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ABSTRACT
This paper proposes the application of Fisher linear discriminants to the problem of speech/music classifica-
tion. Fisher linear discriminants can classify between two different classes, and are based on the calculation
of some kind of centroid for the training data corresponding with each of these classes. Based on that infor-
mation, a linear boundary is established, which will be used for the classification process. Some results will
be given demonstrating the superior behavior of this classification algorithm compared with the well-known
K-nearest neighbor algorithm. It will also be demonstrated that it is possible to obtain very good results in
terms of probability of error by using only one feature extracted from the audio signal, being thus possible
to reduce the complexity of this kind of systems in order to implement them in real-time.

1. INTRODUCTION
This work presents some preliminary results of the
use of a particular kind of classifier, a Fisher lin-
ear discriminant [1], for the problem of speech/music
classification. This kind of classifiers is widely used
in some other applications such as face recogni-
tion systems [2][3]. The results will be compared
with those obtained using a K-nearest neighbor al-
gorithm (K-NN), since this particular classifier has
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been widely used in many applications [4][5], and
presents a very good behavior compared to other al-
gorithms like those based on gaussian mixture mod-
els [6].

Our work will be focused on the particular prob-
lem of speech/audio classification, which is usually
a first step in many musical genre classification sys-
tems. This problem has attracted a large amount
of research efforts from the early work of Saunders
[7], where a simple thresholding of the average zero-
crossing rate and energy features was used. A differ-
ent approach was proposed by Scheirer and Slaney
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in [8], with the use of multiple features and statisti-
cal pattern recognition classifiers. Another approach
was proposed in [9], where a speech/music discrimi-
nator with a false alarm probability virtually zero is
described, although it was not tested with noisy sig-
nals. In [10] the use of the Line Spectral Frequencies
(LSFs) is proposed, providing a low-delay algorithm
with very good results using a quadratic gaussian
classifier and a nearest neighbor classifier.

The paper will be structured as follows: first, a brief
introduction of the features and classifiers employed
in this work will be given. It has been decided to
use a very simple set of features at this early stage
of the work, since the objective is to compare the
performance of the classification algorithm. Then,
the results obtained for speech/music discrimination
task will be shown and discussed.

2. FEATURE EXTRACTION

The objective of the feature extraction process is
to obtain a compact numerical representation that
can be used to characterize a segment of audio. A
large number of features has been proposed in the lit-
erature for the speech/music classification problem,
some of them inherited from the speech recognition
area [11]. These features can be usually classified
into three different classes: timbre-related, rhythm-
related and pitch-related. In this work, since the
objective is to compare the classification algorithms,
and to simplify the problem, only timbre-related fea-
tures will be used. For the feature extraction, a 512-
samples window is used, with no overlap between
adjacent frames. The time-frequency decomposi-
tion is performed using either a Modified Discrete
Cosine Transform (MDCT), or a Discrete Fourier
Transform (DFT), as it will be commented below.
For each of these frames, all the features are cal-
culated and their mean and standard deviation are
computed every 43 frames (1.85 seconds at our sam-
pling rate). Thus a 2-dimensional vector, containing
the mean and standard deviation computed every 43
frames, is obtained.

All the features considered in this work will be now
briefly described, although more detailed descrip-
tions can be found on [8], [12] or [13].

2.1. Spectral centroid

The spectral centroid can be associated with the

measure of brightness of a sound, and is obtained
by evaluating the center of gravity of the spectrum:

Centroidt =
∑N

k=1 |Xt[k]| · k∑N
k=1 |Xt[k]|

(1)

where Xt[k] represents the k-th frequency bin of the
spectrum at frame t, and N is the number of sam-
ples.

2.2. Spectral roll-off

The spectral roll-off is usually defined as the fre-
quency, RollOfft, below which a PR% of the mag-
nitude distribution is concentrated:

RollOfft∑
k=1

|Xt[k]| = PR ·
N ]∑

k=1

|Xt[k]| (2)

A typical value for PR is PR=85%. The spectral
roll-off can give an idea of the shape of the spectrum.

2.3. Zero Crossing Rate

The Zero Crossing Rate (ZCR) is computed from
the temporal signal x[n] using the expression:

ZCRt =
1
2

N∑
n=1

|sign(x[n]) − sign(x[n − 1])| (3)

Where sign(·) represents the sign function, which
returns 1 for positive arguments and −1 for negative
ones. This parameter gives an idea of how noisy a
signal is.

2.4. High Zero Crossing Rate Ratio

This feature, proposed in [14], is computed from the
previously-defined ZCR, and is defined as the num-
ber of frames whose ZCR is 1.5 times above the mean
ZCR on a window containing M frames. Mathemat-
ically:

HZCRR =
1

2M

M−1∑
t=0

[sign(ZCRt−1.5 ·avZCR)+1]

(4)
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where avZCR is the mean ZCR within the M-
frames window. It can be demonstrated [14] that
the HZCRR takes higher values for speech than for
music since speech is usually composed by alternat-
ing voiced and unvoiced fragments, while music does
not follow this structure.

2.5. Short Time Energy

The Short-Time Energy (STE) is defined as the
mean energy of the signal within each analysis frame
(N samples):

STEt =
1
N

N−1∑
k=0

|Xt[k]|2 (5)

2.6. Low Short-Time Energy Ratio

Similarly to the HZCRR, the LSTER is obtained
from the STE, and defined as the ratio of frames
whose STE is 0.5 times below the mean STE on a
window that contains M frames. Mathematically,

LSTER =
1

2M

M−1∑
t=0

[sign(0.5avSTE − STEt) + 1]

(6)

2.7. Mel-frequency cepstral coefficients

Mel-frequency Cepstral Coefficients (MFCC) are a
set of perceptual parameters calculated from the
STFT [11] that have been widely used in speech
recognition. They provide a compact representation
of the spectral envelope, such that most of the sig-
nal energy is concentrated in the first coefficients.
The application of these parameters for music mod-
eling was discussed by Logan in [15]. To obtain
the MFCCs, first the log-magnitude of the spec-
trum is computed. Then, the FFT bins are grouped
and smoothed according the perceptually motivated
Mel-frequency scaling, and de-correlated by means
of a discrete cosine transform. To represent speech,
13 coefficients are commonly used, although it has
been demonstrated that for classification tasks, it is
enough to take into account only the first five coef-
ficients [16].

2.8. Voice2White

This parameter, proposed in [17], is a measure of the
energy inside the typical speech band (300-4000 Hz)

respect to the whole energy of the signal. Mathe-
matically,

v2wt = 10log

∑4kHz
300Hz |Xt[k]2|∑
∀k |Xt[k]2

(7)

2.9. Activity level

The activity level of the audio signal is calculated
according to the method for the objective measure-
ment of active speech published by the ITU-T in its
recommendation P.56 [18].

3. CLASSIFICATION ALGORITHMS

A number of different classification algorithms have
been proposed in the literature. This paper will
focus its attention on two of them: the K-nearest
neighbor algorithm and the Fisher linear discrimi-
nant [1]. Both will be now briefly described.

3.1. K-nearest neighbor

The K-nearest neighbor (K-NN) is a very simple,
yet powerful classification algorithm. Let us assume
that we have a training set with L vectors grouped
into C different classes. To obtain the class corre-
sponding to a new observed vector X, the algorithm
has simply to look for the K nearest neighbors to the
test vector X, and weigh their class numbers they
belong to, usually using a majority rule. Although
it is possible to use different distance measures, most
implementations employ a euclidean measure.

To express this idea in a more formal way, let us con-
sider a set of training vectors {x1,x2, ...,xL} with
xi ∈ Rn organized into C different classes yi. Let
Rn(x) = x′ : ||x− x′|| ≤ r2 be a ball centered in the
vector x in which lie K prototype vectors xi. The
K-nearest neighbor classification rule is defined as:

q(x) = argmaxv(x, y) (8)

Where v(x, y) is the number of prototype vectors
xi with hidden state yi = y, which lie in the ball
xi ∈ Rn(x).

3.2. Fisher linear discriminant

The basic idea behind Fisher linear discriminants is
that the data are projected onto a line, and the clas-
sification is performed in this one-dimensional space.
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The projection maximizes the distance between the
means of the two classes while minimizing the vari-
ance within each class.

Let {x1,x2, ...,xL} where xi ∈ Rn be a set of binary
labeled training vectors, with n1 samples in class 1
denoted C1 and n2 samples in class 2 denoted C2. As
it can be observed, contrary to the K-NN algorithm,
which can classify among an arbitrary number of
different classes, the Fisher linear discriminant only
performs the classification between two classes. This
limitation however can be overcome by using, for
example, one against all techniques.

The class separability function in a direction w ∈ Rn

is defined as:

J(w) =
wT SBw
wT SW w

(9)

Where SB and SW are the between-class and within-
class scatter matrixes respectively:

SB = (m1 −m2)(m1 −m2)T (10)

SW =
∑

i=1,2

∑
x∈Ci

(x−mi)(x−mi)T (11)

The sample mean of the respective classes, mi is
defined as:

mi =
1
ni

∑
x∈Ci

x (12)

The Fisher linear discriminant is given by the vec-
tor w that maximizes the class separability function
J(w). It can be observed that expression (9) is a
particular case of the generalized Rayleigh quotient,
and thus, and assuming that SW is a non-singular
matrix, it is possible to find an analytic expression
for w which maximizes J(w):

w = S−1
W (m1 −m2) (13)

This expression allows for calculating the optimal
projection direction w that ensures that the samples
belonging to each one of the two classes will be as

much separated as possible. It is possible to demon-
strate, [19], that assuming normal distributions and
equal covariance for the two different classes, the re-
sulting linear discriminant function is in the same
direction as the Bayes optimal classifier.

4. RESULTS

4.1. Database used

All the experiments here described have been done
using the sound database for speech/music classifi-
cation provided by Dan Ellis, which was used in sev-
eral publications [8][20]. This database was recorded
directly from the radio, using a sampling frequency
of 22050 Hz, 16 bits per sample and only one chan-
nel (mono). It contains a set of files for the training
process with a total length of 45 minutes (180 files
with a length of 15 seconds each), belonging to the
classes: speech alone (60 files), speech in presence of
music or background noise (60 files) and music (60
files). For the test a total of 15.25 minutes of audio
material are available, divided into 366 files with a
length of 2.5 seconds each. There are 120 speech files
(with and without background music), 126 of music
with no vocals, and 120 of music with vocals.

4.2. Results obtained and discussion

Table 1 shows the probabilities of error obtained for
the speech/music classification task using all the fea-
tures individually. The results shown have been ob-
tained using the Fisher’s linear discriminant analysis
and the K-Nearest Neighbors algorithms, with K=1
and K=3. As it can be observed, the best results
are obtained with the Fisher’s linear discriminant,
except for the STE feature, which works best with
the 1-NN classifier. The best results are obtained us-
ing the MFCC and the Voice2White features, with a
probability of error of 4.09% and 4.91% respectively.
As it can be observed, for the spectral centroid the
results are better if the Modified Discrete Transform
(MDCT) is used, while for the roll-off the best re-
sults are achieved using the Discrete Fourier Trans-
form. With the classification algorithms considered,
the combination of two or more of these features
does not seem to improve the results. Combining the
MFCC and the Voice2White features with a Fisher
linear discriminant classifier, leads to a probability
of error equal to 4.09%, the same than for the MFCC
alone.
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Feature Probability of error
Fisher 1-NN 3-NN

Centroid (MDCT) 8.74% 17.48% 21.85%
Centroid (DFT) 16.66% 29.23% 30.60%
Roll-off (MDCT) 14.48% 25.40% 21.85%
Roll-off (DFT) 8.19% 13.11% 13.11%
ZCR 9.83% 19.67% 18.03%
HZCRR 25.13% 39.89% 36.33%
STE 48.63% 22.40% 22.67%
LSTER 11.74% 33.87% 23.77%
MFCC 4.09% 22.13% 26.50%
Voice2White 4.91% 6.28% 6.01%
Activity level 12.84% 18.03% 18.85%

Table 1: Probabilities of error obtained using each
one of the features individually.

Classifier Speech Music
Fisher

Speech 104 16
Music 2 244

1-NN
Speech 114 6
Music 17 229

3-NN
Speech 116 4
Music 18 228

Table 2: Confusion matrixes using the Voice2White
feature with three different classification algorithms.

On the other hand, combining the different classifi-
cation algorithms seems to be more positive. As an
example consider Table 2, where the confusion ma-
trixes obtained for the Voice2White feature using the
three considered classifiers are shown. As it can be
observed, the results are quite complimentary: the
Fisher linear discriminant has a higher probability
of error when the input is speech, while the near-
est neighbor behaves worse when the input is music.
If the results obtained from the three classifiers are
combined using a majority rule, then the probability
of error drops down to a 4.5%.

These results are very promising in the sense that
the application of Fisher linear discriminant analysis
to the task of speech/music classification seems to
provide very good results.

5. CONCLUSION

This paper has shown some preliminary results on
the application of Fisher linear discriminant analy-
sis to the problem of speech/music discrimination.
To evaluate the performance of the system, the re-
sults are compared with a nearest-neighbor classi-
fier, which has been widely used in the literature.
The results obtained show us that the Fisher lin-
ear discriminant analysis can provide very promising
results using only one feature for the classification.
Better results may be obtained combining the re-
sults obtained from two or more classifiers. Further
work will imply using more complex classification
algorithms, such as neural networks, to improve the
performance of the system.
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