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Face Recognition Using Recursive
Fisher Linear Discriminant
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Abstract—Fisher linear discriminant (FLD) has recently
emerged as a more efficient approach for extracting features for
many pattern classification problems as compared to traditional
principal component analysis. However, the constraint on the total
number of features available from FLD has seriously limited its
application to a large class of problems. In order to overcome
this disadvantage, a recursive procedure of calculating the dis-
criminant features is suggested in this paper. The new algorithm
incorporates the same fundamental idea behind FLD of seeking
the projection that best separates the data corresponding to
different classes, while in contrast to FLD the number of features
that may be derived is independent of the number of the classes
to be recognized. Extensive experiments of comparing the new
algorithm with the traditional approaches have been carried out
on face recognition problem with the Yale database, in which the
resulting improvement of the performances by the new feature
extraction scheme is significant.

Index Terms—Face recognition, feature extraction, Fisher
Linear Discriminant (FLD), principal component analysis (PCA),
recursive Fisher linear discriminant (RFLD).

I. INTRODUCTION

EXTRACTING proper features is crucial for satisfactory
design of any pattern classifier, and how to develop a

general procedure for effective feature extraction remains an
interesting and challenging problem. Traditionally, principal
component analysis (PCA) has been the standard approach
to reduce the high-dimensional original pattern vector space
into low-dimensional feature vector space. Around the year of
1997, comparative studies between Fisher linear discriminant
(FLD) and PCA on the face recognition problem were reported
independently by numerous authors [1]–[3], in which FLD
outperformed PCA significantly. These successful applications
of FLD have drawn a lot of attention on this subject and the
ensuing years have witnessed a burst of research activities on
various issues relating to applying subspace methods such as
PCA and FLD to pattern recognition problems [4]–[8], with the
latest development being an attempt to unify all theses subspace
methods under the same framework [9].

Although FLD has proven to be more efficient than PCA in
many of the applications mentioned above, there is a serious
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limitation, which is that the total number of the features avail-
able from FLD is limited to , where is the number of
classes. This cap on the total number of features is rooted in
the mathematical treatment of FLD, which may attribute to the
fact that although this constraint is well known, it has somehow
been accepted as an inherent characteristic of FLD and received
little attention in the literature. If the number of classes is large
as is the case for identity recognition problems considered in
most of the papers, this limitation may not arise as a visible ob-
stacle. However, it may pose as a bottleneck if the number of
classes is small. For instance, for the glasses-wearing recogni-
tion problem treated in [1], the number of classes is two, and
hence the number of features resulting from FLD is only one.
Although it was demonstrated there that even one FLD fea-
ture could outperform PCA for this particular case, it may not
be the case for most of the other two-class classification prob-
lems since it is too naive to believe that only one FLD feature
would suffice for all. Therefore, it is essential to eliminate this
constraint completely if possible such that FLD can be applied
to a much wider class of pattern classification problems. It is
for this purpose that we wish to suggest a recursive procedure
for extracting FLD features, recursive Fisher linear discriminant
(RFLD), which constitutes the main contribution of this paper.

In order to verify whether this new approach would bring any
advantages over FLD as well as PCA, we choose to carry out ex-
periments on face recognition problem. All of the experimental
results have unanimously demonstrated that the performance of
the classifier can be improved significantly by RFLD compared
to both FLD and PCA as well as a number of their variations.

After RFLD was developed, it was recognized that the ex-
tracted features are mathematically equivalent to those obtained
by Orthonormal FLD [10], [11]. However, the motivation and
interpretation for Orthonormal FLD as well as the calculation
process are very different from RFLD. There is always a plea-
sure in recognizing old things from a new point of view. Also,
there are problems for which the new point of view offers a dis-
tinct advantage. For instance, the fundamental idea underlying
RFLD of recursively deriving new features by discarding all
the information represented by the old features can be readily
applied to other techniques such as PCA and SVM [12]. Fur-
thermore, only one synthetic example and IRIS database were
considered in [10] and [11] respectively to demonstrate its ef-
ficiency over FLD, while in this paper RFLD has been applied
to a real-world application problem, i.e., the face recognition
problem.

In the following section, a brief introduction of FLD and the
detailed algorithm for RFLD will be presented. And the experi-
mental results on face recognition problem will be discussed in
Section III.
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II. FLD VERSUS RFLD

A. Fisher Linear Discriminant (FLD)

Suppose that we have a set of -dimensional samples
belonging to different classes with samples

in the subset labeled . Then the objective
of FLD is to seek the direction not only maximizing the
between-class scatter of the projected samples, but also mini-
mizing the within-class scatter, such that the following criterion
function:

(1)

is maximized, where the between-class scatter matrix is de-
fined by

(2)

in which is the -dimensional sample mean for the whole set

(3)

and is the sample mean for class labeled given by

(4)

and the within-class scatter matrix is defined by

(5)

where the scatter matrix corresponding to class is defined
by

(6)

It is easy to show that a vector that maximizes must
satisfy

(7)

If is nonsingular, we can obtain a conventional eigenvalue
problem by writing

(8)

It is obvious that the at most features may be extracted
from above procedure simply because the rank of is at most

. In order to eliminate this upper bound on the total number
of discriminant features, a recursive procedure applying essen-
tially the same basic idea of FLD is proposed and will be de-
scribed in detail in the following section.

B. Recursive Fisher Linear Discriminant (RFLD)

Instead of extracting feature vectors from an eigenvalue
problem of once and for all, the feature vectors will be
obtained recursively, step by step. At every step, the calculation
of a new feature vector will be based upon all the feature vectors
obtained previously. More specifically, at each step when a
new feature vector is calculated, the training samples have to
be preprocessed such that all the information represented by
those “old” features will be discarded, i.e., the projections of the
sampled vectors on those “old” features will be eliminated. And
then the problem of extracting the new feature most efficient
for classification based upon the preprocessed database will be
formulated in the same fashion as that of FLD.

Let us consider a set of -dimensional samples
belonging to classes, as discussed in Section II-A. The first
RFLD feature vector will be the same as that of FLD, which
is the normalized eigenvector associated with the largest eigen-
value of matrix , where the between-class scatter matrix

and within-class scatter matrix are defined by (2) and
(5), respectively.

Comment 1: If the number of samples is smaller than the
dimension as is the case of face recognition problem, the
within-class scatter matrix is singular, which makes the
maximum value defined by (1) to be infinity. PCA is then usu-
ally employed to reduce the dimension first such that is non-
singular as suggested in [1]. From now on, we will always as-
sume that is nonsingular.

Before the second feature is computed, the information
represented by the first feature vector is first discarded from
all the sampled vectors , as follows:

(9)

Based on this new set of sampled vectors , the
sample means for the whole set , as well as for individual
classes, , are calculated as follows according to the standard
definitions in Section II-A

(10)

and

(11)

The new between-class scatter matrix and within-class
scatter matrix may then be computed by

(12)

and

(13)
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whereas, before, the scatter matrix corresponding to class
is defined by

(14)

The objective is to seek direction that maximize the same
criterion function defined by (1), just replacing and with

and , respectively

(15)

Similarly, it is easy to show that the optimal solution has
to satisfy

(16)

Since is not of full rank but of rank , the above
equation cannot be directly reduced to a conventional eigen-
value problem as before. It is also obvious that satisfies equa-
tion (16) since , which would make the
ratio, , indefinite. In order to prevent such a situation
from occurring, additional constraint has to be imposed on this
optimization problem. Considering the fact that the information
represented by previous feature is supposed to be discarded
from the samples, it is natural to impose the following condition
that the new feature is orthogonal to , i.e.

(17)

Combining (16) and (17) results in

(18)

where the matrices

and (19)

Using the fact that is of full rank, (18) can be reduced to

(20)

which becomes a conventional eigenvalue problem, and can
be obtained as the normalized eigenvector with the largest eigen-
value of the square matrix .

Similarly, it can be readily shown that the th feature vector
may be computed as the normalized eigenvector with the

largest eigenvalue from following eigenvalue problem:

(21)

where the matrices

...
and ...

(22)

where the within-class scatter matrix and the between-class
scatter matrix are calculated from the preprocessed sam-
ples in which all the information represented by previous
features are eliminated in the way of

(23)

This recursive process may continue as long as matrix is
not a zero matrix, i.e., the between-class scatter is not a zero
matrix. When is a zero matrix, the process naturally stops
because the between-class scatter is zero and cannot be further
maximized by projection. It is obvious from the above proce-
dure that not only has the constraint of at most features
been totally eliminated, but also is each feature an optimal di-
rection that maximizes the between-class scatter relative to the
within-class scatter for the sampled data under orthogonal con-
ditions, which in turn provides a sound basis for exploiting them
as features for classification purpose.

Comment 2: RFLD bears the similar idea as suggested by
iterative linear classification (ILC) [12], which is to generate
new sample sets by projecting the samples into a subspace that is
orthogonal to selected features. However, different from support
vector machine applied in [12], the similar recursive procedure
is applied to FLD in this paper.

It is observed that RFLD is more computationally intensive
than FLD because a new pair of scatter matrices have to be gen-
erated for each new feature. In particular, if the number of sam-
ples is large, the process of recalculating the new set of sample
vectors at each step as described by (23) may be laborious. In
order to reduce the computation load, a new method of com-
puting the scatter matrices is introduced as follows such that
the new scatter matrices can be directly calculated from the old
scatter matrices rather than relying on the preprocessed sampled
vectors.

To simplify the notation, we will write the within-class scatter
matrix in the form of

(24)

where , which refers to , where is the mean
of the class to which belongs to.

Let the matrix

(25)
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where are the feature vectors obtained from pre-
vious steps, and denote the matrix

(26)

where is a set of orthonormal basis for the null
space of the space spanned by , such that the set
of vectors constitutes an or-
thonormal basis for . Then the new set of vectors at the th
step, , are formed by discarding the projections along all the
selected feature directions

(27)

Using the fact that ,
it follows that

(28)

Using definition of (26), (28) can be rewritten as

(29)

It follows immediately that the within-class scatter matrix at
th step, , can be computed from

(30)

which may be rewritten as

(31)

Substituting (24) into (31) yields

(32)

Similarly, the between-class scatter matrix at the th step, ,
can be calculated by

(33)

Now, we are ready to summarize the RFLD algorithm as fol-
lows.

Initialize and with the original scatter matrices ,
and respectively, and derive the first feature direction
as the normalized eigenvector with the largest eigenvalue of the
matrix , which is the same as that from the classical FLD.

The th feature vector may be computed as the normal-
ized eigenvector with the largest eigenvalue from following
eigenvalue problem:

(34)

where the matrices and are defined
by (22), in which the within-class scatter matrix, , and the
between-class scatter matrix, , are updated by (32) and (33),
respectively.

III. EXPERIMENTS ON FACE RECOGNITION PROBLEMS

Extensive experiments have been carried out to test the ef-
fectiveness of the suggested RFLD against other well known
methods. Due to space limitation, only part of our experimental
results will be reported in detail in this section.

A. Yale Database

The Yale database was utilized in our experiments for identity
recognition, facial expression recognition and glasses-wearing
recognition problems. The Yale database consists of 15 persons’
frontal face images, with 11 images for each person. However,
it was realized during our experiments that there are some du-
plicate images, which were then discarded from all the exper-
iments. We cropped those images by eliminating most of the
background and some part of hair and chin. The size of images
were changed from 320 243 to 124 147.

B. Image Coding Methods

The original cropped gray-level images are of 18228 dimen-
sions. To improve the performance, two types of 2-D wavelet
transform were preprocessed separately. They are five-level,
eight-direction, 64 downsampling Gabor wavelet with 12160
components as suggested in [8] and 5-layer Bi-orthogonal 1.1
wavelet expansion with 18437 coefficients, which are available
in MATLAB toolboxes. Again, due to space limitation, only
the recognition results for gray-level and Gabor wavelet repre-
sentations will be presented in this paper, as the results from
bi-orthogonal wavelet expansion are very similar and hence
omitted.

C. Classification Methods for Comparison

Seven different classification approaches have been tested
and compared. While the same nearest neighbor rule with
Euclidian distance is applied for all of them, they differ in the
feature extraction processes.

Comment 3: The Mahalanobis distance was also experi-
mented with to improve the recognition accuracy as recom-
mended in [8]. However, the comparison study between the
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Fig. 1. Comparative identity recognition performances using different methods. (a) Gray level. (b) Gabor wavelet.

Mahalanobis and Euclidean distances is inconclusive from our
experiments, and it is decided to report the results by Euclidean
distance only due to space limitation.

The first method is the simplest one, called the direct N-N
method, in which no feature extraction is processed at all, and
the nearest neighbor rule is applied directly to the original high-
dimensional images.

In the second approach, PCA is used to reduce the high-di-
mensional images into lower-dimensional ones, but no discrim-
inant analysis is performed afterwards.

The third method utilized is the independent component anal-
ysis (ICA), which is known as a statistical method that linearly
transforms a multidimensional vector data into components that
are as statistically independent from each other as possible. The
reader is referred to [13]–[15] for further details on ICA.

The fourth and fifth approaches are FLD and RFLD, for
which PCA is applied first to reduce the dimension of the
images such that the within-class scatter matrix, , is nonsin-
gular. The question of how to decide which PCA components to
retain and which to discard is quite intriguing. For the purpose
of maintaining as much information as possible, we choose
the maximum number of eigenvectors with largest eigenvalues
from PCA that ensure the full rank of , which is at most

, where is the number of training samples and is the
number of classes.

Another approach for selecting proper number of PCA com-
ponents for FLD is the enhanced FLD Model (EFM) proposed
in [8], which is also tested in our experiments. EFM aims to
seek a proper number of PCA features that balance between
the need to keep enough spectral energy of raw data and the
requirement that the eigenvalues of within-class scatter in the
reduced PCA space are not too small, for the tiny eigenvalues
are associated with noise that make FLD over-fitting while ex-
posed to new data. Unfortunately, no quantitative criterion for
measuring the adequacy of energy and the smallness of eigen-
values of within-class scatter is currently available and hence the
cut-off point for the number of PCA components to retain has
to be obtained through trial and error. In our experiments, the
optimal number of PCA features is the one leads to the lowest

error rate, and is found through simple exhaustive search rather
than analyzing the spectrum of the eigenvalues as suggested in
[8].

Inspired by the basic idea of EFM, the enhanced RFLD
(ERFLD) is also proposed and compared in this paper, in which
the dimension of the reduced PCA space is varied such that an
optimal number of PCA components are searched out, which
leads to the best performance by RFLD.

D. Identity Recognition

The identity recognition error rate is determined by “leaving-
one-out” strategy: to classify one particular image, all the rest
of the images are pooled to form the training data set which are
used to compute the projecting directions by PCA, ICA, FLD,
RFLD, EFM, and ERFLD.

The lowest recognition error rates achieved by the seven clas-
sifiers and two representation methods are listed in Table I. The
recognition error rates depend upon the number of features used
for each approach as shown in Fig. 1. The total number of fea-
tures available by FLD and EFM is limited to 14 since there are
15 different persons to recognize, while no such limitation ex-
ists for PCA, ICA, RFLD, and ERFLD.

It is evident from Table I that the classifiers using RFLD,
EFM, and ERFLD with Gabor wavelet coding and EFM with
gray-level representation have achieved perfect recognition with
zero error rates. The classifier using RFLD achieves lower error
rate than those by PCA, FLD, and ICA, and the improvement is
substantial. The performance of FLD is much better than that of
PCA, which is the same conclusion as drawn in [1]. ICA is better
than PCA, which is consistent with the result in [14], but it is
worse than FLD, RFLD, EFM, and ERFLD, which is reasonable
since the objective of ICA is to make the components of pro-
jected vectors as independent as possible, which may not nec-
essarily be the best for classification. The improvement by EFM
over FLD is significant, which was also observed in [8]. As far as
the coding method is concerned, the Gabor wavelet does show
distinct advantage for the identity recognition problem, which
is also consistent with similar conclusions in [8]. Since EFM
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TABLE I
COMPARATIVE LEAST ERROR RATES FOR IDENTITY RECOGNITION

has already achieved perfect performance, there appears no ad-
vantage gained by RFLD as well as ERFLD, which may be at-
tributed to the fact that the number of classes for identity recog-
nition is not small and hence the number of features from EFM
is quite sufficient. Therefore, it would be interesting to apply
all these methods to recognition problems with small number
of classes, which motivates us to carry further experiments on
facial expression recognition and glasses-wearing recognition
problems as will be discussed later in this section.

Comment 4: While the number of features from RFLD and
ERFLD is free of the constraint of (14 in this case), it is
not true that the performances of RFLD and ERFLD always in-
crease monotonically with the number of features as shown in
Fig. 1. Usually the performance would improve with the number
of features increasing, and subsequently deteriorate as more fea-
tures are used, sometimes even fluctuating. The optimal value of
number of features is problem dependent in general.

Comment 5: The optimal numbers of PCA components re-
tained by EFM and ERFLD are usually different. For example,
for Gabor wavelet coded images, EFM accomplishes zero error
rate with 50 PCA features while ERFLD achieves the same
goal with 100 PCA features. On the other hand, if 100 PCA
features are retained for FLD, the lowest error rate is 1.28%,
and if 50 PCA components are kept for RFLD, the least error
rate is 0.64%, both of which would not be perfect. Such differ-
ence also exists in other experiments with different representa-
tion methods and different recognition problems. The possible
reason may be explained as follows. Both noise and useful infor-
mation exist together at the directions that are the eigenvectors
of total scatter associated with small eigenvalues. However, the
responses of EFM and ERFLD to them are different, so the best
performances emerge at different choices of the number of PCA
vectors. Such phenomenon also indicates that it would be mis-
leading to select the optimal number of PCA features by merely
studying the two sets of eigenvalues (corresponding to the total
scatter of raw data and the within-class scatter in reduced PCA
space) [8] without trial and error experiments.

E. Six-Expression Recognition

It is expected that RFLD and ERFLD would have greater ad-
vantage over FLD and EFM when the number of classes is small,

TABLE II
COMPARATIVE LEAST ERROR RATES FOR SIX-EXPRESSION RECOGNITION

which is the main motivation behind the experiments on facial
expression recognition problem and glasses-wearing recogni-
tion problem. As previously mentioned, there are 11 images for
each person in Yale database. They are labeled by facial ex-
pressions, lighting conditions or whether wearing glasses or not:
“normal,” “happy,” “sad,” “sleepy,” “surprise,” “wink,” “left
light,” “center light,” “right light,” “without glasses,” and“with
glasses.” For those images not labeled by expression, their ex-
pressions are usually “normal.”

In this experiment, the recognition error rates are determined
by cross validation rather than “leaving one out,” i.e., all the im-
ages belonging to one particular person will be used as test im-
ages while the rest of the images are all included in the training
data set.

Comment 6: The “leaving one out” strategy was also experi-
mented with, in which the performances of PCA, ICA and direct
N-N were much worse, because in this case the nearest neighbor
determined by PCA, ICA, or direct N-N is usually the image
belonging to the same person which might be labeled with a
different expression. In some sense, it is not “fair” for PCA
and ICA, and hence cross validation, as described above was
adopted.

The lowest recognition rates of the seven classification
methods corresponding to two representation methods are
shown in Table II, while the comparative performances of
them with varying number of features are plotted in Fig. 2.
It is interesting to note that overall performances are much
worse than those for identity recognition, which implies that
the expression recognition problem is a much tougher one. This
is not a surprise at all considering the fact that it is much harder
for human beings to recognize different facial expressions
rather than different persons.

As expected, the improvements of RFLD over FLD, and
ERFLD over EFM, are quite substantial for this fewer-classes
problem as shown in Table II, because RFLD and ERFLD elim-
inate the constraint on maximal number of features and hence
obtains more information than FLD and EFM for classification.
The number of features from FLD and EFM is limited to five
since there are only six types of expressions to recognize while
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Fig. 2. Comparative six-expression recognition performances using different methods. (a) Gray level. (b) Gabor wavelet.

Fig. 3. Comparative two-expression recognition performances using different methods. (a) Gray level. (b) Gabor wavelet.

no such constraint exists for RFLD and ERFLD. ERFLD pro-
vides the least error rate of 28.85% throughout all the results,
while the smallest error rate by EFM is only 32.05%.

Comment 7: It is interesting to note that for the six-expres-
sion recognition problem, gray-level coding appears better
than Gabor-wavelet representation in terms of the lowest error
rates as well as the number of features necessary for good
performances. Therefore, it should not be taken for granted
that Gabor-wavelet coding is always better than gray-level
representation for classification.

F. Two-Expression Recognition

Now we consider another problem, in which images are clas-
sified into only two classes: “normal” or “abnormal”. All those
images labeled by “happy,” “sad,” “sleepy,” “surprise,” and
“wink” are treated as “abnormal.” For two-class problem, only
one feature may be obtained by FLD and EFM, while RFLD
and ERFLD are totally free from this constraint.

As shown in Table III and Fig. 3, the performances for this
two-expression recognition problem are much better than those
of the six-class recognition which is consistent with human ex-
perience in some sense since it is easier for human beings to tell

TABLE III
COMPARATIVE LEAST ERROR RATES FOR TWO-EXPRESSION RECOGNITION

whether a person’s expression is normal or not rather than to
tell the exact type of expression. The comparison results for the
seven approaches are also consistent with the previous observa-
tions. Again, ERFLD achieves the best result of 19.23% with
Gabor wavelet coding.
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Fig. 4. Comparative glasses-wearing recognition performances using different methods. (a) Gray level. (b) Gabor wavelet.

TABLE IV
COMPARATIVE LEAST ERROR RATES FOR GLASSES-WEARING RECOGNITION

G. Glasses-Wearing Recognition

The glasses-wearing recognition problem is another
two-class case, where cross validation was used to obtain
the recognition error rates. The results are shown in Table IV
and Fig. 4. The overall error rate is smaller than that of the facial
expression recognition problems, which is also quite natural
from human experience. However, while human beings are
able to tell whether a person wearing glasses or not at a casual
glance, it is not the same case for computer, in our experiments,
the error rates were still above 10%.

ERFLD still shines among others with the least error rate of
11.54% for gray-level coded images. FLD, RFLD, EFM, and
ERFLD remain better than N-N, PCA and ICA, while RFLD
and ERFLD outperform FLD and EFM, respectively.

Comment 8: In this case, it is not easy to distinguish
which coding method is better for recognition. Although Gabor
wavelet representation appears better for NN, PCA, ICA, RFLD
and EFM, it is worse for FLD and ERFLD with the lowest error
of 11.54% being achieved by ERFLD with gray-level images.
Therefore, it appears that choosing appropriate coding methods
for recognition is quite problem dependent and is hard to decide
without trial and error experiments.

IV. CONCLUSION

This paper deals with the important problem of extracting dis-
criminant features for pattern classification. A novel recursive
algorithm (termed RFLD) incorporating the basic idea of clas-
sical FLD is suggested, which is the main contribution of this
paper.

The proposed RFLD is theoretically more appealing than the
classical FLD based upon following two considerations. First of
all, the total number of available features from RFLD is inde-
pendent of the number of classes while that of FLD is limited
to , which is the major disadvantage of FLD over other
popular approaches such as PCA and ICA. By eliminating this
bottleneck, RFLD provides the basis for applying the funda-
mental idea underlying the FLD of seeking features that maxi-
mize the separation of different classes to a more general class
of pattern classification problems. Further, the mathematical in-
terpretations of the features from RFLD are more convincing for
using them as features for classifications. While the k-th feature
extracted from RFLD can be interpreted as the th best direc-
tion for separation by the nature of its optimization process in-
volved, the th feature (except the first one) from FLD is merely
an eigenvector associated with certain matrix.

It is certainly true that RFLD is more computational inten-
sive than FLD. However, all the computational cost associated
with RFLD only occurs in the classifier design process. Once
the features are extracted and ready to be used by the final clas-
sifier, there will be no extra cost. Furthermore, the superior per-
formance of RFLD as demonstrated by various experiments on
face recognition problem is sufficient to convince that it is worth
putting up with the computation overhead.

It has been observed that the issue of retaining proper number
of PCA components for further discriminant analysis plays an
important role in improving the recognition accuracy, which
confirms the same conclusion drawn in [8]. Exhaustive search
was utilized in this paper to find the optimal number of PCA fea-
tures, which was far from efficient. Further studies are needed
to address this issue.

For identity recognition problems, EFM is capable of
achieving perfect recognition, which suggests that for pattern
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classification problem with large number of classes, EFM may
be used first due to its computational efficiency, and ERFLD
may be employed only if EFM fails to achieve the design goal.
For problems with small number of classes such as the expres-
sion and glasses-wearing recognition problems, ERFLD does
show distinct advantage and should be utilized for extracting
features.

Since perfect recognition has been achieved for both the Yale
database in this paper, and the FERET database reported in [8], it
is expected that similar performance may be also accomplished
for other widely used databases. However, the lowest error rates
are 28.85% and 19.23% for six-expression and two-expression
recognitions respectively, which are far from satisfactory com-
pared to average recognition accuracy that may be realized by
human beings. It is expected that other techniques are needed
to further improve the performance of facial expression classi-
fier, and work is currently under progress to try to achieve the
error-rate of less than 20% for six-expression recognition, which
is a rough estimation of the average expression recognition error
rate made by human beings.
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