
1. Introduction

It is a common fact that Numerical Weather Prediction
(NWP) models exhibit systematic errors in the fore-
casts of near surface weather parameters. This is a
result not only of shortcomings in the physical para-
meterisation but also of the inability of these models to
handle successfully sub-grid phenomena. Furthermore,
predictions covering areas that are not close to grid
points are usually based on interpolations of the results
of the models, a fact which also increases the ‘noise’ in
the final outputs. The 2m-temperature, for example, is
one of the most commonly biased variables, where the
magnitude of this bias depends, among other factors,
on the geographical location and the season.

A first step towards the reduction of these types of
error can be made using ‘classical’ statistical tools, such
as linear regression or moving average correction meth-
ods. However, frequent changes in the versions of
NWP models as well as seasonal alterations lead to
analogous changes in the form of the results, a fact
which, combined with the need for extended series of
data, brings into question the effectiveness of tradi-
tional statistical methods.

One of the most convenient approaches to the above-
mentioned problems is the use of Kalman filtering (see,
for example, Brockwell & Davis 1987; Kalman 1960;
Kalman and Bucy 1961). This technique gives excellent
results in the correction of systematic errors in any
type of prediction, based on the recursive combination
of recent forecasts and observations. The main advan-
tage is the easy adaptation to any changes in the data
being used.

Here we present a simple (one-dimensional) Kalman
filter, for the correction of systematic errors in the pre-
diction of maximum and minimum 2m-temperatures of
the NWP limited area model Skiron (Kallos et al. 1997).
We used only observed temperatures over a restricted
period of seven days. This makes our algorithm conve-
nient enough to be used on any simple PC, even those
employing MS Office Programs (Excel), with minimal
technical support. Such simplicity in no way affects the
credibility of the method. On the contrary, the system-
atic error of the time series almost vanishes, having, at
the same time, acceptable variation intervals.

Applications of this filter to stations at different lati-
tudes and with different topography are presented in
the final section. 

2. Preliminaries

For the convenience of the reader and to make the
paper self-contained we present here some basic
notions of the general Kalman filter theory. For details
we refer to Brockwell & Davis (1987), Homleid (1995),
Kalman (1960), Kalman & Bucy (1961) and Persson
(1991).

Let xt be a vector (the state vector) denoting an
unknown process at time t and yt a known (observable)
relevant vector at the same time. We assume that the
change of the process x from time t-1 to t is given by
the system equation:

xt = Ft⋅⋅xt–1 + wt (1)

and the relation between the observation vector and the
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unknown one is given by the observation (or measure-
ment) equation:

yt = Ht·xt + vt. (2)

Here the coefficient matrices Ft and Ht, which are
called the system matrix and the observation (measure-
ment) matrix respectively, must be determined prior to
the running of the filter. The same holds for the covari-
ance matrices Wt of the random vector wt and Vt of vt.
Moreover, these vectors wt and vt have to follow the
normal distribution with zero mean, must be indepen-
dent, i.e. E(ws·vt)=0 for any s,t∈N, and time indepen-
dent in the sense that E(ws·wt)=0 and E(vs·vt)=0, for 
all s≠t.

Kalman filter theory gives a method for the recursive
estimation of the unknown state vector xt utilising all
the observation values y up to time t. Roughly speak-
ing, the algorithm can be described in the following
way. Based on the vector xt–1 and its covariance matrix
Pt–1 at time t–1, the optimal estimate that we can give
for their values at time t is:

xt/t–1 = Ft·xt–1, (3)

Pt/t–1 = Ft·Pt–1·Ft
T + Wt. (4)

Equations (3) and (4) are also referred to as the predic-
tion equations. As soon as the new observation value yt
becomes known, we calculate the (new) value of x at
time t:

xt = xt/t–1 + Kt·(yt–Ht·xt/t–1), (5)

where 

Kt = Pt/t–1·Ht
T·(Ht·Pt/t–1·Ht

T+Vt)–1 (6)

is the most crucial parameter of the filter, the Kalman
gain. This determines how easily the filter will adjust to
any possible new conditions. Finally, the new value of
the covariance matrix of the unknown state x is given by 

Pt = (I-Kt·Ht)·Pt/t-1. (7)

Equations (5)–(7) are known also as updating equa-
tions. The initial values x0, P0 must be defined before
the running of the filter but they do not seriously affect
the results of the algorithm, since very soon xt and Pt
converge to their ‘true’ values. However, things are dif-
ferent with the covariant matrices Vt and Wt. The way
that they are calculated during the process crucially
affects the final outcome. More precisely, the relation
between them affects the Kalman gain and therefore the
capability of the filter to fit fast at possible new condi-
tions. In particular, large values for the quotients wij/vij
of the elements of W and V respectively, lead to
increased adaptability of the filter. 

3. A one-dimensional Kalman filter for
correcting temperature values

In this section we present a one-dimensional Kalman
filter for the correction of systematic errors of 2m-tem-
perature forecasts by a NWP model. To this end, we
define the measurement vector yt as the difference
between observation and the model forecast and the
state vector xt as the systematic part of this error. We
work, therefore, in a one-dimensional state space.
Concerning the change of x in time we have no solid
evidence to rely on. As a result, we must assume this
change to be random, setting the system coefficient
(transition matrix) as Ft=1. Hence, the system equation
takes the form:

xt = xt-1 + wt . (8)

Analogously, the observation (measurement) equation
is given by: 

yt = xt + vt . (9)

Obviously, wt, vt are here scalar variables of zero mean,
since in a different case their non zero part could also
be included into the systematic error.

The initial value x0 of the systematic error can be
assumed to be 0, unless of course we have different pos-
itive indications of its previous behaviour, and the ini-
tial variance P0 must, at the same time, have a consider-
ably large value (here we propose P0=4), which indi-
cates that we do not really trust our first guess.  

With the previous assumptions our Kalman filter algo-
rithm has the following form:

State space : The space of real numbers R
State vector : xt = the systematic part of the

error of our NWP mode
System equation : xt = xt–1 + wt
Observation

(measurement) : yt = xt + vt
equation

Prediction equations : xt/t–1 = xt–1, Pt/t–1 = Pt–1 + Wt
Updating equations : xt = xt/t–1 + Kt(yt-xt/t–1),

: Kt = 

: Pt = (1-Kt) Pt/t–1

One of the most serious difficulties in Kalman filtering
models, as discussed in the previous section, concerns
the way that the covariance matrices of wt and vt will be
specified. Many authors (e.g. Homleid 1995; Simonsen
1991) consider them to be time independent, thereby
losing the capability of making quicker adjustments to
possible external changes. In our case, where these
matrices reduce to the variances of the scalar variables
wt and vt, we propose the following procedure for their
calculation: 
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We estimate the variance Wt of the system equation and
Vt of the observation equation based on the sample of
the last 7 values of wt=xt-xt–1 and vt=yt–xt respectively. 

More precisely, Wt is calculated as 

The latter is an objective estimator of Wt, since the vari-
able wt follows the normal distribution. Analogously,
Vt is assumed equal to

This time period of seven days has proved to be the
optimal choice in our study for successful correc-
tion and adaptability. However, it is possible to vary
this for different geographic or climatological environ-
ments. 

Based on the algorithm described above, we obtain
as the outcome xt the estimated systematic error at
time t of the NWP model in use. When added to
the prediction of the model for time t+1, this value
gives the final/improved forecast for the parameter in
study:

Improved forecast for time t+1  =  (model outcome for
time t+1) + (filter estimate at time t)

4. Applications 

The Kalman filtering proposed in the previous section
is used by the Hellenic National Meteorological Service
for the correction of forecasts of maximum and mini-
mum 2m-temperature obtained by the NWP model
Skiron for 30 Greek cities. These forecasts are based on
interpolations of the direct outputs of the model on the
five nearest grid points. Since we use as initial data
those of 00:00 UTC, the maximum forecasted temper-
ature is the result of the 36th predicting hour and the
minimum is the lowest forecast value of the 27th, 28th
and 29th hour. 

In Tables 1 and 2 below we present the results of the fil-
ter for the three largest cities in Greece: Athens (Station
16701), Thessaloniki (16622) and Heraklion (16754).
These cover the full latitude range in Greece, and cover
the period from July to December 2000. Because these
cities are all close to the coast, some of the relevant
interpolated grid points lie over the sea. This has
resulted in increased biases, mainly for maximum tem-
perature, which is, naturally, underestimated. 

For each station the tables give the mean errors (biases),
the absolute mean errors, the root mean square errors,
the corresponding standard deviations as well as the
score skills of the proposed Kalman filter with reference
to Skiron’s direct outputs. The latter variable is given by: 

Score Skill = 1– Absolute mean error of Kalman filter
Absolute mean error of SKIRON

Furthermore, the possibility of having a successful
forecast is presented for each station, according to
ECMWF’s standards (successful forecast ⇔ absolute
error less than 2o C).  

Kalman filtering for the correction of near surface temperature forecasts

Table 1. Maximum temperatures

ATHENS THESSALONIKI HERAKLION
Skiron Kalman Skiron Kalman Skiron Kalman

Mean Error (ME) 4.489 –0.106 5.271 –0.067 2.077 –0.086
Absolute Mean Error (AME) 4.499 1.169 5.271 1.345 2.200 1.116
Standard Deviation of Error 1.697 1.590 1.718 1.747 1.504 1.544
Standard Deviation of Abs Error 1.669 1.084 1.718 1.118 1.317 1.070
Root Mean Square Error 4.632 1.538 5.350 1.688 2.483 1.498
Possibility of successful  forecast 0.048 0.719 0.034 0.678 0.483 0.793
Score Skill 0.740 0.745 0.493  

Table 2. Minimum temperatures

ATHENS THESSALONIKI HERAKLION
Skiron Kalman Skiron Kalman Skiron Kalman

Mean Error (ME) 2.333 –0.011 –0.635 0.047 0.740 –0.176
Absolute Mean Error (AME) 2.511 1.370 1.677 1.598 1.687 1.606
Standard Deviation of Error 1.753 1.728 2.499 2.550 2.055 1.945
Standard Deviation of Abs Error 1.487 1.052 1.959 1.988 1.388 1.112
Root Mean Square Error 2.817 1.668 2.497 2.470 2.108 1.885
Possibility of successful  forecast 0.370 0.705 0.614 0.641 0.623 0.610
Score Skill 0.454 0.047 0.048
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Significant corrections are obtained mainly for maxi-
mum temperatures, with relevant score skills of 0.74 for
Athens and Thessaloniki, and 0.49 for Heraklion
(where the corresponding possibilities of successful
forecasts are also satisfactory). The fact that the biases
of the results of the proposed filter are very close to
zero is an additional indication of the accuracy of our
method.

By contrast, the performance of the filter is poorer for
minimum 2m-temperatures. For example, at
Thessaloniki and Heraklion, where the direct outputs
of the Skiron model proved rather successful (mean
errors close to zero), the filter did not significantly
improve the absolute mean errors of the forecasts.
However, the corresponding biases are well reduced
and the possibility of an acceptable prediction remain
in any case greater than 61 %. 
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Figure 1: Observed minimum 2m-temperature in Athens (Station 16701), the corresponding forecasts of the NWP model
Skiron, the improved predictions using the Kalman filter as well as the relevant biases for the period 13 July–13 September 2000.
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Figure 2: Observed maximum 2m-temperature in Thessaloniki (Station 16622), the corresponding forecasts of the NWP model
Skiron, the improved predictions using the Kalman filter, as well as the relevant biases for the period 13 July–13 September 2000.



Figures 1 and 2 show the variation in time of the direct
outputs of the model and the improved forecasts
obtained by the proposed filter, against observations
for the time 13 July to 13 September 2000. The corre-
sponding biases are also presented. 

It is worth noting here that although the main part of
the biases of our NWP model has a standard form
(underestimation of constant magnitude) the proposed
Kalman filter proved better than a 7-day moving aver-
age correction. For example, in the case of the maxi-
mum 2m-temperature at Thessaloniki (station 16622),
the Root Mean Square Error (RMSE) of Kalman was
1.6 when that of the moving average correction calcu-
lated was above 2.0. Similarly, at Athens (station 16701)
the RMSE of Kalman for the minimum 2m-tempera-
ture was again 1.6 and that of the moving average cor-
rection 1.9. Moreover, in both cases the variation inter-
vals of Kalman filtering errors proved significantly
finer. 

5. Conclusions

The results presented in the previous section clearly
show that the performance of the proposed filter is
very successful in cases where moderate to serious sys-
tematic errors are apparent in the direct output of
NWP models. By contrast, if the results of a forecast
model are very close to the observed values, our
method makes only minor adjustments to the mean
absolute error. However, this is to be expected since a
possible absence of standard systematic error seriously
restricts the frame in which any filter of this type could
be applied. 

Given the simplicity of the proposed Kalman filter, as
well as the fact that it can be run on basic PCs, even in
MS-Excel, with simple computer resources, we believe
that it will prove to be a useful tool for forecasters in

helping to eliminate the systematic errors of NWP
models.  
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