2012

УДК 621.396.96

ВЛИЯНИЕ ВЫБОРА МОДЕЛЕЙ ВХОДНОГО ВОЗДЕЙСТВИЯ НА ТОЧНОСТЬ ИЗМЕРЕНИЙ ВЕКТОРА СОСТОЯНИЯ ДЛЯ ФИЛЬТРОВ КАЛМАНА

П.А. ХМАРСКИЙ, А.С. СОЛОНАР

Военная академия Республики Беларусь Минск, 220057, Беларусь

Поступила в редакцию 22 мая 2012

Рассмотрено влияние выбора моделей входного воздействия на показатели качества дискретных фильтров Калмана. Перечислены рекомендации по практическому применению модификаций фильтров Калмана.

Ключевые слова: фильтр Калмана при косвенных измерениях (Extended Kalman filter (EKF)), входное воздействие, взаимная корреляция, показатели качества.

Введение

Дискретная фильтрация координат и параметров движения воздушных объектов – важная составная часть обработки радиолокационной информации. Для решения задачи дискретной фильтрации наиболее часто применяют линейные и квазилинейные дискретные фильтры Калмана (ФК).

Из многочисленных публикаций отечественных и зарубежных авторов можно выделить ряд модификаций ФК [1–8]. Модификации вызваны допущениями и ограничениями, основными из них являются: выбор типа системы координат; выбор моделей входного воздействия, закладываемых в структуру ФК; учет взаимной корреляции прямоугольных координат при пересчете из полярных координат.

Целями статьи являются: рассмотрение особенностей расчетов и построений различных модификаций дискретного фильтра Калмана на примере ФК первого порядка; сопоставительный анализ результатов фильтрации данных модификаций ФК.

Постановка задачи

Будем считать, что в вектор наблюдаемых параметров **\theta** входят разовые оценки радиальной дальности *r* и азимута β . Ошибки наблюдения некоррелированы и характеризуются корреляционной матрицей ошибок измерения: $\mathbf{R}_{\theta} = \begin{bmatrix} \sigma_r^2 & 0 \\ 0 & \sigma_e^2 \end{bmatrix}$.

Интервал обновления данных равен *Т*. Данные наблюдения соответствуют выходу устройства разовых оценок двухкоординатной РЛС кругового обзора. Наблюдается аэродинамический летательный аппарат (ЛА), летящий с постоянной скоростью по прямолинейной траектории, что соответствует полиномиальной модели задающего воздействия первого порядка.

Задача: рассмотреть особенности расчетов и построений различных модификаций дискретного фильтра Калмана на примере ФК первого порядка, а также провести сопоставление их показателей качества методами математического моделирования.

№ 7(69)

Рекуррентные уравнения дискретного фильтра Калмана при косвенных измерениях

В зарубежной литературе рассматриваемый фильтр обозначается как Extended Kalman filter (EKF) [1]. Для косвенной фильтрации размерности вектора наблюдаемых параметров $\boldsymbol{\theta}$ и вектора состояния $\boldsymbol{\alpha}$ не совпадают либо имеют различный физический смысл. В общем случае вектор наблюдения $\boldsymbol{\theta}$ связан с вектором состояния $\boldsymbol{\alpha}$ вектор-функцией $\mathbf{h}(\cdot)$ таким образом, что $\boldsymbol{\theta} = \mathbf{h}(\boldsymbol{\alpha})$. При линеаризации взаимосвязей между векторами $\boldsymbol{\theta}$ и $\boldsymbol{\alpha}$ в окрестности экстраполированного значения вектора состояния $\hat{\boldsymbol{\alpha}}_0$ вектор наблюдаемых параметров может быть получен из вектора состояния через статическую матрицу пересчета **H**:

$$\theta = H\alpha$$
,

где **H** – статическая матрица пересчета изменений вектора состояния в изменения вектора наблюдаемых параметров [2]:

(1)

$$\boldsymbol{\theta} = \left\| \partial \mathbf{h}^{(i)}(\boldsymbol{\alpha}) / \partial \boldsymbol{\alpha}^{(j)} \right\|_{\boldsymbol{\alpha} = \hat{\boldsymbol{\alpha}}_0},\tag{2}$$

i – номер строки вектор-функции **h**(·), *i* = (0, ..., n_{θ} – 1); *j* – номер элемента вектора состояния **a**, *j* = (0, ..., n_{α} – 1); n_{θ} , n_{α} – размерность вектора наблюдения и вектора состояния.

В этом случае рекуррентные уравнения дискретного ФК оценки вектора состояния \hat{a}_{k+1} и корреляционная матрица ошибок фильтрации \mathbf{R}_{k+1} на (*k*+1)-ом шаге имеют следующий вид [2]:

$$\mathbf{a}_{0_{(k+1)}} = \mathbf{B}\mathbf{a}_{k} ;$$

$$\hat{\mathbf{a}}_{k+1} = \hat{\mathbf{a}}_{0_{(k+1)}} + \mathbf{K}_{k+1} [\hat{\mathbf{\theta}}_{k+1} - \mathbf{H}\hat{\mathbf{a}}_{0_{(k+1)}}];$$

$$\mathbf{R}_{0(k+1)} = \mathbf{B}_{k} \mathbf{R}_{k} \mathbf{B}_{k}^{\mathrm{T}} + \mathbf{M};$$
(3)

$$\mathbf{K}_{k+1} = \mathbf{R}_{0(k+1)} \mathbf{H}^{\mathrm{T}} [\mathbf{H} \mathbf{R}_{0(k+1)} \mathbf{H}^{\mathrm{T}} + \mathbf{R}_{f(k+1)}]^{-1};$$
(4)

 $\mathbf{R}_{k+1} = (\mathbf{E} - \mathbf{K}_{k+1}\mathbf{H})\mathbf{R}_{0(k+1)}$, где $\hat{\boldsymbol{a}}_{0_{(k+1)}}$ – экстраполированное значение вектора состояния с *k*-го на (*k*+1)-ый шаг наблюдения, в общем случае определяется путем пересчета оценки вектора состояния $\hat{\boldsymbol{a}}_{k}$ на *k*-ом шаге через вектор-функцию $\mathbf{b}(\cdot)$, таким образом, что $\hat{\boldsymbol{a}}_{0_{(k+1)}} = \mathbf{b}(\hat{\boldsymbol{a}}_{k})$; \mathbf{B} – неслучайная динамическая матрица пересчета приращений вектора состояния *k*-го шага наблюдения на следующий шаг в окрестности $\hat{\boldsymbol{a}}_{0_{(k+1)}}$: $\mathbf{B} = \|\partial \mathbf{b}^{(i)}(\boldsymbol{\alpha})/\partial \alpha_{j}\|_{\boldsymbol{a}=\hat{\boldsymbol{a}}_{k}}$; где *i* – номер строки векторфункции $\mathbf{b}(\cdot)$, *i* = (0,..., n_{α} – 1); *j*– номер элемента вектора состояния $\boldsymbol{\alpha}$, *j* = (0,..., n_{α} – 1); $\mathbf{R}_{0(k+1)}$ – корреляционная матрица ошибок экстраполяции; \mathbf{R}_{k} – корреляционная матрица флуктуационных ошибок фильтрации на *k*-ом шаге; \mathbf{M} – матрица случайного дискретного маневра: $\mathbf{M} = \mathbf{SS}^{\mathsf{T}} \sigma_{\mathsf{M}}^{2}$; \mathbf{S} – матрица пересчета случайных приращений вектора состояния; σ_{M}^{2} – дисперсия случайного дискретного маневра ЛА; $\mathbf{R}_{f_{(k+1)}}$ – корреляционная матрица флуктуационных ошибок текущих измерений наблюдаемых параметров на (*k*+1)-ом шаге наблюдения.

Обобщенная структурная схема дискретного ФК при косвенных измерениях вектора состояния изображена на рисунке 1, а. Оценка вектора состояния α производится на основе невязки оценки вектора наблюдаемых параметров и пересчитанного экстраполированного значения вектора состояния **Н** $\hat{a}_{0}_{(z+1)}$.

Взвешенная невязка суммируется с экстраполированным значением $\hat{a}_{0_{(k+1)}}$. В качестве весов используется вектор коэффициентов фильтрации \mathbf{K}_{k+1} . С увеличением номера шага измерения элементы вектора \mathbf{K}_{k+1} уменьшаются по своему абсолютному значению, что приводит к постепенному росту веса экстраполированной оценки $\hat{a}_{0_{(k+1)}}$ в результирующей $\hat{a}_{(k+1)}$ по отношению к $\hat{\theta}_{k+1}$.

Возможные модификации дискретного фильтра Калмана при косвенных измерениях

К основным модификациям дискретного ФК при косвенных измерениях относят (см. рис. 1, a-d): ФК при наблюдении полярных координат и фильтрации прямоугольных координат (ФК1); ФК при наблюдении коррелированных прямоугольных координат (ФК2); ФК при наблюдении независимых прямоугольных координат (ФК3); ФК при наблюдении и фильтрации полярных координат (ФК4); ФК при фильтрации полярных координат и экстраполяции в прямоугольных координатах (ФК5). Ниже рассмотрим особенности каждой модификации.

Рис. 1. Структурные схемы модификаций ФК при косвенных измерениях: ФК1 (*a*); ФК2 (*б*); ФК3 (*в*); ФК4 (*г*); ФК5 (*д*)

 ΦK при наблюдении полярных координат и фильтрации прямоугольных координат. В этом случае оценка вектора состояния $\hat{a}_{(k+1)} = \|\hat{x}_{(k+1)} - \hat{y}_{z_{(k+1)}} - \hat{y}_{z_{(k+1)}}\|^{T}$ включает две прямоугольные координаты x (север), z (восток) и скорости их изменения. Вектора θ , α связаны через вектор-функцию $\mathbf{h}(\cdot)$ [2]:

 $\|r_{(k+1)}\| = \sqrt{x_{(k+1)}^2 + z_{(k+1)}^2}$

$$\boldsymbol{\theta}_{(k+1)} = \mathbf{h}(\boldsymbol{\alpha}_{(k+1)}) = \left\| \boldsymbol{\beta}_{(k+1)} \right\| = \left\| \frac{\sqrt{x_{(k+1)} + z_{(k+1)}}}{\operatorname{arctg}(z_{(k+1)} / x_{(k+1)}) + \varphi} \right\|,\tag{5}$$

где $\varphi = (\frac{\pi}{2})[2 - \text{sgn}(x_{(k+1)}) - \text{sgn}(x_{(k+1)}) \text{sgn}(z_{(k+1)})]; \text{ sgn}(x) = \begin{cases} 1, & \text{при } x \ge 0; \\ -1, & \text{при } x < 0. \end{cases}$ знаковая функция.

Особенности модификации:

– корреляционная матрица флуктуационных ошибок текущих измерений $\mathbf{R}_{f(k+1)} = \mathbf{R}_{\theta}$;

- матрица статического пересчета

$$\mathbf{H}_{(k+1)} = \begin{vmatrix} \cos(\beta_{(k+1)}) & 0 & \sin(\beta_{(k+1)}) & 0 \\ \sin(\beta_{(k+1)}) / r_{(k+1)} & 0 & -\cos(\beta_{(k+1)}) / r_{(k+1)} & 0 \end{vmatrix};$$
(6)

- неслучайная динамическая матрица пересчета приращения вектора состояния:

$$\mathbf{B} = \begin{vmatrix} 1 & T & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & T \\ 0 & 0 & 0 & 1 \end{vmatrix};$$
(7)

- матрица пересчета случайных приращений вектора состояния:

$$\mathbf{S} = \begin{bmatrix} T^2/2 & T & 0 & 0\\ 0 & 0 & T^2/2 & T \end{bmatrix}^{\mathrm{T}};$$
(8)

– дисперсия случайного маневра σ_M^2 характеризует случайный маневр по прямоугольным координатам.

Структурная схема данного ФК изображена на рис. 1, *а*. Здесь имеет место статистическая связь оценок параметров по всем координатам. Это затрудняет процедуру получения оценок, приводит к повышению требований к вычислительным средствам [3, 4] и предъявляет высокие требования к точности установки начальных значений элементов корреляционной матрицы ошибок фильтрации [4]. Ошибка измерения азимута может существенно повлиять на общую работу алгоритма фильтрации [5–7].

 ΦK при наблюдении коррелированных прямоугольных координат. В зарубежной литературе этот фильтр обозначается как converted measurement Kalman filter (CMKF) [6]. В этой модификации (см. рис. 1, б) оценка вектора состояния $\hat{a}_{(k+1)} = \|\hat{x}_{(k+1)} \quad \hat{V}_{x_{(k+1)}} \quad \hat{z}_{(k+1)} \quad \hat{V}_{z_{(k+1)}} \|^{T}$ формируется по результатам наблюдения разовых оценок прямоугольных координат $\hat{\theta}_{x_{t(k+1)}} = \|\hat{x}_{f_{(k+1)}} \quad \hat{z}_{f_{(k+1)}} \|^{T}$.

Для пересчета оценки вектора наблюдения $\hat{\theta}_{(k+1)}$ из полярной системы координат в прямоугольную $\hat{\theta}_{x_{2(k+1)}}$ применяется вектор-функция $\mathbf{h}_{\theta_{xz}}(\boldsymbol{\theta})$:

$$\hat{\boldsymbol{\theta}}_{xz_{(k+1)}} = \left\| \hat{x}_{f_{(k+1)}} \right\| = \mathbf{h}_{\theta xz}(\boldsymbol{\theta}) = \left\| \hat{r}_{(k+1)} \cos(\hat{\boldsymbol{\beta}}_{(k+1)}) \right\|.$$
(9)

При этом необходимо пересчитать корреляционную матрицу ошибок текущих измере-

ний **R**₀ в прямоугольную систему координат при помощи выражения [2, 6]:

$$\begin{split} \mathbf{R}_{f(k+1)} &= \mathbf{H}_{\theta_{XZ}} \mathbf{R}_{\theta} \mathbf{H}_{\theta_{XZ}}^{\mathsf{T}} = \left\| \begin{array}{c} \sigma_{r}^{2} \cos^{2}(\beta) + r \, \sigma_{\beta}^{2} \sin^{2}(\beta) & \sigma_{r}^{2} \sin(\beta) \cos(\beta) - r \, \sigma_{\beta}^{2} \sin(\beta) \cos(\beta) \\ \sigma_{r}^{2} \sin(\beta) \cos(\beta) - r \, \sigma_{\beta}^{2} \sin(\beta) \cos(\beta) & \sigma_{r}^{2} \sin^{2}(\beta) + r \, \sigma_{\beta}^{2} \cos^{2}(\beta) \\ \end{array} \right\|, \text{ 3десь матрица} \\ \mathbf{H}_{\theta_{XZ}} &= \left\| \begin{array}{c} \partial h_{1}(\hat{\boldsymbol{\theta}}_{(k+1)}) \\ \partial \hat{r}_{(k+1)} & \partial \hat{h}_{1}(\hat{\boldsymbol{\theta}}_{(k+1)}) \\ \partial \hat{r}_{(k+1)} & \partial \hat{h}_{2}(\hat{\boldsymbol{\theta}}_{(k+1)}) \\ \partial \hat{r}_{(k+1)} & \partial \hat{h}_{2}(\hat{\boldsymbol{\theta}}_{(k+1)}) \\ \partial \hat{\rho}_{(k+1)} & \partial \hat{h}_{2}(\hat{\boldsymbol{\theta}}_{(k+1)}) \\ \end{array} \right\|, \quad \beta = \hat{\beta}_{(k+1)}, \quad r = \hat{r}_{(k+1)}. \end{split}$$

Матрицы **B** и **S** для рассматриваемого случая будут соответствовать выражениям (7), (8). Дисперсия случайного маневра σ_M^2 считается одинаковой для *x* и *z*. Выражение для матрицы статистического пересчета имеет вид:

$$\mathbf{H} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{vmatrix}.$$
 (10)

 ΦK при наблюдении независимых прямоугольных координат. В зарубежной литературе рассматриваемый фильтр имеет название decoupling CMKF [6]. В этом ΦK прослеживается упрощение модификации $\Phi K1$ с целью снижения вычислительных затрат. Для этого оценки полярных координат пересчитывают в прямоугольные с помощью (9), но при этом считается, что ошибки наблюдений $\hat{x}_{(k+1)}$, $\hat{z}_{(k+1)}$ между собой некоррелированы. Подобное допущение позволяет фильтровать прямоугольные координаты x, z раздельно при помощи двух идентичных ΦK по одной координате.

В этих фильтрах:

– корреляционная матрица флуктуационных ошибок текущих измерений будет представлена матрицами единичного размера:

для ФК (канал z) –
$$\mathbf{R}_{f_{x(k+1)}} = \left\| \sigma_r^2 \cos^2(\hat{\beta}_{(k+1)}) + \hat{r}_{(k+1)} \sigma_\beta^2 \sin^2(\hat{\beta}_{(k+1)}) \right\|;$$

для ФК (канал x) – $\mathbf{R}_{f_{\mathcal{Z}(k+1)}} = \left\| \sigma_r^2 \sin^2(\hat{\beta}_{(k+1)}) + \hat{r}_{(k+1)} \sigma_\beta^2 \cos^2(\hat{\beta}_{(k+1)}) \right\|.$

- матрица статического пересчета:

$$\mathbf{H} = \left\| \mathbf{1} \quad T \right\|; \tag{11}$$

- неслучайная динамическая матрица пересчета приращения вектора состояния:

$$\mathbf{B} = \begin{vmatrix} 1 & T \\ 0 & 1 \end{vmatrix}; \tag{12}$$

- матрица пересчета случайных приращений вектора состояния:

$$\mathbf{S} = \begin{vmatrix} T^2 / 2 & 0 \\ T & 0 \end{vmatrix}; \tag{13}$$

– дисперсия случайного маневра σ_M^2 одинакова для *x* и *z*.

Обобщенная структурная схема ФКЗ приведена на рис. 1, в. Объем вычислений при применении такого упрощенного фильтра уменьшается на порядок по сравнению с модификациями ФК1 и ФК2 [3–6].

 ΦK при наблюдении и фильтрации полярных координат. В этом случае вектор состояния включает радиальную дальность *r*, азимут β и скорости их изменения V_r , V_{β} . Структурная схема алгоритма изображена на рис. 1, *г*.

Так как ошибки разового оценивания не взаимосвязаны, то радиальная дальность и азимут будут фильтроваться раздельно.

Матрицы H, B, S соответствуют выражениям (11), (12), (13).

Дисперсия σ_M^2 будет характеризовать случайный маневр по каждой полярной координате в отдельности.

При данных условиях фильтруемые параметры будут изменяться нелинейно даже при прямолинейном и равномерном движении ЛА по причине возникновения эффекта «кажущихся ускорений» [2, 4, 5].

 ΦK при фильтрации полярных координат и экстраполяции в прямоугольных координаmax. Еще одной из модификаций ΦK при косвенной фильтрации является фильтр [4, 8], структурная схема которого изображена на рис. 1, ∂ . Его особенностями являются: экстраполяция осуществляется в прямоугольной СК (при помощи предварительного перехода матрицей \mathbf{H}_1); фильтрация производится в полярной СК (задействуются матрицы пересчета \mathbf{H}_2 (переход в полярную СК), \mathbf{H}_3 (учет размерности вектора наблюдаемых параметров)).

Матрицы **B**, **S**, **H**₃ будут соответствовать выражениям (7), (8) и (10).

Матрицы статического пересчета Н1, Н2 будут иметь следующий вид:

$$\mathbf{H}_{1} = \begin{vmatrix} \cos(\beta) & 0 & -r\sin(\beta) & 0 \\ -V_{\beta}\sin(\beta) & \cos(\beta) & -rV_{\beta}\cos(\beta) - V_{r}\sin(\beta) & -r\sin(\beta) \\ \sin(\beta) & 0 & r\cos(\beta) & 0 \\ V_{\beta}\cos(\beta) & \sin(\beta) & V_{r}\cos(\beta) - rV_{\beta}\sin(\beta) & \cos(\beta) \end{vmatrix}$$

$$\mathbf{H}_{2} = \begin{vmatrix} \frac{x}{\sqrt{x^{2} + z^{2}}} & 0 & \frac{z}{\sqrt{x^{2} + z^{2}}} & 0 \\ \frac{x}{\sqrt{x^{2} + z^{2}}} & \frac{x}{\sqrt{x^{2} + z^{2}}} & \frac{V_{z}}{\sqrt{x^{2} + z^{2}}} - \frac{z(V_{x}x + V_{z}z)}{\sqrt{(x^{2} + z^{2})^{3}}} & \frac{z}{\sqrt{x^{2} + z^{2}}} \\ -\frac{z}{x^{2} + z^{2}} & 0 & \frac{x}{x^{2} + z^{2}} & 0 \\ \frac{V_{z}}{x^{2} + z^{2}} - \frac{2x(V_{z}x - V_{x}z)}{(x^{2} + z^{2})^{2}} & -\frac{z}{x^{2} + z^{2}} & -\frac{V_{x}}{x^{2} + z^{2}} - \frac{2z(V_{z}x - V_{x}z)}{(x^{2} + z^{2})^{2}} & \frac{x}{x^{2} + z^{2}} \end{vmatrix},$$
ГДЕ
$$\beta = \hat{\beta}_{(k+1)}, \ r = \hat{r}_{(k+1)}, \ V_{\beta} = \hat{V}_{\beta_{(k+1)}}, \ V_{r} = \hat{V}_{r_{(k+1)}}, \ x = \hat{x}_{(k+1)}, \ z = \hat{z}_{(k+1)}, \ V_{z} = \hat{V}_{z_{(k+1)}}, \ V_{z} = \hat{V}_{z_{(k+1)}}.$$

Математическое моделирование

Комплекс математического моделирования. Для проведения сопоставительного моделирования ошибок измерений рассмотренных модификаций ФК был разработан комплекс математического моделирования. Данный комплекс позволяет: сформировать входное воздействие в виде суммы задающего и возмущающего воздействия. Задающее воздействие представлено детерминированной полиномиальной моделью 1-го порядка и моделью случайного ускорения в виде некоррелированного гауссовского шума с нулевым математическим ожиданием и СКО случайного маневра равным $0,001 \text{ м/c}^2$. Возмущающее воздействие соответствовало ошибкам первичных измерений в двухкоординатной РЛС кругового обзора с периодом обзора 5 с. Вектор наблюдаемых параметров θ включал разовые оценки радиальной дальности и азимута ЛА. СКО гауссовских ошибок текущего оценивания радиальной дальности и азимута равнялись 50 м и 15'. Скорость ЛА была постоянной и равнялась 720 км/ч.

Показатели качества. В качестве показателя качества модификаций ФК было выбрано СКО суммарной ошибки измерения местоположения $\Delta_{\Sigma}(k)$, которое на каждом обзоре вычис-

лялось [3, 9]: $\Delta_{\Sigma}(k) = \sqrt{\frac{1}{N_{\text{on}} - 1} \sum_{j=1}^{N_{\text{on}}} ([x_{\text{T}j}(k) - x_{\phi j}(k)]^2 + [z_{\text{T}j}(k) - z_{\phi j}(k)]^2)}$, где N_{on} – количество прове-

денных опытов; k – номер шага наблюдения; $x_{T_j}(k)$, $z_{T_j}(k)$ – требуемые значения фазовых координат; $x_{\phi_i}(k)$, $z_{\phi_i}(k)$ – фактические (фильтрованные) значения фазовых координат.

Далее значение $\Delta_{\Sigma}(k)$ нормировалось к СКО текущих оценок. В ходе моделирования проведено 5000 опытов для каждого модельного эксперимента.

Рис. 2. Результаты моделирования

Результаты моделирования. Было проведено четыре модельных эксперимента. Модельный эксперимент 1 (рис. 2, *a*). ЛА двигался с дальности 100 км, на север от РЛС (начальные значения курса $\alpha = 0^{\circ}$ и азимута $\beta = 0^{\circ}$). Модификации ФК1, ФК2 и ФК5, как и во всех последующих модельных экспериментах, имеют наилучшие и схожие (разница не более 0,2%) показатели. Для данных условий наблюдается наименьшее влияние взаимной корреляции координат (*x*, *z*), поэтому ФК3 проигрывает лучшим результатам лишь на 1÷2%. Наихудшие показатели точности имеет ФК4 (проигрыш до 18%).

Модельный эксперимент 2 (рис. 2, δ). ЛА перемешался с дальности 100 км (α =0°, β =30°). Некоторое увеличение взаимной корреляции координат (*x*, *z*) привело к тому, что ФК3 проигрывает на 3÷5% модификациям ФК1, ФК2 и ФК5. По-прежнему худшие показатели у ФК4, для которого проигрыш составляет до 40%.

Модельный эксперимент 3 (рис. 2, в). Моделировался полет ЛА с дальности 100 км перпендикулярно линии визирования (α =120°, β =30°). Для таких условий характерно максимальное значение взаимной корреляции координат (*x*, *z*), по этой причине ФКЗ проигрывает на 8÷12% модификациям ФК1, ФК2 и ФК5, а для ФК 4 проигрыш составляет до 40%.

Модельный эксперимент 4 (рис. 2, г). ЛА перемещался с дальности 10 км (α =120°, β =30°). В качестве сопоставляемых алгоритмов рассматривались модификации ФК1 и ФК4. По причине возникновения эффекта «случайных ускорений», в ФК4 наблюдается резкое увеличение динамических ошибок и как результат возникновение срыва сопровождения, что отсутствует в случае с модификацией ФК1. Устранение эффекта возможно введением цепей коррекции (адаптации) [2–5], повышением порядка аппроксимирующего полинома регулярной части задающего воздействия [3, 4] или использованием модификации ФК5 [4, 8].

Заключение

На основании проведенного математического моделирования можно сделать следующие рекомендации по выбору модификаций ФК при решении практических задач:

 – ФК при наблюдении полярных координат и фильтрации прямоугольных координат, фильтр при наблюдении коррелированных прямоугольных координат и фильтр при фильтрации полярных координат и экстраполяции в прямоугольных координатах имеют практические одинаковые показатели в точности, но характеризуются повышенной вычислительной сложностью;

– отказ от учета взаимной корреляции прямоугольных координат нецелесообразен, так как наблюдается потеря в точности от 1% до 12%, в зависимости от условий наблюдения;

– по причине возникновения эффекта «кажущихся ускорений» нежелательно использование ФК в полярной СК при незначительной дальности до ЛА.

CHOICE EFFECT OF INPUT ACTION MODELS ON MEASURING ACCURACY FOR EXTENDED KALMAN FILTERS

P.A. KHMARSKI, A.S. SOLONAR

Abstract

Choice effect of input action models on measuring accuracy for Extended Kalman filters is considered. Recommendations about practical application of Extended Kalman filter modifications are listed.

Список литературы

1. Smith G.L., Schmidt S.F., McGee L.A. // National Aeronautics and Space Administration. 1962. P. 20-45.

2. Ширман Я.Д., Багдасарян С.Т., Горшков С.А. и др. // Радиоэлектронные системы: Основы построения и теория. Справочник. Издание 2-е переработ. и доп. /. Под ред. Ширмана Я.Д. М., 2007.

3. Кузьмин С.3 // Основы теории цифровой обработки радиолокационной информации. М., 1974.

4. *Фарина А., Студер Ф.* // Цифровая обработка радиолокационной информации. Сопровождение целей. М., 1993.

5. Blackman S. // Design and analysis of modern tracking systems. Boston, 1999.

6. Bar-Shaalom Y., Lerro D. // IEEE Trans. on Aerospace and Electronic Sys. 1993. Vol. 29. №. 3. – P. 1015–1022.

7. Бар-Шалом Я., Ли Х.Р. // Траекторная обработка. Принципы, способы и алгоритмы. М., 2011.

8. Fitzgerald R.J. // Electronic Prog. 1973. Vol. 17. №1. P. 31–38.

9. Канащенков А.И., Меркулов В.И. // Авиационные системы радиоуправления. Принципы построения систем радиоуправления. Основы синтеза и анализа. М., 2003.