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Preface 
 
The seminal Kalman filter paper, entitled A new approach to linear filtering and 

prediction problems, and published in 1960, reformulated the Wiener problem and 
proposed a new solution based on state transition, avoiding the stationary limitations of the 
Wiener filter and giving a more suitable algorithm to be implemented in computers. This 
paper concludes with a prophetic sentence: “... The Wiener problem is shown to be closely 
connected to other problems in the theory of control. Much remains to be done to exploit 
these connections.”  

The Kalman filter has been successfully employed in diverse knowledge areas over the 
last 50 years and the chapters in the book review its recent applications. We hope the 
selected works will be useful for readers, contributing to future developments and 
improvements of this filtering technique.  

The aim of this book is to provide an overview of recent developments in Kalman filter 
theory and their applications in engineering and science. The book is divided into 20 
chapters corresponding to recent advances in the filed. 

Editor 

Vedran Kordić 
Vienna University of Technology 

Austria, European Union 
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Kalman Filter Applications  
for Traffic Management 

Constantinos Antoniou1, Moshe Ben-Akiva2 and Haris N. Koutsopoulos3 
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2Massachusetts Institute of Technology, 
3Royal Institute of Technology,  

1Greece  
2U.S.A. 

3Sweden 

1. Introduction     
Traffic congestion is a major problem in urban areas that has a significant adverse economic 
impact through deterioration of mobility, safety and air quality. As a result, the importance 
of better management of the road network to efficiently utilize existing capacity is 
increasing. To that end, many urban areas build and operate modern Traffic Management 
Centers (TMCs), which perform several functions, including collection and warehousing of 
real-time traffic data, as well as utilization of this data for various dynamic traffic control 
and route guidance applications. In order to be effective, these applications —which include 
Advanced Traveler Information Systems (ATIS) and Advanced Traffic Management 
Systems (ATMS)— require traffic models that provide, in real-time, estimation and 
prediction of traffic conditions.  
The complexity of transportation systems often dictates the use of detailed simulation-based 
Dynamic Traffic Assignment (DTA) models (Ben-Akiva et al., 1991, 2002, Mahmassani, 2001) 
for this purpose. Dynamic Traffic Assignment (DTA) systems support both planning and 
real–time applications. Planning applications may include the off–line evaluation of incident 
management strategies, the evaluation of alternative traffic signal and ramp meter operation 
strategies and the generation of evacuation and rescue plans for emergencies (e.g. natural 
disasters) that could affect the traffic network. Real–time applications make use of the traffic 
prediction capabilities of DTA systems and may include on–line evaluation of guidance and 
control strategies, real–time incident management and control, support of real–time 
emergency response efforts and optimization of the operation of TMCs through the 
provision of real–time predictions.  
Real–time DTA systems typically comprise two main functions: traffic state estimation, and 
traffic prediction (Ben-Akiva et al., 2002). An overview of the state-of-the-art Dynamic 
Traffic Assignment framework is shown in Fig. 1. DTA functionality is supported by two 
main modules: a demand simulator and a supply simulator. The demand simulator fuses 
surveillance information with historical information for the estimation and prediction of the 
evolving demand patterns. This is achieved through a combination of aggregate predictive 
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models and disaggregate behavioral models (Antoniou et al., 1997). The supply simulator is 
usually based on high–level (mesoscopic or macroscopic) models that represent traffic 
dynamics using speed-density relationships, kinematic representation of traffic elements of 
queueing theory, etc. A detailed treatment of the demand-supply interactions within a state-
of-the-art DTA system can be found in Ben-Akiva et al. (2002).  
 

 
Fig. 1. Dynamic traffic assignment framework overview 

In the current DTA framework, only the OD flows are calibrated on-line: one of the key 
components of dynamic traffic assignment is the Origin-Destination (OD) estimation and 
prediction process (Ashok & Ben-Akiva, 1993, Ashok, 1996, Ashok & Ben-Akiva, 2000, 2002). 
OD estimation combines historical and real-time information to obtain dynamic demand 
matrices. However, a number of other parameters are used by models in the demand 
simulator and the supply simulator. On the supply side parameters include speed–density 
relationship parameters and output capacities of network links and intersections. On the 
demand side, additional parameters (besides the OD flows) include behavioral model 
parameters.  
In most cases, the approach to the problem of calibration of these parameters has been to 
perform off–line calibration of the simulation models using a database of historic 
information. The calibrated parameter values are then used in the on–line simulations. The 
calibrated model parameters therefore represent average conditions over the period 
represented in the data. Models that were calibrated this way may produce satisfactory 
results in off–line evaluation studies, which are concerned with the expected performance of 
various traffic management strategies.  
However, this may not be the case in real-time applications, which are concerned with the 
system performance on the given day. If the model calibrated off-line is used without 
adjustment, the system is not sensitive to the variability of the traffic conditions between days, 
which are the result of variations in the parameters of the system, such as weather and surface 
conditions. Such variations may cause traffic conditions to differ significantly from the average 
values. Thus, the predictive power of the simulation model may be significantly reduced.  
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Speed–density relationships may depend on location–specific parameters, such as type of 
facility, number of lanes, lane width, slope, surroundings, as well as exhibit temporal 
variations, i.e. they may vary by season, day of the week, or even time of day, reflecting 
different driving behaviors (e.g. experienced drivers during commute periods). Off-line 
calibration could, in principle, deal with these situations, through the generation of a 
historical database of different speed-density relationships, categorized by the conditions. 
Based on the prevailing conditions, the “appropriate" relationship could then be retrieved 
and used. However, traffic dynamics also depend on factors that cannot always be 
anticipated or observed, such as weather conditions, incidents, unscheduled maintenance 
work, traffic mix. Even when these factors can be predicted, it would be impractical to 
calibrate traffic dynamics models for each possible scenario. Minor incidents (such as a car 
slowing down in the break–down lane) that are not reported or captured otherwise in the 
system may also impact the traffic dynamics.  
The output capacity of the network links and intersections is another example. Average 
values could in general be obtained during an off-line calibration phase. However, 
capacities are affected by several phenomena (including weather and lighting conditions, 
traffic composition, etc.) and may therefore change as prevailing conditions change.  
To overcome this problem, real-time data can be used to re-calibrate and adjust the model 
parameters on-line, so that prevailing traffic conditions can be captured more accurately. 
The wealth of information included in the off-line values can be incorporated into this 
process by using them as a priori estimates.  
The remainder of this chapter is organized as follows. Section 2 presents a review of relevant 
literature, Section 3 presents a formulation of the on–line calibration problem as a state–
space model, and Section 4 presents applicable solution approaches. Section 5 presents an 
application of the methodology to a network in Southampton, U.K., and Section 6 concludes 
the chapter with a summary and directions for further research.  

2. Literature review 
The topic of on-line calibration of traffic simulation models has received only limited 
attention in the literature. This section presents a review of prior on–line calibration 
research. System–level approaches are presented first, followed by research focused on 
individual components.  

2.1 System–level approaches 
Doan et al. (1999) outline a framework for periodic adjustments to a traffic management 
simulation model in order to maintain an internal representation of the traffic network 
consistent with that of the actual network. The authors categorize the error sources as 
demand estimation, path estimation, traffic propagation, internal traffic model structure, 
and on–line data observation and propose a system of on–line and off–line adjustment 
modules. A similar approach is proposed in Peeta and Bulusu (1999), where consistency is 
sought in terms of minimizing the deviations of the predicted time–dependent path flows 
from the corresponding actual flows. He et al. (1999) develop a combined off–line and on–
line calibration process to adjust the analytical dynamic traffic model’s output to be 
consistent with real–world traffic conditions by periodically detecting inconsistencies 
between model outputs andreal–world data, and actuating the correction model to correct 
the errors.  
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2.2 Supply parameters 
van Arem and van der Vlist (1992) developed an on–line procedure for the estimation of 
current capacity at a motorway cross–section. The procedure is based on the combination of 
an on–line estimation of a “current” fundamental diagram with a maximum occupancy that 
may be achieved under free–flow conditions. The capacity is estimated by substituting the 
current maximum occupancy into the current fundamental diagram.  
Tavana and Mahmassani (2000) use transfer function methods (bivariate time series models) 
to estimate dynamic speed–density relations from typical detector data. The parameters are 
estimated using the past history of speed–density data; no predetermined parameters or 
shape for the model are assumed. The method is based on time series analysis, using density 
as a leading indicator. Hyunh et al. (2000) extend the work of Tavana and Mahmassani 
(2000) by incorporating the transfer function model into a DTA simulation–based 
framework. Furthermore, the estimation of speeds using the transfer function model is 
implemented as an adaptive process, where the model parameters are updated on–line 
based on the prevailing traffic conditions. Qin and Mahmassani (2004) evaluate the same 
model with actual sensor data from several links of the Irvine, CA, network. In this chapter, 
determination of system input and output is derived from the higher–order continuum 
model. From the numerical results, the performance and the robustness of the transfer 
function model is in general found to be superior to the static model.  
Van Lint et al. (2002) develop a state-space formulation of the travel time prediction problem 
and use it to derive a recurrent state-space neural network (SSNN) topology that captures 
the highly non-linear characteristics of the freeway travel time prediction problem. Van Lint 
et al. (2005) extend the model with preprocessing strategies based on imputation in order to 
achieve accuracy and robustness with respect to missing or corrupt data. Liu et al. (2006) 
present two distinct ways of using Extended Kalman Filters to address the problem of short-
term urban arterial travel time prediction. Van Lint (2006) proposes a delayed EKF method 
for the online incremental training of a data driven travel time prediction model (a state-
space neural network) for the prediction of travel times.  
Antoniou et al. (2005) formulate the problem of on-line calibration of the speed-density 
relationship as a flexible state-space model and present applicable solution approaches. 
Three of the solution approaches [Extended Kalman Filter (EKF), Iterated EKF, and 
Unscented Kalman Filter (UKF)] are implemented and an application of the methodology 
with freeway sensor data from two networks in Europe and the U.S. is presented. The EKF 
provides the most straightforward solution to this problem, and indeed achieves 
considerable improvements in estimation and prediction accuracy. The benefits obtained 
from the —more computationally expensive— Iterated EKF algorithm are shown. An 
innovative solution technique (the UKF) is also presented.  
Wang and Papageorgiou (2005) present a general approach to the real-time estimation of the 
complete traffic state in freeway stretches. They use a stochastic macroscopic traffic flow 
model, and formulate it as a state-space model, which they solve using an Extended Kalman 
Filter. The formulation allows dynamic tracking of time-varying model parameters by 
including them as state variables to be estimated. A random walk is used as the transition 
equations for the model parameters. A detailed case study of this methodology is presented 
in Wang et al. (2007).  
Boel and Mihaylova (2006) present a stochastic model of freeway traffic suitable for on-line 
estimation. The model is estimated using a recursive filter based on Monte Carlo techniques 
(called also particle filters). Ben Aissa et al. (2006) use sequential Monte-Carlo or particle 
filter methods for the estimation and prediction of travel time.  



Kalman Filter Applications for Traffic Management 

 

5 

2.3 Behavioral parameters 
Peeta and Yu (2006) propose a behavior–based consistency–seeking modeling approach to 
bridge the functional gaps between route choice models and dynamic traffic assignment 
models vis–a–vis predicting the time-dependent network traffic flow patterns. The approach 
consistently addresses day–to–day learning and within–day dynamics using a single hybrid 
probabilistic–possibilistic behavioral model (Peeta & Yu, 2004, 2005) through intuitive if–
then rules that are based on the findings of past studies in the literature. The approach 
avoids rigid assumptions on driver behavioral tendencies and a priori knowledge of driver 
behavior class fractions, and enables the classification of information characteristics and the 
consistent modeling of information effects. The proposed approach uses currently available 
data and achieves computational tractability by obviating a search procedure to predict the 
dynamically evolving traffic flow pattern.  

2.4 Demand parameters 
Ashok and Ben-Akiva (Ashok & Ben-Akiva, 1993, Ashok, 1996, Ashok & Ben-Akiva 2000, 
2002) formulate the real–time OD estimation and prediction problem as a state–space model 
and solve it using a Kalman Filtering algorithm. One interesting characteristic of this 
approach is the use of deviations of OD flows (instead of the OD flows themselves) as 
variables. The use of deviations incorporates the wealth of structural information about 
spatial and temporal relationships between OD flows contained in the historical estimates 
into the OD estimation framework. The real–time OD estimation and prediction framework 
has been implemented in the DynaMIT DTA system (Antoniou et al., 1997, Ben-Akiva et al., 
2002). An efficient solution algorithm for the OD estimation problem has been presented by 
Bierlaire and Crittin (2004).  
Zhou and Mahmassani (2004) develop a similar Kalman-filter based adaptive OD estimation 
and prediction procedure using a polynomial trend filter to recursively capture demand 
deviations from a priori demand estimates.  

2.5 Conclusion 
The problem of on–line calibration of DTA systems has received some attention in the 
literature. Most existing methodologies, however, impose serious constraints and make 
restrictive assumptions. In particular, the components of a DTA system are considered in a 
sequential approach and iterative/heuristic approaches are proposed to estimate the 
appropriate parameters on–line.  
Individual approaches for the on–line calibration of subsets of the parameters have also 
been developed. Such approaches update only a subset of the parameters in a DTA system. 
Therefore, all error or uncertainty is attributed to one source, which is unrealistic. Instead, 
an approach is needed that jointly estimates demand and supply parameters simultaneously 
and captures the complex demand and supply interactions (Ben-Akiva et al., 2002), thus 
ensuring consistency between the estimated parameters.  

3. State–space formulation 
A classical technique for dealing with dynamic systems is state–space modeling. In this 
section, the on–line calibration problem is formulated as a state–space model, comprising:  
• Transition equations that capture the evolution of the state vector over time, and  
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• Measurement equations that capture the mapping of the state vector on the 
measurements.  

Given that state–space models have been extensively studied and efficient algorithms have 
been developed to solve them, this formulation will lead us naturally to Section 4 where 
solution approaches are discussed.  
The first step in developing a state–space model is to define the state vector. In this context, 
the parameters and inputs that need to be calibrated define the state. Measurement and 
transition equations are developed next, followed by a reformulation of the problem in 
terms of deviations.  

3.1 State vector 
The concept of the state (or state vector) is fundamental in the description of a state–space 
model. The state vector xh is defined as the minimal set of data that is sufficient to uniquely 
describe the dynamic behavior of the system at time interval h (the assumption of a discrete, 
stochastic, dynamic system is made). The state vector includes the parameters πh that need 
to be calibrated during time interval h. The main parameters for the on–line calibration 
problem for a DTA system include:  
• OD flows,  
• Behavioral model parameters, such as route, departure and mode choice model 

parameters,  
• Speed–density relationship parameters, and  
• Segment capacities.  
It should be noted, however, that the approach is general and can easily incorporate a 
different set of parameters.  

3.2 Measurement equations 
Available information is associated with the unknown parameter values through 
measurement equations. A priori values of the model parameters provide direct 
measurements of the unknown parameters. Surveillance information, on the other hand, can 
be used to formulate indirect measurement equations, where the output of the simulator 
model S (when the unknown set of parameter values is used as input) would match the 
surveillance information.  
By definition, a direct measurement provides a preliminary estimate of a parameter. Within 
the context of on–line calibration, preliminary estimates of the parameters are provided by 
the off–line calibration. Therefore, the vector of off–line calibrated parameter values πh

α can 
be used as an a priori estimate of the true parameter vector πh. The a priori values of the 
input parameters can be expressed as a function of the “true” parameters:  

 a
hh hπ π= + ′v  (1) 

where v’h is a vector of random error terms.  
Direct measurements of some OD flows could also be available from advanced surveillance 
technologies, such as Automated Vehicle Identification (AVI) systems or probe vehicles. 
Such technologies allow the tracking of equipped vehicles as they move through the 
network, thus obtaining detailed surveillance information (based on a sample of the 
population). When the vehicles can be detected close to their origin and their destination, it 
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is possible to infer direct measurements of OD flows (Antoniou et al., 2004). Such 
information could easily be incorporated as additional direct measurements.  
Practically any type of available traffic measurements can be used as indirect measurement 
equations, linking the observed traffic measurements with their simulated counterparts 
when a particular set of parameters is used as input. In the general case, modeled trips last 
longer than one interval. Therefore, simulated trajectories of vehicles are impacted by the 
traffic conditions during previous intervals (and consequently by the model parameters 
used during these intervals). The simulated traffic measurements during time interval h can 
therefore be represented as:  

 1( ) ( )s
h h h h p hS … Sπ π π− −= , , , = ΠM  (2) 

where S is a mapping of the input parameters onto the measurements (representing the 
simulation model), p is the number of intervals required for the longest trip in the network, 
and Πh=πh, πh-1,…, πh-p is an augmented vector of parameters.  
The relationship between the observed and the simulated measurements can then be written 
as follows:  

 o s
hh h υ= + ′M M  (3) 

where υ’h=υhf+υhs+υhm  is a compound observation error comprising three error sources:  
• υhf captures structural errors (due to the inexactness of the simulation models),  
• υhs captures simulation errors (e.g. sampling and numerical errors), and  
• υhm captures measurement errors.  
As it is not possible to distinguish between these three error components, however, they will 
be treated together. Furthermore, it is assumed that υ’h is independent from the error vector 
v’h introduced in Equation 1.  

3.3 Transition equations 
Transition equations capture the evolution of the state vector over time. A typical formulation 
for the transition equation relates the state during a given interval to a series of states from 
previous intervals. A general formulation of such a transition equation would be:  

 1 1( )h h h h p hT …π π π π η+ − − ′= , , , +  (4) 

where T is a function capturing the dependence of the parameter vector πh+1 during interval 
h+1 on the values of the parameter vector during the past several intervals, p is the number 
of past parameter vectors that are considered, and η’h is a vector of random error terms.  
A common approach to the representation of transition equations is the use of 
autoregressive processes. Expressed as an autoregressive function, the transition equation 
can be written in matrix form as follows:  

 1
1

h
h

h q q h
q h p

Fπ π η+
+

= −

′′= +∑  (5) 

The three components of the state vector (OD flows, speed–density relationship parameters, 
capacities) represent distinct aspects of the transportation problem and have different 
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characteristics. Therefore, each of these may evolve over time according to a distinct 
autoregressive process. This can easily be handled by writing a separate transition equation 
like the one presented in Equation 5 for each such autoregressive process.  

3.4 The idea of deviations 
Suppose that the model parameters and inputs have been estimated from historical data for 
several previous days or months. These already estimated (demand and supply) parameters 
embody a wealth of information about the relationships that affect trip making and traffic 
dynamics, as well as their temporal and spatial evolution. It is desirable to incorporate as 
much historical information into the formulation as possible. The most straightforward way 
to achieve this is to use deviations of the model parameters from best available estimates 
instead of the actual parameters themselves as state variables. Thus, the model formulation 
would indirectly take into account all the available a priori structural information. The use 
of deviations has been proposed by Ashok and Ben-Akiva (1993) for the OD estimation and 
prediction problem.  
Using deviations also has other benefits. Traffic flow variables have skewed distributions 
(unlike the normal distribution which is symmetric). On the other hand, the corresponding 
deviations of these variables from available estimates would have symmetric distributions 
and hence are more amenable to approximation by a normal distribution. A normal 
distribution for the model variables is a useful property for the available statistical tools 
such as the Kalman Filter extensions used in this research.  
The state vector can therefore be expressed as deviations from best historical values:  
Δπh=πh-πhH. The transition equation can easily be reformulated with respect to the new state 
vector as:  

1
1 1 ( )

h
H h H

h h q q q h
q h p

Fπ π π π η+
+ +

= −

− = − + ⇒∑
 

1
1

h
h

h q q h
q h p

Fπ π η+
+

= −

Δ = ⋅Δ +∑
 

(6) 

Similarly, the direct measurement equation can be written in deviations’ form as:  
a H H
h h h h hπ π π π− = − + ⇒v  

a
h h hπ πΔ = Δ + v  

(7) 

It should be noted that πh
α and πhH capture essentially the same thing: an available estimate 

of the state vector. However, there are subtle differences and —in the interest of 
generality— a distinction is made. For example, the a priori parameters πh

α may correspond 
to the parameters obtained from the off–line calibration, while the historical parameters πhH 
may refer to the latest available estimates (e.g. values obtained from the same interval the 
previous day).  
Finally, the indirect measurement equation can be rewritten as:  

( )H H
h h h h hS π υ− = − + ⇒M M M  

( )H H
h h h h hS π π υΔ = + Δ − +M M  

(8) 
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where the historical traffic measurement vector MhH can be obtained from an evaluation of 
the historical parameters πh:  

 ( )H
h hS π=M  (9) 

3.5 The model at a glance 
The on–line calibration algorithm has been expressed in deviations’ form (where Equation 6 
is the transition equation and Equations 7 and 8 are the measurement equations). The 
complete state–space model is shown below for clarity:  
 

1
1

h
h

h q q h
q h p

Fπ π η+
+

= −

Δ = ⋅Δ +∑
 

 a
h h hπ πΔ = Δ + v  (10) 

( )H H
h h h h hS π π υΔ = + Δ − +M M  

Before moving to the presentation of applicable solution approaches (Section 4), it is useful 
to express the model in the following form:  

 1 ( )h h h+ = +x f x w  (11) 

 ( )h h h= +y h x u  (12) 

where Equation 11 is the transition equation and Equation 12 is the measurement equation.  
This form is obtained directly from Equations 10 if we denote  

h hπ= Δx  

a
h

h
h

π⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Δ
=
Δ

y
M  

1( )
h

h
h q q

q h p
F +

= −

= ∑f x x
 

( )
( )

h
h H H

h h hS
π

π π

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Δ
=

+Δ −
h x

M
 

h
h

hυ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

=
v

u
 

Furthermore, the following assumptions are made on the error vectors wh and uh:  
1. E[wh ]=0  
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2. E[wh w’m]=Qhδhm where δhm is the Kronecker delta, i.e. δhm=1 if h=m and 0 otherwise 
∀h,m, and Qh is a variance–covariance matrix.  

3. E[uh ]=0  
4. E[uh u’m]=Rhδhm where δhm is the Kronecker delta, i.e. δhm=1 if h=m and 0 otherwise ∀h,m, 

and Rh is a variance–covariance matrix.  
5. E[uh w’m]=0 ∀h,m, i.e. the errors of the transition and measurement equations are 

uncorrelated.  
These assumptions allow for the derivation of the Kalman Filter–based solution approaches. 
The assumption of no serial correlation for the transition equation can be defended because the 
unobserved factors that could be correlated over time are captured by the historical matrix παh 
(or πHh). In some situations (e.g. incidents), however, this assumption might break down. A 
violation of this assumption, however, can be easily taken care of by using a variant of the 
estimation algorithm. (An algorithm to handle correlated errors in the transition or 
measurement equations can be found, for example, in Chui and Chen, 1999). The assumption 
of no serial correlation for the measurement equation can be defended using a similar 
argument. However, this assumption might also break down if, for example, a specific 
detector consistently under–estimates or over–estimates a link volume on a particular day. 
Again, it is easy to relax this assumption and use a variant of the estimation algorithm.  

3.6 An alternative formulation 
The on-line calibration problem can be formulated as a minimization problem where the 
objective function aims to jointly minimize the following components:  
• εoh: deviation of simulated traffic conditions Msh from the respective observed 

measurements Moh, and  
• εαh: deviation of a set of parameters and inputs πh (over which the optimization is 

performed) from their a priori values παh .  
The objective function could then be expressed as:  

 1 2min[ ( ) ( )]o a
h h hN Nπ ε ε+  (13) 

where Ni(.) are appropriate functions measuring the magnitude of the errors. For example, 
Ni(.) may be the Euclidian norm.  
Substituting the expressions for the error terms from Equations 1 and 3, the objective 
function can be restated as:  

 1 2min[ ( ) ( )]o s a
h h h h hN Nπ π π− + −M M  (14) 

The above formulation can be made operational in a number of different ways, depending 
on the assumptions regarding the nature of the various error terms and the functional forms 
of Ni(.). The various formulations may lead to different solution approaches with different 
convergence and computational properties. For example, if εα and εo are assumed to be 
normally distributed the formulation reduces to the following generalized least squares 
(GLS) problem:  

1min[( ) ( )o s o s
h h h h hπ −′− − +M M W M M  

1( ) ( )]a a
h h h hπ π π π−′+ − −V  

(15) 
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where W and V are the variance–covariance matrices of the measurements and a priori 
values, respectively. The solution π*h to this optimization problem can then be obtained 
from:  

1argmin[( ) ( )o s o s
h h h h h hπ π∗ −′= − − +M M W M M  

1( ) ( )]a a
h h h hπ π π π−′+ − −V  

(16) 

In an on–line application, however, this formulation would be impractical since the problem 
needs to be solved at every time interval, with all the information on previous time intervals 
(because of the temporal correlations between the errors). Stating this problem as a state–
space model, which can then be solved efficiently using recursive methods such as Kalman 
Filtering techniques, overcomes this difficulty.  
The on–line calibration approach can also be solved using other algorithms for non–linear 
systems of equations. A particularly suitable algorithm has been recently developed (Crittin, 
2003, Crittin & Bierlaire, 2003) as a generalization of secant methods. The proposed class of 
methods calibrates a linear model based on several previous iterates. The difference with 
existing approaches is that the linear model to interpolate the function is not imposed. 
Instead, the linear model, which is as close as possible to the nonlinear function (in the least–
squares sense), is identified.  

4. Solution approaches 
The Kalman Filter is the optimal minimum mean square error (MMSE) estimator for linear 
state–space models (Kalman, 1960). However, the on–line calibration approach is non–linear 
(due to the indirect measurement equation). Since many other interesting problems are non–
linear, solutions for non–linear models have been sought, leading to the development of 
modified Kalman Filter methodologies. The most straightforward extension is the Extended 
Kalman Filter (EKF), in which optimal quantities are approximated via first order Taylor 
series expansion (linearization) of the appropriate equations (Kalman, 1960, Gelb, 1974). A 
special case of the EKF with very favorable computational properties is the Limiting 
Extended Kalman Filter (LimEKF; Limiting Kalman Filters are discussed e.g. in Chui & 
Chen, 1999). The Unscented Kalman Filter (UKF) (Julier et al., 1995; Julier & Uhlmann, 1997; 
Wan et al., 2000; Wan & van der Merwe, 2000; van der Merwe et al., 2000) is an alternative 
filter. The main difference between the EKF and UKF lies in the representation of the 
random variables for propagation through the system dynamics.  

4.1 Extended Kalman filter 
The Extended Kalman Filter employs a linearization of the non–linear relationship to 
approximate the measurement equation with a first–order Taylor expansion:  

 

1

( )

h h

h
ϑ
ϑ ∗

| −

∗

∗
=

=
x X

h xH
x

 (17) 

In words, the Extended Kalman Filter main steps are as follows. Suppose that a starting 
estimate of the state X0  is available (Equation 18), along with an estimate of the initial state 
variance–covariance matrix P0 (Equation 19). A time update phase makes a prediction of the 
state (Equation 20) and its covariance matrix (Equation 21) for the next time interval.  
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The measurement update phase incorporates the new information about the measurement 
vector Yh and uses it to correct the prediction of the state made during the time update. The 
measurement matrix Hh is obtained through an intermediate linearization step 
(Equation 22). Instrumental in this process is the Kalman gain Gh, which is computed as per 
Equation 23. The state can then be updated (corrected) using Equation 24. Similarly, the 
state covariance is updated using Equation 25.  
 
Algorithm 1. Extended Kalman Filter 
Initialization  

 0 0 0| =X X  (18) 

 0 0 0| =P P  (19) 

for h=1 to N do 
Time update  

 1 1 1 1h h h h h| − − − | −=X F X  (20) 

 1 1 1 1 1
T

h h h h h h h| − − − | − −= +P F P F Q  (21) 

Linearization  

 

1

( )

h h

h
ϑ
ϑ ∗

| −

∗

∗
=

=
x X

h xH
x

 (22) 

Measurement update  

 
1

1 1
T T

h h h h h h h h h

−⎛ ⎞
⎜ ⎟| − | −⎝ ⎠

= +G P H H P H R  (23) 

 1 1h h h h h h h h
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟| | − | −⎝ ⎠⎣ ⎦

= + −X X G Y h X  (24) 

 1 1h h h h h h h h| | − | −= −P P G H P  (25) 

end for 
 

Further information on the Extended Kalman Filter can be found in many texts, including 
for example Sorenson (1985) and Chui and Chen (1999).  
The on–line calibration approach presented in previous sections does not —in general— 
have an analytical representation. Therefore, in order to perform the linearization step 
(Equation 22) it is necessary to use numerical derivatives. Assuming the use of central 
derivatives, it is necessary to evaluate the function 2n times, where n is the dimension of the 
state vector. (If forward derivatives are used, then this number drops to n+1 evaluations.) 
Each such evaluation implies one run of the simulator. Therefore, it becomes apparent that 
this process of linearization dominates the computational complexity of the algorithm.  



Kalman Filter Applications for Traffic Management 

 

13 

4.2 Limiting extended Kalman filter 
In this section, a special case of the Extended Kalman Filter is presented that significantly 
improves the computational performance of the algorithm. As mentioned in Section 4.1, the 
most computationally intensive step in the EKF algorithm is the linearization of the 
measurement equation (Equation 22), as it requires the use of numerical derivatives. 
Another costly operation is the inversion required for the computation of the Kalman gain 
(Equation 23). In real–time applications, it may be possible to replace the Kalman Gain 
matrix Gh by a constant gain matrix considerably decreasing the computation time. The 
limiting Kalman Filter will be defined by replacing Gh with its “limit” G, called the limiting 
(or stable) Kalman gain matrix (Chui & Chen, 1999). The main steps of the Limiting 
Extended Kalman Filter (LimEKF) algorithm are presented in Algorithm 2. The differences 
from the EKF algorithm are limited to the computation of the numerical derivative (which is 
not computed on–line in the LimEKF) and the use of the limiting Kalman gain G for every 
iteration (Equations 30 and 31).  
The limiting Kalman gain matrix can be computed off–line. The simplest way would be to 
express the limiting Kalman gain matrix as the average of a number of available Kalman 
gain matrices:  

 1 mm M

M
= := ∑ G

G  (32) 

where Gm is the Kalman gain obtained from EKF during interval m and M is the total 
number of available Kalman gain matrices. Several strategies can be developed to improve 
the quality of the limiting Kalman gain. For example, the EKF could be run off–line, with 
each run producing a new Kalman gain matrix. These Kalman gain matrices could then be 
used to update the limiting Kalman gain matrix. Another strategy would be to consider only 
the last few Kalman gain matrices, i.e. use a type of moving average. Weighted averages 
(e.g. using lower weights for “older” gain matrices) can also be considered.  
 

Algorithm 2. Limiting Extended Kalman Filter 
Generation of limiting Kalman gain matrix G and H  
Initialization  

 0 0 0| =X X  (26) 

 0 0 0| =P P  (27) 

for h=1 to N do 
Time update  

 1 1 1 1h h h h h| − − − | −=X F X  (28) 

 1 1 1 1 1
T

h h h h h h h| − − − | − −= +P F P F Q  (29) 

Measurement update  

 1 1h h h h h h h
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟| | − | −⎝ ⎠⎣ ⎦

= + −X X G Y h X  (30) 



 Kalman Filter 

 

14 

 1 1h h h h h h| | − | −= −P P GHP  (31) 

end for 
 

The main component of the Kalman gain matrix is the derivative Hh of the measurement 
equation. This is directly required in Equation 31. Using the same principle as above, it is 
possible to replace the time–dependent matrix Hh with the average H of a number of 
available matrices:  

 1 mm M

M
= := ∑ H

H  (33) 

where Hm is the matrix obtained from EKF during interval m and M is the total number of 
available matrices. The resulting matrix H can be then used to update the state covariance in 
Equation 31.  

4.3 Unscented Kalman filter 
The Unscented Kalman Filter (UKF) (Julier et al., 1995; Julier and Uhlmann, 1997; Wan et al., 
2000; Wan and van der Merwe, 2000; van der Merwe et al., 2000) is an alternative filter for 
dynamic state–space models. The UKF uses a deterministic sampling approach (Unscented 
Transformation, UT) to represent a random variable using a number of deterministically 
selected sample points (often called sigma points). These points capture the mean and 
covariance of the random variable and, when propagated through the true nonlinear system, 
capture the posterior mean and covariance accurately to the second order (Taylor series 
expansion).  
The Unscented Transformation is based on the intuitive expectation that “with a fixed 
number of parameters it should be easier to approximate a Gaussian distribution than it is to 
approximate an arbitrary nonlinear function/transformation” (Julier & Uhlmann, 1996). 
Following this intuition, one would seek to find a parameterization that would capture the 
mean and covariance information while at the same time permitting the direct propagation 
of the information through an arbitrary set of nonlinear equations. This can be accomplished 
by generating a discrete distribution having the same first and second (and possibly higher) 
moments, where each point in the discrete approximation can be directly transformed. The 
mean and covariance of the transformed ensemble can then be computed as the estimate of 
the nonlinear transformation of the original distribution.  
Given an n–dimensional distribution with covariance P, it is possible to generate O(n) points 
with the same sample covariance from the columns (or rows) of the matrices n± P  (the 
positive and negative roots). This set of points has a zero mean. However, simply adding the 
mean X of the original distribution to each of the points yields a symmetric set of 2n points 
with the desired mean and covariance. Because the set is symmetric its odd central moments 
are zero, so its first three moments match the original Gaussian distribution.  
The main steps of the Unscented Transformation (UT) for calculating the statistics of a 
random variable that undergoes a nonlinear transformation (e.g. ( )f=h hy x ) are presented 
in Algorithm 3 (Julier & Uhlmann, 1997). Let the n-dimensional random variable xh with 
covariance matrix Px,h denote the state for time interval h. Since this algorithm also considers 
the covariance of the measurement vector Py,h during interval h and the covariance of the 
state and measurement vectors Pxy,h, the covariance of the state vector will be denoted  
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Px,h= Ph  in order to avoid confusion.  
To calculate the statistics of y, a matrix X is generated using 2n+1 weighted sigma points.  
κ∈R is a scaling parameter and ( ) x h i

n κ⎛ ⎞
⎜ ⎟⎜ ⎟,⎝ ⎠

+ P  is the ith row or column of the matrix square 

root of (n+κ) Px,h. A Cholesky decomposition (Golub & van Loan, 1996) can be used for this 
step. The value of the scaling parameter κ has a direct effect on the scaling of the points and 
is an input to the algorithm. The constant α determines the spread of the sigma points 
around x  and is usually set to 0.0001≤α≤1. b is used to incorporate prior knowledge of the 
distribution of X (for Gaussian distributions, b=2 is optimal). The weights are not time–
dependent and do not need to be recomputed for every time interval.  
 

Algorithm 3. Unscented Transformation 
Generation of sigma points  

 0 hX , = hx  (34)  

for i=1 to n do 

 ( )i h x h i
X n κ⎛ ⎞

⎜ ⎟⎜ ⎟, ,⎝ ⎠
= + +hx P  (35) 

end for 
for i=n+1 to 2n do 

 ( )i h x h i
X n κ⎛ ⎞

⎜ ⎟⎜ ⎟, ,⎝ ⎠
= − +hx P  (36) 

end for 
Generation of weights  

 0 ( )mW nκ κ= / +  (37) 

 2
0 ( ) (1 )cW n a bκ κ= / + + − +  (38) 

for i=1 to 2n do 

 [ ]1 2( )m c
i iW W n κ= = / +  (39) 

end for 
 

The main steps of the UKF are presented in Algorithm 4 (van der Merwe et al., 2000). The 
initialization step uses the Unscented Transformation (Algorithm 3) to generate the 2n+1 
sigma points and appropriate weights for the mean and covariance computations. A time and 
measurement update step is repeated for each run of the algorithm.  
The first step in the time update phase is the propagation of the sigma points through the 
transition equation (Equation 40). The prior estimate of the state vector is computed as a 
weighted sum of the propagated sigma points (Equation 41). A similar approach is used for 
the prior estimate of the state covariance (Equation 42). The true measurement equation is 
used to transform the sigma points into a vector of respective measurements (Equation 43). 
The measurement vector is computed as a weighted sum of the generated measurements 
(Equation 44).  
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The computation of the Kalman gain (and consequently the “correction” phase of the 
filtering) is based on the covariance of the measurement vector (Equation 45) and the 
covariance of the state and measurement vectors (Equation 46). These are computed using 
the weights (that were obtained from the Unscented Transformation during the 
initialization step) and the deviations of the sigma points from their means.  
The Kalman gain is then computed from these covariance matrices (Equation 47). 
Equation 48 introduces the measurement vector yh and uses the Kalman gain to correct the 
state estimate xh. The state covariance is updated using Equation 49.  
 
Algorithm 4. Unscented Kalman Filter 
for h=1 to N do 
Generate sigma points and weights using the Unscented Transformation (Algorithm 3)  
Time update  

 1 1( )h h hX X| − −= f  (40) 

 
2

1 1
0

n
m

h h i i h h
i

W X| − , | −
=

=∑x  (41) 

 
2

1 1 1
0

n
c

x h h i i h h h h
i

W X⎛ ⎞
⎜ ⎟, | − , | − | −⎝ ⎠

=

= − ×∑P x  (42) 

1 1

T

i h h h h hX⎛ ⎞
⎜ ⎟, | − | −⎝ ⎠
× − +x Q  

 1 1i h h i h hY X⎛ ⎞
⎜ ⎟, | − , | −⎝ ⎠

= h  (43) 

 
2

1 1
0

n
m

h h i i h h
i

W Y| − , | −
=

= ∑y  (44) 

Measurement update 

 
2

1 1
0

( )
n

c
y h i i h h h h

i
W Y, , | − | −

=

= − ×∑P y  (45)  

1 1( )T
i h h h h hY , | − | −× − +y R  

 
2

1 1
0

( )
n

c
xy h i i h h h h

i

W X, , | − | −
=

= − ×∑P x  (46) 

1 1( )T
i h h h hY , | − | −× − y  

 1
h xy h y h

−
, ,=G P P  (47) 
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 1 1h h h h h h h
⎛ ⎞
⎜ ⎟| − | −⎝ ⎠

= + −x x G y y  (48) 

 1
T

x h x h h h y h h, , | − ,= −P P G P G  (49) 

end for 

5. Application 
The objective of this application is to demonstrate the performance of the joint on–line 
estimation of demand and supply parameters for a DTA system. The situation when only 
the demand parameters are calibrated on–line is used as the base. Since this reference 
problem is the usual OD estimation problem, GLS or Kalman Filter algorithms can be 
applied. When both the demand and supply parameters are jointly updated on–line, 
however, the problem cannot be represented analytically and the algorithms presented in 
Section 4 can be used. The on–line calibration has been implemented and demonstrated as it 
applies to the DynaMIT–R DTA system. Three algorithms have been implemented (EKF, 
LimEKF and UKF) and their performance for a freeway network in Southampton, UK, is 
presented.  
DynaMIT–R is a state–of–the–art DTA system. The high–level framework of DynaMIT–R 
has been presented in Fig. 1. The key to the functionality of DynaMIT–R is its detailed 
network representation, coupled with models of traveler behavior. Through an effective 
integration of historical databases with real-time inputs, DynaMIT–R is designed to 
efficiently achieve:  
• Real time estimation of network conditions.  
• Rolling horizon predictions of network conditions in response to alternative traffic 

control measures and information dissemination strategies.  
• Generation of traffic information and route guidance to steer drivers towards optimal 

decisions.  
To sustain users’ acceptance and achieve reliable predictions and credible guidance, 
DynaMIT–R incorporates unbiasedness and consistency into its core operations. 
Unbiasedness guarantees that the information provided to travelers is based on the best 
available knowledge of current and anticipated network conditions. Consistency ensures 
that DynaMIT–R’s predictions of expected network conditions match what drivers would 
experience on the network. DynaMIT–R has the ability to trade-off level of detail (or 
resolution) and computational practicability, without compromising the integrity of its 
output. A more detailed description of DynaMIT-R can be found in Ben-Akiva et al. (2002).  
The network includes a 35km long part of freeway (M27) from Southampton, U.K. The 
network starts to the west of the city of Southampton, then goes around it, and continues 
eastbound towards Portsmouth. The network also includes seven off–ramps and eight on–
ramps. A schematic representation is shown in Fig. 2, which indicates the ten sensors, which 
provide traffic information (counts, speeds and occupancies). Traffic is loaded onto the 
network via twenty origin-destination pairs. The peak period for this direction is the 
afternoon/evening. Weekday data (speeds and densities) from the first two weeks of 
September 2001 have been used. Fig. 3 shows the speed and density distribution at a 
mainline sensor for these days.  
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 Fig. 2. Schematic of the study network 

 
Fig. 3. Speeds/densities (days with dry weather conditions) 

5.1 Methodology 
Since an off–line calibration was not available for this network, the first step in this case 
study was to perform an off–line calibration. Data from five weekdays (without adverse 
weather or incidents) during the first two weeks of September 2001 were used and a 
sequential off–line calibration approach was followed. Supply parameters were first 
calibrated. Speed–density relationship parameters were obtained by fitting speed and 
density data to the appropriate functional form. Speed–density relationship parameters 
were obtained by using non–linear regression to fit speed and density data to the speed–
density relationship used by DynaMIT–R:  

 max(0 )1 min
f

jam

K Ku u
K

αβ⎡ ⎤⎛ ⎞, −⎢ ⎥= − ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (50) 

where u denotes the speed, uf is the free flow speed, K is the density, Kmin is the minimum 
density, Kjam is the jam density and α and β are model parameters. The 45 segments of the 
network were split into three groups with homogeneous characteristics. The mainline 
segments were classified into two types, while the ramp segments were grouped together.  
Segment capacities were estimated using Highway Capacity Manual guidelines (HCM, 
2000). Capacity computations are usually based on appropriate guidelines (e.g. the Highway 
Capacity Manual, HCM, 2000, for the United States). Although the study network is in the 
United Kingdom, no equivalent national guidelines are available for the United Kingdom 
and therefore the Highway Capacity Manual guidelines were used. Analysis and 
comparison of the estimated capacities against observed counts were performed, to ensure 
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that the capacity values did not result in counterintuitive results (such as observed sensor 
counts exceeding the segment capacity).  
Then, using the calibrated parameters as inputs, time–dependent OD flows were estimated. 
A sequential OD estimation approach (Balakrishna, 2002) was applied on five weekdays. A 
static seed matrix was used to initialize the process. For the first day, the estimated OD 
flows from each interval were used as historical estimates for the next interval. The 
estimated flows for each day were then used as historical flows for the next day. An 
ordinary least squares (OLS) approach was used for the first two days. At the end of the 
second day, measurement error covariances were estimates from the residuals of the fitted 
sensor counts and OD flows from their observed or historical values. This allowed for the 
use of a generalized least squares (GLS) approach for the remaining days. Estimated OD 
flows across time intervals were used to estimate autoregressive factors for the transition 
equation. The planning version of the DynaMIT system (DynaMIT–P) was used in this 
process. The Normalized Root Mean Square error (RMSN) statistic for the fit-to-counts was 
equal to 0.1232. The total fit of the speeds, as quantified by the Normalized Root Mean 
Square error (RMSN) statistic, was equal to 0.1102. The RMSN statistic was computed using 
the following formula (Ashok & Ben-Akiva, 2000, 2002):  

2ˆ( )
N

N

N y y
RMSN

y

−
=

∑
∑

 

where N is the number of observations, y denotes an observation and ŷ  is the 
corresponding estimated (predicted) value.  
One of the main outputs of DTA systems is traffic information and guidance, usually in the 
form of travel times. Speeds are the closest surveillance measurement and there are ways to 
compute travel times from speeds. Furthermore, given a properly calibrated traffic 
estimation and prediction system it is possible to obtain (simulated) travel times directly. On 
the other hand, the most ubiquitous traffic measurement is traffic counts. Therefore, the two 
first measures of effectiveness are based on fit of estimated (predicted) speeds and counts 
with observed values, quantified using the normalized root mean square error (RMSN).  
The computational performance of the algorithms is another important consideration. In 
particular, given the on–line nature of the application, it is important to understand the 
computational complexity of each algorithm. Given a simulation–based DTA system, the 
function evaluations (required by the solution approaches) are by far the most 
computational intensive task, since each evaluation implies one run of the simulator. In the 
subsequent discussion, the number of function evaluations are used as a measure of 
effectiveness for each algorithm.  
The state vector for the on–line calibration consists of OD flows, segment capacities and 
speed–density relationship parameters. (Route choice parameters are not included due to 
the nature of the network used for the case study.) The total dimension is 80, broken down 
in:  
• 20 OD flows  
• 45 segment capacities  
• 15 speed–density relationship parameters: a speed–density relationship (and therefore 5 

parameters: free flow speed, minimum and jam density and exponents α and β) has 
been defined for each of the three segment types.  
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The duration of the estimation and prediction intervals was set to fifteen minutes. OD 
estimation requires that the count measurements are aggregated to the duration of the 
interval (i.e. fifteen minutes in this case study). To maintain consistency between the various 
algorithms, this level of aggregation has been maintained for the counts in the on–line 
calibration approach. Furthermore, minute–by–minute speed and density surveillance 
information was used.  
Therefore, the measurement vector for each fifteen–minute interval consisted of 390 
elements:  
• 15–minute count measurements: 10 count measurements in total  
• Minute–by–minute speed measurements: 150 speed measurements  
• Minute–by–minute density measurements: 150 density measurements  
• A priori state vector: 80 elements comprising 20 OD flows, 45 capacities, and 15 speed–

density relationship parameters (3 groups of 5 parameters each).  
The transition fractions that were estimated during the off–line calibration were used for the 
OD flows. The degree of the autoregressive process for the OD flows was found to be equal 
to two. For the supply parameters, a degree of one was used for the autoregressive process. 
Furthermore, variance/covariance matrices were estimated based on the output of the off–
line calibration (Ashok, 1996, Balakrishna et al., 2005).  
The period of analysis comprises six intervals of fifteen minutes (i.e. from 16:15 to 17:45). A 
warm–up period of 75 minutes (from 15:00 to 16:15) is used to ensure that the network is 
adequately loaded.  

5.2 Results 
Tables 1 and 2 summarize the obtained fit for estimated and predicted speeds and counts. 
The base row provides the performance when only demand parameters are estimated on–
line. The next three rows show the results obtained when demand and supply parameters 
are jointly estimated (each row corresponds to one of the considered algorithms). RMSN 
values are provided, as well as percent improvement over the base case; in particular, the 
results for the cases where demand and supply parameters are estimated jointly are shown 
as percent improvement over the base case (i.e. when only demand parameters are estimated 
on–line).  
 

 Estimated One-step pred. Two-step pred. Three-step pred. 
Algorithm RMSN (%) RMSN (%) RMSN (%) RMSN (%) 

Base 0.1286 --- 0.1540 --- 0.1666 --- 0.1905 --- 
EKF 0.1039 (19.2%) 0.1318 (14.4%) 0.1550 (7.0%) 0.2008 (-5.4%) 

LimEKF 0.1091 (15.1%) 0.1321 (14.2%) 0.1702 (-2.2%) 0.2036 (-6.9%) 
UKF 0.1293 (-0.6%) 0.1505 (2.3%) 0.1756 (-5.4%) 0.2221 (-16.6%) 

Table 1. Case study results (counts) 

These results indicate that the joint calibration of demand and supply parameters can 
improve the ability of the system to accurately estimate and predict the traffic conditions. 
The EKF algorithm exhibits the best performance with considerable improvements in 
estimation and prediction accuracy (except for three–step predicted counts).  
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 Estimated One-step pred. Two-step pred. Three-step pred. 
Algorithm RMSN (%) RMSN (%) RMSN (%) RMSN (%) 

Base 0.1266 --- 0.1494 --- 0.1448 --- 0.1494 --- 
EKF 0.1107 (12.6%) 0.1209 (19.1%) 0.1303 (10.0%) 0.1331 (10.9%) 

LimEKF 0.1121 (11.5%) 0.1249 (16.4%) 0.1346 (7.0%) 0.1362 (8.8%) 
UKF 0.1156 (8.7%) 0.1249 (16.4%) 0.1315 (9.2%) 0.1346 (9.9%) 

Table 2. Case study results (speeds) 

A small decrease in performance (compared to the EKF) —but still an improvement— is 
obtained when the LimEKF algorithm is used. It is interesting to note that while the LimEKF 
algorithm has order(s) of magnitude lower computational complexity (than the EKF or UKF 
algorithms), it still provides a significant improvement over the base case. Improvements of 
more than 10% are obtained in estimated and one–step predicted speeds and counts. 
Furthermore, the LimEKF algorithm provides a 7% improvement in two–step predicted 
speeds and close to a 9% improvement in three–step predicted speeds. However, there is a 
small deterioration (-2.2%) in the two–step predicted counts and almost a 7% deterioration 
in three–step predicted counts.  
The UKF algorithm seems to have the least desirable performance in this application. While 
in general this algorithm provides improvement over the base case, its two–step and three–
step predicted counts deteriorate (-5.4% and -16.6). Furthermore, (with the exception of two–
step and three–step predicted speeds) this algorithm is generally outperformed by the 
LimEKF, which has vastly better computation properties.  
One observation that is applicable to all algorithms is that the approach shows a superior 
performance in prediction of speeds over prediction of counts. The source of this 
phenomenon may be traced to the surveillance data that have been used for this case study. 
In particular, sensor counts have been aggregated in 15-minute intervals, while minute–by–
minute speeds and densities have been used (resulting in a larger number of observations 
and hence a larger "weight" on these measurements). Counts have been aggregated to 15–
minute intervals in order to be as compatible and comparable as possible with the base case 
where only OD flows are estimated on–line. For more details on the OD estimation 
procedure used in DynaMIT, cf. Antoniou et al. (1997).  
The third measure of effectiveness (besides the fit of speed and counts) is the computational 
complexity of each algorithm. As discussed above, the computational performance of the 
on–line calibration approach for a simulation–based DTA system is determined largely by 
the number of function evaluations required. The EKF and the UKF algorithms require 2n 
and 2n+1 function evaluations (and thus runs of the simulator) respectively (where n is the 
dimension of the state vector). Therefore, the two algorithms have similar computational 
requirements (converging as the dimension of the problem increases).  
The LimEKF algorithm, on the other hand, requires a single function evaluation irrespective 
of the dimension of the problem. Therefore, the computational performance of this 
algorithm is vastly superior to that of the other two algorithms (EKF and UKF). The constant 
computational requirements of the LimEKF algorithm (i.e. the fact that a single function 
evaluation is required irrespective of the application) makes it easy to obtain some further 
insight into the scalability of the approach to larger networks.  
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For example, assuming that an estimation interval of fifteen minutes is used, this approach 
can be used for any application (i.e. combination of DTA system and network) that allows 
for one function evaluation (for the on–line calibration) and another run of the simulator (for 
the prediction of the state using the on–line calibrated parameters within that time–frame). 
A related observation is that using the LimEKF and the on–line calibration approach to 
jointly estimate all inputs and model parameters is computationally equivalent to the base 
case (i.e. only using OD estimation to calibrate OD flows on–line).  
 

 
Fig. 4. Estimated capacities (EKF) 

The impact of the on–line calibration on the parameters is discussed next, using the results 
from the EKF algorithm. Fig. 4 shows the estimated capacities for all segments over time. 
The capacity in several mainline segments has been increased (from the original 2200 
vehicles per hour per lane), sometimes close to 2400 vehicles per hour per lane. A capacity of 
2400 veh/hr/lane for a motorway such as M27 is reasonable. The capacity for a few 
mainline segments, which include weaving and/or merging, is reduced to less than 1800 
vehicles per hour per lane. The location of these four segments with reduced on–line 
calibrated capacity is indicated in Fig. 5. The distribution of the other segment capacities is 
fairly uniform around the off–line calibrated mean capacity (obtained through the general 
guidelines of the HCM, which could not capture the subtle –geometrical or other– variations 
among the segments). On–line calibration, on the other hand, is able to estimate individual 
capacities for each segment, based on the traffic dynamics of these segments, thus capturing 
these variations. Ramp capacity is generally stable, with the exception of three (out of 
sixteen in total) ramp segments, in which small decreases (of less than 125 vehicles per hour 
per lane) are observed.  
 

 
Fig. 5. Mainline segments with lower capacities (due to weaving and merging) 
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Fig. 6 and 7 show the evolution of the on–line calibrated speed–density relationships over 
time for mainline segments and ramp segments respectively. Each curve in these figures 
corresponds to a time interval, for which the on–line calibration was performed. One 
general observation is that on the day, for which the on–line calibration took place, the 
observed speeds and densities were higher than those observed during the off-line 
calibration (as indicated by the off–line calibrated speed–density relationship, also shown in 
these figures). The on–line calibrated speed–density relationships have changed in a way 
that captures this behavioral shift, indicating that the on–line calibration performs as 
intended. This shift is clearer for ramp segments (Fig. 7) and the second mainline segment 
group (Fig. 6(b)), while smaller changes (still in the right direction) are obtained for the 
other group of mainline segments (Fig. 6(a)).  
 

  
(a) Group A (b) Group B 

Fig. 6. On–line calibrated speed–density relationships (Mainline segments – EKF) 

 
Fig. 7. On–line calibrated speed–density relationships (Ramp segments – EKF) 
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6. Conclusion 
An on–line calibration approach for dynamic traffic assignment systems has been 
developed. The approach is general and flexible and makes no assumptions on the type of 
the DTA system, the models or the data that it can handle. Therefore, it is applicable to a 
wide variety of tools including simulation–based and analytical, as well as microscopic and 
macroscopic models.  
The objective of the on–line calibration approach is to introduce a systematic procedure that 
will use the available data to steer the model parameters to values closer to the realized ones. 
The output of the on–line calibration is therefore a set of parameter values that —when used 
as input for traffic estimation and prediction— minimizes the discrepancy between the 
simulated (estimated and predicted) and the observed traffic conditions. The scope of the 
on–line calibration is neither to duplicate nor to substitute for the off–line calibration 
process. Instead, the two processes are complementary and synergistic in nature.  
The on–line calibration problem is formulated as a state–space model. State–space models 
have been extensively studied and efficient algorithms have been developed, such as the 
Kalman Filter for linear models. Because of the non–linear nature of the on–line calibration 
formulation, modified Kalman Filter methodologies have been presented. The most 
straightforward extension is the Extended Kalman Filter (EKF), in which optimal quantities 
are approximated via first order Taylor series expansion (linearization) of the appropriate 
equations. The Limiting EKF is a variation of the EKF that eliminates the need to perform 
the most computationally intensive steps of the algorithm on–line. The use of the Limiting 
EKF provides dramatic improvements in terms of computational performance. The 
Unscented Kalman Filter (UKF) is an alternative filter that uses a deterministic sampling 
approach. The computational complexity of the UKF is of the same order as that of the EKF.  
Empirical results suggest that joint on–line calibration of demand and supply parameters 
can improve estimation and prediction accuracy of a DTA system. While the results 
obtained from this real network application are promising, they should be validated in 
further empirical studies. In particular, the scalability of the approach to larger, more 
complex networks needs to be investigated.  
The results also suggest that —in this application— the EKF has more desirable properties 
than the UKF (which may be expected to have superior performance over the EKF), while 
the UKF seems to perform better in terms of speeds than in terms of counts. Other 
researchers have also encountered situations where the UKF does not outperform the EKF, 
e.g. LaViola, J. J., Jr. (2003) and van Rhijn et al. (2005).  
The Limiting EKF provides accuracy comparable to that of the best algorithm (EKF), while 
providing order(s) of magnitude improvement in computational performance. Furthermore, 
the LimEKF algorithm is that it requires a single function evaluation irrespective of the 
dimension of the state vector (while the computational complexity of the EKF and UKF 
algorithms increases proportionally with the state dimension). This property makes this an 
attractive algorithm for large–scale applications.  
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1. Introduction 
Originaly, a filter is a physical device for removing unwanted components of mixtures (gas, 
liquid, solid). In the area of telecommunications, signals are mixtures of different 
frequencies, and the term of filter is used to describe the attenuation of the unwanted 
frequencies. Since 1940, the concept of a filter was extended to the separation of signals from 
noise. With Kalman filter, the meaning of filter is well beyond the notion of separation. It 
also includes the solution of an inversion problem, in which one knows how to represent the 
measurable variables as functions of variables of principle interest.  
Least squares method proposed by Carl Friedrich Gauss in 1795 was the first method for 
forming an optimal estimate from noisy data, and it provides an important connection 
between the experimental and theoretical sciences.  
Before Kalman, Norbert Wiener proposed his famous filter called Wiener filter which was 
restricted only to stationary scalar signals and noises, the solution obtained by this filter is 
not recursive and needs the storing of the entire pas observed data. 
Kalman filter is a generalization of Wiener filter. The significance of this filter is in its ability 
to accommodate vector signals and noises which may be non stationary. The solution is 
recursive in that each update estimate of the state is computed from the previous estimate 
and the new input data, so, contrary to Wiener filter, only the previous estimate requires 
storage, so Kalman filter eliminate the need for storing the entire pas observed data. 
In this chapter, we present two important applications of Kalman filter. In the first one we 
show how this filter can be used as an adaptive controller system (Chafaa et al., 2006). 
Studies proposed in this part illustrate a structure for the control of a positional system 
towards a mobile target in a three dimensional space (see Fig.1). In the presence of a random 
disturbances (white noise) or when few system parameters change, the use of an adaptive 
and optimal controller turns out necessary (Mudi & Nikhil, 1999; Zdzislaw, 2005). In this 
case we are choosing to use Kalman filter as a controller. This technique is based on the 
theory of Kalman's filtering (Kalman, 1960; Eubank, 2006), it transforms Kalman's filter into 
a Kalman controller.  
In the second application we give the use of such filter in estimating the membership 
functions of fuzzy sets in order to obtain a fuzzy model (Chafaa et al., 2007). Fuzzy 
modelling is an effective tool for the approximation of nonlinear systems. Takagi-Sugeno 
(TS) model is widely used fuzzy modeling technique (Takagi & Sugeno, 1986; Angelov & 
Filev, 2004). The TS model utilizes the idea of linearization in a fuzzily defined region of the 
state space. Due to the fuzzy regions, the nonlinear system is decomposed into a multi-
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model structure consisting of linear models that are not necessarily independent (Johansen 
& Babuska, 2003). A TS fuzzy model is usually constructed in two steps: Step 1: Determine 
the membership functions of the antecedents; Step 2: Estimate the parameters of the 
consequent functions.  
One of the most techniques used to release the first step is the fuzzy clustering in the 
Cartesian product-space of the inputs and outputs (Babuska & Verbruggen, 1995; Babuska & 
Verbruggen, 1997; Bezdek & Dunn, 1975). As the consequent functions are usually chosen to 
be linear in their parameters, the second step is done by standard linear least-squares 
methods (Babuska & Verbruggen, 1997; Babuska et al., 1998). 
Many clustering algorithms can be found in the literature, they are based on the 
optimization of fuzzy C-means functional (Nascimento et al., 2003). Some of them utilize an 
Euclidian distance norm (Bezdek et al., 1987; Hathaway & Bezdek, 1991) in which the 
detected clusters have an hyperspherical shapes, i.e., clusters whose surfaces of constant 
membership are hyperspheres. Others extend the Euclidian distance norm to an adaptive 
distance norm (Bezdek & Dunn, 1975; Gustafson & Kessel, 1997; Gath & Geva, 1998) in order 
to detect clusters of different geometrical shapes in one data set. 
 

 

M 1  : m o to r  re ce iv in g   a z im u th  co n tro l a c tio n .
M 2  : m o to r  re ce iv in g  r ise  co n tro l a c tio n . 
R 1  e t  R 2  : re d u ce rs . 

M 1  

M 2  

R 1  

R 2  

M

 
Fig. 1. Positioning system  

Fuzzy clustering in the Cartesian product-space of the inputs and the outputs has been 
extensively used to obtain the antecedent membership functions (Babuska & Verbruggen, 
1997; Babuska, 1998; Sugeno & Yasukawa, 1993). Attractive features of this approach are the 
simultaneous identification of the antecedent membership functions along with the 
consequent local linear models and the implicit regularization (Johansen& Babuska, 2003). 
By clustering in the product-space, multidimensional fuzzy sets are initially obtained, which 
are either used in the model directly or after projection onto the individual antecedent 
variables (regressors). As it is generally difficult to interpret multidimensional fuzzy sets, 
projected one-dimensional fuzzy sets are usually preferred.     
Babuska and Verbruggen (Babuska & Verbruggen, 1997) proposed a fuzzy modeling 
scheme based on Gustafson-Kessel clustering algorithm (GKCA) to estimate the premise 
membership functions and on least-squares method to estimate the parameters of the 
consequence functions. Abony et al (Abonyi et al., 2002) proposed to use the Gath-Geva 
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(GG) clustering algorithm instead of GKCA method, because with GG method, the 
parameters of the univariate membership functions can directly be derived from the 
parameters of the clusters. 
In this part, a fuzzy modeling algorithm combining GKCA and Kalman filter (KF) is 
proposed (Chafaa et al., 2007). We use GKCA in order to detect clusters of different 
geometrical shapes in the data set and to obtain the point-wise membership functions of the 
premise. After that a Kalman filter is introduced to estimate the parameters of the premise 
membership functions and those of the consequence functions. In the premise part, the 
membership functions are triangular functions, then Kalman filter will estimate the 
parameters of a straight line functions by using the data corresponding to the premise 
membership functions defined point-wise, but in the consequence part, Kalman filter will be 
used as a linear regression to estimate the parameters of the TS fuzzy model using the input-
output data set. 

2. Kalman controller for target tracking system 
2.1 Target tracking system 
A target tracking system is a system for which inputs are the azimuth and rise, and outputs 
are the control actions for locating the motors. The target moves through azimuth-rise space. 
Two dc-motors adjust the platform position constantly towards the target (Chafaa et al., 
2006; Brookner, 1998). The platform can be any directional system which can turn up exactly 
towards the target; such system can be a Laser, a video camera or an antenna. We suppose 
that we have a potentiometric system which can discover the direction of the platform 
towards the target (Ogata, 1970). The Radar sends azimuth and rise coordinates to the target 
tracking system in the end of every time interval, we calculate the current error and its 
variation in the platform position. Then, a Kalman controller determines the control actions 
for dc-motors, one action for azimuth motor and the other one for rise motor. These actions 
are going to reposition the platform as shown in Fig. 2. We can control independently the 
azimuth and rise positions by applying the same algorithm twice, it facilitates us 
calculations. 
 

 
Fig. 2. Control system 
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2.2 Kalman controller 
The Kalman filter is used for estimating or predicting the next stage of a system based on a 
moving average of measurements driven by white noise, which is completely unpredictable. 
It needs a model of the relationship between inputs and outputs to provide feedback signals 
but it can follow changes in noise statistics quite well.  The Kalman filter is an optimum 
estimator that estimates the state of a linear system developing dynamically through time. 
An optimum estimator can be defined as an algorithm that processes all the available data to 
yield an estimate of the “state” of a system whilst at the same time estimating some 
predefined optimality criterion.  
In this section we will conceive another type of controllers called "Kalman Controller" or 
"Kalman Filter controller". This technique consists to achieve a one-dimensional Kalman 
Filter acting as an alternative controller, i.e., it can provides the control actions to the dc-
motor in addition to its filtering function (Kosko, 1992).   
In the discrete state space formulation, the state and measurement equations for the 
controllers are given by:  

 1k k k k

k k k

x Gx Hc w
z Cx v
+ = + +
= +

  (1) 

Our proposed control structure contains two Kalman controllers, one for azimuth (Azimuth 
controller) and another for rise (rise controller). Since the two controllers act independently, 
so we can assume them to have one-dimensional models such that : 

 1G H C= = =   (2) 

Since the state is a control action, so we can take the input kc  to be : 

 k k kc e e= +   (3) 

Let 1kx +  denotes the control action necessary at the moment k to exactly lock onto the target 
at the moment k+1. Then, the controller output at the moment k will be considered equal the 
prediction 1/ˆk k ku x +=      
Let us note that:   

 / 1

1

ˆk k k k

k k k

e x x
e e e

−

−

= −
= −

  (4) 

By substitution of 2 and 3 in 1 we obtain the new state equation: 

 1k k k k kx x e e w+ = + + +   (5) 

where kw  represents a white noise that models target acceleration or other unmodeled 
effects. The new equation of measurements is 

 / 1

/ 1

ˆ
ˆ

k k k

k k k k

k k k

z x v
x e v
x v

−

−

= +
= + +

′= +
  (6) 
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Fig. 3. Control system 

Since we assume that ke  and kv  are uncorrelated, the variance of kv′  is:   
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  (7) 

The recursive equations of Kalman Filter take the following general form:   

 

[ ]
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  (8) 

To obtain the one–dimensional Kalman controller, we substitute 2, 3, 6 and 7 in 8, and then 
we obtain it under the following form: 
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  (9) 

Figure 3 illustrates the detailed structure of Kalman controller. The simulation results of this 
controller are presented in figures 4 and 5, where we see in figure 4 that the load 
disturbance is rejected and in figure 5 the tracking is carried out. 



 Kalman Filter 

 

34 

 
Fig. 4. System response and Kalman control action to a strong load disturbance 

 
Fig. 5. System response and Kalman control action  to a step input and a strong load 
disturbance 

3. Fuzzy modeling and identification 
3.1 Takagi-Sugeno fuzzy models 
The TS fuzzy model can represent or model any unknown nonlinear system ( )y f= x , 
based on some available input-output data 1 2, ,..., T

k k k nkx x x= ⎡ ⎤⎣ ⎦x  and ky . The index k  
denotes the individual data samples and n  the number of regressors. 
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In the TS fuzzy model, the rule consequents are crisp functions of the model inputs: 

 : ( ) 1, 2,...T
i i i i iR IF is THEN y b i c= + =x A x a x  (10) 

Where x is 1n×  input variable, iy R∈   is the output variable. 1n×  vector ia  and ib R∈  
are the TS parameters. iR  denotes the ith rule and c  is the number of rules in the rule 
base. iA  is the premise multivariable membership function of the ith rule. T

i i ib= ⎡ ⎤⎣ ⎦θ a  is 
the parameter vector of the ith rule. 
The premise proposition “ ( )iisx A x ” can be expressed as a logical combination of 
propositions with univariate fuzzy sets defined for the individual components of x , 
usually in the following conjunctive form (Kukolj & Levi, 2004) : 

 1 1 1: ( ) ...... ( ) 1, 2,...T
i i n in n i i iR IF x is A x AND AND x is A x THEN y b i c= + =a x  (11) 

the degree of fulfilment of the rule is calculated as the product of the individual 
membership degrees : 

 
1

( ) ( )
ij

n

i A
j

β μ
=

=∏x x   (12) 

where ( )
ijAμ x  is the membership function of the fuzzy set ijA . 

The inference is reduced to the fuzzy-mean defuzzification formula (Takagi & Sugeno, 
1986 ; Kukolj & Levi, 2004) : 
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=
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=
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∑

x a x
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 (13) 

From (11) and (13), it is noted that TS fuzzy model approximates a nonlinear system with a 
combination of several linear systems by decomposing fuzzily the whole input space into 
several partial spaces and representing each input-output space with each linear equation. 

3.2 New fuzzy modeling algorithm 
The structure of the proposed algorithm is presented in Fig. 6. The identification algorithm 
proceeds in three steps: 

1. from the input-output sequences { } 1( , N
k k kx y

=
, partition the data into a set of local 

linear submodels by using GKCA in the product space ×X Y  
2. Obtain the membership functions for the premise variables by using cluster projections 

and Kalman filtering. 
3. Estimate the consequent parameters by Kalman filter algorithm. 
The three procedures are repeated to find the appropriate number of clusters c as shown in 
Fig. 6 in which the performance index used is the mean squared error (MSE), so when 
MSE ε≤  the loop is stopped and the optimal c is obtained. 
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Fig. 6. Structure of the proposed fuzzy modeling 
A. Fuzzy clustering 
Clustering of numerical data forms the basis of many classification and system modeling 
algorithms (Bezdek & Dunn, 1975; Babuska et al., 1998). The purpose of clustering is to distil 
natural grouping of data from a large data set, producing a concise representation of a 
system’s behavior. In particular, The GKCA has been widely studied and applied by many 
researchers (Bezdek et al., 1987; Hathaway &  Bezdek, 1991). The GKCA is an iterative 
optimization algorithm that minimizes the cost function: 

 
1 1

( ) ( )
c N

m T
ik k i i k i

i k

J μ
= =

= − −∑∑ z v M z v   (14) 

where N  is the number of data points, c  is the number of clusters, kz  is the k ’th data 
point, iv  is the i ’th cluster center, ikμ  is the degree of membership of the k ’th data in 
the i ’th cluster, iM  is the norm-inducing matrix of the i ’th cluster and m  is a weighting 
exponent which determines the fuzziness of the resulting clusters (typically 2m = ). 
In this work, the GKCA is applied in order to obtain the fuzzy partition matrix 

ik c Nμ
×

= ⎡ ⎤⎣ ⎦U , with [ ]0 1ikμ ∈  is a membership degree. 

B. Premise membership functions 
The premise membership functions can be obtained from the results of fuzzy clustering by 
projecting the fuzzy sets defined point-wise in the partition matrix onto the premise 
variables , 1jx j n≤ ≤ . The TS rules are then expressed in the conjunctive form as in (11). 
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In order to obtain membership functions for the premise fuzzy sets ,1 ,1ijA i c j n≤ ≤ ≤ ≤ , 
the multidimensional fuzzy set defined point-wise in the ith row of the partition matrix is 
projected onto the regressors xj. Note that the resulting membership functions are defined 
point-wise, for the identification data only and may be nonconvex, which is caused by the 
probabilistic constraint in most fuzzy clustering algorithms and by the noise in the data 
(Babuska et al., 1998). 
In order to obtain a prediction model or a model suitable for control purposes, the premise 
membership functions must be expressed in a form that allows computation of the 
membership degrees, also for input data not contained in the data set. To achieve this step, 
we propose to use Kalman filter to approximate the point-wise defined membership 
functions by some suitable straight line functions (triangular functions) as depicted in Fig. 7. 
The Kalman filtering process is a recursive minimum mean square estimation procedure 
(Kalman, 1960; Mohinder & Angus, 2001). Each update estimate of the parameter vector 
corresponding to a straight line equation is computed from the previous estimate and the 
new input data (here the input data are the point-wise values of the membership functions). 
In this sense we propose to use Kalman filter as a linear regression as follows : Consider 
2cn  sets, each set represent the linear part of the point-wise set of a certain premise 
membership function. The linear part is obtained by taking the α -cut of the considered 
membership function. So we obtain 2cn  parameter vectors (one for each set). In each set we 
will have jN  data (samples), where j  denotes the jth set. 
Then each set can be modeled by the following measurement equation: 

 

1, 2,..., 2

1 1,2,...,

j jj

j j

jj j

j j j
k kk

j

k k j jj

j j
kk k

y a x b v j cn

a
x v k N

b

v

= + + =

⎡ ⎤
⎡ ⎤= + =⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

= +C θ

  (15)       

where 
j

j
kC  is the observation vector at the moment jk , 

j

Tj j j
k a b⎡ ⎤= ⎣ ⎦θ  is the  

parameter vector, 
jkv  is the measurement noise, jN  is the number of data (samples) in the 

jth set and the superscript j denotes the jth straight line regression. For simplicity, we will 
denote jk  by k . From equation (15), j

kθ  will be considered as a state variable, so the state 

equation will be 

 1 1 1, 2,..., 2j j jj
k k k j cn− −= + =A wθ θ   (16) 

where jA  is an 2 2×  state transition matrix, and j
kw  is the state noise and j

kθ  is the 
value of the state variable at the moment k . 
The state noise and the measurement noise are assumed to be statistically independent 
(Haykin, 2001) and can be modeled as zero mean, white noise processes whose covariances 
are given as 
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Fig. 7. Determination of premise membership functions :  
(a) Premiss MF defined point-wise for the regressors xj, j=1,2,...n  
(b) Division of each membership function into 2 sets (2c sets are obtained for each xj and  
2cnsets are    obtained for all regressors)  
(c) Approximation of each set by a straight line function by using Kalman filter 
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By recurrence proceeding, the update state equation and the predicted measure will be 
given by the following equations: 

 / 1 1/ 1
ˆ ˆj j
k k k k− − −= Aθ θ   (18) 

 / 1
ˆˆ j j j

k k k ky −= C θ  (19) 

Now that the model representation of the parameter vectors is complete, the training of the 
parameters via Kalman filter technique is in order. The update of the parameters is 
according to the following recursion: 

 ( )/ / 1 / 1
ˆ ˆ ˆj j j j j j
k k k k k k k k ky− −= + −K Cθ θ θ   (20) 

where kK  is the computed Kalman gain. The computed Kalman gain can be viewed as an 
adaptive learning rate (Tzeng et al., 1994) ant its computation is according to the following 
steps : 

 ( ) 1
/ 1 / 1

j j jT j j jT
k k k k k k k k r

−

− −= +K P C C P C   (21) 

 / 1 1/ 1
j jj jT

k k k k− − −= +P A P A Q   (22) 

 / / 1 / 1
j j j j j

k k k k k k k k− −= −P P K C P   (23) 

where  ( )( )/ 1 / 1 / 1
ˆ ˆ Tj j j j j

k k k k k k k kE− − −
⎡ ⎤= − −⎢ ⎥⎣ ⎦

P θ θ θ θ  and ( )( )/ / /
ˆ ˆ Tj j j j j

k k k k k k k kE ⎡ ⎤= − −⎢ ⎥⎣ ⎦
P θ θ θ θ  

are the one step predicted and filter estimate error covariance matrices, respectively. 
To simplify the implementation of the Kalman filtering technique, we assume that j =A I  
where I  is a unit matrix ; Q  and r  are an assigned variances of the process noise and 
measurement noise, respectively. The initial parameters values are set to be random 
numbers. 
C. Estimating consequent parameters 
There are several methods to obtain the consequent parameters (Angelov & Filev, 2004; 
Babuska & Verbruggen, 1997; Abonyi et al., 2002). In part we propose an algorithm based 
also on KF that can compute directly the consequent parameters from the data set and the 
estimated premise membership functions. 
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Fig. 8. ECG signal 
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Fig. 9. Extraction of one period ECG signal 

From equation (13) we have 

 ( )
1

( )
c

T
i i i

i

y bϕ
=

= +∑ x a x   (24) 

where 
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( )

( )

i
i c

i
i

β
ϕ

β
=

=
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xx

x
 is the normalized activation value of the ith rule. The 

development of (24) gives 
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1

1

1 2( )[ 1] ( )[ 1] .... ( )[ 1]c

c

c

a
b

y
a
b

ϕ ϕ ϕ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎡ ⎤⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x x x x x x   (25) 

Let 1 1 ... T
c ca b a b= ⎡ ⎤⎣ ⎦Θ  the ( 1) 1c n + ×  TS parameters vector and let the extended 

vector [ 1]e =x x  with dimension 1 ( 1)n× + , also if we put 
1 2[ .... ]e e c eϕ ϕ ϕ=C x x x , then equation (25) can be rewritten as follows : 

 y = CΘ   (26) 
with C  is an 1 ( 1)n c× +  vector. 
To apply Kalman filter, we must introduce the measurement noise kv , so the measurement 
equation corresponding to (27) at the moment k  will take the following form : 

 k k k ky v= +C Θ   (27) 

then, we can consider that the state variable is kΘ , so the state equation will take the 
following expression : 

 1 1k k k− −= +A wΘ Θ   (28)   

where A  is an ( 1) ( 1)c n c n+ × +  transition matrix and kw  is a state noise. kv  and kw  
must satisfy some conditions as cited in the previous subsection. 
Now we can apply Kalman filter to estimate the TS parameter vector kΘ  as follows: 

 / 1 1/ 1
ˆ ˆ

k k k k− − −= AΘ Θ   (29) 

 / 1 1/ 1
T

k k k k− − −= +P A P A Q   (30) 

 ( ) 1
/ 1 / 1

T T
k k k k k k k k r

−

− −= +K P C C P C  (31) 

 ( )/ / 1 / 1
ˆˆ ˆ

k k k k k k k k ky− −= + −K CΘ θ Θ  (32) 

 / / 1 / 1k k k k k k k k− −= −P P K C P  (33) 

where ˆ
kΘ  is the estimated value of ˆ

kΘ  and kK  is the computed Kalman gain, / 1k k−P  and 
/k kP  are the one step predicted and filter estimate error covariance matrices, respectively. 

Also, for simplicity we will take =A I . 

3.3 Application 
In order to illustrate the effectiveness of the proposed method, we consider the problem of 
approximating the electrocardiogram (ECG) signal. The ECG is the graphical representation 
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Fig. 10. (a) Clustering result for the ECG signal 
             (b) Obtained membership function  
             (c) Performance of our model for the ECG signal. 
of the electrical activity generated by the heart. This activity shows dynamical behavior 
which is neither periodic nor deterministically chaotic.  
To avoid the confusion between the two proposed Kalman filters, we will denote KF1 the 
filter used for premise membership functions and KF2 the filter used for the consequence 
parameters.   
The considered ECG signal is taken from a publically available database of MIT (see figure 
8). Before structure identification, extraction of one period ECG is done (see figure 9). In the 
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structure identification of the proposed method, 9 clusters are detected as shown in Fig. 
10(a). By taking the projection of U  on x , taking an 0.1cutα − =  and by applying Kalman 
filter KF1, the premise membership functions are obtained (see figure 10(b)). The resulting 
model using our strategy is as follows: 

 : , 1,2,...,9i i i iR If x is A Then y a x b i= + =   (34) 

where Ai are the obtained premise membership functions, and ai, bi are the TS parameters to 
be estimated. After applying Kalman filter KF2, the TS parameters of the fuzzy model are 
obtained and presented in the antecedent membership function. The ECG signal and the 
simulated ECG signal (ECG model) are shown in Figure 10(c).  

4.  Conclusion 
Investigations presented in this chapter were divided into two parts. In the first part, Kalman 
filter was used as an alternative controller. The main idea of this technique is to transform the 
Kalman filter from a state estimator to a control action estimator. We developed a Kalman 
controller system for real-time target tracking. According to our simulation results, we can say 
that this type of controller is very robust to load and stochastic disturbances.    
In the second part, a fuzzy modelling algorithm is proposed and its validity is verified 
through computer simulations. This new algorithm has an excellent capacity to describe a 
given system. We have showed that Kalman filter can be used with fuzzy clustering to 
obtain a useful method to fuzzy modeling. The proposed algorithm is composed of three 
steps: 1) fuzzy clustering; 2) determination of premise membership functions; 3) estimation 
of the TS parameters. In the first step, the GKCA algorithm was used in order to detect 
clusters of different shapes. In the second step, a Kalman filter has been used in order to 
estimate the parameter values of the premise membership functions by considering the 
point-wise defined membership functions as a training sets. In the third step, Kalman filter 
is also used as a linear regression to efficiently choose the parameter values of the 
consequent part (TS parameters) of the fuzzy model from the input output data of the 
identified system. Consequently, the hybrid clustering and Kalman filter method can be 
efficiently constructed. The performances of the proposed modeling technique was 
demonstrated on modeling of ECG signal. 
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1. Introduction      
The Kalman filter was named after Rudolph E. Kalman published in 1960 his famous paper 
(Kalman, 1960) describing a recursive solution to the discrete-data linear filtering problem. 
There are several tutorial papers and books dealing with the subject for a great variety of 
applications in many areas from engineering to finance (Grewal & Andrews, 2001; Sorenson, 
1970; Haykin, 2001; Bar-Shalom & Li, 1993). All applications involve, in some way, 
stochastic estimation from noisy sensor measurements. This book chapter deals with 
applications of Complex Valued Extended Kalman Filters for training Recurrent Neural 
Networks particularly RTRL (Real Time Recurrent Learning) neural networks. Gradient-
based learning techniques are usually used in back-propagation and Real-Time Recurrent 
Learning algorithms for training feed forward Neural Networks and Recurrent Neural 
Network Equalizers. Known disadvantages of gradient-based methods are slow 
convergence rates and long training symbols necessary for suitable performance of 
equalizers. In order to overcome such problems Kalman filter trained neural networks has 
been considered in the literature. The applications are related to mobile channel equalizers 
using realistic channel responses based on WSSUS (Wide-Sense Stationary Uncorrelated 
Scattering) models. The chapter begins with a detailed description showing the application 
of Extended Kalman Filters to RTRL (Real Time Recurrent Learning) neural networks. The 
main equations are derived in a state space framework in connection to RTRL training. Then 
applications are envisioned for mobile channel equalizers where WSSUS models are 
adequate for handling equalization in presence of time-varying channels. This chapter 
proposes a fully recurrent neural network trained by an extended Kalman filtering 
including covariance matrices adjusted for better filter tuning in training the recurrent 
neural network equalizer. Several structures for the Extended Kalman Filter trained 
equalizer are described in detail, and simulation results are shown comparing the proposed 
equalizers with traditional equalizers and other recurrent neural networks structures. 
Conclusions are drawn in the end of the chapter and future work is also discussed. 

2. Training a complex RTRL neural network using EKF 
This chapter deals with the training of Recurrent Neural Networks that are characterized by 
one or more feedback loops. These feedback loops enable those neural networks to acquire 



 Kalman Filter 

 

46 

state representations making them appropriate devices for several applications in 
engineering such as adaptive equalization of communication channels, speech processing 
and plant control. In many real time applications fast training is required in order to make 
the application successful. This chapter extends the EKF (Extended Kalman Filter) learning 
strategy considered by Haykin (Haykin, 2001) for recurrent neural networks to the one 
using Real Time Recurrent Learning (RTRL) training algorithm for complex valued inputs 
and outputs. For instance, in the adaptive channel equalization problem for modulated 
signals, complex envelope signals are used, so a complex RTRL recurrent neural network 
could be useful in such equalization application. Rao, (Rao et. al., 2000) used EKF techniques 
for training a complex backpropagation neural network for adaptive equalization. The 
complex RTRL neural network training was also considered by Kechriotis and Manolakos 
(Kechriotis & Manolakos, 1994) and their training algorithm is also revisited in section 3 of 
this chapter with the use of a state space representation. Results indicate the feasibility of the 
proposed complex EKF trained RTRL neural network for tracking slow time varying signals 
but also shows the proposed structure does not suit scenarios where fast time varying 
signals are concerned. So, better time tracking mechanisms are needed in the proposed 
neural network structure. The authors are currently pursuing enhanced mechanisms in the 
complex RTRL neural network so to incorporate more information in the RTRL neural 
network in order improve fast time tracking. Next sections show details on how the EKF 
training is performed for a complex RTRL neural network. First the structure of a recurrent 
neural network is described then how is usually trained. 

3. Recurrent neural networks 
The structure of the neural network considered in this chapter is that of a fully connected 
recurrent network as depicted in figure 1. The usual training algorithm for that neural 
network is known as RTRL and was derived by Williams and Zipser (Williams & Zipser, 
1989). For complex valued signals the corresponding training algorithm is called Complex 
EKF-RTRL or EKF-CRTRL in this chapter. Usually CRTRL training algorithms use gradient 
techniques for updating the weights such as the training scheme proposed by and Kechriotis 
and Manolakos (Kechriotis & Manolakos, 1994). Their training algorithm can be rewritten in 
terms of a state space representation extending Haykin’s analysis (Haykin, 1999) for 
complex signals.  So, in the noise free case, the dynamic behavior of the recurrent neural 
network in figure 1 can be described by the nonlinear equations. 
 

x ( n + 1 ) = ϕC ( Wa x ( n ) + Wb u ( n ) ) = 

= ϕ ( real (Wa x ( n ) + Wb u ( n ) ) + i ϕ ( imag( Wa x ( n ) + Wb u ( n ) ) = 

 = xR ( n + 1 ) + i  xI ( n +1 ) = (1) 

 y ( n ) = C x ( n ) (2) 
 

where Wa is a q-by-q matrix, Wb is a q-by-m matrix, C is a p-by-q matrix and ϕ: ℜq → ℜq  is a 
diagonal map described by 



Complex Extended Kalman Filters for Training Recurrent Neural Network Channel Equalizers 

 

47 

x1 Ror I ϕ ( x1 Ror I ) 
x2 Ror I ϕ ( x2 Ror I ) 

: : 
: : 

ϕ:

xq R or I 

→ 

ϕ ( xq R or I) 

                                      (3) 

for some memoryless component-wise nonlinearity  ϕc: C→C. The spaces  Cm, Cq, and Cp are 
named the input space, state space, and output space, respectively. It can be said that q, that 
represents the dimensionality of the state space, is the order of the system. So the state space 
model of the neural network depicted in figure 1 is an m-input, p-output recurrent model of 
order q. Equation (1) is the process equation and equation (2) is the measurement equation. 
Moreover, Wa contains the synaptic weights of the q processing neurons that are connected 
to the feedback nodes in the input layer. Besides, Wb contains the synaptic weights of each 
one of the q neurons that are connected to the input neurons, and matrix C defines the 
combination of neurons that will characterize the output. The nonlinear function ϕc (.) 
represents the sigmoid  activation  function  of each one of the q  neurons supposed to  have 
the form 
 

 
Fig. 1. Recurrent Neural Network Structure 
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  ϕC = ϕ ( real ( x )  ) + i ϕ( (imag ( x ) ) (4) 
where 

 ϕ ( x ) = tanh ( x ) = ( 1 – e - 2 X ) / ( 1 + e - 2 X )  (5) 

It should be noted that the function ϕC defined by equation (4) is scalar and is obviously 
different from the vector function ϕC defined by equation (1). 

4. CRTRL learning representation using a state space model 
This section derives the CRTRL learning algorithm in terms of a state space model presented 
in section 3. The process equation (1) can be written in an expanded form as 

x ( n + 1 ) = [ ϕC ( w1H ξ ( n ) )  . . . ϕC ( wqH ξ ( n ) ) ]T = 

= [ ϕ ( real ( w1H ξ ( n ) ) )  . . .  ϕ ( real ( wqH ξ ( n ) ) ) ]T 

 + i [ ϕ ( imag( w1H ξ ( n ) ) )  . . .  ϕ ( imag ( wqH ξ ( n ) ) ) ]T (6) 

where it is supposed that all q neurons have the same activation function given by (4) and H 
is the Hermitian operator. The (q+m)-by-1 vector wj is defined as the synaptic weight vector 
of neuron j in the recurrent neural network, so that 

  

w a, j  
wj  =  , j = 1,2, ..., q 

 w b, j  

 (7) 

where w a , j e w b , j are the j th columns of the transposed weight matrices WaT e WbT 
respectively. The (q+m)-by-1 vector ξ(n) is defined by 

 

x ( n ) 
ξ ( n )  =

u ( n ) 
(8)

where x(n) is the q-by-1 state vector and u(n) is the m-by-1 input vector.  
Before deriving the CRTRL learning algorithm some new matrices are defined, where the 
indexes A and B indicate real or imaginary parts. 

  ∂x1A 
/∂wj 1B 

∂x1A 
/∂wj 2B . . . ∂x1A 

/∂wj q+mB 

Λj A B ( n ) = ∂xA ( n ) 
/∂wj B 

∂x2A 
/∂wj 1B 

∂x2A 
/∂wj 2B 

 
. . . 

∂x2A 
/∂wj q+mB 

  : : . : 
  : : . : 

  ∂xqA 
/∂wj 1B 

∂xqA 
/∂wj 2B 

. . . ∂xqA 
/∂wj q+mB 

(9)
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0T

UjA = ξA T (n) ← j-th row

0T

   (10) 

  

 

 

xA 

  

ξA =   
 uA  

 

(11) 

φR ( n ) = diag [ ϕ ‘( real ( w1H ξ ( n ) ) )  . . .  ϕ’ ( real ( wqH ξ ( n ) ) )  ] 

 φI ( n ) = diag[ϕ ‘( imag( w1H ξ ( n ) ) )  . . .  ϕ’ ( imag ( wqH ξ ( n ) ) ) ] (12) 
 

Updating equations for the matrices Λj A B ( n ) is needed for the CRTRL training algorithm. 
There are four such matrices and they all can be obtained using their formal definitions. For 
instance: 

  
 

 
∂xR ( n )   

Λj R R ( n ) = _______   
  
 

∂wj R 

   

(13) 

and so 
 

∂ϕ ( real (Wa x (n) + Wb u (n) ) ) 
 

∂ϕ (  sR )        ∂ϕ ( sR) ∂s R 
Λj R R ( n ) = __________________________  = _________ = ___________________ 

                      ∂wj R 

 
    ∂wj R               ∂s R ∂wj R 

(14)

 

However, 
 
                ∂ϕ (  sR )       =     diag [ ϕ ‘(  s1 R (  n ) ) . . .  ϕ’ ( real (‘(  sq R (  n ) )] = φR ( n ) 
                    ∂s R (15) 

 

and 
 

∂ϕ (  sR )       =     WaR Λj R R ( n ) - WaI Λj I R ( n ) + Uj R ( n ) 
                                 ∂wj R  (16) 

 

where 
 



 Kalman Filter 

 

50 

  
 

0T  

   
UjR = ξR T ( n ) ,  ξR T ( n ) = [ x R T       u R T ] 
  

 

(17)

So 

 Λj R R ( n ) =  φR (n)  [  WaR Λj R R ( n ) - WaI Λj I R ( n ) + Uj R ( n ) ] (18) 

The other ones can be obtained in a similar way. The four matrices can be written in a 
compact form as 

ΛjRR ΛjRI φR 0  WaR WaI  ΛjRR ΛjRI   UjR -UjI 

  (n+1) (n+1)     (n) +   
ΛjIR ΛjII  0 φI  WaI WaR ΛjIR ΛjII   UjI UjR 

(19)

The weights updating equations are obtained by minimizing  the error 

 ε ( n ) =  ½ eH(n) e (n) = ½ [e R T(n) e R (n) + e I T(n) e I (n) ] (20) 

The error gradient is defined as 
 
                                                     ∇wj ε ( n ) = ∂ε ( n )  +  i  ∂ε ( n )   
                                                                             ∂wj R           ∂wj I 

(21) 

 

where 
 

∂ ε ( n ) =     - Λj R R ( n )T CT e R (n)  - Λj I R ( n )T CT e I (n) 
                      ∂wj R (22) 

 

and 
  

∂ ε ( n ) =     - Λj R I ( n )T CT e R (n)  - Λj I I ( n )T CT e I (n) 
                      ∂wj I 

(23) 

 

The weights updating equation uses the error gradient and is written as 

 wj (n+1) =  wj (n) - η ∇wj ε ( n ) (24) 

So the weights adjusting equations can be written as 

  ΛjRR ΛjRI

Δwj(n) = =η
  

 
Δwj R(n)+iΔwjI(n) 

 
{[eRT(n)C eRT(n)C] 

ΛjIR ΛjII

 
(n)} 
 

1 
 

i 
 (25)

The above training algorithm uses gradient estimates and convergence is known to be slow 
(Haykin, 2001) This motivates the use of faster training algorithms such as the one using 
EKF techniques which can be found in (Haykin, 2001)  for real valued signals. Next section 
shows the application of EKF techniques in the CRTRL training. 
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5. EKF-CRTRL learning 
This section derives the EKF-CRTRL learning algorithm. For that, the supervised training of 
the fully recurrent neural network in figure 1 can be viewed as an optimal filtering problem, 
the solution of which, recursively utilizes information contained in the trained data in a 
manner going back to the first iteration of the learning process. This is the essence of 
Kalman filtering (Kalman, 1960). The state-space equations for the network may be modeled 
as 
 
w j (n+1) = w j (n) + ω j (n)      j=1 ,…, q ϕC ( w1 H ξ (n – 1) )

: 
ϕC ( wj H ξ (n – 1) ) + υ (n) 

x(n) = ϕ C  (Wa x (n-1) + Wb u (n -1)) + υ (n) = : 
: 

ϕC ( wq H ξ (n – 1) )

 (26) 

 

where ω j (n) is the process noise vector , υ (n) is the measurement noise vector, both 
considered to be white and zero mean having diagonal covariance matrices Q and R 
respectively and now the weight vectors wj (j= 1, q) play the role of state. It is also supposed 
that all q neurons have the same activation function given by (4).  It is important to stress 
that when applying the extended Kalman filter to a fully recurrent neural network one can 
see two different contexts where the term state is used (Haykin, 1999). First, in the evolution 
of the system through adaptive filtering which appears in the changes to the recurrent 
network’s weights by the training process. That is taken care by the vectors wj (j= 1, q). 
Second, in the operation of the recurrent network itself that can be observed by the recurrent 
nodes activities. That is taken care by the vector x(n). In order to pave the way for the 
application of Kalman filtering to the state-space model given by equations (6), it is 
necessary to linearize the second equation in (6) and rewrite it in the form 
 

  w1 

          x( n ) = [ Λ1 (n – 1)  . . . Λj (n – 1)  . . . Λq (n – 1) ]  : 
  wj 

   : 
  wq

 (27)

                         = ∑j=1q Λj (n – 1) wj + υ (n)  
 

The synaptic weights were divided in q groups for the application of the decoupled 
extended Kalman filter (DEKF) (Haykin, 1999). The framework is now set for the application 
of the Kalman filtering algorithm (Haykin, 1999) which is summarized in Table 1. Equations 
in Table 1 are extensions from real to complex values. The expression involving Λj can be 
evaluated through the definition 

 Λj (n) =  ∂x (n) / ∂wj R  - i ∂x (n) / ∂wj I (28) 

The training procedure was improved in the EKF training by the use of heuristic fine-tuning 
techniques for the Kalman filtering.  The tuning incorporated in the filter algorithm in Table 
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1 is based on the following. It is known that initial values of both the observation and the 
process noise covariance matrices affect the filter transient duration. These covariances not 
only account for actual noises and disturbances in the physical system, but also are a means 
of declaring how suitably the assumed model represents the real world system (Maybeck, 
1979). Increasing process noise covariance would indicate either stronger noises driving the 
dynamics or increased uncertainty in the adequacy of the model itself to depict the true 
dynamics accurately. In a similar way, increased observation noise would indicate the 
measurements are subjected to a stronger corruptive noise, and so should be weighted less 
by the filter. That analysis indicate that a large degree of uncertainty is expected in the initial 
phase of the Kalman filter trained neural network so that it seems reasonable to have large 
initial covariances for the process and observation noises. Therefore the authors suggest a 
heuristic mechanism, to be included in the extended Kalman filter training for the recurrent 
neural network, that keeps those covariances large in the beginning of the training and then 
decreases during filter operation. In order to achieve that behavior, a diagonal matrix is 
added both to the process and to the observation noise covariance matrices individually. 
Each diagonal  matrix is composed by an identity matrix times a complex valued parameter 
which decreases at each step exponentially. The initial value of this parameter is set by 
means of simulation trials.  Simulation results indicated the success of such heuristic 
method.   
 

Initialization: 
1. Set the synaptic weights of the recurrent network to small values 

selected from a complex uniform distribution. 
2. Set Kj(0)=(δR + i δI) I where δR e δI are small  positive constants.  
3. Set R(0) = (γR  + i γI ) I where (γR and γI are large positive constants, 

typically 102 – 103.  
Heuristic Filter Tuning: 
1. Set R(n) = R(n) + α I, where  α decreases exponentially in time. 
2. Set Q(n) = Q(n) + β I, where β decreases exponentially in time. 

Compute  for n = 1, 2,  ... 

1

1

1

( ) [ ( ) ( 1) ( ) ( )]

( ) ( ) ( ) ( )

( ) ( ) ( 1)

( 1) ( ) ( ) ( )

( 1) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ( ) ( ))

d(n) is the desired

q
H

j j j
j

H
j j j

q

j j
j

j j j

j j j j j j

RR II IR RI
j j j j j

n n K n n R n

G n K n n n

n d n C n w

w n w n G n n

K n K n G n n K n Q n

n n n i n n

α

α

−

=

=

Γ = Λ − Λ +

= Λ Γ

= − Λ −

+ = +

+ = − Λ +

Λ = Λ +Λ + Λ −Λ

∑

∑

 output at instant n 

 

 

Table 1. Recurrent Neural Network Training Via Decoupled Extended Kalman Filter DEKF 
Algorithm Complex ( Decoupled Extended Kalman Filter) 
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The authors applied the EKF-CRTL training in channel equalization problems for mobile 
and cell communications scenarios and representative papers are (Coelho & Biondi , 2006), 
(Coelho, 2002) and, (Coelho & Biondi , 2006). 

6. Results and conclusion 
Numerical results were obtained for the EKF-CRTRL neural network derived in the 
previous section using the adaptive complex channel equalization application. The objective 
of such an equalizer is to reconstruct the transmitted sequence using the noisy 
measurements of the output of the channel (Proakis, 1989). 
A WSS-US (Wide Sense Stationary-Uncorrelated Scattering) channel model was used which 
is suitable for modeling mobile channels (Hoeher, 1992). It was assumed a 3-ray multipath 
intensity profile with variances (0.5, 0.3, 0.2). The scattering function of the simulated 
channel is typically that depicted in figure 2. This function assumes that the Doppler 
spectrum has the shape of the Jakes spectrum (Jakes, 1969). The input sequence was 
considered complex, QPSK whose real and imaginary parts assumed the values +1 and – 
1.The SNR was 40 dB and the EKF-CRTRL equalizer had 15 input neurons and 1 processing 
neuron. It was used a Doppler frequency of zero. The inputs comprised the current and 
previous 14 channel noisy measurements. Figure 3 shows the square error in the output vs. 
number of iterations. 
 

 
Fig. 2. Scattering Function of the Simulated Mobile Channel 

Figure 3 shows a situation where the mobile receiving the signal is static, e.g. Doppler 
frequency zero Hz. Figure 4 shows a scenario where the mobile is moving slowly, e.g. 
Doppler frequency 10 Hz. To assess the benefits in the EKF-CRTRL training algorithm one 
can compare the square error in its output with that in the output of the CRTRL algorithm 
that uses gradient techniques as described in section 3. Figure 5 shows the square error in 
the output of the CRTRL equalizer for a 0 Hz Doppler frequency. It can be noted that 
convergence is slower than the EKF-CRTRL algorithm and that was obtained consistently 
with all simulations performed. 
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Fig. 3. Square error in the output of the EKF-CRTRL Equalizer (m=15,q=1, SNR=40 dB, 6 
symbol delay and Doppler Frequency Zero Hz) vs. number of iterations 
 

 
 

Fig. 4. Square error in the output of  the EKF-CRTRL Equalizer( m=15,q=1, SNR=40 dB, 6 
symbol delay and Doppler Frequency 10 Hz) vs. number of iterations 

The results achieved with the EKF-CRTRL equalizer were superior to those of (Kechriotis et. 
al, 1994). Their derivation of CRTRL uses gradient techniques for training the recurrent 
neural network as the revisited CRTRL algorithm described in section 3 of this chapter. 
Faster training techniques are useful particularly in mobile channel applications where the 
number of training symbols should be small, typically about 30 or 40. The EKF-CRTRL 
training algorithm led to a faster training for fully recurrent neural networks. The EKF-
CRTRL would be useful in all real time engineering applications where fast convergence is 
needed. 
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Fig. 5. Square error in the output of the CRTRL Equalizer( m=12,q=1, SNR=40 dB, 6 symbol 
delay and Doppler Frequency Zero Hz) vs. number of iterations 

 
Fig. 6. Performance of the EKF-CRTRL equalizer and the PSP-LMS equalizer for fD =0 Hz 

 
Fig. 7. Performance of the EKF-CRTRL equalizer and the PSP-LMS equalizer for fD =10 Hz 
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However, the proposed equalizer is outperformed by the class of equalizers known in the 
literature as (PSP (Per Surviving Processing) equalizers which are a great deal more 
computational complex than the proposed equalizer. Figure 6 and 7 show comparisons 
involving the recurrent neural network equalizer regarding symbol error rate performances 
where one can see the superiority of the PSP-LMS equalizer. Details of such class of 
equalizers can be found in (Galdino & Pinto, 1998) and are not included here because is 
beyond the scope of the present chapter. In order to assess the EKF-CRTRL equalizer 
performance compared with traditional equalizers figure 8 shows symbol error rates for the 
equalizer presented in this chapter and the traditional Decision feedback equalizer (Proakis, 
 

 
Fig. 8. Symbol Error Rate (SER) x SNR for fD =10 

 
Fig. 9. Performance of the Kalman filter trained equalizer with Tuning for fD = 0 
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1989). One can see the superiority of the EKF-CRTRL equalizer in the figure. Such results 
suggest for future work to include in the recurrent network a mechanism to enhance 
temporal tracking for fast time varying scenarios in high mobility speeds, typically above 50 
km/h, e.g. Doppler frequencies above 40 Hz. The authors are currently working on that. 
Finally, figure 9 show the efficiency of the heuristic tuning mechanism proposed in this 
chapter in connection with the EKF-CRTRL equalizer. One can see the superior results in 
terms of error rate for equalizers with such tuning algorithm. 
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in a Human Tracking System 
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Spain 

1. Introduction 
Robotic systems need to be context-aware in order to adapt their tasks to the different states 
of their environment. This context-awareness does not only imply the detection of the 
objects which are near the robot but it also includes the tracking of people who collaborate 
with it. Thus, human-robot interaction tasks become more natural and unobtrusive because 
robots are able to change their behaviour depending on this context information. 
In industrial environments, these context-aware systems should also guarantee the safety of 
human operators who interact with industrial robots. Therefore, a precise localization of all 
the limbs of the body of the operator has to be determined. In this chapter, the use of an 
inertial motion capture system for tracking full-body movements of the operator is 
described. It is composed of 18 IMUs (Inertial Measurement Units) attached to the body of 
the operator which determine the rotation angle of each joint. It has several advantages over 
other motion capture technologies: easy installation, self-containment, occlusions-free and 
precise rotational measurements. However, it accumulates a small error (drift) in the 
estimation of the global translation of the human operator in the environment which 
becomes considerable after several movements of the operator. Therefore, an additional 
location system based on UWB (Ultra-Wide Band) signals has been added to correct this 
drift accumulation. 
The features of both tracking systems are complementary. The inertial motion capture 
system registers accurate joint rotation angles at a high rate while the UWB location system 
estimates global translation in the environment at a low rate. The combination of these 
systems will reduce the drawbacks of each one with the advantages of the other one. On one 
hand, the global translation measurements of the UWB system will correct the accumulated 
drift of the motion capture system. On the other hand, the high rate measurements of the 
motion capture system will complete the periods of time when there are not any 
measurements from the UWB system.  
Firstly, a simple fusion algorithm of both tracking systems is presented. This first fusion 
algorithm transforms measurements from the two systems in the same coordinate system by 
recalculating the transformation matrix each time a new measurement from the UWB 
system is received. This approach relies heavily on the accuracy of the measurements from 
the UWB system because the transformation matrix recalculation assumes that the last UWB 
measurement is completely correct. Thus, errors in UWB measurements are not considered 
and only the translational errors of the motion capture system are corrected. Furthermore, 
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when there is a considerable distance between the last measurement from the motion 
capture system and the last measurement from the UWB system, significant gaps appear in 
the final trajectory returned by the fusion algorithm. Another fusion algorithm which takes 
into account UWB errors has been developed in order to overcome these drawbacks and 
obtain more continuous trajectories. This second fusion algorithm is based on a Kalman 
filter.  
This chapter is organized as follows. First of all, the two tracking systems are described in 
detail in section 2. In section 3, the fusion algorithms developed to combine the 
measurements of these systems are explained and compared with previous research. In 
section 4, several experiments are presented in order to compare the accuracy of both fusion 
algorithms. The Kalman filter algorithm is applied in a human-robot interaction task. 
Finally, the conclusions of this chapter and future research are presented in section 5. 

2. Overview of the tracking systems 
2.1 Inertial motion capture system 
A system based on inertial sensors has been selected because it has several advantages over 
other motion capture sensor technologies (Welch &  Foxlin, 2002). It is comfortable for the 
user because it does not limit his/her movements like mechanical motion capture systems. 
Its measurements are not negatively influenced by magnetic distortions like magnetic 
systems. Finally, it does not suffer from occlusion problems like optical systems.  
The inertial motion capture system used in the present research (Animazoo, 2008) is 
composed of 18 small IMUs (Inertial Measurement Units) attached to a lycra suit (Fig. 1a) 
which is worn by a human operator. Each IMU (Fig. 1b) estimates the orientation (roll, pitch 
and yaw) of the operator’s limb to which it is attached by combining the measurements 
from three miniaturized gyroscopes, three accelerometers and three magnetometers  
 

 
Fig. 1. Components of the inertial motion capture system: (a) suit, (b) IMU, (c) MPU,  
(d) wireless modem, (e) controller PC and (f) skeleton structure. 
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(Foxlin et al., 1998). All the IMUs are connected to a MPU (Main Processing Unit, Fig. 1c) 
which recovers orientation measurements and sends them wirelessly to a controller PC (Fig. 
1d and Fig. 1e). This PC calculates the global translation of the user in the environment with 
a software algorithm with determines the length of the user’s steps. Limbs’ rotations 
registered by the IMUs are applied over a 3D skeleton (Fig. 1f) which represents the basic 
structure of the human operator. 
Orientation measurements returned by these IMUs have a resolution of 0.1º and an accuracy 
of 1º in yaw and 0.25º in roll and pitch. These rotational errors are small enough for most 
industrial applications. Nevertheless, the accuracy of the global translation measurements 
estimated by the footstep extrapolation algorithm is not specified by the manufacturer. A set 
of experiments has been developed in order to quantify the translational error of the system. 
In these experiments, a person who is wearing the motion capture suit walks along a linear 
path of different lengths (200, 300 and 400cm). The error values obtained by comparing 
translation measurements from the motion capture system and actual distances of the 
experiments are shown in Table 1. These errors are very high for industrial purposes and an 
additional localization system is needed in order to correct them. The following section 
describes the UWB location system which has been used in this chapter. 
 

Distance 
(cm) 

Minimum 
error 

Maximum 
error Mean error Standard 

Deviation 

200 16.70 66.04 40.10 17.92 

300 15.33 69.54 37.92 20.97 

400 35.43 64.23 51.09 10.67 

Table 1. Global translation error statistics (in cm) in the motion capture system. 

2.2 UWB location system 
A location system based on UWB pulses has been used because it has some advantages over 
other wireless indoor location systems (Liu et al., 2007). The small temporal duration of 
UWB pulses makes them less susceptible to multipath fading and interferences than other 
radio-frequency technologies. In addition, the infrastructure that has to be installed in the 
workspace is smaller than other technologies (e.g. ultrasound) because sensors have a bigger 
operating range. 
The UWB system used in this chapter (Ubisense, 2008) consists of two kinds of hardware 
devices: sensors (Fig. 2a and Fig. 2b) and tags (Fig. 2c). Sensors are situated at fixed positions 
in the localization area. Tags are small devices, of similar size to a credit card, which are 
carried by the user. The tag sends UWB pulses to the sensors, which use a combination of 
TDOA (Time-Difference of Arrival) and AOA (Angle of Arrival) techniques to estimate the 
3D location of the user who is carrying the tag (Ubisense, 2007). 
The UWB sensors are connected to an Ethernet switch (Fig. 2d) and send the location 
information to a controller PC (Fig. 2e) which estimates the global position of the tag in the 
coordinate system of the UWB system. Slave sensors are also connected to a master sensor 
for synchronization in the TDOA algorithm. 
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Fig. 2. Components of the UWB location system: (a) master sensor, (b) slave sensors, (c) tag, 
(d) Ethernet switch and (e) controller PC. 

3. Sensor fusion algorithms 
The experiments described in Table 1 have shown that translational measurements from the 
motion capture system have high error values (larger than 60cm in many cases). The UWB 
localization system obtains more accurate position measurements with errors smaller than 
15cm. Nevertheless, the sampling rate of the UWB system (5-9Hz) is not high enough to 
track quick human movements in industrial environments. On the other hand, the inertial 
motion capture system supplies high data rates (30-120Hz). 
Since both tracking systems have complementary features, their combination will make the 
most of their advantages. UWB measurements will be used to correct the accumulated drift 
in the position estimated by the motion capture system. Position measurements from the 
motion capture system which are obtained between each pair of UWB measurements will be 
used to reduce the latency of the UWB system. Thereby, the resulting system from the 
fusion of both trackers will have a higher sampling rate and a better accuracy than each 
system separately. Rotational measurements for each joint (obtained directly from the IMUs) 
will remain unchanged because they are accurate relative rotation transformations in the 
skeleton structure of the motion capture system. 
In the following sections, two algorithms for combining the measurements of both tracking 
systems are explained in detail. The first algorithm is a simple approach where the 
measurements of both systems are transformed to the same coordinate system and each 
UWB measurement is used to correct the following motion capture measurements. The 
second algorithm is based on a Kalman filter which has been modified in order to 
incorporate the measurements of the two tracking systems. 

3.1 Transformation recalculation algorithm 
The first step to combine global position measurements of both tracking systems is to 
represent them in the same coordinate system. The frame U of the UWB system is a fixed 
coordinate system in the workspace because it is established according to the static positions 
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where the UWB sensors are installed. However, the frame I of the inertial motion capture 
system is a dynamic coordinate system because it is established in the place where the user 
is standing every time the system is initialized. The frame U of the UWB system has been 
selected as the reference coordinate system because it is able to compare the position of the 
human operator with the position of static objects (like machinery) in the environment. 
XY planes of the U and I frames are parallel to the plane of the floor in the environment. 
Therefore, between the motion capture frame and the UWB frame there is only a translation 
and a rotation about the Z axis. Equation (1) is used to transform a point p from frame I to 
frame U: 

 ( ) ( ), , ,U U I U I
I x y zp T p Trans t t t Rot z pα= ⋅ = ⋅ ⋅   (1) 

The development of equation (1) results in the following equation: 
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α α
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⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

  (2) 

The parameter α  is a known constant value which represents the angle between the Y axis 
of the frames U and I. Therefore, the only unknown of the transformation matrix UTI are the 
three coordinates of the translation vector between frame U and frame I. They can be 
calculated from equation (2) by substituting two corresponding measurements of both 
systems: 

 ( ) ( )cos sinU I I
xt x x yα α= − +  (3) 

 ( ) ( )sin cosU I I
yt y x yα α= − −   (4) 

 U I
zt z z= −  (5) 

After obtaining the transformation matrix UTI, all the translational measurements from the 
motion capture system will be transformed to the UWB frame by applying equation (1). 
However, if the transformation matrix UTI  is calculated only when the system is initialized 
(with the first two measurements), the motion capture system will accumulate translational 
errors through time. The measurements from the UWB system have to be used in order to 
correct these errors. Therefore, this transformation matrix is estimated each time a new 
UWB measurement is received ( U

uwbp ). The following measurements from the inertial motion 

capture system ( inertialp ) are transformed from the I frame ( I
inertialp ) to the U frame ( U

inertialp ) by 
applying this new transformation matrix. These transformed measurements are used as 
estimates of the global position of the operator in the environment. The transformation 
recalculation corrects the accumulated translation errors from the motion capture system 
while the high rate of its measurements is maintained. The complete fusion algorithm is 
summarized in Fig. 3. 
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Fig. 3. Diagram of the transformation recalculation fusion algorithm. 

3.2 Kalman filter algorithm 
3.2.1 Previous work on Kalman filtering sensor fusion 
Pose (position and orientation) estimation by inertial sensors is a well-studied field with 
applications in: vehicle navigation, virtual reality (VR), augmented reality (AR), robotics and 
human motion capture. Positions and orientations are calculated by integrating 
accelerations and angular rates respectively returned by accelerometers and gyroscopes. 
This dead reckoning process introduces a small error (drift) which is accumulated through 
time and becomes considerable in a few seconds. Location systems based on inertial sensors 
usually include additional sensors (e.g. GPS, ultrasound, magnetic, cameras, UWB and 
WiFi) which return absolute pose measurements in order to correct the inertial drift. In these 
hybrid location systems, Bayes filtering techniques (Fox et al., 2003) are generally used to 
estimate probabilistically the system’s pose (state) from the noisy measurements of the 
sensors (observations). Kalman filters are the most commonly used technique to implement 
Bayesian filters. Different adaptations of the Kalman filter (Simon, 2001) have been 
proposed in previous work in order to combine measurements from several sensors. The 
two adaptations more commonly used are: the complementary Kalman filter and the 
definition of several channels (measurement models) in the correction step of the filter. 
A complementary Kalman filter is an easy way to integrate several sensors measurements in 
a Kalman filter because the internal structure of the filter is not changed. Complementary 
Kalman filters estimate sensors errors instead of direct measurements. They receive as input 
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the differences between the sensors measurements. (Foxlin, 1996) develops an IMU based on 
a complementary Kalman filter for head-tracking in virtual environments. It is composed by 
three orthogonal angular rate gyroscopes, a two-axis inclinometer and a two-axis compass. 
This system estimates errors in orientation (from the inclinometer and the compass) and 
angular rate (from the gyros). The complementary Kalman filter has also been used by 
(Foxlin, 2005) in a navigation system which tracks the location of a pedestrian from two 
IMUs mounted on his/her shoes and a GPS receiver. (Roetenberg et al., 2007) presents a 
human motion capture system which uses the differences between an inertial tracking 
system and a magnetic tracker in position and orientation as the measurement updates for a 
complementary Kalman filter. 
(Caron et al., 2006) extends the definition of the Kalman filter to include measurements from 
multiple sensors (an IMU and a GPS receiver) in the correction step. This Kalman filter has 
one measurement model for each sensor type which is weighted according to fuzzy context 
variables. These fuzzy variables represent sensors data reliability and are used to reject bad 
measurements. (You &  Neumann, 2001) develops a similar solution where an extended 
Kalman filter with two independent correction channels combines position measurements 
from a camera and orientation measurements from three orthogonal rate gyroscopes. 

3.2.2 Description of the proposed algorithm 
The generic Kalman filter algorithm (Simon, 2001) has been adapted to incorporate sensor 
measurements from the two tracking systems. The state of the Kalman filter is modelled by 
two parameters at each step t: the state estimate ˆ tp  and the error covariance matrix tP . The 
state tp  is composed by the coordinates ( ), ,t t t tp x y z=  of the global position of the human 
operator in the environment. These two parameters are calculated by the Kalman filter in 
two steps: prediction and correction. The prediction step uses a state evolution model where 
the a-priori estimate of the state ˆ tp−  is obtained from the current measurement of the inertial 
motion capture system t

inertialp  plus a Gaussian noise t
inertialw : 

 ˆ t t
t inertial inertialp p w− = +  (6) 

This model is implemented in the Kalman filter prediction step using the following two 
equations: 

 ˆ t
t inertialp Ap− =   (7) 

 1
T

t tP AP A Q−
−= +  (8) 

The matrix A  represents the state transition model of (6) and thus it is a 3x3 identity matrix 
which uses the last measurement from the motion capture system as the current state estimate. 
In the correction step, measurements from the UWB system t

uwbp  are modelled from the last 
state estimate of the prediction step ˆ tp−  plus a Gaussian noise t

uwbw : 

 ˆt t
uwb t uwbp p w−= +   (9) 

This measurement model is implemented in the Kalman filter correction step using the 
following three equations: 
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 ( ) 1T T
t t tK P H HP H R

−− −= +   (10) 

 ( )ˆ ˆ ˆt
t t t uwb tp p K p Hp− −= + −   (11) 

 ( )t t tP I K H P−= −   (12) 

Position measurements from the UWB system are used as observations t
uwbp  in this step in 

order to correct the predicted position ˆ tp−  calculated from the motion capture system. The 
matrix H  represents the measurement model of (9) and it is a 3x3 identity matrix because 
UWB measurements have the same dimension as the state. 
Error covariance matrices (Q and R) of the Kalman filter are 3x3 diagonal matrices because 
error components are not correlated. The diagonal terms of both matrices represent the 
variance of error of each tracking system (motion capture and UWB, respectively) and have 
been adjusted experimentally in order to reduce the errors in the final state estimates. 
The implemented algorithm is depicted in Fig. 4. The prediction step (equations (7) and (8)) 
is executed when a measurement from the inertial motion capture system is received while 
the correction step (equations (10), (11) and (12)) is executed when UWB measurements are 
received. The main advantage of this algorithm over previous sensor fusion techniques  
 

 
Fig. 4. Diagram of the Kalman filter fusion algorithm. 
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based on Kalman filtering (see section 3.2.1) is that only one step of the algorithm 
(prediction or correction) is executed each time a measurement is obtained. Thereby, the 
execution time of the algorithm is smaller. In addition, the prediction step of the developed 
algorithm adjusts better to changes in the movements of the operator because it uses real 
position measurements from the inertial motion capture system. Previous Kalman filter 
algorithms implement theoretical kinematic models which suppose that the velocity (You &  
Neumann, 2001) or the acceleration (Caron et al., 2006; Roetenberg et al., 2007) of the 
operator can be represented as a constant value plus a Gaussian noise. 
Although this approach implies executing the correction step with a lower rate than the 
prediction step, this fact does not imply a dramatic reduction in the accuracy of the 
estimated states. The error accumulated by the motion capture system between each pair of 
UWB measurements is not significant and it is not accumulated for future motion capture 
measurements after a new UWB measurement is received. This is because the corrected state 
estimate obtained from the last UWB measurement is used to recalculate the transformation 
matrix U

IT  between the frames of both tracking systems. This new transformation matrix is 
applied to the subsequent measurements from the motion capture system and thus the error 
of the previous measurements is removed. 

4. Experimental results 
4.1 Comparison between the fusion algorithms 
Some experiments have been performed to compare the accuracy of the two fusion 
algorithms presented in the previous sections. A human operator wearing the motion 
capture suit and a UWB tag has walked along two different pre-established paths: a linear 
trajectory (3m) and a rectangular trajectory (8m). Each trajectory has been repeated fifteen 
times. These measurements are processed in two Matlab functions which implement the two 
fusion algorithms. 
In Fig. 5a, original measurements from the UWB system and the motion capture (MoCap) 
system in an experiment of the linear trajectory are represented in the same coordinate 
system. This plot shows the advantages and disadvantages of both tracking systems. On one 
hand, motion capture measurements have a higher sampling rate but they accumulate an 
error which increases through time. On the other hand, UWB measurements have a smaller 
sampling rate but do not accumulate errors through time.  
Fig. 5b and Fig. 5c depict the position estimates obtained from the fusion algorithms. The 
trajectories obtained by the Kalman filter algorithm (Fig. 5c) are more continuous than the 
trajectories from the transformation recalculation algorithm (Fig. 5b). In addition, the 
position estimates of the Kalman filter have smaller errors than those of the transformation 
recalculation algorithm (Fig. 5d).  
In Fig. 6a, Fig. 6b and Fig. 6c, an experiment of the rectangular trajectory is represented and 
similar results are obtained. The estimates obtained from the Kalman filter are more precise 
than those from the transformation recalculation algorithm (Fig. 6d). The higher accuracy of 
the Kalman filter estimates is due to the fact that this algorithm takes into account the errors 
of both tracking systems while the transformation recalculation algorithm only corrects the 
errors of the motion capture system. The transformation recalculation algorithm uses the 
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UWB measurements as correct positions in order to calculate the transformation matrix and 
thus correct the motion capture errors. However, the errors of the UWB system are not 
corrected and cause discontinuities in the trajectories (Fig. 5b and Fig. 6b). In conclusion, the 
Kalman filter fusion algorithm obtains more accurate position estimates and continuous 
trajectories and it will be used to implement human-robot interaction tasks where the 
human operator has to be localized precisely. 
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Fig. 5. Linear trajectory experiments: (a) original position measurements from both tracking 
systems in experiment no. 14; (b) position measurements obtained from the transformation 
recalculation algorithm in experiment no. 14; (c) position estimates obtained from the 
prediction and correction steps of the Kalman filter algorithm in experiment no. 14; (d) mean 
error and standard deviation of the position estimates from the two fusion algorithms in the 
15 linear path experiments. 
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Fig. 6. Rectangular trajectory experiments: (a) original position measurements from both 
tracking systems in experiment no. 3; (b) position measurements obtained from the 
transformation recalculation algorithm in experiment no. 3; (c) position estimates obtained 
from the prediction and correction steps of the Kalman filter algorithm in experiment no. 3; 
(d) mean error and standard deviation of the position estimates from the two fusion 
algorithms in the 15 rectangular path experiments. 

4.2 Application in a human-robot interaction task 
The global position measurements obtained from the Kalman filter fusion algorithm and the 
joint rotations registered by the motion capture system are applied to the skeleton model of 
the human operator in order to perform human-robot interaction tasks. In Fig. 7, a 
collaboration task between a robotic manipulator (Mitsubishi PA-10) and a human operator 
is shown. The main frames of the task are depicted with the corresponding models of the 
human operator and the robot. In this task, the robotic manipulator has to remove two 
connectors from a metallic structure in order to leave them in a storage box. However, the 
collaboration of a human operator is needed because the unscrewing of the connectors is a 
difficult action to be performed by one robot. 
Firstly, the operator unscrews the first connector (Fig. 7a and Fig. 7b). When the operator 
has finished the unscrewing process, the robotic manipulator begins to move towards the 
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structure by using a time-independent visual sevoing technique (Garcia et al., 2007) in order 
to grab the unscrewed connector (Fig. 7c). The end of the unscrewing process is determined 
by the tracking of the human operator. In particular, the robot does not begin its task until 
the distance between the end-effector of the robot and the operator is greater than a safety 
threshold (1m). While the robot is removing the first connector from the structure, the 
human operator unscrews the other connector (Fig. 7d). When the human operator has 
finished unscrewing the second connector, he leaves the robotic workspace (Fig. 7e). Finally, 
the manipulator places the first connector inside the storage box (Fig. 7f). The removing of 
the second connector has not been depicted in Fig.7 for the sake of clarity but it is very 
similar to the processing of the first connector. 
 

   

   
              (a)                                    (b)                                           (c) 

   

   
                  (d)                                       (e)                                             (f) 

Fig. 7. Sequence of 6 frames of a human-robot interaction task. The skeleton of the human 
obtained from the tracking systems by using the presented Kalman filter algorithm and the 
model of the robot are depicted below each frame. 

5. Conclusions 
In this chapter, two different algorithms have been developed to combine position 
measurements from two human tracking systems: an inertial motion capture system and a 
UWB location system. The first algorithm recalculates the transformation matrix between 
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the coordinate systems of both trackers each time a UWB measurement is received. The 
error accumulated by the inertial motion capture system is therefore removed because the 
following measurements are transformed to the UWB frame with this new transformation 
matrix. However, this approach considers the UWB measurements as completely correct 
data and ignores their errors. The errors of the UWB system are not corrected and they are 
transferred to the measurements obtained from the fusion algorithm.  
The second fusion algorithm is based on a Kalman filter and solves the drawbacks of the 
first algorithm. The Kalman filter algorithm models the errors of both tracking systems and 
takes them into account to estimate the position of the human operator. Several experiments 
have been developed to verify that this algorithm based on a Kalman filter obtains more 
accurate position estimates and more continuous trajectories than the first algorithm. In this 
algorithm, the prediction step of the Kalman filter is executed when measurements from the 
inertial motion capture system are received and the correction step is only executed when 
measurements from the UWB system are obtained. Thereby, this Kalman filter algorithm 
has a better computational cost than previous Kalman filter fusion algorithms which 
complete both steps of the filter (prediction and correction) each time a new measurement is 
received. 
Finally, the position estimates obtained from the Kalman filter algorithm and the rotations 
from the motion capture system have been applied to a human skeleton model in order to 
develop a real collaborative task between a human operator and a robotic manipulator. In 
this task, the real-time tracking of the human operator does not only guarantee the safety of 
the operator but also determines the behaviour of the robot. Thus, the robot does not start its 
trajectory until the human has finished the previous task and is at a safety distance from the 
robot. 
In future work, the movements of the skeleton should be interpreted in order to understand 
behaviours of the human operator and thus develop more complex collaboration tasks 
between robots and humans. 
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1. Introduction 
State estimation algorithm deals with recovering some desired state variables of a dynamic 
system from available noisy measurements, and estimation of the state variables is one of 
the fundamental and significant problems in control and signal processing areas, and many 
significant progresses have been made in this area. In 1940s, Wiener, the founder of the 
modern statistical estimation theory, established the Wiener filtering theory which solves 
the minimum variance estimation problem for stationary stochastic processes. It was not 
until late 1950s and early 1960s that Kalman filtering theory, a novel recursive filtering 
algorithm, was developed by Kalman and Bucy which did not require the stationarity 
assumption (Kalman, 1960; Kalman & Bucy, 1961). Since Kalman filter theory is only 
applicable for linear systems and almost all practical dynamic systems are nonlinear, Bucy 
and some other researchers were engaged in extending Kalman filtering theory to nonlinear 
systems in the following 10 years (Bucy & Senne, 1971). The most celebrated and widely 
used nonlinear filtering algorithm is the extended Kalman filter (EKF), which is essentially a 
suboptimal nonlinear filter. The key idea of the EKF is using the linearized dynamic model 
to calculate the covariance and gain matrices of the filter. The Kalman filter (KF) and the 
EKF are all widely used in many engineering areas, such as aerospace, chemical and 
mechanical engineering.  
However, it is well known that both the KF and EKF are not robust against modelling 
uncertainties and disturbances. This has motivated many studies on extending the Kalman 
filtering theory to its robust version, which may yield a suboptimal state estimator with 
respect to the nominal system model, but will guarantee an upper bound to the estimation 
error variance in spite of large disturbances and modelling uncertainties. In recent years, 
several results have been made on the design of such robust state estimators. Based on the 
fuzzy dynamic programming technique, a bounding estimator (Jian, 1975) for uncertain 
nonlinear systems was developed, which gave an upper bound to the error for any allowed 
system parameter variation. Petersen & McFarlane (1991, 1994) converted a robust Kalman 
filter design problem to a H∞ controller design problem of a certain linear continuous time-
invariant system based on the concept of quadratic stability of linear continuous time-
invariant systems. Xie & Soh (1994) converted the existence of robust Kalman filters to the 
existence of two differential Riccati equations, and then established a design approach of 
robust estimators for linear continuous time systems with uncertainties in the state and the 
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output matrices. Yang & Wang (2001) presented a robust Kalman filter design approach for 
uncertain linear continuous time-invariant systems with norm-bounded uncertainties not 
only in the state and the output matrices bus also in the estimator’s gain matrix, and this 
design approach were given in terms of solutions to algebraic Riccati equations. The 
continuous-time case was fully discussed in Shaked & de Souza (1995) where both the finite 
and infinite-horizon filtering problems were addressed, and necessary and sufficient 
conditions for the existence of robust Kalman filters with an optimized upper bound of the 
error variance were established.  
In most engineering applications, both the KF and the EKF are implemented as program 
codes in computers. Therefore, the design of robust estimators for uncertain discrete-time 
systems is more important. Recently, there have been some promising results in the design 
of discrete-time robust Kalman filters. Xie, Petersen and Shaked extended their results on 
the design of continuous-time Kaman filters to that of discrete-time Kalman filters (Xie et al., 
1994; Petersen & McFarlane, 1996; Theodor & Shaked, 1996). Fu, de Souza and Luo (2000) 
presented a design approach for finite-horizon robust Kalman filters, and the scalar 
parameters of the robust Kalman filter can be obtained by solving a semidefinite program. 
Shaked, Xie and Soh (2001) established a new robust Kalman filter design approach through 
which all the parameters of the designed robust Kalman filter are given by solving a 
semidefinite program subjected to a set of linear matrix inequalities (LMIs). Zhu, Soh and 
Xie (2002) gave necessary and sufficient conditions to the design properties of the robust 
Kalman filters over finite and infinite horizon in terms of a pair of parameterized difference 
Riccati equation. Garcia, Tabouriech and Peres (2003) showed that if the original systems 
satisfied some particular structural conditions, such as minimum-phase, and if the 
uncertainty had a specific structure, then the formula of the robust Kalman filter only 
involved the original system matrices. The discrete-time systems discussed in the 
aforementioned papers are all linear discrete-time systems with uncertainty only in the state 
and the output matrices. Very recently, results on some new types of linear uncertain 
discrete-time systems have also been given. Yang, Wang and Hung (2002) presented a 
design approach of a robust Kalman filter for linear discrete time-varying systems with 
multiplicative noises. Since the covariance matrices of the noises cannot be known precisely, 
Dong and You (2006) derived a finite-horizon robust Kalman filter for linear time-varying 
systems with norm-bounded uncertainties in the state matrix, the output matrix and the 
covariance matrices of noises. Based on the techniques presented in Zhu, Soh and Xie (2002), 
Lu, Xie and et al. (2007) gave a robust Kalman filter design approach for the linear discrete-
time systems with measurement delay and norm-bounded uncertainty in the state matrix. 
Hounkpevi and Yaz (2007) proposed a robust Kalman filter for linear discrete-time systems 
with sensor failures and norm-bounded uncertainty in the state matrix. Though there have 
been many types of promising robust Kalman filters, new engineering demand can 
stimulate the birth of novel robust Kalman filters. 
From the viewpoint of the robust state estimator design based on the dynamical model for a 
nuclear reactor, there is not only uncertainty in the state and the output matrices but also 
nonlinear perturbation and uncertainty in the input and the direct output matrices. The 
robust Kalman filters presented in the aforementioned papers cannot deal with this case. In 
this chapter, a finite-horizon robust Kalman filter for discrete-time systems with nonlinear 
perturbation and norm-bounded uncertainties in the state, the output, the input and the 
direct output matrices is presented.  Moreover, the robust Kalman filter is applied to solve 
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the state-estimation problem of a low temperature pressurized water reactor (LTPWR), and 
a numerical experiment with a contrast to the EKF is done. Simulation results show that the 
state estimation performance provided by the robust Kalman filter is higher than that 
provided by the EKF. 
This chapter is organized as follows: In Section 2, the model of the discrete-time system with 
nonlinear perturbation and norm bounded uncertainties in all the system matrices is 
presented, and the corresponding robust Kalman filtering problem is formulated. This 
problem is solved, for the finite-horizon case, in Section 3. In Section 4, the dynamic model 
of the aforementioned LTPWR is introduced, and then numerical simulation results are 
given to demonstrate the feasibility of applying the new robust Kalman filter to the state 
estimation for the LTPWR and the high performance of this estimator. 

2. Problem formulation 
Consider the following class of uncertain discrete time-varying systems defined on k = 0, 1, 
…, N: 

 
( ) ( ) ( )

( ) ( )
+ = + Δ + + Δ +

= + Δ + + Δ
1k k k k k k k k k

k k k k k k k

x A A x B B w f x
y C C x D D v

  (1) 

where ∈\n
kx  is the state vector, ∈\p

ky  is the system output, ∈\m
kw  is the process noise, 

∈\q
kv  is the measurement noise, kA , kB , kC  and kD are given real time-varying matrices 

with proper dimensions, the matrices Δ kA , Δ kB , Δ kC  and Δ kD correspond to the 
uncertainties in the matrices kA , kB , kC  and kD respectively, and ( )k kf x  denotes the 
nonlinear perturbation.  
Before formulating the robust Kalman filter design problem, we firstly make the following 
three assumptions to system (1). 
Assumption 1 Suppose the uncertainty matrices Δ kA , Δ kB , Δ kC  and Δ kD satisfying the 
following condition 

 
Δ Δ ⎡ ⎤⎡ ⎤

= ⎡ ⎤⎢ ⎥⎢ ⎥ ⎣ ⎦Δ Δ⎣ ⎦ ⎣ ⎦

1,
1, 2 ,

2 ,

kk k
k k k

kk k

HA B
F E E

HC D
  (2) 

where ×∈\1,
n r

kH , ×∈\2 ,
p r

kH , ×∈\1,
s n

kE  and ×∈\2 ,
s m

kE are given matrices, and ×∈\r s
kF  

denotes the norm-bounded time-varying uncertainty satisfying 

 ≤T
k kF F I . (3) 

Assumption 2 Suppose the nonlinear perturbation ( )k kf x  satisfying 

 ( ) =kf O O .  (4) 

Therefore, from equation (4), the stochastic vector ( )k kf x  can be expressed as  

 ( ) ( )=k k k k kf x P x x . (5) 

Moreover, we suppose that the stochastic matrix ( )k kP x  satisfies 
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 ( )− ≤ ≤k kP P x P ,  (6) 

where the matrix P is a given positive definite symmetric matrix. 
Assumption 3 Suppose the process noise kw , the measurement noise kv and the initial state 
vector 0x have the following statistical  properties: 

 
δ

δ

⎧ ⎧ ⎫⎡ ⎤ ⎡ ⎤
⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥=⎨ ⎬⎪ ⎢ ⎥ ⎢ ⎥

⎪ ⎪⎪ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭⎪
⎨ ⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎪⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ =⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭⎩

0 0

T

0 0 0

E ,

.

k

k

k j k kj

k j k kjE

w O
v O
x x

w w W O O
v v O V O
x x O O X

  (7) 

where { }iE  stands for the mathematical expectation operator, kW , kV  and 0X  represents 
the covariance matrices of the process noise, the measurement noise and the initial state 
vector respectively, δ kj is the Kronecker function which is equal to unity for k=j and zero for 
the other case. 
Moreover, let the state estimator of system (1) take the form 

 ( )+ = + −1 o oˆ ˆ ˆk k k k k k kx A x K y C x  (8) 

where ∈\ˆ n
kx is the state estimation with =0x̂ O , okA and okK are respectively the state and 

the gain matrix. In the following part, we shall design a finite-horizon Kalman filter for 
structure (8), such that for all allowed nonlinear perturbation and model uncertainty, there 
exists a sequence of symmetric positive-definite matrices kΣ  satisfying  

 ( )( )⎡ ⎤− − ≤⎣ ⎦
Tˆ ˆE k k k k kx x x x Σ .  (9) 

Since 

 ( ) ( ) ( )⎡ ⎤− − ≤⎣ ⎦
Tˆ ˆE trk k k k kx x x x Σ , (10) 

the robust Kalman filter design problem to be solved in the next section is  

 

( )=
o o

o o ,
      , arg min tr

s.t. (1), (2), (5), (6), (7), (8) and (9)
k k

k k kA K
A K Σ

. (11) 

3. Robust Kalman filter design 
In this section the robust Kalman filter for the uncertain system (1) is presented. Firstly, the 
state space model of the augmented system consisting of system (1) and estimator (8) will be 
established.  
Define the state vector for the augmented system as 
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TT Tˆk k k⎡ ⎤= ⎣ ⎦x x x�  

then the state-space model of the augmented system can be represented as 

 ( ) ( ) ( )+ = + + + + �� � � � � � �� � � �1 1, 1, 2 , 2 ,k k k k k k k k k k k k kx A H F E x B H F E w f x  (12) 

where ⎡ ⎤
= ⎢ ⎥−⎣ ⎦

�
o o o

k
k

k k k k k

A O
A

K C A K C
, ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

�
o

k
k

k k

B O
B

O K D
, 

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

� 1,
1,

o 2 ,

k
k

k k

H
H

K H
, = ⎡ ⎤⎣ ⎦
�

1, 1,k kE E O , 

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

� 1,
2 ,

o 2 ,

k
k

k k

H O
H

O K H
, ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

� k
k

k

F O
F

O F
, ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

� k
k

k

w
w

v
, ( ) ( )⎡ ⎤

= ⎢ ⎥
⎣ ⎦

� � k k
k k

f x
f x

O
.  

Let the covariance matrix of the augmented system (12) to be ⎡ ⎤= ⎣ ⎦
� � � TEk k kΣ x x , then we can 

derive that  

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

+ = + + + + + +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�� � � � � � � � � � � � � � � �

� � � �� � � � � �� � � � � �

T T

1 1, 1, 1, 1, 2 , 2 , 2 , 2 ,

TT T T
1, 1, 1, 1,E E E

k k k k k k k k k k k k k k k k k k k

k k k k k k k k k k k k k k k k k k

Σ A H F E Σ A H F E B H F E W B H F E

A H F E x f x f x x A H F E f x f x (13) 

where 
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

� k
k

k

W O
W

O V
. 

From Assumption 2,  

 

( ) ( ) ( ) ( )
( ) ( )
( ) ( )

+ = + + + + + +

+ + + +

= + + + + +

�� � � � � � � � � � � � � � � �

� � � �� � � � � � � � � � � � �

� �� � � � � � � � �

T T

1 1, 1, 1, 1, 2 , 2 , 2 , 2 ,

TT T T T
1, 1, 1, 1,

T

1, 1, 1, 1,

k k k k k k k k k k k k k k k k k k k

k k k k k k k k k k k k k k k

k k k k k k k k k k k

Σ A H F E Σ A H F E B H F E W B H F E

A H F E Σ G P PG Σ A H F E PG Σ G P

A H F E PG Σ A H F E PG

( ) ( )+ +�� � � � � � � � T

2, 2 , 2 , 2 , ,k k k k k k k k kB H F E W B H F E  (14) 

where  
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

� P O
P

O O
, 

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

� k
k

G O
G

O O
, 

and the matrix kG satisfies ≤T
k kG G I . Moreover, if we define  

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

� 1,
1,

o 2 ,

k
k

k k

H P
H

K H O
, 

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

� k
k

k

F O
F

O G
, 
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 and  
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

� 1,
1,

k
k

E O
E

I O
, 

then +
�

1kΣ can be rewritten as 

 ( ) ( ) ( ) ( )+ = + + + + +
� � � � � � �� � � � � � � � � � � �T T

1 1, 1, 1, 1, 2 , 2 , 2 , 2 ,k k k k k k k k k k k k k k k k k k kΣ A H F E Σ A H F E B H F E W B H F E  (15) 

 

For the convenience of the following discussion, we now recall some useful lemmas. 
Lemma 1 (Xie & de Souza, 1993) For given matrices A , H , E  and F with compatible 
dimensions such that ≤TF F I , let X be a symmetric positive-definite matrix and α > 0 be 
an arbitrary positive constant such that α − − >1 TI EXE O , then the following matrix 
inequality holds: 

( ) ( ) ( ) 1T T T 1 T T 1 Tα α
−− −+ + ≤ + − +A HFE X A HFE AXA AXE I EXE EXA HH . 

 

Lemma 2 (Theodor & Shaked, 1996) Let ( ) × ×⋅ →\ \: n n n n
kf , k = 0, 1, …, N, be a sequence of 

matrix functions so that 

( ) ( )= ∀ = >T T, 0k kf A f A A A  

and  

( ) ( )≥ ∀ = > =T T,k kf B f A B B A A  

and let ( ) × ×⋅ →\ \: n n n n
kg , k = 0, 1, …, N, be a sequence of matrix functions so that  

( ) ( ) ( )= ≥ ∀ = >T T, 0.k k kg A g A f A A A  

Then, the solutions { } = "0,1, ,k k NA and { } = "0,1, ,k k NB  to the difference equations 

( ) ( )+ += = = >1 1 0 0, , 0k k k k k kA f A B g B A B  

satisfy ≤k kA B for k = 0, 1, …, N. 
Lemma 3 (Matrix Inversion Lemma) (Anderson & Moore, 1979) For given matrices A , B , 
C  and D with compatible dimensions where ×∈\n nA and ×∈\m mC are all nonsingular 
submatrices, then  

( ) ( )−− − − − − −± = ±∓
11 1 1 1 1 1A BCD A A B C DA B DA . 

Lemma 4 (Matrix Inversion Lemma for Matrices in Block Form) (Chui & Chen, 1999) Let  

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

11 12

21 22

A A
A

A A
 

where ×∈\11
n nA and ×∈\22

m mA are all nonsingular submatrices, such that −− 1
11 12 22 21A A A A  

and −− 1
22 21 11 12A A A A are also nonsingular. Then A  is a nonsingular with 
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( ) ( )
( ) ( )

( ) ( )
( )

1 11 1 1 1 1 1
11 11 12 22 21 11 12 21 11 11 12 22 21 11 121

1 11 1 1
22 21 11 12 21 11 22 21 11 12

1 11 1 1
11 12 22 21 11 12 22 21 12 22

11 1 1
22 21 11 12 22 21 22 22

− −− − − − − −
−

− −− − −

− −− − −

−− − − −

⎡ ⎤+ − − −
⎢ ⎥=
⎢ ⎥− − −⎣ ⎦

− − −
=

− − +

A A A A A A A A A A A A A A A
A

A A A A A A A A A A

A A A A A A A A A A

A A A A A A A A ( ) 11 1 1
21 11 12 22 21 12 22

.−− −

⎡ ⎤
⎢ ⎥
⎢ ⎥−⎣ ⎦A A A A A A A

 

Lemma 5 (Schur Complement) (Boyd, Ghaoui & et al., 1994) For a given symmetric matrix  

11 12
T
12 22

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

S S
S

S S
, 

where ( ) ( )n m n m+ × +∈S \ , 11
n n×∈S \  and 22

m m×∈S \ , the following statements are equivalent: 
i. <S O  

ii. 11
T 1

22 12 11 12
−

<⎧⎪
⎨

− <⎪⎩

S O
S S S S O

 

iii. 22
1 T

11 12 22 12
−

<⎧⎪
⎨

− <⎪⎩

S O
S S S S O

 

Based on the state-space model of the augmented system, Lemma 1 and Lemma 2, we can 
get the following Theorem 1. 
Theorem 1 If there exist a symmetric positive-definite matrix sequence kΣ , and two positive 
scalar sequences αk  and βk such that 

 α− − >
� ��1 T

1, 1,k k k kI E Σ E O , (16) 

 β − − >�� �1 T
2 , 2 ,k k k kI E W E O , (17) 

 
( )
( )
α α β

β

−− − −
+

−−

= + − + + +

+ −

� � � � � �� � � � � �

� � � �� � � � � � � �

1T T 1 T T 1 T 1 T
1 1, 1, 1, 1, 1, 1, 2 , 2 ,

1T T 1 T T
2, 2 , 2 , 2 , ,

k k k k k k k k k k k k k k k k k k k k

k k k k k k k k k k k

Σ A Σ A A Σ E I E Σ E E Σ A H H H H

B W B B WE I E W E E WB
 (18) 

and  

 ⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
� 0

0 0

X O
Σ Σ

O O
, (19) 

then  

 ≤ =� ", 0,1, ,k k k NΣ Σ , (20) 

where � kΣ  satisfies equation (15).  
Proof: If matrix inequalities (16) and (17) hold, then from Lemma 1 

( ) ( ) ( )

( )

11
1 1 1 1 1 1 1 1 1

11 1 1
2 2 2 2 1 1 2 2

α

β α β

−−
+

−− − −

⎡ ⎤≤ + + − + +⎢ ⎥⎣ ⎦
⎡ ⎤+ − + +⎢ ⎥⎣ ⎦

� � � � � � � � � �� � � � � � �

� � �� � � �� � � � � � �

TT T
, , , , , , , ,

T T T T T
, , , , , , , ,

k k k k k k k k k k k k k k k k k k

k k k k k k k k k k k k k k k k k

Σ A H F E Σ Σ E I E Σ E E Σ A H F E

B W W E I E W E E W B H H H H . 
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Moreover, from the initial condition (19) and Lemma 2, ≤ =� ", 0,1, ,k k k NΣ Σ , where 
= ", 0,1, , ,k k NΣ satisfies equation (18). Thus the theorem has been proved.                        □ 

Suppose 

[ ] [ ]= − − = "T , 0,1, , .k k k NΣ I I Σ I I  

It is clear that the matrix sequence ( )= "0,1, ,k k NΣ satisfies matrix inequalities (9) and (10). 

In the following, we shall show how to determine the parameters okA , okK , αk  and βk  in 

order to minimize ( )tr kΣ . The following Theorem 2 solves the problem of how to select the 

state matrix okA  and the gain matrix okK  of the robust Kalman filter taking the form (8) 

when the positive scalar sequences αk  and βk  are given. 

Theorem 2 For given positive scalar sequences αk  and βk  which satisfy inequalities (16) 
and (17) respectively, if  

 ( ) ( ) 11
1 1 1 1α

−−= + − −T T
o o , , , ,k k k k k k k k k k k kA A A K C Σ E I E Σ E E  (21) 

and  

 ( ) ( ) 11 1 1
1 2 2 2

T T T T T
o , , , ,k k k k k k k k k k k k k k k k kα α β

−− − −⎡ ⎤= + + + +⎣ ⎦K A S C H H C S C D T D H H , (22) 

then  

 1 2

2 2
0 1

⎡ ⎤
= =⎢ ⎥
⎣ ⎦

", ,

, ,
, , , ,n n

n
n n

n N
Σ Σ

Σ
Σ Σ

 (23) 

and ( )tr kΣ is minimal, where  

1 1= ⎡ ⎤⎣ ⎦, ,k kH H P , 

2 2= ⎡ ⎤⎣ ⎦, ,k kH H O , 

1
1

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

,
,

k
k

E
E

I
, 

( ) 11
1 1 1 1α

−−= + −T T
, , , ,k k k k k k k k k kS Σ Σ E I E Σ E E Σ , 

and 

( ) 1T 1 T
2, 2 , 2 , 2 ,k k k k k k k k k kβ

−−= + −T V V E I E V E E V . 
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Moreover, the covariance matrices of the state and the estimation error can be represented 
respectively as 

 

( ) 1T T 1 T T 1 T
1, 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

T 1 T
1, 1, ,

k k k k k k k k k k k k k k k k k

k k k k k k

α α

β

−− −
+

−

= + − + +

+

Σ A Σ A A Σ E I E Σ E E Σ A H H

B U B H H  (24) 

and  

 

( )( ) ( )1 TT T 1 T T T 1 T
1 1, 2 , 1, 2 ,

1 T T 1 T
1, 1, 1, 1, ,

k k k k k k k k k k k k k k k k k k k k

k k k k k k k k k

α α

α β

−− −
+

− −

= − + + + +

+ + +

Σ A Σ A A Σ C H H C Σ C R A Σ C H H

H H B U B H H

� � � �� � �

 (25) 

where  

( ) 1T 1 T
1 2, 2 , 2 , 2 ,k k k k k k k k k kβ

−−
+ = + −U W W E I E W E E W , 

1,k
k

k

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

E
C

C
�

, 

2 ,
2 ,

k
k

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

O
H

H
�

, 

and  

( )
1

T 1 1 T
2 , 2 ,

k
k

k k k k k k k

α

α β

−

− −

⎡ ⎤−
= ⎢ ⎥

+ +⎢ ⎥⎣ ⎦

I O
R

O D T D H H
�

. 

Proof: In the following, the theorem will be proved based on the mathematical induction. 
From equation (19), it is clear that equation (23) holds when 0n = . Suppose (23) holds when 
n k= . In the following, we shall prove that equation (23) also holds when 1n k= + . From 
equation (18),  

1, 1 12 , 1
T1
12 , 1 2 , 1

k k
k

k k

+ +
+

+ +

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Σ Σ
Σ

Σ Σ
, 

where 1, 1k+Σ  satisfies equation (24),  

 

( )

( ) ( )

1T 1 T T T
12, 1 1, 1, 1, 1, 1, 1, 1, 1, o

1 TT 1 T 1 T T
1, 1, 1, 1, 1, 1, 2 , o o 1, 2 , o

k k k k k k k k k k k k k

k k k k k k k k k k k k k k k k

α

α α

−−
+

−− −

⎡ ⎤= + − +⎢ ⎥⎣ ⎦
⎡ ⎤+ − − +⎢ ⎥⎣ ⎦

Σ A Σ Σ E I E Σ E E Σ C K

A I Σ E I E Σ E E Σ A K C H H K ,  (26) 

and  

 

( )
( ) ( ) ( )

T T T 1 1 T T T T
2, 1 o 2, o o o o 2, 2 , o o o

1 TT 1 T
o 2 , o 1, 1, 1, 1, 1, o 2 , o .

k k k k k k k k k k k k k k k k k k k k

k k k k k k k k k k k k k k k k

α β

α

− −
+

−−

= + + + + +

+ − +

Σ A Σ A K C Σ C K K H H K K D T D K

A Σ K C Σ E I E Σ E E A Σ K C Σ   (27) 
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Then, from equations (26) and (27), we can derive that 

 

[ ] [ ]

( )
( )

( )

1
T

1

1T 1 T T 1 T 1 T
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From Lemma 3, we can obtain that okA satisfies equation (21). Furthermore, from Lemma 3 

and 
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, we can see that okK satisfies equation (22). 

Substitute equations (21) and (22) to the expression of 12 , 1k+Σ and 2, 1k+Σ , i.e. (26) and (27),  
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Thus 12 , 1k+ =Σ 2 , 1k+Σ , and equation (23) holds when 1n k= + .  
In the following, we shall derive the iterative expression for the covariance matrix of the 
state estimation error. Based on Lemma 4 and equations (24) and (30), we can derive that  

 

( ) ( )
( )

( )

1T T 1 T T T 1 1 T
1 1, 2 , 2 , 2 ,

TT 1 T T 1 T 1 T
1, 2 , 1, 1, 1, 1,

T T T 1 T
1, 1, 2 ,

11 T
1, 1, 1,

k k k k k k k k k k k k k k k k k k k k

k k k k k k k k k k k k k k k

k k k k k k k k k k k k

k k k k

α α β

α α β

α

α

−− − −
+

− − −

−

−−

⎡ ⎤= − + + + + ⋅⎣ ⎦

+ + + +

⎡ ⎤= − + ⋅⎣ ⎦

− −

Σ A S A A S C H H C S C D T D H H

A S C H H B U B H H H H

A Σ A A Σ E A Σ C H H

I E Σ E I ( ){
( ) }

( ) ( )

( )

1T T T 1 1 T
1, 2, 2 ,

1T 1 T
1, 1, 1, 1,

11 T T T T 1 1 T
1, 1, 1, 1, 2 , 2 ,

11T 1 T T
1, 1, 1, 1, 1,

k k k k k k k k k k k k k

k k k k k k k

k k k k k k k k k k k k k k k k k

k k k k k k k k k k

α β

α

α α β

α

−− −

−−

−− − −

−−−

⎡ ⎡ ⎤+ + + + ⋅⎣ ⎦⎢
⎢
⎢ −
⎢
⎢ ⎡− + + + +⎢ ⎣

⎤− ⎥⎦⎣

E Σ C C S C D T D H H

C Σ E I E Σ E

I E Σ E E Σ C C S C D T D H H

C Σ E I E Σ E E Σ C

( ) ( )
( )

( ) ( )

11T T 1 1 T T 1 T T
2, 2, 1, 1, 1, 1, 1,

1T 1 T
1, 1, 1, 1,

11T T 1 1 T T 1 T T
2, 2 , 1, 1, 1, 1, 1,

k k k k k k k k k k k k k k k k k k k k

k k k k k k k

k k k k k k k k k k k k k k k k k k k k

α β α

α

α β α

−−− − −

−−

−−− − −

⎢
⎢
⎢

⎤⎡ ⎤+ + + + − ⋅⎢ ⎥⎣ ⎦

−

⎡ ⎤+ + + + −⎢ ⎥⎣ ⎦ ⎦

C S C D T D H H C Σ E I E Σ E E Σ C

C Σ E I E Σ E

C S C D T D H H C Σ E I E Σ E E Σ C

( )

TT T 1 T T 1 T 1 T
1, 1, 2 , 1, 1, 1, 1,

1 T T
1, 1, 1, 1, 1,

T TT T T 1 T
1, 1, 2 , T

1, 1 1 T
2, 2 ,

+k k k k k k k k k k k k k k k k k k

k k k k k k k

k k k k k kk k k k k k k k k k k k
k k k

k k k k

α α β

α

α

α β

− − −

−

−

− −

⎥
⎥
⎥ ⋅
⎥
⎥
⎥

⎡ ⎤+ + +⎣ ⎦

− +

⎛ ⎞⎡ ⎤ + += − +⎣ ⎦ ⎜
⎜ +⎝

A Σ E A Σ C H H B U B H H H H

I E Σ E E Σ C

C Σ C D T DA Σ A A Σ E A Σ C H H
C Σ E

H H

( )( ) ( )

1

TT T 1 T T 1 T 1 T
1, 1, 2 , 1, 1, 1, 1,

1 TT T 1 T T T 1 T
1, 2, 1, 2 ,

1 T T 1 T
1, 1, 1, 1,

+k k k k k k k k k k k k k k k k k k

k k k k k k k k k k k k k k k k k k k

k k k k k k k k k

α α β

α α

α β

−

− − −

−− −

− −

⎡ ⎤
⎢ ⎥

⋅⎢ ⎥
⎟⎢ ⎥⎟⎢ ⎥⎠⎣ ⎦

⎡ ⎤+ + +⎣ ⎦

= − + + + +

+ + +

A Σ E A Σ C H H B U B H H H H

A Σ A A Σ C H H C Σ C R A Σ C H H

H H B U B H H

� � � �� � �

(31) 
 

This completes the proof the Theorem 2.                                                                                        □ 
From equations (21) and (22), both okA and okK  have very close relationships of the positive 
scalar sequences kα  and kβ . The following Theorem 3 gives the approach of determining 

kα  and kβ through solving a semidefinite program subject to LMIs. 

Theorem 3 Suppose that the covariance matrices kΣ  and 1,kΣ are given, and the direct output 
matrix kD is nonsingular. Then, the positive scalar sequences kα  and kβ can be determined 
by solving the following semidefinite program: 

 ( )
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min tr
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X   (32) 

s.t. 
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where T= >X X O . 
Proof: It is obviously that kα  and kβ can be determined by the semidefinite program given 
as follows: 
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From Lemma 5, matrix inequality (41) is equivalent to the following LMI 
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which is just (33). Also from Lemma 5, matrix inequalities (38), (39) and (40) are equivalent 
to LMIs (34), (35) and (36) respectively. This completes the proof of this theorem.               □ 
Now, the new robust Kalman filtering algorithm is summarized as follows: 
 

 

3. Application to state estimation of a low temperature pressurized water 
nuclear reactor 
Nowadays, nuclear fission reaction provides more and more energy required for generating 
electrical power in the world. Safety demand and economic feasibility of a nuclear power 
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0 0=Σ X , 
where kα  and kβ are determined by the semidefinite program (32). 
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plant requires smooth and uninterrupted plant operation in the face of varying electrical 
power level. However, some state variables associated with the dynamics of a nuclear 
reactor are not available for measurement. If it is necessary to implement a state-feedback 
control or a fault detection scheme for the reactor, then these state variables could be 
required and consequently some observation structure should be utilized to reconstruct 
them. Moreover, the model nonlinearity, the variation of dynamical model parameters and 
the noisy character of measurement signals requires a state estimator which is robust to 
model uncertainty and nonlinearity, and, at the same time, must be sensitive to changes in 
the state variables. Therefore, the new robust Kalman filter presented in Section 2 can be 
applied to solve the state estimation problem for nuclear reactors. In this section, the 
dynamical model for the robust state estimator design of the LTPWR, which is a small 
research reactor designed by INET, is established, and then the robust Kalman filter derived 
in the last section is applied to estimate the state variables of the LTPWR. 

3.1 Dynamical model 
The LTPWR is a small research nuclear reactor, and Fig. 1 is  the schematic drawing of the 
LTPWR. 
 

 
Fig. 1. Schematic drawing of the LTPWR designed by INET 
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The dynamical model of the nuclear reactor for designing the robust Kalman filter in this 
chapter is the point kinetics with one delayed neutron group and temperature feedback 
from the fuel and the coolant, which is summarized as follows: 
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  (43) 

where rn is the neutron density relative to density at rated condition, rc  is the precursor 
density relative to density at rated condition, β is the fraction of delayed fission neutrons, 
Λ is the effective prompt neutron lifetime, λ is the effective precursor radioactive decay 
constant, fα and cα are respectively the average fuel and coolant temperature reactivity 
coefficient, fT is the average reactor fuel temperature, f0T is the equilibrium average reactor 
fuel temperature, cavT and cinT are respectively the average temperature of the coolant inside 
the reactor core and temperature of the coolant entering the reactor, cav0T is the equilibrium 
average temperature of the coolant, Ω is the heat transfer coefficient between fuel and 
coolant, M is the mass flow rate times heat capacity of the coolant, 0P is the rated power 
level, rδρ is the reactivity due to the control rods, rG is the total reactivity worth of the rod, 
and rz  is the control input, i.e. control rod speed. The parameters of the reactor at the initial 
of the fuel cycle in 100% power are given in Table 1. 
 

Symbol Quantity Symbol Quantity 
β 0.0069 μc 25151(kW/℃) 
Λ 1.0367e-4(s) αf -3.85e-4(1/℃) 
nr0 1 αc -2.3e-5(1/℃) 
λ 0.08(1/s) Gr 0.0048 
P0 10(MW) M 304.89(kW/℃) 
μf 588.544(kW/℃) Ω 437.15(kW/℃) 

Table 1. Parameters of the LTPWR at the Initial of the Fuel Cycle in 100% Power 

Let 
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where the symbol δ  indicates the deviation of a variable from an equilibrium value, and 
r0n , r0c , f0T , cav0T  and cin0T correspond to the values of rn , rc , fT , cavT  and cinT at the given 

equilibrium condition respectively. Choose the state vector as  

 [ ]T
r r f cav rδ δ δ δ δn c T T ρ=x ,  (45) 

and then the state-space model, which is utilized to design the robust Kalman filter, is given 
as follows: 
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f x , 

and w and v are the process noise and the measurement noise respectively, which are all 
zero-mean Gaussian white noises. 
As we have stated as above, the parameters of the reactor vary with the power level. Since 
the state-space model (46) is established near a specific working point, the sensors and the 
actuators are also not precise indeed, there must be uncertainties in ( )tA , B , C and D . 
Let ( )tΔA , ( )tΔB , ( )tΔC  and ( )D tΔ  denote the norm-bounded uncertainties of ( )tA , 
B , C and D  respectively, and suppose 
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( ) ( )

( )[ ]1
1 2

2

t t
t

t D t
Δ Δ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥Δ Δ ⎣ ⎦⎣ ⎦

HA B
F E E

HC
  (47) 

where   
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Ω Ω
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⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥=
⎢ ⎥
⎢ ⎥+

−⎢ ⎥
⎢ ⎥
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H , 

( )1 0 1 0 1 0 1 0 1 0diag . , . , . , . ,=E , 

[ ]2 1 0 0 1 0 T
=H , 

[ ]2 0 01 0 0 0 0 01. .=E , 

( ) ( )1 2 3 4 5diag , , , ,t ε ε ε ε ε=F , 

and the real scalars 1 2 5, , , ,i iε = " , satisfy 1 1 2 5, , , ,i iε ≤ = "  respectively. Therefore, the 
state-space model containing model uncertainties and nonlinear perturbation can be written 
as follows:  

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

d Δ Δ ,
d

Δ Δ .

t t t t t u t w
t

y t t D D t v

⎧
= + + + + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎨
⎪ = + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎩

x A A x B B f x

C C x   (48) 

Furthermore, it is very easy to obtain the discrete-time state-space model corresponding to 
system (48), which takes the form as (1). 

3.2 Numerical simulation 
Both the robust Kalman filter (8) and the EKF are applied to the situation that the power level of 
the LTPWR rises from 50% to 100% rated power. The feedback control law for nuclear power 
and coolant temperature control is a static output feedback control taking the following form  

 ( ) ( )n r T cavδ δu t F n F T= − +   (49) 
where Fn and FT are both positive scalars. The parameter values for the numerical simulation 
are given in the following Table 2, where Ts is the sampling period to obtain the discrete-
time state-space model (1) from the continuous-time state-space model (48). 
 

Symbol Quantity 
Fn 0.05 
FT 0.005 
W 1e-6 
V 1e-6 
X0 1e-8I5 

P 1e-2 I5 
Ts (s) 0.1 

Table 2. Parameter values for the numerical simulation 
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Fig. 1. Simulated and estimated value of the state variables 
Moreover, the simulation model of the LTPWR utilized in this numerical simulation, which 
was developed by INET based on MATLAB /SIMULINK®, contains point kinetics model 
with six delayed neutron groups (7th order), 2nd order heat exchange dynamics of the reactor 
core, 2nd order dynamics of primary heat exchanger, 5th order dynamics of a U-tube steam 
generator (UTSG) with a water-level controller and bypass system, 2nd order dynamics of 
the pump of UTSG, and 6th order dynamics of other heat transmission pipe or volume cells. 
The mathematical model of the LTPWR is introduced briefly in Section 5 (Appendix). 
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Simulation results are illustrated as the follows. The estimation values of the state variables, 
i.e. rδn , rδc , fδT , cavδT  and rδρ ,  provided by the robust Kalman filter (RKF) and the EKF, 
and the simulated values of these state variables provided by the simulation model are all 
given in Fig. 1. The values of the estimation error variance of the EKF and the upper-bound 
of the estimation error variance of the robust Kalman filter are given in Fig. 2. The mean 
squared errors (MSE) of the EKF and the RKF are illustrated in Fig. 3, and the MSE is 
defined as: 

 

( ) ( ) ( )

( ) ( )

1 2
22 2

1 r r cav cav r r

22
2 r r f f

ˆˆ ˆδ δ δ δ δ δ

ˆˆδ δ δ δ

MSE MSE MSE

MSE n n T T

MSE c c T T

ρ ρ

= +⎧
⎪
⎪ = − + − + −⎨
⎪

= − + −⎪⎩ .  (50) 

 The values of the positive scalar sequences kα and kβ  are given in Fig. 4. 
 

    
Fig. 2. Values of the estimation error variances 

 

 
 

Fig. 3. MSEs of the RKF and the EKF 
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Fig. 4. Values of kα and kβ  

3.3 Discussion 
As we can see from Fig. 2., the upper-bound of the state estimation error variance provided 
by the RKF is larger than the state estimation error variance provided by the EKF. However, 
this does not show that the estimation performance of the EKF is higher than that of the RKF 
because the state estimation error variance of the EKF is obtained from the nominal 
linearized dynamic model of the LTPWR. Moreover from Fig. 1., the estimation values of the 
state variables with the RKF track the variation of the corresponding simulated values faster 
than that with the EKF do, and this also shows the high performance of the RKF derived in 
this chapter. Fig. 3 shows that the MSE of the EKF is larger than that of the RKF, though they 
are nearly equal to each other when the power level has been lifted to 100%. The reason of 
the phenomenon illustrated in Figs. 1, 2 and 3 is: During the procedure of power lift from 
50% to 100%, there must be model uncertainties and nonlinear perturbations due to 
variations of the parameter values of the LTPWR. Therefore, the MSE of the RKF can be 
smaller than that of the EKF to the system model with nonlinear perturbation and uncertain 
parameter values. 

4. Conclusions 
Motivated by the robust state estimation of nuclear reactors, a new finite-horizon robust 
Kalman filter for discrete-time systems with nonlinear perturbation and norm-bounded 
uncertainties in the state, the output, the input and the direct output matrices was presented 
in this chapter. After deriving the mathematical expressions of the robust Kalman filter, the 
newly presented filter was then applied to the state estimation for a low temperature 
pressurized water reactor designed by INET. Simulation results show that the performance 
of the robust Kalman filter is higher than that of the celebrated EKF. The future research 
work lies in two aspects. The first one is to extend the robust Kalman filter in this chapter to 
time-delayed systems since there are many time-delays in a nuclear reactor system, and the 
second one is to estimate the density of poisons, such as xenon 135 and samarium 149, for a 
nuclear reactor. 
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5. Appendix: brief Introduction of the mathematical model for the LTPWR 
The mathematical model of the aforementioned LTPWR will be introduced briefly as 
follows. The model is constructed upon the fundamental conservation of mass, energy and 
momentum. Here, only the dynamical equations are given, and the derivation procedures 
are all omitted. 

5.1 Neutron kinetics 
Point kinetics model with six delayed neutron groups is considered for the LTPWR, and the 
dynamical equations are given as follows. 
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∑
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  (51) 

where ric is the precursor density relative to density of the ith group delayed fission neutrons 
at rated condition, iβ is the fraction of the ith group delayed fission neutrons, and iλ is the 
effective precursor radioactive decay constant of the ith group delayed fission neutrons. 

5.2 Reactor and primary loop 
The primary loop is divided into seven volume units and two transport units. As illustrated 
in Fig. 1, the seven volumes are the reactor core, the reactor outlet, the top tank, the Primary 
Heat-Exchanger (PHE), the PHE outlet, the bottom tank, and the core inlet, and the two 
transport units are the chimney and the down tube. 
(1) Reactor Core 
Some assumptions are given to provide a simple model: (i) the fuel element is 
homogeneous, so one-dimensional thermo-dynamic equations can be achieved; (ii) the 
thermal power is produced by the fission products and radiation process such as β-radiation 
and γ-radiation, but here the heat produced by the radiation process is neglected; (iii) the 
temperatures of the fuel element and the coolant inside the reactor core are assumed even. 
Thus a lumped parameter approach can be given as follows: 

 

f 0
f cav r

f f f

cav
cav f cin

c c c

d ,
d

d 2 2 .
d

T PT T n
t

T M MT T T
t

Ω Ω
μ μ μ

Ω Ω
μ μ μ

⎧ = − + +⎪⎪
⎨ +⎪ = − + +
⎪⎩

  (52) 

(2) Volume Units 
Assume that the coolant in these units is well mixed. Energy balance equations for each unit 
are given as follows. 
Core outlet: 
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 ( )21
21 21 1 cout 21

d
d
TV W T T
t

ρ = − ,  (53) 

Top tank: 

 ( )e1pin
23 23 1 22 e1pin

d
d
T

V W T T
t

ρ = − ,  (54) 

PHE outlet: 

 ( )41
41 41 1 e1pout 41

d
d
TV W T T
t

ρ = − ,  (55) 

Bottom tank: 

 ( )43
43 43 1 42 43

d
d
TV W T T
t

ρ = − ,  (56) 

Core inlet: 

 ( )cin
43 44 1 43 cin

d
d
TV W T T

t
ρ = − .  (57) 

Here the subscripts 21, 22, 23, 41, 42, 43 and 44 denote the core outlet, chimney, top tank, 
PHE outlet, down tube, bottom tank, and core inlet respectively. T21, T22, T23, T41, T42 and T43 
are the outlet temperatures of these units. ρ21, ρ22, ρ23, ρ41, ρ42, ρ43 denote the densities of the 
coolant in these units.Te1pin and Te1pout denote the inlet and outlet temperatures of the PHE. 
W1 is the natural circulation flow-rate of the coolant.  
(3) Transport Units 
It is assumed that there is no mixing within the chimney and the down tube. Therefore, the 
coolant flowing through these two units will lead to delay in the temperature variations. The 
equations are: 
Chimney: 

 ( ) 22 22
22 21

1

VT t T t
W

ρ⎛ ⎞
= −⎜ ⎟

⎝ ⎠
,  (58) 

Down tube: 

 ( ) 42 42
42 41

1

VT t T t
W

ρ⎛ ⎞
= −⎜ ⎟

⎝ ⎠
.  (59) 

(4) Natural Circulation Flux 
The primary coolant flow of the LTPWR is natural circulation which is driven by the density 
difference between the hot and cold coolant. During the modeling procedure, the gravity 
pressure drop in the loop, the frictional pressure drop in the core and PHE, and the entrance 
pressure drop at the core inlet are considered, while all the resistance pressure drops in the 
other units as well as the acceleration pressure drop in the loop are neglected. Then the 
natural circulation flow-rate of the coolant W1 is the determined by the following algebraic 
equation: 
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2 2

1 1
3 3 42 42 22 22 1 1 e1p 41 cin c 41

41 e1p 1 c

1 1
2 2

W Wgh gh gh gh k k k
A A

ρ ρ ρ ρ ρ ρ
ρ ρ

⎛ ⎞ ⎛ ⎞
+ − − = + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

  (60) 

where ρ1 and ρ3 are the coolant density in the reactor core and the PHE, h1, h22, h3 and h42 are 
the lengths of the reactor core, the chimney, the PHE and the down tube respectively, ke1p, 
kcin and kc are the resistance pressure coefficient in the primary side of the PHE, the core inlet 
and the core, Ac and Ae1p are the flow cross section of the core and the primary side of the 
PHE, and g is the gravitational acceleration. 
(5) Primary Heat Exchanger 
In order to obtain an accurate yet simple model, two approximations are introduced. The 
first approximation is to lump the tube metal thermal inertia with the primary side coolant, 
and the second one is the PHE outlet temperatures of both sides are calculated assuming a 
single node and perfect mixing. The dynamic equations are given as follows. 
Primary side: 
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  (61) 

Secondary side: 

 

( )

( )

Δ + −⎧
=⎪⎪

⎨
⎪ = +⎪⎩

e1 e1 e1 2 e1s e1sin e1soute1s

e1s e1s
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d
d

1
2

K A T W C T TT
t M C

T T T  (62) 

where Me1m is the mass of the heat exchange tube, Ke1 denotes the overall heat transfer 
coefficient, Ae1 is the heat exchange area, ρ3 and V3 are respectively the density and volume 
of the coolant in the PHE, Ce1m and C3 are the specific heat of the coolant in the primary side 
and the metal of the heat exchange tube. 

5.3 Steam generator 
The steam generator of the LTPWR is a U-tube steam generator (UTSG). The dynamical 
equations are established based on mass balance, energy balance and momentum balance. 
The structure of the UTSG discussed in this paper is given in Fig. 8. Two assumptions are 
made to derive the mathematical model. The first one is a linear dependence on the steam 
pressure p for the saturate liquid and steam, and the second is that the flow quality of the 
homogenous two-phase flow is a linear function of the length from the top of the U-tubes to 
the outlet of the riser. 
(1) Mass Balances 
Steam Dome: 
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st M sep st

d d
d d

pV x W W
p t
ρ

= − ,  (63) 

Downcomer:  

 ( )d
d d fw M sep d

d 1
d
LA W x W W
t

ρ = + − − , (64) 

Riser: 

 fg1 s M
fg M sep d2

s

dv dpk V dxv x W W
v dt dp dt

⎛ ⎞
+ = −⎜ ⎟

⎝ ⎠
.  (65) 

 

 
Fig. 8. Structure of UTSG 

Here stV  is the volume of the steam dome, gρ is the density of the saturated steam inside the 
steam dome, p  is the steam pressure, Mx is the steam quality of the homogeneous two 
phase flow that reaches the steam separator, sepW  is the total mass flow leaving the riser 
region and entering the steam separator region, stW is the steam mass flow rate leaving the 
steam dome, dρ is the downcomer water density, dA is the downcomer flow area, dL  is the 
downcomer water level, fwW is the flow rate of feed water, dW is the downcomer flow rate, 

sV  is the volume of the riser, sv  is the average specific volume of the two-phase flow inside 

the riser, 1
1

2

1
2
Lk
L

= − , 1L is the height of the U-tube bundle, 2L is the length of the riser, 

fg g fv v v= − , fv and gv are the specific volume of the liquid and steam inside the riser 
respectively. 
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(2) Energy Balances 
Downcomer: 

 ( )d d
d d fw fw M f sep d d

d d 1
d dd d
L hA h L h W x h W h W
t t

ρ ⎛ ⎞+ = + − −⎜ ⎟
⎝ ⎠

,  (66) 

Riser :  

 fg fg fgs 1 s M M
sep sep d d

s s s s

d dd
d d d

h v v pV k h x x h W h W Q
v h v t v p t

⎡ ⎤⎛ ⎞
− − = − + +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
,  (67) 

Here fh is the enthalpy of the liquid inside the riser, fgh  is the latent heat of vaporization, 
sh is the average enthalpy of the two-phase flow inside the riser, sv is the average specific 

volume of the two-phase flow inside the riser, seph is the enthalpy of two-phase flow leaving 
the riser region and entering the steam separator region, dh  is the enthalpy of the liquid 
inside the downcomer, and Q is the total heat input to the UTSG. 
(3) Momentum Balance for the Downcomer Flow 
Assume that the mass flow rate dW from the downcomer to the riser is simply due to the 
static head between water level wL  inside the riser and the water level dL inside the down-
comer, i.e. 

 
( )

⎧
= −⎪

⎪
⎨
⎪ = −⎪⎩

d w
d d

d f

f 1
w 1 M 2

s w

,

1 .

L LW k
v v

v AL k x L
v A

  (68) 

where  dk is a given constant, dv is the specific volume of the water inside the downcomer, 
fv is the specific volume of the liquid inside the riser, 1A is the cross section area of the 

steam separator, and wA is the cross section area of the riser. 
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1. Introduction     
Power quality is a topic in the area of engineering that emerged by the 1970 decade. It is a 
field that has attracted special interest recently due to the continuous industrial growth, to 
the raise of power demands, and to the proliferation of “polluting” electrical loads. One of 
the objectives of power quality is to meet a clean sinusoidal, stable, reliable, regulated, and 
uninterrupted supply voltage in electrical systems, in order to feed the so-called critical loads. 
A critical load is such an equipment that, if it fails or works inadequately, it can cause very 
high losses, being economical, or of any class; and a low quality supply can cause this 
situation. For example, it can cause the loss of vital information, interruption of an 
expensive industrial process, poor quality or damage to products; interruption of important 
communications as air traffic control, security units, and financial information; permanent 
damage to equipments, and even put lives in danger at hospitals. 
The great increment in critical processes has led to the requirement of assuring a high 
quality and safe power supply in many medical, communications, and industrial 
procedures, with the aim of feeding machinery and automatic systems that perform diverse 
important tasks. A safe protection of the operations is the objective. 
Problems and failures in electrical loads can be caused by some of the disturbances that exist 
in electrical systems. Among them are: harmonic distortion, unbalances, non characteristic 
harmonics, sags, swells, short and long interruptions, flicker, and short circuits. The disturbances 
that more affect critical loads, specially the industrial kind, are the sags, the swells, and the 
interruptions. The sag is defined as a 10% to 90% decrement of the nominal value of voltage, 
which can last from a half cycle to one minute. The swell is defined in a similar way, but 
represented by the 10% to 80% increase of the nominal value (IEEE Std 1159-1995, 1995), 
(IEEE Std 1159.3-2003, 2004).  
Sags have been identified as the most severe disturbance, and as the one that more causes 
damages and problems to facilities and equipments. It is considered that sags, together with 
momentary interruptions, are responsible of the 92% of power quality problems that face 
typical industrial consumers (Bhadkamkar et al., 2003). Sags can be caused by atmospheric 
discharges, short circuits, energizing of motors and high power loads, operation of soldering 
machines, and arc furnaces, to mention some. The swells can be caused by disconnections of 
high power loads from the grid. As can be noted, the disturbances can be generated by 
natural cause, by neighbor installations, or by accident. It is always desirable their 
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elimination at the origin point. In the cases where this is not possible, the installation of a 
power equipment that compensates the disturbances in real time becomes viable. 
To evaluate power quality problems and propose a solution adequately, first a monitoring 
of voltage parameters as magnitude, phase, and frequency of the fundamental and 
harmonic components is required. In addition, before voltage variations can be 
compensated, a fast detection of them must be performed by the compensation system. 
Mathematical real-time estimation algorithms are crucial for both the mentioned purposes. 
The Kalman filter (KF) is a mathematical method widely extended in many areas of science, 
and has important applications in the power quality field of electrical engineering. Some of 
the most important are discussed in this chapter. First, some power quality compensators 
and the usual requirements of the supply voltage in electrical systems are addressed, to 
have a clear view of the applications. Then, the applications of the KF as detector of 
disturbances, and as estimator of parameters used in monitoring are discussed. 

2. Active power compensators for improving power quality   
Numerous power electronics topologies have been proposed for the compensation of 
disturbances in electrical systems (Bollen, 2000), (Dugan et al., 2003), (Martínez, 1992), 
(Sannino et al., 2000), (Zamora, 1997). Among the most important to compensate sags, 
swells, and interruptions are: the uninterruptible power supply (UPS), static transfer switch 
(STS), dynamic voltage restorer (DVR), and the transformer with changeable taps. A brief 
operative description of the aforementioned equipments is given next, in order to relate the 
applicability of the KF. A detailed description of the compensators, as well as more kinds 
that are focused in correcting other disturbances can be consulted in the above references. 
Uninterruptible power supply (UPS) – it is considered one of the best options of power 
compensators. It consists of an ac/dc converter (controlled rectifier, uncontrolled rectifier or 
active front-end rectifier), an energy storage bank (frequently based on batteries), and a 
dc/ac converter (inverter). The UPS is very common and is very extended worldwide in 
low, medium, and high power levels. It keeps a constant and regulated voltage at the load, 
even under eventualities as sags and interruptions (with backups going from a few cycles to 
several minutes). A basic scheme of the UPS is shown in Figure 1. This scheme in particular 
can be operated in online or offline mode. The online mode consists in feeding the load 
directly from the inverter (when the ac mains is present it works with the rectifier, and when 
it is not it works with the batteries), and if it fails, the static switch changes the connection to 
the source. The offline mode consists on maintaining the load connected to the source 
permanently, and when a disturbance appears, the switch changes the operation to the 
inverter. An algorithm to detect the presence of a sag or an interruption in real time is 
needed to manage the operation of the equipment and protect the load effectively, 
particularly in offline systems. The speed of detection and the corrective action together 
have to be smaller than half cycle of the sinusoidal voltage wave, since the majority of 
critical loads can not tolerate a disturbance during a greater time. 
Static transfer switch (STS) – under an eventuality, this equipment based on static switches 
disconnects the load from the disturbed source and transfers it to another source with good 
conditions, or to a small generation plant. The approach is applicable and effective for low 
and medium voltage at distribution level. The two sources must be really independent and 
synchronized correctly. It requires fast detection of disturbances too, to coordinate the 
transfer. Figure 2 shows a general scheme of the STS. 
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Fig. 1. A basic scheme of the uninterruptible power supply (UPS). 
 

Primary source Alternative source

Switch 1 Switch 2

Load

 
Fig. 2. Static transfer switch (STS). 

Dynamic voltage restorer (DVR) – this compensator has received special attention recently. 
Depending on the topology, it can provide protection against sags and swells in low, 
medium, and high voltage levels (Affolter & Connell, 2003), (Joos et al., 2004), (Nielsen et al., 
2004), (Wunderlin et al., 1998). This solution has already been used at high power levels in 
countries such as the United States, Israel, Japan, United Kingdom, and Singapore for the 
protection of complete industrial facilities. Figure 3 shows a basic scheme of the DVR. It 
consists of a power inverter connected in series between the source and the load through a 
coupling transformer, having also an energy storage element. When a disturbance appears, 
the equipment injects the missing or exceeding voltage in series in such a way that the load 
always has a constant and regulated voltage. The DVR also requires a disturbance detection 
algorithm with the aim of coordinating the change in the reference to inject. 
Transformer with electronic tap changers – it uses static switches to change the turns ratio of 
a transformer dedicated to a single load or of a distribution transformer, under voltage 
variations (Baitch & Barr, 1985), (Hingorani & Gyugyi, 2000), (Fletcher & Stadlin, 1983), 
(Sannino, 2000). It is a solution that maintains the voltage regulation within a tolerance 
band, generally between 90% and 110%. The secondary coil is divided into various sections, 
which are connected or disconnected by the switches. It also requires a method that 
monitors the thresholds of voltage in a fast way. Figure 4 illustrates the device. 
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It is evident that the compensation equipments abovementioned require a fast method to 
monitor and detect voltage variation disturbances. A fast detection is crucial for the 
equipment to be effective, and to accomplish its operation of compensating the disturbance 
as fast as possible. The KF, among other methods, is a valuable tool for this purpose. But, to 
design a correct algorithm, it is necessary to know the limits on the requirements of the 
supply voltage for critical loads, a topic discussed in the following section. 
 

DVR

Power supply
Sensors

Critical load

Control

Inverter

Energy
storage

 
Fig. 3. Dynamic voltage restorer (DVR). 

Power
supply

Sensitive
load

 
Fig. 4. Transformer with electronic tap changers. 

3. Requirements of the supply voltage for critical loads 
Requirements of the supply voltage for specific critical loads are shown in Table 1 
(Martínez, 1992). The majority of low critical loads allow slow and steady state voltage 
variations within %±10  of the nominal voltage. Nonetheless, some highly critical loads only 
allow variations within the +5% and the -8%, or even within %±5 . Similar requirements are 
established in (IEEE Std 1100-2005, 2006). In general, the tolerance in magnitude is greater 
for fast voltage variations, during short lapses of time. As with the steady state case, the 
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requirements for transient events are stricter for highly critical loads. These are general 
outlooks, but specifically, each load has its own susceptibility profile of failure regarding 
magnitude of voltage variations vs. duration. 
Nowadays, there is a standard susceptibility graphic for equipments of information 
technology, computer equipment, copy and fax machines, and other electronic equipment. 
This is the CBEMA curve (IEEE Std 1100-2005, 2006). It reflects the magnitude tolerances of 
voltage variations vs. duration for the aforementioned equipments. The first version of this 
curve was proposed in 1977 by the Computer and Business Equipment Manufacturers 
Associations (CBEMA). Since then, the curve has been widely published and used in the 
literature. It was updated in 1996 and revised in 2000 by the Information Technology 
Industry Council (ITI), and is now an essential part of the standard 1100 of the Institute of 
Electrical and Electronics Engineers (IEEE). 
The curve has been improved to the point that today it is a representative standard for 
modern computer equipment, and it is frequently used in the power quality field as a 
performance guide for loads in general, although not all the equipment manufacturers make 
their designs to meet the tolerance shown in it, and even though this curve does not reflect 
an absolute profile for all kind of loads, but only for the informatics and computing 
equipment. Figure 5 shows the CBEMA graphic. If the coordinates of magnitude vs. 
duration of a voltage variation fall outside the tolerance zone, the event could cause 
problems. For example, the graphic allows a +200% variation for an event lasting 1ms; and 
permits a limit up to +500%, but for short impulses below μ100 s . 
 

Characteristic Requirements of little 
critical loads 

Requirements of 
very critical loads 

Stability of voltage at 
steady state 

+10% 
-10% 

+5% 
-8% 

Stability of voltage at 
transient state 

+20% 
-30% 

( ≤ 40ms ) 

+20% 
-30% 

( ≤ 4ms ) 
Short outages of less 

than 10ms 
No disconnection but can 

generate errors 
Disconnection exists 
and generate errors 

Table 1. Requirements of the supply voltage for critical loads. 

On the basis of this graphic, an algorithm that determines the existence of an electrical 
disturbance when the voltage surpasses a tolerance band (for example of ±6% ) can be 
proposed, with the aim of controlling the corrective action of power quality compensators. 

4. Detection of electrical disturbances with the Kalman filter and the digital 
RMS algorithm  
4.1 Previous works on detection of electrical disturbances  
It is evident that to perform correcting actions in an electrical system, an algorithm that 
detects the start of disturbances is necessary, as this action governs when a compensating 
device begins operating. Several methods for these purposes have been published, with 
different advantages and drawbacks. Among the most used, and relevant detection and 
estimation techniques are: space vector PWM (SVPWM) (Wang et al., 2004), fast Fourier 
transform (FFT), DQ transformation (Montero & Enjeti, 2005), symmetrical components 
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Fig. 5. ITI (CBEMA) curve (2000). Profile graphic of voltage variation vs. admissible time in 
the supply of modern electronic and computer equipment. 

method, Kalman filter (Ma & Girgis, 1996), (Vilathgamuwa et al., 2003), (Yu et al., 2005), 
(Schwartzenberg et al., 1994), rms of the error vector (Nielsen et al., 2004), peaks detection 
(Fitzer et al., 2004), numerical matrix method (Fitzer et al., 2004), digital RMS calculation 
(Bollen, 2000), (Deckmann & Ferreira, 2002), and wavelet transform (Saleh & Rahman, 2004), 
(Dash et al., 2001). 
The FFT process has slow performance due to the one cycle window requirement. The peaks 
detection method can take up to half cycle to detect a disturbance and the noise can 
detriment the performance. The numerical matrix method has response times around 7ms 
and the operation is sensible for high sampling rates, conducting to errors.  
The method in (Dash et al., 2001) uses spline wavelets to detect the beginning and end of 
disturbances, and KF at steady state condition to classify and give information of the 
disturbance, such as frequency, depth, and phase (the KF is not used for detection). In 
addition, the dependence of the speed of the wavelets method on the starting phase angles 
of the disturbance is not considered. In fact, slow results can be obtained at some of them. 
Besides, the method does not take into account the influence of voltage harmonics. Their 
presence can guide to slower and less reliable detections. 
One advantage of using the DQ transformation as in (Montero & Enjeti, 2005) and (Nielsen 
et al., 2004) is that only one algorithm is needed to monitor a complete three phase system. 
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However, the loss of information due to the three to one mapping gives more 
disadvantages. The method can become too slow, having a wide time range of detection, 
depending on the depth of the voltage variations, the simultaneousness of them on the three 
phases, and the electrical angles at which they appear. Moreover, if the system has 
harmonics, the algorithm must be configured to perform slower in order to be reliable, 
having then high probabilities of very slow detections. 
Two of the fastest, with more advantages, and most used methods are the KF and the digital 
online RMS algorithm. The KF as applied in (Schwartzenberg et al., 1994) is used only for 
prediction of the future behavior of the signal at N samples in the future, to use it as part of 
a control system. It is not used for detection of disturbances. The signal is modeled taking n 
harmonics into account, but the main disadvantage is the high processing time consumption 
due to the big extension of the model. 
In fact, the KF is applicable to help some active power compensators, by playing the roll of 
online detector of electrical disturbances, mainly of sags, swells, and interruptions. The 
detections are required to be as fast as possible, in order to give the compensator the 
command that will start the corrective action. The KF is a good candidate since it can be fast. 
However, it suffers slowness in estimations in some specific cases. In reality, as will be 
realized, the KF can be combined with another method to eliminate its drawbacks. 
A fast detection algorithm for sags, swells, and interruptions based on the combination of 
the digital RMS technique and the KF, called the KF-RMS method, is addressed in section 
4.4 (González et al., 2006), (González et al., 2008). The slow detection speeds the KF has at 
some regions are eliminated by the RMS algorithm, and the fast speeds it has at other regions 
are availed. A complete study and a range of detection times are derived, assuring high 
probabilities that detections of disturbances are very fast. The KF-RMS algorithm is faster 
than many algorithms and considers all possible starting angles of disturbances, all depths, 
voltage increases, and a voltage polluted by harmonics; thus considering all the cases, and 
not only particular approaches. Experimental tests are also discussed in section 4.6. 

4.2 The Kalman filter as voltage estimator and detector of disturbances 
The ideal case 
In order to make an estimation of the rms value of a voltage with the KF, the following 
development can be made. If only the fundamental component of the voltage is considered 
to derive a model for the KF, it can be started from the following digitalized expression: 

 1[ ] sin[ ]ω φ= +v kT b kT   (1) 

where b1 is the nominal peak value of the voltage, k is the sample number, and T is the 
sampling period. It can be decomposed as: 

 [ ] [ ] [ ]φ ω φ ω= +1 1cos sin sin cosv kT b kT b kT   (2) 

If the states are chosen to be 1
1 cos

2
bx φ=  and 1

2 sin
2

bx φ= , then the state space model can 
be expressed as: 

 1 1 1

2 2 21 1

1 0
0 1

k k k

x x w
x x w

− −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ = = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
k k-1 k-1X = AX W   (3) 
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where 1w  and 2w  allow the state variables to randomly move in time. It should be noted 
that at normal conditions (no phase-shift), the state 1x  has the maximum value 1 2b  (rms 
value) whereas 2x  is zero. Then, the measurement matrix can be defined as: 

 [ ] [ ]ω ω⎡ ⎤= ⎣ ⎦2 sin 2 coskT kTkH   (4) 

which must be synchronized with the source voltage. Next, the following well-known KF 
matrix equations are computed recursively at every sample: 

 k k -1X = AX   (5) 

 +- T
k k -1 kP = AP A + Q  (6) 

 ( )-1- T - T
k k kK = P H HP H + R  (7) 

where -
kP  is the prior estimate of the error covariance matrix, and kK  is the optimal Kalman 

gain matrix, which improves the estimation at every sample. Then a measurement is taken: 

 k ky v= +kHX   (8) 

where ky  is the sample and kv  is the noise of the measurement. 
In KF, a prior estimate of the system at sample k, denoted by -

kX , is used to derive an 
updated estimate +

kX  based on the measurement ky . This estimate is computed with: 

 ky+ - -
k k k kX = X + K ( - HX )  (9) 

And finally, the updated estimate of the error covariance matrix, based on its prior estimate 
is calculated: 

 ( )+ -
k k kP = I - K H P  (10) 

The covariance matrix Q  of w is given by: 

 
0

iT
i j

Q i j
E w w

i j
=⎧⎡ ⎤ = ⎨⎣ ⎦ ≠⎩

, or 1

2

0
0

Q
Q

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Q  (11) 

and the covariance of v is R = R. The signs + and – at all expressions are used to denote the 
times immediately before and immediately after a sample is taken. 
Figure 6 shows the KF estimation of the rms value of an ideal sinusoidal voltage (without 
harmonics neither noise) with nominal value =1 179.6b V (127Vrms), in which a 0.4p.u. sag 
(remaining 0.6p.u. in the voltage) occurs at 1t s= .  
As with many other algorithms, the KF has a trade-off: the speed can be improved but the 
cost is the insertion of high overshoots during transient response; or the estimation can be 
performed softly and without overshoots, but having a slower response in consequence. The 
values of the state variances in this case are chosen as Q1 = Q2 = 0.004, to obtain a reasonable 
fast speed in the estimation without having transient overshoots. Realize that the estimation 
of interest is only the one given by x1, and that x2 has no useful information. x1 has a fast and 
flat response. 
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It takes about 9ms to get the new valid value at steady state. Nevertheless, together with the 
KF estimation, thresholds of +6% and -6% of the reference value 1 2b  can be used to make 
the detection of the disturbance in a much shorter time. When the estimation 1x  gets outside 
this range, then the sag is detected. Detection time in this way is only 1.7ms (very fast) and a 
pulse shows the moment of detection in the third graph (zoom).  The thresholds are set to 

6%±  in order meet the CBEMA guidelines of voltage supply, which establishes the limit at 
±10% , allowing normal voltage variations and having shorter times of detection. Note that 
there is also a trade-off in the selection of this tolerance band. The smaller it is, the more 
susceptibility for false detections, and as greater it is, less susceptibility. 
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Fig. 6. Estimation with the KF of the rms value of an ideal supply voltage with nominal 
value 127Vrms . A 0.4p.u. sag occurs at t=1s, and its detection is shown. 

The case with harmonics 
The previous example of voltage is impossible to find in practice. These results of detection 
speed and flatness will never be exactly reproduced in the estimation of a real voltage. 
Voltage supply, even at residential facilities has the presence of harmonic distortion, and the 
situation could be much marked at industrial environments. Hence, a more practical and 
useful algorithm for detection of disturbances must consider a non clean voltage. 
Numerous authors have proposed models of the KF to make estimations with harmonic 
distortion. Some examples are shown in (Girgis et al., 1991), (Schwartzenberg et al., 1994), 
(Ma & Girgis, 1996), (Yu et al., 2005). This can be made considering the harmonic terms in 
the signal: 
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 1 1 3 3 5 5 7 7[ ] sin[ ] sin[3 ] sin[5 ] sin[7 ] .....v kT b kT b kT b kT b kTω φ ω φ ω φ ω φ= + + + + + + + + ,  (12) 

and deriving the KF model with all the components. The great advantage of doing this is 
that the magnitudes of each harmonic component can be calculated online separately, and 
can be used for monitoring. However, this makes the model (3) very big, with two states for 
each harmonic that is considered. E.g. if four harmonics were established, the dimension of 
the model would be 10. So the matrix operations involved in the KF become bulky, and the 
algorithm becomes impractical. The computational load itself can take a lot of time. 
An approach to overcome this is by using the original model that considers only the 
fundamental component in (3) and (4), but managing it in such a way that it can work 
reasonable well in the presence of harmonics. The KF model based on only the information 
of the fundamental component has the benefit of high speed estimation, but it becomes 
oscillatory if the system has harmonics. The method can be manipulated to give higher 
speed, and also to give less oscillation on the estimation of 1x , by giving more weight to the 
state variance 2Q  of 2x  than to the state variance 1Q  of 1x . In this way a greater part of the 
oscillation (caused by harmonics) of the estimation is “sent” to 2x . 
Figure 7 shows an example of the estimation with KF of the rms value of a voltage that is 
disturbed with a 0.4p.u. rectangular sag at t=1s, and that has the following magnitudes of 
harmonics ( 11.84%THD = ): 3 10.020b b= , 5 10.100b b= , 7 10.050b b= , 11 10.030b b= , and 

13 10.015b b= ; with the fundamental component as =1 179.6b V  ( 127Vrms ). These 
magnitudes of harmonics are selected to take above the worst THD case allowed in the 
standards IEC 61000-2-2 for low voltage, and IEC 61000-3-6 for medium and high voltage 
power supply systems (which are set to 8%); and above the recommended limits in the IEEE 
Std 519-1992 (which are set to 5% for low voltage, 2.5% for medium voltage, and 1.5% for 
high voltage systems). This represents a though and highly distorted condition to test the 
algorithm, really giving it high usefulness for real practical systems. The state variances are 
now set to 1 0.0009Q =  and 2 0.0625Q = . These values of Q give an adequate speed with low 
oscillation in the 1x  estimation. 
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Fig. 7. Estimation of the rms value of a distorted supply voltage with the KF. The detection 
of a 0.4p.u. sag is also shown. 
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Although there is a little oscillation on 1x , it can be noted that a greater part is sent to 2x . In 
this case, 1x  takes about 14ms to get the new valid value. As with the ideal case, the same 
thresholds of +6% and -6% of the reference value 1 2b  are used to detect the disturbance. 
The little oscillation is allowed by this tolerance band satisfactorily. Detection time in this 
case is 2.6ms and a pulse shows the moment of detection. The estimation speed has to be 
slightly decreased than in the ideal case, to have a more reliable estimation that involves the 
harmonic distortion of the measured supply voltage, allowing a correct disturbance 
detection. This behavior is good enough to have an useful algorithm with low processing 
work, fast, and with easy implementation. 
Consideration of the starting angle of the disturbance in the Kalman filter algorithm 
The previous examples showed the beginning of the event at 1t s=  in a 60Hz system, i.e. at 
an angle of 0° of the signal. The dependence of the estimation speed of the KF with the 
electrical angle at which the disturbance appears, and the presence of the harmonics listed in 
the previous example, are considered in the following analysis. 
Figure 8 shows a graphic of detection time vs. starting angle of a rectangular sag of 0.4p.u., 
considering the harmonics. It can be observed that at some regions of phase the KF is very 
fast (less than 1ms), but at others, slow detections are experienced. For instance note that at 
100° the detection time is around 6ms, whereas at 70° it is much less than 1ms. The range of 
detection for sags of 0.4p.u. is 0.18 6.10dms t ms≤ ≤ . It is important to consider all the cases in 
an algorithm, to evaluate if it is really going to be fast at all circumstances. Numerous 
authors have reported fast speeds with other algorithms or even with the KF, but actually 
show results at favourable angles that give fast estimations. This is evident in Figure 8. 
The detection times that can be obtained, considering the previously mentioned levels of 
harmonics and the starting angle of the disturbance, result in a wide range of values. The 
digital RMS algorithm is other of the methods that give very good performance with 
relatively high speed. This method can be used to help obtaining faster estimations at the 
regions the KF shows slowness. The performance of the RMS method is addressed next, and 
then how it can help the KF, in a unified method, in the following section. 
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Fig. 8. Detection time vs. starting angle of a 0.4p.u. rectangular sag using the KF. 

4.3 The digital recursive RMS calculation method as detector of disturbances 
The expression for the well-known online digital RMS calculation is given by: 

 [ ]2

1

1[ ]
k

RMS
i k N

V k v i
N = − +

= ∑   (13) 
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where N is the sliding window size for the computation, k is the number of sample, and iv  
are the samples. There are two kinds of application, the one cycle window, and the half 
cycle window. The method needs N to be an integer multiple of one cycle or of a half cycle, 
in order to avoid oscillations on the estimation. A recursive alternative to spend less 
processing time can be found in (González et al., 2006). It provides a significant processing 
time saving when N is large. The RMS method has the advantage of providing a very flat 
estimation, even if there are harmonics in the voltage, which translates into reliability. 
The one cycle RMS technique takes one cycle in giving a valid result for a change in the 
voltage, and the half cycle RMS method takes a half cycle. However, if inferior and superior 
thresholds are also defined around a reference voltage, both window sizes can be used for a 
faster detection of disturbances when the estimated voltage value gets outside them. As the 
half cycle RMS takes less time to get to a new value on transitions, it is clear that it is also 
faster to detect disturbances when using thresholds. Thus, it is used in the following, also 
with the thresholds of ±6%  around the reference voltage to meet the CBEMA guidelines, 
and to allow faster detections, as selected for the KF. 
Figure 9 shows the calculation of the rms value of the voltage of the same example shown 
for the KF (0.4p.u. sag, with the same harmonics: 3 10.020b b= , 5 10.100b b= , 7 10.050b b= , 

11 10.030b b= , and 13 10.015b b= , with 1 179.6b V= ( 127Vrms ) ), but now using the half cycle 
RMS method. The estimation takes half cycle to get to the new valid value, but detection 
time is 2.8ms, a very similar result than the one of the KF. A pulse shows the moment of 
detection. Note that the estimation is soft and flat, even with the considered harmonics. 
Consideration of the starting angle of the disturbance in the RMS algorithm 
The speed of this method is found to be dependant on the starting angle of the disturbance 
too. Figure 10 shows the graphic of detection time vs. starting phase angle of a 0.4p.u. 
rectangular sag (the harmonics of the previous examples are considered too). At some 
regions the method is slow and at others is fast, but not with marked behavior as the KF. 
The detection range for a 0.4p.u. sag is 0.79 3.96dms t ms≤ ≤ . 
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Fig. 9. Estimation of the rms value of a distorted voltage with the digital RMS algorithm. 
The detection of the occurrence of a 0.4p.u. sag is also shown. 
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Fig. 10. Detection time vs. starting angle of a 0.4p.u. sag, using the digital RMS algorithm. 

4.4 Method for detection of disturbances based on the combination of the KF and 
RMS algorithms: the KF-RMS method (González et al. 2006), (González et al. 2008) 
The graphics speed of detection vs. starting angle of a 0.4p.u. sag of the KF and RMS 
methods are shown together in Figure 11. Observe that in some cases, depending on the 
starting angle of the disturbance, the KF is faster than the RMS, whereas in other cases the 
RMS is faster. This graph leads to the proposal of the KF-RMS method, based on the 
combination of the KF and the digital half cycle RMS algorithm. The central idea can be 
noticed by observing the advantages and drawbacks of speed of each one of them. The 
method consists on monitoring with the online execution of both algorithms simultaneously, 
and taking the decision of the one that first detects the disturbance (logic OR of detecting 
signals). Figure 12 shows the resultant graphic for the KF-RMS method. 
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Fig. 11. Detection time vs. starting angle of a 0.4p.u. rectangular sag, occurring in a signal 
distorted by harmonics. Both KF and digital RMS algorithms are shown. 
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Fig. 12. Detection time vs. starting angle of 0.4p.u. rectangular sag occurring in a distorted 
voltage signal, with the KF-RMS method. 
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In this way, very fast detections are obtained with the KF, and the regions at which it is slow 
are rejected by the RMS method. Detection time is now between 0.18ms and 3.96ms, which 
clearly falls in less than a quarter of cycle of 60Hz systems. However, this is only valid for 
0.4p.u. rectangular sags, since all depths are not considered. 
A very few authors have considered the dependence of speed of the KF and the RMS 
methods on the depth and on the starting angle of the disturbance together, and the small 
amount that consider it, do not consider a voltage distorted by harmonics. Considering all 
these aspects is crucial as a validation of one reliable method at all possible events can be 
obtained, not only for particular cases. Hence, to make a generalization, 3D graphics are 
developed next. The detection time, the angle at which the disturbance begins, and the sag 
depth are considered. The high levels of voltage harmonics addressed in the previous 
sections are also considered. 
Figure 13 shows the corresponding 3D graphic for the KF method. The analysis considers 
depths from 0.1p.u. to 1.0p.u. (complete interruption). The same behavior of Figure 8 can be 
noted, but it can be seen that as the depth increases, the detection becomes faster. At all 
depths the method is fast at some regions of angles, while at others it is slow, as with the 
0.4p.u. sag case. Note that the maximum detection time is 9ms, which is a high value of time 
(more than half cycle). If a sag occurs near these regions the method performs slowly. 
Considering all points, the KF method has a range of detection times of 0.061 9dms t ms≤ ≤ . 

 
Fig. 13. Detection time vs. starting angle vs. sag depth with the KF algorithm. 

Figure 14 shows the 3D graphic for the RMS algorithm. The same behavior as in Figure 10 is 
observed at all depths too, and the detection speed also increases with depth. The method 
has a detection time range of 0.48 6.9dms t ms≤ ≤ . 
If the KF-RMS algorithm is executed, the 3D graphic of Figure 15 results. Observe that the 
advantage of fast detections in some regions of KF is availed, and the regions at which KF is 
slow are rejected by the RMS method. The range for detection in general is now 
0.061 6.9dms t ms≤ ≤ . Figure 16 shows the same graphic but with a plane that represents the 
quarter of cycle (4.16ms at 60Hz). It can be seen that the majority of the events are below this 
time. Extracting probabilities from all the points, it can be established that, for rectangular 
sags between 0.1p.u. and 1.0p.u., and supposing that all the points come out with the same  
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Fig. 14. Detection time vs. starting angle vs. sag depth with the digital RMS algorithm. 

 
 

Fig. 15. Detection time vs. starting angle vs. sag depth with the KF-RMS algorithm. 

recurrence (in practical systems short sag depths are more probable), the KF-RMS algorithm 
has the following properties: 
• Range of detection: 0.061 6.9dms t ms≤ ≤ . In a distorted environment: 11.84%THD =  
• ( )4.16 9.04%dprob t ms> =  
• ( )4.16 90.9%dprob t ms< =  
• ( )2.00 56.9%dprob t ms< =  
The method has a very high probability (90.9%) that sags and interruptions are detected in 
less than a quarter of cycle, and more than 50% of probability (56.9%) that they are detected 
in less than 2ms, which is very fast. Times a little greater than a quarter of cycle may be 
obtained with sags of small depth, but only at some specific regions of phase. In fact, 
detection times will never be equal or greater than half cycle. 
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All the previous analyses are made for swells. A better result, with much more favorable 
behavior is obtained for swells with the KF-RMS method. Figure 17 shows the 
corresponding 3D graphic. It can be seen that most of the events are below 2ms. The 
following properties are obtained for swells from 1.1p.u. to 2.0p.u.: 
• Range of detection: 0 6.3dms t ms≤ ≤ . In a distorted environment: 11.84%THD =  
• ( )4.16 3.95%dprob t ms> =  
• ( )4.16 96.04%dprob t ms< =  
• ( )2.00 78.87%dprob t ms< =  
Detection times of practically 0ms are obtained for several swell cases, leaving all the 
dependence to the processing time, and the probabilities are much better than for sags and 
interruptions. 

 
Fig. 16. Probability that sags and interruptions are detected in less than a quarter of cycle, 
with the KF-RMS algorithm. 

 
Fig. 17. Detection time vs. starting angle vs. swell increase with the KF-RMS algorithm. 
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The KF-RMS algorithm represents a better option for detection of voltage variation 
disturbances. It is important to note that the angle in which the disturbance occurs and its 
depth are considered in the analysis, besides of an amount of harmonic pollution that is 
superior to the allowed by the most important worldwide standards on voltage harmonic 
levels in practical electrical systems. The advantage of a very fast detection at some regions 
of KF is availed, and the regions at which it is slow are rejected by the RMS method. 

4.5 Dependence of the KF-RMS algorithm on the sampling frequency 
The previous results were derived with a sampling frequency equal to 16.384kHz and with a 
60Hz supply frequency. The performance of the method also shows dependence on the 
sampling frequency selection. Figure 18 shows how the speed of detection is affected in both 
KF and RMS methods when the sampling frequency is changed, for a 0.4p.u. sag starting at 
0° (including also the harmonics that have been considered through all the examples). It can 
be noted predominantly that the KF sees its detection speed negatively affected if the 
sampling frequency is reduced, whereas the RMS algorithm maintains it practically at all 
sample frequencies. 
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Fig. 18. Dependence of the detection time of KF and RMS methods on the variation of the 
sampling frequency, for a 0.4p.u. rectangular sag starting at electrical 0°. 
Then, the global response of the KF-RMS method also depends on the sampling frequency. 
When decreased, the regions at which this method avails the high speeds of KF are lost, but 
the rejection of slow speeds with RMS is kept. In other words, if the sampling frequency is 
reduced, the behavior of the KF-RMS method will get close to the RMS one operating alone, 
since the global response will depend only on it. An important care must be taken when 
varying the sampling frequency: the RMS method must keep the number of samples of its 
calculation window an integer multiple of half cycle. Also, care must be taken in always 
keeping the Nyquist criterion satisfied on both methods (and its limit far enough) when the 
sampling frequency is reduced; in order to consider from the fundamental to a specific 
harmonic component, so aliasing does not appear that would guide to erroneous estimations. 
The method is found to show its main benefits and work better with sampling frequencies 
greater than 8.192 kHz. This statement is valid if the constants of the covariance matrix Q of 
the KF are kept fixed. Indeed, the optimal constants for one sampling frequency are not the 
most appropriate for others. In order to maintain the advantages of the KF-RMS method at 
all sampling frequencies, an adequate selection of the Q1 and Q2 constants is needed at each 
case. In this way the dependence of the KF on the sampling frequency is eliminated. Figure 
19 shows that the dependence on sampling frequency is eliminated by selecting adequate Q 
constants. The selections are summarized in Table 2. 
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Fig. 19. Detection time of the KF and RMS methods, for a 0.4p.u. rectangular sag starting at 
0°, and using adequate values 1Q  and 2Q  for different sampling frequencies. 
 

Sampling Frequency 1Q  2Q  
1024 1.0000 25.0000 
2048 0.1296 6.2500 

4096 0.0784 6.2500 
8192 0.0400 3.2400 
16384 0.0009 0.0625 
32768 0.0169 1.0000 

Table 2. Selection of covariance matrix constants of KF for different sampling frequencies. 

4.6 Experimental tests of the KF-RMS algorithm 
The KF-RMS algorithm is implemented in the Texas Instruments TMS320F2812 DSP 
platform. A single phase voltage signal is sampled, and scaled to 0-3V in order to use the 
internal ADC of the DSP. Then sags and swells of different magnitudes are emulated at the 
sensor. The experimental results of the KF-RMS method agree significantly with the 
analyses, and with the detection time graphics of Figures 16 and 17. This is proved with 
several generated events. Detection cases are shown in Figure 20 for sags, and in Figure 21 
for swells. Very fast detection times are obtained in cases 20(a), 20(c), 20(d), 21(a), and 21(d) 
due to the region at which the disturbance occurs. A pulse is generated in one port pin of the 
DSP to show the moment of detection. The THD of the sampled signal is around 5%. 
 

        
                                 (a)                                                                                (b) 
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                                 (c)                                                                               (d) 
Fig. 20. Experimental detection times of the KF-RMS algorithm for sags. a) 0.4p.u. sag at 80°, 

μ= 288dt s . b) 0.5p.u. sag at 170°, = 3.12dt ms . c)  0.5p.u. sag at 260°, μ= 304dt s . d) 0.5p.u. sag 
at 270°, μ= 216dt s . 
 

            
                               (a)                                                                                  (b) 

            

                                (c)                                                                                (d) 

Fig. 21. Experimental detection times of the KF-RMS algorithm for swells. a) 0.4p.u. swell at 
224°, μ= 496dt s . b) 0.4p.u. swell at 153°, = 3.36dt ms . c) 0.4p.u. swell at 0°, = 2.12dt ms . d) 
0.4p.u. swell at 80°, μ= 140dt s . 
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5. The Kalman Filter applied for estimation of parameters in power quality 
monitoring of electrical systems 
Another application of the KF in power quality is as estimator of parameters for monitoring 
purposes. Its fast real-time estimator characteristics make itself a good candidate. 
Monitoring consists on obtaining information of one or more points of an electrical system, 
such as the behavior of a voltage or a current within a lapse of time, which can be from a 
few seconds to several days. This information can be recorded and used to generate the 
statistics of disturbances in that system, to evaluate power quality problems, and propose 
solutions. The information collected by voltage or current monitoring can be parameters 
such as magnitude, phase, and frequency of the fundamental and/or harmonic components 
at steady state. The number of transient disturbances within a range of time, their 
classifications, and durations can also be considered and recorded. 
Generally, monitoring performed by most of the devices consists of four or five steps, 
depending of the application, and are mainly: the sampling of the signal of voltage or 
current of interest, the real time estimation of the magnitude, detection of disturbances, 
classification and characterization of the event, and compact storage of the collected data 
(Deckmann & Ferreira, 2002), (IEEE Std 1159.3-2003, 2004).  
The voltage magnitude can be determined in a variety of ways. Many actual monitors obtain 
the steady state magnitude and also those of disturbances such as sags, swells, and 
interruptions from the digital RMS calculation (see the above bibliography and (Bollen, 
2000)). Although the half cycle choice is faster, the one cycle window is frequently used. This 
algorithm has important advantages, such as the very flat estimation, even with the 
presence of harmonics, and that no matter how deep and how the shape of a disturbance is, 
it takes exactly a half cycle or one cycle (depending on the selected window) to reach the 
new valid value. This method is very useful for steady state classification of disturbances, 
but it only gives information related with the magnitude. Other parameters such as the 
fundamental frequency, the phase, and harmonic magnitudes and phases can not be 
interpreted. Moreover, the RMS method calculates the rms value of the signal as a whole, 
that is, including the fundamental and harmonic components together in the result. So, the 
estimation is not exactly the value of the real fundamental magnitude. 
 Regarding this, the KF has great advantages, as it can make the aforementioned parameter 
estimations simultaneously. Another method that can perform magnitude, frequency and 
phase estimations of all harmonic components is the Fast Fourier transform (FFT), but 
requires one cycle to update results. A combination of various methods can be used to 
obtain fast, reliable, and accurate monitoring with fast transient response. In the following, 
only the KF applications are assessed. Some cases of monitoring are shown, evidencing its 
usefulness and advantages in monitoring. 

5.1 Monitoring of the fundamental component in a distorted voltage 
As stated, the KF can be used for rms or peak value magnitude estimation. To classify this 
information in monitoring, a flat and accurate estimation is needed. At first intuition, the 
more complicated model with harmonics could be taken for this aim, but in fact the model 
that only considers the fundamental component in (3) and (4) can be used effectively, using 
much less processing work. In this case, as the KF is not focused for detection, but for 
monitoring, a different tuning of the Q matrix can be used. For instance, Q1 = 0.08 and  
Q2 = 80 are adequate values for this purpose. 
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Figure 22 shows the estimation of the fundamental component in a voltage distorted by 
harmonics (the same values that were used in the previous section are used: 3 10.020b b= , 

5 10.100b b= , 7 10.050b b= , 11 10.030b b= , and 13 10.015b b= , with 1 179.6b V= ( 127Vrms ) ), 
with the KF and also with the RMS method to compare their monitoring performances. A 
0.25 . .p u  swell occurs at 1t s=  and ends at 1.2t s=  to show the transient responses. Due to 
the mentioned tuning of the KF, a flat estimation is achieved, similar to the one obtained 
with the RMS method. Note also that a very abrupt estimation change to the final value is 
observed, which seems to reveal the KF estimation is extremely fast. However, this is only in 
appearance, as the estimation actually takes about a quarter of cycle to respond from the 
time the disturbance occurred at 1t s= . 
Even with this delay, the KF indeed is faster in getting the final value in this case (around a 
quarter cycle vs. the half cycle of the RMS), and the opposite occurs in the examples of 
Figures 7 and 9, i.e. the RMS gets the steady state final value first. However the goal of those 
cases is the detection of the disturbance. If the KF were used for detection with the tuning of 
this example, its detections would actually be slower than the RMS. The tuning of those 
examples is adequate to have a faster estimation (although with tolerable oscillations), and 
hence allowing faster detections.  
Thus, although a very flat estimation is obtained with the KF in the application of this 
example, it is not as useful for fast detection of disturbances, but better for transient and 
steady state monitoring. 
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Fig. 22. RMS value estimation of the fundamental component of a distorted voltage, with the 
KF and RMS algorithms. A 0.25p.u. swell occurs at t=1s and ends at t=1.2s. 
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5.2 Monitoring of the magnitude and phase of the fundamental and harmonic 
components 
If the information of the fundamental and harmonic components is needed to monitor in an 
application, an extended model of the KF considering harmonics can be used. Although the 
computational load becomes high, the great advantage is that the magnitudes and phases of 
all present harmonics in a current or voltage signal can all be estimated simultaneously. The 
application of estimating the magnitude of harmonic components has been widely 
published in literature throughout many years. Some works can be seen in (Girgis et al., 
1991), (Schwartzenberg et al., 1994), (Ma & Girgis, 1996), (Yu et al., 2005). An approach to 
estimate also the phases simultaneously is adressed next. 
The KF model can be defined considering the signal with its harmonic components: 

 1 1 2 2[ ] sin[ ] sin[2 ] ............... sin[ ]n nv kT b kT b kT b n kTω φ ω φ ω φ= + + + + + +   (14) 
which can be decomposed as: 

 
[ ] [ ] [ ] [ ] [ ]

[ ] [ ]
φ ω φ ω φ ω φ ω

φ ω φ ω
= + + + +

+ +
1 1 1 1 2 2 2 2cos sin sin cos cos sin 2 sin cos 2 ....

......... cos sin sin cosn n n n

v kT b kT b kT b kT b kT
b n kT b n kT

(15) 

As with the states definition of the first example in (2), two states are now needed for each 

harmonic component. These can be defined as: 1
11 1cos

2
bx φ= , 1

12 1sin
2

bx φ= , 

2
21 2cos

2
bx φ= , 2

22 2sin
2

bx φ= ,…….., 1 cos
2
n

n n
bx φ= , 2 sin

2
n

n n
bx φ= . Thus, the general 

measurement matrix can be written as: 

 
[ ] [ ] [ ] [ ]

[ ] [ ]

ω ω ω ω

ω ω

⎡= ⎣
⎤⎦

2 sin 2 cos 2 sin 2 2 cos 2

................ 2 sin 2 cos

kT kT kT kT

n kT n kT

kH
  (16) 

Then, execution of recursive equations (5) to (10) of the KF is performed to obtain the online 
estimation of all the involved components. Observe that the two associated states of each 
harmonic are indeed the in-phase and the quadrature components of each one. The 
measurement matrix is synchronized with the fundamental component, but the harmonic 
components are rarely in phase with it in practice. Hence, the phase-shifts with respect to 0° 
make that both states of each harmonic share information of their actual magnitude and 
actual phase. One state alone can not reveal the complete information of each component. 
Therefore, the magnitude and phase of each harmonic can be determined with the following 
expressions (also online at every sample): 

 [ ] [ ]( ) [ ]( )= +
2 2

1 2n n nMag kT x kT x kT   (17) 

 [ ] [ ]
[ ]( ) [ ]( )

−

⎡ ⎤
⎢ ⎥= ⎢ ⎥

+⎢ ⎥⎣ ⎦

21
2 2

1 2

sin n
n

n n

x kT
Phase kT

x kT x kT
  (18) 

which are accurate since the KF model that considers harmonics has the advantage that the 
estimation of both states of each harmonic stabilize with no oscillations. The only care in (18) 
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is to identify the quadrant at which the states form their vector, and add the corresponding 
adjustment angle. To show an example, the simultaneous estimation of the magnitude and 
phase of the fundamental and harmonic components of the same distorted signal of the 
previous example, but with different phases on the harmonics ( 3 15φ = ° , 5 150φ = ° ,  

7 120φ = ° , 11 60φ = − °  and 13 45φ = − ° ), is shown in Figures 23, 24, and 25. Since the 
fundamental and 3rd, 5th, 7th, 11th, and 13th harmonics are considered, the dimension of the 
model is 12. Figure 23 shows the original signal and the estimation of the fundamental 
magnitude. Figure 24 shows the rest of the harmonic amplitude estimations, all in rms 
values. The estimation of the phases of all components is shown in Figure 25. Observe that 
all states take around 20ms  to reach the final steady state values. The speed results are not 
as fast as in the previous example, due to the interaction and dependence of all components 
with each other in the matrix operations. However these estimations are very useful for 
steady state monitoring, since harmonics do not have fast changes in electrical systems. It 
should be noted that all the parameters are estimated online and simultaneously, and that 
all the delivered estimations are flat and accurate. The monitoring of harmonics in a point of 
an electrical system is a very common practice in power quality, and can be used to solve a 
variety of problems they cause. 
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Fig. 23. Estimation of the fundamental component of the voltage signal with harmonics. The 
complete model that considers the fundamental and harmonic components is used. 
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Fig. 24. Magnitude estimation of the harmonic components of the distorted voltage. 
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Fig. 25. Phase estimation of the harmonic components of the distorted voltage. 
Other parameter that can be estimated with the KF is the frequency of a signal. One 
approach that estimates the magnitude, phase, and frequency of a signal simultaneously is 
discussed in [Dash et al., 2001], using an extended complex Kalman filter (ECKF). In fact, the 
estimation of all the mentioned parameters can be made simultaneously, another different 
parameter can be estimated, or any other combination of parameters can be extracted with 
the KF. The main problem is the model definition, which must be proposed adequately to 
have the desired estimations. 

6. Conclusions 
The main applications of the Kalman filter in the power quality field of electrical 
engineering are discussed in this chapter. 
Due to its high-quality characteristics as estimator, the KF can be applied as an algorithm that 
is part of the control stage of some active power compensators to fast detect in real time 
voltage disturbances, mainly sags, swells, and interruptions. Detection of disturbances on an 
ideal voltage and on a more realistic case with harmonics are evaluated and compared. A 
simple low order KF model that considers the influence of harmonics in the signal is discussed 
and validated. The dependence of the speed of detection of the KF on the starting angle of the 
disturbances is also addressed. One drawback is that the KF has some regions of slowness. 
To overcome this, a fast detection method for sags, swells, and interruptions based on the 
combination of the KF and the digital RMS algorithm can be used. When combined, the 
advantage of high speed of the KF at some regions is availed, and the slowness it has at 
other regions is rejected with the digital RMS method. The KF-RMS algorithm considers the 
dependence of the time of detection on all possible electrical angles at which a disturbance 
could appear, sag depths from 0.1p.u. to the complete interruption, swell rises from 1.1p.u. to 
2.0p.u., and an amount of harmonics that is higher than the allowed by the most important 
worldwide standards on voltage harmonic levels in practical electrical systems, leaving 
apart in this way the ideal and non practical case. The method has a very high probability 
that all events are detected in less than a quarter of cycle, and more than 50% of probability 
they are detected in less than 2ms, which can be considered very fast. A small zone of angles 
and depths at which the method takes more than a quarter of cycle to detect disturbances 
exists, but indeed, detection times will never be equal or greater than half cycle. The 
performance of the KF-RMS method is also affected by the sampling frequency. However, 
this dependence can be eliminated by selecting an adequate Q matrix for each sampling 
frequency. Experimental tests of the method validate and strengthen the contribution in 
detection of disturbances. 
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The application of the KF as estimator of parameters for power quality monitoring is also 
addressed. It can be applied for the estimation of the magnitude, frequency, and phase of 
the fundamental and harmonic components of a signal, in an independent way, or 
simultaneously using any combination of them. The collected information can be recorded 
and used to obtain statistics on the behavior of a voltage or current within a lapse of time, 
such as the steady state parameters and the number voltage variations, with their 
classification and characterization. This monitoring information can be used to propose 
solutions for power quality improvement. The correct definition of the model is crucial to 
have the desired estimations. An actual fact is that the KF proves to be a very useful and 
advantageous algorithm to help improving power quality in a variety of ways. 
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1. Introduction 

Bad-data detection in pre-estimation can help to improve state estimation [Teeuwsen & 
Erlich, 2006]. Since transient and abnormal conditions may occur in a power system, 
measurements may be polluted by bad data to cause estimated errors. Hence, it is necessary 
to accurately detect the bad data. To ensure the reliability of the measured data, a practical 
state estimator should have an ability to detect and identify the bad data as well as to 
eliminate their effects on the estimation [Zhang & Lo, 1991]. 
Generally, bad-date detection is important to guarantee the reliability of the measured data. 
If one or more errors occur in power system measurements, the states of the estimated 
system may be biased and the safety of power supply may be potentially dangerous. To 
avoid this situation, several bad-data detection and identification schemes have been 
presented. For example, WLS (weighted least squares) was proposed in 1989 [EI-Keib et al., 
1989]. The weighted sum of squares of the measurement residuals was chosen as the 
objective function to be minimized. But, WLS-based state estimators were only developed 
by using a linearized measurement function [Huang & Lin, 2003] with complicated 
computations. Then, linear programming (LP) was proposed to improve the identification 
method [Peterson & Girgis, 1988]. However, the LP estimator may fail to reject the bad data 
and it can be attributed to the existence of leverage in the power system model [Ali Abur, 
1990]. Thus, Ali Abur had proposed hypothesis testing identification (HTI) to extend the 
case of the LP estimator. Nevertheless, it had caused computational burdens with taking the 
special properties of the LP estimation equations into account. Huang [Huang & Lin, 2003] 
proposed a changeable weighting matrix to identify the bad data but it only can apply for 
static state estimations. Nevertheless, Zhang had proposed recursive measurement error 
estimation identification (RMEEI) for bad-data identification [Zhang et al., 1992]. State 
variables, residuals and their parameters can be updated after removing a measurement 
from the suspected data set to the remaining data set by using a set of linear recursive 
equations. With splitting the raw measurements into some parts, a set of residual equations 
used by the traditional methods can only apply to linear systems and it may result the 
operation of calculation burden and complexity because each part consists of some 
measurements [Zhang et al., 1992]. 
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Thus, an artificial neural network (ANN) technique was proposed to overcome this 
problem. Moreover, data projection technique [Souza, et al,. 1998] is proposed, the 
normalized innovations are used as input variables to construct ANN based on the Group 
Method of Data Handling (GMDH) for bad data identification. Pattern analysis techniques 
[Alves da Silva, et al., 1992] is developed which based on a probabilistic approach with 
implementing ANN to correct the bad data in critical measurements. The ANN can find a 
nonlinear function mapping between input and output through the trained weights; 
meanwhile, it can be considered as an estimator to filter abnormal variations from input not 
the output. This means noise or large variations can be eliminated or depressed if they occur 
at the ANN input. Furthermore, the ANN can process raw estimated measurements by the 
trained ANN to diagnose bad data with a threshold value [Salehfar & Zhao, 1995] or gap-
statistic-algorithm [Teeuwsen & Erlich, 2006; Huang & Lin, 2004]. Its advantage is that most 
measured errors can be identified and responded quickly but the pre-requisite is under a 
well training to construct the nonlinear function between input and output. In literature 
[Teeuwsen & Erlich, 2006; Salehfar & Zhao, 1995; Huang & Lin, 2002], the back-propagation 
algorithm has usually been applied to train the ANN. However, it has several drawbacks as 
follows: 
1. The complex quantities measured in a power system need to separate into two parts 

since the standard ANN only uses real numbers as variables. This increases the size of 
the neural model to result poor convergence behavior. Although Salehfar and Zhao 
[Salehfar & Zhao, 1995] had proposed a divided technique to solve this problem, it will 
increase the number of iterations in the learning stage. Thus, the divided technique is 
labor-intensive and inconvenient. 

2. The nonlinear mapping function used in power system measurements is complex and 
cannot be implemented with the standard ANN. Thus, the filtering performance is 
degraded. This means the standard ANN may not be able to remove noise and 
abnormal variations well at the input. 

3. The training method used in the standard ANN is based on the back-propagation 
algorithm. However, the back-propagation algorithm cannot validly keep immunity 
from noise on the training data. Thus, the nonlinear function will be affected by the 
training algorithm in bad mapping. 

4. The learning rate is not sure to be suitably applied because of the heuristic choice. It 
may incur the problem of stability and suffer from much slower convergence if an 
improper learning rate is chosen. Moreover, the learning rate is usually adjusted at the 
training stage for different systems. This is inconvenient for applications. 

To overcome those drawbacks, in this chapter we proposes an extended complex Kalman 
filter artificial neural network (ECKF-CANN). It can perform well on bad-data identification 
with fast computational speed in two stages. The first stage is the learning process. State 
variables consist of the weighting that can be learned using extended complex Kalman filter 
(ECKF) to achieve the purpose of adjusting the learning of artificial neural network (ANN) 
constantly. As the training has been finished, similarly, a polluted value with several times 
of the standard deviation of the measurements was added into the measurements. The 
second stage uses the complex ANN (CANN) with the trained weighting to estimate the 
measurements. The rule of bad-data decision is to minimize the square difference between 
the measured and estimated values. 
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2. Complex artificial neural network 
This chapter uses the ECKF algorithm to train the weightings of the ANN since the ECKF 
can estimate continually to modify the weightings in order to reach the learning purpose of 
the ANN without the learning parameter at the learning stage. Then, the trained CANN can 
be used for bad data detection.  Moreover, the proposed ECKF-CANN method can increase 
the magnitude of the squared errors to enhance the efficiencies of bad data detection as bad 
data have been occurred because the nonlinear mapping function of the CANN and the 
complex measurements are coordinated well and the ECKF has a pre-filtering characteristic. 
A framework of the proposed ECKF-CANN method is shown in Fig. 1. As seen in Fig. 1, 
this method uses two algorithms. One is the artificial neural network (ANN) with complex-
type variables; the other is the extended complex Kalman filter (ECKF) to train the link 
weightings of the complex ANN (CANN). 
 

 
Fig. 1. Framework of the ECKF-CANN method. 

The structure in the nth neuron of the L layer is shown in Fig. 2. The input complex signal 
can be separated into real and imaginary parts. The output is a complex-type by operating 
with the activation function )(f • to suppress the varying range of the input signal. The 
relation of input and output of the neuron is written to be 
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Fig. 2. Configuration of complex neurons. 
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Similarly, L
R,nS  and L

I,nS  are the real and imaginary parts of the input neuron L
,nS , 

respectively. L
nS  is a linear combination of the output of the prior layer and is represented 

by the following equation. 
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In (2), 1L
nmW −  denoted the weighting of the prior layer is also a complex-type. Its operating 

structure is shown in Fig. 3 and the relation of the input data and the weighting is written to 
be 
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Fig. 3. Configuration of data resolution. 

Substituting (3) into the activation function )(f • , one can obtain 

 )WOWO(jf)WOWO(f)WO(f IRIRIIRR ∗+∗+∗−∗=∗   (4) 

To satisfy the conditions of the activation function, a complex activation function is obtained 
by conforming to a special property which it is analytic and bounded everywhere in the 
complex plane [Taehwan Kim & Adali, 2000]. This paper selects the function of )ztanh(  as 
an activation function, where z is a complex value. 

3. Extended complex Kalman filter 
The ECKF-CANN method is proposed to use the innovation vector to minimize the 
difference between input and output. The unknown link weighting w of the ECKF-CANN 
method [ Deergha Rao, 1996; Deergha Rao et al., 2000; Taehwan Kim & Adali, 2000] from the 
first layer to the M layer can be considered as state variables of the ECKF for estimations as 
below: 

 TT1MT3T2T1 ])w(,...,)w(,)w(,)w[(w −= , )1L( ×   (5) 

where superscript T is the matrix transpose operation, L  indicates the total number of  the 
sum of link weighting. If Nn is the number of the neuron in the n layer, the link weighting at 
ith node of the n layer n

iw  is written to be 
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The link weighting wn of the n layer is expressed to be 
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and the total number of the link weighting of the CANN is given to be 
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Assuming the output )t(On  of the nodes at nth layer can written to be 

 Tn
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and the desired output )t(d  is given to be 

 T
N1 )]t(d),...,t(d[)t(d

M
= , )1N( M ×   (10) 

As a result, the model of multilayered neural network can then be expressed by nonlinear 
equations as below: 

 )t(w)1t(w =+   (11) 

 )t(v)t(O)t(d M +=  (12) 

where )t(OM  is the output layer of the CANN at an instant time t, M is the output of the 
last layer, v(t) is a random noise with covariance Rv(t). Thus, the learning algorithm of the 
ECKF-CANN is summarized to be 

 )]t(Ô)t(d)[t(K)1t(ŵ)t(ŵ M−+−= , )1L( ×   (13) 

1
v

HH )]t(R)t(H)1t(P)t(H[)t(H)1t(P)t(K −+−−= , 

 )NL( M×   (14) 

 )1t(P)t(H)t(K)1t(P)t(P −−−= , )LL( ×   (15) 

where K(t) is the Kalman gain, H(t) is the measurement matrix, H(t)H is the Hermitian 
matrix of H(t) called the Jacobian matrix, ŵ is the estimated value of w, and P(t) means the 
expectation values of the residual of the )t(ŵ  and )1t(ŵ − . One can further write the P(t) 
and H(t) to be as below: 

 }))1t(ŵ)t(ŵ))(1t(ŵ)t(ŵ{(E)t(P H−−−−=   (16) 
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Note that the noise of the training data can be depressed since the ECKF used to train the 
weightings of the CANN does not consider the learning rate with heuristics. 

4. Bad data detection 
For bad-data detection, complex-type data obtained from power flow calculations are used 
in this chapter. The data learned by the ECKF will be used to train the variety of the 
weightings and the architecture of Complex ANN filter is applied to estimate the polluted 
measurements. 
Since the difference between the measured value Xi and the estimated value Oi at a 
particular measurement point is larger than a pre-specified detection threshold in the ECKF-
CANN, the decision rule based on CANN is given by 

 2
i

2
ii r)OX( >− , n,...,1i =   (26) 

where the parameters i and r represent the measurement index and the threshold, 
respectively. An appropriate threshold is important for bad-data detection. Many trials have 
to be made in order to determine the best value. Generally, the square of 10 times standard 
deviation is chosen for each measurement index [Salehfar & Zhao, 1995]. Bad data can be 
flagged as the square of the residual between the measured and estimated values is larger 
than the corresponding threshold. Thus, the bad data can be detected. The procedure of bad-
data detection is described as follows: 
Step 1. Inputting normal measurement from a telemeter instrument at a control point such 

as voltages or power flows in a power system. 
Step 2. Performing the learning phase of ECKF to estimate the link weighting. 
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Step 3. Completing the learning as the residual is smaller than the accepted range during 
constant training of ECKF by the past historical data. 
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where nRD  and nID  are the real and imaginary parts of the designed value, 
respectively. nRO  and nIO  are also the real and imaginary parts of the output of 
ECKF, respectively. 

Step 4. Inputting the polluted measurement and executing the CANN algorithm. 
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Step 5. Determining bad data by squaring the difference between the estimated and 
measured values with the decision rule as shown in (26). 

Step 6. Using the estimator to directly estimate with no bad-data existing. If bad data have 
occurred, the original measured value can be replaced by the estimated value and 
state estimation can be executed again. 

The whole process of estimations as mentioned above may continue until the measurement 
index is beyond the time point obtained from the raw measurement. 

5. Simulation 
Two test systems including a 6-bus and the IEEE 30-bus power systems are used in this 
study. ANN configurations include input, hidden and output layers. The 6-bus system as 
shown in Fig. 4 consists of 6-bus voltage magnitude |V| i , 3 pairs of active and reactive 
generations, 3 pairs of active and reactive loads Pi, Qi, and 22 pairs of active and reactive 
line flows Pi-j, Pj-i, Qi-j and Qj-i. Total of 62 data are measured in this system. Since the 
active and reactive power flows can be represented with a complex-type, the total measured 
data is then reduced to 34. As for the 30-buses system, it consists of 24 load buses, 5 
generator buses and 1 reference (swing) bus as shown in Fig. 5. As a result, total of 142 data 
are needed to measure with the complex-type representation. 
 

 
Fig. 4. Measurement configuration of 6-bus system. 

Three methods will be used to detect the bad data, including ECKF-CANN, real back-
propagation artificial neural network (RBP-ANN) and complex back-propagation artificial 
neural network (CBP-ANN). Moreover, abilities on convergences and noises rejection of the 
three methods are performed to assess their efficiency on bad-data detection. Comparison of 
the convergent behavior for detecting the 6-bus system using the three methods is shown in 
Fig. 6. As seen from Fig. 6, the squared error is 0.60726 at the 2nd number using the ECKF-
CANN. However, the squared errors reach 0.94414 and 0.93272 at the 70th and 40th training 
number for the RBP-ANN and CBP-ANN, respectively. 
To avoid interfering bad-data detection, the ability of noises injection is tested by applying 
above three methods and the results are shown in Fig. 7. As seen from Fig. 7 the squared 
error of the RBP-ANN reaches 0.45 at the noise of 18 dB. However, the squared errors of the 
CBP-ANN and ECKF-CANN reach only 0.0014461 and 0.00016034 at the noise of 20dB, 
respectively. Thus, performance on noise injection using the ECKF-CANN is the best among 
the three methods. 
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Fig. 5. Measurement configuration of IEEE 30-bus system. 

 
Fig. 6. Comparison of the convergent behavior for three methods. 

For the 6-bus test system, the data of 150 time points can be obtained from the original 
power flow calculation and the first 100 time points are used as the training data of the 
neural network. For convenient observations, the last 20 time points of the data will be used 
for bad-data detection. The standard deviations of 0.01 and 0.02 for the bus voltages and the 
rest of measured data at the last 20 time points will be used for evaluating bad-data 
detection of ANN during the time duration of the last 20 time points. Similarly, the data 
measured at the power system of IEEE standard 30-buses will also use the last 20 time 
points. 
Normally, the standard deviation obtained from the measured values at the first 100 time 
points of the data is used to generate the bad data. However, 20 to 100 times of the standard 
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deviation was used as the error to add into the measurement in order to generate the bad 
data [Salehfar & Zhao, 1995]. However, this paper uses 20 times of the standard deviation of 
the measured values to pollute the measurements. Three of the polluted data will be used 
for bad-data detection and they are described as below. 
 

 
Fig. 7. Comparison of the capacity of noise rejection for three methods. 
 

 
Fig. 8. Comparison of the squared errors for bad data detection in P4 using two different 
methods on a 6-bus system, (a) RBP-ANN, (b) ECKF-CANN. 
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Case 1: Single bad data 
Situation A: 6-bus power system 
For the 6-bus system shown in Fig. 4, a measurement at bus 4 (i.e., P4) numbered as 10 is 
assumed to have a variation of 20 times standard deviation of the measurement at 12th time 
point. The squared errors between the measured and estimated values are shown in Fig. 8. 
As seen from Fig. 8(b), the ECKF-CANN method can effectively detect the bad data of 
power signals since it only has a pillar spiking out at 12th time point for the measurement 
number 10. However, the squared errors for each measurement at 12th time point using the 
RBP-ANN method as seen from Fig. 8(a) are all beyond the threshold value. This means the 
RBP-ANN method cannot detect the bad data effectively in this case. 
Moreover, the estimated measurement at 12th time point using the RBP-ANN and ECKF-
CANN methods as estimators are shown in Fig. 9. As seen from Fig. 9(a), the gap between 
the measured and estimated values at each measurement number is large except the 
measurement number 10. For example, the estimated and measured values at the 
measurement number 10 are -0.0464 and -0.144, respectively. Thus, the gap is only 0.0976 
with its square error of 0.00953 which is smaller than the gaps of other measurements. Thus, 
those gaps result in the squared error of some measurements using the RBP-ANN method 
are beyond the threshold value except the measurement number 10. As seen from Fig. 9(b), 
the gap between measured and estimated values is large only as the measurement number  
 

 
Fig. 9. Estimated results of the estimator at 12th time point using different methods on a 6-
bus system, (a) RBP-ANN, (b) ECKF-CANN. 
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of bad data has occurred. For the measurement number 10, the estimated and measured 
values are -0.5335 and -0.144, respectively. Thus, the gap will reach 0.3894 with its square 
error of 0.152. This means the proposed ECKF-CANN method is surely more effective for 
single bad data detection than the Real-ANN method. 
In addition, this chapter uses robust statistics [Mili ,et al,.1996; Pires ,et al,.1999] to obtain 
robust distances of the measured data for bad data detection under the same condition 
mentioned above. This method uses a chi-square distribution 2/12

025.0, )( νχ with ν  degrees of 

freedom (i.e., ν  = n-1, where n is the number of the bus) as a cutoff value to flag the bad 
data. The detected result of the measurement at 12th time point for the measurement number 
10 based on robust statistics is shown in Fig. 10. As can be seen from Fig. 10, the magnitude 
of the robust distance at the measurement number 10 is about 29.4077 and is greater than the 
cutoff value 3.582. Thus, the bad data in P4 can be detected. 
 
 

 
 

Fig. 10. Estimated results at 12th time point using robust statistics on a 6-bus system. 
Situation B: IEEE 30-bus power system 
This case assumes the bad data occurs at 12th time point of the P14 (i.e., P14 is the real power 
at bus 14) for the measurement number 12. The square errors with only the front 50 
measurements obtained by the two methods are shown in Fig. 11. As seen from Fig. 11(b), 
the squared error reaches 0.406 at 12th time point which is largely greater than the squared 
errors of other measurements. This means the bad data occurred in the P14 can easily be 
detected. Unlike Fig. 11(b), there are many squared errors obtained by the RBP-ANN 
method at some measurement numbers as shown in Fig. 11(a). For example, two pillars are 
spiking out at the measurement number 13 for different time point and the squared error 
even reaches 0.0304. Nevertheless, the squared error is only 0.00018 at the measurement 
number 12 at 12th time point. This situation will result a difficulty on detecting the bad data 
if the threshold value is chosen. 
In addition, a bad-data is assumed to occur at the 12th time point of the P1-3 (i.e., P1-3 is the 
real power of the transmission line flow from bus 1 to bus 3) for the measurement number 
10. The threshold used to identify the bad data is predetermined to be 0.0009874 and the 
standard deviation is computed to be 0.0031423. The test result using the ECKF-CANN 
method is shown in Fig. 12. As seen from Fig. 12, the squared error is near 0.02 at the 12th 
time point of the first area and it is greater than the threshold. Thus, it can be used to detect 
the bad data occurred in the P1-3. 
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Fig. 11. Squared errors of P14 for the IEEE 30-bus system, (a) RBP-ANN, (b) ECKF-CANN. 

 
Fig. 12. Squared errors of P1-3 for the 30-bus system using the ECKF-CANN. 

 
Fig. 13. Comparison of the squared error for the 6-bus system using the CPB-ANN and 
ECKF-CANN methods. 
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Case 2: Multiple bad data 
Situation A: 6-bus power system 
Bad data are assumed to occur in the P6, P2-3 and P2-1 of the measurement value at the 8th 
time point. The numbers 12, 22 and 30 are real-type measurements and the numbers 12, 16 
and 24 are complex-type measurements. The threshold used to identify the bad data is 
predetermined to be 0.013938 and the standard deviation is computed to be 0.011806 in the 
P2-3 measurement value. Comparison of the results using the ECKF-CANN and CBP-ANN 
methods is shown in Fig. 13. As seen from Fig. 13, the squared errors in the P6, P2-3 and P2-1 
of both methods are all greater than the threshold. However, the results using the CBP-ANN 
method for detecting other measurements are beyond the threshold. Thus, the detected 
results were interfered. As seen from the right side in Fig. 13, the squared error of other 
measurements is smaller than the threshold. This means the ECKF-CANN method is more 
useful for bad-data detection in power signals. 
Similarly, detection of the imaginary part of complex state variable with multiple bad data is 
tested. The bad data are assumed to occur in the Q6, Q1-4 and Q4-1 of the measurement value 
at the 12th time point. As seen from Table 1, the squared errors for detecting Q6, Q1-4 and Q4-1 
are all beyond the threshold value. However, the squared errors in the Q1-4 and Q4-1 using 
the ECKF-CANN method are greater than those of using the CBP-ANN method. As a result, 
bad-data detection using the ECKF-CANN method is better than the CBP-ANN method 
since it has higher squared error. 
 

Methods Q6 Q1-4 Q4-1 

CBP-ANN 0.99662 0.035799 0.027097 
ECKF-CANN 0.60883 0.081422 0.069158 

Table 1. The squared error of Q6, Q1-4 and Q4-1 for the 6-bus system. 
Situation B: IEEE 30-bus power system 
Bad data are assumed to occur in the measurements of P2, P5-7 and P7-6 at the 10th time point 
of the 2nd area. The numbers 6, 19 and 31 are real-type measurements and the numbers 6, 14 
and 26 are complex-type measurements. The test results are shown in Fig. 14. As seen from 
Fig. 14, the RBP-ANN method cannot effectively detect the bad data because its squared 
errors are all larger than the threshold value of each measurement. However, the CBP-ANN 
and ECKF-CANN methods can detect the bad data in the P2, P5-7 and P7-6 at the 10th time 
point since their squared errors are all beyond the threshold value, as seen from Fig. 14(a) 
and 14(c). 
Case 3: Interacting bad data 
Situation A: 6-bus power system 
Bad data are assumed to occur in the P1 and P4 with excessive errors and in the P1-2 and P3-2 
with reverse signs of measurement values at the 10th time point. The numbers 7, 10, 19 and 
34 are real-type measurements and the numbers 7, 10, 13 and 28 are complex-type 
measurements. Comparison of the results using the CBP-ANN and ECKF-CANN methods 
is summarized in Table 2. As seen from Table 2, the squared error in the P1-2 at the 10th time 
point using the ECKF-CANN method is greater than that of using the CBP-ANN method. 
Moreover the square error using the ECKF-CANN method is increased to raise the rate of 
distinguishing the bad data. This means the ECKF-CANN method is better for detecting the 
combination of different types of bad data than the CBP-ANN method. 
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Fig. 14. Comparison of the squared errors for bad-data detection in P2, P5-7 and P7-6 using 
three different methods for the 30-bus system, (a) CBP-ANN, (b) RBP-ANN, (c) ECKF-
CANN. 
 

Methods Measured 
value 

Estimated 
value 

Squared 
error 

CBP-ANN -0.051971 0.056848 0.011842 
ECKF-CANN -0.051971 0.076853 0.016596 

 

Note: The threshold is 0.014329 and the standard deviation is 0.01197. 
Table 2. Results for detecting different types of bad data occurring in P1-2. 
Situation B: IEEE 30-bus power system 
Bad data are assumed to occur in the P21 and P9-10 with an excessive error and in the P22-21 
and P28-8 with a reverse sign of the measurement values at the 10th time point of the 4th area. 
The results are shown in Fig. 15. As seen from Fig.15, the ECKF-CANN method can detect 
the bad data in the measurements of P21, P9-10, P22-21 and P28-8 obviously. But, the squared 
errors of each measurements of the RBP-ANN at the 10th time point are all beyond the 
threshold value. Thus, the RBP-ANN cannot judge whether there are bad data polluted in 
the measurement. 
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Fig. 15. Comparison of the squared errors for bad-data detection in P21, P9-10, P22-21 and P28-8 
using three different methods for the 30-bus system, (a) RBP-ANN, (b) ECKF-CANN. 

6. Conclusion 
The method with the ECKF learning algorithm based CANN has been developed in this 
paper to identify the bad-data occurred in a power system. Complex state variables were 
applied as a link weighting. The proposed method not only can largely reduce node 
numbers of neurons, but also can search out the suitable and available training variables. 
Moreover, the ECKF-CANN method converges faster than the traditional algorithms and its 
capacity of noise rejection is better than the traditional algorithms. 
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1. Introduction  
There is increasing demand for dynamical systems to become more realizable and more 
cost-effective. These requirements extend new method of control and operation. In the 
robotic world important is rapidity and precision as well. These two criteria can be 
connected in low-cost sensorless robot arm system.  
Permanent Magnet Synchronous Motors (PMSM) are used in the most modern motion 
control application. The PMSM products have been a new generation of electric motor of 
low energy, environmental protection, high efficiency that can be widely applied in many 
fields. The motor described simplicity of construction, high torque and small moment of 
inertia due motor size. One weakness can be noticed rotor position is necessary to full 
performance control. The Field Oriented Control (Vas, 1999) strategy permits one to fast 
response to load and speed changes. The purpose of this chapter is to obtain a fully PMSM 
drive control algorithm used for robot arm drive with load torque recognition without using 
any mechanical sensor. A few steps shows how to use an Extended Kalman Filter (EKF) 
instead of sensors for mechanical quantities. 
Standard approaches defined state vector of observer restricted to sensorless control for 
motor only, like speed and position (Bolognani et al., 2003; Dhaouadi et al., 1991). There are 
often situation in which we want to obtain other types of state estimates, which can be 
helpful to whole robot system controllers like load torque (Janiszewski, 2006; Terorde & 
Belmans, 2002; Zhu et al., 2000; ). In the most practical tasks information about forces acted 
in particular arm axis should be necessary to know.  The unavoidable environment, robot 
modelling errors and uncertainties may cause rising of contact forces ultimately leading to 
the unstable behaviour during the interaction. Managing the interaction of the robot with 
the environment can be motion strategy. 
The Kalman filter (Kalman, 1960; Gelb, 1974; Grewal & Andrews, 2001) is often applied 
during dissolving state estimation of dynamical system. Extended Kalman Filter is 
generalized algorithm, which can be used for non-linear systems such as PMSM. The 
estimation is done upon undisturbed input signals from overriding controller and disturbed 
output signals of a real non-linear plant, which are measured.  



 Kalman Filter 

 

146 

2. Permanent magnet synchronous motor drives 
2.1 Permanent magnet synchronous motor 
The Permanent Magnet Synchronous Motor is a rotating electric machine where the stator is 
a classic three phase coils like that of an induction motor and the permanent magnets are 
located on the rotor surface. A PMSM provides rotation at a fixed speed in synchronization 
with the frequency of the power source, regardless of the fluctuation of the load or line 
voltage. The motor runs at a fixed speed synchronous with mains frequency, at any torque 
up to the motor’s operating limit. The PMSM consist stator windings and rotor permanent 
magnets sinusoidally distributed so Field Oriented Control can be used (Vas, 1990). From a 
control point of view, FOC is transfer and extension of DC motor control theory into PMSM. 
The basic concept is control by a excitation field and armature field-current (Vas, 1990). 
This type of machines are extensively used in servo drives for low power machine tool, e.g. 
robots, positioning devices etc. They are receiving increased attention by possibility to use in 
the region of larger power e.g. electricity generation. The following requirements for servo 
drives must be served: 
• high possible power to weight ratio, 
• large torque to inertia ratio – high acceleration possible, 
• smooth torque in wide speed – small pulsation of speed, 
• full torque at zero speed – stand still working, 
• high speed operation, 
• compact design and small size. 
New types of Permanent Magnet materials offer the ability to design electromagnetic energy 
converters with complicated shapes. Permanent magnets can be sticked or inserted to the 
small rotor. Rare-earth magnets are mostly used in modern drive. It can be obtained air-gap 
flux density in range of 1 T.  
PMSM are used in high-accuracy direct-drive applications mainly due to their advantages. 
Compared to conventional DC motors, they have no brushes or mechanical commutators, 
which eliminates the problems due to mechanical wear of the moving parts. In addition, the 
better heat dissipation characteristic and ability to operate at high speed render them 
superior to the PMSM drives. 
 

 
Fig. 1. Two coupled PMSM – laboratory setup. 

2.2 Vector control scheme of PMSM 
The control scheme of PMSM is relative simple, proposed scheme is presented on Figure 2.  
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Fig. 2. Structure of control strategy of the PMSM sensor control 

The field-oriented controller is based on a current-controlled voltage source inverter 
structure (Vas, 1990; Janiszewski 2004; Terorde, 2002). The current control loops are 
arranged in the 2-phase synchronously rotating rotor reference frame d-q aligned with rotor 
flux (also rotor position g), while the rotor position and speed detection operates in the 2-
phase stationary reference frame αβ. 
 

 
Fig. 3. dq and α-β reference frame. 

The dq-phase arrangement PMSM machine is similar to DC machine in operation. 
The excitation flux (Ψf) is frozen to the direct axis of the rotor and  is associated with d axis. 
Equivalent of armature current in DC machine is associated with current in q axis. There is 
also assumed that the effect of any magnetic saturation is neglected during working and 
thus for modelling purposes the permanent magnets can be considered as constants.  
Based on above assumptions the control scheme is similar to cascaded DC motor control. 
The PI speed controller feeds the reference value for the torque - exciting current iq. Due to 
the permanent magnets at the rotor, the reference value for the field exciting current id is 
kept to zero. Motor operating does not require the field weakening, as assumed. 
Current feedback is obtained by measuring the 3-phase currents and transformations to the 
stator components [abc/ab] and next to the rotor components [ab/dq]. The rotor current dq-
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axis components are needed for current regulation. Standard PI controllers with anti wind-
up limitation are used for all regulators. 
The output of the current controllers represents the reference voltages (ud and uq) in the rotor 
coordinates. These values are transformed [dq/ab], knowing rotor position g, into the stator 
coordinates (uα and uβ) in order to calculate the desired polar voltage vector. 
Using space vector Pulse Width Modulation (PWM), the polar voltage vector is converted to 
three phase currents by PWM inverter. Simplified electrical structure of inverter is presented 
on Figure 4. 

 
Fig. 4. Idea of 3-phase PWM inverter 

The inverter (Fig 4. and [PWM] block on fig. 2) consists of three half-bridge units where the 
upper and lower switches are controlled complimentary. That is meaning when the upper 
one is turned on, the lower one must be turned off, and vice-versa. The output voltage is 
created by a PWM technique by modulating the high-side (T1, T3, T5 on Fig. 4) and low-side 
(T2, T4, T6) switches of the power inverter. (Vas, 1990) 
The power devices for this applications are IGBT (Insulated Gates Bipolar Transistor). The 
main advantages of IGBT are small conducting resistance, small voltage drop and it is 
designed to rapidly turn on and off switching, so it is suitable using for synthesize high 
frequency PWM switches. 
Mechanical part of the system (see Fig 1) consist only still shaft and dynamical load 
generator. To simplify considerations and laboratory tests to be make a assumption that 
shaft is extremely still, and only one parameter describable – concentrated moment of 
inertia J. This parameter is amount of all moments of inertia in mechanical system. 
Dynamical load Tload is done by second similar motor (right side of Fig 1) which is supplied 
from independent converter and it is used only for generation variable load torque. 
In presented method position of rotor was measured. In fact most cases are used position 
encoder only, but speed is computed derivatively. 

2.3 Sensorless control 
The scheme of sensorless control of PMSM is very similar to sensor control (Barut, et al. 
2005; Bolognani et al., 2003; Dhaouadi et al., 1991; Janiszewski, 2004, 2005). Proposed scheme 
is presented on Figure  5. There are one significant different, system have no any mechanical 
sensors. It can be possibility to replaced physical sensors by mathematical algorithm. 
Sensorless control diagram consists of PI current controllers subordinated to speed 
controller and adequate frame coordinate transformations. There are no differences in this 
part. The main state of presented system is an estimator, realized by Kalman Filter theory 
operation. 
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The PI speed controller feeds current id* in q axis in order to keep Field Oriented Control 
(Vas, 1999). The demanded current is computing by using the difference between requested 
speed (ωr*) and speed ( ˆ rω ) estimated by Kalman filter. Motor operating does not require the 
field weakening, as assumed. Therefore desired current id* in d axis is maintained to zero. 
These signals are inputs of PI current controllers, which provides desired voltages in dq 
reference frame. Basing on estimating shaft position γ̂ , voltages are converted into the 
stationary two axis frame (αβ) and send to control Pulse Width Modulation inverter. 

 
Fig. 5. Structure of control strategy of the PMSM sensorless control 

3. Modelling of the system 
As known, a motor model is required for the implementation of observer based on Kalman 
filter approach. There are no general methods that can be used to get a complete model. 
Each object has its own characteristics, several papers concerning modelling of PMSM 
(Bolognani et al., 2003; Janiszewski, 2004; Pillay & Krishnan, 1988; Vas, 1999). Some general 
guidelines can be given but mathematical model building often has to be combined with 
experiments. 
The mathematical model of object is a major task during building up an observer. The 
proper model can simplify a solution of estimation approach. Choosing a rotor reference dq 
frame causes simplification sinusoidally distributed inductances and causes model similar 
to the DC machines. As is well known, the transformation of the synchronous machine 
equations from the  abc phase variables to the  dq variables forces all sinusoidally varying 
inductances in the abc frame to  become  constant  in  the  d, q.  
The following assumptions are made in the derivation:  
• saturation  is  neglected  although  it  can  be  taken  into  
• the back emf is sinusoidal;  
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• eddy currents  and hysteresis  losses are negligible.  
The electrical properties of the motor in continuous time are completely described by two 
voltage network equations of the stator in rotating quadrature dq frame, as follows: 

 
(1) 

 
q

q s q q r d d r f

di
u R i L L i

dt
ω ω= ⋅ + + ⋅ ⋅ + ⋅ Ψ

 
(2) 

where: ud, uq are stator voltages, id, iq – stator currents, Rs is stator phase resistance, Ld, Lq –dq 

axis stator inductances, Ψf – rotor flux, ωr – mechanical speed in electrical rad/s.  
The electromagnetic torque of the PMSM with surface mounted magnets and with 
symmetrical stator winding can be achieved very simply, and can be expressed similarly do 
the DC machine, as a product of iq axis current and magnetic field. In case of interior 
permanent magnets the additional reluctance torque can be exploited: 

( )( )3
2el q f q d dT p i L L i= ⋅ ⋅ Ψ − −

, 
(3) 

where: p is a number of pair of poles.  
The simple mechanical system can be consider with one Inertia (J) and one acting load 
torque (Tload). Mechanical dynamics may be described as the acceleration equation:  

 
(4) 

It is possible to define general movement equation as 

( )( )r load
q f q d d

d Tp
i L L i

dt J J

ω
= ⋅ Ψ − − −

. 
(5) 

Many speed observers described in literature do not recognize load torque (Bolognani et al., 
2003; Dhaouadi et al., 1991). It is assumed, the velocity is treated like constant in short period 
of time. These solutions avoid load torque which is treated like unknown disturbance. 
The derivative of angular shaft position is defined by: 

r
d p
dt
γ ω=

. 
(6) 

The state-space representation of the model is useful for observer construction. The main 
problem when making a mathematical model is to find the states of the system. The states 
variables definitively describe storage of energy and mass in the system. Typical variables that 
are chosen as states are voltages and currents for electrical systems, position, speed and torque 
for mechanical.  Basing on described balanced equations (1,2,5,6), we can write down similar 
to (Barut, 2004; Janiszewski, 2005, 2006; Terorde & Belmans, 2002) as the state-space vector: 
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. 
(7) 

Discrete-time of presented continuous system is described by the following state equations: 

( ) ( )1k k k k k k k kx x x x u w+ = ⋅ + ⋅ +A B , (8) 

  
(9) 

 

 

Fig. 6. The PMSM discrete model 

In this case all variables are available. The system has a electrical input – stator voltages (αβ 
reference frame):  

 
(10) 

and electrical output – stator currents: 

. 
(11) 

In the original abc reference frame the windings are displaced at 120 electrical degrees in 
space, and voltages and currents equations are dependent of each other and time. The 
transformation to two perpendicular phases (αβ ) can avoid this relation. The relation 
between the two-axis stator currents components and the corresponding three-phase 
measured current can be obtained by: 

. 

(12) 

The next very important step is avoid the rotating vector. It can be possible to observing the 
current in the reference frame rotation with the same speed as the current state vector. In 
this consideration d-axis of the rotating frame is aligned with the rotor flux (Ψf ). The 
following transformation can change reference frame from αβ  into dq: 
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. 
(13) 

The inverse transformation is usually used for the calculation of the reference voltages being 
the input of the PWM module (fig. 2, 5): 

. 
(14) 

The value of external torque Tload is treated as state variable (8) and part of disturbance 
vector wk (9) (Barut et al., 2005; Janiszewski, 2005, 2006; Terorde & Belmans, 2002; Zhu et al., 
2000). This operation allows to estimate parameters of differential equations of model. It is 
also assumed, that this estimated variable is treated like white noise and it is constant in 
small interval (sampling time Ts): 

0loaddT
dt

≈
. 

(15) 

It is noticed, that the state-space equations are non-linear. Some elements of the Ak, Bk, Ck 
matrices depend on an instant xk vector (values of angular position γ, shaft velocity ωr 
and current id). In order to build estimator basing on EKF, the non-linear model of PMSM is 
a priority. 
There are matrices: 

, 

(16) 

, 

(17) 
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. 
(18) 

2. EKF state estimation 
The Kalman filter is often applied during dissolving state estimation of dynamical system, 
disturbed by the known signals (Gelb, 1974, Grewal & Andrews, 2001; Kalman, 1960). 
Kalman filter algorithm is used for estimating the parameters of linear system, but the 
PMSM model is non-linear, so we can not use that filter in this case. Extended Kalman Filter 
is generalized algorithm, which can be used for non-linear systems (Gelb, 1974, Grewal 
& Andrews, 2001). The estimation is done upon undisturbed input signals (uα, uβ for 
presented PMSM drive) and disturbed output signals (measured stator currents iα, iβ) of a 
real non-linear plant. As assumed, state space estimation is carried out in few steps at each 
computation cycle. 
The EKF is an optimal estimator in the least-square sense for estimating the states of 
dynamic non-linear system (Kalman, 1960). An linearisation is build on assuming, that the 
state variables (7) are constant in one step of computation. We obtain new linearised 
matrices ,  and  valid only in one step. After this linearisation the inner 
equation (8) gets a new form: 

 
(19) 

and output equation (9) the form: 

. 
(20) 

EKF algorithm consists of two main parts: measurement and time actualisation. 
Measurement actualisation equation: 

 (21) 

predicts k|k state for instant time tk. The correction proceeds on previous predicted state 
k|k-1, using filter coefficient Kk (gain matrix) from tk-1 state and measured actual output 

vector yk (currents). An error covariance is done by the following recursive relation: 

. 
(22) 

The object linearisation (19) is attached to this group as well. 
The second step – time actualisation, is described as the prediction of previous k|k state 
into a new state k+1|k used (8) in the form: 

. (23) 
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The filter gain matrix is defined by:  

. 
(24) 

 

The error covariance matrix is predicted by a relation: 

, 
(25) 

where Q and R are respectively: the covariance matrices of the system and measurement.  
The whole algorithm is recursive by 

. 
(26) 

An open question, one critical step towards the implementation of EKF is the choice of the 
values of the matrices Q and R (Barut et al., 2004; Bolognani et al., 2003; Dhaouadi et al., 
1991; Gelb, 1974, Grewal & Andrews, 2001; Kalman, 1960; Janiszewski, 2005, 2006; Terorde 
& Belmans, 2002; Zhu et al., 2000).  They have to be set based on stochastic properties of the 
corresponding noises (Kalman, 1960). The change of covariance matrices effects both the 
dynamic and steady-state. The discussed matrices are simplified to diagonal form in order 
to eliminate state vector elements co-disturbance. Increasing particular values of Q, it 
corresponds to stronger system noises and finally an instability in result of the strongest 
correction. Decreasing values of Q, it corresponds to weaker correction and estimation state 
errors. Matrix R matches measurement noises, can be measured easily in advance. 
Measuring is generally possible because the current measurement is needed anyway while 
operating the filter. Some tests, sample measurements are taken in order to determine the 
variance of measurement error. Laboratory particular tuning EKF shows necessary to 
increase to large values near 10. It helps eliminate strong noises. 
In case of system covariance, the calculation is less deterministic. Considering system 
equation and one knowing inaccuracy (current measurements) it can be possible to estimate 
system noises in narrow range. The first step was appoint current measurement covariance 
Q(1,1), Q(2,2) in range 2.3·10-8, and next based on mathematical model of PMSM estimate 
other covariances. That theoretical analysis of this consideration expanded to real plant by 
introducing some scaling coefficients. 
Basing on described rules they were chosen and adjusted experimentally:  

, 
(27) 
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. 

(28) 

It should be noticed, that choosing of process covariances is proportional to the square of the 
sample time (Ts). 
The presented algorithm does not require a precise choice of the initial values for the state 
vector 0|0 and the error covariance P0|0 matrix. It was proved during the experimental 
investigation, that P0|0 did not have a significant influence in the behaviour of EKF. The 
algorithm does not need the initial rotor position (non zero part of real state values) but it is 
possible to start the motor from the standstill place even if initial state vector of estimator is 
null. 
The entire control algorithm with EKF was implemented on a DSP. The implemented 
algorithm consist several states, one of them is EKF.  The most of EKF algorithm was written 
in C language and it is presented in section Code 1. 

3. Experimental results 
3.1 Laboratory setup 
For experimental verification of the proposed estimation method, a laboratory setup has 
been constructed (see figure 1). It consists of the surface mounted magnets synchronous 
motor, supplied from the three phase power IGBT inverter. This motor is coupled via stiff 
shaft with the second twin motor supplied from industrial controller (DIGITAX made by 
Control Techniques).  
During mechanical construction wont to avoid any complex mechanical solution. There was 
choose short stiff shaft between twin trade motors. This shaft assure small additional 
moment of inertia, any additional rotating masses. Every motor is equipped with position 
sensor, an 3600 pulses per revolution optical encoder.  
A practical compact Intelligent Power Module with Insulated Gate Bipolar Transistor, that 
aims to combine economic reasonable cost with a high level of functionality was used. Figure 4 
shows a simplified block diagram of PWM converter. The IGBT, Insulated Gate Bipolar 
Transistor, is a switching transistor freely controlled by voltage applied to gate terminal.  
The experiments presented in this section have been carried out with DSP board that was 
developed in Institute of Automation and Information Engineering of Poznan University of 
Technology. This board was specially constructed to fit the needs and flexibility mainly for  
research projects. The mainboard consist powerful SHARC DSP from Analog Devices 
ADSP21060, set of memories: RAM, boot EPROM, pair of serial channel and parallel 
interface for extension boards. The flexibility is done by changing extension boards or 
mainboard freely. The extension board consists additional hardware. Motion coprocessor 
Analog Devices ADMC201 is used for PWM generator handling Eight channel 12-bit 
simultaneously sampled AD Converter is used: 3 channel feeds by LEM transducers for 3-
phase currents (ia, ib, ic) measure, one channel feed by voltage LEM transducer for DC link 
(Udc) measure. Altera FPGA Flex 6000 was used for incremental encoder counting. Precise 
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measurement of position is obtained by optical encoder that is used for verify the estimated 
position and during identification process.  
 

 
Code 1. Main code of EKF algorithm 

The System contains also one four-channel DA Converter, that was built in for auxiliary 
outputs, helpful in state visualisation. 
The mainboard allows for high performance algorithm implementation. The architecture of 
board is specially optimized for motion control works in hard real-time single task system. 
After initial stage main loop is repeated recursively based on external low level interrupting 
each Ts = 200 μs. Observer and control code has been mainly written in C language, however 
except low-level procedures written directly in Assembler.   

3.2 Obtained results 
Experiment were performed and examined with regards to the following tasks: possibility 
speed changing and torque acting. At the first part of investigation, it was focused on 
controlled system behaviour by reference speed (ωr*) excitation without additional load 
torque. This type of reference signal has such significant stages for estimator behaviour like: 
zero signal with no initial values in estimation vector, step signal and reversal. The 
maximum module of reference speed is 1000 rev/min (1/3 of maximum speed).  The second 
part consist in acting external load torque and observing of behaviour control system. 
Investigations were carried out on a drive with parameters given in the Appendix. The 
position error is counted as difference between estimated value and real position. 
Results of working due speed changing are presented on figure 7 and zoomed parts: start on 
fig. 8, reverse on fig 9. For these reason the speed settling time is limited by maximum load 
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torque and mechanical moment of inertia (see equation 5). These figures show some kind of 
error that occurs when speed is suddenly changed.  
 

 
Fig. 7. Waveforms of position error, speed, torque estimations during reference speed 
changing 
Figure 8 presents first part of the test. It should be noticed that observer did not have 
information about initial speed. The observer do not required any special initiation, they can 
find initial position after supply motor. This case happen when motor is started. Position 
error is cancelled and hold in small error range. As poorly shown the load torque is on level 
near 0,5 [Nm].  
Very interesting situation is presented on figure 9 when the motor reversing. During this 
investigation the demanded and real speeds are near zero values. There is difficult stage of 
observer. When the speed is near zero, the extorter voltage values are also near zero, what 
causes zero activate the observer. As shown presented solution of EKF did not lost state 
vector, rises errors of estimation but system is still stable. After process of reversing the 
errors are naturally reduced. 
As shown there are small estimations errors during the steady state. Some errors appears 
during dynamical acting. The source of errors stays in the differences between motor model 
and real plant, particularly at current limitation in current controller.  
Figure 10 presents the main investigation, the transient response of the PMSM on step 
change of load (50% rated torque) at a motor speed of 1000 rev/min. Before load acting 
friction and other parasite torques appears. In steady state, the estimated load equals to 
electromechanical torque.  Erroneous load torque dynamical reconstruction declined fast. 
Source of appears dynamical errors disclose in assumption that differentiation of load 
torque should be equal to zero (15). In practical consideration we may assumed dynamics 
limitation. This influence is small compared to a potential wide range of load variation. 
In the author opinion the construction and physical asymmetry of PMSM rotor issues the 
apparent systematic position error. Verification short tests with other types of motor shows 
that this systematic error can be cancelled.  
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Due to the physical rotor asymmetry, the presented drive is also suitable for position control. 
 

 
Fig. 8. Waveforms of position error, speed, torque estimations during reference speed 
changing – starting part 
 

 
Fig. 9. Waveforms of position error, speed, torque estimations during reference speed 
changing – reverse part 
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Fig. 10. Waveforms of position error, speed, torque estimations after load acting 

4. Conclusions 
The intent of this chapter was to show the utility of the EKF as a fundamental method for 
solving range of problems in sensorless control of PMSM. There was presented the design 
and implementation of high-performance servo motor drive with speed, position and torque 
estimation. The described control system is a solution without any mechanical sensor for a 
wide range of applications where good steady-state and dynamical properties are required. 
The FOC based speed controlled PMSM requires no shaft sensors for rotor position and 
speed. Due to rotor asymmetry, the presented drive is also suitable for position control. The 
presented sensorless control scheme and EKF algorithm are self-starting.  
The most application required tension pick-up for torque measurement can be cheaper and 
rugged by load torque estimation. The described estimation of torque which was accented, 
can be helpful in a lot of robotic applications instead of expensive stress sensors. The 
consideration of the load torque as a constant term in the observation algorithm aims to 
capture other uncertainties besides the load torque than at rush changes. The results 
obtained through experiments under various challenging test demonstrate the good 
performance of the observer. 
For the experimental study presented above, the system performance was observed to be 
quiet good under step and reversals desired speed and the load torque changes. The 
practical success in sensorless control of nonlinear object suggests that the combination of 
EKF and classical PI controllers can provide powerful rapidity and precision drive.  
Finally, the chapter shows successful way of design of the EKF based observer 
of mechanical quantities for sensorless control of PMSM drive. The application of the 
algorithm demonstrates its potential in real-word robotic context. 
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APPENDIX 
Data of investigated motor: 
Rs = 5.9 [&] 
Ld = Lq = 32·10-3  [H] 
J = 2·15·10-3  [kg·m2] (two coupled motors) 
Ψf  = 1.56 [Vs] 
ωr|nom  = 3000 [rpm] 
Tload|nom = 2.8 [Nm]  
Tload|max = 15 [Nm] 
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1. Introduction 
In this chapter, the receding horizon Kalman filter is applied to underwater navigation 
systems. The ocean covers about two-thirds of the earth and has a great effect on human 
beings. However, the ocean is overlooked while we focus our attention on land and 
atmospheric issues; we have not been able to explore the full depths of the ocean, its 
abundant livings and non-living resources. For example, only recently we have discovered, 
by using manned submersibles, that a large amount of methane and carbon dioxide comes 
from the seafloor and extraordinary groups of organisms live in hydrothermal vent areas. 
However, a number of complex issues due to the unstructured and hazardous undersea 
environment make it difficult to survey in the ocean even though today’s technologies have 
allowed humans to land on the moon and robots to travel to Mars. 
Unmanned underwater vehicles (UUVs) can help us better understand marine and other 
environmental issues, protect the ocean resources of the earth from pollution, and efficiently 
utilize them for human welfare. The UUV is a platform for a variety of sensors: acoustic, 
magnetic, gravimetric and chemical ones. Most commercial UUVs are tethered and remotely 
operated, referred to as remotely operated vehicles (ROVs). Extensive use of manned 
submersibles and ROVs are currently limited to a few applications because of very high 
operational costs, operator fatigue and safety issues. The demand for advanced underwater 
vehicle technologies is growing and will eventually lead to fully autonomous and reliable 
underwater vehicles. Autonomous underwater vehicles (AUVs) were initially developed to 
perform missions that were not easy for ROVs and manned underwater vehicles. Since the 
autonomy allows AUVs to be used for risky missions such as a mine countermeasure 
(MCM) or under-ice operations, AUVs are replacing ROVs towed vehicles as well as 
manned underwater vehicles (Whitcomb, 2000). For detailed ocean surveys, an AUV acts as 
a more stable platform for precision sensors than ROVs or towed vehicles because an AUV 
is not subject to physical disturbances transmitted along the cable to the surface vessel. This 
absence of physical attachment also allows AUVs to measure ocean characteristics at specific 
depths and perform bottom-following missions as owing to its autonomy. In short, An AUV 
provides marine researchers with a new form of access to deeper ocean. 
For an AUV to successfully complete a typical survey mission, it must follow a path 
specified by the operator as closely as possible and arrive at a precise location for collecting 
data. When an AUV is not able to follow the path accurately during the mission, critical 



 Kalman Filter 

 

162 

features may not be recorded and the position of any features during the mission will be 
uncertain. When the final position of an AUV is not accurate, the AUV may even be 
unrecoverable. Since AUVs normally carry out missions in wide, unstructured and highly 
dynamic environments, an accurate and ‘reliable’ navigation system is required. Thus the 
most important part of an AUV is the navigation system. 
There are many navigation systems for underwater vehicles. Global positioning system 
(GPS) based navigation systems offer good navigation solutions due to the absolute 
positioning capability (Farrell & Barth, 1999). However, the drawback of the GPS based 
navigation systems is that the AUVs need to rise to shallow water depths in order to 
communicate with satellites, which is a time and energy consuming task (Marco & Healey, 
2001). An alternative to the GPS based devices is an acoustic based positioning system 
(Larsen, 2000, Lee et al., 2004). An acoustic system uses external sound emitting beacons in 
order to triangulate its position. While precise, navigation based on this type of device 
incurs a high cost and limits the mission space to the area covered by the beacons. Dead 
reckoning systems, such as the inertial navigation system (INS) or the Doppler velocity log 
(DVL), estimate the position of an AUV with respect to the initial position by measuring 
linear and angular velocities and/or accelerations. Using this type of sensor offers a 
practical and inexpensive navigation method. Nevertheless, these sensors accumulate drifts 
over time because position errors tend to increase with any new measurement. 
Unlike ground and aerial vehicles, an AUV presents a uniquely challenging navigational 
problem because it operates autonomously in a highly unstructured environment where 
satellite based navigations such as the GPS are not directly available. In this respect, many 
AUVs basically navigate with the help of underwater navigation systems which are 
comprised of optimal filters and sensors such as an inertial measurement unit (IMU), a DVL, 
a current meter and a magnetic compass. 
The primary challenge of navigation systems for AUVs is maintaining the accuracy of the 
position of the AUVs over the course of a long mission. An initially accurate position may 
quickly become uncertain through variations in the motion of the AUVs. While this effect 
can be reduced by using accurate acceleration, heading and velocity sensors, but these 
sensors cannot be made as accurate as required. During long missions, these inaccuracies 
become significant. Temporal and strong currents or other underwater disturbances that 
affect the motion of the AUV cannot be precisely modelled in advance and these may 
deteriorate the accuracy further. If the position of an AUV is not externally referenced, the 
position accuracy will inevitably degrade over the course of the mission. The absence of an 
easily observable, external reference makes the navigation of AUVs very difficult. External 
references must be used for any AUV navigation systems that yield to an accurate 
navigation over long missions. 
As stated above, the navigation system may employ multiple measuring devices to enhance 
the accuracy and reliability of the system. This practice becomes important because existing 
systems can be upgraded by supplementing more accurate and economic navigation 
devices. This implies the necessity of finding a new way of sharing and merging data 
obtained from the various devices. Since the data collected by each device represent only 
partial information of the phenomenon under survey, a process of ‘sensor data fusion’ is 
required in order to acquire complete information. With measurement fusion, some 
measured data for both steady and unsteady systems are passed directly to the fusion centre 
for centralized Kalman filter. Because of its relatively lower state estimation errors, the 
measurement fusion is a widely used method (Titterton & Weston, 1997). 
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However, it is well known that an AUV often experiences position errors caused by 
environmental disturbances as mentioned above. This is particularly the case for an inertial 
navigation system with velocity measurement and when the standard Kalman filter is 
influenced by the action of temporary currents (Jo et al., 2006). This is the reason why robust 
filters for navigation systems have been studied (Yu et al., 2004, Seo et al., 2006). This article 
focuses on the receding horizon Kalman filter (RHKF), which is a kind of robust filter. 
The estimation of the state of a dynamic system by using the measurement obtained from 
the most recent time is defined in various ways, including fixed memory, receding horizon 
or sliding window estimation (Bierman, 1975). These estimation methods were originally 
reported in the work of Jazwinski (1968). Since then, the estimation method has been widely 
used in many application areas, where measurement uncertainties hinder the proper use of 
the Kalman filter. 
Finite impulse response (FIR) filters utilize finite measurements over the most recent time 
interval. FIR structured filters have actually become a standard filter commonly used 
because they are more robust against numerical errors and temporary uncertainties than 
infinite impulse response (IIR) structured filters, which utilize all measurements on the 
infinite interval. 
Kwon et al. (1989) and Kwon et al. (1999) suggested the use of optimal FIR filters and the 
receding horizon Kalman FIR filter for discrete linear time invariant systems for state 
estimation. When using these filters, error covariance is minimized in discrete-time 
stochastic state-space models. The optimal FIR filter has several advantages over existing 
optimal filters such as the cerebrated Kalman filter, which is a kind of an optimal IIR filter. 
Since the optimal FIR filter utilizes finite measurement over the most recent time interval, it 
is robust against temporary modelling and measurement uncertainties that may cause a 
divergence of the estimated state. Divergence was a problem for the optimal IIR structured 
filter. An optimal FIR filter can be effectively derived by modifying the Kalman filter 
because the Kalman filter is easy to use and widely applied in many engineering problems. 
In this article, the standard Kalman filter is combined with the receding horizon strategy 
which has already been adopted in many optimal control and estimation methods. We 
denote it as the RHKF for time-varying systems. 
The velocity-aided inertial navigation system is relatively underdeveloped for underwater 
applications, although it has been proven to be a good method for land applications (Marco 
& Healey, 2001). The DVL is a kind of measuring device used for velocity information. 
However, the DVL can give reliable velocity information to AUVs only when the AUVs 
cruise close to the bottom or the surface. Current meters are used more often for an AUV 
than the DVL devices because current meters measure the relative speed between the AUV 
and the surrounding fluid. The devices have no limit of relative distances to surface or 
bottom. The disadvantage of current meters is that their accuracy may be deteriorated by 
ocean current. In general, the ocean current often occurs temporarily and its magnitude can 
exceed the speed of the vehicle. In this case, the velocity-aided navigation system with the 
Kalman filter is deteriorated by temporary disturbances. In the worst case, the position error 
of the system may even ‘blow up’. However, as it will be shown, the underwater navigation 
system based on the RHKF is robust against temporary disturbances. Therefore the current 
meters can be used for an accurate the velocity-aided navigation system for AUVs with help 
of the RHKF. 
The statistical process and measurement noises are often unknown a priori in most practical 
situations. In such a situation, the Kalman filter may fail to accurately estimate state 
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variables or may even cause system failure due to divergence (Fitzgerald, 1971, Sangsuk-
Iam & Bullock, 1990). With these uncertainties, it is difficult to develop an accurate 
navigation system with the Kalman filter. The difficulty can be overcome by using a number 
of estimation methods of noise covariance and some have been proposed. The problem is 
also important to make the navigation systems accurate. But it must be kept in mind that it 
remains herein. More information can be found in Mehra (1970), Belanger (1974), Um et al. 
(2000) and Jo et al. (submitted). 
This chapter contains the following information: In section II, the error equations for a 
velocity-aided underwater navigation system are introduced. In section III, the RHKF for 
time-varying systems is derived in an iterative form. In section IV, simulations for a linear 
time-varying system and the navigation system are explained. Finally, a short summary is 
given. 

2. Dynamic model for navigation errors 
2.1 Coordinate systems 
Coordinate systems used in this chapter are the inertial frame (i-frame), the Earth-fixed 
frame (e-frame), the navigational frame (n-frame) and the body frame (b-frame). The i-frame 
is fixed with the centre of the Earth as the origin. The e-frame coincides with the i-frame at 
the origin but rotates with the Earth rate. The n-frame is a local level frame in which the 
vertical axis is parallel with the gravity vector. Fig. 1 shows the reference frames. 
In the strapdown inertial navigation system (SDINS), the determination of the 
transformation matrix from the b-frame to the n-frame is very important and error 
generated during the computation of the transformation matrix becomes one of the main 
error sources of the system. 
Various mathematical representations are used to define the attitude of a body with respect 
to a coordinate reference frame. In three-dimensional space, spatial rotations can be 
pararmeterized using both Euler angles and unit quaternions. The parameters associated 
with each method may be stored in computer and updated as the vehicle rotates, using the 
measurements of turn rate by the SDINS. Theorems derived from the Euler angles state that 
any given sequence of rotations can be represented as a single rotation about a single fixed 
axis. In the Euler angle representation, the attitude is defined by roll (Φ), pitch (θ) and yaw 
(ψ) angles, which constitute a direction cosine matrix (DCM) (Siouris, 1993). The yaw angle 
is equivalent to the heading angle while the roll and pitch angles represent the levelling 
angles. 
However, among the popular methods of attitude computations, quaternions are known to 
be the most effective one due to their simplicity and easy normalization procedure, in 
modern navigation systems (Siouris, 1993). The representation of rotation as a quaternion is 
more compact than the representation of the DCM or the Euler angles. Furthermore, for a 
given axis and angle, one can easily construct the corresponding quaternion and, 
conversely, for a given quaternion one can easily read off the axis and the angle. When 
composing several rotations on a computer, round off errors inevitably accumulate. A 
quaternion that is slightly off still represents a rotation after being normalised. The 
quaternion also avoids the phenomenon called gimbal lock which can result when, for 
example in the Euler angle represensation, the pitch angle is rotated by 90° up or down, so 
that yaw and roll correspond to the same motion, and a degree of freedom of roation is lost. 
In the SDINS, for instance, this could lead to a disastrous result if the vehicle is in a steep 
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dive or ascent. For more rigorous and mathematical analysis, refer to Altmann (1986). In this 
chapter, the dynamic equation for attitude is mainly described by quaternions. 
 

 
Fig. 1. Reference frames 

2.2 Error model for SDINS 
The SDINS error model plays an important role in implementing an optimal filter for 
alignment or for velocity-aided navigation algorithms. The quaternion error model with the 
attitude and the velocity error state for SDINS was first developed in the i-frame by 
Friedland (1978), and later in the n-frame by Shibata (1986). The axes of the n-frame point in 
the directions of north, east and downward in that order. In the n-frame, the rate vector is 
represented as follows: 
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The dynamic equations of the position, velocity and attitude of SDINS in the n-frame are 
given as follows (Titterton & Weston, 1997): 
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The relationships among the quaternion, Euler angles and DCM are given by 
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The attitude equation by the quaternion is 

 ( )( )ω ω ω ω= = − +0.5 * 0.5 *b b b n n
nb ib n ie enq q q C  (5) 

where = + + +0 1 2 3
ˆˆ ˆq q iq jq kq  is a quaternion, ωb

ib  denotes the measurement of gyroscopes 
and * is the quaternion product which is defined as 
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 (6) 

The error model of SDINS can be obtained by the perturbation method under several 
assumptions (Titterton & Weston, 1997) 
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 δ δ= − Dh V  (9) 

 
δ ε ω ω δ δ
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= × − + × +
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 (10) 

 ϕ ω ϕ δω δω= − × − +n n b n
in b ib inC  (11) 

with = ∂ ∂ = 0/ 6 sin cosmm mR R L R e L L  and = ∂ ∂ = 0/ 2 sin costt tR R L R e L L , where δL , lδ and 
δh are errors of latitude, longitude and altitude, respectively, and δ δ δ δ= [ ]n T

N E Dv v v v  is 
a velocity error in the n-frame. 
ϕ ϕ ϕ ϕ= [ ]T

N E D  is a tilt angle that is approximately equal to the Euler angle error under a 
small angle assumption and δωn

ie , δωn
en  and δωn

in  are defined as 
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 δω δω δω= +n n n
in ie en  (14) 

In (10) and (11), δ bf  is an accelerometer error vector and δωb
ib  is a gyro error vector. These 

errors of inertial sensors may be simply modelled as a sum of random constant and white 
Gaussian noise. 

 
δ = ∇ +

∇ = ∇ = ∇ ∇ ∇

( ), ( ) ~ (0, )
0, [ ]

b
a a a a

T
a a x y z

f w t w t N Q
 (15) 

 
δω ε

ε ε ε ε ε

= +

= =

( ), ( ) ~ (0, )

0, [ ]

b
ib g g g g

T
g g x y z

w t w t N Q
 (16) 

Herein, the biases of the accelerometers and gyros, ∇a  and ε g , are assumed to be random 
constant even though they generally vary very slowly. 

2.3 Error model of measurements 
Some auxiliary sensors should be used to compenstate for the navigation errors of the 
SDINS. A pressure sensor, current meters and the magnetic compass can be used as 
auxiliary sensor in the navigation system for AUVs. A surface navigation system has been 
successfully developed by integrating position fixing systems such as GPS. As stated above, 
introducing GPS to the navigation system for an AUV is limited to the case of shallow water 
vehicles repeatedly surfacing to update the position information. If available, long-base line 
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(LBL) and short-base line (SBL) systems can be generally used for positioning underwater 
vehicles. Furthermore, near surface navigation systems can be utilized when a vehicle 
operates near the water surface or intentionally approaches the surface. The navigation 
systems for long-range cruising-type AUVs are structured by dead-reckoning. However, the 
inevitable growth of errors within the navigation system motivates the need for on-line 
calibration methods such as GPS-aided or Loran-C-aided navigation. Larsen (2000) and Lee 
et al. (2004) proposed hybrid navigation systems based on the IMU combined with acoustic 
velocity sensors. 
We simply assumed such a situation for a numerical example. The modelled vehicle is 
assumed to be equipped with an IMU, a 3-axis magnetic-type current meter, a 3-axis 
magnetic compass and a pressure sensor to obtain depth information. They are also 
modeled to be the sum of random constant and white Gaussian noise. 
The equations of the sensors can be formulated by 

 δ δ− = + − + = −ˆ ( )INS m true true bias biash h h h h h h h  (17) 

 
δ
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− = + − +

− × −
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φ φ φ φ
θ θ φ θ
ψ ψ φ ψ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− = − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

ˆ

ˆ

ˆ

INS m N bias

INS m E bias

INS m D bias

 (19) 

where ^ denotes the estimated value by SDINS and φ θ ψ[ ]T  denotes the roll, pitch and 
yaw angle of the vehicle, respectively. The subscript m, INS and bias denotes the measured 
value of the sensors, the estimated value of optimal filters and sensor bias. Optimal filters 
for the navigation system can be updated with these equations. 
Combining (1)-(19) with the differential equations for sensor errors yields the following 
error equation for the velocity-aided navigation system. 

 = +( ) ( ) ( ) ( ), ~ (0, ( ))x t F t x t w t w N Q t  (20a) 
where 

⎡ ⎤= ⎣ ⎦
TT T

INS biasx x x  

δ δ ϕ ε⎡ ⎤= ∇⎣ ⎦( )
TT n T T T T

INS a gx P v  

φ θ ψ⎡ ⎤= ⎣ ⎦
TT

bias bias bias bias bias biasx h v  

× ×⎡ ⎤= ⎣ ⎦1 9 1 70 0
TT T

a gw w w  

The time-varying system matrix ( )F t , which is a differential equation of SDINS can be used 
to estimate the position, velocity, attitude and the biases of the sensors (See Appendix for 
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details). The state variable ( )x t  has 22 error states: δP  denotes the position error in the 
latitude, longitude and altitude. δ nv  denotes the velocity errors in the n-frame, while ϕ  
denotes the vector of roll, pitch and yaw angles. 
The innovation (also called measurement residual) of the optimal filter is the difference 
between estimated values by SDINS and measurements of pressure, velocity and attitude. 
The innovation for a velocity-aided underwater navigation system at kt  may be expressed 
in terms of the error state variables as follows: 
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 (20b) 

where ν h , ν cur  and ν com are the measurement noise of the pressure sensor, current meters 
and compass, respectively. 
 

 
Fig. 2. Indirect feedback structure 

In general, while the inertial navigation system is nonlinear, the error of the system can be 
assumed to be linear. This is the reason why the indirect feedback method is used for the 
navigation system. Fig.2 shows the block diagram of the indirect feedback method. In the 
figure, it can be seen that the navigation system predicts the position, velocity, attitude and 
biases of the sensors with the output of the SDINS and then compensates the error states for 
the system by using an optimal filter. The navigation solutions are updated indirectly each 
time when the depth, velocity and attitude are measured by the sensors. In the indirect 
scheme, the navigation solutions are already given as the predetermined nominal points, 
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while the Kalman filter estimates the navigation solution. The word ‘indirect’ means that the 
filter estimates not the navigation solutions but the error of the solutions. Incorporated with 
the SDINS equations, the indirect method becomes efficient. If the navigation system uses 
indirect feedback states, the error system consists of a linearized system with compensated 
states. 

3. Receding horizon Kalman filter for underwater navigation systems 
In this section, the receding horizon Kalman filter is introduced for the underwater navigation 
system. Consider a linear discrete time-varying state space model with control input 

 
ν

+ = + +
= +

1k k k k k k

k k k k

x F x B u Gw
y H x

 (21) 

where ∈ℜn
kx  is the state vector and ∈ℜl

ku  and ∈ℜq
ky  are the input vector and the 

measured output vector, respectively. 
The initial state 

0kx  is assumed to be random with a certain mean 
0kx  and a certain 

covariance Σ
0k . The process and measurement noises are assumed to be zero-mean white 

Gaussian and are not correlated with each other. The covariances of kw  and ν k  are denoted 
by Q  and R , respectively. It is assumed that these noises are not correlated with the initial 
state 

0kx . 
The following Kalman filter for a time-varying system provides a state estimate ˆ kx  called, 
the one-step predicted estimate of the system state kx , with control input 

 + = + − +1ˆ ˆ ˆ( )k k k k k k k k kx F x K y H x B u  (22) 

 −= + 1( )T T
k k k k k k kK F P H R H P H  (23) 

 −
+ = + − + 1

1 ( )T T T T T
k k k k k k k k k k k k kP F P F GQG F P H H P H R H P F  (24) 

with =
0 0

ˆ k kx x , where kP  is the error covariance of the estimate ˆ kx  with the initial value 
= Σ

0 0k kP . 
In order to derive the RHKF for the stochastic systems, input and output information on the 
horizon −[ , ]k N k  are utilized together with information about the state at the starting point 
−k N . We write ≡ −Nk k N  for convenience. We refer to this state at kt  as the horizon initial 

state. It is logical to assume that the horizon initial state cannot be measured and thus is 
unknown. An information form of the Kalman filter is adopted as follows: 
At first, let us define the new variables 

− − −Ω ≡ Ω ≡ +1 1 1, T
k k k k k kP P H R H  

The estimation error covariance (24) can then be rewritten as 

 − − − − −
+Ω = + Ω Ω1 1 1

1 [ ]T T T
k k k k k k kI F F GQG F F  (25) 

with  −Ω = Σ
0 0

1
k k  
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The information form of filter (22) becomes 

 ( )− −
+ = Ω Ω + +1 1

1ˆ ˆ T
k k k k k k k k kx F x H R y B u . (26) 

The information form (26) of the Kalman filter uses all measurements starting from the 
initial time 0k  to provide the one-step predicted state estimate at the present time. By 
introducing the receding horizon strategy to filter (26), the RHKF at the present time k  uses 
only the finite measurements on the horizon [ , ]Nk k  and discards the past measurements 
outside the horizon. We re-derived filter (26) on the horizon covering from the horizon 
initial time Nk  to the present time k . The filter at time +Nk i  on the horizon [ , ]Nk k  is 
denoted as +|ˆ

Nk i kx  with ≤ <0 i N . In (24), the error covariance of the estimate ˆ kx , system 
+Nk iF  and measurement equations +Nk iH  are not correlated with the measurements for linear 

time-varying systems. The horizon initial condition is denoted as Ω
Nk . Since the 

measurements and control inputs are not estimated variables, these can be written as 
+ +=|N Nk i k k iy y  and + +=|N Nk i k k iu u . 

The filter can now be re-written by 

 ( )− −
+ + + + + + + + + += Ω Ω + +1 1

1| |ˆ ˆ
N N N N N N N N N

T
k i k k i k i k i k i k k i k i k i k ix F x H R y B u  (27) 

In (25), +Ω > 0
Nk i  for all ≥i n , if { , }k kF H  is uniformly observable (Kwon & Pearson, 1978). In 

the above equation, n  denotes the dimension of the system. This guarantees that a 
converged result is globally optimal to Kalman filter based FIR filters. Since it is difficult to 
know the horizon initial state |Nk kx , it is assumed to be unknown. The horizon initial state 
must have an arbitrary mean and infinite covariance as Ω = 0

Nk . 
Theorem 1 RHKF for time-varying systems (Jo & Choi, 2006) 
Assume that { , }k kF H  is uniformly observable and ≥N n . If the horizon initial state |Nk kx  is 
assumed to be unknown on the horizon [ , ]Nk k , the RHKF for the state kx  is given by 

 ( )− −
+ + + + + + + + + += Ω Ω + +1 1

1| |ˆ ˆ
N N N N N N N N N

T
k i k k i k i k i k i k k i k i k i k ix F x H R y B u  (28) 

where 

 − − − − −
+ + + + + + + +Ω = + Ω Ω1 1 1

1 [ ]
N N N N N N N

T T T
k i k i k i k i k i k i k iI F F GQG F F  (29) 

▌ 
Jo & Choi (2006) proved that the derived filter (28) has two important properties – it is 
unbiased and deadbeat and that the RHKF becomes a deadbeat observer when the filter is 
applied to the following noise-free system: 

 + = +
=

1k k k k k

k k k

x F x B u
y H x

 (30) 

If (30) is contaminated by noises similar to (21), the RHKF optimally compensates for the 
noises. When the system has no noise, the RHKF can yield an exact estimate of the state. 
This deadbeat property indicates the finite convergence time and the fast tracking ability of 
the RHKF. Thus, we can expect that the suggested RHKF is appropriate for quick estimation 
and detection of AUV tracking even when occurrence of noises is not known. 
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4. Simulation 
In this section, the rate at which the RHKF converges against temporary unknown 
disturbances is determined and its robustness is illustrated. At first, the RHKF is applied to 
a linear time-varying system. The RHKF is then applied to the velocity-aided underwater 
navigation system. 
Consider the following linear system: 
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= +
= +

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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where ( )= 1 2[ ]Tx x x  is the state vector, ( )= 1 2[ ]Tw w w  denotes the process noise vector, 
y  is the output and ν  is the measurement noise. When = 0.003a , = 0.007b  and ω = 0.01  
are chosen, and the variance of the noises is assumed to be 0.05, the estimated error of 1x  is 
as shown in Fig. 3. The RHKF estimates the present state kx  with information on the 
prescribed horizon interval. The RHKF has some advantages (robustness against temporary 
disturbances and fast tracking ability), if the horizon interval is properly chosen. However, 
it takes a considerable amount of time to estimate the present state because the filter recedes 
from the horizon initial state each time. This is the reason why the RHKF takes more 
computing time (of about N  times) than the Kalman filter, which has an IIR structure. A 
proper horizon interval must be chosen carefully for a real-time system. 
In Fig. 3, as the horizon interval increases, the estimates obtained by the RHKF more closely 
approach those provided by the Kalman filter and it becomes less robust against the 
temporary disturbance. It can be also seen that, if the horizon interval is small, the estimates 
obtained by the RHKF fluctuate around the real value instead of converging to the real one. 
However, if the interval is large, it approaches closer to the estimate obtained from the 
Kalman filter. The horizon interval is important in the optimal estimation. Unfortunately, it 
is impossible to find an optimal horizon interval for general non-linear systems. Thus, a 
reasonable interval N must be chosen based on experience. The rule of thumb is to take it 
slightly larger than the limit of the index to converge to the covariance of the standard 
Kalman filter. 
Let us consider that an AUV is equipped with a low-degree IMU, a pressure sensor, a 3-axis 
current meter, and a 3-axis magnetic compass. The sampling rate of the IMU is 100 Hz and 
that of the pressure sensor, 3-axis current meter, and the 3-axis magnetic compass is all 1 Hz. 
The characteristics of the sensors are listed in Table 1. 
In this simulation, the following assumptions are made: The vehicle moves directly north at 
a rate of 2m/s and downward at a rate of 0.05m/s without any change in attitude for 1200 
seconds. It is known that SDINS has poor observability during straight forward running 
without any change in attitude because the attitude error model depends on the angular rate 
of the vehicle (Lee et al., 1993). 
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Fig. 3. Comparison of estimated error for the linear system 
 

 Bias (1σ) Noise (1σ) 
Acceleromters 9.8 mm/s2 0.49 mm/ s2 IMU 
Gyros 1deg/hr 0.35 deg/hr 

Pressure sensor 0.1 m 0.1 m 
Current meter 0.01 m/s 0.01 m/s 
Compass 1 deg 2 deg 

Table 1. Characteristics of Sample Sensors 

Upwelling current of 0.5 m/s is introduced as a temporal disturbance. Fig. 4 shows the 
assumed velocity profile of the upwelling current in the NED coordinate. As shown in the 
figure, the upwelling current occurred temporarily during a time span between 385 sec and 
655 sec. Fig. 5 and Fig. 6 show the reference trajectory of the vehicle under the action of the 
disturbance and Fig. 7 shows the reference velocity profile of the vehicle. It was assumed 
that the vehicle reacted against the current in 5 sec when it encountered with the current as 
shown in Fig. 7. 
The trajectory and velocity of the vehicle under the upwelling current were estimated using 
the navigation filters, the standard Kalman filter and the RHKF. Figs. 8 shows the estimated 
velocity obtained by the Kalman filter. By comparing Fig. 7 with Fig. 8, it can be seen that 
the esimation error of the Kalman filter incearses after the vehicle encounters with the 
current. 
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The choice of the horizon interval N affects the convergence speed of the RHKF. It is very 
difficult, as stated above, to find the optimal horizon interval N for general nonlinear 
systems. However, if a system is uniformly observable, the horizon interval N can be chosen 
as larger than the dimension of the system, because +Ω >| 0

Nk i k  for all ≥i n , if + +| |{ , }
N Nk i k k i kF H  

is uniformly observable. Hereby n denotes the dimension of the system. It may be 
recommended with care that one may choose the interval to be larger than the dimension of 
the system, but less than 4 times. In this simulation, we chose = 30N . 
As stated above, the RHKF is robust against temporary modelling and measuring 
uncertainties because it utilizes only the finite measurements on the most recent horizon. 
The estimated velocity obtained by the RHKF is shown in Fig. 9. In Fig. 10, it is seen that the 
navigation system based on the RHKF does not lost its position but the vehicle that was 
navigated by the Kalman filter has lost its position after the current occurs. While the 
pressure sensor helps the navigation system to compensate altitude errors, the deviation of 
estimated altitude obtained by the Kalman filter is larger than that estimated by the RHKF 
as shown in Fig. 11. 
This simulation shows that, while the estimated navigation solution based on the RHKF 
may be somewhat noisy, the estimated errors do not blow up, which indicates the fast 
convergent rate and robustness of the RHKF under the temporary disturbances, as given in 
Fig. 4. Also, the estimation error of the RHKF is considerably smaller than that of the 
Kalman filter in the interval of measurement uncertainties. Therefore, it is concluded that 
the suggested RHKF for time-varying navigation systems is more robust than the standard 
Kalman filter when there are measuring uncertainties. 
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Fig. 4. Velocity profile of the upwelling current in the n-frame 
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Fig. 5. Reference trajectory of the vehicle in the n-frame 
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Fig. 6. Reference altitude of the vehicle in the n-frame 
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Fig. 7. Reference velocity of the vehicle in the n-frame 
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Fig. 8. Estimated velocity of the vehicle by the Kalman filter in the n-frame 
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Fig. 9. Estimated velocity of the vehicle by the RHKF in the n-frame 
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Fig. 10. Estimated trajectory of the vehicle by the Kalman filter in the n-frame 
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Fig. 11. Comparison of estimated altitudes in the n-frame 

6. Summary 
In this chapter, the RHKF and its application for a velocity-aided underwater navigation 
system are discussed. Firstly, the limitations of the standard Kalman filter in underwater 
navigation systems are described. And then it is shown how the RHKF can be replaced in 
order to improve the position accuracy of the navigation system when the vehicle is to be 
operated under uncertain environments. It is shown that the RHKF is robust against 
environmental uncertainties by tracking only the most recent finite measurement. When a 
navigation system is completely observable, the RHKF is exact for noise-free systems. This 
deadbeat property indicates the finite convergence time and fast tracking ability of the filter. 
Thus the filter is appropriate for fast estimation under temporary disturbances. Based on 
simulations for the velocity-aided navigation system, it is then demonstrated that the RHKF 
guides a better and faster transient performance of the underwater navigation system 
compared to the standard Kalman filter. 

7. Appendix 
The system matrix ( )F t  of the SDINS system error model equation is as follows: 
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where 
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1. Introduction 
Internet Coordinate Systems, shortly ICS, (e.g. [9] [8]) have been proposed to allow for 
distance (Round-Trip Time, shortly RTT) estimation between nodes, in order to reduce the 
measurement overhead of many applications and overlay networks. Indeed, by embedding 
the Internet delay space into a metric space – an operation that only requires each node in 
the system to measure delays to a small set of other nodes (its neighbors), nodes are 
attributed coordinates that can then be used to estimate the RTT between any two nodes, 
without further measurements, simply by applying the distance function associated with the 
chosen metric space to the nodes’ coordinates. 
Recent works have shown how coordinate-embedding services could be vulnerable to 
malicious attacks, providing a potentially attractive fertile ground for the disruption or 
collapse of the many applications and overlays that would use these services [2]. There are 
actually two obvious ways to disrupt the operation of a coordinate based system. First when 
requested to give its coordinate for a distance estimation at the application-level, a malicious 
node could simply and blatantly lie. Second, a malicious node, or even a colluding group, 
may aim at disrupting the embedding process itself. This latter strategy is very insidious 
and effective as it can result in important distortions of the coordinate space which then 
spoils the coordinate computations of many nodes (malicious and honest alike) [2]. This 
chapter focuses on developing and studying generic Kalman filter-based methods to secure 
the coordinate embedding process. More precisely, the embedding process, regardless of the 
actual coordinate-based positioning system, works on the premise that nodes adjust their 
coordinate based on some comparison between measured and estimated distances to some 
other nodes. Malicious nodes can interfere with this embedding process by, amongst other 
things, lying about their real coordinate and/or tampering with measurement probes, to 
create a discrepancy between measured and estimated latencies, so that unsuspecting nodes 
would wrongly adjust their own coordinate in a bid to reduce the difference [1]. Because the 
load on the network naturally varies in time, so does latency between pair of nodes, and as a 
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result, the embedding process must be run periodically by all nodes to track changes in 
network conditions. This “continuous” adjustment of nodes’ coordinates can not only result 
in a drift of the coordinate space [10] but also gives plenty of scope and opportunities for 
malicious activity. We therefore seek to equip (honest) nodes with a means to detect, with 
low overhead, malicious activities they may encounter during embedding. 
Noting that, in the absence of malicious nodes, a node’s coordinate depends on the 
combination of network conditions and the specificities of the embedding process itself (e.g. 
which coordinate protocol is in use, the chosen dimensionality of the geometric space, etc), 
we therefore introduce the concept of Surveyor nodes (or Surveyors in short). Surveyors form 
a group of trusted (honest) nodes, scattered across the network, which use each other 
exclusively to position themselves in the coordinate space. Of course, Surveyors do assist 
other nodes in their positioning (as prescribed by the embedding protocol), but we stress 
that Surveyors never rely on non-Surveyor nodes to compute their own coordinate. This 
strategy thus allows Surveyors to experience and learn the natural evolution of the 
coordinate space, as observed by the evolution of their own coordinate, in the absence of 
malicious activities. In essence, Surveyor nodes are thus vintage points guaranteed to be 
immune from malicious activities. The idea is that Surveyors can then share a 
“representation” of normal behavior in the system with other nodes to enable them to detect 
and filter out abnormal behavior. 
We postulate and verify that, in the absence of malicious activity, a node’s coordinate can be 
viewed as a stochastic process with linear dependencies whose evolution can be tracked by 
a Kalman filter [4]. Each Surveyor then computes and calibrates the parameters of a linear 
state space model and shares the parameters of this model with other nodes. These nodes 
can then use these parameters, to run locally and in a “standalone” fashion a Kalman filter 
tracking the coordinate adjustments. These nodes can then use the Kalman filter output (the 
innovation process), to compare their observed coordinate adjustments with the one 
predicted by the Kalman filter, and flag as “suspicious” embedding steps where the 
difference would be too high. 
In section 2, we present a general model of coordinate embedding, in the absence of 
malicious nodes, that naturally leads to the Kalman filter framework. In section 3, we 
validate the model, with both simulations and PlanetLab experiments, in the case of both 
Vivaldi [9] and NPS [8]. This section also studies the viability of the idea of using Surveyor 
nodes in secure coordinate embedding. We then describe and evaluate, in sections 4 and 5, 
how Surveyors can effectively be used for malicious node detection in the specific 
embedding process of Vivaldi and NPS. 

2. Coordinate embedding model 
The goal of embedding systems, regardless of the embedding method and geometric space 
used, is to assign a coordinate to every node in the system so that, at any time, the distance 
between any two points in the geometric space should provide a good estimate of the 
network distance, measured as an RTT (Round Trip Time), between the corresponding 
nodes. Obviously, because at any instant in time, the RTT that can be measured between 
two nodes depends on the state of the network (e.g. traffic load, state of queues in routers, 
etc) as well as the state of the operating system in nodes (e.g. scheduling state generating 
measurement noise, etc), the exact value of the RTT varies continuously. However, it has 
been shown that RTT values in the Internet exhibit some stability in a statistical sense [14], 
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with the statistical properties of RTTs exhibiting no significant change at timescales of 
several minutes. It is that property that embedding systems exploit to provide good distance 
estimates while only needing to have nodes adjust (recalculate) their coordinate on a 
periodic basis. Consequently, the coordinate of a node can be viewed as a discrete stochastic 
process, and we will use  to represent the coordinate of node i at “discrete time” n. 
Without loss of generality, consider that a node (called the embedding node) computes its 
coordinate through a series of embedding steps, where each embedding step represents a 
coordinate adjustment based on a one-to-one interaction with another node, called a peer 
node (e.g. peer nodes are called neighbors in Vivaldi, and landmarks or reference points in 
NPS). Note that when the embedding protocol requires that a node uses several peer nodes 
simultaneously for repositioning, for the purpose of our modelization, we simply consider 
that each peer node corresponds to a distinct embedding step, each taking place at 
“successive” discrete times. 
At every embedding step, the “fitness” (or “correctness”) of the embedding node coordinate 
is assessed by computing the deviation between the measured RTT towards the 
corresponding peer node and the one estimated in the coordinate system. More precisely, 
suppose that at its nth embedding step, embedding node i has current coordinate  and 
uses peer node j with current coordinate . Suppose that the RTT between these nodes, 
measured during this embedding step, is RTT . The fitness of the embedding node 

coordinate can then be computed as the measured relative error . The 
goal of any embedding system, regardless of the embedding method proposed and/or the 
geometric space structure, is to minimize a “cost” indicator (e.g. mean square error) that 
captures the measured relative error that could be observed between any node and any 
other node in the system, at any time. 
As the measured relative errors are fundamental performance indicators to all embedding 
systems, it seems natural to develop a model that captures their dynamic characteristics, 
although we note that relative errors often have complex behavior (and may thus not be a 
natural choice from a modeling perspective). 
Measured relative errors are subject to fluctuations of the RTT for the reasons mentioned 
above, namely transient network congestion and operating system scheduling issues. To 
isolate the impact of these RTT fluctuations on anomaly detection, we introduce Δn, the 
nominal relative error that our node under consideration would have obtained at its nth 

embedding step if the RTTs in the network had not fluctuated. An anomaly becomes simply 
a large deviation of measured relative error Dn from its nominal value defined by Δn. 
Because many sources contribute to the deviation of Dn from its nominal value (RTT 
measurement error, RTT fluctuations, errors in node coordinate), it is reasonable to suppose 
that they relate to each other as follows, 

 (1)

where Un is a Gaussian random variable with mean zero and variance vU. We now focus on 
the dynamics of the system in its nominal regime where RTTs do not fluctuate. In the 
absence of complete and accurate knowledge of the system, nodes keep on adapting the 
nominal relative error on a pairwise basis with their peer nodes, aiming to optimize the cost 
indicator. This adaptation is subject to an error caused by the other nodes in the system 
adapting their coordinate (and corresponding relative error) in a completely distributed 
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way. We thus define the system error Wn which represents the impact of other nodes on the 
positioning of a node at embedding step n. Since the system error at a node results from 
many contributing sources, it is also reasonable to assume that it is a white gaussian process 
(with mean w  and variance vW)1. 
Because of the nature of large-scale embedding processes, the nominal relative error Δn can 
be deemed to follow a stochastic process that converges to some stationary regime 
characterized by a positive average. As a first approximation, the process Δn could be 
modeled as a first order Auto Regressive (AR) model: 

 (2)

where β is a constant factor strictly less than one otherwise the relative error does not 
converge to a stationary regime independently of the initial condition. This equation 
captures the dynamic evolution of the nominal relative error of a node through successive 
embedding steps. 
Equations 2 and 1 define a linear state space model for the relative error of a node. Our goal 
is to devise a way to obtain relative error predictions from this model. Because of the linear 
properties of the model, a Kalman filter can be used to track the evolution of the nominal 
relative error and obtain a predicted relative error Δ̂ n|n−1 (see section 2.1). However, it is 
important to notice at this level that tracking relative errors using the Kaman filter would be 
relevant, only if we consider the embedding systems at their permanent regime. A 
permanent regime is typically reached when the average relative errors of nodes involved in 
the system stabilize enough, so that coordinates are considered to be usable by nodes. 
The idea behind the strategy we mention above, is that if the stochastic space model, and 
especially its associated Kalman filter, are calibrated within a clean embedding system, then 
a simple hypothesis test can be used to assess whether the deviation between the measured 
relative error and the predicted relative error, observed at a given embedding step, is 
normal or is the fruit of anomalous or malicious activity from the peer node. From this 
perspective, even if the state space model considered is crude, its quality should be 
evaluated based on the final outcome in terms of probability of detection and false positive 
rate. We will see in the evaluation section (section 5) that this model achieves very good 
performance. 

2.1 Kalman filter equations 
The Kalman filter is used here to estimate Δn given the set of previously measured relative 
errors  = {D0, . . . ,Dn}. Under the hypothesis of a gaussian noise process in the underlying 
state space model, the Kalman filter gives the Least Mean Squared estimates of Δn, Δ̂ n. 
Moreover, it gives the quality of these estimates through an evaluation of the mean squared 
error i.e., E[( Δ̂ n − Δn)2]. This last value could be used to detect anomalies through large 
deviations of the measured relative error from its mean. 
We will assume here that all the parameters of the space model given in Eq. (1) and Eq. (2) 
are known and given. In the next section we will describe how to derive these parameters. 
Let us denote by Δ̂ i|i−1 the estimation of ¢i knowing the observations of network delay up to 
time i−1, and Δ̂ i|i the estimate after the measurement Di is done. Similarly, let Pi|i−1 be the 
                                                 
1 The value w accounts for the drift that has been observed in positioning systems [10]. 
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estimated a posteriori error variance at time i knowing the observations up to time i−1, and 
let Pi|i be the estimation of the a posteriori error variance after Di is known. The Kalman Filter 
is composed of two steps that are iterated. The first step is called the prediction step and the 
second one the update step. 
In the prediction step, the value of Δ̂ i|i−1 is calculated based on Δ̂ i−1|i−1 as: 

 
The a posteriori error variance of this estimate is: 

 
In the update step, Δ̂ i|i−1 is updated to integrate the observed measurement Di: 

 
where Ki denotes the updated gain and is obtained as: 

 
The a posteriori error variance of this estimate is : 

 
The value ηi = Di − Δ̂ i|i−1 is called the innovation process and is the main process to observe 
for anomalous behavior detection (see section 4.1). The innovation process is a white 
(meaning that it is an independent process) gaussian process with a mean 0 and a variance 
equal to vη,i = vU + Pi|i−1. Abnormality simply amounts to a significant deviation from the 
nominal values of the innovation process characterized by the Kalman filter. 
To run the Kalman estimation, we need as initial values the system state value w0 and the a 
priori state variance P0|0 = p0. These two values are estimated during the parameters 
calibration step. 

2.2 Calibration of the Kalman filter 
Before running the estimation using the Kalman filter, the values of the filter parameters  
θ = (β, vW, vU, w0, p0) have to be computed. For this purpose we need to calibrate these 
parameters over coordinate measurements collected during a stationary and cheater-free 
period. The calibration can be done using a maximum likelihood criteria (choosing 
parameter values such that the likelihood of observing the measurements is maximized) by 
applying the Expectation Maximization (EM) method. We follow the approach presented in 
[15] for the EM derivation. 
In the following, we give a brief description of the maximum likelihood estimation criterion 
and the EM method, we are using in this section to calibrate our filter. 
The maximum likelihood estimation criterion Maximum likelihood estimation (MLE) is a 
statistical method used to make inferences about parameters of the underlying probability 
distribution from a given data set [16]. Basically, this method allows us to infer the 
parameters of a distribution given a sample of data X = X1, . . . ,Xn. Commonly, one assumes 
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the data are independent, identically distributed (i.i.d) drawn from a particular distribution 
with unknown parameters and uses the MLE technique to create estimators for these 
unknown parameters. 
Let us consider a family of distributions Pθ  indexed by a parameter (which could be a vector 
of parameters) θ that belongs to a set Θ. Let f(X|θ) be either a probability function (in case of 
discrete distribution) or a probability density function (continuous case) of the distribution 
Pθ. Given our i.i.d. sample X1, . . . ,Xn with unknown distribution Pθ from this family, i.e. 
parameter θ is unknown. A likelihood function is defined by: 

 
If our distributions are discrete then the probability function f(x|θ) = Pθ(X = x) is the 
probability to observe a point x. L(θ) = f(X1|θ) × . . . × f(Xn|θ) = Pθ(X1) × . . . Pθ(Xn) = Pθ(X1, . . 
. ,Xn) is the probability to observe the sample X1, . . . ,Xn when the parameters of the 
distribution are equal to θ. 
Suppose that there exists a parameter θ̂  that maximizes the likelihood function L(θ) on the 
set of possible parameters, i.e. 

 
Then θ̂  is called the Maximum Likelihood Estimator (MLE) of θ. 
When finding the MLE, it is sometimes easier to maximize the log-likelihood function since 

 
maximizing L(θ) is equivalent maximizing log L(θ). Log-Likelihood function can be written 
as log  
To summarize, one needs to recall that the MLE criterion chooses the parameter θ̂  that 
maximizes the probability of seeing the observed data given that their distribution follows 
these parameters. The log of the likelihood is often used instead of true likelihood because it 
leads to easier formulas, but still attains its maximum at the same point as the likelihood. 
The Expectation maximization (EM) algorithm is a valuable approach for maximum 
likelihood parameter estimation. In the next paragraph, we use this method to calibrate our 
Kalman filter parameters, i.e . find the values for the filter parameters that maximize the 
probability of a sequence of observations. 
Calibration by EMmethod Let’s assume that  is the set of all measured prediction errors, 

 = {D0, . . . ,DN} and let Δ  = {Δ0, . . . ,ΔN} be the set of nominal relative errors. 
As all the noise processes are assumed to be gaussian,  and Δ   will jointly follow a 
gaussian distribution. The log-likelihood of  and Δ , based on equations 2 and 1, can 
therefore be written as follows: 
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In a Maximum likelihood setting, we wish to find the values for the parameters that will 
maximize the above log-likelihood assuming that the sequence  has been observed. 
However as the sequence of system state Δ  has not been observed, this maximization is 
not tractable directly and we have to apply the Expectation Maximization method [17]. This 
method transforms the maximization of the above likelihood function with unobserved 
system state sequence Δ  to an iteration of successive steps where the system state 
sequence is assumed to be known and the parameters can be obtained through 
maximization of the likelihood function. 
Each iteration of the EM method consists therefore of two steps. In the first step, we 
compute the expectation (over all values of the sequence of states Δ ) of the 
loglikelihood, given the observed values of Dn

 and assume that the parameter values are 
equal to θ(k). In a second step, the parameters θ(k+1) are chosen so as to maximize the 
previously obtained likelihood expectation. Next we explain these two operations with 
some further details. 
Let the superscript (k) indicate the value of any parameter at the kth step of the EM 
algorithm. As explained before, in the EM method, we need to estimate the value of the 
unobserved system states to be able to calculate the overall likelihood to maximize. The 
variables  are in fact those estimates at iteration k and  are the estimation 
error variances of this sequence of states: 

 
 

 
 

Expectation step The expected value of log-likelihood knowing the set of measured values 
 and the parameter θ(k) is given by: 
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By replacing θ by its value at the kth step of the EM algorithm, we obtain , , 
which gives the expected log-likelihood at the (k +1)th step. Next, we describe how to 
compute these values. 
Calculating the parameters  As explained in section 2.2, the sequence of 
system states Δ  is not observable. However, we need to give an estimate of this sequence 
to be able to obtain the likelihood. The sequence δ̂ i , i = 1 . . . ,N, is the sequence of system 
state estimates and π̂ i, and π̂ i,i−1 is the error variance of these estimates assuming that the 
sequence  has been observed. We resort to the solution in [15] for the calculation of these 
estimates using the overall measurements set. 
The value δ̂ i, π̂ i, and π̂ i,i−1 are estimated using a Kalman filter, assuming that the system 
parameters are set as in θ(k). However, there is a subtle difference with Kalman filter case 
described in section 2.1; here the estimates δ̂ i, π̂ i and π̂ i,i−1 do not depend only on 
observations up to time i, but on future observations up to time N ≥i. The solution to deal 
with this is to implement a forward-backward approach similar to Baum- Welch filter used 
for finite EM algorithm [20]. 
For each value of the parameter set θ(k), we first do a forward step following the relations 
given in section 2.1. The application of this forward step results in the values Δ̂ i|i, i = 1, . . . 
,N, Pi|i, i = 1, . . . ,N and Pi|i−1, i = 1, . . . ,N. 
To add the future measurements in the Kalman filter, a backward recursion step is also 
added. This step consists of the following equations: 

 
 

These equations give recursively the values δ̂ i and π̂ i. It still remains to obtain π̂ i,i−1. 
This last value could be obtained using the relation: 

 
where  can be obtained through the backward recursion 

 
that is initialized by setting 

 
 

Maximization step In this step, the parameter vector at step (k + 1) is chosen to maximize 
the expected log-likelihood. This is done by solving the equation 

 
 

This results in the following set of equations: 
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By solving this set of equations we can obtain the vector θ(k+1), then we iterate with the 
expectation calculation as described above. 
We note that the complexity of the approach lies in the linear state space modeling phase by 
EM algorithm that incurs a number of iterations over N dimensional vectors, which is well 
within the capability of modern computers. We will see later that this phase has to be run on 
a subset of nodes (the Surveyors). On the other hand, predicting relative errors using the 
Kalman filter(section 2.1), which occurs on every node, only implies a few simple scalar 
operations and is negligible in terms of required computing power. 
Finally, because we expect each of the innovation observation ηn to be inside a confidence 
interval of  (where vη,n is the variance of the innovation process at time n) with a 
probability higher than 95%, when a Kalman filter yields 10 consecutive innovation 
observations outside such confidence interval, the filter is re-calibrated by re-applying the 
calibration procedure described in this section. Re-calibration is likely to occur following a 
significant change in the corresponding node’s coordinate, caused by changes in network 
conditions. 

3. Validation 
To validate our model, we conducted simulations and PlanetLab experiments for both 
Vivaldi [9] and NPS [8]. We consider Vivaldi as a prominent representative of purely peer-
to-peer-based (i.e. without infrastructure support) positioning systems, while NPS is typical 
of infrastructure-based systems, where a hierarchy of landmarks and reference points 
govern the positioning of nodes. 
As the goal of this section is to assess the fitness of the proposed model to represent the 
normal behavior of the embedding processes, all results presented were acquired in a clean 
environment with no malicious node. While the goal of the simulation studies is to assess 
our results for large scale coordinate-based systems, the PlanetLab experiments aim to show 
their applicability in real-world conditions. The PlanetLab experiments were conducted over 
a set of 280 PlanetLab nodes spread world-wide. We discuss a representative set of 
experimental results conducted over several days in December 2006. The simulations were 
driven by a matrix of inter-host Internet RTTs (the “King” dataset) to model latencies based 
on real world measurements. This dataset contains the pair-wise RTTs between 1740 
Internet DNS servers collected using the King method [13] and was used to generate a 
topology with 1740 overlay nodes. 
In the case of Vivaldi, each node had 64 neighbors (i.e. was attached to 64 springs), 32 of 
which being chosen to be closer than 50 ms. The constant fraction Cc for the adaptive 
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timestep is set to 0.25, as proposed in [9]. A 2-dimensional coordinate space augmented with 
a height vector was used. 
For NPS, we considered an 8-dimensional Euclidean space for the embedding. We used an 
NPS positioning hierarchy with 4 layers. The top layer had a set of 20 well separated 
permanent landmarks. Each subsequent layer then had 20% of nodes randomly chosen as 
reference points. The security mechanism already proposed in NPS, shown to be too 
primitive in [2], was turned on and its sensitivity constant C was set to 4, as advised by 
authors in [8]. 
When needed, Surveyor nodes were chosen at random2. Again, because we seek to validate 
the kalman filter model, during the permanent regime of the embedding systems, all our 
experiments were are performed when nodes coordinates are stabilized enough, i.e. the 
relative errors vary at most by 0.02. 

3.1 Assumption validation 
In section 2, the assumption that the system error Wn follows a gaussian distribution was 
made. This is fundamental to the applicability of the Kalman filter framework. For the 
purpose of validation, every node calibrated its own Kalman filter based on the observation 
of its own embedding, and we checked this assumption by applying the Lilliefors test [18], a 
robust version of the well known kolmogoroff-Smirnov goodnessof- fit test, to whitened 
filter inputs. We observed that the Lilliefors test leads to only 14 gaussian fitting rejections in 
simulations (over 1720 samples) and 5 rejections in PlanetLab (over 260 samples). This test 
allows us to conclude that the hypothesis we took for the Kalmanmodel is valid. In addition, 
we plot in figure 1 the Quantile-Quantile (QQ) plots of 2 innovation processes (for both 
Vivaldi and NPS) taken on PlanetLab nodes running their own Kalman filter. These plots, 
typical of observations on all nodes, show that each of these distributions indeed closely 
follows a Gaussian distribution. 
 

 
                                (a) Vivaldi Case                                                 (b) NPS case 

Fig. 1. Quantile-Quantile plot of 2 innovation processes. 

                                                 
2 Note that in NPS, all permanent landmarks also act as Surveyors. 
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3.2 Effective behavior representation 
From section 2, it is clear that the Kalman filter model attempts to represent the behavior of 
the embedding process by capturing the dynamics of the system through its convergence 
behavior (by tracking of relative errors over time). In this section, we therefore assess the 
representational power of this approach by having each node calibrate its own Kalman filter 
from the measurements it observed during the embedding of its own coordinate, in a cheat-
free regime. Then, once the model has converged at every node (i.e. the EM method has 
converged and the variations of all the θ components become smaller than 0.02), a new 
embedding process is started (i.e. the nodes forget their coordinates and rejoin the system). 
During this second embedding process, the prediction error, that is the absolute value 
between the error predicted by the node’s Kalman filter and the measured actual error, is 
computed. 
Figure 2 shows a typical evolution of actual (measured) relative errors and predicted errors 
for a node on PlanetLab (for Vivaldi, but similar behavior was observed for NPS). The two 
curves of the top graph of the figure are so similar that they are almost indistinguishable. 
The bottom graph of the figure represents the prediction error which is the difference 
between these two curves (note the different scale used for this graph). We see that the 
prediction errors are small which shows that a node’s calibrated Kalman filter can capture 
effectively the node’s behavior “in the wild”. 
 

 
Fig. 2. Prediction errors (PlanetLab node). 

Figure 3 shows the cumulative distribution function (CDF) of all the prediction errors 
observed across all nodes in the system. This confirms that the vast majority of predictions 
are indeed excellent. This demonstrates the power and generality of the model in capturing 
the dynamics of the system and its adaptability to current system conditions. 
However, there are a few “outlier” predictions with large errors. To better understand their 
nature, we show in table 1 the repartition of prediction errors in error intervals. The table 
shows the number of nodes with prediction errors in this interval, the number of 
occurrences of the smallest prediction error observed in the interval, and the number of 
occurrences of the largest prediction errors observed in the interval (e.g. Number of 
node(s)/number of observed min error/number of observed max error).We see that only a 
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few nodes contribute (sometimes very many) large prediction errors. Looking further, we 
identified 3 nodes, all located in India, who contributed consistently to the “tail” of the CDF 
in figure 3. It is interesting to note that these nodes exhibited large (> 0.75) average 
measured relative errors during embedding, and were clearly having trouble with the 
embedding process itself, due to adverse network conditions. 
 

 
Table 1. Prediction Error Histogram 

 
Fig. 3. CDF of prediction errors. 

3.3 Representativeness of surveyors 
If a subset of nodes in the system (called Surveyor nodes) are trusted and use each other 
exclusively to compute their own coordinates, they will be immune to the effects of 
malicious behavior during embedding. The premise of our work is that the “clean” (normal) 
system behavior thus learnt can then be shared with other nodes and used by these nodes to 
detect malicious behavior they may be subjected to by other nodes in the system. This 
obviously assumes that the behavior of the system as observed by Surveyors can 
approximate or represent well enough the normal behavior of the system as observed by 
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other nodes in the absence of malicious behavior. In the following validation of this 
assumption, Surveyors are chosen at random in the node population. 
Note that a random choice will give an upper bound on the number of Surveyors needed. 
Indeed, intuitively, Surveyors should be roughly uniformly distributed in the system to be 
representative of most other nodes. However, choosing nodes at random in the system does 
not yield a uniform distribution of Surveyors (i.e. “Surveyor clusters” appear due to the 
cluster structure of nodes themselves) and therefore not every new Surveyor increases 
representativeness. Consequently, more Surveyors must be chosen in order to achieve a 
good coverage of the system, than if they were placed more strategically. Nevertheless, the 
random choice method does provide general results, without the need to address the 
question of optimal Surveyor deployment strategy. 
One of the first questions to answer is how many Surveyors are needed to be representative 
of the rest of the population. Noting that our model is based on measured relative errors and 
that each node in the system observes a series (i.e. distribution) of such errors, we 
characterize the system-wide relative error behavior as the CDF of the 95th percentiles of the 
relative errors observed at each (normal) node (i.e. the distribution is made up of the 95th 

percentile value observed at every node). We then compare this CDF with those of the 95th 

percentiles of the relative errors observed across a varying population of Surveyors. The 
choice of the 95th percentile is so that outliers, as observed in section 3.2, do not skew the 
results, while preserving a high degree of generality. Figure 4, obtained by simulations of 
Vivaldi, indicates that a population of Surveyors of about 8% of the overall population is 
closely representative of this overall population (because the CDF for these populations in 
the figure are similar). 
 

 
Fig. 4. Impact of Surveyor population size on repretentativeness. 
To generalize this result, we then repeated the experiment, using both simulations and 
PlanetLab measurements, on a Vivaldi system with 8% of Surveyors. We again chose to 
represent the system by the distribution of the 95th percentile of the measured relative errors 
(figure 5). 
These experiments confirm that less than 10% of randomly chosen Surveyor nodes is 
enough to gain a good representation of the system behavior. Similar results were observed 
for NPS. We note that 8% to 10% of the overall node population is a very stringent 
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requirement for most practical purposes and can represent a huge number of nodes. 
However, as already pointed out above, random Surveyor deployment is not optimal and 
this value is an upper bound on the number of Surveyors needed. 
 

 
Fig. 5. Representativeness with 8% Surveyor nodes. 

To gain further insight into how conservative this upper bound may be, we tried a simple k-
means clustering algorithm for Surveyor deployment. Figure 4 shows that when taking 
cluster heads as Surveyors, good representativeness can be achieved with roughly 1% of 
Surveyors. Although this does not give much indication as to what the lower bound on the 
number of Surveyors needed is in the case of optimal Surveyor deployment, it nevertheless 
shows that simple deployment methods can reduce requirements considerably and that the 
upper bound yielded by random deployment is indeed very conservative. 
Having shown that a population of Surveyors can represent the overall system, the next 
question is how well the behavior of the system as captured by the Kalman filter calibrated 
by a Surveyor, can represent the behavior of a single (normal) node. To answer this 
question, we carried out an experiment where a population of nodes took part in a Vivaldi 
embedding on PlanetLab. Each node used the Kalman filter of every Surveyor and 
generated multiple prediction errors (one per Surveyor) at every embedding step. 
Figure 6 shows the maximum prediction error yielded by each Surveyor, for each normal 
node in the system, observed during this experiment. What we observe is that although each 
normal node can find at least one Surveyor node whose Kalman filter yields very low 
prediction errors, not every Surveyor is a good representative for any given normal node. 
The Surveyor chosen as a representative by a normal node is therefore important to achieve 
good prediction performance (and thus good malicious behavior detection). 
Figure 7 plots the prediction accuracy (measured as an average prediction error) against the 
distance (measured as an RTT) between a node and the corresponding Surveyor, as 
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observed during the PlanetLab experiment. It is clear that better locality between a node and 
its Surveyor yields more accurate predictions. This property seems intuitive, as a Surveyor 
closer in terms of RTT will also be closer in the geometric space, and will thus be more likely 
to experience dynamics of the coordinate system similar to that of the local area where the 
node resides. This is confirmed in figure 8 which shows the maximum prediction error, 
observed for Vivaldi on PlanetLab, when nodes use the closest Surveyor as their 
representative. Similar results were observed for PlanetLab experiments with NPS. 
 

 
Fig. 6. Maximum prediction errors with Surveyor filter parameters (PlanetLab). 

 
Fig. 7. Correlation between ’Node-Surveyor’ RTTs and estimation accuracy (PlanetLab). 
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Fig. 8. Maximum prediction errors with closest Surveyor. 

Finally, it is again important to note that all the results in this section were obtained with 
randomly deployed Surveyors. Strategically placing Surveyors to ensure a better coverage 
of the network and coordinate space, would simply improve the prediction accuracy, while 
reducing the number of Surveyors required. 

4. Malicious behavior detection 
The previous section has shown that normal node behavior can be modeled by a Kalman 
filter. More importantly, it has also been shown that this technique is powerful and robust 
enough that the normal behavior model captured on one node is readily and effectively 
applicable on other nearby nodes. This property leads to the idea of Surveyors. 
Surveyors are a set of nodes in the coordinate space that exclusively use each other to 
compute their own coordinates. In other words, in Vivaldi, Surveyors only use other 
Surveyors as neighbors, while in NPS, they only use other Surveyors as reference points 
(note that in NPS, all landmarks also act as Surveyors, although not all reference points will 
be Surveyors). Of course, Surveyors can, and will be chosen as neighbors or reference points 
by other (non-Surveyor) nodes in the system, but the point is that a Surveyor adjusts its 
coordinate solely in response to embedding steps (i.e. measurements) with other Surveyors. 
If Surveyors run a clean version of the coordinate embedding software and they are 
carefully kept clean of malicious software, such as viruses or worms, that could implement 
malicious modifications to the embedding, then they can be considered as clean, honest 
nodes. Because Surveyors only interact with each other during their own embedding, they 
are therefore immune to malicious or anomalous behavior in the system, and they therefore 
observe the behavior of the system in clean, normal conditions. The idea is then to use the 
thus obtained normal behavior model as a basis for anomalous behavior detection at other 
nodes of the system. To do so, nodes use the parameters of the Kalman filter calibrated at a 
nearby Surveyor. 
It is important to note that the proposed method is entirely distributed as each node has its 
own filter. Indeed, Surveyors calibrate and recalibrate their own filter as needed, depending 
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on varying network conditions, and share the resulting filter parameters with other nodes, 
but they take no further active part in anomalous behavior detection at other nodes. When a 
node’s filter needs re-calibrating (e.g. because it starts giving too many detection alarms), 
the node simply obtains fresh filter parameters from a Surveyor. 

4.1 Anomalous behavior detection method 
At each embedding step, a node computes a measured relative error Dn towards a peer 
node. Recall from section 2 that the Kalman filter at the node can provide Δ̂ n|n−1, the 
predicted relative error from the previously measured relative errors. The innovation 
process of the Kalman filter yields the deviation between the measured and predicted 
relative errors, ηn = (Dn − Δ̂ n|n−1), which, in a system without malicious node, follows a zero-
mean gaussian distribution with variance vη,n = vU + Pn|n−1 (also yielded by the filter). 
This allows us to detect malicious behavior as a simple hypothesis test. Let H0 be the 
hypothesis that the peer node has a normal behavior (i.e. it is honest). The hypothesis testing 
simply consists of assessing whether the deviation between the measured and predicted 
relative errors is normal enough under expected system behavior. Given a “significance 
level” α, which determines the “aggressivity” or “strictness” of the test, the problem is to 
find the threshold value tn such that 

 (3)

But since, under hypothesis H0, (Dn − Δ̂ n|n−1) follows a zero-mean normal distribution with 
variance vη,n, we also have that 

 (4)

where Q(x) = 1−Φ(x), with Φ(x) being the CDF of a zero-mean, unit-variance normal 
distribution. 
From equations 3 and 4, we therefore have 

 (5)

If the observed deviation exceeds the threshold given by equation 5, then the hypothesis is 
rejected, the peer node is flagged as suspicious, the embedding step is aborted and the 
measured relative error Dn is discarded (i.e. it is not used to update the state of the filter). 
Note that a suspicious node, as detected by this test, is not necessarily associated with 
malicious intent, but could be caused by changing network conditions. Honest nodes 
classified as suspicious represent false positives and have little impact on the system as long 
as their occurrence is low. The trade-off between aggressivity and strictness of the test is 
represented by the so called ROC (Receiver Operation Characteristic) curves [19]. These 
curves plot the true positive rate versus the false positive rate, i.e. the probability of correctly 
detecting a malicious node versus the probability of labelling an honest node as malicious. 
In practice trying to increase the true positive rate (the probability of malicious node 
detection) comes at the cost of increasing the false positive rate. 
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4.2 Generic detection protocol 
In general, on identifying a peer node as suspicious, a node will replace it, that is choose a 
new neighbor in Vivaldi or a new reference point in NPS. 
The only exception to this rule is when the node was embedding against the peer node for 
the very first time. In this particular case, the node uses its local error el 3 as an indicator of 
the confidence it has in its own coordinate, to carry out a second hypothesis test identical to 
that presented in the previous section, but this time with a confidence level of elα. If the test 
is accepted, then the peer node gets a reprieve and is not replaced, so that a second 
embedding against this peer node will be attempted at a later time. 
The main idea behind this potential reprieve for first-time peer nodes is that a node whose 
coordinate has already converged towards its true value can afford a few aborted 
embedding steps with very little impact on the accuracy of its coordinate. On the other 
hand, a new peer node which is in the process of joining the network may trigger the 
abortion of an embedding step, simply because its coordinate has not converged yet (as 
opposed to because it displays a malicious behavior). In this case, the reprieve simply gives 
time to the new (joining) peer node to converge before being identified as malicious. Of 
course an embedding node which is not confident in its coordinate must strive to reduce the 
number of aborted embedding steps so as not to compromise its convergence in the system, 
and will therefore grant fewer reprieves (because its el is higher) than a node that has 
already converged. 
Finally, we use a simple mechanism for the selection of the Surveyor from which a node 
obtains its calibrated Kalman filter. All Surveyor nodes register with an infrastructure server 
(e.g. the membership server in NPS can act as Surveyor registrar, while in Vivaldi such 
server must either be introduced or at least integrated inside an existing bootstrap 
infrastructure). On joining the coordinate system, a node interrogates this server to obtain 
the identity of several (randomly chosen) Surveyors. The node then measures its distance to 
these Surveyors and selects the closest one as representative. From there on, the node fully 
complies to the embedding protocol rules, except that it will use our detection method to 
accept or reject embedding steps. 
However, when the node has rejected half of its current peer nodes during a same 
embedding round, it will seek to acquire a new filter as the high rejection rate may indicate 
that the filter parameters in use may have become stale (i.e. the filter needs “recalibrating”). 
The node then gets from its current Surveyor (or, as a fallback, any other Surveyors it 
knows, or the infrastructure server) the list of all the Surveyors it knows. After acquiring the 
current coordinates of these Surveyors, the node selects the closest one (in term of estimated 
distance) and obtains its Kalman filter parameters. Note that in the experiments we have 
carried out, which are described below, we observed very few “recalibrations”, so this very 
simple Surveyor selection mechanism was appropriate. However, more sophisticated 
approaches can be considered if need be. 

5. Evaluation 
We evaluate the effectiveness of the simple anomalous/malicious behavior detection 
method in securing both Vivaldi and NPS. For each of these embedding protocols, we chose 

                                                 
3 el is the exponential moving weighted average of the measured relative errors of all 
previously completed embedding steps. 



Tracking Relative Errors in Internet Coordinate Systems by a Kalman Filter  

 

201 

the most potent attack described in [2] and experimented with various populations of 
malicious nodes within the experimental set-up described in section 3. On PlanetLab, all 
these experiments were run concurrently so as to experience the same network conditions. 
In line with the results of section 3.3, the population of Surveyors was set to 8% of the 
overall population. Surveyors and malicious nodes were chosen at random. 

5.1 Performance metrics 
To characterize the performance of our detection test, we use the classical false/true 
positives/negatives indicators. Specifically, a negative is a normal embedding step which 
should therefore be accepted by the test and completed. A positive is a malicious embedding 
step (i.e. where either, or both, the distance estimation and distance measurement between 
the node and its peer node have been tampered with) which should therefore be rejected by 
the test and aborted. The number of negatives (resp. positives) in the population comprising 
all the embedding steps is N (resp. P ). 
A false negative is a malicious embedding step that has been wrongly classified by the test as 
negative, and has therefore been wrongly completed. A false positive is a normal embedding 
step that has been wrongly rejected by the test and therefore wrongly aborted. True positives 
(resp. true negatives) are positives (resp. negatives) that have been correctly reported by the 
test and therefore have been rightly aborted (resp. completed). The number of false 
negatives (resp. false positives, true negatives and true positives) reported by the test is FN 

(resp. FP , TN and TP ). 
We use the notion of false negative rate (FNR) which is the proportion of all the malicious 
embedding steps that have been wrongly reported as normal by the test, and  
FNR = FN/ P . The false positive rate (FPR) is the proportion of all the normal embedding 
steps that have been wrongly reported as positive by the test, so FPR = FP / N. Similarly, 
the true positive rate (TPR) is the proportion of malicious embedding steps that have been 
rightly reported as malicious by the test, and we have TPR = TP / P . 
The true positive test fraction (TPTF) is the proportion of positive tests that correctly identified 
malicious embedding steps (TPTF = TP /( TP + FP )). 

5.2 Securing Vivaldi 
We experimented with our detection scheme on a Vivaldi system subjected to a colluding 
isolation attack as described in [2]. In this scenario, malicious nodes are trying to isolate a 
target node, by repulsing all other nodes away from it. The malicious nodes agree on a large 
“exclusion” zone around the target node and randomly set their own coordinates outside 
this zone to try and attract honest nodes out of the exclusion zone. Note that an attacker 
always uses the same coordinate when lying to a given honest node. 
Detection Method Performance To evaluate the efficiency of the test, we first plot in figure 
9, ROC (Receiver Operation Characteristics) curves observed for different significance levels 
(α) and several intensities of attacks. These plots show, for each significance level4, the point 
corresponding to the false positive rate along the x-axis and to the true positive rate along 
the y-axis, with one curve per malicious group size (line x=y is plotted as a reference). 
Obviously, the closer to the upper left corner of the graph a curve is, the better, since such 
 

                                                 
4 Significance level values α always increase as a ROC curve is “followed” from the origin. 
In our experiments, we used values of 1%, 3%, 5% and 10% for α. 
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Fig. 9. ROC curves. Each tick on the plots corresponds to a different value of the test’s 
significance level (α ). 

points correspond to high true positive rates (i.e. a high proportion of positives being 
reported as such by the test) for low false positive rates (i.e. a small proportion of negatives 
incorrectly reported as positives). We observe that from this perspective, the detection 
method can be considered to be excellent for 20% of malicious nodes or less, and still 
performs well even under heavy attack of up to about 30% of malicious nodes, while the 
power of the detection method naturally decreases as the malicious population becomes 
more significant. Another interesting properties of ROC curves is that they show the optimal 
range for the significance level. Indeed, as the slope of the ROC curve flattens, the increase 
in true positive rate is proportionally smaller than the corresponding increase in false 
positives. In other words, a higher significance level, although it always increases the true 
positive rate of the test, is not always productive as it eventually does more bad than good 
through increased false positive rates (i.e. the proportion of normal embedding steps that 
are aborted increases). This means that the significance level of the test should be set to a 
value that yields a point in the “elbow” of the ROC curve. Based on figure 9, we can deduce 
that a significance level of 5% seems to be a good compromise. 
Figure 10 shows the true positive test fraction of the detection method for various test 
significance levels under various intensity of attacks. We see that the proportion of positive 
tests that are true positives is constantly high, regardless of the significance level chosen, for 
moderate to quite significant proportions of malicious nodes in the population (up to 20% of 
malicious nodes). However, thereafter the proportion of correct positive tests starts to 
decrease, although the rate of decrease is inversely proportional to the significance level 
used. This is because a higher significance level produces more positive tests, catching most 
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malicious embedding steps, and so many more false positives are needed to make up a 
significant proportion of these. In light of this, a significance level of 5% offers a good 
compromise. 
 

 
Fig. 10. True positive test fraction. 

Figures 11 and 12 show the false positive and negative rates respectively. As expected, a 
higher significance level results in a more aggressive test that incorrectly classifies a larger 
portion of normal embedding steps (figure 11) as malicious, while a more lenient test (lower 
significance level) wrongly reports a higher proportion of malicious embedding steps as 
normal (figure 12). 
 

 
Fig. 11. False Positive Rate. 
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Fig. 12. False negative rate. 

Incorrect test results do have a negative impact on the embedding system: false positives 
artificially reduce the size of available normal nodes that can be used for normal 
embedding; false negatives give malicious nodes opportunities to corrupt and distort the 
coordinate space, which can propagate through the system and result in a greater 
proportion of normal nodes being identified as malicious (false positives) because of mis-
positioning. This is exemplified in figure 11, where the false positive rate increases faster, as 
the population of malicious nodes increases, for lower values of the significance level of the 
test. Also, despite the fact that the false negative rate curves (figure 12) clearly exhibit 
negative slopes, one should note that these rates decrease much slower than the increase in 
malicious population. That is to say that as the number of malicious nodes in the system 
increases, the number of false negatives does increase, and more damage is incurred in the 
coordinate space. Although the accuracy of coordinate systems increases with the number of 
participating nodes, false negatives can therefore have a greater impact on the system than 
false positives and should therefore be thwarted in priority. As the false negative rates 
exhibited by tests with significance levels of 5% and 10% are roughly similar, while the more 
aggressive test yields proportionally a higher false positive rate, the significance level of 5% 
is a good compromise. 
Embedding System Performance From section 5.2, it should be clear that a significance 
level of 5% gives the overall best test performance. We therefore set the significance level to 
this value and assess the resistance of a Vivaldi system under various intensity of attacks. 
The cumulative distribution function of the measured relative errors, across all normal 
nodes, after convergence (in the sense of error convergence as defined in section 2) is shown 
in figure 13. We see that the detection mechanism renders the system practically immune to 
the attack, when the proportion of malicious nodes is 30%, or less, of the overall node 
population. Although the system does indeed show degraded performance for higher 
intensities of malicious attacks, the steeper slope of the CDF with detection, compared to the 
corresponding curve without (e.g. curves for 50% of malicious nodes), shows that the 
detection mechanism is not completely overwhelmed and still offers good protection by 
significantly reducing the impact of the attack. 
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Fig. 13. Distribution of measured relative errors. 

5.3 Securing NPS 
To test our proposed detection method in the context of the NPS coordinate system, we 
chose to study the effects of colluding isolation attack as described in [2]. The malicious 
nodes cooperate with each other and behave in a correct and honest way until enough of 
them become reference points at each layer. As soon as a minimum number of malicious 
reference points has been reached (in our experiments this number is set to 5) in a layer, 
these attackers identify a common set of victims (50% of the normal nodes they know from 
the layer directly below). When involved in the positioning of their victims, the malicious 
nodes agree to pretend they are all clustered into a remote (far away) part of the coordinate 
space and try and push the victims into a remote location at the ”opposite” of where the 
attackers pretend to be, in order to isolate the victims from the other nodes in the coordinate 
space. In order to evade detection, including the basic detection method proposed in NPS 
and which is always turned on in our experiments, the malicious nodes use the sophisticated 
anti-detection method proposed in [2] during their attacks. 
Detection Method Performance Figure 14 shows the ROC curves for the detection test in 
NPS. These curves show characteristics similar to those observed in the Vivaldi system (see 
section 5.2), albeit slightly better. In particular, these curves show that the detection method 
withstands heavier attacks better in NPS than in Vivaldi. 
There are several reasons for this. First, the basic detection method in NPS works in concert 
with our own, providing greater opportunities to identify malicious behavior. Also, by its 
very nature, the embedding method in NPS is less prone to mis-positioning error 
propagation amongst normal nodes, as nodes in the lower layer do not take part in the 
embedding of other nodes. And finally, by design, the attack considered in this section 
makes fewer victims than that studied in section 5.2 (i.e. 50% of normal nodes as victims vs 
100% in Vivaldi). 
The same observation is also true for the false positive and false negative rates (not shown) 
with again, overall, a significance level of 5% seemingly offering the best compromise 
between “catching” malicious embedding steps while not being overly cautious and over-
reacting to normal variations in network conditions. 
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Fig. 14. ROC curves. 

The similarities between the test performance under NPS and Vivaldi, despite the different 
nature of the attacks under consideration and even differences in coordinate “structure” 
(two-dimensional with height for Vivaldi versus eight-dimensional for NPS), illustrates the 
generality of the proposed detection method. This is because our detection test is based on 
the modeling of a dimension-less quantity (the relative error) which is at the very core of any 
coordinates embedding system. 
Embedding System Performance We study the performance of the NPS embedding system 
when subject to increasing intensity of attacks, while being protected by our detection 
scheme. Note that in this section, “detection off” really means that our proposed detection 
mechanism is not used, but the basic NPS detection mechanism is still “on”. 
Figure 15 shows the cumulative distribution function of relative errors in the system. We 
note again similarities with the dynamic behavior of similar Vivaldi systems, except that the 
tail of the CDF for 50% malicious nodes with detection is heavier than the corresponding 
curve in the Vivaldi case. Keeping in mind that in NPS not all nodes are victims and that not 
all normal nodes will propagate mis-positioning errors, this indicates that the attack is still 
quite effective against its victims, albeit “dampened” by the detection mechanism. This 
effect is compounded by the fact that, with our simple detection protocol, malicious nodes 
that have found their way into the layer hierarchy of NPS and act as Reference Points, do 
stay in place throughout the experiment, despite numerous detections of their corrupt 
embedding steps. Nevertheless, the detection method proposed affords near immunity to 
the system up to rather severe attack conditions (e.g. about 30% of malicious nodes in the 
system). 
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Fig. 15. Distribution of measured relative errors. 

6. Conclusions 
We have presented a method for malicious behavior detection to secure the embedding 
phase of Internet coordinate systems. Our method does not rely on the geometric properties 
of the coordinate space, and is therefore unaffected by potential triangular inequality 
violations which often occur in the Internet [11, 12]. Instead, our detection test is based on 
the modeling of the dynamic relative errors observed in a clean system. The relative error is 
a dimension-less quantity which is at the very core of any embedding method, leading us to 
believe that our proposed detection test can effectively identify malicious behavior in very 
many embedding protocols and coordinate space structures that are under a potential very 
large range of attacks. The experiments presented in this chapter do show that the 
performance of the detection test is effectively the same in two different scenarios involving 
different embedding protocols and different attacks. As far as we know, this is the first such 
general detection test, capable of surviving sophisticated attacks. Also, we consider 
exclusively attacks aimed at distorting the coordinate space, carried out by nodes inside the 
embedding system. Our method thus succeeds where more obvious methods based on 
authentication would fail. 
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1. Introduction   
Perhaps the most important lesson to be drawn from the study of nonlinear dynamical 
systems over the past few decades is that even simple dynamical systems can give rise to 
complex behaviour which is statistically indistinguishable from that produced by a complex 
random process. Chaotic systems are nonlinear systems which exhibit such complex 
behaviour. In such systems, the state variables move in a bounded, aperiodic, random-like 
fashion. A distinct property of chaotic dynamics is its long-term unpredictability. In such 
systems, initial states which are very close to each other produce markedly different 
trajectories. When nearby points evolve to result in uncorrelated trajectories, while forming 
the same attractor, the dynamical system is said to possess sensitive dependence to initial 
conditions (Devaney, 1985). Due to these desirable properties, application of chaotic systems 
are explored for many engineering applications such as secure communications, data 
encryption, digital water marking, pseudo random number generation etc (Kennedy et. al., 
2000). In most of these applications, it is essential to synchronize the chaotic systems at two 
different locations. In this chapter, we explore the Kalman filter based chaotic 
synchronization.  

2. Synchronization of chaotic systems 
Related works of synchronization dates back to the research carried out by Fujisaka and 
Yamada in 1983 (Fujisaka & Yamada, 1983).  Pecora and Carroll suggested a drive-response 
system for synchronization of chaotic systems. They showed that if all the transversal 
Lyapunov exponents of the response system are negative, the systems synchronize 
asymptotically (Pecora & Carrol, 1990). Later a plethora of research work was reported on 
synchronization of chaotic systems (Nijmeijer & Mareels, 1997). One of the well researched 
approaches is the coupled synchronization, where a proper coupling is introduced between 
the transmitter and the receiver. The chaotic systems synchronize asymptotically when the 
coupling strength is above a certain threshold, which is determined by the local Lyapunov 
exponents (Suchichik et. al., 1997). 
Let the transmitter and the receiver states of the chaotic systems be given by 
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 1 ( , )k k μ+ =x f x  (1.a) 

 1ˆ ˆ ˆ( , )k k μ+ =x f x  (1.b) 

where 1 , ,
Tn

k k kx x⎡ ⎤= …⎣ ⎦x  and 1ˆ ˆ ˆ, ,
Tn

k k kx x⎡ ⎤= …⎣ ⎦x  are the n-dimensional state vectors of the 
transmitter and the receiver systems, respectively.  μ  and μ̂  are the transmitter and the 
receiver system parameters and 1[ (.), , (.)]n Tf f= …f  is a smooth nonlinear vector valued 
function. Normally, we have a noisy observation at the receiver which is given by  

 ( )k k k= +y h x v  (2) 
where kv is the channel noise and (.)h  is the measurement function. These two systems are 
said to be synchronized if 

 ˆlim 0.k kk→∞
− =x x  (3) 

2.1 Coupled synchronization 
In coupled synchronization, a coupling is introduced between the transmitter and the 
receiver as:  

 −= + −1ˆ ˆ ˆ( ) ( )k k k k kx f x K y y  (4) 

where kK  is the appropriate coupling coefficient matrix. In conventional coupled 
synchronization,  kK  is set to be a constant value  such that the global and local Lyapunov 
exponents (The Lyapunov exponents of a dynamic system are the quantities that 
characterize the rate of divergence/convergence of the trajectories generated by 
infinitesimally close initial conditions under the dynamics ) are negative. This makes the 
receiver to synchronize with the transmitter asymptotically.  The schematic of the coupled 
synchronization is shown in Fig. 1. This method of  synchronization can be treated as a 
predictor corrector filter approach. In general, a predictive filter predicts the subsequent 
states and corrects it with additional information available from the observation. Due to the 
measurement and the channel noises  in a communication  system, stochastic techniques 
have to be applied for synchronization. Instead of keeping  kK  as a constant value if it is 
determined adaptively, the coupled synchronization has a similarity with the predictive 
filtering techniques.  

3. Chaos synchronization: a stochastic estimation view point 

In stochastic state estimation methods, one would like to estimate the state variable kx based 
on the set of all available (noisy) measurement 1: 1{ , , }k k= …y y y  with certain degree of 
confidence. This is done by constructing the conditional probability density function (pdf), 

1:( | )k kp x y  (i.e. the probability of kx given the observations, 1:ky ), known as the posterior 
probability.  It is assumed that 0 0( | )p x y  is available. In predictor corrector filtering 
methods, 1:( | )k kp x y  is obtained recursively by a prediction step which is estimated without 
the knowledge of current measurement, ky  followed by a correction step where the 
knowledge of ky  is used to make the correction to the predicted values. 
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Fig. 1. Schematic of the coupled synchronization scheme. 

In the recursive computation of 1:( | )k kp x y , it is assumed that at time, 1k − ,  1 1: 1( | )k kp − −x y  
is available. Using the Chapman-Kolmogorov equation (Arulampalam, et. al. 2001), the 
prediction is estimated as 

 1: 1 1 1 1: 1 1( | ) ( | ) ( | )k k k k k k kp p p d− − − − −= ∫x y x x x y x  (5) 

where the state transition is assumed to be a Markov process of order one and  
1 1: 1 1( | , ) ( | )k k k k kp p− − −=x x y x x . To make the correction, one needs to make use of the 

information available in the current observation, ky . Using Bayes' rule, 

 1: 1
1:

1: 1

( | ) ( | )( | )
( | )

k k k k
k k

k k

p pp
p

−

−

=
x y y xx y

y y
 (6) 

where the normalizing constant 

 1: 1 1: 1( | ) ( | ) ( | )k k k k k k kp p p d− −= ∫y y y x x y x . (7) 

 

Though closed form solutions of the above equations exist for a linear system with Gaussian 
noise (e.g. Kalman filter), in general, for a nonlinear system, they are not available. 
However, one of the suboptimal filtering methods, the extended Kalman filter (EKF) is 
found to be useful in many nonlinear filtering applications. 

3.1 EKF for chaos synchronization 
The Kalman filter is an optimal recursive estimation algorithm for linear systems with 
Gaussian noise. A distinctive feature of this filter is that its mathematical formulation is 
described in terms of the state-space. The EKF is an extension of the Kalman filtering 
algorithm to nonlinear systems (Grewal & Andrews, 2001). The system is linearized using 
first order Taylor series approximation. To this approximated system, the Kalman filter is 
applied to obtain the state estimates. Consider a generic dynamic system governed by 

 1( , )k k k−=x f x w . (8.a) 

 ( , )k k k=y h x v  (8.b) 
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where the process noise,  kw , and observation (measurement) noise, kv , are zero mean 
Gaussian processes with covariance matrices kQ  and kR , respectively.  In minimum mean 
square estimation (MMSE), the receiver computes ˆ kx  which is an estimate of kx  from the 
available observations 1: 1{ , , }k k= …y y y such that the mean square error (MSE),  T

k k⎡ ⎤⎣ ⎦e eE  
(where ˆk k k= −e x x ), is minimized. The EKF algorithm for the state estimation is given by,  

 | 1 1ˆ ˆ( ,0),k k k− −=x f x  (9.a) 

 | 1 1 1 1
T T

k k k k k k k k− − − −= +P F P F W Q W  (9.b) 

In the above equations, the notation | 1k k − denotes an operation performed at time 
instant, k , using the information available till 1k − . At time instant k , | 1ˆ k k−x is the a priori 
estimate of the state vector kx , | 1k k−P  is the a priori error covariance matrix,  1k−F  is the 
Jacobian of (.)f  with respect to the state vector  1k−x  and  kW is the Jacobian of (.)f with 
respect to the noise vector kw . The EKF update equations are: 

 { } 1

| 1 | 1
T T T

k k k k k k k k k k k

−

− −= +K P H H P H V R V  (10.a) 

 | 1ˆ ˆ ˆ( )k k k k k k−= + −x x K y y  (10.b) 

 | 1( )k k k k k−= −P I K H P  (10.c) 

where kK is the Kalman gain, kH  is the Jacobian of (.)h  with respect to | 1ˆ k k−x , ˆ kx is the a 
posteriori estimate of the state vector, kV is the Jacobian of (.)h  with respect to the noise 
vector kv , and kP  is the a posterior error covariance matrix. When EKF is used for 
synchronization of chaotic maps, kK acts as the coupling strength which is updated 
iteratively. Schematic of EKF based synchronization is shown in Fig. 2. 
 

K kDelay

f (x̂ k− 1 , 0)

x̂ k |k− 1

x̂ k

h(x̂ k |k− 1 , 0)

ŷk

yk

+

−

 
Fig. 2. Schematic of EKF based chaos synchronization 

3.2.1 Convergence analysis 
Convergence analysis of kK can be carried out by studying the convergence of | 1k k−P . At any 
time instant, k , according to the matrix fraction propagation of | 1k k−P , it can be shown that 
(Grewal & Andrews, 2001), 

 1
| 1k k k k

−
− =P A B , (11) 
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where kA  and  1
k
−B are factors of | 1k k−P . If kF is nonsingular (i.e. the map is invertible), then 

1k+A  and 1k+B are given by the recursive equation as 

 
1

1
1

1

T T T
k kk k k k k k k k

T T T
k kk k k k k

− − −
+

− − −
+

⎡ ⎤+⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

A AF W F H R H W F
B BF H R H F

. (12) 

From the above expression, it can be shown that, when there is no process noise (i.e. 
k =W 0 and kF is contractive (i.e. the magnitudes of its eigenvalues are less than one), 

| 1k k−P will converge in time. However, inside the chaotic attractor, the behaviour of | 1k k−P is 
aperiodic if kF  is time varying. This behaviour has dramatic influence on the convergence of 
Kalman filter based synchronization system (Kurian, 2006) for systems with hyperbolic 
tangencies (HTs). 

3.3 Unscented Kalman filter 
The approximation error introduced by the EKF together with the expansions of this error at 
the HTs makes the system unstable and diverging trajectories are generated at the receiver. 
One way to mitigate this problem is to use nonlinear filters with better approximation 
capabilities. Unscented Kalman filter (UKF) has shown to possess these capabilities (Julier & 
Uhlman, 2004). It is essentially an approximation method to solve Eq. (5). UKF works based 
on the principle of unscented transform (UT) (Julier & Uhlman, 1997). 
 

 
Fig. 3. Illustration of unscented transform (UT). 

In Fig. 3, the UT of a random variable, u , which undergoes a nonlinear transformation 
( ( )f u ) to result in another random variable, v  is shown. To calculate the statistics of v , the 
ideal solution is to get posterior density, ( )p v ,  analytically from the prior density ( )p u . The 
mean and covariance of v  can also be computed analytically.  However, this is highly 
impractical in most of the situations because of the nonlinearity. UT is a method for 
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approximating the statistics of a random variable which undergoes a nonlinear 
transformation. It uses carefully selected vectors ( iU ), known as sigma points, to 
approximate the statistics of the posterior density. Each sigma point is associated with a 
weight iW . The number of sigma points is 2 1n + where n is the dimension of the state 
vector. With the knowledge of the mean ( û ) and covariance ( uP ) of the prior density, these 
sigma points are constructed as 

 

( )

( ) ( )

( ) ( )

κ
κ

κ
κ

κ
κ

⎛ ⎞= =⎜ ⎟+⎝ ⎠
⎛ ⎞

= + + = …⎜ ⎟
+⎝ ⎠

⎛ ⎞
= − + = + …⎜ ⎟

+⎝ ⎠

0 0 ˆ, , ; 0

1ˆ, ( ) , ; 1, ,
2( )

1ˆ, ( ) , ; 1, ,2
2( )

i i i

i i i

W i
n

W n i n
n

W n i n n
n

u

u

u

u P

u P

U

U

U

 (13) 

where κ  is a scaling parameter and ( )( )
i

n κ+ uP  is the ith row or column of the  square 

root of the matrix, ( )n κ+ uP .  These sigma points are propagated through the nonlinearity 
(.)f  to obtain 

 ( ) for 0,1, ,2 .i i i n= = …fV U  (14) 

Using the set of iV , the mean ( v̂ ) and covariance ( vP ) of the posterior density is estimated as 

 
=

= ∑
2

0

ˆ
n

i i
i

Wv V  (15.a) 

 ( )( )
=

= − −∑
2

0

ˆ ˆ .
n

T
i i i

i
WvP v vV V  (15.b) 

It is shown that the UKF based approximation is equivalent to a third order Taylor series 
approximation if the Gaussian prior is assumed (Julier & Uhlman, 2004). Another advantage 
of UT is that it does not require the calculation of the Jacobian or Hessian. 

3.3.1 Scaled unscented transform 
The scaled unscented transform (SUT) is a generalization of the UT. It is a method that 
scales an arbitrary set of sigma points yet capture the mean and covariance correctly. The 
new transform is given by 

 ( )0 0
' for 0, ,2i i i nα= + − = …U U U U  (16) 

where α  is a positive scaling parameter. By this the distribution of the sigma points can be 
controlled without affecting the positive definitive nature of the matrix, ( )n κ+ uP . A set of 

sigma points, [ ] [ ]{ }0 2 0 2, , , , ,n nW W= … = …U WU U , is first calculated using Eq.(13) and then 

transformed into scaled sigma points, { }' ' '
2

' '
0 2

'
0, , , , ,n nW W⎡ ⎤ ⎡ ⎤= … = …⎣ ⎦ ⎣ ⎦U WU U by 
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 ( )'
0 0 for 0,1, ,2i i i nα= + − = …U U U U  (17.a) 

 
0
2 2

2

'

1(1 ) 0

0i
i

W i
W

W i

α α

α

⎧ + − =⎪⎪= ⎨
⎪ ≠
⎪⎩

. (17.b) 

The sigma point selection and scaling can be combined to a single step by setting  

 2( )n nλ α κ= + −  (18) 

and  

 ='
0 ûU  (19.a) 

 ( )0 ˆ ( ) 1, ,i i
n i nλ= + + = …uu PU  (19.b) 

 ( )λ= − + = + …' ˆ ( ) 1, ,2i i
n i n nuu PU  (19.c) 

 ( )
0

mW
n
λ
λ

=
+

  (19.d) 

 ( ) 2
0 (1 )

( )
cW

n
λ α β
λ

= + − +
+

  (19.e) 

 ( ) ( ) 1 for 1,2, ,2 .
2( )

m c
i iW W i n

nλ
= = = …

+
  (19.f) 

Parameter β  above is another control parameter which affects the weighting of the zeroth 
sigma point for the calculation of the covariance. Using SUT, the mean and the covariance 
can be estimated as 

 
=

= ∑
2

( ) '

0

ˆ
n

m
i i

i
Wv V  (20.a) 

 ( )( )
=

= − −∑
2

( ) ' '

0

ˆ ˆ Tc
i

i
i

n

iWvP v vV V  (20.b) 

 

where ( )i i′ ′= fV U . 
Selection of κ   is such that it should result in positive semi definiteness of the covariance 
matrix. 0κ ≥  guarantees this condition and a good choice is 0κ = . Choose 0 1α≤ ≤  and 

0β ≥ . For Gaussian prior density,  2β =  is an optimal choice. Since, α controls the spread 
of the sigma points, it is selected such that it should not capture the non-local effects when 
nonlinearities are strong. 
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3.3.2 Unscented Kalman filter 
UKF is an application of the SUT. It implements the minimum mean square estimates as 
follows. The objective is to estimate the states kx , given the observations, 1:ky .  For this, the 
state variable is redefined as the concatenation of the original state and noise variables (i.e.  

Ta T T T
k k k k⎡ ⎤= ⎣ ⎦x x w v with dimension an ).  The steps involved in UKF are listed below. First, we 

initialize the parameters  

 =0 0ˆ [ ]x xE  (21.a) 

 ( )( )⎡ ⎤= − −⎣ ⎦0 0 0 0 0ˆ ˆ TP x x x xE   (21.b) 

 ⎡ ⎤= ⎣ ⎦0 0ˆ ˆ Ta Tx x 0 0   (21.c) 

 
0

0
a

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

P 0 0
P 0 Q 0

0 0 R
  (21.d) 

For 1,2,k = …  calculate the sigma points: 

 λ− − − −
⎡ ⎤= ± +
⎣ ⎦1 1 1 1ˆ ˆ ( )a a a a

k k k a knx x PX  (22) 

Time update: 

 ( )| 1 1 1,x w
k k k k− − −= fX X X  (23.a) 

 − −
=

= ∑
2

( )
| 1 , | 1

0

ˆ
an

m x
k k i i k k

i
Wx X   (23.b) 

 − − − − −
=

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦∑
2

( )
| 1 , | 1 | 1 , | 1 | 1

0

ˆ ˆ
an Tc x x

k k i i k k k k i k k k k
i

WP x xX X   (23.c) 
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It is shown in (Julier & Uhlman, 2004) that the approximation introduced by the UKF has 
more number of Taylor series terms. The effect of the approximation errors is different for 
different nonlinear systems. In some cases, if the nonlinearity is quadratic, approximation 
error will not have any strong influence.  

4. Results and discussion  
To assess the performance of the EKF and UKF based synchronization schemes, simulation 
studies are carried out on three different chaotic systems/maps1: (i) Ikeda map (IM), (ii) 
Lorenz system, and (iii) Mackey-Glass (MG) system. The Lorenz system is a three 
dimensional vector field, 3 3( , , ) :x y z R Rφ → , representing the interrelation of temperature 
variation and convective motion. The set of coupled differential equations representing the 
Lorenz system is given by 

 ( ) ( ( ) ( ))x t y t x tσ= −  (25.a) 

 = − + −( ) ( ) ( ) ( ) ( )y t x t z t rx t y t   (25.b) 

 ( ) ( ) ( ) ( )z t x t y t cz t= −   (25.c) 

where 10σ = , 28r =  and 8 / 3c = are used to obtain the Lorenz attractor. The three states 
( ,x y and z ) are randomly initialized and the system of differential equation is solved with 
the fourth order Runge-Kutta method. The Lorenz attractor is shown in Fig. 4.  
Ikeda map represent a discrete dynamic system of pumped laser beam around a lossy ring 
cavity and is defined as 

 ωφ+

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= + − −

⎜ ⎟⎢ ⎥+⎝ ⎠⎣ ⎦
1 2exp 1

1k k
k

z p Bz
z

  (26) 

where kz is a complex-valued state variable with 1R I
k k kz x x= + − . Here, R

kx  is  { }kzℜ  and I
kx  

is { }kzℑ . {.}ℜ and {.}ℑ give the real and imaginary parts of a complex variable, respectively. 
For the set of parameters = 0.92p , = 0.9B ,φ = 0.4 , and ω = 6 , the attractor of this map is 
shown in Fig.  5. 
The Mackey-Glass system was originally proposed as a first order nonlinear delay 
differential equation to describe physiological control systems. It is given by 
  

                                                 
1 Map is used to represent discrete dynamic systems. i.e. →:f X X  
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Fig. 4. Lorenz attractor. 
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This system is chaotic for values of = 0.1a  and τ ≥ 17 . Figure 6 shows the Mackey-Glass 
attractor with τ =17. 
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Fig. 5. Ikeda map attractor. 

These systems/maps have distinct dynamical properties and well suited for our analysis. 
Lorenz system is one of the archetypical chaotic systems commonly studied for chaotic 
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synchronization. Ikeda map, on the other hand, has higher order derivatives and is an 
appropriate candidate for studying the effect of high nonlinearity in filter based 
synchronization.  An interesting feature of Mackey-Glass system is that its complexity (i.e. 
the correlation dimension) increases as τ increases. 
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Fig. 6. Mackey-Glass Attractor. 

We consider a typical situation where one of the state variables, kx  (for continuous system, 
it is assumed that we discretize the state variable using appropriate techniques)  which is 
corrupted by channel noise is used for the synchronization. In all the computer simulations, 
the signal-to-noise ratio (SNR) which is defined as  
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N  (28) 

where 2
wσ  is the variance of the noise and N is the total number of samples used for 

evaluation,  is varied from -5dB to 50dB for the Lorenz and MG systems and in the case of 
IM, it is varied from 35dB to 60dB.  We define two performance evaluation quantities: the 
normalized mean square error (NMSE) and the total normalized mean square error 
(TNMSE) as   
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respectively. While NMSE gives an idea about the recovery of observed state variable, 
TNMSE gives how faithfully, the attractor can be reconstructed.   
We run numerical simulations on all these three systems and the results are presented here.  
Figures 7 to 9 show the result of NMSE performances. We restricted the SNR from 35dB to 
60dB in the case of IM system due to the observed divergence when both EKF and UKF are 
used.  It is shown in (Kurian, 2006) that since the IM has non-hyperbolic chaotic attractors, 
this divergence is inevitable. For all other systems, we changed the SNR from -5dB to 50dB. 
We can see that for all the maps and systems we considered for the analysis, the NMSE is 
monotonically decreasing with the increase in SNR. The steady decrease in NMSE shows 
that there are no residual errors. Also, we can see that the UKF based synchronization gives 
very good NMSE performance due to the better approximation capabilities of the UKF.  In 
the case of MG system, we can see that the EKF nearly fails in synchronizing at all SNRs 
which is again due to higher approximation error. 
We computed the TNMSE values for the Lorenz system and Ikeda Map (Fig. 10 & 11). As 
mentioned before, the TNMSE values indirectly reflect how well the chaotic attractors could 
be reconstructed. The TNMSE values for Lorenz systems and Ikeda Map are always greater 
than the NMSE values at all the SNR values considered due to the error introduced by other 
state variables. We can see that this increase in error is comparable and behaves exactly like 
the NMSE: it gradually reduces with an increase in the SNR values. Similarly, the UKF 
shows better performance for all the SNR values considered.  
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Fig. 7. NMSE of UKF and EKF based synchronization schemes for Lorenz. 
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Fig. 8. NMSE of UKF and EKF based synchronization schemes for Ikeda map.  
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Fig. 9. NMSE of UKF and EKF based synchronization schemes for MG systems.  
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Fig. 10. TNMSE of UKF and EKF based synchronization schemes for Lorenz system.  
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Fig. 11. TNMSE of UKF and EKF based synchronization schemes for Ikeda map. 
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5. Conclusions  
Chaotic systems are simple dynamic systems which can display very complex behavior. One 
of the defining characteristics of such systems is the sensitive dependence on initial 
conditions and hence synchronization of such systems possesses certain amount of 
difficulties. This task will be even more formidable when the channels as well as the 
measurement noises are present in the system. Stochastic methods are applied to 
synchronize such chaotic systems. EKF is one of the most widely investigated stochastic 
filtering methods for chaotic synchronization. However, for highly nonlinear systems, EKF 
introduces approximation errors causing unacceptable degradation in the system 
performance. We consider UKF, which has better approximation error characteristics for 
chaos synchronization and show that it has better error characteristics. 
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Kalman Filter in Sports Domain 
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1. Introduction    
This work aims to automatically track the movements of ice skaters on a large-scale complex 
and dynamic rink. From the computer vision point of view, several open challenging 
problems in the tracking of sports athletes present themselves (Intille & Bobick, 1994): the 
skaters move rapidly and change direction unpredictably; the estimation of skaters' motions 
is compounded with non-smooth camera motion; skaters range in size from 30 by 30 pixels 
to about 70 by 70 pixels, depending on the setting of the camera; competitors flail arms and 
legs frequently during the match. Additionally, partial occlusions often occur when skaters 
are close or skaters collide during the overtaking in the short track speed skating games. A 
one-second-long sequence of a single skater is shown in Fig. 1. 
 

 
Fig. 1. A one-second-long sequence of a single skater. 

There is a substantial literature on tracking for various purposes including video 
surveillance, smart environments, pedestrian, face tracking, action recognition in sports and 
many other domains. Haritaoglu et al. (Haritaoglu et al., 2000) use a variation of the 
background to detect object in the foreground. Rigoll et al. (Rigoll et al., 2004) use stochastic 
modeling techniques, Pseudo-2D Hidden Markov Models (P2DHMMS) and Kalman filter to 
estimate the location of a person. In (Ozyildiz et al., 2003; Rasmussen & Hager, 2001; Yilmaz 
et al., 2004), a technique of fusing multiple cues (e.g. texture, color and shape) is employed 
to track. The mean shift algorithm (Comaniciu et al., 2003; Yang et al., 2005) has achieved 
considerable success in object tracking due to its simplicity and robustness, it finds local 
minima of a similarity measure between the color histograms or kernel density estimates of 



 Kalman Filter 

 

226 

the model and the target. Recently, the integration of color distributions into particle filter 
becomes popular due to the outstanding performance on tracking the non-rigid objects with 
the non-linear and non-Gaussian motion (Nummiaro et al., 2003). But these well-known 
traditional tracking algorithms are inadequate for tracking the low-resolution, amorphous, 
fast erratically moving and colliding skaters in a large-scale, complex and dynamic scene by 
using a single panning camera. 
The remainder of this paper is organized as follows: the next section explores the related 
work in various other sports fields. Section 3 overview of our system, Section 4 explains 
how to automatically compute the mappings that transform each frame to the model of the 
rink and section 5 describes our tracking method which combines the unscented Kalman 
filter with a hierarchical model based on contextual knowledge. Experiments and results are 
given in section 6 and the conclusion and discussion in section 7. 

2. Related work 
As the most popular sport in the world, soccer has enormous potential market value. The 
related applications, such as broadcast or annotation systems, are receiving more and more 
attention from computer vision researchers. Misu et al. (Misu et al., 2002) address the 
problem of tracking soccer players in occlusion by fusing different objects features like 
textures, color statistics, movement vectors, etc. In (Vandenbroucke et al., 2003), color image 
segmentation by using pixel classification in an adapted hybrid color space is applied to 
extract those meaningful regions that represent the players and recognize their team. 
Needham and Boyel (Needham & Boyel, 2001) describe a CONDENSATION based 
approach on image sequences obtained from a single fixed camera, Kalman filter and 
ground plane information are used to improve the prediction of player movement and assist 
to track occluded players. Junior and Anido (Junior & Anido, 2004) develop a real-time 
distributed system by using five static cameras to get the whole scene, each player can be 
tracked individually by an independent module of the system, and each module can apply 
different tracking techniques depending on specific visual characteristics. 
There are many computer vision systems for other sports domains. Pingali et al. (Pingali et 
al., 1998) develop a real time tracking technology for enhancing the broadcast of tennis 
matches from stationary cameras. Recently, Yan et al. (Yan et al., 2006) propose a data 
association algorithm to track a tennis ball in low-quantity tennis video sequences. Pers et al. 
use two stationary cameras mounted directly above the court and propose a new approach 
for modeling the radial image distortion more accurately. The tracking algorithm combined 
with color feature and the template is exploited to track the player, using color feature is to 
avoid a drift caused by the template tracking. Their systems are applied to many sports 
domains including squash (Pers et al., 2001), handball (Pers et al., 2002) and basketball (Jug 
et al., 2003). But there are two limitations in their works: first, the cameras must be placed 
above the playing court, which is a rigorous condition for regular league or championship 
matches. Second, how to handle occlusion in tracking process seems not to be solved. 
Intille and Bobick (Intille & Bobick, 1994) develop the state-of-art automatic annotation 
system for American football footage and lay a foundation for research in the automatic 
annotation of video. In their system, camera motion is to be recovered by using a global 
model of the football field which consists of some geometrical primitives (e.g. lines) and 
some features (e.g. number, logo). The ”close-world” is defined as ”A region of space and 
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time in which the specific context is adequate to determine all possible objects present in 
that region”, the tracking is performed on those player’s pixels extracted from motion blobs 
by ”close-world” analysis. Okuma (Okuma, 2003) develops a hockey annotation system to 
automatically analyze hockey scenes, track hockey players in these scenes and construct a 
visual description of these scenes as trajectories of those players. Their system has two 
components: one is rectification system that transforms the original sequence in broadcast 
video to the globally consistent map of the hockey rink. The other is a color-based sequential 
Monte Carlo tracker. Robustness and reliability of this system are shown that the tracker 
tracks a single target for about 500 frames and the error between the estimated position and 
the real world position is from 0.3 m to 1 m. Compared with (Okuma, 2003), the framework 
of our system is similar, but our method is very different from theirs in many aspects such 
as camera plan, registration and tracking algorithm. 

3. Overview of our system 
 

Input video sequence

Spatio-temporal trajectory  of  the real world stored in the database

Event detection and sports experts analysis 

Extract SIFT features and calculate 
homography between two 

neighborhood frames

Choose the frame in central angle of 
view of the whole rink and compute 

several reference frames

Generate the panorama of the rink 
and map the panorama to the rink

model manually

Calculate homography transforming 
the current frame to the model of the 

real rink

Registration subsystem Tracking subsystem

Homography can remove the camera 
motion

Obtain hierarchical model when the 
player skates through the different 

sub-regions of the rink

Tracking method ...

Trajectory of athlete in the image 
coordinate  

 
 

Fig. 2. The architecture of our system. 
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Our computer vision system aims to automatically track the movements of skaters on a 
large-scale complex and dynamic rink. Our aim is to exploit it not only in daily training but 
also in competitions. We used a single panning camera, which was mounted at the top 
auditorium of the stadium as close as possible to the center in order to reduce the projection 
error. Due to little texture information on the rink, unlike (Intille & Bobick, 1994; Okuma, 
2003), zooming was abandoned, it can make recording the high-speed target more difficult 
and enlarge the error of lens distortion. Though the camera center moves by a small amount, 
due to an offset from the camera’s optical center, the approximation of pure rotation is 
indeed sufficient such as proven in (Hayman & Murray, 2003). 
The architecture of our system is shown in Fig. 2, it includes two kernel subsystems. 
Automatic registration affects directly not only the accuracy of the system’s output but also 
the tracking performance, it can provide two kinds of outputs to other modules: (1) The 
homography between two neighborhood frames can remove the camera motion to improve 
the precision of the motion prediction in the process of tracking. (2) Another homography 
transforming the current frame to the model of the real rink is associated with the output of 
tracking subsystem, such as the skater’s spatio-temporal trajectories in the real world, and 
that can be stored in the database. At the same time, it can be used in the tracking process to 
obtain a skater’s hierarchical model when the skater moves through different sub-regions of 
the rink. To improve the tracking performance, the proposed tracking subsystem 
incorporates the hierarchical model based on contextual knowledge and multiple cues into 
the unscented Kalman filter, the details will be discussed in section 5. 

4. Automatic registration 
The goal of automatic registration for sports applications is transforming the positions in the 
video frame to the real-world coordinates or vice versa. Generally, the registration needs 
many point or line features extracted automatically from images, then matches them and 
uses the correspondence to calculate the homography. Farin et al. (Farin et al., 2004) use a 
model of the arrangement of court lines for registration, similar to the one in (Hayet et al., 
2004). However, if no obvious lines are in the fields or courts, it can’t work well. Okuma et 
al. (Okuma, 2003) compute the local displacements of image features by using the Kanade-
Lucas-Tomasi (KLT) tracker (Shi & Tomasi, 1994; Tomasi & Kanade, 1991) and determine 
the local matches, but it needs to predict the current camera motion based on the previous 
camera motion to reduce the amount of local feature motion, if the camera moves rapidly 
and asymmetrically such as in our application, the worse prediction can lead to the KLT 
tracker failing. 
Therefore, for a rapid camera, the registration faces two big difficult problems: (1) Detect the 
more distinctive point features and match them better. (2) How to reduce the accumulative 
registration error for a long image sequence. 

4.1 Homography 
A homography is a projective transformation which is a nonsingular matrix H  with size 
3 3× . If x and 'x are the images of a world point, belonging to a plane, they are related by a 
matrix H  corresponding to that plane: x' = Hx , since the matrix H  has 8-Degree of 
Freedom (DOF), 4 point correspondences can determine H . Obviously, with non-perfect 
data, more points should be used. 



Human Motion Tracking Based on Unscented Kalman Filter in Sports Domain 

 

229 

In general, the moving targets in the image can decrease the accuracy of the homography 
since the good features on the moving ones are imperfect. The RANSAC algorithm (Fischler 
& Bolles, 1981; Hartley & Zisserman, 2000) can pick out the worse features (namely outliers) 
easily, as shown in Fig. 3. However, it can only assure the computational accuracy between 
two adjacent frames, not for a long video sequence. How to reduce the accumulative error is 
the key issue.  
 

      
                       (a) Putative matching                                (b) Inliers selected by RANSAC 

Fig. 3. The outliers on the moving skaters and the referee are eliminated. 

4.2 Selection of point features 
Feature extraction and matching determine the computational precision of the homography 
and the overall reliability of the registration algorithm. Two of the most popular feature 
extractors are the Harris corner detector (Harris & Stephens, 1988) followed by the Sum of 
Squared Difference (SSD) matching, and the Kanade-Lucas-Tomasi (KLT) tracker (Shi & 
Tomasi, 1994; Tomasi & Kanade, 1991). These methods can work well when the baseline is 
relatively small and the appearance of the features doesn’t change too much across the 
subsequences. A more distinctive feature is desirable for matching two wide baseline 
images (e.g. a large translation, scaling, or rotation between two frames) such as the current 
frame and its corresponding reference frame in our application. 
Lowe (Lowe, 2004) proposed the Scale Invariant Feature Transformation (SIFT), where a 
feature’s location and scale are determined by extrema of a Difference of Gaussian (DOG) 
function in the scale space, and its dominant, local image gradient orientation. It is invariant 
to viewpoint changes, large geometric transformation, changes in illumination, and has been 
applied in the areas of object recognition (Sivic & Zisserman, 2003) and panorama stitching 
(Brown & Lowe, 2003). Therefore, it is suited to dealing with the problem of wide baseline 
matching. 

4.3 Registration method for a long image sequence 
In order to reduce the accumulation of the errors generated from the set of frame-to-frame 
homography, many reference frames are introduced and calculated to construct a 
panoramic image (Brown & Lowe, 2003; Shum & Szeliski, 2000) as illustrated in Fig. 4 and 
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each frame can be mapped to the most adjacent reference frame. The model of the entire 
rink is shown at the bottom in Fig. 4, which includes precise measurements of geometrical 
features: start line, finish line and marking blocks, and all that can be obtained from ISU 
(International Skating Union, http://www.isu.org/). The corresponding points labeled 
from 1 to 20 are initialized manually, the detailed procedure is illustrated in Algorithm 1. 
 

Algorithm 1 Registration method for a long image sequence 
Input video sequence and perform the following steps: 
1. Compute homography 1,t tH −  between the frame at time 1t −  and the frame at time t  

with the RANSAC algorithm (Hartley & Zisserman, 2000). 
2. Choose the frame in the central angle of view of the whole rink as a base frame used 

to construct the panorama. 
3. Compute the reference frames which distribute on the both sides of the central frame 

at regular intervals. 
4. Generate the panorama of the rink with all reference frames and calculate 

homography 
,iref pano

H  transforming the thi  reference frame to the panorama. 

5. Map the panorama to the rink in the real world by selecting 20  corresponding points 
manually shown in Fig. 4 and obtain homography ,pano rinkH . 

6. Compute homography 
, it ref

H  mapping the frame at time t  to the corresponding 

reference frame. 
7. Obtain homography ,t rinkH  mapping the frame at time t  to the rink in the real world 

, , , ,
· ·i it rink pano rink ref pano t ref

H H H H= . 

5. Tracking method 
5.1 Hierarchical model 
During the hot short track race, the competitors skate rather quickly about less than 10 
seconds one loop (110 meters) and the camera pans rapidly in order to capture them. 
Therefore, the perfect tracking performance seems to be more and more difficult due to the 
following reasons: (1) The skater’s size in the video sequence changes violently. (2) While 
skating through the top straight on the ice, the skaters are very close to the miscellaneous 
advertisements attached to the protection board, its color is similar to the one of the skater’s 
clothing sometimes. (3) Occlusions among high speed skaters often happen on the curves of 
the rink. 
All the above challenge the traditional tracking methods, which can’t work perfectly. 
Therefore, to overcome these problems, more contextual knowledge and multiple cues are 
to be introduced into the tracker as follows: (1) In our application, the short track skater can 
be considered as a hierarchical model, it consists of two block components: one is the 
skater’s helmet which is a small block, the other bigger one is the body. The relations of their 
positions are varied due to the skater’s diversified postures, when the skater runs through 
different sub-regions in the rink, such as straight bottom, right curve or left curve, as 
illustrated in Fig. 5. On considering the camera plan and the skaters’ occlusions in the 
practical application, the helmet block is more discriminative and more reliable than the 
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body’s. Hence, the skater’s model including the helmet and the body has been extracted as 
the prior knowledge, which can effectively reduce the error during the update of the scale of 
the model. Inaccurate update can cause the tracking to fail when the target model size 
changes dramatically. (2) Compared with a single-part model, the hierarchical model can 
reduce the impact of the interference color coming from the advertisement board. At the 
same time, the integration of the template matching approach (for helmet model) and the 
color histogram matching method (for body model, details in the section 5.2) is used to solve 
the problem of occlusions, the benefit of it is to make the tracker more robust under complex 
environments. 
 

 
 

Fig. 4. The flowchart of the registration method for a long image sequence. 
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Fig. 5. There are two skaters coming from different countries on the rink. The rink can be 
divided into 12 sub-regions by the blue dashed lines according to the skater's diversified 
size and the black markers on the both sides curves. The skater's model of each sub-region 
differs in its size and the relative position of the helmet and body. The skater's model can be 
considered as a hierarchical model and represented by two blocks, the smaller yellow block 
denotes the helmet, the bigger red one denotes the body. 

5.2 Color histogram matching method 
A skater's body as a target is represented by a rectangle region, its color model can be 
obtained by using histogram techniques which achieve robustness against non-rigidity, 
rotation, and partial occlusion (Nummiaro et al., 2003). Let 1, ,{ }i Nx …  be the pixel locations of 
the target represented by a rectangle region, the region is centered at z  and r  is the length 
of its half diagonal. The function ( )ib x  ( 2 {1, , }m→ … ) assigns the color feature at location 

ix  to the corresponding bin. To increase the reliability of the color histogram, a weighting 
function 2(|| || )k x  is employed to assign smaller weights to the boundary pixels farther from 
the center since those pixels are often affected by occlusions and interference from the 
background, and denoted as 

 
2 2

2 (1 || || ) || || 1
(|| || )

0 otherwise
c x x

k x
⎧ − <⎪= ⎨
⎪⎩

 (1) 

where c is a constant, for simple implementation, 1c = , if 11 ( 2)
2 dc c d−= + , dc  is the volume 

of the unit d -dimentional sphere, 2(|| || )k x is the Epanechnikov kernel (Comaniciu et al., 
2003). The color histogram { } 1

( )u u m
p p z

= …
= at location z  is then calculated as 

 ( )
2

1
( )

N
i

u i
i

z xp z C k b x u
r

δ
=

⎛ ⎞−
= ⎡ − ⎤⎜ ⎟ ⎣ ⎦⎜ ⎟

⎝ ⎠
∑  (2) 
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where δ  is the Kronecker delta function, C  is a normalization constant and derived by 

imposing the condition 
1

1
m

u
u

p
=

=∑ . 

In our application, the Hue Saturation Value (HSV) color space ( 8 8 4× ×  bins) was used to 
reduce sensitivity to lighting conditions. To avoid the interference from the background (i.e. 
the rink), those pixels belonging to the rink are to be kept away from the calculation of the 
histogram. The function ( )im x  is considered as a mask to filter the rink, and defined as 

 
1 ( )

( )
0 otherwise

i s
i

S x
m x

τ>⎧
= ⎨
⎩

 (3) 

where ( )iS x  is the value of Saturation at location ix , sτ  is a threshold and 0.15sτ =  in our 
experiments. Therefore, the new color histogram is calculated by 

 ( )
2

1
( ) ( )

N
i

u m i i
i

z xp z C m x k b x u
r

δ
=

⎛ ⎞−
= ⎡ − ⎤⎜ ⎟ ⎣ ⎦⎜ ⎟

⎝ ⎠
∑  (4) 

where mC  is a normalization constant. 
The Bhattacharyya coefficient (Aherne et al., 1997) as a popular similarity measure between 
two color histograms { } 1u u m

p p
= …

=  and { } 1u u m
q q

= …
=  is denoted by 

 [ ]
1

,
m

u u
u

p q p qρ
=

= ∑  (5) 

The larger ρ  is, the more similar the two color histograms. 1ρ = means a perfect match if 
and only if the two color histograms are identical. 
The benefit of our new color histogram is shown in Fig. 6. (a) includes a skater with red 
clothing, (f) includes the one with blue clothing and is very different from (a), (k) includes 
the same skater as (a) distracted by another skater with blue clothing, (k) is more similar to 
(a) than (f) apparently. As a similarity measure, the Bhattacharyya coefficient between (a) 
and (k) should be larger than the one between (a) and (f). However, calculated the 
Bhattacharyya coefficients by using the traditional histogram and the weighted histogram, 
[ ], 0.677c mp pρ = and [ ], 0.689d np pρ =  are less than [ ], 0.684c hp pρ =  and [ ], 0.704d ip pρ = , 

respectively. Compared with them, our result is that [ ], 0.769e op pρ =  is far larger than 
, 0.092e jp pρ ⎡ ⎤ =⎣ ⎦ , obviously, our result is better. 

5.3 The proposed tracking method 
The unscented Kalman filter (UKF) was introduced by Julier (Julier et al., 1995; Julier & 
Uhlmann, 1997) to address the nonlinear state estimation in control theory as a recursive 
minimum mean square error estimator. Compared with the extended Kalman filter (EKF), 
the UKF does not approximate the non-linear process and observation model, it uses a set of 
sigma points to capture the mean and covariance of the system and propagates these sigma 
points through the dynamic and measurement models without linearization, the UKF is 
superior to the EKF both in theory and in many practical applications (van der Merwe et al., 
2000; Chen et al., 2006). 
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(a)                      (b)                        (c) cp                         (d) dp                       (e) ep  
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(f)                      (g)                        (h) hp                         (i) ip                         (j) jp  
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(k)                      (l)                         (m) mp                      (n) np                        (o) op  

Fig. 6. The benefit of our new color histogram. The first column, (a), (f) and (k) are three 
different target regions, the second column the results of filtering the rink, the third column 
the traditional histogram, the fourth column the weighted histogram given by Eq.  (2), the 
last column the new proposed histogram calculated by Eq. (4). 

The general state-space model is made up of a state transition ( )1|t tp −x x  and state 
measurement model ( )|t tp y x , and the dynamic model can be denoted as follows: 

 ( )1 1ft t t− −= +x x u  (6) 

 ( )ht t t= +y x v  (7) 

where xn
t ∈x  represents the system state at time t  and yn

t ∈y  the observation, 
un

t ∈u the process noise, and vn
t ∈v  the measurement noise. The mapping ( )f ⋅  denotes 

system state model and ( )h ⋅  denotes measurement model, respectively. 
Here, the proposed tracker combining the UKF with a hierarchical model based on 
contextual knowledge is as follows: 
State tx  and observation ty  can be expressed by: 

 { }1,h
t t t−=x S V  (8) 

 { } 1 1 2, 1 2, ,h h h h h
t x y t t t t tPos Pos H− − − − −= = −S V S S  (9) 

 { }h
t t=y S  (10) 
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In our application, contextual knowledge (CK) as a control input in the observation process 
is very important for the proposed tracker, it can be consider as a set of internal parameters 
determined by h

tS . 

 { }, , , ,h b hb
t t rink t t tH PosRel=CK M M  (11) 

 { } { } { }, , , , , , , ,h h h h b b b b b b b
t t x y t t x y t x yR R Hist R R Pos Pos= = =M S M S S  (12) 

where at time t , superscript h  and b  denote helmet and body, respectively, suffix x  and 
y  are the coordinates, V the velocity, R  the length of block, Pos  the position of the block 

center, and hb
tPosRel  the relation of the helmet relative to the body shown in Fig. 5, 

and { }left, middle, righthb
tPosRel ∈ . Hist is the histogram of the skater's body model. 

Generally, the helmet model h
tM  is firstly determined by the template matching method, 

then b
tS  is calculated by h

tS  and hb
tPosRel , and Hist  can be obtained inside a rectangle 

region which is computed by b
tS , b

xR  and b
yR . Finally, b

tM  is determined. 
Here, the mappings ( )f ⋅  and ( )h ⋅  can be expressed by the following equations 

 ( ) ( )1 1, 1 1, 1 1f ,t t t t t t t t tH H− − − − − −⎡ ⎤= + = +⎣ ⎦x x u A x u  (13) 

 ( )ht t t t t= + = +y x v Cx v  (14) 

where 1,t tH −  as a control input is used to remove the camera motion expressed 
by 1,1 1

TT h h
x y t t x yPos Pos H Pos Pos− ⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦ , ( 1

h
x tPos −∈x  and 1

h
x tPos −∈x ), then the value of h

xPos  
and h

xPos  are replaced by xPos  and xPos  as ,h h
x x y yPos Pos Pos Pos= = . A  is the state 

transition matrix, C is a y xn n×  matrix which relates the state to the measurement. The noise 
term tu  is a Gaussian random variable with zero mean and a covariance matrix Q , i.e., its 
probability distribution is ( ) ( )~ N 0,p u Q , the covariance matrix Q  is referred to as the 
process noise covariance matrix. Much like tu  for the process, ( ) ( )~ N 0,p v R  and R  is 
measurement noise covariance matrix. 
The UKF tracker can be initialized by: 

 [ ]0 0E=x x  (15) 

 ( )( )T
0 00 0 0E ⎡ ⎤= − −⎢ ⎥⎣ ⎦

P x x x x  (16) 

 ( )2
x xn nλ α κ= + −  (17) 

 ( ) ( )0 /m
xW nλ λ= +  (18) 

 ( ) ( ) ( )2
0 / 1c

xW nλ λ α β= + + − +  (19) 

 ( ) ( ) ( ){ }1 / 2 , 1, ,2m c
i i x xW W n i nλ= = + = …  (20) 
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where the constant α  determines the spread of the sigma points around x  and is usually 
set to a small positive value. The constant κ  is a secondary scaling parameter which is 
usually set to 0  or 3 xn−  (Julier et al., 1995). β  is a non-negative weighting term which can 
be used to incorporate knowledge of the higher order moments of the distribution of x , for 
a Gaussian distribution, and 2β =  is optimal (van der Merwe et al., 2000). iW  is the weight 
associated with the ith  sigma point. Here, these parameters were set to 1α = , 2β =  and 

0κ = . 
For { }1, ,t∈ … ∞ , the tracking process combined with UKF and a hierarchical model is 
detailed as follows: 
1. Calculate sigma points 

 ( )1 11 1t tt x tn λ− −− −
⎡ ⎤= ± +⎣ ⎦x x PX  (21) 

where ( ) 1x tn λ −+ P  is the ith  row or column of the matrix square root of ( ) 1x tn λ −+ P  
which can be implemented directly by using a Cholesky factorization. 

2. Time update: 

 ( )| 1 1 1,f ,t t t t tH− − −=X X  (22) 

 ( )
2

| 1 , | 1
0

xn
m

t t i i t t
i

W− −
=

= ∑x X  (23) 

 , | 1 | 1, | 1i t t t ti t t− −−= −x xX  (24) 

 
( )

( )( )
2 T

, | 1 , | 1| 1
0

 
x

cn

i t t i t tt t
i i

W − −−
=

= +∑P x x Q  (25) 

 ( )| 1 | 1ht t t t− −=Y X  (26) 

 ( )
2

, | 1| 1
0

xn
m

i i t tt t
i

W −−
=

= ∑y Y  (27) 

3. Observe in the search regions determined by sigma points and obtain ty  as a solution 
of the maximum a posteriori (MAP) based on its contextual knowledge tCK : 

 ( ),argmaxt i t t
i

P=y y CK  (28) 

 ( ) ( ) ( ), , , ,,b h h
i t t i t i t t i t tP P M M P M=y CK CK CK  (29) 

a. Calculate the observation probability of the helmet model in the search region 
( ),

h
i t tP M CK  which is the score of the template matching method, and map the 

skater's position to the rink in the world ,i rinkPos  by multiplying ,t rinkH .  
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b. Compute which sub-region the skater skates through according to ,i rinkPos , and 

obtain the index { }1, ,12iRegion∈ … , detailed in Fig. 5. 

c. Obtain ,
hb
i tPosRel  according to iRegion , and the body model ,

b
i tM  is determined by 

{ }, ,,h hb
i t i tM PosRel . 

d. Calculate the Bhattacharyya coefficient ρ  by Eq. (5) between the target histogram 

1
b
tHist M −∈  and the observation one ,

b
i tHist M∈ , and obtain the probability 

( ), , ,b h
i t i t tP M M ρ=CK . 

4. Measurement update: 

 , | 1 , | 1 | 1i t t i t t t t− − −= −y yY  (30) 

 ( ) ( )( )
2

T

, | 1 , | 1
0

x

t t

n
c

i i t t i t t
i

W − −
=

= +∑y yP y y R  (31) 

 ( ) ( )( )
2

T

, | 1 , | 1
0

  
x

t t

n
c

i i t t i t t
i

W − −
=

= ∑x yP x y  (32) 

 1
t t t tt

−= x y y yK P P  (33) 

 ( )1 | 1t t t t t t t− −= + −x x K y y  (34) 

 T
| 1 t tt t t t t−= − y yP P K P K  (35) 

6. Experiments and results 
6.1 The output of the proposed system 
The trajectory of a skater in an individual race of 500  meters is illustrated in Fig. 7, different 
color line denotes the trajectory of the skater when he/she skates along different loop, and 
the order is red, green, blue, black and yellow respectively. In Fig. 8, the velocity of one 
skater in a individual race of 500  meters is shown, the green line represents the velocity 
obtained manually as the ground truth, and the black one denotes the result of our tracking 
algorithm. More information and statistic of the competitions are available such as the 
trajectory and velocity, which can be further processed and analyzed by the sports experts. 

6.2 Tracking results 
First, our tracking method compares with the MeanSHIFT and CAMSHIFT algorithm from 
Open Computer Vision Library (OpenCV, http://sourceforge.net/projects/ 
opencvlibrary/). The results are illustrated in Fig. 9, green box represents the hierarchical 
model in the corresponding sub-region. If the target color does not change, the MeanSHIFT 
and CAMSHIFT trackers are quite robust, but they are easily distracted when similar colors 
appear in the background, however, our tracker can work well by means of a hierarchical 
model. 
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Fig. 7. The trajectory of a skater in an individual race of 500 meters, different color line 
denotes the trajectory of the skater when he/she skates along different loop. 
 

 
Fig. 8. The velocity of one skater in the individual race of 500 meters. 

Second, the comparison results of our tracker and the adaptive color-based particle filter 
(Nummiaro et al., 2003) are shown in Fig. 10. The failure of the adaptive color-based particle 
filter tracking is caused by: (1). The model is updated every frame, the patches of the 
background could be integrated into the model, for a certain time period, the tracker will 
shift with the background and will not work anymore. (2). Using the single part model (one 
block or ellipse) and the single cue (color distribution), however, it is too weak for the 
tracking in the sports domain. 
Finally, in Fig. 11, the competitor skating through the curve can be exactly tracked despite 
successive occlusion. By using the hierarchical model, the proposed tracker would firstly 
detect the helmet model of the tracked skater by the template matching method. Since the 
helmet is not occluded, the correct detection result of the helmet model should be observed 
in the specific search region, then, the color histogram matching method is used to detect the 
occluded body, compared with other observation results, the observation probability as in 
Eq. (29) in the specific search region must be the largest, that is, the skater is tracked 
successfully. 
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(a) The result of the MeanSHIFT tracker 

       
(b) The result of the CAMSHIFT tracker 

       
(c) The result of our tracker 

Fig. 9. MeanSHIFT and CAMSHIFT versus our method. 

       
(a) The result of the adaptive color-based particle filter tracker 

       
(b) The result of our tracker 

Fig. 10. The adaptive color-based particle filter versus our method. 
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(a) frame 354                               (b) frame 358                              (c) frame 362 

       
(d) frame 366                               (e) frame 370                              (f) frame 374 

Fig. 11. Tracking results of successive occlusion. 

The better performance of the proposed tracker is due to the following three aspects: 
1. Using the contextual knowledge, namely, the hierarchical model in each sub-region, it 

can help the tracker to know when and how to update the hierarchical model. 
2. Multiple cues: the template matching method (for helmet) and the color histogram 

matching (for body), it can make the tracker more robust when a skater moving 
through the advertisement board or occlusions appear on the curve. 

3. The unscented Kalman filer can capture the posterior mean and covariance accurately 
to the 2nd order. In addition, compared with the particle filter, the UKF is more efficient 
since the number of the sigma points increases linearly with the number of dimension. 

6.3 Evaluate the homographies 
In our practical system as shown in Fig. 2, there are two kinds of homographies: (1) the 
homography between two neighborhood frames can remove the camera motion to improve 
the precision of the motion prediction in the process of tracking. (2) Another homography 
transforming the current frame to the model of the real rink is associated with not only the 
output of tracking subsystem but also the tracking process to obtain a skater's hierarchical 
model when the skater moves through different sub-regions of the rink. The calculation of 
them is a random process and their accuracy is uncertain, therefore, we have to try to 
evaluate them and analyze how they affect the tracking performance and the system's 
output. 
Note that our camera pans always at the horizontal direction, in which the accuracy of the 
homographies is very different from that in the vertical direction. Therefore, for all 
experiments in this section, statistics of variables are to be derived from the two directions 
respectively. For simplicity's sake, we only give those equations in the horizontal direction 
which are the same as that in the vertical direction. 

x
⋅ denotes the value of the horizontal 

direction and 
y
⋅ the value of the vertical direction. 
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6.3.1 The relation between the accuracy of homography 1,t tH −  and the tracking 
performance 
 

 lap 1 lap 2 lap 3 lap 4 lap 5 nframes 
BS 1-87 291-348 523-581 756-816 993-1053 326 
RC 88-159 349-405 582-636 817-872 1054-1108 295 
TS 160-230 406-467 637-700 873-935 1109-1149 301 
LC 231-290 468-522 701-755 936-992  227 

Table 1. A test video sequence is divided into different groups. 

Generally, the tracking process can be considered as two components: prediction and 
detection (or observation). Their accuracy can affect the tracking performance directly, 
however, which one is the main factor leading to the tracking failing: prediction or detection? 
It is very important for a practical tracking system. We try to analyze it and test on a video 
sequence, which are segmented into four groups: bottom straight(BS), top straight(TS), left 
curve(LC) and right curve(RC), according to the spatio-temporal relation shown in Table 1. 
 

 
Fig. 12. The diagram of the tracking process between the two neighborhood frames. The 
ground truth  tP  added on Gaussian white noise, i.e. t tP P noise= + , can be considered as the 

simulation of the different prediction result 1|t̂ tP− , which assumption is helpful to analyze 
the tracking performance. 

To explain and analyze the tracking process better, some points in the two neighborhood 
frames are defined, as illustrated in Fig. 12. 1tP−  is the position of the tracked skater in the 
frame at time 1t −  and tP  at time t , which are obtained manually as the ground truth. '

1tP−  
is the corresponding point of 1tP−  under the ideal transformation if and only if 1,t tH −  is very 
accurate, 1t̂P−  as the approximation of '

1tP−  is calculated by 1 1, 1t̂ t t tP H P− − −= . tErrNH  (the Error 
of the Neighborhood Homography at time t) is denoted as 

 '
1 1

ˆ
t t tErrNH P P− −= −  (36) 

1t̂P−  is transformed to 1|t̂ tP−  by using the dynamic model, t tP P noise= +  can be considered as 
the simulation of the different prediction result 1|t̂ tP− , which assumption is helpful to 
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analyze the tracking performance. tErrTF (the Error of the Tracking result in the Frame at 
time t) is expressed by 

 ˆ
t t tErrTF P P= −  (37) 

The tracking result would be considered as the accuracy in the ith  frame if the distance of 
iErrTF  is less than the threshold value τ  ( 5τ = pixels) defined as 

 
1 if and

0 other

 

wise
i ix y

i

ErrTF ErrTF
TA

τ τ⎧ ≤ ≤⎪= ⎨
⎪⎩

 (38) 

where ·
x

 denotes the absolute value of the horizontal distance and ·
y

 the absolute value 
of the vertical distance. 
As for the image sequence, the precision of the tracking result can be expressed by the 
following equation, where nframes  is the total number of frames used in statistics. 

 1

nframes

i
i

TA
TP

nframes
==
∑

 (39) 

 
Noise range 

 
0 1-5 1-10 5-10 1-15 10-15 

BS 100 100 97.55 95.4 88.04 65.34 
RC 100 98.99 95.61 90.88 91.99 67.91 
TS 100 99.34 98.01 95.35 93.36 83.72 
LC 100 100 93.39 86.34 85.46 66.52 
All 100 99.57 96.35 92.43 89.9 71.02 

Table 2. The precision percentage of the tracking results given six groups of Gaussian white 
noise. 

The experiments have been implemented with six groups of Gaussian white noise. For a 
better simulation and qualitative analysis, the noise within some range is selected and others 
are discarded. The noise range is shown in Table 2, 0noise = means that no noise would be 
added on the ground truth tP , i.e. the skater's hierarchical model is detected directly on tP . 
In Table 2, when 0noise = , the precision of the whole match is 100% , that is to say, if the 
prediction accuracy is enough, our detection method is very robust. However, with the 
increase of the noise  value, i.e, the prediction accuracy becomes much lower, the value of  
TP  decreases gradually. When 10noise < , TP  in RC and LC is lower than the one in BS and 
TS due to the skater's occlusion often occurred at RC and LC which can cause our tracker 
drift or disabled. When 10noise > , TP  in BS is much lower. In BS, a skater is closer to the 
camera, its scale changes quickly, its size and the part of the occlusion become bigger, all of 
which can make the tracker drift out of the threshold value τ  easily. At the same time, with 
the increase of the noise  value, the horizontal error of the tracking result in the frame 
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( | |i xErrTF ) becomes larger in Fig. 13, and the RMS  (Root Mean Square) error of ErrTR  (the 
Error of the Tracking result in the real Rink) defined as Eq. (40) and Eq. (41) is also 
increasing in Fig. 14. 

 , , ,
ˆ| | | | | |i x i rink t i rink t x i rink i xErrTR H P H P H ErrTF= − =  (40) 

 

2

1
(| | )

| |

nframes

i x
i

x

ErrTR
RMSErrTR

nframes
==
∑

 (41) 

All the above demonstrate that the higher the prediction precision is, the better the tracking 
performance is. However, the prediction result in practice is 1|t̂ tP− , instead of tP , how accurate 
the prediction 1|t̂ tP−  is? In Fig. 12, the prediction error comes from two sources: (1) one is the 
assumption of the uniform motion in the tracking process (i.e. 1 1|

ˆ ˆ
t t tP P− −→ ), but it can be 

reasonable and acceptable in the practical systems and (2) the other is the homography 
1,t tH −  used to remove the camera motion (i.e. 1 1

ˆ
t tP P− −→ ). Therefore, the prediction accuracy 

depends on the error of the homography 1,t tH −  (i.e. tErrNH ). To evaluate the 
homography 1,t tH − , we have selected 14 still marker blocks on the rink and recorded the 
positions of those visible markers in each frame as the ground truth, it means that 1tP−  and 

'
1tP−  are prior to be known. The RMS error of 1,t tH −  is given by 

 

2

1
(| | )

| |

nframes

i x
i

x

ErrNH
NH

nframes
==
∑

 (42) 

 
Fig. 13. The horizontal error of the tracking results in the frame given six groups of Gaussian 
white noise. 
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Fig. 14. The RMS error of the tracking result in the real rink given six groups of Gaussian 
white noise. 
 

 LC RC 
 1 2 3 4 5 6 7 1 2 3 4 5 6 7 

|NH|x 0.86 1.64 1.28 1.12 1.11 0.99 0.82 1.96 1.92 1.59 1.44 1.15 0.97 1.2 
|NH|y 0.85 1.21 1.09 1.14 1.13 1.07 0.89 1.29 1.27 1.03 0.95 0.8 0.76 0.81 
nframes 181 267 238 187 128 154 231 353 370 381 310 233 248 322 

Table 3. The RMS error of 1,t tH −  of 14 markers on the left curve(LC) and right curve(RC) 
respectively in pixels. 

In Table 3, the accuracy of 1,t tH −  is enough for the practical application. After all, the 
calculation of the homography is a random process, but we can increase the number of good 
features (i.e. inliers) to improve the computational stability and reliability of the homograpy 
(Liu et al., 2007). In a word, the better tracking performance depends on both the robust 
detection method and the accurate homography 1,t tH − . 

6.3.2 Evaluate the accuracy of homography ,i rinkH  and the precision of our system 
The output of our system is the skater's position in the real rink, how to measure the output 
precision of the practical system needs to be solved. The easiest way is calculating the error 
between the tracked skater's position and the ground truth (3D position) in the real world 
directly. However, by this means, we can only obtain the approximation of the former (i.e. 

,i rink tH P ) and can not get the value of the latter without the assistance of the sensors in 
practice. Therefore, for a more objective evaluation, an indirect approach is used to measure 
the system's precision (i.e. the accuracy of homography ,i rinkH ). In a similar way detailed in 
section 6.3.1, there are 14  still marker blocks on the rink, their 3D spatial positions are prior 
to be known according to ISU (http://www.isu.org/) and denoted as jRM  ( { }1, ,14j∈ … ). 
The imagery positions of all visible markers in each frame can be recorded manually and 
transformed to the real rink by the following equation: 

 ,

j j
i i rink iRM H FM=  (43) 
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where j
iFM  is the position of the jth  marker in the ith  frame, and 

j
iRM  the estimated 

position of j
iFM  in the real rink. If ,i rinkH  is always quite accurate, for i∀ ,

j j
iRM RM≡ . 

However, in the practical system, the accuracy of ,i rinkH  is affected by a variety of factors. As 
the measurement of the registration error caused by ,i rinkH , the standard deviation of 

j
iRM  

and the RMS error are expressed by the following equations: 

 

2

1

| | E | |
| |

nframes j j
i ix x

j i
x

RM RM
std

nframes
=

⎛ ⎞⎡ ⎤−⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠=
∑

 (44) 

where [ ]E ⋅  is the expectation function. 
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where ,pano rinkH  maps the panorama to the real rink, however, ,pano rinkH  is inaccurate in 
practice, we define the error of ,pano rinkH  as 

 ,| | | | | |j j j
x pano rink x xPRH H PM RM= −  (46) 

where jPM  is the position of the jth  marker based on the panorama, it is recorded 
manually as the ground truth (see details in Algorithm 1 step 5). 
The registration error of 14 markers is shown in Table 4. The values of rms  distribute 
differently, ones are highly accurate and others have large symmetrical errors, all that are 
derived from the inaccuracy of ,pano rinkH  (i.e. PRH , detailed in last two rows) directly and 
mostly, since ,pano rinkH  dose not depend on the subscript i  in Eq. (45). The value of std  
(mainly caused by ,i panoH ) is uniformly small, and it means that ,i panoH  is more accurate than 

,pano rinkH . As a result, the accurate ,i rinkH  is due to the better ,i panoH  and ,pano rinkH . These 
markers in the rink are closer to the trajectory of a skater, so it is reasonable that the 
registration error can be considered as an approximation of the output precision of our 
system. The smaller the values of rms  and std  are, the more reliable the output of our 
proposed system is. 
 

LC RC  
1 2 3 4 5 6 7 1 2 3 4 5 6 7 

|rms|x 0.46 0.31 0.07 0.19 0.16 0.06 0.26 0.43 0.31 0.05 0.26 0.25 0.04 0.29 
|rms|y 0.45 0.28 0.14 0.11 0.21 0.21 0.07 0.39 0.17 0.07 0.05 0.11 0.19 0.16 
|std|x 0.04 0.04 0.06 0.05 0.04 0.04 0.03 0.05 0.06 0.04 0.04 0.04 0.03 0.02 
|std|y 0.06 0.08 0.07 0.06 0.04 0.04 0.03 0.09 0.09 0.07 0.06 0.05 0.03 0.04 
nframes 186 280 248 201 139 168 246 365 382 397 326 244 263 339 
|PRH|x 0.4 0.21 -0.12 -0.3 -0.18 0.04 0.23 -0.33 -0.27 0.08 0.28 0.31 0.04 0.27 
|PRH|y -0.19 -0.01 0.14 0.13 -0.13 -0.15 0.03 -0.16 0.01 0.15 0.1 -0.02 -0.16 0.08 

Table 4. The registration error of 14 markers on the left curve(LC) and right curve(RC) 
respectively in meters. 



 Kalman Filter 

 

246 

7. Conclusion and discussion 
In this paper, we propose a novel computer vision system for tracking high-speed non-rigid 
skaters over a large playing area in short track speed skating competitions. Several 
important features distinguish the proposed approach from others: 
1. Introducing the reference frames as a transition through which each frame can be 

mapped to the field model to reduce the error accumulation of the projection, and it's 
very important for a long video sequence and helpful for improving the precision of the 
system. 

2. Incorporating the hierarchical model based on the contextual knowledge and multiple 
cues into the unscented Kalman filter to improve the tracking performance when 
occlusions occur. 

3. Choosing the unscented Kalman filter for visual tracking in the sports domain, it is 
superior to EKF in theory, and is more efficient than particle filter. 

4. Evaluating the relation between the accuracy of homography 1,t tH −  and tracking 
performance. 

5. Proposing a novel and objective evaluation method to measure the precision of our 
practical system. 

However, The main problem is remained in our current system: how to improve the 
tracking performance when skaters are moving in groups during a long and continuously 
full occlusion.  
In future, we can model the skater's uniform of different teams in each sub-region, and the 
uniform model can be used to assist in tracking the target occluded for a long time. 
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Iterative Forward-Backward Kalman Filtering  
for Data Recovery in (Multiuser)  

OFDM Communications1 
Tareq Y. Al-Naffouri, Muhammad S. Sohail and Ahmed A. Quadeer 

King Fahd University of Petroleum & Minerals 
Saudi Arabia 

1. Introduction 
The current era of connectivity and information transfer demands high data rates from 
broadband wireless systems. The main problem faced by such high data rate systems is 
multipath fading as it causes inter symbol interference (ISI). Thus, there is a need for a 
technique that avoids ISI while still providing high speed data. Orthogonal Frequency 
Division Multiplexing (OFDM) emerged as a technique that combines the advantages of 
high achievable data rates, relatively easy implementation, high spectral efficiency and 
robustness to multipath fading. This is reflected by many standards that considered and 
adopted OFDM including digital audio and video broadcasting (DAB and DVB), WIMAX 
(Worldwide Inter-operability for Microwave Access), high speed modems over digital 
subscriber lines, and local area wireless broadband standards such as the HIPERLAN/2 and 
IEEE 802.11a (Stuber et al., 2004). 
In a wireless communication system, data is sent over a channel. This channel is time variant 
and undergoes fading. The exact state of the channel is unknown at the receiver. The 
transmitted signal is received at the receiver convolved with the channel and corrupted with 
noise. The main interest at the receiver is to recover the transmitted data. If we consider that 
the channel state information is known at the receiver, we can faithfully extract the 
transmitted data from the received signal with this knowledge (through equalization). In 
practice however, we do not have prior knowledge of the channel state information and 
hence we have to employ some estimation technique to obtain an estimate of the channel. 
Channel estimation is thus an important step in receiver design. 
We will start this chapter by reviewing the various approaches to channel estimation 
available in literature. We will then present an iterative channel estimation technique based 
on the Forward-Backward Kalman filter for simple OFDM systems and later extend the 
concept for multi-access OFDM and Multi Input Multi Output (MIMO) OFDM systems. 

                                                 
1 This work was partly supported by King Abdul Aziz City for Science & Technology 
(KACST), Project No. AR-27-98 and partly by a Junior Faculty Project JF060003, King Fahd 
University of Petroleum and Minerals, Saudi Arabia. 
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2. Various approaches to channel estimation 
An OFDM receiver needs to be able to accurately estimate the transmitted data and for that, 
it needs accurate channel state information. For time variant channel, an additional problem 
is that channel state keeps changing. One way to deal with such channels is to periodically 
send a training (known) sequence which can be used at the receiver to estimate the channel. 
However this would severely strain the bandwidth efficiency of the system. An alternative 
approach is to use a priori constraints on the communication system to reduce the training 
overhead. The most popular of these constraints are summarized in Table 1.1 together with 
the works that employed them. All channel estimation techniques use all or a subset of these 
constraints. For example, to reduce the training overhead, we could assume that the channel 
is sparse or that it exhibits strong time correlation from one instant into another. Similarly, 
we could use some a priori information about the transmitted data such as the fact that it is 
drawn from some finite alphabet (see Table 1.1). 
 

 
Table 1.1. Constraints used for channel estimation 

2.1 Iterative receivers for channel estimation & data recovery 
There are several methods for channel estimation. However, the state of the art receiver is 
iterative in nature in that it iterates between finding a channel estimate which is used for data 
detection and between finding a data estimate which is in turn used to enhance channel 
estimation. Training data kick starts the iterative process by providing an initial channel 
estimate. Moreover, the a priori information that we have about the channel and data enhance 
the channel estimation and data detection steps which in turn reduces the required 
transmission overhead (Al-Naffouri et al., 2002); (Aldana et al., 2003); (Cozzo & Hughes, 2003). 
In this chapter, we use the Expectation-Maximization (EM) algorithm to design an iterative 
receiver for the estimation and equalization of time variant channels. We will show that the 
receiver boils down to a forward-backward Kalman filter. We will discuss the use of Kalman 
filter for channel and data recovery in single user as well as multiuser OFDM systems. To 
setup the stage, we introduce our notation in the following section followed by the system 
model. 
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3. Notation 
In this chapter, scalars are denoted by small-case letters (e.g., y), vectors by small-case 
boldface letters (e.g., y), and matrices by uppercase boldface letters (e.g., X). For vectors in 
frequency domain, calligraphic notation (e.g. ) is used. An estimate of a variable is 
indicated by a hat on that variable (e.g., ĥ is an estimate of h). Also, conjugate transpose is 
represented by ∗, Kronecker product by ⊗, size N × N identity matrix by IN, and the all zero 
M × N matrix by 0M×N. For a vector a, diag(a) represents a diagonal matrix with the elements 
of a on its diagonal. Finally, we use h0T to denote the sequence h0 , h1 , …, hT. 

4. System model 
Consider an OFDM system where a sequence of T + 1 symbols  each of 
length N, are to be transmitted. The data bits to be transmitted are first passed through a 
convolutional encoder, punctured and interleaved. The resulting bit sequence is mapped to 
QAM symbols using Gray coding. The OFDM symbol is then constructed by inserting these 
QAM symbols at data positions and pilot symbols at training positions. Here we consider 
comb type pilots as they are more robust in fading channels than block type pilots (Nee & 
Prasad, 2000). Each symbol  then undergoes an IDFT operation to produce the time 
domain symbol where Q is the N ×N DFT matrix. A length P cyclic prefix xi 

is appended to the symbol xi to counter the effect of inter symbol interference. The 
transmitter then transmits the resulting super symbol x i of length N + P as shown in figure 
(1.1) 
 

 
Fig. 1.1. Simple OFDM System 

We consider a block fading channel model, meaning the channel hi (length < P +1) remains 
unchanged for each super symbol but varies from one super symbol to the next according to 
a state space model 

 (1) 

where ho ~ (0,Π0), and uo ~ (0,  2
u  ). The matrices F and G are square matrices of size  

P × P and are a function of Doppler spread (time correlation), power delay profile 
(frequency correlation) and the transmit filter. These matrices are assumed to be known at 
the receiver and are given as 

 

(2) 

where α(p) is related to the Doppler frequency . The variable 
β corresponds to the exponent of the channel decay profile. The constraints captured by the 
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state space model (1) include frequency correlation, time correlation, finite delay spread, 
and sparsity. 
The passage of the symbols through the channel h produces the received symbol  at 
the receiver. The received symbol of length N + P is split into a length N packet  and a 
length P prefix . The prefix absorbs all the inter symbol interference between and 

 and is hence discarded. The time domain relation of the input/output equation can thus 
be expressed as 

 
(3) 

where  represents circular convolution. This relation takes a more transparent form in the 
frequency domain as 

 (4) 

 (5) 

where QP is the FFT matrix comprised of the first P columns of Q, i is related to hi by the 
relation 

 
and i is additive white Gaussian noise N(0,  I). For ease of notation, let us define Xi as 
diag( i)QP. Thus we can rewrite equation (5) as 

 
(6) 

This equation gives the input/output relationship of the OFDM system. Now the OFDM 
symbol Xi consists of both data and pilots. It will be useful for our discussion in the next 
sections to define a pilot/output relation. Let   be the set of pilot indices 
within the OFDM symbol known a priori at the receiver and let  be the matrix pruned of 
rows that do not belong to Ip, i.e.  is comprised of the pilot rows only of X. The 
pilot/output relationship will thus be a pruned version of (6) and is given as 

 
(7) 

5. Channel estimation 
In the following, we consider the channel estimation problem when the data is (i) 
completely known and when it is (ii) partially known (i.e. some training data is available). 

5.1 Data completely known 
Our goal here is to estimate hi. We start by performing channel estimation using only one 
OFDM symbol. We start with the assumption that the transmitted OFDM symbols Xi are 
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completely known at the receiver. This enables us to use input/output equation (6) to obtain 
the channel estimate  by maximizing the following log likelihood function 

 
(8) 

where p (z) stands for probability density function of z. As the noise is white gaussian, the 
maximization reduces to 

 
(9) 

 (10)

Where 2 *a A a Aa . The Maximum A Posteriori (MAP) solution (10) makes use of the 

information at the ith symbol i only to estimate hi. This is clearly suboptimal as hi is 
correlated with hj for j = 0, 1, …, T and hence it is correlated with all the output symbols 0, 

1, ..., T(and not just i). To make full use of this correlation, we maximize the log 
likelihood function of the whole sequence h0T = h0 , h1 , …, hT, given the whole output 
sequence , i.e. we maximize the MAP estimate of channel tap sequence h  by maximizing 
the following log likelihood function 

 (11)

It can be shown that since the noise and channel IR sequence are Gaussian, the likelihood 
function takes the quadratic form (Al-Naffouri, 2007) 

 
(12)

 
(13)

up to some additive constant. 
This can be formulated as a least square problem in the sequence h . Alternatively, since the 
MAP estimate coincide with the Minimum Mean Square Error (MMSE) estimate for 
Gaussian data, we can obtain the sequence h  by applying the Forward Backward (FB) 
Kalman filter to the state space model 

 (14)

 (15)

The Forward backward Kalman filter which provides the MAP estimate (and also the 
MMSE estimate) is described by the following set of equations (Kailath et al., 2000): 
Forward run: Starting from the initial conditions P0│─1 = Π0 and  = 0 and for i = 1,..., T, 
calculate 
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 (16)

 (17)

 (18)

 (19)

 
(20)

Backward run: Starting from λT+1│T = 0 and for i = T, T - 1,..., 0, calculate 

 (21)

 (22)

where is the desired estimate of the channel taps. 

5.2 Data partially known 
When only the training part of the data is known, we estimate the channel from the state 
space model  

 (23)

 (24)

This dynamical model is different from the model (14) - (15) through the input equation 
(specifically Xi is replaced by  Thus the training based MAP estimate 
of the channel sequence h  is obtained by applying the Forward Backward Kalman filter to 
the dynamical model (14) - (15), i.e. by applying (16) - (22) with the substitution 

 

5.3 Iterative channel estimation 
Using a sufficiently large number of pilots would yield a good estimate of channel but it will 
consume the valuable bandwidth of the system. For this reason, it is desirable to keep the 
number of pilots in the system to a minimum. The data, which constitutes the larger part of 
the received symbol, is not being used and hence we are not fully using the constraints on 
the data. This provides the motivation for using some data aided technique. Since the data is 
unknown at the receiver, we make use of the expectation maximization (EM) algorithm. The 
EM algorithm is used when some of the data needed for the estimation process is 
unavailable. To motivate the EM algorithm, consider the MAP estimate of the channel hi 
described by (9). Since the data Xi is unknown, we can not minimize (9) for hi. To go around 
this, we minimize (9) averaged over the data Xi  i.e. 

 
(25)
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As indicated in (25), this is an iterative procedure as it gives the estimate of hi at the jth 

iteration by utilizing the estimate at the (j-1)th iteration. Thus, the expectation with respect to 
Xi is taken given the output data i and given the channel estimate at the (j -1)th step, . 
By evaluating the expectation and completing the squares, we can rewrite (25) as 

 
(26)

where is the expected value of Xi and  is its covariance. Combining the first 
two terms of the above equation, we can get a concise form of the log likelihood function as 

 

(27)

Comparing the quadratic form (9) for the known data case with the form (27) for the 
unknown (or partially known) data case, we note that to move from the former to the latter, 
we need to perform the substitution 

 
 

This step is the maximization step of the EM algorithm. It remains to perform the 
expectation step which will be considered below. 
As Xi = diag( i)QP , we can express the mean and the covariance of Xi in terms of i as 

 (28)

 
 

(29)

This decoupled form enables us to calculate the above expectations on an element by 
element basis Xi(l) l = 1, 2,...,N. For the case when Xi(l) is drawn from a finite alphabet set  
A = {A1,A2...,A│A│} with equal probability, we can show that 

 

(30)

using Bayes rule. This result leads to the expectations 

 

(31)
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(32)

which can in turn be used to evaluate the expectation and covariance of Xi. 
The initial estimate is obtained using pilots. From this channel estimate, we make an 
estimate of data and use (26) to estimate the channel again. This process is iterated a number 
of times to get the final estimate . 

6. The EM-based forward backward Kalman filter 
The algorithm above performs iterative channel estimation (of hi) and data detection (of i) 
using the ith OFDM symbol i only. However, as we mentioned earlier, this is suboptimal as 
the channel hi is correlated with the symbols 0, 1,..., T . Thus, in the partially known 
data case, we can design an EM based FB Kalman filter as follows 
Maximization Step: The maximization step obtains estimate of hi at the jth iteration by 

applying the FB Kalman to the state space model 

 (33)

 
(34)

               i.e. by applying the FB Kalman (16) - (22) with the change of variables 

 
Expectation Step: The expectation step in the FB Kalman case is exactly the same as 

described by equations (28) – (32) 
Initialization Step: The initial channel estimate  is obtained by applying the FB Kalman 

filter to the dynamical model (23) – (24). 
There are several possible implementations of incorporating the EM algorithm in the FB 
Kalman filter. For time correlated channels, there are two dimensions we can iterate (i) 
between channel estimation & data detection or (ii) against time. We get different receiver 
structures depending upon the scheduling of these iterations. 

6.1 Cyclic FB Kalman 
If we iterate between channel estimation & data detection after the entire forward-backward 
run of the Kalman, the filter formed is called a cyclic FB Kalman. The pilot based estimate 
serves as the initial estimate to jump start the data aided version. The channel estimate is 
then given by the FB Kalman. This estimate is again used to refine the data and the entire 
process is iterated. The iterations process the OFDM symbols in a circular manner 
motivating the name of this filter structure as shown in figure 1.2. 
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Fig. 1.2. Cyclic FB Kalman 
 

 
Fig. 1.3. Helix FB Kalman 

6.2 Helix FB Kalman 
If we structure the filter to iterate between channel estimation and data detection at each 
step of the Kalman, the filter formed is called a helix FB Kalman. Here, the initial estimate is 
again provided by the pilots. Now, at each step of the Kalman, the filter iterates several 
times between channel estimation and data detection at each OFDM symbol, using one to 
enhance the other and so on, before moving to the next symbol using the Kalman filter. 
Figure 1.3 shows that the iterations trace a helix which explains the name we chose for this 
filter. 

6.3 Forward only Kalman 
Latency and memory is an issue with the FB Kalman filter as the receiver needs all the 
symbols within an OFDM block to estimate the channel. By implementing the forward part 
of the Kalman filter only, we can get rid of the storage and latency issues at the cost of 
decreased performance. 

7. The FB-Kalman based receivers 
The FB Kalman filter described in the previous section can be applied in several other 
receiver scenarios. To do so, we need to provide the following 
1. A dynamical equation that describes the evolution of the channel impulse response 

(similar to (1)). The FB Kalman can be applied then to obtain the iterative channel 
estimate (maximization step). 
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2. Input/output equation for data recovery. This is used to evaluate the first and second 
moments of the data (expectation step). 

3. A dynamical equation that can be used for initial channel estimation via the FB Kalman 
filter. 

In the following, we shall apply this procedure to two communication scenarios namely 
channel estimation in multiuser OFDM and channel estimation in MIMO OFDM. 

8. Channel estimation in multi-access OFDM systems 
In a multi-access OFDM system, the available bandwidth of the system is shared between a 
number of users. Each user thus has access to only a specific portion of the OFDM spectrum. 
This has some important ramifications as far as channel estimation is concerned. 
Specifically, each user is only interested in the estimate of the particular band in which it is 
operating. In time domain based channel estimation techniques the user is required to 
estimate the entire spectrum and hence this proves to be computationally expansive in the 
multi-user case. As such, frequency domain channel estimation methods for the multi-access 
scenario would make more sense as this would allow each user to estimate the part of 
spectrum in which it is operating and not the entire spectrum. 
The only problem with frequency domain channel estimation is the increased number of 
parameters to be estimated in this case (from P to N, where P is the number of time domain 
channel taps and N is the number of frequency bins used). As such, we can use some 
parameter reduction model to reduce the number of parameters to be estimated. 

8.1 A parameter reduction approach 
Let k users be operating in a multi-access OFDM system. The frequency response of the 
entire spectrum is of length N. For simplicity, we will assume that all users share the 
bandwidth equally. Each user thus operates in a band (or section) of length . Let 

 be the jth section of the frequency response, then from (1), the input/output equation of 
the jth user is given by 

 (35)

where are the jth sections of  respectively. We will 
suppress the dependence on the user index j and time index i for notational convenience. 
Denoting the pilot locations by the subscript  , we can write the pilot/output equation as 

 (36)

There are not enough pilots to estimate . So, we resort to model reduction starting from 
the autocorrelation function of , . The eigenvalue decomposition of  is given by 

 
(37)

where  are the (ordered) eigenvalues of  and  are the 
corresponding eigenvectors. Using this decomposition,  an be represented as 
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(38)

where is the parameter vector to be estimated, with zero mean and 
autocorrelation matrix Λ= diag . Using (37) and (38), we can represent  in 
terms of its dominant eigenvalues and treat the insignificant eigenvalues as modeling noise., 
i.e. 

 (39)

Upon substituting (39) in (35), we get 

 (40)

 (41)

where  The noise  
includes both the modeling noise and the additive Gaussian noise. We consider  to be zero 
mean white Gaussian noise with autocorrelation 

 (42)

Based on (41) we can construct a pilot/output equation similar to (36), as 

 
(43)

Equation (41) is the equation we need for data recovery. Equation (43) can be used for initial 
channel estimation (See (Al-Naffouri & M. Sohail, 2008) for further details). All that is 
needed now is to develop a dynamical model for the interpolation parameter. 

8.2 Developing a frequency domain time-variant model 
In this subsection, we develop a state space model for the parameter αd. To this end, let us 
consider the channel model of (1) and assume for simplicity that the diagonal matrices F and 
G are actually scalar multiples of the identity, i.e. 

 
where f is a function of Doppler frequency (see (Al-Naffouri, 2007)). Now as i is just the 
channel response hi in frequency domain ( i = QPhi), the jth section of i(i.e. ) is related 
to hi by 

 (44)

where  is the jth section of QP . Replacing  in (44) by its representation, we get a 
relation between the time domain channel response and the dominant parameters αd as 
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 (45)

 (46)

where  is the pseudo inverse of Vd. Combining (1) and (46) yields a dynamical recursion 
for αd 

 (47)

where  and where 

 (48)

here we suppress the dependence of Gα and αd on j for notational convenience. 
We are now ready to implement our FB Kalman based receiver, which consists of an initial 
channel estimation step and an iterative channel estimation step. 

8.3 Initial (pilot-based) channel estimation 
In multi-access OFDM, the initial estimate is given by applying the FB Kalman filter (16) - 
(22) to the following state space model: 

 (49)

 (50)

8.4 Iterative (data-aided) channel estimation 
The iterative channel estimation step is obtained by applying FB Kalman to the state space 
model 

 
(51)

 (52)

The data expectations in (51) are obtained from the input/output equation (41). 
Consequently, the FB Kalman is applied to the above set. As mentioned in Section 5, the FB 
Kalman can be implemented as Cyclic Kalman, Helix Kalman or forward only Kalman. 
Figure 1.4 compares the Bit Error Rate (BER) performance of three implementations of 
Kalman filter with the simple EM based least square estimation method. We consider an 
OFDM system that transmits 6 symbols with 64 carriers and a cyclic prefix of length P = 15 
each with a time variation of f = 0.9. The data bits are mapped to 16 QAM through Gray 
coding. The OFDM symbol serves 4 users each occupying 16 frequency bins. In addition, the 
OFDM symbol carries 16 pilots equally divided between the users. The channel impulse 
response consists of 15 complex taps (the maximum length possible). It has an exponential 
delay profile E[|h0(k)|2] = e-0.2k and remains fixed over any OFDM symbol. As expected, the 
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estimate improves when we use time correlation information (by using a Kalman filter). 
Figure 1.4 is plotted for the uncoded case. Since we are relying on the data to improve the 
channel estimate, an outer code can improve the data quality and hence the quality of the 
channel estimate. Figure 1.6 shows the advantage of using coding (1/2 rate convolutional 
code) during the iterative process over the performance of iterative process that only makes 
use of the code to correct the data at the last step of the algorithm. 
 

 
Fig. 1.4. Comparison of various uncoded Kalman implementations. 

 
Fig. 1.5. Comparison of Kalman implementations using code. 

9. Channel estimation in MIMO OFDM systems 
As wireless communication is becoming more and more integrated in everyday life, service 
operators are offering new and advanced features like video streaming and broadband 
connections. These services demand high spectral performance. By using Multi Input Multi 
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Output (MIMO) OFDM techniques, we can increase the spectral efficiency and throughput 
of wireless systems. As we have seen so far, the problem of channel estimation in a wireless 
system is a challenging one. In the case of MIMO OFDM systems, it becomes compounded 
by the fact that transmitters and receivers employ multiple antennas which substantially 
increase the number of parameters to be estimated. In this section, we will extend the FB 
Kalman receiver to a Space Time Block Coded (STBC) MIMO OFDM system. 

9.1 MIMO channel model 
We start by defining the MIMO channel model. Thus consider a MIMO system with Tx 

transmission antennas and Rx receiver antennas. The time domain input/output 
relationship for a general MIMO system can be described by 

 
(53)

where H(p) is the Rx ×Tx MIMO impulse response at tap p and where m represents the 
sample time index. The effect of the transmit filter and transmit and receive correlation are 
incorporated in H(p) making it correlated across space and taps. For simplicity, H(p) is 
assumed to be iid. Again, a block fading channel model is considered where the changes 
from the current block (Ht(p)) to the next block (Ht+1(p)) occur according to the dynamical 
equation 

 (54)

where α (p) is related to the Doppler frequency   (T being the 
time duration of one ST block), β is the exponent of the channel decay profile while the 
factor  represents the exponential decay profile (e-βp) for all time and Ut(p) 
~ N(0, 1) is an iid matrix. The model approximates the non rational Jakes model by a 1st 

order AR model. A higher order AR model would give a better approximation but at the 
expense of increased latency at the receiver. From (54), we can obtain the impulse response 
h  between transmit antenna tx and receive antenna rx, 

 (55)

Stacking (55) over the taps p = 0, 1,..., P, we get the dynamical model 

 (56)

where htxrx is the channel IR at rx = 1, …, Rx and tx = 1, …, Tx, and F and G are the same as 
given by (2). Stacking (56) for all transmit and receive antennas, we obtain 

 
(57)

where 
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and where the vectors ht+1, ht, and ut, are of size TxRx(P) × 1. To employ the Kalman filter, we 
still need to characterize the covariance information of the dynamical model. Specifically we 
need the covariance of ut and also the covariance of the channel at t = 0. It can be shown that 

 (58)

                                      (59)

                                        (60)
and 

 
It is worthwhile to note that while (54) and (57) are equivalent, the latter model is in vector 
form and will be useful for Kalman filter operations. 
In the channel model described above, we did not consider the transmit/receive correlation 
between the antennas. When both transmit/receive correlation are incorporated in the 
channel model, the dynamical equation remains same as in (57) but the covariance of ut is 
given by (see (Al-Naffouri & Quadeer, 2008) for further details) 

 
where T(p) and R(p) are the transmit and receive correlation matrix (of size Tx and Rx) 
respectively. 
The receiver will perform two functions namely channel estimation and data detection. So 
we need to derive two forms of the input/output equation. The first is a channel estimation 
form, which treats the channel impulse response as the unknown and which together with 
the dynamical model (57) forms the state space model that is used by the FB Kalman. The 
second is a data detection form, which treats the input in its uncoded form as the unknown. 
In the Single Input Single Output (SISO) case, we defined the frequency domain 
input/output relationship by (4). For the MIMO OFDM case, the input/output relation 
between transmit antenna tx and receive antenna rx is given by 

 (61)

By stacking, the input/output equation at receive antenna rx can be expressed as 

 (62)

In what follows, we describe the channel estimation version of the input/output equation 
for STBC MIMO OFDM transmission over block fading channels. We omit the data 
detection version as it is similar to the SISO case and as it does not directly relate to the 
operation of the FB Kalman, which is the center of attention of this chapter. The reader can 
find more information in (Al-Naffouri & Quadeer, 2008). 

9.2 Input/output equation 
The input/output equation in STBC MIMO OFDM transmission can be divided into the 
following two categories: 
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1. Channel Estimation Version 
2. Data Detection Version 
Channel Estimation Version 
Consider a MIMO OFDM system which has Nc time slots, Tx transmit antennas and Rx 

receive antennas. Let Nu be the set of uncoded OFDM symbols { (1),..., (Nu)} which are to 
be transmitted. We can implement the Alamouti (ST) code using the set of Tx × Nc matrices  
{ A(1), B(1),..., A(Nu), B(Nu) } following the procedure in (Larsson & Stoica, 2003). Thus, the 
OFDM symbol transmitted from antenna tx at time nc is given by 

 
(63)

where  is the (tx, nc) element of X(nu) and  is the (tx, nc) element of B(nu). 
So, instead of (62), the input/output equation at antenna rx at OFDM symbol nc of a ST block 
takes the form 

 
Stacking over all symbols yields 

 (64)

where 

 

(65)

Further stacking this relation for all receive antennas, we get an input/output relationship at 
all frequency bins, for all input and output antennas, and for all OFDM symbols of the tth ST 
block. 

 
(66)

Pruning (66), we get the set of those equations where the pilots are present and the 
pilot/output equation takes the form 

 
(67)

Data Detection Version 
Signal detection in MIMO case is done in the same fashion as the SISO case, i.e. on a tone-
by-tone basis except that the tones are collected for Rx receive antennas and over Nc time 
slots (the whole ST block). As mentioned above, we will omit the details of the data 
detection version as it is similar to the SISO case discussed in Section 5.3. The reader is also 
invited to check (Al-Naffouri & Quadeer, 2008) for more details. 
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9.3 Channel estimation using EM based FB Kalman 
As we showed in Section 5, the MAP estimate for a sequence of T + 1 input and output 
symbols X  and  is given by (11). For the MIMO case, we can use (57) and (66) to express 
the channel log likelihood as 

 

(68)

In what follows, we present the known and the unknown input data cases for channel 
estimation. 
Known Input Case (Initial Channel Estimation) 
Let us start with the simple case of known input i.e. when pilots are used to estimate the 
channel. The MAP estimate of h for the input and output sequences X  and  respectively 
can be obtained by applying the FB Kalman (16) - (22) on the following state-space model 

 
where h0 ~ N(0, Π) and ut ~ N(0, Ru). 
Unknown Input Case 
When input is unknown, the EM algorithm can be used to estimate the channel similar to 
what we described in Section 6. In this case, we maximize the averaged form of log-
likelihood (68). Thus, the jth iteration of the EM algorithm is now obtained by maximizing 
the averaged log-likelihood 

 (69)

As shown in Section 5.3, this is done by representing the input by its first and second 
moments and applying the FB Kalman (16) - (22) to the following state space model 

 

(70)
 
(71)

 

where nt is virtual noise and is independent of the physical noise t. 

9.4 Data detection 
The data is detected by using the data detection version of the input/output equation which 
in turn is used to obtain the first and second moments of the inputs needed in (70)-(71). This 
is similar to the SISO case described in Section 5.3. The reader can also refer to (Al-Naffouri 
& Quadeer, 2008) for more details. 
To show the favorable behavior of the algorithm, we simulate a MIMO OFDM system in 
which a 1/2 rate convolutional encoder is used as an outer encoder. 16-QAM with Gray 
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coding is used as the modulation scheme. Orthogonal space time block coding (OSTBC) 
commonly known as Alamouti code (number of time slots, Ns = 2 and number of 
transmitters, Tx = 2) is used (Alamouti, 1998). Other parameters used are α = 0.985, β = 0.2, 
and P = 7. Each packet consists of 12 OFDM symbols transmitted over six ST blocks. Each 
OFDM symbol consists of 64 frequency tones and a cyclic prefix of length 8. The first ST 
block is comprised of 16 pilots while the number of pilots in subsequent blocks can be 
varied from zero to 16. 
 

 
Fig. 1.6. Comparison of EM-MMSE and EM-FB Kalman algorithms 

To benchmark the proposed algorithm, it is compared with an EM-based iterative MMSE 
receiver (proposed in (Li et al., 2001) and (Cozzo & Hughes, 2003)) in Figure 1.6 over a 
spatially white channel. The Expectation step in this algorithm is calculated through MMSE 
estimation i.e. by a conditional expectation of the channel given the received symbol and the 
current estimate of the transmitted data. The Maximization step is simply the maximum 
likelihood estimate of the transmitted data. In this algorithm, the pilots are confined only to the 
first space time (ST) block which is used to produce the initial channel estimate. In Figure 1.6, 
the two algorithms are compared for two scenarios with respect to pilots. In first scenario, 16 
pilots are used in the first ST block and zero pilots in the subsequent ST blocks. In the second 
scenario, the EM-MMSE algorithm has 26 pilots in the first ST block and zero pilots in the 
subsequent ones while the proposed algorithm (EM-FB Kalman) has 16 pilots in the first ST 
block and 2 pilots in the subsequent blocks, ensuring the same pilot overhead. It can be easily 
observed that our algorithm outperforms the EM-MMSE algorithm in both scenarios. 
Figure 1.7 describes the effect of spatial correlation over performance of the algorithm for a 
MIMO OFDM transmission. The parameters used here are same except that channel length, 
P = 15, α = 0.8, and transmit and receive correlation matrices are given by 

 
where ζ = 0.8. The number of pilots in subsequent blocks is fixed at 12 and two EM 
iterations are used. It can be observed that the performance of both Forward only and FB 
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Kalman is better over spatially correlated channel (practical scenario) as compared to their 
performance over spatially white channel. 
 

 
Fig. 1.7. BER performance of Forward only Kalman and FB Kalman using Soft data over 
spatially white and correlated channel models 

Figure 1.8 compares the performance of the different implementations of the Kalman filter 
(Forward Only Kalman, Cyclic FB Kalman and Helix based FB Kalman) over spatially 
correlated channel. It can be seen that the Helix based FB Kalman filter outperforms the 
other two implementations. 
 

 
Fig. 1.8. Comparison of Forward only Kalman, Cyclic FB Kalman, and Helix FB Kalman 
with 12 pilots over spatially correlated channel 

10. Conclusion 
In this chapter, we presented an iterative receiver for data transmission over time variant 
channels. Such a receiver needs to perform the two tasks of channel estimation and data 
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detection. Moreover, since these two tasks can enhance each other, they were run iteratively. 
The focus in this chapter was on the channel estimation part, whose maximum likelihood 
estimate boils down to a forward backward Kalman filter. To run this filter we just need to 
construct an input/output equation that describes the operation of the channel and a 
dynamical model that describes the time evolution of the channel. In addition we need an 
input/output equation that can be used for data detection. 
We demonstrated the receiver design for 3 OFDM systems: single user single antenna (SISO) 
OFDM, multi-access OFDM, and multiple antenna (MIMO) OFDM. Moreover the three 
implementations of the Kalman filter (Cyclic FB Kalman, Helix FB Kalman and Forward 
only Kalman) were presented along with their comparative performance. The simulation 
results demonstrated in this chapter indicate that Kalman filter based receivers perform 
quite well in wireless environment and thus are potential contenders for practical receivers. 
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1. Introduction     
Positioning refers to the estimation of one’s location by combining many different sources of 
information. This information is usually obtained in the form of measurements, which may 
be, for example, pseudorange or deltarange measurements from satellites. In addition, 
various wireless networks on Earth, for example, cellular networks, WLAN or Bluetooth 
provide means for positioning in the form of range measurements, received signal strength 
indicators and sector information. Portable positioning devices may also contain inertial 
measurement units that provide information about the movements of the user. 
The positioning problem may be formulated as a Bayesian filtering problem. The 
measurements are related to the position of the user, and the relation is approximately 
known. In addition, there is a model that describes the process dynamics. The 
measurements are obtained at discrete time intervals, and the process dynamics are also 
discretized. 
The system may be described mathematically as follows. Let  xk  denote the stochastic state 
vector at time step  k , and let  y k  be the measurement vector. The system is governed by the 
following equations: 

  y k = hk (xk ) + v k  (1) 

  x k+1 = g k (x k ) + w k  (2) 

Functions   hk  and  g k  are the measurement and state update functions, respectively. The 
measurement noise  v k  and the state update noise  w k  are assumed to be white processes. 
The initial state is denoted by  x0. The noises and the initial state are assumed to be mutually 
independent.  
Using these assumptions, we want to find the conditional probability density function 
conditioned on all realized measurements  pxk

+ (x k y 1:k ) , which is also called the posterior 
probability density function. The set of all realized measurements up to time step   k is 
denoted by 

    y 1:k = {y i i = 1, 2,…, k} . The posterior density function contains all the 
information of the system up to time step  k. From this density function we can compute an 
estimate of the state with respect to any optimality criterion. 
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Using the above assumptions and the Bayes’ rule, the posterior density function may be 
written as 

 
k

−

+

k k

-
k

y k k k 1:k-1x

k 1:kx
k 1:k-1y

p (y x )p (x y )
p (x y ) =

p (y y )
, (3) 

where we have denoted the set of past measurements by  y 1:k-1 (Ristic et al., 2004). The 
conditional probability density function  pxk

- (xk y 1:k-1)  is called the prior density function, 
and it contains all the information about the system before using the measurements of the 
current time step. The measurement likelihood function  py k

(y k xk )  is given by the 
measurement model, and it is used to incorporate the measurements of the current time step 
to the estimate. The normalization factor 

 ∫- -kk k
k 1:k-1 y k k k 1:k-1 ky x

p (y y ) = p (y x )p (x y )dx  (4) 

is sometimes called the predicted measurement density or the innovation density. The 
expression (3) for the posterior density function allows the recursive computation of the 
conditional probability density function, which is very convenient regarding the 
computational and memory requirements of the algorithm. 
In general, it is difficult to find an analytical expression for the posterior density function. 
However, if the state update function  g k (xk ) = Gkxk  and the measurement function 

  hk (xk ) = H kxk  are linear, and the state model noise and the measurement noise are 
modeled as zero mean Gaussians with covariance matrices  Qk  and  R k , respectively, and 
the initial state is Gaussian with mean  x0

+

 and covariance matrix  P0
+ , the posterior density 

function is also Gaussian. Only little computation is required in order to compute the 
posterior density function, and its parameters are given by the famous Kalman Filter 
relations (5)—(9). 
The prior mean is obtained by applying the linear state update function to the posterior 
mean of the previous time step: 

 =- +
k k 1:k-1 k-1 k-1x E(x y ) = G x . (5) 

The prior covariance matrix is obtained from the posterior covariance matrix of the previous 
time step: 

 =- + T
k k 1:k-1 k-1 k-1 k-1 k-1P V(x y ) = G P G + Q . (6) 

The posterior mean is obtained by adding a linear transformation of the innovation to the 
prior mean: 

 + - -
k k k k k kx = x + K (y - H x ) . (7) 

The posterior covariance becomes: 

 + -
k k k kP = (I - K H )P , (8) 
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and the Kalman gain is defined as: 

 - T - T -1
k k k k k k kK = P H (H P H + R )  (9) 

However, in practice the relation between the state and the measurements is rarely linear. 
Therefore, non-linear extensions of the Kalman Filter have been studied, and in this chapter 
we will concentrate on one of them, namely, the Extended Kalman Filter (EKF). 
EKF linearizes the non-linear measurement and state update functions at the prior mean of 
the current time step and the posterior mean of the previous time step, respectively. The 
resulting algorithm is very similar to the Kalman Filter. However, EKF does not solve the 
posterior density function exactly, but instead, approximates the posterior density function 
with a Gaussian density function. 
EKF has been studied in positioning applications and it is shown to perform poorly when 
the non-linearities are significant. (Ali-Löytty et al., 2005) show that when using 
measurements from satellites, the non-linearities do not degrade the performance of EKF, 
but when using range measurements from terrestrial base stations, EKF may easily veer 
away from the true solution and get stuck in a wrong solution branch. One reason for this 
kind of behavior is that the true posterior density might be multimodal, and EKF cannot 
know which peak represents the correct position of the user. The problem of multimodality 
has been addressed using Gaussian Mixture Filters (GMF), and they have been shown to 
perform quite well (Ali-Löytty & Sirola, 2007a); (Ali-Löytty & Sirola, 2007b);(Ali-Löytty, 
2008). GMFs approximate the posterior density as a sum of Gaussian densities where each 
component is an individual EKF. By using GMFs, the problems caused by the non-linearities 
may be overcome. 
Although GMFs perform quite well even in highly non-linear cases, they are still based on 
the assumption of Gaussian measurement noise. It has been shown that filters based on the 
assumption of Gaussian noise may perform poorly in cases where the measurement noise is 
non-Gaussian, and so-called blunder measurements occur (Perälä & Piché, 2007). In 
positioning applications, blunder measurements occur, for example, due to signal reflections 
and multipath effects. 
In this chapter, we present two methods for making EKF more robust against blunder 
measurements. The robust modifications of EKF may also be incorporated in Gaussian 
Mixture Filters that are based on EKF. In the first method, the measurement covariance 
matrix is modified based on the differences between the predicted and realized 
measurements, which are also called innovations. The modification is done using weight 
functions that are derived from M-estimators. In the second method, the predicted 
measurement density is approximated with a non-Gaussian density and the likelihood score 
of the corresponding density is used instead of the Gaussian likelihood score that appears in 
the Kalman Filter. Using these modifications, we try to obtain filters that are robust against 
blunder measurements.  

2. Extended Kalman filter 
In this section we present the algorithm of the Extended Kalman Filter and introduce some 
terminology needed in the following sections. We assume that the state model is linear and 
only concentrate on linearizing the measurement model. Consider the non-linear 
measurement equation: 
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 +k k k ky = h (x ) v . (10) 

The first order Taylor series approximation of the measurement function at the prior mean is 

 ≈ - -
k k k k k k kh (x ) h (x ) + H (x - x ) , (11) 

where the Jacobian of the measurement function is 

 ∂
∂ -

k k

k k
k

k x =x

h (x )H =
x

. (12) 

Denoting 

 Δ -
k k k ky = y - h (x )  (13) 

and 

 Δ -
k k kx = x - x , (14) 

an approximate measurement equation may be written as 

 Δ Δ +k k k ky = H x v . (15) 

Applying the Kalman Filter to this linearized measurement model, the posterior mean 
becomes 

 ++ - -
k k k k k kx = x K (y - h (x ))  (16) 

and the posterior covariance is given by 

 + -
k k k kP = (I - K H )P  (17) 

where   K k = Pk
- H k (H k

TPk
- H k + R k ) -1  is the Kalman gain matrix. The only differences to the 

Kalman Filter are that the innovation is computed using the non-linear measurement 
function, and that  H k  is the Jacobian of the measurement function. 
The innovation   sk := y k - hk (xk

- ) , which appears in the posterior mean recursion, describes 
how much the measurements differ from those expected when we think the user’s state is 
the prior mean   xk

- , which before taking the measurement into account is our best estimate 
for the state. In EKF, the state is corrected by applying a linear gain to the innovation. The 
robust filters presented in this chapter are based on a gain that is computed differently. The 
next section discusses the score functions that are used later to compute the gain. 

3. Score function selection 
The robust Kalman Filters discussed in this chapter are essentially based on embedding the 
score function of a robust M-estimator into the Kalman Filter. We use Huber’s concept of 
minimax robustness to find the robust M-estimators. (Huber, 1964) suggests the 
minimization of the maximum asymptotic variance of an estimator over a predefined class 
of densities   F . The solutions to this problem are pairs  (T

0 , f 0 ) , where  T 0 is the most robust 
M-estimator and  f 0

 is called the least favorable density of the class  F . We introduce two 
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classes for densities for which the minimax solution has been found, namely the ε -
contaminated normal neighborhood and the  p -point family. 

3.1 Huber M-estimator 
The ε -contaminated normal neighborhood was first proposed in (Huber, 1964) to be used in 
robust parameter estimation and it is defined as follows. 
Definition 1 ( ε -contaminated Normal Neighborhood) The set of density functions   Fε  is 
called ε -contaminated normal neighborhood if  Fε = {(1 -ε )φ (x) +εH(x) :  H ∈ S} , where φ  is 
the standard normal probability density function,  S  is the set of symmetrical probability 
density functions, and  0 ≤ ε < 1  is the known fraction of contamination. 
Huber showed that the least favorable density of this class is Gaussian in the middle, but 
has exponential tails. We denote this density by  fε

0 and it is given by 

 
( )

( )

(1 )

(1 )ε

ε
π

ε
π

−⎧ ≤⎪⎪
⎨ −⎪ − >
⎪⎩

21
2

0

21
2

exp - t , t k
2f (t) =

exp k k t , t k
2

. (18) 

The connection between the threshold parameter  k  and the amount of contamination ε  is 
given by 

 φ ε
ε

Φ
2 (k) - 2 (-k) =

k 1 -
, (19) 

where Φ  is the standard normal cumulative distribution function. Usually this equation has 
to be solved numerically. The influence function of an M-estimator is defined as the negative 
likelihood score of the least favorable density   ψ

0 (t) = -∂ln f 0 (t) ∂t , and for the Huber’s M-
estimator it is 

 εψ
⎧ ≤⎪
⎨ ⋅ >⎪⎩

0 t, t k
(t) =

k sign(t), t k
. (20) 

The weight function of an M-estimator is defined as  ω (t) = ψ (t) t ,  t ≠ 0  and  ω (0)  is chosen 
so that   ω (t)

 

is continuous. For the Huber's M-estimator the weight function is 

 0

1,

,εω
⎧ ≤
⎪
⎨ >⎪
⎩

t k
(t) = k t k

t
 (21) 

The influence function and the weight function are needed in the robust filters that are 
presented in the following sections. 

3.2 p-point M-estimator 
Another interesting family of densities, namely, the  p-point family is used in robust 
parameter estimation in (Martin & Masreliez, 1975); (Masreliez & Martin, 1977), and it is 
defined as follows. 
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Definition 2 (  p-point Family) The set of probability density functions Fp is called a   p-point 

family if { })
−

∞
Φ ±∫

py

p p p-
F = f  f(x)dx = p 2 = (-y , f  symmetric and continuous at y . 

The inclusion of the restriction that Fp contains the standard normal cumulative distribution 
function   Φ (x)  is for standardization purposes, that is, to ensure that Fp is in the 
neighborhood of the standard normal density. 
(Masreliez & Martin, 1977) show that the least favorable density  fp

0 of Fp is 

 

)

⎧ ⎛ ⎞
≤⎪ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠

⎨
⎛ ⎞⎛ ⎞ ⎛ ⎞⎪

⋅ − >⎜ ⎟⎜ ⎟ ⎜ ⎟⎪ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎩

2
p

m p0
p

2 2
p p

m m

tK cos , t y
2c y

f (t) =
1 2K 1K cos exp cos (y t , t y

2c p 2c

, (22) 

where K is related to p by the following equation 

 −
=

+p m m

1 pK
y (1 c  sin(1 c ))

. (23) 

For each p there exists sm that minimizes the asymptotic variance of the estimator. The 
minimizing value of cm satisfies the equation 

  2c m - p 1 + tan 2 (1 2c m )( ) 2c m + tan( 1 2c m )( )= 0 . (24) 

The influence function of the least favorable density of the p-point family Fp is 

 ∂ψ
∂

⎧ ⎛ ⎞
≤⎪ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠

⎨
⎛ ⎞⎪

⋅ >⎜ ⎟⎪
⎝ ⎠⎩

p
m p m p0 0

p e

p
m p m

1 ttan , t y
c y 2c y

(t) = - ln f (t) =
t 1 1tan sign(t), t y

c y 2c

 (25) 

and the weight function is 

 ω

⎧ ⎛ ⎞
≤⎪ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠

⎨
⎛ ⎞⎪

>⎜ ⎟⎪
⎝ ⎠⎩

p
m p m p0

p

p
m p m

1 ttan , t y
c y t 2c y

(t) =
1 1tan , t y

c y t 2c

. (26) 

3.3 Damped Hampel M-estimator 
(Hampel et al., 1981) propose other M-estimators for robust estimation. However, these M-
estimators belong to the class of redescending M-estimators, i.e., they have finite rejection 
point. M-estimators with finite rejection points discard certain measurements that are 
assumed to be too far from the true parameter. In hybrid positioning, we cannot always 
afford to discard measurements, and thus we will present here a modified version of the 
Hampel’s three parts redescending M-estimator, namely the Damped Hampel M-estimator. 
The influence function of the Damped Hampel M-estimator is defined as 
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ψ DHA (t) =

t, t ≤ k 1

k 1 ⋅sign(t), k 1 < t ≤ k 2

k 1k 2
r

t
r

⋅sign(t), t > k 2

⎧ 

⎨ 

⎪ 
⎪ 
⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

, 

(27) 

where we assume that  r ≥ 0. The corresponding weight function is defined as 

 

ωDHA (t) =

1, t ≤ k 1

k 1

t
, k 1 < t ≤ k 2

k 1k 2
r

t
r+1

, t > k
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⎪ 
⎪ 
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⎪ 
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⎪ 

. 

(28) 

By setting   k 1 = k 2 = k and  r = 0, we see that the Huber’s M-estimator is obtained as a special 
case of the Damped Hampel M-estimator. 
The Damped Hampel M-estimator is not derived from a least favorable density function, 
but instead, it is obtained by designing a piecewise weighting for the observations in a 
continuous manner. It is possible to calculate the density function by using the definition of 
the influence function, but for our purposes it is enough to know the influence and weight 
functions. 
The Damped Hampel M-estimator presented here is only one example of piecewise influence 
functions. It is easy to design a variety of different piecewise influence functions and try to find 
the best one for the problem at hand using optimization techniques. Although the Huber’s M-
estimator and the p-point M-estimator are most robust in minimax sense, they require some 
knowledge of the distribution of the errors. Usually we do not have such knowledge, and thus 
any M-estimator that has proven to perform well in testing could be used. 

4. Re-weighted extended Kalman filter 
In the Kalman Filter, the posterior density function is Gaussian, and thus, the posterior 
mean estimate is the value that maximizes the probability density function: 

 +
kk

+
k k 1:kxx

x = arg max p (x y ) . (29) 

Using the Bayes’ theorem, inserting the prior density function and the measurement 
likelihood function, and noting that constant multipliers do not affect the maximization 
problem, (29) may be written as  

 ( ) ( )( )1

2 21
2)− ⋅ − -1-

kkk

+ -1
2k k k k k k (R )(Px

x = arg max exp - x - x exp y - H x . (30) 
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Since the exponential function is monotonically increasing, an equivalent problem is the 
following minimization problem. 

 ( )2 2
-1- -1

kkk

+ -
k k k k k k (R )(P )x

x = arg min x - x + y - H x . (31) 

Leaving the subscripts out for simplicity, and denoting  n = (P- ) - 1
2 (x -x- )  and  l = R - 1

2 (y - Hx) , 
where the square root is the symmetric square root of a matrix, (31) may be written as 

 
1 1i j= =

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ∑

yx

k

nn
+ 2 2
k i jx

x = arg min n + l . (32) 

As may be seen in equation (32), the posterior mean estimate of the Kalman Filter is a 
recursive solution to an ordinary least squares problem. The idea of minimizing the sum of 
squared errors is tempting since the solution may be computed efficiently. However, the 
least squares method is not robust, and therefore we modify the quadratic cost function in 
the second sum by a convex function ρ . The ρ -function is chosen so that the derivative of 
the score function is the influence function of an M-estimator introduced in Section 3. The 
minimization problem is changed to 

 
1 1

)
i j

ρ
= =

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ∑

yx

k

nn
+ 2
k i jx

x = arg min n + (l . (33) 

The aim is to make the measurement model more robust, and therefore, only the second 
sum is modified. Since the score function is assumed to be convex, the minimum is found by 
setting the gradient of the sum to zero 

 
1 1

)
i j

ρ
= =

⎛ ⎞
∇ ⎜ ⎟

⎝ ⎠
∑ ∑

yx nn
2

x i jn + (l = 0 . (34) 

Denoting the derivative of the score function ρ  by ψ , equation (34) may be written as 

 
1 1

)
i j

ψ
= =
∑ ∑

yx 1 1
2 2

nn
- -- T

i i j j j2n (P ) e + (l H R e = 0 , (35) 

where   e j

 

is a vector whose jth element is one and the others are zeros. Thus, the 
minimization problem is equal to a vector equation 

 ), , )ψ ψ⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦" …
1 1
2 2

x y y

TT- -- T
1 n 1 1 n n(P ) n , ,n + H R (l (l = 0 . (36) 

Since ψ  is, in general, a non-linear function, equation (36) has to be solved numerically. 
However, we want to preserve the computationally convenient properties of KF, and thus 
we proceed as in (Durovic & Kovacevic, 1999) and (Carosio et. al, 2005), and replace the 
equation by a linear approximation. Thus, we write 

 ) , , )ω ω −⎡ ⎤
⎣ ⎦…

1 1
2 2

y y y

T- -- T -
1 1 1 n n n(P ) n + H R (l l (l l = 0 . (37) 
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where the weights  ω i   are given by  

 
)

1

ψ
ω

⎧
≠⎪

⎨
⎪ =⎩

-
-i i
i-

ii
-
i

(l l 0
l=

l 0
 (38) 

and 

  l
- = R − 1

2 (y - Hx - ) . (39) 
Now equation (37) may be written as 

 ψ

1 1
2 2- -- T(P ) n + H R W l = 0 , (40) 

where   Wψ  is a diagonal matrix with diagonal elements   ω1 (l 1
− ),…,ωny

(l ny

− ) . Inserting 

  n = (P- ) - 1
2 (x -x - )  and  l = R − 1

2 (y - Hx)  yields 

 1
ψ

1 1
2 2- -- - - T(P ) (x - x ) + H R W R (y - Hx) = 0 . (41) 

We define the re-weighted measurement covariance matrix as 

 ψ

1 1
2 2- - -1

WR = (R W R ) . (42) 

This matrix exists assuming that  Wψ  is positive definite, which is true if  ω i > 0,∀i . Inserting 
(42) into (41) yields 

 - -1 - T -1
W(P ) (x - x ) + H R (y - Hx) = 0 , (43) 

which is the solution for the minimization problem 

 ( )2 2
-1- -1

W

+ -
(R )(P )x

x = arg min x - x + y - Hx . (44) 

Equation (44) is similar to equation (31), which was derived from the posterior mean 
estimate of KF. The only difference is that the measurement covariance matrix R

 
is replaced 

by the weighted measurement covariance matrix RW. Thus, the solution of (44) is obtained 
using the posterior mean relation of KF. The measurement update recursions for the 
posterior mean estimate may be then written as: 

 + - -
Wx = x + K (y - Hx ) , (45) 

Where 

 - T - T -1
W WK = P H (HP H + R ) , (46) 

and the posterior covariance estimate becomes 

 + -
WP = (I - K H)P . (47) 

The Re-weighted Kalman Filter derived in this section consists of computing the 
transformed innovation l- and weighting the measurement covariance matrix using the 
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weight function of an M-estimator. The prior covariance is left intact since only the 
measurement model is modified. Thus, the filter derived here may be considered as a robust 
Kalman Filter, which modifies the given measurement covariances according to the 
innovations so that bigger transformed innovations result in bigger variances. A drawback 
of this method is that if the prior mean estimate  x -  is far away from the true state, 
uncorrupted measurements might get weighted down, which could result in bad filter 
performance. 
The filter derived here is for linear systems only. Thus we want to extend the filter for non-
linear problems using the ideas of EKF. The only difference is that the innovations are 
computed using the non-linear measurement function, and that  H  is the Jacobian of the 
measurement function computed at the prior mean. The resulting filter is called the Re-
weighted Extended Kalman Filter (REKF).  

5. Approximate Bayesian extended Kalman filter 
In the previous section KF was interpreted as a recursive least-squares algorithm, and was 
“robustified” by replacing the quadratic cost with (33). In this section we present an 
alternative approach that is directly based on the Bayesian interpretation of KF presented in 
Section 1. Consider a linear transformation matrix 

 
1
2-- T

k k k k kT = (H P H + R ) , (48) 

where   H k ,   Pk
-  and  R k  are the linear measurement function, the prior covariance matrix and 

the measurement covariance matrix, respectively, that appear in KF.  The inverse exists and 
is symmetric since  H k Pk

- H k
T + R k

 
is symmetric and positive definite. 

Denote the innovation as  sk := y k - H kxk
- . The mean of the innovation is  E(sk ) = 0  and the 

covariance matrix is  V(sk ) = H k Pk
- H k

T + R k . Thus, the mean of the transformed innovation 

  rk = Tksk  is   E(rk ) = 0  and the covariance matrix  V(rk ) = I . Now consider the posterior mean 
estimate of KF 

 ∫ +
k

+
k k k 1:k kx

x = x p (x y )dx . (49) 

Using the Bayes’ rule this may be written as 

 ∫
- kk

-
k

k 1:k-1 y k kx+
k k k

k 1:k-1y

p (x y )p (y x )
x = x dx

p (y y )
, (50) 

which may be written after some algebra as 

 − ∫ -k k
-
k

+ - - - -1 -
k k k y k k k k k k 1:k-1 kx

k 1:k-1y

1x = x P p (y x )(-(P ) (x - x ))p (x y )dx
p (y y )

. (51) 

If the posterior density is approximated at every time step with a Gaussian, the prior density 
is also Gaussian since the state update function is linear and the noise in the state equation is 
Gaussian and independent of the state. By noting that for Gaussian prior it holds that 

 ∇ - -k k k

- -1 -
x k 1:k-1 k k k k 1:k-1x x

p (x y ) = -(P ) (x - x )p (x y ) , (52) 
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the posterior mean may be written as 

 − ∇∫ -k k k
-
k

+ - -
k k k y k k x k 1:k-1 kx

k 1:k-1y

1x = x P p (y x ) p (x y )dx
p (y y )

. (53) 

Noting that it follows from the measurement model that  py k
(y k xk ) = pvk

(y k − H kxk ) , and 
integrating by parts yields 

 + ∇ −∫ - k kk
-
k

+ - -
k k k k 1:k-1 x v k k k kx

k 1:k-1y

1x = x P p (x y ) p (y H x )dx
p (y y )

. (54) 

Because 

  ∇xk
pvk

(y k − H kxk ) = -H k
T∇y k

pvk
(y k − H kxk ) , (55) 

the posterior mean may be written as 

 − ∇ −∫ - k kk
-
k

+ - - T
k k k k 1:k-1 k y v k k k kx

k 1:k-1y

1x = x P p (x y )H p (y H x )dx
p (y y )

. (56) 

Changing the order of differentiation and integration yields 

 + ∇ -k k

+ - - T
k k k k y k 1:k-1y

x = x P H (- ln p (y y )) . (57) 

Noting that   y k = Tk
-1rk + H kxk

-

 
it can be shown that 

 + ∇ -k k

+ - - T
k k k k k r k 1:k-1r

x = x P H T (- ln p (r y )) . (58) 

Define the influence function  ψ (rk )  as the negative likelihood score of the transformed 
innovation density 

 ψ ∇ -k k
k r k 1:k-1r

(r ) = - ln p (r y ) , (59) 

and insert into (54) to obtain 

 ψ++ - - T
k k k k k kx = x P H T (r ) . (60) 

It is easy to see by straightforward calculation that a Gaussian innovation density, which 
results from the assumptions of KF, produces the familiar posterior mean update relation of 
KF. (Masreliez & Martin, 1975) study this kind of estimators and show that if the marginal 
densities of   prk

- (rk y 1:k-1)  are symmetric densities in F, where F = Fε
 
or F = Fp, the estimator 

covariance is bounded by 

 ≤ -
k k k F kC (I - K H E )P , (61) 

where 
    
EF = ( ∂

∂t
ψ (t))fF

0 (t)dt∫ ,  fF
0 is the least favorable density in F, and  K k  is the Kalman 

gain matrix. It can be shown that it is possible to come arbitrarily close to the bound 
(Masreliez & Martin, 1975). Thus, the upper bound is chosen as the posterior covariance 
estimate   Pk

+  for ABKF. 
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For the Huber’s M-estimator and the  p-point M-estimator  EF  is found easily by 
straightforward calculation. For the Huber’s M-estimator it is 

 
ε

ε ΦFE = (1 - )(1 - 2 (-k)) , (62) 
and for the   p-point M-estimator we get 

 ( )( )( )p

-1 2 -1
F m p m pE = (c y ) 1 - p 1 + tan (c y ) . (63) 

For the Damped Hampel M-estimator the integral does not generally have an explicit form, 
but since the central part of the influence function is the same as in the Huber’s M-estimator, 
we use   EFε

 to compute the posterior covariance estimates when using the Damped Hampel 
M-estimator. 
The robust posterior estimates may be computed using (60) and (61), however this does not 
produce the posterior probability density function. However, we approximate it with a 
Gaussian density with the mean and covariance matrix as in (60) and (61). This is called the 
Approximate Bayesian Kalman Filter (ABKF). 
In the case where the measurement function is non-linear, the above considerations can be 
applied in EKF. The only difference is that the innovations are computed using the non-
linear measurement function, and that  H k

 
is the Jacobian of the measurement function 

computed at the prior mean. The resulting non-linear extension is called the Approximate 
Bayesian Extended Kalman Filter (ABEKF). 

6. Positioning example 
We consider a positioning scenario where we use satellite pseudorange and deltarange 
measurements that are obtained at discrete time intervals. The state of the user consists of 
the 3-dimensional position and velocity vectors of the user and is denoted by 

  x =[(ru ) T  (vu ) T ]T. The pseudorange measurements may be written as 

 ε−p p ps u
i i iz = r r + b + , (64) 

where the   i th pseudorange measurement is denoted by  zi
p ,  r u

 is the position of the user,   ri
s
 

is the position of the  i th satellite,  bp
 is the unknown clock bias and  ε i

p
 is Gaussian zero 

mean noise with variance  (σ i
p) 2 . The deltarange measurements may be written as 

 )T
d d
i iε−

−

s u
s u di
is u

i

(r rz = (v - v ) + b +
r r

, (65) 

where the   i th deltarange measurement is denoted by  zi
d ,  v u  is the velocity of the user,   v i

s
 

is the velocity of the  i th satellite,  bd
 is the unknown clock drift and  ε i

d
 is Gaussian zero 

mean noise with variance  (σ i
d) 2 . 

The positions and velocities of the satellites are assumed to be known, but clock bias and the 
clock drift that appear in (58) and (59) are unknown. They are, however, the same for all the 
satellites and thus we may deal with them by using so-called difference measurements. 
Therefore, we have to introduce the concept of difference mapping. 
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Definition 3 (Difference Mapping) A difference mapping  D  is a  (ns −1) × ns-matrix with 
full column rank such that  D1 = 0, where  1  is a vector of ones. 
The difference mapping may be chosen to be, for example,  D = I  -1[ ]. Denote 

 ⎡ ⎤
⎢ ⎥
⎣ ⎦

1

D 0
D =

0 D
. (66) 

Thus, the measurement vector becomes 
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The Jacobian of the measurement function is 

 ∂
∂

−⎡ ⎤
⎢ ⎥− −⎣ ⎦- s u

D D1
vx=x V

U 0h(x)H = = D
U U Ux

, (66) 

where   U Vs
D  is the derivative of the vector  diag(UVT)  and  V  is a matrix of satellite velocities, 

  U vu

D  is the derivative of the vector  Uv u, and  U  is a matrix whose rows are the unit vectors 
pointing from the user to the satellites. The derivation of the Jacobian is straightforward but 
tedious and is omitted here. 
The measurement covariance matrix becomes 
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2
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7. Simulations and testing 
The robust filters were implemented in MATLAB and tested in simulations and using real 
GPS data. In Section 7.1, the simulation setup is described and the results of the 
simulations are discussed. The tests using real GPS measurement data are discussed in 
Section 7.2. 
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7.1 Simulations 
The simulation test bench was designed to produce dynamic test data similar to what could 
be expected in real world personal positioning scenarios. The main difference to real data is 
that in the simulations the true track and correct measurement and motion models are 
known. 
The test process consisted of first generating a true track of 120 points with one second 
intervals using a velocity-restricted random walk model, where  σ p

2 = (1.41 m
s ) 2 s -1  and  

  σ a
2 = (0.316 m

s )s -1 . Similar values have been used in (Ma, 2004) to model moving vehicles. 
Next, a GPS constellation was simulated with an elevation mask and a shadowing profile 
that were set so that only a couple of satellites were visible at a time. Finally, noisy 
measurements were generated for each time step. 
Satellite pseudorange and deltarange measurements were used with an average of 2.9 
pseudorange and deltarange measurements per time step. Measurement variances were set 
to   (σ i

p ) 2 = ((0.1 + 2x U ) 2  m 2  and 
 (σ i

d ) 2 = ((0.01 + 0.05x U ) 2  m 2

s2
. The term xU denotes the 

realization of a stochastic variable with standard uniform distribution  U (0,1) . Altogether, 
100 track and measurement sets were generated. These sets were generated using the 
Personal Navigation Filter Framework (Raitoharju et al., 2008). 
Next, some additional noise was generated to the measurements according to different 
choices of the blunder probability pb. For each measurement a sample from the standard 
uniform distribution  U (0,1)  was drawn. If the realization of the sample was less than pb, a 
realization of a sample from  U (−30σ , 30σ ) , where σ  was the standard deviation of the 
corresponding measurement, was added to the measurement value. The blunder 
probabilities were chosen to be 0, 0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.35 and 0.5. 
The test tracks were filtered with the six robust filters described in this chapter, 
corresponding to two choices of the filter (ABEKF and REKF) and to three choices of the 
influence and weight functions (Huber (H), p-point (M) and Damped Hampel (DHA)). The 
parameters for the influence and weight functions used in the simulations and tests are 
presented in Table 1. Since DHA M-estimator is not derived from a minimax criterion, and 
thus does not correspond to any least favorable density presented in this chapter, using it in 
ABEKF is somewhat questionable. However, since DHA is essentially a generalization of the 
Huber M-estimator, we use EF in DHA. 
 

Name Parameters 
Huber  k = 2.2  
 p-point 

 y p = 2.2 
Damped 
Hampel  k 1 = 2.2 ,  k 2 = 3.3 ,  r = 1  

Table 1. Estimator parameters used in simulations and testing 

The mean and covariance of the posterior distribution were recorded at each time step and 
compared to the true track. For comparison, the data was also processed with EKF. 
Figure 1 shows the mean error of different filters when using the Damped Hampel influence 
and weight functions. It can be seen that EKF works quite well also when the blunder 
probability gets bigger. This is not surprising since EKF should be optimal for linear 
measurements regardless of the density function of the error. Nonetheless, REKF still 
performs better than EKF. However, ABEKF starts to give meaningless estimates even with 
moderate blunder probabilities. 
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Fig. 1. Comparison of different filters in the simulations 

The mean error (m), the 95% percentile of errors (m) and the frequency of inconsistent 
estimates (%) are presented in Table 2 for the blunder probabilities of 0, 0.1 and 0.25. The 
inconsistency was determined using the general inconsistency test with risk level 5% (Ali-
Löytty et al., 2005), and it tells how often the error estimate was smaller than the actual 
error.  
 

   p b = 0%  p b = 5%  p b = 25% 

  ME 
(m) 

95% 
(m) 

Inc. 
(%) 

ME 
(m) 

95% 
(m) 

Inc. 
(%) 

ME 
(m) 

95% 
(m) 

Inc. 
(%) 

 H 52.2 287 0.0 53.5 281 0.1 59.7 300 1.5 
REKF M 52.2 285 0.0 53.8 281 0.0 60.9 302 2.0 

 DHA 53.6 286 0.0 54.3 279 0.1 59.1 285 1.1 
 H 51.9 284 0.0 53.4 277 0.3 64.9 313 10 

ABEKF M 53.0 275 0.0 54.4 279 0.1 62.6 292 7.2 
 DHA 51.9 284 0.0 53.5 276 0.5 91.4 461 22 

EKF  51.8 284 0.0 55.4 284 0.4 66.0 313 14 
Table 2. Results of the simulations 

The filtered solutions were consistent when the blunder probability was small, but with 
large blunder probability ABEKF and EKF produced more inconsistent solutions. REKF, 
however, does not suffer from inconsistency even with high blunder probabilities. The mean 
error and the 95% percentile of errors did not vary much between different filters. However, 
when the blunder probability was large, the best performance was obtained using REKF. 
ABEKF also performed better than EKF with respect to any criterion with large blunder 
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probabilities when using the Huber’s M-estimator or the p-point M-estimator. Damped 
Hampel M-estimator did not perform very well with ABEKF, but gave the best results when 
used in REKF. The fact that EKF performed quite well even with large blunder probabilities 
was surprising, but may be justified by noting that with almost linear measurements EKF 
should be optimal regardless of the noise distribution. 

7.2 Tests using real GPS data 
The filters were also tested using real GPS data. The test bench consists of 40 sets of 
measurements, which were recorded with a GPS receiver in Tampere, Finland. The receiver 
used was a Bluetooth Assisted GPS, BAG (Wirola et al., 2006). The sets consisted of cases 
where the user was standing still, walking or traveling in a bus with the receiver. The true 
track was only approximately known and it was transformed into digital format using a 
digital map of Tampere. Thus, the reporter errors are not exact, but instead, should be 
considered only as indicative. 
The results of the tests using real GPS data are presented in Table 3. ABEKF does not seem 
to work very well with DHA influence function, whereas the influence function of the 
Huber M-estimator and the influence function of the p-point M-estimator seem to work 
well. However, ABEKF outperforms EKF with all choices of influence function. REKF 
outperforms ABEKF with respect to mean error and 95% percentile but ABEKF is more 
consistent. 
The consistency of the solutions for each filter seems to be a lot worse than in the 
simulations. The inconsistency results from the fact that the variances of the measurements 
given by the measurement device are too optimistic. This might also be the cause of the poor 
performance of ABEKF when using the Damped Hampel M-estimator. Nevertheless, 
ABEKF and REKF perform better than EKF with respect to any criterion. By optimizing the 
parameters of these filters it might be possible to obtain even better results. 
 

  ME 
(m) 

95% 
(m) 

Inc. 
(%) 

 H 26 55 37.3 
REKF M 27 55 35.4 

 DHA 24 55 36.9 
 H 29 57 36.3 

ABEKF M 29 56 34.5 
 DHA 1046 9308 36.1 

EKF  27051 221527 44.7 

Table 3. Results of the tests using real GPS data 

An example of a real positioning scenario is presented in Figures 2 and 3. In Figure 2 the 
measurements were processed with EKF using the Damped Hampel weight function, and in 
Figure 3 the same measurements were processed with REKF. The true track is denoted by a 
black dashed line, and the mean estimates of the filtered solutions are denoted by blue and 
red dots. Blue dots represent consistent estimates and red dots are inconsistent estimates. 
This example shows how poorly EKF might work even in quite good signal conditions, and 
how significantly REKF improves the estimation process.  
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Fig. 2. An example of EKF using real GPS-
measurements. (Map © Kaupunkimittaus 
Tampere 2008) 

Fig. 3. An example of REKF using real GPS-
measurements 

8. Conclusions 
In this chapter robust filtering techniques for positioning using satellite measurements were 
presented. The Extended Kalman Filter was chosen as basis for robust filter design. Six 
filters were presented and tested in the simulations and using real GPS data. 
Based on the simulations the proposed filters seem to outperform EKF when blunder 
measurements occur, and do almost as well in normal cases. However, ABEKF does not 
seem to work well when using the Damped Hampel M-estimator, but performs better than 
EKF when using the Huber’s M-estimator or the p-point M-estimator. The best performance 
was obtained using REKF with the Damped Hampel M-estimator, but other M-estimators 
also seemed to work almost as well. 
The tests using real GPS data showed similar trends in the results except that EKF 
performed very poorly. REKF with the Damped Hampel M-estimator performed best also 
when using real GPS data. 
Therefore, REKF should be taken into consideration when implementing positioning 
algorithms in mobile positioning devices due to its light computational and memory 
requirements and relatively high accuracy. The most promising approach was to use the 
Damped Hampel weight functions, but the performance degrades only a little when using 
any other influence and weight function proposed in this chapter. 
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1. Introduction     
Object visual tracking aims to determine the image configuration of a target region of an 
object as it moves through a camera's field of view. The visual tracking process consists on 
matching the target region in successive frames of a sequence of images taken at closely-
spaced intervals. Visual tracking has become an important process on various applications 
as: vision-based control (Hutchinson et al., 1996; Papanikolopoulos et al., 1992), industrial 
robotics (Sumi et al., 2007), biomedicine (Shen et al., 2006), surveillance (Urtasun et al., 2006), 
aerial target tracking (Yau et al., 2001), aircraft and car traffic monitoring and control 
(Rostamianfar et al., 2006). 
Algorithms that combine digital image processing and visual servo control techniques are 
being applied to the solution of complex problems such as object tracking from a sequence 
of images (Hager et al., 1998). Visual tracking can be considered an estimation process acting 
together with digital image processing techniques. For the estimation process a stochastic 
filtering approach using Kalman filter can be applied (Veeraraghavan et al., 2006) and the 
particle filter (Shen et al., 2006). A visual tracking algorithm in (Babu et al., 2007) combines 
mean-shift tracker with a modified window-matching algorithm in order to avoid drift 
during partial object occlusion. Other algorithm (Brassnet et al., 2007) uses particle filtering 
for object tracking based on multiple cues with adaptive parameters and its performance is 
investigated and evaluated with synthetic and natural sequences and compared with the 
mean-shift tracker. These estimation approaches can be applied to visual servo control in 
association with window-matching techniques yielding better results (Tan et al., 2005). 
Here, an object tracking algorithm is proposed that combines the window-matching 
techniques and optimal estimation theory based on the linear stochastic Kalman filtering 
(Kalman, 1960). The window-matching algorithm is modified and a Kalman filtering stage is 
coupled to improve the tracking performance. The main objective of this work was to 
develop the structure of a tracking algorithm not yet its final and efficient implementation, 
so it was developed within the Matlab computational environment. 
The chapter is organized as follows, in Section 2 the object visual tracking problem is stated 
together with the solving methods. Section 3 discusses the window-matching techniques 
and presents a window-matching algorithm (WM) for tracking purposes. Section 4 deals 
with the use of the Kalman filtering (K) to improve the object visual tracking, a new 
algorithm (WM+K) is then presented. Section 5 then shows the application of the WM+K 
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algorithm to the following tracking situations: a) ball on a warming up table tennis game; b) 
vehicle in urban traffic scenery; c) somebody on a two-people meeting and walking scene; 
and d) a bottle floating on the sea. 

2. Object visual tracking 
Visual tracking is much related to the correspondence subproblem in vision-based motion 
analysis. The correspondence problem deals with determining which elements of a frame 
correspond to which elements of the next frame of the sequence, then, it can be applied for 
tracking purposes by determining the movement of an entire target region over a long 
sequence of images. Due to the small spatial and temporal differences between consecutive 
frames, the correspondence problem can also be stated as the problem of estimating the 
apparent motion of the image brightness pattern, the so called optical flow. The solution of 
the correspondence problem can roughly follow two strategies (Trucco & Verri, 1998): 
differential methods and window-matching methods. Differential techniques are based on 
the spatial and temporal variations of the whole image brightness, generating then the 
optical flow. Methodologies for motion detection based on differential techniques can be 
modified to perform object tracking in a sequence of images (Vidal & Casanova, 2005). 
However, these techniques demand numerical calculation of derivatives that could be 
impracticable in circumstances where there is a high level of noise, reduced number of 
frames or the effect of aliasing in the image acquisition process. 
Window-matching techniques (Anandan, 1989) are based on the assessment of the degree of 
similarity among regions in sequential images, so that an object may be recognized and its 
position inferred in subsequent frames. Window-matching techniques can be applied to 
object tracking and to other issues in computing vision.  

3. Visual tracking based on window-matching techniques 
Window-matching methods are based upon an analysis of the grey level pattern around a 
point of interest and the search for the most similar pattern in the subsequent frame. They 
are also called region similarity methods. Having defined a window ( )yxW , around the 
point ( )yx,p , similar windows ( )jyixW ++ ,'  displaced an integer number of pixels are 
considered. The estimated image displacement corresponds to the minimal of a distance 
function between the intensity patterns of the two considered windows, which is then 
obtained by minimizing the function 

 ( )( )jiWWf ,, ′  (1) 

In case correlation functions between distances are used, the problem would be to maximize 
the cost function. The window-matching techniques assume that: a) the grey level intensity 
pattern is constant between two successive images; b) there is not a high degree of 
ambiguity between the texture of the region of interest and other regions of the image. 

3.1 Window-Matching (WM) methods for motion detection 
According to (Barron et al., 1994), there are several ways of evaluating similarities among 
grey level intensity patterns in sequential images. The nature and rigidity of the performed 
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motion directly affect the success (or failure) of the method implementation. The choice of 
the region of interest (ROI) must be a careful task in order to faithfully reproduce the image 
actual characteristics. 
Problems concerned to bidimensional approximations on image tracking usually happen 
when the ROI is subjected to complex form and illumination changes. One solution for this 
problem may be using methods for updating the interest region from the preceding image 
position in order to minimize geometry and lighting changes (Hager et al., 1998). However, 
this procedure brings up an undesirable effect, known in the literature as feature drift. That 
happens due to the fact that the ROI new position has a small aggregated error, which 
continuously builds up with the image motion, so compromising the tracking action. 
The regions on the image are represented by squared windows of N×N dimension. The idea 
is to calculate motion between a region center around a certain point of interest ( )yx,p on 
image I1 that will be displaced by integer values i, j (along the horizontal and vertical 
directions, respectively) in the subsequent image I2. 
To measure similarity the well known SSD (Sum of Squared Differences) cost function will 
be used here, which is defined as 

∑
−=

++−
2/

2/,

2
21 )],(),([

N

Nji
jyixIyxI

 
(2) 

 Minimizing equation 2 represents minimizing the distance of similarity, and then it means 
finding, on the subsequent image, the most similar region to the current image. On tracking 
several objects with independent motion, occlusion can happen. Consequently, some objects 
may partial or totally disappear in some images; this will cause errors in the object 
trajectory. To deal with this problem local trajectory restrictions can be imposed and/or 
uncompleted trajectories can be allowed, since this last approach is properly considered. 
Solving equation 2 usually encounters the problem of window-matching between regions 
with little texture information. Anandan (1989) proposed a methodology to evaluate the 
reliability of the similarity results obtained with the SSD function. In this work small 
windows of 5×5 pixels are used for window matching purposes with the candidate points 
for minimizing the SSD function. The method validation is based on the fact that, on 
establishing a window matching along a scanning direction, if there is a slight difference in 
the distance of similarity between windows, it will not be possible to determine the matched 
window. On the other hand, if there are acceptable similarity distance variations along the 
scanned direction, it can be concluded that there is a matched window. 

3.2 A WM tracking algorithm based upon similarity distance measurement 
An algorithm applying the window-matching method by using a similarity distance 
measurement was developed. The stages of such algorithm are shown in Figure 1. The 
algorithm is a modified version of the one introduced in (Barron et al., 1994). One of the 
modifications was the insertion of an additional stage to check the result reliability. 
To measure the region similarity the algorithm builds an image distance matrix from which 
the minimum (or maximum, when the correlation functions were used) values can be 
obtained. A pre-processing stage was not implemented in the proposed algorithm, as 
suggested in Anandan (1989), because it is desirable to keep the visual information related 
to the object boundaries. The adopted methodology demands a substantial computational 
effort. In order to minimize this effort some procedures are reported by Giachetti (2000). 
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Fig. 1. Window-matching algorithm (WM) for tracking purposes 

4. A Kalman filter stage into a WM tracking algorithm 
Kalman filtering is a recursive procedure for optimal estimation of the state of a dynamic 
system, on the basis of noisy measurements and an uncertain model of the system 
dynamics. For object tracking purposes Kalman filtering can be used to estimate: a) the 
position of a moving feature point in the next frame, i.e. where to look for the feature; and b) 
the uncertainty of the estimation, i.e. the degree of confidence of finding the feature in the 
next frame in a region around the predicted point.  
On tracking objects from frame to frame in long sequences of images, there is a fact; the 
motion of the observed scene is usually continuous, being then possible to make prediction 
on the motion of the image points, at any instant, based on their previous trajectories. Then 
object visual tracking can be approached as a problem of state estimation of a dynamic 
system motion, being the state vector [ ]Tvuyx=x , consisting of the 2D position 

[ ]Tyx=p and its respective velocity vector [ ]Tvu=p� . As a new frame of the image 
sequence is acquired and processed at each instant tkttk Δ+= .0 , with …,2,1,0=k and tΔ  a 
certain sampling time between frames. Assuming a short sampling time, the state vector 
does not change much, thus the system model describing the motion dynamics is a time-
discrete dynamic equation as 
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For simplicity (not considering real time) 1=Δt , thus a state equation that now will include 
a noise vector 1−kw to represent the system noise is 
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The position vector as determined by the window-matching (WM) procedure will be the 
measurement vector kz ; it will include a noise vector kv to represent the measurement 
uncertainty. The measurement model will then be 
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The noise signals in the noise vectors kw and kv are considered having Gaussian 
distribution and zero mean. The corresponding system covariance matrix 1−kQ and the 
measurement covariance matrix 1−kR are also inputs to the Kalman filter at time 1−kt . In the 
proposed algorithm the window-matching procedure will supply the Kalman filter with 
"noisy" position observations kz from which optimal position and velocity estimates kx̂ at 
time kt will then be obtained. 
To initialize the Kalman estimation, arbitrary high values for the process covariance matrix 

0P must be assigned because the filter dynamics takes into account the confidence level of 
the estimates according 0P . In many cases, undesirable estimates are obtained as a result of 
bad numerical conditioning of 0P causing therefore a filter biasing. The implemented filter 
dynamic equations are 
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With I as the 44× identity matrix, and kK being the Kalman filter gain.  The optimal 
estimation given by the filter output is vector kx̂  at time kt , representing the image position 
and velocity being its uncertainties described by the diagonal elements of the kP matrix. 
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4.1 A tracking algorithm based on Window-Matching and Kalman filtering (WM+K) 
The window-matching (WM) or similarity algorithm shown in Fig. 1 was then modified by 
inserting a Kalman filter stage. While the window-matching algorithm is running, the 
Kalman filter processes the resulting measurements generating then outputs to indicate the 
error tolerance during the WM algorithm execution. In case the similarity algorithm returns 
values that do not match the conditions previously established, these WM results are 
dropped and the Kalman filter position estimates are taken as solutions. In this way 
misleading results, specially those ones produced by feature drift are corrected. Figure 2 
shows the developed algorithm (WM+K). 
Complementary strategies could be introduced in order to improve this window matching 
with Kalman filtering. These strategies demand more complex techniques, most of which 
depend on the use of non-linear models to represent more accurately the attempted 
tracking. Here linearized models were used to implement the proposed algorithm. 

5. Applications of the WM+K tracking algorithm 
As mentioned before the objective of this work was to develop a window-matching 
algorithm with stochastic filtering and verify its performance. For this developing stage the 
Matlab computational environment was chosen. However, its more critical routines in terms 
of processing speed were written in C language and then converted to mex functions 
(mexfiles), a feature in the Matlab environment. Mexfiles can be called from within Matlab, so 
improving the processing speed. The final version of the algorithm will be fully written in C 
language, provisions for real-time operation will be as well pursued. 
The developed tracking algorithms were then applied to these situations with different 
degree of complexity:  
a. Tracking the ball on a warming up table tennis game; 
b. Tracking a vehicle in urban traffic scenery; 
c. Tracking people meeting and walking in public buildings (two cases); and 
d. Tracking a bottle floating on the sea. 
First, the WM tracking algorithm will be applied, then the WM+K algorithm, showing also, 
in this latter case, the measurement inputs from the WM stage. 

5.1 A table tennis sequence1 
Figure 3 shows the initial, two intermediates and final frames of an image sequence 
displaying a man practicing for a table tennis game. The problem is tracking the ball during 
this warming up period of the player. In this sequence the image size is 352×240 pixels with 
the images in PNG format. For this game sequence the sub-region and searching window 
sizes were 40×40 and 10×10 pixels respectively. 
First, the WM algorithm was applied to the ball tracking problem, then for comparison, the 
combined WM+K algorithm was applied to the same table tennis sequence. Figure 4 shows, 
for the same four frames in Fig. 3, the ball tracking results obtained from the WM algorithm. 
The larger square (blue) is the subregion window and the smaller one (green), the searching 
window. It can be observed that the WM algorithm is capable of tracking the ball. 
 
                                                 
1 Downloaded from http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/vision.html 



Object Visual Tracking using Window-Matching Techniques and Kalman Filtering 

 

295 

Loading Images
Sequence

Controls Flags

Start

Choose: Similarity
or

Correlation Measure

Define Region on
Interest in p(x,y)

Size N x N
Image K

Evaluate Similarity
Measure to image K + 1

Image K +1
Distance Measure

Calculate Pixel's
position p'(x',y') which
minimize Cost Funcion

SSD

Vector CuesRealibility MeasurePose in K + 1
Image

Kalman
Filter

 
Fig. 2. A Window-matching with Kalman Filter Algorithm (WM+K) for tracking purposes 

  

  
Fig. 3. A table tennis game sequence: initial, two intermediate and final frames 
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Fig. 4. Tracking the ball with the WM Algorithm 

Figure 5 shows, for the same four frames, the ball tracking results from the WM+K 
algorithm, its tracking window (yellow) is shown together with the now supported WM 
searching window (green) for comparison. The initial WM+K searching window can be 
observed on the first frame. For this sequence with well defined environment, both 
algorithms have a good tracking performance. 
 

  

  
 

Fig. 5. Tracking the ball with the WM+K algorithm 



Object Visual Tracking using Window-Matching Techniques and Kalman Filtering 

 

297 

The ball position (horizontal and vertical) along the sequence of image frames as obtained 
from both algorithms is shown in Figure 6. There is no much variation along the horizontal 
direction but is very noticeable along the vertical direction as expected. 
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Fig. 6. Ball estimated position from tracking algorithms: □ supported WM algorithm; ∆ 
WM+K algorithm 

5.2 An urban traffic sequence2 
Figure 7 shows the initial, two intermediates and the final frames of an urban traffic 
sequence. The scene is a typical urban crossroad with vehicles and pedestrians, commonly 
found in big cities. The problem now is tracking a particular vehicle. The objects in the scene 
perform 3D motion along the vertical and horizontal directions and depth variations. Image 
size is 320×240 pixels in JPG format. For this sequence the subregion and searching 
windows were 50×50 pixels and 15×15 pixels respectively. 
The choice of the region of interest (ROI) is defined accordingly to the moving objects to be 
tracked. Other factors that influence the size of the subregions are: the degree of ambiguity, 
sudden illumination changes, direction, depth, etc. The effects of window size enlargements 
are: increase in computational cost, window drift caused by ambiguities on ROI and low 
contrast environments (Giacchetti, 2000). Precisely, the addition of a Kalman filtering stage 
to a window-matching approach minimizes the effect of these factors. The choice of the 
window size for the applications in this work was made accordingly to a developed motion 
detection algorithm (Vidal & Casanova, 2005).  
As before, the WM and WM+K algorithms were applied to this sequence. To guarantee a 
non-biased algorithm on this type of motion, the Kalman, system noise and measurement 
covariance matrices were randomly initialized. Figure 8 shows, for the same four frames 
in Fig. 3, the vehicle tracking results from the WM algorithm (green contour). Figure 9 
shows the searching results from the WM+K algorithms (yellow) and the now supported 
WM searching window (green). Here, both algorithms are also capable of tracking the 
vehicle. 

                                                 
2 Downloaded from http://i21www.ira.uka.de/ 
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Fig. 7. Vehicle in an urban traffic sequence: initial, two intermediates and final frames 
 

  

  

Fig. 8. Tracking a vehicle with the WM algorithm 

Figure 10 shows the vehicle position (horizontal and vertical) along the sequence of image 
frames as obtained from both algorithms. It can be observed that the WM+K algorithm 
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cannot track the vehicle during the first frames (triangular marks). This is due to the random 
initialization of the Kalman covariance matrices, but as soon as the WM stage interacts with 
the filter the algorithm converges quickly. 
 

  

  

Fig. 9. Tracking a vehicle with the WM+K algorithm 
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Fig. 10. Vehicle estimated position from tracking algorithms: □ supported WM algorithm; ∆ 
WM+K algorithm 
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5.3 A People Meeting and Walking Sequence3 
Two cases of a meeting and walking sequence involving people will be considered here. In 
the first one, two men approach each other and then walk together. Figure 11 shows the 
initial, two intermediate and final frames of the meeting and walking sequence. This 
situation is a common scene in public buildings where there is a surveillance system 
installed. The scene contains problems like photometric distortions, noise, ambiguity and 
change of scale. For this sequence the image size is 348×288 pixels and the images are in JPG 
format. A subregion window size of 40×40 pixels and a searching window size of 10×10 
pixels were found to be adequate. Figure 12 shows the tracking results of the WM algorithm 
(red line window), where it can be seen that the algorithm is not capable of tracking the 
human body, it got lost. On the other hand, Figure 13 shows the searching results (yellow 
line window) from the WM+K algorithm together with the output from the WM searching 
window (red line window), now supported by the Kalman filtering stage. Then in spite of 
the cluttered environment the combined algorithm is able to track the human body till the 
end of the sequence.  
Figure 14 shows the human body estimated position (horizontal and vertical) along the 
sequence of image frames as estimated by the algorithms. The added Kalman filtering stage 
then contributes to the robustness of the tracking process. 
 

  

  
 

Fig. 11. People meeting/walking sequence: initial, two intermediates and final frames 

                                                 
3 Downloaded from http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/ 



Object Visual Tracking using Window-Matching Techniques and Kalman Filtering 

 

301 

  

  

Fig. 12. Tracking people (1) with the WM algorithm 
 

  

  
 

Fig. 13. Tracking people (1) with the WM+K algorithm 
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Fig. 14. Human  body estimated position from tracking algorithms: □ supported WM 
algorithm; ∆ WM+K algorithm 

A second tracking people problem is considered. Figure 15 shows four frames of a sequence 
where two-people walk side-by-side along a corridor. In this case there are some 
environmental conditions but not photometric distortion, but there will be a partial 
occlusion of the tracked human body. The image size is 348×288 pixels and the images are in 
JPG format. Tracking results are shown in Figures 16 and 17 for the same subregion and 
searching window sizes as the previous people tracking case. 
 

  

  

Fig. 15. Two-people walking sequence: initial, two intermediate and final frames 
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Fig. 16. Tracking people (2) with the WM algorithm 
 

  

  

Fig. 17. Tracking people (2) with the WM+K algorithm 
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Results show that the WM algorithm (red) alone looses the target due to the partial 
occlusion (frame 3). But the WM+K algorithm (blue) keeps tracking the target in spite of the 
occlusion, showing that the stochastic filtering adds robustness to the process. The estimated 
position from the supported WM and the WM+K algorithm are shown in Figure 18. 
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Fig. 18. Human  body estimated position from tracking algorithms: □ supported WM 
algorithm; ∆ WM+K algorithm 

5.4 A Bottle floating on the Sea4 
This sequence shows a bottle on the sea surface, the same four frames are shown in Figure 
19. This is sequence is very particular in the sense that there is a random non-rigid 
movement with depth variations, blurring effect, scale changes and a high degree of 
ambiguity. These characteristics demand a robust algorithm to keep tracking the object.  
The WM algorithm was applied to the bottle sequence and the tracking results for the four 
frames (Figure 19) are shown in Figure 20. It is clear that the WM algorithm was not able to 
keep tracking the bottle, mainly due to the ambiguity with the background. On the other 
hand the WM+K algorithm keeps tracking the ball despite the particular characteristics of 
the scene; these tracking results are shown in Figure 21. 
Finally, Figure 22 shows the estimated position of the bottle as given by the WM+K 
algorithm. The bottle trajectory was of random nature and the Kalman stage delivered a 
smoother trajectory, mainly due to minimization of the drift effect. 
For the sequences here considered, the larger differences on tracking estimation occurred 
when the elements of the main diagonal of the error covariance matrix change signs. These 
changes are caused by the system and measurement noises introduced into the Kalman filter 
(Jwo, 2007). The proposed WM+K algorithm was capable of tracking targets in these 
sequences. Thus, it could be said that a WM+K tracking algorithm, consisting of a window 
matching stage generating measurements for a Kalman estimation filter, produces better 
tracking results and offers robustness to the object tracking process. 

                                                 
4 Downloaded from 
 http://www.cs.bu.edu/groups/ivc/data/DynamicBackgrounds/ICCV2003/water/object7/ 
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Fig. 19. Bottle floating on the sea sequence: initial, two intermediates and final frames 

  

  

Fig. 20. Tracking a bottle with the WM algorithm 
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Fig. 21. Tracking a bottle with the WM+K algorithm 
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Fig. 22. Bottle estimated position from tracking algorithms: □ supported WM algorithm; ∆ 
WM+K algorithm 

6. Conclusions 
This work presented an algorithm for tracking objects from a sequence of images. The 
algorithm is based on a window matching approach that uses as a similarity measurement 
the sum of the square differences (SSD). In order to improve the tracking performance under 
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disturbances a Kalman filtering stage was incorporated. This joint operation increases the 
tracking robustness. The algorithm was implemented within the Matlab environment to 
take advantage of its developing facilities. Assigning scanning subregions contributed to 
increase the processing speed without compromising the tracking performance. The 
developed tracking algorithm was applied to track: a) the ball in a table tennis game; b) a 
vehicle in an urban traffic situation; c) people meeting and walking in buildings; scene; and 
d) a bottle floating on the sea. The approach presented would provide improvements for 
visual tracking due to the fact that the tracking is independent of the motion type and of the 
object shape. The algorithm also offers flexibility in situations where there is no previous 
information about the object to be tracked. A further work is the algorithm implementation 
in a high level language and its operation in real time. Also information from additional 
video cameras could be considered to attack the problem of object occlusion. 
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1. Introduction 
Kalman filter and its nonlinear extension, extended Kalman filter provide a feasible solution 
to mitigating non-line of sight (NLOS) propagation effects, and therefore improving 
accuracy of mobile target tracking in indoor wireless environments. Most wireless 
communication systems for indoor positioning and tracking may suffer from different error 
sources, including process errors, measurement errors, the NLOS propagation effects and 
dense multipath arrivals. The errors sources, if not properly eliminated or mitigated, 
generally yield severe degradation of accuracy in ranging, positioning and tracking. Among 
the factors that cause performance degradation, the NLOS effect is considered the major 
error source in indoor location systems using one or more types of measured location 
metrics. 
Accurate indoor positioning and tracking play an important role in home safety, public 
services, and other commercial or military applications (Pahlavan et al., 1998). In recent 
years, indoor localization has drawn increasing interests from academia and industry. There 
is an increasing demand of indoor localization systems for tracking persons with special 
needs, such as the elders and children who may be away from visual supervision. Other 
applications need the solutions to tracing mobile devices or movable objects in the covered 
areas of sensor networks, or localizing accurately in-demand portable equipments in 
hospitals and laboratories. In public safety and military operations, the tracking systems can 
be used in navigating and coordinating police officers, fire-fighters or soldiers to complete 
cooperative missions inside buildings. 
Various positioning techniques have been developed in the past few years. Handset-based 
positioning methods generally require that a modified handheld device calculate its own 
position by using a fully or partially equipped global positioning system (GPS) receiver. The 
method is, however, unfortunately not suitable for many indoor localization applications. 
Network-based methods have their advantages in wireless location and indoor positioning. 
The methods can be used for location estimation in situations where GPS solutions are not 
applicable. In the network-based wireless location, various schemes using received signal 
strength indication (RSSI) have also been extensively investigated in the past two decades. 
In location systems using the RSSI, location estimation is usually obtained from or 
augmented with the location fingerprinting scheme. Though no complex measurement 
equipments are involved, the build-up of a “radio map” of RSSI may be time-consuming. 
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The RSSI data may vary from time to time when the layout or environment becomes 
different from that when the RSSI data are collected. Due to the limitations of spectral 
natures of transmitted signals in the location systems, accuracy and precision become a 
major challenge when applications other than “tour-guiding’” services are targeted. 
To tackle the problems of mobile positioning and tracking in indoor wireless NLOS 
environments, a variety of techniques and systems have been studied in recent years in the 
hope of attaining better location accuracy. Time of arrival (TOA) and time difference of 
arrival (TDOA) are two typical time-related parameters usually used in pinpointing the 
location of a mobile station. In addition, techniques using angle of arrival (AOA) have also 
been studied by many researchers. When line of sight (LOS) transmission exists between a 
transmitter and a receiver, the signal arrival time or signal arrival angle may be correctly 
obtained if the SNR is high and the multi-paths from the propagation channels are resolved 
properly. In situations where NLOS propagation exists, suitable NLOS mitigation 
techniques are needed for improving the accuracy of ranging and localization. 
For applying the TOA and TDOA parameters in locating mobile stations or targets, the true 
range between a transmitter and a receiver in the wireless environment is correctly 
calculated only when the direct path of signal propagation is present, which may not always 
be possible, especially in indoor environments. In most cases, errors caused by the NLOS 
effects cannot be ignored in wireless location systems where high accuracy is demanded. 
Several NLOS mitigation techniques for mobile positioning systems have been presented in 
the past few years (Le et al., 2003; Najar & Vidal, 2003; Wylie & Holtzmann, 1996). In (Wylie 
& Holtzmann, 1996), a simple binary hypothesis testing was used for NLOS identification by 
exploiting the known statistics of the receiver measurement noise. To mitigate the NLOS 
effects, polynomial fitting was applied to all available measured range data for data 
smoothing and variance calculation. Since a whole block of measured data are needed for 
the process of polynomial fitting, accurate and real-time mobile positioning may not be 
possible due to the time delay in collecting enough data. In other mobile location estimation 
methods, biased versions of the Kalman filter were used in mitigating the NLOS range error 
(Le et al., 2003). A coefficient for adjusting the noise covariance matrix needs to be chosen by 
experiment to obtain good location estimation results. In (Najar & Vidal, 2003), a modified 
Kalman algorithm with NLOS error estimation was proposed for UMTS mobile positioning. 
The estimation of range bias in the algorithm provided performance improvement of 
location tracking in the NLOS environments. 
Since most wireless communications systems used in wireless location may suffer from the 
NLOS and dense multipath situation, it is an important issue to obtain higher accuracy in 
determining signal arrival time for the time-based location systems. The ultra-wideband 
(UWB) radio system, in addition to the usage for communications, can provide users with 
the abilities of high accurate location estimation and tracking. As a good candidate for low-
power high-speed wireless communications, the ultra-wideband (UWB) radio technology 
has gained many interests in recent years for its applications in indoor communications. In 
indoor environments, the UWB systems, based on the spectral characteristics of the signals, 
are capable of tackling the multipath effects and providing finer and more accurate 
measurements in ranging than other narrow-band systems. With the fine time resolution, 
the accuracy of UWB location systems can be within one inch. The UWB systems though 
provide potentially accurate ranging for indoor positioning and tracking, the NLOS 
propagation errors caused by blocked LOS paths between a base station and the mobile 
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station may still lead to severe degradation of position accuracy, posing a major challenge to 
positioning and tracking. Suitable NLOS identification and mitigation techniques are 
basically required in the systems for achieving better positioning performance. 
This chapter will first present the UWB signal models in LOS and NLOS indoor 
environments. The data smoothing schemes using Kalman filter and polynomial fitting 
technique for identifying the NLOS status of the transmission are discussed. To improve the 
accuracy of time-based UWB range estimation, the NLOS mitigation techniques using 
biased Kalman filters will be covered. Some problems of applying the biased Kalman 
filtering in the NLOS identification and mitigation are addressed, followed by solutions to 
improving the correctness of hypothesis tests in the identification stage, and reducing the 
exceeding negative adjustment effects of biased Kalman filtering in the mitigation stage. The 
applications of extended Kalman filters on wireless positioning and tracking are then 
presented. A network-based location system, in which location metrics from multiple base 
stations are used for mobile target location estimation is studied.  Positioning techniques 
using hybrid TDOA/AOA (time difference of arrival/angle of arrival) location metrics in 
the UWB environments will be presented. Simulation results are included to show the 
capability of Kalman filter-based architecture in mitigating the NLOS errors and improving 
the accuracy of target positioning and tracking in the UWB indoor wireless location system. 

2. Non-line of sight propagation errors 
2.1 Range measurement model 
We assume that there are multiple base stations (BS’s) in UWB indoor wireless location 
systems. In dealing with the non-line of sight propagation effects, the range measurement 
between a rover (or mobile station) and the m-th base station, corresponding to the TOA 
location metrics of the m-th base station can be modelled as 

 ( ) ( ) ( ) ( )m i m i m i m ir t L t n t NLOS t= + +   (1) 

where rm(ti) is the measured range at the sampling time ti, Lm(ti) is the true range, nm(ti) is the 
measurement noise and modelled as a zero-mean additive Gaussian random variable with 
standard deviation σm, and ( )

m i
NLOS t  is the NLOS error component in the received signal. 

There will be no NLOS error component if the line-of sight propagation path exists, 
and ( ) 0

m i
NLOS t = . The measurement error nm(ti) becomes the only source of range 

measured error.  
In a dense multipath UWB indoor environment, the estimation of the arrival time of the first 
path can be directly related to the measured range data at each base station, as in (1). The 
IEEE UWB channel modelling subcommittee adopted a modified Saleh-Velenzuela (S-V) 
model, which seemed to best fit the UWB channel measurements (Molisch, et al., 2003). The 
S-V model was used in modelling the multipath of an indoor environment for wideband 
channel. The channel measurements showed that multipath arrivals in clusters rather than 
in a continuous form (Saleh & Valenzuela, 1987), as shown in Fig. 1.  Assume that T0 is the 
arrival time of the first path in the first cluster. The arrival time T0 can be related to the 
positive NLOS error component ( )

m i
NLOS t  at the time instant ti. For the LOS cases, we 

have T0 = 0 and ( )
m i

NLOS t  = T0 × c = 0, where c is the speed of light.  
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The arrival time T0 for the NLOS cases can be modelled as an exponential distribution and 
described by the following equation (Molisch, et al., 2003) 

 
0 0( ) exp[ ( )]p T T= Λ −Λ   (2) 

where Λ[1/nsec] is the cluster arrival rate. The multipath cluster arrival rates under 
different UWB channel models, CM1 through CM4, are listed in Table 1. The related 
parameters listed by the IEEE UWB channel modelling subcommittee have been used in 
many simulations and technical designs of a variety of UWB systems. 

 
Fig. 1. Multipath delay profile of typical UWB channels 
 

UWB Channel CM 1 CM 2 CM 3 CM 4 
Tx/Rx separation 0-4m 0-4m 4-10m >10m 

Λ (1/nsec) 0.0233 0.4 0.0667 0.0667 
LOS/NLOS condition LOS NLOS NLOS NLOS 

Table 1. The cluster arrival rate of multipath used in UWB channel models  

2.2 Non-line of sight identification 
For the NLOS error problems in mobile position location, several NLOS identification and 
mitigation techniques have been presented in the past few years (Thomas et al., 2000; Wylie 
& Holtzmann, 1996). These approaches identified the BS’s that have NLOS components in 
the received range data, and tried to reduce the time-based NLOS errors by using the NLOS 
mitigation techniques. In (Wylie & Holtzmann, 1996), a simple binary hypothesis test was 
used for the NLOS identification with an understanding that the standard deviation of the 
NLOS propagation errors is generally much larger than that of measurement errors in the 
LOS situation. The understanding may also be applied to the UWB transmission 
environments. In (Wylie & Holtzmann, 1996), prior to the binary hypothesis testing, 
polynomial fitting was applied to all available measured mobile range data collected during 
a block of time interval for variance calculation and data smoothing. Since the whole block 
of measured data were needed for the process of polynomial fitting, real-time positioning 
may not be feasible. For mitigation of the NLOS errors NLOSm(ti), the existence of non-zero 
NLOS component may need to be identified first. As shown in Fig. 2, the measured range 
data are first processed to obtain the smoothed data, which can further be used as averaged 
values at the corresponding time instants. The standard deviation of the measured range 
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data with respect to the smoothed values can then be calculated and used in the proceeding 
LOS/NLOS hypothesis test. 
 

 
Fig. 2. Identification of LOS/NLOS propagation status 

By applying the abovementioned identification scheme to wireless location systems, the 
range (or TOA) measurements related to each base station can be smoothed by using the 
least squares technique in solving the coefficients for fitting the modelled N-th order 
polynomial function (Wylie & Holtzmann, 1996). The standard deviation of the measured 
range data can be obtained by computation over a block of K range data rm(ti) periodically: 

 ( ) ( )( )2

1

1
ˆ

K

m m i m i
i

r t S t
K

σ
=

= −∑   (3) 

where Sm(ti) is the smoothed range data, which are obtained from polynomial fitting. 
The data smoothing can also be conducted by other methods. In (Le et al., 2003), the range 
data were smoothed by utilizing biased Kalman filtering approach. In the case, the 
smoothed range data Sm(ti) were obtained from the output of the biased Kalman filter. The 
estimated standard deviation obtained in (3) is then compared with a predetermined 
threshold in the simple hypothesis testing, represented as 

 0

1

ˆ:  ( ) LOS case

ˆ:  ( ) NLOS  case
m m

m m

H k

H k

σ γσ

σ γσ

<

≥
  (4) 

where σm is the standard deviation of  the measurement noise in the LOS environment. The 
scaling parameter γ is chosen experimentally to reduce the probability of false alarm. 
For the hypothesis testing in (Le et al., 2003), a periodical interval checking method was 
used. Periodical LOS/NLOS checking schemes, however, have some drawbacks. First of all, 
the block size of data samples for variance calculation needs to be chosen experimentally. 
Secondly, the period of using the hypothesis testing result may not be easily determined and 
must be decided experimentally as well. In Fig. 3, the block of C data samples, shown as 
shaded bars [0, C], are used for status checking. The resulting LOS/NLOS status will be kept 
unchanged until the time instant N, when another cycle of status identification begins and 
the new LOS/NLOS status are used. To choose feasible time instants C and N would need 
consideration of more factors in the transmission channels for the positioning systems. In 
addition to the problems, since the result of the LOS/NLOS hypothesis testing is used as the 
channel status until the next new periodical checking result is obtained, it is very likely that 
an NLOS-to-LOS or LOS-to-NLOS transition time instant is missed or incorrectly detected. 
The incorrect identification of channel status or the incorrect transition time may yield large 
estimation errors in ranging and localization. 
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Fig. 3. Periodical interval checking for identifying LOS/NLOS status 

 

 
Fig. 4. Periodical interval checking for identifying LOS/NLOS status 

To avoid the drawbacks, an identification scheme using a sliding window can be used in 
processing the measured range data at the base stations. The function of the sliding window 
spans from the data smoothing step, the calculation of standard deviation step to the 
LOS/NLOS identification step. A fixed-length data window of C data samples, shown as the 
shaded bars [0, C] in Fig. 4, will slide to the right in the time axis as the new data sample is 
available for processing. The sliding window scheme is considered compatible with the 
schemes using Kalman filtering. 

3. Kalman filtering for data processing 
3.1 Data smoothing for the NLOS hypothesis testing 
A Kalman filter can be used in estimating the state vector of a mobile target from the 
observed range data, and therefore smoothing the range data. Assume that the state vector 
of a mobile can be represented as (Mendel, 1987)  

 ( 1) ( ) ( )k k W k+ = +X ΦX Γ   (5) 

where ( ) [ ( ) ( ) ( )]Tk L k L k L k=X � ��  is the state vector of the mobile target related to the 
measured data of a base station at the time tk, W(k) is the driving noise vector with an assumed 
covariance 2

wQ σ= , and the state transition and noise transition matrices can be written as 

 

21 / 2

0 1

0 0 1

t t

t

Δ Δ

= Δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Φ , and  (6) 

 
0

0

t

=

Δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Γ .  (7) 

The measurement process is represented as 

 ( ) ( ) ( )Z k k U k= +HX   (8) 
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where ( )Z k  is the measured data, measurement matrix H = [1 0 0], and ( )U k  is the 
measurement noise with covariance 2

uR σ= . The iterative operations of the Kalman filter 
can be summarized as follows:  

 l l( | 1) ( 1 | 1)k k k k− = − −X ΦX   (9) 

 ( | 1) ( 1| 1) T Tk k k k− = − − +P ΦP Φ ΓQΓ   (10) 

 -1( )= ( | 1) [ ( | 1) + ( )]T Tk k k k k k− −K P H HP H R   (11) 

 l l l( | ) ( | 1)+ ( )[ ( )- ( | 1)]k k k k k Z k k k= − −X X K HX   (12) 

 ( | ) ( | 1) ( ) ( | 1)k k k k k k k= − − −P P K HP   (13) 

where ( )kK  is the Kalman gain vector and P(k|k) is the covariance matrix of l( | )k kX . 
By using the Kalman filtering, the standard deviation of the observed range data can be 
calculated and then used in the LOS/NLOS hypothesis testing. To avoid the drawbacks of 
using polynomial fitting and periodical interval checking methods, as discussed in the 
previous subsection, the sliding window scheme for processing the measured range data 
can be integrated with the biased Kalman filtering and hypothesis testing in the UWB 
location system. The standard deviation of data over a sliding block of C TOA (range) 
measurements rm(ti) at the m-th base station can be obtained as 

 ( ) ( )( )2

( 1)

1 ˆˆ ( )
k

m m i m i
i k C

k r t L t
N

σ
= − −

= −∑ .  (14) 

In each processing cycle, the standard deviation calculated at base station m is then used in 
the hypothesis testing, as represented in (4). If the LOS TOA propagation status is decided, 
an unbiased Kalman filter is used to smooth the TOA data at each BS. In the contrast, if the 
NLOS propagation scenario is detected, a biased Kalman filter is used in mitigating the 
NLOS TOA error.  

3.2 Biased Kalman filtering 
In a biased Kalman filter, based on the result from LOS/NLOS hypothesis testing, different 
values of noise covariance are assigned. Under the LOS situation, unbiased smoothing is 
used for estimating the true TOA. When the NLOS status is detected, the positive NLOS 
range error in the measured range (or TOA) data can be effectively reduced in the filtering 
cycle by assigning the diagonal elements of the noise covariance matrix  

 
,

ˆ ( ) , if ( ) ( | 1) 0 and NLOS detected,

      =     otherwise,

u m

m

k Z k k kσ ασ

σ

= − − >HX
  (15) 

where α  is an experimentally chosen scaling factor. The processed TOA data from all base 
stations are then used in mobile localization and tracking. 



 Kalman Filter 

 

316 

3.3 Biased Kalman filtering for TDOA location metrics 
Similar to the cases in the TOA location methods, the Biased Kalman filters can also be 
applied in the TDOA location approaches. Assume that there are M base stations available 
for measuring the TOA’s for locating a mobile station. The first base station, BS1 is selected 
as the reference base station. The difference of ranges of the m-th base station and the first 
base station to the mobile station in the location system can be modelled as  

 
( ) ( ) ( )

( ) ( ) ( ) ( )
1

1 , ,         

       2,...,

m i m i i

m i i d m i d m i

d t r t r t

L t L t n t NLOS t

m M

= −

= − + +

=

  (16) 

where , ( )d m in t  is defined as the measurement noise of the range difference, 
, 1

( ) ( ) ( )
d m i m i i

n t n t n t= − , and 
,

( )
d m i

NLOS t  is the NLOS error component of the range 
difference, 

, 1
( ) ( ) ( )

d m i m i i
NLOS t NLOS t NLOS t= − . Hence, 

,
( )

d m i
n t  can be modelled as a 

random variable, at time instant it , with independently identical joint probability density 
function with 

,

2( ) (0, 2 )
d m i mn t N σ∼ . 

To perform range difference estimation in the TDOA data processing, the Kalman filtering 
scheme discussed above can be applied in the cases here. Three cases with different 
LOS/NLOS combinations are considered for determining the biased measurement noise 
covariance 2ˆ

uR σ=  in the system.  
Case 1: BS m is an NLOS BS, and BS 1 is an LOS BS. We have 

( )1 ( 1 | ) 0m mZ k k k+ − + >HX  

Case 2: BS 1 is an NLOS BS, and BS m is an LOS BS. We have 

( )1 ( 1 | ) 0m mZ k k k+ − + <HX  

Case 3: Both BS m and BS 1 are NLOS BS’s. 
When the three different cases are not met, both BS m and BS 1 are considered LOS BS’s. From 
the results of case determination, the value of 2ˆuσ  can be assigned by using the following rules:  

 

,     Case 1 or Case 2,

ˆ 2 ,  Case 3,

2 ,       otherwise,

m

u m

m

c

ασ

σ σ

σ

=
Λ

⎧
⎪⎪
⎨
⎪
⎪⎩

  (17) 

where α  is experimentally chosen scaling factors, c is the speed of light, Λ is the cluster 
arrival rate and σm is the standard deviation of AWGN measurement noise. If an all-LOS 
scenario exists, the range difference estimation is constructed by an unbiased Kalman filter; 
otherwise, the range difference is estimated by using a biased Kalman filter. 

4. Range estimation with modified biased Kalman filtering 
4.1 Problems in NLOS identification using Kalman filter and sliding window 
In data smoothing, the combination of Kalman filtering and sliding window scheme has 
been considered a possible solution to the shortcomings caused by using polynomial fitting 



Kalman Filtering for NLOS Mitigation and Target Tracking in Indoor Wireless Environment 

 

317 

or periodical interval checking. Problems remain when trying to identify the NLOS-to-LOS 
channel status transition. In Fig. 5, it can be seen that the range data smoothed by the 
Kalman filter decrease slower than expected. The phenomenon may cause a time period 
with identification errors in the proceeding hypothesis test. During the falling edge of 
transition, earlier values of the smoothed range data may yield standard deviations which 
will be larger than the threshold in the hypothesis test, as represented in (4). Instead of using 
the outputs of Kalman filter as the smoothed range data, a modified scheme is considered 
for directly generating range estimates. The formulation will be discussed in Section 4.3. 
 

 
 

Fig. 5. Slow falling transition of range data smoothed by Kalman filter during the NLOS-to-
LOS change of channel status 

4.2 Problem in NLOS mitigation using biased Kalman filter 
The bias adjusting rule in (15) was used in the hope that the positive NLOS propagation 
errors be mitigated effectively by increasing the estimated noise standard deviation. The 
positive NLOS range bias can be reduced by assigning the diagonal elements of noise 
covariance matrix. However, a resultant side effect is that exceeding negative adjustments 
may occur in the beginning part of the NLOS status, as shown in Fig. 6. Generally speaking, 
if an NLOS status is detected and the innovation from the measured data is positive, the 
measured data may be treated as affected by noise with larger variance and the adjusting 
rule will achieve the objective of NLOS mitigation in the iteration. In the contrast, if the 
innovation from the measured data is negative, a possible LOS status would be assumed. 
The assumption may become incorrect in the next iteration, when the channel is actually in 
NLOS status. The error would yield an even more negative adjustment in the estimated 
range value. To tackle the undesirable effect, a new bias adjusting rule is required. 
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Fig. 6. Exceeding negative adjustments in the beginning part of the NLOS status, 

4.3 Functional combination of NLOS identification and mitigation 
A novel range estimation scheme with a modified biased Kalman filter for NLOS range 
mitigation and LOS/NLOS identification is presented and shown in Fig. 7. The modified 
biased Kalman filter is used to process the range (or TOA) measurement according to the 
feedback identification result from the processed data in the previous iteration of Kalman 
filtering. Before computing the Kalman gain in (11), the measurement noise covariance 2

uσ  
or the range prediction covariance 1,1( | 1)P k k −  must be adjusted by the following adjusting 
rules. 
For NLOS case and ( ) ( | 1) 0Z k k k− − >HX , let 

 
22 ˆ ( 1) (innovation)ˆ
mu

k functionσσ = − + ;  (18) 

For NLOS case and ( ) ( | 1) 0Z k k k− − <HX , let 

 2 2ˆ ( )u mkσ σ= , and  (19) 

 
1,1 1,1 

( | 1) ( | 1) (innovation)P k k P k k function− = − + ;  (20) 

For LOS case, let 

 2 2ˆ ( )u mkσ σ= ,  (21) 
where 2ˆ ( 1)m kσ −  is the standard deviation obtained by the sliding window in the previous 
iteration. By adjusting noise covariance in (18) and (19), the positive NLOS range error can 
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be significantly reduced. The inclusion of (20) is essential in compensating the range 
prediction covariance 1,1( | 1)P k k − . The biased term avoids inaccurate estimation of the 
range rate ( )mL k�  from the NLOS mitigation. 
 

 
Fig. 7. Range (TOA) mitigation and LOS/NLOS identification 

In the range estimation scheme, measured TOA data are first processed by a modified 
biased Kalman filter. Based on the LOS/NLOS status and the standard deviation feedback 
from the previous processed data, the modified biased Kalman filter generates an estimated 
TOA for the current processed data. Under the NLOS situation, the measured TOA’s are 
smoothed by using biased filters, and the positive NLOS errors are mitigated. The standard 
deviation from the feedback path is regarded as a reference representing the degree of 
NLOS errors. Under the LOS situation, unbiased smoothing is used for estimating the true 
TOA value. 
 

 
Fig. 8. Results of using the range estimation scheme with a modified biased Kalman filter 
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In the second functional block in Fig. 7, the standard deviation of the estimated TOA is 
calculated. With a sliding window, the standard deviation of the last C estimated TOA’s is 
calculated. The obtained standard deviation is passed through an LOS/NLOS hypothesis 
testing to determine the status of propagation. The resultant LOS/NLOS status and the 
standard deviation are then used as feedback to the modified biased Kalman filter for data 
processing in the next cycle. The design objective is that the transition between LOS and 
NLOS conditions can be detected immediately and the NLOS effects can be effectively 
mitigated in order to obtain a sequence of estimated TOA’s, which are close to the 
corresponding true range between the mobile and a base station. Fig. 8 shows the results of 
applying the novel range estimation scheme with a modified biased Kalman filter for NLOS 
range mitigation and LOS/NLOS identification 
For a location system with multiple base stations, the processed TOA data from all 
participating base stations are then used in positioning and tracking. Formulated TDOA 
data are also possible if TDOA location system is desired. 

5. Hybrid TDOA/AOA indoor positioning and tracking 
5.1 Extended Kalman filter for TDOA/AOA positioning 
Both time-based and angle-based categories have their own advantages and limitations, it is 
therefore reasonable to consider hybrid methods to integrate the merits of using the two 
types of metrics. In (Cong & Zhuang, 2001), a hybrid TDOA/AOA location scheme was 
presented for wideband code division multiple access (WCDMA) systems. The scheme uses 
TDOA information from all base stations (BS’s) and the AOA information at the serving 
base station to perform mobile location estimation. 
In other mobile location methods, biased versions of the Kalman filter were used in 
mitigating the NLOS range error. With the rule-determined coefficient for the measurement 
noise covariance matrix, good location estimation results would be obtained (Le et al., 2003; 
Thomas et al., 2000). In (Najar & Vidal, 2003), Kalman filtering algorithm with NLOS bias 
estimation was proposed for UMTS mobile positioning. The estimation of range bias 
provided performance improvement of location tracking in NLOS environments. 
To meet the demand of high location accuracy in indoor positioning applications, the UWB 
system is considered due to the fine time resolution. The fine resolution of UWB signals 
provides potentially accurate ranging for indoor location communications, where dense 
multipath and NLOS errors are the major challenge to the quality of indoor positioning 
applications. To improve the accuracy of positioning, methods for eliminating or mitigating 
the effects of NLOS errors and multipath in the UWB environments need to be applied 
before the TDOA/AOA location technique is used. 
For designing suitable NLOS identification and mitigation algorithms for the UWB systems, 
parameters of the standard UWB channel models provided by the IEEE 802.15.3a standards 
task group are used in the studies and simulations. In contrast to the scheme in (Cong & 
Zhuang, 2001), all “good” AOA data along with TDOA information from all BA’s are 
considered in locating the MS position. The AOA and TDOA information are processed 
centrally by the extended Kalman filter (EKF) for MS positioning and tracking. The 
architecture of location estimator is illustrated in Fig. 9. For attaining effective NLOS 
mitigation and obtaining more accurate TOA estimates, the functional blocks in each branch 
may be replace by the scheme shown in Fig. 7. 
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Fig. 9. Hybrid TDOA/AOA positioning and tracking  

In Fig. 9, the NLOS error mitigation consists of two parts: the NLOS TOA error mitigation 
and the AOA information selection. If the LOS TOA propagation scenario is decided, an 
unbiased Kalman filter is used to smooth the TOA data at each BS. In the contrast, if the 
NLOS propagation scenario is detected, a biased Kalman filter or modified biased Kalman 
filter is used in mitigating the NLOS TOA errors. The positive NLOS range bias can be 
reduced by assigning the diagonal elements of noise covariance matrix. The processed TOA 
data from all base stations are then used in formulating the TDOA data, which can be 
further used for mobile positioning and tracking. 
The AOA information from all base stations are processed by the AOA selection to avoid 
introducing large NLOS bearing error into the position tracking stage. Only AOA data from 
LOS base stations are selected for further processing. In other words, any NLOS AOA data 
will be discarded. 
The formulated TDOA data and the selected AOA data are processed by the extended Kalman 
filter for the MS location estimation. The state vector of a mobile station is defined as 

 ( | 1) ( 1 | 1)+ ( 1)k k k k k′ ′− = − − −S Φ S W   (22) 

where  ( ) ( ) ( ) ( )]( ) T
x k y k x k y kkS =[ � �  is the state vector at time instant k. The covariance 

matrix of the driving noise vector ( )k′W   is 
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and the state transition matrix is 
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In the case where the LOS status exists between the mobile station and all base stations, the 
TDOA/AOA measurement process can be represented as 

 ( ) ( ( )) ( )k f k k′= +Z S U ,  (25) 

where ( )kZ  is the measured data vector, ( ( ))f kS  is a nonlinear transformation, and ( )k′U  is 
the measurement noise. The covariance matrix of ( )k′U   is 

 
2

2

AOA ( 2M 1) (2M 1)

  
         

T

σ
− × −

′ =
⎡ ⎤
⎢ ⎥⎣ ⎦

Hσ H  0R
 0 I

,  (26) 

in which the TDOA formulation can be written as 
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and 
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where 2
Rσ  is the variance of the range related to the output of the unbiased or biased 

Kalman filter. The AOA variance 2

AOAσ  is related to the selected LOS AOA data. The 
dimension of the matrix I , m m×  is the determined number of LOS base stations from the 
AOA selection. As shown in Fig. 10, the results from the LOS/NLOS hypothesis are used in 
selecting the LOS AOA metrics.  
When the NLOS situation occurs, the covariance matrices of the processed TDOA and AOA 
data are different from those in the LOS situation. The dimension of the matrix in 
measurement process for the NLOS situations will be decreased, and determined by the 
sum of the number of TDOA and the number of LOS AOA data. 

5.2 Simulations results and discussions 
The performance of the hybrid TDOA/AOA positioning technique for indoor UWB systems 
is studied by conducting computer simulations. We assume that three base stations are used 
in the location system. The coordinates are BS1: (0, 0), BS2: (5m, 8.66m), and BS3: (10m, 0), 
respectively. The NLOS range error is assumed to be an exponential distribution, which is 
defined in the standard indoor UWB channel model (Foerster, 2003; Molisch, et al., 2003). A 
multipath cluster arrival rate 0.0667*109 for CM3 is used for the case where the distance  
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Fig. 10. Hybrid TDOA/AOA positioning and tracking with AOA selection 

between any BS and the MS is within the range from 4 to 10 meters. The NLOS bearing is 
assumed to be uniformly distributed from π−   to π . It is assumed that an MS travels from 
location (7m, 4.5m) to (4m, 0.5m) with a constant velocity, 0.5m/s, as illustrated in Fig. 11. 
The observed time length is 10s, and the sample spacing is 25ms. Two LOS/NLOS 
propagation scenarios are investigated. 
In the first scenario, the LOS propagation between the MS and BS3 turns NLOS at t = 2s, and 
remains NLOS until t = 10s. The simulation results in Fig. 12 shows that the hybrid 
TDOA/AOA positioning scheme with the AOA selection function performs well in terms of 
root mean square location errors. Without the AOA selection, the NLOS bearing error may 
lead to severe degradation of position accuracy. 
 

 
Fig. 11. A simulation example with three BS’s and one mobile target 
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Fig. 12. Performance of positioning with and without AOA selection (Scenario 1: one NLOS 
BS is assumed) 

In the second scenario, the propagation between the MS and two BS’s (BS2 and BS3) turn 
NLOS at t = 2s, and remains NLOS until t = 10s. In the situation, the data available to the 
extended Kalman filter will change from three AOA’s and two TDOA’s to one selected AOA 
and two TDOAs. The simulation results are shown in Fig. 13. It can be seen that the position 
errors are a bit larger in this case. The increased errors are mainly due to the larger residual 
errors at the NLOS TOA mitigation stage and the processing of fewer available AOA data in 
the adjustable TDOA/AOA-based extended Kalman filter for positioning. 
 

 
Fig. 13. Performance of positioning with and without AOA selection (Scenario 2: Two NLOS 
BS’s are assumed) 
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6. Conclusion 
We present the applications of Kalman filter and extended Kalman filter on data smoothing, 
NLOS identification, NLOS mitigation and mobile target tracking in the UWB indoor 
wireless environments. To improve the accuracy of time-based UWB ranging, data 
smoothing with Kalman filtering for the NLOS hypothesis testing has been discussed. For 
the function of NLOS mitigation, biased Kalman filtering is investigated. To tackle the 
undesirable detection problems of using data smoothing and biased Kalman filtering in 
range estimation, a novel modified biased Kalman filtering scheme is presented. In the 
modified biased Kalman filtering scheme, functional combination of NLOS identification 
and NLOS mitigation is discussed. To investigate mobile target positioning and tracking in 
the NLOS indoor environments, with a focus on the network-based location system, where 
multiple base stations are involved in the location estimation, a hybrid TDOA/AOA 
location system formulated with extended Kalman filters is proposed.  Simulation results 
show the Kalman filter-based scheme is capable of effectively mitigating the NLOS errors 
and therefore improving the accuracy of target positioning and tracking. Further efforts of 
NLOS mitigation will lead to improved estimation of signal arrival time and more accurate 
mobile target positioning and tracking. The integration of multiple Kalman filters and 
statistical data fusion schemes may also provide a promising solution to the emerging 
tracking applications using multiple mobile robots and wireless sensor networks in indoor 
wireless environments. 
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1. Introduction      
In this chapter, an indoor localization based on the Received Signal Strength Indication 
(RSSI) from the Wireless Local Area Network (WLAN) and the Adaptive Neural Fuzzy 
Inference system (ANFIS) is proposed. Over the last few years, the wireless local area 
networks based on IEEE802.11b (also named WiFi) and location-based service have been 
flourishing and increased demand. The wireless networks have become a critical part of the 
networking infrastructure, and capable for mobile devices equipped with the WLAN to 
receive the radio signal for networking. Location-aware computing is a recent interesting 
research issue that exploits the possibilities of modern communication technology due to the 
location-based service which has a great potential in areas such as library or museum tour-
guide, free mobility and nursing at home, patient transporting in the hospital and easy 
going capability in the shopping mall. 
The location of a mobile terminal can be estimated by using the strength of the radio signal 
with the WLAN. However, the unpredictability of signal propagation through indoor 
environments is the key challenge in the indoor positioning from the strength of the WLAN 
signals. It is difficult to provide an adequate likelihood model of signal strength 
measurements. Thus, the main focus of research in this area have been on the development 
of the technique that can generate the accurate empirical model from the training data 
collected in the test area and the real-time recursive estimation for the mobile user. 
There are many important propagation models based on the localization techniques. (Bahl & 
Padmanabhan, 2000; Wassi et al., 2005; Li, B.; Salter & Dempster, 2006) addressed the range 
based approach, such as pattern matching that relies on the range measurement to compute 
the position of the unknown node. (Kotanen et al., 2003) offered the design and 
implementation of a Bluetooth Local Positioning Application (BLPA). First, they converted 
the received signal power to the distance, according to a theoretical radio propagation 
model, and then, the Extended Kalman Filter (EKF) is used to compute 3-D position with the 
basis of distance estimates. 
 (Ito & Kawaguchi, 2005) introduced a Bayesian frame work for indoor positioning over the 
IEEE 802.11 infrastructure, which investigated the direction and distribution of the signal 
strength for the pre-observation model, and then a location of the mobile device can be 
computed by using the Bayesian filtering (Fox et al., 2003). (Seshadri, 2005) provided a 
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probabilistic approach based indoor localization that uses the received signal strength 
indication as only sensor reading in the Wireless Sensor Networks (WSN), the estimation of 
location and orientation are computed by a Bayesian filter on the sample set derived using 
Monte-Carlo sampling. Subject to the power map obtained through the field measurements 
(Morwlli et al., 2006), the position of a moving user can be estimated and tracked by using 
the particle filtering that implemented an irregular sampling of a posterior probability space 
for lower computational power required.  
An artificial neural network based work with the supervised learning strategy to reduce the 
localization error caused by the interference, reflection and other unexpected interruption is 
presented in (Battiti et al., 2002; Ocana et al., 2005; Ahmad et al., 2006; Ivan & Branka, 2005). 
During the offline phase, RSSI and the corresponding location coordinates are adopted as 
the inputs and the targets for the training purpose. The input vector of signal strengths is 
multiplied by the trained input weight matrix. Thus the location of a mobile device is 
directly obtained by the outputs of the trained neural network without the detailed 
knowledge of the access point locations and the specific building characteristics. An indoor 
localization according to the Maximum Likelihood (ML) algorithm is applied to the 
measured reference radio map of RSSI (Hatami, 2006), and then an empirical radio map 
generated form propagation model is compared with the performance of the nearest 
neighbor method and ML location estimation. (Teuber et al., 2006) proposed a two-stage 
fuzzy inference system to determine the locations on the basis of Signal-to-Noise Ratio 
(SNR) in the WLAN measurements and Euclidean distance fingerprints.  
In this research, a comprehensive study of the wireless indoor localization based on the 
three kinds of the propagation channel modeling is addressed. Due to the unpredictability 
of radio propagation such as the interference, reflection and multipath effects, the adaptive 
neural fuzzy inference system based on the supervised self-learning strategy is proposed to 
adapt the indoor environment and reduce the erroneous mapping of the physical distances 
from RSSI values. In addition, an alternative approach such as interpolation is offered to 
extend the capability of the propagation model for the small, median and large scale 
environment, which provides the possibility and the flexibility for the adaption of the 
indoor positioning. The presented techniques can be developed without any hardware 
factors of the access point and the knowledge of the test environment. Furthermore, a curve 
fitting based method is used to compare with the ANFIS and the interpolation. Finally, the 
extended Kalman filtering is used to perform the location estimation of the mobile terminal 
in the real indoor environment with 4 access points only.  
This chapter is organized as follows. Section 2 introduces the problem formulation for the 
WLAN indoor positioning and an overview of the proposed appraoch. Section 3 develops 
three kinds of the radio wave propagation channel models based on the curve fitting, 
interpolation and neural fuzzy based approach, respectively. Section 4 presents a position 
estimation computed by using the extended Kalman filtering with the basis of the distance 
estimates. Section 5 provides a description of the experimental evaluation of the proposed 
indoor positioning techniques and reports the results. Conclusion and the future work are 
given in Section 6. 

2. Problem formulation 
The accuracy and coverage provided by Global Positioning Systems (GPS) or cellular 
systems are limited in indoor environments. The WLAN standard IEEE 802.11, operating in 



Neural Fuzzy Based Indoor Localization by Extending Kalman Filtering  
with Propagation Channel Modeling 

 

329 

the 2.4GHz Industrial, Scientific and Medical (ISM) band, has become a critical part of a 
public space. Since the wireless information access based on the IEEE 802.11 is now widely 
available, there is a high demand for accurate positioning in wireless networks, including 
indoor and outdoor environments. The WLAN positioning is favored because of its cost 
effectiveness and terminal-based service, while the sensing and positioning are performed 
on mobile devices. In this study, the WLAN signal strength is used to estimate the 
corresponding physical distances between the access point and terminal device, and then, a 
location inference technique based on Kalman filtering is proposed for determining the 2-D 
location of a mobile device user.  
 The indoor environment shown in Fig. 1 consists of one corridor, five classrooms and one 
bathroom with many walls is utilized to demonstrate the proposed wireless indoor 
localization scheme. The dimension of the experimentation area is 20.6 meters by 37.4 
meters with only 4 APs. Each of the access points provides only partial coverage of the 
environment. These four access points were mounted on the wall with a height 2.7 meters in 
the classroom, and the localized mobile device was placed at the height 1.2meter. It is clear 
that the structure of the test environment is not an ideal free space while there were many 
unpredictable factors such as the propagation interference, reflection, multipath effects, 
obstacles, radio noise and clustered pedestrian in this area at the same time. 
 

 
Fig. 1. Map of the experimentation area. 

To investigate the characteristics of the WLAN signal propagation, the access points are 
scanned and the received signal strength indication values are collected. The received signal 
strength (in the unit of dBm) and noise were obtained by the WLAN adapters in the interval 
of 2.5 meters, up to about 40 meters. The WLAN client gathered the received signal strength 
indication value from every access point 200 times. It is observed from Fig. 2, the 
measurements of WLAN signal of AP3 at the location coordinate (5, 5) is stochastic and 
complex induced by the radio multipath effect, interference, reflection, and interference.  
The histogram and an approximately probability density function of the measurement form 
AP3 are shown in Fig. 3. It is clear that the distances are converted with the inevasible 
mapping error from the received signal strength due to the standard deviation of 
distribution. In particular, it is difficult to avoid the problem under the unpredictability of 
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signal propagation through the indoor environments. Thus, indeed a propagation channel 
model with the adaption for the RSSI-physical distances mapping is needed for the accurate 
evaluation for the mobile device location. 
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Fig. 2. Measurement from the AP3 at room EE102. 
 

-100 -90 -80 -70 -60 -50 -40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

RSSI (dBm)

P
ro

ba
bi

lit
y

 

 
Histogram
PDF

 
Fig. 3. WLAN signal strength distribution for AP3 at room EE102. 

The wireless indoor localization scheme proposed herein is shown in Fig. 4, which is 
divided into two phases, i.e. offline training phase and online estimation phase. The first 
step, the training phase (also called calibration phase), is the determination of the 
dependency between the Received Signal Strength (RSS) and the certain location. It is a 
challenging task in indoors because of the radio interference, multipath, shadowing, non-
line-of-sight propagation caused by the environment characteristics such as walls, humans, 
and other rigid obstalces. In this study, the RSS-position dependency is characterized using 
the techniqques such as radio propagation model by curve fitting, interpolation, and the 
neural fuzzy inference system with the training data. The proposed radio propagation 
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modeling appraoches can be used to capture the combined effects of path loss and non-ideal 
effects mentioned above relating on the empirical data obtained by a mobile device to the 
distance from an AP. Then the second step, online estimation phase,  which is based on the 
available distance estimates from the positions localized in the test area, is determined by 
using the extended Kalman filtering. 
 

 
Fig. 4. Overview of the proposed indoor localization. 

3. Indoor propagation channel modeling 
The WLAN indoor positioning relies on the knowledge obtained in the training phase. A 
good training procedure should have two features: an accurate mapping relationship based 
on a large quantity of the empirical data, and a radio map training procedure that is not too 
complex. These two objectives, however, are often in conflict. To obtain an accurate 
mapping relationship requires a large number of samples, resulting in a heavy burden on 
the training procedure and computing load. To trade off these two objectives, three kinds of 
methodologies for channel modeling in the training scheme are addressed as bellow.  
The path loss is the loss between the transmitting antenna and receiving antenna and can be 
described as  

 TX RXL P P= − , (1) 

where L  is the total power loss which is caused by indoor channel effects, RXP  and TXP  are 
received signal power and transmitted signal power, respectively, in the unit of dBm. 
The RSSI values are converted to the physical distances by using a radio wave propagation 
model (Rappaport, 2001) in model-based localization typically. The model gives the distance 
d as 

 20log( ) 20log(4 ) 10 log( )RX TX TX RXP P G G n d Xαλ π= + + + − − − . (2)     

In (2), d (meter) is the distance between the transmitter and the receiver. PTX (dBm) is the 
transmitting power and PRX (dBm) is the power level measured by the receiver of the mobile 
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device. GTX (dBi) and GRX (dBi) are antenna gains respectively to the transmitter and the 
receiver. Wavelength is λ (meter) and n denotes influence of walls and other obstacles. Error 
is also included in the equation by Xα which is a normal random variable with standard 
deviationα . To reduce the converting error between the path loss and the corresponding 
distance, subject to the training data, three techniques of propagation modeling, curve 
fitting, interpolation, adaptive neural fuzzy network inference system, are presented as 
follow to decrease the false positioning. 

3.1 Curve fitting 
First, the curve fitting technique is applied based on the polynomial regression (Rao, 2002) 
with the least-squares error sense to realize the propagation model while the RSSI data 
exhibiting a nonlinear behavior with physical distances at a mobile device to the access 
points. The polynomial regression can be used by assuming the following relationship: 

 2
0 1 2

m
RSS x x m xy a a d a d a d= + + + +" , (3)     

where RSSy is the path loss approximation function with respect to the traveled distance, the 
constants 0, , ma a… are the parameters for polynomial regression and xd is the distance 
between the receiver and the transmitter. If there are N training data points (

ixd ,
iRSSy ), i = 

1, 2, …, N, the error ie  for the thi  data point is defined by  

 2
0 1 2( )

i i i i

m
i RSS x x m xe y a a d a d a d= − + + + +" . (4)     

The sum of the squared error is given by  

 2 2 2
0 1 2

1 1

{ ( )}
i i i i

N N
m

i RSS x x m x
i i

S e y a a d a d a d
= =

= = − + + + +∑ ∑ " . (5)     

The order of polynomial fit, m, is chosen as 2, 3 and 5, respectively, to illustrate the results of 
propagation modeling by the curve fitting with the training data. It can be observed from 
Fig. 5, usually the low-order polynomials are used to obtain a better fit. For 4m ≥  or 5, the 
approximation tends to become ill conditioned and the round-off errors make the solution 
of coefficients 0, , ma a…  inaccurate.  

3.2 Interpolation 
The theoretical model (2) is usually adopted to present the ideal relationship between the 
signal power and distance under known parameters of the transmitter and the receiver. The 
localization method based on such an ideal model is inaccurate since it is impossible in that 
the perfect modeling for specific conditions of the indoor environment, e.g. multipath and 
shadowing. Hence, an interpolation method is proposed to solve the propagation modeling 
without any unknown parameters by using the training data collected in the offline phase. 
This approach is employed to remove the unknown parameters in (2) by two Reference 
Nodes (RN). Define i

jRN as the thj  RN with respect to the thi  access point, where 1,...,i M= ,  

M is the number of detectable access point, (M=4 in this work) and 1,2j = . i
jRN  can be 

chosen from the training points and corresponding RSSI values. Therefore, it is clear that 
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Fig. 5. Propagation modeling based on curve fitting using the polynomial with order 2, 3 
and 5. 

  1 120log( ) 20log(4 ) 10 log( )RX TX TX RXP P G G n d Xαλ π= + + + − − − , (6) 
and 

 2 220log( ) 20log(4 ) 10 log( )RX TX TX RXP P G G n d Xαλ π= + + + − − − , (7) 

where 1d  and 2d  are two arbitrary reference distance, 1RXP  and 2RXP  are corresponding 
received power computed by (2). From (6) and (7), it is not hard to derive the interpolation 
model by 2 1 2( ) / ( )RX RX RX RXP P P P− −  such that 

 2
1 2 2

1 2

log( ) log( )( )
log( ) log( )RX RX RX RX

d dP P P P
d d

−
= − +

−
. (8) 

Figure 6 gives an illustration for the propagation modeling based on the interpolation 
method which shares the first reference node ( 1

iRN , 1,...,4i = ) that 1RXP equals to -44.9 dBm 
and 1d  is referred to 2.1 meter and combines another RN. The all points, A to L, are the 
candidates of i

jRN  for the interpolation method. 
In Fig. 7, it is obviously that the presented approach using the different reference nodes and 
referred RSSI values can be used to provide severe propagation models with distinct 
characteristics and attenuations for the adaption of the environment. The proposed 
interpolation methodology could be not only extended to perform a large scale test 
environment wireless positioning but also realize a converting for RSS-position dependency 
without any hardware parameter and the existing environment knowledge. Therefore, an 
optimum modeling may be provided by trying for the combination of different reference 
nodes to yield a better performance for the indoor localization. 
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Fig. 6. An example for the interpolation method based modeling with different chosen from 
RNs. 
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Prx2=-42.7(dBm); d2=6.5(meter);

Prx2=-45.9(dBm); d2=7.6(meter);

Prx2=-56.3(dBm); d2=10.7(meter);

Prx2=-53.5(dBm); d2=14(meter);

 
Fig. 7. An Example for interpolation based model by using empirical data collected form 
AP1. 

3.3 Adaptive neural fuzzy inference system  
In this subsection, a hybrid intelligent approach for the radio propagation modeling is 
proposed. We combine the ability of a neural network to learn with the fuzzy logic to reason 
in order to form an adaptive neural fuzzy inference system (Jang, 1993) with Takagi & 
Sugeno fuzzy rules whose consequents are linear combinations of their preconditions. A 
fuzzy inference system is a knowledge representation where each fuzzy rule describes a 
local behavior of the system. The goal of ANFIS is to find a model or mapping that will 
correctly associate the inputs (RSSI values) with the target (physical distances). For 
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simplicity, assume that the system has two inputs 1x  and 2x , and one output y , the rule 
base contains two TSK fuzzy rules as follows: 

1R ：If  1x   is 1
1A  AND 2x   is 1

2A , THEN y is 1 1 1
1 0 1 1 2 2f a a x a x= + + ; 

2R ：If  1x   is 2
1A  AND 2x  is 2

2A , THEN y  is 2 2 2
2 0 1 1 2 2f a a x a x= + + . 

The corresponding architecture of ANFIS is shown in Fig. 5, where ( )j
i

iA
xμ  is called the 

Membership Function (MF) for the fuzzy set { ,( ( )) | }i
j

i
j A

A x x x Xμ= ∈ , for 1,2i =  and 1,2j = , 

X is referred to as the universe set.  The connected structure shown in Fig. 8, the input and 
output nodes represent the training values and the predicted values, respectively, the 
different layers with their meaning are described as bellow: 
Layer 1. Every node in this layer acts as an MF, and its output specifies the degree to which 

the given ix  satisfies the quantifier i
jA . 

Layer 2. Every node in this layer is labeled Π  and multiplies the incoming signals 

1 2
1 2( ) ( )j jj A A

x xα μ μ= ⋅ and sends the product out. 

Layer 3. Every node in this layer is labeled N  calculates the normalized firing strength of a 
rule such as 

1 2
1 2( ( ) ( ))j jj j A A

x xα α μ μ= +� . 

Layer 4. Every node in this layer calculates the weighted consequent value 
0 1 1 2 2( )j j j

j j jf a a x a xα α= + +� �   
Layer 5. This layer sums all incoming signals to obtain the final inferred result. 

 
Fig. 8. An illustration of reasoning mechanism for the ANFIS architecture. 

For the given input values 1 *x  and 2 *x , the inferred output  *y  is calculated by  

 1 1 1 2 2 2 1 2

1 2

( *, *) ( *, *)* f x x f x xy α α
α α

+
=

+
. (9) 

The learning algorithm for ANFIS is a hybrid algorithm with an error measure 2
1

p
kk

E e
=

= ∑ , 
which is a combination of gradient descent and the least-squares method, where ke  is 
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ˆ
k kf f− , kf  and k̂f  are kth desired and estimated output, respectively, and p  is the total 

number of the pairs (inputs-outputs, i.e. RSSI-distances) of data in the training set. An 
illustration can be observed from Fig. 9, the Gaussian membership function based ANFIS is 
used to approximate the propagation model according to the training data collected from 
the received signal strength indication values in the offline training phase. It is clear that a 
better and reasonable approximation can be provided by lower number of MF whereas the 
failed mapping is caused by over training that too many MFs and training pairs are applied. 
The advantages of the neural fuzzy hybrid technique include the sufficient nonlinear 
regression ability, fast learning from linguistic knowledge, and its adaptation capability. 
Therefore to reach a good indoor propagation model, the key point is whether the test 
environment is exactly characterized by the chosen empirical data set with a proper amount 
and the type of MF. 
 

 
Fig. 9. Propagation modeling by using the ANFIS. 

4. Location estimation method 
For the online phase, the real-time recursive wireless indoor positioning, the RSS is 
continuously scanned as a fingerprint or the dependency information on position of the 
mobile device for the proposed positioning system. Relying on this RSS-position dependency 
information for wireless positioning, the distance of a mobile device to the access point is 
provided by the propagation model developed in Section 3, and then, an Bayesian framework 
estimation, the extended Kalman filter, is used to recursively compute the 2-D mobile device 
position with the basis of distance estimates. The EKF was selected because it could blend the 
information optimally with minimizing the variance of the estimation error. A detailed 
description of the principle of the extended Kalman filter can be found in (Haykin, 2002).  
A formulation of the location estimation as a filtering problem in state-space form is 
addressed here. The general form of the dynamical model is given by 

 1 1( , , )k k k kx f x u w− −= , (10) 

 ( , )k k kz h x v= , (11) 
where k  is the estimation step, ku  is the optional control input, kz  are the output 
measurements, and kx  is the system state. Further, in (10) and (11) , 1kw − , kv  are the 
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discrete white, Gaussian zero-mean, independent state and measurement noise processes, 
and Q, R are their covariance matrices, respectively. 

 [ ]T
i k i ikE w w Q δ= , (12) 

 [ ]T
i k i ikE v v R δ= , (13) 

where ( )δ ⋅ is the delta function 
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In our case, the state-space is 
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where ( )dh x is the distance between the location of a mobile device user and a access point, 
which can be written as a function of the device positions: 

 
2

2
,

1

( ) ( )
id i j j

j

h x x x
=

= −∑ , (17) 

where i is the index of the access points, 
idh  is the distance between the mobile device user 

location and the ith access point, ,i jx  and jx  are the jth coordinate element of the ith access 
point and mobile device. 
Due to the nonlinearity of the mathematical model (17), the EKF is proposed to calculate the 
mobile device user location ˆkx . The algorithm of the EKF can be given as follows: 
Time update equations: 

 1ˆ ( , ,0)k k kx f x u−
−=  (18) 

 1 1
T T

k k k k k k kP A P A W Q W−
− −= +  (19) 

Measurement update equation: 

 1( )T T T
k k k k k k k k kK P H H P H V R V− − −= +  (20) 

 ˆ ˆ ˆ( ( ,0))k k k k kx x K z h x− −= + −  (21) 

 ( )k k k kP I K H P−= −  (22) 
where  
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K is the gain matrix and P is the estimation error covariance. The super minus notation −
kx̂  

denotes the a priori state estimate at step k and kx̂  the a posteriori state estimate given 
measurement  kz . 

5. Experimental results 
As shown in Fig. 10, the WLAN positioning accuracy of the proposed methods is evaluated 
using real data from a classroom environment, located on the first floor of EE building at the 
Chiao Tung University. The dimension of the experimentation area is 37.4 meters by 20.6 
meters with a total of 4 access points detectable only, and each one of the detectable access 
points provides only partial coverage of the environment. The RSSI measurements were 
scanned and collected from the network card using an application program implemented on 
the Dopod PDA (200MHz CPU) at the sampling rate of 2 samples/second. The RSS values 
were collected for 53 training points with a separation of 2.5 meters. For each point, the 
WLAN client gathered RSSI values from each detectable access point 200 times with a total 
of 10,600 measurements. As addressed in Section 3, this training set is used to obtain the 
 

 
Fig. 10. Experimental area. The blue dots are the training and testing locations. 
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indoor propagation model in the offline phase, hence the distences of a mobile device to the 
access points can be estimated for the online phase and recursively compute the position of 
the mobile device. 
The proposed positioning system is evaluated by the real-time estimation at each testing 
point. The testing data are collected at the same location where the training data are recored. 
Also, the mobile device gathered the RSSI values from each access point 200 times for the 
filtering iteration at every testing point. There are four measurement is avaibale for the EKF 
at each iteration step since only four access points are detectable in this test area. Even the 
four-demensional measurement state (11) is used, the presented approach is certaintly 
straightforward and can be implemented by the real-time computing on a  PDA. 

5.1 Curve fitting 
Recall the model developed in the subsection 3.1. The propagation model can be 
approximated by a curve fitting with nonlinear regression. It is hard to provide the solution 
of the coefficients of the polynomial fit if the order is high since the high order based 
nonlinear regression will result an ill conditioned polynomial fit. To omit the trivial test 
results under the order higher than seven, only four meaningful location error statics are 
summarized in Fig. 11. On the other hand, the Cumulative Distribution Function (CDF) of 
the location errors is shown in Fig. 12, it is clear that the best  determination of the position 
is based on first order regression of polynomial fit and achieves improvenments of 7.35 m 
(70%) over the 3rd order, 5 m (55.6%) over the 5th order, and 2.05 m (30%) over the 7th order 
at 70th percent. Obviously, the mean error with the first order regression compared to the 
other three cases are much better not only on the accuracy but also on the precision. 
 

 
Fig. 11. Statistics of the positioning error based on the curve fitting models. 

5.2 Interpolation 
In this section, the localization scheme using parameter-free propagation models based on the 
differences in signal attenuations for WLAN signals would be introduced. Due to the 
individual characteristics of each detectable access point, the propagation models are modified 
by the combination of the reference nodes. Table. 1 shows the four kinds of choosing reference 
nodes. However, they might not be the optimal results relate to all possible arrangement of 
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Fig. 12. CDF of the location errors based on the curve fitting models. 

i
jRN  while the total number of the possibility of the combination with any two reference 

nodes from the sampled data is too large to test by trying. In contrast, the empirical data set 
based interpolation has a high potential to provide a most fit propagation model by 
associating with some intelligent algorithms. 
 

AP AP1 AP2 AP3 AP4 Positioning 
case RN 1

1RN  1
2RN  2

1RN  2
2RN  3

1RN  3
2RN  4

1RN  4
2RN  

Distance (m) 5.50 8.54 3.68 18.81 2.37 6.60 3.71 6.54 Case1 
RSSI (dBm) -41.05 -54.61 -37.12 -72.14 -37.76 -60.35 -41.66 -55.66 

Distance (m) 9.24 17.67 5.03 12.39 3.39 5.34 4.28 6.91 Case2 
RSSI (dBm) -50.84 -76.55 -42.30 -66.79 -41.99 -50.65 -41.99 -55.65 

Distance (m) 6.34 9.94 5.76 19.96 3.52 7.59 7.82 15.51 Case 3 
RSSI (dBm) -43.33 -54.2 -40.91 -71.37 -40.00 -54.16 -64.61 -90.00 

Distance (m) 10.54 19.17 5.80 17.37 5.94 11.51 2.83 8.13 Case 4 
RSSI (dBm) -54.09 -74.16 -41.49 -72.22 -49.05 -86.88 -41.38 -61.87 

Table 1. Reference nodes and parameters of the interpolation models. 

Figure 13 indicates that four better positioning results are picked up to demonstrate the 
indoor propagation model based on the interpolation with the parameters selected in Table 
1. The RN chosen under case 3 presents the best accuracy related to the others due to 
matching of the real RSS-position dependency for the interpolation model. 
The accuracy under case 3 achieves the improvements at least 23.9 percentage over the other 
cases. It can be seen in Fig. 14, the CDF shows that the reduced location error under case 3 
compared to the cases 1, 2 and 4 are 1.93 m (35%), 1.43 m (27.8%) and 2.04 m (36.6%) at 70th 
percent, respectively. The proposed interpolation modelling technique does not require a 
known and accurate path loss modeling, reduces the impact of shadowing on location, and 
is capable of being applied in existing systems without hardware development. 
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Fig. 13. Statistics of the positioning error based on the interpolation models. 
 

 
Fig. 14. CDF of the location errors based on the interpolation models. 

5.3 Adaptive neural fuzzy inference system 
During the offline stage, RSS and the corresponding distance between the mobile device and 
the access point are adopted as the inputs and targets for the learning purpose using the 
ANFIS, the type and number of the mambership used to train the ANFIS is on the basis of 
arrangement in Table. 2. There are 53 training pairs consisted of the RSS values and 
corresponding positions with a total of 10600 sampled data collected from the WLAN 
positioning area. After training of the ANFIS, the appropriate are obtained. For the online 
stage, the trained adaptive neural fuzzy inference system acts as a mapping function which 
converts the RSSI values to the physical distances between the mobile device and the access 
points in real-time.  
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Positioning Case Membership Function  Type Number of Membership 
Function 

1, 2, 3 and 4 Bell-shaped 2, 3, 4 and 5 
5, 6, 7 and 8 Triangle 2, 3, 4 and 5 

9, 10 ,11 and 12 Trapezoid 2, 3, 4 and 5 
13, 14, 15 and 16 Gaussian 2, 3, 4 and 5 

Table 2. Positioning cases with different types and the number of MF. 

Reducing the complexity of the whole wireless positioning system, the learning results of 
ANFIS for mapping are summarized in a lookup table which can be used to estimate the 
physical distances without the loss of accuracy since the ANFIS is optimized under the 
gradient descent and the least-squares method with the error measure described in the 
subsection 3.3. The total of 16 cases are tested for verifing the accuracy of the WLAN 
positioning based on the ANFIS propagation models, which are given in Table. 3. The 
learning results tend to be over training that diverge the location errors if the the number of 
the MF is larger than 5, those results are trivial and not mentioned here. It can be seen from 
Table. 3 that the cases have the best accuracy and precision is the positioning based on the 
ANFIS models using the bell-shaped MF. 
 

Localization error (m) Averaged performance 
(m) 

Number of membership function 
Membership 

function  type Error 
evaluation 2 3 4 5 

Mean STDEV 

Mean 3.76 3.57 3.60 3.64 3.64 0.08 
Bell-shaped 

STDEV 2.03 2.07 2.06 2.33 2.12 0.13 
Mean 6.47 7.82 8.40 4.72 6.85 1.63 

Triangle 
STDEV 6.71 10.96 11.93 2.93 8.13 4.14 
Mean 3.80 3.68 3.93 4.22 3.90 0.23 

Trapezoid 
STDEV 2.02 2.06 2.20 2.60 2.22 0.26 
Mean 4.01 3.63 3.70 3.79 3.78 0.16 

Gaussian 
STDEV 2.08 2.04 2.06 2.35 2.13 0.14 

Table 3. Statistics of the positioning error based on the ANFIS models. 

The average performance shown in Table 3 is yielded by averaging the mean location errors 
with respect to different numbers of MF, and indicates that the results based on Gaussian, 
bell-shaped and trapezoid type MF are similar because of similar accuracy. Figure 15 shows 
the CDF for the best location error regard to the each MF type, it can be seen that the 
positioning based on the Gaussian, bell-shaped and trapezoid MF almost have the same 
good statistics and achieve the improvements of 31.9% over estimation using triangle MF.  
Clearly, there are many benefits of the proposed ANFIS approach for the modelling or the 
prediction. It combines two techniques, the neural networks and fuzzy systems, by using the 
fuzzy techniques, both numerical and linguistic knowledge can be combined into a fuzzy 
rule base, the combined fuzzy rule base represents the knowledge of the network structure 
so that structure learning techniques can be accomplished easily. Fuzzy membership 
functions can be tuned optimally by using learning methods, and the architecture 
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requirements are fewer and simpler compared to neural networks, which require extensive 
trails and errors for optimization of their architecture. Therefore the accurate indoor 
propagation approximation can be provided by the proposed ANFIS based method. 
 

 
Fig. 15. CDF of the location errors based on the ANFIS models. 

5.4 Comparisons  
1) Related work: (Bahl & Padmanabhan, 2001) proposed an in-building user location and 
tracking system - RADAR, which adopts the nearest neighbors in signal-space technique, 
which is the same as kNN positioning based on averaging k closest location candidates. 
They proposed the method based on the empirical measurement of access point signal 
strength in offline phase. By these experiments, it is reported that user orientations, number 
of nearest neighbors used, number of data points, and the number of samples in real-time 
phase would affect the accuracy of location determination. The proposed WLAN 
positioning is compared with RADAR in case k=3,5,7, and 9. 
 

 
Fig. 16. Statistics of the positioning error based on RADAR. 
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The RADAR based WLAN positioning is very popular because of its low complexity of 
algorithm and efficiency. Figure 16 shows the statistics of the location error based on the 
RADAR, the best accuracy error mean of 4.31 m is provided by using three nearest 
neighbors while the positioning errors tend to be increasing if more neighbors are referred. 
This is caused by the referring fault by ill conditioned neighbor candidates which are too far 
to the real position of the mobile device location. 
2) Comparison and Verification of accuracy in a mobile device: In order to ensure fair comparison 
of the positioning results, the proposed approaches mentioned before and the related work 
RADAR were implemented on the same simple mobile device, a Dopod PDA (200MHz). To 
carefully verify the performance of the accomplished experimentation, the best positioning 
results regard to each approach mentioned above in this chapter are compared hereon to 
demonstrate the performance of the proposed method. For convenience, a summary of error 
statistics for each method is provided in Fig. 17.  
 

 
 

Fig. 17. Statistics of the positioning error for each method. 

The improvenments of error mean of WLAN positioning based on ANFIS with three bell-
shaped MFs compared to the interpolation, curve fitting and RADAR are 0.57m (13.7%),  
0.41m (10.3%) and  0.74m (23.2%). The precision of the proposed WLAN localization using 
the ANFIS based propagation model has a relatively best standard deviation 2.07 m whereas 
the poorest one is 3.07m provided by the RADAR algorithm, so that ANFIS based appraoch 
achivies the  improvements of 12.2% over the interpolation, 2% over the curve fitting and 
32.5% over the RADAR algorithm. 
In addition, Fig. 18 shows that the CDF of the location errors for the best cases of each 
approach. Using ANFIS, interpolation, curve fitting and RADAR, 50% of the location errors 
are within 3.2 m, 3.7 m, 3.81 m, and 3.65 m, respectively; 90% of the location errors are below 
5.52 m, 6.41 m, 6.83 m, and 7.03 m, respectively. It is clear that the CDF of the ANFIS based 
result is the most left respected to the other approaches. Investigating the proposed WLAN 
localization by the time response is another point of view for verifing the performance, 
which is shown in Fig. 19.  
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Fig. 18. CDF of the location errors for the best cases of each approach. 

Since the structure of the test area is complex due to many walls surrand of the calssrooms, 
rigid obstacles and clustered human, the noise and shawdoing from the environment are 
deteriorating the positioning precision, especially the RADAR algorithm is easily to be 
infuluenced because there is no filtering scheme used to enhance and track the position state 
by referring previously states. In constrast, the positioning based on the proposed ANFIS 
propagation model with the well adaptation capability has a fast convergence and tend to be 
the best accuracy after about 20 transition iterations. 
 

 
Fig. 19. Time response of error mean for the best case of each method. 



 Kalman Filter 

 

346 

6. Conclusions 
In this study, a low complexity WLAN indoor positioning system based on the curve fitting, 
the interpolation, and an adaptive neural fuzzy system is addressed. The proposed 
modeling techniques are used to reduce the false distance estimation of a mobile device to 
the access points induced by the unpredictable interference, reflection and multipath effects. 
It is clear that the experimental results show that a empirical propagation model can be 
easily provided by the curve fitting based approach but involves a limited flexibility and 
adaptation; the interpolation based approach has a simple computation for the distance 
estimation and a high flexibility due to the possible arragement of the reference nodes but 
requires horrible trails and errors for optimization. Therefore a hybrid learning algorithm 
under a combination of gradient descent and the least-squares method based neural fuzzy 
inference system is proposed to solve the problems mentioned above. Due to its nonlinear 
ability, fast learning capacity and adaptation capability, the accurate distance estimates of a 
mobile device to the access points can be obtained. The distances are firstly converted by the 
addressed ANFIS propagation model during the the online stage in real-time with the 
currently observed RSSI value from the tested WLAN area. The available distances from the 
positions localized in the test bed are recursively estimated by an extended Kalman filter 
while it could blend the information optimally minimizing the variance of the estimation 
error.  
Consequently, the presented approach is verified to provide the accurate localization in the 
real indoor environment of 20.6m×37.4m with 4 access points only. The addressed 
positioning algorithm is straightforward and can be implemented by simple mobile devices, 
such as PDAs or mobile phones, to provide the location-aware services without any 
hardware cost since WLAN signals are popular sensor sources for indoor environments. 
There are many potential applications for location positioning and network accessing, such 
as library or museum tour-guide, free mobility and nursing at home, patient transporting in 
the hospital and easy going capability in the shopping mall. 
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Application of Kalman Filters for the Fault 
Diagnoses of Aircraft Engine 
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1. Introduction      
Fault detection and isolation (FDI) logic plays a crucial role in enhancing the safety and 
reliability, and reducing the operating cost of aircraft propulsion systems. However, it is a 
challenging problem achieving the FDI task with high reliability. For this purpose, various 
approaches have been proposed in the literature. 
In an on-line engine fault diagnoses, two tasks may use Kalman filter to carry out: 1) 
evaluation of on-line engine state variables to renew the on-board model; 2) diagnoses of on-
line aircraft engine sensor/actuator fault. How to solve the above problems through 
application of Kalman filter is discussed in this paper.  
A challenge in developing an on-line fault detection algorithm is making it adaptive to 
engine health degradation. If the algorithm has no adaptation capability, it will eventually 
lose its diagnostic effectiveness. To address this problem, the integration of on-line 
diagnostic algorithms was investigated. The Kalman filter estimates engine health condition 
over the course of engine’s life. Then the on-board model could be re-constructer based on 
the estimated values of Kalman filter.  
After all of the above, A Robust Kalman filter and a bank of Kalman filters are applied in 
fault detection and isolation (FDI) of sensor and actuator for aircraft gas turbine engine. A 
bank of Kalman filters are used to detect and isolate sensor fault, each of Kalman filter is 
designed based on a specific hypothesis for detecting a specific sensor fault. In the event that 
a fault does occur, all filters except the one using the correct hypothesis will produce large 
estimation errors, from which a specific fault is isolated. When the Kalman filter is used, 
failures in the sensors and actuators affect the characteristics of the residual signals of the 
Kalman filter. While a Robust Kalman filter is used, the decision statistics changes 
regardless the faults in the sensors or in the actuators, because it is sensitive to sensor fault 
and insensitive to actuator fault. 
W. C. Merrill, J. C. Delaat, and W. M. Bruton used a bank of Kalman filters for aircraft 
engine sensor FDI. This study successfully improved control loop tolerance to sensor 
failures, which were considered the most likely engine failures to happen under the harsh 
operating environment. In this study, actuator failure was not considered. In the study done 
by T. Kobayashi and D. Simon, a fault detection and isolation (FDI) system which utilizes a 
bank of Kalman filters is developed for aircraft engine sensor and actuator FDI in 
conjunction with the detection of component faults. The results indicate that the proposed 
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FDI system is promising for reliable diagnostics of aircraft engine sensor and actuator. An 
analytical redundancy-based approach for detecting and isolating sensor, actuator, and 
component faults in complex dynamical systems, such as aircraft and spacecraft is 
developed by E. C. Larson, E.B. Jr. Parker, and B. R. Clark. This method has limited 
applications in practice. A Kalman filter was applied to aircraft sensor and actuator fault 
diagnosis by C. Hajiyev and F. Caliskan. Two different fault detection algorithms, namely 
multiple hypotheses testing and neural networks that analyze the sensor residuals 
generated with an extended Kalman filter (EKF) based on an un-faulted engine model were 
developed and implemented by R. Randal et al. These two algorithms have complementary 
performance, which is exploited in a fusion algorithm to enhance the overall detection & 
classification performance.  An observer-based robust sensor fault detection approach was 
applied to a jet engine simulation by R. J. Patton and J. Chen. This method has limited 
applications in practice. A Kalman filter was applied for aircraft sensor and actuator fault 
diagnosis by C. Hajiyev and F. Caliskan.Those approach were based on the faults affected 
the mean of the Kalman filter innovation sequence. A sensor fault that shifted the mean of 
the innovation sequence could be detected and isolated. A Roubst Kalman filter was used to 
distinguish the sensor and actuator faults. But, this method could not used to isolate which 
actuator is faulty. 
In general, in–flight diagnostic systems are designed at a nominal health, or non-degraded 
condition. This design condition becomes a reference health baseline for diagnostics. Any 
observed deviations in engine outputs from their reference condition values may indicate 
the presence of a fault. As the real engine degrades over time, in-flight diagnostic systems 
may lose their effectiveness. Engine health degradation is a normal aging process that occurs 
in all aircraft engines due to usage and therefore is not considered as a fault. However, 
similar to various faults, degradation causes the engine outputs to deviate from their 
reference condition values. When engine output deviations eventually exceed a certain level, 
the diagnostic system may misinterpret the health degradation as a fault and consequently 
generate a false alarm. 
One approach to maintaining the effectiveness of in-flight diagnostic algorithms, when 
applied to degraded engines, is to periodically update or re-design the diagnostic 
algorithms based on the estimated amount of health degradation. Health degradation can be 
estimated by trend monitoring systems. Through the update based on the estimated health 
degradation, the health baseline of an in-flight diagnostic system can be shifted to the 
degraded engine, and thereby the system is able to effectively diagnose the presence of a 
fault. 
The diagnosis approaches based on Kalman filter is the analysis of the residual signals. 
When the system operates normally, normalized residual signal in a Kalman filter is a 
Gaussian white noise with a zero mean and a unit covariance matrix. Faults change the 
system dynamics by causing surges of drifts of the state vector components, abnormal 
measurements, sudden shifts in the measurement sensor, and other difficulties such as 
decrease of instrument accuracy, an increase of background noise, reduction in actuator 
effectiveness etc., effect the characteristics of the normalized residual signals by changing its 
white noise nature, displacing its zero mean, and varying unit covariance matrix.  
For linear dynamic system with white process and measurement noise, the Kalman filter is 
known to be an optimal estimator. Kalman filters are largely used in the jet engine 
community for condition monitoring purpose. At the same time Kalman filter are used in 
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the turbine engine for sensor fault diagnostics purpose. However this method can not or 
hardly distinguish the fault between sensor and actuator. A bank of Kalman filters and a 
robust Kalman filter are used to detect sensor and actuator faults. In addition, a bank of 
Kalman filters is used to detect which sensor is fault. Such  technical are easy to implement 
in a real-time environment. 
In the following sections of this paper, the problem setup for sensor fault diagnostics based 
on the engine health degradation. The deterioration can be estimated by one Kalman filter. 
Then the on-board model can be re-constructer based on the estimated values of Kalman 
filter. At last a bank of Kalman filters is applied in fault detection and isolation (FDI) of 
sensors for aircraft gas turbine engine. At the same time, we assumed that only one of the 
sensors will fail at a time, and just only one actuator. Hence, detection and isolation between 
different actuators is not considered. The mean of the residual signals which from sensor 
measurements and their estimated values applied to detect and isolate sensor failures. An 
effective approach previously discussed in literature is to distinguish the sensor and 
actuator fault during a linear engine simulation. 

2. Engine model 
The engine model being used for this research is the nonlinear simulation of an advanced 
military twin-spool turbofan engine. Engine performance deterioration is modeled by 
adjustments to efficiency or flow coefficient scalars of the following four components: Fan 
(FAN), Booster (BST), High-Pressure Turbine (HPT), and Low-Pressure Turbine (LPT). 
These scalars representing the component performance deterioration are the health 
parameters. The engine state variables, health parameters, actuator, and sensor used in the 
current research are shown in Table 1. 
 

State 
variable 

Health 
parameters Actuators Sensors 

XNL  FAN efficiency WFB  XNL  
XNH  BST efficiency 8A  XNH  

 HPT efficiency  31P  
 LPT efficiency  6P  
   45T c  

Table 1. State Variables, Health Parameters, Actuators, and Sensors of the Engine Model 
The FDI (Fault detection and isolation) logic uses the Kalman filter approach in order to 
estimate the state variables, health parameters, and engine output values from a given set of 
sensor measurements and control commands. A linear model under consideration is 
represented by the following state-space equations: 

 
x Ax Bu Lh w
y Cx Du Mh v
= + + +
= + + +

  (1)  

where the vectors x, h, and u represent the state variables, health parameters and control 
commands, respectively. y is sensor measurement vector, w  and v are the process and 
sensor noise, respectively, they are both assumed to represent Gaussian white noise. Their 
covariance matrices: 
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  (2)  

3. The estimation of health degradation 
As shown in Fig.1, the on-board model and tracking filter are important part in the model-
based control and diagnostics logic. This part uses two sets of input signals; sensor 
measurements and actuator position. The degradation of the real engine can be tracked by 
one Kalman filter based on the input signals. After the estimation of the Kalman filter, the 
on-board model can be shifted to the vicinity of the degraded engine.  
 

Engine

On-board model
& Tracking

filter

Engine control

Sensor
FDI

Actuator
position

Actuator
commands

Sensor
 estimates
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measurment

Engine
instrumentation
Pressures
Fuel flow
Temperature
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Fig. 1. Model-Based control and diagnostics logic 
In the Kalman filter problem setup, the engine state vector is augmented with health 
parameters as follows: 

 
x Ax Bu w

y Cx Du v

= + +

= + +
  (3)  

where 

[ ], , ,
0 0 0

x A L B
x A B C C M

h
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

The estimated state vector xe, the sensor measurements of ye and the Kalman filter gain 
matrix can be found with the Kalman filter of the form: 

 
( )

1

e e e

e e

T

x Ax Bu K y y

y Cx Du

K PC R−

= + + −

= +

=

  (4) 
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where matrix P is the solution of the following steady-state Riccati equation: 

 1 0T TAP PA PC R CP Q−+ − + =   (5) 

4. Fault detection and isolation logic 
When a fault occurs, the first step is to detect it as soon as possible. The approach used for 
model-based fault detection is composed of two steps as follow.  
1. Generate residual signals from the sensor measurements and their Kalman filter 

estimated values. 
2. Compare the residuals with thresholds to make fault detection detections. 
System noise, measurement noise and modeling uncertainty are key factors that affect 
detection performance.  
A propulsion system with fault detection and isolation logic is shown in Fig. 2. The Kalman 
filters use two sets of input signals; sensor measurements and control commands. Sensor 
measurements are corrupted by noise. The difference between them is simply defined as a 
fault. In this paper, the sensor and actuator failures are “soft failures”. Soft failure is defined 
as inconsistencies between true and measured sensor values that are relatively small in 
magnitude and thus difficult to detect by a simple range-checking approach.  
 

Engine Sensors

Kalman filter and
Robust Kalman filterFDI

Engine
control

V

Actuator

W

trueu

y

cmdu

 
Fig. 2. Fault detection and isolation logic. 

4.1 Fault detection algorithm for sensor 
In this paper, an approach based on a model with a bank of Kalman filters is used for sensor 
fault detection and isolation. The sensor and actuator fault are “soft fault”. Soft fault is 
defined as inconsistencies between true and measured sensor values that are relatively small 
in magnitude and thus difficult to detect by a simple range-checking approach, whereas 
“hard” fault are larger in magnitude and thus more readily detectable.  
Each Kalman filter is designed for a specific sensor fault. In the event that a fault does occur, 
all filters except the one using the correct hypothesis will produce large estimation errors. By 
monitoring the residual of each filter, the specific fault that has occurred can be detected and 
isolated. The structure for sensor FDI using a bank of Kalman filters is shown in Fig. 3. The 
bank of Kalman filters contains 5 Kalman filters where 5 is the number of sensors being 
monitored. The control input and a subset of the sensor measurements are fed to each of the 
5 Kalman filters. The sensor which is not used by a particular filter is the one being 
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mentioned by that filter for fault detection. For instance, the ith filter uses the sensor subset 
that excludes the ith sensor. Hence each Kalman filter estimates the augmented state vector 
using 4 sensors. Filter #1 uses all sensors except sensor #1, filter#2 uses all sensors except 
sensors#2, and so on. So, filter #1 is able to estimate the augmented state vector from fault-
free sensor measurements, whereas the estimates of the remaining filters are distorted by the 
fault in sensor #1. 
For each filter, the residual vector: 

 i i i
ee y y= −   (6) 

When we got the residual, the weighted sum of squares residuals for each of the Kalman 
filters were calculated as: 

 ( ) ( ) 1Ti i i i iWSSR V e e
−

= Σ   (7) 

where 2i idiag σ⎡ ⎤Σ = ⎣ ⎦ .The vector σ  is the noise standard deviation, and the additional 

weigh iV  is the weighting factor.  
The statistical function as in (6) has 2χ distribution consider the following two hypotheses： 
H0: system operates normally,  
H1: fault occurs in the system. 
If a confidence probability a is given, the threshold can be found as in. The following gives 
the detection theory:  

 0

1

:

:
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≥
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where iλ is the threshold. 
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Fig. 3. Sensor fault detection isolation using bank of kalman filters 
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4.2 Fault detection algorithm for actuator 
When a large discrepancy between commanded and true actuator positions does exist due 
to an actuator fault, it may cause significant errors. A Robust Kalman filter may be designed 
in order to isolate the sensor and actuator faults. A Kalman filter that satisfies the Dolye-
Stein condition is referred to as Robust Kalman filter.  
The Doly-Stein condition is expressed as follow. 

 ( ) ( )1 1K I H K B H Bφ φ− −+ =   (9) 

Here K is Kalman filter gain, I is unit matrix, ( ) 1sI Aφ −= − , A is the system matrix in 
continuous time, B is the control distribution matrix in continuous time. H is the system 
measurement matrix.  The Kalman filter satisfies the Doly-Stein condition called Robust 
Kalman filter.  
For Kalman filters, 1T

qK P C R−= , 
With Pq defined by the Riccati equation 

1 0T T
qAP PA PC R CP Q−+ − + =  

As usual we take 0TQ Q= > and 0TR R= > with ( )1 2,A Q and ( ),C A stable and 

observable, respectively. For Kalman filters, they represent given process noise and 
measurement noise intensities. They are treated more freely as design parameters which we 
can select to suit broader purposes. In particular, let  

 
2

0

0

T
qQ Q q BVB

R R

= +

=
  (10) 

Where Q0 and R0 are noise intensities matrix for the nominal plant, V is any positive definite 
symmetric matrix. With these selections, the observer gain for q = 0 corresponds to the 
nominal Kalman filter gain. However, as q approaches infinity, the gains are to satisfy as 
follow 

 
2

T
TKRK BVB

q
→   (11) 

Solutions of (11) must necessarily be of the form: ( ) 11 2 1 21 K BV R
q

−
→  

Where V1/2 and R1/2denote square root of  V and R, respectively, i.e. 

( )1 2 1 2T
V V V= ,     ( )1 2 1 2T

R R R= . 

Then a Kalman filter satisfying with (9) will be a Robust Kalman filter. 
Because of the q factor, the Robust Kalman filter (RKF) is not an optimum filter. The value of 
the q must be chosen carefully, if q is chosen small the RKF is a Kalman filter and becomes 
sensitive to actuator failures, on the other hand, if it is chosen large, noise effects increase 
and unexpected result occur in the RKF. 
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5. Simulation results 1 
The bank of Kalman filters was implemented on the nonlinear dynamical model of an 
aircraft engine with faults in sensors and the estimation of degraded engine as shown in 
Fig.4. The nonlinear dynamical model generates five sets of real signals at a given state. The 
sensor fault can be added on those signals directly. There are five sensors may be fault: 
High-pressure spool speed (XNH) sensor, Low- pressure spool speed (XNL) sensor, Booster 
exit pressure (P31) sensor, LPT exit pressure (P6) sensor, LPT inlet temperature (T45c) 
sensor. 
Health degradation can be estimated by trend tracking filter. One Kalman filter was used to 
estimate the degradation of the real engine. If there were no degradation and no fault, the 
values of 1 5WSSR −  go to zero, as shown in Fig.5. However, if the HPT efficiency 
degrades by 2% and the on-board model does not shift to the vicinity of the degraded 
engine then the in-flight diagnostic systems may lose their effectiveness, as shown in Fig.6. 
The values of the 1 5WSSR − grow rapidly and all of them exceed the threshold. It causes a 
false alarm. This is because shifts in measured engine outputs are induced not only by faults 
but also by engine degradation. Estimation of the degraded engine is critical to the fault 
detection and isolation system.  
Fig.7 shows that Kalman filter can estimate the degradation accurately. After this the on-
board model can be shifted to the vicinity of the degraded engine, and the in-flight 
diagnostic system may be effective. The Kalman filter estimates engine health condition over 
the course of engine’s life. Based on the estimated health condition, the on-board model is 
updated. When we add the fault at 10 steps and stop at 200 steps in the LPT inlet 
temperature measurement sensor and at the same time HPT efficiency degrades by 2%, the 
in-flight diagnostic system can detect and isolate the fault. As shown in Fig.8, 1WSSR -

4WSSR grow rapidly but the 5WSSR  remains small. The results indicate that there is a 
fault in T45c sensor. 
 

 
Fig. 4. The simulation architecture of Sensor fault detection isolation using bank of kalman 
filters 
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Fig. 5. The value of 1 5WSSR − when no fault and no degradation exist 
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Fig. 6. The value of 1 5WSSR − when the HPT efficiency degrades by 2% and no fault exist. 
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Fig. 7. The estimation of Kalman filter when the HPT efficiency degrades by 2% 
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Fig. 8. The value of WSSR -5 when there is a fault in T45c sensor and HPT efficiency 
degrades by 2% 

5. Simulation results 2 
The bank of Kalman filters and a Robust Kalman filter (RKF) were implemented on the 
nonlinear dynamical model of an aircraft with faults in sensors and actuator. The use of the 
RKF is very useful in the isolation of sensor and actuator as it is insensitive to the latter failures. 
The RKF was used to isolate whether the detected fault is a sensor fault or an actuator fault, 
when we add the fault at 20 steps and stop at 200 steps in the low-pressure spool speed 
measurement sensor, the plot for the RKF estimate is shown in Fig. 10 and when a fault 
occurs in the sensor, WSSR grows rapidly, and after 50 steps it exceeds the threshold. Then, 
when the fault is in the actuator, the plot for the RKF estimate is similarly shown in Fig. 9. 
The detection of actuator fault is not possible when the RKF is used. Hence, Fig. 9 and Fig.10 
illustrate that the RKF can detect the sensor faults, and cannot detect the actuator faults. On 
the other hand, if we use Kalman filter (KF) to isolate sensor or actuator fault, the values of 
WSSR are shown in Fig. 11 and Fig. 12. Whatever there is a fault in the sensor or in the 
actuator, the value of WSSR exceeds the threshold. So, KF is sensitive to both sensor and 
actuator fault and RKF are not sensitive to actuator fault. In this case, RKF and KF should be 
united to distinguish sensor or actuator fault. 
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Fig. 9. Detection of actuator fault with RKF. 
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Fig. 10. Detection of sensor fault with RKF. 
 

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

K 

WSSR 

 
Fig. 11. Detection of actuator fault with KF. 
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Fig. 12. Detection of sensor fault with KF. 
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In this paper, there are four sensors may be fault, i.e. low-pressure spool speed sensor, high-
pressure spool speed sensor, high-pressure compressor exit pressure sensor, low-pressure 
turbine exit temperature sensor.  
When the low-pressure spool speed measurement sensor is faulty, as above mentioned, all 
filters except for filter 1 will use a corrupted measurement. Filter 1 will be able to estimate 
the engine outputs from fault-free sensor measurements, whereas the output estimates of 
the remaining filters (i.e., filters 2, 3 and 4) will be distorted by the fault in sensor 1. The 
value of WSSR and threshold for the 4 Kalman filters are shown in Fig. 13(a)-(d) 
respectively. The values of WSSR for Kalman filter 2, 3 and 4 are also seen to be high 
whereas the value of WSSR for the Kalman filter 1 goes to zero. In this way we can 
successfully detect which sensor is faulty. The low-pressure spool speed measurement 
sensor is not used by filter 1. Hence, this sensor is faulty. 
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Fig. 13. Fault detection of low-pressure spool speed measurement sensor when a bank of 
Kalman filters is used. 
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6. Conclusion 
In this paper, aircraft engine sensor fault diagnostics based on the estimation of health 
degradation was investigated. The tracking filter estimates engine health condition over 
the course of engine’s life. Through this integration, the on-line fault detection algorithm 
is able to maintain its diagnostic effectiveness as the aircraft engine degrades over its 
lifetime. 
The integrated approach was investigated in a simulation environment using a nonlinear 
engine model. The evaluation result showed that this approach is essential to maintain on-
line fault detection capability in the presence of health degradation. 
In this paper, an approach has been proposed to detect and isolate the aircraft sensor and 
actuator failures occurred in the aircraft control system. A bank of Kalman filters were 
used to detect and isolate sensor failures, each of Kalman filter is designed based on a 
specific hypothesis for detecting a specific sensor fault. In the event that a fault does 
occur, all filters except the one using the correct hypothesis will produce large estimation 
errors, from which a specific fault is isolated. Failures in the sensors and actuators affect 
the characteristics of the residual signals of the Kalman filter. When the Kalman filter is 
used, the decision statistics changes regardless the faults in the sensor or in the actuator. 
While a Robust Kalman filter is used, it is easy to distinguish the sensor and actuator 
fault. 
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1. Introduction     
Since eye tracking was first introduced by Mowrer in 1936, it has been gaining in popularity 
over the past decades as a window into observers’ visual and cognitive process. For 
instance, researchers have utilized eye tracking to study behavior in such domains as driver 
fatigue detection  (Qiang et al., 2004; Horng et al., 2004; Dong et al., 2004 ), eye typing for 
helping users with movement disabilities interact with computers (Majaranta & Raiha,  
2002), eye tracking analysis of user behavior in WWW search (Laura et al., 2004), using eye 
tracking techniques to study collaboration on physical tasks for medical research, VR system 
for measuring inspection methods, and image scanning (Noton & Stark, 1971). Above all 
applications, two types of human-computer interfaces utilize eye tracking, passive and 
active interfaces. Passive interfaces monitor the user’s eye movements and automatically 
adapt themselves to the user. For example in driver fatigue detection, the researchers track 
the driver eyes to fatigue detection, because the human eyes express the most direct reaction 
when dozing, inattention and yawning. On the other hand, Active interfaces allow users to 
explicitly control the interface though the use of eye movements. For example, eye typing 
has users look at keys on a virtual keyboard to type instead of manually depressing keys as 
on a traditional keyboard (Majaranta & Raiha, 2002; Takehiko et al., 2003). Such active 
interfaces have been quite effective at helping users with movement disabilities interact with 
computers. Not surprisingly, eye tracking has attracted the interest of many researchers, and 
eye trackers have been commercially available for many years (Qiang et al., 2004; Horng et 
al., 2004; Takehiko et al., 2003; John et al., 2005). 
In the past decades, many researchers have paid attention to the eye tracking in human 
computer interaction. There have been many methods that support non-invasive eye 
tracking.  In (Li et al., 2005), all of these eye tracking algorithms can be classified into two 
approaches: feature-based and model-based approaches. Feature-based approaches detect 
and localize image features related to the position of the eye. A commonality among feature-
based approaches is that a criteria (e.g., a threshold) is needed to decide when a feature is 
present or absent. The determination of an appropriate threshold is typically left as a free 
parameter that is adjusted by the user. The tracked features vary widely across algorithms 
but most often rely on intensity levels or intensity gradients. For example, in infrared (IR) 
images created with the dark-pupil technique, an appropriately set intensity threshold can 
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be used to extract the region corresponding to the pupil. The pupil center can be taken as the 
geometric center of this identified region. The intensity gradient can be used to detect the 
limbus in visible spectrum images (Zhu & Yang, 2002) or the pupil contour in infrared 
spectrum images (Tohno et al., 2002). In (Qiang et al., 2004; Zhu et al., 2002; Ebisawa, 1995; 
Morimoto & Flickner, 2000), several active IR based eye trackers were proposed. The 
authors thought that eye tracking based on the active remote IR illuminations is a simple 
and effective approach. But most of them require distinctive bright pupil effect to work well 
because they all track the eyes by tracking the bright pupils.  Qiang et al. has also made 
significant improvement of eye tracking over existing techniques (Qiang et al., 2004; Zhu et 
al., 2002). However, their methods need IR eye detector, or bright pupils and steady 
illumination. Their eye tracking method using Kalman filtering is linear system estimation 
algorithm. In realistic driving environments, the eye motion is the high nonlinearity of the 
likelihood model, the stand Kanlman filter is no longer optimal. 
On the other hand, model-based approaches do not explicitly detect features but rather find 
the best fitting model that is consistent with the image. For example, integrodifferential 
operators can be used to find the best-fitting circle (Daugman, 1993) or ellipse (Nishino & 
Nayar, 2004) for the limbus and pupil contour. Michael Chau and Margrit Betke use 
correlation with an online template to eye tracking in (Michael & Margrit, 2005). The authors 
(Horng et al., 2004) use the dynamic templates for eye tracking. After finding the eye 
templates, they are used for eye tracking by template matching. And the minimum value 
within the search area is the most matching position of the eye. The model- based approach 
can provide a more precise estimate of the pupil center than a feature-based approach given 
that a feature-defining criteria is not applied to the image data. 
Eye tracking has not reached its full potential even though the general-purpose eye tracking 
technology has been explored for decades. The first obstacle to integrating these techniques 
into human-computer interfaces is that they have been too expensive for routine use. 
Currently, a number of eye trackers are available on the market and their prices range from 
approximately 5,000 to 40,000 US Dollars (Li et al., 2005). The second factor is that it’s very 
difficult to model to eye tracking because of the eye motion being the high nonlinearity. The 
third factor is the robustness of eye tracking should be improved because of the variety of 
head and eyes moving fast, external illuminations interference and realistic lighting 
conditions. The accuracy of eye tracking can’t satisfy the realistic requirement of HCI.  
To tackle some of those problems, we propose a strong tracking finite-difference extended 
Kalman filter algorithm to eye tracking. In this paper, a strong tracking factor is introduced 
to modify prior covariance matrix to improve the accuracy of the algorithm. And the finite-
difference method is presented to calculate partial derivatives of nonlinear functions to eye 
tracking. At the same time, we overcome the eye tracking modeling in nonlinear system. 
The last experimental results show that the average correct rate of eye tracking can achieve 
99.4% on three video.  
The organization of the paper is as follows. Strong Tracking Finite-Difference Extended 
Kalman Filter algorithm is given in next section.  Section 3 gives STFDEKF based Eye 
Tracking algorithm and experimental results. Final conclusion is in section 4.  

2. Strong tracking finite-difference extended Kalman filter 
Extended Kalman filter (EKF) is one of the most common and popular filtering approach in 
nonlinear target tracking and state estimation. It includes state estimation of a nonlinear 
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dynamic system, parameters estimation for nonlinear system identification and dual 
estimation where both states and parameters are estimated simultaneously. However, EKF 
simply linearizes all nonlinear functions to the first order by using the Talyor series 
expansions. At the same time, EKF may cause more errors for the nonlinear system while 
estimating system state and its variance. Moreover, the linearization may lead to divergence 
of filtering process.  In a nonlinear mismatched model and limited applications scope, EKF 
filter will lead the divergence problem of state estimation. For these reasons, two improved 
EKF algorithms are introduced to tackle some of those problems.  

2.1 Suboptimal fading extended Kalman filter 
In this section, an adaptive extended Kalman filter - a suboptimal fading extended Kalman 
filter (SFEKF) is presented.  The derivation of the filter is presented (Zhou et al., 1991; Zhou 
et al., 1990) in detail. SFEKF has the following good properties: 1) lower sensitivity to the 
statistics of the initial states and the statistics of the system and/or measurement noise, 2) 
stronger tracking ability to the suddenly changing states and bias no matter whether the 
filter operates in dynamic or stationary fashion, 3) acceptable computational complexity.  
Considering a class of nonlinear discrete-time dynamical system, 

 1 ( , , )k k k kx f x u v+ =  (1) 

 ( , )k k ky g x w=  (2) 

where, kx  is the state vector, ky  is the measurement vector, ku  is control input vector, kv  
is process noise and kw  is measurement noise. kv  and kw  are statistically independent. 
The equations of mean and covariance are as follow. 

[ ] ,k kE v q=   cov[ , ] ( )k j kv v Q k jδ= −  
[ ] ,k kE w r=   

cov[ , ] ( )k j kw w R k jδ= −
 

 (3) 

The extended Kalman filter is based on the assumption that sensor noises and, propagation 
errors are driven by zero-mean, Gaussian-distributed, white, random process. Retaining 
only the first-order terms in the Taylor series expansion, one obtains 

 1 ˆ ˆ( , , ) ( )( ) ( )( ),
ˆ( , ) ( )( ) ( )( ),

k k k k x k k v k k

k k k x k k w k k

x f x u q F k x x F k v q
y g x r G k x x G k w r

+ ≈ + − + −⎧
⎨ ≈ + − + −⎩

 (4) 

where ( )xF k  and ( )vF k  are the partial derivatives of ( )f i  to x  and v ,  ( )xG k  and 

( )wF k  are the partial derivatives of ( )f i  to x  and w . 
So the suboptimal fading extended Kalman filter (SFEKF) is deduced as follows: 
The predicted state estimation equations are 

                                     1 ˆ( , , )k k k kx f x u v+ =  (5) 

 ( , )k k ky g x r=  (6) 
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The predicted covariance estimation equations are 

 1
ˆ( 1) ( ) ( ) ( ) ( )T T

k x k x v k vP k F k P F k F k Q F kλ+ = + +  (7) 

Where ( 1) 1kλ + ≥  is the suboptimal fading factor, which is used to fade the bypast 
datum and adjust predictable state estimation covariance matrix. 
With this model (Zhou et al., 1993), ( 1)kλ + can be directly determined as follows:  

                                       0 0

0

, 1;
( 1)

1, 1;
k

λ λ
λ

λ
≥⎧

+ = ⎨ <⎩
 (8)                          

Where 

 0 [ ( 1)] / [ ( 1)],tr N k tr M kλ = + +  (9) 

 0( 1) ( 1) ( ) ( ) ( ) ( ) ( ) ,T T
x v v w k wN k V k G k F k F k G k R G k+ = + − −i  (10) 

 ˆ( 1) ( ) ( ) ( ).T T
x x k x xM k G F k P F k G k+ =  (11) 

 
0

0 0
1

ˆ(0) (0) (0) , 0;
1( 1) ( )

, 1
1

T
x x wk

T T
j j j j

j

G P G G k
V k V kk k

γ γ ρ γ γ
ρ

=

⎧ + =
⎪

+ = = ⎨ +
≥⎪ +⎩

∑  (12) 

with 0 1ρ≤ ≤ is the preselected forgetting, it may be selected according to the real 
processes. For fast changing processes, a smaller ρ should be selected, and vice versa. As 

that pointed out in the paper (Zhou et al., 1993), ( 1)kλ +  is insensitive to the value of ρ . 

2.2 Strong tracking finite-difference extended Kalman filter 
Deriving the ideas in papers (Fan et al., 2006; Zhou et al., 1997), the authors proposed a 
finite-difference method to replace partial derivatives of nonlinear functions. From further 
improving the self-covariance and between-covariance, we obtain the algorithm based on 
strong tracking filter-difference enhanced kalman filter. 
We adopt cholesky to decompose ,kQ ,kR ,KP ˆkP ,  

  
, ,

ˆ ˆ, .

T T
k v k wv W

T T
k x k xx x

Q S S R S S

P S S P S S

= =

= =
 (13)                          

central difference of partial derivative in nonlinear function ( )Fx k : 

 ( ) { } ( ), , , , , , ,, , /2x ij i k j k j k k k j k j k k k jF k f f x x u q f x x u q x⎧ ⎫⎪ ⎪⎛ ⎞⎛ ⎞⎨ ⎬= = − −⎜ ⎟⎜ ⎟
⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭

+Δ Δ Δ  (14) 
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Where , ,ˆ ˆ ,k j x jx hs hΔ =  is the step adjustment coefficient; ,ˆx js  represents the j column 

of ˆxs , then 

 ( )( ){ }, , )ˆ ˆ ˆ( ) , , , ( , , / 2 .x x xx k x j k k i k x j k kF k S S f x hs u q f x hs u q h= = + − +  (15) 

 ( ) ( )( ){ }, ,ˆ ˆ( ) , , , , , / 2 ,v v xv i k k k v j i k k k v jF k S S f x u q hs f x u q hs h= = + − −  (16) 

 ( ) ( ) ( )( ){ }, , , , / 2 ,x x yx i k x j rk i k x j rkG k S S g x hs g x hs h−= = + −  (17) 

 ( ) ( )( )( ){ }, , , , / 2w w yw i k rk w j i k rk w jG k S S g x hs g x hs h= = + − −  (18) 

The predicted covariance matrix, gain matrix and covariance estimate of suboptimal fading 
extended Kalman filter (SFEKF) are mended as follows 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( )

1

ˆ ˆ

ˆ( 1)
ˆ ˆ ˆ ˆ1

1 ;

T T
k x k x v k v

T TT T
x x x v v vx v

T T
xx xvxx xv

P k F k P F k F k Q F k

k F k S S F k F k S S F k

k S S S S

λ

λ

λ

+ = + + =

+ + =

+ +

 (19) 

( ) ( ) ( ) ( ) ( )
1

1
T T T

k k x x k x w k wK P G k G k P G k G k R G k
−

+ ⎡ ⎤= + =⎣ ⎦  

( ) [ ] [ ]1 11 ;T T TT T
TT

x yx yx yx yw yw x yx yx yx yw ywx xS S S S S S S S S S S S S S− −− + = +
 

(20) 
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 (21) 

From before-mentioned deduction, we can infer to that all calculations of above include the 
process noise impact and the error problem of model linearization. The step number which 
nonlinear function is linearized also changes with last time covariance matrix, process noise 
and observation noise. The filter becomes very simple because of replacing partial 
derivatives calculation using finite-difference value. The new strong finite-difference 
Kalman filter (STFDEKF) has more accuracy and covariance estimation, and improves the 
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robustness of target tracking.  The last experiment results show that the STFDEKF can be 
used for the high nonlinear stochastic systems such as eye tracking.  

3. STFDEKF based eye tracking and results 
In this section, we develop the following eye tracking using STFDEKF. Because the eye 
motion is the high nonlinearity of the likelihood model, it’s very difficult to model human 
eye movement dynamics. In our tracking system, the following nonlinear equations are 
used to model the eye movement dynamics.  

 2
0

1
2

x x vt at= + +  (22) 

 1 0 sin( )k k kx v A tω+ = +�  (23) 

 1 1 cos( )k k k k ka x A tω ω+ += =��  (24) 
 

where, the initial value 0x and 0v  are zero. The acceleration a  follows the sine distribution, 

and a  will be considered process noise ( kv ), respectively 0.08 /kA m s=  and /k rad sω π= .  

The proposed eye tracking experiment is developed in platform of OPEN CV. Our system 
uses a ViewQuest VQ680 video camera to capture human images. The experiment is tested 
on a Pentium III 1.7G CPU with 128MB RAM. Eye tracking based on the proposed method 
can reach 10 frames per second. The format of input video is 352×288. Fig.1 represents the 
eye tracking using STFDEKF algorithm. The Correct Rate of eye tracking is shown in 
Table.1. 
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Fig. 1. Eye tracking using STFDEKF algorithm 

 
 Video 1 (without glasses) Video2 (glasses) Video3(long hair) 
Total Frames 1999 2941 2889 
Tracking Failure 9 16 18 
Correct Rate 99.45% 99.35% 99.4% 
Average Correct Rate 99.4% 

 

Table 1. Result of eye tracking using STFDEKF algorithm 

Correct Rate of eye tracking is defined as in equation (25). 

 Total Frames Tracking FailureCorrect Rate
Total Frames

−
=  (25) 

The following experimental results evaluate the performance of our proposed method and 
other eye tracking methods. 
 

Algorithm Correct rate remark 
Templates Match 99.1% Refer to (Horng et al., 2004) 
Kalman and mean shift algorithm 99.1% Refer to (Zhu et al., 2002) 
EKF tracking algorithm 99%  
STFDEK algorithm in this paper 99.4% Refer to Table.1 

 

Table 2. Comparison of eye tracking algorithms 
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In order to qualitatively gauge performance and discuss resulting issues, we consider using 
the traditional measures of performance: the RMSE (Root Mean Square Error) and MSE 
(Mean Square Error). The simulation results of RMSE and MSE are depicted in Table 3.  
 

Algorithm  RMSE MSE 
Kalman Filter algorithm 0.13155 0.164661 
EKF tracking algorithm 0.1222 0.0904 
STFDEK algorithm in this paper 0.0989 0.0780 

Table 3. RMSE and MSE of eye tracking filtering algorithms 

The results of above experiments indicate that the proposed method has better performance. 
So we can use STFDEK algorithm for eyes tracking. 

4. Conclusion 
This paper proposes a new eye tracking method using strong finite-difference Kalman filter. 
Firstly, strong tracking factor is introduced to modify priori covariance matrix to improve 
the accuracy of the eye tracking algorithm. Secondly, the finite-difference method is 
proposed to replace partial derivatives of nonlinear functions to eye tracking. From above 
deduction, the new strong finite-difference Kalman filter becomes very simple because of 
replacing partial derivatives calculation using finite-difference value. The last experiment 
results show that STFDEKF has more accuracy and covariance estimation, improves the 
robustness of target tracking, and can be used for the high nonlinear stochastic systems such 
as eye tracking.  
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1. Introduction 
The discrete-time model is often used for the system identification. However, the controlled 
plant is a continuous-time system in many cases. In addition, there are some disadvantages 
in the discrete-time model, such as the discrete-time model has a complex representation of 
the continuous-time model parameters, and can’t reflect the structure of the plant. Especially 
for the nonlinear system, if the sampling period is large, system nonlinearity will be 
enlarged, and the nonlinear discrete-time model can’t be identified well. Because of these 
reasons, the method for estimating the parameter of the continuous-time system from the 
sampled I/O data directly has attracted attention. 
Estimation in nonlinear system is very important, because almost all practical systems 
involve nonlinearities. The Unscented Kalman Filter (UKF) is a nonlinear estimation  
method, which propagates mean and covariance information through nonlinear 
transformation. It is accurate, and has superior implementation properties. Plant parameters 
can be estimated based on the UKF like algorithm by defining an augmented state as the 
state and the unknown parameters. As it is well known, the UKF uses sigma points to 
capture the statistics of a Gaussian random variable, instead of calculating the Jacobian 
matrices, and the UKF does not use linear approximation. Furthermore, it does not matter if 
the plant is based on continuous-time model, because the one-step-ahead estimate in 
continuous-time model can be calculated by numerical integration. From these reasons, it is 
possible to estimate the state and the parameters of a continuous-time system by using the 
UKF. 
In order to demonstrate the validity, the Rotary Pendulum is provided to estimate the 
unknown parameter of the continuous-time nonlinear system. For the numerical simulation, 
system parameters have been almost exactly estimated. From the experimental I/O data, 
system parameter has been estimated within one percent Relative Root Squared Error 
(RRSE) by using the UKF like algorithm. 

2. Continuous-time model and discrete-time model 
2.1 Dynamical system 
System is an object in which variables of different kinds interact and produce observable 
signals. As shown in Fig.1, system can be represented by input u(t), output y(t), and 
disturbance ν(t). As a general rule, u(t) and y(t) can be measured possibly, however, ν(t) can 
not be measured usually. 
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Dynamical system is a system whose output depends not only the current input but also 
the past input.  
 
 
 

 
 
 

Fig. 1. Dynamical system 

In general, the dynamical system shown in Fig.1 is represented with n-dimensional state 
variables {x1 , . . . , xn} by a first-order differential equation as follows: 

 

(1) 

where {u1, . . . , ul} is l-dimensional system input signals, and m-dimensional output 

 

(2) 

can be measured. From  

 

(3) 

and vector functions 
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(4) 

eqs.(1) and (2) can be expressed briefly as follows 

 (5) 

 (6) 

x(t) is called state vector, eqs.(1) and (5) are called state equation, and eqs.(2) and (6) are 
called output equations. 
In order to analyze the discrete-time model, f and g are assumed to be linear in section 2.2. 
At that time, eqs.(7) and (8) are used instead of eqs.(5) and (6) 

 (7) 

 (8) 

where A(t) ∈ Rn×n,B(t) ∈ Rn×l,C(t) ∈ Rm×n,D(t) ∈ Rm×l respectively. It is called a time-varying 
linear system if the system is represented by eqs.(7) and (8). When A(t), B(t), C(t), D(t) are 
constant matrices and do not depend on the time variable t, the system 

 (9) 

 (10)

is called a time-invariant linear system. In many cases, D(t) = 0, because phase of a physical 
system always delays in high frequency range. Output eq.(8) can be changed as 

 (11)

Vis-a-vis the linear system, the system which is represented with eqs.(1), (2) or the eqs.(5), 
(6) is called a nonlinear system. 

2.2 Continuous-time model and discrete-time model 
The behavior of a dynamic system evolves over time. The discrete-time model is often used 
for the system identification. However, in many cases the controlled plant is a continuous-
time system, which its descriptive equations are defined for all values of time and the 
system dynamic properties shown by the differential equations. There are some properties 
of continuous-time model, 
1. In the control design, the important parameters are easy to be grasped. 



 Kalman Filter 

 

376 

2. If the physical structure of the plant is known, the mathematical continuous-time model 
can be obtained beforehand. 

The focus in this chapter targets the modeling of continuous-time systems. As for the second 
property, if the differential equations of the continuous-time model can be obtained, the 
identification problem afterwards can be replaced by the parameter estimation problem. 
In many applications, particularly in physical modeling, the design of a discretetime model 
starts from the description of a physical continuous-time model by means of differential 
equations and constraints. Therefore, for this section, the continuous-time model is 
represented as 

 (12)

 (13)

where u ∈ Rm, y ∈ Rl, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n. On the other hand, for performing a 
system by using a digital computer, it has become prerequisite to handle the sampled data. 
Discrete-time model is the mathematical model in which the I/O relation of the sampled 
data is shown by a difference equation. Corresponding to eqs.(14) and (15), the discrete-time 
model can be described by 

 (14)

 (15)

Similarly to the continuous-time model, xk, uk and yk are state variable vector, input and 
output at a time step k respectively. And G ∈ Rn×m and H(=C) ∈ Rl×n are the system matrices 
of the discrete-time model. 
The solution of eq.(14) can be solved as 

 
(16)

where t0 is the initial time. Let tk, k=0, 1, . . ., denote the sampling time. If the input u(t) is a 
constant uk for the sampling interval [tk, tk+1), i.e. 

 

(17)

Then 

 
(18)

can be obtained. Here, assume tk+1 − tk = Δ(const.), the discrete-time system representated as 
follow 
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 (19)

where 

 

(20)

Δ is the sampling period. 
For zero-order hold of the sampling, it is possible to calculate without the approximate 
error. However, if unlimitedly reduces Δ, 

 

(21)

F and G approach to identity matrix and zero matrix, regardless of the elements of A and B. 
Moreover, if the obtained discrete-time model is clear to identity matrix or zero matrix, the 
backward calculation from the discrete-time model to the continuous-time model becomes 
numerically unstable. Therefore, for the discrete-time model, the value of the model 
depends on the sampling period. And it is not limited to represent the dynamics of the 
actual system accurately, though the sampling period be diminished simply. 
In a summary, for the discrete-time model and continuous-time model, there are some 
problems 
1. The discrete-time model does not reflect the structure of the plant. 
2. The discrete-time model has a complex representation of the continuous-time model 

parameters. 
3. Especially for the nonlinear system, if the sampling period is large, system nonlinearity 

will be enlarged, and the nonlinear discrete-time model can’t be identified well. 
Because of these reasons, the method for estimating the parameter of the continuous-time 
system from the sampled I/O data directly has attracted attention. 

3. Unscented Kalman filter 
Estimation in nonlinear system is very important because many practical systems involve 
nonlinearities. The Extended Kalman Filter (EKF) which applies the KF to nonlinear system 
by linearizing all nonlinear models, has become a most widely used method for estimation 
of nonlinear system. However, more than 35 years of experience in the estimation 
community, although the EKF maintains the elegant and computationally efficient recursive 
update form of the KF, it suffers a number of serious limitations. 
1. Only reliable for systems which are almost linear on the time scale of the updates. 
2. Linearization can be applied only if the Jacobian matrix exists. However, this is not 

always the case. 
3. Calculating Jacobian matrices can be a very difficult and error-prone process. 
It means the EKF is difficult to implement, difficult to tune, and the reliability is limited. To 
address the limitations, the Unscented Kalman Filter (UKF) was proposed by Julier and 
Uhlmann in 1996. 
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The UKF is a nonlinear estimation method which propagates mean and covariance 
information of the parameter recursively through nonlinear transformation. As it is well 
known, the UKF is a straightforward extension of the Unscented Transformation (UT) to the 
recursive estimations. It uses sigma points to capture the statistics instead of calculating the 
Jacobian matrices, and the UKF does not use the linear approximation of functions. It is 
accurate, and has superior implementation properties. As a nonlinear estimation method, 
the UKF has been widely applied in nonlinear control applications. 

3.1 Unscented Transformation 
The UT is a nonlinear method for calculating the statistics of a random variable which 
undergoes a nonlinear transformation and builds on the principle that it is easier to 
approximate a PDF( probability distribution function) than to approximate an arbitrary 
nonlinear function. 
The approach is illustrated in Fig.2. And the the principle of the UT is as follows: 
1. Sigma points are chosen from the mean and covariance. 
2. The nonlinear function is applied to each points in turn to yield a cloud of transformed 

points. 
3. The statistics of the transformed points can then be calculated to form an estimate of the 

nonlinearly transformed mean and covariance. 
 
 

 
Fig. 2. The principle of the UT 

Different from other methods, there are two important distinctions of the UT. 
1. The sigma points are chosen deterministically from the statistics of transformation, and 

not drawn at random. 
2. The approximation itself can be interpreted more generally than as probability 

distribution. 

3.2 Calculating sigma points 
As described in section 3.1, the UT method is founded as a nonlinear method to calculate the 
sigma points which are deterministically chosen from the propagated mean and covariance 
through nonlinear transformations. This section describes how to calculate 2n + 1 weighted 
sigma points of the n-dimensional samples, and illustrate the coordinate transformation to 
demonstrate the improved accuracy of the UT. 
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Consider a n-dimensional random variable x through a nonlinear functuon. Assume x has 
mean x  and covariance P. Calculate a set of 2n + 1 weighted sigma points { ; i = 1, 2, . . . , 
2n}, where  ∈ Rn. The first sigma point is 

 (22)

and the other sigma points are calculated using the following general selection scheme: 

 
(23)

 
(24)

 

where κ ∈R is a scaling parameter,  is ith row or column of the matrix square 
root of (n + κ)P, κ scales the third and higher order terms of this set.  If (n + κ) = 3, it is 
possible to match some of the fourth order terms when x is Gaussian. 
The scaled result is a different sigma set, with different higher moments, but with the same 
mean and covariance. The weight is provided to weight the point for controlling some 
aspects of distribution of the sigma points. By convention, let W 0 be the weight on the mean 
point, adjusting the weights as follows: 

 (25)

 (26)

 (27)

 
Calculate the mean: 

 
(28)

and the covariance: 

 

 
 
 
 
 
 
 

(29)
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From the results, the mean and covariance of  are same to them of xk is found. 

3.3 The coordinate transformation problem 
The problem of converting uncertain information between polar and Cartesian coordinate is 
a special case of the general problem for applying a nonlinear projection to a random 
variables. Here, illustrates coordinate transformation to describe the properties of the UT 
and demonstrates the improved accuracy of the UT. 
An example of a coordinate system is to describe polar information (r, θ) returned in its 
local coordinate frme that has to be converted into an (x, y) position in Cartesian 
coordinate frme 

 
(30)

where samples are 1000 polar coordinate range, and standard deviation r = 0.02[m], θ = 
π/12[rad] for the true value . The Fig.3 plots the (r, θ) samles, the 
mean, and the covariance ellipse. The performance of the UT, sigma points 0, . . . , 4 is 
shown in Fig.4. 
One thousand (x, y) samples from the transformation and the statistics calculated though 
the nonlinearization are plotted in the Fig.5. As can be seen, the points lie on a ”banana”-
shaped arc. Fig.6 plots the mean and standard deviation ellipses for the true statistics, and 
the set of sigma points 0, . . . , 4 which have undergone the nonlinear transformation 
by the UT. 
 

 
 

Fig. 3. Polar Coordinate Samples 
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Fig. 4. Sigma Points 

 
 

 
 
 

Fig. 5. Transformed samples 
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Fig. 6. Transformed sigma points 

3.4 Formulation of problem 
Consider a continuous-time nonlinear sysytem, 

 (31)

 (32)

where  is the system state, u(t) ∈ R is the control input, y(t) ∈ R is the system 
output, θ denotes the unknown plant parameters, and ν(t) ∈ R is the measurement noise 
with zero mean and its covariance matrix R. The discrete-time model of the system can be 
represented as: 

 (33)

 (34)

where xk = x(kT), the subscript k is a discrete time, k ∈ {1, . . . ,N −1}, and T is the sampling 
period. An explicit formula of fd is not required, but a calculation procedure such as 
numerical integration is required. Let  , the equations are rearranged as: 

 (35)

 (36)

3.5. UKF algorithm 
Denote an estimate of  at a time step l as . For the general formulation of the UKF, 
the n-dimensional state with mean  and covariance  are approximated by 2n + 1 
weighted sigma points. The index i takes values over {1, ... , n}. 
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The estimation will be performed as fllows: 
1. Initialization of , and R0. 
2. Calculatation of sigma points: 

 (37)

 (38)

 
(39)

 (40)

 
(41)

 (42)

3. Time update: 

 

(43)
 
 

(44)
 
 

(45)
 
 

(46)
 
 

(47)

4. Measurement update: 

 

 

(48)
 

 
(49)

 
(50)

 
(51)

 
(52)

 
(53)

 
(54)
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Summarily, the UKF uses sigma points to capture the mean and covariance of a Gaussian 
random variable, instead of calculating the Jacobian matrices. Plant parameters can be 
estimated based on the UKF like algorithm by augmenting the state with the unknown 
parameters. Furthermore, it does not matter if the estimation is based on continuous-time 
model, because the one-step-ahead estimate in continuous-time model can be calculated by 
numerical integration. From these reasons, it is possible to estimate the state and the 
parameters of a continuous-time system by using the UKF like algorithm. 

4. Numerical example 
In order to demonstrate the effectiveness of the proposed method, the Rotary Pendulum is 
provided to estimate the parameters of the continues-time nonlinear system by using the 
UKF from the sampled I/O data. 
The schematic representation of the Rotary Pendulum system is shown in the Fig.7, where m 
is the pendulum mass, r is the arm length, l denotes half the length of the pendulum. The 
total effective moment of base inertia is Jb. Each of the angle of the pendulum α and the 
angle of the arm φ is measured by the potentiometer. 
 

 
Fig. 7. Schematic Diagram of Rotary Pendulum 

Consider the nonlinear model of this system, the nonlinear equations can be derived by 
Lagrange equations: 

 (55)

 
(56)

Take consider of the torque  as follow: 

 
(57)

where Kg is Gear ratio in motor, Km denotes Motor torque constant, and Rm is Motor Torque 
DC resistance, 
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and rearrange the equations into the state space representation given as: 

 

(58)

where 

 
(59)

 
(60)

The parameters of the plant can be estimated from eq.(58) by using the UKF like algorithm. 
The numerical values of parameters are provided in Tabel.1. 
 

 
 

Table 1. Parameters of the experiment Rotary Pendulum system 

4.1 Numerical simulation result 
Offer the system an input voltage to observe the system output as in Fig.8. The sampling 
period T is 0.008668 seconds, and 1001 sampled I/O data used. 
Assume there is no noise in the system to make the simulations. 
Estimate the augmented state X = [x, θ] of the continuous-time model by using the UKF 
from the sampled I/O data to demonstrate the effectiveness of the UKF, where  

x = is the system state and θ =  is the system parameter. The estimated 
parameters can be seen in Fig.9. 
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Fig. 8. Input and Output of the Rotary Pendulum system 
 

 
Fig. 9. Estimated parameters 

Fig.10 shows the Relative Root Squared Error (RRSE) of the estimate for each sampling time 
which is defined by: 

 
(61)

where *
kX is the true value and  is the estimate at a time step k. The RRSE reduced to 

1.493 × 10−14, an extremely small value, indicated that this method has very high precision. 
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Fig. 10. RRSE of the parameter esimation 

4.2 Experimental result of the actual system 
The above results are the numerical simulation results. In fact, the actual result is most 
important. Therefore, estimate the plant parameter from the experimental I/O data of actual 
system next. 
For the actual experiment, the Rotary Pendulum system is excited by a voltage input signal 
which is plotted in Fig.11, while the pendulum position is measured. Subsequently estimate 
the parameter of the Rotary Pendulum from the collected data. This time, the unknown 
parameter is the length of pendulum l. 
 

 
Fig. 11. Experimental I/O data of the actual system 

First step, estimate the system parameter by using the EKF. In this step, calculate the 
Jacobian matrix, then perform the estimation based on the EKF algorithm by the sampled 
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I/O data. The estimation result based on experimental output is plotted in Fig.12. From the 
plot, as can be seen, the estimated parameter converges to the different value from the true 
value. And the RRSE is about 0.128, it means the low-precision of the estimation based on 
the EKF. 
 

 
Fig. 12. Esimation result based on the experimental I/O data by using the EKF 

Next step, estimate the parameter by using the UKF like algorithm. Fig.13 is the estimated 
parameter. The RRSE of the estimation is less than one percent, about 5.866 × 10−3. 
Comparing the result of these two methods, the high-precision of the estimation based on 
the UKF like algorithm is known. 
 

 
Fig. 13. Esimation result based on the experimental I/O data by using the UKF 
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5. Conclusion 
In this chapter, direct estimation of the continuous-time systems from the sampled I/O data 
by using the UKF like algorithm is paid attention, and the Rotary Pendulum is provided to 
estimate the parameters of the continuous-time nonlinear system for demonstrating the 
validity of the UKF. Through the simulation and the experiment results, we found that, for 
the numerical simulation, system parameters have been almost exactly estimated, and from 
the experimental I/O data, system parameter has been estimated within one percent RRSE 
by using the UKF like algorithm. 
All the simulations were set up under the condition that the initial value is known. The 
estimation of initial states is very important for obtaining the correct estimates of the system 
parameters. However, for the practical plants, the initial state may not be measured because 
there is a dead zone of the sensor. If the initial state is unknown, the covariance of the initial 
state has to be set large, and it leads to low precision of the parameter estimation. Therefore, 
we are to propose a continuous-time model estimation method by using the UKF like 
algorithm, in which the initial state as well as the paramters are estimated, as a future 
research. 
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