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Summary. We consider the supervised classification setting, in which the data consist of p
features measured on n observations, each of which belongs to one of K classes. Linear discri-
minant analysis (LDA) is a classical method for this problem. However, in the high dimensional
setting where p�n, LDA is not appropriate for two reasons. First, the standard estimate for the
within-class covariance matrix is singular, and so the usual discriminant rule cannot be applied.
Second, when p is large, it is difficult to interpret the classification rule that is obtained from
LDA, since it involves all p features.We propose penalized LDA, which is a general approach for
penalizing the discriminant vectors in Fisher’s discriminant problem in a way that leads to greater
interpretability.The discriminant problem is not convex, so we use a minorization–maximization
approach to optimize it efficiently when convex penalties are applied to the discriminant vectors.
In particular, we consider the use of L1 and fused lasso penalties. Our proposal is equivalent to
recasting Fisher’s discriminant problem as a biconvex problem. We evaluate the performances
of the resulting methods on a simulation study, and on three gene expression data sets. We
also survey past methods for extending LDA to the high dimensional setting and explore their
relationships with our proposal.

Keywords: Classification; Feature selection; High dimensional problems; Lasso; Linear
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1. Introduction

In this paper, we consider the classification setting. The data consist of an n×p matrix X with
p features measured on n observations, each of which belongs to one of K classes. Linear discri-
minant analysis (LDA) is a well-known method for this problem in the classical setting where
n>p. However, in high dimensions (when the number of features is large relative to the number
of observations) LDA faces two problems.

(a) The maximum likelihood estimate of the within-class covariance matrix is approximately
singular (if p is almost as large as n) or singular (if p>n). Even if the estimate is not sin-
gular, the resulting classifer can suffer from high variance, resulting in poor performance.

(b) When p is large, the resulting classifier is difficult to interpret, since the classification rule
involves a linear combination of all p features.

The LDA classifier can be derived in three different ways, which we shall refer to as the
normal model, the optimal scoring problem and Fisher’s discriminant problem (see for example
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Mardia et al. (1979) and Hastie et al. (2009)). In recent years, several references have extended
LDA to the high dimensional setting in such a way that the resulting classifier involves a sparse
linear combination of the features (see for example Tibshirani et al. (2002, 2003), Grosenick
et al. (2008), Leng (2008) and Clemmensen et al. (2011)). These methods involve regularizing or
penalizing the log-likelihood for the normal model, or the optimal scoring problem, by applying
an L1- or lasso penalty (Tibshirani, 1996).

In this paper, we instead approach the problem through Fisher’s discriminant framework,
which is in our opinion the most natural of the three problems that result in LDA. The result-
ing problem is non-convex. We overcome this difficulty by using a minorization–maximization
approach (see for example Lange et al. (2000), Hunter and Lange (2004) and Lange (2004)),
which allows us to solve the problem efficiently when convex penalties are applied to the dis-
criminant vectors. This is equivalent to recasting Fisher’s discriminant problem as a biconvex
problem that can be optimized by using a simple iterative algorithm, and is closely related to
the sparse principal components analysis proposal of Witten et al. (2009).

To our knowledge, our approach to penalized LDA is novel. Clemmensen et al. (2011) state
the same criterion that we use but then go on to solve instead a closely related optimal scoring
problem. Trendafilov and Jolliffe (2007) considered a closely related problem, but they proposed
a specialized algorithm that can be applied only in the case of L1-penalties on the discriminant
vectors; moreover, they did not consider the high dimensional setting. In this paper, we take a
more general approach that has several attractive features.

(a) It results from a natural criterion for which a simple optimization strategy is provided.
(b) A reduced rank solution can be obtained.
(c) It provides a natural way to enforce a diagonal estimate for the within-class covariance

matrix, which has been shown to yield good results in the high dimensional setting (see
for example Dudoit et al. (2001), Tibshirani et al. (2003) and Bickel and Levina (2004)).

(d) It yields interpretable discriminant vectors, where the concept of interpretability can be
chosen on the basis of the problem at hand. Interpretability is achieved via application of
convex penalties to the discriminant vectors. For instance, if L1-penalties are used, then
the resulting discriminant vectors are sparse.

This paper is organized as follows. We review Fisher’s discriminant problem in Section 2,
we review the principle behind minorization–maximization algorithms in Section 3, and we
propose our approach for penalized classification by using Fisher’s linear discriminant in
Section 4. A simulation study and applications to gene expression data are presented in
Section 5. Since many proposals have been made for sparse LDA, we review past work and
discuss the relationships between various approaches in Section 6. In Section 7, we discuss
connections between our proposal and past work. Section 8 contains the discussion.

2. Fisher’s discriminant problem

2.1. Fisher’s discriminant problem with full rank within-class covariance
Let X be an n×p matrix with observations on the rows and features on the columns. We assume
that the features are centred to have mean 0, and we let Xj denote feature or column j and xi

denote observation or row i. Ck ⊂{1, . . . , n} contains the indices of the observations in class k,
and nk =|Ck|, ΣK

k=1nk = n. The standard estimate for the within-class covariance matrix Σw is
given by

Σ̂w = 1
n

K∑
k=1

∑
i∈Ck

.xi − μ̂k/.xi − μ̂k/T .1/
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where μ̂k is the sample mean vector for class k. In this section, we assume that Σ̂w is non-singular.
Furthermore, the standard estimate for the between-class covariance matrix Σb is given by

Σ̂b = 1
n

XTX − Σ̂w = 1
n

K∑
k=1

nkμ̂kμ̂
T
k : .2/

In later sections, we shall make use of the fact that

Σ̂b = 1
n

XTY.YTY/−1YTX,

where Y is an n×K matrix with Yik an indicator of whether observation i is in class k.
Fisher’s discriminant problem seeks a low dimensional projection of the observations such

that the between-class variance is large relative to the within-class variance, i.e. we sequentially
solve

maximizeβk∈Rp.βT
k Σ̂bβk/ subject to βT

k Σ̂wβk �1, βT
k Σ̂wβi =0 ∀i<k: .3/

Problem (3) is generally written with the inequality constraint replaced with an equality con-
straint, but the two are equivalent if Σ̂w has full rank, as is shown in Appendix A. We shall
refer to the solution β̂k to problem (3) as the kth discriminant vector. In general, there are K −1
non-trivial discriminant vectors.

A classification rule is obtained by computing Xβ̂1, . . . , Xβ̂K−1 and assigning each obser-
vation to its nearest centroid in this transformed space. Alternatively, we can transform the
observations by using only the first k < K − 1 discriminant vectors to perform reduced rank
classification. LDA derives its name from the fact that the classification rule involves a linear
combination of the features.

One can solve problem (3) by substituting β̃k = Σ̂
1=2
w βk, where Σ̂

1=2
w is the symmetric matrix

square root of Σ̂w. Then, Fisher’s discriminant problem is reduced to a standard eigenproblem.
In fact, from equation (2), it is clear that Fisher’s discriminant problem is closely related to
principal components analysis on the class centroid matrix.

2.2. Existing methods for extending Fisher’s discriminant problem to the p>n setting
In high dimensions, there are two reasons why problem (3) does not lead to a suitable classifier.

(a) Σ̂w is singular. Any discriminant vector that is in the null space of Σ̂w but not in the null
space of Σ̂b can result in an arbitrarily large value of the objective.

(b) The resulting classifier is not interpretable when p is very large, because the discriminant
vectors contain p elements that have no particular structure.

Some modifications to Fisher’s discriminant problem have been proposed to address the sin-
gularity problem. Krzanowski et al. (1995) considered modifying problem (3) by instead seeking
a unit vector β that maximizes βTΣ̂bβ subject to βTΣ̂wβ = 0, and Tebbens and Schlesinger
(2007) further required that the solution does not lie in the null space of Σ̂b. Others have pro-
posed modifying problem (3) by using a positive definite estimate of Σw. For instance, Friedman
(1989), Dudoit et al. (2001) and Bickel and Levina (2004) considered the use of the diagonal
estimate

diag.σ̂2
1, . . . , σ̂2

p/, .4/

where σ̂2
j is the jth diagonal element of Σ̂w (1). Other positive definite estimates for Σw were

suggested in Krzanowski et al. (1995) and Xu et al. (2009). The resulting criterion is

maximizeβk∈Rp.βT
k Σ̂bβk/ subject to βT

k Σ̃wβk �1, βT
k Σ̃wβi =0 ∀i<k, .5/
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where Σ̃w is a positive definite estimate for Σw. Criterion (5) addresses the singularity issue, but
not the interpretability issue.

In this paper, we extend criterion (5) so that the resulting discriminant vectors are interpret-
able. We shall make use of the following proposition, which provides a reformulation of criterion
(5) that results in the same solution.

Proposition 1. The solution β̂k to criterion (5) also solves the problem

maximizeβk
.βT

k Σ̂
k

bβk/subject to βT
k Σ̃wβk �1 .6/

where

Σ̂
k

b = 1
n

XTY.YTY/−1=2P⊥
k .YTY/−1=2YTX: .7/

P⊥
k is defined as follows: P⊥

1 = I and, for k > 1, P⊥
k is an orthogonal projection matrix into the

space that is orthogonal to .YTY/−1=2YTXβ̂i for all i<k.

Throughout this paper, Σ̂w will always refer to the standard maximum likelihood estimate
of Σw (1), whereas Σ̃w will refer to some positive definite estimate of Σw for which the specific
form will depend on the context.

3. Brief review of minorization algorithms

In this paper, we shall make use of a minorization–maximization (or simply minorization) algo-
rithm, as described for instance in Lange et al. (2000), Hunter and Lange (2004) and Lange
(2004). Consider the problem

maximizeβ{f.β/}: .8/

If f is a concave function, then standard tools from convex optimization (see for example Boyd
and Vandenberghe (2004)) can be used to solve problem (8). If not, solving problem (8) can be
difficult. (We note here that minimization of a convex function is a convex problem, as is maxi-
mization of a concave function. Hence, problem (8) is a convex problem if f.β/ is concave in β.
For non-concave f.β/—for instance if f.β/ is convex—problem (8) is not a convex problem.)

Minorization refers to a general strategy for maximizing non-concave functions. The function
g.β|β.m// is said to minorize the function f.β/ at the point β.m/ if

f.β.m//=g.β.m/|β.m//,

f.β/�g.β|β.m// ∀β:
.9/

A minorization algorithm for solving problem (8) initializes β.0/, and then iterates:

β.m+1/ =arg max
β

{g.β|β.m//}: .10/

Then, by expression (9),

f.β.m+1//�g.β.m+1/|β.m//�g.β.m/|β.m//=f.β.m//: .11/

This means that in each iteration the objective is non-decreasing. However, in general we do not
expect to arrive at the global optimum of problem (8) by using a minorization approach: global
optima for non-convex problems are very difficult to obtain, and a local optimum is the best
that we can hope for except in specific special cases. Different initial values for β.0/ can be tried
and the solution resulting in the largest objective value can be chosen. A good minorization
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function is one for which equation (10) is easily solved. For instance, if g.β|β.m// is concave in
β then standard convex optimization tools can be applied.

In the next section, we use a minorization approach to develop an algorithm for our proposal
for penalized LDA.

4. The penalized linear discriminant analysis proposal

4.1. General form of penalized linear discriminant analysis
We would like to modify problem (5) by imposing penalty functions on the discriminant vectors.
We define the first penalized discriminant vector β̂1 to be the solution to the problem

maximizeβ1{βT
1 Σ̂bβ1 −P1.β1/} subject to βT

1 Σ̃wβ1 �1, .12/

where Σ̃w is a positive definite estimate for Σw and where P1 is a convex penalty function. In this
paper, we shall be most interested in the case where Σ̃w is the diagonal estimate (4), since it has
been shown that using a diagonal estimate for Σw can lead to good classification results when
p�n (see for example Tibshirani et al. (2002) and Bickel and Levina (2004)). Note that problem
(12) is closely related to penalized principal components analysis, as described for instance in
Jolliffe et al. (2003) and Witten et al. (2009)—in fact, it would be exactly penalized principal
components analysis if Σ̃w were the identity.

To obtain multiple discriminant vectors, rather than requiring that subsequent discriminant
vectors be orthogonal with respect to Σ̃w—a difficult task for a general convex penalty func-
tion—we instead make use of proposition 1. We define the kth penalized discriminant vector β̂k

to be the solution to

maximizeβk
{βT

k Σ̂
k

bβk −Pk.βk/} subject to βT
k Σ̃wβk �1, .13/

where Σ̂
k

b is given by equation (7), with P⊥
k an orthogonal projection matrix into the space that

is orthogonal to .YTY/−1=2YTXβ̂i for all i<k, and P⊥
1 = I. Here Pk is a convex penalty function

on the kth discriminant vector. Note that problem (12) follows from problem (13) with k =1.
In general, problem (13) cannot be solved by using tools from convex optimization, because

it involves maximizing an objective function that is not concave. We apply a minorization algo-
rithm to solve it. For any positive semidefinite matrix A, f.β/=βTAβ is convex in β. Thus, for
a fixed value of β.m/,

f.β/�f.β.m//+ .β−β.m//T∇f.β.m//=2βTAβ.m/ −β.m/T
Aβ.m/ .14/

for any β, and equality holds when β=β.m/. Therefore,

g.βk|β.m//=2βT
k Σ̂

k

bβ.m/ −β.m/T
Σ̂

k

bβ.m/ −Pk.βk/ .15/

minorizes the objective of problem (13) at β.m/. Moreover, since Pk is a convex function,
g.βk|β.m// is concave in βk and hence can be maximized by using convex optimization tools.
We can use equation (15) as the basis for a minorization algorithm to find the kth penalized
discriminant vector. The algorithm assumes that the first k − 1 penalized discriminant vectors
have already been computed.

4.1.1. Algorithm 1: obtaining the kth penalized discriminant vector

(a) If k > 1, define an orthogonal projection matrix P⊥
k that projects onto the space that is

orthogonal to .YTY/−1=2YTXβ̂i for all i<k. Let P⊥
1 = I.
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(b) Let Σ̂
k

b = .1=n/XTY.YTY/−1=2P⊥
k .YTY/−1=2YTX. Note that Σ̂

1
b = Σ̂b.

(c) Let βk
.0/ be the first eigenvector of Σ̃

−1
w Σ̂

k

b.
(d) For m=1, 2, . . . until convergence: let β

.m/
k be the solution to

maximizeβk
{2βT

k Σ̂
k

bβ
.m−1/
k −Pk.βk/} subject to βT

k Σ̃wβk �1: .16/

Let β̂k denote the solution at convergence.

Of course, the solution to problem (16) will depend on the form of the convex function Pk. In
the next section, we shall consider two specific forms for Pk.

Once the penalized discriminant vectors have been computed, classification is straightforward:
as in the case of classical LDA, we compute Xβ̂1, . . . , Xβ̂K−1 and assign each observation to its
nearest centroid in this transformed space. To perform reduced rank classification, we transform
the observations by using only the first k<K −1 penalized discriminant vectors.

4.2. Penalized LDA-L1 and penalized LDA-FL methods
4.2.1. Penalized LDA-L1 method
We define the penalized LDA-L1 method to be the solution to problem (13) with an L1-penalty,

maximizeβk

(
βT

k Σ̂
k

bβk −λk

p∑
j=1

|σ̂jβkj|
)

subject to βT
k Σ̃wβk �1: .17/

When the tuning parameter λk is large, some elements of the solution β̂k will be exactly equal to
0. In problem (17), σ̂j is the within-class standard deviation for feature j; the inclusion of σ̂j in
the penalty has the effect that features that vary more within each class undergo greater penaliza-
tion. The penalized LDA-L1 method is appropriate if we want to obtain a sparse classifier—i.e.
a classifier for which the decision rule involves only a subset of the features. In particular,
the resulting discriminant vectors are sparse, so the penalized LDA-L1 method amounts to
projecting the data onto a low dimensional subspace that involves only a subset of the features.

To solve problem (17), we use the minorization approach that is outlined in algorithm 1. Step
(d) can be written as

maximizeβk

(
2βT

k Σ̂
k

bβ
.m−1/
k −λk

p∑
j=1

|σ̂jβkj|
)

subject to βT
k Σ̃wβk �1: .18/

The solution to problem (18) is given in proposition 2 in Section 4.2.3.

4.2.2. Penalized LDA-FL method
We define the penalized LDA-FL method to be the solution to problem (13) with a fused lasso
penalty (Tibshirani et al., 2005):

maximizeβk

(
βT

k Σ̂
k

bβk −λk

p∑
j=1

|σ̂jβkj|−γk

p∑
j=2

|σ̂jβkj − σ̂j−1βk,j−1|
)

subject to βT
k Σ̃wβk �1:

.19/

When the non-negative tuning parameter λk is large then the resulting discriminant vector
will be sparse in the features, and when the non-negative tuning parameter γk is large then
the discriminant vector will be piecewise constant. This classifier is appropriate if the features
are ordered on a line, and one believes that the true underlying signal is sparse and piecewise
constant.

To solve problem (13), we again apply algorithm 1. Step (d) can be written as
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maximizeβk

(
2βT

k Σ̂
k

bβ
.m−1/
k −λk

p∑
j=1

|σ̂jβkj|−γk

p∑
j=2

|σ̂jβkj − σ̂j−1βk,j−1|
)

subject to βT
k Σ̃wβk �1:

.20/

Proposition 2 in Section 4.2.3 provides the solution to problem (20).

4.2.3. Minorization step for penalized LDA-L1 and penalized LDA-FL methods
Now we present proposition 2, which provides a solution to problems (18) and (20). In other
words, proposition 2 provides details for performing step (d) in algorithm 1 for the penalized
LDA-L1 and penalized LDA-FL methods.

Proposition 2.

(a) To solve problem (18), we first solve the problem

minimized∈Rp

(
dTΣ̃wd −2dTΣ̂

k

bβ
.m−1/
k +λk

∑
j

|σ̂jdj|
)

: .21/

If d̂ =0 then β̂k =0. Otherwise, β̂k = d̂=
√

.d̂
T
Σ̃wd̂/.

(b) To solve problem (20), we first solve the problem

minimized∈Rp

(
dTΣ̃wd −2dTΣ̂

k

bβ
.m−1/
k +λk

p∑
j=1

|σ̂jdj|+γk

p∑
j=2

|σ̂jdj − σ̂j−1dj−1|
)

: .22/

If d̂ =0 then β̂k =0. Otherwise, β̂k = d̂=
√

.d̂
T
Σ̃wd̂/.

The proof is given in Appendix A. Some comments on proposition 2 are as follows.

(a) If Σ̃w is the diagonal estimate (4), then the solution to problem (21) is

d̂j = 1

σ̂2
j

S

{
.Σ̂

k

bβ
.m−1/
k /j,

λkσ̂j

2

}
.23/

where S is the soft thresholding operator, which is defined as

S.x, a/= sgn.x/.|x|−a/+ .24/

and applied componentwise. To see why, note that differentiating expression (21) with
respect to dj indicates that the solution will satisfy

2σ̂2
jdj =2.Σ̂

k

bβ
.m−1/
k /j −λkσ̂jΓj, .25/

where Γj is the subgradient of |dj|, which is defined as

Γj =
{1 if dj > 0,

−1 if dj < 0,
a if dj =0

.26/

where a is some number between 1 and −1. Then equation (23) follows from equation (25).
(b) In contrast, if Σ̃w is a non-diagonal positive definite estimate of Σw, then we can solve

problem (21) by co-ordinate descent (see for example Friedman et al. (2007)). Problem
(21) is in that case closely related to the lasso but may involve more demanding compu-
tations. This is because when p � n the standard lasso can be implemented by storing
the n×p matrix X rather than the entire p×p matrix XTX. But if Σ̃w is a p×p matrix
without special structure then we must store it in full to solve problem (21).
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(c) If Σ̃w is a diagonal estimate for Σw then problem (22) is a diagonal fused lasso problem,
for which fast algorithms have been proposed (see for example Hoefling (2010) and
Johnson (2010)).

4.2.4. Comments on tuning parameter selection
We now consider the problem of selecting the tuning parameter λk for the penalized LDA-L1
problem (17). The simplest approach would be to take λk =λ, i.e. the same tuning parameter
value for all components. However, this results in effectively penalizing each component more
than the previous components, since the unpenalized objective value of problem (17), which is
equal to the largest eigenvalue of Σ̃−1=2

w Σ̂k
bΣ̃

−1=2
w , is non-increasing in k. So, instead, we take

the following approach. We first fix a non-negative constant λ, and then we take

λk =λ‖Σ̃−1=2
w Σ̂

k

bΣ̃
−1=2
w ‖

where ‖·‖ indicates the largest eigenvalue. When p � n, this largest eigenvalue can be quickly
computed by using the fact that Σ̂k

b has low rank. The value of λ can be chosen by cross-
validation.

In the case of the penalized LDA-FL problem (19), instead of choosing λk and γk directly,
we instead fix non-negative constants λ and γ. Then, we take λk =λ‖Σ̃−1=2

w Σ̂k
bΣ̃

−1=2
w ‖ and γk =

γ‖Σ̃−1=2
w Σ̂k

bΣ̃
−1=2
w ‖. λ and γ can be chosen by cross-validation.

4.2.5. Timing results for penalized linear discriminant analysis
We now comment on the computations that are involved in the algorithms that were proposed
earlier in this section. We used a very simple simulation corresponding to no signal in the data:
Xij ∼N.0, 1/ and there were four equally sized classes. Table 1 summarizes the computational
times required to perform penalized LDA-L1 and penalized LDA-FL with the diagonal estim-
ate (4) used for Σ̃w. The R library penalizedLDA (Witten, 2011) was used. Timing depends
critically on the convergence criterion that is used; we determine that the algorithm has ‘con-
verged’ when subsequent iterations lead to a relative improvement in the objective of no more
than 10−6, i.e. |ri − ri+1|=ri+1 < 10−6 where ri is the objective obtained at the ith iteration. Of
course, computational times will be shorter if a less strict convergence threshold is used. All
timings were carried out on a AMD Opteron 848 2.20 GHz processor.

Table 1. Timing results for penalized LDA-L1 (with λ D 0:005) and penalized LDA-FL (with
λDγ D0:005) for various values of n and p, with four-class data†

Method n Results (s) for the following values of p:

p=20 p=200 p=2000 p=20000

Penalized LDA-L1 20 0.049 (0) 0.059 (0.002) 0.199 (0.022) 5.1 (0.851)
200 0.062 (0) 0.147 (0.001) 1.182 (0.014) 11.835 (0.417)

Penalized LDA-FL 20 0.064 (0.003) 0.108 (0.007) 1.018 (0.102) 118.61 (9.915)
200 0.075 (0.001) 0.219 (0.012) 1.835 (0.102) 118.557 (8.895)

†Mean (and standard error) of running time, over 25 repetitions. The diagonal estimate (4) was used
for Σ̃w.
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4.3. Recasting penalized linear discriminant analysis as a biconvex problem
Rather than using a minorization approach to solve the non-convex problem (12), we could
instead recast it as a biconvex problem. Consider the problem

maximizeβ,u

{
2√
n
βTXTY.YTY/−1=2u −P.β/−uTu

}
subject to βTΣ̃wβ�1: .27/

Partially optimizing problem (27) with respect to u reveals that the β that solves it also solves
problem (12). Moreover, problem (27) is a biconvex problem (see for example Gorski et al.
(2007)), i.e., with β held fixed, it is convex in u, and, with u held fixed, it is convex in β. This
suggests a simple iterative approach for solving it.

4.3.1. Algorithm 2: a biconvex formulation for penalized linear discriminant analysis

(a) Let β.0/ be the first eigenvector of Σ̃
−1
w Σ̂b.

(b) For m=1, 2, . . . until convergence:

(i) let u.m/ solve

maximizeu

{
2√
n
β.m−1/T

XTY.YTY/−1=2u −uTu
}

; .28/

(ii) let β.m/ solve

maximizeβ

{
2√
n
βTXTY.YTY/−1=2u.m/ −P.β/

}
subject to βTΣ̃wβ�1: .29/

Combining steps (b)(i) and (b)(ii), we see that β.m/ solves

maximizeβ{2βTΣ̂bβ.m−1/ −P.β/} subject to βTΣ̃wβ�1: .30/

Comparing problem (30) with problem (16), we see that the biconvex formulation (27) results in
the same update step as the minorization approach that was outlined in algorithm 1. This bicon-
vex formulation is very closely related to the sparse principal components analysis proposal of
Witten et al. (2009), which corresponds to the case where Σ̃w = I and a bound form is used for
the penalty P.β/. Since XTY.YTY/−1=2 is a weighted version of the class centroid matrix, our
penalized LDA proposal is closely related to performing sparse principal components analysis
on the class centroids matrix.

5. Examples

5.1. Methods included in comparisons
In the examples that follow, penalized LDA-L1 and penalized LDA-FL were performed by
using the diagonal estimate (4) for Σ̃w, as implemented in the R package penalizedLDA. The
nearest shrunken centroids (Tibshirani et al., 2002, 2003) method NSC was performed using the
R package pamr, and the shrunken centroids regularized discriminant analysis (RDA) (Guo
et al., 2007) method was performed using the rda R package. Briefly, NSC results from using a
diagonal estimate of Σw and imposing L1-penalties on the class mean vectors under the normal
model, and RDA combines a ridge-type penalty in estimating Σw with soft thresholding of
Σ̃

−1
w μ̂k. These methods are discussed further in Section 6.
The tuning parameters for each of the methods considered were as follows. For the penalized

LDA-L1 method, λ described in Section 4.2.4 was a tuning parameter. For the penalized LDA-
FL method, we treated λ=γ (see Section 4.2.4) as a single tuning parameter to avoid performing
tuning parameter selection on a two-dimensional grid. Moreover, penalized LDA had an addi-
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tional tuning parameter: the number of discriminant vectors to include in the classifier. The NSC
method has a single tuning parameter, which corresponds to the amount of soft thresholding
performed. RDA has two tuning parameters, one of which controls the number of features used
and the other controls the ridge penalty that is used to regularize the estimate of Σw.

5.2. Simulation study
We compare penalized LDA with the NSC and RDA methods in a simulation study. Four sim-
ulations were considered. In each simulation, there are 1200 observations, equally split between
the classes. Of these 1200 observations, 100 belong to the training set, 100 belong to the valida-
tion set, and 1000 are in the test set. Each simulation consists of measurements on 500 features,
of which 100 differ between classes.

(a) Simulation 1: mean shift with independent features—there are four classes. If observation
i is in class k, then xi ∼ N.μk, I/, where μ1j = 0:7 if 1 � j � 25, μ2j = 0:7 if 26� j �50,
μ3j =0:7 if 51� j �75, and μ4j =0:7 if 75� j �100 and μkj =0 otherwise.

(b) Simulation 2: mean shift with dependent features—there are two classes. For i∈C1, xi ∼
N.0,Σ/ and, for i ∈ C2, xi ∼ N.μ,Σ/, and μj = 0:6 if j �200 and μj = 0 otherwise. The
covariance structure is block diagonal, with five blocks each of dimension 100×100. The
blocks have .j, j′/ element 0:6|j−j′|. This covariance structure is intended to mimic gene
expression data, in which genes are positively correlated within a pathway and indepen-
dent between pathways.

(c) Simulation 3: one-dimensional mean shift with independent features—there are four classes,
and the features are independent. For i∈Ck, Xij ∼N{.k −1/=3, 1} if j �100, and Xij ∼
N.0, 1/ otherwise. Note that a one-dimensional projection of the data fully captures the
class structure.

(d) Simulation 4: mean shift with independent features and no linear ordering—there are four
classes. If observation i is in class k, then xi ∼N.μk, I/. The mean vectors are defined as
follows: μ1j ∼N.0, 0:32/ if 1� j �25 and μ1j =0 otherwise, μ2j ∼N.0, 0:32/ if 26� j �50
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Fig. 1. Class mean vectors for each simulation ( , class 1; – – –, class 2; . . . . . . ., class 3; � – � – �,
class 4): (a) simulation 1; (b) simulation 2; (c) simulation 3; (d) simulation 4
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and μ2j = 0 otherwise, μ3j ∼ N.0, 0:32/ if 51 � j � 75 and μ3j = 0 otherwise, and μ4j ∼
N.0, 0:32/ if 75� j �100 and μ4j =0 otherwise.

Fig. 1 displays the class mean vectors for each simulation.
For each method, models were fitted on the training set using a range of tuning parameter

values. Tuning parameter values were then selected to minimize the validation set error. Finally,
the training set models with appropriate tuning parameter values were evaluated on the test set.
Penalized LDA-FL was performed in simulations 1–3 but not in simulation 4, since in simulation
4 the features do not have a linear ordering as assumed by the fused lasso penalty (see Fig. 1).

Test set errors and the numbers of non-zero features that were used are reported in Table 2.
For penalized LDA, the numbers of discriminant vectors that were used are also reported. The
penalized LDA-FL method has by far the best performance in the first three simulations, since
it exploits the fact that the important features have a linear ordering. Of course, in real data
applications, the penalized LDA-FL method can only be applied if such an ordering is present.
Note that penalized LDA tends to use fewer than three components in simulation 3, in which
a one-dimensional projection is sufficient to explain the class structure.

Table 2. Simulation results†

Simulation Results for the following methods:

Penalized LDA-L1 Penalized LDA-FL NSC RDA

1 Errors 117.48 (3) 38.4 (2) 88.96 (2.6) 96.8 (3.4)
Features 301.16 (20.1) 159.28 (15.8) 290.28 (16.7) 226.6 (15.7)
Components 3 (0) 3 (0) — —

2 Errors 90.04 (2.8) 77 (1.9) 88.44 (2.7) 112.2 (5.8)
Features 229.36 (20.4) 170.16 (18.4) 341.28 (24.8) 414.84 (32.6)
Components 1 (0) 1 (0) — —

3 Errors 150.8 (5.4) 83.44 (2.3) 276.64 (4) 291 (4.8)
Features 147.84 (7.1) 115.92 (9.1) 439.6 (10.7) 349.32 (24.5)
Components 1 (0) 1 (0) — —

4 Errors 60.56 (1.1) — 58.28 (1.2) 57 (0.9)
Features 311.4 (22.1) — 135.4 (22.6) 98 (7.3)
Components 3 (0) — — —

†Mean (and standard errors), computed over 25 repetitions, of test set errors, number of non-zero features and
number of discriminant vectors used.

Table 3. Results obtained on gene expression data over 10 training–test set splits†

Data set Results for the following methods:

NSC Penalized LDA-L1 RDA

Ramaswamy Errors 16.3 (4.16) 18.8 (3.05) 24 (17.45)
Features 2336.9 (2292.03) 14873.5 (720.29) 5022.5 (2503.35)

Nakayama Errors 4.2 (2.15) 4.4 (1.51) 2.8 (1.23)
Features 5908 (7131.5) 10478.7 (2116.27) 22283 (0)

Sun Errors 15 (4.29) 15.2 (3.29) 15.7 (4.52)
Features 30004.9 (18557.68) 21634.8 (7443.21) 54183.4 (693.23)

†The quantities reported are the mean (and standard deviation) of test set errors and non-zero coefficients.
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5.3. Application to gene expression data
We compare the penalized LDA-L1, NSC and RDA methods on three gene expression data sets:

(a) Ramaswamy data—a data set consisting of 16063 gene expression measurements and 198
samples belonging to 14 distinct cancer subtypes (Ramaswamy et al., 2001) (the data set
has been studied in several references (see for example Zhu and Hastie (2004), Guo et al.
(2007) and Witten and Tibshirani (2009)) and is available from http://www-stat.
stanford.edu/∼hastie/glmnet/glmnetData/);

(b) Nakayama data—a data set consisting of 105 samples from 10 types of soft tissue tumours,
each with 22283 gene expression measurements (Nakayama et al., 2007) (we limited the
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Fig. 2. For (a) the Nakayama and (b) the Sun data, the samples were projected onto the first two penalized
discriminant vectors: the samples in each class are shown by using a distinct symbol
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analysis to five tumour types for which at least 15 samples were present in the data; the
resulting subset of the data contained 86 samples; the data are available from the Gene
Expression Omnibus (Barrett et al., 2005) with accession number GDS2736);

(c) Sun data—a data set consisting of 180 samples and 54613 expression measurements (Sun
et al., 2006). The samples fall into four classes: one non-tumour class and three types of
glioma; the data are available from the Gene Expression Omnibus with accession number
GDS1962.

Each data set was split into a training set containing 75% of the samples and a test set containing
25% of the samples. Cross-validation was performed on the training set and test set error rates
were evaluated. The process was repeated 10 times, each with a random choice of training set
and test set. Results are reported in Table 3. The results suggest that the three methods tend to
have roughly comparable performance. A reviewer pointed out that there is substantial variabil-
ity in the number of features that were used by each classifier across each training–test set split.
Indeed, this instability in the set of genes selected probably reflects the fact that, in the analysis
of many real data types, sparsity is simply an approximation, rather than a property that we
expect to hold exactly.

The penalized LDA-L1 method has the added advantage over RDA and the NSC method of
yielding penalized discriminant vectors that can be used to visualize the observations, as in Fig.
2.

6. Normal model, optimal scoring and extensions to high dimensions

In this section, we review the normal model and the optimal scoring problem, which lead to
the same classification rule as Fisher’s discriminant problem. We also review past extensions of
LDA to the high dimensional setting.

6.1. Normal model
Suppose that the observations are independent and normally distributed with a common within-
class covariance matrix Σw ∈Rp×p and a class-specific mean vector μk ∈Rp. The log-likelihood
under this model is

K∑
k=1

∑
i∈Ck

[− 1
2 |Σw|− 1

2 tr{Σ−1
w .xi −μk/.xi −μk/T}]+ c .31/

where c is a constant. If the classes have equal prior probabilities, then, by Bayes’s theorem, a
new observation x is assigned to the class for which the discriminant function

δk.x/=xTΣ̂
−1
w μ̂k − 1

2 μ̂T
k Σ̂

−1
w μ̂k .32/

is maximal. One can show that this is the same as the classification rule that is obtained from
Fisher’s discriminant problem.

6.2. Optimal scoring problem
Let Y be a n×K matrix, with Yik =1i∈Ck

. Then, optimal scoring involves sequentially solving

minimizeβk∈Rp,θk∈RK

(
1
n
‖Yθk −Xβk‖2

)
subject to θT

k YTYθk =1, θT
k YTYθi =0 ∀i<k

.33/

for k =1, . . . , K −1. This amounts to recasting the classification problem as a regression prob-
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lem, where a quantitative coding θk of the K classes must be chosen along with the regression
coefficient vector βk. The solution β̂k to problem (33) is proportional to the solution to problem
(3). Somewhat involved proofs of this fact are given in Breiman and Ihaka (1984) and Hastie
et al. (1995). We present a simpler proof in Appendix A.

6.3. Linear discriminant analysis in high dimensions
In recent years, many researchers have proposed extensions of LDA to the high dimensional set-
ting to achieve sparsity (Tibshirani et al., 2002, 2003; Guo et al., 2007; Trendafilov and Jolliffe,
2007; Grosenick et al., 2008; Leng, 2008; Fan and Fan, 2008; Shao et al., 2011; Clemmensen
et al., 2011). In Section 4, we proposed to penalize Fisher’s discriminant problem. Here we
briefly review some past proposals that have involved penalizing the log-likelihood under the
normal model, and the optimal scoring problem.

The NSC proposal (Tibshirani et al., 2002, 2003) assigns an observation xÅ to the class that
minimizes

p∑
j=1

.xÅ
j − μ̄kj/2

σ̂2
j

, .34/

where μ̄kj = S{μ̂kj, λσ̂j
√

.1=nk +1=n/}, S is the soft thresholding operator (24), and we have
assumed equal prior probabilities for each class. This classification rule approximately fol-
lows from estimating the class mean vectors via maximization of an L1-penalized version of
the log-likelihood (31), and assuming independence of the features (Hastie et al., 2009). The
shrunken centroids RDA proposal (Guo et al., 2007) arises instead from applying the normal
model approach with covariance matrix Σ̃w = Σ̂w + ρI and performing soft thresholding to
obtain a classifier that is sparse in the features.

Several researchers have proposed penalizing the optimal scoring criterion (33) by imposing
penalties on βk (see for example Grosenick et al. (2008) and Leng (2008)). For instance, the sparse
discriminant analysis (SDA) proposal (Clemmensen et al., 2011) involves sequentially solving

minimizeβk ,θk

(
1
n
‖Yθk −Xβk‖2 +βT

k Ωβk +λ‖βk‖1

)
subject to θT

k YTYθk =1, θT
k YTYθi =0 ∀i<k .35/

where λ is a non-negative tuning parameter and Ω is a positive definite penalization matrix.
If Ω= γI for γ > 0, then this is an elastic net penalty (Zou and Hastie, 2005). The resulting
discriminant vectors will be sparse if λ is sufficiently large. If λ = 0, then this reduces to the
penalized discriminant analysis proposal of Hastie et al. (1995). Criterion (35) can be optimized
in a simple iterative fashion: we optimize with respect to βk holding θk fixed, and we optimize
with respect to θk holding βk fixed. In fact, if any convex penalties are applied to the discrim-
inant vectors in the optimal scoring criterion (33), then an iterative approach can be developed
that decreases the objective at each step. However, the optimal scoring problem is a somewhat
indirect formulation for LDA.

Our penalized LDA proposal is instead a direct extension of Fisher’s discriminant problem
(3). Trendafilov and Jolliffe (2007) considered a problem that was very similar to penalized
LDA-L1. But they discussed only the p < n case. Their algorithm is more complex than ours
and does not extend to general convex penalty functions.

A summary of proposals that extend LDA to the high dimensional setting through the use of
L1-penalties is given in Table 4. In the next section, we shall explore how our penalized LDA-L1
proposal relates to the NSC and SDA methods.
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Table 4. Advantages and disadvantages of using the normal model, optimal scoring and Fisher’s discrim-
inant problem as the basis for penalized LDA with an L1-penalty

Method Advantages Disadvantages Reference

Normal model Sparse class means if Does not give sparse Tibshirani et al. (2002)
diagonal estimate of discriminant vectors;
Σw used; computations no reduced rank
are fast classification

Optimal scoring Sparse discriminant Difficult to enforce Grosenick et al. (2008);
vectors diagonal estimate for Leng (2008);

Σw, which is useful if Clemmensen et al. (2011)
p>n; computations
can be slow

Fisher’s discriminant Sparse discriminant Computations can be This work
problem vectors; simple to slow when p is large,

enforce diagonal unless diagonal
estimate of Σw; estimate of Σw is used
computations are
fast using diagonal
estimate of Σw.

7. Connections with existing methods

7.1. Connection with sparse discriminant analysis
Consider the SDA criterion (35) with k=1. We drop the subscripts on β1 and θ1 for convenience.
Partially optimizing criterion (35) with respect to θ reveals that, for any β for which YTXβ �=0,
the optimal θ equals

.YTY/−1YTXβ√{βTXTY.YTY/−1YTXβ} :

So criterion (35) can be rewritten as

maximizeβ

{
2√
n

√
.βTΣ̂bβ/−βT.Σ̂b + Σ̂w +Ω/β−λ‖β‖1

}
: .36/

Assume that each feature has been standardized to have within-class standard deviation equal
to 1. Take Σ̃w = Σ̂w +Ω, where Ω is chosen so that Σ̃w is positive definite. Then, the following
proposition holds.

Proposition 3. Consider the penalized LDA-L1 problem (17) where λ1 >0 and k=1. Suppose
that at the solution βÅ to problem (17) the objective is positive. Then, there is a positive tuning
parameter λ2 and a positive scalar c such that cβÅ corresponds to a zero of the generalized
gradient of the SDA objective (36).

A proof is given in Appendix A. Note that the assumption that the objective is positive at the
solution βÅ is not very taxing—it simply means that βÅ results in a higher value of the objective
than does a vector of 0s. Proposition 3 states that, if the same positive definite estimate for Σw
is used for both problems, then the solution of the penalized LDA-L1 problem corresponds to
a point where the generalized gradient of the SDA problem is zero. But, since the SDA problem
is not convex, this does not imply that there is a correspondence between the solutions of the
two problems. Penalized LDA-L1 has some advantages over SDA. Unlike SDA, the penalized
LDA-L1 method has a clear relationship with Fisher’s discriminant problem. Moreover, unlike
SDA, it provides a natural way to enforce a diagonal estimate of Σw.
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7.2. Connection with nearest shrunken centroids
The following proposition indicates that, in the case of two equally sized classes, the NSC method
is closely related to the penalized LDA-L1 problem with the diagonal estimate (4) for Σw.

Proposition 4. Suppose that K=2 and n1 =n2 =n=2. Let β̂ denote the solution to the problem

maximizeβ

{
√

.βTΣ̂bβ/−λ
p∑

j=1
|βjσ̂j|

}
subject to βTΣ̃wβ�1 .37/

where Σ̃w is the diagonal estimate (4). Consider the classification rule that is obtained by com-
puting Xβ̂ and assigning each observation to its nearest centroid in this transformed space. This
is the same as the NSC classification rule (34).

Note that problem (37) is simply a modified version of the penalized LDA-L1 criterion, in
which the between-class variance term has been replaced with its square root. Therefore, the
penalized LDA-L1 method with a diagonal estimate of Σw and the NSC method are closely con-
nected when K =2. This connection does not hold for larger values of K , since the NSC method
penalizes the elements of the p×K class centroid matrix, whereas the penalized LDA-L1 method
penalizes the eigenvectors of this matrix. A proof of proposition 4 is given in Appendix A.

8. Discussion

We have extended Fisher’s discriminant problem to the high dimensional setting by imposing
penalties on the discriminant vectors. The penalty function is chosen on the basis of the problem
at hand and can result in an interpretable classifier. A potentially useful but unexplored area
of application for our proposal is functional magnetic resonance imaging data, for which one
could use a penalty that incorporates the spatial structure of the voxels.

There is a strong connection between our penalized LDA proposal and previous work on
penalized principal components analysis. When Pk is an L1-penalty, problem (12) is closely
related to the ‘SCoTLASS’ proposal for sparse principal components analysis (Jolliffe et al.,
2003). Criterion (12) and algorithm 1 for optimizing it are closely related to the penalized prin-
cipal components algorithms that have been considered by various researchers (see for example
Zou et al. (2006), Shen and Huang (2008) and Witten et al. (2009)) . This connection stems from
the fact that Fisher’s discriminant problem is simply a generalized eigenproblem.

The R language software package penalizedLDA implementing penalized LDA-L1 and
penalized LDA-FL are available on the Comprehensive R Archive Network: http://cran.
r-project.org/.
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Appendix A

A.1. Equivalence between problem (3) and standard formulation for linear discriminant
analysis
We have stated Fisher’s discriminant problem as expression (3), but a more standard formulation is



Penalized Classification 769

maximizeβk∈Rp .βT
k Σ̂bβk/ subject to βT

k Σ̂wβk =1, βT
k Σ̂wβi =0 ∀i<k: .38/

We now show that expressions (3) and (38) are equivalent, provided that the solution is not in the null
space of Σ̂b. It suffices to show that, if α solves problem (3), then αTΣ̂wα=1.

We proceed with a proof by contradiction. Suppose that α solves problem (3) and αTΣ̂wα < 1 and
αTΣ̂bα> 0. Let c = 1=

√
.αTΣ̂wα/. Since c > 1, it follows that .cα/TΣ̂b.cα/ >αTΣ̂bα. And cα is in the

feasible set for problem (3). This contradicts the assumption that α solves problem (3). Hence, any solution
to problem (3) that is not in the null space of Σ̂b also solves problem (38).

Note that we do not concern ourselves with solutions that are in the null space of Σ̂b, as these are not
useful for discrimination and will arise only if too many discriminant vectors are used.

A.2. Proof of proposition 1
Letting Σ̃1=2

w denote the symmetric matrix square root of Σ̃w and β̃k = Σ̃
1=2
w βk, problem (6) becomes

maximizeβ̃k
{β̃

T

k Σ̃
−1=2
w XTY.YTY/−1=2P⊥

k .YTY/−1=2YTXΣ̃
−1=2
w β̃k} subject to ‖β̃k‖2 �1, .39/

which is equivalent to

maximizeβ̃k ,uk
.β̃

T

k AP⊥
k uk/ subject to ‖β̃k‖2 �1, ‖uk‖2 �1, .40/

where A = Σ̃
−1=2
w XTY.YTY/−1=2. Equivalence of expressions (40) and (39) can be seen from partially opti-

mizing problem (40) with respect to uk.
We claim that β̃k and uk that solve problem (40) are the kth left and right singular vectors of A. By

inspection, the claim holds when k=1. Now, suppose that the claim holds for all i<k, where k>1. Partially
optimizing problem (40) with respect to β̃k yields

maximizeuk
.uT

k P⊥
k ATAP⊥

k uk/ subject to ‖uk‖2 �1: .41/

By definition, P⊥
k is an orthogonal projection matrix into the space orthogonal to

.YTY/−1=2YTXβ̂i = .YTY/−1=2YTXΣ̃
−1=2
w β̃i =ATβ̃i ∝ui .42/

for all i < k, where proportionality follows from the fact that β̃i and ui are the ith singular vectors of A
for all i < k. Hence, P⊥

k = I −Σk−1
i=1 uiuT

i . Therefore, by problem (41), uk is the kth eigenvector of ATA, or
equivalently the kth right singular vector of A. So, by problem (40), β̃k is the kth left singular vector
of A, or equivalently the kth eigenvector of

AAT =nΣ̃
−1=2
w Σ̂bΣ̃

−1=2
w :

Therefore, the solution to problem (6) is the kth discriminant vector.

A.3. Proof of proposition 2
For problem (18), the Karush–Kuhn–Tucker conditions (Boyd and Vandenberghe, 2004) are given by

2Σ̂bβ
.m−1/ −λΓ−2δΣ̃wβ=0, δ �0, δ.βTΣ̃wβ−1/=0, βTΣ̃wβ�1, .43/

where we have dropped the ‘k’-subscripts and superscripts for ease of notation, and where Γ is a p-vector
of which the jth element is the subgradient of Σp

j=1|σ̂jβj| with respect to βj , i.e. Γj = σ̂j if βj > 0, Γj =−σ̂j

if βj < 0 and Γj is in between σ̂j and −σ̂j if βj =0.
First, suppose that, for some j, |.2Σ̂bβ

.m−1//j|>λσ̂j . Then it must be the case that 2δΣ̃wβ �=0. So δ > 0
and βTΣ̃wβ=1. Then the Karush–Kuhn–Tucker conditions simplify to

2Σ̂bβ
.m−1/ −λΓ−2δΣ̃wβ=0, βTΣ̃wβ=1, δ > 0: .44/

Substituting d=δβ, this is equivalent to solving problem (21) and then dividing the solution d̂ by
√

.d̂
T
Σ̃wd̂/.

Now, suppose instead that |.2Σ̂bβ
.m−1//j|�λσ̂j for all j. Then, by conditions (43), it follows that β̂=0

solves problem (18). By inspection of the subgradient equation for problem (21), we see that in this case
d̂ =0 solves problem (21) as well. Therefore, the solution to problem (18) is as given in proposition 2.

The same set of arguments applied to problem (20) lead to proposition 2, part (b).
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A.4. Proof of proposition 3
Consider problem (17) with tuning parameter λ1 and k = 1. Then by theorem 6.1.1 of Clarke (1990), if
there is a non-zero solution βÅ, then there exists μ�0 such that

0∈2Σ̂bβ
Å −λ1 Γ.βÅ/−2μΣ̃wβÅ, .45/

where Γ.β/ is the subdifferential of ‖β‖1. The subdifferential is the set of subgradients of ‖β‖1; the jth
element of a subgradient equals sgn.βj/ if βj �=0 and is between −1 and 1 if βj =0. Left multiplying expres-
sion (45) by βÅ yields 0 = 2βÅTΣ̂bβ

Å −λ1‖βÅ‖1 − 2μβÅT
Σ̃wβÅ. Since the sum of the first two terms is

positive (since βÅ is a non-zero solution), it follows that μ> 0.
Now, define a new vector that is proportional to βÅ:

β̂= μ

.1+μ/a
βÅ = cβÅ .46/

where a=√
.nβÅT

Σ̂bβ
Å/. By inspection, a �=0, since otherwise βÅ would not be a non-zero solution. Also,

let λ2 =λ1{.1− ca/=a}. Note that 1− ca=1=.1+μ/> 0, so λ2 > 0.
The generalized gradient of expression (36) with tuning parameter λ2 evaluated at β̂ is proportional to

2Σ̂bβ̂−λ2 Γ.β̂/

√
.nβ̂

T
Σ̂bβ̂/

1−√
.nβ̂

T
Σ̂bβ̂/

−2Σ̃wβ̂

√
.nβ̂

T
Σ̂bβ̂/

1−√
.nβ̂

T
Σ̂bβ̂/

, .47/

or, equivalently,

2cΣ̂bβ
Å −λ2 Γ.βÅ/

ac

1−ac
−2cΣ̃wβÅ ac

1−ac
=2cΣ̂bβ

Å −λ1c Γ.βÅ/−2cΣ̃wβÅ ac

1−ac

=2cΣ̂bβ
Å −λ1c Γ.βÅ/−2cμΣ̃wβÅ

= c{2Σ̂bβ
Å −λ1 Γ.βÅ/−2μΣ̃wβÅ}: .48/

Comparing expression (45) with equation (48), we see that 0 is contained in the generalized gradient of
the SDA objective evaluated at β̂.

A.5. Proof of proposition 4
Since n1 =n2, the NSC method assigns an observation x ∈Rp to the class that maximizes

p∑
j=1

xj S.X̄kj , σ̂jλ/

σ̂2
j

.49/

where X̄kj is the mean of feature j in class k, and the soft thresholding operator S is given by equation
(24). In contrast, the classification rule resulting from problem (37) assigns x to the class that minimizes∣∣∣∣∣

p∑
j=1

X̄kj S.X̄1j , σ̂jλ/

σ̂2
j

−
p∑

j=1

xj S.X̄1j , σ̂jλ/

σ̂2
j

∣∣∣∣∣: .50/

This follows from the fact that problem (37) reduces to

maximizeβ

(
βTX̄1 −λ

p∑
j=1

|βjσ̂j|
)

subject to
p∑

j=1
β2

j σ̂
2
j �1, .51/

since .1=
√

n/XTY.YTY/−1=2 = X̄1.1=
√

2−1=
√

2/ and Σ̂b = .1=n/XTY.YTY/−1YTX.
Since the first term in expression (50) is positive if k =1 and negative if k =2, problem (37) classifies to

class 1 if Σp
j=1xjS.X̄1j , σ̂jλ/=σ̂2

j >0 and classifies to class 2 if Σp
j=1xjS.X̄1j , σ̂jλ/=σ̂2

j <0. Because X̄1j =−X̄2j ,
by inspection of expression (49), the two methods result in the same classification rule.

A.6. Proof of equivalence of Fisher’s linear discriminant analysis and optimal scoring
Consider the following two problems:

maximizeβ∈Rp .βTΣ̂bβ/ subject to βT.Σ̂w +Ω/β=1 .52/
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and

minimizeβ∈Rp ,θ∈RK

(
1
n

‖Yθ−Xβ‖2 +βTΩβ

)
subject to θTYTYθ=1: .53/

In Hastie et al. (1995), a somewhat challenging proof is given of the fact that the solutions β̂ to the two
problems are proportional to each other. Here, we present a more direct argument. In problems (52) and
(53), Ω is a matrix such that Σ̂w +Ω is positive definite; if Ω=0 then these two problems reduce to Fisher’s
LDA and optimal scoring. Optimizing problem (53) with respect to θ, we see that the β that solves problem
(53) also solves

minimizeβ

{
− 2√

n

√
.βTΣ̂bβ/+βTΣ̂bβ+βT.Σ̂w +Ω/β

}
: .54/

For notational convenience, let β̃ = .Σ̂w + Ω/1=2β and Σ̃b = .Σ̂w + Ω/−1=2Σ̂b.Σ̂w + Ω/−1=2. Then, the
problems become

maximizeβ̃.β̃TΣ̃bβ̃/ subject to β̃Tβ̃=1 .55/

and

minimizeβ̃

{
− 2√

n

√
.β̃

T
Σ̃bβ̃/+ β̃

T
.Σ̃b + I/β̃

}
: .56/

It is easy to see that the solution to problem (55) is the first eigenvector of Σ̃b. Let β̂ denote the solution
to problem (56). Consequently, β̂TΣ̃bβ̂ > 0. So β̂ satisfies

Σ̃bβ̂

{
1− 1

√
.nβ̂

T
Σ̃bβ̂/

}
+ β̂=0, .57/

and therefore
√

.nβ̂
T
Σ̃bβ̂/<1. Now equation (57) indicates that β̂ is an eigenvector of Σ̃b with eigenvalue

λ=√
.nβ̂TΣ̃bβ̂/={1−√

.nβ̂TΣ̃bβ̂/}; it remains to show that β̂ is in fact the first eigenvector. Note that
if we let w = β̂Tβ̂ then λ=√

.nλw/{1−√
.nλw/}, and so w =λ=n.1+λ/2. Then the objective of problem

(56) evaluated at β̂ equals

− 2√
n

√
.λw/+λw +w = −2λ

n.1+λ/
+ λ

n.1+λ/
=− λ

n.1+λ/
: .58/

The minimum occurs when λ is large. So the solution to problem (56) is the largest eigenvector of Σ̃b.
This argument can be extended to show that subsequent solutions to Fisher’s discriminant problem and

the optimal scoring problem are proportional to each other.
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