permutations are also needed in the QR decomposition of A^. In this case
we can compute either a minimum norm solution or a basic solution to (5.1.4);
see Section 1.3.3.

5.1.3. The nullspace method. We assume here that rank(£) = p. First
compute an orthogonal matrix QB € Rnxn such that

(5.1.11)

190 CHAPTER 5. CONSTRAINED LEAST SQUARES PROBLEMS

where RB G Rpxp is upper triangular and nonsingular. Let

Then N(B) = H^i), i-e., Qi gives an orthogonal basis for the nullspace of B.
Any vector x € Rn which satisfies Bx = d can then be represented as

(5.1.12)

Hence

and it remains to solve the reduced system

(5.1.13)

Let 3/2 be the minimum length solution to (5.1.13),

and let x be defined by (5.1.12). Then, since x\ _L Qzyi, it follows that

and x is the minimum norm solution to problem LSE.
Now assume that the condition (5.1.2) is satisfied. Then the matrix

must have rank n. But then all columns in C must be linearly independent, and
it follows that Tank(AQ2) =n — p. Then we can compute the QR decomposition

where RA is upper triangular and nonsingular. The unique solution to (5.1.13)
can then be computed from

(5.1.14)

and we finally obtain x = x\ + Qiyi, the unique solution to problem LSE.
The representation (5.1.12) of the solution x has been used as a basis for

a perturbation theory by Leringe and Wedin [525, 1970], which generalizes the
results given in Section 1.4.2. The corresponding bounds for problem LSE are
more complicated, but show that the problem LSE is well-conditioned if K(B)
and K,(AQ2) are small. It is important to note that these two condition numbers
can be small even when K,(A) is large. Any method which starts with minimizing
\\Ax-b\\2 will give inaccurate results in such a case. Elden [268, 1980] has given a

5.1. LINEAR EQUALITY CONSTRAINTS 191

less complicated and more complete perturbation theory for problem LSE based
on the concept of a weighted pseudoinverse. This theory is generalized to rank
deficient problems in Wei [830, 833, 1992]. A perturbation theory based on the
augmented system formulation is given by Wedin in [828, 1985].

The method of direct elimination and the nullspace method both have good
numerical stability. In a numerical comparison by Leringe and Wedin [525, 1970]
they gave almost identical results. The operation count for the method of direct
elimination is slightly lower, because Gaussian elimination is used to derive the
reduced unconstrained problem.

5.1.4. Problem LSE by generalized SVD. Following Van Loan [799,
1985] we now analyze problem LSE in terms of the generalized singular value
decomposition (GSVD). For simplicity we assume that the conditions in (5.1.2)
are satisfied. This ensures that the problem has a unique solution, and the GSVD
can be written (see Section 4.2.2):

(5.1.15)

where DA = diag (ai , . . . , an), DB = diag (/?1 } . . . , /9P), and

(5.1.16)

We can also assume, without loss of generality, that a? + /?| = 1, and

Using the GSVD the problem (5.1.1) is transformed into diagonal form:

(5.1.17)

where Zx = y, c = UTb, d = VTd. It is easily verified that (5.1.17) has the
solution

(5.1.18)

where we have used the fact that ai = 1, i = p + l , . . . , n . Hence, letting
W = (w\,..., wn) = Z~l, the solution XLSE to (5.1.1) can be written

(5.1.19)

It is interesting to compute how much the residual TLS = b — Axis increases
as a result of the constraints Bx = d. A solution to the unconstrained problem
to minimize \\Ax — b\\2 is

192 CHAPTER 5. CONSTRAINED LEAST SQUARES PROBLEMS

We have TLSE — fis — A(XL$ ~ %LSE), and using the relations Axi = c*iUi,i =
1,..., n, we can show that

5.1.5. The method of weighting. The method.of weighting for solving
problem LSE is based on the following simple observation. Assume that in a
least squares problem we want some equations to be exactly satisfied. We can
achieve that by giving these equations a large weight 7 and solving the resulting
unconstrained least squares problem. Hence, to solve (5.1.1), we would compute
the solution #(7) to the problem

(5.1.21)

Note that if (5.1.2) holds, then (5.1.21) is a full rank least squares problem.
Updating methods for solving weighted problems were considered in Section

4.4.4. There it was shown (cf. (4.4.10)) that, provided that rank [B] = p in
(5.1.21), the residual d — Bx(^) will be proportional to 7~2 for large values of 7,
and hence

A more general analysis of the problem (5.1.21) is given below in terms of the
GSVD of A and B.

The method of weighting is attractive for its apparent simplicity. It allows
the use of a subroutine or program for unconstrained least squares problems to
be used to solve problem LSE. However, as was emphasized in Section 4.4, for
large values of 7 care must be exercised in the way (5.1.21) is solved, because
then the matrix in (5.1.21) is poorly conditioned. In particular, except in special
cases, the method of normal equations will fail for large values of 7.

Accurate solutions to (5.1.21) can be computed even for large values of 7
using the QR decomposition methods described in Section 4.4.3. In particular,
the self-scaling fast rotations developed by Anda and Park [15, 1996] can be used
without any risk of overshooting the optimal weights 7. Indeed, consider the
application of Givens rotations to a pair of weighted and unweighted rows in

As 7 —» oo, this becomes, after a row and column scaling,

(5.1.20)

which is just a Gaussian elimination step in the method of direct elimination.

5.1. LINEAR EQUALITY CONSTRAINTS 193

It is important to note that it is essential that column permutations are used
in the first p steps to ensure that the corresponding submatrix BI in

is well-conditioned. Powell and Reid [670, 1969] recommend that first the pivot
column be selected by the standard column pivoting strategy (see Section 2.7.3)
and then the largest element in the pivot column be permuted to the top before
the Householder transformation is applied. However, it usually suffices in practice
to order the constraint rows first, as is done in (5.1.21).

The following example from Van Loan [798, 1985] shows that column pivoting
is necessary for accuracy.

EXAMPLE 5.1.1. Consider the problem minx \\Ax — fr|J2, subject to Bx = d,
where

This problem is well-conditioned and has the solution

The weighted problem (5.1.21) was solved in VAX double precision arithmetic,
u = 10~17, with 7 = 109 ~ u ~ 2 . With column pivoting, full double precision
accuracy was obtained, whereas without column pivoting the error was of the
order 10~9. The trouble arises because the first two columns of the matrix B are
linearly dependent. The submatrix B\ consisting of the first and third columns
of B is, however, well-conditioned.

Van Loan [798, 1985] used the GSVD analysis in Section 5.1.4 to analyze the
method of weighting. The solution 27(7) to (5.1.21) satisfies the normal equations

Using (5.1.15)^(5.1.17) these can be transformed into

(5.1.22)

where we have put Zx(^} — ̂ (7). From (5.1.22) we deduce that

194 CHAPTER 5. CONSTRAINED LEAST SQUARES PROBLEMS

Hence from (5.1.18) we find that ^(7) = yi,i = 1,... ,g,p+ 1,... ,n, and with pi
and ̂ defined by (5.1.20),

This suggests that if /^> is large then a large weight 7 may be required for #(7)
to well approximate the constrained solution.

A detailed analysis of the method of weighting has also been given by Lawson
and Hanson [520, 1974, Sec. 22].

5.1.6. Solving LSE problems by updating. Problem LSE can also be
solved by an updating technique. Assume that the conditions (5.1.2) are satisfied.
Then the problem

(5.1.23)

has a unique solution xu, which can be computed, e.g., by the QR decomposition
of the matrix in (5.1.23). Let R be the R-factor of this matrix and compute
the matrix C = BR~l e Rpxn by back-substitution in RTCT = BT. Then the
solution to the constrained problems (5.1.1) is given by

Since BR~l = C, it holds that

so the constraints are satisfied exactly. However, for this approach to be stable
it is necessary that R not be worse conditioned than the constrained problem.

Note that w is the solution to the minimum norm problem

and can also be computed from the QR decomposition of C; see Algorithm 2.4.6.
If p <C n the cost of the updating step is small. This and similar updating
techniques are especially useful in sparse problems] see also Section 6.7.3.

5.2. Linear Inequality Constraints
5.2.1. Classification of problems. This section is concerned with methods
for linear least squares problems subject to different types of inequality con-
straints.

PROBLEM LSI.

(5.2.1)

where A G Rmxn and C e Rpxn, and the inequalities are to be interpreted
componentwise.

5.2. LINEAR INEQUALITY CONSTRAINTS 195

If cj denotes the ith row of the constraint matrix C then the constraints can
also be written

It is convenient to allow the elements l{ = — oo and Ui = oo, which correspond to
cases where the lower and upper bounds, respectively, are not present.

Note that if linear equality constraints are present, then these can be
eliminated using one of the methods given in Section 5.1. Both the direct
elimination method and the nullspace method will reduce the problem to a lower-
dimensional problem without equality constraints. An equality constraint can
also be specified by setting the corresponding bounds equal, i.e., li — Ui, but this
is generally not efficient.

An important special case is when the inequalities are simple bounds.
PROBLEMS BLS.

(5.2.2)

Bound-constrained least squares problems arise in many practical applications,
e.g., reconstruction problems in geodesy and tomography, contact problems for
mechanical systems, and the modeling of ocean circulation. Sometimes it can be
argued that the linear model is only realistic when the variables are constrained
within meaningful intervals. For reasons of computational efficiency it is essential
that such constraints be considered separately from more general constraints in
(5.2.1). If the matrix A has full column rank, Problem BLS is a strictly convex
optimization problem, and then problem BLS has a unique solution for any vector
6. Also, the problem is known to be solvable in polynomial time when A has full
column rank.

In the special case when only one-sided bounds on x are specified it is no
restriction to assume that these are nonnegativity constraints, and we -have the
following problem.

PROBLEM NNLS.

(5.2.3)

Nonnegativity constraints are natural for problems where the variables, by
definition, can only take on nonnegative values.

Another special case of problem LSI is the least distance problem.
PROBLEM LSD.

(5.2.4)

or more generally,

(5.2.5)

where

196 CHAPTER 5. CONSTRAINED LEAST SQUARES PROBLEMS

5.2.2. Basic transformations of problem LSI. We first remark that
(5,2.1) is equivalent to the quadratic programming problem

(5.2.6)

where

The problem (5.2.6) also arises as a subproblem in general nonlinear programming
algorithms. Therefore, it has been studied extensively, and many algorithms
have been proposed for it. In the application to problem LSI the matrix B is
positive semidefinite, and hence (5.2.6) is a convex program. In general, to use
algorithms for quadratic programming for solving (5.2.1) is not a numerically
safe approach, since working with the explicit cross-product matrix B should be
avoided. However, methods for quadratic programming can often be adapted to
work directly with A.

In some important applications, problem LSI can be defined with a triangular
matrix A; see Schittkowski [706, 1983]. When this is not the case it is often
advantageous to perform an initial transformation of A in (5.2.1) to triangular
form. Using standard column pivoting (see Section 2.7.3), we compute a rank
revealing QR decomposition

(5.2.7)

where Q is orthogonal, P a permutation matrix, and R\i upper triangular and
nonsingular. We assume that the numerical rank r of A is determined using some
specified tolerance, as discussed in Section 2.7. The objective function in (5.2.1)
then becomes

since we can delete the last (ra — r) rows in R and c.
By a further transformation, discussed by Cline [173, 1975], problem LSI can

be brought into a least distance problem. We perform orthogonal transformations
from the right in (5.2.7) to obtain a complete orthogonal decomposition (see
Section 2.7.5)

where T is triangular and nonsingular. Then problem LSI (5.2.1) can be written

where

5.2. LINEAR INEQUALITY CONSTRAINTS 197

E and y are conformally partitioned, and y\ (E Rr. We now make the further
change of variables

Substituting y\ — T~l(z\ + c\) in the constraints we arrive at an equivalent least
distance problem:

(5.2.8)

where

We note that if A has full column rank, then r = n and z = z\, so we get a least
distance problem of the form (5.2.4).

Methods for solving problem LSI based on the above transformation to a least
distance problem have been given by Lawson and Hanson [520, 1974, Chap. 23],
Haskell and Hanson [441, 1981], and Schittkowski [706, 1983]. The method
proposed by Schittkowski for solving the least distance problem is a primal
method, as opposed to the dual approach used in [520] and [441]. The dual
approach is based on the following equivalence between a least distance problem
and a nonnegativity-constrained problem.

THEOREM 5.2.1. Consider the least distance problem with lower bounds

(5.2.9)

Let u G Rm+1 be the solution to the nonnegativity constrained problem

(5.2.10)

where

Let the residual corresponding to the solution be

and put <j = \\r\\2. If a = 0, then the constraints g < Gx are inconsistent and
(5.2.9) has no solution. If a ^ 0, then the vector x defined by

(5.2.11)

is the unique solution to (5.2.9).
Proof. See Lawson and Hanson [520, 1974, pp. 165-167],

Cline [173, 1975] and Haskell and Hanson [441, 1981] describe how the
modified LSD problem (5.2.5) with only upper bounds can be solved in two
steps, each of which requires a solution of a problem of type NNLS, the first of
these having additional linear equality constraints.

198 CHAPTER 5. CONSTRAINED LEAST SQUARES PROBLEMS

5.2.3. Active set algorithms for problem LSI. We now consider methods
for solving problem LSI, which do not use a transformation into a least distance
problem.

In general, methods for problems with linear inequality constraints are
iterative in nature. We consider here so-called active set algorithms, which are
based on the following observation. At the solution to (5.2.1) a certain subset of
constraints / < Cx < u will be active, i.e., satisfied with equality. If this subset
was known a priori, the solution to the LSI problem would also be the solution
to a problem with equality constraints only, for which efficient solution methods
are known; see Section 5.1.

In active set algorithms a sequence of equality-constrained problems are
solved corresponding to a prediction of the correct active set, called the working
set. The working set includes only constraints which are satisfied at the current
approximation, but not necessarily all such constraints. In each iteration the
value of the objective function is decreased and the optimum is reached in
finitely many steps. A general description of active set algorithms for linear
inequality-constrained optimization is given in Gill, Murray, and Wright [360,
1981, Chap. 5.2].

Any point x which satisfies all constraints in (5.2.1) is called a feasible point.
In general, a feasible point from which to start the active set algorithm is not
known. (A trivial exception is the case when all constraints are simple bounds, as
in (5.2.2) and (5.2.3).) Therefore, the active set algorithm consists of two phases,
where in the first phase a feasible point is determined as follows. For any point
x denote by / = I(x) the set of indices of constraints violated at x. Introduce an
artificial objective function as the sum of all infeasibilities,

In the first phase (f)(x} is minimized subject to the constraints

If the minimum of (t>(x) is positive, then the inequalities are inconsistent, and the
problem has no solution. Otherwise, when a feasible point has been found, the
objective function is changed to \\Ax — b\\2- Except for that, the computations in
phases one and two use the same basic algorithm.

We now briefly outline an active set algorithm for solving the LSI problem. In
the case when A has full column rank the algorithm described below is essentially
equivalent to the algorithm given by Stoer [759, 1971].

Let ££, the iterate at the kth step, satisfy the working set of n^ linearly
independent constraints with the associated matrix Ck- We take

where p^ is a search direction and a^ a nonnegative step length. The search
direction is constructed so that the working set of constraints remains satisfied

5.2. LINEAR INEQUALITY CONSTRAINTS 199

for all values of o^. This will be the case if CkPk — 0- In order to satisfy this
condition we compute a decomposition

(5.2.12)

where Tk is triangular and nonsingular, and Qk is a product of orthogonal
transformations. (This is essentially the QR decomposition of C^-} If we
partition Qk conformally,
(5.2.13)

then the n — n/t columns of Z^ form a basis for the nullspace of Ck- Hence the
condition Ckpk — 0 is satisfied if we take

(5.2.14)

We now determine qk so that Xk + Z^Qk minimizes the objective function, i.e., in
phase two q^ solves the unconstrained least squares problem

(5.2.15)

To simplify the discussion we assume in the following that the matrix AZk is
of full rank so that (5.2.15) has a unique solution. To compute this solution we
need the QR decomposition of the matrix AZk- This is obtained from the QR
decomposition of the matrix AQk, where

(5.2.16)

The advantage of computing this larger decomposition is that then the orthogonal
matrix Pk need not be saved and can be discarded after being applied also to the
residual vector r^. The solution qk to (5.2.15) can now be computed from the
triangular system

The next approximate solution is then taken to be Xk+\ = Xk + (*kPk, where a^
is a step length to be chosen.

We now determine a, the maximum rionnegative step length along pk for
which Xk+i remains feasible with respect to the constraints not in the working
set. If a < 1 we take o^ = a, and then add the constraints which are hit to the
working set for the next iteration.

If a > 1 we take a.k = 1. In this case Xk+\ will minimize the objective
function when the constraints in the working set are treated as equalities, and
the orthogonal projection of the gradient onto the subspace of feasible directions
will be zero:

200 CHAPTER 5. CONSTRAINED LEAST SQUARES PROBLEMS

In this case we check the optimality of Xk+i by computing Lagrange multipliers
for the constraints in the working set. At x^+i these are denned by the equation

(5.2.17)

The residual vector to the new unconstrained problem r^i satisfies

Hence, multiplying (5.2.17) by Q% and using (5.2.12) we obtain

so from (5.2.16)

The Lagrange multiplier Aj for the constraint \i < c?x < Ui in the working
set is said to be optimal if \i < 0 at un upper bound and \i > 0 at a lower
bound. If all multipliers are optimal then we have found an optimal point and
are finished. If a multiplier is not optimal then the objective function can be
decreased by deleting the corresponding constraint from the working set. If more
than one multiplier is not optimal, then it is usual to delete that constraint whose
multiplier deviates most from optimality.

At each iteration step the working set of constraints is changed, which leads
to a change in the matrix Ck- If a constraint is dropped, a row in Ck is deleted;
if a constraint is added, a new row in Ck is introduced. An important feature of
an active set algorithm is the efficient solution of the sequence of unconstrained
problems (5.2.15). Using techniques described in Section 3.2 methods can be
developed to update the matrix decompositions (5.2.12) and (5.2.15). In (5.2.12)
the matrix Qk is modified by a sequence of orthogonal transformations from
the right. These transformations are then applied to Qk in (5.2.16) and this
decomposition, together with the vector P^Yfc-fi, is similarly updated. Since
these updatings are quite intricate they will not be described in detail here.

For the case when A has full rank the problem LSI always has a unique
solution. If A is rank deficient there will still be a unique solution if all active
constraints at the solution have nonzero Lagrange multipliers. Otherwise there
is an infinite manifold M of optimal solutions with a unique optimal value. In
this case we can seek the unique solution of minimum norm, which satisfies

This is a least distance problem.
In the rank deficient case it can happen that the matrix AZk in (5.2.15) is

rank deficient, and hence R^ is singular. Note that if some Rk is nonsingular
it can become singular during later iterations only when a constraint is deleted

5.2. LINEAR INEQUALITY CONSTRAINTS 201

from the working set, in which case only its last diagonal element can become
zero. This simplifies the treatment of the rank deficient case. To make the initial
Rk nonsingular one can add artificial constraints to ensure that the matrix AZ^
has full rank. For a further discussion of the treatment of the rank deficient case,
see Gill et al. [355, 1986].

A possible further complication is that the working set of constraints can
become linearly dependent. This can cause possible cycling in the algorithm, so
that its convergence cannot be ensured. A simple remedy that is often used is
to enlarge the feasible region of the offending constraint by a small quantity; see
also Gill, Murray, and Wright [360, 1981, Chap. 5.8.2].

Stoer's algorithm [759, 1971] for problem LSI has been implemented by
Pazelt [654, 1973], and an English version of this code is given by Eichhorn and
Lawson [262, 1975]. Schittkowski and Stoer [708, 1979] give an implementation
of the same method using Gram-Schmidt decompositions. An advantage of this
implementation is that it is relatively easy to take data changes into account.
The implementation described by Crane et al. [192, 1980] is based on this work.
There is a restrictive assumption in these realizations that A is of full column
rank.

A robust and general set of Fortran subroutines for problem LSI and convex
quadratic programming is given by Gill et al. [355, 1986]. The method is a two-
phase active set method. It also allows a linear term in the objective function
and handles a mixture of bounds and general linear constraints.

5.2.4. Active set algorithms for BLS. As remarked earlier the problem
LSI simplifies considerably when the only constraints are simple bounds. This
problem is important in its own right and also serves as a good illustration of
the general algorithm. Hence we now consider the algorithm for problem BLS in
more detail.

We first note that feasibility of the bounds is resolved by simply checking
whether li < Ui,i — l , . . . , p . Further, the specification of the working set
is equivalent to a partitioning of x into free and fixed variables. During an
iteration the fixed variables will not change and can be effectively removed from
the problem.

We divide the index set of x according to

where i £ T if Xi is a free variable and i 6 B if Xi is fixed at its lower or upper
bound. The matrix Ck will now consist of the rows €i,i G B, of the unit matrix
In. We let Ck = Eg, and if E? is similarly defined we can write

This shows that Q^ is simply a permutation matrix, and the product

202 CHAPTER 5. CONSTRAINED LEAST SQUARES PROBLEMS

corresponds to a permutation of the columns of A. Assume now that the bound
corresponding to xq is to be dropped. This can be achieved by

where PR(&, </), q > k +1, is a permutation matrix which performs a right circular
shift in which the columns are permuted:

Similarly, if the bound corresponding to xq becomes active it can be added to the
working set by

where PL(<}, &), Q < k — 1, is a permutation matrix, which performs a left circular
shift in which the columns are permuted:

Subroutines for updating the QR decomposition (QRD) after right or left circular
shifts are included in LINPACK and are described in Dongarra et al. [228,
1979, Chap. 10].

For problem BLS the equation (5.2.17) for the Lagrange multipliers simplifies
to

Hence the Lagrange multipliers are simply equal to the corresponding components
of the gradient vector — ATrk+i. This leads to Algorithm 5.2.1 given below. (It
is assumed that rank (A) = n.)

Several implementations of varying generality of active set methods for
problem BLS have been developed. Lawson and Hanson [520, 1974] give a
Fortran implementation of an algorithm for problem NNLS, which is similar to
Algorithm 5.2.1. They also give a Fortran subroutine based on this algorithm for
problem LSD with lower bounds only. Zimmermann [856, 1977] gives a special
implementation of Stoer's method for problem BLS based on Gram-Schmidt
decompositions.

Haskell and Hanson [441, 1981] give an algorithm for problems with nonnega-
tivity constraints on selected variables and equality constraints (NNLSE), where
the equality constraints are handled by the method of weighting; see Section
5.1.5. In this algorithm no assumption on the rank of A is made. They describe
several methods of transforming problems of type LSI with added linear equality
constraints, into the form NNLSE. In Hanson [436, 1986] further developments
of this algorithm are described.

The active set algorithms usually restrict the change in dimension of the
working set by dropping or adding only one constraint at each iteration. For
large scale problems this can force many iterations to be taken when, e.g., many
variables have to leave their bound. Hence an active set algorithm can be slow to

5.3. QUADRATIC CONSTRAINTS 203

converge when the set of active constraints cannot be guessed well by the user.
More and Toraldo [590, 1989] have presented an algorithm for bound-constrained
quadratic programming problems which combines the standard active set strategy
with the gradient projection method. They report that on nondegenerate
problems the gradient projection algorithm requires considerably fewer iterations
and less time than an active set algorithm. Similar advantages are claimed for
the block principal pivoting methods developed by Portugal, Judice, and Vicente
[665, 1994] for problem NNLS.

ALGORITHM 5.2.1. ACTIVE SET ALGORITHM FOR PROBLEM BLS.

Initialization:

Main loop:
begin repeat

Compute unconstrained optimum in free variables:
q := R~l(c - SEBx); z := E?q\
if li < Zi < Ui for alH (E J- then
begin comment: Check for optimality.

Compute Lagrange multipliers A := UT(d — UE^x)
if B = 0 or sign(7i)A; < 0 for all i G B
go to finished;
Find index t such that sign(7t)At = m&Xi^Qsign^iJX^
Move index t from B to T, i.e. free variable xt.

end
else

end
end main loop

finished.

5.3. Quadratic Constraints
5.3.1. Ill-posed problems. Least squares problems with quadratic con-
straints arise in a variety of applications, such as smoothing of noisy data, and
in trust region methods for nonlinear least squares problems; see Section 9.2.3.
However, the most important source is the solution of discretized ill-posed prob-

begin For all

Update

204 CHAPTER 5. CONSTRAINED LEAST SQUARES PROBLEMS

lems. Such problems arise naturally from inverse problems where one tries to
determine, e.g., the structure of a physical system from its behavior. As an
example, consider the integral equation of the first kind,

(5.3.1)

where the operator K is compact. It is well known that this is an ill-posed
problem in the sense that the solution / does not depend continuously on the
data g. This is because there are rapidly oscillating functions f (t) which come
arbitrarily close to being annihilated by the integral operator.

Let the integral equation (5.3.1) be discretized into a corresponding least
squares problem
(5.3.2)

The singular values of K <G R/«xn wn\ decay exponentially to zero. Hence K
will not have a well-defined numerical £-rank r, since by (2.8.3) this requires that
or > 6 > crr+i holds with a distinct gap between the singular values or and <Jr+i-
Therefore, most of the methods for rank deficient least squares problems given in
Section 2.7 are not very useful in this context. In general, any attempt to solve
(5.3.2) without restricting / will give a meaningless result.

One of the most successful methods for solving ill-conditioned problems of
this type is Tikhonov regularization; see Section 2.7.2. In this method the
solution space is restricted by imposing an a priori bound on ||^/|J2 for a suitably
chosen matrix L € Rpxn. Typically L is taken to be a discrete approximation to
some derivative operator, e.g.,

which approximates the first derivative operator except for a scaling factor.
The above approach leads us to take / as the solution to the problem

(5.3.4)

Here the parameter 7 governs the balance between a small residual and a smooth
solution. The determination of a suitable 7 is often a major difficulty in the
solution process. Alternatively, we can consider the related problem

(5.3.5)

The problems (5.3.4) and (5.3.5) are called regularization methods for the
ill-conditioned problem (5.3.2) in the terminology of Tikhonov [775, 1963]; in the
statistical literature the solution of problem (5.3.4) is called a ridge estimate.

5.3. QUADRATIC CONSTRAINTS 205

5.3.2. Quadratic inequality constraints. Problems (5.3.4) and (5.3.5) are
special cases of the general problem LSQI.

PROBLEM LSQI. Least Squares with Quadratic Inequality Constraint.

(5.3.6)

where A e Rmxn, C 6 Rpxn, 7 > 0.
A particularly simple but important case is when

(5.3.7)

We call this the standard form of LSQI.
Conditions for existence and uniqueness and properties of solutions to

problem LSQI have been given by Gander [317, 1981]. Clearly, problem LSQI
has a solution if and only if

(5.3.8)

and in the following we assume that this condition is satisfied. We define a C-
generalized solution XA,C to the problem minx \\Ax — b\\2 to be a solution to the
problem (cf. Section 2.7.4)

(5.3.9)

Notice that for C — / and d = 0 we have XA,I = Afb. Then the constraint in
problem LSI is binding only if

(5.3.10)

This observation gives rise to the following theorem.
THEOREM 5.3.1. Assume that problem LSQI has a solution. Then either

XA,C is a solution or (5.3.10) holds and the solution occurs on the boundary of the
constraint region. In the latter case the. solution x ~ x\ satisfies the generalized
normal equations
(5.3.11)

where A is determined by the secular equation

(5.3.12)

Proof. Using the method of Lagrange multipliers we minimize ip(x] where

A necessary condition for a minimum is that the gradient of ^(x} equals zero,
which gives (5.3.11).

206 CHAPTER 5. CONSTRAINED LEAST SQUARES PROBLEMS

In the following we assume that (5.3.10) holds so that the constraint is
binding. Then there is a unique solution to problem LSQI if and only if

(5.3.13)

As we shall see, only positive values of A are of interest. Then (5.3.11) are the
normal equations for the least squares problem

(5.3.14)

Hence, to solve (5.3.11) for a given value of A, it is not necessary to form the
cross-product matrices ATA and CTC.

A numerical method for solving problem LSQI can be based on applying,
e.g., Newton's method for solving the secular equation (5.3.12). However, it is
preferable to use the alternative formulation due to Hebden:

(5.3.15)

where x\ is computed from (5.3.14). Reinsch [683, 1971] has shown that h\
is convex, and hence that Newton's method is monotonically convergent to the
solution A* if started within [0, A*]. If derivatives cannot be computed, the secant
method can be used, and it can be shown that if the initial iterates are both non-
negative this method also is monotonically convergent.

For every function value h\ we have to compute a new QR decomposition of
(5.3.14) for computing x\. Methods which avoid this have been given by Elden
[267, 1977] and will be described later in this section.

5.3.3. Problem LSQI by GSVD. We now consider the use of the GSVD in
Theorem 4.2.2 for analyzing problem LSQI. For ease of notation we assume that
ra > n and put q = min(p, n). Then we have

(5.3.16)

where U e p^xm an(j y ^ j^pxp are orthogonal, Z nonsingular, and DA =
diag (GJI, . . . , an), DC = diag (/?i,..., (3q] are the generalized singular values.

The rank condition (5.3.13) implies that

(5.3.17)

where r = rank (C). Using the orthogonality of U and V problem LSQI becomes

5.3. QUADRATIC CONSTRAINTS 207

where

Clearly a solution exists if and only if \\d2\\2 < 7, which is condition (5.3.8).
Further, the vector y defined by

is a solution to (5.3.9). Hence the condition (5.3.10) becomes

(5.3.19)

and we assume that this condition is satisfied. The generalized normal equations
(5.3.11) can now be written

(5.3.20)

A simple calculation shows that the secular equation becomes

(5.3.21)

From (5.3.19) it follows that /(O) > 7. Since f\ is monotone decreasing for A > 0
there exists a unique positive root to (5.3.21). It can be shown that this is the
desired root; see Gander [317, 1981]. From (5.3.21) we can cheaply compute
function values and derivatives of f\ for given numerical values of A.

For LSQI problems of standard form the above algorithm simplifies. If we let
the SVD of A be

where U and V are orthogonal, we have fa = 1, i = 1,... ,n. Assume that the
singular values oti = <Ti(A) are ordered so that

The rank condition (5.3.13) is now trivially satisfied, and the condition (5.3.10)
simplifies to

208 CHAPTER 5. CONSTRAINED LEAST SQUARES PROBLEMS

We assume that this condition is satisfied and determine A by solving the secular
equation

(5.3.22)

We finally obtain the solution from

(5.3.23)

where A* is the unique positive solution to (5.3.22). This algorithm requires
ran2 + 17/3n3 flops.

5.3.4. Problem LSQI by QR decomposition. The GSVD and SVD, re-
spectively, are the proper decompositions to analyze problem LSQI in general and
standard form. These decompositions also lead to the most stable computational
algorithms for the numerical solution of these problems. However, as for the
unconstrained least squares problem more efficient algorithms which are almost
as satisfactory can be devised which make use of simpler matrix decompositions.
For the problem LSQI such methods have been given by Elden [267, 1977].

We first consider the problem in standard form with B = In and d = 0.
In order to solve the secular equation \\x\\\2 — 7 = 0, we have to compute the
solution x = x^ to the least squares problem

(5.3.24)

for a sequence of values of // — A1/2. To do this efficiently we first transform A
to upper bidiagonal form (see Section 2.6.2)

(5.3.25)

where P and Q are orthogonal matrices and B is upper diagonal

This decomposition can be computed in only mn2 + n3 flops using Householder
transformations. If we put

(5.3.26)

5.3. QUADRATIC CONSTRAINTS 209

the problem (5.3.24) is transformed into

(5.3.27)

Since P is orthogonal the secular equation becomes \\y\\\2 = 7- For a given
value of n we can now determine two sequences of Givens transformations

so that Bp, is again upper bidiagonal,

(5.3.28)

Then y^ is computed from the bidiagonal system B^y^ = g\ by back-substitution.
The construction of the Givens rotations G^ and J^ is sufficiently well

demonstrated by the case n = 3 below. The first transformation G\ is chosen to
zero the element in position (4,1). This creates a new nonzero element in position
(4,2), which is then annihilated by the transformation J\. This step reduces the
dimension of the problem by one and the transformation proceeds recursively.
The first step is shown below (n = 3), where transformed elements are denoted
by a prime:

The transformation in (5.3.28), and the computation of y\ takes only about lln
flops. Elden [267, 1977] gives a more detailed operation count and also shows
how to compute derivatives of the function

We now consider the more general form of problem LSQI, where d — 0 and
B = L G R(n~*)xn is a banded matrix. We now have to solve

(5.3.29)

for a sequence of values of (.1. We can no longer start by transforming A to
bidiagonal form since the necessary transformations from the right would destroy
the sparsity of L. Instead we use the QR decomposition of A

210 CHAPTER 5. CONSTRAINED LEAST SQUARES PROBLEMS

to transform (5.3.29) into the equivalent problem

(5.3.30)

Some problems give rise to a matrix A which has a banded structure. Then it
can be shown (see Theorem 6.2.1) that the matrix RI will be an upper triangular
band matrix with the same bandwidth w\ as A, and the complete matrix in
(5.3.30) will be of banded form. In many cases the banded matrix L is also upper
triangular. If not, it is convenient to reduce it to this form by computing the QR
decomposition

where R% has bandwidth w^. Since Q% is orthogonal we have reduced (5.3.30) to
the form

(5.3.31)

This problem can be efficiently solved by one of the orthogonalization methods
of Sections 6.2.3-6.2.4. Note that this involves a reordering of the rows of the
matrix in (5.3.31) so that the column indices of the first nonzero element in each
row form a nondecreasing sequence. The resulting algorithm has been described
in detail by Elden [271, 1984]. The number of operations for each value of JJL is
0(n(w\ + wD).

We now describe an algorithm for the case when R\ does not have band
structure. The idea is to transform (5.3.29) to a regularization problem of
standard form. Note that if L was nonsingular we could achieve this by the
change of variables y = Lx. However, normally L £ R,(n-*)xn and is of rank
n — t < n. The transformation to standard form can then be achieved using the
pseudoinverse of L by a technique due to Elden [267, 1977]. We compute the QR
decomposition of LT:

where 1/2 spans the nullspace of L. If we set y = Lx, then

(5.3.32)

where L1 is the pseudoinverse of L, and

We form AV-2 and compute its QR decomposition

Then

5.3. QUADRATIC CONSTRAINTS 211

Now, if A and L have no nullspace in common, then AV^ has rank t and U is
nonsingular. Thus, we can always determine w so that r\ = 0 and (5.3.29) is
equivalent to

(5.3.33)

which is of standard form. We then retrieve x from (5.3.32).
We remark that if ra is substantially larger than n it is better to apply the

above reduction to (5.3.30) instead of (5.3.29). Since the reduction involves the
pseudoinverse of L it is numerically less stable than GSVD or the direct solution
of (5.3.29) if

However, in practice it seems to give very similar results; see Varah [803, 1979]-
An important special case is when in LSQI we have A — K, C = L, and both

K and L are upper triangular Toeplitz matrices, i.e.,

and L is as in (5.3.3). Such systems arise when convolution-type Volterra integral
equations of the first kind,

are discretized. Elden [271, 1984] has developed a method for solving problems
of this kind which only uses |n2 flops for each value of /x. It can be modified to
handle the case when K and L also have a few nonzero diagonals below the main
diagonal. Although K can be represented by n numbers this method uses n2/2
storage locations. A modification of this algorithm which uses only O(n) storage
locations is given in Bojanczyk and Brent [120, 1986].

5.3.5. Cross-validation. So far we have assumed that the parameter A = \j?
is determined by solving the secular equation (5.3.12), where 7 is known a priori
or somehow determined from additional information about the solution. We now
describe a method for determining the smoothing parameter // directly from the
data. The underlying statistical model is that the components of b are subject to
random errors of zero mean and covariance matrix cr2/m, where a2 may or may
not be known. We take d = 0 in (5.3.11) and write the solution as a function of
M:
(5.3.34)

212 CHAPTER 5. CONSTRAINED LEAST SQUARES PROBLEMS

The predicted values of b can then be written

(5.3.35)

where the symmetric matrix P^ is called the influence matrix.
Craven and Wahba [193, 1979] have suggested that when <j2 is known then

H should be chosen to minimize an unbiased estimate of the expected true mean
square error given by

Here trace(A) denotes the trace of the matrix A. When <72 is not known then
p, may be chosen to minimize the generalized cross-validation (GCV) function
given by

(5.3.36)

since the minimizer of V(iJi) is asymptotically the same as the minimizer of T(/x),
when ra is large; see Golub, Heath, and Wahba [368, 1979].

EXAMPLE 5.3.1. (See Golub and Van Loan [389, 1989, Problem 12.1-5].) Let
A = (1,1,..., 1)T 6 Rmxl, b € Rm, and put

Then the cross-validation function becomes

It is readily verified that V(\) is minimized for v = s2/(m&2), which leads to an
optimal A given by

Minimization of either T(/z) or V(n) requires that \\Axp, — b\\2 and trace
(Im — PH) can be accurately and efficiently computed. For a problem in standard
form, i.e., when B = /n, these quantities can be computed from the SVD of A:

We get

where

5.3. QUADRATIC CONSTRAINTS 213

From an easy calculation it follows that with c — UTb

(5.3.37)

Since Ui are the eigenvalues of P we further have

(5.3.38)

Using the GSVD (5.3.16), formulas similar to (5.3.37) and (5.3.38) are easily
derived for the general case B ^ In.

Elden [270, 1984] has given a method for computing the cross-validation
function C/^ for the standard problem (C = /) based on the bidiagonalization of
A, which is more efficient than that based on the SVD. Using the decomposition
(5.3.26)-(5.3.27) the norm of the residual vector can be expressed

Given y^ this computation can be performed in O(n) operations. However, for
small values of \JL cancellation occurs, and there may be large errors. Cancellation
can be avoided by basing the computations on the identity

A decomposition of BBT + //2/ can be obtained using a variant of the algorithm
of Elden described in Section 5.3.4.

To compute the trace term in (5.3.36) we write using (5.3.35)

We further have, using properties of the trace function

A recursive procedure for computing the diagonal elements of the inverse of a
band matrix can now be used to compute the last trace term in O(n) operations;
see Elden [271, 1984].

In many important applications the matrices ATA and CTC have band
structure. For example, when fitting a polynomial smoothing spline of degree
2k — I to m data points the half-bandwidth will be k and k + 1, respectively;
see Reinsch [683, 1971]. Then computing the cross-validation function using
the singular value decomposition will require 0(ra3) operations and is not
efficient. Hutchinson and de Hoog [479, 1985] give a method which requires
only O(k2m] operations, and which generalizes Elden's algorithm. It is based on
the observation that to compute trace(P)M only the central 2k + I bands'"of the
inverse M"1 are needed. These can be efficiently computed from the Cholesky
factor RH of M/j, by the algorithm in Section 6.7.4.

This page intentionally left blank

Direct Methods for Sparse Problems

6.1. Introduction
In this chapter we review methods for solving the linear least squares problem

(6.1.1)

which are effective when the matrix A is sparse, i.e., when the matrix A has
"relatively few" nonzero elements. A more precise definition is difficult to give.
J. H. Wilkinson defined a sparse matrix to be "any matrix with enough zeros that
it pays to take advantage of them." Often the gain in operations and storage can
be huge, making otherwise intractable problems possible to solve. Note that very
large problems are by necessity sparse (or structured), since otherwise they would
be intractable.

In Rice [685, 1983] sources of least squares problems of large, and sometimes of
enormous, size are identified and discussed. The following sources are mentioned:

1. the geodetic survey problem,

2. the photogrammetry problem,

3. the molecular structure problem,

4. the gravity field of the earth,

5. tomography,

5. the force method in structural analysis,

6. the very long base line problem,

7. surface fitting,

8. cluster analysis and pattern matching.

A sparse least squares problem of spectacular size is described in Kolata [507,
1978]. This is the problem of least squares adjustment of coordinates of the
geodetic stations comprising the North American Datum. It consists of about
6.5 million equations in 540,000 unknowns (= twice the number of stations).
The equations are mildly nonlinear, so it suffices to solve two or three linearized
problems of this size. The adjustment of the geodetic measurements for the entire
earth is planned for the future!

215

Chapter 6

216 CHAPTER 6. DIRECT METHODS FOR SPARSE PROBLEMS

A natural distinction is between sparse matrices with regular zero pattern
(e.g., banded structure) and matrices with an irregular pattern of nonzero
elements. An example of a symmetric irregular pattern arising from a structural
problem in aerospace is illustrated in Figure 6.1.1. Other application areas can
give patterns with quite different characteristics.

FIG. 6.1.1. Nonzero pattern of a matrix and its Cholesky factor.

In order to solve large sparse matrix problems efficiently it is important that
only nonzero elements of the matrices be stored and operated on. One must also
try to keep the fill small as the computation proceeds, which is the term used
to denote the creation of new nonzeros. Only in the last 20 years or so have
direct methods been developed for general sparse problems. For an early survey
of sparse matrix research, see Duff [236, 1977]. An excellent modern introduction
to the practice of sparse matrix computation is given by Duff, Erisman, and Reid
[240, 1986]. For special surveys on methods for sparse least squares problems,
see Bjorck [87, 1976], Heath [443, 1984], and Ikramov [482, 1985].

We will initially assume that A has full column rank, i.e., rank (A) = n.
However, problems where rank (A) = m < n or rank (A) < min(m,n) occur in
practice. Other important variations include weighted problems, problems with
linear equality constraints, and problems with upper and lower bounds on the
variables. It may be possible to take advantage of a sparse right-hand side b.
Also, if only a part of the solution vector x is needed savings can be achieved.

Sparse least squares problems may be solved either by direct or iterative
methods. Preconditioned iterative methods can often be considered as hybrids
between these two classes of solution. Solving sparse least squares problems
using the method of normal equations or by QR decomposition is closely related
to solving sparse positive definite systems by Cholesky factorization. An excellent
introduction to theory and methods for the latter class of problems is given in the
monograph by George and Liu [336, 1981]. A different approach is based on the
augmented system (2.3) and uses methods for computing a sparse decomposition
of a sparse, symmetric, and indefinite matrix.

6.2. BANDED LEAST SQUARES PROBLEMS 217

The choice of solution method for large sparse least squares problems depends
partly on the computing environment. Important considerations are whether we
are using a virtual memory machine or need to consider the use of auxiliary
storage. The efficiency of an algorithm may vary considerably depending on
whether vector or parallel computers (either of shared-memory or local-memory
type) are used.

6.2. Banded Least Squares Problems
The simplest class of sparse rectangular matrices is the class of matrices which
have a banded structure. A banded matrix A e Rmxn has the property that in
each row the nonzero elements lie in a narrow band. We define

(6.2.1)

to be column subscripts of the first and last nonzeros in the ^th row of A.
DEFINITION 6.2.1. The rectangular matrix A e R,mxn is said t0 have row

bandwidth w if
(6.2.2)

For this structure to have practical significance we need to have w <C n.
Note that, although the row bandwidth is independent of the row ordering, it
will depend on the column ordering. Methods to permute the columns in A in
order to achieve a small bandwidth are discussed in Section 6.5.1. We define
the bandwidth of a symmetric matrix to be the bandwidth of its strictly upper
(lower) triangular part

DEFINITION 6.2.2. The bandwidth (or half-bandwidth) of a symmetric matrix
C e Rnxn is given by

We now prove a relationship between the row bandwidth w of A and the
bandwidth p of the corresponding matrix of normal equations C = ATA.

THEOREM 6.2.1. Assume that the matrix A G Rmxn has row bandwidth w.
Then the symmetric matrix C = ATA has at most bandwidth p = w — 1.

Proof. From Definition 6.2.1 it follows that a^-a^ ^ 0 => \j — k\ < w. Hence,

But then C = ATA must have bandwidth p = w — I .

It is often advantageous to sort the rows of A so that the column indices
f i (A } , i = 1 ,2 , . . . , ra, of the first nonzero element in each row form a nondecreas-
ing sequence, i.e.,

A matrix whose rows are sorted in this way is said to be in standard form. A
row ordering within the blocks A^ may be specified by sorting the rows so that
the column indices l(Ak) form a nondecreasing sequence.

218 CHAPTER 6. DIRECT METHODS FOR SPARSE PROBLEMS

If we take into account that A may have a variable row bandwidth the rela-
tionship between the structure of A and that of ATA becomes more complicated.
The structure of ATA can now be generated as follows.

THEOREM 6.2.2. Assume that A G Rmxn is a banded matrix in standard
form, and define

(6.2.3)

i.e., Wk is the bandwidth of the block A^ in (6.2.5). Then the banded structure of
C = ATA is given by l\ (C) = w\,

Proof. The proof is by induction.

We now consider the resulting structure of the Cholesky factor R of ATA.
It can be shown that R 4- RT inherits the envelope of ATA where we have the
following definition.

DEFINITION 6.2.3. The envelope of a symmetric matrix C is the set of
indices

THEOREM 6.2.3. Let R be the Cholesky factor of the positive definite matrix
C — ATA. Then it holds that

Proof. The proof is by induction in the dimension n of C. The theorem
obviously holds for n = 1. Assume it holds for n — 1 and partition C 6 Rnxn

and its Cholesky factor as

where C\ = P^R\ is positive definite and of dimension n — 1. By the induction
assumption we have Env (R\ + R^} — Env (C\). From C = RTR it follows that
v satisfies the lower triangular system R^v = u. Hence if ui = 0, i = 1,... , /, it
follows that also Vi = 0, i = 1, . . . , /.

6.2.1. Storage schemes for banded matrices. When the row bandwidth is
not constant we can use a compressed row storage scheme, in which elements
are stored contiguously row by row in one vector. All elements within the band
of A are stored. For example, the matrix

(6.2.4)

6.2. BANDED LEAST SQUARES PROBLEMS 219

would be stored as

Here FA contains the column indices f i (A) for each row, and IA the position in
the array AC of the first element in the zth row of A. Note that zeros within
the band are stored. The last element in IA equals the number of elements in
the envelope plus one. In the simplest case when A has constant bandwidth, i.e.,
when

the vector IA is not needed.
According to Theorem 6.2.1 the matrix of normal equations ATA correspond-

ing to a banded matrix has a symmetric banded structure. For example, for the
matrix in (6.2.4) we have

Symmetric band matrices can be stored row-wise using a band (envelope) storage
scheme, where all elements in a row from the diagonal to the last nonzero are
stored.

6.2.2. Normal equations for banded problems.
equations we first form

In the method of normal

where af, i = l , . . . ,m , are the rows of A. We then perform the Cholesky
factorization C — RTR, and finally solve the two triangular systems resulting
from RT(Rx) = d.

In the case when A has constant row bandwidth w, forming C and d requires
about ^mw(w + 3) multiplications (b is assumed to have no zero elements).
From Theorems 6.2.1 and 6.2.3 it follows that C and R + RT both have
bandwidth p = w — 1, and from Algorithm 2.2.2 we can derive a row-wise
band Cholesky algorithm. When the Cholesky factor is available, the solution of
RTRx — ATb — d can be computed by solving the two banded triangular systems
RTy = d and Rx = y by forward- and back-substitution.

220 CHAPTER 6. DIRECT METHODS FOR SPARSE PROBLEMS

ALGORITHM 6.2.1. BAND CHOLESKY ALGORITHM

ALGORITHM 6.2.2. BANDED FORWARD- AND BACK-SUBSTITUTION.

In the constant bandwidth case the upper triangular part of C can be stored
in an n x (p + 1) array. The elements of the upper triangular part of C (and R)
may be stored by diagonals in a two-dimensional n x (p + 1) array as illustrated
below (n = 5, v = 2):

This means that the (i , j) entry of C (and R] is found in the position (i, j — i + 1)
entry of the storage array. The elements marked x in the lower right corner
may be arbitrary since they are not used. In an implementation the subscript
computation should be made as efficient as possible. For a detailed discussion
see "Contribution 1/4" in Wilkinson and Reinsch [843, 1971], and Dongarra et
al. [228, 1979 Chap. 4].

If p <C n the Cholesky factorization requires about \n(p + l)(p + 2)
flops and n square roots. Together the forward- and back-substitution require
(In — p — l)(p + 2) multiplications. The algorithm is easily modified so that y
and x overwrite d in storage. It follows that if full advantage is taken of the band

6.2. BANDED LEAST SQUARES PROBLEMS 221

structure of the matrices involved, the solution of a least squares problem where
A has bandwidth w requires a total of

6.2.3. Givens QR decomposition for banded problems. In this section
we consider methods based on Givens QR decomposition for the banded least
squares problem minx ||Ax —6||2- From Theorems 6.2.1 and 6.2.3 it follows that R
and the upper triangular part of ATA are banded matrices with nonzero elements
only in the first p — w — I superdiagonals. Hence R again has w nonzeros in each
row.

We now describe a sequential row orthogonalization scheme using Givens
rotations. In this method we initialize an upper triangular matrix R to zero and
then update R adding a row of A at a time. We will assume that the rows of A
have been ordered so that A is in standard form. The orthogonalization proceeds
row-wise, and in the ith step row of is merged with the triangular matrix Ri-i to
produce the triangular matrix R{. It uses the algorithm givrot defined in Section
2.3.2.

ALGORITHM 6.2.3. Row ORTHOGONALIZATION FOR BAND MATRICES. Let
A e Rmxn be a matrix of row bandwidth w. Initialize R — RQ to be an upper
triangular matrix of bandwidth w with all elements zero.

By initializing R to zero the description above is also valid for the processing
of the initial n rows of A. If at some stage TJJ = 0, then the whole jth row in Ri-\
must be zero and the remaining part of the current row a? can just be inserted
in row j of Ri-i. (Note that a row permutation is just a special case of a Givens
rotation.) The number of rotations needed to process row aj is at most equal to
miu(i — l,w).

In Figure 6.2.1 we show the situation before the elimination of the ith row.
The updating of R by Givens method when a new row is added is seen to
be basically identical to updating a full triangular matrix formed by rows and
columns fi(A) to li(A] of R by the full row formed by elements fi(A) to k(A).
For a detailed discussion see Cox [189, 1981]. Note that only the indicated w x w
upper triangular part of Ri-\ is involved in this step.

222 CHAPTER 6. DIRECT METHODS FOR SPARSE PROBLEMS

FIG. 6.2.1. The ith step of reduction of a banded matrix.

If A has constant bandwidth and is in standard form then the last (n — k(A))
columns of R have not been touched and are still zero as initialized. Further, the
first (fi(A) — I) rows of R are already finished at this stage and can be read out
to secondary storage. Thus, very large problems can be handled since primary
storage is needed only for the active triangular part in Figure 6.2.1

It is clear from the above that the processing of row aj requires at most 2w2

flops if 4-multiply Givens rotations are used. Thus the complete orthogonalization
requires about 2mw2 flops, and can be performed in ^w(w + 3) locations of
primary storage. We remark that if the rows of A are processed in random order,
then we can only bound the operation count by 2mnw flops, which is a factor
of n/w worse (see Cox [189, 1981]). Thus, it almost invariably pays to sort the
rows. The algorithm can be modified to also handle problems with variable row
bandwidth Wi. In this case an envelope data structure for ATA is set up using
Theorem 6.2.2, in which the E-factor will fit.

In Algorithm 6.2.3 the Givens rotations could also be applied to one or several
right-hand sides 6 to produce

The least squares solution is then obtained from Rx = c\ by back-substitution.
The vector c<2 is not stored, but used to accumulate the residual sum of squares
\\r\\% — \\C2\\2- If we have to treat several right-hand sides, which are not available
in advance, then the Givens rotations should be saved. As described in Section
2.3.1 each Givens rotation can be represented by a single floating point number;
see (2.3.12). Since at most w rotations are needed to process each row it follows
that Q can be stored in no more space than that allocated for A.

6.2.4. Householder QR decomposition for banded problems. For the
case when m » n more efficient schemes based on Householder transformations
may be developed. Such a scheme for banded systems was first given by Reid

6.2. BANDED LEAST SQUARES PROBLEMS 223

[679, 1967]. Lawson and Hanson [520, 1974, Chap. 11] give a similar algorithm
and also provide Fortran subroutines implementing their algorithm.

Assume that the rows of A have been sorted so that A is in standard form.
Then we can write

(6.2.5)

where the block Ak consists of all rows of A for which the first nonzero element
is in column fc, k = I,.. .,q. Initialize R — RQ to be an upper triangular matrix
of bandwidth w. The Householder algorithm proceeds in q steps, k = 1,... ,<?.
After the first k — I steps the first k — 1 blocks have been reduced by a sequence
of Householder transformations to an upper trapezoidal banded matrix Rk-i- In
step k we merge the kth block A^, and compute

where Q^ is a product of Householder transformations and Rk is again upper
trapezoidal. Note that because the block A^ has its first nonzero element in
column fc, this and later steps will not involve the first k — 1 rows and columns
of Rk-i- Hence the first k — I rows of .R^-i are rows in the final matrix R.

The reduction using this algorithm takes about w(w -f l)(m + 3n/2) flops,
which is approximately half as many as for the Givens method. As in the Givens
algorithm the Householder transformations can also be applied to one or several
right-hand sides 6 to produce c = QTb, from which the least squares solution is
then obtained from Rx = c\ by back-substitution.

It is essential that the Householder transformations be subdivided as outlined
above, otherwise intermediate fill will occur and the operation count will increase
greatly. The reader is encouraged to work through the example below.

EXAMPLE 6.2.1. The least squares approximation of a discrete set of data by
a linear combination of cubic B-splines gives rise to a banded linear least squares
problem. Let

where B j (t) , j = 1,2, . . . ,n, are the normalized cubic B-splines, and let (y i , t i) ,
i = 1,. . . , m, be given data points. If we determine x to minimize

then since the only B-splines with nonzero values for t G [Afc_i ,Afc] are Bj,
j = fc, k + 1, k + 2, k + 3, the matrix A will be a banded matrix with w = 4.
In particular, assume that m = 17, n = 10, and that A consists of blocks A£,
fc = l , . . . , 7 .

224 CHAPTER 6. DIRECT METHODS FOR SPARSE PROBLEMS

FIG. 6.2.2. The matrix A after reduction of the first k = 3 blocks using nine
Householder transformations.

In Figure 6.2.2 we show that the matrix after the first three blocks have been
reduced by Householder transformations PI, . . . ,Pg. Elements which have been
zeroed by Pj are denoted by j and fill elements by +. In step k — 4 only the
indicated part of the matrix is involved.

Some problems (for example, periodic spline approximation) lead to matrices
which have an augmented band structure,

where A\ is a band matrix and A-2 a generally full matrix with a small number
of columns. The band matrix algorithm is easily extended to matrices of this
structure. Note also that this form is a special case of block angular form, which
is treated in the next section.

6.3. Block Angular Least Squares Problems
6.3.1. Block angular form. As noted in Rice [685, 1983] there is a sub-
stantial similarity in the structure of several large sparse least squares problems.
The matrices possess a block structure, perhaps at several levels, which reflects
a "local connection" structure in the underlying physical problem. In particular,
the problem can often be put in the following bordered block diagonal or block
angular form:

(6.3.1)

where

6.3. BLOCK ANGULAR LEAST SQUARES PROBLEMS 225

and

From (6.3.1) we see that the variables X\,...,XM are coupled only to the
variables XM+I- Some applications where the form (6.3.1) arises naturally are
in photogrammetry (see Golub, Luk, and Pagano [375, 1979]), Doppler radar
positioning (see Manneback, Murigande, and Toint [561, 1985]), and geodetic
survey problems (see Golub and Plemmons [380, 1980]). Weil and Kettler [834,
1971] have given a heuristic algorithm for permuting a general sparse matrix into
this form.

The normal matrix of A in (6.3.1) is of doubly bordered block diagonal form,

and RM+I is the Cholesky factor of C. We assume in the following that
rank (.4) = n, which implies that the matrices AjAi, i = 1,2, . . . ,M, and C
are positive definite. It is easily seen that then the Cholesky factor of ATA will
have a block structure similar to that of A,

(6.3.2)

where Ri e Rn*xni, and the Cholesky factor of A?Ai, i = 1 , . . . ,M + 1 is
nonsingular.

A number of problems have two levels of sparsity structure, i.e., the blocks
Ai and/or Bi are themselves large and sparse matrices, often of the same general
sparsity pattern as A. There may also be more than two levels of structure.
There is a wide variation in the number and sizes of blocks. Some problems have
large blocks with M of moderate size (10-100), while others have many more but
smaller blocks.

6.3.2. QR methods for block angular problems. An algorithm for least
squares problems of block angular form based on QR decomposition of A has
been given by Golub, Luk, and Pagano [375, 1979]. This proceeds in three steps.

where

226 CHAPTER 6. DIRECT METHODS FOR SPARSE PROBLEMS

1. For i = 1 ,2, . . . , M reduce the diagonal block Ai to upper triangular form
by a sequence of orthogonal transformations to (Ai, Bi) and the right-hand
side bi, yielding

Any sparse structure in the blocks Ai should be exploited.

2. To obtain RM+I and CM+I compute the QR decomposition

where

The residual norm is given by p — H^M+ilh-

3. Find the solution to min \\Txw+i — d\\2 from the triangular system
XM+I

and compute XM, ... ,x\ by back-substitution in the sequence of triangular
systems

There are several ways to organize this algorithm. In steps 1 and 3.the
computations can be performed in parallel on the M subsystems. It is then
advantageous to continue the reduction in step 1 so that the matrices 7^,
i = 1 , . . . , M, are brought into upper trapezoidal form.

Cox [190, 1990] considers two modifications of this algorithm, for which the
storage requirement is reduced. First he notices that by merging steps 1 and 2 it
is not necessary to hold all blocks Ti simultaneously in memory. He shows that
even more storage can be saved by discarding Ri and Si after they have been
computed in step 1, and recomputing Ri and Si for step 3. Indeed, only Ri needs
to be recomputed, since when XM+I has been computed in step 2, we have that
Xi, i = 1 , . . . , M, is the solution to the least squares problem

Hence to determine Xi we only need to (re-)compute the QR decompositions of
(Ai,gi). In some practical problems this modification can reduce the storage
requirement by an order of magnitude, while the recomputation of Ri only
increases the operation count by a few percent. This is true, e.g., for large
problems with dense blocks where

6.4. TOOLS FOR GENERAL SPARSE PROBLEMS 227

Using the structure of the ^-factor in (6.3.2), the diagonal blocks of the
variance-covariance matrix C — (B^R^1 = R~1R~T can be written (see Golub,
Plemmons, and Sameh [381, 1988])

(6.3.3)

Hence, if we compute the QR decompositions

we have / + W?Wi = Ufa and

This method assumes that all the matrices Ri and Si have been retained. For a
discussion of computing variances and covariances using the modified algorithm
see Cox [190, 1990].

In some applications the matrices Ri will be sparse but a lot of fill occurs in the
blocks Bi in step 1. Then the triangular matrix RM+I will be full, and expensive
to compute. For such problems a block preconditioned iterative method may be
more efficient. Here an iterative method, e.g., the conjugate gradient method, is
applied to the problem

where M = diag (Ri,..., RM, I)- It may be possible to also compute a sparse
QR decomposition of the last block column in (6.3.1),

Then it is advantageous to use the preconditioner M = diag (J? i , . . . , RM, RB)',
see Golub, Manneback, and Toint [376, 1986]. Such preconditioners are further
discussed in Section 7.3.2.

6.4. Tools for General Sparse Problems
One of the main objectives of a sparse matrix data structure is to economize on
storage while at the same time facilitating subsequent operations on the matrix.
We first describe some suitable storage schemes for sparse vectors and matrices.

6.4.1. Storage schemes for general sparse matrices. We first consider
a scheme for storing a sparse vector x. We store the nonzero elements1 of x in

1 All zeros are not necessarily exploited, and some stored "nonzero" elements may have the numerical
value zero.

228 CHAPTER 6. DIRECT METHODS FOR SPARSE PROBLEMS

compressed form in a vector xc with dimension nnz, where nnz is the number
of nonzero elements in x. Further, we store in an integer vector ix the indices of
the corresponding nonzero elements in xc. Hence, the sparse row vector x can be
represented by the triple (ix,xc,nnz), where

So, for example, the vector x = (0,4,0,0,1,0,0,0,6,0) is stored in compressed
form as

Note that it is not necessary to store the nonzero elements in any particular
order in xc. This makes it very easy to add further nonzero elements in x, since
these can just be appended in the last positions of xc.

Operations on sparse vectors are simplified if one of the vectors is first
uncompressed, i.e., stored as a dense vector. This can be done in time
proportional to the number of nonzeros, and allows direct random access to
specified elements in the vector. Vector operations, e.g., adding a multiple a
of a sparse vector x to an uncompressed sparse vector y, or computing the
inner product xTy, can then be performed in constant time per nonzero element.
Assume, for example, that the vector x is held in compressed form and y in a full
length array. Then the operation y := a * x -f y may be expressed as

REMARK 6.4.1. In the design of sparse matrix algorithms in MATLAB the
above scheme is formalized by introducing a sparse accumulator SPA. The SPA
consists of a dense vector of real (or complex) values, a dense vector of true/false
"occupied flags," and an unordered list of the indices whose occupied flags are
true. For a more complete description see Gilbert, Moler, and Schreiber [351,
1992]-

There are many different ways to generalize this storage scheme to store a
sparse rectangular matrix in compressed form. A simple scheme is to store the
nonzero elements in "coordinate form" as an unordered one-dimensional array
AC together with two integer vectors ix and jx containing the corresponding
row and column indices,

Hence, A is stored as an unordered set of triples consisting of a numerical value
and two indices. We denote the number of nonzero entries in A by nnz=nnz(A).
For the initial representation of a general sparse matrix this coordinate scheme
is very convenient, and further nonzero elements are easily added to the structure.
It has the drawback that storage overhead is large, since two extra integer vectors
of length nnz are needed. More important is that it is difficult to access the matrix
A by rows or by columns, which is needed, e.g., when implementing the Cholesky
factorization.

6.4. TOOLS FOR GENERAL SPARSE PROBLEMS 229

would be stored by rows as

The components in each row need not be ordered; indeed, there is often little
advantage in ordering them. To access a nonzero a^- there is no direct method
of calculating the corresponding index in the vector AC. Some testing on the
subscripts in ja has to be done. However, more frequently a complete row of A
has to be retrieved, and this can be done quite efficiently.

In the general sparse storage scheme only nonzero elements are stored. This
saving is, however, bought at the cost of storage for the vector ja of column
subscripts. This overhead storage can be decreased by using a clever compressed
scheme due to Sherman; see George and Liu [336, 1981, pp. 139-142].

If the matrix is stored as a collection of sparse row vectors, the entries in a
particular column cannot be retrieved without a search of nearly all elements.
These entries are needed, for instance, to find the rows which are involved in a
stage of Gaussian elimination. One possibility would then be to also store the
matrix as a set of column vectors.

An important distinction is between static storage structures that remain
fixed and dynamic structures that can accommodate fill. A static structure like
the general sparse storage scheme can be used when the location of the nonzeros
in the matrix can be predicted in advance. Otherwise the data structure for the
factors must dynamically allocate space for the fill during the elimination. Such
storage schemes often use linked lists.

Storage schemes similar to the ones given above can be used for storing a
sparse symmetric positive definite matrix B £ Rnxn. Obviously it is sufficient to
store the upper (or lower) triangular part of B, including the main diagonal, and
the compressed row storage scheme above can be used unchanged. However, since

Another possibility is to store the matrix as a collection of sparse row (or
column) vectors, where for each vector its nonzero elements are stored in AC in
compressed form. The corresponding column subscripts are stored in the integer
vector JA, i.e., the column subscript of the element ack is given in ja(k). Finally,
we need a third vector IA(i), which gives the position in the array AC of the
first element in the ith row of A. Alternatively a similar scheme storing A as a
collection of column vectors may be used.

For example, in this compressed row storage scheme the matrix

230 CHAPTER 6. DIRECT METHODS FOR SPARSE PROBLEMS

for a positive definite matrix all diagonal elements are positive it is convenient to
store these in a separate vector; see George and Liu [336, 1981, pp. 79-80].

6.4.2. Graph representation of sparse matrices. In the method of
normal equations for solving sparse linear least squares problems an important
step is to determine a column permutation P such that the matrix PTATAP
has a sparse Cholesky factor R, and to then generate a storage structure for R.
This should be done symbolically using only the nonzero structure of A (or AT A)
as input. To perform such tasks the representation of the structure of a sparse
matrix as a directed or undirected graph is a powerful tool.

A useful way to represent the structure of a symmetric matrix is by an
undirected graph G — (X,E), consisting of a set of nodes X and a set of
edges E (unordered pairs of nodes). A graph is ordered (labeled) if its nodes
are labeled. The ordered graph G(A) = (X,E), representing the structure of
a symmetric matrix A € Rnxn, consists of nodes labeled l , . . . , n and edges
(xi,Xj] 6 E if and only if a,ij = a,ji ^ 0. Thus there is a direct correspondence
between nonzero elements and edges in its graph; see Figure 6.4.1.

FIG. 6.4.1. The matrix A and its labeled graph.

Two nodes, x and ?/, are said to be adjacent if there is an edge (x, y] £ E.
The adjacency set of x in G is defined by

The number of nodes adjacent to x is denoted by |AdjG(x)|, and is called the
degree of x. A path of length / > 1 between two nodes, u\ and w/+i, is an
ordered set of distinct nodes n i , . . . , n/+i, such that

If there is such a chain of edges between two nodes, then they are said to be
connected. If there is a path between every pair of distinct nodes, then the graph
is connected. A disconnected graph consists of at least two separate connected
subgraphs. (G = (X, E) is a subgraph of G = (X, E) if X C X and E C E.) If

6.4. TOOLS FOR GENERAL SPARSE PROBLEMS 231

G — (X, E) is a connected graph, then Y C X is called a separator if G becomes
disconnected after the removal and the nodes Y.

A symmetric matrix A is said to be reducible if there is a permutation
matrix P such that PTAP is block diagonal. Such a symmetric permutation
PTAP of A corresponds to a reordering of the nodes in G(A) without changing
the graph. It follows that the graph G(PJ AP) is connected if and only if G(A)
is connected. It is then easy to prove that A is reducible if and only if its graph
G(A) is disconnected.

The structure of an unsymmetric matrix can similarly be represented by a
directed graph G = (X,E), where the edges now are ordered pairs of nodes.
A directed graph is strongly connected if there is a path between every pair
of distinct nodes along directed edges.

6.4.3. Predicting the structure of ATA. In the method of normal equa-
tions we form the matrix C = ATA and apply the Cholesky algorithm to compute
R such that C = RTR. To apply the graph algorithms of the previous section,
we first need to determine the structure of the matrix ATA.

Partitioning A by rows we have (cf. (2.2.5))

(6.4.1)

where a? now denotes the ith row of A. This expresses ATA as the sum
of m matrices of rank one. In the following we will often appeal to a no-
cancellation assumption, i.e., whenever two nonzero numerical quantities are
added or subtracted, the result is assumed to be nonzero. Invoking such a no-
cancellation assumption, it follows that the nonzero structure of ATA is the direct
sum of the nonzero structures of cua?, i = 1 ,2 , . . . , m.

The graph G(ATA) can be constructed directly from the structure of the
matrix A. Appealing to (6.4.1) and the no-cancellation assumption the graph of
ATA is the direct sum of all the graphs G(aiO^),i = 1, 2 , . . . , m, i.e., we form the
union of all nodes and edges not counting multiple edges. Note that the nonzeros
in any row of will generate a subgraph where all pairs of nodes are connected.
Such a subgraph is called a clique and corresponds to a full submatrix in ATA.
Clearly, the structure of ATA is not changed by dropping any row of A whose
nonzero structure is a subset of another row, which can be used to speed up the
algorithm.

Alternatively, we can use the following characterization to construct the graph
G(ATA): under the no-cancellation assumption it holds that

(6.4.2)

for at least one row i = 1,2, . . . , ra , i.e., when columns j and k intersect.
Because of this characterization the graph G(ATA) is also known as the column
intersection graph of A.

232 CHAPTER 6. DIRECT METHODS FOR SPARSE PROBLEMS

6.4.4. Predicting the structure of R. From the graph G(ATA) the struc-
ture of the Cholesky factor R can be predicted by using a graph model of Gaussian
elimination. The use of graphs to symbolically model Gaussian elimination for
a symmetric positive definite matrix A G Rnxn is due to Parter [653, 1961],
although the details were later given by Rose [688, 1972].

The fill under the factorization process can be analyzed by considering a
sequence of undirected graphs Gi = G(A^), i = 0 , . . . ,n — 1, where A^ = A.
These elimination graphs can be recursively formed in the following way.

Take GO = G(A), and form Gi from G(i-i) by removing the node i and its
incident edges and adding fill edges. The fill edges in eliminating node v in the
graph G are

Thus the fill edges correspond to the set of edges required to make the adjacent
nodes of v pairwise adjacent. The elimination graphs for the matrix in
Figure 6.4.1 are pictured in Figure 6.4.2. It can be verified that the number
of fill-in elements (edges) is ten. The filled graph Gp(A) of A is a graph with n

FlG. 6.4.2. Sequence of elimination graphs of the matrix in Figure 6.4.1.

vertices and edges corresponding to all the elimination graphs Gi, i — 0 , . . . , n — I .
The filled graph bounds the structure of the Cholesky factor R,

(6.4.3)

Under a no-cancellation assumption, the relation (6.4.3) holds with equality.
The following characterization of the filled graph describes how it can be

computed directly from G(A).
THEOREM 6.4.1. Let G(A) = (X , E) be the undirected graph of A. Then

(xi,Xj) is an edge of the filled graph Gp(A) if and only if (xi,Xj) e E, or there
is a path in G(A) from node i to node j passing only through nodes with numbers
less than min(^,j).

We mention that it is possible to predict the structure of R working directly
with G(A) without forming G(ATA). Gilbert, Moler, and Schreiber [351, 1992]
describe such an algorithm implemented in MATLAB, which makes the step of
determining the structure of ATA redundant.

6.4. TOOLS FOR GENERAL SPARSE PROBLEMS 233

Under the no-cancellation assumption it follows that if A contains at least
one full row then ATA will be full even if the rest of the matrix is sparse. An
example is the matrix

(Sparse problems with only a few dense rows can be treated by updating the
solution to the corresponding problem where the dense rows have been deleted;
see Section 6.7.4.) If the no-cancellation assumption is not satisfied this may
considerably overestimate the number of nonzeros in ATA. For example, if A is
orthogonal then ATA — / and is sparse even when A is dense.

The matrix R in the QR decomposition mathematically equals the Cholesky
factor of ATA; see Theorem 1.3.2. R is uniquely determined apart from possible
sign differences in its rows. Hence, in particular, its nonzero structure is unique.
Thus it seems that the same symbolic algorithm as for the Cholesky factor can
be used to determine the structure of R in the QR decomposition. However,
this method may in fact be too generous in allocating space for nonzeros in R.
To see this, consider the matrix in Figure 6.4.3. For this matrix R = A since
A is already upper triangular. However, since ATA is full the algorithm above
will predict R to be full. Note that this can occur because we begin not with
the structure of ATA, but with the structure of A. Hence the elements in ATA
are not independent, and cancellation can occur in the Cholesky factorization
irrespective of the numerical values of the nonzero elements in A. We call this
structural cancellation, in contrast to numerical cancellation, which occurs
only for certain values of the nonzero elements in A.

Another approach to predicting the structure of R is to perform the Givens
or Householder algorithm symbolically working from the structure of A. George
and Heath [333, 1980] proved the following result.

THEOREM 6.4.2. The structure of R as predicted by symbolic factorization
of A A includes the structure of R as predicted by the symbolic Givens method,
which includes the structure of R.

Manneback [560, 1985] has proved that the structure predicted by a symbolic
Householder algorithm is also strictly included in the structure predicted from
ATA. However, both the Givens and Householder rules can also overestimate
the structure of .R. Gentleman [331, 1976] gives an example where structural
cancellation occurs for the Givens rule.

Coleman, Edenbrandt, and Gilbert [177, 1986] exhibited a class of matrices
for which symbolic factorization of ATA correctly predicts the structure of -R,
since it can be proved that structural cancellation will not occur. From the
above it follows that for this class the Givens and Householder rules will also give
the correct result.

234 CHAPTER 6. DIRECT METHODS FOR SPARSE PROBLEMS

DEFINITION 6.4.1. A matrix A e Rmxn, m > n, is said to have the strong
Hall property if for every subset of k columns, 0 < k < m, the corresponding
submatrix has nonzeros in at least k -f 1 rows. (Thus, when m> n, every subset
of k < n has the required property, and when m = n, every subset of k < n
columns has the property.)

THEOREM 6.4.3. Let A e Rmxn, m > n, have the strong Hall property.
Then the structure of ATA will correctly predict that of R, excluding numerical
cancellations.

Obviously the matrix A in Figure 6.4.3 strong Hall property since the first
column has only one nonzero element. However, the matrix A obtained by
deleting the first column has this property. Although both ATA and ATA are
full, only the Cholesky factor of ATA is structurally full.

FIG. 6.4.3. Strong Hall property of matrix A.

6.4.5. Block triangular form of a sparse matrix. An arbitrary rectangu-
lar matrix A € Rmxn, m > n, can by row and column permutations be brought
into the block triangular form

(6.4.4)

Here the diagonal block Ah is underdetermined (i.e., has more columns than
rows), As is square and Av is overdetermined (has more rows than columns), and
all three blocks have a nonzero diagonal; see the example in Figure 6.4.4. The
submatrices Av and A£ both have the strong Hall property. The off-diagonal
blocks denoted by U are possibly nonzero matrices of appropriate dimensions.
This block triangular form (6.4.4) of a sparse matrix is based on a canonical
decomposition of bipartite graphs discovered by Dulmage, Mendelsohn, and
Johnson in a series of papers [255, 1958], [256, 1959], [257, 1963], and [491,
!963l-

Following the notations in Pothen and Fan [668, 1990], we call the decom-
position of A into the submatrices Ah, As, and Av the coarse decomposition.
One or two of the diagonal blocks may be absent in the coarse decomposition.
It may be possible to further decompose the diagonal blocks in (6.4.4) to obtain

2356.4. TOOLS FOR GENERAL SPARSE PROBLEMS 235

FIG. 6.4.4. The coarse block triangular decomposition of A.

the fine decompositions of these submatrices. Each of the blocks Ah and Av

may be further decomposable into block diagonal form,

where each A^ i , . . . , Ahp is imderdetermined and each Av\,..., Avq is overdeter-
mined. The submatrix As may be decomposable in block upper triangular form

(6.4.5)

with square diagonal blocks As\,..., Ast which have nonzero diagonal elements.
The resulting decomposition can be shown to be essentially unique. Any one block
triangular form can be obtained from any other by applying row permutations
that involve the rows of a single block row, column permutations that involve the
columns of a single block column, and symmetric permutations that reorder the
blocks.

A square matrix which can be permuted to the form (6.4.5), with t > 1, is
said to be reducible; otherwise it is called irreducible. (Some authors reserve
the terms reducible for the case Q = PT, and use the terms bireducible and
bi-irreducible.) All the diagonal blocks in the fine decomposition are irreducible;
this implies that A8\,..., Ast all have the strong Hall property; see Coleman,
Edenbrandt, and Gilbert [177, 1986].

For the case when A is a square and structurally nonsingular matrix there is
a two-stage algorithm for permuting A to block upper triangular form; see Tarjan
[773, 1972], Gustavson [415, 1976], and Duff [235, 1977], [237, 1981]. The program
MC13D by Duff and Reid [248, 1978], included in the Harwell subroutine library,
implements the fine decomposition of As. An algorithm for the more general
block triangular form described above has been given by Pothen and Fan [668,
1990]; see also [666, 1984]. This algorithm depends on the concept of matchings
in bipartite graphs.

236 CHAPTER 6. DIRECT METHODS FOR SPARSE PROBLEMS

The bipartite graph associated with A is denoted G(A) = {R,C,E}.
Here R — (r i , . . . , rm) is a set of vertices corresponding to the rows of A,
C = (ci , . . . ,cm) is a set of vertices corresponding to the columns of A, E is
the set of edges, and {r^Cj} E E if and only if a^ is nonzero. A matching in
G(A) is a subset of its edges with no common end points. In the matrix A this
corresponds to a subset of nonzeros, no two of which belong to the same row or
column. A maximum matching is a matching with a maximum number r(A) of
edges. The structural rank of A equals r(A). (In Figure 6.4.4 the structural
rank of A 6 R12x11 equals 9.) (Note that the mathematical rank is always less
than or equal to its structural rank.)

The algorithm of Pot hen and Fan [668, 1990] consists of the following steps:

1. Find a maximum matching in the bipartite graph G(A) with row set R and
column set C.

2. According to the matching, partition R into the sets VR,SR,HR and
C into the sets VC, SC, HC corresponding to the horizontal, square, and
vertical blocks.

3. Find the diagonal blocks of the submatrix Av and Ah from the connected
components in the subgraphs G(AV) and G(Ah). Find the block upper
triangular form of the submatrix ^4S from the strongly connected compo-
nents in the associated directed subgraph G(AS), with edges directed from
columns to rows.

The reordering to block triangular form in a preprocessing phase can save
work and intermediate storage in solving least squares problems. If A has
structural rank equal to n, then the first block row in (6.4.4) must be empty,
and the original least squares problem can after reordering be solved by a form
of block back-substitution. First compute the solution of

(6.4.6)

where x = QTx and 6 — Pb have been partitioned conformally with PAQ in
(6.4.4). The remaining part of the solution x ^ , . . . , x\ is then determined by

(6.4.7)

Finally, we have x = Qx. We can solve the subproblems in (6.4.6) and (6.4.7) by
computing the QR decompositions of Av and As,i, i = 1 , . . . , k. Since As\,..., Ask
and Av have the strong Hall property the structures of the matrices RI are
correctly predicted by the structures of the corresponding normal matrices.

If A has structural rank n but is numerically rank deficient it will not be
possible to factorize all the diagonal blocks in (6.4.5). In this case the block
triangular structure given by the Dulmage-Mendelsohn form cannot be preserved,
or some blocks may become severely ill-conditioned.

6.5. FILL MINIMIZING COLUMN ORDERINGS 237

If the matrix A has structural rank less than n, then we have an underdeter-
mined block Ah. In this case we can still obtain the form (6.4.5) with a square
block AH by permuting the extra columns in the first block to the end. The least
squares solution is then not unique, but a unique solution of minimum length can
be found as outlined in Section 2.7.

The block triangular form of the matrices in the Harwell- Boeing test
collection (Duff, Grimes, and Lewis [242, 1989]) and the time required to compute
them are given in Pothen and Fan [668, 1990]. For results on savings achieved by
using this form in QR decomposition codes for sparse matrices see Puglisi [672,
1993, Chap. 9]. Note that for some applications, e.g., for matrices arising from
discretizations of partial differential equations, it may be known a priori that the
matrix is irreducible. In other applications the block triangular decomposition
may be known in advance from the underlying physical structure. In both these
cases the algorithm discussed above is not useful.

6.5. Fill Minimizing Column Order ings
A reordering of the columns of AP of A corresponds to a symmetric reordering
of the rows and columns of ATA. Although this will not affect the number
of nonzeros in ATA, only their positions, it may greatly affect the number of
nonzeros in the Cholesky factor R. Before carrying out the Cholesky factorization
numerically, it is therefore important to find a permutation matrix P such that
PTATAP has a sparse Cholesky factor R. (Note that the ordering of the rows in
A has no effect on the matrix ATA.}

Ideally it would be desirable to find an ordering which minimized the number
of nonzero elements in R. However, it is known that to find an ordering optimal
in this sense is an NP-complete problem, i.e., it cannot be solved in polynomial
time. Hence, most ordering algorithms are heuristic, and will in general only give
a suboptimal solution.

The simplest ordering methods use a priori information, such as ordering the
columns in increasing column count. Such orderings are usually inferior to local
ordering methods which use information from successively reduced submatrices.
By far the most important local ordering method is the minimum degree
ordering and various nested dissection orderings.

6.5.1. Bandwidth reducing ordering methods. Some reordering methods
have the objective of minimizing the bandwidth, or rather the area of the envelope
of ATA. Note that by Theorem 6.2.3 zeros outside the envelope will not suffer
fill-in during the Cholesky factorization. Such ordering methods often perform
well for matrices that come from one-dimensional problems or problems that are
in some sense long and thin.

The most widely used ordering algorithm for reducing bandwidth or envelope
is based on the Cuthill—McKee method. This method tries to minimize the
envelope of the permuted symmetric matrix PTAP by gathering the nonzero
elements close to the main diagonal. Cuthill [197, 1972] noticed that it is then

238 CHAPTER 6. DIRECT METHODS FOR SPARSE PROBLEMS

important to label adjacent nodes x and y as close as possible to each other. Their
method, given as Algorithm 6.5.1, is based on a local minimization criterion.

ALGORITHM 6.5.1. CUTHILL-MCKEE ORDERING.

Determine a starting node r and put x\ := r;

for i = 1,... , n

Find all unnumbered nodes in Adj (xi)

and number them in increasing order;

end

It was observed by George [332, 1971] that the ordering obtained by reversing
the Cuthill-McKee ordering often gives less fill-in, although the bandwidth
remains the same.

The performance of the Cuthill-McKee ordering method strongly depends on
the choice of the starting node. George and Liu [336, 1981] recommend a strategy
where a node of maximal or nearly maximal eccentricity l(x) = max.y<=x(d(x, y)) ,
is chosen as a starting node. Here d(x, y) denotes the length of the shortest path
between the two nodes x and y in the graph G(A).

6.5.2. Minimum degree ordering. The minimum degree ordering is
one of the most effective ordering algorithms. It is a symmetric analogue of an
ordering algorithm proposed by Markowitz [567, 1957] for linear programming
applications. The same strategy was employed by Tinney and Walker [776, 1967]
for symmetric matrices.

In terms of the Cholesky factorization the minimum degree algorithm is
equivalent to choosing the ith pivot column as one with the minimum number of
nonzero elements in the unreduced part of ATA. This will minimize the number
of entries that will be modified in the next elimination step, and hence tend to
minimize the arithmetic and amount of fill that occurs in this step. Although
this, of course, will not in general provide a minimization of global arithmetic
or fill, it has proved to be very effective in reducing both of these objectives.
The name "minimum degree" comes from the graph-theoretic formulation of the
algorithm, which was first given by Rose [688, 1972].

ALGORITHM 6.5.2. MINIMUM DEGREE ORDERING.

Let G(0) = G(A).
for i = 1,... , n — 1

Select a node y in G^~1' of minimal degree.

Choose y as the next pivot.

Update the elimination graph to get G®.

end

6.5. FILL MINIMIZING COLUMN ORDERINGS 239

The minimum degree ordering for the matrix in Figure 6.4.1 will choose the
pivots, e.g., in order 4,5,6,7,1,2,3. No fill-in occurs, compared to ten fill-in
elements with the initial ordering! Note that this ordering is not unique since
several nodes in the initial graph have degree 1. The way tie-breaking is done
may have an important influence on the goodness of the ordering. One can, e.g.,
choose the minimum degree node at random or as the first node in a candidate
set of nodes. Examples are known where minimum degree will give very bad
orderings if the tie-breaking is systematically done badly.

An example due to Duff, Erisman, and Reid [240, 1986] which shows that
the minimum degree algorithm is not optimal is given in Figure 6.5.1. Here the
initial ordering will give no fill. However, node 5 has minimum degree equal to
2, and if this node is eliminated first fill will occur in position (4,6).

FIG. 6.5.1. A matrix A for which minimum degree is not optimal.

Remarkably fast symbolic implementations of the minimum degree algorithm
exist, which use refinements of the elimination graph model of the Cholesky
factorization described above. George and Liu [338, 1989] survey the extensive
development of efficient versions of the minimum degree algorithm. One way is
to decrease the number of degree updates as follows. The nodes Y = {yi, . . . , yp}
are called indistinguishable if they have the same adjacency sets (including the
node itself), i.e.,

If one of these nodes is eliminated the degree of the remaining nodes in the set
will decrease by one, and they all become of minimum degree. This allows us to
eliminate all nodes in Y simultaneously and perform the graph transformation
and node update only once. Indeed, indistinguishable nodes can in the minimum
degree algorithm be merged and treated as one supernode. In the matrix in
Figure 6.5.1 there are two sets of indistinguishable nodes {1, 2,3} and {7,8,9}.

240 CHAPTER 6. DIRECT METHODS FOR SPARSE PROBLEMS

An implementation problem with the minimum degree algorithm is that in
the graph updating, the space required to represent G^ may be larger than
for the previous graph G^~l\ since edges are added. An efficient technique for
handling the storage of elimination graphs is to represent the graph as a number of
cliques, {K\,..., Kq}. Indeed the original graph G(A) = (X, E) can be regarded
as consisting of \E\ cliques, each having two nodes (i.e., an edge). The degree of
a node s then equals the number of different nodes v ^ s in all clique elements
{Ksi,... ,Kst} to which s belongs. Updating the elimination graph when s is
eliminated then requires two steps: first the cliques {Ks\,... ,Kst} are removed
from {KI, . . . , Kq}\ second the new clique K = (Ks\ U • • • U Kst) — {s} is added
into the clique set. The key point now is that using this generalized element
approach the amount of storage will never exceed the amount of storage needed
to represent the original graph, since it is easily shown that \K\ < 2*=1 \Kai\.

We showed above that the structure of each row in A G Rmxn corresponds to a
clique in the graph G(C), C = ATA. Therefore we can use the generalized element
approach to represent C as a sequence of cliques. This allows an implementation
of the minimum degree algorithm for ATA which bypasses the step of forming the
structure of the matrix C = ATA, with resulting savings in work and storage.

6.5.3. Nested dissection orderings. We now discuss a general procedure,
called substructuring or dissection, for obtaining a block angular form as defined
in Section 6.3. As an example, consider a geodetic position network consisting of
geodetic stations connected through observations. To each station corresponds
a set of unknown coordinates to be determined. A technique for breaking down
such geodetic problems into geographically defined subproblems connected in a
well-defined way has been applied for more than a century and dates back to
Helmert [445, 1880]. The idea is to choose a set of stations B, which separates

FlG. 6.5.2. One and two levels of dissection of a region.

the other stations into two regional blocks AI and A2 so that station variables in
AI are not connected by observations to station variables in AI. The variables
are then ordered so that those in A\ appear first, those in AI second, and those
in B last. Finally we order the equations so that those including A\ come first,
those including AI next, and those only involving variables in B come last. The
dissection can be continued by dissecting the regions AI and A% each into two
subregions, and so on in a recursive fashion. The blocking of the region for one
and two levels of dissection is pictured in Figure 6.5.2.

Figure 6.5.3 shows the block structure in A induced by one and two levels of

6.5. FILL MINIMIZING COLUMN ORDERINGS 241

dissection, and the structure of the corresponding elimination trees. The block
of rows corresponding to Ai, i = 1,2,. . . , can be processed independently. The
variables in Bi are then eliminated, etc.; compare the block angular structure in
(6.3.1). There is a finer structure in A not shown. For example, in one level of
dissection most of the equations involve variables in A\ or AI only, but not in B.

It is advantageous to perform the dissection in such a way that in each stage
of the dissection the number of variables in the two partitions are roughly the
same. Also, the number of variables in the separator nodes should be as small as
possible. In particular, if each dissection is done so that the variables contained
in the two partitions are at least halved, then after at most log2 n levels each
partition contains only one variable. Of course, it is usually preferable to stop
before this point.

For a detailed discussion of dissection and orthogonal decompositions in
geodetic survey problems, see Golub and Plemmons [380, 1980]. Avila and
Tomlin [30, 1979] discuss the solution of very large least squares problems by
nested dissection on a parallel processor using the method of normal equations.

The dissection procedure described above is a variation of nested dissection
orderings developed for general sparse positive definite systems; see George
and Liu [336, 1981, Chap. 7-8]. Hence this approach applies to general sparse
least squares problems. The column ordering and partitioning of A are then
determined from the graph G(ATA); see George, Poole, and Voigt [348, 1978].
The use of such orderings for sparse least squares problems is treated in George,
Heath, and Plemmons [335, 1981] and George and Ng [343, 1983]. It is known
that planar graphs, i.e., graphs which can be drawn in the plane without two
edges crossing, have small balanced separators. In Lipton, Rose, and Tarjan
[539, 1979] it is shown that for any planar graph G with n nodes there exists a
separator with O(^/n) nodes such that each subgraph has at most n/2 nodes.

FIG. 6.5.3. Block structure induced in A by one and two levels of dissection and
the corresponding elimination trees.

242 CHAPTER 6. DIRECT METHODS FOR SPARSE PROBLEMS

6.6. The Numerical Cholesky and QR Decompositions
As is well known, mathematically the Cholesky factor of ATA is equal to the
factor R in the QR decomposition of Af Hence, the ordering methods discussed
above, which work on the structure of these matrices, apply equally well to both
the Cholesky and QR decompositions. In this section we discuss the numerical
phase of sparse factorization methods.

6.6.1. The Cholesky factorization. An algorithm using the normal equa-
tions for solving sparse linear least squares problems is often split up in a sym-
bolical and a numerical phase as follows. (We assume that rank (^4) = n; for
modifications needed to treat the case when rank (.4) < n, see Section 6.7.1.)

ALGORITHM 6.6.1. SPARSE NORMAL EQUATIONS.

1. Determine symbolically the structure of ATA.

2. Determine a column permutation Pc such that P^ATAPC has a sparse
Cholesky factor R.

3. Perform the Cholesky factorization of P^ATAPC symbolically to generate
a storage structure for R.

4. Compute B = P^ATAPC and c = P^ATb numerically, storing B in the
data structure of R.

5. Compute the Cholesky factor R numerically and solve RTz = c, Ry = z,
giving the solution x — Pcy.

Here steps 1, 2, and 3 involve only symbolic computation. It should be
emphasized that the reason why the ordering algorithm in step 2 can be done
symbolically only working on the structure of ATA is that pivoting is not required
for numerical stability of the Cholesky algorithm.

For details of the implementation of the numerical factorization in step 5
we refer to George and Liu [336, 1981, Chap. 5]. Some available software
packages are surveyed in Section 6.9.1. For well-conditioned problems the
method of normal equations is quite satisfactory, and often provides a solution
of sufficient accuracy. However, for ill-conditioned or stiff problems this method
may lead to substantially less accurate solutions than methods based on the
QR decomposition. For moderately ill-conditioned problems using the normal
equations with iterative refinement may be a good choice; see Section 6.6.5.
Meissl [576] gives an analysis of roundoff errors using normal equations for a
super-large geodetic problem.

6.6.2. Row sequential QR decomposition. The potential numerical insta-
bility of the method of normal equations is due to loss of information in explicitly
forming ATA and ATb, and to the fact that the condition number of ATA is the
square of that of A (see Section 2.2). Orthogonalization methods avoid both of
these sources of inaccuracy by working directly with A. The main steps of a
sparse QR algorithm are outlined below.

6.6. THE NUMERICAL CHOLESKY AND QR DECOMPOSITIONS 243

ALGORITHM 6.6.2. SPARSE QR ALGORITHM.
1. Same as steps 1-3 in Algorithm 6.6.1.

2. Find a suitable row permutation Pr and reorder the rows to obtain PrAPc

(see Section 6.6.3).

3. Compute R and c numerically by applying orthogonal transformations to
(PrAPc, Prb) (e.g., as described in Algorithm 6.6.3).

4. Solve Ry = c and take x = Pcy.

For dense problems the most effective serial method for computing the QR
decomposition is to use a sequence of Householder reflections; see Algorithm 2.3.2.
In this algorithm we put A^ = A, and compute A^k+l^> = PkA^k\ k = 1,... ,n,
where P/~ is chosen to annihilate the subdiagonal elements in the fcth column
of A^. In the sparse case this method will cause each column in the remaining
unreduced part of the matrix, which has a nonzero inner product with the column
being reduced, to take on the sparsity pattern of their union. In this way, even
though the final R may be sparse, a lot of intermediate fill-in will take place with
consequent cost in operations and storage. However, as was shown in Section
6.2.4, the Householder method can be modified to work efficiently for sparse
banded problems, by applying the Householder reductions to a sequence of small
dense subproblems. The generalization of this leads to multifrontal sparse QR
methods; see Section 6.6.4. Here we first consider a row sequential algorithm
by George and Heath [333, 1980], in which the problem with intermediate fill-
in in the orthogonalization method is avoided by using a row-oriented method
employing Givens rotations.

ALGORITHM 6.6.3. Row SEQUENTIAL QR ALGORITHM. Assume that R0 is
initialized to have the structure of the final R and has all elements equal to zero.
The rows a£ of A are processed sequentially, k = 1,2, ...,ra, and we denote
by -Rfc-i G Rnxn the upper triangular matrix obtained after processing rows
a^, . . . , Ofc_i- The kih row aj[~ (afci, 0^2, • • • , ftfcn) is processed as follows: we
uncompress this row into a full vector and scan the nonzeros from left to right.
For each a^j ^ 0 a Givens rotation involving row j in Rk-i is used to annihilate
a^j. This may create new nonzeros both in Rk-i and in the row ajT. We continue
until the whole row ajT has been annihilated. Note that if TJJ — 0, this means
that this row in Rk-i has not yet been touched by any rotation and hence the
entire jth row must be zero. When this occurs the remaining part of row k is
inserted as the jih row in R.

To illustrate the algorithm we use the example in Figure 6.6.1, taken from
George and Ng [343, 1983]. We assume that the first k rows of A have been
processed to generate R^. In Figure 6.6.1 nonzero elements of R(k~^ are
denoted by x, nonzeros introduced into R^ and a% during the elimination of
Oj[are denoted by +, and all the elements involved in the elimination of a^ are
circled. Nonzero elements created in a£ during the elimination are of course

244 CHAPTER 6. DIRECT METHODS FOR SPARSE PROBLEMS

ultimately annihilated. The sequence of row indices involved in the elimination
are {2,4,5, 7,8}, where 2 is the column index of the first nonzero in a%.

Note that unlike the Householder method intermediate fill now only takes
place in the row that is being processed. It follows from Theorem 6.4.2 that if
the structure of R has been predicted from that of ATA, then any intermediate
matrix Ri-i will fit into the predicted structure.

FIG. 6.6.1. Circled elements <g> in Rk-i are involved in the elimination of a%; fill
elements are denoted by ©.

For simplicity we have not included the right-hand side in Figure 6.6.1, but
the Givens rotations should be applied simultaneously to 6 to form QTb. In the
implementation by George and Heath [333, 1980] the Givens rotations are not
stored but discarded after use. Hence, only enough storage to hold the final R and
a few extra vectors for the current row and right-hand side(s) is needed in main
memory. Discarding Q creates a problem if we later wish to solve additional
problems having the same matrix A but a different right-hand side b since we
cannot form QTb. In most cases a satisfactory method to deal with this problem
is to use the corrected seminormal equations; see Section 6.6.6.

If Q is required, then the Givens rotations should be saved separately using
the scheme outlined in Section 2.3.2. This in general requires far less storage and
fewer operations than computing and storing Q itself; see Gilbert, Ng and Peyton
[352, 1993].

6.6.3. Row orderings for sparse QR decomposition. Assuming that the
columns have been permuted by some ordering method, the final R is independent
of the ordering of the rows in A. However, the number of operations needed to
compute the QR decomposition may depend on the row ordering. This fact
was stressed already in the discussion of algorithms for the QR decomposition of
banded matrices; see Section 6.2. Another illustration is given by the contrived
example (adapted from George and Heath [333, 1980]) in Figure 6.6.2. Here the
cost for reducing A is O(mn2), but that for PA is only O(n2).

6.6. THE NUMERICAL CHOLESKY AND QR DECOMPOSITIONS 245

Assuming that the rows of A do not have widely differing norms, the row
ordering does not affect numerical stability and can be chosen based on sparsity
consideration only. We consider the following heuristic algorithm for determining
a row ordering, which is an extension of the row ordering recommended for banded
sparse matrices.

FIG. 6.6.2. A bad and a good row ordering.

ALGORITHM 6.6.4. Row ORDERING ALGORITHM. Denote the column index
for the first and last nonzero elements in the zth row of A by fi(A) and k(A),
respectively. First sort the rows after increasing f i (A) , so that fi(A) < fk(A) if
i < k. Then for each group of rows with fi(A) = & , & = !,.. . , max^ /j(A), sort
all the rows after increasing li(A).

We note that using this row ordering algorithm on the matrix A in Figure 6.6.2
will produce the good row ordering PA. This rule does not in general determine
a unique ordering. One way to resolve ties is to use a strategy by Duff [234, 1974],
and consider the cost of symbolically rotating a row aj into all other rows with
a nonzero element in column li(A). Here, by cost we mean the total number of
new nonzero elements created. The rows are then ordered according to ascending
cost. For this ordering it follows that the rows 1,. . . , fi(A) — 1 in Ri-i will not
be affected when the remaining rows are processed. These rows therefore are the
final first fi(A) — I rows in R and may, e.g., be transferred to auxiliary storage.

An alternative row ordering is obtained by ordering the rows after increasing
values of k(A). This ordering has been found to work well in some contexts; see
George and Heath [333, 1980]. With this ordering it holds that when row aj is
being processed only the columns fi(A) to li(A) of Ri-\ will be involved, since
all the previous rows only have nonzeros in columns up to at most k(A). Hence
Ri-i will have zeros in column li+\(A),...,n, and no fill will be generated in row
af in these columns.

6.6.4. Multifrontal QR decomposition. A significant advance in direct
methods for sparse matrix factorization is the multifrontal method by Duff
and Reid [251, 1983]. This method reorganizes the factorization of a sparse
matrix into a sequence of partial factorizations of small dense matrices, and is
well suited for parallelism. A multifrontal algorithm for the QR decomposition

246 CHAPTER 6. DIRECT METHODS FOR SPARSE PROBLEMS

was first developed by Liu [540, 1986]. Liu generalized the row-oriented scheme of
George and Heath by using submatrix rotations and remarked that this scheme
is essentially equivalent to a multifrontal method. He showed that his algorithm
can give a significant reduction in QR decomposition time at a modest increase in
working storage. George and Liu [337, 1987] presented a modified version of Liu's
algorithm which uses Householder transformations instead of Givens rotations.

There are several advantages with the multifrontal approach. The solution of
the dense subproblems can more efficiently be handled by vector machines. Also,
it leads to independent subproblems which can be solved in parallel. The good
data locality of the multifrontal method gives fewer page faults on paging systems,
and out-of-core versions can be developed. Multifrontal methods for sparse QR
decompositions have been extensively studied and several codes developed by
Lewis, Pierce, and Wah [527, 1989], Puglisi [672, 1993], Matstoms [573, 1994],
and C. Sun [765, 1995].

FIG. 6.6.3. A matrix A corresponding to a 3 x 3 mesh.

We first describe the multiple front idea on the small 12 x 9 example in
Figure 6.6.3, adopted from Liu [540, 1986]. This matrix arises from a 3 x 3
mesh problem using a nested dissection ordering, and its graph G(A) is given in
Figure 6.6.4.

FlG. 6.6.4. The graph G(ATA) and a nested dissection ordering.

We first perform a QR decomposition of rows 1-3. Since these rows have
nonzeros only in columns {1,5,7,8} this operation can be carried out as a QR
decomposition of a small dense matrix of size 3 x 4 by leaving out the zero

6.6. THE NUMERICAL CHOLESKY AND QR DECOMPOSITIONS 247

columns. The first row equals the first of the final R of the complete matrix and
can be stored away. The remaining two rows form an update matrix FI and
will be processed later. The other three block rows 4-6, 7-9, and 10-12 can be
reduced in a similar way. Moreover, these tasks are independent and can be done
in parallel. After this first stage the matrix has the form shown in Figure 6.6.5.
The first row in each of the four blocks are final rows in R and can be removed,
which leaves four upper trapezoidal update matrices, F\-F^.

FIG. 6.6.5. The reduced matrix after the first elimination stage.

In the second stage we can simultaneously merge F\,F<2 and Fz,F± into two
upper trapezoidal matrices by eliminating columns 5 and 6. In merging FI and
F<2 we need to consider only the set of columns {5,7,8,9}. We first reorder
the rows after the index of the first nonzero element, and then perform a QR
decomposition:

The merging of F% and F± is performed similarly. Again, the first row in each
reduced matrix is a final row in R, and is removed. In the final stage we merge
the remaining two upper trapezoidal (in this example triangular) matrices and
produce the final factor R. This corresponds to eliminating columns 7,8, and 9.

The scheme described here can also be viewed as a special type of variable
row pivoting method as studied by Gentleman [329, 1973], Duff [234, 1974], and
Zlatev [857, 1982]. However, as observed by Liu [540, 1986], variable row pivoting
schemes have never become very popular because of the difficulty of generating
good orderings for the rotations and because these schemes are complicated to
implement. Also, the dynamic storage structure needed tends to reduce the
efficiency.

A basic concept for multifrontal methods is the elimination tree, which
captures the row dependencies in the Cholesky factor R.

248 CHAPTER 6. DIRECT METHODS FOR SPARSE PROBLEMS

DEFINITION 6.6.1. Let R e Rnxn be the Cholesky factor of C = ATA. The
elimination tree of C, denoted by T(C], is a rooted tree with n nodes labeled from
1 to n, where node p is the parent of node i, if and only if

The elimination tree T(C) can be obtained from the rilled graph Gp(C) in
the following way. If directed edges from lower- to higher-numbered nodes are
introduced in the filled graph, then a directed edge from node j to node i > j
indicates that row i depends on row j. To exhibit this row dependency relation
this directed graph is reduced by a transitive reduction: if there is a directed
path from j to i of greater length than one, then the edge from j to i is redundant
and is removed. The removal of all such redundant edges generates precisely the
elimination tree. For the matrix A in Figure 6.6.3 the filled graph Gp(ATA)
equals G(ATA) with an additional edge between nodes 7 and 9. The result of the
transitive reduction and the elimination tree is shown in Figure 6.6.6. Liu [541,
1990] gives an algorithm for determining the elimination tree in time proportional
to nnz(R) and in space proportional to imz(A).

FIG. 6.6.6. The transitive reduction and elimination tree T(ATA}.

The elimination tree provides in compact form all information about the
row dependencies. The tree can be uniquely represented by the parent vector
PARENT\i\, i = 1,... ,n, of all n nodes of the tree. The following theorem,
which is the basis for the multifrontal method, is proved in Duff [238, 1986].

THEOREM 6.6.1. Let T[j] denote the subtree rooted in node j. The columns
k and j can be eliminated independently of each other if k $. T[j}.

It follows that if T[i] and T[j] are two disjoint subtrees of T(C) and s 6 T[i],
t £ T[j], then columns s and t can be eliminated in any order. The elimination
tree prescribes an order relation for the elimination of columns in the QR
factorization, namely, a column associated with a child node must be eliminated
before the parent column. Columns associated with different subtrees of T(C) are,
on the other hand, independent and can be eliminated in parallel. An excellent
treatment of elimination trees and their role in sparse factorization is given by
Liu [541, 1990].

The organization of the multifrontal method is based on the elimination tree,
and nodes in the tree are visited in turn given by the ordering. Each node Xj in

6.6. THE NUMERICAL CHOLESKY AND QR DECOMPOSITIONS 249

the tree is associated with a frontal matrix Fj which consists of the set of rows
Aj in A with the first nonzero in location j, together with one update matrix
contributed by each child node of Xj. After eliminating the variable j in the
frontal matrix, the first row in the reduced matrix is the jth row of the upper
triangular factor R. The remaining rows form a new update matrix Uj, and is
stored in a stack until needed. Hence a formal description of the method is as
follows.

ALGORITHM 6.6.5. MULTIFRONTAL SPARSE QR ALGORITHM.

For j := I to n do

1. Form the frontal matrix Fj by combining the set of rows Aj and the update
matrix Us for each child xs of the node Xj in the elimination tree T(ATA);

2. By an orthogonal transformation, eliminate variable Xj in Fj to get Uj.
Remove the first row in Uj, which is the jth row in the final matrix R. The
rest of the matrix is the update matrix Uj;

end.

The node ordering of an elimination tree is such that children nodes are
numbered before their parent node. Such orderings are called topological
orderings. All topological orderings of the elimination tree are equivalent in
the sense that they give the same triangular factor R. A postordering is a
topological ordering in which a parent node j always has node j — 1 as one of its
children. Postorderings are particularly suitable for the multifrontal method, and
can be determined by a depth-first search; see Liu [541, 1990]. For example, the
ordering of the nodes in the tree in Figure 6.6.6 can be made into a postordering
by exchanging labels 3 and 5. The important advantage of using a postordering
in the multifrontal method is that data management is simplified since the update
matrices can be managed in a stack on a last-in-first-out basis. This also reduces
the storage requirement.

The frontal matrices in the multifrontal method are often too small to make
it possible to efficiently utilize vector processors and matrix-vector operations
in the solution of the subproblems. A useful modification of the multifrontal
method, therefore, is to amalgamate several nodes into one supernode. Instead
of eliminating one column in each node, the decomposition of the frontal matrices
now involves the elimination of several columns, and it may be possible to use
Level 2 or even Level 3 BLAS; see Dongarra et al. [229, 1990].

In general, nodes can be grouped together to form a supernode if they
correspond to a block of contiguous columns in the Cholesky factor, where
the diagonal block is full triangular and these rows all have identical off-block
diagonal column structures. Because of the computational advantages of having
large supernodes, it is advantageous to relax this condition and also amalgamate
nodes which satisfy this condition if some local zeros are treated as nonzeros. A
practical restriction is that if too many nodes are amalgamated then the frontal
matrices become sparse. (In the extreme case when all nodes are amalgamated

250 CHAPTER 6. DIRECT METHODS FOR SPARSE PROBLEMS

into one supernode, the frontal matrix becomes equal to the original sparse
matrix!) Note also that non-numerical operations often make up a large part
of the total decomposition time, which limits the possible gain. For a discussion
of supernodes and other modifications of the multifrontal method, see Liu [541,
1990] and Matstoms [572, 1994]; the latter gives a detailed description of the
implementation of a supernodal multifrontal sparse QR algorithm.

In many implementations of the multifrontal algorithms the orthogonal
transformations are not stored, and the seminormal equations (Section 6.6.5)
are used for treating additional right-hand sides. If Q is needed then it should
not be stored explicitly, but instead be represented by the Householder vectors
of the frontal orthogonal transformations. For a K by K grid problem with
n = K2, m = s(K - I)2 it is known (see George and Ng [347, 1988]) that
nnz(.R) = O(nlogn) but Q has O(n^/n) nonzeros. Lu and Barlow [548, 1993]
show that storing the frontal Householder matrices only requires O(nlogn)
storage.

6.6.5. Iterative refinement and seminormal equations. Due to storage
considerations the matrix Q in a sparse QR decomposition is often discarded.
This creates a problem if later an additional right-hand side b is to be treated,
since we cannot form QTb. If the original matrix A is saved one can use the
seminormal equations (SNE)

(6.6.1)

However, the numerical stability of this method is no better than the method of
normal equations. This is true even though we are using a factor R computed
by QR decomposition and thus of better "quality" than that obtained from
a Cholesky factorization of ATA. This is related to the fact that already the
rounding errors in computing ATb will give rise to an error <5x, for which

where u is the unit roundoff. This error usually dominates.
By adding a correction step to (6.6.1) we obtain a solution of much better

accuracy. The method of corrected seminormal equations (CSNE) is
obtained as follows. Let R denote the computed /^-factor and x the computed
solution using (6.6.1). A corrected solution xc is then determined as follows:

(6.6.2)

The correction step is similar to doing one step of iterative refinement in fixed
precision (see Sections 2.9.1 and 2.9.2).

A detailed error analysis of the CSNE method is given in Bjorck [91, 1987].
The factor R computed by a QR decomposition (see Section 2.4) is the exact
J?-factor of a perturbed matrix A + E, where \\E\\p < cu\\A\\p and c a constant

6.6. THE NUMERICAL CHOLESKY AND QR DECOMPOSITIONS 251

depending on m and n. Neglecting terms of higher order in UK, it can be shown
that the error in xc from CSNE is

where (see Remark 2.9.1)

A comparison with the bounds for a backward stable method shows that if v < 1,
then the error bound for the seminormal equations with one refinement step is no
worse than the error bound for a backward stable method. The condition a < I is
roughly equivalent to requiring that the solution x from the seminormal equation
has at least one correct digit, which is usually the case in practical applications.
However, we caution that for problems with widely differing row scalings (stiff
problems), CSNE is less satisfactory.

For more ill-conditioned problems several refinement steps may be used.
Denote by xs the computed solution after s refinement steps. With R from
QR the error \\x — xs\\ initially behaves as

Assuming that c « 1, K' = K, acceptable-error stable level is achieved in p steps
if K,(A) < u~p/(p+^. With u = 10~16, the maximum condition number for which
acceptable-error stable results are obtained after p refinements is

Fixed precision iterative refinement is also an efficient method for improving
a solution obtained from the normal equations. In this method a sequence of
improved approximations is computed as follows (see Algorithm 2.9.2).

Set XQ = 0, and for s = 0 ,1 ,2 , . . . until convergence do

(6.6.3)

Here R is the computed Cholesky factor of ATA. Each step of this algorithm
requires two matrix-vector multiplications with A and AT, and the solution of
two triangular systems. The first step, i = 0, is identical to the normal equations.
The rate of convergence of the error norm in this iteration can be shown to be
approximately equal to

If several steps of refinement are carried out, this will give good accuracy for a
large class of problems (see Foster [310, 1991]), and we have

252 CHAPTER 6. DIRECT METHODS FOR SPARSE PROBLEMS

Assuming that c ~ 1, «/ = «, acceptable-error stable level is achieved in p steps
if K,(A) < u~p/(2p+1\ For example, with u = 10~16, the maximum condition
number for which acceptable-error stable results are obtained after p refinements
is

This can be compared with the result from fixed point iterative refinement when
R from a QR decomposition is used. We conclude that for moderately ill-
conditioned problems the normal equations combined with iterative refinement
can give very good accuracy, but for more ill-conditioned problems QR and the
seminormal equations are much superior.

6.7. Special Topics
6.7.1. Rank revealing sparse QR decomposition. So far we have as-
sumed that A is not rank deficient. In the dense case possibly rank deficient
problems are handled by introducing column pivoting in the QR decomposition
of A\ see Sections 2.7.3-2.7.5. In sparse QR decomposition the column ordering
is chosen to produce a sparse ^-factor and fixed in advance of any numerical
computation. Column pivoting cannot be used, since then R will generally not
fit into the previously generated fixed storage structure.

Heath [442, 1982] suggested the following modification of the row sequential
QR algorithm described in Section 6.6.2. Suppose this algorithm is applied to a
matrix A of rank r < n using exact arithmetic. Then it follows that the resulting
.R-factor must have n — r zero diagonal elements. In this algorithm a row is only
inserted into R when it makes the diagonal entry nonzero. Further processing of
this row can only increase the diagonal element. It follows that if a row has a
zero diagonal element then all its elements are zero, and hence the final R will
have the form depicted in Figure 6.7.1. By permuting the zero rows of R to the
bottom, and the columns of R corresponding to the zero diagonal elements to
the right, we obtain R in rank revealing form.

FIG. 6.7.1. Structure of upper triangular matrix R.

In finite precision we will usually end up with an R with no zero diagonal
elements even when rank (A) < n. Although this is not always the case, the rank
is often revealed by the presence of small diagonal elements. However, since a

6.7. SPECIAL TOPICS 253

small diagonal element no longer implies that the rest of the row is negligible
Heath suggests the following postprocessing of R. Starting from the top, the
diagonal of R is examined for small elements. In each row whose diagonal element
falls below a certain tolerance the diagonal element is put equal to zero. The rest
of the row is then reprocessed, zeroing out all its other nonzero elements. This
might increase some previously small diagonal elements in rows below, which is
why one has to start from the top. After this we again end up with a matrix of
the form shown in Figure 6.7.1.

In the test for small diagonal elements a relative tolerance can be used based
on the largest diagonal element in R. Heath [442, 1982] reports that on a typical
test batch the rank determined by this algorithm agreed with that determined
by QR decomposition with column pivoting. However, this way of determining
rank is in general not satisfactory. It may be that R is numerically rank deficient
and yet has no small diagonal element; see Example 6.7.1.

EXAMPLE 6.7.1. Consider a matrix of the form (Jordan block):

From inspection of the Gershgorin circles of R^Rn, it follows that (n - I) of the
singular values are close to unity. Since their product equals detl'2(R^Rn] = 6n,
the remaining singular value approximately equals crmin = 6n. For 6 = 0.1 and
n = 20 we thus have crmin « 10~20, and yet no diagonal element is small! This
ill-conditioning is much more severe than for the matrix in Example 2.7.1.

More reliable rank revealing algorithms for sparse QR decompositions have
been developed by Bischof and Hansen [80, 1992], Hwang, Lin, and Pierce [480,
1993], and Pierce and Lewis [659, 1995]. These are based on the techniques
introduced in Section 2.7.5 using inverse iteration for determining rank and ill-
conditioning in triangular matrices. Denote the first j columns of the final R
by RJ. Assume that Rj is not too ill-conditioned, but when the next column is
added Rj+i = (Rj,rj+i) is found to be almost rank deficient. We then permute
the column TJ+I to the end of the columns, and continue. This may happen
several times during the numerical factorization, and at the end we have a QR
factorization

where R\ G R,(n-r)x(«-r) is well-conditioned. An important fact stated in the
theorem below is that R\ will always fit into the storage structure predicted for
R. In general #2 and S will be dense, but provided r <C n this is often acceptable.

The following theorem is implicit in a paper by Foster [308, 1986].
THEOREM 6.7.1. Let A — [01,02,... ,an] and let

254 CHAPTER 6. DIRECT METHODS FOR SPARSE PROBLEMS

be a submatrix of A. Denote the Cholesky factors of ATA and ApkApk by R and
R?k, respectively. Then the nonzero structure of Rpk is included in the nonzero
structure predicted for R under the no-cancellation assumption.

Proof. Consider the ordered graph G = G(X, E) of ATA. The ordered graph
Gpk = Gfk(Xfk,EFk) of AlpkAj:k is obtained by deleting all nodes in G not in
Fk = \ji,J2i-">jr] and all edges leading to the deleted nodes. It holds that
(Rp)ij / 0 only if there exists a path in G?k from node i to node j (i < j)
through nodes with numbers less than i. If such a path exists in Gpk it must
exist also in G and hence we will have predicted RIJ ^ 0.

6.7.2. Updating sparse least squares solutions. We remarked earlier that
a single dense row in A will lead to a full matrix ATA and therefore, invoking
the no-cancellation assumption, to a full Cholesky factor R. Problems where the
matrix A is sparse except for a few dense rows can be treated by first solving
the problem with the dense rows deleted. The effect of the dense rows is then
incorporated into the solution by updating. We stress that only the solution is
updated, not the Cholesky factor.

Consider the problem

(6.7.1)

where As £ Rmixn is sparse and Ad € Rm2Xn, 7712 <C n, contains the dense rows.
We assume for simplicity that rank (A,) — n. Denote by xs the solution to the
sparse problem

and let the corresponding Cholesky factor be Rs. The residual vectors in (6.7.1)
corresponding to xs are

(6.7.2)

We now wish to compute the solution x = xs + z to the full problem (6.7.1), and
hence to choose z to minimize ||rs(o;)||2 + ||^d(^)||25 where

Since A^rs(xs) = 0, this is equivalent to the problem

Letting u — Rsz and B^ = AdR~l, we have ||^4S2;||2 = ||w||2, and the problem
reduces to

(6.7.3)

This is equivalent to the minimum norm problem (cf. Theorem 2.5.1)

(6.7.4)

(6.7.5)

6.7. SPECIAL TOPICS 255

where v = rd(xs) — B&U. Since C = (Bj Im2) £ Rm2xn has full row rank we
can compute the QR decomposition

and RC € Rm2xrn2 js nonsingular. Hence u can be obtained from

Finally, solving Rsz = u for z by back-substitution, we obtain the solution to
(6.7.1) as x = xs + z.

The updating scheme can be generalized to the case where the sparse
subproblem has rank less than n; see Heath [442, 1982]. A general scheme for
updating equality-constrained linear least squares solutions, where the constraints
are also split into a sparse and a dense set, has been developed by Bjorck [90,
1984]. It is important to point out that these updating algorithms cannot be
expected to be stable in all cases. Stability will be a problem whenever the
sparse subproblem is more ill-conditioned than the full problem.

There are problems where even though A is fairly sparse in all rows and
columns, the matrix ATA will be practically full. Large problems which have
these characteristics occur, e.g., in image reconstruction and certain other inverse
problems..These problems usually have to be solved by iterative methods.

6.7.3. Partitioning for out-of-core solution. Many large sparse linear
least squares problems are so large that it is impossible to store even the Cholesky
factor R. We now briefly describe a simple automatic partitioning scheme by
George, Heath, and Plemmons [335, 1981] for solving such problems.

Assume that an appropriate ordering and a partitioning of the columns of
A have been found, e.g., by the method of nested dissection in Section 6.5.3.
Denote by Yi the set of column indices in the z'th partition, i = 1,... ,p. We now
order first the rows having nonzero elements with column indices in YI, giving
us a set of row indices Z\. Among the unordered rows we now order the rows
having nonzero elements with column indices in YI, and so on. This induces
a partitioning of the row indices {Z\, ^2, . . . , Zp} of A which can be defined as
follows. Let ZQ = 0 and

If the rows of A are permuted to appear in the order Z\,Zi,...,Zp then A will
have a block upper trapezoidal form with (in general) rectangular diagonal blocks
AH, i = 1,. . . ,p, as depicted below:

256 CHAPTER 6. DIRECT METHODS FOR SPARSE PROBLEMS

For a matrix of block upper triangular form the sequential orthogonalization
method can be applied to a block row at a time. In the first step only the blocks
AH, . . . , AIP are processed, transforming AH to upper triangular form. The first
\Yi\ rows of the resulting matrix are the first \Yi\ rows of the final R and can be
stored away. The remaining rows are adjoined to the next block row A^2 • • • A-2P

to give ^22, • • • , A-2P, and now ^22 is transformed into upper triangular form, etc.
Hence we do a chain of sparse QR decompositions. If we assume that the rows of
A are stored on auxiliary storage at all times, then the only main storage required
is that for holding the \Yi\ rows of R generated at step z, i = 1,... ,p. A slightly
more efficient way to carry out this process is described in George, Heath, and
Plemmons [335, 1981] where the data management is outlined in more detail.

The multifrontal method can also be adopted for out-of-core solution of large
linear systems. Reid [682, 1984] describes a multifrontal method for the Cholesky
factorization, which can be adopted also for the QR decompositions. Note that
the scheme outlined above is a special case of a multifrontal method where the
elimination tree is just a chain.

6.7.4. Computing selected elements of the covariance matrix. In
Section 2.8.3 we discussed methods for computing the covariance matrix cr2C,
where C = (RTR)~l, for the least squares solution x. When the matrix R is
sparse, Golub and Plemmons [380, 1980] have shown that the algorithm (2.8.12)-
(2.8.14) can be used to very efficiently compute all elements in C, which are
associated with nonzero elements in R. Since R has a nonzero diagonal this
includes the diagonal elements of C giving the variance of x. If R has bandwidth
«;, then the corresponding elements in C can be computed in only nw2 flops by
the algorithm below.

We define the index set K by

We will compute all elements QJ, (i , j) € K, in the upper triangular part of C.
Let fk be the row index for the first nonzero element in the /cth column of

R, i.e., fk = mini<i<fc_i{z r^ ^ 0}. We start with the last column of C and
compute

(6.7.6)

Assume now that we have computed all elements c^-, j = n , . . . , k + 1, i < j,
(i , j) e K. Then from (2.8.13),

(6.7.7)

6.8. SPARSE CONSTRAINED PROBLEMS 257

and similarly from (2.8.14), for i = k — 1, . . . , /&,

(6.7.8)

It can be shown that since R is the Cholesky factor of ATA its structure is such
that (z, j) G K and (i, k) 6 K implies that (j, k) e K if j < k and (/c,j) G K if
j > /c. Hence all elements needed in (6.7.6)-(6.7.8) have been computed.

6.8. Sparse Constrained Problems
6.8.1. An active set method for problem BLS. In Section 5.2 we
considered active set methods for solving problem LSI

(6.8.1)

It is often the case that the matrices A and C in this problem are sparse.
Unfortunately, it is difficult to take advantage of this sparsity, since it is usually
destroyed by the sequence of transformations applied to A and C during the
iterations in an active set method. However, for the least squares problem with
simple bounds (BLS),

(6.8.2)

it is possible to preserve sparsity in the active set Algorithm 5.2.1
An application of problem BLS occurs in polishing large optics. Calculating

the amount of material to be removed requires the solution of a linear least
squares problem. The nonnegativity constraints come in because material cannot
be added to the surface by polishing. A typical problem might have about 8,000
to 20,000 equations and the same number of unknowns, with a few percent of
the matrix elements being nonzero. In general the problem is rank deficient, and
the nonnegativity constraints are active at a significant fraction of the elements
of the solution vector.

We now describe the algorithm given in Bjorck [93, 1988] for problem BLS.
We assume that initially a sparse QR decomposition of A is computed. If the
orthogonal transformations are applied also to 6, we have

(6.8.3)

where Pc is the column permutation performed for sparsity. This decomposition
can be obtained by the sequential QR algorithm or the multifrontal algorithm
described in Section 6.6.4. This reduces the problem to the upper triangular form

(6.8.4)

where R is sparse.

258 CHAPTER 6. DIRECT METHODS FOR SPARSE PROBLEMS

We divide the index set of x according to [1, 2 , . . . , n] = J-'U B, where i e F if
Xi is a free variable, and i (E B if xi is fixed at its lower or upper bound. We will
assume that T and B are ordered sets, with indices ordered in increasing order.
To this partitioning corresponds a permutation matrix P — (EF,EQ), where Ep
and EQ consist of the columns ei of the unit matrix for which i e T and i G B,
respectively.

Following Algorithm 5.2.1 we choose an initial solution x^ satisfying / <
x^ <u, and take

so that RFQ = R. (The reason for this is that, as will become apparent, it
is a cheaper and more stable operation to fix a free variable than the opposite
operation.)

Let x^ be the iterate at the kih step (k = 0,1,...) and write

(6.8.5)

for the free and fixed parts of the solution. The unconstrained problem (6.8.4)
with the variables XB£ fixed becomes

(6.8.6)

where RP^ = (REjrk,REBk) — (R f k , Rj3k}- To simplify the discussion we assume
in the following that the matrix Rpk has full column rank, so that (6.8.6) has a
unique solution. This is always the case if rank (A) = n.

To solve (6.8.6) we need the QR decomposition of Rpk. We obtain this by
considering the first block of columns of the QR decomposition

(6.8.7)

The solution to (6.8.6) is now given by

and we take

where z^ = EfkXp + Et3kxB and a is a nonnegative step length. (Note that

z(°) is just the solution to the unconstrained problem (6.8.2).)
Let a be the maximum value of a, for which #(fc+1) remains feasible. There

are now two possibilities.
If a < 1, then z^ is not feasible. We then take a — a, and move all indices

q e Fk for which Xg = lq or uq from T^ to Bk- Thus the free variables which
hit their lower or upper bounds will be fixed for the next iteration step.

If o; > 1, then we take a = a. Then x^k+1^ = z^ equals the unconstrained
minimum when the variables XQ, are kept fixed. The Lagrange multipliers are

6.8. SPARSE CONSTRAINED PROBLEMS 259

then checked to see if the objective function can be decreased further by freeing
one of the fixed variables. If not, we have found the global minimum.

At each iteration step the sets Tk and Bk are changed. If a constraint is
dropped a column from R&k is moved to Rpk; if a constraint is added a column is
moved from Rpk to R&k. The solution of the sequence of unconstrained problems
(6.8.6) and the computation of the corresponding Lagrange multipliers can be
efficiently achieved, provided that the QR decomposition (6.8.7) can be updated.
We now consider the feasibility in the sparse case of computing this sequence of
decompositions as the active set algorithm proceeds. We use a simple example
to illustrate the problem encountered.

EXAMPLE 6.8.1. Assume that the matrix R in (6.8.3) is a banded upper
triangular matrix of bandwidth w — 3. In (6.8.8) we show the structure of the
matrix R = (R^k,R^k) for n = 11 and the partitioning T^ — [2,3,4,6,9,10,11],
Bfc = [l,5,7,8]:

(6.8.8)

If this matrix R is transformed into upper triangular form by symbolically
performing a sequence of plane rotations the structure becomes

(6.8.9)

We observe that although the block U is still sparse, the lower right block V
has filled in completely. Since we do not know in advance the set B of active
constraints at the solution the above approach of updating the full decomposition
(6.8.7) is feasible only if for all possible partitionings [1 ,2 , . . . , n] = f^ U Bk the
-R-factor of (Rfk,Rt3k} remains sparse. Note that we are free to order the columns
only within the sets J- and Bk, and all columns in Bk must be ordered after those
in Fk.

260 CHAPTER 6. DIRECT METHODS FOR SPARSE PROBLEMS

We now pursue and generalize the above example. Let the matrix R be
banded upper triangular of bandwidth w = 3. Then RTR is a penta-diagonal
symmetric matrix. We take (n even)

and hence eliminate all odd nodes first. The fill-in in the elimination can be
determined from the elimination graph model; see Section 6.4.4. It is easy to
verify that the block V in the factorization becomes a full upper triangular
matrix. Similarly, the block S will fill in its lower triangular part. The
total number of new nonzero elements created in the decomposition will be
(n/2 - 2)(n/2 - 1) = n2/4 - (3/2)n + 2. Clearly this is not acceptable.

We conclude that even when R has a simple band structure it is not feasible
to recur the full QR decomposition (6.8.7). We now show that the alternative of
keeping only the factor U^ associated with Rfk can be implemented in a stable
and efficient way. The key to this is the fact that by Theorem 6.7.1 the structure
of the factor Uk corresponding to Rpk will always be contained in the predicted
structure of the initial matrix R.

We now describe in more detail an algorithm for in-place updating of Uj?k in
the factorization

(i) DELETING COLUMN q FROM Rj^k- We perform a sequence of plane
rotations to annihilate the nonzero elements in the qih row from left to right. A
nonzero element in position (g, j), j > q, is annihilated by a rotation of rows q and
j. This creates a nonzero element in position (q, j), which need not be computed
since we are going to delete the <?th column. It may also create intermediate
fill-in in the qth row outside the given data structure. However, there can be no
fill-in outside the data structure in the jth row. At the end, by deleting the qth
column, we get the updated Upk stored in the original data structure.

We illustrate this algorithm by a simple example. Let Upk be upper triangular
with bandwidth w = 3, and take n = 8, q = 4. In Figure 6.8.1 we denote by + fill-
in elements (not computed), by (*) canceled elements, and by (#) intermediate
fill-in. Note that there is no space in the data structure for the elements (#)
Therefore it is convenient to store the qth row in a dense working vector.

(ii) ADDING COLUMN q TO R?k'. Note that the column has to be inserted
in its proper place for Theorem 6.7.1 to apply. We will do the updating in two
steps. First we update adding the new column after the last column in Upk. This
column will then in general be a full column. Second, we permute it in place and
apply transformations to reduce the resulting matrix to upper triangular form.
The first step will be discussed in the next section. The second step is achieved
by performing the algorithm for deleting a column in reverse order, and we now
describe this step in more detail.

The elements in the qth column above the main diagonal are elements in the
final updated Upk and thus can be placed directly in the fixed data structure.

2616.8. SPARSE CONSTRAINED PROBLEMS 261

FIG. 6.8.1. Deleting column q from Rpk.

The elements below the main diagonal are in general nonzero, and we annihilate
these from bottom up. The element (j, g), j > q is annihilated by a rotation in
the rows q and j, which will create fill-in in the qth row. (Note that the qth
row is initially zero except for its diagonal element.) No fill-in outside the data
structure can occur in the jth row. After the elements below the diagonal in the
gth column have been eliminated we have obtained an upper triangle, which by
Theorem 6.7.1 will fit into the fixed data structure. Hence, any intermediate
fill-in which may occur in row q must eventually cancel out.

We again use Figure 6.8.1 to illustrate the process. Column q and row q are
stored in two dense working vectors and at the end inserted into the fixed sparse
data structure. The intermediate fill-in (#) created in the first two. steps must
eventually cancel.

When the column rjq is adjoined after the last column in Rpk'.

the updated upper triangular factor has the form

where u and 7 are to be determined. If Qfk is available this updated factor can
be stably computed. However, since the matrix Qpk in general is not sparse, it
is not feasible to keep and update Qpk. The alternative, to store the sequence of
rotations defining Q?k, is also not attractive, since then the amount of storage
needed cannot be predicted.

Since Q?k is not available we use the method of corrected seminormal
equations (CSNE) (see Section 6.6.6) to compute u and 7 as follows. Let z
be the solution to the least squares problem

(6.8.10)

(It is assumed that a copy of the initial factor R in (6.8.3) is saved so that rjq

can be retrieved.) We solve (6.8.10) using the CSNE. Then

262 CHAPTER 6. DIRECT METHODS FOR SPARSE PROBLEMS

Numerical results illustrating the stability of this algorithm are given in Bjorck
[93, 1988).

In the algorithm above the set of free and fixed variables only change in one
element in each iteration. If many variables are fixed at the solution, then this
strategy may be inefficient. Portugal, Judice, and Vicente [665, 1994] consider
more general, so-called block pivoting strategies, which allow the set of free and
fixed elements to change by many elements in each step. For these algorithms
it may no longer be efficient to update the QR decomposition. Instead, the
unconstrained subproblem in each iteration step is solved by computing a new
sparse QR decomposition from scratch. Computational experience with a block
pivoting algorithm is reported in [665].

6.8.2. Interior point methods for problem BLS. We consider here only
problem NNLS (see Section 5.2.1)

which is a special case of problem BLS. The algorithm can be generalized to solve
problems with both lower and upper bounds in a fairly straightforward way.

The Karush-Kuhn-Tucker optimal conditions for NNLS give rise to an
equivalent monotone linear complementarity problem (LCP)

(6.8.11)

These conditions can be written as a system of nonlinear equations

where y = AT(Ax — 6), x, y > 0, and

This system is the basis of the first of two primal-dual interior point methods
for problem NNLS, developed by Portugal, Judice, and Vicente [665, 1994]. The
second uses the Newton directions for the nonlinear system

where the iterands are not forced to satisfy the linear constraints y = AT(Ax — b).
In the algorithms a sequence of points {XL.} are computed by

6.8. SPARSE CONSTRAINED PROBLEMS 263

where Ok is a positive step size. The Newton direction (itfc,i>fc) for the second
algorithm satisfies the linear system

(6.8.12)

where r^ = b — Ax^, Xk = diag(xfc), Yk = diag (?/&), and ̂ is a centralization
parameter; see Lustig, Marsden, and Shanno [554, 1991]. The step size Ok is
chosen to satisfy

where O™3* is the largest value such that Xk+i > 0, yk+i > 0, and

Choosing Ok in this way can be shown to guarantee a monotonic decrease of
g (x , y) = xTy in each iteration. Computational experience has shown that
the condition #™ax < Ok/1 is usually satisfied, and in practice one takes Ok —
0.99995-^^.

From (6.8.12) it can be seen that Uk is the solution to the least squares
problem

(6.8.13)

After Uk has been calculated Vk is determined from the first block equation in
(6.8.12),

The above approach can be improved by using a predictor-corrector scheme.
In this scheme one first determines a first direction (uk,Vk) by taking p,k = 0 in
(6.8.12). This direction is corrected by

where (u^^Vk] satisfies

(6.8.14)

and Uk — diag(itfc), Vk = diag(ffc). When Uk and Vk have been computed, Zk
can be computed as the solution of the least squares problem

Finally Wk is found from

264 CHAPTER 6. DIRECT METHODS FOR SPARSE PROBLEMS

Following [554] the parameter /^ is taken as

with 9^ as above. This choice does not guarantee a decrease in g(x,y), but
works well in practice. Implementation issues are discussed and computational
experience presented in [665].

In this method the subproblems (6.8.13) and (6.8.14) have to be solved
from scratch at each iteration, since no reliable updating methods are available.
Portugal, Jiidice, and Vicente [665, 1994] report computational experience with
the predictor-corrector algorithm for problem NNLS both for random matrices
and matrices from the Harwell-Boeing collection in Duff, Grimes, and Lewis
[242, 1989]. They found this method to give high accuracy even when, for
better efficiency, the subproblems were solved by forming the normal equation
and computing a sparse Cholesky factorization.

6.9. Software and Test Results
6.9.1. Software for sparse direct methods. Below we list and briefly
comment on some often-used software packages for solving sparse least squares
problems with direct methods. Problem-related issues such as dimension, sparsity
and structure, and conditioning should be considered when determining the choice
of direct method to be used. Possible rank deficiency, occurrence of weighted
rows, and the number of right-hand sides are other issues to be considered. An
overview of available codes is given in Table 6.9.1.

Several of the subroutines are in the public domain and available, e.g., from
netlib. Access to netlib is via the Internet address netlib@ornl.gov, which refers to
a gateway machine at Oak Ridge National Laboratory in Oak Ridge, Tennessee.
This address should be understood on all the major networks. For access from
Europe, there is a duplicate collection in Oslo at netlib@nac.no. For the Pacific,
try netlib@draci.cs.uow.edu.au, located at the University of Wollongong, NSW,
Australia.

MATLAB, distributed by The MathWorks, has been extended to include sparse
matrix storage and operations. The operations included are described in Gilbert,
Moler, and Schreiber [351, 1992]. In particular, a minimum degree preordering
algorithm and a sparse Cholesky decomposition are included. For example, to
solve a least squares problem by the method of normal equations with one step
of fixed precision iterative refinement (see Section 6.6.5), one writes

q=colmmd(A); °/« Find minimum degree ordering of A
A = A (: , q) ; 7, Permute column of A
R=chol(A'*A); % Sparse Cholesky decomposition
x=R\(A>*b); % Least squares solution
x=x+R\(AJ*(b-A*x)) °/« Perform one correction step
x(q)=x; % Permute the solution

There is also a built-in sparse least squares solver in MATLAB. This currently
uses the augmented system formulation with the scaling parameter chosen to be

6.9 SOFTWARE AND TEST RESULTS 265

TABLE 6.9.1
Survey of some commonly used software packages.

Package
MATLAB
SQR
MA27
MA47
QR27
SPARSPAK-A

SPARSPAK-B
YSMP
LLSS01

Purpose
LU and Cholesky
Matlab QR
LDI7
LDI7
Householder QR
Cholesky

Givens QR
Cholesky
Incomplete QR

Author
Gilbert et al. [351]
Matstoms [572]
Duff and Reid [251]
Duff et al. [241]
Matstoms [573, 574]
Chu et al. [167]

George and Ng [344]
Eisenstat et al.[265]
Zlatev and Nielsen [859]

Distribution
The MathWorks Inc.
netlib
HSL
HSL
qr27@math. liu. se

Univ. of Waterloo

Univ. of Waterloo
Yale
Tech. Univ. Denm.

a = 10 3 max \a,ij\. The solution is computed using the minimum degree ordering
and the built-in sparse LU decomposition.

Matstoms [572, 1994] has developed a multifrontal sparse QR algorithm to
be used with MATLAB. This is implemented as four M-files, which are available
from netlib. The main routine is called sqr, and the statements q=colmmd(A);
[R, p, c] =sqr (A (: , q), b) will compute the factor R in a sparse QR decomposition
of A(:, <?), and c = QTb. For further details we refer to [572].

More recently C. Sun2 has developed another software package for computing
a sparse QR decomposition This package is implemented in C and designed to
be used within a MATLAB environment. C. Sun has also developed a parallel
multifrontal algorithm for sparse QR decomposition on distributed-memory
multiprocessors; see [763, 1996].

Pierce and Lewis [659, 1995] at Boeing have implemented a multifrontal sparse
rank revealing QR decomposition/least squares solution module. This code has
some optimization for vector computers in general, but it also works very well on
a wide variety of scientific workstations. It is included in the collection of sparse
matrix, and very large dense matrix codes, which are available in the commercial
software package, BCSLIB-EXT, from Boeing Information and Support Services,
Seattle. This library of FORTRAN callable routines is also given to researchers
in laboratories and academia for testing and comparing and as a professional
courtesy.

The Harwell Subroutine Library (HSL) has a subroutine MA45 for solving the
normal equations. If the least squares problem is written in the augmented system
form (2.5.10), then the multifrontal subroutine MA27 for solving symmetric
indefinite linear systems can be used. However, the MA27 code does not exploit
the special structure of the augmented system, and there is a new routine MA47
which caters explicitly to this kind of system.

2 Advanced Computing Research Institute, Cornell University, csun@cs.cornell.edu.

266 CHAPTER 6. DIRECT METHODS FOR SPARSE PROBLEMS

Closely related to the Harwell MA27 code is a subroutine QR27 that has been
developed by Matstoms [571, 1992]. This code is available for academic research
and can be ordered from pomat@math.liu.se. A parallel version of QR27 has been
developed for shared-memory MIMD computers; see Matstoms [574, 1995].

SPARSPAK is a collection of routines for solving sparse systems of linear
systems developed at the University of Waterloo. It is divided into two
portions: SPARSPAK-A deals with sparse symmetric positive definite systems
and SPARSPAK-B handles sparse linear least squares problems, including linear
equality constraints. For solving least squares problems, both A and B parts are
needed. The original reference is George and Heath [333, 1980]. A more recent
paper by Heath [443, 1984] details some of the extensions to this algorithm as
well as some alternatives.

SPARSPAK-B has the feature that dense rows of A, which would cause R
to fill, can be withheld from the decomposition and the final solution updated
to incorporate them at the end. Only the upper triangular factor is maintained,
and the Givens rotations are not saved. SPARSPAK is licensed and distributed
by the University of Waterloo, Canada.3

Zlatev and Nielsen [859, 1979] have developed a Fortran subroutine called
LLSS01, which uses fast Givens rotations to perform the QR decomposition.
The orthogonal matrix Q is not stored, and elements in R smaller than a user-
specified tolerance are dropped. The solution is computed using fixed precision
iterative refinement or, alternatively, preconditioned conjugate gradient, with the
computed matrix R as preconditioner; see [860, 1988].

We finally mention the Sparse Matrix Manipulation System (SMMS), devel-
oped by Alvarado, which is described in [10, 1990]. SMMS is a collection of
directly executable sparse matrix commands, and includes routines for sparse or-
thogonal decomposition. This package is available from eceservO.ece.wisc.edu in
directories pub/smms93 and pub/smmspc.

6.9.2. Test results. We report here on a comparison of accuarcy and
execution time for four different numerical methods for sparse least squares
problems made by Matstoms [572, 1994]. The experiments are carried out on nine
of the matrices from the Harwell-Boeing test collection (Duff, Grimes, and Lewis
[242, 1989]), together with five matrices (ARTFnnnn) formed by the merging of
two Harwell-Boeing matrices,

Table 6.9.2 summarizes dimensions and other chracteristics of these test
problems. The numerical values of the ABB and ASH matrices are random
numbers uniformly distributed in [—1,1], while WELL and ILLC have their

3Detailed information can be obtained from Mr. Peter Sprung, Department of Computing Services,
University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

6.9 SOFTWARE AND TEST RESULTS 267

TABLE 6.9.2
Characteristics of test problems.

Matrix

ABB313

ASH219

ASH331

ASH608

ASH958

WELL1033

WELL1850

ILLC1033

ILLC1850

ARTF1252

ARTF1641

m n nnz
313 176 1,557

219 85 438

331 104 662

608 188 1,216

958 292 1,916

1,033 320 4,732

1,850 712 8,758

1,033 320 4,732

1,850 712 8,758

1,252 320 5,170

1,641 320 5,948

K(A) Set 1

1.5-101

7.8-10°

5.2-10°

6.3-101

6.9-101

1.7-102

1.1-102

1.9-104

1.4-103

3.6-101

4.1-10°

K(A) Set 2

1.5-107

7.1-106

5.4- 106

6.4-106

6.9- 106

1.1-108

2.0-107

3.1-109

1.3-109

3.4- 107

3.0- 106

Description

Sudan survey

Geodesy problem

Geodesy problem

Geodesy problem

Geodesy problem

Gravity-meter

Gravity-meter

Gravity-meter

Gravity-meter

WELL1033,ASH219

WELL1033,ASH608

original values. The WELL and ILLC matrices have the same nonzero structure
but different numerical values. A second set of test matrices are constructed by
down-weighting the rows (n — 1,... ,ra) in the Harwell-Boeing matrices by the
factor 16~5. A set of consistent least squares problems is defined by taking the
exact solution to be x = (1 , . . . , 1)T, and 6 = Ax.

The following four methods were compared using MATLAB. The first, aug, is
the built-in least squares solver in MATLAB which uses a sparse LU decomposition
of the augmented system. The second method, qls, uses the sparse QR
decomposition sqr by Matstoms, which applies the transformation QT to the
right-hand side. The third method, csne, uses the same QR decomposition but
then applies the corrected seminormal equations. The fourth method, cne, the
corrected normal equations, uses the built-in sparse Cholesky decomposition with
one step of refinement.

Results are given in Table 6.9.3 for the unweighted test matrices. These
problems are all well-conditioned or (ILLC1033, ILLC1850) moderately ill-
conditioned. The error shown is the relative error \\x — x\\2/\\x\\2 in the computed
solution x. Here all four methods give high accuracy. The execution times vary a
lot. The method cne is faster than the two methods using the QR decomposition
by a factor of about 10. This significant difference is partly explained by the fact
that the Cholesky decomposition routine is implemented in the core of MATLAB,
while the QR decomposition routine is implemented using M-files. Normally we
would expect the QR decomposition to be slower by a factor of 2-3. A comparison
of execution times between methods aug and qls shows no consistent behavior.
For the problems ABBS 13 and ASH219-ASH958 aug is about twice as fast. On
the other hand, for problem WELL1850, aug is 5 times slower, and for ARTF1641,
more than 30 times slower. This illustrates the fact that the fill-in in the factors
computed in the augmented systems method is not linked to the fill-in in the

268 CHAPTER 6. DIRECT METHODS FOR SPARSE PROBLEMS

TABLE 6.9.3
Errors and execution times for test set 1.

Problem

ABB313
ASH219

ASH331
ASH608

ASH958
WELL1033

WELL1850
ILLC1033
ILLC1850

ARTF1252
ARTF1641

aug

5.4

3.7
2.7
3.4

3.5
3.4

• 2.6
1.7
5.8

1.2
1.1

io-16

io-16

10-ie

io-16

io-16

io-15

io-15

io-13

io-14

io-15

io-15

qls

9.9-10-
3.8-10-
4.0-10-
4.3-10-
5.2-10-

2.5-10-

2.1-HT
8.8-10-
2.1-10-

1.5-10-
8.3-10-

16

16

16

16

16

15

15

14

14

15

16

csne

1.6-10-
8.4-10-
7.0-10-
5.9-10-

6.6-10-
1.0-10-
3.5-10-
4.3-10-
6.7-10-

1.3-10-
i.o-io-

16

17

17

17

17

15

16

14

15

16

16

cne

1.9-10-

6.0-10-
6.4-10-
6.2-10-
.6.4-10-
6.6-10-

4.4-10-
7.2-10-

5.6-10-

1.7-10-
8.8-10-

16

17

17

17

17

16

16

14

15

16

17

aug

2.5
0.9
1.7
3.2

5.6
17

152

17
152

51
774

qls

4.9
2.2
2.7
5.0

8.8

16
30
16

31

22
26

csne

4.5
2.0
2.4
4.5
7.9

15

29
15

28

19
24

cne

0.8
0.2
0.3
0.6

1.0

1.3
3.2
1.3
3.2

1.8
2.5

/2-factor in any simple way.
Since the sparsity structures of the second set of test problems are the same,

the execution times are identical to those for the first set. For these ill-conditioned
problems the accuracy of the four methods varies widely; see Table 6.9.4. In all
cases method csne was the most accurate, followed by qls. The method cne
did well on some of the problems, but gave poor accuracy or failed on the most
ill-conditioned ones. These results are consistent with the expected behavior, see
Section 6.6.5. That the accuracy of aug was also worse on some of the problems
is related to the less-than-optimal scaling parameter used.

TABLE 6.9.4
Errors for test set 2.

Test problem

ABB313
ASH219
ASH331

ASH608
ASH958

WELL1033
WELL 1850
ILLC1033
ILLC1850

ARTF1252
ARTF1641

aug

1.5-
4.0-
1.2-

8.8-
4.2-
7.2

1.5

9.9-
3.1

6.4

1.0-

10
10

10
10-
10

•10
•10

10-
•10

•10

10-

-14

-16

-14

-16

-15

-7

-8

-10

-5

-8

-10

qls

4.0-
1.6-

5.1-
5.2-

1.3-
5.2-
5.4-

9.5-

5.6-
1.4

1.0-

10-
10-
10-
10-
10-
10-
10-
10-
10-

11
11

12

12

11
11
11

10

10

•io-9

10-10

csne

1.3
6.6
1.1
8.4

6.7

3.0

1.4
5.6
9.5

1.7
2.7

10-
10-
10-
10-
10-
10-
10-
10-
10-
10-
10-

16

17

16

17

17

13

13

10

12

13

14

cne

3.9•io-9

1.4-10-16

1.0

1.9-
7.2

7.4

9.8

io-16

io-16

io-17

•10~3

• io-7

Failed

6.5

5.3

1.3

•io-8

•io-6

• io-9

Iterative Methods For Least Squares Problems

7.1. Introduction
In this chapter we consider the iterative solution of large sparse least squares
problems

We assume in the following, unless otherwise stated, that A has full column rank,
so that the problem has a unique solution.

In principle any iterative method for symmetric positive definite linear
systems can be applied to the system of normal equations ATAx = ATb. The
explicit formation of the matrix ATA can be avoided by using the factored form
of the normal equations
(7.1.1)

Working only with A and AT separately has two important advantages. First, as
has been much emphasized for direct methods, a small perturbation in ATA, e.g.,
by roundoff, may change the solution much more than perturbations of similar
size in A itself. Second, we avoid the fill which can occur in the formation of
ATA.

We also consider iterative methods for computing a minimum norm solution
of a consistent underdetermined system,

If AT has full row rank the unique solution satisfies the normal equations of the
second kind (see Section 1.1.4),

(7.1.2)

Also in this case, the explicit formation of the cross-product matrix ATA can be
avoided.

Another approach is to use iterative methods applied to the augmented
system

(7.1.3)

269

Chapter 7

270 CHAPTER 7. ITERATIVE METHODS FOR LEAST SQUARES PROBLEMS

see Theorem 1.1.5. This avoids forming the normal equations, but has the
drawback that since the augmented system is symmetric indefinite many standard
iterative methods cannot be applied.

7.1.1. Iterative versus direct methods. In iterative methods an initial
approximate solution is successively improved until an acceptable solution is
obtained. The matrix A need not be stored, but can instead be defined by the
action of A and AT on vectors. This makes iterative methods especially attractive
for problems where the elements A are easily generated on demand.

The main weakness of iterative methods is their poor robustness and often
narrow range of applicability. Often a particular iterative solver may be found
to be very efficient for a specific class of problems, but if used for other cases it
may be excessively slow or break down. Preconditioned iterative methods, which
are based on an approximate factorization, can be considered as a compromise
between direct and iterative solvers.

For some classes of sparse problems fill-in will make sparse direct methods
prohibitively costly in terms of storage and operations. An example is the case
when A e Rmxn is large and sparse but ATA is almost dense. Note that if ATA is
dense and A has the strong Hall property (see Section 6.4.4), then the Cholesky
factor R will also be dense, and this also rules out methods based on the QR
decomposition. This is in contrast to the dense case where the elements in the
upper triangular part of ATA are always fewer than the mn (m > n) nonzero
elements of A.

As an example of a problem where direct methods are not suitable we consider
the case when A has a random sparsity structure, such that an element a^ is
nonzero with probability p < I . Ignoring numerical cancellation it follows that
(ATA)jk 7^ 0 with probability

Therefore ATA will be almost dense when rnp « ra1/2, i.e., when the average
number of nonzero elements in a column equals about ra1/2. This type of structure
often occurs in reconstruction problems. An example is the inversion problem for
the velocity structure for the Central California Microearthquake Network, for
which (in 1980) ra — 500,000, n = 20,000, and A has about 107 nonzero elements
with a very irregular structure. The matrix ATA will be almost dense. A similar
situation occurs in image reconstruction by X-ray. The structure of the matrix
AT in a very small model problem for image reconstruction is illustrated in Figure
7.1.1. It is easily verified that, except for the diagonal blocks, the matrix ATA
will be completely dense.

7.1.2. Computing sparse matrix-vector products. The efficient imple-
mentation of iterative methods depends to a large extent on the performance
of sparse matrix-vector products Av and ATu. In some applications it may be
possible to express the elements in these matrix-vector products by relatively

7.1. INTRODUCTION 271

FIG. 7.1.1. The structure of AT in a model image reconstruction problem.

simple formulas, thus eliminating the need for explicitly storing A. When this
is not the case, the choice of the data structure used to store the sparse matrix
A is crucial for efficiency. There are several requirements that may be conflict-
ing. As mentioned in Section 6.4.1, ideally only nonzero elements in A should
be stored and operated on. Additionally the data structure should be chosen so
that hardware features like vector registers can be exploited. Such requirements
have led to a great many different data structures to be used, and a consequent
lack of portability. Some of the more common structures are described below.
We mention that a proposal for standard computational kernels (BLAS) aimed
at iterative solvers have been given by Duff et al. [244, 1995].

In Section 6.4.1 we introduced the compressed row storage scheme for
storing sparse matrices. In this scheme the nonzero elements of A are stored row-
wise in a one-dimensional array AC of length nz, the number of nonzero elements
of A. The column indices of these elements are stored in an integer vector ja,
and the vector ip of length m + 1 contains pointers to the beginning of each row
in AC. With this storage scheme the matrix

is stored in one real and two integer vectors as

272 CHAPTER 7. ITERATIVE METHODS FOR LEAST SQUARES PROBLEMS

The matrix-vector product u = Av is then implemented as follows:

This is very efficient on scalar processors, but does not vectorize well. This
is because the vector length in this scheme is equal to the number of nonzero
elements in a row, which is usually too small for efficiency. The same comment
applies to the compressed column storage scheme.

For the transpose product v = ATu we should not use the equation

since this accesses elements column by column, which is very inefficient with this
storage scheme. We instead perform it as follows:

An alternative scheme more suitable for vector processors is the compressed
matrix storage mode. Here the matrix A is stored in two rectangular arrays
AC and ka with m rows and k columns, where k is the maximum number of
nonzero elements per row of A. Each row of AC contains the nonzero elements
of the corresponding row of A. If a row of A has fewer than k elements, the
corresponding row is padded with zeros to length k. ka is an integer array,
which contains the column number of the corresponding elements of AC. If the
corresponding element is zero any index in the range 1 : n can be used. Hence

7.1. INTRODUCTION 273

the matrix A in the example above would be stored as

The matrix-vector product u = Av is here implemented as follows:

This code will vectorize on the outer loop with vectors of length ra. The code for
the transpose product v = ATu is very similar.

The compressed diagonals storage mode is suitable for problems in which
the nonzero matrix elements all lie along few diagonals. Here the matrix A is
stored in two rectangular arrays AD and a vector la of pointers. The array AD
has n rows and nd columns, where nd is the number of diagonals. AD contains
the diagonals of A that have at least one nonzero entry, and la contains the
corresponding diagonal numbers. The superdiagonals are padded to length n
with k trailing zeros, where k is the diagonal number. The subdiagonals are
padded to length n with |fc| leading zeros. The matrix A in the example above
would be stored as

The matrix-vector product u = Av is here implemented as follows:

This code will vectorize with vectors of length n. The transpose matrix-vector
product v = ATu is a minor variation of this code.

274 CHAPTER 7. ITERATIVE METHODS FOR LEAST SQUARES PROBLEMS

7.2. Basic Iterative Methods
For general treatments of iterative methods for linear systems see Varga [805,
1962] and Young [847, 1971]. Surveys of iterative methods for least squares
problems are given by Bjorck [87, 1976] and Heath [443, 1984].

7.2.1. General stationary iterative methods. The simplest class of iter-
ative methods for solving the normal equations (7.1.1) is the class of stationary
iterative methods. These have the form

(7.2.1)

where x^ is an initial approximation. Here ATA — M — N, M nonsingular, is a
splitting of the matrix of normal equations. For the iteration to be practical it
must be easy to solve linear systems with matrix M.

To analyze the convergence of the method (7.2.1) we define

(7.2.2)

where G is the iteration matrix. The iterations (7.2.1) can then be written

(7.2.3)

We call the iterative method (7.2.3) convergent if the generated sequence
{x^} converges for all initial vectors x^. It follows that if the method converges
and limfc_>oo = x, then x satisfies x = Gx + c, and hence x is a least squares
solution. Of fundamental importance in the study of convergence of stationary
iterative methods are conditions for a sequence of powers of a matrix to converge
to the null matrix. The spectral radius of a matrix G 6 Rnxn is the nonnegative
number

For any consistent matrix norm it holds that p(G] < \\G\\, which can be used
to derive sufficient conditions for convergence. The following theorems give
necessary and sufficient conditions for convergence.

THEOREM 7.2.1. Let G € Rnxn be a given matrix. Then the following
conditions are equivalent:

1. lim Gk = 0,
k—>oo

2. lim Gkx = 0, Vz e Cn,
k—>oo

3. p(G) < 1,

4. || G|| < I for at least one matrix norm.
In the following we assume that ATA is positive definite. For the case when

Tank(ATA) < n, convergence of the iteration (7.2.1) has been investigated by
Keller [503, 1965] and Young [847, 1971].

7.2. BASIC ITERATIVE METHODS 275

THEOREM 7.2.2. The stationary iterative method x^k+l"> — Gx^ + c is
convergent for all initial vectors x^ if and only if p(G] < 1.

Proof. Subtracting x = Gx + c from (7.2.3) it follows that

Hence lim^oo x^ — x for all initial vectors x^ if and only if lim^oo Gk = 0.
The theorem now follows from Theorem 7.2.1.

Usually, we are not only interested in convergence, but also in the rate of
convergence. For the error x^ — x at step k it holds for any consistent pair of
norms

Thus ||Gfc|| measures the factor by which the norm of the error is reduced after
k iterations. We make the following definition.

DEFINITION 7.2.1. Assume that the iterative method defined by (7.2.3) is
convergent. For any given matrix norm \ \ - \ \ we define the average rate Rk(G]
and the asymptotic rate Roo(G} of convergence by

respectively.
The norm of the error is reduced by a fixed factor 6 provided that \\Gk\\ < 6.

Hence we need at most k iterations, where k satisfies

In many cases it is desirable that the iteration matrix G has real eigenvalues.
This will be the case if the iterative method is symmetrizable, where we have
the following definition.

DEFINITION 7.2.2. The stationary iterative method (7.2.1) is said to be
symmetrizable if there is a nonsingular matrix W such that the matrix

is symmetric and positive definite.
A stationary iterative method for the normal equations is symmetrizable if

the splitting matrix M is symmetric and positive definite. Then with W = H,
where R is the Cholesky factor of ATA, we have

which is symmetric, positive definite.

276 CHAPTER 7. ITERATIVE METHODS FOR LEAST SQUARES PROBLEMS

7.2.2. Splittings of rectangular matrices. The concept of splitting has
been extended to rectangular matrices by Plemmons [661, 1972]. Berman and
Plemmons [65, 1974] define A = M — N to be a proper splitting if the ranges
and nullspaces of A and M are equal. They show that for a proper splitting the
iteration
(7.2.4)

converges to the pseudoinverse solution x = A^b for every x^ if and only if the
spectral radius p(M^N) < I. The iterative method (7.2.4) avoids the explicit
recourse to the normal system.

Tanabe [770, 1971] considers stationary iterative methods of the form (7.2.4)
for computing more general solutions x = A~b, where A~ is any generalized
inverse of A, (AA~A = I } . He shows that the iteration can always be written in
the form

for some matrix 5, and characterizes the solution in terms of the H(AB} and
Af(BA).

Splittings of rectangular matrices have also been investigated by Chen [163,
1975]. Chen shows that if rank (A) = n, then for any consistent iterative method
(7.2.1) there exists a splitting such that the method can be written in the form
(7.2.4), and for every such method the iteration matrix equals G = I — C~TATA
for some nonsingular matrix C. Hence the most general iterative method of the
form (7.2.1).for the least squares problem is equivalent to Richardson's first-order
method (see below) applied to the linear system C~TAT(Ax — b) = 0.

7.2.3. Classical iterative methods. Consider the splitting

where a > 0 is a parameter. This gives the iteration matrix G = I — aATA,
which is Richardson's first-order method. Since / — G — aATA is symmetric
and positive definite this iteration method is symmetrizable. It can be written in
the form
(7.2.5)

which does not require the explicit formation of ATA. The eigenvalues of G equal

where a^ are the singular values of A. Prom this it can be shown that Richardson's
method converges to the least squares solution x = A^b if

Assume that all columns in A are nonzero, and let

(7.2.6)

7.2. BASIC ITERATIVE METHODS 277

In Jacobi's method a sequence of approximations

is computed from

(7.2.7)

We define the standard splitting of ATA to be

where DA = diag(c?i,... ,c?n) is a diagonal matrix and LA is strictly lower
triangular. Then Jacobi's method corresponds to the splitting M = DA, and
we can write (7.2.7) in matrix form as

(7.2.8)

Jacobi's method is symmetrizable since

Jacobi's method can also be used to solve the normal equations of second
type (7.1.2). This method can be written in the form

(7.2.9)

The Gauss—Seidel method is obtained from the standard splitting above
by taking M = LA + DA, and can be written

In Bjorck and Elfving [105, 1979] it is shown that the Gauss-Seidel method is a
special case of a class of residual reducing methods, and can be implemented
without forming the matrix ATA explicitly.

Let PJ £ A/"(A), j = 1,2,... , be a sequence of nonzero n-vectors and compute
a sequence of approximations of the form

(7.2.10)

It is easily verified that r(J+1) _L Apj = 0, where rj = b — Ax^\ and hence

i.e., the class of methods (7.2.10) is residual reducing. For a square matrix A,
method (7.2.11) was developed by de la Garza [207, 1951]. This class of residual
reducing projection methods was studied by Householder and Bauer [477, 1960].

278 CHAPTER 7. ITERATIVE METHODS FOR LEAST SQUARES PROBLEMS

If A has linearly independent columns we obtain the Gauss-Seidel method for
the normal equations by taking PJ in (7.2.10) equal to the unit vectors ej in cyclic
order. Then if A = (ai, 02 , . . . , an)> we have Apj = Aej = a,j. An iteration step
in the Gauss-Seidel method consists of n minor steps where we put z^ = x^k\
and rr(fc+1) = z(n+1) is computed by

(7.2.11)

j = 1,2, .. . ,n. Note that in the jth minor step only the jth component of
z^ is changed, and hence the residual r^ can be cheaply updated. With
r^1) = b — Ax^ we obtain the recursions

(7.2.12)

Note that in the jth minor step only the jth column of A is accessed. In contrast
to the Jacobi method the Gauss-Seidel method is not symmetrizable and the
ordering of the columns of A will influence the convergence.

The Gauss-Seidel method for solving the normal equations of second kind
y = Az, ATAz = c (see (7.1.2)) can also be implemented without forming ATA.
Following Bjorck and Elfving [105, 1979] we define a class of error reducing
methods. Let pi £ A/*(A), i = 1,2,..., be a sequence of nonzero n-vectors and
compute approximations of the form

(7.2.13)

If the system ATy = c is consistent there is a unique solution y of minimum norm.
If we denote the error by d^ = y — y^\ then by construction d^+1^ _L Api, and
thus

Hence this class of methods is error reducing. Taking PJ to be the unit vectors
ej in cyclic order, we have Apj = a,j, the jth column in A. Then the iterative
method (7.2.13) takes the form

(7.2.14)

In the Gauss-Seidel method for ATAz — c the approximation z^ is updated by

and with yW = Az^ and y(J+l) = y(fi + AAz^ we recover (7.2.14). This shows
that if we take y^ = Az^°\ then for an arbitrary z^> (7.2.14) is equivalent to the
Gauss-Seidel method for (7.1.2). For the case of a square matrix A this method
was originally devised by Kaczmarz [493, 1937]. The convergence properties
of Kaczmarz's method for general m x n matrices has been studied by Tanabe
[770, 1971]. We remark that Kaczmarz's method has been rediscovered and used

7.2. BASIC ITERATIVE METHODS 279

successfully in image reconstruction; see [448, 1973]. In this context the method is
known as the unconstrained ART algorithm (algebraic reconstruction technique).

The Jacobi method has the advantage over Gauss-Seidel that it is more
easily adapted to parallel computation, since (7.2.9) just requires a matrix-
vector multiplication. Further, it does not require A to be stored (or generated)
columnwise, since products of the form Ax and ATr can conveniently be
computed also if A can only be accessed by rows. In this case, if af , . . . , o^
are the rows of A, then we have

That is, for Ax we use an inner product formulation, and for ATr, an outer
product formulation.

The Jacobi and Gauss-Seidel methods can be generalized to block matrices.
We refer to Section 7.3 for a discussion of block iterative methods.

7.2.4. Successive overrelaxation methods. The successive overrelax-
ation (SOR) method for the normal equations ATAx = ATb is obtained by
introducing an relaxation parameter u in the Gauss-Seidel method (7.2.13),

(7.2.15)

The SOR method always converges when ATA is positive definite and u) satisfies
0 < LJ < 2. The SOR shares with the Gauss-Seidel the advantage of simplicity
and small storage requirements.

Similarly, one step of the SOR method applied to the normal equations of
the second kind (y = Az, ATAz — c] can be written as

(7.2.16)

i.e., by introducing an acceleration parameter uj in the generalized Kaczmarz's
method.

One wants to choose u) such that the asymptotic rate of convergence is
maximized. If the matrix ATA has special properties, this optimal u can be
expressed in closed form. We make the following definitions.

DEFINITION 7.2.3. The matrix ATA is said to have "property A" if there
exists a permutation matrix P such that PAPT has the form

(7.2.17)

where D\, D^ are. diagonal matrices.

280 CHAPTER 7. ITERATIVE METHODS FOR LEAST SQUARES PROBLEMS

DEFINITION 7.2.4. A matrix ATA with the decomposition ATA = DA(! — L —
U}, where DA is nonsingular, and L (and U) strictly lower (upper) triangular, is
said to be consistently ordered if it has the property that the eigenvalues of

are independent of a.
It is easy to show that a matrix of the form (7.2.17) is consistently ordered.

However, a consistently ordered matrix need not have this form. An important
example of a consistently ordered matrix is any block tridiagonal matrix, whose
diagonal blocks are nonsingular diagonal matrices. The following result is due to
Young.

THEOREM 7.2.3. Let ATA be a consistently ordered matrix, and assume that
the eigenvalues p, of Bj = L + U are real and pj = p(Bj] < 1. Then the optimal
relaxation parameter u in SOR is given by

and for this optimal value we have p(BUopt) = u;opt — 1.
Proof. See Young [847, 1971].
For consistently ordered matrices, using u;opt in SOR gives a great increase

in the rate of convergence. However, when the assumptions in the theorem are
not satisfied, then the SOR method may not be effective for any choice of u.
Then the symmetric SOR (SSOR) method is often advantageous to use. In the
SSOR method the forward sweep j = 1, —, n is followed by a backward sweep
j = n , . . . , 1 in (7.2.15) or (7.2.16). The SSOR method is less sensitive to the
choice of a;, and often u = 1 is close to the optimum. Further, it can be shown
that the SSOR method is symmetrizable and hence can be accelerated further by,
e.g., the Chebyshev semi-iterative method described in the following subsection.

7.2.5. Semi-iterative methods. Consider the stationary iterative method

(7.2.19)

for solving the normal equations ATAx = ATb, which corresponds to a sym-
metrizable matrix splitting ATA = M — N, i.e.,

Then the eigenvalues {Aj}"=1 of M~lArA are real. Assume that lower and upper
bounds are known such that

(7.2.20)

Then the eigenvalues {pi}^ of B — I - M~1ATA satisfy

(7.2.18)

7.2. BASIC ITERATIVE METHODS 281

(Note that we allow c < — 1, even though then p(B) > 1, and the basic method
is not convergent!) In the simplest case M — I and B = I — ATA.

For the iterative method (7.2.19) we have the error equation

To accelerate the convergence of the sequence {x^} we take linear combinations
of the first k approximations

where Yl^ocki — 1- The resulting method is known as a semi-iterative
method; see Varga [805, 1962].

Introducing the generating polynomial

it follows from the error equation that

where Pk(B) is a polynomial in the matrix B. Therefore, this procedure is also
known as polynomial acceleration.

A measure of the rate of convergence after k steps for the accelerated sequence
is p(Pk(B)} < maxte[Cid] |Pfc(£)|. To minimize this quantity we solve

where II £ denotes the set of polynomials P^. of degree < k such that .Pfc(l) = 0-
The solution to this minimization problem is given by

where Tk(z) denotes the Chebyshev polynomial of degree k. Here z(t] is a linear
transformation which maps the interval t e [c, d] onto z e [-1,1]. (For a proof
of this and a review of properties of Chebyshev polynomials we refer to Young
[847, 1971, pp. 302-303].) For this choice we have

(7.2.21)

and it holds that

282 CHAPTER 7. ITERATIVE METHODS FOR LEAST SQUARES PROBLEMS

Solving the quadratic equation in e7,

for 7 gives

It follows that k iterations will reduce the error norm by at least a factor
l/cosh(&7), where

Thus to reduce the error norm by at least a factor of 1/6 it is sufficient to perform
k iterations, where

(7.2.22)

This is an order of magnitude improvement of the asymptotic convergence rate
compared to the basic stationary method. Note that if the splitting matrix M
is symmetric and positive definite then K, = (6/a)1/2 > 1 is an upper bound for
the condition number of AM~1/'2. (In particular, if M = I then K = K(A).) For
achieving a close-to-optimal acceleration of convergence it is necessary that the
upper and lower bounds in (7.2.20) for the eigenvalues Aj are sufficiently accurate.

The vectors x^ can be computed by means of the three-term recurrence
relation for the Chebyshev polynomials, without computing the x^ first. The
iteration can then be written (see Golub and Varga [390, 1961]):

(7.2.23)

where
(7.2.24)

and

(7.2.25)

This is the Chebyshev semi-iterative method. Note that in each iteration we
have to perform two matrix-vector multiplications Ax^ and ATrW, and solve
one linear system Ms^ = ATr^k\

The second-order Richardson method can also be described by equation
(7.2.23). Here one takes a and // as above and

Interestingly enough, it can be shown that in the Chebyshev method we have
uk —> a).

(7.2.26)

7.2. BASIC ITERATIVE METHODS 283

The eigenvalues of the iteration matrix of the SOR method BUopt are all
complex and have modulus u;opt | • In this case convergence acceleration is of no
use. (A precise formulation is given in Young [847, 1971, p. 375].) However,
Chebyshev acceleration can be applied to the SSOR method, often with a
substantial gain in convergence rate.

7.2.6. Preconditioning. Because of potentially slow convergence one main
emphasis in the development of iterative methods is on convergence acceleration.
A general technique to improve convergence is by preconditioning, which for
the linear least squares problem is equivalent to a transformation of variables.
Let S G Rnxn be a nonsingular matrix and consider the problem

(7.2.27)

If S is chosen so that AS~l has a more favorable spectrum than A, this will
improve convergence of an iterative method applied to (7.2.27).

It is important to note that the product AS~l should not be explicitly formed,
but treated as a product of two operators. In an iterative method preconditioned
by the matrix 5, matrix-vector products of the forms AS~ly and S~TATr will
occur. Thus the extra cost of preconditioning will be in solving linear systems of
the form Sx = y and STq = s. Hence S has to be chosen so that such systems
can be easily solved. To summarize, a good preconditioner S should have the
following properties, which are partly contradictory:

• AS~l should be better conditioned than A and/or have only a few distinct
singular values.

• S should have about the same number of nonzeros as A.

• It should be cheap to solve equations with matrices S and ST.

A simple and cheap preconditioner corresponds to a diagonal scaling of the
columns of A,

(7.2.28)

Since AS~l has columns of unit length it follows from Theorem 1.4.7 that this
approximately minimizes K(AS~1} over all diagonal scalings.

In Section 7.2.5 we developed the Chebyshev semi-iterative method which
can be used to accelerate the convergence of the SSOR method. A different
interpretation is to view the SSOR method as a preconditioner for the Chebyshev
method. The SSOR preconditioner corresponds to taking

(7.2.29)

with the standard solittine:

284 CHAPTER 7. ITERATIVE METHODS FOR LEAST SQUARES PROBLEMS

where LA is strictly lower triangular. Note that taking u = 0 in (7.2.29) gives
(7.2.28).

In Bjorck and Elfving [105, 1979] it is shown how to implement the
preconditioner (7.2.29) without actually forming ATA or L. We use the notation

We can compute the vectors t = (ti, . . . ,tn)T = S~1p and q = qo = AS~lp
simultaneously as follows. Set qn = 0, and for j = n, n — 1,. . . , 1 compute

(7.2.30)

The vector s = (si , . . . , sn)
T — S~TATr is computed as follows. Set hi — r, and

for j = 1 ,2 , . . . , n compute

(7.2.31)

Hence, in order to use the SSOR preconditioner, one only needs to access one
column of A at a time. The number of operations per step approximately doubles
when (jj 7^ 0, compared to diagonal scaling (a; = 0).

Theory and numerical experiments indicate that u = 1 is often close to the
optimum choice of cj. Convergence can be affected also by reordering the columns.
Such a reordering can also be used to introduce parallelism into the scheme. These
topics are addressed in Section 7.5.1. Some tests using the SSOR preconditioner
for solving nonsymmetric systems arising from partial differential equations are
given in Saad [698, 1988].

7.3. Block Iterative Methods

In many large sparse least squares problems arising from multidimensional models
the matrix A has a natural column block structure

(7.3.1)

where

A special example of such a block structure is the block angular form described
in Section 6.3.1.

7.3.1. Block column preconditioner s. For problems of the structure
(7.3.1) block versions of the preconditioners (7.2.28) and (7.2.29) are particu-
larly suitable. Let the QR decompositions of the blocks be

(7.3.2)

Then to (7.2.28) corresponds the block diagonal preconditioner

(7.3.3)

7.3. BLOCK ITERATIVE METHODS 285

For this choice we have AS~1 = (Qi, Q%,..., QJV)> i-e-> the columns of each block
are mutually orthogonal.

If we split ATA according to

where LB is strictly lower block triangular, then the block SSOR preconditioner
becomes
(7.3.4)

This preconditioner was introduced for least squares problems by Bjorck [89,
1979]. As with the corresponding point preconditioner it can be implemented
without actually forming ATA.

We now consider the use of the block diagonal preconditioner (7.3.3). We will
partition x and y = Sx conformably with (7.3.1):

Jacobi's method (7.2.8) applied to the preconditioned problem (7.2.27) can then
be written

or in terms of the original variables

(7.3.5)

This is the block Jacobi method for the normal equations. Note that the
correction Zj = £*• — x^ equals the solution to the problem

(7.3.6)

and that these corrections can be computed in parallel. Often Qj is not available
and we have to use Qj = AjR^1. This is equivalent to using the method of
seminormal equations (3.4.6) for solving (7.3.6). This can lead to some loss of
accuracy, and a correction step is recommended unless all the blocks Aj are well-
conditioned.

Similarly, we can derive a block SOR method for the normal equations. Let
TI — b — Ax^ and for j = 1,. . . ,N compute

(7.3.7)

where Zj is the solution to

(7.3.8)

Taking u = 1 in (7.3.7) gives the block Gauss-Seidel method.

286 CHAPTER 7. ITERATIVE METHODS FOR LEAST SQUARES PROBLEMS

In order to use the block SSOR preconditioner (7.3.4) for the conjugate
gradient method we have to be able to compute vectors q = AS~lp and
s = S~TATr efficiently, given p = (pi,. . . ,PN)T a*id r. The following algorithms
for this, derived in Bjorck [89, 1979], generalize the point SSOR algorithms
(7.2.30) and (7.2.31).

Put qW = 0 and compute q — </(°) and S~lp = (zi , . . . , ZN)T:

.(7.3.9)

Put r^ — r, and compute s = (« i , . . . , SN)T-

(7.3.10)

The choice of partitioning A into blocks is important for the storage and
computational efficiency of the methods. An important criterion is that it should
be possible to compute the factorizations Aj = QjRj (or at least the factors Rj)
without too much fill. Note that if Aj is the direct sum of blocks, then in the
SOR method the computation of Zj splits up into independent subproblems. This
makes it possible to achieve efficiency through parallelism.

For grid problems a high degree of parallelism can be achieved. For example,
Kamath and Sameh [496, 1989] give a scheme for a three-dimensional n x n x n
mesh and a seven-point difference star, for which N — 9 and each block consists of
n2/9 separate subblocks of columns. Hence each subproblem can be solved with
a parallelism of n2/9. For some ordering algorithms based on graph-theoretic
algorithms see Dennis and Steihaug [224, 1986].

7.3.2. The two-block case. The case N — 2, A = (A\,A<2) is of special
interest. For the block diagonal preconditioner (7.3.3) we have AS~l = (QiiQz)
and the matrix of normal equations for the preconditioned system becomes

(7.3.11)

This matrix has "property A"; see Definition 7.2.3. This means that it is
possible to reduce the work required per iteration by approximately one-half
for many iterative methods. This preconditioner is also called the cyclic Jacob!
preconditioner.

For matrices with "property A" the SOR theory holds. As shown by Elfving
[279, 1980] it follows that the optimal u in the block SOR method (7.3.7) for
N = 2 is given by

Here Om\n is the smallest principal angle between H(Ai) and /R,(A2)\ see
Definition 1.2.2. Using a;opt in the block SOR method reduces the number of
iterations by a factor of 2/sin#min compared to using u = 1.

7.3. BLOCK ITERATIVE METHODS 287

For N = 2, the preconditioner (7.3.4) with u; = 1 also has special properties;
see Golub, Manneback, and Toint [376, 1986]. We have

and it follows that for u; = 1

(7.3.12)

where PI = QiQ^ is the orthogonal projector onto Range(Ai). It follows that
the two blocks in (7.3.12) are mutually orthogonal, and thus the preconditioned
problem (7.2.27) can be split into two problems, which are

(7.3.13)

This effectively reduces the original system to a system of size n^. Hence this
preconditioner is also called the reduced system preconditioner. The matrix
of normal equations becomes

where K = Q^Qz. This reduction of the variables corresponding to the first
block columns can also be performed in the case when N > 2.

For the case N = 2 the SSOR preconditioned conjugate gradient method has
been carefully studied by Manneback [560, 1985]. It is shown that the choice
(jj = 1, i.e., using the reduced system preconditioning, is optimal with respect
to the number of iterations. Further, Hageman, Luk, and Young [418, 1980]
have shown the equivalence of reduced system preconditioning and cyclic Jacobi
preconditioning (LJ — 0) for Chebyshev semi-iteration and the conjugate gradient
method. The reduced system preconditioning will essentially generate the same
approximations in half the number of iterations. Since the work per iteration is
about doubled for u ^ 0, this means that cyclic Jacobi preconditioning is optimal
for the conjugate gradient method in the class of SSOR preconditioners.

Golub, Manneback, and Toint [376, 1986] have applied the block SSOR
preconditioned conjugate gradient method to the Doppler positioning problem.
Here the matrix is of block angular form (see Section 6.3.1) but is partitioned
into two blocks (A,B) where A consists of all the diagonal blocks, and J3, the
last block column.

Some experimental results of block SSOR preconditionings for the case N > 2
are given by Bjorck [89, 1979]. In this case, uo = 1 is not necessarily optimal.
However, in the tests the optimal value of u; was close to 1, and the number of
iterations required was not sensitive to the choice of u around u> — 1.

288 CHAPTER 7. ITERATIVE METHODS FOR LEAST SQUARES PROBLEMS

7.4. Conjugate Gradient Methods
The conjugate gradient (CG) method was developed in the early fifties by
Hestenes and Stiefel [451, 1952]. Because in exact arithmetic it converges in
at most n steps it was first considered as a direct method. However, the finite
termination does not hold with roundoff, and the method came into wide use first
in the mid-seventies, when it was realized that it should be regarded as an iterative
method. It has now become a standard tool for solving large sparse linear systems
and linear least squares problems. In the original paper by Hestenes and Stiefel
[451, 1952], and in the subsequent paper by Stiefel [755, 1952] a version of CG
for the solution of normal equations was given. Lauchli [516, 1959] was the first
to discuss a preconditioned CG method and to apply it to solving least squares
geodetic network problems. Other early discussions of the conjugate gradient
method for linear least squares are found in Lawson [519, 1973] and Chen [163,
!975l-

7.4.1. CGLS and variants. The CG method is a special case of Krylov space
methods. We make the following definition.

DEFINITION 7.4.1. Given a matrix B e Rnxn and a vector c e Rn the
Krylov subspace)Ck(B,c) is

1Ck(B, c) = span{c, Be,..., Bk~lc}.

The fcth iterate in the CG method is uniquely determined by the following
variational property. Let x = A^b be the pseudoinverse solution and f = b — Ax
the corresponding residual. Then x^ minimizes the error functional

(7.4.1)

over all vectors x^ in the affine subspace

(7.4.2)

Only the values // = 0,1,2 are of practical interest, and they correspond to the
cases

Taking (j, = 0 is only feasible when the system Ax = b is consistent, and the
resulting method is equivalent to a method due to Craig [191, 1955]. In this case,
denoting by s^ = ATr^ the residual of the normal equations, we have

since A(ATA)~1AT is the orthogonal projection onto K(A). For fj, = I the method
is denoted CGLS in [639] and CGNR in [315]. The second expression for Ei(xW)
in (7.4.3) follows from the fact that f JL f — r^.

(7.4.3)

7.4. CONJUGATE GRADIENT METHODS 289

The variational property of the CG method implies that the error functional
Ep(xW) decreases monotonically. For /x — 1, also, \\rW\\ will decrease
monotonically. The following estimate of the rate of convergence is known to
hold:

(7.4.4)

where K = K(A) = \jK,(ATA). Further, we have the following result.

LEMMA 7.4.1. Let {x^} be the sequence of conjugate gradient approxima-
tions, which minimize E^(x] subject to (7.4.2). Then for /x = 1,2 the sequences
EV(X^}, v < n, all decrease monotonically.

Proof. For p, = I see Hestenes and Stiefel [451, 1952, p. 416]. For /i = 2 see
[451, Sec. 7].

For n = 1 we are assured that both ||f - r^\\ and \\x — x^\\ decrease
monotonically, but ||ATr^fc^|| will often exhibit large oscillations when n(A) is
large. We stress that this behavior is not a result of rounding errors. For /z = 2,
mT

r(
A;)|| will also decrease monotonically, but this choice fj, = 2 gives slower

convergence and lower final accuracy in both ||f — r^||2 and \\x — £*• • \\2- It also
requires more operations and storage; see Table 7.4.1.

TABLE 7.4.1
Comparison of storage and operations.

CGLS
P>
0
1

2

Storage

2n + 3m

2n + 2m

4n + 3m

Flops/step

2n + 3ra

3n + 2m

5n + 3m

In the following we only consider the case // = 1, which is of most practical
interest. The preferred version is that originally given by Hestenes and Stiefel
[451, 1952].

ALGORITHM 7.4.1. CGLS. Let x^ be an initial approximation, set

r < 0 > = & - A r < ° > , pW = 8W = ATr(°\ 70 = ||s(0)||2
2,

and for k = 0,1, 2 , . . . while 7^ > tol compute

290 CHAPTER 7. ITERATIVE METHODS FOR LEAST SQUARES PROBLEMS

CGLS requires the storage of two n-vectors, x and p, and two m-vectors, r
and q. (Note that s can share storage with q.} Each iteration requires about
2nz(A) + 3n + 2m flops, where nz(A] are the number of nonzero elements in A.
A comparison with other choices of n is given in Table 7.4.1.

7.4.2. Convergence properties of CGLS. For convenience we assume in
the following that x^ = 0, and hence r^ = b. We also assume in this subsection
that exact arithmetic is used. The effect of roundoff will be discussed in the next
subsection.

An upper bound for the rate of convergence of CGLS can be derived from
the fact that the approximation x^ minimizes the quadratic form

(7.4.5)

For the residual vector s^ = ATr^ produced by CGLS we have

Hence any vector 5 € Tjt can be written

where Pk-i is a polynomial of degree k — I. Hence the residual polynomial Rk
is of degree < k and satisfies .Rfc(O) = 1. If we let H^ denote the set of all such
polynomials, then by the minimizing property (7.4.5)

Let <Jj, t/i, Vi be the singular values and left and right singular vectors of A. Then
we can expand the right-hand sides 6 and ATb as

and for CGLS we have

An upper bound can be obtained by substituting any polynomial Rk 6 Hj. In
particular, taking

we get || 5n 11(^^-1 = 0, which proves that CGLS terminates after at most n
steps. Similarly, if A only has t distinct singular values, then CGLS converges in

7.4. CONJUGATE GRADIENT METHODS 291

at most t steps. Hence, CGLS is particularly effective when A has low rank! If
rank (A) = p, then p steps suffice to get the exact solution. Fewer than n steps
are needed also if in the expansion of 6, 7$ = 0 for some i < n.

Let the set S contain all the nonzero singular values of A and assume that
for some Rk E Tl\. we have

Then it follows that

and since ||s(fc)||(ArA)-i = \\r - r^\\% we get

We can now select a set S on the basis of some assumption regarding the
eigenvalue distribution of A and seek a polynomial Rk € Ilj. such that M& =
maxCT€s |-Rjb(cr2)| is small. A simple choice is to take S = [o^o?] and seek the
polynomial R^ E H^ which minimizes

The solution to this problem is known to be the shifted Chebyshev polynomials
introduced in the semi-iterative methods. Hence, for CGLS, the residual error is
reduced according to

(7.4.6)

From this it follows that an upper bound for the number of iterations k to reduce
the relative error by a factor of e is given by

(7.4.7)

This is the same rate of convergence as for the Chebyshev semi-iterative method
and the second-order Richardson method. However, these methods require that
accurate lower and upper bounds for the singular values of A be known. For the
CG method no such bounds are needed.

Provided that x^ E K(AT), which holds, e.g., if x^> = 0, x^ will converge
to the pseudoinverse solution A^b; see also Hestenes [450, 1975]. In the absence of
rounding errors CGLS will compute the exact pseudoinverse solution in at most
t iterations, where t < n is the number of distinct nonzero singular values of A.

When A is ill-conditioned and the least squares solution x has substantial
components along singular vectors corresponding to small singular values, then

292 CHAPTER 7. ITERATIVE METHODS FOR LEAST SQUARES PROBLEMS

many more than n iterations may be needed. However, more important is that in
some practical applications one is satisfied with approximations that are obtained
in far fewer than n iterations. This is true when A is well-conditioned, or when
the right-hand side is such that the effective condition number of the system
Ax = b is small; see below.

In some least squares problems the underlying model is such that the exact
solution will have only small projections along the singular vector directions
corresponding to small singular values. Let A = UY,VT be the singular value
decomposition of A. Then the least squares solution can be written

Let 6 be an error tolerance for x and assume that ||Q/CTJ|| < <5, i = p + 1,. . . , n.
Then, assuming x^ = 0, the errors along v^ i > p, are sufficiently small at the
start of the iterations. The effective condition number determining the rate
of convergence of the error along the other singular vectors will then be

In discrete ill-posed problems it is often the case that Ke(A, b) <C «(A); see Section
6.7.

7.4.3. The conjugate gradient method in finite precision. There are
many ways, all mathematically equivalent, in which to implement the CG
method for least squares problems. In exact arithmetic they will all generate the
same sequence of approximations, but in finite precision the achieved accuracy
may differ substantially. It is important to notice that an implementation of
the CG method for symmetric positive definite systems should not be applied
directly to the normal equations; cf. the discussion in Paige and Saunders [639,
1982, Sec. 7.1]. Often the following variant of Algorithm 7.4.1, where the residual
of the normal equations s = AT(b — Ax) is recurred instead of r = b — Ax, occurs
in the literature.

ALGORITHM 7.4.2. Initialize

and for k = 0 ,1,2, . . . while 7^ > tol compute

7.4. CONJUGATE GRADIENT METHODS 293

The lack of stability of this implementation has been analyzed in Bjorck,
Elfving, and Strakos [109, 1995]. Assuming that XQ = 0, the only information
about the right-hand side b is in the initialization of po = SQ • = ATb, and
0\v\ = ATb, respectively. For the computed ATb we have

(7.4.8)

and this is almost sharp. The perturbed solution x + 8x corresponding to
c = fl(ATb] satisfies

Subtracting ATAx = ATb and solving for fix we obtain 6x = (ATA}~l6c, and
from this we get the componentwise bound

Taking norms we obtain

Since no reference to b is made in the iterative phase of the algorithm it
follows that roundoff errors that occur in computing the vector ATb cannot be
compensated for. Hence, the best possible error bound has the form given above.
In cases where \\r\\ <C ||6|| this version can be expected to produce much less than
optimal accuracy.

Paige and Saunders [639, 1982] have developed an algorithm LSQR based
on the Lanczos bidiagonalization algorithm, which is described in Section 7.6.1.
LSQR is mathematically equivalent to CGLS but converges somewhat more
quickly when A is ill-conditioned and many iterations have to be carried out.
However, the achievable accuracy with CGLS and LSQR seem to be the same.

7.4.4. Preconditioned CGLS. The normal equations in factored form for
the preconditioned problem are

(7.4.10)

Note that the preconditioned CGLS still minimizes the error functional \\f-r^ \\z,
where r = b — Ax, but over a different Krylov subspace. Hence for the rate of
convergence, we have

(7.4.11)

It is often convenient to formulate the preconditioned method in terms of the
original variables x. For the preconditioned conjugate gradient method (7.4.1)
(PCCGLS) we obtain the following algorithm.

294 CHAPTER 7. ITERATIVE METHODS FOR LEAST SQUARES PROBLEMS

ALGORITHM 7.4.3. PCCGLS. Let x^ be an initial approximation, set

and for k = 0,1,2,... while 7^ > tol compute

7.5. Incomplete Factorization Preconditioned
7.5.1. Incomplete Cholesky preconditioners. Several different precondi-
tioners have been suggested for the least squares problem. We first note that if
we take S = R, where R is the Cholesky factor of ATA, then we have (neglecting
roundoff) K,(AS~l) = K(Qi) = 1. Hence with this choice of preconditioner all the
above iterative methods will converge in one iteration! Thus, a preconditioner 5,
which in some sense approximates R, can be expected to be efficient (or rather,
S~l should approximate R~l).

One approach is then to take S to be an incomplete Cholesky factor of
ATA, i.e., S = R, where

and E is a defect matrix. We want \\E\\ to be small and R sparse.
One way to compute such a matrix R is to use a direct method for sparse
Cholesky factorization, but to only keep those elements in R which lie within
a predetermined sparsity structure. If we allow nonzero elements in R for the set
of index positions (i,j) G P, then the incomplete Cholesky factorization can be
described as follows.

Note that there is no need to explicitly compute the matrix C = ATA. All
that is required is to be able to access one row at a time, and thus the nonzero
elements in the ith row of C can be computed when needed and then discarded.

In the simplest case nonzero elements are only allowed in the positions (i , j)
where Cij ^ 0, PQ = PC- This is called a level-zero incomplete factorization
and for this the structure of R is the same as for the upper triangular part of
ATA. If we let EQ be the corresponding defect matrix we take for the level-one
incomplete factorization PI = PQ UEQ. Higher level incomplete factorizations are
defined recursively.

7.5. INCOMPLETE FACTORIZATION PRECONDITIONERS 295

ALGORITHM 7.5.1. INCOMPLETE CHOLESKY FACTORIZATION.

Positive-definiteness of C = ATA alone is not sufficient to guarantee the
existence of an incomplete factor R, since definiteness may be lost because of
dropped elements. We have the following definition.

DEFINITION 7.5.1. A matrix C = (c^) 6 Rnxn with Cij < 0 for all i ^ j is
an M-matrix if C is nonsingular, and C~l > 0.

The following relationship between positive-definiteness and M-matrices was
given by Stieltjes [756, 1887].

THEOREM 7.5.1. Let C be a real square matrix, with c^j < 0, i ^ j. Then C
is an M-matrix if C is positive definite.

Meijerink and van der Vorst [575, 1977] proved the existence and stability of
the incomplete Cholesky factorization when C is an M-matrix.

THEOREM 7.5.2. If C is a symmetric M-matrix, there exists for every
symmetric set P, such that (i , j) £ P for i = j, a uniquely defined upper
triangular matrix R with r^ = 0 if (i , j } $. P, such that

Manteuffel [563, 1980] extended the existence of incomplete factorizations to
the class of -//-matrices. A matrix C is an .fiT-matrix if the comparison matrix C
is an M-matrix. where

Note that a diagonally dominant matrix is an ^-matrix.
In the general case when C is not an H-matrix the incomplete factorization

may break down because of zero pivots, or the preconditioner may fail to be
positive definite due to the presence of negative pivots. To avoid this, corrections
can be added to the diagonal elements. An off-diagonal element QJ can be deleted
by adding an error matrix EIJ with nonzero elements

296 CHAPTER 7. ITERATIVE METHODS FOR LEAST SQUARES PROBLEMS

If we choose the corrections to the diagonal elements such that caCjj — c^- > 0,
then the matrix Eij is positive semidefinite, and the eigenvalues of the modified
matrix C + EIJ cannot be smaller than those of C. Hence if C is positive definite
and E is the sum of such modifications it follows that also C + E is positive
definite, and the incomplete factorization cannot break down.

Instead of prescribing the sparsity structure of the incomplete factor R one
can discard elements in the Cholesky factorization whose magnitude falls below
a certain preset threshold level. This approach has been considered by Ajiz
and Jennings (see [5, 1984], which also contains a Fortran program). In their
algorithm the elements of R are computed row by row. After rows 1, . . . , i — 1
have been computed the transformed off-diagonal elements in the ith row,

are first computed. Each of these elements c*j is tested for rejection against a
tolerance. If the element is rejected, then additions are made to the corresponding
z'th and j'th diagonal elements. The diagonal modifications are chosen so that
equal relative changes are made to GH and GJJ. After all the off-diagonal elements
in row i have been computed, all additions are made to GH, and we compute

ALGORITHM 7.5.2. INCOMPLETE THRESHOLD CHOLESKY FACTORIZATION.

7.5. INCOMPLETE FACTORIZATION PRECONDITIONERS 297

We emphasize again that there is no need to explicitly compute the matrix
C — ATA, except its diagonal elements. All that is required is to be able to
access C one row at a time, and thus the ith row can be computed and then
discarded.

A choice of r = 0 will retain all elements giving a complete Cholesky
factorization of C. It can also be shown that a choice of r = 1 will cause all off-
diagonal elements to be rejected and give a diagonal preconditioner. In practice,
an intermediate value of r in the interval [0.01,0.02] is recommended by Ajiz and
Jennings [5, 1984].

A problem with the threshold Cholesky factorization is that the amount of
storage needed to hold the factorization for a given T cannot be determined in
advance. One solution is to stop and restart with a larger value of r if the
allocated memory should not suffice. However, a too-large threshold may lead to
slow convergence in the preconditioned CG method.

In the study of direct solution methods for sparse problems the orderings of
the unknowns was of great importance. Several different orderings, e.g., minimum
degree, nested dissection, and reverse CuthilHVIcKee, were used to decrease the
amount of fill-in in the full Cholesky factorization. Duff and Meurant [245, 1989]
have studied the effect of different ordering strategies on the convergence of the
CG method when this is preconditioned by incomplete Cholesky factorizations.
They conclude that the rate of convergence of the CG method is not related to
the number of fill-ins that are dropped, but is almost directly related to \\E\\,
the norm of the residual matrix. Several orderings which give a small number of
fill-ins did not perform well when used with a level-zero or level-one incomplete
factorization.

When a drop tolerance is used to compute the incomplete factorization, good
orderings for direct methods like the minimum degree algorithm seem to perform
well. With these orderings fewer elements need to be dropped; see Munksgaard
[592, 1980].

7.5.2. Incomplete orthogonal decompositions. Alternatively, an incom-
plete Cholesky factor R can be generated by modifying algorithms for orthogonal
decomposition. The aim here is not to reduce the effect of rounding errors, but
possibly to achieve faster convergence in the CG iterations.

An incomplete modified Gram-Schmidt (IMGS) factorization has been de-
scribed by Jennings and Ajiz [487, 1984]. Here a drop tolerance for elements in R
is used, where the magnitude of each off-diagonal element r^ is compared against
a drop tolerance r scaled by the norm of the corresponding column norm ||ai||2,
i.e., elements which satisfy Ir^-l < rdi are dropped, where

(7.5.1)

At each stage in the IMGS decomposition it holds that A = QR, where R is
upper triangular with positive diagonal. Hence we have

298 CHAPTER 7. ITERATIVE METHODS FOR LEAST SQUARES PROBLEMS

and if A has full column rank this algorithm cannot break down.
ALGORITHM 7.5.3. IMGS.

Saad [698, 1988] discusses the implementation of an alternative dropping
criterion, where the PR largest elements in a row of R and the PR largest elements
in a column of Q are kept. It is possible also to prescribe the sparsity structure
of R in advance, as was done in the incomplete Cholesky algorithm. This version
can be obtained from Algorithm 7.5.3 by modifying it so that r^ = 0 when
(i,J)#P-

Wang [818, 1993] (see also Wang, Gallivan, and Bramley [819, 1994]) has
given an alternative, more compact algorithm (CIMGS) for computing the IMGS
preconditioner; see Algorithm 7.5.4. By compressing the information in the
column vectors of A in inner product form, one need not store Q, and an
algorithm similar to a Cholesky factorization is obtained. In rank one update
form, this leads to the algorithm CIMGS given below. It can be shown that
in exact arithmetic this produces the same incomplete factor R as IMGS, and
therefore inherits the robustness of IMGS.

ALGORITHM 7.5.4. CIMGS.

7.5. INCOMPLETE FACTORIZATION PRECONDITIONERS 299

An alternative method for computing an incomplete QR decomposition is to
apply the sequential sparse Givens QR factorization described in Section 6.6.1.
To get an incomplete factorization we avoid performing the rotation to eliminate
any element in A if its magnitude is small compared to the norm of the column
in which it lies. Jennings and Ajiz [487, 1984] use the test

where CLJ is the jth column of A and r is a parameter. The rows aj of A
are processed sequentially, i = 1 ,2 , . . . , m. The nonzero elements in the ith row
a? = (a^i, (J'i2i • • • i ain) are scanned, and each nonzero element with |a^-| > T||aj||2
is annihilated by a Givens rotation involving row j in JR. If elements with
\a,ij < T\\dj\\2 were just neglected, then the final incomplete factor R could
become singular even if ATA is positive definite. Instead, these elements are
rotated into the diagonal element taking

This guarantees that R is nonsingular, and the residual matrix E of ATA =
RTR — E will have zero diagonal elements.

A similar approach is taken by Zlatev and Nielsen [860, 1988]. They compute
a sparse incomplete orthogonal factorization of A, neglecting all elements which
in the course of computations become smaller than a certain drop-tolerance
r > 0. This can sometimes substantially reduce the number of nonzero elements
during the factorization process. The drop-tolerance r = 2~3 is recommended,
and r is successively reduced if the iterations fail to converge. This approach
can be very efficient for some classes of problems, in particular when storage is a
limiting factor.

7.5.3. Preconditioners based on LU factorization. Other choices of
preconditioners result from using sparse direct factorization methods on a square
subblock of A. Assume that A has full column rank and that the rows of A have
been permuted so that

(7.5.2)

where A\ is nonsingular. We can then use A\ as a right preconditioner, and
consider the least squares problem

(7.5.3)

In some sparse least squares problems it may be possible to choose A\ when the
data are collected, e.g., in geodetic computations (see Plemmons [663, 1979]). A
choice for A\ might also result directly from the nature of the problem. In the
general case, A\ and its LU factorization have to be found by a sparse direct
factorization method.

300 CHAPTER 7. ITERATIVE METHODS FOR LEAST SQUARES PROBLEMS

The use of this preconditions was first suggested by Lauchli in [517, 1961].
Lauchli explicitly computes the matrices A^1 and C = A^A^1 by performing
n Jordan elimination steps with complete pivoting, and applies the conjugate
gradient method to the normal equations for problem (7.5.3). Alternatively, he
suggests use of the Chebyshev semi-iterative method (7.2.23), with parameters
estimated from the elements of C

Lauchli did not consider pivoting for sparsity. A more efficient way to
implement the algorithm above is to compute an LU factorization of A using a
sparse LU code. Such codes have been discussed by Gilbert, Moler, and Schreiber
[351, 1992], Duff and Reid [249, 1979], Sherman [719, 1978], and George and Ng
[345,1985]. Such codes can be used to compute an LU factorization of a permuted
A, such that we obtain AI = L\U\.

Let 6 and the residual vector r be partitioned conformally with A. Then the
preconditioned system becomes

The normal equations can be written in augmented form as

from which, by eliminating y, we obtain

(7.5.4)

Evans and Li [282, 1989] suggest solving this system by the CG method. Also
eliminating r2 in (7.5.4), we obtain the symmetric positive definite system

(7.5.5)

which is the system of normal equations for n. The algorithm PCGLS can be
adapted to (7.5.5).

Whenever C or CT multiplies a vector in the algorithm below we interpret
these operations as a product of operators,

Hence we only need a sparse factorization of the matrix A\. In each step matrix-
vector products with A% and A%, and two solutions of n x n linear systems of the
form A±lv and A^Tv are required. The system (7.5.5) has been generalized to
the case of constrained least squares problems in [43, 1988].

7.5. INCOMPLETE FACTORIZATION PRECONDITIONERS 301

ALGORITHM 7.5.5. LU PRECONDITIONED CGLS. Let x^ be an initial
approximation, set

and for k = 0,1,2, . . . while 7^ > tol compute

Solve x from

The convergence of Algorithm 7.5.5 has been studied by Freund [314, 1987].
The eigenvalues of (In + CTC] are

where &i(C} are the singular values of C. It follows that

where
(7.5.6)

Hence, for the rate of convergence we have

(7.5.7)

To get fast convergence we want to have a small. This is achieved if the
blocking (7.5.2) can be chosen so that ||A2||2 is small and A\ well-conditioned,
because a < crmax(yl2) /^min(^-i) • Since C has at most p = min{m —n, n} distinct
singular values, method PCGLS will in exact arithmetic converge in at most
min{p + 1, n} steps. Hence, if p <C n we can expect rapid convergence.

If m > n, then by eliminating r\ = —CTri in (7.5.4) we obtain another
symmetric positive definite system of dimension (m — n} x (m — n),

(7.5.8)

302 CHAPTER 7. ITERATIVE METHODS FOR LEAST SQUARES PROBLEMS

If r2 is known the solution can be obtained from

The system (7.5.8) can be interpreted as the normal equations for

CGLS adapted to solve system (7.5.8) requires about the same storage and work
as the previous algorithm. However, Yuan [849, 1993] shows that the CG method
applied to (7.5.8) can more easily be adapted to weighted and generalized least
squares problems with covariance matrix W ^ /.

With the partitioning (7.5.2) the normal equations for the original system
can be written in augmented form as

(7.5.9)

Several block SOR methods have been developed for solving this system (7.5.9).
A three-block SOR method, using a splitting B = £3 + D% + Us with

was studied in Niethammer, De Pillis, and Varga [601, 1984]. Markham,
Neumann, and Plemmons [565, 1985] proposed a two-block SOR method using a
splitting B = Z/2 + D-z + C/2 with

and showed that this was superior. The two-block SOR iteration can be expressed
in the form
(7.5.10)

where u is the SOR parameter and

Hence the method requires the solution of a block triangular system with
coefficient matrix

7.6. METHODS BASED ON LANCZOS BIDIAGONALIZATION 303

at each step. The method converges for all u; in the interval 0 < u; < 2/(l + a).
The optimal relaxation parameter and the spectral radius of the corresponding
iteration matrix £w. are given by

where a is defined by (7.5.6).
It has been observed by Freund [314, 1987] that both these SOR methods

generate approximations in the same affine Krylov subspace as the conjugate
gradient method preconditioned with A\. The bound (7.5.7) for the precondi-
tioned CGLS method indicates the same asymptotic behavior as the two-block
SOR with optimal u. However since the CG method is optimal, the block SOR
methods will converge more slowly.

Saunders [702, 1979] suggests using Gaussian elimination with row inter-
changes to compute a stable, sparse factorization PrA = LU, where Pr is a per-
mutation matrix, L G Rmxn is unit lower trapezoidal, and U is upper triangular.
As preconditioner, one takes S = U. The rationale for this choice is that any
ill-conditioning in A is usually reflected in [/, and L tends to be well-conditioned.
A preliminary pass through the rows of A are made to select a triangular subset
with maximal diagonal elements. The matrix L is not saved, and subsequent use
of the operator AU~l involves back-substitution with [/and multiplication with
A. This approach has the advantage that often there is very little fill-in in [7,
and hence U is likely to contain fewer nonzeros than A.

7.6. Methods Based on Lanczos Bidiagonalization
7.6.1. Lanczos bidiagonalization. We consider here the Lanczos bidiago-
nalization (LED) of a matrix A 6 Rmxn, ra > n. This has important applications
for computing approximations to the large singular values and corresponding sin-
gular vectors, as well as for solving least squares problems.

In Section 2.5.1 we gave an algorithm for computing the factorization

(7.6.1)

where U = (iii,... ,itm) and V = (t> i , . . . ,i>n) are chosen as products of
Householder transformations and

is upper bidiagonal. An alternative approach to computing this factorization
was given by. Golub and Kahan [370, 1965]. Here the columns of U and V are
generated sequentially, as in the Lanczos process.

304 CHAPTER 7. ITERATIVE METHODS FOR LEAST SQUARES PROBLEMS

If we set U\ — (iti , . . . , un) then from (7.6.1) we have

(7.6.2)

Equating the jth columns in these two equations yields

(7.6.3)

where we have put /?o^o — Ai^n+i = 0. Using the fact that \\Uj\\2 = \\Vj\\2 — 1>
j = l , . . . ,n, we can solve these equations for Uj and Uj+i, respectively, and
obtain

(7.6.4)

(7.6.5)

j — 1,... ,n. (Note that we can always take a.j > 0, (3j > 0.) Starting with an
arbitrary vector v\ G Rn, ||i>i||2 — 1> these equations can be used to recursively
generate the vectors ui, i>2, ^2 , . . . , vn, un and the corresponding elements in £?n,
unless some a.j or j3j vanishes. It is easy to show by an inductive proof that these
vectors are the first n columns of the desired matrices U and V.

Assume that Vj and Wj, j < n, can be computed without breakdown. It then
follows directly from the recurrence relations (7.6.4)-(7.6.5) and Definition 7.4.1
that

Hence v\,..., Vj and u\,..., Uj form an orthogonal basis for these two Krylov
spaces.

The process (7.6.4)-(7.6.5) terminates when ctj — 0 or /3j = 0. (Since there are
at most n orthogonal vectors in Rn it must terminate with /3n = 0 or earlier.) If
it terminates with OLJ = 0, j < n, then from (7.6.4) it follows that AVJ = Pj-\u3 -\
and span {Avi,..., AVJ} C span {iti,..., Uj-\}. Hence this can only happen if
rank (^4) < n. If the process terminates with /3j = 0, then it can be verified that

and thus v(Bj) C &(A).
In the Golub-Kahan bidiagonalization a starting vector v\ € Rn is chosen.

A variant of this bidiagonalization algorithm where instead a starting vector
u\ € Rm is used was described by Paige and Saunders [639, 1982]. This is the
appropriate version for solving least squares problems. After n steps we obtain
a transformation of A into lower bidiagonal form

(7.6.6)

7.6. METHODS BASED ON LANCZOS BIDIAGONALIZATION 305

(Note that Bn is not square.) Again equating columns in (7.6.2) we obtain,
setting (3iVQ = 0, an+ivn+i = 0, the recurrence relations

(7.6.7)

Starting with a given vector u\ € Rm, \\ui\\2 — 1, we can now recursively
generate the vectors vi, 1*2, i>2, • • • , ̂ m+i and corresponding elements in Bn using,
for j = 1,2, . . . , the formulas

(7.6.8)

(7.6.9)

For this bidiagonalization scheme we

We remark that both bidiagonalization algorithms are closely related to the
Lanczos tridiagonalization scheme for the symmetric matrices ATA, AAT, and

There is a close relationship between the above bidiagonalization process and
the Lanczos process applied to the two matrices AAT and ATA. Note that
these matrices have the same nonzero eigenvalues of, i = l , . . . ,n , and that
the corresponding eigenvectors equal the left and right singular vectors of A,
respectively.

The LED process (7.6.8)-(7.6.9) generates in exact arithmetic the same
sequences of vectors 1*1,112, • • • and ^1,^2,... as are obtained by simultaneously
applying the Lanczos process to AAT with starting vector ni = fe/ll^lb? and to
ATA with starting vector v\ = ^4T6/||^4rfe||2.

The bidiagonalization of A is also related to the Lanczos process applied to
the symmetric matrix

(7.6.10)

whose eigenvalues equal ±<Ji, i — 1, . . . ,n, and 0 with multiplicity m — n; see
Theorem 1.2.2. Provided that the Lanczos process is started with the special
vector (b , 0)T it generates in exact arithmetic the special tridiagonal matrix of
dimension (In + 1) x (In + 1),

have

306 CHAPTER 7. ITERATIVE METHODS FOR LEAST SQUARES PROBLEMS

with zero entries in the diagonal. After an odd-even permutation of rows and
columns this matrix equals

where Bn is the matrix in (7.6.6).
The relations between LED and these Lanczos methods are discussed in detail

in Cullum, Willoughby, and Lake [196]. For block versions of LED, see Golub,
Luk, and Overton [374, 1981].

In floating point arithmetic the computed Lanczos vectors will lose orthogo-
nality, and many of the relations in Section 7.6.1 will not hold to full precision.
In spite of this the extreme (largest and smallest) singular values of the trun-
cated bidiagonal matrix B^ 6 R(*H-I)X/C |-en(j ^Q ^e qujte good approximations to
the corresponding singular values of A, even for k <C n. Let the singular value
decomposition of B^ be B^ — Pk+i^lkQ^- Then approximations to the singular
vectors of A are

This is a simple way of realizing the Ritz-Galerkin projection process on the
subspaces JCj(ATA,vi) and JCj(AAT,Avi). The corresponding approximations
are called Ritz values and Ritz vectors. Results on the rate of convergence of the
Ritz approximations are given in Section 7.6.4.

Lanczos algorithms for computing singular values and vectors are given in
Cullum, Willoughby, and Lake [196, 1983] and Berry [67, 1992]. Berry has
developed several codes for the partial singular value decompositions of sparse
matrices; see [66, 1992], [68, 1993], and [69, 1994]. These include single vector or
block Lanczos codes written in Fortran-77, which have been used in information
retrieval problems and in seismic tomography. Typically, the 100-200 largest
singular values and vectors for matrices having up to 30,000 rows and 20,000
columns are required.

7.6.2. Best approximation in the Krylov subspace. We now consider
computing a sequence of approximate solutions to the linear least squares problem

Here we start the recursion (7.6.8)-(7.6.9) with the vector b, take

(7.6.11)

and for j = 1,2, . . . ,

where &j+i > 0 and /3j+i > 0 are determined so that ||itj+i||2 = H^'+ilh — 1-

7.6. METHODS BASED ON LANCZOS BIDIAGONALIZATION 307

After k steps we have computed

and

(7.6.12)

The recurrence relations (7.6.11)-(7.6.12) can now be written in matrix form as

(7.6.13)

(7.6.14)

We now seek an approximate solution x^ £ /C&, /C& =)Ck(ATA,ATb). Since
/Cfc = span(Vfc), we can write
(7.6.15)

Multiplying the first equation in (7.6.14) by y^ we obtain Axk = AVkyk —
Uk+iBkyk, and then from (7.6.13)

(7.6.16)

Using the orthogonality of Uk+i and Vfc it follows that \\b — Axk\\2 is minimized
over all x^ G span(Vfc) by taking yk to be the solution to the least squares problem

(7.6.17)

Note the special form of the right-hand side, which holds because the starting
vector was taken as b. Hence Xk — Vkyk solves minXfc(E;cfc \\Ax — b\\2, and thus
mathematically this method generates the same sequence of approximations as
CGLS. Thus convergence properties for LSQR are the same as for CGLS, and
under appropriate conditions the sequence Xk, k = 1, 2 , . . . , will converge quickly.

7.6.3. The LSQR algorithm. Since Bk is bidiagonal the subproblem
(7.6.17) can be reliably solved by the QR decomposition of B^,

(7.6.18)

where R^ is upper bidiagonal,

(7.6.19)

308 CHAPTER 7. ITERATIVE METHODS FOR LEAST SQUARES PROBLEMS

The matrix Qk is a product of plane rotations Qk — Gk,k+iGk-i,k ''' G\2 chosen
to eliminate the subdiagonal elements /%, • • • , At+i of B^- The solution vector y^
and the residual tk+i can then be obtained from

(7.6.20)

The factorization (7.6.18) need not be computed from scratch in each step.
Instead a recurrence relation is developed as follows. Assume we have computed
the factorization for B^-i- In the next step the fcth column is added, and a plane
rotation Qk = Gk,k+iQk-i determined so that

(7.6.21)

(Note that the rotations Gk-2,k-i, • - • > ^12 do not affect the fcth column.)
If Xk would be formed as Xk = Vkijk as above, then it would be necessary

to save (or recompute) the vectors v i , . . . ,Vk- This can, however, be avoided, as
shown by Paige and Saunders [639, 1982]. They derive a simple recursion for
computing Xk from Xk-i, only storing one extra n-vector. The iterates Xk are
formed as

Here Zk satisfies the lower triangular system R]~Z£ = V^T, and hence the columns
of Zk = (zi,Z2>.. • ,Zk) can be found successively by forward substitution. With
zQ — XQ = 0, we find using Rk in (7.6.19) and identifying the last columns in
ZkRk = Vfc,

Some work can be saved by using the vectors Wk = Pkzk instead.
Summarizing the formulas developed above gives the Algorithm 7.6.1 derived

by Paige and Saunders in 1973. (An independent derivation was later given in
[785, 1976].) Mathematically, LSQR generates the same sequence of approxima-
tions Xk as CGLS. Both methods require access to A only via subroutines for the
matrix-vector products Avk and ATUk- However, LSQR is shown in [639, 1982]
to be numerically more reliable when many iterations are to be carried out and
A is ill-conditioned.

ALGORITHM 7.6.1. LSQR (Paige and Saunders). Initialize

and for i = 1 ,2, . . . repeat until convergence

7.6. METHODS BASED ON LANCZOS BIDIAGONALIZATION 309

The algorithm givrot is defined by Algorithm 2.3.1, and the scalars a; > 0 and
fa > 0 are chosen to normalize the corresponding vector. LSQR requires 3m + 5n
multiplications and storage of two m-vectors it, Av, and three n-vectors x, v, w.
This can be compared to CGLS, which requires 2m + 3n multiplications, two
m-vectors, and two n-vectors. Preconditioned versions of LSQR can be derived
in the same way as for CGLS.

In Paige and Saunders [639, 1982] reliable stopping criteria are developed for
LSQR. Note that LSQR is unusual in not explicitly giving the residual vector
Tk = b — Axk- From r^ = Uk+itk+i (assuming that U£+lUk+i = I, and using
(7.6.20) and (7.6.21)) we get the estimate

A Fortran implementation of LSQR is given in [638, 1982].

7.6.4. Convergence of singular values and vectors. Saad [697] proves the
following result on convergence of the Lanczos method applied to a symmetric
matrix B.

THEOREM 7.6.1. Let the eigenvalues of the real symmetric matrix B be
ordered decreasingly, \i > \z > • • • > Xn. Then the angle ^(^,/C^) between
the exact eigenvector qi associated with \ (i < k) and the kth Krylov subspace
/Q; = span{i>, Bb,..., Bk~lv} satisfies the inequality

(7.6.22)

where T^ is the Chebyshev polynomial, KI — I , and

In particular, for the eigenvector q\ corresponding to the largest eigenvalue
Ai,

(7.6.23)

This inequality can be shown to be optimal in the sense that, given B and &, v
can be chosen so that equality holds.

For the Ritz approximation 9^ to the eigenvalues there are similar bounds.
Here we only give the result for A; = 1.

310 CHAPTER 7. ITERATIVE METHODS FOR LEAST SQUARES PROBLEMS

THEOREM 7.6.2. Let \i be the largest eigenvalue of B with associated
(k)eigenvector q\, and assume that the Ritz approximation \\ > X?. Let 7$ be

defined as in Theorem 7.6.1, and let K\ — 1. Then

(7.6.24)

The above bounds are invariant under shifts of the spectrum. A similar
bound for the Ritz approximation to the smallest eigenvalue follows simply from
applying the above result to —B.

Saad's result can be used to bound the error in the Lanczos bidiagonalization
applied to A. In particular, we can obtain bounds for the errors in the largest
and smallest singular values and the associated left singular vectors u\ and un

by applying Saad's results to AAT and — AAT, respectively. For example, with
the starting vector u\ we obtain from (7.6.23)

(7.6.25)

where

(7.6.26)

and an is the smallest singular value of A. Hence, if the relative gap between
cr^_! and o\ is large, we can expect rapid convergence. For the error in the fcth

(k)computed smallest singular value o~n we obtain the bound

(7.6.27)

where 71 is defined by (7.6.26).

7.6.5. Bidiagonalization and total least squares. We now consider com-
puting an approximate solution to the total least squares (TLS) problem

using the Lanczos process. If <rn > crn+i, then by (4.6.8) the TLS solution is
determined by the left singular vector vn+\ of (A,b). One possibility is to apply
the second Lanczos bidiagonalization in Section 7.6.1 to the augmented matrix
(A, 6). This yields an approximate TLS solution in the Krylov subspace /Cfc. A
slightly different way to proceed is to apply the Lanczos bidiagonalization process
to A, and then, as in LSQR, seek an approximate TLS solution

Then from (7.6.13) and (7.6.14)

7.6. METHODS BASED ON LANCZOS BIDIAGONALIZATION 311

Hence the consistency relation becomes

(7.6.28)

Using the orthogonality of U^+i and Vk it follows that

(7.6.29)

Hence to minimize ||(£lfc,rfe)||f we should take y^ to be the solution to the TLS
subproblem
(7.6.30)

Note the special form of the right-hand side, which holds because the starting
vector was taken as b. To solve this subproblem we need to compute the SVD of
the bordered bidiagonal matrix (Bfc, /?iei). Permuting the last column to first
position this matrix already has bidiagonal form,

(7.6.31)

The SVD of this matrix

can be computed cheaply by the standard implicit QR algorithm. Then we have

Hence, with

the approximate TLS solution is given by x^ = — ̂ fc/7fc € &k- Note that we only
need the last singular vector Qk^k to compute Xk, but the vectors v^ need to be
saved or regenerated when x^ is computed.

The SVD of this matrix can be computed cheaply by the standard implicit
QR algorithm. If the smallest singular value equals ffk^ then it holds that

Then the inequality (7.6.27) gives us a bound for the convergence

312 CHAPTER 7. ITERATIVE METHODS FOR LEAST SQUARES PROBLEMS

7.7. Methods for Constrained Problems
7.7.1. Problems with upper and lower bounds. In Section 5.2 we
considered methods for solving least squares problems where the solution is
subject to inequality constraints. Here we discuss iterative methods for the simple
special case of sparse bounded least squares (BLS) problems,

Although slow convergence is often a problem, iterative methods can be advan-
tageous for problems where A is well-conditioned as well as large and sparse. For
some applications an efficient preconditioner may be found which enhances the
rate of convergence.

Many of the methods proposed are based on solving an equivalent linear
complementarity problem (LCP)

(7.7.1)

where c G Rn is a given vector and B G Rnxn a given symmetric matrix.
These relations constitute the Karush-Kuhn-Tucker optimality conditions of the
quadratic program

(7.7.2)

If we let B = ATA and c = ATb, this is equivalent to the nonnegativity
constrained least squares NNLS problem of Section 5.2.

A good survey of the early history of iterative methods for LCP problems
is given in Cottle [187, 1977]. A more recent survey of iterative methods for
large convex quadratic programming problems is given by Lin and Pang [532,
1987]. Cryer [194, 1971] first proposed an SOR method for minimizing a strictly
convex quadratic function with nonnegativity constraints. Cottle, Golub, and
Sacher [188, 1978] developed a block iterative method for linear complementarity
problems, which is an extension of Cryer's method.

Pang [646, 1982] introduced a general scheme for solving LCP problems based
on the notion of matrix splitting, and subsequently discussed the specialization of
this scheme to strictly convex quadratic programs. If B = M — N is a splitting of
the matrix B, then given an approximation xk, the next iterate xk+^ is determined
as a solution (assumed to exist) to the LCP

(7.7.3)

As an example, with B = L + D + LT', D = diag (di) > 0, the splitting for the
SOR method gives Cryer's method:

(7.7.4)

7.7. METHODS FOR CONSTRAINED PROBLEMS 313

i = l , . . . ,n . For B = ATA and c = ATb this method can be implemented
without forming B and c as shown in Section 7.2.4. Using a block splitting of B
leads to block SOR schemes, where each step requires the solution of small LCP
subproblems.

General convergence results for the basic iterative method (7.7.3) are given
in Lin and Pang [532, 1987]. To state the convergence result for the SOR
iteration we first need some definitions. We say that a matrix B is strictly
copositive if xTBx > 0 for all x > 0, x ^ 0. Further, we say that a method
is weakly convergent if for all vectors c and all initial approximations x° > 0,
any sequence {xk} generated by the method contains at least one accumulation
point; moreover, any such point is a solution to the LCP.

THEOREM 7.7.1. Let B be symmetric with positive diagonal. Then the SOR
method (7.7.4) is weakly convergent for all 0 < o> < 2 if and only if B is strictly
copositive.

Many more references to SOR methods can be found in Lin and Pang
[532, 1987]. Lin and Cryer [531, 1985] develop an alternating direction implicit
algorithm for problems arising from free boundary problems.

The CG method was used by O'Leary [605, 1980] to solve a quadratic
programming problem with lower and upper bounds

(7.7.5)

where B is symmetric and positive definite. The algorithm maintains feasibility
of the iterates xk, while iterating toward the proper sign conditions for y = c—Bx,
i.e., for j = l , . . . , n ,

In each step a subsystem is solved by the CG method.
Iterative methods can be particularly attractive for solving a sequence of

constrained problems with a slowly changing matrix A; see Lotstedt [546, 1984].
Lotstedt gives an active set algorithm for solving time-dependent simulation
of contact problems in mechanical systems. His algorithm is, like O'Leary's
algorithm, based on the use of a preconditioned CG method. The preconditioner
is kept constant during several time steps. The matrix A is usually not of full
column rank. Thus a unique solution does not usually exist, and in a second
stage the unique minimum norm solution is computed.

In Lotstedt's algorithm only one variable is allowed to leave its bound at each
iteration. As in other active set algorithms this may be an undesirable feature
when the number of variables is large and many variables must leave their bounds.
Based on recent developments in optimization with bound constraints Bierlaire,
Toint, and Tuyttens [74, 1991] have developed three new algorithms. The first
is an improvement on the algorithm by Lotstedt, which is more efficient, in
particular for large scale problems. Two other methods are of projected gradient
type, in which the number of active constraints can change more rapidly between

314 CHAPTER 7. ITERATIVE METHODS FOR LEAST SQUARES PROBLEMS

the iterations. Their performance on a wide class of problems is shown to be
superior to the first algorithm.

7.7.2. Iterative regularization. In Section 5.3 we considered the solution
of discretized ill-posed problems by Tikhonov regularization. When two- and
three-dimensional problems of this type are to be solved the direct methods
given there become impractical, and iterative algorithms have to be considered.
Another application for iterative methods are ill-posed problems coming from
convolution-type integral equations. Then the matrix A is a Toeplitz matrix,
and then matrix-vector products Ax and ATy can be computed in O(nlog2n)
multiplications using the fast Fourier transform; see Section 8.4.2.

In iterative methods for computing a regularized solution to

(7.7.6)

regularization is achieved by terminating the iterations before the unwanted
irregular part of the solution has converged. Thus the regularization is controlled
by the number of iterations carried out.

One of the earliest methods of the first class was proposed by Landweber
[514, 1951], who considered the iteration

(7.7.7)

Here a; is a parameter that should be chosen so that uj « l/a^A). The
approximations Xk here will seem to converge in the beginning, before they
deteriorate and finally diverge. This behavior is often called semiconvergence.
It can be shown that terminating the iterations with x^ gives behavior similar to
truncating the singular value expansion of the solution for ai < ̂ ~ fc~1//2. Thus
this method produces a sequence of less and less regularized solutions. Note that
Landweber's method is equivalent to Richardson's stationary first-order method
applied to the normal equations AT(Ax — 6) = 0.

Strand [761, 1974] analyzed the more general iteration

(7.7.8)

where p(\) is a polynomial or rational function of A. We note that a special case
is the iteration suggested by Riley [687, 1956]:

which corresponds to taking p(A) = (A -f A*2)"1. Riley's method is sometimes
called the iterated Tikhonov method; see Section 2.7.2.

Assume that XQ — 0 in the iteration (7.7.8), which is no restriction. Then
the kth iterate can be expressed in terms of the SVD of A. With A = [7£VT,
U = (t t l 5 . . . , um), V = (vi,..., un), we have

(7.7.9)

7.7. METHODS FOR CONSTRAINED PROBLEMS 315

where </? is called the filter factors after k iterations. Prom (7.7.9) it follows
that the effect of terminating the iteration with Xk is to damp the component of
the solution along Vi by the factor </?fc(0f). For example, the filter function for
the Landweber iteration is c^fc(A) — 1 — (1 — u\)k. From this it is easily deduced
that, after k iterations only the components of the solution corresponding to
&i > 1/fc1/2 have converged. This means that a large number of iterations are
usually required, and therefore Landweber's method cannot be recommended in
practice; see Hanke [425, 1991].

We remark that the iteration (7.7.8) can often be performed more efficiently
using the factorized polynomial 1 — Ap(A) = Of=i(l ~ ajty- One iteration in
(7.7.8) can then be performed in d minor steps. This leads to a nonstationary
Landweber method applied to the normal equations ATAx = ATb,

(7.7.10)

Assume that cr\ = /31/2, and that our object is to compute an approximation
to the truncated singular value solution of (7.7.6), with a cut-off for singular values
Qi < &c — aly/2. Then it is well known (see, e.g., Rutishauser [693, 1959]) that
in a certain sense the optimal choice of the parameters in (7.7.10) are 7^ = l/£j,
where
(7.7.11)

are the zeros of the Chebyshev polynomial of degree k on the interval [a, 0\. This
choice leads to a filter function R(t) of degree k with R(0) = 0, and of least
maximum deviation from one on [a,/3]. Thus there is no need to construct p(\)
first in order to get the parameters 7^ in (7.7.10). Note that we have to pick
a in advance, but it is possible to vary the regularization by using a decreasing
sequence a = a\ > 0*2 > #3 > • • •.

Using standard results for Chebyshev polynomials it can be shown that if
a <C (3, then k steps in the iteration (7.7.10)-(7.7.11) reduce the regular part of
the solution by the factor
(7.7.12)

From this it follows that the cut-off oc for this method is related to the number
of iteration steps k in (7.7.10) by k w l/<rc. This is a great improvement over
Landweber's method, for which k « (l/crc)

2.
It is important to note that as it stands the iteration (7.7.10) with parameters

(7.7.11) suffers severely from roundoff errors. This instability can be overcome by
a reordering of the parameters ^; see [19, 1972]. Alternatively, (7.7.10)-(7.7.11)
can be rewritten as a three-term recursion, as in the Chebyshev semi-iterative
method in Section 7.2.5.

The CGLS method (Section 7.4.1) and the mathematically equivalent
Lanczos-type method LSQR (Section 7.6.3) also are well suited for computing
regularized solutions. It was already remarked by Lanczos [512, 1950] that Krylov
subspace methods tend to converge quickly to the solution corresponding to the
dominating eigenvalues (singular values).

316 CHAPTER 7. ITERATIVE METHODS FOR LEAST SQUARES PROBLEMS

CGLS and LSQR both generate a sequence of approximations Xk, k =
0,1,2,..., which minimize the quadratic form ||Ac — b\\2 over the Krylov subspace
Xk = XQ + ̂ k, where

Usually one starts with the smooth initial solution XQ = 0. These methods
often converge much more quickly than competing iterative methods to the
optimal solution of an ill-posed problem. Under appropriate conditions it can
be dramatically faster; see Louis [547, 1987]. However, after the optimal number
of iterations the CG method diverges much more rapidly than other methods.
Hence, as demonstrated by Hanke [425, 1991], it is essential to stop the iterations
after the optimal number of steps.

A strict proof of the regularizing properties has been given by Nemirovskii
[598, 1986]. The CG method and stopping rules are discussed in the excellent
survey by Hanke and Hansen [427, 1994], in Hanke [426, 1995], and in Hansen
[433, 1995]. Unfortunately, a complete understanding of the regularizing effect of
Krylov subspace methods is still lacking.

The difficulty in finding reliable stopping rules for Krylov subspace methods
can partly be solved by combining them with an inner regularizing algorithm.
This was first suggested by O'Leary and Simmons [609, 1981] and independently
by Bjorck [92, 1988], For example, the CGLS method can be applied to the
regularized problem

(7.7.13)

which has to be solved for several values of /i. Bjorck [92, 1988] gives an efficient
implementation based on the Golub-Kahan bidiagonalization (7.6.3)-(7.6.12) in
the LSQR method. The kth approximation is taken to be £fc(p,) = Vkykd^}-,
where yk(p>] is the solution

which is a regularized version of (7.6.11). Since Bk is bidiagonal its singular value
decomposition

can be computed cheaply. Then, for any value of /j, we have

where pu = (Pk}ii are the elements in the first row of P^. Note that the vectors
v i , . . . , V f c need to be saved or recomputed to construct #&(//). However, this
need not be done except at the last iteration step. The problem of choosing the
parameter // by cross-validation is addressed in Bjorck, Grimme, and Van Dooren
[112, 19941-

to

Least Squares Problems with Special Bases

8.1. Least Squares Approximation and Orthogonal Systems
8.1.1. General formalism. Frequently a given function y = f (t) has to be
modeled by a linear combination of basis functions,

(8.1.1)

The n + 1 basis functions <j>j(t), j = 0, . . . , n, could, e.g., be chosen to span the
set of polynomials of degree < n. In such cases an important consideration is the
choice of a proper basis for the space of approximating functions.

We now introduce a formalism related to geometrical ideas, which is conve-
nient in the study of discrete least squares approximation. The set of values of a
function f (x) on a finite grid G = {a:i}£L0 of distinct points can be considered as
a column vector

Thinking about functions as vectors leads us to make the following definitions.
DEFINITION 8.1.1. The inner product of two real-valued functions f and g

defined on {£j}£L0 is denoted by (/, g) and defined by the relation

(8.1.2)

where {iUi}£L0 are given positive weights. The norm of a function f is defined to
be
(8.1.3)

DEFINITION 8.1.2. Two functions f and g are said to be orthogonal if
(/>#) = Q- A sequence of functions </>o,0i , . . . ,(j>n constitutes an orthogonal
system, if (<fo, <j)j) — 0, for i ^ j and ||</>i|| ̂ 0 for all i. If, in addition, ||0i|| = 1
for all i, then the sequence is called an orthonormal system.

We shall study the least squares problem to determine the coefficients
q) ,ci , . . . ,Cn, in (8.1.1) such that the weighted Euclidean norm of the error

317

Chapter 8

318 CHAPTER 8. LEAST SQUARES PROBLEMS WITH SPECIAL BASES

function / — / is minimized,

Note that interpolation is a special case (n = m) of this problem.
THEOREM 8.1.1. If </>o,</>i , - --^n are linearly independent, then the least

squares approximation problem has a unique solution,

which is characterized by the orthogonality property (/* — /) _L (j>j, j — 0,1, . . . , n.
The coefficients Cj, which are called orthogonal coefficients or occasionally
Fourier coefficients, satisfy the normal equations

(8.1.4)

In the important special case when fa, 0i, . . . , 4>n form an orthogonal system, the
coefficients are computed more simply by

(8.1.5)

We remark that the notations used are such that the results can be
generalized with minor changes to also cover the least squares approximation in
the continuous case when / is approximated by an infinite sequence of orthogonal
functions </>o, </>i, ^2, —

8.1.2. Statistical aspects of the method of least squares. One of the
motivations for the method of least squares is that it effectively reduces the
influence of random errors in measurements. Suppose that the values of a function
have been measured in the points XQ, x i , . . . , xm. Let f (x p) be the measured value,
and let f (x p) be the "true" (unknown) function value, which is assumed to be
the same as the expected value of the measured value. Thus no systematic errors
are assumed to be present. Suppose further that the errors in measurement at
the various points are statistically independent. Then we have f (x p) = f (x p) + e,
where
(8.1.6)

where 8 denotes expected value and V variance. The problem is to use the
measured data to estimate the coefficients in the series

where </>o, < ^ > i , . . . , <j>n are known functions, n < m. According to Theorem 1.1.1,
the Gauss-Markoff theorem, the estimates c^, which one gets by minimizing the
sum

8.2. POLYNOMIAL APPROXIMATION 319

have a smaller variance than the values one gets by any other linear unbiased
estimation method. This minimum property holds for estimates not just of the
coefficients Cj, but also for every linear function of the coefficients, for example,
the estimate

of the value /(a) at an arbitrary point a.
Suppose now that ap — a for all p and that the functions {</>j}"=0 form an

orthonormal system with respect to the inner product

Then the least squares estimates are rf = (/, (f>j), j = 0 , . . . , n.
By Corollary 1.1.1, the covariance matrix of the estimates c*- equals cr2/.

Hence c*j and c*k are uncorrelated if j ^ k:

and the variance of the estimate dj is cr2. From this it follows that

As an average, taken over the grid of measurement points, the variance of the
smoothed function values is

Between the grid points, however, the variance can in many cases be significantly
larger.

8.2. Polynomial Approximation
8.2.1. Triangle family of polynomials. By a polynomial of degree k we
mean a function of the form

If the leading coefficient a^^ ^ 0, then the polynomial is called a genuine kih-
degree polynomial. The class of fcth-degree polynomials contains all polynomials
of lower degree as a special case. A constant is a polynomial of degree zero.

320 CHAPTER 8. LEAST SQUARES PROBLEMS WITH SPECIAL BASES

A sequence of polynomials Po,pi,... ,pn where a^k 7^ 0, k = 0,1, . . . ,n, is
called a triangle family of polynomials. The coefficients of such a family form a
nonsingular lower triangular matrix A = (aij}, 0 < j < i < n. It follows that the
monomials l ,x, . . . ,xn of x can be expressed recursively and uniquely as linear
combinations of £>o>Pi> • • • ,Pn-,

where the matrix of coefficients B = (b^j] = A"1. Hence the polynomials of any
triangle family can be used as basis functions in the approximation problem.

8.2.2. General theory of orthogonal polynomials. By a family of or-
thogonal polynomials we mean here a triangle family of polynomials, which is
an orthogonal system with respect to the inner product (8.1.2) for some given
weights. Expansions of functions in terms of orthogonal polynomials are very
useful. They are easy to manipulate, have good convergence properties, arid
give a well-conditioned representation of a function (with the exception of weight
distributions on certain grids).

We shall now prove some results from the general theory of orthogonal
polynomials.

THEOREM 8.2.1. Let {xi}^L0 e (a, 6) be distinct points and {wi}^0 a set of
weights. Then there is an associated triangle family of orthogonal polynomials
^o,^!, ••• ?0m- The family is uniquely determined apart from the fact that the
leading coefficients AQ,A\,A-2,... can be given arbitrary nonzero values. The
orthogonal polynomials satisfy a three-term recursion formula, 0_i(#) = 0,
00 (x) = AQ,

(8.2.1)

where an = An+\/An, and

(8.2.2)

// the weight distribution is symmetric about x = (3, then (3n = (3 for all n.
Proof. Suppose that the (f>j have been constructed for 0 < j < n, (j)j ^ 0

(n > 0). We now seek a polynomial of degree n +1 with leading coefficient An+i,
which is orthogonal to 0o, 0i, . . . , 0n-

Since {0j}™_0 is a triangle family, 0n-fi can be written in the form

(8.2.3)

Hence 0n+i is orthogonal to 0j, j < n, if and only if

8.2. POLYNOMIAL APPROXIMATION 321

But since (<fo, <f>j) = 0 for i ^ j, we have

which determines the coefficients cnj uniquely. From the definition of inner
product it follows that (xcj)n,4>j) = (</>n,#(/>j). But x<j)j is a polynomial of degree
j + 1, and is therefore orthogonal to (f)n if j + 1 < n. So cnj- = 0, j < n — 1, and
thus

This has the same form as (8.2.1) if we set

To get the expression in (8.2.2) for 7n we take the inner product of equation
(8.2.3) with <t>n+i- Using orthogonality we get (0n+i,0n+1) = an((j)n+i,X(j)n). If
we decrease all indices by one we obtain

Substituting this in the expression for 7n gives the desired result.

The proof of the above theorem leads to a way to construct the coefficients
fin, 7n? and the values of the polynomials </>n at the grid points for n — 1,2,3, —
This is called the Stieltjes procedure. Note that for n — m, the constructed
polynomial must be equal to

because this polynomial is zero at all the grid points, and thus orthogonal to all
functions on the grid. Since ||<£m+i|| = 0, the construction stops at n = m. This
is natural, since there cannot be more than m + 1 orthogonal (or even linearly
independent) functions on a grid with m + 1 points.

8.2.3. Discrete least squares fitting. By Theorem 8.1.1 the best approxi-
mating polynomial of degree k is given by

(8.2.4)

Note the important fact that the coefficients GJ are independent of k. Hence
approximations of increasing degree can be recursively generated as follows.
Suppose that <fo, i — 1,. . . , ft, and the least squares approximation pk of degree k
have been computed. In the next step the coefficients Pk,1k are computed from
(8.2.2) and then &k+i by (8.2.1). The next approximation of / is then given by

(8.2.5)

322 CHAPTER 8. LEAST SQUARES PROBLEMS WITH SPECIAL BASES

The coefficients {/3j,jj} in the recursion formula (8.2.1), and the orthogonal
functions (j)j at the grid points can be computed using the Stieltjes procedure
together with the orthogonal coefficients {GJ} for j = 1,2,. . . , n. The total work
required is about 4mn flops, assuming unit weights and that the grid is symmetric.
If there are differing weights, then about mn additional operations are needed;
similarly, mn additional operations are required if the grid is not symmetric. If
the orthogonal coefficients are determined simultaneously for several functions
on the same grid, then only about mn additional operations per function are
required. (In the above, we assume m ^> 1, n ^> 1.) Hence the procedure is
much more economical than the general methods based on normal equations or
QR factorization, which all require O(mn2) flops. The computational advantage
of the Stieltjes approach was pointed out by Forsythe [304, 1956].

Since 4>k+i is orthogonal top^, an alternative expression for the new coefficient
is
(8.2.6)

Mathematically this formula is equivalent to the classical formula. However, in
practice the computed (f>k-\-i will gradually lose orthogonality to the previously
computed <j>j. As pointed out in Shampine [718, 1975] there is an advantage
in using the formula involving the residual r^ instead of the classical, because
cancellation will take place already when computing the residual, and the
coefficient will be more accurately determined. Indeed, when using the classical
formula one sometimes finds that the residual norm increases when the degree of
the approximation is increased! Note that the difference between the two variants
discussed here is similar to the difference between the classical and modified
Gram-Schmidt orthogonalization methods.

The Stieltjes procedure may also be sensitive to propagation of roundoff
errors. An alternative procedure for computing the recurrence coefficients in
(8.2.1) and the values of the orthogonal polynomials has been given by Gragg
and Harrod [395, 1984]; see also Boley and Golub [126, 1987]. In this procedure
these quantities are computed from an inverse eigenvalue problem for a certain
symmetric tridiagonal matrix. Reichel [676, 1991] has compared this scheme with
the Stieltjes procedure and shown that the Gragg-Harrod procedure generally
yields better accuracy.

When the coefficients Cj in the orthogonal expansion (8.2.4) are known, then
the easiest way to compute values of / is to use the following algorithm.

ALGORITHM 8.2.1. CLENSHAW'S RECURSION FORMULA. Let p(x) denote
the polynomial in (8.2.4), where (f>k(x) are orthogonal polynomials which satisfy
the recursion (8.2.1). Then p(x) = A)2/o, where yn+2 = yn+i = 0> and

(8.2.7)

Using expansions in orthogonal polynomials also has the very important
advantage of avoiding the difficulties with ill-conditioned systems of equations
which occur even for moderate n when the coefficients in a polynomial Y^j=o cjx^
and the function values are given on an equidistant grid. For equidistant data,

8.2. POLYNOMIAL APPROXIMATION 323

the Gram polynomials {Pn)m}J£_0
 are °f interest. These polynomials are

orthogonal with respect to the inner product

The recursion formula is

where the coefficients are given by (n < m)

When n <C m1/2, these polynomials are well behaved. However, when
n > m1/2, they have very large oscillations between the grid points, and a
large maximum norm in [—1,1]. Related to this is the fact that when fitting
a polynomial to equidistant data, one should never choose n larger than about
2m1/2.

The Gram polynomials can be much larger between the grid points if
j » m1/2. Set

Thus <J2 is an average variance for fn(&} taken over the entire interval [—1,1]. The
following values were obtained for the ratio k between cr2 and cr2(n -f l)/(m + 1)
when m = 41:

n I 5 10 15 20 25 30 35

k 1.0 1.1 1.7 26 7-103 1.7 • 107 8 • 1011

These results are related to the recommendation that one should choose n <
2m1/2 when fitting a polynomial to equidistant data. This recommendation seems
to contradict the Gauss-Markov theorem, but in fact it only means that one gives
up the requirement that the estimate be unbiased. Still it is remarkable that this
can lead to such a drastic reduction of the variance of the estimates /^.

8.2.4. Vandermonde-like systems. A Vandermonde matrix is a matrix
of the form

324 CHAPTER 8. LEAST SQUARES PROBLEMS WITH SPECIAL BASES

where {afc}jj=0 is a sequence of n + 1 distinct real numbers. Vandermonde
matrices are related to the polynomial problem of finding a polynomial p(x) =
anx

n + an-ix
n~1 H h ao that interpolates the data (a;, /«), i = 0,1,..., n. It

is easily shown that the coefficient vector satisfies the linear system

which is called a dual Vandermonde system. The primal system

arises when determining weights Xi in quadrature formulas when moments bi are
given.

Because of the structure present in Vandermonde systems they can be solved
by special algorithms in O(n2) multiplications and O(n) memory. Such an
algorithm was developed by Bjorck and Pereyra [115, 1970]. This algorithm
corresponds to the decomposition of the inverse V~l into a product

of bidiagonal upper and lower triangular matrices.
Vandermonde matrices can be generalized by allowing confluency of some of

the points c^. The corresponding dual system then corresponds to a Hermite
interpolation problem. The fast algorithms for the primal and dual systems can
be generalized to this case; see Bjorck and Elfving [107, 1973].

Vandermonde systems are often extremely ill-conditioned because they are
related to the interpolation problem with a monomial basis. An interesting
phenomenon is that the Bjorck-Pereyra algorithm is often able to achieve more
accuracy in the computed solution than standard (and more expensive) methods
like Gaussian elimination with partial pivoting. It was observed in [115] that
"some problems, connected with Vandermonde systems, which traditionally have
been considered to be too ill-conditioned to be attacked, actually can be solved
with good precision." Higham [455, 1987] gives an error analysis, which identifies
a class of Vandermonde systems for which the relative error in the computed
solution can be bounded by a quantity independent of «(V). This holds if the
points {aA;}/J=o are positive and monotonically ordered,

and the components of the right-hand side have interchanging signs, that is,
(-1)% > 0.

The remarkable numerical stability obtained for Vandermonde systems has
counterparts for other classes of structured matrices. Boros, Kailath, and
Olshevsky [128] have derived fast algorithms and shown similar stability results
for Cauchy matrices of the form

8.2. POLYNOMIAL APPROXIMATION 325

Interestingly, the class of systems which can be solved with their algorithm
includes Hilbert linear systems with sign-interchanging right-hand side.

Another generalization of Vandermonde matrices is obtained by replacing the
monomials by a family of orthonormal polynomials {0i}o that satisfy a three-term
recurrence relation of the form (8.2.1), where 9j / 0 for all j. The corresponding
matrix V with elements i^ = ^(ojj), 0 < i,j < n is called a Vandermonde-
like matrix. The interest in this generalization stems from the fact that these
Vandermonde-like matrices generally have much smaller condition numbers than
the classical Vandermonde matrices. Fast algorithms for Vandermonde-like
systems have been given by Higham [457, 1988] and Reichel [676, 1991].

Consider now a rectangular Vandermonde matrix V 6 Rnxn consisting of the
first n < m columns of V(a$,ai,... ,am}. It is natural to ask if fast methods
exist for solving the primal Vandermonde least squares problem

(8.2.8)

Demeure [214, 1989], [215, 1990] has given an algorithm of complexity 5mn +
7n2/2 -f O(m) for computing the QR factorization of V, which can be used to
solve problem (8.2.8). However, since this algorithm forms VTV it is likely to be
unstable.

Reichel [676, 1991] gives a fast algorithm based on the Rutishauser-Gragg-
Harrod scheme for computing the QR decomposition of transposed Vandermonde-
like matrices. This can be used to solve overdetermined dual Vandermonde-like
systems in the least squares sense in order O(mn) operations.

8.2.5. Chebyshev polynomials. The Chebyshev polynomials are perhaps
the most important family of orthogonal polynomials. Their properties can be
derived by rather simple methods.

Consider the easily verified formula

This formula can be used recursively to express cos(n0) as a polynomial in cos </>.
If we set x = cos0, and thus </> = arccosx, then we obtain a triangle family of
polynomials, the Chebyshev polynomials, defined for — 1 < x < 1, by the formula
Tn(x) = cos(narccosx), n > 0. Hence the Chebyshev polynomials satisfy the
recursion formula, TQ(X) = 1,

(8.2.9)

The leading coefficient of Tn(x) is 2n~l for n > 1 and 1 for n — 0. The symmetry
property Tn(—x] = (—l}HTn(x) also follows from the recurrence formula.

Tn(x) has n zeros in [—1,1] given by the Chebyshev abscissae,

(8.2.10)

326 CHAPTER 8. LEAST SQUARES PROBLEMS WITH SPECIAL BASES

and n + 1 extrema

These results follow directly from the fact that |cos(n0)| has maxima for </>J. =
kw/n and cos(nfa) = 0 for fa = (2k + l)7r/(2n).

The Chebyshev polynomials TO, Ti,.. . , Tn_i are orthogonal with respect to
the inner product

where {xk} are the Chebyshev abscissae (8.2.10) for Tn. Then for 0 < i,j < n,
we have (Ti, Tj) = 0, if i ̂ j, and

(8.2.11)

If one intends to approximate a function in the entire interval [—1,1] by
a polynomial and can choose the points at which the function is computed or
measured, then one should choose the Chebyshev abscissae. Using these points,
interpolation is a fairly well-conditioned problem in the entire interval, and one
can conveniently fit a polynomial of lower degree than m, if one wishes to smooth
errors in measurement. The risk of disturbing surprises between the grid points
is insignificant.

For interpolating a function in the Chebyshev abscissae we get the following
method.

ALGORITHM 8.2.2. CHEBYSHEV INTERPOLATION. Let p(x) denote the
interpolation polynomial in the Chebyshev points Xk given by (8.2.10). Then
by Theorem 8.2.1 we have

where ||T;||2 is given by (8.2.11).
Expansions in the terms of Chebyshev polynomials are an important aid

in the study of functions on the interval [—1,1]. If one is working in terms
of a parameter t which varies in the interval [a, 6], then one should make the
substitution, t = 5(0 + b) + ^(a — b)x (t e [a, b] &• x 6 [—1,1]) and work with the
Chebyshev points

The remainder term in interpolation using the values of the function / at the
points £j, i = 0,1,..., n — 1, is equal to

8.2. POLYNOMIAL APPROXIMATION 327

Here £ depends on x, but one can say that the error curve behaves for the
most part like a polynomial curve y — a(x — XQ)(X — xi) • • - (x — xn_i). A
similar oscillating curve is also typical for error curves arising from least squares
approximation. The zeros of the error are then about the same as the zeros for
the first neglected term in the orthogonal expansion. This contrasts sharply with
the error curve for Taylor approximation at XQ, whose usual behavior is described
approximately by the formula y = a(x — xo)n~l.

Prom the minimax property of the Chebyshev polynomials it follows that
placing the interpolation points X Q , X I , . . . , xn-i in the Chebyshev abscissae will
minimize the maximum magnitude of q(x] = (x — XQ)(X — x\] • • • (x — xn-i) in
the interval [—1,1]. This corresponds to choosing q(x) = Tm+i(x)/2m.

For computing p (x) , one can use Clenshaw's recursion formula; see the
previous section. (Note that ot^ = 2 for k > 0, but OJQ = 1.) Occasionally
one is interested in the partial sums of the expansion. For example, in order to
smooth errors in measurement it can be advantageous to break off the summation
before one has come to the last term. If the values of the function are afflicted
with statistically independent errors in measurement with standard deviation <r,
then (see the next section) the series can be broken off when for the first time

If the measurement points are the Chebyshev abscissae, then no difficulties
arise in fitting a polynomial to the data. The Chebyshev polynomials have in this
case a magnitude between the grid points which is not much larger than their
magnitude at the grid points. The average variance for f^(oi) becomes the same
on the interval [—1,1] as on the grid of measurement points, cr2(n + l)/(m + 1).

The choice of n, when m is given, is a question of compromising between
taking into account the systematic error, i.e., the truncation error which decreases
when n increases, and taking into account the random errors which grow as n
increases. In the Chebyshev case, \GJ\ decreases quickly with j if / is a sufficiently
smooth function, while the part of tij which comes from errors in measurement
varies randomly with magnitude about cr(2/(ra + I))1 • The expansion should
then be broken off when the coefficients begin to "behave randomly." The
coefficients in an expansion in terms of the Chebyshev polynomials can hence
be used for filtering away the "noise" from the signal, even when a is initially
unknown.

EXAMPLE 8.2.1. Fifty-one equidistant values of a certain analytic function
were rounded to four decimals. In Figure 8.2.1 a semilogarithmic diagram is
given which shows how c£| varies in an expansion in terms of the Chebyshev
polynomials of the above data. For j < 20, approximately, the contribution due
to noise dominates the contribution due to signal. Thus it is sufficient to break
off the series at n = 20.

328 CHAPTER 8. LEAST SQUARES PROBLEMS WITH SPECIAL BASES

FlG. 8.2.1. Coefficients in Chebyshev expansion of a rounded analytic function.

8.3. Discrete Fourier Analysis
8.3.1. Introduction. According to a mathematical theorem first given by
Fourier (1758-1830), every function /(£) with period 2w/u can, under certain
very general conditions, be expanded into a series of the form

(8.3.1)

(By a function with period p, we mean here that f (t + p) = /(£), V£.)
Fourier analysis is one of the most useful and valuable tools in applied

mathematics. It has application in the modeling of phenomena which are exactly
or approximately periodic in time or space. An important area of application
is in digital signal processing, which is used in interpreting radar and sonar
signals. Another is statistical time series, which are used in communications
theory, control theory, and the study of turbulence.

Frequently the continuous Fourier analysis cannot be directly applied, because
the functions to be modeled are known only on a discrete (equidistant) set of
sampling points. Then a discrete version of the Fourier analysis has to be used.
This also has applications to problems that are not a priori periodic.

An expansion of the form of (8.3.1) can be expressed in many equivalent ways.
If we set dk = ffcsinvfc, b^ = r^cos^, then using the addition theorem for the
sine function we can write

(8.3.2)

where a^, bk are real constants. Another form, which is often the most convenient,
can be found with the help of Euler's formulas,

8.3. DISCRETE FOURIER ANALYSIS 329

(i = %/—!). Then one gets

(8.3.3)

where for k = 1,2,3,...,

(8.3.4)

In the rest of this section we shall study approximations of a function / with
period 2?r with partial sums of the form of these series. We call these finite
sums trigonometric polynomials. If a function of t has period p, then the
substitution x = 2irt/p transforms the function to a function of x with period
2/r. We assume that the function can have complex values, since the complex
exponential function is convenient for manipulations.

8.3.2. Orthogonality relations. The discrete inner product of two complex-
valued functions / and g of period 2?r is defined in the following way (the bar
over g indicates complex conjugation):

(8.3.5)

Note that an equidistant grid G = {xa}^=0 is used. We have

THEOREM 8.3.1. With the inner product (8.3.5) the following orthogonality
relations hold for the functions <pj(x] = e^x, j = 0, ±1, ±2,

Proof. Set h = 2?r/(M + 1), xa = ha,

This is a geometric series with ratio q = el^~k^h. If (j — k)/(M -f 1) is an integer,
then q - I and the sum is M + 1. Otherwise q ̂ 1, but qM+l = e^'-fc)27r = I.
From the summation formula of a geometric series

If one knows that the function / has an expansion of the form / = Y^fLo cj^j^
it follows formally that

330 CHAPTER 8. LEAST SQUARES PROBLEMS WITH SPECIAL BASES

since (4>j, 4>k) = 0 for j ^ k. Thus, changing k to j, we have

(8.3.6)

THEOREM 8.3.2. Fourier Analysis, Discrete Case. Every function, defined on
the grid G = {xa}a=^> xa = 27ra:/(M+l), can be interpolated by a trigonometric
polynomial, which can be written in the form

(8.3.7)

If the sum in (8.3.7) is terminated when j < k + 0, then one obtains the
trigonometric polynomial which is the best least squares approximation, among
all trigonometric polynomials with the same number of terms, to f on the grid.

Proof. The expression for GJ was formally derived previously (see (8.3.6)),
and the derivation is justified by Theorem 8.1.1. The function /(#) coincides on
the grid with the function f*(x} = Y^jLocje^Xi because

The functions / and /* are not identical between the grid points. Functions
of several variables can be treated analogously by taking one variable at a time.

Notice that the calculations required to compute the coefficients GJ according
to (8.3.6), Fourier analysis, are of essentially the same type as the calculations
needed to tabulate f*(x) for x = 27ra/(M + 1), a = 0 ,1, . . . ,M, when the
expansion in (8.3.7) is known, so-called Fourier synthesis.

8.3.3. The fast Fourier transform. The application of discrete Fourier
analysis to large scale problems became feasible only with the invention of a
new family of algorithms called fast Fourier transforms (FFT), which reduced
the computational complexity to O(ATlog AT), where N is the number of points.
The FFT was developed in 1965 by Cooley and Tukey [185, 1965], but related
ideas can be found in many previous works; see Cooley [183, 1990].

Consider the problem of computing the discrete Fourier coefficients {cy}^^1

for a function

whose values are known at the points xp = 27T/3/N, /? = 0, 1, . . . , TV—1. According
to Theorem 8.3.2, with obvious changes in notation, we have

(8.3.8)

Let tjj = e~
2m/N ke j-ne ^jj rooj. Qf unity, UN = 1. Then we can rewrite the

problem as follows. For j = Q,1,... ,N — 1 compute

8.3. DISCRETE FOURIER ANALYSIS 331

Here GJ is expressed as a polynomial of degree N — 1 in a;-7. This can also be
written as a matrix-vector multiplication

where FJV € RNxN is the Fourier matrix.
If implemented in a naive way this discrete Fourier transform will take AT2

operations. With the FFT, if N = r\r<2 • • • rp, one needs only N(r\ + r^ +
1- rp) operations (one operation equals one complex addition and one complex

multiplication) to compute all GJ.
Consider the special case N = 2k and set

Then the sum in (8.3.8) can be split into an even and an odd part:

(8.3.9)

Let a be the quotient and j\ the remainder when j is divided by ^JV, i.e.,
j = a^N + j'i. Then, since LJN — 1,

Thus if, for ji = 0 ,1 , . . . , ^N — 1, we set

where (u2)iN = 1, then by (8.3.9)

The computation of (f)(ji) and VO'i) means that one does two Fourier analyses
with T^N = 2k~l terms instead of one with N = 2k terms. The number
of operations required to compute {GJ}, when {(f)(ji)} and {^(ji)} have been
computed, is N — 2fc, assuming that the powers of uj are precomputed and
stored. The same idea can now be applied to the two Fourier analyses. One then
gets four Fourier analyses, each of which has ^N terms; these can be further
divided, etc. (This approach is called divide-and-conquer.)

332 CHAPTER 8. LEAST SQUARES PROBLEMS WITH SPECIAL BASES

Denote by pk the total number of operations needed to compute the coefficient
when N = 2k. Reasoning as above, we have

Since po = 0, it follows by induction that pk < k-2k = N-\og2 N. Hence, when N
"is a power of two, the FFT solves the problem with at most JV-log2 N operations.

Van Loan [800, 1992] gives a unified treatment of FFT algorithms based on
the factorization of the Fourier matrix F/y into a product of sparse matrix factors.
There are many excellent surveys of the use of the discrete Fourier transform, e.g.,
Cooley, Lewis, and Welsh [184, 1969] and Henrici [447, 1979].

8.4. Toeplitz Least Squares Problems
8.4.1. Introduction. A Toeplitz matrix T = (Uj) is a matrix with constant
entries along each diagonal, i.e., iy- = tj-i. Hence a rectangular Toeplitz
T e Rmxn matrix has the form

and is denned by the n+m+1 values of £_ m , . . . , to,..., £n. Here we are interested
in special methods for solving Toeplitz linear systems Tx = 6, or the Toeplitz
linear least squares problem
(8.4.1)

where T has full column rank. Such problems arise in many applications, e.g.,
digital signal processing and linear prediction problems. They are important
in signal restoration, acoustics, and seismic exploration. The dimensions of the
Toeplitz matrices in such applications are often large, and the size 10,000 x 2,000
not uncommon. Hence there is a great need for special fast methods for solving
problem (8.4.1). In large problems storage requirements are also important. The
original data in problem (8.4.1) only requires 2m + n + 1 storage. However, if
standard factorization methods are used, at least n(n+l)/2+n storage is needed.

Many special methods have been devised to solve Toeplitz linear systems and
least squares problems. Bunch has [133, 1985] investigated the stability properties
of classical and fast algorithms for solving Toeplitz systems. More recent surveys
can be found in Brent, [131, 1988], and in Bojanczyk, Brent, and de Hoog [122,
1993). Several methods of complexity O(mn) exist for solving (8.4.1). There also
exist methods which only require O(m log n) operations. These have been called
"superfast," although n may have to be quite large (n > 256) for them to be
more efficient than the O(n2) methods. Since the numerical stability properties
of superfast methods are generally either bad or unknown, these methods will
not be discussed any further here.

8.4. TOEPLITZ LEAST SQUARES PROBLEMS 333

A Hankel matrix is a Toeplitz matrix in which the rows have been reversed:

Hence the methods discussed in this section apply also to Hankel linear systems
and Hankel least squares problems.

8.4.2. QR decomposition of Toeplitz matrices. In order to find fast and
stable methods for solving the Toeplitz least squares problem it is natural to
consider computing the QR decomposition of the Toeplitz matrix T. The first
such O(mn) method was given by Sweet [768, 1984], and later generalized to
the block case [769]. However, this method has been shown to be unstable.
Bojanczyk, Brent, and de Hoog [121, 1986] developed an O(ran) algorithm
(BBH) for computing Q and R. Here R is implicitly derived from the cross-
product of T and its transpose and therefore will fail on ill-conditioned cases.
An equivalent algorithm was derived by Chun, Kailath, and Lev-Ari [168, 1987]
using a different approach. However, none of these methods perform well on ill-
conditioned problems. Park and Elden [648, 1993] give modifications to improve
the accuracy of the BBH algorithm.

Cybenko [199, 1987] has developed an algorithm for computing R~l and
Q 6 Rmxn based on the so-called lattice algorithm. This algorithm requires that
all submatrices T:>i:i, i = 1,... , n, be well-conditioned. This requirement is not
always satisfied in applications. Note that column pivoting would destroy the
Toeplitz structure, and thus is not a possible solution. Hansen and Gesmar [434,
1993] discuss a modification of Cybenko's algorithm where a block step is used
to skip over linearly dependent columns.

We now describe the basic idea behind the BBH algorithm. Using the Toeplitz
structure T can be partitioned as

(8.4.2)

where TO is a submatrix of T, u and v are n — 1 dimensional vectors, v, u are
ra — 1 dimensional vectors, and t$ and tm_n are scalars. Let R be the Cholesky
factor of TTT, and partition R as

(8.4.3)

where r\\ and rnn are scalars.
Setting RTR = TTT and using the partitioning (8.4.2) and (8.4.3), we get

(8.4.4)

334 CHAPTER 8. LEAST SQUARES PROBLEMS WITH SPECIAL BASES

and eliminating the term T^TQ we obtain

which is the basic relation used by the BBH algorithm. This shows that if Rt was
known, Rb could be computed by one Cholesky updating step and two Cholesky
downdating steps; see Section 3.3. Moreover, since updating and downdating can
proceed by rows the first k rows of Rb can be obtained from the first A: rows of
Rb. But the kth row of Rb defines the (k + l)th row of Rt, and the first row of R
can be obtained from (8.4.4)

It follows that (8.4.6) provides a method for computing R one row at a time.
This algorithm requires ran2 + 6n2 multiplications.

There are several ways to proceed when computing the least squares solution.
Nagy [594, 1993] has modified the BBH algorithm to compute .R"1, QTb and the
solution x in a linear amount of storage and 2ran+14n2 multiplications. Another
possibility is to use the seminormal equations RTRx = TTb and to compute the
solution as x = R~lR~T(TTb). This can also be implemented in linear storage
(see Nagy [594]) and, if TTb is computed by FFT, reduces the cost to ran + 9n2

multiplications. For ill-conditioned problems the solution can be improved by
iterative refinement.

8.4.3. Iterative solvers for Toeplitz systems. The Toeplitz structure
implies that the matrix-vector product Tx for a given vector x reduces to a
convolution problem, and can be computed via the fast Fourier transform in
O(nlogn) operations. This is true also when T is a rectangular Toeplitz matrix;
see O'Leary and Simmons [609, 1981].

Let the matrix T be expanded into a square circulant matrix

From (8.4.4) and (8.4.5) we see that

and

(8.4.5)

(8.4.6)

8.4. TOEPLITZ LEAST SQUARES PROBLEMS 335

where p = m + n — 1 and T corresponds to the (1, l)-block. The eigenvectors
of the circulant TC are known to be the Fourier vectors, i.e., the columns of the
matrix F = (fjk) € Rpxp, where

The eigenvalues are given by the components of the Fourier transform of its first
column
(8.4.7)

and the matrix TC can be factorized as

(8.4.8)

To form the product of y = Tx, where x € Rn+1 is an arbitrary vector, we pad
x with zeros and calculate

This can be done with two FFTs, and one multiplication with a diagonal matrix,
and hence the cost of this is O(n Iog2 ri) operations. Since the transpose of T is
also a Toeplitz matrix, a similar scheme can be used for the fast computation of
TV.

Using the fast multiplication described here we obtain fast implementations
of several of the iterative methods for least squares problems in Chapter 7. Of
particular interest is Algorithm 7.4.1 (CGLS), for which in step k we only need
to compute TpW and TTr^k+l\

8.4.4. Preconditioners for Toeplitz systems. Nagy [593, 1991] has stud-
ied circulant preconditioners for the least squares problem

where each block Tj, j = 1,..., g, is a square Toeplitz matrix. (Note that if T
itself is a rectangular Toeplitz matrix, then each block Tj is necessarily Toeplitz.)

First a circulant approximation Cj is constructed for each block Tj. Each
circulant matrix Cj, j = l , . . . ,g , is diagonalized by the Fourier matrix F,
Cj = FA.jFH, where Aj is diagonal and FH denotes the conjugate transpose
of the complex Fourier matrix F. The eigenvalues Aj can be found from the
first column of Cj; cf. (8.4.7). Hence the spectrum of Cj, j = 1,..., g, can be
computed in O(mlogn) operations by using the FFT.

The preconditioner for T is then defined as a square circulant matrix C, such
that

(8.4.9)

336 CHAPTER 8. LEAST SQUARES PROBLEMS WITH SPECIAL BASES

Thus CTC is also circulant, and its spectrum can be computed in O(mlogn)
operations. Now C is taken to be the symmetric positive definite matrix defined
by

(8.4.10)

The preconditioned (PCGLS) method, Algorithm 7.4.3, is then applied with
S = C and A = T. Notice that to use the preconditioner C we need only
know its eigenvalues, since the right-hand side of (8.4.10) can be used to solve
linear systems involving C and CT.

The convergence rate of the conjugate gradient algorithm depends on the
distribution of the singular values of the matrix TC~l. It is shown by Chan,
Nagy, and Plemmons [150, 1994] that if the generating functions of the blocks Tj
are 27r-periodic continuous functions and if one of these functions has no zeros,
then the singular values of the preconditioned matrix TC~l are clustered around
1, and the PCGLS converges very quickly. It turns out that the class of 2?r-
periodic continuous functions contains a class of functions which arises in many
signal processing applications.

Similar ideas can be applied to problems where the least squares matrix T
has a general Toeplitz block or block Toeplitz structure; see Chan, Nagy, and
Plemmons [149, 1993]- Hence the method can be applied also to two-dimensional
or multidimensional problems. For the construction of circulant preconditioners
for constrained and weighted least squares problems, see Jin [490, 1996].

8.5. Kronecker Product Problems
Sometimes least squares problems occur which have a highly regular block
structure. Here we consider least squares problems of the form

(8.5.1)

where the A<8> B is the Kronecker product of A <E Rmxn and B € RpX9. This
product is the mp x nq block matrix,

Problems of Kronecker structure arise in several application areas including signal
and image processing (Elden and Skoglund [277, 1982]), photogrammetry, and
multidimensional approximation; see Fausett and Fulton [289, 1994]. Grosse
[402, 1980] describes a tensor factorization algorithm and how it applies to least
squares fitting of multivariate data on a rectangular grid. Such problems can be
solved with great savings in storage and operations. Since often the size of the
matrices A and B is large, resulting in models involving several hundred thousand
equations and unknowns, such savings may be essential.

8.5. KRONECKER PRODUCT PROBLEMS 337

We first state some elementary facts about Kronecker products. Prom the
definition it immediately follows that

A further important relation, which is not so obvious, is given next.
LEMMA 8.5.1. If the ordinary multiplications AC and BD are defined, then

(8.5.2)

Proof. See Lancaster and Tismenetsky [511, 1985, Chap. 12.1]

As a corollary of this lemma we obtain the identity

assuming all the multiplications are defined. We can also conclude that if P and
Q are orthogonal n x n matrices then P ® Q is an orthogonal n2 x n2 matrix.
Further, if A and B are square and nonsingular, then it follows that A <g> B is
nonsingular and

This generalizes to pseudoinverses, as shown in the following lemmas.
LEMMA 8.5.2. Let A^ and B^ be the pseudoinverses of A and B. Then

Proof. The theorem follows by verifying that X — A^ <g> B^ satisfies the four
Penrose conditions in Theorem 1.2.11.

We now introduce a function closely related to the Kronecker product, which
converts a matrix into a vector. For a matrix C = (ci,C2,. . . ,cn) € Rmxn we
define

(8.5.3)

Hence vec (C) is the vector formed by stacking the columns of C into one long
vector. We now state a result which shows how the vec-function is related to the
Kronecker product.

338 CHAPTER 8. LEAST SQUARES PROBLEMS WITH SPECIAL BASES

LEMMA 8.5.3. IfAeRmxn, B € Rpx?, andd = vec(D), where D e Rpxm,
then
(8.5.4)

If A and 5 are square and nonsingular the solution of the linear system
(A <g> B)x = d can be written

where D is the matrix which satisfies d — vec(D). Using Lemma 8.5.3 the
solution to the Kronecker least squares problem (8.5.1) can be written

(8.5.5)

This allows a great reduction in the cost of solving (8.5.1). For example, if A
and B are both ra x n matrices the cost of computing the least squares solution
is reduced from 0(ra2n4) to O(mn2).

In some areas the most common approach to computing the least squares
solution to (8.5.1) is from normal equations. If we assume that both A and B
have full column rank, then we can use the expressions

However, because of the instability associated with the explicit formation of ATA
and BTB, an approach based on orthogonal decompositions should generally be
preferred. If we have computed the complete QR decompositions of A and £?,

with R\,R<2 upper triangular and nonsingular, then from Section 2.7.3 we have

These expressions can be used in (8.5.5) to compute the pseudoinverse solution
of problem (8.5.1) even in the rank deficient case.

We finally note that the singular values and singular vectors of the Kronecker
product A®B can be simply expressed in terms of the singular values and singular
vectors of A and B.

LEMMA 8.5.4. Let A and B have the singular value decompositions

Then we have

Proof. The proof follows from Lemma 8.5.3.

Nonlinear Least Squares Problems

9.1. The Nonlinear Least Squares Problem
9.1.1. Introduction. In this chapter we discuss the solution of nonlinear
least squares problems. Methods for solving such problems are iterative, and
each iteration step usually requires the solution of a related linear least squares
problem. The nonlinear least squares problem is closely related to the problem
of solving a nonlinear system of equations, and is a special case of the general
optimization problem in Rn. Here we mainly emphasize those aspects of the
nonlinear least squares problem which derive from its special structure. A general
treatment of theory and algorithms for solving systems of nonlinear equations
is given by Ortega and Rheinboldt [613, 1970]. Methods for unconstrained
optimization and nonlinear least squares are discussed in the books by Gill,
Murray, and Wright [360, 1981], Dennis and Schnabel [223, 1983], and Fletcher
[299, 1987]. Other surveys of methods for the nonlinear least squares problems
are given by Dennis [219, 1977] and Fraley [312, 1988], A very useful guide to
software is given by More and Wright [591, 1993].

The unconstrained nonlinear least squares problem is to find a global
minimizer of the sum of squares of m nonlinear functions,

(9.1.1)

Here each rt(x), i = l , . . . ,m, is a nonlinear functional defined over Rn.
Clearly, if all ri(x] were linear in £, then (9.1.1) would be a linear least squares
problem. For m = n (9.1.1) includes as a special case the solution of a system of
nonlinear equations.

One important area in which nonlinear least squares problems arise is in data
fitting. Here one attempts to fit given data (yi,ti), i = l , . . . , m , to a model
function g(x, t). If we let ri(x] represent the error in the model prediction for the
ith observation,
(9.1.2)

we are led to a problem of the form (9.1.1). The choice of the least squares
measure is justified here, as for the linear case, by statistical considerations; see

339

Chapter 9

340 CHAPTER 9. NONLINEAR LEAST SQUARES PROBLEMS

Bard [35, 1974]. This assumes that only yi are subject to errors and the values U
of the independent variable t are exact. The case when there are errors in both
yi and ti is discussed in Section 9.4.3.

9.1.2. Necessary conditions for local minima. The basic methods for
the nonlinear least squares problem require derivative information about the
components ri(x). In the following we assume that ri(x) are twice continuously
differentiate. The Jacobian of the residual vector r(x) = (ri(x),... , rm(z))T is

i = 1,. . . , m, j = 1,. . . , n, and the Hessian matrices of Ti(x) are

Then the first and second derivatives of f (x) = \r(x)Tr(x) — \\\r(x)\\\ are given
by
(9.1.3)

and

(9.1.4)

where Gi(x) = Gi(x)T. The special forms of V/(a?) and V 2 f (x) can be exploited
by methods for the nonlinear least squares problem.

A necessary condition for x* to be a local minimum of f (x) is that

Any point which satisfies this condition will be called a critical point. We now
establish a necessary condition for a critical point x* to be a local minimum of
f (x) . We follow a geometrical approach by Wedin [825, 1974], and interpret the
problem of minimizing f (x) as the problem of finding a point on the n-dimensional
surface z = r(x) in Rm closest to the origin.

Assuming that J(x] has" full column rank we have J^(x}J(x] = /n, where
J^(x) is the pseudoinverse of J(x}. Then we can rewrite (9.1.4) as

(9.1.5)

where

(9.1.6)

The symmetric matrix
(9.1.7)

9.1. THE NONLINEAR LEAST SQUARES PROBLEM 341

FIG. 9.1.1. Geometry of the data fitting problem for m = 2, n = 1.

is called the normal curvature matrix of the surface z = r(x), with respect to
the normal vector w. Let the eigenvalues of K be

The quantities pi = l//q, Ki ^ 0, are the principal radii of curvature of the
surface, with respect to the normal w.

If J(x*) has full column rank, it follows that V2/(or*) = JT(I - ^K)J is
positive definite and x* is a local minimum if and only if / — ̂ K is positive
definite at x*, which is the case when

(9.1.8)

at x*. If 1 — 7«i < 0, then f (x) has a saddle point at z*; if 1 — 7«n < 0, then
f (x) even has a local maximum at x*.

In the case of data fitting, when ri(x) is given by (9.1.2), it is more illustrative
to consider the surface

The problem is then to find the point on this surface closest to the observation
vector y e Rm; cf. Draper and Smith [232,1981, pp. 500-501]. This is illustrated
in Figure 9.1.1 for the simple case of m — 2 observations and only a single
parameter x. Since in the figure we have 7 = \\r\\2 < p, it follows that 1—7«i > 0,
which is consistent with the fact that x* is a local minimum.

9.1.3. Basic numerical methods. There are two different ways to view
problem (9.1.1). One could think of this problem as arising from an overdeter-
mined system of nonlinear equations r(x) = 0. It is then natural to approximate
r(x) by a linear model in a neighborhood of a given point xc,

(9.1.9)

342 CHAPTER 9. NONLINEAR LEAST SQUARES PROBLEMS

One can then use the linear least squares problem

(9.1.10)

to derive an improved approximate solution to (9.1.1). This approach, which only
uses first-order derivative information about r(z), leads to the Gauss-Newton and
the Levenberg-Marquardt methods, which are discussed in Section 9.2.

In the second approach the problem (9.1.1) is viewed as a special case of an
optimization problem, and a quadratic model

(9.1.11)

of f (x) is used. This approach uses second derivative information about r(x).
The minimizer of fc(%) is given by

(9.1.12)

where Q(x) is given by (9.1.4). This is equivalent to Newton's method applied
to problem (9.1.1), for which the local convergence rate usually is quadratic.
Methods which explicitly or implicitly take second derivatives into account are
discussed in Section 9.3.

Note that the Gauss-Newton method (9.1.10) can be thought of as arising
from neglecting the term Q(xc) in (9.1.12). From (9.1.4) it follows that this term
is small if the quantities

are small. This will be the case if either ri(x) are only mildly nonlinear at xc

or the residuals ri(xc), i = l , . . . , ra, are small. In this case the behavior of
the Gauss-Newton method can be expected to be similar to that of Newton's
method. In particular, for a consistent problem r(x*) = 0 at the solution, hence
the local convergence rate will be quadratic for both methods. For moderate-to-
large residual problems the local convergence rate for the Gauss-Newton method
can be much inferior to that of Newton's method. However, the cost of computing
the ran2 second derivatives Gi(x] can be prohibitively large.

For curve fitting problems the function values r^(x) = yi — g(x,ti) and
derivatives can be obtained from the single function p(x, t). If p(x, t] is composed,
e.g., of simple exponential and trigonometric functions, then second derivatives
can sometimes be computed cheaply. Also, if J is sparse, so often is Q, and the
cost for computing Q(x], with analytical derivatives, may in this case not be very
large.

9.2. Gauss-Newton-Type Methods
The Gauss-Newton method for problem (9.1.1) is based on a sequence of
linear approximations of r(x). If Xk denotes the current approximation, then

9.2. GAUSS-NEWTON-TYPE METHODS 343

a correction pk is computed as a solution to the linear least squares problem

(9.2.1)

and the new approximation is Xfc+i = x& +Pk- This linear least squares problem
can be solved using the QR decomposition of J(xk).

The Gauss-Newton method as described above has the advantage that it
solves linear problems in just one iteration and has fast local convergence on
mildly nonlinear and nearly consistent problems. However, it may not even be
locally convergent on problems that are very nonlinear or have large residuals.
This is illustrated by the following example due to Powell; see also Fletcher [299,
1987]-

EXAMPLE 9.2.1. Consider the problem with ra = 2,n — 1 given by

where A is a parameter. The minimizer of r\(x) + r\(x] is x* = 0T It can be
shown that for the Gauss-Newton method,

and therefore this method is not locally convergent when |A| > 1.

9.2.1. The damped Gauss—Newton method. To get a more useful
method we take instead

where p^ is the solution to (9.2.1) and a^ is a step length to be determined. The
resulting method, which uses pk as a search direction, is called the damped
Gauss—Newton method, and the vector p^ the Gauss-Newton direction. When
J(xk] is rank deficient p^ should be chosen as the minimum norm solution of the
linear least squares problem (9.2.1)

(9.2.2)

The Gauss-Newton direction has the following two important properties.
1. The vector p^ is invariant under linear transformations of the independent

variable x.

2. If Xk is not a critical point, then p^ is a descent direction, i.e., for
sufficiently small a > 0, ||r(a;A; + apjOlh < IH#fc)||2-

The first property is obviously desirable. The second property follows from the
relation
(9.2.3)

where

344 CHAPTER 9. NONLINEAR LEAST SQUARES PROBLEMS

is the orthogonal projection onto the range of J(xk\, see Section 1.2.5. If Xk is not
a critical point, then J(xk)Tr(xk) ^ 0, and using the singular value decomposition
(SVD) of J (x k) , it can be shown that this implies Pjkr(xk) ^ 0. This proves that
Pk is a descent direction.

To make the damped Gauss-Newton method into a viable algorithm the step
length ak must be chosen carefully. Two common ways of choosing o^ are:

1. Take a^ to be the largest number in the sequence 1, ̂ , j , . . . for which the
inequality

holds (notice that —J(xk)pk — Pjk
r(xk}}- This is the Armijo-Goldstein step

length principle; see Ortega and Rheinboldt [613, 1970, p. 491] and Gill, Murray,
and Wright [360, 1981, p. 100].

2. Take ctk to be the solution to the one-dimensional minimization problem

(9.2.4)

A theoretical analysis of these two step length principles has been given by Ruhe
[689, 1979]. Note that the exact line search in (9.2.4) cannot be implemented in
a finite number of steps.

Often a step length ak is chosen to be an approximate solution of (9.2.4). A
special line search algorithm for nonlinear least squares has been developed by
Lindstrom and Wedin [536, 1984]. In this, an approximation p(a) of the curve
f (a) = r(xk + Oipk) in Rm is determined, and then ||p(a)||2 is minimized as a
function of a. One possibility is to choose p(a) to be the unique circle (in the
degenerate case, a straight line) determined by the conditions

where 0:0 is a guess of the step length.
To improve the rate of convergence of the damped Gauss-Newton method

one should switch to another search direction, preferably the negative gradient
gk = — J(xk}Tr(xk), when either the angle between the Gauss-Newton directions
Pk and pfc becomes large, or the reduction achieved in ||r(x)||2 is small.

Since the damped Gauss-Newton method always takes descent steps, this
method is locally convergent on almost all nonlinear least squares problems,
provided that the line search is carried out appropriately. In fact, it is usually
globally convergent. However, the rate of convergence may still be slow on large
residual problems and very nonlinear problems.

An implementation of the Gauss-Newton method that uses the minimum
norm solution (9.2.2) when J(xk) is rank deficient must include some strategy
for estimating the rank of J (x k) . Such strategies have been discussed for the QR
and the SVD in Section 2.7. Usually an underestimate of the rank is preferable
except when f (x) is actually close to an ill-conditioned quadratic function. The
following example illustrates that the determination of rank may be critical.

9.2. GAUSS-NEWTON-TYPE METHODS 345

EXAMPLE 9.2.2. (See Gill, Murray, and Wright [360, 1981, p. 136].) Let
J = J(xk) and r = r(xk) be defined by

where e <C 1 and ri and r% are of order unity. If J is considered to be of rank two
then the search direction is p^ = si, whereas if the assigned rank is one, p^ = $2,
where

Clearly the two directions si and $2 are almost orthogonal, and si is almost
orthogonal to the gradient vector JTr.

9.2.2. Local convergence of the Gauss-Newton method. We now
discuss the local convergence properties of the Gauss-Newton method. This
has been analyzed by Wedin [825, 1974] and Ramsin and Wedin [674, 1977]. One
step of the undamped method (i.e., taking a = 1) can be written as a fixed point
iteration

where the first derivative of F(x) equals

using the notations of (9.1.6). The asymptotic rate of convergence p is bounded
by the spectral radius of the matrix VF(x*) at the solution x*. But VF(rc) has
the same nonzero eigenvalues as the matrix

where K is the normal curvature matrix (9.1.7). Hence,

(9.2.5)

In general, convergence is linear, but if 7 = ||r(aJ*)ll2 = 0 we have superlinear
convergence. From (9.2.5) our earlier conjecture follows, that the local rate of
convergence of the undamped Gauss-Newton method is fast when either

1. the residual norm 7 = ||K#*)||2 *s small, or

2. r(x) is mildly nonlinear, i.e., ||Gi||, i — 1,... ,ra, are small.

We showed in Section 9.1.2 that if x* is a saddle point of /(#), then KI > I .
Hence, using the undamped Gauss-Newton method, one is generally repelled
from a saddle point. This is an excellent property, since saddle points are not at
all uncommon for nonlinear least squares problems.

346 CHAPTER 9. NONLINEAR LEAST SQUARES PROBLEMS

The rate of convergence for the undamped Gauss-Newton method can be
estimated during the iterations from

(9.2.6)

When the estimated p is greater than 0.5 (say) then one should consider switching
to a method using second derivative information, or perhaps evaluate the quality
of the underlying model.

The asymptotic rate of convergence for the Gauss-Newton method with exact
line search has been shown by Ruhe [689, 1979] to be

(9.2.7)

Hence it holds that p = p if Kn — — KI and p < p otherwise. We also have that
7/^1 < 1 implies p < 1, i.e., we always get convergence close to a local minimum.
This is in contrast to the undamped Gauss-Newton method, which may fail to
converge to a local minimum.

Sometimes one encounters nonlinear least squares problems which are ill
behaved in that the radius of curvature at a critical point satisfies I/K, <C ||r(z*)||2-
Then many insignificant local minima may exist. For such problems it seems
reasonable to demand that the surface r(x) is smoothed before one attempts to
solve the problem. Wedin [825, 1974] has shown that the estimate (9.2.6) of the
rate of convergence of the Gauss-Newton method is often a good confirmation of
the quality of the underlying model. Deuflhard and Apostolescu [226, 1980] call
problems for which divergence occurs "inadequate problems." Hence it seems
important that algorithms for nonlinear least squares problems also attempt to
estimate the maximal curvature.

9.2.3. Trust region methods. At an intermediate point x^, where the
Jacobian matrix does not have full column rank, there is still a possibility that
the damped Gauss-Newton method can have difficulties proceeding. This can
be avoided either by taking second derivatives into account (see Section 9.3)
or by further stabilizing the damped Gauss-Newton method to overcome this
possibility of failure. Methods using the latter approach were first suggested by
Levenberg [526, 1944] and Marquardt [568, 1963], and are now known as trust
region methods.

In trust region methods a search direction pk is computed as the solution to
the regularized problem

(9.2.8)

where /^ > 0 is the parameter which limits the size of pk- Note that p^ is well
denned by (9.2.8) also when J(xk) is rank deficient. The problem (9.2.8) can
equivalently be written

9.2. GAUSS-NEWTON-TYPE METHODS 347

As jiifc —> oo, IJpfclh -* 0 and for small ̂ the direction pk becomes parallel to the
steepest descent direction J(xk]Tr(xk).

It follows from the discussion in Section 5.3 that (9.2.8) is related to the least
squares problem with quadratic constraint

(9.2.9)

If the constraint in (9.2.9) is not binding then //& = 0 in (9.2.8), and otherwise
Hk > 0. The set of feasible vectors p, ||p||2 < 6k in (9.2.9) can be thought of as a
region of trust for the linear model

For a general description of trust region methods for nonlinear optimization, see
More [587, 1983].

Many different strategies have been used to choose fik in (9.2.8). A careful
implementation of the Levenberg-Marquardt algorithm as a scaled trust region
algorithm has been described by More [586, 1978]. More considers an iteration
of the following form.

ALGORITHM 9.2.1. TRUST REGION ALGORITHM. Let XQ, A), and <50 be given
and set /3 e (0,1). For k = 0,1, 2 , . . . ,

1. Compute ||r(xfc)||2.

2. Determine pk as a solution to the subproblem

where Dk is a diagonal scaling matrix.

3. Compute the model prediction of the decrease in ||r(xfc)||2 as

4. Compute the ratio

If pk > (3 then set Xk+i — Xk -t- p^; otherwise set Xk+i = Xk-

5. Update the scaling matrix D^ and 6k-

In the algorithm the ratio pk measures the agreement between the linear
model and the nonlinear function. An iteration with pk > /3 is successful, and
otherwise the iteration is unsuccessful. After an unsuccessful iteration 6k is
reduced. More chooses the scaling Dk such that the algorithm is scale invariant,
i.e., the algorithm generates the same iterations if applied to r(Dx) for any
nonsingular diagonal matrix D.

348 CHAPTER 9. NONLINEAR LEAST SQUARES PROBLEMS

More proves that if r(x) is continuously differentiable, r'(x) uniformly
continuous, and J(xk) bounded, then the algorithm will converge to a critical
point. The algorithm has also proven to be very successful in practice and is
included in the software package MINPACK-1, which is available from netlib.
For a user's guide see More, Hillstrom, and Garbow [588, 1980].

Convergence of trust region methods may still be slow for large residual or
very nonlinear problems. In the next section we discuss methods using second
derivative information which are somewhat more robust but also more complex.

9.3. Newton-Type Methods
9.3.1. Introduction. The analysis in previous sections has shown that meth-
ods of Gauss-Newton type may converge slowly for large residual problems and
strongly nonlinear problems. These methods can also have problems at points
where the Jacobian is rank deficient. When second derivatives of /(#) are avail-
able, Newton's method can be used to overcome these problems. Newton's
method is based on the quadratic model (9.1.11) of f (x) at the current approx-
imation, and the critical point of this quadratic model is chosen as the next
approximation.

It can be shown (see Dennis and Schnabel [223, 1983, p. 229]) that Newton's
method is locally quadratically convergent as long as

(9.3.1)

is Lipschitz continuous around x* and V2/(x*) is positive definite.
To get global convergence, Newton's method is used with a line search

algorithm, Xk+i = x^ + ot^Pki where the search direction pk is determined from

(9.3.2)

Note that the matrix J (x k) T J (x k) + Q(xk) must be positive definite in order
for pk to be a guaranteed descent direction. The linear system (9.3.2) should be
solved by a method which is also stable when J(xk] is ill-conditioned or rank
deficient.

9.3.2. A hybrid Newton method. Newton's method is not often used
because the second derivative term Q(xk) is rarely available at a reasonable cost.
However, a number of methods have been suggested that partially take the second
derivatives into account, either explicitly or implicitly.

Gill and Murray [358, 1978] suggest regarding J(xk)TJ(xk) as a good estimate
of the Hessian in the invariant subspace corresponding to the large singular values
of J(xk). In the complementary subspace the second derivative term Q(xk) is
taken into account. Let the SVD of J(xk) be

9.3. NEWTON-TYPE METHODS 349

where S = diag (<TI, . . . , crn), a\ > 02 > • • • > crm is the matrix of singular values.
The equations (9.3.2) for the Newton direction pk = Vqk can then be written

(9.3.3)

where Qk = Q(#fc), and s denotes the first n components of the vector s^ =
UTr(xk).

The singular values are now split into two groups, £ = diag (Si, £2),

where EI contains the "large" singular values. If we partition V,qk, and s
conformably, then the first p equations in (9.3.3) can be written

If the terms involving Qk are neglected compared to Efgi we get q\ = — EJ^SI-
If this is substituted into the last (n — p) equations we can solve for q<i from

The approximate Newton direction is then given by

The split of the singular values is updated at each iteration, and the idea is to
maintain r close to n as long as adequate progress is made.

There are several alternative ways to implement the method by Gill and
Murray [358, 1978]. First, Qk could be used explicitly, or a finite difference
approximation to QkV-2 could be obtained by differencing the gradient along the
columns of V^. A third option is to use a quasi-Newton approximation to Q^,
similar to the methods described below.

9.3.3. Quasi-Newton methods. In quasi-Newton optimization routines an
approximation to the second derivative matrix (9.3.1) is built up successively
from evaluations of the gradient. Many of those are known to possess superlinear
convergence.

Let Sk-i be a symmetric approximation to the Hessian at step k. It is then
required that the updated approximation Sk approximate the curvature of / along
xk ~~ %k-\-> that is,

(9.3.4)

which is called the quasi-Newton relation. Further, S^ should differ from Sk-i
by a matrix of small rank. The search direction pk for the next step is then
computed from

As a starting approximation, So = J(XQ)TJ(XQ) is usually recommended.

350 CHAPTER 9. NONLINEAR LEAST SQUARES PROBLEMS

Ramsin and Wedin [674, 1977] gave the following recommendations on the
choice between Gauss-Newton and quasi-Newton methods, which can be the basis
for a hybrid method with automatic switching between the two methods. The
rule is based on the observed rate (9.2.6) of convergence p for the Gauss-Newton
method.

1. For p < 0.5 Gauss-Newton is better.

2. For globally simple problems quasi-Newton is better for p > 0.5.

3. For globally difficult problems Gauss-Newton is much faster for p < 0.7,
but for larger values of p quasi-Newton is safer.

The straightforward application of quasi-Newton methods to the nonlinear
least squares problem outlined above has not been very efficient in practice.
One reason is that these methods disregard the information in J(xk), and often
J(xk)T J(xk) is the dominant part of V2/(#fc). A successful approach has been
taken by Dennis, Gay, and Welsch [220, 1981], who approximate V2/(#fc) by
Sk = J(xk)TJ(xk) + Bk, where Bk is a quasi-Newton approximation of the term
Q(xk)- The quasi-Newton relation now becomes

(9.3.5)

where Bk is required to be symmetric. It can be shown (cf. Dennis and Schnabel
[223, 1983, pp. 231-232]) that a solution to (9.3.5) which minimizes the change
from Bk-i is given by the update formula

(9.3.6)

where Sk = Xk — Xk-i- This update was proposed by Dennis, Gay, and Welsch
[220, 1981], and is used in a subroutine NL2SOL. Two new hybrid quasi-Newton
methods, which are superlinearly convergent under mild conditions, have been
developed by Fletcher and Xu; see [300, 1987].

The NL2SOL code has several interesting features. It maintains the approx-
imation Bk and adaptively decides whether to use it; i.e., it switches between a
Gauss-Newton and a quasi-Newton method. For both methods a trust region
strategy is used to achieve global convergence. In each iteration NL2SOL com-
putes the reduction predicted by both quadratic models and compares with the
actual reduction f(xk+i) — f(xk)- For the next step the model is used whose
predicted reduction best approximated the actual reduction. Usually this causes
NL2SOL to initially use Gauss-Newton steps until the information in Sk becomes
useful.

A different way to obtain second derivative information has been developed
by Ruhe [689, 1979], who uses a nonlinear conjugate gradient acceleration of the
Gauss-Newton method with exact line searches. This method achieves quadratic
convergence and thus gives much faster convergence than the Gauss-Newton

9.4. SEPARABLE AND CONSTRAINED PROBLEMS 351

method on difficult problems. When exact line search is used, then the conjugate
gradient acceleration amounts to a negligible amount of extra work. However, for
small residual problems exact line search is a waste of time and then a simpler
damped Gauss-Newton method is superior.

Extending the quasi-Newton method to large sparse problems has proved to
be difficult. A promising approach has been suggested by Toint [777, 1987] for
certain types of large, "partially separable" nonlinear least squares problems.
A typical case included is when every function ri(x) only depends on a small
subset of the set of n variables. Then the Jacobian J(x) and the element
Hessian matrices Gi(x) will be sparse, and it may not be infeasible to store
approximations to all Gi(x), i = l , . . . ,m. An implementation is available as
the Fortran subroutine VE10 in the Harwell Subroutine Library; see Toint [778,
1987]-

9.4. Separable and Constrained Problems
9.4.1. Separable problems. A nonlinear least squares problem mina- \\r(x) \\2
is said to be separable if the solution vector x can be partitioned so that a
subproblem

is easy to solve. Many practical nonlinear least squares problems are separable.
In the following we restrict ourselves to the particular case when r(y, z) is

linear in y,
(9.4.2)

Then the minimum norm solution to (9.4.1) is

where F^(z) is the pseudoinverse of F(z). It follows that the original separable
problem can be written
(9.4.3)

Since

where PF(Z) = F(z)F(z)^ is the orthogonal projector onto the range of F (z) ,
algorithms based on (9.4.4) are often called variable projection algorithms.
A particularly simple case is when r(y, z) is linear in both y and z so that we
also have
(9.4.4)

EXAMPLE 9.4.1. Consider the exponential fitting problem

Here the model is nonlinear in the parameters z\ and Z2i but linear in y\ and 3/2-
Given values of z\ and z% the linear subproblem is easily solved.

(9.4.1)

352 CHAPTER 9. NONLINEAR LEAST SQUARES PROBLEMS

Special-purpose algorithms for separable nonlinear least squares problems
were first considered by Scolnik [716, 1972]. A variable projection algorithm
using a Gauss-Newton method applied to the problem (9.4.3) was developed by
Golub and Pereyra [378, 1973]. Kaufman [498, 1975] proposed a simplification of
this algorithm in which two steps are merged into one.

ALGORITHM 9.4.1. VARIABLE PROJECTION ALGORITHM. Let (yk,Zk)T be
the current approximation. Then proceed in the following steps.

1. Solve the linear subproblem

rrj

and put yk+i = yk + %, zfe+i = (yk+i,zk) .

2. Compute the Gauss-Newton direction pk at xk+i, i.e., solve

where C(xk+i) is the Jacobian matrix

3. Take Xk+i = %k + &kPk and go to 1.

In step 2 we have used the fact that by (9.4.2) ry(yk+i, zk) — F(zk). Further,
we have

where

Note that when r(i/, z) is also linear in y, it follows from (9.4.4) that

Ruhe and Wedin [691, 1980] have given a general analysis of different
algorithms for separable problems. They show that the Gauss-Newton algorithm
applied to (9.4.3) and the original problem both give the same asymptotic
convergence rate. In particular, both converge quadratically for the zero residual
problem. It is important to note that, in contrast, the naive algorithm of
alternatively minimizing \\r(y, z)\\2 over y and z always converges linearly. They
also prove that the simplified algorithm of Kaufman has roughly the same
asymptotic convergence rate as the one proposed by Golub and Pereyra.

Golub and LeVeque [372, 1979] have extended the variable projection method
for solving problems in which it is desired to fit more than one data vector with

9.4. SEPARABLE AND CONSTRAINED PROBLEMS 353

the same nonlinear parameter vector, though with different linear parameters for
each right-hand side.

The special algorithms for separable problems have the same local rate of
convergence as the ordinary Gauss-Newton applied to the full problem. However,
one important advantage is that no starting values for the linear parameters have
to be provided. For example, in the Kaufman algorithm we can take yo = 0 and
determine y\ = 6yi in the first step. This seems to make a difference in the first
steps of the iterations. Krogh [510, 1974] reports that the variable projection
algorithm solved several problems which methods not using separability could
not solve.

To be robust the algorithms for separable problems must employ stabilizing
techniques for the Gauss-Newton steps similar to those described in Sections
9.2.2 and 9.2.3. It is fairly straightforward to implement these techniques for the
Kaufman algorithm.

9.4.2. General constrained problems. In a more general setting the
solution to nonlinear least squares problems may be subject to constraints. In
case of nonlinear equality constraints the problem can be stated as

(9.4.5)

where x € Rn, r(x) <E Rm, h <E Rp, and p < n.
The Gauss-Newton method can be generalized to constrained problems by

linearizing (9.4.5) at a point Xk- A search direction pk is then computed as a
solution to the linearly constrained problem

(9.4.6)

where J and C are the Jacobian matrices for r(x) and h(x), respectively. This
problem can be solved by the methods described in Section 5.1. The search
direction pk obtained from (9.4.6) can be shown to be a descent direction to the
merit function

at the point Xk, provided that // is large enough. This makes it possible to
stabilize the Gauss-Newton method with a line search strategy or a trust region
technique; cf. Section 9.2. With a suitable active set strategy such an algorithm
can be extended to also handle problems with nonlinear inequality constraints.
An algorithm based on this approach has been developed by Lindstrom [534,

1983]-
There are some algorithms specialized to solve the nonlinear least squares

problem subject to linear inequality constraints. In Holt and Fletcher [472,
1979] the unknowns can be constrained by lower and upper bounds. Lindstrom
[535, 1984] describes two easy-to-use routines, ENLSIP and ELSUNC, for solving
the general constrained or the simple bound case. These algorithms are based

354 CHAPTER 9. NONLINEAR LEAST SQUARES PROBLEMS

on the Gauss-Newton method with a specialized line search; see Lindstrom and
Wedin [536, 1984]. Far from the solution the algorithm can be stabilized by
a certain subspace minimization. Close to the solution the algorithm switches
to a second-order method (Newton's method in the unconstrained case) when
the Gauss-Newton method converges slowly. The trust region approach for
unconstrained problems is generalized to handle linear inequality constraints in
Gay [327, 1984] and Wright and Holt [845, 1985]. Popular general nonlinear
optimization algorithms have also been used to solve nonlinear least squares
problems with nonlinear inequality constraints; see Schittkowski [707, 1985] and
Mahdavi-Amiri [557, 1981].

We mention that implicit curve fitting problems, where a model h(y, x, t) = 0
is to be fitted to observations (jft, £<), t = 1,..., m, can be formulated as a special
least squares problem with nonlinear constraints:

This problem is a special case of (9.4.5). It has n + ra unknowns x and z, but the
Jacobian matrices are sparse, which may be taken advantage of; see Lindstrom
[535, 1984].

We mention also that Kaufman and Pereyra [501, 1978] have extended the
Golub-Pereyra method to problems with separable nonlinear constraints. The
Kaufman method seems even easier to generalize to constrained problems.

9.4.3. Orthogonal distance regression. A special problem which can be
formulated as a constrained nonlinear least squares problem is the problem of
orthogonal distance regression. This problem arises from the fitting of
observations (jft, t<), i = 1,..., m, to a mathematical model

(9.4.7)

such that the sum of squares of the orthogonal distances are minimized; see
Figure 9.4.1. This is appropriate when both the measurements ti of the
independent variable and the observations yi are subject to random errors.
Independent of statistical considerations, the orthogonal distance measure has
natural applications in fitting geometrical elements; see Section 9.4.4.

The general orthogonal distance problem did not at first receive the same
attention as the standard nonlinear regression problem except for the case when
/ is linear in x. One reason is that if the errors in the independent variables are
small, then ignoring these errors will not seriously degrade the estimates of x.
For the special case when

the orthogonal distance problem is a total least squares problem, and an algorithm
based on the SVD has been described in Section 4.6.6.

9.4. SEPARABLE AND CONSTRAINED PROBLEMS 355

FIG. 9.4.1. Orthogonal distance fitting.

We now consider the general problem and assume that yi and ti are subject
to errors Q and <5j, respectively, so that

(9.4.8)

If the errors e^ and 6^ are independent random variables with zero mean and
variance <j2, then it seems reasonable to choose the parameters x so that the sum
of squares of the orthogonal distances TI from the observations (yi, ti) to the curve
(9.4.7) is minimized; cf. Figure 9.4.1. We have that r^ = (e2 4- (52)1/2, where e^
and 8i solve

Hence the parameters x should be chosen as the solution to

This is a constrained least squares problem of special form. Eliminating €i using
the constraints, we arrive at the orthogonal distance problem

(9.4.9)

Note that this is a nonlinear least squares problem even if f(x,t) is linear in x.
So far we have implicitly assumed that y and t are scalar variables. More

generally, y £ Rn« and t e Rn*, and then we have the problem

(9.4.10)

356 CHAPTER 9. NONLINEAR LEAST SQUARES PROBLEMS

Finally, if 6i and ei do not have constant covariance matrices, then weighted
norms should be substituted above.

The problem (9.4.9) has (m + n] unknowns x and 8. In applications usually
ra ^> n and accounting for the errors in ^ will considerably increase the size of
the problem. Therefore, the use of standard software for nonlinear least squares
to solve orthogonal distance problems is not efficient or feasible. This is even
more accentuated for (9.4.10), which has mnt + n variables. We now show how
the special structure of (9.4.9) can be taken into account to reduce the work.
Similar comments apply to the general case (9.4.10).

If we define the residual vector rT(6,x) = (rf (<5,£),rJ(<5)) by

then (9.4.9) is the standard nonlinear least squares problem min-^ ||r(<S, x)\\%.
The Jacobian matrix corresponding to this problem can be written in block

form as

(9.4.11)

where

Note that J is sparse and highly structured. In the Gauss-Newton method we
compute corrections A^ and Aa^ to the current approximations which solve the
linear least squares problem

(9.4.12)

where J, n, and r^ are evaluated at the current estimates of 6 and x. To solve
this problem we need the QR decomposition of J. This can be computed in two
steps. First we apply a sequence of Givens rotations Q\ = Gm • • - G^Gi, where
Gi = Rij+m, i = 1,2,. . . , m, to zero the (2,1) block of J:

where D^ is again a diagonal matrix. The problem (9.4.12) now decouples, and
Axjt is determined as the solution to

Here L 6 Rmxn, so this is a problem of the same size as that which defines the
Gauss-Newton correction in the classical nonlinear least squares problem. We
then have

9.4. SEPARABLE AND CONSTRAINED PROBLEMS 357

Algorithms for the nonlinear case, based on regularized Gauss-Newton
methods as described in Subsection 9.2.3, have been developed by Schwetlick and
Tiller [714, 1985], who use a special Marquardt-type regularization. However, the
path

used was later shown by Schwetlick and Tiller [715, 1989] to be equivalent to a
trust region path denned by a nonstandard scaling matrix Dk the <$-part of which
is just the matrix D% above wheras the x-part D% can be chosen in standard way
as diagonal matrix, see Algorithm 9.2.1. In the later paper the step is controlled
in trust region style by the condition \\p(fj)\\2 = ||£>2A<$(//)||2 + ||£>3Az(//)||2 < A2

and not by the Lagrange parameter /z.
The algorithm by Boggs, Byrd, and Schnabel [119, 1987] incorporates a full

trust region strategy, and is the basis of a software package ODRPACK for
orthogonal distance regression. This ANSI Fortran subroutine library is in the
public domain, and is described in the user's guide [118, 1992].

9.4.4. Least squares fit of geometric elements. A special nonlinear least
squares problem that arises in many areas of applications is to fit given data
points to a geometrical element, which may be defined in implicit form. We
have already discussed fitting data to an affine linear manifold such as a line or
a plane. The problem of fitting circles, ellipses, spheres, and cylinders arises in
applications such as computer graphics, coordinate meteorology, and statistics.

In the past, algorithms have been given which fit circles and ellipses in some
least squares sense without minimizing the geometric distance to the given points
[671]. More recently the emphasis has been on minimizing the sum of squares of
orthogonal distances to the given points. Algorithms for such a geometric fit
are described, e.g., in Forbes [301, 302, 1989] and Gander, Golub, and Strebel
[318, 1994].

EXAMPLE 9.4.2. Consider the problem of fitting a half-circle

to a given set of points (yi,ti), i = 1,2,... ,ra. It is obvious (see Figure 9.4.2)
that minimizing squares of either horizontal or vertical distances to the circle will
normally not be satisfactory.

Circles and ellipses may be represented algebraically by an equation of
the form F(x) = 0. If a point is on the curve, then its coordinates satisfy
F(x) = 0. Alternatively, curves may be represented in parametric form, which
representation is well suited for minimizing the sum of the squares of the
distances. Ellipses, for which the sum of the squares of the distances to the
given points is minimal, will be referred to as geometric fit. Determining the
parameters of the algebraic equation F(x) = 0 in the least squares sense will be
denoted by algebraic fit.

Let u = (iii,..., Un)T be a vector of unknowns and consider the nonlinear

358 CHAPTER 9. NONLINEAR LEAST SQUARES PROBLEMS

FIG. 9.4.2. Fitting a half-circle.

system of m equations f(u) = 0. If m > n, then we want to minimize

This is a nonlinear least squares problem, which can be solved by the Gauss-
Newton method. We then approximate the solution u by u + h. Developing f (u)
around u in a Taylor series, we obtain the correction vector h from the linear
least squares problem
(9.4.13)

where J is the Jacobian of /.
EXAMPLE 9.4.3. One wants to fit a circle with radius r and center (XQ, yo) to

given data (#i,yi), i = 1,2,... ,ra. The orthogonal distance from (xi,yi) to the
circle

depends nonlinearly on the parameters XQ, yo- The problem

is thus a nonlinear least squares problem. An approximative linear model is
obtained by writing the equation of the circle (x — xo)2 + (y — yo)2 = r2 in the
form

which depends linearly on the parameters XQ^Q and c = r2 — XQ — y%. If
these parameters are known, then the radius of the circle can be determined
byr^c + zg + yg)1/2.

Bibliography

Electronic BibTJEJX Reference Base

The bibliography in this book is also available in electronic form as a BibT^jX ref-
erence base, by anonymous ftp at math.liu.se. The file is named bjorBOOK.bib,
and found in the directory pub /references. It has been modeled after a
Bibl^K reference base created by G. W. Stewart, and uses the same conven-
tions.

The citation key is divided into two fields, <authors>:<date>, separated by
a colon. The author field is constructed as follows. If there is only one author,
the first four letters of his or her last name are used to form the field (but only
one letter each from prefixes, e.g., van de Geign becomes vdge). If there are
two authors the first two letters in their last names are used. If there are three
authors the first two letters of the first are used with one letter from each of the
second and third. If their are four, one letter from each is used.

Names appear in the order in which they appear in the reference, and entries
are alphabetized by the first name to appear. To keep Bibl^^X from becoming
confused, only initials of given names are used.

Each entry has a key word field. The program bibsrch (see below) will search
the file for matches in a user-specified combination of conjunctions, disjunctions,
and negations. The user can also specify the author. The program getkey dumps
the key words on the standard output.

The program bibsrch, written by G. W. Stewart, may be generated from
the file bibsearch.tar, available by anonymous ftp at thales.cs.umd.edu in the
directory pub/references. (Web surfers may find it easier to download from
http://www.cs.umd.edu/"stewart/.) Simply place bibsearch.tar in the directory
where you want the directory containing the programs. Then do

tar xf bibsearch.tar
cd bibsearch
more README

and you will be told what to do next.

359

http://www.cs.umd.edu/~stewart/

360 BIBLIOGRAPHY

[1] N. N. ABDELMALEK, Roundoff error analysis for Gram-Schmidt method and
solution of linear least squares problems, BIT, 11 (1971), pp. 345-368.

[2] R. J. ADCOCK, A problem in least squares, The Analyst, 5 (1878), pp. 53-54.
[3] A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, Data Structures and

Algorithms, Addison-Wesley, Reading, MA, 1983.
[4] A. C. AIKEN, On least squares and linear combinations of observations, Proceed-

ings of the Royal Society of Edinburgh, Sec. A, 55 (1934), pp. 42-47.
[5] M. A. AJIZ AND A. JENNINGS, A robust incomplete Choleski-conjugate gradient

algorithm, Internat. J. Numer. Methods. Engrg., 20 (1984), pp. 949-966.
[6] M. AL-BAALI, Methods for Nonlinear Least Squares, Ph. D. thesis, Department

of Mathematical Sciences, University of Dundee, Scotland, 1984.
[7] M. AL-BAALI AND R. FLETCHER, Variational methods for non-linear least

squares, J. Oper. Res. Soc., 36 (1985), pp. 405-421.
[8] , An efficient line search for nonlinear least-squares, J. Optim. Theory Appl.,

48 (1986), pp. 359-377.
[9] S. T. ALEXANDER, C.-T. PAN, AND R. J. PLEMMONS, Analysis of a recursive

least squares hyperbolic rotation algorithm for signal processing, Linear Algebra
Appl., 98 (1988), pp. 3-40.

[10] F. L. ALVARADO, Manipulating and visualization of sparse matrices, ORSA J.
Comput., 2 (1990), pp. 186-207.

[11] P. R. AMESTOY, Factorization of Large Sparse Matrices Based on a Multifrontal
Approach in a Multiprocessor Environment, Ph. D. thesis, CERFACS, Toulouse,
France, 1991.

[12] P. R. AMESTOY AND I. S. DUFF, Vectorization of a multiprocessor multifrontal
code, Internat. J. Supercomp. Appl., 3 (1989), pp. 41-59.

[13] , Memory allocation issues in sparse multiprocessor multifrontal methods,
Internat. J. Supercomput. Appl., 7 (1993), pp. 64-82.

[14] A. A. ANDA AND H. PARK, Fast plane rotations with dynamic scaling, SIAM J.
Matrix Anal. Appl., 15 (1994), pp. 162-174.,

[15] , Self-scaling fast rotations for stiff least squares problems, Linear Algebra
Appl., 234 (1996), pp. 137-162.

[16] E. ANDERSON, Z. BAI, C. BISCHOF, J. DEMMEL, J. DONGARRA, J. Du CROZ,
A. GREENBAUM, S. HAMMARLING, A. MCKENNEY, S. OSTROUCHOV, AND
D. SORENSEN, eds., LAPACK Users' Guide. Second Edition, SIAM, Philadelphia,
1995.

[17] N. ANDERSON AND I. KARASALO, On computing bounds for the least singular
value of a triangular matrix, BIT, 15 (1975), pp. 1-4.

[18] E. ANDERSSEN, Z. BAI, AND J. DONGARRA, Generalized QR factorization audits
applications, Tech. Report CS-91-131, Computer Science Department, University
of Tennessee, Knoxville, TN, 1991.

[19] R. S. ANDERSSEN AND G. GOLUB, Richardson's non-stationary matrix iterative
procedure, Tech. Report STAN-CS-72-304, Computer Science Department, Stan-
ford University, CA, 1972.

[20] M. ARIOLI, J. DEMMEL, AND I. S. DUFF, Solving sparse linear systems with
sparse backward error, SIAM J. Matrix Anal. Appl., 10 (1989), pp. 165-190.

[21] M. ARIOLI, I. S. DUFF, AND P. P. M. DE RIJK, On the augmented system
approach to sparse least-squares problems, Numer. Math., 55 (1989), pp. 667-684.

[22] M. ARIOLI, L S. DUFF, J. NOAILLES, AND D. Ruiz, A block projection method
for sparse matrices, SIAM J. Sci. Statist. Comput., 13 (1990), pp. 47-70.

[23] M. ARIOLI, I. S. DUFF, AND D. Ruiz, Stopping criteria for iterative solvers,

BIBLIOGRAPHY 361

SIAM J. Matrix Anal. Appl., 13 (1992), pp. 138-144.
[24] M. ARIOLI, I. S. DUFF, D. Ruiz, AND M. SADKANE, Block Lanczos techniques

for accelerating the block Cimmino method, SIAM J. Sci. Comput., 16 (1995),
pp. 1478-1511.

[25] M. ARIOLI AND A. LARATTA, Error analysis of algorithms for computing the
projection of a point onto a linear manifold, Linear Algebra Appl., 82 (1986),
pp. 1-26.

[26] , Error analysis of an algorithm for solving an underdetermined linear system,
Numer. Math., 46 (1986), pp. 255-268.

[27] C. ASHCRAFT, A vector implementation of the multifrontal method for large sparse
positive definite systems, Tech. Report ETA-TR-51, Engineering Technology
Division, Boeing Computer Services, Seattle, WA, 1987.

[28] C. ASHCRAFT AND R. G. GRIMES, The influence of relaxed supernode partitions
on the multifrontal method, ACM Trans. Math. Software, 15 (1989), pp. 291-309.

[29] V. ASHKENAZI, Geodetic normal equations, in Large Sets of Linear Equations,
J. K. Reid, ed., Academic Press, New York, 1971, pp. 57-74.

[30] J. K. AVILA AND J. A. TOMLIN, Solution of very large least squares problems by
nested dissection on a parallel processor, in Proceedings of the Computer Science
and Statistics 12th Annual Symposium on the Interface, J. F. Gentleman, ed.,
University of Waterloo, Canada, 1979.

[31] Z. BAI, The CSD, GSVD, their applications and computations, Tech. Report IMA
Preprint Series 958, Institute for Mathematics and Its Applications, University of
Minnesota, Minneapolis, MN, 1992.

[32] Z. BAI AND J. W. DEMMEL, Computing the generalized singular value decompo-
sition, SIAM J. Sci. Comput., 14 (1993), pp. 1464-1486.

[33] Z. BAI AND H. ZHA, A new preprocessing algorithm for the computation of
the generalized singular value decomposition, SIAM J. Sci. Comput., 14 (1993),
pp. 1007-1012.

[34] T. BANACHIEWICZ, Principes d'une nouvelle technique de la methode des moindres
carres, Bull. Internat. Acad. Polon. Sci. A, (1938), pp. 134-135.

[35] Y. BARD, Nonlinear Parameter Estimation, Academic Press, New York, 1974.
[36] E. H. BAREISS, Numerical solution of the weighted linear least squares problems

by G-transformations, Tech. Report 82-03-NAM-03, Department of Electrical
Engineering and Computer Science, Northwestern University, Evanston, IL, 1982.

[37] J. L. BARLOW, Stability analysis of the G-algorithm and a note on its application
to sparse least squares problems, BIT, 25 (1985), pp. 507-520.

[38] , Error analysis and implementation aspects of deferred correction for equality
constrained least squares problems, SIAM J. Numer. Anal., 25 (1988), pp. 1340-
1358.

[39] , The accurate solution of sparse weighted and equality constrained least
squares problems using a static data structure, Tech. Report CS-89-03, Dept. of
Computer Science, The Pennsylvania State University, State College, PA, 1989.

[40] , On the use of structural zeros in orthogonal factorization, SIAM J. Sci.
Stat. Comput., 11 (1990), pp. 600-601.

[41] J. L. BARLOW AND S. L. HANDY, The direct solution of weighted and equality
constrained least squares problems, SIAM J. Sci. Statist. Comput., 9 (1988),
pp. 704-716.

[42] J. L. BARLOW AND I. C. F. IPSEN, Scaled Givens rotations for the solution of
linear least squares problems on systolic arrays, SIAM J. Sci. Statist. Comput., 8
(1987), pp. 716-734.

362 BIBLIOGRAPHY

[43] J. L. BARLOW, N. K. NICHOLS, AND R. J. PLEMMONS, Iterative methods for
equality-constrained least squares problems., SIAM J. Sci. Statist. Comput., 9
(1988), pp. 892-906.

[44] J. L. BARLOW AND U. B. VEMULAPATI, Rank detection methods for sparse
matrices, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 1279-1297.

[45] J. L. BARLOW, P. A. YOON, AND H. ZHA, An algorithm and a stability theory
for downdating the ULV decomposition, BIT, 36 (1996), pp. 14-40.

[46] J. L. BARLOW, H. ZHA, AND P. A. YOON, Stable chasing algorithms for
modifying complete and partial singular value decompositions, Tech. Report CSE-
93-19, Department of Computer Science, The Pennsylvania State University, State
College, PA, 1993.

[47] R. BARRET, M. W. BERRY, T. CHAN, J. DEMMEL, J. DONATO, J. DONGARRA,
V. EIJKHOUT, R. Pozo, C. ROMINE, AND H. VAN DER VORST, eds., Templates
for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1993.

[48] A. BARRLUND, Perturbation bounds for the generalized QR factorization, Linear
Algebra Appl., 207 (1994), pp. 251-272.

[49] I. BARRODALE AND C. PHILLIPS, Algorithm 495: Solution of an overdetermined
system of linear equations in the Chebyshev norm, ACM Trans. Math. Software,
1 (1975), pp. 264-270.

[50] I. BARRODALE AND F. D. K. ROBERTS, An improved algorithm for discrete i\
linear approximation, SIAM J. Numer. Anal., 10 (1973), pp. 839-848.

[51] , An efficient algorithm for discrete i\ linear approximation with linear
constraints, SIAM J. Numer. Anal., 15 (1978), pp. 603-611.

[52] R. H. B ARTELS AND A. R. CONN, Linearly constrained discrete i\ problems,
ACM Trans. Math. Software, 6 (1980), pp. 594-608.

[53] R. H. BARTELS, A. R. CONN, AND C. CHARALAMBOUS, On Cline's direct method
for solving overdetermined linear systems in the l^ sense, SIAM J. Numer. Anal.,
15 (1980), pp. 255-270.

[54] R. H. BARTELS, A. R. CONN, AND J. W. SINCLAIR, Minimization techniques
for piecewise differentiate functions: The i\ solution to an overdetermined linear
system, SIAM J. Numer. Anal., 15 (1978), pp. 224-241.

[55] R. H. BARTELS, G. H. GOLUB, AND M. A. SAUNDERS, Numerical techniques
in mathematical programming, in Nonlinear Programming, J. B. Rosen, O. L.
Mangasarian, and K. Ritter, eds., Academic Press, New York, 1970, pp. 123-176.

[56] W. BARTH, R. S. MARTIN, AND J. H. WILKINSON, Calculation of the eigenvalues
of a symmetric tridiagonal matrix by the method of bisection, Numer. Math., 9
(1967), pp. 386-393.

[57] F. L. BAUER, Elimination with weighted row combinations for solving linear
equations and least squares problems, Numer. Math., 7 (1965), pp. 338-352.

[58] , Genauigkeitsfragen bei der Losung linear Gleichungssysteme, Z. Angew.
Math. Mech., 46 (1966), pp. 409-421.

[59] A. BEN-ISRAEL AND S. J. WERSAN, An elimination method for computing the
generalized inverse of an arbitrary matrix, J. ACM, 10 (1963), pp. 532-537.

[60] A. BEN-TAL AND M. TEBOULLE, A geometric property of the least squares
solution of linear equations, Linear Algebra Appl., 139 (1990), pp. 165-170.

[61] C. BENOIT, Sur la methode de resolution des equationes normales, etc. (precedes
du commandant Cholesky), Bull. Geodesique, 2 (1924), pp. 67-77.

[62] M; BENZI, A Direct Row-Projection Method for Sparse Linear Systems, Ph. I).
thesis, North Carolina State University, Raleigh, NC, 1993.

BIBLIOGRAPHY 363

[63] M. BENZI AND C. D. MEYER, An explicit preconditioner for the conjugate
gradient method, in Proceedings of the Cornelius Lanczos International Centenary
Conference, Raleigh, NC, Dec. 1993, J. D. Brown, M. T. Chu, D. C. Ellison, and
R. J. Plemmons, eds., SIAM, Philadelphia, 1994, pp. 294-296.

[64] M. BENZI, C. D. MEYER, AND M. TUMA, A sparse approximate inverse
preconditioner for the conjugate gradient method, SIAM J. Sci. Comput., 17 (1996),
to appear.

[65] A. BERMAN AND R. J. PLEMMONS, Cones and iterative methods for best least
squares solutions of linear systems, SIAM J. Numer. Anal., 11 (1974), pp. 145-154.

[66] M. W. BERRY, A Fortran-77 software library for the sparse singular value
decomposition, Tech. Report CS-92-159, University of Tennessee, Knoxville, TN,
1992.

[67] , Large scale sparse singular value computations, Internat. J. Supercomp.
Appl, 6 (1992), pp. 13-49.

[68] , SVDPACKC: Version 1.0 user's guide, Tech. Report CS-93-194, University
of Tennessee, Knoxville, TN, 1993.

[69] , A survey of public-domain Lanczos-based software, in Proceedings of the
Cornelius Lanczos International Centenary Conference, Raleigh, NC, Dec. 1993,
J. D. Brown, M. T. Chu, D. C. Ellison, and R. J. Plemmons, eds., SIAM,
Philadelphia, 1994, pp. 332-334.

[70] M. W. BERRY AND R. L. AUERBACH, A block Lanczos SVD method with
adaptive reorthogonalization, in Proceedings of the Cornelius Lanczos International
Centenary Conference, Raleigh, NC, Dec. 1993, J. D. Brown, M. T. Chu, D. C.
Ellison, and R. J. Plemmons, eds., SIAM, Philadelphia, 1994, pp. 329-331.

[71] M. W. BERRY AND G. H. GOLUB, Estimating the largest singular values of large
sparse matrices via modified moments, Numer. Algorithms, 1 (1991), pp. 363-374.

[72] J. BERTRAND, Sur la methode des moindres carres, C. R. Acad. Sci., Paris, 40
(1855), pp. 1190-1192.

[73] I. J. BIENAYME, Remarques sur les differences qui distinguent Interpolation de
M. Cauchy de la methode des moindre carres et qui assurent la superiorite de cette
methode, C. R. Acad. Sci., Paris, 37 (1853), pp. 5-13.

[74] M. BIERLAIR, P. TOINT, AND D. TuYTTENS, On iterative algorithms for linear
least-squares problems with bound constraints, Linear Algebra Appl., 143 (1991),
pp. 111-143.

[75] C. H. BlSCHOF, A block QR factorization algorithm using restricted pivoting, in
Supercomputing 89, ACM Press, New York, 1989, pp. 248-256.

[76] , Adaptive condition estimation for rank-one downdates of QR factorizations,
Tech. Report ANL/MCS-P166-0790, Argonne National Laboratory, Math, and
Computer Sciences Div., Argonne, IL, 1990.

[77] , Incremental condition estimation, SIAM J. Matrix Anal. Appl., 11 (1990),
pp. 312-322.

[78] , A parallel QR factorization algorithm with controlled local pivoting, SIAM
J. Sci. Statist. Comput., 12 (1991), pp. 36-57.

[79] C. H. BlSCHOF AND P. C. HANSEN, Structure preserving and rank-revealing QR
factorizations, SIAM J. Sci. Statist. Comput., 12 (1991), pp. 1332-1350.

[80] , A block algorithm for computing rank-revealing QR factorizations, Numer.
Algorithms, 2 (1992), pp. 371-392.

[81] C. H. BISCHOF, J. G. LEWIS, AND D. J. PIERCE, Incremental condition
estimation for sparse matrices, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 644-
659.

364 BIBLIOGRAPHY

[82] C. H. BISCHOF, C.-T. PAN, AND P. T. P. TANG, A Cholesky up-and downdating
algorithm for systolic and SIMD architectures, SIAM J. Sci. Comput., 14 (1993),
pp. 670-676.

[83] A. BJERHAMMER, Rectangular reciprocal matrices with special reference to geode-
tic calculations, Bull. Geodesique, 52 (1951), pp. 118-220.

[84] A. BJORCK, Iterative refinement of linear least squares solutions I, BIT, 7 (1967),
pp. 257-278.

[85] , Solving linear least squares problems by Gram-Schmidt orthogonalization,
BIT, 7 (1967), pp. 1-21.

[86] , Iterative refinement of linear least squares solutions II, BIT, 8 (1968), pp. 8-
30.

[87] , Methods for sparse least squares problems, in Sparse Matrix Computations,
J. Bunch and D. J. Rose, eds., Academic Press, New York, 1976, pp. 177-199.

[88] , Comment on the iterative refinement of least squares solutions, J. Amer.
Statist. Assoc., 73 (1978), pp. 161-166.

[89] , SSOR preconditioning methods for sparse least squares problems, in Pro-
ceedings of the Computer Science and Statistics 12th Annual Symposium on the
Interface, J. F. Gentleman, ed., University of Waterloo, Canada, 1979, pp. 21-25.

[90] , A general updating algorithm for constrained linear least squares problems,
SIAM J. Sci. Statist. Comput., 5 (1984), pp. 394-402.

[91] , Stability analysis of the method of semi-normal equations for least squares
problems, Linear Algebra Appl, 88/89 (1987), pp. 31-48.

[92] , A bidiagonalization algorithm for solving ill-posed systems of linear equa-
tions, BIT, 28 (1988), pp. 659-670.

[93] , A direct method for sparse least squares problems with lower and upper
bounds, Numer. Math., 54 (1988), pp. 19-32.

[94] , Iterative refinement and reliable computing, in Reliable Numerical Com-
putation, M. G. Cox and S. J. Hammarling, eds., Clarendon Press, Oxford, UK,
1990, pp. 249-266.

[95] , Least squares methods, in Handbook of Numerical Analysis. I. Solution of
Equations in Rn. Part 1, P. G. Ciarlet and J. L. Lions, eds., Elsevier/North-
Holland, Amsterdam, 1990, pp. 466-647.

[96] :, Algorithms for linear least squares problems, in Computer Algorithms for
Solving Linear Algebraic Equations; The State of the Art, E. Spedicato, ed., vol. 77
of NATO ASI Series F: Computer and Systems Sciences, Springer-Verlag, Berlin,
1991, pp. 57-92.

[97] , Component-wise perturbation analysis and errors bounds for linear least
square solutions, BIT, 31 (1991), pp. 238-244.

[98] , Error analysis of least squares algorithms, in Numerical Linear Algebra,
Digital Signal Processing and Parallel Algorithms, G. H. Golub and P. Van Dooren,
eds., vol. 70 of NATO ASI Series, Springer-Verlag, Berlin, 1991, pp. 41-73.

[99] , Pivoting and stability in the augmented system method, in Numerical
Analysis 1991: Proceedings of the 14th Dundee Conference, June 1991, D. F.
Griffiths and G. A. Watson, eds., Pitman Research Notes in Mathematics 260,
Longman Scientific and Technical, Harlow, UK, 1992, pp. 1-16.

[100] , Generalized and sparse least squares problems, in Algorithms for Continuous
Optimization; The State of the Art, E. Spedicato, ed., vol. 434 of NATO ASI Series
C: Mathematical and Physical Sciences, Kluwer Academic Publisher, Dordrecht,
1994, pp. 37-80.

[101] , Numerics of Gram-Schmidt orthogonalization, Linear Algebra Appl., 197-

BIBLIOGRAPHY 365

198 (1994), pp. 297-316.
[102] , Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
[103] A. BJORCK AND C. BOWIE, An iterative algorithm for computing the best estimate

of an orthogonal matrix, SIAM J. Numer. Anal., 8 (1971), pp. 358-364.
[104] A. BJORCK AND I. S. DUFF, A direct method for the solution of sparse linear

least squares problems, Linear Algebra Appl., 34 (1980), pp. 43-67.
[105] A. BJORCK AND L. ELDEN, Methods in numerical algebra for ill-posed problems,

Tech. Report LiTH-MAT-R-1979-33, Department of Mathematics, Linkoping
University, Sweden, 1979.

[106] A. BJORCK, L. ELDEN, AND H. PARK, Accurate doumdating of least squares
solutions, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 549-568.

[107] A. BJORCK AND T. ELFVING, Algorithms for confluent Vandermonde systems,
Numer. Math., 21 (1973), pp. 130-137.

[108] , Accelerated projection methods for computing pseudoinverse solutions of
systems of linear equations, BIT, 19 (1979), pp. 145-163.

[109] A. BJORCK, T. ELFVING, AND Z. STRAKOS, Implementing conjugate gradient-
type methods for linear least squares problems, Tech. Report LiTH-MAT-R-95-26,
Department of Mathematics, Linkoping University, Sweden, 1995.

[110] A. BJORCK AND G. H. GOLUB, Iterative refinement of linear least squares solution
by Householder transformation, BIT, 7 (1967), pp. 322-337.

[Ill] , Numerical methods for computing angles between linear subspaces, Math.
Comp., 27 (1973), pp. 579-594.

[112] A. BJORCK, E. GRIMME, AND P. VAN DOOREN, An implicit bidiagonalization
algorithm for ill-posed systems, BIT, 34 (1994), pp. 510-534.

[113] A. BJORCK AND C. C. PAIGE, Loss and recapture of orthogonality in the modified
Gram-Schmidt algorithm, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 176-190.

[114] , Solution of augmented linear systems using orthogonal factorizations, BIT,
34 (1994), pp. 1-26.

[115] A. BJORCK AND V. PEREYRA, Solution of Vandermonde system of equations,
Math. Comp., 24 (1970), pp. 893-903.

[116] A. BJORCK, R. J. PLEMMONS, AND H. SCHNEIDER, eds., Large Scale Matrix
Problems, North-Holland, New York, 1981.

[117] J. L. BLUE, A portable Fortran program to find the Euclidean norm of a vector,
Trans. Math. Software, 4 (1978), pp. 15-23.

[118] P. T. BOGGS, R. H. BYRD, J. E. ROGERS, AND R. B. SCHNABEL, User's
reference guide for ODRPACK version 2.01—Software for weighted orthogonal
distance regression, Tech. Report LiTH-MAT-R-1979-33, National Institute of
Standards and Technology, Gaithersburg, MD, 1992.

[119] P. T. BOGGS, R. H. BYRD, AND R. B. SCHNABEL, A stable and efficient
algorithm for nonlinear orthogonal regression, SIAM J. Sci. Statist. Comput., 8
(1987), pp. 1052-1078.

[120] A. W. BOJANCZYK AND R. P. BRENT, Parallel solution of certain Toeplitz least-
squares problems, Linear Algebra Appl., 77 (1986), pp. 43-60.

[121] A. W. BOJANCZYK, R. P. BRENT, AND F. R. DE HOOG, QR factorization of
Toeplitz matrices, Numer. Math., 49 (1986), pp. 81-94.

[122] , A weakly stable algorithm for general Toeplitz matrices, Tech. Report TR-
CS-93-15, Cornell University, Ithaca, NY, 1993.

[123] A. W. BOJANCZYK, R. P. BRENT, P. VAN DOOREN, AND F. DE HOOG, A
note on downdating the Cholesky factorization, SIAM J. Sci. Statist. Comput., 8
(1987), pp. 210-221.

366 BIBLIOGRAPHY

[124] A. W. BOJANCZYK AND J. M. LEBAK, Downdating a ULLV decomposition of
two matrices, in Proceedings of the Fifth SIAM Conference on Applied Linear
Algebra, J. G. Lewis, ed., SIAM, Philadelphia, 1994, pp. 261-265.

[125] A. W. BOJANCZYK, J. G. NAGY, AND R. J. PLEMMONS, Block RLS using row
Householder reflections, Linear Algebra AppL, 188/189 (1993), pp. 31-62.

[126] D. BOLEY AND G. H. GOLUB, A survey of matrix inverse eigenvalue problems,
Inverse Problems, 3 (1987), pp. 595-622.

[127] F. L. BOOKSTEIN, Fitting conic sections to scattered data, Computer Graphics
and Image Processing, 9 (1979), pp. 56-71.

[128] T. BOROS, T. KAILATH, AND V. OLSHEVSKY, Error analysis of a fast algorithm
for solving Cauchy linear systems, (1995), submitted.

[129] R. BRAMLEY, Row-Projection Methods for Linear Systems, Ph. D. thesis 881,
Center for Supercomputing Research and Development, University of Illinois,
Urbana, IL, 1989.

[130] R. BRAMLEY AND A. SAMEH, Row projection methods for large nonsymmetric
linear systems, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 168-193.

[131] R. P. BRENT, Old and new algorithms for Toeplitz systems, in Advanced
Algorithms and Architectures for Signal Processing III, F. T. Luk, ed., SPIE
Proceeding Series, Bellingham, WA, 1988, pp. 2-9.

[132] J. R. BUNCH, Analysis of the diagonal pivoting method, SIAM J. Numer. Anal.,
8 (1971), pp. 656-680.

[133] , Stability of methods for solving Toeplitz systems of equations, SIAM J. Sci.
Statist. Comput., 6 (1985), pp. 349-364.

[134] 5 The weak and strong stability of algorithms in numerical linear algebra,
Linear Algebra Appl., 88/89 (1987), pp. 49-66.

[135] J. R. BUNCH, J. W. DEMMEL, AND C. F. VAN LOAN, The strong stability of
algorithms for solving symmetric systems, SIAM J. Matrix Anal. Appl., 10 (1989),
pp. 494-499.

[136] J. R. BUNCH AND L. KAUFMAN, Some stable methods for calculating inertia and
solving symmetric linear systems, Math. Comp., 31 (1977), pp. 162-179.

[137] J. R. BUNCH, L. KAUFMAN, AND B. N. PARLETT, Decomposition of asymmetric
matrix, Numer. Math., 27 (1976), pp. 95-109.

[138] J. R. BUNCH AND C. P. NIELSEN, Updating the singular value decomposition,
Numer. Math., 31 (1978), pp. 111-129.

[139] J. R. BUNCH AND B. N. PARLETT, Direct methods for solving symmetric
indefinite systems of linear systems, SIAM J. Numer. Anal., 8 (1971), pp. 639-655.

[140] J. R. BUNCH AND D. J. ROSE, eds., Sparse Matrix Computations, Academic
Press, New York, 1976.

[141] P. BUSINGER, Updating a singular value decomposition, BIT, 10 (1970), pp. 376-
385.

[142] P. BUSINGER AND G. H. GOLUB, Linear least squares solutions by Householder
transformations, Numer. Math., 7 (1965), pp. 269-276.

[143] — , Algorithm 358: Singular value decomposition of a complex matrix, Comm.
ACM, 12 (1969), pp. 564-565.

[144] D. CALVETTI AND L. REICHEL, Fast inversion of Vandermonde-like matrices
involving orthogonal polynomials, BIT, 33 (1993), pp. 473-484.

[145] D. CARLSON AND H. SCHNEIDER, Inertia theorems for matrices: The positive
semidefinite case, J. Math. Anal. Appl., 6 (1963), pp. 430-446.

[146] A. CAUCHY, Memoire sur Interpolation, J. Math. Pures Appl., 2 (1837), pp. 193-
205.

BIBLIOGRAPHY 367

[147] J. M. CHAMBERS, Regression updating, J. Amer. Statist. Assoc., 66 (1971),
pp. 744-748.

[148] , Computational Methods for Data Analysis, John Wiley, New York, 1977.
[149] R. H. CHAN, J. G. NAGY, AND R. J. PLEMMONS, FFT-based preconditioned for

Toeplitz-block least squares problems, SIAM J. Numer. Anal., 30 (1993), pp. 1740-
1768.

[150] , Circulant preconditioned Toeplitz least squares iterations, SIAM J. Matrix
Anal. Appl., 15 (1994), pp. 80-97.

[151] T. F. CHAN, Algorithm 581: An improved algorithm for computing the singular
value decomposition, ACM Trans. Math. Software, 8 (1982), pp. 84-88.

[152] , An improved algorithm for computing the singular value decomposition,
ACM Trans. Math. Software, 8 (1982), pp. 72-83.

[153] , Rank revealing QR-factorizations, Linear Algebra Appl., 88/89 (1987),
pp. 67-82.

[154] T. F. CHAN AND P. C. HANSEN, Computing truncated SVD least squares
solutions by rank revealing QR factorizations, SIAM J. Sci. Statist. Comput., 11
(1990), pp. 519-530.

[155] , Some applications of the rank revealing QR factorization, SIAM J. Sci.
Statist. Comput., 13 (1992), pp. 727-741.

[156] , Low-rank revealing QR factorizations, Numer. Linear Algebra Appl., 1
(1994), pp. 33-44.

[157] S. CHANDRASEKARAN AND I. C. F. IPSEN, Analysis of a QR algorithm for
computing singular values, Tech. Report YALEU/DCS/RR-917, Yale University,
New Haven, CT, 1992.

[158] , Backward errors for eigenvalue and singular value decompositions, Numer.
Math., 68 (1994), pp. 215-223.

[159] , On rank-revealing factorizations, SIAM J. Matrix Anal. Appl., 15 (1994),
pp. 592-622.

[160] X.-W. CHANG AND C. C. PAIGE, A new perturbation analysis for the Cholesky
factorization, IMA J. Numer. Anal., (1996).

[161] J. CHARLIER, M. VANBEGIN, AND P. VAN DOOREN, On efficient implementa-
tions of Kogbetliantz's algorithm for computing the singular value decomposition,
Numer. Math., 52 (1988), pp. 279-300.

[162] S. CHATTERJEE AND G. HELLER, The numerical effect of measurement error in
the explanatory variables on the observed least squares estimate, SIAM J. Matrix
Anal. Appl., 14 (1993), pp. 677-687.

[163] Y. T. CHEN, Iterative methods for linear least squares problems, Tech. Report
CS-75-04, University of Waterloo, Canada, 1975.

[164] Y. T. CHEN AND R. P. TEWARSON, On the fill-in when sparse vectors are
orthonormalized, Computing, 9 (1972), pp. 53-56.

[165] E. C. H. CHU, Orthogonal Decomposition of Dense and Sparse Matrices on
Multiprocessors, Ph. D. thesis, University of Waterloo, Canada, 1988.

[166] E. C. H. CHU AND J. A. GEORGE, QR factorization of a dense matrix on a
hypercube multiprocessor, Parallel Comput., 11 (1989), pp. 55-71.

[167] E. C. H. CHU, J. A. GEORGE, J. Liu, AND E. NG, SPARSPAK: Waterloo sparse
matrix package user's guide for SPARSPAK-A, Res. Report CS-84-36, Department
of Computer Science, University of Waterloo, Canada, 1984.

[168] J. CHUN, T. KAILATH, AND H. LEV-ARI, Fast parallel algorithms for QR and
triangular factorizations, SIAM J. Sci. Statist. Comput., 8 (1987), pp. 899-913.

[169] G. ClMMlNO, Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari,

368 BIBLIOGRAPHY

Ric. Sci. Progr. Teen. Econom. Naz., 9 (1939), pp. 326-333.
[170] D. I. CLARK AND M. R. OSBORNE, Finite algorithms for Hubers's M-estimator,

SIAM J. Sci. Statist. Comput., 7 (1986), pp. 72-85.
[171] , On linear restricted and interval least-squares problems, IMA J. Numer.

Anal, 8 (1988), pp. 23-36.
[172] A. K. CLINE, An elimination method for the solution of linear least squares

problems, SIAM J. Numer. Anal., 10 (1973), pp. 283-289.
[173] , The transformation of a quadratic programming problem into solvable form,

Tech. Report ICASE 75-14, NASA, Langley Research Center, Hampton, VA.,
1975.

[174] A. K. CLINE, A. R. CONN, AND C. F. VAN LOAN, Generalizing the UNPACK
condition estimator, in Numerical Analysis, J. P. Hennart, ed., vol. 909 of Lecture
Notes in Mathematics, Springer-Verlag, Berlin, 1982.

[175] A. K. CLINE, C. B. MOLER, G. W. STEWART, AND J. H. WILKINSON, An
estimate for the condition number of a matrix, SIAM J. Numer. Anal., 16 (1979),
pp. 368-375.

[176] R. E. CLINE AND R. J. PLEMMONS, ^-solutions to underdetermined linear
systems, SIAM Review, 18 (1976), pp. 92-106.

[177] T. F. COLEMAN, A. EDENBRANDT, AND J. R. GILBERT, Predicting fill for sparse
orthogonal factorization, J. Assoc. Comput. Mach., 33 (1986), pp. 517-532.

[178] T. F. COLEMAN AND L. A. HULBERT, A direct active set algorithm for large
sparse quadratic programs with simple lower bounds, Math. Programming, 45
(1989), pp. 373-406.

[179] , A globally and superlinearly convergent algorithm for convex quadratic
programs with simple bounds, SIAM J. Optim., 3 (1993), pp. 298-321.

[180] T. F. COLEMAN AND Y. Li, A global and quadratically convergent affine scaling
method for linear l\ problems, Math. Programming, 56 (1992), pp. 189-222.

[181] , A global and quadratically convergent affine scaling method for linear loo
problems, SIAM J. Numer. Anal., 29 (1992), pp. 1166-1186.

[182] , An interior Newton method for quadratic programming, Tech. Report TR
93-1388, Department of Computer Science, Cornell University, Ithaca, NY, 1993.

[183] J. W. COOLEY, How the FFT gained acceptance, in A History of Scientific
Computing, S. G. Nash, ed., Addison-Wesley, Reading, MA, 1990, pp. 133-140.

[184] J. W. COOLEY, P. A. W. LEWIS, AND P. D. WELSH, The fast Fourier transform
and its application, IEEE Trans. Education, E-12 (1969), pp. 27-34.

[185] J. W. COOLEY AND J. W. TUKEY, An algorithm for the machine calculation of
complex Fourier series, Math. Comp., 19 (1965), pp. 297-301.

[186] R. W. COTTLE, Manifestations of the Schur complement, Linear Algebra Appl.,
8 (1974), pp. 189-211.

[187] , Numerical methods for complementarity problems in engineering and
applied science, in Computing Methods in Applied Sciences and Engineering,
R. Glowinski and J. L. Lions, eds., vol. 704 of Lecture Notes in Mathematics,
Springer-Verlag, New York, 1977, pp. 37-52.

[188] R. W. COTTLE, G. H. GOLUB, AND R. S. SACHER, On the solution of large
structured linear complementarity problems: The block partitioned case, Appl.
Math. Optim., 4 (1978), pp. 347-363.

[189] M. G. Cox, The least squares solution of overdetermined linear equations having
band or augmented band structure, IMA J. Numer. Anal., 1 (1981), pp. 3-22.

[190] , The least-squares solution of linear equations with block-angular observation
matrix, in Reliable Numerical Computation, M. G. Cox and S. J. Hammarling,

BIBLIOGRAPHY 369

eds., Oxford University Press, UK, 1990, pp. 227-240.
[191] E. J. CRAIG, The n-step iteration procedure, J. Math. Phys., 34 (1955), pp. 65-73.
[192] R. L. CRANE, B. S. GARBOW, K. E. HILLSTROM, AND M. MINKOFF, LCLSQ:

An implementation of an algorithm for linearly constrained linear least squares,
Tech. Report ANL-80-116, Argonne National Laboratory, Argonne, IL, 1980.

[193] P. CRAVEN AND G. WAHBA, Smoothing noisy data with spline functions, Numer.
Math., 31 (1979), pp. 377-403.

[194] C. CRYER, The solution of a quadratic programming problem using systematic
overrelaxation, SIAM J. Control Optim., 9 (1971), pp. 385-392.

[195] J. K. CULLUM AND R. A. WILLOUGHBY, Lanczos Algorithms for Large Symmet-
ric Eigenvalue Computations, vol. 1 Theory. 2 Programs, Birkhauser, Stuttgart,
1985.

[196] J. K. CULLUM, R. A. WILLOUGHBY, AND M. LAKE, A Lanczos algorithm for
computing singular values and vectors of large matrices, SIAM J. Sci. Statist.
Comput., 4 (1983), pp. 197-215.

[197] E. CUTHILL, Several strategies for reducing the bandwidth of matrices, in Sparse
Matrices and Their Applications, D. J. Rose and R. A. Willoughby, eds., Plenum
Press, New York, 1972, pp. 157-166.

[198] G. CYBENKO, The numerical stability of the lattice algorithm for least squares
linear prediction problems, BIT, 24 (1984), pp. 441-455.

[199] , Fast Toeplitz orthogonalization using inner products, SIAM J. Sci. Statist.
Comput., 8 (1987), pp. 734-740.

[200] G. DAHLQUIST, B. SJOBERG, AND P. SVENSSON, Comparison of the method of
averages with the method of least squares, Math. Comp., 22 (1968), pp. 833-846.

[201] C. DANIEL AND F. S. WOOD, Fitting Equations to Data, 2nd ed., John Wiley,
New York, 1980.

[202] J. DANIEL, W. B. GRAGG, L. KAUFMAN, AND G. W. STEWART, Reorthogo-
nalization and stable algorithms for updating the Gram-Schmidt QR factorization,
Math. Comp., 30 (1976), pp. 772-95.

[203] C. DAVIS AND W. KAHAN, The rotation of eigenvectors by a perturbation III,
SIAM J. Numer. Anal., 7 (1970), pp. 1-46.

[204] A. DAX, The ii solution of linear equations subject to linear constraints, SIAM J.
Sci. Statist. Comput., 10 (1989), pp. 328-340.

[205] , On row relaxation methods for large constrained least squares problems,
SIAM J. Sci. Comput., 14 (1993), pp. 570-584.

[206] C. DE BOOR, A Practical Guide to Splines, Springer-Verlag, Berlin, 1978.
[207] A. DE LA GARZA, An iterative method for solving systems linear equations, Tech.

Report K-731, Union Carbide, Oak Ridge, TN, 1951.
[208] B. DE MOOR, Structured total least squares and /2 approximation problems, Linear

Algebra Appl., 188/189 (1993), pp. 163-206.
[209] , On the structure of generalized singular value and QR decompositions,

SIAM J. Matrix Anal. Appl., 15 (1994), pp. 347-358.
[210] B. DE MOOR AND G. H. GOLUB, Generalized singular value decomposition: A

proposal for a standard nomenclature, Tech. Report NA-89-05, Numerical Analysis
Project, Stanford University, CA, 1989.

[211] , The restricted singular value decomposition: Properties and applications,
SIAM J. Matrix. Anal. Appl., 12 (1991), pp. 401-425.

[212] B. DE MOOR AND P. VAN DOOREN, Generalizations of the singular value and
QR decompositions, SIAM J. Matrix. Anal. Appl., 13 (1992), pp. 993-1014.

[213] L. M. DELVES AND I. BARRODALE, A fast direct method for the least squares

370 BIBLIOGRAPHY

solution of slightly overdetermined sets of linear equations, J. Inst. Maths. Applic.,
24 (1979), pp. 149-156.

[214] C. J. DEMEURE, Fast QR factorization of Vandermonde matrices, Linear Algebra
Appl., 122/3/4 (1989), pp. 165-194.

[215] , QR factorization of confluent Vandermonde matrices, IEEE Trans. Acoust.
Speech Signal Process., 38 (10) (1990), pp. 1799-1802.

[216] J. DEMMEL, The smallest perturbation of a submatrix which lowers the rank
and constrained total least squares problems, SIAM J. Numer. Anal., 24 (1987),
pp. 199-206.

[217] J. DEMMEL AND N. J. HICHAM, Improved error bounds for underdetermined
system solvers, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 1-14.

[218] J. DEMMEL AND W. KAHAN, Accurate singular values of bidiagonal matrices,
SIAM J. Sci. Statist. Comput., 11 (1990), pp. 873-912.

[219] J. E. DENNIS, Nonlinear least squares and equations, in The State of the Art
in Numerical Analysis, D. A. H. Jacobs, ed., Academic Press, New York, 1977,
pp. 269-312.

[220] J. E. DENNIS, D. M. GAY, AND R. E. WELSCH, An adaptive nonlinear least-
squares algorithm, ACM Trans. Math. Software, 7 (1981), pp. 348-368.

[221] , Algorithm 573 NL2SOL: An adaptive nonlinear least-squares algorithm,
ACM Trans. Math. Software, 7 (1981), pp. 369-383.

[222] , Remark on algorithm 573, ACM Trans. Math. Software, 9 (1983), p. 139.
[223] J. E. DENNIS AND R. B. SCHNABEL, Numerical Methods for Unconstrained

Optimization and Nonlinear Equations, Prentice Hall, Englewood Cliffs, NJ, 1983.
[224] J. E. DENNIS AND T. STEIHAUG, On the successive projection approach to least

squares problems, SIAM J. Numer. Anal., 23 (1986), pp. 717-733.
[225] P. DEUFLHARD AND V. APOSTOLESCU, An underrelaxed Gaus:s-Newton method

for equality constrained nonlinear least squares, in Proceedings 8th IFIP Confer-
ence on Optimization Techniques, J. Stoer, ed., vol. 7 of Lecture Notes in Control
and Information Science, Springer-Verlag, Berlin, 1978, pp. 22-32.

[226] , A study of the Gauss-Newton algorithm for the solution of nonlinear
least squares problems, in Special Topics of Applied Mathematics, J. Frehse,
D. Pallaschke, and U. Trottenberg, eds., North-Holland, Amsterdam, 1980.

[227] P. DEUFLHARD AND W. SAUTTER, On rank-deficient pseudoinverses, Linear
Algebra Appl., 29 (1980), pp. 91-111.

[228] J. DONGARRA, J. R. BUNCH, C. B. MOLER, AND G. W. STEWART, UNPACK
Users' Guide, SIAM, Philadelphia, 1979.

[229] J. J. DONGARRA, J. Du CROZ, I. S. DUFF, AND S. HAMMARLING, A set of
level 3 basic linear algebra subprograms, ACM Trans. Math. Software, 16 (1990),
pp. 1-17.

[230] J. J. DONGARRA, J. Du CROZ, S. HAMMARLING, AND R. J. HANSON, An
extended set of Fortran basic linear algebra subprograms, ACM Trans. Math.
Software, 14 (1988), pp. 1-17.

[231] J. J. DONGARRA AND E. GROSSE, Distribution of mathematical software via
electronic mail, Comm. ACM, 30 (1987), pp. 403-407.

[232] N. R. DRAPER AND H. SMITH, Applied Regression Analysis, 2nd ed., John Wiley,
New York, 1981.

[233] Z. DRMAC, Implementation of Jacobi rotations for accurate singular value
computation in floating point arithmetic, SIAM J. Sci. Comput., 18 (1997), to
appear.

[234] I. S. DUFF, Pivot selection and row orderings in Givens reduction on sparse

BIBLIOGRAPHY 371

matrices, Computing, 13 (1974), pp. 239-248.
[235] , On permutations to block triangular form, J. Inst. Maths. Applic., 19 (1977),

pp. 339-342.
[236] , A survey of sparse matrix research, Proceedings of the IEEE, 65 (1977),

pp. 500-535.
[237] , On algorithms for obtaining a maximum transversal, ACM Trans. Math.

Software, 7 (1981), pp. 315-330.
[238] , Parallel implementation of multifrontal schemes, Parallel Computing, 3

(1986), pp. 193-204.
[239] , The solution of augmented systems, in Numerical Analysis 1993: Proceed-

ings of the 15th Dundee Conference, June 1993, D. F. Griffiths and G. A. Watson,
eds., Pitman Research Notes in Mathematics, Longman Scientific and Technical,
Harlow, UK, 1994.

[240] I. S. DUFF, A. M. ERISMAN, AND J. K. REID, Direct Methods for Sparse
Matrices, Oxford University Press, London, 1986.

[241] I. S. DUFF, N. I. M. GOULD, J. K. REID, J. A. SCOTT, AND K. TURNER, The
factorization of sparse symmetric indefinite matrices, IMA J. Numer. Anal., 11
(1991), pp. 181-204.

[242] I. S. DUFF, R. G. GRIMES, AND J. G. LEWIS, Sparse matrix test problems, ACM
Trans. Math. Software, 15 (1989), pp. 1-14.

[243] , User's guide for Harwell-Boeing sparse matrix test problems collection,
Tech. Report RAL-92-086, Computing and Information Systems Department,
Rutherford Appleton Laboratory, Didcot, UK, 1992.

[244] I. S. DUFF, M. MARRONE, G. RADICATI, AND C. VITTOLI, A set of level
3 basic linear algebra subprograms for sparse matrices, Tech. Report RAL-TR-
95-049, Computing and Information Systems Department, Rutherford Appleton
Laboratory, Didcot, UK, 1995.

[245] I. S. DUFF AND G. A. MEURANT, The effect of ordering on preconditioned
conjugate gradients, BIT, 29 (1989), pp. 635-657.

[246] I. S. DUFF, N. MUNKSGAARD, H. B. NIELSEN, AND J. K. REID, Direct solution
of sets of linear equations whose matrix is sparse symmetric and indefinite, J. Inst.
Maths. Applic., 23 (1979), pp. 235-250.

[247] I. S. DUFF AND J. K. REID, A comparison of some methods for the solution
of sparse overdetermined systems of linear equations, J. Inst. Maths. Applic., 17
(1976), pp. 267-280.

[248] , An implementation of Tarjan's algorithm for the block triangularization of
a matrix, ACM Trans. Math. Software, 4 (1978), pp. 137-147.

[249] , Some design features of a sparse matrix code, ACM Trans. Math. Software,
5 (1979), pp. 18-35.

[250] , MA27—A set of Fortran subroutines for solving sparse symmetric sets of
linear equations, Tech. Report R. 10533, AERE, Harwell, Oxfordshire, UK, 1982.

[251] , The multifrontal solution of indefinite sparse symmetric linear systems,
ACM Trans. Math. Software, 9 (1983), pp. 302-325.

[252] , M/147, A Fortran code for direct solution of indefinite sparse symmetric
linear systems, Tech. Report RAL-95-001, Rutherford Appleton Laboratory,
Didcot, UK, 1995.

[253] I. S. DUFF AND G. W. STEWART, eds., Sparse Matrix Proceedings, SIAM,
Philadelphia, 1978.

[254] H. M. DUFOUR, Resolution des systemes lineaires par la methode des residues
conjugues, Bull. Geodesique, 71 (1964), pp. 65-87.

372 BIBLIOGRAPHY

[255] A. L. DULMAGE AND N. S. MENDELSOHN, Coverings of bipartite graphs, Canad.
J. Math., 10 (1958), pp. 517-534.

[256] , A structure theory of bipartite graphs of finite exterior dimension, Trans.
Roy. Soc. Canada, 53, III (1959), pp. 1-13.

[257] , Two algorithms for bipartite graphs, J. Soc. Indust. Appl. Math., 11 (1963),
pp. 183-194.

[258] P. S. DWYER, A matrix presentation of least squares and correlation theory
with matrix justification of improved methods of solution, Ann. Math. Statist.,
15 (1944), pp. 82-89.

[259] , The square root method and its use in correlation and regression, J. Amer.
Statist. Assoc., 40 (1945), pp. 493-503.

[260] , Linear Computations, John Wiley, New York, 1951.
[261] C. ECKHART AND G. YOUNG, The approximation of one matrix by another of

lower rank, Psychometrica, 1 (1936), pp. 211-218.
[262] E. L. EICHHORN AND C. L. LAWSON, An ALGOL procedure for solution

of constrained least squares problems, Computing Memorandum No. 374, JPL,
Pasadena, CA, 1975.

[263] S. C. EISENSTAT, M. C. GURKY, M. H. SCHULTZ, AND A. H. SHERMAN, Yale
sparse matrix package, 1: The symmetric codes., Internat. J. Numer. Methods
Engrg., 18 (1982), pp. 235-250.

[264] S. C. EISENSTAT AND I. C. F. IPSEN, Relative perturbation techniques for singular
value problems, Tech. Report YALEU/DCS/RR-942, Yale University, New Haven,
CT, 1993.

[265] S. C. EISENSTAT, M. H. SCHULTZ, AND A. H. SHERMAN, Algorithms and
data structures for sparse symmetric Gaussian elimination, SIAM J. Sci. Statist.
Comput., 2 (1981), pp. 225-237.

[266] H. EKBLOM, A new algorithm for the Huber estimator in linear models, BIT, 28
(1988), pp. 60-76.

[267] L. ELDEN, Algorithms for the regularization of ill-conditioned least squares
problems, BIT, 17 (1977), pp. 134-145.

[268] , Perturbation theory for the least squares problem with linear equality
constraints, SIAM J. Numer. Anal, 17 (1980), pp. 338-350.

[269] , A weighted pseudoinverse, generalized singular values, and constrained least
squares problems, BIT, 22 (1983), pp. 487-502.

[270] , An algorithm for the regularization of ill-conditioned banded least squares
problems, SIAM J. Sci. Statist. Comput., 5 (1984), pp. 237-254.

[271] , An efficient algorithm for the regularization of ill-conditioned least squares
problems with a triangular Toeplitz matrix, SIAM J. Sci. Statist. Comput., 5
(1984), pp. 229-236.

[272] , A note on the computation of the generalized cross-validation function for
ill-conditioned least squares problems, BIT, 24 (1984), pp. 467-472.

[273] , Parallel QR decomposition of a rectangular matrix, Tech. Report LiTH-
MAT-R-78-3, Linkoping University, Sweden, 1988.

[274] L. ELDEN AND H. PARK, Block downdating of least squares solutions, SIAM J.
Matrix. Anal. Appl., 15 (1994), pp. 1018-1034.

[275] , Perturbation analysis for block downdating of a Cholesky decomposition,
Numer. Math., 68 (1994), pp. 457-467.

[276] L. ELDEN AND R. SCHREIBER, A systolic array for the regularization of ill-
conditioned least-squares problems with triangular Toeplitz matrix, Linear Algebra
Appl., 77 (1986), pp. 137-147.

BIBLIOGRAPHY 373

[277] L. ELDEN AND I. SKOGLUND, Algorithms for the regularization of ill-conditioned
least squares problems with tensor product structure, and application to space-
invariant image restoration, Tech. Report LiTH-MAT-R-82-48, Linkoping Uni-
versity, Sweden, 1982.

[278] T. ELFVING, On the conjugate gradient method for solving linear least squares
problems, Tech. Report LiTH-MAT-R-78-3, Linkoping University, Sweden, 1978.

[279] , Block-iterative methods for consistent and inconsistent linear equations,
Numer. Math., 35 (1980), pp. 1-12.

[280] A. M. ERISMAN AND W. F. TINNEY, On computing certain elements of the
inverse of a sparse matrix, Comm. ACM, 18 (1975), pp. 177-179.

[281] D. J. EVANS AND C. Li, Gauss-Seidel and SOR methods for least squares
problems, Numer. Math., 53 (1988), pp. 485-498.

[282] , Numerical aspects of the generalized cg-method applied to least squares
problems, Computing, 41 (1989), pp. 171-178.

[283] , The theoretical aspects of the gcg-method applied to least-squares problems,
Internat. J. Comput. Math., 35 (1990), pp. 207-229.

[284] D. K. FADDEEV, V. N. KUBLANOVSKAYA, AND V. N. FADDEEVA, Solution of
linear algebraic systems with rectangular matrices, Proc. Steklov Inst. Math., 96
(1968).

[285] , Sur les systemes lineaires algebriques de matrices rectangularies et mal-
conditionees, in Programmation en Mathematiques Numeriques, Editions Centre
Nat. Recherche Sci., Paris VII, 1968, pp. 161-170.

[286] K. FAN AND A. HOFFMAN, Some metric inequalities in the space of matrices,
Proc. Amer. Math. Soc., 6 (1955), pp. 111-116.

[287] R. W. FAREBROTHER, The statistical estimation of the standard linear model,
1756-1853, in Proc. First Internat. Tampere Seminar on Linear Statistical Models
Appl. 1983, T. Pukkila and S. Puntanen, eds., University of Tampere, Tampere,
Finland, 1985, pp. 77-99.

[288] , Linear Least Squares Computations, Marcel Dekker, New York, 1988.
[289] D. W. FAUSETT AND C. T. FULTON, Large least squares problems involving

Kronecker products, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 219-227.
[290] K. V. FERNANDO, Linear convergence of the row cyclic Jacobi and Kogbetliantz

methods, Numer. Math., 56 (1989), pp. 73-91.
[291] K. V. FERNANDO AND B. N. PARLETT, Accurate singular values and differential

qd algorithms, Numer. Math., 67 (1994), pp. 191-229.
[292] R. D. FlERRO, Perturbation analysis for two-sided (or complete) orthogonal

decompositions, Tech. Report PAM 94-02, Department of Mathematics, California
State University, San Marcos, CA, 1994.

[293] R. D. FIERRO AND J. R. BUNCH, Collinearity and total least squares, SIAM J.
Matrix Anal. Appl., 15 (1994), pp. 1167-1181.

[294] , Orthogonal projection and total least squares, Numer. Linear Algebra Appl.,
2 (1995), pp. 135-154.

[295] , Perturbation theory for orthogonal projection methods with applications to
least squares and total least squares, Linear Algebra Appl., 234 (1996), pp. 71-96.

[296] R. FLETCHER, Generalized inverse methods for the best least squares solution of
systems of non-linear equations, Comput. J., 10 (1968), pp. 392-399.

[297] , Factorizing symmetric indefinite matrices, Linear Algebra Appl., 14 (1976),
pp. 257-272.

[298] , Expected conditioning, IMA J. Numer. Anal., 5 (1985), pp. 247-273.
[299] , Practical Methods of Optimization, 2nd ed., John Wiley, New York, 1987.

374 BIBLIOGRAPHY

[300] R. FLETCHER AND C. Xu, Hybrid methods for nonlinear least squares, IMA J.
Numer. Anal, 7 (1987), pp. 371-389.

[301] A. B. FORBES, Least-squares best-fit geometric elements, Tech. Report NPL DITC
140/89, National Physical Laboratory, Teddington, UK, 1989.

[302] , Robust circle and sphere fitting by least squares, Tech. Report NPL DITC
153/89, National Physical Laboratory, Teddington, UK, 1989.

[303] , Least squares best fit geometrical elements, in Algorithms for Approximation
II, J. C. Mason and M. G. Cox, eds., Chapman & Hall, London, 1990, pp. 311-319.

[304] G. E. FORSYTHE, Generation and use of orthogonal polynomials for data-fitting
with a digital computer, J. Soc. Indust. Appl. Math., 5 (1956), pp. 74-88.

[305] G. E. FORSYTHE AND G. H. GOLUB, On the stationary values of a second degree
polynomial on the unit sphere, J. Soc. Indust. Appl. Math., 13 (1965), pp. 1050-
1068.

[306] G. E. FORSYTHE, M. A. MALCOLM, AND C. B. MOLER, Computer Methods for
Mathematical Computations, Prentice-Hall, Englewood Cliffs, NJ, 1977.

[307] G. E. FORSYTHE AND C. B. MOLER, Computer Solution of Linear Algebraic
Systems, Prentice-Hall, Englewood Cliffs, NJ, 1967.

[308] L. V. FOSTER, Rank and nullspace calculations using matrix decompositions
without column interchanges, Linear Algebra Appl., 74 (1986), pp. 47-71.

[309] , The probability of large diagonal elements in the QR factorization, SIAM
J. Sci. Statist. Comput., 11 (1990), pp. 531-544.

[310] , Modifications of the normal equations method that are numerically stable,
in Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms,
G. H. Golub and P. Van Dooren, eds., NATO ASI Series, Springer-Verlag, Berlin,
1991, pp. 501-512.

[311] R. FOURER AND S. MEHROTRA, Solving symmetric indefinite systems in an
interior point method for linear programming, Tech. Report 92-01, Department
of Industrial Engineering and Management Science, Northwestern University,
Evanston, IL, 1992.

[312] C. FRALEY, Algorithms for nonlinear least squares, Tech. Report STAN-CLaSSiC-
88-22, Center for Large Scale Scientific Computation, Stanford University, CA,
1988.

[313] , Computational behavior of Gauss-Newton methods, SIAM J. Sci. Statist.
Comput., 10 (1989), pp. 515-532.

[314] R. FREUND, A note on two block SOR methods for sparse least squares problems,
Linear Algebra Appl., 88/89 (1987), pp. 211-221.

[315] R. W. FREUND, G. H. GOLUB, AND N. NACHTIGAL, Iterative solution of linear
systems, Acta Numerica, 1 (1991), pp. 57-100.

[316] W. GANDER, Algorithms for the QR-decomposition, Tech. Report 80-02, Ange-
wandte Mathematik, ETH, Zurich, Switzerland, 1980.

[317] , Least squares with a quadratic constraint, Numer. Math., 36 (1981), pp. 291-
307.

[318] W. GANDER, G. H. GOLUB, AND R. STREBEL, Least-squares fitting of circles
and ellipses, BIT, 34 (1994), pp. 558-578.

[319] W. GANDER AND U. VON MATT, Some least squares problems, in Solving
Problems in Scientific Computing Using Maple and MATLAB, W. Gander and
J. Hfbicek, eds., Springer-Verlag, Berlin, 1993, pp. 69-87.

[320] C. F. GAUSS, Theory of the Motion of the Heavenly Bodies Moving about the Sun
in Conic Sections, C. H. Davis, Trans., Dover, New York, 1963. First published
in 1809.

BIBLIOGRAPHY 375

[321] -, Disquisitio de elementis ellipticis Palladia, in Werke, VI, Koniglichen
Gesellschaft der Wissenschaften zu Gottingen, 1880, pp. 1-24. First published
in 1810.

[322] , Theoria combinationis observationum erroribus minimis obnoxiae, pars
prior, in Werke, IV, Koniglichen Gesellschaft der Wissenschaften zu Gottingen,
1880, pp. 1-26. First published in 1821.

[323] , Theoria combinationis observationum erroribus minimis obnoxiae, pars
posterior, in Werke, IV, Koniglichen Gesellschaft der Wissenschaften zu Gottingen,
1880, pp. 27-53. First published in 1823.

[324] , Theoria combinationis observationum erroribus minimis obnoxiae, supple-
mentum, in Werke, IV, Koniglichen Gesellschaft der Wissenschaften zu Gottingen,
1880, pp. 55-93. First published in 1826.

[325] , Theory of the Combination of Observations Least Subject to Errors. Part
I , Part 2, Supplement, G. W. Stewart, Trans., SIAM, Philadelphia, 1995.

[326] D. M. GAY, Algorithm 611. Subroutines for unconstrained minimization using a
model/trust-region approach, ACM Trans. Math. Software, 9 (1983), pp. 503-524.

[327] , A trust-region approach to linearly constrained optimization, in Proceedings
of the 1983 Dundee Conference on Numerical Analysis, D. Griffiths, ed., vol. 1066
of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1984, pp. 72-105.

[328] , Interval least squares—a diagnostic tool, in Reliability in Computing, R. E.
Moore, ed., Academic Press, London, 1988, pp. 183-206.

[329] W. M. GENTLEMAN, Least squares computations by Givens transformations
without square roots, J. Inst. Maths. Applic., 12 (1973), pp. 329-336.

[330] , Error analysis of QR decompositions by Givens transformations, Linear
Algebra Appl, 10 (1975), pp. 189-197.

[331] , Row elimination for solving sparse linear systems and least squares prob-
lems, in Proceedings of the Dundee Conference on Numerical Analysis 1975, G. A.
Watson, ed., vol. 506 of Lecture Notes in Mathematics, Springer-Verlag, Berlin,
1976, pp. 122-133.

[332] J. A. GEORGE, Computer Implementation of the Finite-Element Method, Ph. D.
thesis, Stanford University, CA, 1971.

[333] J. A. GEORGE AND M. T. HEATH, Solution of sparse linear least squares problems
using Givens rotations, Linear Algebra Appl., 34 (1980), pp. 69-83.

[334] J. A. GEORGE, M. T. HEATH, AND E. G. NG, A comparison of some methods
for solving sparse linear least squares problems, SIAM J. Sci. Statist. Comput., 4
(1983), pp. 177-187.

[335] J. A. GEORGE, M. T. HEATH, AND R. J. PLEMMONS, Solution of large-
scale sparse least squares problems using auxiliary storage, SIAM J. Sci. Statist.
Comput., 2 (1981), pp. 416-429.

[336] J. A. GEORGE AND J. W.-H. Liu, Computer Solution of Large Sparse Positive
Definite Systems, Prentice-Hall, Englewood Cliffs, NJ, 1981.

[337] , Householder reflections versus Givens rotations in sparse orthogonal decom-
position, Linear Algebra Appl., 88/89 (1987), pp. 223-238.

[338] , The evolution of the minimum degree ordering algorithm, SIAM Review, 31
(1989), pp. 1-19.

[339] J. A. GEORGE, J. W.-H. Liu, AND E. G. NG, Row ordering schemes for sparse
Givens transformations, I. Bipartite graph model, Linear Algebra Appl., 61 (1984),
pp. 55-81.

[340] , Row ordering schemes for sparse Givens transformations, III. Analysis for
a model problem, Linear Algebra Appl., 75 (1984), pp. 225-240.

376 BIBLIOGRAPHY

[34J.] , Row ordering schemes for sparse Givens transformations, II. Implicit graph
model, Linear Algebra Appl., 75 (1986), pp. 203-223.

[342] , A data structure for sparse QR and LU factorization, SIAM J. Sci. Statist.
Comput., 9 (1988), pp. 100-121.

[343] J. A. GEORGE AND E. G. NG, On row and column orderings for sparse least
squares problems, SIAM J. Numer. Anal., 20 (1983), pp. 326-344.

[344] , SPARSPAK: Waterloo sparse matrix package user's guide for SPARSPAK-
B, Res. Report CS-84-37, Department of Computer Science, University of Water-
loo, Canada, 1984.

[345] , An implementation of Gaussian elimination with partial pivoting for sparse
systems, SIAM J. Sci. Statist. Comput., 6 (1985), pp. 390-409.

[346] , Symbolic factorization for sparse Gaussian elimination with partial pivoting,
SIAM J. Sci. Statist. Comput., 8 (1987), pp. 877-898.

[347] , On the complexity of sparse QR and LU factorization of finite-element
matrices, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 849-861.

[348] J. A. GEORGE, W. G. POOLE, AND R. G. VOIGT, Incomplete nested dissection
for solving n by n grid problems, SIAM J. Numer. Anal., 15 (1978), pp. 90-112.

[349] J. R. GILBERT, Graph Separator Theorems and Sparse Gaussian Elimination, Ph.
D. thesis, Stanford University, CA, 1980.

[350] , Predicting structure in sparse matrix computation, SIAM J. Matrix. Anal.
Appl., 15 (1994), pp. 62-79.

[351] J. R. GILBERT, C. MOLER, AND R. SCHREIBER, Sparse matrices in MATLAB:
Design and implementation, SIAM J. Matrix. Anal. Appl., 13 (1992), pp. 333-356.

[352] J. R. GILBERT, E. G. NG, AND B. W. PEYTON, Separators and structure
prediction in sparse orthogonal factorization, Tech. Report CSL-93-15, Xerox
Corporation, Palo Alto Research Center, 1993.

[353] J. R. GILBERT AND T. PEIERLS, Sparse partial pivoting in time proportional to
arithmetic operations, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 862-874.

[354] P. E. GILL, G. H. GOLUB, W. MURRAY, AND M. SAUNDERS, Methods for
modifying matrix factorizations, Math. Comp, 28 (1974), pp. 505-535.

[355] P. E. GILL, S. J. HAMMARLING, W. MURRAY, M. A. SAUNDERS, AND M. H.
WRIGHT, User's guide for LSSOL (version 1.0): a Fortran package for constrained
linear least-squares and convex quadratic programming, Report SOL, Department
of Operations Research, Stanford University, CA, 1986.

[356] P. E. GILL AND W. MURRAY, Nonlinear least squares and nonlinearly constrained
optimization, in Proceedings Dundee Conference on Numerical Analysis 1975,
G. A. Watson, ed., vol. 506 of Lecture Notes in Mathematics, Springer-Verlag,
Berlin, 1976, pp. 135-147.

[357] , The orthogonal factorization of a large sparse matrix, in Sparse Matrix
Computations, J. R. Bunch and D. J. Rose, eds., Academic Press, New York,
1976, pp. 201-212.

[358] , Algorithms for the solution of the nonlinear least squares problem, SIAM J.
Numer. Anal., 15 (1978), pp. 977-992.

[359] P. E. GILL, W. MURRAY, M. A. SAUNDERS, AND M. H. WRIGHT, A Schur-
complement method for sparse quadratic programming, in Reliable Numerical
Computation, M. G. Cox and S. Hammarling, eds., Clarendon Press, Oxford,
UK, 1990, pp. 113-138.

[360] P. E. GILL, W. MURRAY, AND M. H. WRIGHT, Practical Optimization,
Academic Press, London and New York, 1981.

[361] W. GIVENS, Computation of plane unitary rotations transforming a general matrix

BIBLIOGRAPHY 377

to triangular form, SIAM J. Appl. Math., 6 (1958), pp. 26-50.
[362] J. GLUCHOWSKA AND A. SMOKTUNOWICZ, Solving the linear least squares

problem with very high relative accuracy, Computing, 45 (1990), pp. 345-354.
[363] H. H. GOLDSTINE, A History of Numerical Analysis from the 16th through the

19t/i Century, Springer-Verlag, New York, 1977.
[364] G. H. GOLUB, Numerical methods for solving least squares problems, Numer.

Math., 7 (1965), pp. 206-216.
[365] , Least squares, singular values and matrix approximations, Aplikace Matem-

atiky, 13 (1968), pp. 44-51. .
[366] , Matrix decompositions and statistical computation, in Statistical Computa-

tion, R. Milton and J. A. Nelder, eds., Academic Press, New York, 1969, pp. 365-
397.

[367] , Some modified matrix eigenvalue problems, SIAM Review, 15 (1973),
pp. 318-344.

[368] G. H. GOLUB, M. T. HEATH, AND G. WAHBA, Generalized cross-validation as
a method for choosing a good ridge parameter, Technometrics, 21 (1979), pp. 215-
223.

[369] G. H. GOLUB, A. HOFFMAN, AND G. W. STEWART, A generalization of
the Eckhard-Young-Mirsky matrix approximation theorem, Linear Algebra Appl.,
88/89 (1987), pp. 317-327.

[370] G. H. GOLUB AND W. KAHAN, Calculating the singular values and pseudo-inverse
of a matrix, SIAM J. Numer. Anal. Ser. B, 2 (1965), pp. 205-224.

[371] G. H. GOLUB, V. KLEMA, AND G. W. STEWART, Rank degeneracy and least
squares problems, Tech. Report STAN-CS-76-559, August 1976, Computer Science
Department, Stanford University, CA, 1976.

[372] G. H. GOLUB AND R. J. LEVEQUE, Extensions and uses of the variable projection
algorithm for solving nonlinear least squares problems, in Proceedings of the 1979
Army Numerical Analysis and Computers Conf., White Sands Missile Range,
White Sands, NM, ARO Report 79-3, 1979, pp. 1-12.

[373] G. H. GOLUB AND F. T. LUK, Singular value decomposition: Applications and
computations, in Trans. 22nd Conference of Army Mathematicians, ARO Report
77-1, 1977, pp. 577-605.

[374] G. H. GOLUB, F. T. LUK, AND M. L. OVERTON, A block Lanczos method
for computing the singular values and corresponding singular vectors of a matrix,
ACM Trans. Math. Software, 7 (1981), pp. 149-169.

[375] G. H. GOLUB, F. T. LUK, AND M. PAGANO, A sparse least squares problem
in photogrammetry, in Proceedings of the Computer Science and Statistics 12th
Annual Symposium on the Interface, J. F. Gentleman, ed., University of Waterloo,
Canada, 1979, pp. 26-30.

[376] G. H. GOLUB, P. MANNEBACK, AND P. TOINT, A comparison between some
direct and iterative methods for large scale geodetic least squares problems, SIAM
J. Sci. Statist. Comput., 7 (1986), pp. 799-816.

[377] G. H. GOLUB AND S. G. NASH, Nonorthogonal analysis of variance using a
generalized conjugate-gradient algorithm, J. Amer. Statist. Assoc., 77 (1982),
pp. 109-116.

[378] G. H. GOLUB AND V. PEREYRA, The differentiation of pseudoinverses and
nonlinear least squares problems whose variables separate, SIAM J. Numer. Anal.,
10 (1973), pp. 413-432.

[379] , Differentiation of pseudoinverses, separable nonlinear least squares problems
and other tales, in Generalized Inverses and Applications, M. Z. Nashed, ed.,

378 BIBLIOGRAPHY

Academic Press, New York, 1976, pp. 303-324.
[380] G. H. GOLUB AND R. J. PLEMMONS, Large-scale geodetic least-squares adjust-

ment by dissection and orthogonal decomposition, Linear Algebra Appl., 34 (1980),
pp. 3-28.

[381] G. H. GOLUB, R. J. PLEMMONS, AND A. SAMEH, Parallel block schemes
for large-scale least-squares computations, in High-Speed Computing, Scientific
Applications and Algorithm Design, University of Illinois Press, 1988, pp. 171-
179.

[382] G. H. GOLUB AND C. REINSCH, Singular value decomposition and least squares
solution, Numer. Math., 14 (1970), pp. 403-420.

[383] G. H. GOLUB AND M. A. SAUNDERS, Linear least squares and quadratic
programming, in Integer and Nonlinear Programming, J. Abadie, ed., North-
Holland, Amsterdam, 1970, pp. 229-256.

[384] G. H. GOLUB, K. SOLNA, AND P. VAN DOOREN, A QR-like SVD algorithm
for a product/quotient of several matrices, in SVD and Signal Processing, III:
Algorithms, Architectures and Applications, M. Moonen and B. De Moor, eds.,
Elsevier Science B.V., Amsterdam, 1995, pp. 139-147.

[385] G. H. GOLUB AND G. P. STYAN, Numerical computations for univariate linear
models, J. Statist. Comput. Simul., 2 (1973), pp. 253-274.

[386] G. H. GOLUB AND R. UNDERWOOD, Stationary values of the ratio of quadratic
forms subject to linear constraints, Tech. Report CS-142, Computer Science
Department, Stanford University, CA, 1969.

[387] G. H. GOLUB AND C. F. VAN LOAN, Total least squares, in Smoothing Techniques
for Curve Estimation, T. Gasser and M. Rosenblatt, eds., Springer-Verlag, New
York, 1979, pp. 69-76.

[388] , An analysis of the total least squares problem, SIAM J. Numer. Anal., 17
(1980), pp. 883-893.

[389] , Matrix Computations, 2nd ed., Johns Hopkins University Press, Baltimore,
1989.

[390] G. H. GOLUB AND R. S. VARGA, Chebyshev semi-iterative methods, successive
overrelaxation iterative methods and second order Richardson iterative methods,
Parts I and II, Numer. Math., 3 (1961), pp. 147-168.

[391] G. H. GOLUB AND U. VON MATT, Quadratically constrained least squares and
quadratic problems, Numer. Math., 59 (1991), pp. 561-580.

[392] G. H. GOLUB AND J. H. WILKINSON, Iterative refinement of least squares
solutions, in Proceedings of the IFIP Congress 65, New York, 1965, W. A.
Kalenich, ed., Spartan Books, Washington, 1965, pp. 606-607.

[393] 5 Note on the iterative refinement of least squares solution, Numer. Math., 9
(1966), pp. 139-148.

[394] G. H. GOLUB AND H. ZHA, Perturbation analysis of the canonical correlation of
matrix pairs, Linear Algebra Appl., 210 (1994), pp. 3-28.

[395] W. H. GRAGG AND W. J. HARROD, The numerically stable reconstruction of
Jacobi matrices from spectral data, Numer. Math., 44 (1984), pp. 317-335.

[396] J. P. GRAM, Uber die Entwickelung reeller Funktionen in Reihen mittelst der
Methode der kleinsten Quadraie, J. Reine Angew. Math., 94 (1883), pp. 41-73.

[397] A. GREENBAUM, Behavior of slightly perturbed Lanczos and conjugate-gradient
recurrences, Linear Algebra Appl., 113 (1989), pp. 7-63.

[398] A. GREENBAUM AND Z. STRAKOS, Predicting the behavior of finite precision
Lanczos and conjugate gradient computations, SIAM J. Matrix Anal. Appl., 13
(1992), pp. 121-137.

BIBLIOGRAPHY 379

[399] T. E. GREVILLE, Note on the generalized inverse of a matrix product, SIAM
Review, 8 (1966), pp. 518-521.

[400] P. GRIFFITHS AND I. D. HILL, Applied Statistical Algorithms, Ellis Horwood Ltd.,
Chichester, UK, 1985.

[401] R. G. GRIMES AND J. G. LEWIS, Condition number estimation for sparse
matrices, SIAM J. Sci. Statist. Comput., 2 (1981), pp. 384-388.

[402] E. GROSSE, Tensor spline approximations, Linear Algebra Appl., 34 (1980),
pp. 29-41.

[403] M. Gu AND S. C. EiSENSTAT, A divide-and-conquer algorithm for the bidiagonal
SVD, Tech. Report YALEU/DCS/RR-933, Department of Computer Science, Yale
University, New Haven, CT, 1992.

[404] , A stable and fast algorithm for updating the singular value decomposition,
Tech. Report YALEU/DCS/RR-966, Department of Computer Science, Yale
University, New Haven, CT, 1993.

[405] , An efficient algorithm for computing a strong rank-revealing QR decomposi-
tion, Tech. Report YALEU/DCS/RR-967, Department of Computer Science, Yale
University, New Haven, CT, 1994.

[406] , A divide-and-conquer algorithm for the bidiagonal SVD, SIAM J. Matrix.
Anal. Appl., 16 (1995), pp. 79-92.

[407] , Downdating the singular value decomposition, SIAM J. Matrix. Anal. Appl.,
16 (1995), pp. 793-810.

[408] M. GULLIKSSON, Algorithms for Overdetermined Systems of Equations, Ph. D.
thesis, Institute of Information Processing, University of Umea, Umea, Sweden,
1993.

[409] , Iterative refinement for constrained and weighted linear least squares, BIT,
34 (1994), pp. 239-253.

[410] , Backward error analysis for the constrained and weighted linear least squares
problem when using the weighted QR decomposition, SIAM J. Matrix. Anal. Appl.,
16 (1995), pp. 675-687.

[411] , On modified Gram-Schmidt for weighted and constrained linear least
squares, BIT, 35 (1995), pp. 458-473.

[412] M. GULLIKSSON, I. SODERQUIST, AND P.-A. WEDIN, Algorithms for weighted
and constrained nonlinear least squares using the modified QR decomposition,
Tech. Report UMINF-93-05, Institute of Information Processing, University of
Umea, Umea, Sweden, 1993.

[413] M. GULLIKSSON AND P.-A. WEDIN, Modifying the QR decomposition to con-
strained and weighted linear least squares, SIAM J. Matrix. Anal. Appl., 13:4
(1992), pp. 1298-1313.

[414] , Numerical aspects on algorithms for overdetermined linear systems in lp

norm, Tech. Report UMINF-93-11, Institute of Information Processing, University
of Umea, Umea, Sweden, 1993.

[415] F. G. GUSTAVSON, Finding the block lower triangular form of a matrix, in Sparse
Matrix Computations, J. R. Bunch and D. J. Rose, eds., Academic Press, New
York, 1976, pp. 275-289.

[416] G. D. HACHTEL, Extended applications of the sparse tableau approach—finite
elements and least squares, in Basic questions in design theory, W. Spillers, ed.,
North-Holland, Amsterdam, 1974.

[417] , The sparse tableau approach to finite element assembly, in Sparse Matrix
Computations, J. Bunch and D. J. Rose, eds., Academic Press, New York, 1976.

[418] L. A. HAGEMAN, F. T. LUK, AND D. M. YOUNG, On the equivalence of certain

380 BIBLIOGRAPHY

iterative acceleration methods, SIAM J. Numer. Anal., 17 (1980), pp. 852-873.
[419] L. A. HAGEMAN AND D. M. YOUNG, Applied Iterative Methods, Academic Press,

New York, London, 1981.
[420] W. W. HAGER, Condition estimates, SIAM J. Sci. Statist. Comput., 5 (1984),

pp. 311-316.
[421] , Updating the inverse of a matrix, SIAM Review, 31 (1989), pp. 221-239.
[422] S. HAMMARLING, A note on modifications to the Givens plane rotation, J. Inst.

Maths. Applic., 13 (1974), pp. 215-218.
[423] , The numerical solution of the general Gauss-Markov linear model, NAG

Tech. Report TR2/85, Numerical Algorithms Group Ltd., Oxford, UK, 1985.
[424] C. G. HAN, P. M. PARDALOS, AND Y. YE, Computational aspects of an interior

point algorithm for quadratic programming problems with box constraints, in Large
Scale Numerical Optimization, Proceedings, Cornell University, Ithaca, October
19-20, 1989, T. F. Coleman and Y. Li, eds., SIAM, Philadelphia, 1990, pp. 92-112.

[425] M. HANKE, Accelerated Landweber iterations for the solution of ill-posed equa-
tions, Numer. Math., 60 (1991), pp. 341-373.

[426] , Conjugate Gradient Type Methods for Ill-posed Problems, Pitman Research
Notes in Mathematics, Longman Scientific and Technical, Harlow, UK, 1995.

[427] M. HANKE AND P. C. HANSEN, Regularization methods for large-scale problems,
Surveys Math. Indust., 3 (1994), pp. 253-315.

[428] M. HANKE AND M. NEUMANN, The geometry of the set of scaled projections,
Linear Algebra Appl., 190 (1992), pp. 137-148.

[429] P. C. HANSEN, The truncated SVD as a method for regularization, BIT, 27 (1987),
pp. 534-553.

[430] , Relations between SVD and GSVD of discrete regularization problems in
standard and general form, Linear Algebra Appl., 141 (1990), pp. 165-176.

[431] , Truncated singular value decomposition solutions to discrete ill-posed
problems with ill-determined numerical rank, SIAM J. Sci. Statist. Comput., 11
(1990), pp. 503-518.

[432] , Analysis of ill-posed problems by means of the L-curve, SIAM Review, 34
(1992), pp. 561-580.

[433] , Rank-Deficient and Discrete Ill-Posed Problems, Doctoral thesis, UNI»C,
Technical University of Denmark, Lyngby, Denmark, 1995.

[434] P. C. HANSEN AND H. GESMAR, Fast orthogonal decomposition of rank deficient
toeplitz matrices, Numer. Algorithms, 4 (1993), pp. 151-166.

[435] P. C. HANSEN AND D. O'LEARY, The use of the L-curve in the regularization of
discrete ill-posed problems, SIAM J. Sci. Comput., 14 (1993), pp. 1487-1503.

[436] R. J. HANSON, Linear least squares with bounds and linear constraints, SIAM J.
Sci. Statist. Comput., 7 (1986), pp. 826-834.

[437] R. J. HANSON AND C. L. LAWSON, Extensions and applications of the House-
holder algorithm for solving linear least squares problems, Math. Comp., 23 (1969),
pp. 787-812.

[438] R. J. HANSON AND J. L. PHILLIPS, An adaptive numerical method for solving
linear Fredholm equations of the first kind, Numer. Math., 24 (1975), pp. 291-307.

[439] D. R. G. HARE, C. R. JOHNSON, D. D. OLESKY, AND P. V. D. DRIESSCHE,
Sparsity analysis of the QR factorization, SIAM J. Matrix. Anal. Appl., 14 (1993),
pp. 655-669.

[440] K. H. HASKELL AND R. J. HANSON, Selected algorithms for the linearly
constrained least squares problem: A user's guide, Tech. Report SAND78-1290,
Sandia National Laboratories, Albuquerque, NM, 1979.

BIBLIOGRAPHY 381

[441] , An algorithm for linear least squares problems with equality and nonnega-
tivity constraints, Math Programming, 21 (1981), pp. 98-118.

[442] M. T. HEATH, Some extensions of an algorithm for sparse linear least squares
problems, SIAM J. Sci. Statist. Comput., 3 (1982), pp. 223-237.

[443] , Numerical methods for large sparse linear least squares problems, SIAM J.
Sci. Statist. Comput., 5 (1984), pp. 497-513.

[444] M. T. HEATH, A. J. LAUB, C. C. PAIGE, AND R. C. WARD, Computing the SVD
of a product of two matrices, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 1147-
1149.

[445] F. R. HELMERT, Die Mathematischen und Physikalischen Theorien der hoheren
Geoddsie, I Teil, Teubner, Leipzig, 1880.

[446] H. V. HENDERSON AND S. R. SEARLE, The vec-permutation matrix, the vec
operator and Kronecker products: A review, Linear and Multilinear Algebra, 9
(1981), pp. 271-188.

[447] P. HENRICI, Fast Fourier methods in computational complex analysis, SIAM
Review, 21 (1979), pp. 481-527.

[448] G. T. HERMAN, A. LENT, AND S. W. ROWLAND, ART: Mathematics and
applications, J. Theoret. Biol., 42 (1973), pp. 1-32.

[449] M. R. HESTENES, Inversion of matrices by biorthogonalization and related results,
J. Soc. Indust. Appl. Math., 6 (1958), pp. 51-90.

[450] , Pseudoinverses and conjugate gradients, Comm. ACM, 18 (1975), pp. 40-
43.

[451] M. R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving
linear system, J. Res. Nat. Bur. Standards., B49 (1952), pp. 409-436.

[452] K. L. HIEBERT, An evaluation of mathematical software that solves nonlinear
least squares problems, ACM Trans. Math. Software, 7 (1986), pp. 1-16.

[453] N. J. HIGHAM, Computing the polar decomposition-with applications, SIAM J.
Sci. Statist. Comput., 7 (1986), pp. 1160-1174.

[454] , Error analysis of the Bjorck-Pereyra algorithms for solving Vandermonde
systems, Numer. Math., 50 (1987), pp. 613-632.

[455] , A survey of condition number estimation for triangular matrices, SIAM
Review, 29 (1987), pp. 575-596.

[456] , Computing a nearest symmetric positive semidefinite matrix, Linear Algebra
Appl., 103 (1988), pp. 103-118.

[457] , Fast solution of Vandermonde-like systems involving orthogonal polynomi-
als, IMA J. Numer. Anal., 8 (1988), pp. 473-486.

[458] , Fortran codes for estimating the one-norm of a real or complex matrix,
with applications to condition estimation, ACM Trans. Math. Software, 14 (1988),
pp. 381-396.

[459] , The accuracy of solutions to triangular systems, SIAM J. Numer. Anal.,
26(5) (1989), pp. 1252-1265.

[460] , Analysis of the Cholesky decomposition of a semi-definite matrix, in Reliable
Numerical Computation, M. G. Cox and S. J. Hammarling, eds., Clarendon Press,
Oxford, 1990, pp. 161-185.

[461] , Computing error bounds for regression problems, in Contemporary Mathe-
matics 112: Statistical Analysis of Measurement Error Models and Applications,
P. J. Brown and W. A. Fuller, eds., American Mathematical Society, Providence,
RI, 1990, pp. 195-210.

[462] , Experience with a matrix norm estimator, SIAM J. Sci. Statist. Comput.,
11 (1990), pp. 804-809.

382 BIBLIOGRAPHY

[463] , How accurate is Gaussian elimination?, in Numerical Analysis 1989:
Proceedings of the 13th Dundee Conference, D. F. Griffiths and G. A. Watson,
eds., Pitman Research Notes in Mathematics 228, Longman Scientific and
Technical, Harlow, UK, 1990, pp. 137-154.

[464] , Iterative refinement enhances the stability of QR factorization methods for
solving linear equations, BIT, 31 (1991), pp. 447-468.

[465] , Estimating the matrix p-norm, Numer. Math., 62 (1992), pp. 539-556.
[466] , A survey of componentwise perturbation theory in numerical linear algebra,

in Mathematics of Computation 1943-1993. A Half Century of Computational
Mathematics, W. Gautschi, ed., vol. 48 of Proceedings of Symposia in Applied
Mathematics, American Mathematical Society, Providence, RI, 1994, pp. 49-77.

[467] , Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1995.
[468] , Stability of the diagonal pivoting method with partial pivoting, Tech. Report

265, July 1995, Department of Mathematics, University of Manchester, UK, 1995.
[469] N. J. HICHAM AND G. W. STEWART, Numerical linear algebra in statistical

computing, in The State of the Art in Numerical Analysis, A. Iserles and M. J. D.
Powell, eds., Oxford University Press, London, UK, 1987, pp. 41-57.

[470] W. HOFFMAN, Basic Transformations in Linear Algebra for Vector Computing,
Ph. D. thesis, University of Amsterdam, the Netherlands, 1989.

[471] , Iterative algorithms for Gram-Schmidt orthogonalization, Computing, 41
(1989), pp. 335-348.

[472] J. N. HOLT AND R. FLETCHER, An algorithm for constrained non-linear least-
squares, J. Inst. Maths. Applic., 23 (1979), pp. 449-463.

[473] H. P. HONG AND C. T. PAN, Rank-revealing QR factorization and SVD, Math.
Comp., 58 (1992), pp. 213-232.

[474] P. D. HOUGH AND S. A. VAVASIS, Complete orthogonal decomposition for
weighted least squares, Tech. Report CTC93TR203, 12/94, Advanced Computing
Research Institute, Cornell University, Ithaca, NY, 1994.

[475] A. S. HOUSEHOLDER, Unitary triangularization of a nonsymmetric matrix, J.
Assoc. Comput. Mach., 5 (1958), pp. 339-342.

[476] , The Theory of Matrices in Numerical Analysis, Dover, New York, 1974.
[477] A. S. HOUSEHOLDER AND F. L. BAUER, On certain iterative methods for solving

linear systems, Numer. Math., 2 (1960), pp. 55-59.
[478] P. J. HUBER, Robust Statistics, John Wiley, New York, 1981.
[479] M. F. HUTCHINSON AND F. R. DE HOOG, Smoothing noisy data with spline

functions, Numer. Math., 47 (1985), pp. 99-106.
[480] T.-M. HWANG, W.-W. LIN, AND D. L. PIERCE, An alternate column selection

criterion for a rank revealing QR factorization, Tech. Report BCSTECH-93-021,
Boeing Computer Services, Research and Technology, Seattle, WA, 1993.

[481] T.-M. HWANG, W.-W. LIN, AND E. K. YANG, Rank revealing LU factorizations,
Linear Algebra Appl., 175 (1992), pp. 115-141.

[482] H. D. IKRAMOV, Sparse linear least-squares problems, in Advances in Sciences and
Technology: Mathematical Analysis, R. V. Gamkredlidze, ed., vol. 23, Academy
of Sciences, Moscow, 1985, pp. 219-285. In Russian.

[483] C. J. G. JACOBI, Uber eine neue Auflosungsart der bei der Methode der kleinsten
Quadrate vorkommenden linedren Gleichungen, Astronomische Nachrichten, 22
(1845), pp. 297-306.

[484] W. JALBY AND B. PHILIPPE, Stability analysis and improvement of the block
Gram-Schmidt algorithm, SIAM J. Sci. Statist. Comput., 12 (1991), pp. 1058-
1073.

BIBLIOGRAPHY 383

[485] D. JAMES, Implicit nullspace iterative methods for constrained least squares
problems, SIAM J. Matrix. Anal. Appl., 13 (1992), pp. 962-978.

[486] M. JANKOWSKI AND H. WOZNIAKOWSKI, Iterative refinement implies numerical
stability, BIT, 17 (1977), pp. 303-311.

[487] A. JENNINGS AND M. A. AJIZ, Incomplete methods for solving ATAx = b, SIAM
J. Sci. Statist. Comput., 5 (1984), pp. 978-987.

[488] L. S. JENNINGS AND M. R. OSBORNE, A direct error analysis for least squares,
Numer. Math., 22 (1974), pp. 322-332.

[489] E. JESSUP AND D. C. SORENSON, A parallel algorithm for computing the singular
value decomposition of a matrix, Tech. Report CU-CS-623-92, Department of
Computer Science, University of Colorado, Boulder, CO, 1992.

[490] X.-Q. JIN, A preconditioner for constrained and weighted least squares problems
with Toeplitz structure, BIT, 36 (1996), pp. 101-109.

[491] D. M. JOHNSON, A. L. DULMAGE, AND N. S. MENDELSOHN, Connectivity and
reducibility of graphs, Canad. J. Math., 14 (1963), pp. 529-539.

[492] T. L. JORDAN, Experiments on error growth associated with some linear least-
squares procedures, Math. Comp., 22 (1968), pp. 579-588.

[493] S. KACZMARZ, Angendherte Auflosung von Systemen linearer Gleichungen, Bul-
letin Internat. Acad. Polon. Sciences et Lettres, (1937), pp. 355-357.

[494] W. KAHAN, Accurate eigenvalues of a symmetric tridiagonal matrix, Tech. Report
CS-41, Computer Science Department, Stanford University, CA, 1966. Revised
June 1968.

[495] , Numerical linear algebra, Canad. Math. Bull., 9 (1966), pp. 757-801.
[496] C. KAMATH AND A. SAMEH, A projection method for solving nonsymmetric linear

systems on multiprocessors, Parallel Computing, 9 (1988/89), pp. 291-312.
[497] I. KARASALO, A criterion for truncation of the QR decomposition algorithm for

the singular linear least squares problem, BIT, 14 (1974), pp. 156-166.
[498] L. KAUFMAN, Variable projection methods for solving separable nonlinear least

squares problems, BIT, 15 (1975), pp. 49-57.
[499] , Application of dense Householder transformation to a sparse matrix, ACM

Trans. Math. Software, 5 (1979), pp. 442-450.
[500] , The generalized Householder transformation and sparse matrices, Linear

Algebra Appl., 90 (1987), pp. 221-234.
[501] L. KAUFMAN AND V. PEREYRA, A method for separable nonlinear least squares

problems with separable nonlinear equality constraints, SIAM J. Numer. Anal., 15
(1978), pp. 12-20.

[502] L. KAUFMAN AND G. SYLVESTER, Separable nonlinear least squares problems with
multiple right hand sides, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 68-89.

[503] J. KELLER, On the solution of singular and semidefinite linear systems by
iterations, J. Soc. Indust. Appl. Math. Ser. B, 2 (1965), pp. 281-290.

[504] A. KlELBASlNSKl AND J. JANKOWSKA, Fehleranalyse der Schmidtschen und
Powellschen Orthonormalisierungsverfahren, ZAMM, 54 (1974), p. 223.

[505] A. KIELBASINSKI AND H. ScHWETLiCK, Numerische Lineare Algebra, VEB
Deutscher Verlag der Wissenschaften, Berlin, 1988.

[506] E. G. KOGBETLIANTZ, Solution of linear equations by diagonalization of coeffi-
cients matrix, Quart. Appl. Math., 13 (1955), pp. 123-132.

[507] G. B. KOLATA, Geodesy: Dealing with an enormous computer task, Science, 200
(1978), pp. 421-422.

[508] S. KOUROUKLIS AND C. C. PAIGE, A constrained approach to the general Gauss-
Markov linear model, J. Amer. Statist. Assoc., 76 (1981), pp. 620-625.

384 BIBLIOGRAPHY

[509] Z. V. KOVARIK, Some iterative methods for improving orthonormality, SI AM J.
Numer. Anal., 7 (1970), pp. 386-389.

[510] F. T. KROGH, Efficient implementation of a variable projection algorithm for
nonlinear least squares, Comm. ACM, 17 (1974), pp. 167-169.

[511] P. LANCASTER AND M. TISMENETSKY, The Theory of Matrices, Academic Press,
New York, 1985.

[512] C. LANCZOS, An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators, J. Res. Nat. Bur. Standards, 45 (1950),
pp. 255-282.

[513] , Linear Differential Operators, D. Van Nostrand, London, UK, 1961.
[514] L. LANDWEBER, An iterative formula for Fredholm integral equations of the first

kind, Amer. J. Math., 73 (1951), pp. 615-624.
[515] P. S. LAPLACE, Theorie analytique des probabilites. Premier supplement, 3rd ed.,

Courcier, Paris, 1816.
[516] P. LAUCHLI, Iterative Losung und Fehlerabschdtzung in der Ausgleichrechnung,

ZAMP, 10 (1959), pp. 245-280.
[517] , Jordan-Elimination und Ausgleichung nach kleinsten Quadraten, Numer.

Math., 3 (1961), pp. 226-240.
[518] C. L. LAWSON, Contributions to the Theory of Linear Least Maximum Approxi-

mation, Ph. D. thesis, UCLA, Los Angeles, CA, 1961.
[519] ——, Sparse matrix methods based on orthogonality and conjugacy, Tech. Mem.

33-627, June 1973, Jet Propulsion Lab., Cal. Inst. of Tech., Pasadena, CA, 1973.
[520] C. L. LAWSON AND R. J. HANSON, Solving Least Squares Problems, Prentice

Hall, Englewood Cliffs, NJ, 1974.
[521] , Solving Least Squares Problems, Classics in Applied Mathematics, SIAM,

Philadelphia, 1995.
[522] C. L. LAWSON, R. J. HANSON, D. R. KINCAID, AND F. T. KROGH, Basic linear

algebra subprograms for Fortran usage, ACM Trans. Math. Software, 5 (1979),
pp. 308-323.

[523] A. M. LEGENDRE, Nouvelles methodes pour la determination des orbites des
cometes, Courcier, Paris, 1805.

[524] F. LEMEIRE, Bounds for condition numbers of triangular and trapezoid matrices,
BIT, 15 (1975), pp. 58-64.

[525] O. LERINGE AND P.-A. WEDIN, A comparison between different methods to
compute a vector x which minimizes \\Ax — b\\2 when Gx = h, Tech. Report,
Department of Computer Science, Lund University, Lund, Sweden, 1970.

[526] K. LEVENBERG, A method for the solution of certain non-linear problems in least
squares, Quart. Appl. Math., 2 (1944), pp. 164-168.

[527] J. G. LEWIS, D. J. PIERCE, AND D. K. WAH, Multifrontal Householder QR
factorization, Tech. Report ECA-TR-127-Revised, Boeing Computer Services,
Seattle, WA, 1989.

[528] T. Y. Li, N. H. RHEE, AND Z. ZENG, An efficient and accurate parallel algorithm
for the singular value problem of bidiagonal matrices, Tech. Report, Department
of Mathematics, University of Missouri-Kansas City, 1995.

[529] Y. Li, A globally convergent method for lp problems, SIAM J. Optim., 3 (1993),
pp. 609-629.

[530] , Solving lp problems and applications, Tech. Report CTC93TR122, 03/93,
Advanced Computing Research Institute, Cornell University, Ithaca, NY, 1993.

[531] Y. LIN AND C. W. CRYER, An alternating direction implicit algorithm for the
solution of linear complementarity problems arising from free boundary problems,

BIBLIOGRAPHY 385

J. Appl. Math. Optim., 13 (1985), pp. 1-17.
[532] Y. LIN AND J. S. PANG, Iterative methods for large convex quadratic programs:

A survey, SIAM J. Control Optim., 25 (1987), pp. 383-411.
[533] P. LiNDSTROM, A stabilized Gauss-Newton algorithm for unconstrained nonlinear

least squares problems, Tech. Report UMINF-102.82, Institute of Information
Processing, University of Umea, Sweden, 1982.

[534] , A general purpose algorithm for nonlinear least squares problems with
nonlinear constraints, Tech. Report UMINF-102.83, Institute of Information
Processing, University of Umea, Sweden, 1983.

[535] , Two user guides, one (ENLSIP) for constrained — one (ELSUNC) for
unconstrained nonlinear least squares problems, Tech. Report UMINF-109.82 and
110.84, Institute of Information Processing, University of Umea, Sweden, 1984.

[536] P. LINDSTROM AND P.-A. WEDIN, A new linesearch algorithm for unconstrained
nonlinear least squares problems, Math. Programming, 29 (1984), pp. 268-296.

[537] , Methods and software for nonlinear least squares problems, Tech. Report
UMINF-133.87, Institute of Information Processing, University of Umea, Sweden,
1986.

[538] I. LINNIK, Method of Least Squares and Principles of the Theory of Observations,
Pergamon Press, New York, 1961.

[539] R. J. LIPTON, D. J. ROSE, AND R. E. TARJAN, Generalized nested dissection,
SIAM J. Numer. Anal., 16 (1979), pp. 346-358.

[540] J. W.-H. Liu, On general row merging schemes for sparse Givens transformations,
SIAM J. Sci. Statist. Comput., 7 (1986), pp. 1190-1211.

[541] , The role of elimination trees in sparse factorization, SIAM J. Matrix Anal.
Appl., 11 (1990), pp. 134-172.

[542] , The multifrontal method for sparse matrix solution: Theory and practice,
SIAM Review, 34 (1992), pp. 82-109.

[543] J. W. LONGLEY, Modified Gram-Schmidt process vs. classical Gram-Schmidt,
Comm. Statist. Simulation Comput., BIO, 5 (1981), pp. 517-527.

[544] , Least Squares Computations Using Orthogonal Methods, Marcel Dekker,
New York, 1984.

[545] P. LOTSTEDT, Perturbation bounds for the linear least squares problem subject to
linear inequality constraints, BIT, 23 (1983), pp. 500-519.

[546] , Solving the minimal least squares problem subject to bounds on the variables,
BIT, 24 (1984), pp. 206-224.

[547] A. K. Louis, Convergence of the conjugate gradient method for compact operators,
in Inverse and Ill-posed Problems, H. W. Engl and C. W. Groetsch, eds., Academic
Press, New York, 1987, pp. 177-183.

[548] S. M. Lu AND J. L. BARLOW, Computation of orthogonal factors of sparse
matrices, Tech. Report CSE-93-014, Department of Computer Science, The
Pennsylvania State University, State College, PA, 1993.

[549] F. T. LUK, Computing the singular value decomposition on the ILLIACIV, ACM
Trans. Math. Software, 6 (1980), pp. 524-539.

[550] , A parallel method for computing the generalized singular value decomposi-
tion, J. Parallel Distributed Comput., 2 (1985), pp. 250-260.

[551] , A rotation method for computing the QR-decomposition, SIAM J. Sci.
Statist. Comput., 7 (1986), pp. 452-459.

[552] F. T. LUK AND S. QlAO, A fast but unstable orthogonal triangularization
technique for Toeplitz matrices, Linear Algebra Appl., 88/89 (1987), pp. 495-506.

[553] , A new matrix decomposition for signal processing, Automatica, 30 (1994),

386 BIBLIOGRAPHY

pp. 39-43.
[554] I. LUSTIG, R. MARSTEN, AND D. SHANNO, Computational experience with a

primal-dual interior point method for linear programming, Linear Algebra Appl.,
152 (1991), pp. 191-222.

[555] K. MADSEN AND H. B. NIELSEN, Finite algorithms for robust regression, BIT,
30 (1990), pp. 682-699.

[556] , A finite smoothing algorithm for linear /i estimation, SIAM J. Optim., 3
(1993), pp. 68-80.

[557] N. MAHDAVI-AMIRI, Generally Constrained Nonlinear Least Squares and Gen-
erating Test Problems: Algorithmic Approach, Ph. D. thesis, The John Hopkins
University, Baltimore, MD, 1981.

[558] J. H. MAINDONALD, Statistical Computation, John Wiley, New York, 1984.
[559] J. MALARD, Block Solvers for Dense Linear Systems On Local Memory Multipro-

cessors, Ph. D. thesis, School of Computer Science, McGill University, Montreal,
Canada, 1992.

[560] P. MANNEBACK, On Some Numerical Methods for Solving Large Sparse Linear
Least Squares Problems, Ph. D. thesis, Facultes Universitaires Notre-Dame de la
Paix, Namur, Belgium, 1985.

[561] P. MANNEBACK, C. MURIGANDE, AND P. L. TOINT, A modification of an
algorithm by Golub and Plemmons for large linear least squares in the context
of Doppler positioning, IMA J. Numer. Anal., 5 (1985), pp. 221-234.

[562] T. A. MANTEUFFEL, Numerical rank determination in linear least squares
problems, Tech. Report SAND 79-8243, Sandia Laboratories, Albuquerque, NM,
1979.

[563] , An incomplete factorization technique for positive definite linear systems,
Math. Comp., 34 (1980), pp. 473-497.

[564] , An interval analysis approach to rank determination in linear least squares
problems, SIAM J. Sci. Statist. Comp., 2 (1981), pp. 335-348.

[565] T. L. MARKHAM, M. NEUMANN, AND R. J. PLEMMONS, Convergence of a direct-
iterative method for large-scale least-squares problems, Linear Algebra Appl., 69
(1985), pp. 155-167.

[566] A. A. MARKOFF, Wahrscheinlichheitsrechnung, 2nd. ed., H. Liebmann, Trans.,
Leipzig, 1912.

[567] H. M. MARKOWITZ, The elimination form of the inverse and its application to
linear programming, Management Sci., 3 (1957), pp. 255-269.

[568] D. W. MARQUARDT, An algorithm for least-squares estimation of nonlinear
parameters, J. Soc. Indust. Appl. Math., 11 (1963), pp. 431-441.

[569] J. M. MARTINEZ, An algorithm for solving sparse nonlinear least squares
problems, Computing, 39 (1987), pp. 307-325.

[570] P. MATSTOMS, The Multifrontal Solution of Sparse Linear Least Squares Prob-
lems, Licentiat thesis, Department of Mathematics, Linkoping University, Sweden,
1991.

[571] , QR27—Specification sheet, Tech. Report March 1992, Department of
Mathematics, Linkoping University, Sweden, 1992.

[572] , Sparse QR factorization in MATLAB, ACM Trans. Math. Software, 20
(1994), pp. 136-159.

[573] , Sparse QR Factorization with Applications to Linear Least Squares Prob-
lems, Ph. D. thesis, Department of Mathematics, Linkoping University, Sweden,
1994.

[574] , Parallel sparse QR factorization on shared memory architectures, Parallel

BIBLIOGRAPHY 387

Comput., 21 (1995), pp. 473-486.
[575] J. A. MEIJERINK AND H. VAN DER VORST, An iterative method for linear systems

of which the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977),
pp. 148-162.

[576] P. MEISSL, A priori prediction of roundoff error accumulation in the solution of
a super-large geodetic normal equation system, Professional Paper 12, National
Oceanic and Atmospheric Administration, 1980.

[577] C. D. MEYER Generalized inversion of modified matrices, SIAM. J. Appl. Math.,
24 (1973), pp. 315-323.

[578] L. MlRSKY, Symmetric gauge functions and unitarily invariant norms, Quart. J.
Math. Oxford, 11 (1960), pp. 50-59.

[579] J. J. MODI AND M. R. B. CLARKE, An alternate Givens ordering, Numer. Math.,
43 (1984), pp. 83-90.

[580] C. B. MOLER, Iterative refinement in floating point, J. Assoc. Comput. Mach.,
14 (1967), pp. 316-321.

[581] L. MOLINARI, Gram-Schmidt 'sches Orthogonalisierungsverfahren, in Numerische
Prozeduren aus Nachlass und Lehre von Prof. Heinz Rutishauser, W. Gander,
L. Molinari, and H. Svecova, eds., Birkhauser, Stuttgart, 1977, pp. 77-93.

[582] M. MOONEN AND P. VAN DOOREN, On the QR algorithm and updating the
SVD and URV decompositions in parallel, Linear Algebra Appl., 188/189 (1993),
pp. 549-568.

[583] M. MOONEN, P. VAN DOOREN, AND J. VANDEWALLE, An SVD updating
algorithm for subspace tracking, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 1015-
1038.

[584] E. H. MOORE, General Analysis. Part I, American Philosophical Society,
Philadelphia, 1935.

[585] R. MORANDI AND F. SGALLARI, Parallel algorithms for the iterative solution of
sparse least-squares problems, Parallel Comput., 13 (1990), pp. 271-280.

[586] J. J. MORE, The Levenberg-Marquardt algorithm: Implementation and theory, in
Numerical Analysis. Proceedings Biennial Conference Dundee 1977, G. A. Watson,
ed., vol. 630 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1978,
pp. 105-116.

[587] , Recent developments in algorithms and software for trust region-methods,
in Mathematical Programming. The State of the Art, Proceedings Bonn 1982,
A. Bachem, M. Grotchel, and B. Korte, eds., Springer-Verlag, Berlin, 1983,
pp. 258-287.

[588] J. J. MORE, B. S. GARBOW, AND K. E. HILLSTROM, Users' guide for
MINPACK-1, Tech. Report ANL-80-74, Applied Math. Div., Argonne National
Laboratory, Argonne, IL, 1980.

[589] J. J. MORE AND D. C. SORENSON, Computing a trust region step, SIAM J. Sci.
Statist. Comput., 4 (1981), pp. 553-572.

[590] J. J. MORE AND G. TORALDO, Algorithms for bound constrained quadratic
programming problems, Numer. Math., 55 (1989), pp. 377-400.

[591] J. J. MORE AND S. J. WRIGHT, Optimization Software Guide, SIAM, Philadel-
phia, 1993.

[592] N. MUNKSGAARD, Solving sparse symmetric sets of linear equations by precondi-
tioned conjugate gradients, ACM Trans. Math. Software, 6 (1980), pp. 206-219.

[593] J. G. NAGY, Toeplitz Least Squares Computations, Ph. D. thesis, North Carolina
State University, Raleigh, NC, 1991.

[594] , Fast inverse QR factorization for Toeplitz matrices, SIAM J. Sci. Comput.,

388 BIBLIOGRAPHY

14 (1993), pp. 1174-1193.
[595] J. C. NASH, A one-sided transformation method for the singular value decompo-

sition and algebraic eigenproblem, Comput. J., 18 (1975), pp. 74-76.
[596] M. Z. NASHED, ed., Generalized Inverses and Applications, Academic Press, New

York, 1976.
[597] L. NAZARETH, Some recent approaches to solving large residual nonlinear least

squares problems, SIAM Review, 22 (1980), pp. 1-11.
[598] A. S. NEMIROVSKII, The regularization properties of the adjoint gradient method

in ill-posed problems, USSR Comput. Math, and Math. Phys., 26:2 (1986), pp. 7-
16.

[599] A. NEUMAIER, Hybrid norms and bounds for overdetermined linear systems,
Linear Algebra Appl, 216 (1995), pp. 257-265.

[600] E. G. NG, A scheme for handling rank deficiency in the solution of sparse linear
least squares problems, SIAM J. Sci. Statist. Comput., 12 (1991), pp. 1173-1183.

[601] W. NIETHAMMER, J. DE PILLIS, AND R. S. VARGA, Convergence of block iterative
methods applied to sparse least-squares problems, Linear Algebra Appl., 58 (1984),
pp. 327-341.

[602] B. NOBLE, Methods for computing the Moore-Penrose generalized inverse and
related matters, in Generalized Inverses and Applications. Proceedings of an
Advanced Seminar, The University of Wisconsin-Madison, Oct. 1973, M. Z.
Nashed, ed., Academic Press, New York, 1976, pp. 245-301.

[603] W. OETTLI AND W. PRAGER, Compatibility of approximate solution of linear
equations with given error bounds for coefficients and right-hand sides, Numer.
Math., 6 (1964), pp. 405-409.

[604] D. P. O'LEARY, Estimating matrix condition numbers, SIAM J. Sci. Statist.
Comput., 1 (1980), pp. 205-209.

[605] , A generalized conjugate gradient algorithm for solving class of quadratic
programming problems, Linear Algebra Appl., 34 (1980), pp. 371-399.

[606] , On bounds for scaled projections and pseudo-inverses, Linear Algebra Appl.,
132 (1990), pp. 115-117.

[607] , Robust regression computation using iteratively reweighted least squares,
SIAM J. Matrix Anal. Appl., 11 (1990), pp. 466-480.

[608] D. P. O'LEARY AND B. W. RUST, Confidence intervals for inequality-constrained
least squares problems, with applications to ill-posed problems, SIAM J. Sci. Statist.
Comput., 7 (1986), pp. 473-489.

[609] D. P. O'LEARY AND J. A. SIMMONS, A bidiagonalization-regularization procedure
for large scale discretizations of ill-posed problems, SIAM J. Sci. Statist. Comput.,
2 (1981), pp. 474-489.

[610] D. P. O'LEARY AND P. WHITMAN, Parallel QR factorization by Householder
and modified Gram-Schmidt algorithms, Parallel Comput., 16 (1990), pp. 99-112.

[611] S. J. OLSZANSKYJ, J. M. LEBAK, AND A. BOJANCZYK, Rank-k modification
methods for recursive least squares problems, Numer. Algorithms, 7 (1994),
pp. 325-354.

[612] U. OREBORN, A Direct Method for Sparse Nonnegative Least Squares Problems,
Licentiat thesis, Department of Mathematics, Linkoping University, Sweden, 1986.

[613] J. M. ORTEGA AND W. C. RHEINBOLDT, Iterative Solution of Nonlinear
Equations in Several Variables, Academic Press, New York, 1970.

[614] E. E. OSBORNE, On least squares solutions of linear equations, J. Assoc. Comput.
Mach., 8 (1961), pp. 628-636.

[615] , Nonlinear least squares—the Levenberg algorithm revisited, J. Austral.

BIBLIOGRAPHY 389

Math. Soc., Ser. B, 19 (1976), pp. 343-357.
[616] M. R. OSBORNE, On the computation of stepwise regressions, Austral. Comput.

J., 8 (1976), pp. 61-63.
[617] , Some aspects of nonlinear least squares calculations, in Numerical Methods

for Nonlinear Optimization, F. A. Lootsma, ed., Academic Press, New York, 1976,
pp. 171-189.

[618] , Finite Algorithms in Optimization and Data Analysis, John Wiley, New
York, 1985.

[619] , Solving least squares problems on parallel vector processors, Tech. Report,
School of Mathematical Sciences, Australian National University, Canberra, 1994.

[620] O. 0STERBY AND Z. ZLATEV, Direct Methods for Sparse Matrices, vol. 157 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1983.

[621] G. OSTROUCHOV, Symbolic Givens reduction and row-ordering in large sparse
least squares problems, SI AM J. Sci. Statist. Comput., 8 (1987), pp. 248-264.

[622] C. C. PAIGE, The Computation of Eigenvalues and Eigenvectors of Very Large
Sparse Matrices, Ph. D. thesis, University of London, UK, 1971.

[623] , An error analysis of a method for solving matrix equations, Math. Comp.,
27 (1973), pp. 355-359.

[624] , Bidiagonalization of matrices and solution of linear eqautions, SI AM J.
Numer. Anal, 11 (1974), pp. 197-209.

[625] , Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric
matrix, J. Inst. Math. Applic., 18 (1976), pp. 341-349.

[626] , Numerically stable computations for general univariate linear models,
Comm. Statist., B7 (1978), pp. 437-453.

[627] , Computer solution and perturbation analysis of generalized linear least
squares problems, Math. Comp., 33 (1979), pp. 171-184.

[628] , Fast numerically stable computations for generalized least squares problems,
SIAM J. Numer. Anal., 16 (1979), pp. 165-171.

[629] , Error analysis of some techniques for updating orthogonal decompositions,
Math. Comp., 34 (1980), pp. 465-471.

[630] , Properties of numerical algorithms related to computing controllability,
IEEE Trans. Automat. Control,'26 (1981), pp. 130-138.

[631] , A note on a result of Sun Ji-guang: Sensitivity of the CS and GSV
decomposition, SIAM J. Numer. Anal., 21 (1984), pp. 186-191.

[632] , The general linear model and the generalized singular value decomposition,
Linear Algebra Appl., 70 (1985), pp. 269-284.

[633] , Computing the generalized singular value decomposition, SIAM J. Sci.
Statist. Comput., 7 (1986), pp. 1126-1146.

[634] , Some aspects of generalized QR factorizations, in Reliable Numerical
Computation, M. G. Cox and S. J. Hammarling, eds., Clarendon Press, Oxford,
UK, 1990, pp. 71-91.

[635] , History and generality of the CS-decomposition, Linear Algebra Appl.,
208/209 (1994), pp. 303-326.

[636] C. C. PAIGE AND M. A. SAUNDERS, Least squares estimation of discrete linear
dynamic systems using orthogonal transformations, SIAM J. Numer. Anal., 14
(1977), pp. 180-193.

[637] , Toward a generalized singular value decomposition, SIAM J. Numer. Anal.,
18 (1981), pp. 398-405.

[638] , Algorithm 583 LSQR: Sparse linear equations and sparse least squares,
ACM Trans. Math. Software, 8 (1982), pp. 195-209.

390 BIBLIOGRAPHY

[639] , LSQR. An algorithm for sparse linear equations and sparse least squares,
ACM Trans. Math. Software, 8 (1982), pp. 43-71.

[640] C. C. PAIGE AND P. VAN DOOREN, On the quadratic convergence of Kog-
betliantz's algorithm for computing the singular value decomposition, Linear Alge-
bra Appl., 77 (1986), pp. 301-313.

[641] C. C. PAIGE AND M. WEI, Analysis of the generalized total least squares problem
AX « B when some columns are free of errors, Numer. Math., 65 (1993), pp. 177-
202.

[642] , History and generality of the CS decomposition, Linear Algebra Appl.,
108/109 (1994), pp. 303-326.

[643] C. T. PAN, A modification to the UNPACK downdating algorithm, BIT, 30
(1990), pp. 707-722.

[644] , A perturbation analysis on the problem of downdating a Cholesky factoriza-
tion, Linear Algebra Appl., 183 (1993), pp. 103-116.

[645] C. T. PAN AND R. J. PLEMMONS, Least squares modifications with inverse
factorizations: Parallel implementations, J. Comput. Appl. Math., 27 (1989),
pp. 109-127.

[646] J. S. PANG, On the convergence of a basic iterative method for the implicit
complementarity problem, J. Optim. Theory Appl., 37 (1982), pp. 149-162.

[647] E. P. PAPADOPOULOU, Y. G. SARIDAKIS, AND T. S. PAPATHEODOROU, Block
AOR iterative schemes for large-scale least-squares problems, SIAM J. Numer.
Anal., 26 (1989), pp. 637-660.

[648] H. PARK AND L. ELDEN, Fast and accurate triangularization of Toeplitz matrices,
Tech. Report LiTH-MAT-R-1993-17, Department of Mathematics, Linkoping
University, Sweden, 1993.

[649] , Downdating the rank-revealing URV decomposition, SIAM J. Matrix. Anal.
Appl., 16 (1995), pp. 138-155.

[650] H. PARK AND S. VAN HUFFEL, Two-way bidiagonalization scheme for downdating
the singular value decomposition, Linear Algebra Appl., 222 (1995), pp. 23-40.

[651] B. N. PARLETT, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood
Cliffs, NJ, 1980.

[652] B. N. PARLETT AND J. K. REID, On the solution of a system of linear equations
whose matrix is symmetric but not definite, BIT, 10 (1970), pp. 386-397.

[653] S. V. PARTER, The use of linear graphs in Gauss elimination, SIAM Review, 3
(1961), pp. 119-130.

[654] P. PAZELT, Ein Algoritmus zur Lo'sung von Ausgleichproblemen mit Ungleichun-
gen als Nebenbedingungen, diplomarbeit, University of Wiirtzburg, Germany, 1973.

[655] R. PENROSE, A generalized inverse for matrices, Proc. Cambridge Philos. Soc.,
51 (1955), pp. 406-413.

[656] , On best approximate solutions of linear matrix equations, Proc. Cambridge
Philos. Soc., 52 (1956), pp. 17-19.

[657] V. PEREYRA, Iterative methods for solving nonlinear least squares problems, SIAM
J. Numer. Anal., 4 (1967), pp. 27-36.

[658] G. PETERS AND J. H. WILKINSON, The least squares problem and pseudo-
inverses, Comput. J., 13 (1970), pp. 309-316.

[659] D. J. PIERCE AND J. G. LEWIS, Sparse multifrontal rank revealing QR fac-
torization, Tech. Report MEA-TR-193-Revised, Boeing Information and Support
Services, Seattle, WA, 1995.

[660] R. L. PLACKET, The discovery of the method of least squares, Biometrika, 59
(1972), pp. 239-251.

BIBLIOGRAPHY 391

[661] R. J. PLEMMONS, Monotonicity and iterative approximations involving rectangu-
lar matrices, Math. Comp., 26 (1972), pp. 853-858.

[662] , Linear least squares by elimination and MGS, J. Assoc. Comput. Mach., 21
(1974), pp. 581-585.

[663] , Adjustment by least squares in geodesy using block iterative methods for
sparse matrices, in Proceedings of the 1979 Army Numerical Analysis and
Computer Conference, El Paso, TX, 1979, pp. 151-186.

[664] , A proposal for FFT based fast recursive least squares, Tech. Report
#982, Institute for Mathematics and Its Applications, University of Minnesota,
Minneapolis, MN, 1992.

[665] L. F. PORTUGAL, J. J. JUDICE, AND L. N. VICENTE, A comparison of
block pivoting and interior-point algorithms for linear least squares problems with
nonnegative variables, Math. Comp., 63 (1994), pp. 625-643.

[666] A. POTHEN, Sparse Null Bases and Marriage Theorems, Ph. D. thesis, Cornell
University, Ithaca, NY, 1984.

[667] , Predicting the structure of sparse orthogonal factors, Linear Algebra Appl.,
194 (1993), pp. 183-204.

[668] A. POTHEN AND C. J. FAN, Computing the block triangular form of a sparse
matrix, ACM Trans. Math. Software, 16 (1990), pp. 303-324.

[669] A. POTHEN AND P. RAGHAVAN, Distributed orthogonal factorization: Givens and
Householder algorithms, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 1113-1134.

[670] M. J. D. POWELL AND J. K. REID, On applying Householder's method to linear
least squares problems, in Proceedings of the IFIP Congress 68, A. J. M. Morell,
ed., North-Holland, Amsterdam, 1969, pp. 122-126.

[671] V. PRATT, Direct least squares fitting of algebraic surfaces, ACM J. Comput.
Graphics, 21:4 (1987).

[672] C. PUGLISI, QR Factorization of Large Sparse Overdetermined and Square
Matrices with the Multifrontal Method in a Multiprocessing Environment, Ph. D.
thesis, Institut National Polytechnique de Toulouse, Toulouse, France, 1993.

[673] C. M. RADER AND A. O. STEINHARDT, Hyperbolic Householder transforms,
SIAM J. Matrix Anal. Appl., 9 (1988), pp. 269-290.

[674] H. RAMSIN AND P.-A. WEDIN, A comparison of some algorithms for the
nonlinear least squares problem, BIT, 17 (1977), pp. 72-90.

[675] R. C. RAO, Linear Statistical Inference and Its Applications, 2nd ed., John Wiley,
New York, 1973.

[676] L. REICHEL, Fast QR decomposition of Vandermonde-like matrices and polynomial
least squares approximation, SIAM J. Matrix Anal. Appl., 12 (1991), pp. 552-564.

[677] L. REICHEL, G. S. AMMAR, AND W. B. GRAGG, Discrete least squares
approximation by trigonometric polynomials, Math. Comp., 57 (1991), pp. 273-
289.

[678] L. REICHEL AND W. B. GRAGG, FORTRAN subroutines for updating the QR
decomposition, ACM Trans. Math. Software, 16 (1990), pp. 369-377.

[679] J. K. REID, A note on the least squares solution of a band system of linear
equations by Householder reductions, Comput J., 10 (1967), pp. 188-189.

[680] , On the method of conjugate gradients for the solution of large systems
of linear equations, in Large Sparse Sets of Linear Equations, J. K. Reid, ed.,
Academic Press, New York, 1971, pp. 231-254.

[681] , On the use of conjugate gradients for systems of linear equations possessing
"Property A", SIAM J. Numer. Anal., 9 (1972), pp. 325-332.

[682] , TREESOLVE, a Fortran package for solving large sets of linear finite

392 BIBLIOGRAPHY

element solutions, Tech. Report CSS 155, 1984, Computer Science and Systems
Division, AERE Harwell, Oxfordshire, UK, 1984.

[683] C. H. REINSCH, Smoothing by spline functions, Numer. Math., 16 (1971), pp. 451-
454.

[684] J. R. RICE, Experiments on Gram-Schmidt orthogonalization, Math. Comp., 20
(1966), pp. 325-328.

[685] , PARVEC workshop on very large least squares problems and supercomput-
ers, Tech. Report CSD-TR 464, Purdue University, West Lafayette, IN, 1983.

[686] J. L. RIGAL AND J. CACHES, On the compatability of a given solution with the
data of a linear system, J. Assoc. Comput. Mach., 14 (1967), pp. 543-548.

[687] J. D. RILEY, Solving systems of linear equations with a positive definite symmetric
but possibly ill-conditioned matrix, Math. Tables Aids. Comput., 9 (1956), pp. 96-
101.

[688] D. J. ROSE, A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations, in Graph Theory and Computing, R. C. Read,
ed., Academic Press, New York, 1972, pp. 183-217.

[689] A. RUHE, Accelerated Gauss-Newton algorithms for nonlinear least squares prob-
lems, BIT, 19 (1979), pp. 356-367.

[690] , Numerical aspects of Gram-Schmidt orthogonalization of vectors, Linear
Algebra Appl., 52/53 (1983), pp. 591-601.

[691] A. RUHE AND P.-A. WEDIN, Algorithms for separable nonlinear least squares
problems, SIAM Review, 22 (1980), pp. 318-337.

[692] H. RUTISHAUSER, Der Quotienten-Differenzen-Algorithmus, ZAMP, 5 (1954),
pp. 233-251.

[693] , Theory of gradient methods, in Refined Methods for Computation of the
Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems, M. Engeli,
T. Ginsburg, H. Rutishauser, and E. Stiefel, eds., Birkhauser, Basel/Stuttgart,
1959, pp. 24-50.

[694] , Description of Algol 60, Handbook for Automatic Computation, Vol. la,
Springer-Verlag, Berlin, 1967.

[695] , Once again: The least squares problem, Linear Algebra Appl., 1 (1968),
pp. 479-488.

[696] , Vorlesungen iiber Numerische Mathematik. Band 1, Birkhauser, Basel,
1976.

[697] Y. SAAD, On the rates of convergence of the Lanczos and block-Lanczos methods,
SIAM J. Numer. Anal., 17 (1980), pp. 687-706.

[698] , Preconditioning techniques for nonsymmetric and indefinite linear systems,
J. Comput. Appl. Math., 24 (1988), pp. 89-105.

[699] , Numerical Methods for Large Eigenvalue Problems, Manchester University
Press, Manchester, UK, 1992.

[700] D. E. SALANE, A continuation approach for solving large residual least squares
problems, SIAM J. Sci. Statist. Comput., 8 (1987), pp. 655-671.

[701] M. A. SAUNDERS, Large-scale linear programming using the Cholesky factoriza-
tion, Tech. Report CS252, Computer Science Department, Stanford University,
CA, 1972.

[702] , Sparse least squares by conjugate gradients: A comparison of precondition-
ing methods, in Proceedings of Computer Science and Statistics: Twelfth Annual
Conference on the Interface, Waterloo, Canada, 1979.

[703] , Solution of sparse rectangular systems using LSQR and CRAIG, BIT, 35
(1995), pp. 588-604.

BIBLIOGRAPHY 393

[704] W. SAUTTER, Fehleranalyse filr die Gauss-Elimination zur Berechnung der
Losung minimaler Ldnge, Numer. Math., 30 (1978), pp. 165-184.

[705] R. SCHABACK, Convergence analysis of the general Gauss-Newton algorithm,
Numer. Math., 46 (1985), pp. 281-309.

[706] K. SCHITTKOWSKI, The numerical solution of constrained linear least-squares
problems, IMA J. Numer. Anal., 3 (1983), pp. 11-36.

[707] , Solving constrained nonlinear least squares problems by a general purpose
SOP-method, in Trends in Mathematical Optimization, K.-H. Hoffmann, J. B.
Hiriart-Urruty, C. Lemarechal, and J. Zowe, eds., vol. 84 of International Series of
Numerical Mathematics, Birkhauser-Verlag, Basel, Switzerland, 1985, pp. 49-83.

[708] K. SCHITTKOWSKI AND J. STOER, A factorization method for the solution of
constrained linear least squares problems allowing subsequent data changes, Numer.
Math., 31 (1979), pp. 431-463.

[709] K. SCHITTKOWSKI AND P. ZIMMERMANN, A factorization method for constrained
least squares problems with data changes. Part 2: Numerical tests, comparisons,
and ALGOL codes, Tech. Report Preprint No. 30, Institut fur Angewandte
Mathematik und Statistik, Universitat Wiirzburg, Germany, 1985.

[710] E. SCHMIDT, Zur Theorie der linearen und nichtlinearen Integralgleichungen. I.
Teil: Entwicklung willkurlicher Funktionen nach System vorgeschriebener, Math.
Ann., 63 (1907), pp. 433-476.

[711] , Uber die Auflosung linearer Gleichungen mit unendlich vielen Unbekannten,
Rend. Circ. Mat. Palermo. Ser. 1, 25 (1908), pp. 53-77.

[712] R. SCHREIBER AND W.-P. TANG, On systolic arrays for updating the Cholesky
factorization, BIT, 26 (1986), pp. 451-466.

[713] R. SCHREIBER AND C. F. VAN LOAN, A storage efficient WY representation
for products of Householder transformations, SIAM J. Sci. Statist. Comput., 10
(1989), pp. 53-57.

[714] H. SCHWETLICK AND V. TILLER, Numerical methods for estimating parameters in
nonlinear models with errors in the variables, Technometrics, 27 (1985), pp. 17-24.

[715] , Nonstandard scaling matrices for trust region Gauss-Newton methods,
SIAM J. Sci Statist. Comput., 10 (1989), pp. 654-670.

[716] H. D. SCOLNIK, On the solution of non-linear least squares problems, in Proceed-
ings of the IFIP Congress 71, H. Freeman, ed., North-Holland, Amsterdam, 1972,
pp. 1258-1265.

[717] P. L. SEIDEL, Uber ein Verfahren, die Gleichungen, auf welche die Methode der
kleinsten Quadrate fuhrt, sowie lineare Gleichungen iiberhaupt, durch successive
Anndherung aufzulosen, Abh. Bayer Akad. Wiss., 11:81 (1874).

[718] L. F. SHAMPINE, Discrete least squares polynomial fits, Comm. ACM, 18 (1975),
pp. 179-180.

[719] A. H. SHERMAN, Algorithm 533, NSPIV, a FORTRAN subroutine for sparse.
Gaussian elimination with partial pivoting, ACM Trans. Math. Software, 4 (1978),
pp. 391-398.

[720] I. H. SIEGEL, Deferment of computation in the method of least squares, Math.
Comp., 19 (1965), pp. 329-331.

[721] R. D. SKEEL, Scaling for numerical stability in Gaussian elimination, J. Assoc.
Comput. Mach., 26 (1979), pp. 494-526.

[722] , Iterative refinement implies numerical stability for Gaussian elimination,
Math. Comp., 35 (1980), pp. 817-832.

[723] I. SODERQUIST, Computing Parameters in Nonlinear Least Squares Models, Ph.
D. thesis, University of Umea, Sweden, 1993.

394 BIBLIOGRAPHY

[724] H. SPATH, On discrete linear orthogonal lp approximation, Z. Angew. Math.
Mech., 62 (1982), pp. 354-355.

[725] , Orthogonal least squares fitting with linear manifolds, Numer. Math., 48
(1986), pp. 441-445.

[726] , Modified Gram-Schmidt for solving linear least squares problems is equiv-
alent to Gaussian elimination for the normal equations, Appl. Math., 20 (1990),
pp. 587-589.

[727] , Mathematical Algorithms for Linear Regression, Academic Press, New York,
1992.

[728] G. W. STEWART, On the continuity of the generalized inverse, SIAM J. Appl.
Math., 17 (1969), pp. 33-45.

[729] , Introduction to Matrix Computations, Academic Press, New York, 1973.
[730] , The economical storage of plane rotations, Numer. Math., 25 (1976),

pp. 137-138.
[731] , On the perturbation of pseudo-inverses, projections, and linear least squares

problems, SIAM Review, 19 (1977), pp. 634-662.
[732] , Perturbation bounds for the QR factorization of a matrix, SIAM J. Numer.

Anal., 14 (1977), pp. 509-518.
[733] , Research development and UNPACK, in Mathematical Software III, J. R.

Rice, ed., Academic Press, New York, 1977, pp. 1-14.
[734] , The effects of rounding error on an algorithm for downdating a Cholesky

factorization, J. Inst. Maths. Applic., 23 (1979), pp. 203-213.
[735] , A note on the perturbation of singular values, Linear Algebra Appl., 28

(1979), pp. 213-216.
[736] , The efficient generation of random orthogonal matrices with an application

to condition estimators, SIAM J. Numer. Anal., 17 (1980), pp. 403-404.
[737] , On the implicit deflation of nearly singular systems of linear equations,

SIAM J. Sci. Statist. Comput., 2 (1981), pp. 136-140.
[738] , Computing the CS decomposition of a partitioned orthogonal matrix, Numer.

Math., 40 (1982), pp. 297-306.
[739] , A generalization of the Eckart- Young approximation theorem, Tech. Report

TR-1325, Department of Computer Science, University of Maryland, College Park,
MD, 1983.

[740] , A method for computing the generalized singular value decomposition, in
Matrix Pencils. Proceedings, Pite Havsbad, 1982, B. Kagstrom and A. Ruhe, eds.,
vol. 973 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1983, pp. 207-
220.

[741] , A nonlinear version of Gauss's minimum variance theorem with applica-
tions to an errors-in-the-variables model, Tech. Report TR-1263, Department of
Computer Science, University of Maryland, College Park, MD, 1983.

[742] , On the asymptotic behavior of scaled singular and QR decompositions,
Math. Comp., 43(168) (1984), pp. 168-489.

[743] , On the invariance of perturbed null vectors under column scaling, Numer.
Math., 44 (1984), pp. 61-65.

[744] ? Rank degeneracy, SIAM J. Sci. Statist. Comput., 5 (1984), pp. 403-413.
[745] , Collinearity and least squares regression, Statistical Science, 2 (1987),

pp. 68-100.
[746] , On scaled projections and pseudoinverses, Linear Algebra Appl., 132 (1990),

pp. 115-117.
[747] , Perturbation theory and least squares with errors in the variables, in Con-

BIBLIOGRAPHY 395

temporary Mathematics 112: Statistical Analysis of Measurement Error Models
and Applications, P. J. Brown and W. A. Fuller, eds., American Mathematical
Society, Providence, HI, 1990, pp. 171-181.

[748] —! , On an algorithm for refining a rank-revealing URV factorization and a
perturbation theorem for singular values, Tech. Report UMIACS-TR-91-38, CS-
TR-2626, Department of Computer Science, University of Maryland, College Park,
MD, 1991.

[749] ? An updating algorithm for subspace tracking, IEEJE Trans. Signal Processing,
40 (1992), pp. 1535-1541.

[750] , On the early history of the singular value decomposition, SIAM Review, 35
(1993), pp. 551-566.

[751] , On the perturbation of LU, Cholesky, and QR factorizations, SIAM J.
Matrix Anal. Appl., 14 (1993), pp. 1141-1145.

[752] , Updating a rank-revealing ULV decomposition, SIAM J. Matrix Anal. Appl.,
14 (1993), pp. 494-499.

[753] , On the stability of sequential updates and downdates, Tech. Report CS-TR-
3238, Department of Computer Science, University of Maryland, College Park,
MD, 1994.

[754] G. W. STEWART AND J. SUN, Matrix Perturbation Theory, Academic Press,
Boston, 1990.

[755] E. STIEFEL, Ausgleichung ohne Aufstellung der Gausschen Normalgleichungen,
Wiss. Z. Tech. Hochsch. Dresden, 2 (1952/53), pp. 441-442.

[756] T. J. STIELTJES, Sur les racines de I'equation xn - 0, Acta. Math., 9 (1887),
pp. 385-400.

[757] S. M. STIGLER, An attack on Gauss, published by Legendre in 1820, Hist. Math.,
4 (1977), pp. 31-35.

[758] , Gauss and the invention of least squares, Ann. Statist., 9 (1981), pp. 465-
474.

[759] J. STOER, On the numerical solution of constrained least squares problems, SIAM
J. Numer. Anal., 8 (1971), pp. 382-411.

[760] Z. STRAKOS, On the real convergence of the conjugate gradient method, Linear
Algebra Appl., 154/156 (1991), pp. 535-549.

[761] C. N. STRAND, Theory and methods related to the singular function expansion
and Landweber's iteration for integral equations of the first kind, SIAM J. Numer.
Anal., 11 (1974), pp. 798-825.

[762] C. SUN, Parallel solution of sparse linear least squares problems on distributed-
memory multiprocessors, Tech. Report CTC95TR212, 05/95, Advanced Comput-
ing Research Institute, Cornell University, Ithaca, NY, 1995.

[763] , Parallel sparse orthogonal factorization on distributed-memory multiproces-
sors, SIAM J. Sci. Comput., (1996), to appear.

[764] J.-G. SUN, Perturbation bounds for the Cholesky and QR factorizations, BIT, 31
(1991), pp. 341-352.

[765] , On perturbation bounds for the QR factorization, Linear Algebra Appl., 215
(1995), pp. 95-111.

[766] , Perturbation analysis of the Cholesky downdating and QR updating prob-
lems, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 760-775.

[767] , Optimal backward perturbation bounds for the linear LS problem with
multiple right-hand sides, IMA J. Numer. Anal., 16 (1996), pp. 1-11.

[768] D. R. SWEET, Fast Toeplitz orthogonalization, Numer. Math., 43 (1984), pp. 1-21.
[769] , Fast block Toeplitz orthogonalization, Numer. Math., 58 (1991), pp. 613-

396 BIBLIOGRAPHY

629.
[770] K. TANABE, Projection method for solving a singular system of linear equations

and its applications, Numer. Math., 17 (1971), pp. 203-214.
[771] P. T. P. TANG, Dynamic condition estimation and Rayleigh-Ritz approximation,

SIAM J. Matrix Anal. Appl., 15 (1994), pp. 331-346.
[772] W.-P. TANG AND G. H. GOLUB, The block decomposition of a Vandermonde

matrix and its applications, BIT, 21 (1987), pp. 505-517.
[773] R. E. TARJAN, Depth-first search and linear graph algorithms, SIAM J. Comput.,

1 (1972), pp. 146-159.
[774] R. P. TEWARSON, A computational method for evaluating generalized inverses,

Comput. J., 10 (1968), pp. 411-413.
[775] A. N. TIKHONOV, Regularization of incorrectly posed problems, Soviet Math., 4

(1963), pp. 1624-1627.
[776] W. F. TINNEY AND J. W. WALKER, Direct solution of sparse network equations

by optimally ordered triangular factorization, Proc. IEEE, 55 (1967), pp. 1801-
1809.

[777] P. L. ToiNT, On large scale nonlinear least squares calculations, SIAM J. Sci.
Statist. Comput., 8 (1987), pp. 416-435.

[778] , VEWAD a routine for large-scale nonlinear least squares, Harwell subrou-
tine library, AERE Harwell, Oxfordshire, UK, 1987.

[779] N.-K. TSAO, A note on implementing the Householder transformation, SIAM J.
Numer. Anal., 12 (1975), pp. 53-58.

[780] A. VAN DER SLUIS, Condition numbers and equilibration of matrices, Numer.
Math., 14 (1969), pp. 14-23.

[781] , Stability of the solutions of linear least squares problems, Numer. Math., 23
(1975), pp. 241-254.

[782] A. VAN DER SLUIS AND H. VAN DER VORST, Numerical solution of large sparse
linear equations and least squares problems, in Seismic Tomography, G. Nolet, ed.,
Reidel, Dordrecht, the Netherlands, 1987, pp. 49-83.

[783] , SIRT- and CG-type methods for iterative solution of sparse linear least-
squares problems, Linear Algebra Appl., 130 (1990), pp. 257-302.

[784] A. VAN DER SLUIS AND G. VELTKAMP, Restoring rank and consistency by
orthogonal projection, Linear Algebra Appl., 28 (1979), pp. 257-278.

[785] J. VAN HEIJST, J. JACOBS, AND J. SCHERDERS, Kleinste-Kvadraten Problemen.,
Tech. Report, Department of Mathematics, Eindhoven University of Technology,
Eindhoven, the Netherlands, 1976.

[786] S. VAN HUFFEL, Analysis of the Total Least Squares Problem and Its Use in
Parameter Estimation, Ph. D. thesis, Katholieke Universiteit Leuven, Belgium,
1987.

[787] , Iterative algorithms for computing the singular subspace of a matrix
associated with its smallest singular values, Linear Algebra Appl., 154/156 (1991),
pp. 675-709.

[788] S. VAN HUFFEL AND H. PARK, Efficient reduction algorithms for bordered band
matrices, Numer. Linear Algebra Appl., 2 (1995), pp. 95-113.

[789] S. VAN HUFFEL AND J. VANDEWALLE, Algebraic relationships between classical
regression and total least-squares estimation, Linear Algebra Appl., 93 (1987),
pp. 149-162.

[790] , Analysis and solution of the nongeneric total least squares problem, SIAM
J. Matrix Anal. Appl., 9 (1988), pp. 360-372.

[791] , Analysis and properties of the generalized total least squares problem

BIBLIOGRAPHY 397

AX w B when some or all columns in A are subject to error, SIAM J. Matrix.
Anal. Appl, 10 (1989), pp. 294-315.

[792] , The Total Least Squares Problem: Computational Aspects and Analysis,
vol. 9 of Frontiers in Applied Mathematics, SIAM, Philadelphia, 1991.

[793] S. VAN HUFFEL, J. VANDEWALLE, AND A. HAEGEMANS, An efficient and reliable
algorithm for computing the singular subspace of a matrix, associated with its
smallest singular values, J. Comp. Appl. Math., 19 (1987), pp. 313-330.

[794] S. VAN HUFFEL AND H. ZHA, The restricted total least squares problem:
Formulation, algorithm, and properties, SIAM J. Matrix Anal. Appl., 12 (1991),
pp. 292-309.

[795] , An efficient total least squares algorithm based on a rank revealing two-sided
orthogonal decomposition, Numer. Algorithms, 4 (1993), pp. 101-133.

[796] C. F. VAN LOAN, Generalizing the singular value decomposition, SIAM J. Numer.
Anal, 13 (1976), pp. 76-83.

[797] , A generalized SVD analysis of some weighting methods for equality con-
strained least squares, in Matrix Pencils. Proceedings, Pite Havsbad, 1982,
B. Kagstrom and A. Ruhe, eds., vol. 973 of Lecture Notes in Mathematics,
Springer-Verlag, Berlin, 1983, pp. 245-262.

[798] , Computing the CS and the generalized singular value decomposition, Numer.
Math., 46 (1985), pp. 479-492.

[799] , On the method of weighting for equality constrained least squares, SIAM J.
Numer. Anal., 22 (1985), pp. 851-864.

[800] , Computational Frameworks for the Fourier Transform, vol. 10 of Frontiers
in Applied Mathematics, SIAM, Philadelphia, 1992.

[801] J. M. VARAH, On the numerical solution of ill-conditioned linear systems with
applications to ill-posed problems, SIAM J. Numer. Anal., 10 (1973), pp. 257-267.

[802] , A lower bound for the smallest singular value of a matrix, Linear Algebra
Appl., 11 (1975), pp. 1-2.

[803] , A practical examination of some numerical methods for linear discrete ill-
posed problems, SIAM Review, 21 (1979), pp. 100-111.

[804] , Backward error estimates for Toeplitz systems, SIAM J. Matrix Anal. Appl.,
15 (1994), pp. 408-417.

[805] R. S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ,
1962.

[806] S. A. VAVASIS, Stable numerical algorithms for equilibrium systems, SIAM J.
Matrix Anal. Appl., 15 (1994), pp. 1108-1131.

[807] N. VEMPATI, I. W. SLUTSKER, AND W. F. TINNEY, Enhancements to Givens
rotations for power system state estimation, IEEE Trans. Power Systems, 6 (1991),
pp. 842-849.

[808] U. VON MATT, Large Constrained Quadratic Problems, Ph. D. thesis, Institute
for Scientific Computing, ETH, Zurich, Switzerland, 1993.

[809] , The orthogonal QD-algorithm, in SVD and Signal Processing, III: Algo-
rithms, Architectures and Applications, M. Moonen and B. De Moor, eds., Else-
vier, Amsterdam, 1995, pp. 99-106.

[810] B. WALDEN, Least Squares Methods and Application in Robotics, Ph. D. thesis,
Department of Mathematics, Linkoping University, Sweden, 1994.

[811] B. WALDEN, R. KARLSSON, AND J.-G. SUN, Optimal backward perturbation
bounds for the linear least squares problem, Numer. Linear Algebra Appl., 2 (1995),
pp. 271-286.

[812] R. H. WAMPLER, An evaluation of linear least squares computer programs, J. Res.

398 BIBLIOGRAPHY

Nat. Bur. Standards, 73B (1969), pp. 59-90.
[813] , A report on the accuracy of some widely used least squares computer

programs, J. Amer. Statist. Assoc., 65 (1970), pp. 549-565.
[814] , Some recent developments in linear least squares computations, in Proceed-

ings of the Computer Science and Statistics: Sixth Annual Symposium on the
Interface, M. Tarter, ed., Academic Press, New York, 1972, pp. 94-110.

[815] , L1A and LIB, weighted least squares solutions by modified Gram-Schmidt
with iterative refinement, ACM Trans. Math. Software, 5 (1979), pp. 494-99.

[816] , Solutions to weighted least squares problems by modified Gram-Schmidt with
iterative refinement, ACM Trans. Math. Software, 5 (1979), pp. 457-465.

[817] , Test procedures and test problems for least squares algorithms, J. Econom.,
12 (1980), pp. 3-22.

[818] X. WANG, Incomplete Factorization Preconditioning for Least Squares Problems,
Ph. D. thesis, Department of Mathematics, University of Illinois at Urbana-
Champaign, Urbana, IL, 1993.

[819] X. WANG, K. A. GALLIVAN, AND R. BRAMLEY, CIMGS: An incomplete
orthogonal factorization preconditionier, SIAM J. Sci. Comput., 17 (1996), to
appear.

[820] G. A. WATSON, The numerical solution of total tp approximation problems,
in Numerical Analysis. Proceedings of the 10th Biennial Conference Dundee,
Scotland 1983, D. Griffiths, ed., vol. 630 of Lecture Notes in Mathematics,
Springer-Verlag, Berlin, 1984, pp. 72-105.

[821] P.-A. WEDIN, The non-linear least squares problem from a numerical point of
view. I Geometrical properties, Tech. Report, Department of Computer Sciences,
Lund University, Lund, Sweden, 1972.

[822] , Perturbation bounds in connection with the singular value decomposition,
BIT, 12 (1972), pp. 99-111.

[823] , On the almost rank deficient case of the least squares problem, BIT, 13
(1973), pp. 344-354.

[824] , Perturbation theory for pseudo-inverses, BIT, 13 (1973), pp. 217-232.
[825] , On the Gauss-Newton method for the nonlinear least squares problems,

Working Paper 24, Institute for Applied Mathematics, Stockholm, Sweden, 1974.
[826] , Perturbations of the pseudo-inverse and the linear least squares problem

analysed with suitable matrix decompositions, Tech. Report UMINF-69.78, Insti-
tute of Information Processing, University of Umea, Sweden, 1978.

[827] , Notes on the constrained linear least squares problem. A new approach based
on generalized inverses, Tech. Report UMINF-75.79, Institute of Information
Processing, University of Umea, Sweden, 1979.

[828] , Perturbation theory and condition numbers for generalized and constrained
linear least squares problems, Tech. Report UMINF-125.85, Institute of Informa-
tion Processing, University of Umea, Sweden, 1985.

[829] M. WEI, Perturbation of the least squares problem, Linear Algebra Appl., 141
(1990), pp. 177-182.

[830] , Algebraic properties of the rank-deficient equality constrained and weighted
least squares problem, Linear Algebra Appl., 161 (1992), pp. 27-43.

[831] , Algebraic relations between the total least squares and least squares problems
with more than one solution, Numer. Math., 62 (1992), pp. 123-148.

[832] , The analysis for the total least squares problems with more than one
solution, SIAM J. Matrix. Anal. Appl., 13 (1992), pp. 746-763.

[833] , Perturbation theory for the rank-deficient equality constrained and weighted

BIBLIOGRAPHY 399

least squares problem, SIAM J. Numer. Anal, 29 (1992), pp. 1462-1481.
[834] P. R. WEIL AND P. C. KETTLER, Rearranging matrices to block-angular form for

decomposition (and other) algorithms, Management Sci., 18 (1971), pp. 98-108.
[835] J. H. WILKINSON, Rounding Errors in Algebraic Processes, Prentice-Hall, Engle-

wood Cliffs, NJ, 1963.
[836] , The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, UK, 1965.
[837] , Error analysis of transformations based on the use of matrices of the form

I — 2xxH, in Error in Digital Computation, L. B. Rail, ed., John Wiley, New York,
1965, pp. 77-101.

[838] , A priori error analysis of algebraic processes, in Proceedings International
Congress Math., Izdat. Mir, Moscow, 1968, pp. 629-639.

[839] , Modern error analysis, SIAM Review, 13 (1971), pp. 548-568.
[840] , Some recent advances in numerical linear algebra, in The State of the Art

in Numerical Analysis, D. Jacobs, ed., Academic Press, New York, 1977, pp. 1-53.
[841] , The use of single precision-residuals in the solution of linear systems,

unpublished report, National Physical Laboratory, Teddington, UK, 1977.
[842] , Error analysis revisited, IMA Bulletin, 22 (1986), pp. 192-200.
[843] J. H. WILKINSON AND C. REINSCH, Handbook for Automatic Computation

Volume II. Linear Algebra, Springer-Verlag, New York, 1971.
[844] H. WITTMEYER, Einfluss der Anderung einer Matrix auf der Losung des

zugehorigen Gleichungssystems, sowie auf die charakterischen Zahlen und die
Eigenvektoren, Z. Angew. Math. Mech., 16 (1936), pp. 189-199.

[845] S. J. WRIGHT AND J. N. HOLT, Algorithms for nonlinear least squares with linear
inequality constraints, SIAM J. Sci. Statist. Comput., 6 (1985), pp. 1033-1048.

[846] K. Yoo AND H. PARK, Accurate downdating of a modified Gram-Schmidt QR
decomposition, BIT, 36 (1996), pp. 166-181.

[847] D. M. YOUNG, Iterative Solution of Large Linear Systems, Academic Press, New
York, 1971.

[848] J.-Y. YUAN, The convergence of the 2-block SAOR method for the least-squares
problem, Appl. Numer. Math., 11 (1993), pp. 429-441.

[849] , Iterative Methods for the Generalized Least-Squares Problem, Ph. D. thesis,
Institute de Matematica Pura e Aplicada, Rio de Janeiro, Brazil, 1993.

[850] M. ZELEN, Linear estimation and related topics, in Survey of Numerical Analysis,
J. Todd, ed., McGraw-Hill, New York, 1962, pp. 558-584.

[851] H. ZHA, Implicit QR factorization of a product of three matrices, BIT, 31 (1991),
pp. 375-379.

[852] , Restricted singular value decomposition of matrix triples, SIAM J. Matrix
Anal. Appl., 12 (1991), pp. 172-194.

[853] , A two-way chasing scheme for reducing a symmetric arrowhead matrix to
tridiagonal form, J. Numerical Linear Algebra Appl., 1 (1992), pp. 49-57.

[854] , A componentwise perturbation analysis of the QR decomposition, SIAM J.
Matrix Anal. Appl., 14 (1993), pp. 1124-1131.

[855] G. ZIELKE, Report on test matrices for generalized inverses, Computing, 36
(1986), pp. 105-162.

[856] P. ZIMMERMANN, Ein Algorithmus zur Losung linearer Least Squares Probleme
mit unteren und oberen Schranken als Nebenbedingungen, Diplomarbeit, Univer-
sitat Wiirzburg, Germany, 1977.

[857] Z. ZLATEV, Comparison of two pivotal strategies in sparse plane rotations,
Comput. Math. Appl., 8 (1982), pp. 119-135.

[858] , Computational Methods for General Sparse Matrices, Kluwer Academic

400 BIBLIOGRAPHY

Publishers, Norwell, MA, 1992.
[859] Z. ZLATEV AND H. NIELSEN, LLSSQl - a Fortran subroutine for solving least

squares problems (User's guide), Tech. Report 79-07, Institute of Numerical
Analysis, Technical University of Denmark, Lyngby, Denmark, 1979.

[860] , Solving large and sparse linear least-squares problems by conjugate gradient
algorithms, Comput. Math. Appl, 15 (1988), pp. 185-202.

Index

active set method, 257-262
acute perturbation, 26
adjacency set, 230
algebraic fit, 358
angle

between subspaces, 29, 286
principal, 18

approximation
of lower rank, 12, 101
unitary, 13

augmented band structure, 224
augmented system, 8, 216, 265

in Matlab, 264
optimal scaling, 80
solution by LDLT, 77-80
solution by QR, 20, 64

backward error
analysis, 38
componentwise, 35
normwise, 34
Oettli-Prager bound, 36

banded matrix
in standard form, 217
QR decomposition, 221-224
storage scheme, 218-219

banded problem
Cholesky factorization, 219
Givens QR, 221
Householder QR, 223
normal equations, 219-221

bandwidth, 217
BBH algorithm, 333, 334
bidiagonal decomposition, 81-83

Chan's algorithm, 82
Lanczos process, 303-306

bidiagonal matrix
graded, 89

splitting of, 88
block angular form, 224-227

covariance matrix, 227
doubly bordered, 225

block angular problem
QR algorithm, 225-227

block triangular form, 234-235
algorithm, 235
coarse decomposition, 234
fine decomposition, 235

BLS, see bounded least squares
BLUE, see unbiased estimated, best

linear
bounded least squares

sparse, 257-262
Bunch-Kaufman pivoting, 77

cancellation, 233
Cauchy matrix, 324
CGLS, 288-293
CGNR, see CGLS
Chebyshev abscissae, 325, 327

interpolation, 326
Chebyshev expansion, 327
Chebyshev polynomials, 325-327
Cholesky factorization, 8, 44-48

block, 48
columnwise, 46
incomplete, 294-297
of banded matrix, 219
of bordered matrix, 45
outer product, 47
row-wise, 46
sparse, 242

Clenshaw's recursion formula, 322
clique, 231, 240
column ordering

Cuthill-McKee, 237-238

401

402 INDEX

minimum degree, 237-240
nested dissection, 237, 240-241

column scaling
optimal, 31

complete orthogonal decomposition,
23, 110-112
from RRQR, 111

condition estimation
by QR, 114
Hager's, 116-118
UNPACK, 114-116

condition number, 38
Bauer-Skeel, 33
estimation of, 114-118
of least squares problem, 31
of matrix, 27

conjugate gradient method, 288-294
convergence, 290-292
convergence rate, 289
effective convergence, 292
in finite precision, 292-293
preconditioned, 293-294
pseudoinverse solution, 291

constrained problem
bounded, 201-203, 312-314
Cryer's method for, 312
iterative methods, 312-314
linear equality, 187-194
linear inequality, 194-203
nonlinear, 353-354
quadratic, 203-213
quadratic inequality, 205-206
sparse, 257-264
sparse BLS, 257-262

Courant-Fischer theorem, 14
covariance matrix, 3, 164

block angular problem, 227
computing, 118-120

selected elements, 256-257
method, 131

cross-validation, 211-213, 316
CS decomposition, 155-157
CSNE, see seminormal equations,

corrected
curvature matrix, 341
curvature radius, 341

decomposition
bidiagonal, 23, 81-83

complete orthogonal, 23, 110-
112
CS, 155-157
GQR, 153
GSVD, 155
LDLT, 77
PQR, 153
QR, 19-22
singular value, 9-18, 80-98
ULV, 112
URV, 111

defect matrix, 294
derivatives, 32
distance

between subspaces, 18
to set of singular matrices, 12

downdating
by hyperbolic rotation, 143-144
by seminormal equations, 142-
143
Cholesky factorization, 140-
144
Gram-Schmidt decomposition,
138-140
QR decomposition, 137
Saunders algorithm, 141-142

Eckhart-Young theorem, 12
elimination tree, 241, 247-249

post ordering of, 249
topological ordering of, 249
transitive reduction, 248

envelope, 218
equality constrained problem

by direct elimination, 188-189
by nullspace method, 189-191

error analysis, 38
error estimation

a posteriori, 34
backward, 34-36
forward, 27-32
of inner product, 39

estimator
unbiased, 4

expected value, 2

fast Fourier transform, 330-332
FFT, see fast Fourier transform
fill in sparse matrix, 216
filter factor, 101, 315
floating point arithmetic, 37

INDEX 403

standard model, 37
flop, 43
Fourier analysis

discrete, 328-332
Fourier coefficients, 318
Fourier matrix, 331
Fourier synthesis

discrete, 330
fundamental matrix, 163
fundamental subspaces, 17

Gauss-Markoff
general linear model, 160-162
theorem, 3

Gauss-Newton direction, 343
Gauss-Newton method, 342-348

damped, 343-345
local convergence, 345-346
search direction, 343
trust region, 346-348

Gauss-Seidel's method, 277
generalized SVD, 155-160

computation of, 159-160
geometric fit, 357
Givens rotation, 53
Givens transformation, 53-57

algorithm, 54
fast, 56-57
in QR, 60
self-scaling, 57
storage of, 55
unitary, 55

Golub-Kahan bidiagonalization, see
Lanczos bidiagonalization

Golub's method, 64
Gragg-Harrod procedure, 322
Gram-Schmidt decomposition, 60-

63
block algorithm, 71-73
classical, 63
downdating of, 138-140
modified, 61
modifying, 138-140
square root-free, 62
with reorthogonalization, 66-69

graph
bipartite, 236
clique in, 231, 240
connected, 230
directed, 231

edges, 230
elimination, 232, 238-240
filled, 232, 248
labeled, 230
nodes, 230
ordered, 230
path in, 230
planar, 241
representation of sparse matrix,
230-231
separator, 231
strongly connected, 231
subgraph of, 230
undirected, 230

//-matrix, 295
Hall property, 233
Harwell-Boeing collection, 237, 264,

266
Harwell subroutine library, 235, 265
Hessian matrix, 340
Hestenes method, 92-94

parallel implementation, 94
Holder inequality, 24
Householder reflector, see House-

holder transformation
Householder transformation, 51-53

algorithm, 52
in QR, 59
unitary, 53

hybrid algorithms, 69-70
hyperbolic rotation, 143-144

Chambers modification, 144

ill-posed problems, 203-204
IMGS, see incomplete MGS
incomplete Cholesky

algorithm, 294
correction, 295
existence, 295
higher level, 294
level zero, 294
threshold, 296

incomplete factorizations, 294-299
incomplete MGS, 297-298

by Cholesky, 298
incomplete QR decomposition, 297-

299
drop-tolerance, 299

interior point method

404 INDEX

sparse constrained problem,
262-264

interlacing property, 14
IRLS, see iteratively reweighted

least squares
iterative method

block, 284-287
block SOR, 285
CGLS, 288-293
classical, 276-279
convergence

asymptotic rate, 275
average rate, 275
conditions for, 274

error reducing, 278
polynomial acceleration of, 281
preconditioned, 283-284
residual reducing, 277
SOR, 279-280
splitting, 276
SSOR, 280, 283
stationary, 274-275
symmetrizable, 275
Toeplitz system, 334-335
two-block, 286-287

iterative refinement, 120-126
extended precision, 121-124
fixed precision, 124-126
for linear systems, 120-121
for sparse problem, 250-252

iterative regularization, 314-316
iteratively reweighted least squares,

173-175

Jacobian matrix, 340
Jacobi methods

for SVD, 92-96
Jacobi's iterative method, 277

Kalman gain vector, 131
Karush-Kuhn-Tucker conditions,

262, 312
Kogbetliantz's method, 92, 95-96
Kronecker

least squares problem, 336-338
product, 337

pseudoinverse, 337
QR decomposition, 338
singular value decomposi-

tion, 338
Krylov subspace, 288, 293, 303

best approximation in, 306-307
orthogonal basis for, 304

/i and /oo approximation, 5, 175-176
IP approximation, 5, 172-176
Lagrange multipliers, 8
Lanczos bidiagonalization, 303-306

convergence of singular values,
309-310
for total least squares, 310-311
in finite precision, 306

Landweber's method, 314
LED, see Lanczos bidiagonalization
least squares fitting

discrete, 321-323
of geometric elements, 357-358

least squares problem
damped, 101
dual, 8
generalized, 162-163
geometric interpretation, 7
Kronecker, 336-338
nonlinear, 339-342
primal, 8
sequential, 188
slightly overdetermined, 74
statistical aspects, 318-319
Toeplitz, 332-336
weighted, 165-171

least squares solution
basic, 106
derivative of, 32
minimum norm, 7

linear complementarity problem,
312

linear equality constraints
by GSVD, 191-192
by updating, 194
by weighting, 192-194

linear inequality constraints
active set algorithms, 198-203
basic transformations, 196-197
by GSVD, 206-208
by QR, 208-211
classification, 194-195

linear model
errors-in-variables, 176-177
general univariate, 4
standard, 3
total least squares, 176-177

INDEX 405

linear regression, 50
linear system

homogeneous, 10
overdetermined, 1, 15
underdetermined, 7, 15

LINPACK algorithm, see Saunders
algorithm

LSQI, see quadratic inequality con-
straints

LSQR, 307-309
LU factorization, 73

of rectangular matrix, 76-77
partial, 75

LU preconditioner, 299-303
for CGLS, 300
rate of convergence, 301

M-matrix, 295
matrix

consistently ordered, 280
reducible, 231
sparse, 215

mean, 5
median, 5
merit function, 353
MGS, see modified Gram-Schmidt
midrange, 5
modification

of low rank, 128
modified Gram-Schmidt

as a Householder method, 65
least squares solution, 65
minimum norm solution, 66

modified linear systems, 128
multifrontal method, 245-250

for QR decomposition
data management, 249
update matrix, 247

Newton-type method, 348-351
hybrid, 348-349

NNLS, see nonnegative least squares
no-cancellation assumption, 231-

233, 254
node(s)

adjacent, 230
amalgamation of, 250
connected, 230
degree, 230
indistinguishable, 239
supernode, 239, 250

nonlinear problem, 339-342
constrained, 353-354
Gauss-Newton method, 342-
348
local minima, 340
Newton-type methods, 348-351
separable, 351-353

nonnegative least squares, 195
sparse, 262-264

norm
Euclidian, 5
Probenius, 12, 25
Holder, 5, 24

normal equations, 6, 42
factored form, 269
forming of, 42
loss of information in, 44
method of, 42-51
of second kind, 7, 42, 45, 269,
278
scaling of, 49-51

normalized residuals, 118
nullspace, 6

method, 189-191
numerical, 101

from RRQR, 110
from SVD, 101
from ULV, 112
from URV, 111

numerical cancellation, 233
numerical rank, 99

ODR, see orthogonal distance re-
gression

ODRPACK, 357
Oettli-Prager bound, 36
orthogonal bases problem, 68
orthogonal coefficients, 318
orthogonal distance

fitting circles and ellipses, 357
regression, 354-357
linear, 184-186

orthogonal polynomials
Chebyshev, 325-327
general theory, 320-321
Gram, 323
trigonometric, 329-330

orthogonal projection, 7, 17
derivative of, 32

orthogonal systems, 317-319

406 INDEX

orthogonal transformation
elementary, 51-57
Givens, 53-57
Householder, 51-53

Paige's method, 164-165
PCCGLS, see conjugate gradient

method, preconditioned
Penrose's conditions, 16
perturbation analysis

asymptotic form, 32
componentwise, 32-34
least squares solutions, 27-34
pseudoinverse, 26-27

Peters-Wilkinson method, 73-76
pivoting

row, 169
standard column, 103-106

failure of, 105
polar decomposition, 13
polynomial

approximation, 319-327
triangle family, 319-320

positive definite, 6
preconditioner

block column, 284-286
block SSOR, 286
cyclic Jacobi, 286
diagonal scaling, 283
for Toeplitz systems, 335-336
incomplete Cholesky, 294-297
incomplete MGS, 297
incomplete QR decompositions,
297-299
LU factorization, 299-303
reduced system, 287
SSOR, 283-285

predicting
structure of ATA, 231
structure of R, 232-234

principal
angle, 18, 286
vector, 18

property A, 279, 286
pseudoinverse, 4, 15-17

characterization of, 16
derivative of, 32
from QR decomposition, 106-
107

from SVD, 15

Kronecker product, 337
Moore-Penrose, 16
solution, 15

pseudoinverse solution
by LU factorization, 76-77

QR algorithm
convergence criteria, 85, 88
Demmel-Kahan, 91
for SVD, 85-92
implicit, 83
operation count, 90
perfect shifts, 89
real symmetric matrices, 83-85
zero shift, 90-92

QR decomposition, 19-22, 58-73
and Cholesky factorization, 19
appending a column, 135-136
appending a row, 136
block algorithm, 71-73
column pivoting, 103-106
deleting a column, 133-134
deleting a row, 137
for weighted problem, 168-170
full rank, 19-21
generalized, 153-155
Kronecker product, 338
modifying, 132-137
multifrontal, 245-250
partial, 69
rank one change, 132-133
rank revealing, 21-22, 108-110,
252-254

Chan's algorithm, 109
row ordering for, 221, 244-245
row pivoting, 169
row sequential, 242-244
Toeplitz matrix, 333-334
Vandermonde matrix, 325

quadratic inequality constraints,
203-213

quasi-Newton method, 349-351

random errors, 3, 165
uncorrelated, 3, 176

random variable, 2
rank

numerical, 99
structural, 236

rank revealing QR, 21-22, 108-110,
252-254

INDEX 407

modifying, 149-152
recursive least squares, 131
regression

linear, 50
orthogonal distance, 354-357
robust, 175

regularization, 100-102
filter factor, 101, 315
iterated, 314
Krylov subspace methods, 315
Landweber, 314
methods, 204
semiconvergence, 314
Tikhonov, 204

relaxation parameter, 279
optimal, 286, 303
optimal for SOR, 280

reorthogonalization
Kahan-Parlett algorithm, 68
superorthogonalization, 69

residual polynomial, 290
Richardson's method

first order, 276
second order, 282

ridge estimate, 204
Riley's method, 102, 314
rounding error analysis, 37-40

running, 39
RRQR, see rank revealing QR

Saunders algorithm, 141-142
semi-iterative method, 280-283

Chebyshev, 282
seminormal equations, 70, 250-252

corrected, 70, 250, 261
for downdating, 142-143

Sherman-Morrison formula, 129
singular value decomposition, 9-10

and pseudoinverse, 15-17
computation, 80-98
generalized, 155-160
Kronecker product, 338
modifying, 145-149
numerical rank, 99-100
of 2 x 2 matrix, 93
partial, 182
related eigenvalue problems, 11
subset selection, 113
truncated solution, 100-102

singular values, 10

absolute gap, 14
by spectrum slicing, 96-98
minmax property, 13, 15
relative gap, 90
sensitivity, 13

of bidiagonal matrix, 90
singular vectors, 10

sensitivity, 14
of bidiagonal matrix, 90

uniqueness, 10
software

LLSS01, 266
MA27, 265, 266
MA45, 265
MA47, 265
QR27, 266
SMMS, 266
SPARSPAK, 266

SOR, 279-280, 286
block, 285
symmetric, 283
three-block, 302
two-block, 303

sparse least squares problem
MATLAB solver, 267
banded, 217-224
constrained, 257-264
general, 227-252
Harwell-Boeing collection, 237,
264, 266
out-of-core solution, 255-256
software, 264-268
sources, 215
test results, 266-268
updating, 254-255

sparse matrix
block angular form, 224-227
block triangular form, 234-237
column ordering, 237-241
definition, 215
irreducible, 235
reducible, 235

sparse product
matrix-vector, 270-273

spectral radius, 274
splitting, 274

proper, 276
standard, 277

square root of matrix, 13
SSOR, see SOR, symmetric

408 INDEX

stability of algorithm
acceptable error, 42
backward, 40
forward, 40
strong backward, 41
weak, 42

standard form
of banded matrix, 217
of LSQI, 205

transformation to, 210
Stieltjes procedure, 321, 322
storage scheme

compressed column, 272
compressed diagonals, 273
compressed form, 228
compressed matrix, 272
compressed row, 218, 229, 271
coordinate scheme, 228
dynamic, 229
for banded matrix, 218-219
general sparse, 227-230
static, 229

structural cancellation, 233
structure

of Cholesky factor, 232-234
Sturm sequence, 98
subspaces

fundamental, 6
SVD, see singular value decomposi-

tion
Sylvester's law of inertia, 96

Tikhonov regularization, 101, 204
iterated, 102, 314

TLS, see total least squares
Toeplitz

least squares problem, 332-336
matrix

fast multiplication, 335
QR decomposition, 333-334
upper triangular, 211

systems
circulant preconditioner, 335
iterative solvers, 334-335
preconditioner, 335-336

total least squares, 176-184
restricted, 183
algorithm, 183
by SVD, 177-179
generalized, 182-184

mixed, 182
multidimensional, 181-182
relationship to least squares,
180

trigonometric polynomials, 329
truncated SVD, 100-102

solution, 101
trust region algorithm, 347
TSVD, see truncated SVD

ULV decomposition, 112
unbiased estimate, 4, 100

best linear, 4, 153, 162
of<r2, 118

unit roundoff, 37
updating

QR decomposition, 136
URV decomposition, 111

Vandermonde
matrix

QR decomposition, 325
systems, 323-325

fast algorithm, 324
variable projection algorithm, 352
variance-covariance matrix, see co-

variance matrix
Volterra integral equation, 211

weighted problem, 165-171
by updating, 171
condition number, 166
Gaussian elimination, 166-168
QR decomposition, 168-170
stiff, 166

Wielandt-Hoffman theorem, 14
Wilkinson shift, 84, 87
Woodbury formula, 129

