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PREFACE

At last a book that hopefully will take the mystery and drudgery out of the g–h,
�–�, g–h–k, �–�–� and Kalman filters and makes them a joy. Many books
written in the past on this subject have been either geared to the tracking filter
specialist or difficult to read. This book covers these filters from very simple
physical and geometric approaches. Extensive, simple and useful design
equations, procedures, and curves are presented. These should permit the reader
to very quickly and simply design tracking filters and determine their
performance with even just a pocket calculator. Many examples are presented
to give the reader insight into the design and performance of these filters.
Extensive homework problems and their solutions are given. These problems
form an integral instructional part of the book through extensive numerical
design examples and through the derivation of very key results stated without
proof in the text, such as the derivation of the equations for the estimation of the
accuracies of the various filters [see Note (1) on page 388]. Covered also in
simple terms is the least-squares filtering problem and the orthonormal
transformation procedures for doing least-squares filtering.

The book is intended for those not familiar with tracking at all as well as for
those familiar with certain areas who could benefit from the physical insight
derived from learning how the various filters are related, and for those who are
specialists in one area of filtering but not familiar with other areas covered. For
example, the book covers in extremely simple physical and geometric terms the
Gram–Schmidt, Givens, and Householder orthonormal transformation proce-
dures for doing the filtering and least-square estimation problem. How these
procedures reduce sensitivity to computer round-off errors is presented. A
simple explanation of both the classical and modified Gram–Schmidt proce-
dures is given. Why the latter is less sensitive to round-off errors is explained in
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physical terms. For the first time the discrete-time orthogonal Legendre
polynomial (DOLP) procedure is related to the voltage-processing procedures.

Important real-world issues such as how to cope with clutter returns,
elimination of redundant target detections (observation-merging or clustering),
editing for inconsistent data, track-start and track-drop rules, and data
association (e.g., the nearest-neighbor approach and track before detection)
are covered in clear terms. The problem of tracking with the very commonly
used chirp waveform (a linear-frequency-modulated waveform) is explained
simply with useful design curves given. Also explained is the important
moving-target detector (MTD) technique for canceling clutter.

The Appendix gives a comparison of the Kalman filter (1960) with the
Swerling filter (1959). This Appendix is written by Peter Swerling. It is time for
him to receive due credit for his contribution to the ‘‘Kalman–Swerling’’ filter.

The book is intended for home study by the practicing engineer as well as for
use in a course on the subject. The author has successfully taught such a course
using the notes that led to this book. The book is also intended as a design
reference book on tracking and estimation due to its extensive design curves,
tables, and useful equations.

It is hoped that engineers, scientists, and mathematicians from a broad range
of disciplines will find the book very useful. In addition to covering and relating
the g–h, �–�, g–h–k, �–�–�, Kalman filters, and the voltage-processing
methods for filtering and least-squares estimation, the use of the voltage-
processing methods for sidelobe canceling and adaptive-array processing are
explained and shown to be the same mathematically as the tracking and
estimated problems. The massively parallel systolic array sidelobe canceler
processor is explained in simple terms. Those engineers, scientists, and
mathematicians who come from a mathematical background should get a good
feel for how the least-squares estimation techniques apply to practical systems
like radars. Explained to them are matched filtering, chirp waveforms, methods
for dealing with clutter, the issue of data association, and the MTD clutter
rejection technique. Those with an understanding from the radar point of view
should find the explanation of the usually very mathematical Gram–Schmidt,
Givens, and Householder voltage-processing (also called square-root) techni-
ques very easy to understand. Introduced to them are the important concepts of
ill-conditioning and computational accuracy issues. The classical Gram–
Schmidt and modified Gram–Schmidt procedures are covered also, as well as
why one gives much more accurate results. Hopefully those engineers,
scientists, and mathematicians who like to read things for their beauty will
find it in the results and relationships given here. The book is primarily intended
to be light reading and to be enjoyed. It is a book for those who need or want to
learn about filtering and estimation but prefer not to plow through difficult
esoteric material and who would rather enjoy the experience. We could have
called it ‘‘The Joy of Filtering.’’

The first part of the text develops the g–h, g–h–k, �–�, �–�–�, and
Kalman filters. Chapter 1 starts with a very easy heuristic development of g–h
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filters for a simple constant-velocity target in ‘‘lineland’’ (one-dimensional
space, in contrast to the more complicated two-dimensional ‘‘flatland’’).
Section 1.2.5 gives the g–h filter, which minimizes the transient error resulting
from a step change in the target velocity. This is the well-known Benedict–
Bordner filter. Section 1.2.6 develops the g–h filter from a completely different,
common-sense, physical point of view, that of least-squares fitting a straight
line to a set of range measurements. This leads to the critically damped (also
called discounted least-squares and fading-memory) filter. Next, several
example designs are given. The author believes that the best way to learn a
subject is through examples, and so numerous examples are given in Section
1.2.7 and in the homework problems at the end of the book.

Section 1.2.9 gives the conditions (on g and h) for a g–h filter to be stable
(these conditions are derived in problem 1.2.9-1). How to initiate tracking with
a g–h filter is covered in Section 1.2.10. A filter (the g–h–k filter) for tracking a
target having a constant acceleration is covered in Section 1.3. Coordinate
selection is covered in Section 1.5.

The Kalman filter is introduced in Chapter 2 and related to the Benedict–
Bordner filter, whose equations are derived from the Kalman filter in Problem
2.4-1. Reasons for using the Kalman filter are discussed in Section 2.2, while
Section 2.3 gives a physical feel for how the Kalman filter works in an optimum
way on the data to give us a best estimate. The Kalman filter is put in matrix
form in Section 2.4, not to impress, but because in this form the Kalman filter
applies way beyond lineland—to multidimensional space.

Section 2.6 gives a very simple derivation of the Kalman filter. It requires
differentiation of a matrix equation. But even if you have never done
differentiation of a matrix equation, you will be able to follow this derivation.
In fact, you will learn how to do matrix differentiation in the process! If
you had this derivation back in 1958 and told the world, it would be your
name filter instead of the Kalman filter. You would have gotten the IEEE
Medal of Honor and $20,000 tax-free and the $340,000 Kyoto Prize,
equivalent to the Nobel Prize but also given to engineers. You would be world
famous.

In Section 2.9 the Singer g–h–k Kalman filter is explained and derived.
Extremely useful g–h–k filter design curves are presented in Section 2.10
together with an example in the text and many more in Problems 2.10-1 through
2.10-17. The issues of the selection of the type of g–h filter is covered in
Section 2.11.

Chapter 3 covers the real-world problem of tracking in clutter. The use of the
track-before-detect retrospective detector is described (Section 3.1.1). Also
covered is the important MTD clutter suppression technique (Section 3.1.2.1).
Issues of eliminating redundant detections by observation merging or clustering
are covered (Section 3.1.2.2) as well as techniques for editing out inconsistent
data (Section 3.1.3), combining clutter suppression with track initiation
(Section 3.1.4), track-start and track-drop rules (Section 3.2), data association
(Section 3.3), and track-while-scan systems (Section 3.4).
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In Section 3.5 a tutorial is given on matched filtering and the very commonly
used chirp waveform. This is followed by a discussion of the range bias error
problem associated with using this waveform and how this bias can be used to
advantage by choosing a chirp waveform that predicts the future—a fortune-
telling radar.

The second part of the book covers least-squares filtering, its power and
voltage-processing approaches. Also, the solution of the least-squares filtering
problem via the use of the DOLP technique is covered and related to voltage-
processing approaches. Another simple derivation of the Kalman filter is
presented and additional properties of the Kalman filter given. Finally, how to
handle nonlinear measurement equations and nonlinear equations of motion are
discussed (the extended Kalman filter).

Chapter 4 starts with a simple formulation of the least-squares estimation
problem and gives its power method solution, which is derived both by simple
differentiation (Section 4.1) and by simple geometry considerations (Section
4.2). This is followed by a very simple explanation of the Gram–Schmidt
voltage-processing (square-root) method for solving the least-squares problem
(Section 4.3). The voltage-processing approach has the advantage of being
much less sensitive to computer round-off errors, with about half as many bits
being required to achieve the same accuracy. The voltage-processing approach
has the advantage of not requiring a matrix inverse, as does the power method.

In Section 4.4, it is shown that the mathematics for the solution of the
tracking least-squares problem is identical to that for the radar and
communications sidelobe canceling and adaptive nulling problems. Further-
more, it is shown how the Gram–Schmidt voltage-processing approach can be
used for the sidelobe canceling and adaptive nulling problem.

Often the accuracy of the measurements of a tracker varies from one time to
another. For this case, in fitting a trajectory to the measurements, one would like
to make the trajectory fit closer to the accurate data. The minimum-variance
least-squares estimate procedure presented in Section 4.5 does this. The more
accurate the measurement, the closer the curve fit is to the measurement.

The fixed-memory polynomial filter is covered in Chapter 5. In Section 5.3
the DOLP approach is applied to the tracking and least-squares problem for
the important cases where the target trajectory or data points (of which there
are a fixed number L þ 1) are approximated by a polynomial fit of some
degree m. This method also has the advantage of not requiring a matrix
inversion (as does the power method of Section 4.1). Also, its solution is
much less sensitive to computer round-off errors, half as many bits being
required by the computer.

The convenient and useful representation of the polynomial fit of degree m in
terms of the target equation motion derivatives (first m derivatives) is given in
Section 5.4. A useful general solution to the DOLP least-squares estimate for a
polynomial fit that is easily solved on a computer is given in Section 5.5.
Sections 5.6 through 5.10 present the variance and bias errors for the least-
squares solution and discusses how to balance these errors. The important
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method of trend removal to lower the variance and bias errors is discussed in
Section 5.11.

In Chapter 5, the least-squares solution is based on the assumption of a fixed
number L þ 1 of measurements. In this case, when a new measurement is made,
the oldest measurement is dropped in order to keep the number measurements
on which the trajectory estimate is based equal to the fixed number L þ 1. In
Chapter 6 we consider the case when a new measurement is made, we no longer
throw away the oldest data. Such a filter is called a growing-memory filter.
Specifically, an mth-degree polynomial is fitted to the data set, which now
grows with time, that is, L increases with time. This filter is shown to lead to the
easy-to-use recursive growing-memory g–h filter used for track initiation in
Section 1.2.10. The recursive g–h–k (m ¼ 2) and g–h–k–l (m ¼ 3) versions of
this filter are also presented. The issues of stability, track initiation, root-mean-
square (rms) error, and bias errors are discussed.

In Chapter 7 the least-squares polynomial fit to the data is given for the case
where the error of the fit is allowed to grow the older the data. In effect, we pay
less and less attention to the data the older it is. This type of filter is called a
fading-memory filter or discounted least-squares filter. This filter is shown to
lead to the useful recursive fading-memory g–h filter of Section 1.2.6 when the
polynomial being fitted to is degree m ¼ 1. Recursive versions of this filter that
apply to the case when the polynomial being fitted has degree m ¼ 2, 3, 4 are
also given. The issues of stability, rms error, track initiation, and equivalence to
the growing-memory filters are also covered.

In Chapter 8 the polynomial description of the target dynamics is given in
terms of a linear vector differential equation. This equation is shown to be very
useful for obtaining the transition matrix for the target dynamics by either
numerical integration or a power series in terms of the matrix coefficient of the
differential equation.

In Chapter 9 the Bayes filter is derived (Problem 9.4-1) and in turn from it
the Kalman filter is again derived (Problem 9.3-1). In Chapters 10 through 14
the voltage least-squares algorithms are revisited. The issues of sensitivity to
computer round-off error in obtaining the inverse of a matrix are elaborated in
Section 10.1. Section 10.2 explains physically why the voltage least-squares
algorithm (square-root processing) reduces the sensitivity to computer round-
off errors. Chapter 11 describes the Givens orthonormal transformation voltage
algorithm. The massively parallel systolic array implementation of the Givens
algorithm is detailed in Section 11.3. This implementation makes use of the
CORDIC algorithm used in the Hewlett-Packard hand calculators for
trigonometric computations.

The Householder orthonormal transformation voltage algorithm is described
in Chapter 12. The Gram–Schmidt orthonormal transformation voltage
algorithm is revisited in Chapter 13, with classical and modified versions
explained in simple terms. These different voltage least-squares algorithms are
compared in Section 14.1 and to QR decomposition in Section 14.2. A recursive
version is developed in Section 14.3. Section 14.4 relates these voltage-
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processing orthonormal transformation methods to the DOLP approach used in
Section 5.3 for obtaining a polynomial fit to data. The two methods are shown
to be essentially identical. The square-root Kalman filter, which is less sensitive
to round-off errors, is discussed in Section 14.5.

Up until now the deterministic part of the target model was assumed to be
time invariant. For example, if a polynomial fit of degree m was used for the
target dynamics, the coefficients of this polynomial fit are constant with time.
Chapter 15 treats the case of time-varying target dynamics.

The Kalman and Bayes filters developed up until now depend on the
observation scheme being linear. This is not always the situation. For example,
if we are measuring the target range R and azimuth angle � but keep track of the
target using the east-north x, y coordinates of the target with a Kalman filter,
then errors in the measurement of R and � are not linearly related to the
resulting error in x and y because

x ¼ R cos � ð1Þ

and

y ¼ R sin � ð2Þ

where � is the target angle measured relative to the x axis. Section 16.2 shows
how to simply handle this situation. Basically what is done is to linearize
Eqs. (1) and (2) by using the first terms of a Taylor expansion of the inverse
equations to (1) and (2) which are

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ð3Þ

� ¼ tan
y

x
ð4Þ

Similarly the equations of motion have to be linear to apply the Kalman–
Bayes filters. Section 16.3 describes how a nonlinear equation of motion can be
linearized, again by using the first term of a Taylor expansion of the nonlinear
equations of motion. The important example of linearization of the nonlinear
observation equations obtained when observing a target in spherical coordinates
(R, �, �) while tracking it in rectangular (x, y, z) coordinates is given. The
example of the linearization of the nonlinear target dynamics equations
obtained when tracking a projectile in the atmosphere is detailed. Atmospheric
drag on the projectile is factored in.

In Chapter 17 the technique for linearizing the nonlinear observation
equations and dynamics target equations in order to apply the recursive Kalman
and Bayes filters is detailed. The application of these linearizations to a
nonlinear problem in order to handle the Kalman filter is called the extended
Kalman filter. It is also the filter Swerling originally developed (without the
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target process noise). The Chapter 16 application of the tracking of a ballistic
projectile through the atmosphere is again used as an example.

The form of the Kalman filter given in Kalman’s original paper is different
from the forms given up until now. In Chapter 18 the form given until now is
related to the form given by Kalman. In addition, some of the fundamental
results given in Kalman’s original paper are summarized here.

ELI BROOKNER

Sudbury, MA
January 1998
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Bayes filter (continued)

nonlinear system, 367–374

Beamformer, 200

Benedict-Bordner filter, 23, 29–33, 43–46, 53,

65, 85–87

Bias error, 25–27, 52–57, 225–232, 238, 251

Bias reduction, 230–232

BMEWS, see Ballistic Missile Early Warning

System

Ceres, 374

CFAR, see Constant false alarm rate

Characteristic equation, 258, 276, problem 10.2-1

Chirp waveform, 132–151, 204

Circuit diagram, 46, 49

Classical Gram-Schmidt (CGS), 174–188,

322–338. See also Gram-Schmidt

orthonormal transformation

Classical weighted least-squares estimate, 204

Clustering, 120–125

Clutter, 111–115, 118

Clutter rejection, 116–127

Clutter suppression, 116–127

Coached detection, 123

Cobra Dane, 10, 11, 135

Coherent processing interval (CPI), 119, 120

Commonsense approach, 14, 17–21, 32–36

Comparison of filters, 105

Compressed pulse, 133

Computer roundoff error, 175, 264–267,

278–282, 295, 296, 334, 340–342

Conditional density estimate, 377

Condition number, 279, 280

Constant acceleration, 25, 145

Constant-coefficient linear differential vector

equation, 254–256

Constant g–h–k, 95. See also g–h–k Filter

Constant false alarm rate (CFAR), 123, 124

Constant-velocity target, 24, 162

Constraint preprocessor, 195, 196

Coordinates, 60–63, 265, 267, 358, 359

CORDIC algorithm, 307–314

complex numbers, 314

rotation, 307–313

vectoring, 307, 311, 312

Corrector equation, 73, 74

Covariance matrix, 59, 73, 74, 200–203

Covariance matrix definition, 59

CPI, see Coherent processing interval

Critically damped g–h filter, 23, 29, 32–46, 50, 53,

86, 87. See also Fading-memory polynomial

filter; g–h Filter

Critically damped g–h–k filter, 52–54, 57–58. See

also Fading-memory polynomial filter;

g–h–k Filter

Desert Storm, 7, 10

Design curves, 31, 33–34, 53–57, 95–104, 147,

149

Design tables, 31, 38–40, 220, 221, 237, 246,

248, 309

Deterministic dynamics, 6, 64

Differentitation of matrix, 82–84

Digital Airport Surveillance Radar (DASR), 4

Dimensionless Fitzgerald parameters, 95–104,

146–151

Discounted least-squares estimate, 36. See also

Critically damped g–h filter; Critically

damped g–h–k filter; Fading-memory

polynomial filter

Discounted least-squares g–h filter, see Critically

damped g–h filter; Fading-memory

polynomial filter

Discrete Kalman filter, 84–88

Discrete-time orthogonal Legendre polynomials

(DOLP), 165, 208–211, 345–353

Dispersive network, 133

Doppler, 116–126, 142

Dot product, 172–173

Downchirp LFM waveform, 146–151

Drag coefficient, 76, 363

Drag constant, 76

Driving noise, 65

Driving noise vector, 70

Dual coordinate system (DCS), 63

Dynamic error, see Bias error

Dynamic model, 6, 64, 69, 70

adaptive, 108, 382

Asquith-Frieland filter, 84–88

constant-coefficient linear differential vector

equation, 254–256

deterministic, 6, 64

discrete Kalman filter, 84–88

general model as sum of exponentials, 258,

259

Kalman filter, 64, 65, 84–94

linear constant-coefficient differential

equation, 253

linear time-invariant system, 6, 51, 64, 85,

87–91, 155, 160, 252–259

linear time-variant system, 354–356

linear time-variant vector differential equation,

355

nonlinear system, 360–366

Singer-Kalman model, 88–94

Taylor expansion for, 355, 356, 360–362

transition matrix for, 70, 90, 252–258. See also
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Transition matrix (main listing)

Dynamic model noise covariance, 73

Dynamics, adjusting to, 108. See also Dynamic

model

Dynamics noise, 65

Editing for inconsistencies, 121

Electronically scanned radar, 9–15, 45, 135

Eliminating clutter, 116–127

Equivalent circuit, 46, 49

Errors measurement, 27–29

Estimate variance, see Variance of estimate

Exact derivation of Kalman filter, 80–84

Expanding-memory polynomial filter, 23, 49–51,

57, 86, 233–238. See also Fixed memory

polynomial filter

bias error, 25–27, 52, 238

g–h filter, 47–51, 235, 236

g–h–k filter, 57, 58, 235, 236

recursive form, 48–50, 234–236

stability, 47, 236

track initiation of, 236

track initiation, use for, 49–51, 56, 57,

248–251

variance reduction factors, 237

Extended Kalman filter, 153, 367–374

Eyeball fit, 33

FAA, 119

F orthonormal transformation, 178–188,

267–275, 297, 321, 322, 326, 328, 350–353

Fading-memory g–h filter, see Critically damped

g–h filter; Fading-memory polynomial filter

Fading-memory g–h–k filter, see Critically

damped g–h–k filter; Fading-memory

polynomial filter

Fading-memory polynomial filter, 23, 32–43, 53.

See also Critically damped g–h filter;

Critically damped g–h–k filter; g–h filter;

g–h–k filter; Kalman filters

balancing errors, 251

bias error, 251

bias reduction, 230–232

comparison to fixed-memory polynomial filter,

245–248

Laguerre polynomial fit, 165, 166, 240–244

orthogonal polynomial fit, 165, 166, 240–

244

recursive form, 242–244

scaled state vector VRF, 244–245

stability, 244

track initiation, 248–251

variance of estimate, 244–245

variance reduction factor, 244–245

False-alarm probability, 111–115

Fan-beam radar, 3–8

Feedback for constant false alarm rate control,

123, 124

Feedback form of g–h filter, problems, 1.2.1-1,

1.2.6-5

Filtered error, 99–101

Filtered estimate, 20

Filtered estimate, definition, 21

Filtering equation, 20, 72

Filtering problem, 22

Final-value theorem, problem 1.2.6-4

Firefinder AN/TPQ–36, 13, 14

Firefinder AN/TPQ–37, 13, 14

Firm tracks, 130

Fitzgerald dimensionless design parameters,

95–104, 146–151

Fixed-memory polynomial filter, 205–238. See

also Expanding-memory polynomial filter

balancing errors, 229, 230

bias error, 225–229

bias reduction, 230–232

DOLP fit, 208–212

explicit solution in matrix from, 214–217

Legendre polynomial fit, 208–212

nonorthogonal polynomial fit, 164, 165

orthogonal polynomial fit, 208–212

scaled state vector, 214

trend removal, 230–232

variance of estimate, 217–225

variance of estimate, simple expressions, 224,

225

Gauss, 202, 374, 376

Gauss elimination form, 181, 182, 185, 193, 295,

328

Gaussian distribution, 201, 377

GBR, 12

Geometric derivation of LSE, 167–174

g–h Filter, 14, 64–75, 105, 235, 236

a–b, 8, 23

ARTS III filter, 84, 85

Asquith-Friedland filter, 84–88

balancing errors, 27–29

Bayes filter, 23

Benedict-Bordner, derivation, problem 2.4-1

Benedict-Bordner design curves, 32–34

Benedict-Bordner filter, 23, 29–32, 43–46,

85–87

Benedict-Bordner filter design table, 31

bias error, 25–27

bias error, derivation, problems 1.2.4.3-1,

1.2.6-4

circuit diagram, 46, 49
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g–h Filter (continued)

commonsense approach, 14, 17–21, 32–36

comparison of filters, 105

coordinates, 60–63, 266

corrector equation, 73

critically damped g–h filter, 23, 29, 32–46, 50,

53, 86, 87. See also Fading-memory

polynomial filter (main listing)

critically damped design curves, 41–43

critically damped design table, 38–40

critically damped examples, 40–46

critically damped filter poles, 37, problem

1.2.6-1

derivation of, 14, 17–21, 32–36

design curves, 32–34, 41–43

design tables, 31, 38–40

deterministic dynamic model, 6, 64

discounted least-squares estimate, 36

discounted least-squares g–h filter, 23. See also

Critically damped g–h filter

discrete Kalman filter, 84–88

drag coefficient, 76, 363

driving noise, 65

dynamic error, see Bias error

dynamic model noise covariance, 73

dynamics noise, 65

equivalent circuit, 46, 49

error measurement, 27–29

examples, 40–46

expanding memory, 23

expanding-memory polynomial filter, 23,

49–51, 86. See also Expanding-memory

polynomial filter (main listing)

eyeball fit, 33

fading-memory polynomial filter, 23, 37. See

also Fading-memory polynomial filter (main

listing)

feedback form, problems, 1.2.1-1, 1.2.6-5

filtered estimate, 20, 21

filtered estimate definition, 20

filtering equations, 20

growing-memory filter, 23, 49. See also

Expanding-memory polynomial filters

heuristic derivation, 14, 17–21

jerk, 29, 236

Kalman filter, 23, 29, 64–75

Kalman filter, steady state solution, problem

2.4-1 to 2.4-3

kill probability, 106

lag error, see Bias error

least-squares estimate, 32–36

least-squares filter (LSF), 23

lumped filter, 23

matrix form notation, 69–77

measurement error, 27–29

memory, 105

minimization of transient, 29–32

missed detections, 109

model noise, 65

multidimensional tracking, 59, 75

noise amplification factor, see Variance

reduction factor

noise ratio, see Variance reduction factor

observation error, 71

observation matrix, 71. See also Observation

matrix (main listing)

observation noise covariance, 73

optimum g–h filter, 29

plant noise, 65

polar coordinates, 59–62

poles location, 37

poles location, derivation, problem 1.2.6-1

polynomial filter, 23, 49

prediction equation, 21

prediction estimate, 21

predictor equation, 72, 74

process noise, 65

random maneuvering, 77

random-walk velocity, 64

R, y, 59–62

selection of tracking filter, 104–110

smoothed estimate definition, 21

stability conditions, 47

stability conditions, derivation, problem

1.2.9-1

steady-state, 24, 25, 50

systematic error, see Bias error

system dynamics, 64

system noise, 65

tables, 31, 38–40

Taylor expansion, 24

track initiation, 47–51

tracking error, see Variance reduction factor;

Variance

tracking-filter equations, 21

transient error, 29, problem 1.2.6-4

transition equations, 21

truncation error, see Bias error

two-point extrapolator, 105

two-state Kalman filter, 64–75

update equations, 20, 21

variance (VAR), 27–29, 50

variance reduction factor (VRF), 27–29, 41,

problem 1.2.6-2

variance reduction factor (VRF), derivation of,

problem 1.2.4.4-1

variance reduction ratio, see Variance

reduction factor
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Wiener filter, 23, 105

window, 107

Z-transform, 37, problems 1.2.6-1 to 1.2.6-4

g–h–k Filter, 38, 51–59, 235, 236

a–b–g filter, 8, 52

Benedict-Bordner design curves, 55–57

Benedict-Bordner design tables, 38–40

Benedict-Bordner filter, 53

bias error, 52–57

constant g–h–k, 95

critically damped g–h–k filter, 52–54, 57–58

design curves, 53–57, 95–104, 147, 149

dimensionless Fitzgerald parameters, 95–104,

146–151

discounted least-squares g–h–k filter, see

Fading-memory polynomial filter

expanding-memory polynomial filter, 57. See

also Expanding-memory polynomial filter

(main listing)

fading-memory filter, see Critically damped

g–h–k filter; Fading-memory polynomial

filter (main listings)

filtered error, 99–101

Fitzgerald dimensionless parameters, 95–104,

146–151

growing-memory filter, see Expanding-memory

polynomial filter

jerk, 53, 54

Kalman filter, 53

multidimensional tracking, 59

optimum g–h–k design curves, 55–57

optimum g–h–k design table, 38–40

optimum g–h–k filter, 29, 38–40, 55–57, 77

polar coordinates, 59–62

prediction equations, 51

prediction error, 98, 100, 101

Simpson filter, 53

Singer g–h–k filter, 95–104, 146–151

Singer-Kalman filter, 95–104, 146–151

smoothing, 102–104

steady-state, 95–104, 146–151

steady-state Kalman filter, 53

table, 38–40

track initiation, 57–58

track update equations, 51

transient error, 53

transition equations, 51, 69, 74. See also

Transition matrix

transition matrix, 90, 156. See also Transition

matrix (main listing)

variance reduction factor, 52. See also

Variance reduction factor (main listing)

Givens orthonormal transformation, 181,

283–317, 328–331, 339–345

basic transformation, 283–295

comparison to Householder, 315–317,

328–331, 333, 340

computation advantage, 175, 278–280

example, 295–298, 302–305

Legendre polynomial fit equivalence, 345–353

QR decomposition, 342, 343

recursive form, 343–345

sequential algorithm, 343–345

systolic array for, 298–314

GPS–22, 8

Gram-Schmidt orthonormal transformation,

174–188, 322–345

circuit diagrams, 332, 333, 337, 338

classical Gram-Schmidt (CGS), 174–188,

322–338

comparison to Givens and Householder,

328–331, 339, 340

computation advantage, 175, 278–282, 334,

340–342

for random variables, 378

geometrical introduction to, 174–188

Legendre polynomial fit equivalence, 345–353

modified Gram–Schmidt (MGS), 334–338

QR decomposition, 342, 343

recursive form, 343–345

sequential algorithm, 343–345

Ground-based intercontinental ballistic missile

(ICBM) systems, 63

Growing-memory filters, 23, 233. See also

Expanding-memory polynomial filters

Handed off, 151

HAWK, 7, 8, 13, 16

Heuristic derivation, 14, 17–21

High Performance Precision Approach Radar

(HiPAR), 8, 9

Householder orthonormal transformation,

315–321, 339–345

basic transformation, 315–321

comparison to Givens, 315–317, 328–331,

339, 340

comparison to Gram-Schmidt, 328–331, 339,

340

Legendre polynomial fit equivalence, 345–353

QR decomposition, 342, 343

recursive form, 343–345

reflection transformation, 317–319

sequential algorithm, 343–345

Hyperspace, 172–173

Hypothesis testing, 129

ICBM, see Intercontinental ballistic missile

Idempotent matrix, 171
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Identify matrix, 171

Innovation, 382

Integrated Automatic Detection and Tracking

(IADT), 60

Intercontinental ballistic missile (ICBM), 10,

67

Intermediate-range ballistic missile (IRBM),

66, 67

IRBM, see Intermediate-range ballistic missile

Jerk, 29, 53, 54, 236

Joint probabilistic data association (JPDA), 129

Kalman, xiii

Kalman filter, 8, 10, 23, 29, 53, 64–75, 105, 262,

367–387

adaptive, 108, 382

approximation to, table lookup, 84, 85

ARTS III filter, 84, 85

Asquith-Friedland filter, 84–88

atmospheric drag, 75

autocorrelated acceleration, 89

Benedict-Bordner, 65, 85–87

Benedict-Bordner design curves, 55–57

Benedict-Bordner design table, 38–40

bias error, 382. See also Bias error (main

listing)

comparison with Swerling filter, 383–387

conditional density estimate, 377

constant g–h–k, 95–104, 146–151

corrector equation, 73, 74

covariance, 72–74. See also Variance of

estimate

covarianc matrix, 74. See also Variance of

estimate

design curves, 55–57, 95–104, 147, 149

dimensionless Fitzgerald parameters, 95–104,

146–151

discrete Kalman filter, see Asquith-Friedland

filter

driving noise, 65

driving noise vector, 70

dynamic model, 64, 65, 70, 85, 88–94. See also

Dynamic model (main listing)

dynamic model noise covariance, 73, 74, 76,

77, 87, 90, 91

Dynamics noise, 65

equations

matrix form, 69–77, 262, 263, 381

original form, 380

exact derivation, 80–84

extended Kalman filter, 367–374

filtered error, 99, 100, 101

filtering equation, 72, 74, 262, 381

Fitzgerald dimensionless parameters, 95–104,

146–151

g–h filter, 64–75

Gram-Schmidt orthogonalization, 378

handover, 67

innovation, 382

Kalman filtering equation, 72, 74, 262, 380,

381

loss function, 377

maneuver, 107, 108. See also Random

maneuvering

matrix form notation, 69–77

maximum likelihood estimate, 262

minimum-variance equation, 77

missed detections, 109

model noise, 65

multidimensional tracking, 59, 75, 358, 359,

363–374

multistate, 75

nonlinear system, 367–374

observation error, 71

observation matrix, see Observation matrix

(main listing)

observation noise covariance, 73

optimum g–h–k design curves, 55–57

optimum g–h–k filter, 29, 38–40, 53, 55–57

optimum g–h–k table, 38–40

original form, 376–381

plant noise, 65

prediction error, 98, 100, 101

predictor equation, 72, 74, 262, 380, 381

process noise, 65

properties of, 68

Q matrix, 73, 74, 76, 77, 87, 90, 91, 380, 381

random maneuvering, 64, 77, 85, 88–90, 107,

108

random-walk velocity, 64

reasons for using, 66–67

residual, 107, 108, 382

selection of tracking filter, 104–110

signal-to-noise ratio (SNR), 67

simplified, 105, 106

Singer g–h–k filter, 88–104, 146–151

Singer–Kalman filter, 88–104, 146–151

smoothing, 102–104

state vector, 70, 75, 89, 155–158, 162, 232,

254, 359, 365, 368–374. See also Scaled

state vector (main listing)

steady-state, 53, 55–57, 65, 66, 146–151,

problems 2.4-1, 2.4-2, and 2.4-3

system dynamics, 64, 65, 84–94. See also

dynamic model (main listing)

system noise, 65

table lookup of approximation, 84
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target dynamics equation, 64, 92–94. See also

Dynamic model (main listing)

target dynamics model, 64, 65, 70, 85, 88–94.

See also Dynamic model (main listing)

three-state, 29, 38–40, 53, 55–57, 88–94,

95–104, 146, 151

tracking a ballistic target, 75

transition matrix, 70, 90. See also Transition

matrix (main listing)

two-state, 64–75

weighted least-squares error estimate, 79,

81–83

weight equation, 74

white-noise acceleration forcing term, 89

white-noise maneuver excitation vector, 90

Kill probability, 106

Lag error, see Bias error

Laguerre polynomial fit, 165, 166, 240–244

Launch sites, 10

Least-squares filter (LSF), 23, 32–36. See also

Least-squares estimation

Least-squares estimation (LSE), 23, 32–36,

155–374

adaptive nulling, 188–200

back-substitution method, 181, 185, 269–270

classical Gram-Schmidt, 174–188, 322–333

classical weighted least-squares estimate,

200–204

computation problems, 264–267, 278–282,

295–297, 340–342, 392–334

Gauss elimination, 181, 182, 185, 193

Givens transformation, 181, 283–314, 339–345

Gram-Schmidt method, 174–188, 322–345

Householder transformation, 315–321,

339–345

minimum variance estimate, 200–204

modified Gram–Schmidt, 333–338

nonorthogonal polynomial fit, 206–208

orthonormal transformation, 174–200,

264–354. See also Orthonormal

transformation (main listing)

polynomial fit, 164, 165, 212–214. See also

Expanding-memory polynomial filter;

Fading-memory polynomial filter; Fixed-

memory polynomial filter; Nonorthogonal

polynomial fit

power method, 193

quasi-weighted, 202

square-root metho, 165, 174–188, 264–354.

See also Orthonormal transformation (main

listing)

voltage-processing method, 165, 174–188,

264–353. See also Orthonormal

transformation (main listing)

weighted, 36, 78–82, 200–204, 262

Legendre polynomial fit, 165, 208–212

Equivalence to voltage processing methods,

345–353

Laguerre polynomial fit, 165, 166, 208–212,

240–244

LFM, see Linear frequency modulation

Limited electronically scanned, 13

Limited-scan, 14

Linear constant-coefficient differential equation,

253–256

Linear frequency modulation (LFM), 132–151

Linear time-invariant equations, 6, 51, 64, 85,

87–91, 155, 160, 252–259

Linear time-variant system, 354–356

Linear time-variant vector differential equation,

355

Linearization, 357–374

Lineland, 6

Lognormal clutter, 111–115

Loss function, 377

Low Altitude Simultaneous HAWK Engagement

(LASHE), 16

LSE, see Least-squares estimation

Least-squares estimation (LSE) nonorthogonal

polynomial fit, 206–208

Lumped filter, 23

m0-Dimensional space, 168, 184–187, 274, 326

Maneuver, 107, 108, See also Random

maneuvering

Matched filter, 137

Matched receiver, 203

Matrix, 82, 155–374

augmented, 185, 187, 292, 315, 316, 319–321,

323, 325–329, 334, 342–344

Bayes filter in matrix form, 261, 263, 357–

374

characteristic equation, 258, 276, problem

10.2-1

covariance, 59, 73, 74, 200–203

diagonal, 171, 201–203, 325–328, 333

differentiation of, 82–84

dynamics, 70, 71. See also Dynamic model

(main listing)

F, 178–188, 267–275, 297, 322, 324, 326, 328,

350–353

filtered estimate, 72, 74, 261, 262, 369, 370,

373

idempotent, 171

identity, 171

inverse, 81, 157, 159

inversion lemma, 83, 262, problem 9.3-1
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Matrix (continued)

Kalman filter in matrix form, 69–77, 262, 263,

357–382

measurement, 71, 75, 76, 155, 157, 158,

370–372

nonnegative definite, 201

observation, see Observation matrix (main

listing)

orthogonal, 322–324

orthonormal, 172. See also Transformation,

orthonormal

orthonormal transformation, 155–374. See also

Transformation, orthonormal

prediction estimate, 70, 72, 74, 75

projection, 171, 172

pseudoinverse, 169, 170

Q, see Q Matrix (main listing)

Q0, 322–338

R, see R Matrix (main listing)

R0, 325, 327, 329, 330, 325–337

semidefinite, 201

singular, 265, 266, 341, 382

smoothed estimate, 372–374

Swerling filter in matrix form, 357–374

T, 158–164, 167

T 0, 268, 296

T0, 185, 187, 292, 301, 314–316, 319–321, 323,

325–329, 334, 342–344

T 0
0, 292, 321, 328

transformation, orthonormal, 155–374. See

also Orthonormal transformation (main

listing)

Givens, 181, 283–317, 328–331, 339–345

Gram–Schmidt, 174–188, 322–345

classical, 174–188, 322–338

modified, 334–338

Householder, 315–321, 339–345

transition, see Transition matrix (main listing)

transition-observation, 158–164, 167–174,

179, 180, 183–188, 267–278, 283, 291–298,

302, 322, 329, 340, 341, 346–353

transpose of, 59

U, see U matrix (main listing)

U 0, 327, 328, 333

upper triangular, see U, U0, R, and R0 matrices

upper triangular, inversion of, 351, problem

1.4-1

Matrix differentiation, 82–84

Matrix form notation, 69–77

Maximum-likelihood estimate, 201, 262

Measurement error, see Observation error

Measurement matrix, 71, 75, 76, 155, 158,

370–372

Memory, 105

Minimization of transient error, 29–32

Minimum-variance equation, 77–84, 200–203,

262

Minimum-variance estimate, 200–204

Mismatched filter, 137

Mismatched receiver, 203
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PART I

TRACKING, PREDICTION, AND
SMOOTHING BASICS

In the first part of this book the mystery is taken out of the Kalman, �–�, g–h,
�–�–� and g–h–k filters. We will analyze these filters in simple physical terms
rather than in difficult mathematical terms. First the �–� and g–h filters are
introduced, followed by track initiation, the �–�–� and g–h–k filters, coordinate
selection, the Kalman filter, ill-conditioning, a summary of examples from the
literature, tracking in clutter, track-start and track-drop rules, data association,
and finally tracking with chirp waveforms.
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1
g–h AND g–h–k FILTERS

1.1 WHY TRACKING AND PREDICTION ARE NEEDED IN A
RADAR

Let us first start by indicating why tracking and prediction are needed in a radar.
Assume a fan-beam surveillance radar such as shown in Figure 1.1-1. For such
a radar the fan beam rotates continually through 360�, typically with a period of
10 sec. Such a radar provides two-dimensional information about a target. The
first dimension is the target range (i.e., the time it takes for a transmitted pulse
to go from the transmitter to the target and back); the second dimension is the
azimuth of the target, which is determined from the azimuth angle (see Figure
1.1-1) the fan beam is pointing at when the target is detected [1]. Figures 1.1-2
through 1.1-6 show examples of fan-beam radars.

Assume that at time t ¼ t1 the radar is pointing at scan angle � and two
targets are detected at ranges R1 and R2; see Figure 1.1-7. Assume that on the
next scan at time t ¼ t1 þ T (i.e., t1 þ 10 see), again two targets are detected;
see Figure 1.1-7. The question arises as to whether these two targets detected on
the second scan are the same two targets or two new targets. The answer to this
question is important for civilian air traffic control radars and for military
radars. In the case of the air traffic control radar, correct knowledge of the
number of targets present is important in preventing target collisions. In the
case of the military radar it is important for properly assessing the number of
targets in a threat and for target interception.

Assume two echoes are detected on the second scan. Let us assume we
correctly determine these two echoes are from the same two targets as observed
on the first scan. The question then arises as to how to achieve the proper
association of the echo from target 1 on the second scan with the echo from
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Figure 1.1-1 Example of fan-beam surveillance radar.

Figure 1.1-2 New combined Department of Defense (DOD) and Federal Aviation
Administration (FAA) S Band fan-beam track-while-scan Digital Airport Surveillance
Radar (DASR) ASR-11. This primary system uses a 17-kW peak-power solid-state
‘‘bottle’’ transmitter. Mounted on top of ASR-11 primary radar antenna is L-band open-
array rectangular antenna of colocated Monopulse Secondary Surveillance Radar
(MSSR). Up to 200 of these systems to be emplaced around the United States. (Photo
courtesy of Raytheon Company.)
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target 1 on the first scan and correspondingly the echo of target 2 on the second
scan with that of target 2 on the first scan.

If an incorrect association is made, then an incorrect velocity is attached to a
given target. For example, if the echo from target 1 on the second scan is
associated with the echo from target 2 of the first scan, then target 2 is
concluded to have a much faster velocity than it actually has. For the air traffic
control radar this error in the target’s speed could possibly lead to an aircraft
collision; for a military radar, a missed target interception could occur.

The chances of incorrect association could be greatly reduced if we could
accurately predict ahead of time where the echoes of targets 1 and 2 are to be
expected on the second scan. Such a prediction is easily made if we had an
estimate of the velocity and position of targets 1 and 2 at the time of the first
scan. Then we could predict the distance target 1 would move during the scan-
to-scan period and as a result have an estimate of the target’s future position.
Assume this prediction was done for target 1 and the position at which target 1
is expected at scan 2 is indicated by the vertical dashed line in Figure 1.1-7.
Because the exact velocity and position of the target are not known at the time
of the first scan, this prediction is not exact. If the inaccuracy of this prediction
is known, we can set up a � 3� (or � 2�) window about the expected value,
where � is the root-mean-square (rms), or equivalently, the standard deviation
of the sum of the prediction plus the rms of the range measurement. This
window is defined by the pair of vertical solid lines straddling the expected
position. If an echo is detected in this window for target 1 on the second scan,

Figure 1.1-3 Fan-beam track-while-scan S-band and X-band radar antennas emplaced
on tower at Prince William Sound Alaska (S-band antenna on left). These radars are part
of the Valdez shore-based Vessel Traffic System (VTS). (Photo courtesy of Raytheon
Company.)
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then with high probability it will be the echo from target 1. Similarly, a � 3�
window is set for target 2 at the time of the second scan; see Figure 1.1-7.

For simplicity assume we have a one-dimensional world. In contrast to a
term you may have already heard, ‘‘flatland’’, this is called ‘‘linland’’. We
assume a target moving radially away or toward the radar, with xn representing
the slant range to the target at time n. In addition, for further simplicity we
assume the target’s velocity is constant; then the prediction of the target
position (range) and velocity at the second scan can be made using the
following simple target equations of motion:

xnþ1 ¼ xn þ T _xn ð1:1-1aÞ
_xnþ1 ¼ _xn ð1:1-1bÞ

where xn is the target range at scan n; _xn is the target velocity at scan n, and T
the scan-to-scan period. These equations of motion are called the system
dynamic model. We shall see later, once we understand the above simple case,

Figure 1.1-4 Fan-beam track-while-scan shipboard AN=SPS-49 radar [3]. Two
hundred ten radars have been manufactured. (Photo courtesy of Raytheon Company.)
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Figure 1.1-5 L-band fan-beam track-while-scan Pulse Acquisition Radar of HAWK
system, which is used by 17 U.S. allied countries and was successfully used during
Desert Storm. Over 300 Hawk systems have been manufactured. (Photo courtesy of
Raytheon Company.)

Figure 1.1-6 New fan-beam track-while-scan L-band airport surveillance radar ASR-
23SS consisting of dual-beam cosecant squared antenna shown being enclosed inside
50-ft radome in Salahah, Oman. This primary radar uses a 25-kW peak-power solid-
state ‘‘bottle’’ transmitter. Mounted on top of primary radar antenna is open-array
rectangular antenna of colocated MSSR. This system is also being deployed in Hong
Kong, India, The People’s Republic of China, Brazil, Taiwan, and Australia.
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that we can easily extend our results to the real, multidimensional world where
we have changing velocity targets.

The �–�, �–�–�, and Kalman tracking algorithms described in this book are
used to obtain running estimates of xn and _xn, which in turn allows us to do the
association described above. In addition, the prediction capabilities of these
filters are used to prevent collisions in commercial and military air traffic
control applications. Such filter predictions also aid in intercepting targets in
defensive military situations.

The fan-beam ASR-11 Airport Surveillance Radar (ASR) in Figure 1.1-2 is
an example of a commercial air traffic control radar. The fan-beam marine radar
of Figure 1.1-3 is used for tracking ships and for collision avoidance. These two
fan-beam radars and those of the AN/SPS-49, HAWK Pulse Acquisition Radar
(PAR), and ASR-23SS radars of Figures 1.1-4 to 1.1-6 are all examples of
radars that do target tracking while the radar antenna rotates at a constant rate
doing target search [1]. These are called track-while-scan (TWS) radars. The
tracking algorithms are also used for precision guidance of aircraft onto the
runway during final approach (such guidance especially needed during bad
weather). An example of such a radar is the GPS-22 High Performance
Precision Approach Radar (HiPAR) of Figure 1.1-8 [1–4]. This radar uses
electronic scanning of the radar beam over a limited angle (20� in azimuth,

Figure 1.1-7 Tracking problem.
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Figure 1.1-8 Limited-scan, electronically scanned phased-array AN/GPS-22 HiPAR.
Used for guiding aircraft during landing under conditions of poor visibility [1–3]. Sixty
systems deployed around the world [137]. (Photo courtesy of Raytheon Company.)

Figure 1.1-9 Multifunction PATRIOT electronically scanned phased-array radar used
to do dedicated track on many targets while doing search on time-shared basis [1–3].
One hundred seventy-three systems built each with about 5000 radiating elements for
front and back faces for a total of about 1.7 million elements [137]. (Photo courtesy of
Raytheon Company.)
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8� in elevation) instead of mechanical scanning [1–4]. An example of a wide-
angle electronically scanned beam radar used for air defense and enemy target
intercept is the PATRIOT radar of Figure 1.1-9 used successfully during Desert
Storm for the intercept of SCUD missiles. Another example of such a radar is
the AEGIS wide-angle electronically scanned radar of Figure 1.1-10.

The Kalman tracking algorithms discussed in this book are used to
accurately predict where ballistic targets such as intercontinental ballistic
missiles (ICBMs) will impact and also for determining their launch sites (what
country and silo field). Examples of such radars are the upgraded wide-angle
electronically steered Ballistic Missile Early Warning System (BMEWS) and
the Cobra Dane radars of Figures 1.1-11 and 1.1-12 [1–3]. Another such wide-
angle electronically steered radar is the tactical ground based 25, 000-element
X-band solid state active array radar system called Theater High Altitude Area

Figure 1.1-10 Multifunction shipboard AEGIS electronically scanned phased-array
radar used to track many targets while also doing search on a time-shared basis. [1, 3].
Two hundred thirty-four array faces built each with about 4000 radiating elements and
phase shifters [137]. (Photo courtesy of Raytheon Company.)
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Figure 1.1-11 Upgrade electronically steered phased-array BMEWS in Thule,
Greenland [1]. (Photo courtesy of Raytheon Company.)

Figure 1.1-12 Multifunction electronically steered Cobra Dane phased-array radar (in
Shemya, Alaska). Used to track many targets while doing search on a time-shared basis
[1, 3]. (Photo by Eli Brookner.)
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Defense (THAAD; formerly called GBR) system used to detect, track, and
intercept, at longer ranges than the PATRIOT, missiles like the SCUD; see
Figure 1.1-13 [136, 137]. Still another is the Pave Paws radar used to track
satellites and to warn of an attack by submarine-launched ballistic missiles; see
Figure 1.1-14 [1–3].

Figure 1.1-13 A 25,000-element X-band MMIC (monolithic microwave integrated
circuit) array for Theater High Altitude Area Defense (THAAD; formerly GBR) [136,
137]. (Photo courtesy of Raytheon Company.)

Figure 1.1-14 Multifunction electronically steered two-faced Pave Paws solid-state,
phase-steered, phased-array radar [1–3]. (Photo by Eli Brookner.)
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Two limited-scan electronically steered arrays that use the algorithms
discussed in this book for the determination of artillery and mortar launch sites
are the Firefinder AN=TPQ-36 and AN=TPQ-37 radars of Figures 1.1-15 and
1.1-16 [1]. An air and surface–ship surveillance radar that scans its beam
electronically in only the azimuth direction to locate and track targets is the
Relocatable Over-the-Horizon Radar (ROTHR) of Figure 1.1-17 [1].

All of the above radars do target search while doing target track. Some
radars do dedicated target track. An example of such a radar is the TARTAR
AN=SPG-51 dish antenna of Figure 1.1-18, which mechanically slews a
pencil beam dedicated to tracking one enemy target at a time for missile
interception. Two other examples of dedicated pencil beam trackers are the
HAWK and NATO SEASPARROW tracker-illuminators; see Figures 1.1-19
and 1.1-20.

Figure 1.1-15 Long-range limited electronically scanned (phase–phase), phased-array
artillery locating Firefinder AN=TPQ-37 radar [1]. One hundred two have been built and
it is still in production [137]. (Photo courtesy of Hughes Aircraft.)
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1.2 g–h FILTERS

1.2.1 Simple Heuristic Derivation of g–h Tracking and Prediction
Equations

Equation (1.1-1) enables us to predict forward from time n to time n þ 1. We
still need to show how to improve our estimate of the target position and
velocity after an observation is made of the target position at some time n and at
successive times. Assume for the moment we have an estimate for the target
position and velocity at time n � 1. (Later we shall show how we get our initial
estimates for the target position and velocity.)

Assume the target is estimated to have a velocity at time n � 1 of 200 ft=sec.
Let the scan-to-scan period T for the radar be 10 sec. Using (1.1-a) we estimate
the target to be (200 ft=sec) (10 sec) ¼ 2000 ft further away at time n than it was
at time n � 1. This is the position xn indicated in Figure 1.2-1. Here we are
assuming the aircraft target is flying away from the radar, corresponding to the
situation where perhaps enemy aircraft have attacked us and are now leaving

Figure 1.1-16 Short-range, limited-scan, electronically scanned (phase-frequency)
phased-array artillery locating Firefinder AN=TPQ-36 radar [1]. Two hundred forty-
three have been built. (Photo courtesy of Hughes Co.)
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(a)

(b)

Figure 1.1-17 Very long range (over 1000 nmi) one-dimensional electronically
scanned (in azimuth direction) phased-array ROTHR: (a) transmit antenna; (b) receive
antenna [1]. (Photos courtesy of Raytheon Company.)
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Figure 1.1-18 AN=SPG-51 TARTAR dedicated shipboard tracking C-band radar
using offset parabolic reflector antenna [3]. Eighty-two have been manufactured. (Photo
courtesy of Raytheon Company.)

Figure 1.1-19 Hawk tracker-illuminator incorporating phase 3 product improvement
kit, which consisted of improved digital computer and the Low Altitude Simultaneous
HAWK Engagement (LASHE) antenna (small vertically oriented antenna to the left of
main transmit antenna, which in turn is to the left of main receive antenna). Plans are
underway to use this system with the AMRAAM missile. (Photo courtesy of Raytheon
Company.)
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and we want to make sure they are still leaving. Assume, however, at time n the
radar observes the target to be at position yn instead, a distance 60 ft further
away; see Figure 1.2-1. What can we conclude as to where the target really is?
Is it at xn, at yn, or somewhere in between? Let us initially assume the radar
range measurements at time n � 1 and n are very accurate; they having been
made with a precise laser radar that can have a much more accurate range
measurement than a microwave radar. Assume the laser radar has a range
measurement accuracy of 0.1 ft. In this case the observation of the target at a
distance 60 ft further out than predicted implies the target is going faster than
we originally estimated at time n � 1, traveling 60 ft further in 10 sec, or
(60 ft)=(10 sec)¼6 ft=sec faster than we thought. Thus the updated target
velocity should be

Updated velocity ¼ 200 ft=sec þ 60 ft

10 sec

� �
¼ 206 ft=sec ð1:2-1Þ

This is all right for a very accurate laser radar. However, generally we will
have an ordinary microwave radar. What do we do then? Assume its range
accuracy is only 50 ft, 1�. Then the 60-ft deviation from the expected target
location at time n could be due to the measurement error of the radar alone and
not due to the target’s higher velocity. However, the target could really be going
faster than we anticipated, so we would like to allow for this possibility. We do
this by not giving the target the full benefit of the 6-ft=sec apparent increase in
velocity but instead a fraction of this increase. Let us use the fraction 1

10
th of the

Figure 1.1-20 NATO SEASPARROW shipborne dedicated tracker-illuminator
antenna [3]. One hundred twenty-three have been built. (Photo courtesy of Raytheon
Company.)
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6-ft=sec apparent velocity increase. (How we choose the fraction 1
10

will be
indicated later.) The updated velocity now becomes

Updated velocity ¼ 200 ft=s þ 1

10

60 ft

10 sec

� �

¼ 200 ft=sec þ 0:60 ft=sec ¼ 200:6 ft=sec

ð1:2-2Þ

In this way we do not increase the velocity of the target by the full amount. If
the target is actually going faster, then on successive observations the observed
position of the target will on the average tend to be biased further in range than
the predicted positions for the target. If on successive scans the target velocity is
increased by 0.6 ft=sec on average, then after 10 scans the target velocity will be
increased by 6 ft=sec and we would have the correct velocity. On the other hand,
if the target velocity were really 200 ft=sec, then on successive observations the
measured position of the target would be equally likely to be in front or behind
the predicted position so that on average the target velocity would not be
changed from its initial estimated value of 200 ft=sec.

Putting (1.2-2) in parametric form yields

_xn ¼ _xn þ hn

yn � xn

T

� �
ð1:2-3Þ

The fraction 1
10

is here represented by the parameter hn. The subscript n is used
to indicate that in general the parameter h will depend on time. The above
equation has a problem: The symbol for the updated velocity estimate after the

Figure 1.2-1 Target predicted and measured position, x n and yn, respectively, on nth
scan.
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measurement at time n is the same as the symbol for the velocity estimate at
time n just before the measurement was made, both using the variable _xn. To
distinguish these two estimates, a second subscript is added. This second
subscript indicates the time at which the last measurement was made for use in
estimating the target velocity. Thus (1.2-3) becomes

_x�n;n ¼ _x�n;n�1 þ hn

yn � x�n;n�1

T

 !

ð1:2-4Þ

The second subscript, n � 1, for the velocity estimate _x�n;n�1 indicates an
estimate of the velocity of the target at time n based on measurement made at
time n � 1 and before.y The second subscript n for the velocity estimate _x�n;n
given before the equal sign above indicates that this velocity estimate uses the
range measurement made at time n, that is, the range measurement yn. The
superscript asterisk is used to indicate that the parameter is an estimate. Without
the asterisk the parameters represent the true values of the velocity and position
of the target. Figure 1.2-2 gives Figure 1.2-1 with the new notation.

We now have the desired equation for updating the target velocity, (1.2-4).
Next we desire the equation for updating the target position. As before assume
that at time n � 1 the target is at a range of 10 nautical miles (nmi) and at time
n, T ¼ 10 sec later, the target with a radial velocity of 200 ft=sec is at a range
2000 ft further out. As before, assume that at time n the target is actually

y This is the notation of reference 5. Often, as shall be discussed shortly, in the literature [6, 7] a
caret over the variable is used to indicate an estimate.

Figure 1.2-2 Target predicted, filtered, and measured positions using new notation.
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observed to be 60 ft further downrange from where predicted; see Figure 1.2-2.
Again we ask where the target actually is. At x�n;n�1, at yn, or somewhere in
between? As before initially assume a very accurate laser radar is being used for
the measurements at time n � 1 and n. It can then be concluded that the target is
at the range it is observed to be at time n by the laser radar, that is, 60 ft further
downrange than predicted. Thus

Updated position ¼ 10 nmi þ 2000 ft þ 60 ft ð1:2-5Þ

If, however, we assume that we have an ordinary microwave radar with a 1�
of 50 ft, then the target could appear to be 60 ft further downrange than expected
just due to the measurement error of the radar. In this case we cannot reasonably
assume the target is actually at the measured range yn, at time n. On the other
hand, to assume the target is at the predicted position is equally unreasonable.
To allow for the possibility that the target could actually be a little downrange
from the predicted position, we put the target at a range further down than
predicted by a fraction of the 60 ft. Specifically, we will assume the target is 1

6
of

60 ft, or 10 ft, further down in range. (How the fraction 1
6

is chosen will be
indicated later.) Then the updated range position after the measurement at time
n is given by

Updated position ¼ 10 nmi þ 2000 ft þ 1
6
ð60 ftÞ ð1:2-6Þ

Putting (1.2-6) in parametric form yields

x�n;n ¼ x�n;n�1 þ gnðyn � x�n;n�1Þ ð1:2-7Þ

where the fraction 1
6

is represented by the parameter gn, which can be dependent
on n. Equation (1.2-7) represents the desired equation for updating the target
position.

Equations (1.2-4) and (1.2-7) together give us the equations for updating the
target velocity and position at time n after the measurement of the target range
yn has been made. It is convenient to write these equations together here as the
present position and velocity g–h track update (filtering) equations:

_x�n;n ¼ _x�n;n�1 þ hn

yn � x�n;n�1

T

 !

ð1:2-8aÞ

x�n;n ¼ x�n;n�1 þ gnðyn � x�n;n�1Þ ð1:2-8bÞ

These equations provide an updated estimate of the present target velocity and
position based on the present measurement of target range yn as well as on prior
measurements. These equations are called the filtering equations. The estimate
x�n;n is called the filtered estimate an estimate of xn at the present time based on
the use of the present measurement yn as well as the past measurements. This
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estimate is in contrast to the prediction estimate xn;n�1, which is an estimate of
xn based on past measurements. The term smoothed is used sometimes in place
of the term filtered [8]. ‘‘Smoothed’’ is also used [7] to indicate an estimate of
the position or velocity of the target at some past time between the first and last
measurement, for example, the estimate x�h;n, where n0 < h < n, n0 being the
time of the first measurement and n the time of the last measurement. In this
book, we will use the latter definition for smoothed.

Often in the literature [6, 7] a caret is used over the variable x to indicate that
x is the predicted estimate x�n;n�1 while a bar over the x is used to indicate that
x is the filtered estimate x�n;n. Then g–h track update equations of (1.2-8a) and
(1.2-8b) become respectively

�_xn ¼ _̂xn þ hn

yn � x̂ n

T

� �
ð1:2-9aÞ

�xn ¼ x̂ n þ gnðyn � x̂ nÞ ð1:2-9bÞ

It is now possible by the use of (1.1-1) to predict what the target position and
velocity will be at time n þ 1 and to repeat the entire velocity and position
update process at time n þ 1 after the measurement ynþ1 at time n þ 1 has been
made. For this purpose (1.1-1) is rewritten using the new notation as the g–h
transition equations or prediction equations:

_x�nþ1;n ¼ _x�n;n ð1:2-10aÞ
x�nþ1;n ¼ x�n;n þ T _x�nþ1;n ð1:2-10bÞ

These equations allow us to transition from the velocity and position at time n
to the velocity and position at time n þ 1 and they are called the transition
equations. We note in (1.2-10a) the estimated velocity at time n þ 1, _x�nþ1;n, is
equal to the value _x�n;n at time n, because a constant-velocity target model is
assumed.

Equations (1.2-8) together with (1.2-10) allow us to keep track of a target. In
a tracking radar, generally one is not interested in the present target position xn

but rather in the predicted target position xnþ1 to set up the range prediction
windows. In this case (1.2-8) and (1.2-10) can be combined to give us just two
equations for doing the track update. We do this by substituting (1.2-8) into
(1.2-10) to yield the following prediction update equations:

_x�nþ1;n ¼ _x�n;n�1 þ
hn

T
ðyn � x�n;n�1Þ ð1:2-11aÞ

x�nþ1;n ¼ x�n;n�1 þ T _x�nþ1;n þ gnðyn � x�n;n�1Þ ð1:2-11b)

Equations (1.2-11) represent the well-known g–h tracking-filter equations.
These g–h tracking-filter equations are used extensively in radar systems [5, 6,
8–10]. In contrast to the filtering equation of (1.2-8), those of (1.2-11) are called
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prediction equations because they predict the target position and velocity at the
next scan time. An important class of g–h filters are those for which g and h are
fixed. For this case the computations required by the radar tracker are very
simple. Specifically, for each target update only four adds and three multiplies
are required for each target update. The memory requirements are very small.
Specifically, for each target only two storage bins are required, one for the latest
predicted target velocity and one for the latest predicted target position, past
measurements and past predicted values not being needed for future
predictions.

We have developed the filtering and prediction equations (1.2-8) and (1.2-10)
above through a simple heuristic development. Later (Section 1.2.6, Chapter 2
and the second part of the book) we shall provide more rigorous developments.
In the meantime we will give further commonsense insight into why the
equations are optimal.

In Figure 1.2-2 we have two estimates for the position of the target at time n,
x�n;n�1 and yn. The estimate yn is actually the radar measurement at time n. The
estimate x�n;n�1 is based on the measurement made at time n � 1 and all
preceding times. What we want to do is somehow combine these two estimates
to obtain a new best estimate of the present target position. This is the filtering
problem. We have the estimates yn and x�n;n�1 and we would like to find a
combined estimate x�n;n, as illustrated in Figure 1.2-3. The problem we face is
how to combine these two estimates to obtain the combined estimate x�n;n. If yn

and x�n;n�1 were equally accurate, then we would place x�n;n�1 exactly in the
middle between yn and x�n;n�1. For example, assume you weigh yourself on two
scales that are equally accurate with the weight on one scale being 110 lb and
that on the other scale being 120 lb. Then you would estimate your weight based
on these two measurements to be 115 lb. If on the other hand one scale were
more accurate than the other, then we would want the combined estimate of the
weight to be closer to that of the more accurate scale. The more accurate the
scale, the closer we would place our combined estimate to it. This is just what
the filtering equation (1.2-8b) does. To see this, rewrite (1.2-8b) as a position
filtering equation:

x�n;n ¼ x�n;n�1ð1 � gnÞ þ yngn ð1:2-12Þ

Figure 1.2-3 Filtering problem. Esti-
mate of x�n;n based on measurement yn

and prediction x�n;n�1.
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The above equation gives the updated estimate as a weighted sum of the two
estimates. The selection of the fraction gn determines whether we put the
combined estimate closer to yn or to x�n;n�1. For example, if yn and x�n;n�1 are
equally accurate, then we will set gn equal to 1

2
. In this case the combined

estimate x�n;n is exactly in the middle between yn and x�n;n�1. If on the other hand
x�n;n�1 is much more accurate than yn (perhaps because the former is based on
many more measurements), then we will want to have the coefficient associated
with yn much smaller than that associated with x�n;n�1. For example, in this case
we might want to pick gn ¼ 1

5
, in which case the combined estimate is much

closer to x�n;n�1. How we select gn shall be shown later.

1.2.2 a–b Filter

Now that we have developed the g–h filter, we are in a position to develop the
�–� filter. To obtain the �–� filter, we just take (1.2-11) and replace g with �
and h with �—we now have the �–� filter. Now you know twice as much,
knowing the �–� filter as well as the g–h filter.

1.2.3 Other Special Types of Filters

In this section we will increase our knowledge 22-fold because we will cover 11
new tracking filters. Table 1.2-1 gives a list of 11 new tracking filters. The
equations for all of these filters are given are given by (1.2-11). Consequently,
all 11 are g–h filters. Hence all 11 are �–� filters. Thus we have increased our
tracking-filter knowledge 22 fold! You are a fast learner! How do these filters
differ? They differ in the selection of the weighting coefficients g and h as shall
be seen later. (Some actually are identical). For some of these filters g and h
depend on n. This is the case for the Kalman filter. It is worthwhile emphasizing
that (1.2-11a) and (1.2-11b) are indeed the Kalman filter prediction equations,
albeit for the special case where only the target velocity and position are being
tracked in one dimension. Later we will give the Kalman filter for the multi-

TABLE 1.2-1. Special Types of Filters

1. Wiener filter
2. Fading-memory polynomial filter
3. Expanding-memory (or growing-memory) polynomial filter
4. Kalman filter
5. Bayes filter
6. Least-squares filter
7. Benedict–Bordner filter
8. Lumped filter
9. Discounted least-squares g–h filter
10. Critically damped g–h filter
11. Growing-memory filter
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dimensional situation involving multiple states. For many of the g–h tracking
filters of Table 1.2-1, g and h are related.

1.2.4 Important Properties of g–h Tracking Filters

1.2.4.1 Steady-State Performance for Constant-Velocity Target
Assume a target with a constant-velocity trajectory and an errorless radar range
measurement. Then in steady state the g–h will perfectly track the target
without any errors; see Figure 1.2-4. This is not surprising since the equations
were developed to track a constant-velocity target. In the steady state the
estimate of the target velocity obtained with the tracking equations of (1.2-11)
will provide a perfect estimate of the target velocity if there is no range error
present in the radar. For this case in steady state gn and hn become zero. The
prediction equations given by (1.2-11) then become the transition equations or
target equation of motion as given by (1.2-10).

1.2.4.2 For What Conditions is the Constant-Velocity
Assumption Reasonable
Assume a target having a general arbitrary one-dimensional trajectory as a
function of time t given by x(t). Expressing xðtÞ in terms of its Taylor expansion
yields

xðtÞ ¼ xðt nÞ þ�t _xðt nÞ þ
ð�tÞ2

2!
�xðtnÞ

þ �t 3ð Þ
3!

_�x ðtnÞ þ 
 
 
 ð1:2-13Þ

For

ð�tÞ2

2!
�xðt nÞ

Figure 1.2-4 The g–h filter predicts position of constant-velocity target perfectly in
steady state if there are no measurement errors.
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small

xðt nþ1Þ ¼ xðt nÞ þ T _xðtnÞ ð1:2-14Þ

where we replaced �t by T. Equation (1.2-14) is the equation for a target having
a constant velocity. Thus the assumption of a constant-velocity target is a
reasonable one as long as the time between observations T is small or the target
acceleration �x is small or their combination is small.

1.2.4.3 Steady-State Response for Target with Constant Acceleration
Assume we are using the prediction equations given by (1.2-11) that were
developed for a target having a constant velocity but in fact the target has a
constant acceleration given by �x. We ask: How well does the tracking filter do?
It turns out that in steady state the constant g–h tracking filter will have a
constant prediction error given by b� for the target position that is expressed in
terms of the target acceleration and scan-to-scan period by [5, 12]

b� � b�nþ1;n ¼ � x T 2

h
ð1:2-15Þ

Figure 1.2-5 illustrates the constant lag error prediction resulting when the
tracking equations of (1.2-11) are used for a constant accelerating target.

Figure 1.2-5 Constant lag error b� that results in steady state when tracking a target
having a constant acceleration with a constant g–h filter.
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Equation (1.2-15) is not surprising. The acceleration error is proportional to 1
2

(�x T 2) and we see that correspondingly b� is proportional to 1
2
ð�x T 2Þ. Equation

(1.2-15) also indicates that the steady-state error b�, called the lag error, is also
inversely proportional to the parameter h of (1.2-11a). This is not unreasonable.
Assume as in Figure 1.2-2 that yn is 60 ft further downrange than predicted and
interpret the additional distance as due to the target having an increased speed
of 6 ft=sec by making hn ¼ 1. In this case our tracking filter responds
immediately to a possible increase in the target velocity, increasing the velocity
immediately by 6 ft=sec. If on the other hand we thought that the location of the
target 60 ft further downrange could be primarily due to inaccuracies in the
radar range measurement, then, by only allotting a fraction of this 6 ft/sec to the
target velocity update by setting hn ¼ 1

10
, the tracking filter will not respond as

quickly to a change in velocity if one actually did occur. In this latter case
several scans will be necessary before the target velocity will have increased by
6 ft=sec, if indeed the target actually did increase by 6 ft=sec. Thus the larger
is h, the faster the tracking filter responds to a change in target velocity.
Alternatively, the smaller is h, the more sluggish is the filter. Thus quite
reasonably the lag error for the filter is inversely proportional to h.

When tracking a constant-accelerating target with a g–h filter, there will also
be in steady state constant lag errors for the filtered target position x�n;n and the
velocity _x�n;n given respectively by [12]

b�n;n ¼ ��x T 2 1 � g

h
ð1:2-16aÞ

_b�n;n ¼ ��x T
2g � h

2h
ð1:2-16bÞ

Unless indicated otherwise, b� without the subscript shall be the one-step
prediction bias error b�nþ1;n.

As in many other fields, knowledge of the terms used is a major part of the
battle. Otherwise one will be snowed by the tracking specialist. An example is
lag error which goes by other names that should be known as well. (see Table
1.2-2). Another term given, in the table for lag error is dynamic error. This is
not surprising since lag error is not an error due to random effects but one due to
target dynamics. Lag error is also called systematic error, quite reasonably,

TABLE 1.2-2. Common Names for Steady-State
Prediction Error b� Due to Constant Acceleration

Lag error
Dynamic error
Systematic error
Bias error
Truncation error
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since it is a systematic error rather than a random error, again caused by the
target motion. Appropriately lag error is called a bias error since the error is a
fixed deviation from the true value in steady state. Finally, lag error is called a
truncation error, since the error results from the truncation of the acceleration
term in the Taylor expansion given by (1.2-13).

1.2.4.4 Tracking Errors due to Random Range Measurement Error
The radar range measurement yn can be expressed as

yn ¼ xn þ 
n ð1:2-17Þ

where xn without the asterisk is the true target position and 
n is the range
measurement error for the nth observation. Assume that 
n is a random zero
mean variable with an rms of �
 that is the same for all n. Because �

represents the rms of the range x measurement error, we shall replace it by �x

from here on. The variance of the prediction x�nþ1;n is defined as

VARðx�nþ1;nÞ ¼ E½fx�nþ1;n � Eðx�nþ1;nÞg
2� ð1:2-18Þ

where E ½ 
 � stands for ‘‘expected value of’’. We would like to express
VARðx�nþ1;n) in terms of �x and the tracking-filter parameters. In the literature
expressions are given for a normalized VARðx�nþ1;nÞ. Specifically it is given
normalized with respect to �2

x , that is, it is given for ½VARðxnþ1;nÞ�=�2
x. This

normalized variance is called the variance reduction factor (VRF). Using
the tracking prediction equations of (1.2-11), in steady state the VRF for
x�nþ1;n for a constant g–h filter is given by [12; see also problems 1.2.4.4-1 and
1.2.6-2]

VRF ðx�nþ1;nÞ ¼
VARðx�nþ1;nÞ

�2
x

¼ 2g2 þ 2h þ gh

gð4 � 2g � hÞ ð1:2-19Þ

The corresponding VRFs for x�n;n and _x�nþ1;n are given respectively by [12]

VRFðx�n;nÞ ¼
VARðx�n;nÞ

�2
x

¼ 2g2 þ 2h � 3gh

gð4 � 2g � hÞ ð1:2-20Þ

VRFð _x�nþ1;nÞ ¼
VARð _x�nþ1;nÞ

�2
x

¼ 1

T 2

2h2

gð4 � 2g � hÞ ð1:2-21Þ

Thus the steady-state normalized prediction error is given simply in terms of g
and h. Other names for the VRF are given in Table 1.2-3.

1.2.4.5 Balancing of Lag Error and rms Prediction Error
Equation (1.2-19) allows us to specify the filter prediction error VARðxnþ1;nÞ in
terms of g and h. The non random lag prediction error b� is given in turn by
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(1.2-15) in terms of �x, T , and h. For convenience let the rms prediction error
(i.e., the rms of x�nþ1;n) be disignated as �nþ1;n. In designing a tracking filter
there is a degree of freedom in choice of the magnitude of �nþ1;n relative to b�.
They could be made about equal or one could be made much smaller than the
other. Generally, making one much smaller than the other does not pay because
the total prediction error is the sum b� þ �nþ1;n. Fixing one of these errors and
making the other error much smaller does not appreciably reduce the total
prediction error. We would be paying a high price to reduce one of the
prediction errors without significantly reducing the total prediction error.
Intuitively a good approach would be a balanced system where the random
and non random error components are about the same order of magnitude. One
way to do this is to make b� equal to three times the 1� rms prediction error,
that is,

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARðx�nþ1;nÞ

q
¼ b� ð1:2-22Þ

or equivalently

3�nþ1;n ¼ b� ð1:2-23Þ

where

�nþ1;n ¼ �ðx�nþ1;nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARðx�nþ1;nÞ

q
ð1:2-23aÞ

where b� is the lag error obtained for the maximum expected target
acceleration. The choice of the factor 3 above is somewhat arbitrary. One
could just as well have picked a factor 2, 1.5, or 1, as will be done later
in Section 5.10. Using (1.2-22) determines b� if �nþ1;n is known. Equation
(1.2-15) can then in turn be used to determine the track filter update period T
for a given maximum target acceleration �x. This design procedure will shortly
be illustrated by an example.

Another approach to designing a g–h filter is to choose �nþ1;n and b� such
that their total error

ET ¼ 3�nþ1;n þ b� ð1:2-24Þ

TABLE 1.2-3. Common Names for Normalized Var
ðx�nþ1;nÞ of Prediction Error

Variance reduction factor [5]
Variance reduction ratio [12]
Noise ratio [72]
Noise amplification factor [12]
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is minimized [11]. What is done is ET is plotted versus g for a given T and �x
and the minimum found. Using this procedure yielded that the total error could
be reduced as much as 7% for 1 � g � 0:9 and by as much as 15% for
0 � g � 0:9 [11]. The improvement tended to be smaller for larger g because
the minimum ETN point tended to be broader for larger g. These results were
obtained in reference 11 for the critically damped and Benedict–Bordner filters
and will be detailed in Sections 1.2.6 and 1.2.5, where these filters will be
introduced.

It is worth recalling that the larger is h, the smaller is the dynamic error,
however; in turn, the larger VARðx�nþ1;nÞ will be and vice versa; see (1.2-15)
and (1.2-19). Typically, the smaller are g and h, the larger is the dynamic error
and the smaller are the errors of (1.2-19) to (1.2-21) due to the measurement
noise. In fact for the critically damped and Benedict–Bordner g–h filters
introduced in Sections 1.2.5 and 1.2.6, �nþ1;n decreases monotonically with
decreasing g while the prediction bias b�nþ1;n increases monotinically with
decreasing g [11]. Similarly, for the critically damped filter and steady-state
Kalman g–h–k filter (often called optimum g–h–k filter) introduced in Sections
1.3 and 2.4, �nþ1;n decreases monotonically with decreasing h while the
prediction bias b�nþ1;n increases monotonically with decreasing h [11]. Here the
bias is calculated for a constant jerk, that is, a constant third derivative of x, ; see
Section 1.3. The subject of balancing the errors �nþ1;n and b� as well as
minimization of their total is revisited in Sections 5.10 and 5.11.

1.2.5 Minimization of Transient Error (Benedict–Bordner Filter)

Assume the g–h tracking filter is tracking a constant-velocity target and at time
zero the target velocity takes a step function jump to a new constant-velocity
value. This is illustrated in Figure 1.2-6 where the target position versus time is
plotted as the g–h filter input. Initially the target is at zero velocity, jumping at
time zero to a nonzero constant-velocity value. Initially the g–h tracking filter
will not perfectly follow the target, the filter’s sluggishness to a change in target

Figure 1.2-6 Transient error resulting from step jump in velocity for target being
tracked with g–h filter.
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velocity being the culprit. The filter output in Figure 1.2-6 illustrates this. As a
result, the tracking filter has an initial error in its prediction, the difference
between the true trajectory and the predicted trajectory, as indicated in the
figure. A measure of the total transient error is the sum of the squares of these
differences, that is,

Dx �
nþ1;n

¼
X1

n¼0

ðx�nþ1;n � xnþ1Þ2 ð1:2-25Þ

One would like to minimize this total transient error. In the literature such a
minimization was carried out for the weighted sum of the total transient error
plus the variance of the prediction error due to measurement noise errors, that
is, the minimization of

E ¼ VARðx�n;nþ1Þ þ �Dx�nþ1;n ð1:2-26Þ

This minimization was done for a step jump in velocity. Rather than
concentrating merely on the g–h tracking filters, which minimize the total
error given in (1.2-26), what was done in the literature was to find a filter among
a much wider class of tracking filters minimizing the total error of the (1.2-26).
From this much wider class of filters the filter minimizing the total error of
(1.2-26) is (surprise) the constant g–h tracking filter of (1.2-11) with g and h
related by

h ¼ g2

2 � g
ð1:2-27Þ

Table 1.2-4 gives a list of values for �nþ1;n=�x; g, and h for the Benedict–
Bordner filter. The parameter � in the g–h filter will be explained shortly, at the
end of Section 1.2.6. Basically, for the present think of it as just a convenient
index for the tabulation in Table 1.2-4. In the literature the Benedict–Bordner
filter has also been referred to as an optimum g–h filter [11, 12].

The transient error in x�nþ1;n defined by (1.2-25) for any constant g–h filter is
given by [6, 12]

Dx �
n;nþ1

¼ �v2 T 2ð2 � gÞ
ghð4 � 2g � hÞ ð1:2-28Þ

where �v is the step change in velocity that produces the filter transient error.
The corresponding transient errors for x�n;n and _x�n;n are given respectively by
[12]

Dx �
n; n

¼ �v2T 2ð2 � gÞð1 � gÞ2

ghð4 � 2g � hÞ ð1:2-29Þ

D _x �
nþ1;n

¼ �v2½g2ð2 � gÞ þ 2hð1 � gÞ�
ghð4 � 2g � hÞ ð1:2-30Þ
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Figure 1.2-7 gives convenient design curves of three times the normalized
prediction error 3�nþ1;n=�x and normalized b� for the Benedict–Bordner filter
versus g. Using these curves the design point at which 3�

nþ1;n
¼ b� can easily

be found. Figure 1.2-8 plots the sum of these normalized errors

ETN ¼ ET

�x

¼ 3�nþ1;n

�x

þ b�
�x

¼ 3�nþ1;n þ b�
�x

ð1:2-31Þ

versus g for different values of the normalized maximum acceleration given by
AN ¼ T 2�xmax=�x. These curves allow us to obtain the Benedict–Bordner filters,
which minimizes the total error given by (1.2-31). These minimum total error
designs are plotted in Figure 12-9. Problems 1.2.5-1 and 1.2.5-2 compare
Benedict–Bordner filter designs obtained using (1.2-23) and obtained for when
(1.2-31) is minimized.

TABLE 1.2-4. Smoothing Constant for Benedict–
Bordner g–h Filter

� �nþ1;n=�x g h

.00 2.236 1.000 1.000

.05 2.066 .975 .929

.10 1.913 .949 .856

.15 1.773 .920 .783

.20 1.644 .889 .711

.25 1.526 .855 .639

.30 1.416 .819 .568

.35 1.313 .781 .500

.40 1.216 .739 .434

.45 1.124 .695 .371

.50 1.036 .649 .311

.55 .952 .599 .256

.60 .871 .546 .205

.65 .791 .490 .159

.70 .711 .431 .118

.75 .632 .368 .083

.80 .551 .302 .054

.85 .465 .232 .030

.90 .370 .159 .014

.95 .256 .081 .003
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1.2.6 New Approach to Finding Optimum g–h Tracking Filters
(The Critically Damped Filter)

To obtain further insight into the development of tracking equations, let us start
afresh with a new point of view. We take an approach that is optimal in some
other sense. We shall use a very simple commonsense approach.

Let y0; y1; . . . ; y6 be the first seven range measurements made of the target to
be tracked. These observations could be plotted as shown in Figure 1.2-10. With
these measurements we would like to now predict where the target will most

Figure 1.2-7 Normalized bias error b�N ¼ b�=� x and prediction error � ¼ �nþ1;n=� x

versus weight g for Benedict–Bordner g–h filter. (After Asquith and Woods [11].)
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likely be at time n ¼ 7. A simple approach would be to eyeball a best-fitting
straight line to the points, as shown in Figure 1.2-10, this best fitting straight
line providing an estimate of the true target trajectory. The target position at
time n ¼ 7 will then be estimated to be the position on the straight line of the
target at time n ¼ 7. In the figure v�0 is the slope of the best-fitting line and x�0
its ordinate intercept. These two parameters define the line.

Instead of using the above ‘‘eyeball fit’’ approach, one could use an
‘‘optimum’’ approach for finding the best-fitting line. Specifically, one could
find the least-squares fitting line [5, 6]. The least-squares fitting line is the line
that gives the minimum error between the line and the measurements by
minimizing the sum of the squares of the difference between the measurements
and the straight-line fit. We now formulate this approach mathematically. The

Figure 1.2-8 Normalized total error ETN versus weight g for Benedict–Bordner g–h
filter. (After Asquith and Woods [11].)
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Figure 1.2-9 Minimum normalized total error EIN versus normalized maximum
acceleration AN for Benedict–Bordner g–h filter. (After Asquith and Woods [11].)

Figure 1.2-10 ‘‘Eyeball best fitting’’ straight line to data points y0; y 1; . . . ; y6; least-
squares fit.
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deviation between the measurement and the straight line at time n is given by

"n ¼ x�n � yn ð1:2-32Þ

where x�n is the target range indicated by the straight-line fit at at time n. Then
the least-squares fitting line is that line that minimizes the total sum of squares
of differences given by

eT ¼
XN

n¼0

"2
n ¼

XN

n¼0

ðx�n � ynÞ2 ð1:2-33Þ

where, for Figure 1.2-10, N ¼ 6. At time N þ 1 the new range measurement
yNþ1 is obtained and the whole process is repeated. This is illustrated in Figure
1.2-11, where the fit is now made to eight points, y0; . . . ; y7.

We thus now have an optimum procedure for tracking the target. The
eyeball-fit procedure, your mind providing a pretty good least-squares fit.

There is one major problem with the above approach. It weights the old data
equally as importantly as the latest data when calculating the least-squares
fitting line that predicts where the target would be at the next observation. If the
target should turn, then the old data would incorrectly influence the target
predicted path. To eliminate this problem, old data must somehow have a
reduced influence when predicting the future path of the target. We do this by

Figure 1.2-11 Least-squares fit to data points up to time n ¼ 7.
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giving the older errors "2
n in (1.2-33) lesser significance when forming the total

error. This is done by weighting the older errors by a factor less than 1 when
forming the total error sum. We do this by weighting the most recent error by
unity, the next most recent error by factor � (where � < 1), the next oldest error
by �2, the next oldest error by �3, and so on. The total error now is given by

eD ¼
XN

r¼0

� r"2
n�r ð1:2-34Þ

where

0 � � � 1 ð1:2-34aÞ

The straight-line fit that minimizes the total error given by (1.2-34) is called the
discounted least-squares fit, because this line fit minimizes the sum of the
weighted errors with the weighting decreasing as the data get older; that is, the
older the error, the more it is discounted.

If we could do the computation in real time for the above discounted least-
squares filter tracker, it would represent a perfectly good usable filter. However,
it does have some disadvantages relative to the simple g–h filter of (1.2-11).
First, all of the old data must be stored. (Actually it is possible to drop the very
old data for which � r � 1.) In contrast, the filter of (1.2-11) only has to store
two numbers, the predicted target position and velocity from the last
observations, that is, x�n;n�1 and _x�n;n�1. Second, a complicated discounted
least-squares computation must be carried out at each update point whereas the
tracking filter given by (1.2-11) requires just a simple recursive equation
calculation for the case of a constant g and h.

Thus we might conclude that although the discounted least-squares approach
is mathematically optimal, we might be better using the less optimal,
heuristically derived filter given by (1.2-11) since the implementation is easier.
Wrong! If one is clever enough and works hard enough, the optimum
discounted least-squares tracking filter described above can be put in the form
of the constant g–h filter given by (1.2-11) where parameters g and h are related
to � by

g ¼ 1 � �2 ð1:2-35aÞ
h ¼ ð1 � �Þ2 ð1:2-35bÞ

Thus, the two filters, amazingly, are identical!
A truly remarkable result! We do not really have to store all of the past data

to do the optimal discounted least-squares tracking filter! We only need to
store the last predicted target position and velocity estimates x�n;n�1 and _x�n;n�1.
These two numbers contain all the information we need about the past. These
two numbers thus are sufficient statistics (even in the rigorous statistical sense
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[8, 9, 100] as well as in the commonsense use of the word). No other past
measurement information need be stored. Furthermore, we need only do a
simple recursive computation as given by (1.2-11) instead of the complicated
discounted least-squares fit computation at each update point.

The constant g–h filter with g and h related to � by (1.2-35) is called a
discounted least-squares g–h filter, the ninth filter of Table 1.2-1. This filter also
goes by other names. For example, it is called a fading-memory polynomial
filter of degree 1 (the second filter of Table 1.2-1) because it has a fading
memory. It is designated as having a degree 1 because it is for a constant-
velocity target, in which case its position is a linear function of time, that is, it is
given by a constant plus a constant times t to degree 1. It is called a critically
damped g–h filter (the tenth filter of Table 1.2-1) because it is critically damped
and not overdamped or underdamped. To see this, one obtains the z-transform
of (1.2-11) with g and h given by (1.2-35a) and (1.2-35b). In doing this, one
finds that the poles of the filter are equal and real and given by z1 ¼ z1 ¼ �.
Hence this double pole lies inside the unit circle on the z-plane as long as � < 1;
see Figure 1.2-12. Actually in finding the poles of the filter of (1.2-11) one finds
that critically damped conditions are realized when h is related to g by [12]

h ¼ 2 � g � 2
ffiffiffiffiffiffiffiffiffiffiffi
1 � g

p
ð1:2-36Þ

Substituting (1.2-35a) into (1.2-36) yields (1.2-35b) if the minus sign is used
and yields h ¼ ð1 þ �Þ2

if the plus sign in used. As shall be indicated in Section
1.2.9, the minus sign solution is the useful solution. The plus solution gives a
larger �nþ1;n for a given transient response [12].

Using (1.2-35a) and (1.2-35b) the convenient Table 1.2-5 of g and h (versus
�) is obtained for the critically damped constant g–h filter. The table also gives
g, h, and k versus � for the critically damped g–h–k filter to be discussed later in
Section 1.3 and Chapter 7. We are now in a position to define the indexing
parameter � of Table 1.2-4. Physically, for a given �nþ1;n=�x for the Benedict–
Bordner design summarized in Table 1.2-4, � is that of a critically damped filter

Figure 1.2-12 Poles of critically damped g–h filter; double pole inside unit circle and
on real axis in z plane.
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TABLE 1.2-5. Smoothing Constants for Critically Damped g–h and
g–h–k Digital Filters

g–h Filter g–h–k Filter

� g h g h k

.00 1.000 1.000 1.000 1.500 .500

.01 1.000 .980 1.000 1.485 .485

.02 1.000 .960 1.000 1.469 .471

.03 .999 .941 1.000 1.454 .456

.04 .998 .922 1.000 1.438 .442

.05 .998 .903 1.000 1.421 .429

.06 .996 .884 1.000 1.405 .415

.07 .995 .865 1.000 1.388 .402

.08 .994 .846 .999 1.371 .389

.09 .992 .828 .999 1.354 .377

.10 .990 .810 .999 1.337 .365

.11 .988 .792 .999 1.319 .352

.12 .986 .774 .998 1.301 .341

.13 .983 .757 .998 1.283 .329

.14 .980 .740 .997 1.265 .318

.15 .978 .723 .997 1.246 .307

.16 .974 .706 .996 1.228 .296

.17 .971 .689 .995 1.209 .286

.18 .968 .672 .994 1.190 .276

.19 .964 .656 .993 1.171 .266

.20 .960 .640 .992 1.152 .256

.21 .956 .624 .991 1.133 .247

.22 .952 .608 .989 1.113 .237

.23 .947 .593 .988 1.094 .228

.24 .942 .578 .986 1.074 .219

.25 .938 .563 .984 1.055 .211

.26 .932 .548 .982 1.035 .203

.27 .927 .533 .980 1.015 .195

.28 .922 .513 .978 .995 .187

.29 .916 .504 .976 .975 .179

.30 .910 .490 .973 .956 .172

.31 .904 .476 .970 .936 .164

.32 .898 .462 .967 .916 .157

.33 .891 .449 .964 .896 .150

.34 .884 .436 .961 .876 .144

.35 .878 .423 .957 .856 .137
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TABLE 1.2-5. (Continued)

g–h Filter g–h–k Filter

� g h g h k

.36 .870 .410 .953 .836 .131

.37 .863 .397 .949 .816 .125

.38 .856 .384 .945 .796 .119

.39 .848 .372 .941 .776 .113

.40 .840 .360 .936 .756 .108

.41 .832 .348 .931 .736 .103

.42 .824 .336 .926 .717 .098

.43 .815 .325 .920 .697 .093

.44 .806 .314 .915 .677 .088

.45 .798 .303 .909 .658 .083

.46 .788 .292 .903 .639 .079

.47 .779 .281 .896 .619 .074

.48 .770 .270 .889 .600 .070

.49 .760 .260 .882 .581 .066

.50 .750 .250 .875 .563 .063

.51 .740 .240 .867 .544 .059

.52 .730 .230 .859 .525 .055

.53 .719 .221 .851 .507 .052

.54 .708 .212 .843 .489 .049

.55 .698 .203 .834 .471 .046

.56 .686 .194 .824 .453 .043

.57 .675 .185 .815 .435 .040

.58 .664 .176 .805 .418 .037

.59 .652 .168 .795 .401 .034

.60 .640 .160 .784 .384 .032

.61 .628 .152 .773 .367 .030

.62 .616 .144 .762 .351 .027

.63 .603 .137 .750 .335 .025

.64 .590 .130 .738 .319 .023

.65 .578 .123 .725 .303 .021

.66 .564 .116 .713 .288 .020

.67 .551 .109 .699 .273 .018

.68 .538 .102 .686 .258 .016

.69 .524 .096 .671 .244 .015

.70 .510 .090 .657 .230 .014

.71 .496 .084 .642 .216 .012

.72 .482 .078 .627 .202 .011

.73 .467 .073 .611 .189 .010

.74 .452 .068 .595 .176 .009

.75 .438 .063 .578 .164 .008
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that produces the same �nþ1;n=�x. Figure 1.2-13 to 1.2-15 gives, for the
critically damped filter, corresponding useful design curves to Figures 1.2-7 to
1.2-9 for the Benedict–Bordner filter. Problems 1.2.6-6 to 1.2.6-8 compare
critically damped filter designs obtained using (1.2-23) and when the total error
of (1.2-31) is minimized.

1.2.7 g–h Filter Examples

Example 1: Critically Damped g–h Filter Assume that the radar rms range
measurement error � x ¼ 50 ft; the maximum acceleration expected for the
target is 5 g; the desired standard deviation of the filter prediction error
�nþ1;n ¼ 31:6 ft. What we now want to do is design a suitable critically damped

TABLE 1.2-5. (Continued)

g–h Filter g–h–k Filter

� g h g h k

.76 .422 .058 .561 .152 .007

.77 .407 .053 .543 .140 .006

.78 .392 .048 .525 .129 .005

.79 .376 .044 .507 .118 .005

.80 .360 .040 .488 .108 .004

.81 .344 .036 .469 .098 .003

.82 .328 .032 .449 .088 .003

.83 .311 .029 .428 .079 .002

.84 .294 .026 .407 .071 .002

.85 .278 .023 .386 .062 .002

.86 .260 .020 .364 .055 .001

.87 .243 .017 .341 .047 .001

.88 .226 .014 .319 .041 .001

.89 .208 .012 .295 .034 .001

.90 .190 .010 .271 .029 .001

.91 .172 .008 .246 .023 .000

.92 .154 .006 .221 .018 .000

.93 .135 .005 .196 .014 .000

.94 .116 .004 .169 .010 .000

.95 .098 .003 .143 .007 .000

.96 .078 .002 .115 .005 .000

.97 .059 .001 .087 .003 .000

.98 .040 .000 .059 .001 .000

.99 .020 .000 .030 .000 .000
1.00 .000 .000 .000 .000 .000
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g–h filter using these assumptions. From (1.2-19)

VRFðx�nþ1;nÞ ¼
VARðx�nþ1;nÞ

�2
x

¼
�2

nþ1;n

�2
x

¼ 2g2 þ 2h þ gh

gð4 � 2g � hÞ

Figure 1.2-13 Normalized bias error b�N ¼ b�=� x and prediction error � ¼ �nþ1;n=� x

versus weight g for critically damped g–h filter. (After Asquith and Woods [11].)
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and from (1.2-35)

g ¼ 1 � �2

h ¼ ð1 � �Þ2

Substituting (1.2-35) into (1.2-19) yields an expression with only one unknown,
that of �, because �x and �nþ1;n are given. Solving yields � ¼ 0:75. From
(1.2-35) it follows in turn that g ¼ 0:4375 and h ¼ 0:0625. These values are
close to those used in the heuristic development presented in Section 1.2.1. The
reason is that we knew the answers for this example and chose values for g and
h close to these in Section 1.2.1. The above gives a procedure for finding the
constants g and h of (1.2-11).

Figure 1.2-14 Normalized total error ETN versus weight g for critically damped g–h
filter. (After Asquith and Woods [11].)
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We still need to select the tracking–filter update period T. To do this, we
make use of (1.2-23) to determine b�. It yields b� ¼ 94:8 ft. With the latter we
now use (1.2-15) to find the update period T. The acceleration (1.2-15) is set
equal to the maximum expected 5 g yielding T ¼ 0:1924 sec. This is the
tracking-filter update period needed to achieve the specified lag error b� ¼
94:8 ft. Let us now determine the transient error Dx �

nþ1;n
given by (1.2-28).

In (1.2-28), D can be normalized with respect to ð�vÞ2
. We solve for

this normalised transient error D. From (1.2-28) it follows that the normalized
transient error equals 0.691 sec2 for our critically damped filter design.

Example 2: Benedict-Bordner g–h Filter For the same assumptions as used
in Example 1 we want to design a Benedict–Bordner g–h filter. Substituting
(1.2-27) into (1.2-19) gives an equation with only one unknown, that of g.
Solving yields g ¼ 0:368. From (1.2-27) it in turn follows that h ¼ 0:083. We
can now proceed to solve for the tracking-filter update period, as was done for
the critically damped g–h filter through the use of (1.2-23) and (1.2-15). We
shall do this later. Right now we shall design the Benedict–Bordner filter using
the same track update period as obtained for the critically damped filter, thereby
permitting us to compare the performance of the Benedict–Bordner filter with

Figure 1.2-15 Minimum normalized total error ETN versus normalized maximum
acceleration AN for critically damped g–h filter. (After Asquith and Woods [11].)
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that of the critically damped filter for the case where they have the same update
period.

Using in (1.2-15) the update period T ¼ 0:1924 sec obtained for the critically
damped filter yields a lag error of 71.3 ft versus the 94.8 ft obtained for the
critically damped filter. From (1.2-28) it follows that the normalized transient
error for the Benedict–Bordner filter is 0.622 sec2, as compared to the value of
0.691 sec2 obtained for the critically damped filter. So, the Benedict–Bordner
filter has a smaller transient error and a smaller lag error when the two filters are
specified to have the same track update period, an expected result because the
Benedict–Bordner filter is designed to minimize the transient error. As a result
the Benedict–Bordner filter responds faster to a change in the target velocity
and will also have a smaller lag error. The Benedict–Bordner filter is slightly
underdamped. That is, it has slight overshoot in response to a step function
change in the target velocity.

Columns 2 and 3 of Table 1.2-6 summarize the parameters obtained for
respectively the critically damped and Benedict–Bordner filters obtained for
Examples 1 and 2 so far. The fourth column (Example 2a) gives an alternate
Benedict–Bordner filter design. This alternate design was obtained using a
procedure paralleling that used for the critically damped filter. Specifically,
(1.2-23) was used to obtain b�, and in turn (1.2-15) was used to obtain the
tracking-filter update period. This alternate design results in a lag error identical
to that obtained for the critically damped filter but with an update period larger
than that for the critically damped filter and also a transient error that is larger.
The design obtained in column 3 (Example 2) is more in the spirit of what is
intended to be obtained with a Benedict-Bordner filter, specifically a filter that
minimizes the transient error. The filter in the last column does have the
advantage of giving the same lag error with a larger track update period.

TABLE 1.2-6. Comparison of Critically Damped and Benedict–Bordner
g–h Filters

Benedict–Bordner
Critically Damped

Parameter (Example 1) (Example 2) (Example 2a)

� v; ft 50 50 50
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR x�nþ1;n

� �r
, ft 31.6 31.6 31.6

b�, ft 94.8 71.3 94.8
D=v2, ft2 0.691 0.622 0.828
g 0.4375 0.368 0.368
h 0.0625 0.083 0.083
� 0.75 — —
T, sec 0.1924 0.1924 0.222
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Additional Examples: Comparing Dependence of Critically Damped Filter
Design on Prediction Error and Target Maximum Acceleration Table 1.2-7
compares four critically damped g–h filter designs. The second column
summarizes again the design obtained in Example 1 above. It is our reference
design with which the new designs of columns 3 to 5 are to be compared. The
second design in column 3 (Example 1a) gives the design obtained when the 1�
tracking-filter prediction error is decreased to 18.52 ft, all other input
assumptions remaining unchanged. This reduction in the required prediction
error by almost a factor of 2 leads to a tracking-filter update period reduced by
over a factor of 3 to 0.0589 sec. For the third design (Example 1b) given in
column 4 of Table 1.2-7 the 18.52-ft 1� prediction error of Example 1a was still
used; however, the maximum target acceleration expected was reduced from 5 g
to 3 g to see if this would relax the update period required for the filter to a more
reasonable level. The table shows an update period increased by only a small
amount, from 0.0589 to 0.0761 sec. For the fourth design (Example 1c) in the
last column of Table 1.2-7, the maximum target acceleration was increased
back to the value of 5 g and the predicted 1� rms error was increased to 88.6 ft.
Increasing the predicted error by this factor of almost 3 from the original value
of Example 1 increases the tracking-filter update period by almost a factor of 6
to 1.096 sec (from 0.1924 sec). The update period of 0.1924 sec could not be
achieved with a typical TWS radar, requiring instead a dedicated dish tracking
radar, tracking only one target. With a dedicated dish tracker the track update
rate could be very high, the rate not limited by the mechanical scan limitation of
the radar. Alternately, a phase–phase electronically steered array [1–3] could be
used for tracking multiple targets, a radar like the Raytheon PATRIOT radar
(see Figure 1.1-9), which is a phased array designed to track multiple targets
capable of high-g maneuvers with high update rates. The track update period of
1.096 sec could be done with a TWS radar possessing a high rotation rate of the

TABLE 1.2-7. Comparison of Three Critically Dampled g–h Filters

Parameter Example 1 Example 1a Example 1b Example 1c

�R, ft 50 50 50 50
�nþ1;n, ft 31.6 18.52 18.52 88.6
b�, ft 94.8 55.6 55.6 266
D=v2, sec2 a 0.691 0.916 1.528 1.314
g 0.0625 0.190 0.010 0.9775
h 0.0625 0.010 0.010 0.7225
� 0.75 0.90 0.90 0.15
T, sec 0.1924 0.0589 0.0761 1.096
_xmax, ft/sec2 5g ¼ 160 5 g 3 g 5 g

a D

�v
¼ T 2ð2 � gÞ

ghð4 � 2g � hÞ
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order of 60 rpm. However, a high scan rate does not permit a long enough dwell
time per scan to coherently suppress ground and rain clutter.

Note that Example 1c of Table 1.2-7 has very little memory, � being very
small at 0.15. Hence this filter should have a rapid response to a change in target
velocity. The design value for the 1� prediction error �nþ1;n and measurement
error �x will depend on the target density. The 1� error for the prediction

window, �w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

nþ1;n þ �2
x

q
, should be small enough that the 6� prediction

window (6�w) of Figure 1.2-2 does not generally contain a second target in
addition to the return from the target being tracked. If a second target return
were in this window, the association problem could become difficult. Specifi-
cally, we would have a problem in determining which of these two returns
should be associated with the target in track. There are ways of coping with this
problem [6, 8, 9; see Section 3.3]; however, when it occurs, frequently there is
an increased probability of losing target track. It is clear from this discussion
that the denser the target environment, the smaller one would desire to have
�nþ1;n.

1.2.8 Circuit Diagram of General g–h Filter

For those engineers who prefer seeing a filter in circuit form we give
Figure 1.2-16. This circuit applies for the general g–h tracking filter of
(1.2-11).

Figure 1.2-16 Equivalent circuit diagram of g–h filter.
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1.2.9 Stability of Constant g–h Filter

Stability is often a concern in designing a circuit for a filter. The literature
shows [12, 74] the constant g–h filter is stable when the filter parameters g and h
obey the following conditions [12; see also problem 1.2.9-1]:

g > 0 ð1:2-37aÞ
h > 0 ð1:2-37bÞ

ð4 � 2g � hÞ > 0 ð1:2-37cÞ

The above conditions define the triangular region of Figure 1.2-17. Because,
generally, g � 1 and h < 2, it follows that normally a constant g–h filter is
stable. Also plotted in Figure 1.2-17 is the curve relating h and g for the
critically damped filter [i.e., (1.2-36)]. As can be seen, the critically damped
g–h filter is always stable. The part of the g–h curve for h � 1 corresponds to
the minus sign solution of (1.2-36) and is the useful part of the solution.

1.2.10 Track Initiation

So far when discussing the g–h filter we did not say how we initiated track. We
implicitly assumed we were in track and we wanted to update the estimate of
the next target position and velocity, that is, update x�nþ1;n and _x�nþ1;n. (The
Kalman filter to be discussed in Chapter 2 actually automatically provides track
initiation.) If we use the constant g–h filters like the critically damped and
Benedict–Bordner filters for track initiation, tracking will be poor. The problem
arises because the constant weights g and h, such as those obtained above (in
Examples 1 and 2) for steady-state filtering, are poor choices for track initiation.
They overweigh the old estimate for the target position at time n given by x�n;n�1

and underweigh the newly acquired measurement yn. As a result the updated
estimate is placed closer to x�n;n�1 than it should be; see Figure 1.2-3. Initially
the weights g and h should be larger than those provided by the steady-state

Figure 1.2-17 Triangular region of stability for constant g–h filter.
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critically damped and Benedict–Bordner filters because initially the estimates
x�n;n�1 and _x�n;n�1 are not accurate at the start of the track. The g–h filters
with constant g–h weights are meant to be used after the tracking has
reached steady-state conditions, that is, after track initiation. The use of the
steady-state constant g–h filters for track initiation could result in loss of
track.

For track initiation the least-squares fit procedure (with uniform weighting,
that is, without the discounting so that � ¼ 1) outlined in Section 1.2.6 is used.
Figure 1.2-10 illustrates the least-squares fit line (constant-velocity trajectory)
for the case of seven measurements, the first seven, that is, n ¼ 0; . . . ; 6. The
least-squares fitted line is that line that minimizes the sum of the squares of
differences between the line and the measurements as given by (1.2-33). The
position of the target at time n ¼ 7 is then estimated by the position on the
least-squares fitting line at time n ¼ 7. Knowing this position, a �3� range
window is set up about it and the next target echo looked for inside this window.
If it is detected, then the whole process is repeated. This procedure represents
the least-squares tracking filter. It is not the discounted least-squares filter
discussed in Section 1.2.6 because there is no discounting of old data. All the
past measurement are weighted with equal importance. (Again, here � of
Section 1.2.6 equals 1.) Note that the slope v�0 of the least-squares fitting line
represents the least-squares estimate of the target velocity. The intercept x�0 of
the line with the ordinate represents a least-squares estimate of the position of
the target at time n ¼ 0.

Let us step back a little. When n ¼ 0, we do not have enough measurements
to form a least-squares fitting line. What do we do then? Generally we will have
an estimate of the maximum approaching and receding velocities of the target.
If we know the maximum approaching and receding velocities the target could
have, we can determine the range interval into which the target would fall on
the next observation, observation n ¼ 1. If the target is observed at time n ¼ 1
in this expected range window, we can then obtain an estimate of the target’s
velocity by drawing a straight line through the two observation points at time
n ¼ 0 and n ¼ 1 using the line to predict the target’s position for time n ¼ 2
and to determine the �3� window in which the echo is to be looked for at
time n ¼ 2. If an observation y2 is obtained in this window, then we would
like to obtain a new estimate of the target velocity when predicting where
the target is expected to be at the next observation at n ¼ 3. That is, one would
determine x�3;2. One cannot draw a straight line through these three points,
because the measurement noise forces the three points to not fall on a
straight line. The dotted line representing the target trajectory is ‘‘over-
determined’’ in this case. At this point the least-squares filter procedure
discussed above starts.

The least-squares filtering outlined above is a complex one to implement.
However, just as the discounted least-square filter of Figures 1.2-10 and 1.2-11
is identical to a constant g–h filter, so too can the least-squares filter be
represented by a g–h filter, but with g and h not constant. The weights are
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given by

hn ¼ 6

ðn þ 2Þðn þ 1Þ ð1:2-38aÞ

gn ¼ 2ð2n þ 1Þ
ðn þ 2Þðn þ 1Þ ð1:2-38bÞ

For the above equations, the first measurement is assumed to start at n ¼ 0.
Here the weights g and h vary with n as indicated. The above equations indicate
the weights decrease with increasing n. This is expected. Initially one has a very
poor estimate x�n;n�1 so it should not be given a heavy weighting with respect to
yn. As time goes on, with estimate xn;n�1 improving, the weighting on it should
increase or equivalently the weighting for yn should decrease, implying a
corresponding decrease in the constants g and h. Note than n þ 1 represents the
number of target measurements. The weight hn is expressed in terms of gn by
the equation [22]

hn ¼ 4 � 2gn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðgn � 2Þ2 � 3g2

n

q
ð1:2-39Þ

The least-squares g–h filter just developed (line 6 of Table 1.2-1) is also
called an expanding-memory (growing-memory) polynomial filter (line 3 of
Table 1.2-1), because its memory increases linearly with time. The term
polynomial refers to the equation used to model the target motion. For a
constant-velocity target, one uses a polynomial of time of degree 1 (i.e., a

Figure 1.2-18 Equivalent circuit for expanding-memory polynomial filter.
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constant plus a constant times t). Figure 1.2-18 gives an equivalent circuit
representation for the expanding-memory polynomial filter.

Poor results will be obtained if the track initiation expanding-memory filter
is used too long since the weights g and h decrease as n increases, becoming
essentially zero for large n; see (1.2-38). So, for large n the tracking filter in
effect will not pay any attention to new data. The filter has tracked the target for
a long time, knows its trajectory, and does not need new observations to
determine where the target is going. Indeed, this would be the case if the target
truly were going in a straight line, but in the real world the target will turn or
maneuver; hence one does not want the weights g and h to go to zero. For this
reason one switches at some point from the expanding-memory polynomial
filter to a steady-state constant g–h filter.

The question now to be addressed is when should this transition take place?
The answer is that we switch from the track initiation filter to a steady-state g–h
filter (such as the critically damped or Benedict–Bordner filter) at that n for
which the variance of the target’s predicted position x�nþ1;n for the track
initiation filter equals the variance of the target’s predicted position for the
steady-state filter [as given by (1.2-19)]; that is, when

VAR ðx�nþ1;nÞ for expanding-memory polynomial filter

¼ steady-state VAR ðx�nþ1;nÞ for steady-state g---h filter ð1:2-40Þ

Table 1.2-8 summarizes when the transition should occur.
We shall now illustrate this transition assuming the use of a steady-state

critically damped filter. For the critically damped filter one finds, on substituting
(1.2-35) into (1.2-19), that

Steady-state VAR ðx�nþ1;nÞ for critically damped g---h filter

¼ 1 � �

ð1 þ �Þ3
ð5 þ 4�þ �2Þ�2

x ð1:2-41Þ

For the expanding-memory polynomial filter [5; see also Section 6]

VAR ðx�nþ1;nÞ for expanding-memory polynomial filter ¼ 2ð2n þ 3Þ
ðn þ 1Þn �2

x

ð1:2-42Þ

TABLE 1.2-8. Track Initiation for g–h Filter

Procedure

1. Start with expanding-memory polynomial filter for constant-velocity trajectory.
2. Switch to steady-state g–h filter at n ¼ n0 for which

VARðx�nþ1;nÞ for expanding-memory polynomial filter

¼ steady-state VAR ðx�nþ1;nÞ for steady-state g--h filter
ð1:2-40Þ
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We shall use the same assumptions as given in Example 1 of Section 1.2.7.
There � ¼ 0:75 and �x¼ 50 ft. Substituting (1.2-41) and (1.2-42) into (1.2-40)
and solving for n yield that n ¼ n0 ¼ 10:46 ¼ 11. Hence, one switches over
to the critically damped filter steady state weights of gn ¼ g ¼ 0:4375 and hn ¼
h ¼ 0:0625 on the 12th observation. The expanding-memory (growing-
memory) filter is self-starting; specifically, it properly initiates track
independent of the initial conditions assumed; see Section 6.5 and problems
6.5-1 and 6.5-2. The expression (1.2-42) for the accuracy of a growing-memory
least-squares filter is a very important one. It tells us that for the normalised
one-stop prediction �nþ1;n=� x ¼ 2=

ffiffiffi
n

p
for large n independent of the track

time.

1.3 g–h–k FILTER

So far we have developed the filter for tracking a target modeled as on a
constant-velocity trajectory. Now we will consider the case of a target having a
constant acceleration. The target equations of motion given by (1.1-1) now
become, for the target having a constant acceleration,

xnþ1 ¼ xn þ _xnT þ �xn

T 2

2
ð1:3-1aÞ

_xnþ1 ¼ _xn þ �xnT ð1:3-1bÞ
�xnþ1 ¼ �xn ð1:3-1cÞ

Following the heuristic procedure used to develop (1.2-11) for the constant-
velocity target, it is a straightforward matter to develop the tracking equations
needed for updating the prediction estimates of position, velocity, and
acceleration for the constant-accelerating target model. The g–h–k track update
equations [corresponding to (1.2-8) for the g–h filter] become

�x�n;n ¼ �x�n;n�1 þ
2k

T 2
ðyn � x�n;n�1Þ ð1:3-2aÞ

_x�n;n ¼ _x�n;n�1 þ
h

T
ðyn � x�n;n�1Þ ð1:3-2bÞ

x�n;n ¼ x�n;n�1 þ gðyn � x�n;n�1Þ ð1:3-2cÞ

The g–h–k prediction equations or transition equations [corresponding to
(1.2-10) for the g–h filter] become

�x�nþ1;n ¼ �x�n;n ð1:3-3aÞ
_x�nþ1;n ¼ _x�n;n þ �x�n;nT ð1:3-3bÞ

x�nþ1;n ¼ x�n;n þ _x�n;nT þ �x�n;n
T 2

2
ð1:3-3cÞ
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The above is for the well-known g–h–k filter, also referred to as the �–�–� filter
when g, h, and k are respectively replaced by �, �, and �=2. This filter has the
advantage that it can track a constant-accelerating target with zero lag error in
the steady state. It will have a constant lag error for a target having a constantly
changing acceleration with time, that is, for a target having a constant jerk. It is
a three state filter—tracking, position, velocity, and acceleration.

The VRF and bias error for x�nþ1;n of the general g–h–k filter are given by
[11]

VRFðx�nþ1;nÞ ¼
VARðx�nþ1;nÞ

�2
x

¼ gkð2g þ h � 4Þ þ h½gð2g þ hÞ þ 2h�
½2k � gðh þ kÞ�½2g þ h � 4� ð1:3-4Þ

b� ¼ b�nþ1;n ¼ � T 3_�x

2k
ð1:3-5Þ

where_�x is the third derivative of x with respect to time (the jerk). The VRFs for
x�n;n, _x�n;n and �x�n;n are given by respectively [8]

VRFðx�n;nÞ ¼
VARðxn;nÞ

�2
x

¼ 2hð2g2 þ 2h � 3ghÞ � 2gkð4 � 2g � hÞ
2ð4 � 2g � hÞðgh þ gk � 2kÞ ð1:3-6Þ

VRFð _x�n;nÞ ¼
VARð _x�n;nÞ

�2
x

¼ 2h3 � 4h2k þ 4k 2ð2 � gÞ
T 2ð4 � 2g � hÞðgh þ gk � 2kÞ ð1:3-7Þ

VRFð�x�n;nÞ ¼
VARð�x�n;nÞ

�2
x

¼ 8hk 2

T 4ð4 � 2g � hÞ ðgh þ gk � 2kÞ

For the g–h–k filters with constants g, h, and k there are equivalent filters to
the g–h filters, such as the critically damped (fading-memory), Benedict–
Bordner, and expanding-memory polynomial filters. The critically damped g–
h–k filter [5] has three real roots and represents the filter minimizing the
discounted least-squares error for a constantly accelerating target. It is shown in
Chapter 7 that for the critically damped filter

g ¼ 1 � �3 ð1:3-8aÞ
h ¼ 1:5ð1 � �2Þð1 � �Þ ð1:3-8bÞ
k ¼ 0:5ð1 � �Þ3 ð1:3-8cÞ
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where � is the discounting factor used for the critically damped g–h filter of
Section 1.2.6. Chapter 7 also gives the equations for the critically damped g–h–
k–i filter, that is, the filter designed to track a constant-jerk target (a target
whose derivative of acceleration with respect to time is constant), which is a
four-state filter. The variance reduction factors for position, velocity, and
acceleration for the critically damped g–h–k and g–h–k–i filters are also given
in Chapter 7. Figures 1.3-1 to 1.3-3 give, for the g–h–k fading-memory filter, the
corresponding useful design curves to Figures 1.2-13 to 1.2-15 for calculating
and balancing the bias error b� and prediction error �nþ1;n; see problems 2.10-6
and 2.10-7, to be done after reading Section 2.10

The Benedict–Bordner g–h–k filter, also called the Simpson filter, minimizes
the transient error [13]. The relationship between g, h, and k for the Simpson
filter is given as [13]

2h � gðg þ h þ kÞ ¼ 0 ð1:3-9Þ

This filter minimizes the transient due to a unit step in acceleration for a given
�n;n and the transient due to a unit step in velocity. For k ¼ 0, (1.3-9) yields the
relationship between g and h for the Benedict–Bordner filter given by (1.2-27).

A form of the Benedict–Bordner g–h–k filter can also be derived as a steady-
state Kalman filter for a target having a constant-accelerating trajectory with a

Figure 1.3-1 Normalized bias error b�N ¼ b�=� x and prediction error � ¼ �nþ1;n=� x

versus weight h for critically damped g–h–k filter. (After Asquith and Woods [11].)
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Figure 1.3-2 Normalized total error ETN versus weight h for critically damped g–h–k
filter. (After Asquith and Woods [11].)

Figure 1.3-3 The minimum total error, ETN , and 3�, b�N , and h versus normalized jerk
for critically damped g–h–k filter. (After Asquith and Woods [11].)
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random-acceleration component [given by wn of (2.4-11) and by (2.4-12)]. For
this case [14; see also 11 and 15]

g ¼ 0:5ð�h þ
ffiffiffiffiffi
8h

p
Þ ð1:3-10aÞ

or

h ¼ 2ð2 � gÞ � 4
ffiffiffiffiffiffiffiffiffiffiffi
1 � g

p
ð1:3-10bÞ

and

k ¼ h2

4g
ð1:3-10cÞ

One can easily show that (1.3-10a) to (1.3-10c) satisfy (1.3-9); see problem
(1.3-1). The version of the Benedict–Bordner filter given above by (1.3-10a) to
(1.3-10c) is often called the optimum g–h–k filter [14, 15]. Figures 1.3-4 to
1.3-6 give, for the optimum g–h–k filter, the corresponding useful design curves
to Figures 1.2-7 to 1.2-9 for calculating and balancing the bias error b� and

Figure 1.3-4 Normalized bias error b�N ¼ b�=� x and prediction error � ¼ �nþ1;n=� x

versus weight h for optimum g–h–k filter. (After Asquith and Woods [11].)

g–h–k FILTER 55



Figure 1.3-5 Normalized total error versus weight h for optimum g–h–k filter. (After
Asquith and Woods [11].)

Figure 1.3-6 The minimum total error, E TN , and 3�; b�N ; and h versus normalized jerk
for optimum g–h–k filter. (After Asquith and Woods [11].)
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prediction error �nþ1;n; see problems 2.10-8 and 2.10-9, to be done after reading
Section 2.10.

The g–h–k expanding-memory polynomial filter is described in Chapter 6.
For a constantly accelerating target the target motion is expressed by a
polynomial of time of degree 2. Chapter 6 discusses the expanding-memory
polynomial filter for degrees ranging from 0 to 3. The g–h–k expanding memory
polynomial filter is the least-squares filter for a target having a constant
acceleration. These expanding memory polinomial filters are used for track
initiating three-state steady-state fading-memory filters having the same number
of states as done in Section 1.2.10 for a two-state g–h filter and to be further
discussed for higher order filters in Section 7.6. Thus a g–h–k steady-state filter
would use a g–h–k growing-memory filter for track initiation. Figures 1.3-7 and
13-8 show the starting transient observed when using the critically damped g–
h–k filter for track initiation versus using the expanding-memory polynomial
filter for track initiation, the steady-state critically damped g–h–k filter being
used for tracking in steady state. For the latter case of Figure 1.3-8, the
switching from the expanding-memory polynomial to the steady-state filter
occurs when (1.2-40) holds for the g–h–k filters involved.

Figure 1.3-7 Starting transient error for critically damped g–h–k filter when critically
damped filter itself is used for track initiation with first three data points fitted to second-
degree polynomial in order to initialize this filter. Parameters: � ¼ 0:942; T ¼ 0:05 sec,
and � x ¼ 5 ft. (From Morrison [5, p. 539].)
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When track initiating with the g–h–k critically damped filter without using
the expanding-memory filter, the track initiation actually starts by fitting a
polynomial of degree 2 to the first data points observed at observation times
n ¼ 0; 1; 2. This polynomial fit provides the initial estimate of the target
position, velocity, and acceleration. This procedure is actually equivalent to
using the expanding-memory polynomial filter for track initiation, with only the
first three data points used. In contrast, when using the expanding-memory
polynomial filter for track initiation until (1.2-40) is satisfied, the first 76 data
points are used as indicated in Figure 1.3-8. Figure 1.3-7 shows the large
transient error obtained when using the steady-state fading-memory polynomial
filter for track initiation as compared to the small transient error obtained when
using the expanding-memory polynomial filter; see Figure 1.3-8. As indicated
in Section 1.2.10, the growing-memory filter is self-starting; see also Section
6.5 and Problems 6.5-1 and 6.5-2.

A set of extremely useful normalized design curves for constant g–h–k filters
are given in Section 2.10.

Figure 1.3-8 Starting transient error when expanding-memory polynomial filter is
used for track initiation. Switch from expanding-memory polynomial filter to g–h–k
critically damped filter occurs after 76th observation, that is, n 0 ¼ 75. Parameters:
� ¼ 0:942, T ¼ 0:05 sec, and � x ¼ 5 ft. (From Morrison [5, p. 540].)
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1.4 TRACKING IN MULTIDIMENSIONS

A two-dimensional radar tracks a target in slant range R and azimuth �. To do
this, typically a g–h filter is used to track the target in slant range and a separate,
independent g–h filter is used to track the target in azimuth. These filters would
generally have different weights g–h. The range state variables R and _R and
azimuth state variables � and _� generally are correlated, but for simplicity they
are often assumed to be independent. When this is done, they are called
uncoupled.

Define the four-state vector X by the transpose of the row matrix ½R; _R; �; _� �,
that is, X ¼ ½R; _R; �; _��T

, where the superscript T stands for matrix transpose.
(Recall that the transpose of an arbitrary m � n matrix Z is obtained by having
the columns of Z become the rows of the n � m matrix A ¼ Z T .) The column
matrix X will be used later to indicate the quantities being estimated by the
tracking filter or filters. In this example, these quantities are R, _R, �, and _�. The
covariance of X is defined by

COVðXÞ ¼ E½X T X� ð1:4-1Þ

where, as before, E½
� stands for ‘‘expected value of’’. This definition applies as
long as the entries of the state vector X have zero mean. Otherwise, X has to be
replaced by X � E½X� in (1.4-1). When the range and azimuth variates are
assumed to be uncoupled, the covariance of X takes the form

COVðXÞ ¼ S ¼

�2
RR �2

R _R
j 0 0

�2
_RR

�2
_R _R

j 0 0

----- ----- j ----- -----

0 0 j �2
�� �2

� _�

0 0 j �2
_��

� _� _�

2

666664

3

777775
ð1:4-2Þ

This permits the use of independent g–h filters for the range and azimuth
variates.

Often the range variate R is tracked using a g–h–k filter while the azimuth
variate � is tracked using a g–h filter. This is because range is measured much
more precisely (to feet whereas angle typically is measured to miles). As a
result the target trajectory in slant range is more sensitive to small accelerations,
which results in the requirement for a three-state filter that estimates the target
acceleration.

For a three-dimensional radar the target is tracked in slant range R, azimuth
�, and elevation �. In this case a third independent (decoupled) g–h filter that
tracks the target elevation angle variable � is used in parallel with the g–h–k (or
g–h) filter for slant range R and g–h filter for azimuth �.
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1.5 SELECTION OF COORDINATES FOR TRACKING FILTER

For the two dimensional radar the natural coordinates for tracking are the slant
range R and azimuth � coordinates. It is the one generally used. However, this
coordinate system has an important disadvantage. Specifically, when a target
going in a straight line with a constant velocity flies by the radar at close range,
a large geometry-induced acceleleration is seen for the slant range even though
the target itself has no acceleration. This acceleration is sometimes referred to
as the pseudoacceleration of the target. It is illustrated in Figure 1.5-1. The
closer the target flies by the radar, the larger is the maximum geometry-induced
acceleration seen for the slant range coordinate. The maximum value for this
acceleration is given by

amax ¼ v2

Rc

ð1:5-1Þ

where v is the target velocity and Rc is the closest approach range of the target
to the radar. Thus a 520-knot target having a closest approach of 2 nmi induces
a 2g pseudoacceleration onto the slant range measurement even though the
target is actually not accelerating. The presence of the pseudoacceleration
causes tracking to be more difficult. It could necessitate the need for a higher
order tracking filter in the slant range coordinate in order to maintain track on
targets passing by at a close range. The pseudoacceleration problem can be
eliminated by tracking the target in rectangular coordinates instead of polar
coordinates. To do this, a transformation is made from the polar R–�
coordinates, in which the radar measurements are made, to the rectangular x–
y coordinates, in which the tracking is to be done. The predicted x–y coordinates
of the target are then transformed into R–� coordinates for locating the (n+1)st
measurement windows.

Often in practice what is actually done is to track the target in the radar
measurement polar R–� coordinates when it is at far range, switching to
rectangular coordinates when the target is at close range where the
pseudoacceleration problem exists. This procedure was used for the terminal
ASR-7 air surveillance radar used at Burlington, Vermont, when evaluating the
Lincoln Laboratory MTD processor [16]. This was also done for the Applied
Physics Laboratory Integrated Automatic Detection and Tracking (IADT)
shipboard tracker [17]. Moreover, for the latter case three-dimensional spherical
coordinate R, �, � tracking information is available on the target [see Figure
1.5-2], and the tracking was done at close range using a fully coupled x–y–z
rectangular coordinate system tracking filter.

For the ASR-7 system the transformation to rectangular coordinates was
made when the target had a slant range than 6 nmi. For simplicity, independent
(uncoupled) g–h tracking filters were used for the x and y coordinates. Tracking
in the rectangular x–y coordinates is not done for all ranges because of the
increased computer computation required to do the tracking in these
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Figure 1.5-1 (a) Geometry of constant-velocity target passing by radar to generate
pseudoacceleration. (b) Pseudoacceleration generated for different points of closest
approach; target velocity ¼ 600 knots.
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coordinates. First, the x and y tracking filters should be coupled because
ignoring the coupling degrades tracking accuracy when the parameters have
different measurement accuracies, as is the case for range and azimuth
measurements. Second, one has to do the transformation from polar to
rectangular coordinates and back for each track update. Specifically, for each
new target measurements one has to make the transformation from the polar
coordinates in which the measurements are made to the rectangular coordinates
in which the tracking filters operate and then back to the polar coordinates after
each new prediction ahead is made in order to set up the windows in
measurement space for the next look.

For the case of spherical and rectangular coordinates these transformations
are

x ¼ R cos � cos � ð1:5-2aÞ
y ¼ R cos � sin � ð1:5-2bÞ
z ¼ R sin � ð1:5-2cÞ

for spherical-to-rectangular coordinates and

R ¼ ðx2 þ y2 þ z2Þ1=2 ð1:5-3aÞ

� ¼ tan
y

x

� �
ð1:5-3bÞ

� ¼ tan�1 z

x2 þ y2ð Þ1=2

" #

ð1:5-3cÞ

for rectangular-to-spherical coordinates.

Figure 1.5-2 Spherical coordinates typically used for three-dimensional radar
measurements.
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Reference 17 has proposed the use of a dual coordinate system (DCS) to
reduce the effects of the pseudoacceleration. In the DCS system the target
filtering is done with uncoupled range and azimuth filters but the track
prediction is done in cartesian coordinates. Reference 17 indicates that simula-
tion has verified that use of the DCS filter produces the same accuracy as
obtained with the coupled Cartesian filter except when one has extremely high
angular rates (such as, 20�=sec) where both filters fail to perform well.
However, such rates are not of practical interest.

The literature is rich on the subject of the selection of the tracking-filter
coordinate system. The reader is referred to references 6, 8, and 18 for further
detailed discussions on this subject. Extensive discussions are given in reference
8 on the selection of coordinates for sensors on moving platforms and in
reference 18 for ground-based intercontinental ballistic missile (ICBM)
systems.
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2
KALMAN FILTER

2.1 TWO-STATE KALMAN FILTER

Up to now we have used a deterministic description for the target motion.
Specifically, we have assumed a target having a constant-velocity motion as
given by

xnþ1 ¼ xn þ T _xn ð1:1-1aÞ
_xnþ1 ¼ _xn ð1:1-1bÞ

In the real world the target will not have a constant velocity for all time. There
is actually uncertainty in the target trajectory, the target accelerating or turning
at any given time. Kalman allowed for this uncertainty in the target motion by
adding a random component to the target dynamics [19, 20]. For example, a
random component un could be added to the target velocity as indicated by the
following equations for the target dynamics:

xnþ1 ¼ xn þ T _xn ð2:1-1aÞ
_xnþ1 ¼ _xn þ un ð2:1-1bÞ

where un is a random change in velocity from time n to time n þ 1. We assume
un is independent from n to n þ 1 for all n and that it has a variance �2

u.
Physically un represents a random-velocity jump occurring just prior to the
n þ 1 observation.

We now have a system dynamics model with some randomness. This model
is called the constant-velocity trajectory model with a random-walk velocity.
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The random-velocity component un is sized to account for a possible target
acceleration or unexpected target turn. The random dynamics model component
un in the literature goes by the names process noise [6, 30], plant noise [8, 29,
30], driving noise [5, 8], dynamics noise [119], model noise, and system noise
(see Appendix).

Let xnþ1 represent the true location of the target at time n þ 1. Let x�nþ1;n
represent an estimated predicted position of the target at time n þ 1 based on
the measurements made up to and including time n. Kalman addressed the
question of finding the optimum estimate among the class of all linear and
nonlinear estimates that minimizes the mean square error

x�nþ1;n � xnþ1

� �2

ð2:1-2Þ

After much effort Kalman found that the optimum filter is given by the
equations

_x�nþ1;n ¼ _x�n;n�1 þ
hn

T
ð yn � x�n;n�1Þ ð2:1-3aÞ

x�nþ1;n ¼ x�n;n�1 þ T _x�nþ1;n þ gnðyn � x�n;n�1Þ ð2:1-3bÞ

But these are identical to the g–h filter given previously, specifically (1.2-11).
For the Kalman filter the weights gn and hn depend on n. Furthermore, as shall
be seen later, gn and hn are functions of the variance of the radar position
measurement, that is, the variance of �n; see (1.2-17). These filter constants are
also a function of the accuracy to which we know the position and velocity
before any measurements are made, that is, of our prior knowledge of the target
trajectory, as given by the a priori variance of the target position and velocity.
(Such information might be available when the track is being started after
handoff from another sensor.) In the steady state the filter constants gn and hn

are given by [12]

h ¼ g2

2 � g
ð2:1-4Þ

This equation is identical to that for the Benedict–Bordner filter given by Eq.
(1.2-27). Thus the steady-state Kalman filter is identical to the Benedict–
Bordner g–h filter. The more general Kalman filter was developed before the
Benedict–Bordner filter. The Kalman filter was first published in 1960 [19]
while the Benedict–Bordner filter was published in 1962 [10]. In the literature,
when the g–h Benedict–Bordner filter is derived as a steady-state g–h Kalman
filter as described above, it is usually referred to as the optimum g–h filter
[14, 15].

The Kalman filter has the advantage that it does not require the use of the
ad hoc equation relating the rms target prediction error to the g–h bias error
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as given by (1.2-22) and the bias equation as given by (1.2-15) to determine
the tracking-filter update period T as done in Example 1 Section 1.2.7.
Instead for the Kalman filter the update period is obtained using the equation
[12]

T 2 �
2
u

�2
x

¼ g4

ð2 � gÞ2ð1 � gÞ
¼ h2

1 � g
ð2:1-5Þ

which relates the target update period to the variance of the target dynamics �2
u

as well as to the noise measurement error and the filter parameter g. [See
problem 2.4-1 for derivation of (2.1-4) and (2.1-5).] Figure 1.2-7 to 1.2-9 were
actually developed for optimum g–h filter in Reference 11. However, in
developing these figures, (2.1-5) is not used, only (2.1-4).

It remains to determine how to specify the variance of the target dynamics
�2

u. Let the maximum expected target acceleration be �xmax. Then the greatest
change in velocity in one sample period T is T�xmax and �u is chosen to be given
by [12]

�u ¼ T �xmax

B
ð2:1-6Þ

where B is a constant. A good value for B is 1 when tracking ballistic targets
[12]. With this choice of B the errors 3�nþ1;n and b� will be about equal. For
maneuvering targets a larger B may be better [12]. If the maneuver were
independent from sample to sample, then B ¼ 3 would be suitable [12].

Using (1.2-15), (2.1-6), and (2.1-5), the following expression for the
normalized bias error b� is obtained for the g–h Kalman filter in steady state
[12]:

b�
�x

¼ B
ffiffiffiffiffiffiffiffiffiffiffi
1 � g

p ð2:1-7Þ

2.2 REASONS FOR USING THE KALMAN FILTER

Since the steady-state Kalman filter is identical to the Benedict–Bordner filter,
the question arises as to why we should use the Kalman filter. The benefits
accrued by using the Kalman filter are summarized in Table 2.2-1. First, while
in the process of computing the filter weights gn and hn for the Kalman filter,
calculations of the accuracy of the Kalman filter predictions are made. This
prediction information is needed for a weapon delivery system to determine if
the predicted position of the target is known accurately enough for a target kill.
It is also needed to accurately predict where a detected SCUD, intermediate-
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range ballistic missile (IRBM), or intercontinental ballistic missile (ICBM)
would land. It makes a difference whether the SCUD, IRBM, or ICBM is
landing in neutral territory such as the ocean or in a major city. It is also needed
for determining where an artillery shell, mortar shell, SCUD, IRBM, or ICBM
was launched. In the cases of the mortar shell, artillery shell, and SCUD this
information is needed in order to destroy the launcher or canon. In the case of
the IRBM and ICBM this information is needed to determine who is firing so
that the appropriate action can be taken. One does not want to take action
against country A when it is country B that is firing. The Kalman filter allows
one to make estimates of the launcher location and estimate the accuracy of
these estimates.

The Kalman filter makes optimal use of the target measurments by adjusting
the filter weights gn and hn to take into account the accuracy of the nth
measurement. For example, if on the nth measurement the signal-to-noise ratio
(SNR) is very good so that a very accurate target position measurement is
obtained, then gn and hn are automatically adjusted to take this into account.
Specifically, they are made larger so as to give more weight to this more
accurate measurement. If the target had been missed on the ðn � 1Þst look, then
gn and hn are optimally adjusted to account for this. The filter parameters gn

and hn are also adjusted to allow for nonequal times between measurements.
The Kalman filter optimally makes use of a priori information. Such a priori

information could come from another radar that had been previously tracking
the target and from which the target is being handed over—such as handover
from a search to tracking radar or from one air route surveillance radar (ARSR)
to another. The data from the other radar can be used to optimally set up the
Kalman g–h filter for the new radar. The Kalman filter automatically chooses
weights that start with large g and h values as needed for optimum track
initiation. The weights slowly transition to a set of small constant g’s and h’s
after track initiation. The target dynamics model incorporated by the Kalman
filter allows direct determination of the filter update rate by the use of (2.1-5).
Finally the addition of the random-velocity variable un forces the Kalman filter
to always be stable.

TABLE 2.2-1. Benefits of Kalman Filter

Provides running measure of accuracy of predicted position needed for weapon
kill probability calculations; impact point prediction calculation

Permits optimum handling of measurements of accuracy that varies with n;
missed measurements; nonequal times between measurements

Allows optimum use of a priori information if available
Permits target dynamics to be used directly to optimize filter parameters
Addition of random-velocity variable, which forces Kalman filter to be always stable

REASONS FOR USING THE KALMAN FILTER 67



2.3 PROPERTIES OF KALMAN FILTER

We will now give some physical feel for why the Kalman filter is optimum. Let
us go back to our discussion in Section 1.2. Recall that for our two-state g–h
tracking we have at time n two estimates of the target position. The first is yn,
based on the measurement made at time n (see Figure 1.2-3). The second is the
prediction x�n;n�1, based on past measurements. The Kalman filter combines
these two estimates to provide a filtered estimate x�n;n for the position of the
target at time n. The Kalman filter combines these two estimates so as to obtain
an estimate that has a minimum variance, that is, the best accuracy. The
estimate x�n;n will have a minimum variance if it is given by [5–7]

x�n;n ¼
x�n;n�1

VARðx�n;n�1Þ
þ yn

VARðYnÞ

" #
1

1=VARðx�n;n�1Þ þ 1=VARðynÞ
ð2:3-1Þ

That (2.3-1) provides a good combined estimate can be seen by examining
some special cases. First consider the case where yn and x�n;n�1 have equal
accuracy. To make this example closer to what we are familiar with, we use the
example we used before; that is, we assume that yn and x�n;n�1 represent two
independent estimates of your weight obtained from two scales having equal
accuracy (the example of Section 1.2.1). If one scale gives a weight estimate of
110 lb and the other 120 lb, what would you use for the best combined-weight
estimate? You would take the average of the two weight estimates to obtain
115 lb. This is just what (2.3-1) does. If the variances of the two estimates are
equal (say to �2), then (2.3-1) becomes

x�n;n ¼
x�n;n�1

�2
þ yn

�2

 !
1

1=�2 þ 1=�2
¼

x�n;n�1 þ yn

2
ð2:3-2Þ

Thus in Figure 1.2-3 the combined estimate x�n;n is placed exactly in the middle
between the two estimates yn and x�n;n�1.

Now consider the case where x�n;n�1 is much more accurate than the estimate
yn. For this case VARðx�n;n�1Þ � VARðynÞ or equivalently 1=VARðx�n;n�1Þ 	
1=VARðynÞ. As a result, (2.3-1) can be approximated by

x�n;n ¼
x�n;n�1

VARðx�n;n�1Þ
þ 0

" #
1

1=VARðx�n;n�1Þ þ 0

_¼ x�n;n�1 ð2:3-3Þ

Thus the estimate x�n;n is approximately equal to x�n;n�1, as it should be because

the accuracy of x�n;n�1 is much better than that of yn. For this case, in Figure 1.2-3

the combined estimate x�n is placed very close to the estimate x�n;n�1 (equal
to it).
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Equation (2.3-1) can be put in the form of one of the Kalman g–h tracking
filters. Specifically, (2.3-1) can be rewritten as

x�n;n ¼ x�n;n�1 þ
VARðx�n;nÞ
VARðynÞ

ðyn � x�n;n�1Þ ð2:3-4Þ

This in turn can be rewritten as

x�n;n ¼ x�n;n�1 þ gnðyn � x�n;n�1Þ ð2:3-5Þ

This is the same form as (1.2-7) [and also (1.2-8b)] for the g–h tracking filter.
Comparing (2.3-5) with (1.2-7) gives us the expression for the constant gn.
Specifically

gn ¼
VARðx�n;nÞ
VARðynÞ

ð2:3-6Þ

Thus we have derived one of the Kalman tracking equations, the one for
updating the target position. The equation for the tracking-filter parameter hn is
given by

hn ¼
COVðx�n;n _x�n;nÞ

VARðynÞ
ð2:3-7Þ

A derivation for (2.3-7) is given for the more general case in Section 2.6.

2.4 KALMAN FILTER IN MATRIX NOTATION

In this section we shall rework the Kalman filter in matrix notation. The Kalman
filter in matrix notation looks more impressive. You can impress your friends
when you give it in matrix form! Actually there are very good reasons for
putting it in matrix form. First, it is often put in matrix notation in the literature,
and hence it is essential to know it in this form in order to recognize it. Second,
and more importantly, as shall be shown later, in the matrix notation form the
Kalman filter applies to a more general case than the one-dimensional case
given by (2.1-3) or (1.2-11).

First we will put the system dynamics model given by (1.1-1) into matrix
notation. Then we will put the random system dynamics model of (2.1-1) into
matrix notation. Equation (1.1-1) in matrix notation is

Xnþ1 ¼ �Xn ð2:4-1Þ
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where

Xn ¼ xn

_xn

� 	
¼ state vector ð2:4-1aÞ

and

� ¼
1 T

0 1

� 	

¼ state transition matrix for constant-velocity trajectory [5, 43] ð2:4-1bÞ

To show that (2.4-1) is identical to (1.1-1), we just substitute (2.4-1a) and
(2.4-1b) into (2.4-1) to obtain

xnþ1

_xnþ1

� 	
¼ 1 T

0 1

� 	
xn

_xn

� 	
ð2:4-1cÞ

which on carrying out the matrix multiplication yields

xnþ1

_xnþ1

� 	
¼ xn þ T _xn

_xn

� 	
ð2:4-1dÞ

which we see is identical to (1.1-1).
As indicated in (2.4-1a), Xn is the target trajectory state vector. This state

vector is represented by a column matrix. As pointed out in Section 1.4, it
consists of the quantities being tracked. For the filter under consideration
these quantities are the target position and velocity at time n. It is called a
two-state vector because it consists of two target states: target position and
target velocity. Here, � is the state transition matrix. This matrix transitions
the state vector Xn at time n to the state vector Xnþ1 at time n þ 1 a period T
later.

It is now a simple matter to give the random system dynamics model
represented by (2.1-1) in matrix form. Specifically, it becomes

Xnþ1 ¼ �Xn þ Un ð2:4-2Þ

where

Un ¼
0

un

� 	

¼ dynamic model driving noise vector ð2:4-2aÞ

To show that (2.4-2) is identical to (2.1-1), we now substitute (2.4-1a), (2.4-1b),
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and (2.4-2a) into (2.4-2) to obtain directly from (2.4-1d)

xnþ1

_xnþ1

� 	
¼ xn þ T _xn

_xn

� 	
þ 0

un

� 	
ð2:4-2bÞ

which on adding the corresponding terms of the matrices on the right-hand side
of (2.4-2b) yields

xnþ1

_xnþ1

� 	
¼ xn þ T _xn

_xn þ un

� 	
ð2:4-2cÞ

which is identical to (2.1-1), as we desired to show.
We now put the trivial measurements equation given by (1.2-17) into matrix

form. It is given by

Yn ¼ MXn þ Nn ð2:4-3Þ

where

M ¼ ½ 1 0 � ¼ observation matrix ð2:4-3aÞ
Nn ¼ ½ �n � ¼ observation error ð2:4-3bÞ
Yn ¼ ½ yn � ¼ measurement matrix ð2:4-3cÞ

Equation (2.4-3) is called the observation system equation. This is because it
relates the quantities being estimated to the parameter being observed, which,
as pointed out in Section 1.5, are not necessarily the same. In this example, the
parameters xn and _xn (target range and velocity) are being estimated (tracked)
while only target range is observed. In the way of another example, one could
track a target in rectangular coordinates (x, y, z) and make measurements on the
target in spherical coordinates (R; �; �). In this case the observation matrix M
would transform from the rectangular coordinates being used by the tracking
filter to the spherical coordinates in which the radar makes its measurements.

To show that (2.4-3) is given by (1.2-17), we substitute (2.4-3a) to (2.4-3c),
into (2.4-3) to obtain

½ yn � ¼ ½1 0� xn

_xn

� 	
þ ½�n� ð2:4-3dÞ

which on carrying out the multiplication becomes

½ yn � ¼ ½ xn � þ ½ �n � ð2:4-3eÞ

Finally, carrying out the addition yields

½ yn � ¼ ½ xn þ �n � ð2:4-3fÞ

which is identical to (1.2-17).
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Rather than put the g–h tracking equations as given by (1.2-11) in matrix
form, we will put (1.2-8) and (1.2-10) into matrix form. These were the
equations that were combined to obtain (1.2-11). Putting (1.2-10) into matrix
form yields

X�
nþ1;n ¼ �X�

n;n ð2:4-4aÞ

where

X�
n;n ¼

x�n;n
_x�n;n

" #

ð2:4-4bÞ

X�
nþ1;n ¼

x�nþ1;n

_x�nþ1;n

" #

ð2:4-4cÞ

This is called the prediction equation because it predicts the position and
velocity of the target at time n þ 1 based on the position and velocity of the
target at time n, the predicted position and velocity being given by the state
vector of (2.4-4c). Putting (1.2-8) into matrix form yields

X�
n;n ¼ X�

n;n�1 þ HnðYn � MX�
n;n�1Þ ð2:4-4dÞ

Equation (2.4-4d) is called the Kalman filtering equation because it provides the
updated estimate of the present position and velocity of the target.

The matrix Hn is a matrix giving the tracking-filter constants gn and hn. It is
given by

Hn ¼
gn

hn

T

2

4

3

5 ð2:4-5Þ

for the two-state g–h or Kalman filter equations of (1.2-10). This form does not
however tell us how to obtain gn and hn. The following form (which we shall
derive shortly) does:

Hn ¼ S�n;n�1 M T Rn þ MS�n;n�1M T
h i�1

ð2:4-4eÞ

where

S�n;n�1 ¼ �S�n�1;n�1�
T þ Qn (predictor equation) ð2:4-4fÞ
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and

Qn ¼ COV ½Un� ¼ E ½UnU T
n � (dynamic model noise covariance)

ð2:4-4gÞ
S�n;n�1 ¼ COVðX�

n;n�1Þ ¼ E ½X�
n;n�1X�T

n;n�1 � ð2:4-4hÞ
Rn ¼ COVðNnÞ ¼ E ½NnN T

n � (observation noise covariance) ð2:4-4iÞ
S�n�1;n�1 ¼ COVðX�

n�1;n�1Þ
¼ ½I � Hn�1M �Sn�1;n�2 (corrector equation) ð2:4-4jÞ

As was the case for (1.4-1), covariances in (2.4-4g) and (2.4-4i) apply as long as
the entries of the column matrices Un and Nn have zero mean. Otherwise Un

and Nn have to be replaced by Un � E ½Un� and Nn � E ½Nn�, respectively.
These equations at first look formidable, but as we shall see, they are not that
bad. We shall go through them step by step.

Physically, the matrix S�n;n�1 is an estimate of our accuracy in prediciting the
target position and velocity at time n based on the measurements made at time
n � 1 and before. Here, S�n;n�1 is the covariance matrix of the state vector
X�

n;n�1. To get a better feel for S�n;n�1, let us write it out for our two-state X�
n;n�1.

From (1.4-1) and (2.4-4c) it follows that

COV X�
n;n�1 ¼ X�

n;n�1X�T
n;n�1

¼
x�n;n�1

_x�n;n�1

" #

½ x�n;n�1 _x�n;n�1 � ¼
x�n;n�1x�n;n�1 x�n;n�1 _x

�
n;n�1

_x�n;n�1x�n;n�1 _x�n;n�1 _x
�
n;n�1

" #

¼
x�2

n;n�1 x�n;n�1 _x
�
n;n�1

_x�n;n�1x�n;n�1 _x�2
n;n�1

" #

¼
s�00 s�01

s�10 s�11

" #

¼ S�n;n�1 ð2:4-4kÞ

where for convenience E½Z� has been replaced by �Z, that is, E ½ � � is replaced by
the overbar. Again, the assumption is made that mean of X�

n;n�1 has been
substracted out in the above.

The matrix Rn gives the accuracy of the radar measurements. It is the
covariance matrix of the measurement error matrix Nn given by (2.4-4i). For
our two-state filter with the measurement equation given by (2.4-3) to (2.4-3c),

Rn ¼ COV ½Nn� ¼ ½�n�½�n�
T ¼ ½�n�½�n�

¼ ½� 2
n � ¼ ½� 2

n �
¼ ½�2

�� ¼ ½�2
x � ð2:4-4lÞ

KALMAN FILTER IN MATRIX NOTATION 73



where it is assumed as in Section 1.2.4.4 that �� and �x are the rms of �n

independent of n. Thus �2
� and �2

x are the variance of �n, the assumption being
that the mean of �n is zero; see (1.2-18).

The matrix Qn, which gives the magnitude of the target trajectory
uncertainty or the equivalent maneuvering capability, is the covariance matrix
of the dynamic model driving noise vector, that is, the random-velocity
component of the target trajectory given by (2.4-2a); see also (2.1-1). To get a
better feel for Qn, let us evaluate it for our two-state Kalman filter, that is, for
Un given by (2.4-2a). Here

Qn ¼ COVUn ¼ UnU T
n ¼

0

un

� 	
½0 un�

¼
0 � 0 0 � un

un � 0 un � un

� 	
¼

0 0

0 u2
n

� 	
ð2:4-4mÞ

Equation (2.4-4f ) allows us to obtain the prediction covariance matrix S�n;n�1

from the covariance matrix of the filtered estimate of the target state vector at

TABLE 2.4-1. Kalman Equation

Predictor equation:

X�
nþ1;n ¼ �X�

n;n ð2:4-4aÞ

Filtering equation:

X�
n; n ¼ X�

n;n�1 þ H nðY n � MX�
n;n�1Þ ð2:4-4dÞ

Weight equation:

H n ¼ S�n;n�1M T ½Rn þ MS�n;n�1M T ��1 ð2:4-4eÞ

Predictor covariance matrix equation:

S�n;n�1 ¼ COVðX�
n;n�1Þ ð2:4-4hÞ

S�n;n�1 ¼ �S�n�1;n�1�
T þ Q n ð2:4-4fÞ

Covariance of random system dynamics model noise vector U a:

Qn ¼ COVðUnÞ ¼ E ½UnU T
n � ð2:4-4gÞ

Covariance of measurement vector Y n ¼ Xn þ N a
n :

Rn ¼ COVðY nÞ ¼ COVðN nÞ ¼ E ½N nN T
n � ð2:4-4iÞ

Corrector equation (covariance of smoothed estimate):

S�n�1;n�1 ¼ COVðX�
n�1; n�1Þ ¼ ðI � H n�1MÞS�n�1;n�2 ð2:4-4jÞ

a If E½U� ¼ E½N n� ¼ 0.
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time n � 1 given by S�n�1;n�1. The filtered estimate covariance matrix S�n�1;n�1

is in turn obtained from the previous prediction covariance matrix S�n�1;n�2

using (2.4-4j). Equations (2.4-4e), (2.4-4f ), and (2.4-4j) allow us to obtain the
filter weights Hn at successive observation intervals. For the two-state g–h filter
discussed earlier, the observation matrix is given by (2.4-3a) and the filter
coefficient matrix Hn is given by (2.4-5). The covariance matrix for the initial a
priori estimates of the target position and velocity given by S�0;�1 allows
initiation of the tracking equations given by (2.4-4d). First (2.4-4e) is used
to calculate H0 (assuming that n ¼ 0 is the time for the first filter observation).
For convenience the above Kalman filter equations are summarized in
Table 2.4-1.

The beauty of the matrix form of the Kalman tracking-filter equations as
given by (2.4-4) is, although presented here for our one-dimensional (range
only), two-state (position and velocity) case, that the matrix form applies in
general. That is, it applies for tracking in any number of dimensions for the
measurement and state space and for general dynamics models. All that is
necessary is the proper specification of the state vector, observation matrix,
transition matrix, dynamics model, and measurement covariance matrix. For
example, the equations apply when one is tracking a ballistic target in the
atmosphere in three dimensions using rectangular coordinates (x, y, z) with a
ten-state vector given by

X�
n;n�1 ¼

x�n;n�1

_x�n;n�1

�x�n;n�1

y�n;n�1

_y�n;n�1

�y�n;n�1

z�n;n�1

_z�n;n�1

�z�n;n�1

��n;n�1

2

666666666666666666664

3

777777777777777777775

ð2:4-6Þ

where � is the atmospheric drag on the target. One can assume that the sensor
measures R; �; �, and the target Doppler _R so that Yn is given by

Yn ¼

Rn

_Rn

�n

�n

2

664

3

775 ð2:4-7Þ
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In general the vector Yn would be given by

Yn ¼

y1n

y2n

..

.

ymn

2

6664

3

7775
ð2:4-8Þ

where yin is the ith target parameter measured by the sensor at time n.
The atmosheric ballistic coefficient � is given by

� ¼ m

CD A
ð2:4-9Þ

where m is the target mass, CD is the atmospheric dimensionless drag
coefficient dependent on the body shape, and A is the cross-sectional area of the
target perpendicular to the direction of motion. [See (16.3-18), (16.3-19),
(16.3-27) and (16.3-28) of Section 16.3 for the relation between drag constant
and target atmospheric deceleration.]

For the g–h Kalman filter whose dynamics model is given by (2.1-1) or
(2.4-2), the matrix Q is given by (2.4-4m), which becomes

Q ¼ 0 0

0 �2
u

� 	
ð2:4-10Þ

if it is assumed that the mean of un is zero and its variance is �2
u independent of

n. For the equivalent g–h–k Kalman filter to our two-state g–h Kalman filter
having the dynamic model of (2.4-2), the three-state dynamics model is given
by (1.3-3) with (1.3-3a) replaced by

�x�nþ1;n ¼ �x�n;n þ wn ð2:4-11Þ

where wn equals a random change in acceleration from time n to n þ 1. We
assume wn is independent from n to n þ 1 for all n and that it has a variance �2

w.
Physically wn represents a random-acceleration jump occurring just prior to the
n þ 1 observation. For this case

Q ¼
0 0 0

0 0 0

0 0 �2
w

2

4

3

5 ð2:4-12Þ

The variance of the target acceleration dynamics �2
w (also called �2

a) can be
specified using an equation similar to that used for specifying the target velocity
dynamics for the Kalman g–h filter. Specifically

�w ¼ T _�xmax

C
ð2:4-13Þ
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where C is a constant and _�xmax is the maximum _�x. For the steady-state g–h–k
Kalman filter for which Q is given by (2.4-12) g,h, and k are related by (1.3-
10a) to (1.3-10c) [11, 14, 15] and �2

a, �2
x , and T are related to g and k by [14]

T 4�2
a

4�2
x

¼ k 2

1 � g
ð2:4-14Þ

For the general g–h–k Kalman filter (2.4-5) becomes [14]

Hn ¼

gn

hn

T

2kn

T 2

2

66664

3

77775
ð2:4-15Þ

This is a slightly underdamped filter, just as is the steady-state g–h Kalman filter
that is the Benedict–Bordner filter. Its total error ETN ¼ 3�nþ1;n þ b� is less
than that for the critically damped g–h–k filter, and its transient response is
about as good as that of the critical damped filter [11]. In the literature, this
steady-state Kalman filter has been called the optimum g–h–k filter [11].

If we set �2
u ¼ 0 in (2.4-10), that is, remove the random maneuvering part of

the Kalman dynamics, then

Q ¼ 0 0

0 0

� 	
ð2:4-16Þ

and we get the growing-memory filter of Section 1.2.10, the filter used for track
initiation of the constant g–h filters.

2.5 DERIVATION OF MINIMUM-VARIANCE EQUATION

In Section 2.3 we used the minimum-variance equation (2.3-1) to derive the
two-state Kalman filter range-filtering equation. We will now give two
derivations of the minimum-variance equation.

2.5.1 First Derivation

The first derivation parallels that of reference 7. For simplicity, designate the
two independent estimates x�n;n�1 and yn by respectively x�1 and x�2 . Designate
x�n;n, the optimum combined estimate, by x�c . We desire to find an optimum
linear estimate for x�c . We can designate this linear estimate as

x�c ¼ k1x�1 þ k2x�2 ð2:5-1Þ
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We want this estimate x�c to be unbiased, it being assumed that x�1 and x�2 are
unbiased. Designate as x the true value of x. Obtaining the mean of (2.5-1), it
follows that for the estimate to be unbiased

x ¼ k1x þ k2x ð2:5-2Þ

which becomes

1 ¼ k1 þ k2 ð2:5-3Þ

Thus for the estimate to be unbiased we require

k2 ¼ 1 � k1 ð2:5-4Þ

Substituting (2.5-4) into (2.5-1) yields

x�c ¼ k1x�1 þ ð1 � k1Þx�2 ð2:5-5Þ

Let the variances of x�c , x�1 , and x�2 be designated as respectively �2
c, �

2
1, and

�2
2. Then (2.5-5) yields

�2
c ¼ k 2

1�
2
1 þ ð1 � k1Þ2�2

2 ð2:5-6Þ

To find the k1 that gives the minimum �2
c , we differentiate (2.5-6) with respect

to k1 and set the result to zero, obtaining

2 k1�
2
1 � 2ð1 � k1Þ�2

2 ¼ 0 ð2:5-7Þ

Hence

k1 ¼ �2
2

�2
1 þ �2

2

ð2:5-8Þ

Substituting (2.5-8) into (2.5-5) yields

x�c ¼ �2
2

�2
1 þ �2

2

x�1 þ �2
1

�2
1 þ �2

2

x�2 ð2:5-9Þ

Rewriting (2.5-9) yields

x�c ¼ x�1
�2

1

þ x�2
�2

2

� �
1

1=�2
1 þ 1=�2

2

ð2:5-10Þ

which is identical to Eq. (2.3-1), as we desired to show. Note that substituting
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(2.5-8) into (2.5-6) yields

�2
c ¼ 1

�2
1

þ 1

�2
2

� ��1

ð2:5-11Þ

2.5.2 Second Derivation

The second derivation employs a weighted least-squares error estimate
approach. In Figure 1.2-3 we have two estimates yn and x�n;n�1 and desire
here to replace these with a combined estimate x�n;n that has a minimum
weighted least-squares error. For an arbitrarily chosen x�n;n shown in Figure 1.2-
3 there are two errors. One is the distance of x�n;n from yn; the other is its
distance of x�n;n from x�n;n�1. For the minimum least-squares estimate in Section
1.2.6 we minimized the sum of the squares of the distances (errors) between the
measurements and the best-fitting line (trajectory) to the measurements. We
would like to similarly minimize the sum of the two errors here between x�n;n
and yn and x�n;n�1 in some sense. One could minimize the sum of the squares of
the errors as done in Section 1.2.6, but this is not the best tactic because the two
errors are not always equally important. One of the estimates, either yn or
x�n;n�1, will typically be more accurate than the other. For convenience let us
say x�n;n�1 is more accurate than yn. In this case it is more important that
ðx�n;n�1 � x�n;nÞ

2
be small, specifically smaller than ðyn � x�n;nÞ

2
. This would be

achieved if in finding the least sum of the squares of each of the two errors we
weighted the former error by a larger constant than the latter error. We are thus
obtaining a minimization of an appropriately weighted sum of the two errors
wherein the former receives a larger weighting. A logical weighting is to weight
each term by 1 over the accuracy of their respective estimates as the following
equation does:

E ¼
ðyn � x�n;nÞ

2

VARyn

þ
ðx�n;n�1 � x�n;nÞ

2

VARðx�n;n�1Þ
ð2:5-12Þ

Here the error ðx�n;n�1 � x�n;nÞ
2

is weighted by 1 over the variance of x�n;n�1 and
ðyn � x�n;nÞ

2
by 1 over the variance of yn. Thus if VARðx�n;n�1Þ � VARðynÞ,

then 1=VARðx�n;n�1Þ 	 1=VARðynÞ and forces the error ðx�n;n�1 � x�n;nÞ
2

to be
much smaller than the error ðyn � x�n;nÞ

2
when minimizing the weighted sum of

errors E of (2.5-12). This thus forces x�n;n to be close to x�n;n�1, as it should be.
The more accurate x�n;n�1, the closer x�n;n is to x�n;n�1. In (2.5-12) the two errors
are automatically weighted according to their importance, the errors being
divided by their respective variances. On finding the x�n;n that minimizes E of
(2.5-12), a weighted least-squares estimate instead of just a least-squares
estimate is obtained. This is in contrast to the simple unweighted least-squares
estimate obtained in Section 1.2.6.
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It now remains to obtain the x�n;n that minimizes (2.5-12). This is a straight-
forward matter. Differentiating (2.5-12) with respect to x�n;n and setting the
result equal to zero yields

dE

dx�n;n
¼

2ðyn � x�n;nÞ
VARðynÞ

þ
2ðx�nn�1 � x�n;nÞ
VARðx�n;n�1Þ

¼ 0 ð2:5-13Þ

Solving for x�n;n yields (2.3-1), the desired result.

2.6 EXACT DERIVATION OF r-DIMENSIONAL
KALMAN FILTER

We will now extend the second derivation given in Section 2.5.2 to the case
where a target is tracked in r-dimensions. An example of an r-dimensional state
vector for which case r ¼ 10 is given by (2.4-6). For this case the target is
tracked in the three-dimensional rectangular (x, y, z) coordinates in position,
velocity, and acceleration. In addition, the atmospheric drag parameter � is also
kept track of to form the 10th parameter of the 10-dimensional state vector
X�

n;n�1.
The 10 states of the state vector are to be estimated. The measurements made

on the target at time n are given by the measurement matrix Yn. As indicated in
Section 1.5, the measurements made on the target need not be made in the same
coordinate system as the coordinate system used for the state vector X�

n;n�1. For
example the target measurements are often made in a spherical coordinate
system consisting of slant range R, target azimuth angle �, and target elevation
angle �, yet the target could be tracked in rectangular coordinates. If the target
Doppler velocity _R is measured, then Yn becomes (2.4-7). The observation
matrix M of (2.4-3) converts the predicted trajectory state vector X�

n;n�1 from its
coordinate system to the coordinate system used for making the radar
measurements, that is, the coordinate system of Yn.

For simplicity let us assume initially that the coordinates for the r-
dimensional state vector X�

n;n�1 is the same as for Yn. Let X�
n;n be our desired

combined estimate of the state vector after the measurement Yn. The combined
estimate X�

n;n will lie somewhere in between the predicted state vector X�
n;n�1

and the measurement vector Yn as was the case in the one-dimensional situation
depicted in Figure 1.2-3. Figure 2.6-1 shows the situation for our present
multidimensional case. As done in the second derivation for the one-
dimensional case discussed in Section 2.5.2, we will choose for our best com-
bined estimate the X�

n;n that minimizes the weighted sum of the error differences
between Yn and X�

n;n and between X�
n;n�1 and X�

n;n. Again the weighting of these
errors will be made according to their importance. The more important an error
is, the smaller it will be made. An error is deemed to be more important if it is
based on a more accurate estimate of the position of the target.

80 KALMAN FILTER



Accordingly, as done for the one-dimensional case, we weight the square of
the errors by 1 over the variance of the error. Thus the equivalent equation to
(2.5-12) becomes

J ¼
ðYn � X�

n;nÞ
2

VARYn

þ
ðX�

n;n�1 � X�
n;nÞ

2

VARX�
n;n�1

ð2:6-1Þ

This equation is only conceptually correct; the mathematically correct
equivalent will be given shortly.

It remains now to use (2.6-1) to solve for the new combined estimate X�
n;n

that minimizes the weighted sum of the squares of the errors. Conceptually, this
is done just as it was done for the equivalent one-dimensional (2.5-12).
Specifically, (2.6-1) is differentiated with respect to the combined estimate X�

n;n
with the resulting equation set equal to zero in order to solve for the combined
estimate X�

n;n that minimizes the weighted sum of the errors squared. There is
one problem though: (2.6-1) is not correct when one is dealing with matrices. It
is only conceptually correct as indicated.

When using matrix notation, the first term on the right of (2.6-1) must be
written as

ðYn � X�
n;nÞ

2

VARYn

 ðYn � X�
n;nÞ

T
R�1

n ðYn � X�
n;nÞ ð2:6-2Þ

Where the matrix Rn is the covariance matrix Yn, that is,

Rn ¼ COVðYnÞ ð2:6-3Þ

which is the same as defined by (2.4-4i). The inverse of the covariance matrix
Rn, which is designed as R�1

n , takes the place of dividing by the variance of Yn

when dealing with matrices. Note that if Rn is diagonal with all the diagonal

Figure 2.6-1 Filtering problem. Determination of X�
n;n based on measurement Y n and

prediction X�
n;n�1.
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terms equal to �2
x , then (2.6-2) becomes

ðYn � X�
n;nÞ

2

VARYn


ðYn � X�

n;nÞ
TðYn � X�

n;nÞ
�2

x

¼
P r

i¼1 ðyin � x�i;nn

� �2

�2
x

ð2:6-4Þ

If the coordinate system for Yn and X�
n;n are not the same, then (2.6-2)

becomes

ðYn � X�
n;nÞ

2

VARYn

 Yn � MX�T
n;n

� �
R�1

n ðYn � MX�
n;nÞ ð2:6-5Þ

The corresponding correct form for the second term on the right of (2.6-1) is

ðX�
n;n�1 � X�

n;nÞ
2

VARX�
n;n�1

 ðX�
n;n�1 � X�

n;nÞ
T
S��1

n;n�1ðX�
n;n�1 � X�

n;nÞ ð2:6-6Þ

where S�n;n�1 is the covariance matrix of X�
n;n�1; see (2.4-4h) and (2.4-4f ).

Substituting (2.6-5) and (2.6-6) into (2.6-1) yields

J ¼ ðYn � MX�
n;nÞ

T
R�1

n ðYn � MX�
n;nÞ þ ðX�

n;n�1 � X�
n;nÞ

T
S��1

n;n�1ðX�
n;n�1 � X�

n;nÞ
ð2:6-7Þ

Now we are in a position to solve for X�
n;n. As discussed before, this is done

by differentiating (2.6-7) with respect to X�
n;n, setting the resulting equation

equal to zero in solving for X�
n;n. The details of this are carried out in the

remaining paragraphs of this section. The results are the full-blown Kalman
filter equations given by (2.4-4) and summarized in Table 2.4-1. The reader may
forgo the detailed mathematical derivation that follows in the next few
paragraphs. However, the derivation is relatively simple and straight forward.
At some point it is recommended that the reader at least glance at it, the Kalman
filter having had such a major impact on filtering theory and the derivation
given here being of the simplest of the full-blown Kalman filter that this author
has seen.y The derivation makes use of matrix differentiation. The reader not
familiar with matrix differentiation will be able to learn it by following the steps
of the derivation given. Matrix differentiation is really very simple, paralleling
standard algebraic differentiation in which

dðx2Þ
dx

¼ 2x ð2:6-8Þ

y This derivation was pointed out to the author by Fred Daum of the Raytheon Company.
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Differentiation of a matrix equation, such as that of (2.6-7), is achieved by
obtaining the gradient of the matrix equation as given by

Gradient of J ¼4 @J

@X�
n;n

¼ @J

@x1

;
@J

@x2

; � � � ; @J

@xn

� 	
ð2:6-9Þ

Applying (2.6-9) to (2.6-7) yields

@J

@X
¼ 2ðX�

n;n � X�
n;n�1Þ

T
S��1

n;n�1 þ 2ðYn � MX�
n;nÞ

T
R�1

n ð�MÞ ¼ 0 ð2:6-10Þ

This can be rewritten as

X�T
n;n S��1

n;n þ M T R�1
n M

� �
¼ X�T

n;n�1S��1
n;n�1 þ Y T

n R�1
n M ð2:6-11Þ

which on taking the transpose of both sides and using ðABÞT ¼ BT AT yields

S��1
n;n þ M T R�1

n M
� �

X�
n;n ¼ S��1

n;n�1X�
n;n�1 þ M T R�1

n Yn ð2:6-12Þ

or

X�
n;n ¼ S��1

n;n�1 þ M T R�1
n M

� ��1

S��1
n;n�1X�

n;n�1 þ M T R�1
n Yn

� �
ð2:6-13Þ

The well-known matrix inversion lemma [5] states

S��1
n;n þ M T R�1

n M
� ��1

¼ S�n;n�1 � S�n;n�1M TðRn þ MS�n;n�1M TÞ�1
MS�n;n�1

ð2:6-14Þ

This can be rewritten as

S��1
n;n þ M T R�1

n M
� ��1

¼ S�n;n�1 � HnMS�n;n�1 ð2:6-15Þ

where, as given by (2.4-4e),

Hn ¼ S�n;n�1M TðRn þ MS�n;n�1M TÞ�1 ð2:6-15aÞ

Substituting (2.6-15) into (2.6-13) yields

X�
n;n ¼ S�n;n�1 � HnMS�n;n�1

h i
S��1

n;n�1X�
n;n�1 þ M T R�1Yn

h i

¼ X�
n;n�1 � HnMX�

n;n�1 þ ðS�n;n�1 � HnMS�n;n�1ÞM T R�1Yn ð2:6-16Þ
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But as shall be shown shortly,

Hn ¼ ðS�n;n�1 � HnMS�n;n�1ÞM T R�1 ð2:6-17Þ

Hence (2.6-16) can be written as

X�
n;n ¼ X�

n;n�1 þ HnYn � HnMX�
n;n�1 ð2:6-18Þ

or

X�
n;n ¼ X�

n;n�1 þ HnðYn � MX�
n;n�1Þ ð2:6-19Þ

But (2.6-19) is identical to the Kalman filter equation given by (2.4-4d), which
is what we set out to prove.

We will now prove (2.6-17). From (2.6-15a) it follows that

S�n;n�1M T ¼ HnðRn þ MS�n;n�1M TÞ ð2:6-20Þ

This equation can be rewritten as

S�n;n�1M T R�1
n � HnMS�n;n�1M TR�1

n ¼ Hn ð2:6-21Þ

which in turn becomes (2.6-17), as we set out to derive.
The corrector equation (2.4-4j) follows from (2.6-19) and (2.6-21). The

predictor equation (2.4-4f) follows from (2.4-2) and (2.4-4a). This completes
out derivation of the Kalman equations given by (2.4-4a) through (2.4-4j).

2.7 TABLE LOOKUP APPROXIMATION TO
THE KALMAN FILTER

An approximation to the Kalman filter can be used that involves a table lookup
instead of the use of (2.4-4e) to calculate the coefficients of the matrix Hn in
(2.4-4d). One such approximate lookup table is given in Table 2.7-1. As
indicated in the table the coefficients g and h are determined by the sequence of
detection hits and misses observed for the target in track. Also given in this
table is the size of the search window to be used for a given track update. The
approximate lookup procedure given in Table 2.7-1 is similar to that used for
the ARTS III filter [21].

2.8 ASQUITH–FRIEDLAND STEADY-STATE g–h
KALMAN FILTER

It was indicated earlier that the steady-state Kalman filter for the target
dynamics model given by (2.1-1) yields the Benedict–Bordner g–h filter for
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which g and h are related by (1.2-27). An alternate target dynamics model for
the two-state Kalman filter is given by [22, 23]

xnþ1 ¼ xn þ _xnT þ 1
2

anT 2 ð2:8-1aÞ
_xnþ1 ¼ _xn þ anT ð2:8-1bÞ

where an is a random acceleration occurring between time n and n þ 1. The
random acceleration an has the autocorrelation function given by

anam ¼ �2
a for n ¼ m

0 for n 6¼ m

�
ð2:8-2Þ

Hence an is characterized as white noise. This model differs from that of (2.1-1)
in that here an is a random acceleration that is constant between the time n and
n þ 1 measurements whereas in (2.9-1) a random-velocity jump occurs just
before the (n þ 1)st observation.

Figure 2.8-1 compares the possible g, h pairings for the Asquith–Friedland
filter [(2.8-4)] obtained using the dynamics model of (2.8-1) and (2.8-2) with
those of the Benedict–Bordner filter [(2.1-4)] having the dynamic model given
by (2.1-1) or (2.4-2) with COV(Un) given by (2.4-10). Also shown for
comparison are the g and h weight pairings for the critically damped filter
[1.2-36)] and the expanding-memory polynomial filter described in Sections
1.2.6 and 1.2.10, respectively. Recall that the expanding-memory polynomial
filter [(1.2-38)] is a Kalman filter for which there is no noise term in the target
dynamics model, that is, un ¼ 0 in (2.1-1b); see (2.4-16) for the resulting Q for
this target model. Note that the steady-state Asquith–Friedland filter (referred to
as the discrete Kalman filter in reference 22) has viable designs for h > 1;

TABLE 2.7-1. Table Lookup Approximation to Kalman Filter

Tracking Parameter Lookup

Firmness, Position Smooth, Velocity Smooth, Search Bin,
Fn gn hn � n

0 1.000 .000 —
1 1.000 1.000 �t � vmax

2 .833 .700 21.0�
3 .700 .409 11.7�
4 .600 .270 8.8�
..
. ..

. ..
. ..

.

15 .228 .030 4.5�

Note: If ‘‘hit’’ at n: F nþ1 ¼ F n þ 1 ðF n;max ¼ 15Þ. If ‘‘miss’’: F nþ1 ¼ F n � 2 ðF n;min ¼ 1Þ.
Initial hit: F 0 ¼ 0 ! F 1 ¼ 1. These are similar but not identical to ARTS III filter.

Source: After Sittler [21].
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specifically it can have h ¼ 1:8755 and g ¼ 0:9990. This pair of values still
leads to a stable g–h filter; that is, it falls in the triangular region of Figure
1.2-17 where g–h filters are stable. In fact, all the curves of Figure 2.8-1 fall
within the triangular region. The figure indicates that the Asquith–Friedland and
Benedict–Bordner filter are approximately the same for g < 0:5. Of these four
constant g–h filters, the Asquith–Friedland filter is the most underdamped
followed by the Benedict–Bordner filter, the expanding-memory filter, and the
critically damped filter. Figure 2.8-2 plots a normalized dynamic error b� ¼
b�nþ1;n for three of these g–h filters versus the rms predicted position error.

Figure 2.8-1 Comparison of g and h parameters for several g–h filters. (After Asquith
[22].)
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It is easy to show that the Q matrix of (2.4-4g) for a target having the
dynamic model given by (2.8-1a) and (2.8-1b) is given by [22]

Q ¼ T 2
�2

a

T 2

4
�2

a

T

2

�2
a

T

2
�2

a

2

664

3

775 ð2:8-3Þ

In steady state [22]

h ¼ 4 � 2g � 4
ffiffiffiffiffiffiffiffiffiffiffi
1 � g

p
ð2:8-4Þ

Figure 2.8-2 Normalized dynamic error b�=T 2 �x ¼ 1=h versus square root of one-
step prediction variance reduction factor for several g–h filters. (Asquith [22].)
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and

T 2 �
2
a

�2
x

¼ h2

1 � g
ð2:8-5Þ

which note is similar to (2.1-5) obtained for Q given by (2.4-10).

2.9 SINGER g–h–k KALMAN FILTER

In this section and the next we will give some feel for the Singer g–h–k Kalman
filter [6, 8, 24], indicating the type of maneuvering target for which it is
designed and then give some performance results.

For this filter Singer specified a target dynamics model for which the
acceleration is a random function of time whose autocorrelation function is
given by

E ½ �x ðtÞ�x ðt þ t 0Þ� ¼ �2
a exp � jt 0j

�

� �
ð2:9-1Þ

where � is the correlation time of the acceleration that could be due to a target
maneuver, a target turn, or atmospheric turbulence. For a lazy turn � is typically
up to 60 sec, for an evasive maneuver � is typically between 10 and 30 sec,
while atmospheric turbulence results in a correlation time of the order of 1 or 2
sec. It is further assumed by Singer that the target acceleration has the
probability density function given by Figure 2.9-1. This figure indicates that the
target can have a maximum acceleration of �A

max
with probability Pmax, no

acceleration with probability P0, and an acceleration between�Amax with a prob-
ability given by the uniform density function amplitude given in Figure 2.9-1.

Figure 2.9-1 Model used by Singer [24] for target acceleration probability density
function. (After Singer, R. A. ‘‘Estimating Optimal Tracking Filter Performance for
Manned Maneuvering Targets,’’ IEEE Trans. on Aerospace and Electronic Systems, Vol.
AES-6(4), 1970. # 1970, IEEE.)
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The total variance of the acceleration is given by

�2
a ¼ A2

max

3
ð1 þ 4Pmax � P0Þ ð2:9-2Þ

To apply the Kalman filter as given by (2.4-4), we need a white noise for the
target model velocity jump term; that is, the velocity jump un of (2.4-2a) must
be independent from time n to time n þ 1. For the target dynamics as given by
(2.9-1) we find that the velocity jump un of (2.4-2a) is correlated. Even though
the actual acceleration term is correlated, a white-noise acceleration forcing
term can be generated in its place. This is done by finding the circuit that when
driven by white noise nað�Þ gives the correlated acceleration �xð�Þ as its output
with the autocorrelation function for the output given by (2.9-1).

The transfer function for the filter that achieves this is given by

Hð!Þ ¼ �

1 þ j!�
ð2:9-3Þ

where ! ¼ 2� f . The inverse of the above filter Hað!Þ is the Wiener–
Kolmogorov whitening filter. The differential equation for this filter is given by

d

dt
ð�xÞ ¼ � 1

�
�x þ naðtÞ ð2:9-4Þ

To use the driving term with the white-noise acceleration nað�Þ in place of the
autocorrelated acceleration �xn requires the augmentation of the number of states
in the tracking filter from 2 to 3. Thus

Xn ¼
xn

_xn

�xn

2

4

3

5 ð2:9-5Þ

instead of Xn ¼ ½xn _xn�T
. Consequently, a g–h–k filter results instead of a g–h

filter.
We shall show shortly that for the Singer dynamics model the three-state

dynamics equation equivalent to (2.1-1) then takes the form

Xnþ1 ¼ �Xn þ Un ð2:9-6Þ

when the whitening filter of (2.9-4) is used, which allows us to replace the
correlated acceleration with white-noise acceleration. The three-state dynamics
driving noise Un is now

Un ¼
u1;n

u2;n

u3;n

2

4

3

5 ð2:9-7Þ
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where ui;n is independent of ui;nþ1; that is Un is now a white-noise vector as
required in order to apply the Kalman filter of (2.4-4). The terms ui;n and uj;n

are, however, correlated for given n, as we shall see shortly. Applying the
Kalman filter to a target having the target dynamics given by (2.9-7) provides
the best performance in terms of minimizing the mean-square estimation error
given by (2.1-2).

The transition matrix is now given by

�ðT ; �Þ ¼

1 T � 2 �1 þ T

�
þ exp � T

�

� �� 	

0 1 � 1 � exp � T

�

� �� 	

0 0 exp � T

�

� �

2

666666664

3

777777775

ð2:9-8Þ

When T=� is small so the target can be considered to have a constant
acceleration between sample update periods, (2.9-8) reduces to

�ðT ; �Þ ¼
1 T 1

2
T 2

0 1 T

0 0 1

2

4

3

5 ð2:9-9Þ

This, as expected, is identical to the transition matrix for the constant-
accelerating target obtained from (1.3-1), the acceleration being constant from
time n to n þ 1. The above matrix is called a Newtonian matrix [24].

The covariance of the white-noise maneuver excitation vector Un is given by
[24]

Qn ¼ E½UðnÞU TðnÞ� ¼ 2��2
a

q11 q12 q13

q12 q22 q23

q13 q23 q33

2

4

3

5 ð2:9-10Þ

where

� ¼ 1

�
ð2:9-10aÞ

and

q11 ¼ 1

2�5
1 � e�2�T þ 2�T þ 2�3T 3

3
� 2�2T 2 � 4�Te��T

� �
ð2:9-10bÞ

q12 ¼ 1

2�4
e�2�T þ 1 � 2e��T þ 2�Te��T � 2�T þ �2T 2
� �

ð2:9-10cÞ
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q13 ¼ 1

2�3
ð1 � e�2�T � 2�Te��TÞ ð2:9-10dÞ

q22 ¼ 1

2�3
ð4e��T � 3 � e�2�T þ 2�TÞ ð2:9-10eÞ

q23 ¼ 1

2�2
ðe�2�T þ 1 � 2e��TÞ ð2:9-10fÞ

q33 ¼ 1

2�
ð1 � e�2�TÞ ð2:9-10gÞ

For � and T fixed the maneuver excitation covariance matrix Qn is
independent of n and designated as Q. Assuming again that T=� is small,
specifically T=� � 1

2
, done for (2.9-9), then [24]

Q ¼ 2��2
a

1
20

T 5 1
8

T 4 1
6

T 3

1
8

T 4 1
3

T 3 1
2

T 2

1
6

T 3 1
2

T 2 T

2

64

3

75 ð2:9-11Þ

When T=� is large, that is T=� 	 1, the acceleration is independent from n,
n þ 1, and

Q ¼
0 0 0

0 0 0

0 0 �2
a

2

4

3

5 ð2:9-12Þ

which is identical to (2.4-12), �2
a being used in place �2

w for the variance of the
acceleration jump from time n to n þ 1.

The Kalman filter of (2.4-4) for this target model has an observation matrix
given by

M ¼ 1 0 0½ � ð2:9-13Þ

It is initialized using

x�1;1 ¼ y1 ð2:9-14aÞ

_x�1;1 ¼ y1 � y0

T
ð2:9-14bÞ

�x�1;1 ¼ 0 ð2:9-14cÞ

where y0 and y1 are the first two range measurements. The covariance matrix
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for x�n;n, that is, S�n;n, is initialized using for n ¼ 1[24]

½S�1;1�00 ¼ �2
X ð2:9-15aÞ

½S�1;1�01 ¼ ½S�1;1�10 ¼ �2
X

T
ð2:9-15bÞ

½S�1;1�02 ¼ ½S�1;1�20 ¼ 0 ð2:9-15cÞ

½S�1;1�11 ¼ 2�2
x

T 2
þ �2

a

�4T 2
2 � �2T 2 þ 2�3T 3

3
� 2e��T � 2�Te��T

� �
ð2:9-15dÞ

½S�1;1�12 ¼ ½S�1;1�21 ¼ �2
a

�2T
ðe��T þ �T � 1Þ ð2:9-15eÞ

½S�1;1�22 ¼ �2
a ð2:9-15fÞ

where ½S�1;1� i;j is the i, j element of the covariance matrix S�1;1 and we index the
rows and columns starting with the first being 0, the second 1, and so on, to be
consistent with reference 5 and Chapters 5 and 7.

If the filter acquisition occurs before the target maneuvers, that is, during a
time when the target has a constant velocity, as is usually the case, then the
above covariance initialization equations become simply [24]

½S�1;1�00 ¼ �2
x ð2:9-16aÞ

½S�1;1�01 ¼ ½S�1;1�10 ¼ �2
x

T
ð2:9-16bÞ

½S�1;1�11 ¼ 2�2
x

T 2
ð2:9-16cÞ

½S�1;1�02 ¼ ½S�1;1�20 ¼ ½S�1;1�12

¼ ½S�1;1�21 ¼ ½S�1;1�22 ¼ 0 ð2:9-16dÞ

The next section gives convenient normalized design curves for the steady-
state Singer g–h–k Kalman filters. Section 3.5.2 shows how the use of a chirp
waveform affects the performance of a Singer g–h–k Kalman filter. Before
giving the design curves we will indicate how (2.9-6) is obtained.

We start by rewriting the target dynamics equation given by (2.9-4) in state
matrix form. Doing this yields

_XðtÞ ¼ AXðtÞ þ BNaðtÞ ð2:9-17Þ
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where

XðtÞ ¼
xðtÞ
_xðtÞ
�xðtÞ

2

64

3

75 ð2:9-17aÞ

A ¼
0 1 0

0 0 1

0 0 ��

2

64

3

75 ð2:9-17bÞ

B ¼
0

0

1

2

64

3

75 ð2:9-17cÞ

NaðtÞ ¼
0

0

naðtÞ

2

64

3

75 ð2:9-17dÞ

For BNaðtÞ ¼ 0 in (2.9-17) and � ¼ 0 in A of (2.9-17b) we obtain the target
dynamics for the case of a constant-accelerating target with no random target
dynamics. We already know the solution of (2.9-17) for this case. It is given
by (2.9-6) with Un ¼ 0 and the transition matrix given by (2.9-9). To develop
the solution to (2.9-17) when BNaðtÞ 6¼ 0, we will make use of the solution to
(2.9-17) for BNaðtÞ ¼ 0 obtained in Section 8.1. In Section 8.1 it is shown that
the solution to (2.9-17) for BNaðtÞ ¼ 0 is given by

Xðt þ TÞ ¼ ½expðTAÞ�XðtÞ ð2:9-18Þ

see (8.1-19), where here � ¼ T . Alternatively, we can write

XðtÞ ¼ ½expðtAÞ�Xð0Þ ð2:9-19Þ

Although A is a matrix, it is shown in Section 8.1 that exp(tA) holds with
‘‘exp ¼ e’’ to a matrix power being defined by (8.1-15). We can rewrite (2.9-18)
as

Xðt n þ TÞ ¼ �ðTÞXðt nÞ ð2:9-20Þ

or

Xnþ1 ¼ �Xn ð2:9-20aÞ

for t ¼ t n and where

� ¼ �ðtÞ ¼ exp TA ð2:9-20bÞ
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is the transition matrix for the target dynamics with naðtÞ ¼ 0, which from (2.9-17)
implies a constant-accelerating target dynamics model. For this case, as already
indicated, � is given by (2.9-9). It is also verified in Section 8.1 that for A given
by (2.9-17b) with � ¼ 0, (2.9-20b) becomes (2.9-9); see (8.1-10a) and problem
8.1-3. We can easily verify that for BNaðtÞ ¼ 0, (2.9-20) is the solution to
(2.9-17) for a general matrix A by substituting (2.9-20) into (2.9-17). We carry
the differentiation by treating XðtÞ and A as if they were not matrices, in which
case we get, by substituting (2.9-20) into (2.9-17),

d ½expðt AÞ�Xð0Þf g ¼ AXðtÞ ð2:9-21aÞ

½expðtAÞ�Xð0Þ dðtAÞ
dt

¼ AXðtÞ ð2:9-21bÞ

A½expðtAÞ�Xð0Þ ¼ AXðtÞ ð2:9-21cÞ
AXðtÞ ¼ AXðtÞ ð2:9-21dÞ

as we desired to show.
The solution of (2.9-17) for BNaðtÞ 6¼ 0 is given by the sum of the solution

(2.9-20) obtained above for BNaðtÞ ¼ 0, which is called the homogeneous
solution and which we will designate as XðtÞH , plus an inhomogeneous solution
given by

WðtÞ ¼
ð t

0

½exp Aðt � "Þ�BNað"Þd" ð2:9-22Þ

Thus the total solution to (2.9-17) is

XðtÞ ¼ ½expðAtÞ�Xð0Þ þ
ð t

0

½expAðt � "Þ�BNað"Þd" ð2:9-23Þ

Substituting (2.9-23) into (2.9-17) and carrying out the differentiation as done
for the homogenous solution above, we verify that (2.9-23) is the solution to
(2.9-17).

Comparing (2.9-23) with (2.9-6), it follows that

Un ¼
ð ðnþ1ÞT

nT

½exp Að� � "Þ�BNað"Þd" ð2:9-24Þ

and �ðT ; �Þ for � 6¼ 0 is given by

�ðT ; �Þ ¼ exp AT ð2:9-25Þ

Substituting (2.9-17b) into (2.9-25) and using the definition for exp AT given by
(8.1-15) yields (2.9-8). From (2.9-24) the independence of U ðnþ1Þ from Un

immediately follows and in turn (2.9-10) to (2.9-10g) follow; see [24] for
details.
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2.10 CONVENIENT STEADY-STATE g–h–k FILTER DESIGN
CURVES

The constant (steady-state) g–h–k filter was introduced in Section 1.3. The
Singer–Kalman filter described in Section 2.9 is a g–h–k filter. The steady-state
Singer filter designs can be used as the basis for constant g–h–k filters. Toward
this end, Fitzgerald has developed useful normalized curves that provide the
steady-state weights g, h, and k for the steady-state Singer g–h–k Kalman filters
[25]. For these curves the filter weights are given in terms of two dimensionless
Fitzgerald parameters p1 and p2:

p1 ¼ �

T
ð2:10-1Þ

p2 ¼ T 2 �a

�x

ð2:10-2Þ

These curves are given in Figures 2.10-1 through 2.10-3. Fitzgerald also showed
that the filter steady-state rms predicted and filtered position, velocity, and

Figure 2.10-1 Fitzgerald’s [25] normalized curves for g for steady-state Singer g–h–k
filter. (After Fitzgerald, R. J., ‘‘Simple Tracking Filters: Steady-State Filtering and
Smoothing Performance,’’ IEEE Transactions on Aerospace and Electronic Systems,
Vol. AES-16, No. 6, November 1980. # 1980 IEEE.)
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acceleration errors for these g–h–k filters can be expressed in terms of the two
above dimensionless parameters; see Figures 2.10-4 through 2.10-7. In these
figures the filtered position error is referred to by Fitzgerald as the position error
after measurement update while the predicted position error is referred to as the
error before the measurement update. These normalized error curves are useful
for preliminary performance prediction of constant g–h–k filters.

Fitzgerald also developed normalized curves showing the accuracy the
Singer filter gives for the target smoothed position near the middle of its

Figure 2.10-2 Fitzgerald’s [25] normalized curves for h for Singer g–h–k Kalman
filter. (After Fitzgerald, R. J., ‘‘Simple Tracking Filters: Steady-State Filtering and
Smoothing Performance,’’ IEEE Transactions on Aerospace and Electronic Systems,
Vol. AES-16, No. 6, November 1980. # 1980 IEEE.)
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Figure 2.10-3 Fitzgerald’s [25] normalized curves for k for steady-state Singer g–h–k
Kalman filter. (After Fitzgerald, R. J, ‘‘Simple Tracking Filters: Steady-State Filtering
and Smoothing Performance,’’ IEEE Transactions on Aerospace and Electronic
Systems, Vol. AES-16, No. 6, November 1980. # 1980 IEEE.)
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observed trajectory. Figure 2.10-8 shows these normalized curves obtained by
Fitzgerald. These curves provide an indication of the improvement in the target
position estimate that can be obtained post-flight after all the data have been
collected. The curves apply for any point far from the endpoints of the filter-
smoothing interval. Specifically, assume that the data are smoothed over the
interval n ¼ 0; . . . J. Then Figure 2.10-8 applies for time n as long as
0 � n � J. The smoothed position accuracy given in Figure 2.10-8 is
normalized to the filtered target position accuracy at the trajectory endpoint
n ¼ J based on the use of all the collected data.

Fitzgerald also obtained normalized curves similar to those of Figure 2.10-8
for the smoothed velocity and acceleration of the target somewhere toward the
middle of the target trajectory. Figures 2.10-9 and 2.10-10 give these curves.

Physically p1 is the random-acceleration time constant � normalized to the
track update time T. The parameter p2 is physically 2 times the motion expected

Figure 2.10-4 Fitzgerald’s [25] normalized curves for one-step prediction rms error
for steady-state Singer g–h–k Kalman filter. (After Fitzgerald, R. J., ‘‘Simple Tracking
Filters: Steady-State Filtering and Smoothing Performance,’’ IEEE Transactions on
Aerospace and Electronic Systems, Vol. AES-16, No. 6, November 1980. # 1980
IEEE.)
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from the random acceleration 2ð1
2
Þ�aT 2 normalized by the measurement

uncertainty � x. Sometimes p2 is called the tracking index.

Example The use of the above normalized curves will now be illustrated for a
g–h–k angle tracker. Assume that the target is at a slant range R ¼ 50 km; that
the target is characterized by having � ¼ 3 sec and �a ¼ 30 m/sec2, and that the
radar 3-dB beamwidth �3 ¼ 20 mrad and the angle measurement error
�� ¼ 1 mrad, � replacing x here in Figures 2.10-4 to 2.10-10. Assume that
the 3� predicted tracking position in angle is to be less than 1

2
�3 for good track

maintenance. The problem is to determine the tracker sampling rate required,
the tracker rms error in predicting position, the ability of the tracker to predict
position after track update (the target’s filtered position), and the ability of the
tracker to predict the target rms position by postflight smoothing of the data (to
some point far from the trajectory endpoints, as discussed above).

Solution: We desire the predicted angle normalized position error �nþ1;nð�Þ,
which we here disignate as �nþ1; n for convenience [noting that this term serves

Figure 2.10-5 Fitzgerald’s [25] normalized curve of rms filtered position error (i.e.,
position error just after update measurement has been made and incorporated into target
position estimation) for steady-state Singer g–h–k Kalman filter. (After Fitzgerald, R. J.,
‘‘Simple Tracking Filters: Steady-State Filtering and Smoothing Performance,’’ IEEE
Transactions on Aerospace and Electronic Systems, Vol. AES-16, No. 6, November
1980. # 1980 IEEE.)
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double duty; see (1.2-23)], to be given by

3�nþ1;n � ð1
2
Þ �3 ¼ 20 mrad=2 ¼ 10 mrad ð2:10-3Þ

Normalizing the above by dividing both sides by 3�� yields

�nþ1;n

��
� �3

2

1

3ð��Þ
¼ 10 mrad

3ð1 mradÞ ¼ 3:33 ð2:10-4Þ

Figure 2.10-6 Fitzgerald’s [25] normalized curves for one-step prediction and filtered
velocity rms errors (i.e., before and after update respectively) for steady-state Singer
g–h–k Kalman filter. (After Fitzgerald, R. J., ‘‘Simple Tracking Filters: Steady-State
Filtering and Smoothing Performance,’’ IEEE Transactions on Aerospace and
Electronic Systems, Vol. AES-16, No. 6, November 1980. # 1980 IEEE.)
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In Figure 2.10-4, p1 and p2 are not known. Also, because T is in both p1 and p2,
an iteration trial-and-error process is needed generally to solve for T. A good
starting point is to assume that the solution is at the peak of a p2 ¼ constant
curve. As a result it follows from Figure 2.10-4 that if (2.10-4) is to be true it is
necessary that p2 � 2:5. As a result

p2 ¼ T 2 �a

� cx

¼ T 2 30 m=sec2

ð1 mradÞ ð50 kmÞ � 2:5 ð2:10-5Þ

where �cx is the cross-range position rms measurement accuracy given by

�cx ¼ ��R ¼ ð1 mradÞ ð50 kmÞ ¼ 50 m ð2:10-6Þ

Figure 2.10-7 Fitzgerald’s [25] normalized curves for one-step prediction and filtered
acceleration rms errors (i.e., before and after update respectively) for steady-state Singer
g–h–k Kalman filter. (After Fitzgerald, R. J., ‘‘Simple Tracking Filters: Steady-State
Filtering and Smoothing Performance,’’ IEEE Transactions on Aerospace and
Electronic Systems, Vol. AES-16, No. 6, November 1980. # 1980 IEEE.)
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From the above (2.10-5) it follows that T � 2:04 sec. We will choose T ¼ 2 sec
as our first iteration estimate for T.

For the above value of T it follows that p1 ¼ �=T ¼ ð3 secÞ=ð2 secÞ ¼ 1:5.
We now check if this value for p1 is consistent with the value for p1 obtained
from Figure 2.10-4 for p2 ¼ 2:5. If it is not, then another iteration is required in

Figure 2.10-8 Fitzgerald’s [25] curves for normalized accuracy to which target’s
position can be obtained for observed point somewhere in middle of target track history,
the smoothed position accuracy. Normalization is with respect to steady-state filtered
position error �n;n given in Figure 2.10-5. (After Fitzgerald, R. J., ‘‘Simple Tracking
Filters: Steady-State Filtering and Smoothing Performance,’’ IEEE Transactions on
Aerospace and Electronic Systems, Vol. AES-16, No. 6, November 1980. # 1980
IEEE.)
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the selection of T. Figure 2.10-4 yields a value of p1 ¼ 1:5. Hence the value for
p1 obtained from Figure 2.10-4 is consistent with the value obtained for
T ¼ 2 sec. As a result a second iteration is not needed for our example. In
general, the requirement for an iteration being carried out in order to solve for T
could be eliminated if the curve of Figure 2.10-4 is replaced with a different
normalized curve, specifically, if p2 is replaced using curves of constant
� 2�a=�x [25].

Figure 2.10-5 yields the normalized after-measurement (filtered) estimate of
the target position as 0.93. Hence the unnormalized estimate of the filtered
target position is given by 0.93 (50 m)¼ 46.5 m. From Figure 2.10-8 it follows
that the postflight rms estimate of position is given by 0.73(46.5)¼ 34 m.

Figure 2.10-9 Fitzgerald’s [25] normalized curves for accuracy to which target’s
velocity can be obtained at point somewhere in middle of target track history.
Normalization is with respect to filtered velocity estimate given in Figure 2.10-6.
(After Fitzgerald, R. J., ‘‘Simple Tracking Filters: Steady-State Filtering and
Smoothing Performance,’’ IEEE Transaction on Aerospace and Electronic Systems,
Vol. AES-16, No. 6, November 1980. # 1980 IEEE.)
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2.11 SELECTION OF TRACKING FILTER

Generally one would like to use the Kalman filter because it gives the best
performance. However, the Kalman filter also imposes the greatest computer
complexity. Table 2.11-1 gives a comparison of the accuracy of five tracking
filters as obtained for various missions in reference 26. The Kalman filter is
seen to provide the best performance. The two-point extrapolator uses the last

Figure 2.10-10 Fitzgerald’s normalized curves providing accuracy to which target’s
acceleration can be obtained for point somewhere in middle of target track history.
Normalization is with respect to filtered acceleration error given in Figure 2.10-7. (After
Fitzgerald, R. J., ‘‘Simple Tracking Filters: Steady-State Filtering and Smoothing
Performance,’’ IEEE Transaction on Aerospace and Electronic Systems, Vol. AES-16,
No. 6, November 1980. # 1980 IEEE.)
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received data point to determine the target range and bearing and the last two
data points to determine the target range-rate and bearing rate. This is the
simplest filter for estimating target kinematics, Table 2.11-2 gives a comparison
of the computer time and memory requirements for the five filters. All the filters
of Table 2.11-1 except the two-point extrapolator met the system requirements
(of reference 26) relative to prediction accuracy. The constant g–h filter meets
the accuracy requirements and at the same time requires very little computer
time. Hence this filter might be selected. However, if the radar is in addition
required to calculate weapon kill probabilities, then the constant g–h filter
would probably not be used. This is because this filter does not by itself provide
inputs for the calculation of weapon kill probabilities (like accuracies of the

TABLE 2.11-1. Synopsis of the Accuracy Comparison of the Five Tracking Filters
(After Singer and Behnke [26])

Surface or
Target Type Air Subsurface

Surface and Surface and
Air Search Air Search Air Search

Filter type Sensor Type Radar Radar Radar Radar, Sonar

Two-point extrapolator 3 3 3 3
Wiener filter 0 0 0 0
g–h Filter 2 0 2 1
Simplified Kalman filter 0 0 0 0
Kalman filter 0 0 0 0

Note: 0¼within 20% of Kalman filter; 1¼ 20–40% worse than Kalman filter; 2¼ 40–70% worse
than Kalman filter; 3¼more than 70% worse than Kalman filter.

TABLE 2.11-2. Comparison of the Computer Requirements for the Five Filters

Initialization Main Loop

Memory Memory
Filter Type Timea Locationsb Timea Locationb

Two-point extrapolator 7 15 7 15
Wiener filter 8 29 21 33
g–h Filter 40 46 44 58
Simplified Kalman filter 51 54 81 71
Kalman Filter 54 67 100 100

a Percentage of the computer time required by the Kalman filter in the main loop.
b Percentage of the memory locations required by the Kalman filter in the main loop.

Source: From Singer and Behnke [26].
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target predicted location). On the other hand, the Kalman filter provides the
accuracy of the predicted position of the target as a matter of course in
computing the filter weights. For the constant g–h filter an additional
computation has to be added to the standard filter computations. With these
additional computations using the constant g–h filter requires as many
computations as does the simplified Kalman filter. As a result, the simplified
Kalman filter would be preferred for the application where weapon kill
probabilities have to be calculated, this filter providing tracking accuracies
within 20% of the Kalman filter. The Kalman filter was not selected because its
computer time computations were greater than specified by the system
requirements for the application of reference 26 and for the time at which
the work for reference 26 was performed (prior to 1971). With the great strides
made in computer throughput and memory over the last two decades the choice
of filter today may be different. Table 2.11-3 gives the comparison of the
performance of the various filters for a second example of reference 26.

Another problem with using the constant g–h filter is that it does not provide
good performance when the target is maneuvering. However, aircraft targets
generally go in straight lines, rarely doing a maneuver. Hence, what one would
like to do is to use a Kalman filter when the target maneuvers, which is rarely,
and to use a simple constant g–h filter when the target is not maneuvering. This
can be done if a means is provided for detecting when a target is maneuvering.
In the literature this has been done by noting the tracking-filter residual error,
that is, the difference between the target predicted position and the measured
position on the nth observation. The detection of the presence of a maneuver

TABLE 2.11-3. Filter and System Parameters for the Second Example

Prediction Accuracy (1�Þ Percent
of Computer

Range Bearing Speed Course Time Devoted Auxiliary
(yd) (deg) (knot) (deg) to Tracking Functions

System 150 0.80 2.5 7.0 10 Kill
requirements probability

calculations
Two-point 210 1.04 3.7 9.7 0.8 —

extrapolator
Wiener Filter 142 0.71 2.4 6.8 2.4 —
�---� Filter 173 0.80 2.8 8.2 5.2 —
Simplified 138 0.65 2.4 6.5 9.5 a

Kalman filter
Kalman filter 130 0.63 2.1 6.1 12 a

a Tracking accuracy statistics suitable for the auxiliary functions are calculated automatically.

Source: From Singer and Behnke [26].
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could be based either on the last residual error or some function of the last m
residual errors.

An alternate approach is to switch when a maneuver is detected from a
steady-state g–h filter with modest or low g and h values to a g–h filter with high
g and h values, similar to those used for track initiation. This type of approach
was employed by Lincoln Laboratory for its netted ground surveillance radar
system [27]. They used two prediction windows to detect a target maneuver, see
Figure 2.11-1. If the target was detected in the smaller window, then it was
assumed that the target had not maneuvered and the values of g and h used were
kept at those of the steady-state g–h filter. Specifically g and h were selected to
be 0.5 and 0.2, respectively, in reference 27. If the target fell outside of this
smaller 3� window but inside the larger window called the maneuver window,
the target was assumed to have maneuvered. In this case the weights g and h of
the filter were set equal to 1.0, thus yielding a filter with a shorter memory and
providing a better response to a maneuvering target.

Even when using a Kalman filter, there is still the question as to what value
to use for the variance of the maneuver �2

a of (2.9-1). Lincoln Laboratory
evaluated a Kalman filter that used �a ¼ 0 when the target was not
maneuvering and a nonzero value when a maneuver was detected [28]. A
weighted sum of the residuals from the previous observations was used for
detecting the presence of a maneuver. When a maneuver was detected, the
appropriate change on the filter driving noise variance was made and the filter

Figure 2.11-1 Nonmaneuvering and maneuvering detection windows. (From Mirkin
et al., ‘‘Automated Tracking with Wetted Ground Surveillance Radars,’’ Proceedings of
1980 IEEE International Radar Conference. # 1980 IEEE.)
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reinitialized based on the most recent measurements. Figure 2.11-2 shows how
well the filter worked when tracking an aircraft in a holding pattern and doing
turns as indicated. The radar was assumed to be 10 miles from the center of the
holding pattern shown in Figure 2.11-2 and assumed to have an accuracy of
150 ft in range and 0.2� in angle. The target was assumed to be flying at 180
knots when flying in a straight line. This filter was intended for an air traffic
control (ATC) application. Its performance was evaluated by seeing how well it
could maintain track on an aircraft in a modified holding pattern involving 90�

turns at 3� per second, as shown in Figure 2.11-2. It is seen that the filter
worked very well.

Another approach to handling changing target dynamics is to continually
change the Kalman filter dynamics based on the weighted average of the most
recent residual errors. This approach was used by the Applied Physics
Laboratory (APL) [17]. Still other approaches are discussed elsewhere [29].

A final comparison obtained from reference 8 between the performance of a
g–h Kalman filter and constant g–h filters will now be given. The g–h Kalman
filter design was obtained for the dynamics model given by (2.1-1) or (2.4-2)
and (2.4-2a) for which the maneuver covariance excitation matrix is given by
(2.4-10). The Kalman filter design was obtained assuming �u ¼ 1 m=sec for

Figure 2.11-2 Performance of Kalman filter in tracking aircraft in holding pattern.
Target periodically goes into turn maneuver followed by straight-line trajectory. (From
McAulay and Denlinger, ‘‘A Decision Directed Adaptive Tracker,’’ IEEE Transactions
on Aerospace and Electronic Systems, March 1973. # IEEE.)
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(2.4-10), �x ¼ 5 m and T ¼ 1 sec. The filter was initiated assuming the rms of
x�0;0 and _x�0;0 are 10 m and 5 m/sec, respectively. It was also assumed that a track
detection was achieved on each revisit with probability 0.5. Figure 2.11-3
shows the results of a simulation for this Kalman filter. The position gain gn

starts high (0.997) and then oscillates between about 0.5 and 0.9. The velocity
gain hn starts at zero, goes to 0.3 for the next two observations, and then
remains at about 0.15. The effects of missed detections on gn and hn is clearly
indicated in Figure 2.11-3, gn in increasing significantly after missed
detections.

Based on the results of Figure 2.11-3 a constant g–h filter was designed as an
approximate replacement for the Kalman filter [8]. For this approximate filter
g ¼ 0:7 and h ¼ 0:15 were chosen. It was found that the approximate constant-
gain filter had a �nþ1;n that was only about 5% larger than obtained for the
Kalman filter. For a larger �u, �nþ1;n increased at least 10%. It was found that
using a Benedict–Bordner filter design or a g–h filter design based on reference
15 gave severely degraded performance. The difference is that the Kalman filter
design, and as a result its approximate replacement, picked g and h to
compensate for missed data. Hence if a constant g–h filter or g–h–k filter is to be
used for a tracking application where there can be missed updates with high
probability, the weights should be determined taking into account the possibility
of missed updates as done above.

With the enormous advances made in computer throughput, some have
argued that g–h and g–h–k filters should never be used, that we should now use
just Kalman filters [30,31]. This point of view may be a bit extreme. Reference
8 argues for using simplifications and approximations to the Kalman filter in an

Figure 2.11-3 Two-state Kalman filter simulation; T ¼ 1 sec, hence Kalman gain
hn=T ¼ hn. (Reprinted with permission from Multiple-Target Tracking with Radar
Applications, by S. S. Blackman. Artech House, Inc., Norwood, MA, USA, 1986.)
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attempt to reduce computational requirements significantly without degrading
tracking performance. One technique is the use of a table lookup for the
weights, as described in Section 2.7. Another is the approximation of the
Kalman filter weights using fixed weights that account for the possibility of
missed updates, as done above for the example of Figure 2.11-3. With this
approach the full-blown Kalman filter is simulated with missed updates to
determine the approximate steady-state weights to use. Still another approach is
the use of a lower order filter, such as a g–h instead of a g–h–k [8]. The reader is
referred to reference 8 for further discussions on obtaining approximations to
the Kalman filter. Certainly studying and designing g–h and g–h–k filters for a
given application will give a physical feel for what to expect from a Kalman
filter.
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3
PRACTICAL ISSUES FOR RADAR
TRACKING

3.1 TRACK INITIATION AND CLUTTER REJECTION

The problems of clutter rejection and track initiation are very much interwined.
It is possible to use track initiation to help in the rejection of clutter. On the
other hand it is possible to use appropriate clutter rejection techniques to reduce
the track initiation load. Examples of these are discussed in the following
sections.

3.1.1 Use of Track Initiation to Eliminate Clutter

The radar track initiator can be used to eliminate clutter by passing the clutter
returns as well as target returns, which are indistinguishable initially, into the
track initiation filter. However, only those returns that behave like a moving
target would be passed into track at the output of the track initiation filter, thus
finally eliminating the clutter returns. For example, the stationary clutter returns
would be dropped by the track initiation filter (or classified as clutter returns for
association with future such returns).

The use of this approach can in some cases potentially provide about an
order of magnitude or more increase in system sensitivity. This is the case when
dealing with spiky clutter. In order to achieve a low false-alarm probability due
to spiky clutter returns at the input to the track initiation filter, it is necessary
that the detector threshold be increased by 10 dB or more above what would be
required if the clutter were not spiky, that is, if the clutter were Rayleigh
distributed at the output of the receiver envelope detector (which implies that
it has a Gaussian distribution at the input to the envelope detector). This is
shown to be the case in Figure 3.1-1 for spiky sea clutter, rain clutter, lognormal
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clutter, and Weibull clutter for low probabilities of false alarm of 10�6. For
mountain land clutter the situation is even worse. Here the threshold has to be
increased 20 dB for a 20-dB worse sensitivity than for Rayleigh clutter when a
low probability of false alarm of 10�5 is desired. Extrapolating the curve of
Figure 3.1-1 indicates that if a higher false-alarm probability of 3 � 10�3 is
used, then there is essentially no loss of sensitivity for spiky sea and rain clutter
and a low loss for lognormal clutter and Weibull clutter. The idea is to use a
higher false-alarm probability for detection and to then use the track initiator to
eliminate the false alarms resulting from the spiky clutter.

The APL retrospective detection is an example of such a system. It uses the
track initiator to eliminate spiky sea clutter for an ocean surveillance radar

Figure 3.1-1 Typical measured and theoretical clutter probability distributions. (After
Prengaman, et al., ‘‘A Retrospective Detection Algorithm for Extraction of Weak
Targets in Clutter and Interference Environments,’’ IEE 1982 International Radar
Conference, London, 1982.)
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without penalizing system sensitivity [32, 33]. In fact system sensitivity is
increased because scan-to-scan video integration is used. For the retrospective
detector the returns from eight successive scans are examined to determine if
they form a moving-target track. If they do, a target is declared present. If they
do not, then it is assumed that only clutter was observed. (As we shall see
shortly, the retrospective detector even permits the detection of stationary
targets, such as buoys, and zero Doppler targets.) The details of the procedure
now follows.

The radar coverage is broken down into small range and bearing regions. For
each of these regions the returns from eight scan are stored. By way of
illustration, Figure 3.1-2 plots an example set of such returns seen as range
versus bearing and time. These are the returns from one of the range–bearing
regions mentioned. It is next determined if any set of these returns correspond
to a target having a constant velocity. Return numbers 1, 4, 6, 10, 12, and 14
form the returns from such a constant-velocity target, the target having a
velocity in the band between 28 and 35 knots. The rule used for declaring a
target present in a Doppler band is that M out of N returns be detected in the
band. Here N ¼ 8 and typically M would be of the order of 5.

The retrospective detector was implemented by APL on the AN/FPS-114
radar mounted on Laguna Peak on the California coast. This S-band radar has a
range resolution of 50 ft and azimuth beamwidth of 0.9�. Its scan period is 4 sec
with no coherent Doppler processing being used. Figure 3.1-3 shows the raw
data observed in the lower southwest quadrant after constant false-alarm rate
(CFAR) processing. The returns from 100 scans are displayed in the figure. The
coverage is out to a range of 9 nmi. A digital range-averaging logarithmic
CFAR was used by the system for the results shown in Figure 3.1-3. The results
shown in Figure 3.1-3 were obtained without the use of the retrospective
detector. A high false-alarm rate, about 10�3, was used in obtaining the results
of Figure 3.1-3. This resulted in about 2000 false alarms per scan. In this figure
the sea clutter false alarms are indistinguishable from small target returns
resulting from a single scan. Figure 3.1-4 shows the results obtained after
retrospective detector processing; again 100 scans of data are displayed. The
retrospective detector has reduced the false-alarm rate by at least four orders of
magnitude. The ships and boats in the channel are clearly visible. The reduction
in the false-alarm rate provided by the retrospective detector is further
demonstrated in Figure 3.1-5, which displays 1000 scans of data (about 1 h of
data). Very few false alarms are displayed.

The echo from a clutter spike generally will not generated a false-alarm
return at the output of the retrospective detector. this is because a spiky echo
return typically does not have a duration of more than about 10 sec [34–36]. If it
did, a retrospective detector with a longer integration time and higher threshold
M would be used. As mentioned, the detector even allows the detection of
targets having a zero Doppler velocity. Such returns could arise from ships
moving perpendicularly to the radar line of sight and from buoys. The detection
of buoys is essential for shipboard radars navigating shallow waters.
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The above data showed the effectiveness of the retrospective detector in
detection of targets in an ocean clutter. This type of detector would also be very
effective in detecting targets over spiky land clutter, potentially reducing or
eliminating the large detection sensitivity loss otherwise needed to eliminate
spiky clutter.

The hardware implementation of the above retrospective detector for the
AN/FPS-114 radar consisted of 6 � 6-in. wire wrap cards containing 250 small
and medium-scale integrated circuits (late 1970s/early 1980s technology). The
total power consumption is 30 W. This implementation is limited to 2000
contacts per scan by the memory size available. With the use of modern very
large scale integrated (VLSI) circuitry, the size of the signal processor will
decrease and its capability increase. Table 3.1-1 summarizes the characteristics
of the retrospective detector and its performance.

3

Figure 3.1-2 Operation of retrospective processor: (a) returns from single scan; (b)
returns from Eight Scans; (c) eight scans of data with trajectory filters applied. (After
Prengaman, et al., ‘‘A Retrospective Detection Algornithm for Extraction of Weak
Targets in Clutter and Interference Environments,’’ IEE 1982 International Radar
Conference, London, 1982.)

Figure 3.1-3 Raw data observed in lower southwest quadrant after CFAR processing
(100 scans of data; 9 nmi total range). (After Prengaman, et al., ‘‘A Retrospective
Detection Algorithm for Extraction of Weak Targets in Clutter and Interference
Environments,’’ IEE 1982 International Radar Conference, London, 1982.)
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3.1.2 Clutter Rejection and Observation-Merging Algorithms for
Reducing Track Initiation Load

In this section we shall describe how clutter rejection and observation-merging
algorithms are used to reduce the track initiation load for a coherent ground
two-dimensional surveillance radar. A two-dimensional radar typically is a
radar that has a vertically oriented narrow fan beam (see Figure 1.1-1) that is

Figure 3.1-4 Results obtained after retrospective detector processing using 100 scans
of data. (After Prengaman, et al., ‘‘A Retrospective Detection Algorithm for Extraction
of Weak Targets in Clutter and Interference Environments,’’ IEE 1982 International
Radar Conference, London, 1982.)

Figure 3.1-5 Retrospective detector output after 1000 scans of data (about 1 hr of
data). (After Prengaman, et al., ‘‘A Retrospective Detection Algorithm for Extraction of
Weak Targets in Clutter and Interference Environments,’’ IEE 1982 International Radar
Conference, London, 1982.)
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scanned 360� mechanically in azimuth about the local vertical axis [1]. Such a
radar provides two-dimensional information: slant range and the bearing angle
to the target. (These algorithms are also applicable to three-dimensional radars,
that is, radars that measure target range, azimuth, and elevation simultaneously
as done with the GE AN/FPS-117 [1, 37], the Marconi Martello stacked beam
radars [1, 38–40], and the Westinghouse ARSR-4 [1].) The next four
paragraphs will describe how the Lincoln Laboratory moving-target detector
(MTD) Doppler suppression technique works [41, 42].

3.1.2.1 Moving-Target Detector
For a radar using the Lincoln Laboratory MTD clutter rejection technique, the
radar pulse repetition rate (PRF), that is, the rate at which the radar pulses are
transmitted measured in pulses per second, and antenna scan rate are chosen so
that the target is illuminated by more than 2N pulses on one scan across the
target. For the first N pulses PRF¼ PRF1 is used. For the second set of N pulses
PRF ¼ PRF2 is used. The purpose of the two PRFs is to remove pulse-Doppler
ambiguities and blind velocities that result if only are PRF is used as shall be
explained shortly. Briefly the pulse Doppler velocity ambiguity and blind
velocities arise because typically the PRFs used are too low to permit
unambiguous pulse Doppler velocity measurements, that is, the PRF is lower
than the Nyquist sampling rate needed to measure the maximum Doppler shift
from the target unambiguously.

An MTD system is coherent, meaning the transmitted train of N pulses can
be thought of as generated by gating a stable radio frequency (RF) oscillator.
The system can be thought of as a sample data system where the sampling is
done on transmit. One could just as well have transmitted a continuous wave
(CW) and done the sampling on receive. However, range information would
then not be available. In order not to have range ambiguities, the pulse-to-pulse
period is made larger than the round-trip distance to the longest range target

TABLE 3.1-1. Retrospective Detector

Radar demonstrated on:
S-band AN/FPS-114 at Laguna Peak, CA
Resolution: 0.1msec �0:9�

4-sec scan-to-scan period
1500 ft altitude

Retrospective processor: special purpose, consisting of six 6 � 6-in. wire wrap cards
containing 250 small and medium integrated circuits; total power: 30 W
(Late–1970s/early–1980s technology.)

Performance results: with single-scan false-alarm rate set at 2000 per scan, after
100 scans false-alarm rate reduced by at least four orders of magnitude, after
1000 scans (� 1 hr) only a few alarms visible
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from which echoes are expected. For example, if the maximum range for the
radar is 100 nmi, then the pulse-to-pulse period would be (100 nmi)
(12.355 nmi/msec)¼ 1235 msec or greater. The system PRF would then be
1=1235msec ¼ 810 Hz. For a 1.3-GHz carrier frequency L-band radar an
approaching target having a Doppler velocity of 182 knots would give rise to a
Doppler-shifted echo having a Doppler shift equal to the PRF of 810 Hz.
Because we have in effect a sampled data system with a sample data rate of
810 Hz, any target having a target velocity producing a Doppler shift higher
than the sampling rate would be ambiguous with a target having a Doppler shift
lower than the sampling rate. For example, a target having a Doppler velocity of
202 knots would appear as a Doppler-shifted signal produced by a target having
a Doppler velocity of 202 knots modulo the sampling rate of 182 knots, or
equivalent 20 knots. Thus we would not know if the target actually was going at
202 knots or 20 knots, hence the ambiguity. The use of the second PRF for the
second set of N pulses removes this ambiguity problem. This is done by the
application of the Chinese remainder theorem.

A blind velocity problem also arises from the Doppler ambiguity problem. If
the target had a Doppler velocity of 182 knots, that is, equal to the sampling
rate, then it would be ambiguous with the zero Doppler echo returns. But the
zero Doppler returns are primarily from strong ground clutter. Hence, the echo
from a 182-knot target is ambiguous with the strong ground clutter. As a result,
often if would be most likely masked by the ground clutter return. This results
in the second reason for use of the second set of N pulses at a second PRF. A
target ambiguous in Doppler with the zero Doppler clutter on the first PRF will
not be ambiguous on the second PRF. This same problem occurs for near zero
Doppler rain clutter and a Doppler ambiguous aircraft echo. The rain could
mask the ambiguous aircraft echo. This masking also is eliminated by the
second set of N pulses having the second PRF.

A typical value for N is 8. To measure the Doppler velocity of the target in a
given range cell, the N ¼ 8 echoes from this range cell are passed into a bank of
N ¼ 8 narrow Doppler filters covering the band from 0 to 182 knots, with each
filter having a bandwidth of (182 knots)/8 ¼ 22.8 knots. The nonzero Doppler
filters would have a frequency transfer characteristic with a notch at zero
Doppler frequency so as to better reject the zero Doppler ground clutter while at
the same time passing the signal in the Doppler band of that filter. One would
think that the output of the zero Doppler filter is ignored, having the strong
ground clutter return. Actually it is not ignored. Instead the filter centered at
zero Doppler is used to detect aircraft targets moving perpendicularly to the
radar line of sight, which as a result have a zero Doppler velocity. Such targets
can often be detected in the clutter because when the target has a zero Doppler
velocity it is being viewed broadside. For this aspect angle the target generally
has a very large cross section. Hence it is possible that its return echo will be
stronger than that of the ground clutter. When this occurs, the target is detected.
To prevent the detection of ground clutter echoes in the zero Doppler filter, the
threshold in this filter is set higher than the ground clutter. The setting of this
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threshold varies with range and azimuth since the clutter strength varies with
range and azimuth. To determine what value the threshold should be set at for a
given range–azimuth cell, a clutter map is generated. For this clutter map the
strength of the clutter for each range–azimuth cell of the radar is stored in
memory. Typically the power of the echo in a particular range–azimuth cell
from the last H scans (where H might be of the order of 7 to 10) are averaged to
generate the clutter strength for this cell. An exponentially decaying average is
typically used for ease of implementation, it then being possible to implement
the filter with a simple feedback infinite-impulse response filter rather than the
more complicated finite-impulse response filter. The above described processor
is the Lincoln Laboratory MTD [41, 42].

Lincoln Laboratory first implemented an MTD for the FAA experimental
AN/FPS-18 air traffic control radar at the National Aviation Facilities
Engineering Center (NAFEC). It was installed in 1975. The FPS-18 is an
S-band (2.7 to 2.9 GHz) radar having a PRF of 1000 to 1200 Hz [41, 42, 44].
For this radar, in effect, N ¼ 8, with eight Doppler filters used to process eight
echo pulses. The coherent processing of a set of N ¼ 8 echoes having a
specified PRF is called a coherent procesing interval (CPI). There are thus eight
Doppler outputs per range cell per CPI. Figure 3.1-6 shows a typical system

Figure 3.1-6 Typical ASR single-scan return from single target. Radar range
resolution was 1

16
nmi while Doppler resolution was about 16 knots. (From Castella,

F. R. and J. T. Miller, Jr., ‘‘Moving Target Detector Data Utilization Study,’’ IEE
Radar—77, London, 1977.)
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return for a single target resulting from a single scan across the target with a
two-dimensional TWS radar. Each dot represents a Doppler filter crossing. For
the first range cell return from the target there are four CPIs observed for the
target. For the next range cell three CPI detections are observed for the same
target. For each CPI the target is also detected in more than one Doppler cell. In
some cases all eight Doppler cells show detections. Apparently a low detection
threshold was used for the illustrated scan given.

3.1.2.2 Observation Merging (Redundancy-Elimination, Clustering)
Castella and Miller [44] noticed that in general, for a single scan across a target,
detection occurred for more than one range–Doppler–azimuth cell. It is
imperative that all these detections from the same targets not be reported as
separate target returns as this would lead to an overload of the tracker. The
association of such detections, called redundant detections, with a single target
and reporting them as a single range–Doppler–bearing report for one target is
called observation merging [8], redundancy elimination [8], and clustering [16].
Techniques to be used for observation merging are discussed in detail in
reference 8.

Redundant detections, while being a problem, can be used to effectively
eliminate false clutter returns. Very effective algorithms developed by Castella
and Miller (of the Johns Hopkins University APL) for doing this are described
in reference 44. These are now summarized.

Castella and Miller found that aircraft targets on which there is a firm track
typically give rise to responses in two or more of either range cells, Doppler
cells, or azimuth cells during one pass across the target. Clutter returns on the
other hand typically give rise to only one range, Doppler, or azimuth cell
response. As a result they suggested the use of this characteristic to eliminate
clutter returns before they have passed onto the track initiator. Table 3.1-2
shows the statistics for single range, Doppler, and bearing CPI returns for
aircraft targets for which there is a firm track and for cell echoes which are
primarily comprised of clutter returns. About 79% of the clutter echoes consist
of only one range cell response, one Doppler cell response, or one bearing cell
response. In contrast, for aircraft targets for which there is a firm track, only 15

TABLE 3.1-2. Sample Centroid Statistics

Percent of Percent of
Characteristics All Centroids Firm Track Centroids Only

Number of CPIs ¼ 1 78.7 15.2
Maximum number of Doppler cell 78.7 13.7

detections per CPI per range cell ¼ 1
Maximum range extent ¼ 1 79.3 21.0
Total centroids considered 34,445.0 3485.0

Source: After Castella and Miller [44].
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to 21% of the echoes will consist of only one range cell response, one Doppler
cell response, or one bearing response. Figure 3.1-7 shows how effectively
clutter returns can be eliminated by using an algorithm that requires two or
more bearing returns (that is, CPI returns) for the target to be declared detected.
Figure 3.1-7a shows all the target detections obtained in a 50-sec interval if a
target detection is based on the observation of one CPI return. Figure 3.1-7b
shows the radar target detections if it is required that two or more CPIs be
observed. More than 75% of the original centroids have been eliminated using
this simple algorithm. Yet the number of target tracks is seen to be virtually
identical for both displays.

Figure 3.1-8 shows the benefits accrued from using the following two
constraints for declaring a target detection: (a) detection on two or more CPIs
and (b) detection on two or more Doppler cells per range–bearing cell. Figure
3.1-8a gives the resulting detections of 335 scans when no constraints are used
for declaring a detection; that is, detection is based on observing one or more
range–Doppler CPI detections. For this case 54 tracks were observed. Figure
3.1-8b gives the results when the above two constraints were used. The number
of tracks observed was reduced from 54 to 44. However, the mean track
duration increased from 39.1 to 47.6 sec. Reference 44 concludes from results
like these that only insignificant short-term clutter tracks are being eliminated.
More significantly, the number of tentative tracks were reduced from 14,000 to
a little over 800, a 17:1 reduction in the track load. Table 3.1-3 summarizes the
results obtained with the above two constraints.

3.1.3 Editing for Inconsistencies

Sometimes the clutter returns will overlap the signal returns and corrupt the
range, Doppler, and bearing estimations for the target. It is desirable to know
when the data are corrupted. Corrupted data could then be appropriately treated
in the track update filter, either by not using it or by giving it a low weighting
for determining the next update position. The presence of such corruption can
be determined by looking for inconsistencies in the data [44]. For example, the
presence of inconsistencies in the Doppler between adjacent range cells would
be indicative of possible corruption from clutter. Another possible reason for
this inconsistency could be that two targets are overlapping. In either case
noticing such inconsistencies alerts one to the fact that the Doppler estimate is
being corrupted. Similarly, inconsistencies in the Doppler for successive CPIs
would be indicative of possible clutter corruption. Finally inconsistencies
between the amplitudes of the return between successive CPIs in one scan
would also be indicative of possible clutter corruption.

3.1.4 Combined Clutter Suppression and Track Initiation

It is apparent from Sections 3.1.1 and 3.1.2 that clutter suppression and track
initiation go hand in hand. Often the engineer generating the clutter supression
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algorithms works independently of the engineer generating the track initiation
algorithms. The two must work hand in hand to achieve best results. The
literature is rich in clutter rejection techniques, and it is the designers task to
pick those most applicable to a situation; for example, see References 16, 27,
29, 32, 33, 41, 42, 44 to 61, and 135.

The clutter suppression and track initiation algorithms act as filters for
reducing the number of false tracks. Figure 3.1-9 illustrates this for a system
designed by APL [56]. This system applies various algorithms for suppressing
real-world clutter for a two-dimensional shipboard surveillance radar. For this
system there are 6 � 106 samples per scan. These samples are filtered down to
just 392 initial contacts. After further screening these in turn are filtered down

Figure 3.1-7 (a) Target detections obtained in 50-sec interval when target detections
are based on observation of only one CPI return. (b) Target detections when two or more
CPIs are required for declaring its presence. (From Castella, F. R. and J. T. Miller, Jr.,
‘‘Moving Target Detector Data Utilization Study,’’ IEE Radar—77, London, 1977.)
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to 35 possible track updates and 6 tentative tracks. On the average, for the
system under consideration only 1 out of 15 of the tentative tracks becomes a
firm track after further processing. The 35 possible track updates are filtered
down to just 21 firm track updates.

Feedback can be used at various stages of a well-designed system in order to
reduce the number of false tracks and enhanced the target detectability. The
enhancement of target detectability is achieved by lowering the threshold in
prediction windows where the track updates are expected to appear. This proce-
dure is referred to as ‘‘coached’’ detection; see reference 8.

Feedback for controlling the threshold over large areas of coverage have
been used in order to lower the false-alarm rate per scan [16]. This is called area

Figure 3.1-7 (Continued)
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CFAR control. It was used in the Lincoln Laboratory ATC experinental ASR-7
MTD processor to eliminate heavy angel clutter (birds, insects, etc.); see
Figure 3.2-10. Figure 3.1-10a shows the radar display without the use of the
feedback adaptive thresholding, that is, without area CFAR. Illustrated is a
situation of heavy angel clutter. Figure 3.1-10b shows the same display with the
area CFAR being used.

Two types of feedback were used in above Lincoln Laboratory system. The
first, fast feedback having a time constant of about 5 sec, was applied to control
the threshold in an area consisting of all ranges less than 20 nmi. The data from
three Doppler bins were used. Its purpose was to respond quickly to the onset of

Figure 3.1-8 (a) Detections observed after 335 scans when target detection is based on
observation of one or more range–Doppler CPIs. (b) Detections observed when two
constraints are imposed: That two or more CPIs be detected and that detections on two
or more Doppler cells per range–bearing cell be observed. Number of target tracks
reduced from 54 to 44. Mean target track duration increased from 39.1 to 47.6 sec.
Number of tentative tracks reduced from 14,000 to 800—17 : 1 track load reduction.
(From Castella, F. R. and J. T. Miller, Jr., ‘‘Moving Target Detector Data Utilization
Study,’’ IEE Radar—77, London, 1977.)
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Figure 3.1-8 (Continued)

TABLE 3.1-3. FPS-18 MTD System Results

Clutter removal algorithm
Require detection on � 2 CPIs
Require detection on � 2 Doppler cells per range–azimuth cell

Results
Number of firm tracks decreased from 54 to 44 in 335-scan run
Number of tentative tracks during entire run reduced from 14, 000 to 800 — a

17:1 track load reduction

Source: From Castella and Miller [44].
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Figure 3.1-9 Joint action of clutter suppression and track initiation as filters for
reducing number of false alarms due to severe clutter and radio frequency interference
(RFI). (From Bath et al., ‘‘False Alarm Control in Automated Radar Surveillance
Systems,’’ IEE 1982 International Radar Conference, Radar—82, London, 1982.)

Figure 3.1-10 Improvement provided by feedback area CFAR processing: (a) radar
display without area CFAR; (b) display with area CFAR. (From Anderson, J. R. and
D. Karp, ‘‘Evaluation of the MTD in a High-Clutter Environment,’’ Proceedings of IEE
International Radar Conference, # 1980 IEEE.)
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false alarms due to angel clutter or other clutter. Nominally the system was
designed so as to yield no more than about 60 false alarms per scan.

The second feedback threshold control was used for controlling the false-
alarm rate over smaller regions, regions 16 nmi2 by three Doppler cells. The
time constant for these regions is much longer, being about 200 sec. Its purpose
was to eliminate localized long-duration false returns. The stationary discrete
clutter returns that exceeded these two thresholds were passed along to the
tracker, where they were eliminated by using a logic that dropped all returns
that did not move more than 1

4
nmi from the position of track initiation.

Techniques for tracking through clutter are discussed in detail in references
6, 8, and 9.

3.2 TRACK-START AND TRACK-DROP RULES

The question arises as to when does one declare that a target is finally in
track after track initiation has started. The question also arises as to when a
target that has been in track and is no longer in the radar coverage region is
declared not to be in track. A typical simple rule for declaring that a target is in
track is the detection of M out of N observations, where, for example, M ¼ 3
and N ¼ 5 [8]. When Doppler information is available, confirmation based on
one additional observation is sufficient often [8]. This is because the Doppler
information allows us to use a very small prediction window for the confir-
mation observation. Also, with the additional dimension of velocity, the
likelihood of two false alarms creating a track is unlikely. Reference 8 gives
details of a sophisticated track detection rule that is dependent on the details of
the track initiation history. A sequential probability ratio test (SPRT) and a
Bayes rule detection criterion are used for establishing a track.

Track deletion can be based on a simple rule consisting of deciding that the
track has ended if there are M consecutive misses. Typically M is of the order of
3 or 4, the value of 3 being used in the Lincoln Laboratory MTD processor of
reference 16. Alternately a sequential test could be used similar to the one used
for establishing a track [8]. Finally, a measure of the quality of the track could
be used. If the quality falls below some value, then the track would be dropped
[8]. The quality of the track can be based on some function of the tracking-filter
residue over the last few observations.

3.3 DATA ASSOCIATION

3.3.1 Nearest-Neighbor Approach

As indicated previously, a prediction window is used to look for the target
return on the next track update. The window is made large enough so that the
probability is high enough (e.g., > 99%) that the target will be in this window
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[8, 62]. If a return is detected in this prediction window, then it is associated
with the track that established this prediction window. A problem arises,
however, when more than one return falls in the prediction window either due to
clutter or the presence of a nearby target. The question then arises of with which
return to associate the track.

One solution is to use the nearest-neighbor approach. First we address the
question as to how to measure distance. One measure is the statistical distance
given by [62, 63]

D2 ¼ ðrm � r�Þ2

�2
r

þ ð�m � ��Þ2

�2
�

ð3:3-1Þ

where rm and �m are respectively the range and bearing measurement at the
time of the track update, r� and q� are respectively the predicted range and
bearing angles for the track update period in question, and finally �2

r and �2
� are

respectively the variances of rm � r� and �m � ��. The statistical distance is
used in place of the Euclidean distance [which (3.3-1) gives when the variance
�2

r and �2
� ¼ 1] because of the large differences in the accuracies of the

different coordinates, the range accuracy usually being much better than the
bearing accuracy.

The example of reference 62 [also 63 and 64] will be used to further
illustrate the nearest-neighbor approach. Figure 3.3-1 shows the example. For
this example there are two detections in window 1, three in window 2, and one
in window 3. Table 3.3-1 gives the statistical distances for each track relative to
the detections in their prediction window, these detections being given in order
of increasing distance. Initially the closest detections are associated with each
track. Next the conflict resulting from associating a detection with more than

Figure 3.3-1 Difficulties caused by occurrence of multiple detections and tracks in
close proximity. (From Cantrell, Trunk, and Wilson [69]; sec also Trunk [62–64].)
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one track is resolved. For example, detection 8 associated with tracks 1 and 2. It
is decided to associate detection 8 with track 1, it having the smaller distance.
The association of detection 8 with all of the other tracks is then eliminated, in
this case track 2. Next consider detection 7. It is in the windows of tracks 1, 2,
and 3. However, detection 7 is not associated with track 1 because track 1 has
already been associated with detection 8. This leaves detection 7 with tracks 2
and 3. This conflict is eliminated by associating detection 7 with track 2
because it is closer to track 2. This leaves track 3 with no detections for an
update. Hence, track 3 is not updated at this time.

An alternate logic exists that assigns a track to each detection. With this logic
track 3 is updated with detection 7, it being the only detection in the track 3
prediction window. As before detection 8 is associated with track 1. This leaves
detection 9 for updating track 2. Reference 2 elaborates more fully on the
nearest-neighbor association procedure.

3.3.2 Other Association Approaches

With the nearest-neighbor approach described above a decision is made relative
to which track a detection is to be associated with at the time of the update, a
decision that is irrevocable. A more optimum approach is to defer a decision on
one or more scans. This could be done for all track updates or at least for the
cases where association is difficult. One simple version of this approach is
called branching or track splitting [8]. A more sophisticated approach uses
multiple probability hypothesis testing. Other versions of this test are the all-
neighbors data association approach, probabilistic data association [PDA], and
joint probabilistic data association [JPDA] [8]. These techniques provide better
tracking through heavy clutter [8]. Reference 8 presents a simplified recursive
approximation to the probabilistic hypothesis testing approach. Future tracking
can be expected to go in the direction of the more optimum but more complex
hypothesis testing association techniques as very high speed integrated circuit
(VHSIC) and VLSI technology [1, 65, 66] increase the radar computer
capability.

TABLE 3.3-1. Association Table for Example Shown in Figure 3.3-1

Closest Association Second Association Third Association

Track Detection Detection Detection
Number Number D 2 Number D 2 Number D 2

1 8 1.2 7 4.2
2 8 3.1 7 5.4 9 7.2
3 7 6.3

Source: From Trunk [64].
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In the future target signatures such as target length, target cross section,
target shape, and target-induced modulation, such as through airplane vibration
and jet engine modulation (JEM) [8, 47, 67], will be used to aid in keeping track
of targets. This is especially true when tracking through outages, such as due to
ground shadowing, or crossing targets, or targets in a dense environment. The
use of target shape for aiding in the tracking of ocean surface ships is presented
in reference 68.

3.4 TRACK-WHILE-SCAN SYSTEM

A typical TWS system is the fan-beam surveillance radar system described in
Section 1.1 and shown in Figure 1.1-1. For this type of system the fan beam
periodically scans the 360� search region (such as once every 10 sec) looking
for targets. When a target is detected, it is put into track in the receiver
processor. A new track update is made (if the target is detected) every 10 sec
each time the search volume is searched, hence the name track while scan.

A methodology in which the clutter, tentative, and firm tracks for a TWS
system can be efficiently handled is described in this section [62–64]. Assume a
clockwise rotation of the antenna beam with it presently searching out sector
12, as illustrated in Figure 3.4-1. While gathering in the data from section 12 it
is processing the data from previous sectors; see Figure 3.4-1. The sequencing
of this processing of past sectors is selected so as to best eliminate clutter
detections from the signal detection file and to prevent tentative tracks from
stealing detections belonging to firm tracks.

For the situation shown in Figure 3.4-1, the detections made in sectors 9, 10,
and 11 are correlated (associated) if possible with clutter points (stationary

Figure 3.4-1 Parallel operations in TWS system of detection, establishment of clutter
scatterers, firm tracks, and tentative tracks, and initiation of new tracks in different
sectors of system’s coverage. (From Cantrell, Trunk, and Wilson [69]; see also Trunk
[62, 63].)
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tracks) in the clutter file. Those detections that correlate are declared to be
clutter point detections and deleted from the detection file and used instead for
updating the clutter points. While this is going on a determination is made if
detections in sectors 7, 8, and 9 (for which clutter point detections have already
been deleted) correlate with firm tracks in sector 8. For those detections for
which such an association is made, they are deleted from the detection file and
used to update the corresponding firm tracks. At the same time tentative tracks
are being established for sector 6 using detections not associated with firm
tracks. In turn the detections not associated with tentative tracks are used to
initiate new possible tracks, this processing going on simultaneously in sector 4;
see Figure 3.4-1. A track initiation formed on one scan will on a later scan
become tentative track and still later possibly a firm track if enough correlating
detections are made and if the target has an appropriate nonzero velocity. If the
target’s velocity is zero, it will be declared a clutter point and tracked as such.
On the other hand, if insufficient correlated returns are received on ensuing
scans, the track initiation and tentative tracks are dropped.

For some systems an initial detection is used to simultaneously establish a
tentative target and clutter track. Future detections will cause one of these to be
dropped depending on the target’s velocity. Alternately both will be dropped if
insufficient correlating detections are observed on later scans. When most of the
detections are a result of clutter residues, the approach wherein simultaneously
a target and clutter track are started on the detection of a new observation often
requires less computer computation.

When a track is established, it is assigned a track number. A set of track
parameters are associated with each track or equivalently a track number. For
example, assigned with a track may be the parameters of filtered and predicted
target position and velocity, time of last update, track quality, covariance matrix
if a Kalman filter is used, and track history, that is, the number of track
detections. A track number is assigned to a sector for ease of correlation with
new data. Clutter returns are treated in a similar way to target tracks, having
track numbers, parameters, and sectors assigned to them.

TABLE 3.4-1. Track Number Parameters

Parameter Description

NT Track number
DROPT Obtain (1) or drop (0) a track number NT
FULLT Number of available track numbers
NEXTT Next track number available
LASTT Last track number not being used
LISTT(M) File whose M locations correspond to track numbers
M Maximum number of tracks

Source: From Trunk [63, 64].
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Table 3.4-1 shows a typical track number file written for a FORTRAN
program [63, 64]. Figure 3.4-2 shows the flow chart for the track number file. A
similar file and flow chart is developed for the clutter points tracked. Higher
level languages like Pascal provide pointer systems that permit the efficient
implementation of flow charts such as shown in Figure 3.4-2 [63, 64, 69].

3.5 TRACKING WITH A CHIRP WAVEFORM

The chirp waveform is one of the most extensively used waveforms for rader
systems [57, 58, 70]. We shall first describe chirp waveform, pulse
compression, and match filtering and then discuss the effects of using such a
waveform on tracking accuracy.

3.5.1 Chirp Waveform, Pulse Compression, Match Filtering of Chirp
Waveform, and Pulse Compression

Figure 3.5-1 shows the typical chirp pulse waveform. It consists of a pulse
having a width TU that has a linear frequency modulation (LFM) of bandwidth
Bs. The LFM chirp waveform is what is power amplified and passed through the
transmitting antenna of chirp radar systems. The chirp waveform has the

Figure 3.4-2 Higher level languages like Pascal provide pointer systems that permit
efficient implementation of flow charts such at shown. (From Cantrell, Trunk, and
Wilson [69].)
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property that if it is passed through a time dispersive network in the receiver, as
shown in Figure 3.5-2, the output of this dispersive network will be a narrow
pulse, as indicated. The width of this pulse is equal to 1 over the signal
bandwidth Bs. Thus if Bs ¼ 1 MHz and the uncompressed pulse width
TU ¼ 100msec, then the compressed-pulse 4-dB width will be 1 msec. Thus
the output pulse is one-hundredth the width of the input pulse for a pulse

Figure 3.5-1 Chirp waveform.
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compression of 100:1. This output pulse is called the compressed pulse because
it has a compressed width. The envelope of the compressed pulse has a sin x=x
shape where x ¼ �t=�c and where � c is the compressed 4-dB width.

Normally the range resolution of a radar is equal to the width of the
transmitted pulse. For the chirp waveform the width TU ¼ 100 m sec, which
normally would imply a time resolution of 100m sec or equivalently range
resolution of about 8 nmi! Because of the pulse width compression that the
chirp waveform echo sees in the receiver, its resolution after pulse compression
will be 1 m sec or equivalently 0.08 nmi (about 490 ft), a substantial improve-
ment over the uncompressed-pulse width resolution.

One major advantage of the chirp waveform is that it permits one to use a
radar transmitter having a low peak power to detect a weak target at a long
range. This is because the ability to detect a target is dependent on the
transmitted pulse total energy and not on its instantaneous peak power or shape.
Thus a long pulse having a low peak power will provide the same ability to
detect a small target at long range as a short pulse having a high peak power as
long as the two pulses have the same energy. For example, assume that the peak
power for the transmitted chirp pulse of Figure 3.5-1 is 1 MW. The total
transmitted energy is thus 100 J if TU ¼ 100 msec. A standard normal unmodu-
lated pulse having a 1-msec width (rectangular) would have to have a peak
power of 100 MW in order to have the same total transmitted energy as that of
the transmitted chirp pulse.

What we have described above is the basis for pulse compression. Generally,
pulse compression involves the coding of a long pulse (in the case of the chirp
waveform with a LFM coding) that has a bandwidth equal to that of the short
pulse that normally would be used to give the desired range resolution for the
radar. For a short-pulse uncoded radar the bandwidth is equal to 1 over the pulse
width, that is, Bs ¼ 1=� c, where � c is the pulse width for the uncoded short-
pulse radar. Thus the bandwidth for the coded pulse radar has to equal Bs. If the
long pulse has a coding that provides a bandwidth of Bs, then after receiver
pulse compression its width will be equal to �c ¼ 1=Bs, the same as for the
narrow-pulse uncoded waveform system, thus having the same resolution as the
latter system. The ability to achieve a high range resolution with a long pulse
(which allows the use of a low peak power) is the second major advantage of
the chirp waveform.

As indicated before, using a long pulse permits the use of a low-peak-power
transmitter, the peak power being lower by the pulse compression ratio of the
coded waveform, that is, by TU=�c. This makes it possible to use a less
expensive transmitter, the transmitter cost typically increasing with the peak
power required. It also makes it possible to use solid-state transmitters that
prefer to have a low peak power [1, 3]. Also in some instances it makes an
unfeasible transmitter feasible. This is the case of the L-band 95-ft phased-array
Cobra Dane radar of Figure 1.1-12 that employs a 15-MW peak-power
transmitter. It transmits a 1-msec, 200-MHz LFM chirp waveform that enables
it to see a grapefruit-size target (silver coated) having a cross section of 0.01 m2
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at a range of 1000 nmi. This chirp waveform permits a range resolution of about
3 ft; that is, it can resolve two grapefruits separated by about 3 ft [1]. If instead
of using the long chirp waveform a simple uncoded 5-nsec rectangular pulse
were used, the peak power of the transmitter would have to be 3 trillion watts in
order that the total transmitted energy be the same. If such a peak power were
transmitted through the 35,00-element array, one would get one big bang and
probably find that all the radiating elements are welded together. It would not be
possible to use the antenna again. To transmit another pulse, a second Cobra
Dane radar would have to be built. To transmit 10 pulses, 10 Cobra Dane radars
would have to be built. The Cobra Dane cost about $50 million in mid-1970s
dollars. Ten such radars would have thus cost about $500 million in mid-1970s
dollars. With inflation the cost would almost have doubled for the late 1980s
dollars. The government would not go for this expendable 3-trillion-watt
version of the system. Pulse compression allowed the use of a low-power
15-MW peak-power transmitter that did not destroy the antenna. This is the
version built.

It was pointed out that the pulse compression (PC) is given by the ratio of the
uncompressed to the compressed pulse width:

PC ¼ TU

�c

ð3:5-1Þ

But �c ¼ 1=Bs. Substituting this in Eq. (3.5-1) yields

PC ¼ TU Bs ð3:5-2Þ

that is, the pulse compression ratio is equal to the waveform time-bandwidth
product, the product of the uncompressed pulse width and the waveform
bandwidth

If two targets are present, then two chirp echoes arrive at the receiver. These
will be compressed, resulting in two compressed pulses of width �c that are
separated in time, or equivalently in range, by the separation between the
targets. Also the peak power for these two echoes will be proportional to the
cross sections of their respective targets. The above properties result because
the pulse compression process is a linear one so that superposition holds.

Let us now explain why the dispersive network of Figure 3.5-2 compresses
the echo pulse. Assume the echo chirp signal has been mixed down to as carrier
intermediate-frequency (IF) of 30.5 MHz with the LFM 1-MHz echo going up
linearly from 30 MHz to 31 MHz in 100msec; see Figures 3.5-1 and 3.5-2. The
dispersive network delays the different parts of the chirp waveform so that all
components come out of the dispersive network at the same time. Specifically,
assume the component at the IF of 30 MHz comes into the network first at t ¼ 0
and is delayed by TU ¼ 100msec so that it arrives at the output of the dispersive
network at the same time that the highest IF component (31 MHz) arrives at the
input to the network. The highest IF component of the input signal arrives at
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time t ¼ 100msec and is not delayed at all so it arrives at the output of the
dispersive network at the same time that the lowest frequency arrives at the
output of the dispersive network, that is, at time t ¼ 100msec. The signal
component at the center IF of 30.5 MHz arrives at the input to the dispersive
network at time t ¼ 50msec and is delayed by the dispersive network by 50msec
so that it also arrives at the output of the dispersive network at time
t ¼ 100msec. The component at frequency 30.25 MHz that arrives at time
t ¼ 25msec gets delayed by an amount 75msec by the dispersive network so as
to arrive at the output at the same time t ¼ 100msec. In the same manner all
other input components of the chirp waveform are delayed so that they arrive at
the output at time t ¼ 100msec. As a consequence, the long 100-msec input
chirp signal appears at the output of the dispersive network as a narrow pulse, as
shown in Figure 3.5-2. Specifically, it appears as a narrow IF pulse centered at
30.5 MHz having a sin x=x envelope as shown. (The reader is referred to
references 57 and 59 for a detailed mathematical proof.)

3.5.1.1 Matched Filter
The pulse compression dispersive network of Figure 3.5-2 has the important
property that its output SNR is maximum. That is, no network will result in a
higher SNR than that of the network shown in the figure. This network is
referred to as the matched filter for the chirp waveform. [Implied in the
statement that the filter provides the maximum SNR is that the input IF noise is
white (flat) over the signal bandwidth.] Any other filter results in a lower SNR
and is called a mismatched filter. Often a mismatched filter is used to realize
lower sidelobes for the compressed pulse than obtained with the sin x=x
waveform indicated. This mismatch is obtained by not having the dispersive
network have a flat gain versus frequency over the signal bandwidth but instead
letting it have a bell-shaped gain over the signal bandwidth. Specifically, if it
has the well-known Hamming weighting [3, 48, 88], the sidelobes of the com-
pressed pulse will be 40 dB down. This improved sidelobe level is achieved at a
loss in the SNR at the output of the network of about 1.3 dB, called the
mismatched loss.

3.5.1.2 Alternate Way to View Pulse Compression and Pulse Coding
The chirp waveform can be generated in the transmitter by passing a waveform
having the shape of the compressed pulse at the output of the dispersive
network in Figure 3.5-2 into another dispersive network, that shown in
Figure 3.5-3. For this dispersive network the dispersion increases linearly
with increasing frequency instead of decreasing with increasing frequency, as
it does for the network of Figure 3.5-2. This input waveform has an
approximately rectangular spectrum over the signal bandwidth Bs (it would
be exactly rectangular if not for the fact that the input sin x=x waveform is not
infinite in duration, being truncated). The dispersive network of Figure 3.5-3
will delay the different frequency components of the input signal by different
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amounts. Specifically, it will delay the lowest frequency component (that at the
30 MHz IF) by a zero amount, that at the highest carrier frequency (of 31 MHz)
by 100msec, that at the middle frequency (30.5 MHz) by 50msec, and so on. As
a result, the output consists of a pulse of 100 msec in length whose carrier
frequency increases linearly with time, as shown in Figure 3.5-3. Thus, we have
generated our chirp waveform having a LFM that increases with time and has
100msec duration. It is this waveform that is power amplified and then
transmitted out of the antenna for detecting targets.

The dispersive network of Figure 3.5-3 can be viewed as a distortion net-
work that stretches the pulse having a width 1=Bs ¼ �c ¼ 1 msec to a pulse
TU ¼ 100msec for a pulse expansion of 1 to 100 ¼ TU=� c ¼ PC ¼ TU Bs ¼
time–bandwidth product of the pulse. The pulse compression dispersive
network of Figure 3.5-2 can correspondingly be viewed as a network that
removes the distortion introduced in the transmitter dispersive network. In
order for a network not to introduce any distortion, it is necessary that its
delay be constant with frequency over the signal bandwidth. The transmitter
pulse dispersion network has a varying delay with frequency. Thus this
network distorts a signal. If we cascade the transmitter pulse expansion
network with the receiver pulse compression network as shown in Figure 3.5-4,
we have a combined network that provides a constant delay with frequency
over the signal bandwidth with the total delay being equal to TU ¼ 100 msec at
all frequencies. Such a network is just a delay line that introduces no
distortion. At the output of the first dispersive network (the pulse expansion
network) of Figure 3.5-4, the signal is distorted as shown, being stretched
out to 100 sec. This is the chirp signal that is power amplified and sent out
of the radar antenna for detecting targets. Its echo is sent through the
second dispersive network in the receiver whereupon it is compressed to a
narrow pulse providing the narrow-pulse resolution capability desired. The
receiver pulse compression network can thus be viewed as a network
equalizing the transmitter network distortion just as a communication
network equalizer removes channel distortion. Because the system is linear,
if one has two targets present, the output of the pulse compression network
will consist of two narrow pulses whose amplitudes are proportional to the
strengths of the targets and whose spacings will be equal to the range
separations of the targets.

The pulse compression technique described above is dependent on two
factors. First, the ability of the radar to detect a target is only dependent on the
total waveform energy, it being independent of the waveform shape. Second,
the resolution of the waveform is dependent on the signal bandwidth, not on the
shape of the waveform envelope. It is possible to use other modulations than the
LFM shown in Figure 3.5-1. Of course, it is possible to have a LFM that is
decreasing in frequency with time instead of increasing. Other possible
modulations are a nonlinear FM [3, 59, 61, 70], a binary phased modulation
[3, 59, 61, 70], a frequency hopped waveform, and finally a noise phase
modulation, to name just a few.
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3.5.1.3 Affect of Tracking with a Chirp Waveform
Using a chirp waveform results in the well-known range–Doppler coupling
error that shall be described shortly. However, it has been shown by Fitzgerald
[71] that if the chirp waveform is chosen to have an upchirp instead of a
downchirp, then the tracking accuracy obtained when using this waveform can
be better in steady state than the accuracy obtained with a simple uncoded pulse
having the same power accuracy. This is indeed an amazing result! Before
describing this result, we will first describe the range–Doppler coupling
problem.

3.5.1.4 Range–Doppler Ambiguity Problem of Chirp Waveform
Consider that an upchirp waveform is used. Figure 3.5-5 shows the echoes
received from a variety of possible targets. The solid curve is the echo from a

Figure 3.5-5 Range-Doppler ambiguity problem.
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stationary target. The long-dash curve is the echo from a moving target at the
same range as that of the target that resulted in the solid curve.

The moving target is assumed to be going away from the radar so as to
produce a negative Doppler velocity shift vd with the result that the return echo
is at a lower frequency for the Doppler-shifted target than for the stationary
target. The Doppler shift is given by

f d ¼ 2vd

�
ð3:5-3Þ

where � is the wavelength of the signal carrier frequency. Specifically

� ¼ c

fc

ð3:5-4Þ

where c is the velocity of light and f c is the signal carrier frequency.
The dotted curve represents the echo from another zero Doppler target, a

target further in range away from the radar, specifically, a range �R further
away with its echo arriving �� later in time from the other stationary target,
where

�� ¼ 2�R

c
ð3:5-5Þ

On examining Figure 3.5-5 we see the Doppler-shifted waveform of the
target at the closer range is almost identical to the zero Doppler-shifted echo
from the target at a range �R further away. Only a small difference exists
between these two echoes, a difference occurring at the lowest and highest
frequencies, that is, at the ends of the waveform. As a result the outputs of the
pulse compression network for these two chirp waveforms will be almost
identical. (The compressed pulse for the Doppler-shifted chirp waveform could
be slightly wider than for the stationary chirp waveform echo in Figure 3.5-5.
This would result if the pulse compression network had a passband that only
extended from the lowest to the maximum frequency of the echoes for a
stationary target, which was from 30 to 31 MHz in Figure 3.5-2. As a result the
frequencies for the Doppler-shifted echo below 30 MHz are not processed, since
these are outside the pulse compression network passband. If the pulse
compression network were assumed to operate as a dispersive network for
these lower frequencies as well, then the envelope of the compressed pulse for
the Doppler-shifted echo would actually be identical to that for the stationary
echo.)

Because the echoes from the stationary target and the moving target are
essentially identical, one has an ambiguity problem. It is not known if the echo
is coming from a target moving away from the radar at a range let us say R1 or
else from a stationary target at a range R2 ¼ R1 þ�R. It is a simple matter to
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show that for a moving target having a Doppler vd, the displacement �R of
target position is given by

�R ¼ c

�� vd

TU

Bs

ð3:5-6Þ

where the convention used here is that a positive vd indicates a target moving
toward the radar. Instead of indicating the target to be at the true range R at the
time of the measurement, the radar is indicating it to be at the range Rc, given by

Rc ¼ R þ�R ð3:5-7Þ

It was pointed out by Klauder et al. [57] in their now classical paper on the
chirp waveform that the range–Doppler ambiguity can be made into a
nonproblem in those situations where it is satisfactory to know the target range
at a time other than the time at which the measurement is made. Specifically,
the range Rc indicated by the radar measurement actually is the range the target
will have at a time �t later for a target moving away from the radar. To see this,
note that �R of (3.5-6) can be written as

�R ¼ ��t � vd ð3:5-8Þ

where, from (3.5-6), �t is defined as

�t ¼ c

�

TU

Bs

¼ f c

TU

Bs

ð3:5-9Þ

Combining (3.5-7) and (3.5-8) yields

Rc ¼ R � vd�t ð3:5-10Þ

For a target moving away vd is negative, so that

Rc ¼ R þ jvdj�t ð3:5-11Þ

If the target is moving toward the radar, one obtains the same result, that is,
the range Rc measured is that which the target would have at time �t after the
time of the measurement. In this case vd is positive and (3.5-10) becomes

Rc ¼ R � vd�t ð3:5-12Þ

The range Rc is called the extrapolated range [57, 61]. Note that �t is
independent of the target velocity, depending only on the waveform parameters;
see (3.5-9). Thus for any upchirp, all range measurements Rc are the measure-
ments of the range that the target would have at a time �t after the measure-
ment was actually made.
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If a downchirp waveform is used instead of an upchirp waveform, then Rc of
(3.9-10) becomes

Rc ¼ R þ vd�t ð3:5-13Þ

and Rc now physically represents the range that the target would have at a time
�t earlier than the time of the measurement. Which is better, an upchirp or a
downchirp? Or does it matter? For tracking target an upchirp waveform should
be better, since for tracking we prefer a measurement of the range at a later time
than at an earlier time, thereby reducing the prediction effort for the track
update position. Furthermore, even if we only obtain an estimate of the present
position, an upchirp waveform is better since it is better to do smoothing to
obtain the present target position than to do prediction, as would be the case if a
downchirp waveform were used. These are the conclusions first pointed out by
Fitzgerald [71] and that will shortly be summarized.

An unchirp is also desirable for separating a fast target from a slow target,
which is in the same resolution cell or close behing it. An example is an
approaching reentry vehicle (RV) with its associated ionized wake at its base as
illustrated in Figure 3.5-6. The RV travels at a velocity of about 20,000 ft/sec
while the ionized wake at its base is going at nearly zero velocity. If a
nonchirped waveform is used, such as a simple short pulse, then the echo from
the RV and the wake will nearly overlap, as shown in Figure 3.5-6. However, if
an upchirp waveform is used, the echo from the RV is shifted ahead �R (as
shown in Figure 3.5-6) while the echo from the essentially stationary wake
remains put. On the other hand, a downchirp may be useful for separating two
approaching targets just before closest approach in a command-guidance inter-
cept application or for collision avoidance.

It is useful to substitute some typical numbers into (3.5-8) and (3.5-9) to get
a feel as to how big �R and �t are. For a first example assume TU ¼ 200msec,
BS ¼ 1 MHz, and f c ¼ 5 GHz. Then (3.5-9) yields �t ¼ 1 sec. Hence if the
target Doppler velocity was 300 knots ¼ 506 ft/sec away from the radar, then,
from (3.5-8), �R ¼ 506 ft, which is about equal to the slant range resolution
cell width �r ¼ c=2BS ¼ 492 ft for the 1-MHz signal bandwidth. If the signal
bandwidth BS were increased but TU kept constant, then �R would still be
about equal to the range resolution, because both �r and �R vary inversely
with BS. On the other hand, if TU were increased while BS was kept constant,
then �t and �R would increase in proportion while the range resolution would
remain unchanged. If TU and BS were kept at their original values but the target
velocity was increased by a factor of 4, then �R would become 2024 ft or about
4 times the range resolution of 492 ft.

For a second example assume that TU ¼ 150msec, BS ¼ 4 MHz, and
f c ¼ 1:3 GHz (the parameters of the Martello S723 stacked-beam solid-state
three-dimensional radar [1]). Now �t ¼ 0:0488 sec and �R ¼ 24:7 ft for the
same 300 knots target Doppler velocity. Here �R is about one-fifth of the range
resolution of 123 ft. The decrease in �R=�r relative to the first example is
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primarily due to the large decrease in f c with the small decrease in Tc

contributing also.
Note that �R as given by (3.5-8) is only true if the target acceleration were

zero, that is, if the target were truly a constant-velocity target. If in actuality the
target has an acceleration ad in the direction of the line of sight, then the target
actual change in range at time �t later would be

�R ¼ �vd � t � 1
2

adð�tÞ2 ð3:5-14Þ

The component of �R due to the acceleration is given by

�Ra ¼ � 1
2

adð�tÞ2 ð3:5-15Þ

Figure 3.5-6 Comparison of echoes seen by simple uncoded narrow pulse and by
upchirp waveform having same range resolution. Target is an approaching RV with its
ionized based wake. Solid drawing shows echos for uncoded narrow pulse. Wake echo
masks base RV echo. Dashed drawings show shift to left of echo from RV tip and base
when upchirp is used. Wake return remains put. As a result, echo from RV base is
visible.

TRACKING WITH A CHIRP WAVEFORM 145



Assume that ad ¼ 1g. Then for our first example given above �Ra ¼ 16 ft so
that �R ¼ 522 ft instead of 506 ft, a small difference. For our second example
�Ra ¼ 0:04 ft so that �R ¼ 24:7 ft, is essentially unchanged.

We shall now give the results obtained by Fitzgerald [71] as to the effects of
tracking with a chirp waveform on the Kalman filter tracking accuracy.

3.5.2 Effect of Using Chirp Waveform on Tracker Filtering Accuracy

Fitzgerald analyzed the filtering accuracy achieved with a g–h–k Kalman filter
when a chirp waveform is used for tracking [71]. He used the Singer target
dynamics model described in Section 2.9. Fitzgerald modeled the Kalman filter
to account for the shift �t in the effective time for which the range
measurement applies. He did this by modifying the observation matrix M [see
e.g., (2.4-3a)] from M ¼ ½1; 0; 0� to M ¼ ½1;�t; 0�. Figure 3.5-7 gives the
steady-state filtering accuracy obtained by Fitzgerald for the Kalman filter as a
function of the normalized parameter p2 of (2.10-2) and a new Fitzgerald
normalized parameter

p3 ¼ �t

T
ð3:5-16Þ

Specifically, Figure 3.5-7 gives the steady-state rms error in true position
(range) estimate, R, immediately after an update. The �t=T ¼ 0 curve applies
for the case of a nonchirped pulse, that is, a simple unmodulated short pulse.
Two points are worth noting from Figure 3.5-7. One is that an upchirp
waveform (positive �t) gives better accuracy than a downchirp waveform (�t
negative), especially for large �t=T (like 5 to 10) when p2 is small. This is
equivalent to having the acceleration small because p2 ¼ T 2�a=�x ¼
2�Ra=� x. The other point worth noting is that tracking with an upchirp
waveform gives better tracking accuracy than tracking with a nonchirped
waveform when p2 is small enough, less than 10 for p2 ¼ 10. Assume the range
measurement accuracy � x is equal to about one-tenth of the radar range
resolution �r. It then follows that for this case p2 is given by

p2 ¼ 20�Ra

�r
ð3:5-17Þ

Thus for p2 to be less than about 10 the �Ra must be less than about one-half
the radar range resolution �r.

Intuitively it might be expected that alternately using an upchirp waveform
followed by a downchirped waveform might provide a better filtering and
prediction performance than obtainable by the use of an upchirp or downchirp
waveform alone for tracking. This is because the use of an upchirp followed by
a downchirp waveform removes the range–Doppler ambiguity problem,
providing an unambiguous measurement of both range and Doppler velocity.
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Fitzgerald [71], however, shows that for the optimum modified Singer Kalman
filter this was not the case. Using only the upchirp �t=T ¼ þ1 waveform gives
the best performance, as indicated in Figure 3.5-8, which will now be explained.
This figure gives the normalized rms filtering and prediction errors as a function
of time. The �t=T ¼ �1 sawtooth curve gives the results obtained when only a
downchirp waveform is used. The peak of the sawtooth obtained at the time just
before t ¼ nT gives the normalized rms prediction error, designated as �nþ1;n in
Figure 3.5-8, just before the update measurement is incorporated into the filter.
The minimum occurring at the time just after t ¼ nT represents the filtered
normalized rms error just after the update measurement has been included.
Actually the sawtooth jump at time t ¼ nT will occur almost instantaneously

Figure 3.5-7 Effect of different chirp waveform range-Doppler couplings (as given by
�t=T) on rms of Singer g–h–k Kalman tracker steady-state filtered range estimate
(normalized). Normalization is with respect to measurement accuracy, that is, rms error
in measured range. (From Fitzgerald, R. J., ‘‘Effect of Range-Doppler Coupling on
Chirp Radar Tracking Accuracy,’’ IEEE Transactions on Aerospace and Electronic
Systems, July, 1974. # 1974 IEEE.)
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rather than being spread over time, as shown by Fitzgerald in Figure 3.5-8 for
clarity. The normalized rms prediction error, designated as �nþ; n in Figure
3.5-8, increases from just after t ¼ nT until just before t ¼ ðn þ 1ÞT , at which
time another measurement update is to be included and the sawtooth cycle
repeated. In steady state, which is the condition for which Figure 3.5-8 applies,
the sawtooth cycling shown applies. This sawtooth curve is the classical rms
filtering and prediction error plot obtained for a linear tracking filter.

As indicated above, the �t=T ¼ þ1 represents the corresponding curve
obtained if an upchirp waveform is used solely for tracking the target. As
expected from Figure 3.5-7, tracking with the upchirp waveform provides a
much better performance. The �t=T ¼ � 1 curve represents the performance

Figure 3.5-8 Comparison of use of alternately an upchirp and downchirp waveform,
only upchirp waveform, only downchirp waveform, or simple uncoded waveform to
track target. (From Fitzgerald, R. J., ‘‘Effect of Range-Doppler Coupling on Chirp
Radar Tracking Accuracy,’’ IEEE Transactions on Aerospace and Electronic Systems,
July, 1974. # 1974 IEEE.)
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obtained if the upchirp/downchirp waveform was used. As seen, this waveform
gives a performance in between that obtained using the upchirp or downchirp
waveform alone. Moreover, its performance is about the same as that obtained
when using a nonchirped waveform having the same range resolution as given
by the �t=T ¼ 0 dashed curve.

Good filtering and prediction are important for collision avoidance systems,
weapon delivery systems, instrumentation systems, mortar and artillery
locations systems, impact prediction systems, and docking systems, among

Figure 3.5-9 Replot of normalized curves of Figure 3.5-7. Added is dashed curve
giving accuracy of prediction of measured range R c. (From Fitzgerald, R. J., ‘‘Effect of
Range-Doppler Coupling on Chirp Radar Tracking Accuracy,’’ IEEE Transactions on
Aerospace and Electronic Systems, July, 1974. # 1974 IEEE.)
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others. If the problem is just tracking of the target, then one is only interested in
the accuracy of the prediction of Rc for the next update time so that an
appropriate range window might be set up for locating the next observation of
the target. To keep track of the target, one needs to predict where the radar will
see the target echo on the next scan. This is the apparent range Rc ¼ R � v

d
�t.

The accuracy of the prediction of Rc, as might be expected, is independent of
whether a downchirp or upchirp waveform is used for tracking. To show this,
the curves of Figure 3.5-7 are replotted in Figure 3.5-9 versus �t=T . Plotted on
top of these curves is a dashed curve giving the accuracy (normalized relative to
�x) of the prediction of Rc one sample period T ahead. As the figure indicates,
the accuracy of the prediction of Rc is independent of the sign of �t.

Fitzgerald [71] also simulated the use of the upchirp and downchirp
waveforms for tracking an RV. For this case the target motion is represented
by a nonlinear dynamics model resulting from the nonlinear variation of

Figure 3.5-10 Simulation giving comparison of RV filtered range tracking accuracies
obtained when using alternately upchirp waveform, downchirp waveform, and
nonchirped waveform, all having same range resolution and measurement accuracy.
(From Fitzgerald, R. J., ‘‘Effect of Range-Doppler Coupling on Chirp Radar Tracking
Accuracy,’’ IEEE Transactions on Aerospace and Electronic Systems, July, 1974. #
1974 IEEE.)
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atmospheric drag as a function of altitude. A fully coupled seven-state range–
direction–cosine filter was used. This seven-state filter is comprised of three
position coordinates (range and the two direction cosines, which are essentially
the azimuth and elevation angles of the target), the derivatives of the position
coordinates, and finally a function of the RV ballistic coefficient 
, or
equivalently, the atmospheric drag. Figure 3.5-10 shows the results obtained.
Again the upchirp waveform provides much better filtering performance than
the downchirp waveform, about an order of magnitude better over part of the
trajectory. The �t ¼ 0 curve represents the results obtained with a nonchirped
waveform that has the same range resolution as the chirped waveforms.
(Fitzgerald cautions that comparison with the nonchirped waveform is not as
meaningful because other waveform parameters changes are implied.)

For the simulation the trajectory was started at an altitude of 135,000 ft with
a velocity of 24,000 ft=sec and reentry angle of 35�. The ballistic coefficient 

was assumed to be 1500 lb=ft2 nominally with two random components: a
random-bias component that is different from one simulation flight to another
and an exponentially correlated random component. Also, T ¼ 0:1 sec, the rms
of Rc was 8 ft, and the rms of the direction cosine angles was 1 millisine.

Modifying M from [1, 0, 0] to [1, � t, 0] as described at the beginning of this
section, causes the Kalman filter to track the true target range R rather than the
measured (apparent) range Rc of (3.5-7). This is important when the target is to
be handed off from one radar to another, when doing target interception, or
when changing radar waveforms.
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4
LEAST-SQUARES AND MINIMUM–
VARIANCE ESTIMATES FOR LINEAR
TIME-INVARIANT SYSTEMS

4.1 GENERAL LEAST-SQUARES ESTIMATION RESULTS

In Section 2.4 we developed (2.4-3), relating the 1 � 1 measurement matrix
Yn to the 2 � 1 state vector Xn through the 1 � 2 observation matrix M as given
by

Yn ¼ MXn þ Nn ð4:1-1Þ

It was also pointed out in Sections 2.4 and 2.10 that this linear time-invariant
equation (i.e., M is independent of time or equivalently n) applies to more
general cases that we generalize further here. Specifically we assume Yn is a
1 � ðr þ 1Þ measurement matrix, Xn a 1 � m state matrix, and M an
ðr þ 1Þ � m observation matrix [see (2.4-3a)], that is,

Yn ¼

y0

y1

..

.

yr

2

66664

3

77775

n

ð4:1-1aÞ

Xn ¼

x0ðtÞ
x1ðtÞ
..
.

xm�1ðtÞ

2

66664

3

77775
ð4:1-1bÞ
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and in turn

Nn ¼

�0

�1

..

.

� r

2

6664

3

7775

n

ð4:1-1cÞ

As in Section 2.4, x0ðtnÞ; . . . ; xm�1ðtnÞ are the m different states of the target
being tracked. By way of example, the states could be the x, y, z coordinates and
their derivatives as given by (2.4-6). Alternately, if we were tracking only a one-
dimensional coordinate, then the states could be the coordinate x itself followed
by its m derivatives, that is,

Xn ¼ XðtnÞ ¼

x

Dx

..

.

Dm x

2

664

3

775

n

ð4:1-2Þ

where

D jxn ¼ d j

dt j
xðtÞ
����

t¼t n

ð4:1-2aÞ

The example of (2.4-1a) is such a case with m ¼ 1. Let m 0 always designate the
number of states of Xðt nÞ or Xn; then, for Xðt nÞ of (4.1-2), m 0 ¼ m þ 1. Another
example for m ¼ 2 is that of (1.3-1a) to (1.3-1c), which gives the equations of
motion for a target having a constant acceleration. Here (1.3-1a) to (1.33-1c)
can be put into the form of (2.4-1) with

Xn ¼
xn

_xn

�xn

2

4

3

5 ð4:1-3Þ

and

� ¼
1 T T 2=2

0 1 T

0 0 1

2

4

3

5 ð4:1-4Þ

Assume that measurements such as given by (4.1-1a) were also made at the L
preceding times at n � 1; . . . ; n � L. Then the totality of L þ 1 measurements
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can be written as

Yn

------

Yn�1

------:
..
.

Yn�L

2

6666664

3

7777775

¼

MXn

--------

MXn�1

---------

..

.

---------

MXn�L

2

666666664

3

777777775

þ

Nn

------

Nn�1

------

..

.

------

Nn�L

2

666666664

3

777777775

ð4:1-5Þ

Assume that the transition matrix for transitioning from the state vector Xn�1

at time n � 1 to the state vector Xn at time n is given by � [see (2.4-1) of
Section 2.4, which gives � for a constant-velocity trajectory; see also Section
5.4]. Then the equation for transitioning from Xn�i to Xn is given by

Xn ¼ � iXn�i ¼ � iXn�i ð4:1-6Þ

where � i is the transition matrix for transitioning from Xn�i to Xn. It is given by

� i ¼ � i ð4:1-7Þ

It thus follows that

Xn�1 ¼ ��iXn ð4:1-8Þ

where ��i ¼ ð��1Þ i
. Thus (4.1-5) can be written as

Yn

------

Yn�1

------

..

.

Yn�L

2

6666664

3

7777775

¼

MXn

----------

M��1Xn

------------

..

.

-------------

M��LXn

2

666666664

3

777777775

þ

Nn

------

Nn�1

-------

..

.

-------

Nn�L

2

666666664

3

777777775

ð4:1-9Þ

or

Yn

-----

Yn�1

------

..

.

------

Yn�L

2

666666664

3

777777775

|fflfflfflfflffl{zfflfflfflfflffl}
1

¼

M

-------

M��1

--------

..

.

-------

M��L

2

666666664

3

777777775

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
m0

Xn þ

Nn

-----

Nn�1

------

..

.

------

Nn�L

2

666666664

3

777777775

|fflfflfflfflffl{zfflfflfflfflffl}
1

9
>>>>>>>>=

>>>>>>>>;

ðL þ 1Þðr þ 1Þ ¼ s ð4:1-10Þ
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which we rewrite as

Y ðnÞ ¼ T Xn þ N ðnÞ ð4:1-11Þ

where

Y ðnÞ ¼

Yn

-----

Yn�1

-----

..

.

-----

Yn�L

2

666666664

3

777777775

NðnÞ ¼

Nn

-----

Nn�1

------

..

.

------

Nn�L

2

666666664

3

777777775

ð4:1-11aÞ

T ¼

M

-------

M��1

-------

..

.

-------

M��L

2

666666664

3

777777775

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
m 0

9
>>>>>>>>=

>>>>>>>>;

s ð4:1-11bÞ

Equation (4.1-1) is the measurement equation when the measurement is
only made at a single time. Equation (4.1-11) represents the corresponding
measurement equation when measurements are available from more than one
time. Correspondingly M is the observation matrix [see (2.4-3a)] when a
measurement is available at only one time whereas T is the observation matrix
when measurements are available from L þ 1 times. Both observation matrices
transform the state vector Xn into the observation space. Specifically Xn is
transformed to a noise-free Yn in (4.1-1) when measurements are available at
one time or to Y ðnÞ in (4.1-11) when measurements are available at L þ 1 time
instances. We see that the observation equation (4.1-11) is identical to that of
(4.1-1) except for T replacing M.

[In Part 1 and (4.1-4), T was used to represent the time between
measurements. Here it is used to represent the observation matrix given by
(4.1-11b). Unfortunately T will be used in Part II of this text to represent these
two things. Moreover, as was done in Sections 1.4 and 2.4 and as shall be done
later in Part II, it is also used as an exponent to indicate the transpose of a
matrix. Although this multiple use for T is unfortunate, which meaning T has
should be clear from the context in which it is used.]
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By way of example of T, assume L ¼ 1 in (4.1-11a) and (4.1-11b); then

Y ðnÞ ¼
Yn

Yn�1

� �
ð4:1-12Þ

T ¼
M

M��1

� �
ð4:1-13Þ

Assume the target motion is being modeled by a constant-velocity trajectory.
That is, m ¼ 1 in (4.1-2) so that Xn is given by (2.4-1a) and � is given by
(2.4-1b). From (1.1-1a) and (1.1-1b), it follows that

xn�1 ¼ xn � T _xn ð4:1-14aÞ
_xn�1 ¼ _xn ð4:1-14bÞ

On comparing (4.1-14a) and (4.1-14b) with (4.1-8) we see that we can rewrite
(4.1-14a) and (4.1-14b) as (4.1-8) with Xn given by (2.4-1a) and

��1 ¼ 1 �T

0 1

� �
ð4:1-15Þ

We can check that ��1 is given by (4.1-15) by verifying that

���1 ¼ I ð4:1-16Þ

where I is the identify matrix and � is given by (2.4-1b).
As done in Section 2.4, assume a radar sensor with only the target

range being observed, with xn representing the target range. Then M is given by
(2.4-3a) and Yn and Nn are given by respectively (2.4-3c) and (2.4-3b).
Substituting (4.1-15) and (2.4-3a) into (4.1-13) yields

T ¼ 1 0

1 �T

� �
ð4:1-17Þ

Equation (4.1-17) applies for L ¼ 1 in (4.1-11b). It is easily extended to the
case where L ¼ n to yield

T ¼

1 0

1 �T

1 �2T

..

. ..
.

1 �nT

2

66664

3

77775
ð4:1-18Þ
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It is instructive to write out (4.1-11) for this example. In this case (4.1-11)
becomes

Y ðnÞ ¼

yn

yn�1

yn�2

..

.

y0

2

666664

3

777775
¼

1 0

1 �T

1 �2T

..

.

1 �nT

2

66664

3

77775

xn

_xn

� �
þ

�n

�n�1

�n�2

..

.

�0

2

666664

3

777775
ð4:1-19Þ

where use was made of (2.4-3b) and (2.4-3c), which hold for arbitrary n;
specifically,

Yn�i ¼ ½ yn�i 	 ð4:1-20Þ
Nn�i ¼ ½ �n�i 	 ð4:1-21Þ

Evaulating yn�i in (4.1-19) yields

yn�i ¼ xn � iT _xn þ �n�i ð4:1-22Þ

The above physically makes sense. For a constant-velocity target it relates
the measurement yn�i at time n � i to the true target position and velocity xn

and _xn at time n and the measurement error �n�i. The above example thus gives
us a physical feel for the observation matrix T. For the above example, the
ði þ 1Þst row of T physically in effect first transforms Xn back in time to time
n � i through the inverse of the transition matrix � to the ith power, that is,
through ��i by premultiplying Xn to yield Xn�i, that is,

Xn�i ¼ ��iXn ð4:1-23Þ

Next Xn�i is effectively transformed to the noise-free Yn�i measurement at time
n � i by means of premultiplying by the observation matrix M to yield the
noise-free Yn�i, designated as Y 0

n�i and given by

Y 0
n�i ¼ M��iXn ð4:1-24Þ

Thus T is really more than an observation matrix. It also incorporates the target
dynamics through �. We shall thus refer to it as the transition–observation
matrix.

By way of a second example, assume that the target motion is modeled by a
constant-accelerating trajectory. Then m ¼ 2 in (4.1-2), m 0 ¼ 3, and Xn is given
by (4.1-3) with � given by (4.1-4). From (1.3-1) it follows that

xn�1 ¼ xn � _xnT þ �xnð1
2

T 2Þ ð4:1-25aÞ
_xn�1 ¼ _xn � �xnT ð4:1-25bÞ
�xn�1 ¼ �xn ð4:1-25cÞ
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We can now rewrite (4.1-25a) to (4.1-25c) as (4.1-8) with Xn given by (4.1-3)
and

��1 ¼
1 �T 1

2
T 2

0 1 �T

0 0 1

2

4

3

5 ð4:1-26Þ

Again we can check that ��1 is given by (4.1-26) by verifying that (4.1-16) is
satisfied.

As done for the constant-velocity target example above, assume a radar
sensor with only target range being observed, with xn again representing target
range. Then M is given by

M ¼ ½ 1 0 0 	 ð4:1-27Þ

and Yn and Nn are given by respectively (2.4-3c) and (2.4-3b). Substituting
(4.1-26) and (4.1-27) into (4.1-11b) yields finally, for L ¼ n,

T ¼

1 0 0

1 �T 1
2

T 2

1 �2T 1
2
ð2TÞ2

..

. ..
. ..

.

1 �nT 1
2
ðnTÞ2

2

666664

3

777775
ð4:1-28Þ

For this second example (4.1-11) becomes

yn

yn�1

yn�2

..

.

y0

2

666664

3

777775
¼

1 0 0

1 �T 1
2

T 2

1 �2T 1
2
ð2TÞ2

..

. ..
. ..

.

1 �nT 1
2
ðnTÞ2

2

666664

3

777775

xn

_xn

�xn

2

4

3

5þ

�n

�n�1

�n�2

..

.

�0

2

666664

3

777775
ð4:1-29Þ

Again, we see from the above equation that the transition–observation matrix
makes physical sense. Its (i þ 1)st row transforms the state vector at time Xn

back in time to Xn�i at time n � i for the case of the constant-accelerating
target. Next it transforms the resulting Xn�i to the noise-free measurement Y 0

n�i.
What we are looking for is an estimate X


n;n for Xn, which is a linear function
of the measurement given by Y ðnÞ, that is,

X

n;n ¼ WY ðnÞ ð4:1-30Þ

where W is a row matrix of weights, that is, W ¼ ½w1;w2; . . . ;ws 	, where s is
the dimension of Y ðnÞ; see (4.1-10) and (4.1-11a). For the least-squares estimate
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(LSE) we are looking for, we require that the sum of squares of errors be
minimized, that is,

eðX

n;nÞ ¼ en ¼ ½ Y ðnÞ � T X


n;n 	
T ½ Y ðnÞ � T X


n;n 	 ð4:1-31Þ

is minimized. As we shall show shortly, it is a straightforward matter to
prove using matrix algebra that W of (4.1-30) that minimizes (4.1-31) is
given by

Ŵ � ðT T TÞ�1
T T ð4:1-32Þ

It can be shown that this estimate is unbiased [5, p. 182].
Let us get a physical feel for the minimization of (4.1-31). To do this, let us

start by using the constant-velocity trajectory example given above with T given
by (4.1-18) and Y ðNÞ given by the left-hand side of (4.1-19), that is,

Y ðnÞ ¼

yn

yn�1

yn�2

..

.

y0

2

666664

3

777775
ð4:1-33Þ

and the estimate of the state vector Xn at time n given by

X

n;n ¼ x
n;n

_x
n;n

� �
ð4:1-34Þ

The (i þ 1)st row of T transforms the estimate x
n;n of the state vector at time n
back in time to the corresponding estimate of the range coordinate x
n�i;n at time
n � i. Specifically,

½1 � iT 	 x
n;n
_x
n;n

� �
¼ x
n;n � iT _x
n;n ¼ x
n�i;n ð4:1-35Þ

as it should. Hence

x
n;n
x
n�1;n

x
n�2;n

..

.

x
0;n

2

6666664

3

7777775

¼

1 0

1 �T

1 �2T

..

.

1 �nT

2

66664

3

77775

x
n;n
_x
n;n

� �
¼ T X


n;n ð4:1-36Þ
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Substituting (4.1-33) and (4.1-36) into (4.1-31) yields

en ¼ eðX

n;nÞ ¼

Xn

i¼0

ðyn�i � x
n�i;nÞ
2 ð4:1-37Þ

Reindexing the above yields

en ¼
Xn

j¼0

ðyj � x
j;nÞ
2 ð4:1-38Þ

Except for a slight change in notation, (4.1-38) is identical to (1.2-33) of
Section 1.2.6. Here we have replaced x
n by x
j;n and eT by en, but the estimation
problem is identical. What we are trying to do in effect is find a least-squares
fitting line to the data points as discussed in Section 1.2.6 relative to Figure
1.2-10. Here the line estimate is represented by its ordinate at time n, x
n;n, and
its slope at time n, _x
n;n. In constrast in Section 1.2.6 we represented the line
fitting the data by its ordinate and slope at time n ¼ 0, that is, by x
0 and
v
0 ¼ _x
0 , respectively. A line is defned by its ordinate and slope at any time.
Hence it does not matter which time we use, time n ¼ n or time n ¼ 0. (The
covariance of the state vector, however, does depend on what time is used.) The
state vector estimate gives the line’s ordinate and slope at some time. Hence
the state vector at any time defines the estimated line trajectory. At time n ¼ 0
the estimated state vector is

X

0;n ¼

x
0
v
0

" #

¼
x
0
_x
0

" #

ð4:1-39Þ

At time n it is given by (4.1-34). Both define the same line estimate.
To further clarify our flexibility in the choice of the time we choose for the

state vector to be used to define the estimating trajectory, let us go back to
(4.1-9). In (4.1-9) we reference all the measurements to the state vector Xn at
time n. We could have just as well have referenced all the measurements
relative to the state vector at any other time n � i designated as Xn�i. Let us
choose time n � i ¼ 0 as done in (4.1-39). Then (4.1-9) becomes

Yn

----

Yn�1

----

..

.

----

Y1

----

Y0

2

6666666666664

3

7777777777775

¼

M�nX0

--------

M�n�1X0

--------

..

.

--------

M�X0

--------

MX0

2

6666666666664

3

7777777777775

þ

Nn

----

Nn�1

----

..

.

----

N1

----

N0

2

6666666666664

3

7777777777775

ð4:1-40Þ
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This in turn becomes

Yn

----

Yn�1

----

..

.

----

Y1

----

Y0

2

6666666666664

3

7777777777775

¼

M�n

--------

M�n�1

--------

..

.

--------

M�
--------

M

2

6666666666664

3

7777777777775

X0 þ

Nn

----

Nn�1

----

..

.

----

N1

----

N0

2

6666666666664

3

7777777777775

ð4:1-41Þ

which can be written as

Y ðnÞ ¼ T X0 þ N ðnÞ ð4:1-42Þ

where Y ðnÞ and N ðnÞ are given by (4.1-11a) with L ¼ n and T is now defined
by

T ¼

M�n

--------

M�n�1

--------

..

.

--------

M�
--------

M

2

6666666666664

3

7777777777775

ð4:1-43Þ

In Section 1.2.10 it was indicated that the least-squares fitting line to the data
of Figure 1.2-10 is given by the recursive g–h growing-memory (expanding-
memory) filter whose weights g and h are given by (1.2-38a and 1.2-38b). The
g–h filter itself is defined by (1.2-8a) and (1.2-8b). In Chapters 5 and 6 an
indication is given as to how the recursive least-squares g–h filter is obtained
from the least-squares filter results of (4.1-30) and (4.1-32). The results are also
given for higher order filters, that is, when a polynominal in time of arbitrary
degree m is used to fit the data. Specifically the target trajectory xðtÞ is
approximated by

xðtÞ _¼ p
ðtÞ ¼
Xm

k¼0

�akt k ð4:1-44Þ

For the example of Figure 1.2-10, m ¼ 1 and a straight line (constant-velocity)
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trajectory is being fitted to the data. For this case the transition–observation
matrix is given by (4.1-18). If a constant-accelerating target trajectory is fitted
to the data, then, in (4.1-2) and (4.1-44), m ¼ 2, and T is given by (4.1-28). In
this case, a best-fitting quadratic is being found for the data of Figure 1.2-10.
The recursive least-square filter solutions are given in Chapter 6 for
m ¼ 0; 1; 2; 3; see Table 6.3-1. The solution for arbitrary m is also given in
general form; see (5.3-11) and (5.3-13).

The solution for the least-squares estimate X

n;n given above by (4.1-30) and

(4.1-32) requires a matrix inversion in the calculation of the weights. In Section
5.3 it is shown how the least-squares polynomial fit can be obtained without a
matrix inversion. This is done by the use of the powerful discrete-time
orthogonal Legendre polynomials. What is done is that the polynomial fit of
degree m of (4.1-44) is expressed in terms of the powerful discrete-time
orthogonal Legendre polynomials (DOLP) having degree m. Specifically
(4.1-44) is written as

xðrÞ _¼ p
ðrÞ ¼
Xm

k¼0

� k� kðrÞ ð4:1-45Þ

where � kðrÞ is the normalized discrete Legendre polynomial (to be defined in
Section 5.3) of degree k and r is an integer time index, specifically, t ¼ rT , and
the � k are constants that specify the fit to xðrÞ. Briefly � kðrÞ is a polynomial in r
of degree k with � kðrÞ orthogonal to � jðrÞ for k 6¼ j; see (5.3-2). Using this
orthogonal polynomial form yields the least-squares solution directly as a linear
weighted sum of the yn; yn�1; . . . ; yn�L without any matrix inversion being
required; see (5.3-10) and (5.3-11) for the least-squares polynomial fit,
designated there as ½ p
ðrÞ	n ¼ x
ðrÞ. In Section 4.3 another approach, the
voltage-processing method, is presented, which also avoids the need to do a
matrix inversion. Finally, it is shown in Section 14.4 that when a polynomial fit
to the data is being made, the alternate voltage-processing method is equivalent
to using the orthogonal discrete Legendre polynomial approach.

In Sections 7.1 and 7.2 the above least-squares polynomial fit results are
extended to the case where the measurements consist of the semi-infinite set yn,
yn�1, . . . instead of L þ 1 measurements. In this case, the discounted least-
squares weighted sum is minimized as was done in (1.2-34) [see (7.1-2)] to
yield the fading-memory filter. Again the best-fitting polynomial of the form,
given by (4.1-45) is found to the data. In Section 1.2.6, for the constant-velocity
target, that is m ¼ 1 in (4.1–44), the best-fitting polynomial, which is a straight
line in this case, was indicated to be given by the fading memory g–h filter,
whose weights g and h are given by (1.2-35a) and (1.2-35b). To find the best-
fitting polynomial, in general the estimating polynomial is again approximated
by a sum of discrete-time orthogonal polynomials, in this case the orthonormal
discrete Laguerre polynomials, which allow the discounted weightings for the
semi-infinite set of data. The resulting best-fitting discounted least-squares
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polynomial fit is given by (7.2-5) in recursive form for the case where the
polynomial is of arbitrary degree m. For m ¼ 1, this result yields the fading-
memory g–h filter of Section 1.2.6. Corresponding convenient explicit results
for this recursive fading-memory filter for m ¼ 0, . . ., 4 are given in Table 7.2-2.

In reference 5 (4.1-32) is given for the case of a time-varying trajectory
model. In this case M, T, and � all become a function of time (or equivalently n)
and are replaced by Mn and Tn and �ðtn; t n�1Þ, respectively; see pages 172,
173, and 182 of reference 5 and Chapter 15 of this book, in which the time-
varying case is discussed.

From (4.1-1) we see that the results developed so far in Section 4.1, and
that form the basis for the remaining results here and in Chapters 5 to 15, apply
for the case where the measurements are linear related to the state vector
through the observation matrix M. In Section 16.2 we extend the results of
this chapter and Chapters 5 to 15 for the linear case to the case where Yn is
not linearly related to Xn. This involves using the Taylor series expansion to
linearize the nonlinear observation scheme. The case where the measurements
are made by a three-dimensional radar in spherical coordinates while the
state vector is in rectangular coordinates is a case of a nonlinear observation
scheme; see (1.5-2a) to (1.5-2c). Similarly, (4.1-6) implies that the target
dynamics, for which the results are developed here and in Chapters 5 to 15,
are described by a linear time differential equation; see Chapter 8, specifically
(8.1-10). In Section 16.3, we extend the results to the case where the
target dynamics are described by a nonlinear differential equation. In this
case, a Taylor series expansion is applied to the nonlinear differential
equation to linearize it so that the linear results developed in Chapter 4 can
be applied.

There are a number of straightforward proofs that the least-squares weight is
given by (4.1-32). One is simply to differentiate (4.1-31) with respect to X


n;n
and set the result equal to zero to obtain

den

dX

n;n

¼ T T ½Y ðnÞ � TX

n;n	 ¼ 0 ð4:1-46Þ

Solving for X

n;n yields (4.1-32) as we desired to show.

In reference 5 (pp. 181, 182) the LSE weight given by (4.1-32) is derived by
simply putting (4.1-31) into another form analogous to ‘‘completing the
squares’’ and noting that eðX


n;nÞ is minimized by making the only term
depending on W zero, with this being achieved by having W be given by
(4.1-32). To give physical insight into the LSE, it is useful to derive it using a
geometric development. We shall give this derivation in the next section. This
derivation is often the one given in the literature [75–77]. In Section 4.3 (and
Chapter 10) it is this geometric interpretation that we use to develop what is
called the voltage-processing method for obtaining a LSE without the use of the
matrix inversion of (4.1-32).
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4.2 GEOMETRIC DERIVATION OF LEAST-SQUARES
SOLUTION

We start by interpreting the columns of the matrix T as vectors in an
s-dimensional hyperspace, each column having s entries. There are m0 such
columns. We will designate these as t1; . . . ; tm0 . For simplicity and definiteness
assume that s ¼ 3, m 0 ¼ 2, and n ¼ 3; then

T ¼
t11 t12

t21 t22

t31 t32

2

4

3

5 ð4:2-1Þ

so that

t1 ¼
t11

t21

t31

2

4

3

5 and t2 ¼
t12

t22

t32

2

4

3

5 ð4:2-2Þ

Xn ¼ X3 ¼ x1

x2

� �
ð4:2-3Þ

and

Y ðnÞ ¼ Y ð3Þ ¼
y1

y2

y3

2

4

3

5 ð4:2-4Þ

Moreover, if we assume the constant-velocity trajectory discussed above, T
of (4.1-18) becomes, for n ¼ 3,

T ¼
1 0

1 �T

1 �2T

2

4

3

5 ð4:2-5Þ

and

t1 ¼
1

1

1

2

4

3

5 t2 ¼
0

�T

�2T

2

4

3

5 ð4:2-6Þ

and

X3 ¼ x3

_x3

� �
ð4:2-7Þ
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In Figure 4.2-1 we show the vectors t1, t2, and Y ð3Þ. The two vectors t1 and t2

define a plane. Designate this plane as Tp. (In general Tp is an m 0-dimensional
space determined by the m 0 column vectors of T ). Typically Y ð3Þ is not in this
plane due to the measurement noise error N ðnÞ; see (4.1-11).

Let us go back to the case of arbitrary dimension s for the column space of T
and consider the vector

pT ¼

p1

p2

..

.

ps

2

6664

3

7775
¼ T Xn ð4:2-8Þ

From (4.2-8) we see that the vector pT is a linear combination of the column
vectors of T. Hence the vector pT is in the space defined by Tp. Now the least-
squares estimate picks the Xn that minimizes eðXnÞ, defined by (4.1-31). That
is, it picks the Xn that minimizes

eðXnÞ ¼ ðY ðnÞ � T XnÞTðY ðnÞ � T XnÞ ð4:2-9Þ

Applying (4.2-8) to (4.2-9) gives, for the three-dimensional case being
considered,

eðXnÞ ¼
X3

i¼1

ðy i � piÞ2 ð4:2-10Þ

Figure 4.2-1 Projection of data vector Y ð3Þ onto column space of 3 � 2 T matrix.
Used to obtain least-squares solution in three-dimensional space. (After Strang [76].)
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But this is nothing more than the Euclidean distance between the endpoints of
the vectors pT and Y ð3Þ, these endpoints being designated respectively as p0 and
Y0 in Figure 4.2-1.

The point p0 can be placed anywhere in the plane Tp by varying Xn. From
simple geometry we know that the distance between the points Y0 and a point p0

in the plane Tp is minimized when the vector joining these two points is made to
be perpendicular to the plane Tp (at the point p0 on the plane Tp). That is, the
error vector

Y ð3Þ � T X3 ¼ Y ð3Þ � pT ð4:2-11Þ

is perpendicular to the plane Tp when the error term eðXnÞ is minimized. Then
X3 ¼ X


3;3, where X

3;3 is such that

ðY ð3Þ � T X 

3;3Þ ? Tp ð4:2-12Þ

We now obtain an expression for X

3;3. Consider an arbitrary vector in the

plane Tp defined by a linear combination of the columns of T, that is, by T z,
where z is an arbitrary m 0 � 1 column vector that for the example being
considered here is a (2 � 1) dimensional vector. If two vectors represented by
the column matrices a and b are perpendicular, then aT b ¼ 0. Hence

ðTzÞTðY ð3Þ � T X

3;3Þ ¼ 0 ð4:2-13Þ

or equivalently, since ðTzÞT ¼ zT T T

zTðT T Y ð3Þ � T TT X

3;3Þ ¼ 0 ð4:2-14Þ

Because (4.2-14) must be true for all z, it follows that it is necessary that

T T T X

3;3 ¼ T T Y ð3Þ ð4:2-15Þ

The above in turn yields

X

3;3 ¼ ðT T TÞ�1

T T Y ð3Þ ð4:2-16Þ

from which it follows that

Ŵ ¼ ðT T TÞ�1
T T ð4:2-17Þ

which is the expression for the optimum LSE weight given previously by
(4.1-32), as we wanted to show.

Although the above was developed for m 0 ¼ 2 and s ¼ 3, it is easy to see that
it applies for arbitrary m 0 and s. In the literature the quantity ðT T TÞ�1

T T is
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often referred to as a pseudoinverse operator [78]. This because it provides the
solution of Y ðnÞ ¼ T Xn (in the least-squares sense) when T is nonsingular, as
it is when s > m 0, so that T �1 does not exist and Xn ¼ T �1Y ðnÞ does not
provide a solution for (4.1-31). The case where s > m 0 is called the
overdeterministic case. It is the situation where we have more measurements
s than unknowns m in our state vector. Also the LSE given by (4.2-16), or
equivalently (4.1-30) with W given by (4.1-32), is referred to as the normal-
equation solution [75, 76, 79–82]. Actually, to be precise, the normal equation
are given by a general form of (4.2-15) given by

T TT X

n;n ¼ T T Y ðnÞ ð4:2-18Þ

which leads to (4.1-30) with W given by (4.1-32).
A special case is where T consists of just one column vector t. For this

case

Ŵ ¼ ðt T tÞ�1
t T

¼ t T

ðt T tÞ
ð4:2-19Þ

and

X

n;n ¼

t T Y ðnÞ
t T t

ð4:2-20Þ

By way of example consider the case where

Yn�i ¼ MXn�i þ Nn�i ð4:2-21Þ

with each term of the above being 1 � 1 matrices given by

Yn�1 ¼ ½yn�i	 ð4:2-21aÞ
M ¼ ½1	 ð4:2-21bÞ

Xn�i ¼ ½xn�i	 ð4:2-21cÞ
Nn�i ¼ ½�n�i	 ð4:2-21dÞ

so that

yn�i ¼ xn�i þ �n�i ð4:2-21eÞ

This equivalent to only having multiple measurements of the target range for a
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target modeled as being stationary. For this example

t ¼

1

1

..

.

1

2

664

3

775 ð4:2-22Þ

then

X

n;n ¼ 1

s

Xs

i¼1

yi ð4:2-23Þ

which is the sample mean of the yi’s, as expected.
Before proceeding let us digress for a moment to point out some other

interesting properties relating to the geometric development of the LSE. We
start by calculating the vector pT for the case X3 ¼ X


3;3. Specifically,
substituting X


3;3 given by (4.2-16) into (4.2-8) yields

pT ¼ TðT T TÞ�1
T T Y ð3Þ ð4:2-24Þ

Physically pT given by (4.2-24) is the projection of Y ð3Þ onto the plane Tp; see
Figure 4.2-1. Designate this projection vector as p
T . The matrix

P ¼ TðT T TÞ�1
T T ð4:2-25Þ

of (4.2-24) that projects Y ð3Þ onto the two-dimensional plane Tp is known as the
projection matrix [76]. [Note that for the projection matrix of (4.2-25) a capital
P is used whereas for the column matrix pT of (4.2-8), which represents a
vector in the space being projected onto, a lowercase p is used and the subscript
T is added to indicate the space projected onto.]

The matrix I � P, where I is the identity matrix (diagonal matrix whose
entries equal one), is also a projection matrix. It projects Y ð3Þ onto the space
perpendicular to Tp. In the case of Figure 4.2-1 it would project the vector
Y ð3Þ onto the line perpendicular to the plane Tp forming the vector
Y ð3Þ � T X3 ¼ Y ð3Þ � pT .

The projection matrix P has two important properties. First it is symmetric
[76], which means that

PT ¼ P ð4:2-26Þ

Second it is idempotent [76], that is,

PP ¼ P2 ¼ P ð4:2-27Þ

Conversely, any matrix having these two properties is a projection matrix. For
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the general form given by (4.2-24) it projects Y ðnÞ onto the column space of T
[76].

A special case of interest is that where the column vectors t i of T are
orthogonal and have unit magnitude; such a matrix is called orthonormal. To
indicate that the t i have unit magnitude, that is, are unitary, we here rewrite t i as
t̂ i. Then

t̂ T
i t̂ j ¼

1 for i ¼ j

0 for i 6¼ j

�
ð4:2-28Þ

Generally the t i are not unitary and orthogonal; see, for example, (4.1-28) and
(4.1-18). However, we shall show in Section 4.3 how to transform T so that the
t i are orthonormal. For an orthonormal matrix

T T T ¼ I ð4:2-29Þ

where I is the identity matrix. When T is orthonormal (4.2-25) becomes, for
arbitrary m

P ¼ T T T

¼ t̂1 t̂ T
1 þ t̂2 t̂ T

2 þ � � � þ t̂m 0 t̂ T
m 0

ð4:2-30Þ

For the case where m 0 ¼ 1

P ¼ t̂1 t̂ T
1 ð4:2-31Þ

and

pt ¼ t̂1 t̂ T
1 Y ðnÞ ð4:2-32Þ

Here pt is the projection of Y ðnÞ onto the one-dimensional space Tp, that is, onto
the unit vector t̂1.

When T is composed of m orthonormal vectors t̂ i, we get

pT ¼ PY ðnÞ ¼ t̂1 t̂ T
1 Y ðnÞ þ t̂2 t̂ T

2 Y ðnÞ þ � � � þ t̂ m 0 t̂ T
m 0Y ðnÞ ð4:2-33Þ

that is, pT is the sum of the projections of Y ðnÞ onto the orthonormal vectors
t1; . . . ; tm 0 . Finally when T is orthonormal so that (4.2-29) applies, (4.2-16)
becomes, for arbitrary m 0,

X

n;n ¼ T T Y ðnÞ ð4:2-34Þ

A better feel for the projection matrix P and its projection pT is obtained by first
considering the case m 0 ¼ 1 above for which (4.2-31) and (4.2-32) apply.
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Equation (4.2-32) can be written as

pt ¼ t̂1ð̂t T
1 Y ðnÞÞ

¼ ð̂t T
1 Y ðnÞÞ̂t1

ð4:2-35Þ

As implied above with respect to the discussion relative to Figure 4.2-1, Y ðnÞ
and t̂1 can be interpreted as s-dimensional vectors in hyperspace. Physically,
in the above, t̂ T

1 Y ðnÞ represents the amplitude of the projection of Y ðnÞ onto
the unit vector t̂1. The direction of the projection of Y ðnÞ onto t̂1 is t̂1 itself.
Hence the projection is the vector t̂1 with an amplitude t̂ T

1 Y ðnÞ as given by
(4.2-35).

Physically the amplitude of the projection of Y ðnÞ onto the unitary vector t̂1 is
given by the vector dot product of Y ðnÞ with t̂1. This is given by

t̂1 � Y ðnÞ ¼ k t̂1k � kY ðnÞk cos �

¼ kY ðnÞk cos �
ð4:2-36Þ

where use was made in the above of the fact that t̂1 is unitary so that
k t̂1k ¼ 1; kAk implies the magnitude of vector A, and � is the angle between
the vectors t̂1 and Y ðnÞ. If t̂1 is given by the three-dimensional t1 of (4.2-2) and
Y ðnÞ by (4.2-4), then the dot product (4.2-36) becomes, from basic vector
analysis,

t̂1 � Yn ¼ t11Y1 þ t21y2 þ t31y3 ð4:2-37Þ

For this case t i1 of (4.2-2) is the ith coordinate of the unit vector t̂1 in some
three-dimensional orthogonal space; let us say x, y, z. In this space the
coordinates x, y, z themselves have directions defined by respectively the unit
vectors i, j, k given by

i ¼
1

0

0

2

4

3

5 j ¼
0

1

0

2

4

3

5 k ¼
0

0

1

2

4

3

5 ð4:2-38Þ

Figure 4.2-2 illustrates this dot product for the two-dimensional situation. In
this figure i and j are the unit vectors along respectively the x and y axes.

Let us now assume that t1 is not unitary. In this case we can obtain the
projection of Y ðnÞ onto the direction of t1 by making t1 unitary. To make t1

unitary we divide by its magnitude:

t̂1 ¼ t1

k t1k
ð4:2-39Þ
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But the magnitude of t1, also called its Euclidean norm, is given by

k t1 k¼
ffiffiffiffiffiffiffiffi
t T

1 t1

q
ð4:2-40Þ

Hence (4.2-35) becomes, for t1 not unitary,

pt ¼
t T

1ffiffiffiffiffiffiffiffi
t T

1 t1

p Y ðnÞ

 !
t1ffiffiffiffiffiffiffiffi
t T

1 t1

p

¼
t T

1 Y ðnÞ
� �

t1

t T
1 t1

¼
t T

1 Y ðnÞt1

kt1k2

ð4:2-41Þ

This is the situation we had in (4.2-20). Thus we again see physically that the
least-squares estimate X̂


n;n of (4.2-20) is the projection of Y ðnÞ onto the
direction of the nonunitary vector t1 as it should be based on the discussion
relative to Figure 4.2-1.

4.3 ORTHONORMAL TRANSFORMATION AND
VOLTAGE-PROCESSING (SQUARE-ROOT) METHOD FOR LSE

We will now further develop our geometric interpretation of the LSE. We shall
show how the projection of Y ðnÞ onto the Tp space can be achieved without the
need for the matrix inversion in (4.2-24). This involves expressing the column
vectors of T in a new orthonormal space, not the original x, y, z space. We will
then show how in this new space the least-squares estimate X


n;n can in turn
easily be obtained without the need for a matrix inversion. This approach is
called the voltage-processing (square-root) method for obtaining the least-

Figure 4.2-2 Projection of vector Y ðnÞ onto unit vector t1.
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squares solution. Such approaches are less sensitive to computer round-off
errors. Hence these methods should be used where computer round-off errors
are a problem. With the rapid development of microcomputer chips that are
more accurate (e.g., 32- and 64-bit floating-point computation chips), this
problem is being diminished. Two voltage-processing algorithms, the Givens
and Gram–Schmidt offer the significant advantage of enabling a high-
throughput parallel architecture to be used. The voltage-processing methods
will be discussed in much greater detail in Chapters 10 to 14. Here we introduce
the method. Specifically, we introduce the Gram–Schmidt method. This method
is elaborated on more in Chapter 13. Chapters 11 and 12 respectively cover the
Givens and Householder voltage-processing methods.

As done in Figure 4.2-1, we shall for simplicity initially assume t1, t2, Xn, T,
and Y ðnÞ are given by (4.2-1) through (4.2-4). If the column space of T given by
t1 and t2 were orthogonal and had unit magnitudes, that is, if they were
orthonormal, then we could easily project Yð3Þ onto the Tp plane, it being given
by (4.2-33), with m 0 ¼ 2 and n ¼ 3. In general t1 and t2 will not be orthogonal.
However, we can still obtain the desired projection by finding from t1 and t2 an
orthonormal pair of vectors in the Tp plane. Designate these unit vectors in the
Tp plane as q1 and q2. We now show one way we can obtain q1 and q2. Pick q1

along t1. Hence

q1 ¼ t̂1 ð4:3-1Þ

where t̂1 is the unit vector along t1 given by (4.2-39) when t1 is not a unit
vector, see Figure 4.3-1. In turn we pick q2 perpendicular to t̂1 but in the Tp

Figure 4.3-1 New orthonormal three-dimensional coordinate system for projection of
data vector Y ð3Þ onto column space of 3 � 2 T matrix. Used to obtain least-squares
solution in three-dimensional space. (After Strang [76].)
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plane; see Figure 4.3-1. Then the projection of Y ð3Þ onto the Tp plane is given
by the sum of the projection of Y ð3Þ onto q1 and q2 as in (4.2-33), that is,

pT ¼ qT
1 Y ð3Þq1 þ qT

2 Y ð3Þq2 ð4:3-2Þ

By adding a third coordinate perpendicular to the Tp-plane whose direction is
given by the unit vector q3, we form a new orthogonal coordinate system in
place of the original x, y, z coordinate system in which Y ð3Þ and the t i were
originally defined; see Figure 4.3-1. The directions for x, y, z were given by the
unit vectors i, j, k defined by (4.2-38). Those for the new orthogonal coordinate
system are given by the unit vectors q1, q2, q3; see Figure 4.3-1. In this new
coordinate system, by using (4.2-33) and (4.2-35), we find that the vector Y ð3Þ
can be simply written as

Y ð3Þ ¼ qT
1 Y ð3Þq1 þ qT

2 Y ð3Þq2 þ qT
3 Y ð3Þq3 ð4:3-3Þ

The above can be written as a column matrix in this new q1, q2, q3 orthonormal
coordinate system given by

Y ð3Þ ¼
qT

1 Y ð3Þ

qT
2 Y ð3Þ

qT
3 Y ð3Þ

2

64

3

75 ¼
y 0

1

y 0
2

y 0
3

2

4

3

5 ð4:3-4Þ

where

y 0
1 ¼ qT

1 Y ð3Þ ð4:3-4aÞ
y 0

2 ¼ qT
2 Y ð3Þ ð4:3-4bÞ

y 0
3 ¼ qT

3 Y ð3Þ ð4:3-4cÞ

and where y 0
i is the amplitude of the ith coordinate of Y ð3Þ when expressed in the

new orthonormal coordinate system defined by q1, q2, q3. Expressed another
way, y 0

i is the amplitude of the vector component of Y ð3Þ along the ith coordinate
direction qi in the new coordinate system. Here, Y ð3Þ of (4.3-4) replaces Y ð3Þ of
(4.2-4), where Y ð3Þ is expressed in x, y, z orthonormal coordinate system. To
obtain Y ð3Þ in the new coordinate system as given by (4.3-4), in (4.3-4a) to
(4.3-4c) the unit vectors q1, q2, q3 and the vector Y ð3Þ are expressed in the
original x, y, z coordinate system. Hence in (4.3-4a) to (4.3-4c)

qj ¼
q1j

q2j

q3j

2

4

3

5 ð4:3-5Þ

where q1j is the amplitude of the component of qj along the x coordinate, q2j
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that along the y coordinate, and q3j that along the z coordinate. In the new q1,
q2, q3 coordinate system

q1 ¼
1

0

0

2

4

3

5 q2 ¼
0

1

0

2

4

3

5 q3 ¼
0

0

1

2

4

3

5 ð4:3-6Þ

We are now in a position to show how we can transform from Y ð3Þ of (4.2-4)
given in the x, y, z orthonormal coordinate system to the Y ð3Þ of (4.3-4) in the
q1, q2, q3 coordinate system by the use of a matrix orthonormal transformation.
Form a matrix Q from the three unit column vectors q1, q2, q3, that is,

Q ¼ ½q1 q2 q3	 ð4:3-7Þ

or

Q ¼
q11 q12 q13

q21 q22 q23

q31 q32 q33

2

4

3

5 ð4:3-8Þ

where the coordinates of q1, q2, q3 are expressed in the x, y, z coordinate
system. Note that because the columns of (4.3-8) represent orthogonal unit
vectors

QT Q ¼ I ð4:3-9Þ

Hence

QT ¼ Q�1 ð4:3-10Þ

and also

QQT ¼ I ð4:3-11Þ

A matrix Q having the properties given by (4.3-9) to (4.3-11) is called an
orthonormal transformation matrix.

On examining (4.3-4) to (4.3-4c) we see that

y 0
1

y 0
2

y 0
3

2

4

3

5 ¼
qT

1

qT
2

qT
3

2

4

3

5Y ð3Þ ¼ QT Y ð3Þ ¼ QT
y1

y2

y3

2

4

3

5 ð4:3-12Þ

For convenience and clarity let Y ð3Þ expressed as a column matrix in the new q1,
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q2, q3 coordinate system be written as

Y 0
ð3Þ ¼

y 0
1

y 0
2

y 0
3

2

4

3

5 ð4:3-13Þ

and Y ð3Þ as expressed in the original x, y, z coordinate system [as given by
(4.2-4)] be written as Y ð3Þ without the prime. Then (4.3-12) becomes

Y 0
ð3Þ ¼ QTY ð3Þ

¼ FY ð3Þ
ð4:3-14Þ

where F defined by

F ¼ QT ð4:3-15Þ

is the sought-after orthonormal transformation matrix that transforms Y ð3Þ from
its representation in the x, y, z orthonormal system to Y 0

ð3Þ given in the q1, q2, q3

orthonormal coordinate system. The rows of F are the columns of Q and hence
satisfy the properties given by (4.3-9) to (4.3-11) for an orthonormal
transformation matrix, that is,

F T F ¼ FF T ¼ I ð4:3-16Þ
F T ¼ F�1 ð4:3-17Þ

Now let us use this transformation to obtain the least-squares estimate X

n;n. This

LSE is given by the X

n;n that minimizes (4.1-31), or for the special case where

range-only measurements yi are being made by (4.1-37). Let

E ¼ T X

n;n � Y ðnÞ ð4:3-18Þ

From (4.1-31) and (4.2-40) if follows that

kEk2¼kT X

n;n � Y ðnÞ k2 ð4:3-19Þ

We want to find the X

n;n that minimizes (4.3-19). Let us now apply the

orthonormal transformation F of (4.3-15) to E to obtain FE and determine the
magnitude squared of FE. From (4.2-40)

kFEk2¼ ðFEÞT
FE ¼ E T F T FE ð4:3-20Þ

Applying (4.3-16) to (4.3-20) yields

kFEk2¼ E T E ¼kEk2 ð4:3-21Þ
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Hence applying an orthonormal transformation to E does not change its
magnitude. Thus finding the X


n;n that minimizes kFEk is the same as finding
the X


n;n that minimizes kEk. From (4.3-18)

FE ¼ FTX

n;n � FY ðnÞ

¼ ðFTÞX

n;n � FY ðnÞ

ð4:3-22Þ

For simplicity let us again assume s ¼ 3 and m 0 ¼ 2 with (4.1-1) to (4.1-2a),
(2.4-1a) and (2.4-1b) applying. For this case E is a 3 � 1 matrix. Let

E ¼
"1

"2

"3

2

4

3

5 ð4:3-22aÞ

Then (4.3-18) becomes

E ¼
"1

"2

"3

2

4

3

5 ¼
t11 t12

t21 t22

t31 t32

2

4

3

5 x1

x2

� �
�

y1

y2

y3

2

4

3

5 ð4:3-23Þ

We now apply F to (4.3-23). First we apply F to the vectors t1 and t2 of T. In
preparation for doing this note that, due to our choice of q1, q2, and q3, t1 is
only composed of a component along q1. Thus t1 can be written as

t1 ¼ u11q1 þ 0 � q2 þ 0 � q3 ð4:3-24Þ

In turn t2 consists of components along q1 and q2 so that it can be written as

t2 ¼ u12q1 þ u22q2 þ 0 � q3 ð4:3-25Þ

Finally Y ð3Þ consists of the components y 0
1, y 0

2, y 0
3 along respectively q1, q2, q3

so that it can be written as

Y ð3Þ ¼ y 0
1q1 þ y 0

2q2 þ y 0
3q3 ð4:3-26Þ

The values of uij are the amplitudes of the unit vectors q1, q2, q3 of which t j

is composed. These amplitudes can be easily obtained by applying an ex-
pressing such as (4.2-36). This is done in Chapter 13. Now from (4.3-14) the
transformation F applied to the column matrices t1 and t2 transforms these
column vectors from being expressed in the x, y, z coordinate system to the q1,
q2, q3 orthogonal coordinate space. On examining (4.3-24) and (4.3-25) we thus
see that the column matrices for t01 and t2 in the q1, q2, q3 space are given by

Ft1 ¼
u11

0

0

2

4

3

5 ð4:3-27Þ
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and

Ft2 ¼
u12

u22

0

2

4

3

5 ð4:3-28Þ

Hence

FT ¼

u11 u12

0 u22

--- ---

0 0

2

664

3

775 ¼
U

---

0

2

4

3

5

|fflfflffl{zfflfflffl}
2

o
2

o
1

ð4:3-29Þ

where

U ¼ u11 u12

0 u22

� �
ð4:3-29aÞ

Let

FE ¼
" 01
" 02
" 03

2

4

3

5 ð4:3-30Þ

Substituting (4.3-13), (4.3-29), and (4.3-30) into (4.3-22) yields

" 01
" 02
" 03

2

4

3

5 ¼
u11 u12

0 u22

0 0

2

4

3

5 x1

x2

� �
�

y 0
1

y 0

y 0
3

2

4

3

5 ð4:3-31Þ

Writing the above out yields

" 01 ¼ u11x1 þ u12x2 � y 0
1 ð4:3-32aÞ

" 02 ¼ 0 þ u22x2 � y 0
2 ð4:3-32bÞ

" 03 ¼ 0 þ 0 � y 0
3 ð4:3-32cÞ

Examining (4.3-32a) to (4.3-32c), we see that the bottom equation does not
contain any component of X


n;n. Hence it does not play a role in the
determination of the X


n;n that minimizes k E k or equivalently k FE k. Only the
top two equations enter into the determination of x1 and x2. As a result our
determination of X


n;n degenerates into finding the x1 and x2 that minimize " 01
and " 02; specifically the x1 and x2 that minimizes

ð" 01Þ
2 þ ð" 02Þ

2
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Because we have only two equations [(4.3-32a) and (4.3-32b)] with only two
unknowns (x1 and x2) to solve for, " 01 and " 02 can be forced to be zero. When
doing this, (4.3-32a) and (4.3-32b) become

y 0
1 ¼ u11x
1 þ u12x
2 ð4:3-33aÞ

y 0
2 ¼ þu22x
2 ð4:3-33bÞ

where we have replaced x1 and x2 by their LSE values x
1 and x
2 because the
solution of (4.3-33a) and (4.3-33b) gives us our desired least-squares solution.
Equations (4.3-33a,b) can be written in matrix form as

Y 0
1 ¼ UX


3;3 ð4:3-34Þ

where

Y 0
1 ¼

y 0
1

y 0
2

� �
ð4:3-34aÞ

X

3;3 ¼

x
1
x
2

" #

ð4:3-34bÞ

and U is given by (4.3-29a). Physically, Y 0
1 is the projection of Y ð3Þ onto the Tp

plane that is designated as pT in Figures 4.2-1 and 4.3-1.
Equation (4.3-34) consists of two equations with two unknowns. Hence it is

not overdeterministic, as is the case for (4.3-23). Thus we can solve (4.3-34) for
X


3;3. This can be done by multiplying both sides by the inverse of U to obtain

X

3;3 ¼ U�1Y 0

1 ð4:3-35Þ

However, on examining (4.3-33a) and (4.3-33b) we see that obtaining the
inverse of U to solve for X


3;3 is not necessary. The bottom equation only
contains one unknown, x
2 , which can readily be solved for. Having solved for
x
2 , x
1 can be solved for using the top equation (4.3-33a). The forms of the
equations given by (4.3-33a) and (4.3-33b) are like the forms obtained using the
Gauss elimination procedure for solving simultaneous equations. Applying the
Gauss elimination procedure to (4.3-23) would yield the Gauss elimination
forms similar to those given by (4.3-32a) to (4.3-32c). However, the equations
given by (4.3-32a) to (4.3-32c) are not identical to those obtained using the
Gauss elimination procedure. Each equation of (4.3-32a) to (4.3-32c) will
generally differ from the corresponding one obtained by the Gauss elimination
procedure by a constant multiplier, which does not change the solution. How
they differ will become apparent when the Givens orthonormal transformation
F is further described in Chapters 10 and 11. Having the equations in the Gauss
elimination form allows us to solve the simultaneous equation by starting with
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the bottom equation to solve for x
2 and then using the top equation to solve for
x
1 . This process of starting with the bottom equation, which only has x
2 in it,
and then going to the top equation, which has x
1 and x
2 , to solve for x
1 is
called the back-substitution method; see Chapter 10, specifically (10.2-16) to
(10.2-22) and the text relating to these equations.

In the above development we assumed s ¼ 3 and m 0 ¼ 2. As shall be seen
shortly in this section and as elaborated on more fully in Chapter 10, for the
general case where s and m 0 are arbitrary, on applying the orthonormal
transformation F to the general form of E given by (4.3-18), one again obtains
the Gauss elimination form of (4.3-32a) to (4.3-32c) with only the top m 0

equations containing the variables x1; . . . ; xm 0 . Moreover, the bottom equation
of these m 0 equations contains only the variable xm 0 , the next one up xm 0 and
xm 0�1, and so on. Because these top m 0 equations form m 0 unknowns,
" 01 . . . ; "m 0 can be set equal to zero and x1; . . . ; xm 0 replaced by x
1 ; . . . ; x
m 0

which can be solved for by the back-substitution method discussed above.
Let us return to the above s ¼ 3, m 0 ¼ 2 case and determine the minimum

k E k2 when X

n;n of (4.3-19) is the sought-after least-squares solution. From

(4.3-21) we know that the minimum of k E k2 is equal to the minimum of
k FE k2. Using the definition of Euclidean norm given by (4.2-40) and the
matrix form of FE given by (4.3-30) yields

kFEk2 ¼ " 021 þ " 022 þ " 023 ð4:3-36Þ

But from the above discussion we know that k FE k is minimized by setting " 01
and " 02 to zero. Hence when the LSE is obtained,

kFEk2 ¼ " 023 ð4:3-37Þ

Applying (4.3-32c) to (4.3-37) yields

min kEk¼ min kFEk2 ¼ y 02
3 ð4:3-38Þ

Physically y 0
3 is the projection of Y ð3Þ onto the axis perpendicular to the Tp

plane, or equivalently onto the q3 unit vector; see Figure 4.3-1.
We will now extend the detailed results obtained above for the case s ¼ 3,

m 0 ¼ 2 to the case of arbitrary s and m 0. To lead up to the general results, we
start by putting the results for the case s ¼ 3, m 0 ¼ 2 into a more general form.
This we do by breaking F up for the case s ¼ 3, m 0 ¼ 2 above into two parts so
that it is written as

F ¼
F1

---

F2

2

4

3

5

|fflfflffl{zfflfflffl}
3

o
2

o
1

ð4:3-39Þ
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The first part of F, designated as F1, consists of the first two rows of F, which
are the unit row vectors qT

1 and qT
2 . Hence

F1 ¼ qT
1

qT
2

� �
¼ f1

f2

� �

|ffl{zffl}
3

�
2 ð4:3-40Þ

where

f1 ¼ qT
1 ð4:3-40aÞ

f2 ¼ qT
2 ð4:3-40bÞ

Physically when F1 multiplies Yð3Þ, it projects Y ð3Þ onto the Tp plane. The
second part of F, F2, consists of the third row of F, which is the row unit vector
qT

3 , the unit vector perpendicular to the Tp plane. Hence

F ¼ qT
3

 !
¼ f3½ 	
|{z}

3

g 1 ð4:3-41Þ

where

f3 ¼ qT
3 ð4:3-41aÞ

Applying F of (4.3-39) to E as given by (4.3-18) yields

FE ¼
F1T X


n;n

----------

f2T X

n;n

2

4

3

5

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
1

�
Y 0

1

----

Y 0
2

2

4

3

5

|fflfflffl{zfflfflffl}
1

o
m 0 ¼ 2
o

1
ð4:3-42Þ

where

Y 0
1 ¼ F1Y ð3Þ ¼

y 0
1

y 0
2

� �

|fflffl{zfflffl}
1

�
m 0 ¼ 2 ð4:3-42aÞ

Y 0
2 ¼ F2Y ð3Þ ¼ y 0

ð3Þ

h i

|fflffl{zfflffl}
1

o
1 ð4:3-42bÞ

But from (4.3-29) it follows that

FT ¼
F1

---

F2

2

4

3

5T ¼
F1T

---

F2T

2

4

3

5 ¼
U

---

0

2

4

3

5

|fflfflffl{zfflfflffl}
m 0 ¼ 2

o
m 0 ¼ 2
o

1
ð4:3-43Þ
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Applying (4.3-43) to (4.3-42) with X

n;n written as X3 yields

FE ¼
UX3

---

0

2

4

3

5�
Y 0

1

---

Y 0
2

2

4

3

5 ð4:3-44Þ

or

E 0 ¼
UX3 � Y 0

1

-------------

�Y 0
2

2

4

3

5 ð4:3-45Þ

where

E 0 ¼ FE ð4:3-45aÞ

Physically E 0 is E in the transformed coordinate system, the q1, q2, q3

coordinate system.
From (4.3-30) and (4.2-40) we know that

kFEk ¼
X3

i¼1

" 02i ð4:3-46Þ

¼
X2

i¼1

" 02i þ " 023 ð4:3-46aÞ

But

kUX3 � Y 0
1 k2 ¼

X2

i¼1

" 02i ð4:3-47Þ

kY 0
2 k ¼ "0 2

3 ð4:3-48Þ

Therefore

kFEk2 ¼kUX3 � Y 0
1 k2 þ kY 0

2 k2 ð4:3-49Þ

Although (4.3-49) was developed for the special case s ¼ 3, m 0 ¼ 2, it
applies for arbitrary s and m 0, in which case Y 0

1 has dimension m 0 � 1 and Y 0
2

has dimension 1 � 1; see Chapters 10 to 12. For the general case, physically Y 0
1

is the projection of Y ðnÞ onto the m 0-dimensional space spanned by the m 0

columns of T. Physically Y 0
2 is projection of Y ðnÞ onto a coordinate perpendi-

cular to m 0-dimensional space spanned by the m 0 columns of T. Equivalently Y 0
2

184 LEAST-SQUARES AND MINIMUM–VARIANCE ESTIMATES



is the component of Y ðnÞ perpendicular to Y 0
1. Hence

Y 0
2 ¼ Y ðnÞ � Y 0

1 ð4:3-50Þ

Let us relate the above general results to those obtained for the special three-
dimensional case of Figures 4.2-1 and 4.3-1. The term Y 0

1 of (4.3-50) is
equivalent to

pT ¼ T X3 ð4:3-51Þ

[see (4.2-8)] while Y 0
2 is equivalent to

E ¼ Y ð3Þ � T X3 ð4:3-52Þ

Here, Y 0
1 is the only part of Y ðnÞ that plays a role in determining the least-

squares estimate X

n;n. The part perpendicular to Y 0

1, which is Y 0
2, plays no part

in the determination of the least-squares estimate X

n;n, it not being a function of

Y 0
2; see (4.3-32c) and (4.3-44). The m-dimensional vector Y 0

1 is a sufficient
statistic; that is, Y 0

1 is a sufficient statistic of Y ðnÞ for finding the least-squares
solution. The transformation F transforms the original set of s equations with m 0

unknowns to m 0 equations with m 0 unknowns. Moreover, as indicated earlier
(and to be further discussed in Chapters 10 to 13), these m 0 equations are in the
Gauss elimination form and can be solved easily by the back-substitution
method without resorting to a matrix inversion. As discussed before, physically
the transformation F transforms the representation of the vectors t i and Y ðnÞ
from the original x; y; z; . . . orthogonal coordinate system to the new orthogonal
coordinate system represented by the orthonormal vectors q1; q2; q3; . . . . In
general, the column space of T is formed by the column vectors t1; t2; . . . ; tm 0 ,
or equivalently, by the new set of orthonormal unit vectors q1; q2; . . . ; qm 0 . The
term T can be augmented to include Y ðnÞ; specifically, to T is added the column
vector tm 0þ1, where

tm 0þ1 ¼ Y ðnÞ ð4:3-53Þ

so that the augmented T becomes

T0 ¼ ½t1 t2 � � � tm 0 tm 0þ1	 ð4:3-54Þ

Now the ðm 0 þ 1Þ-dimensional space of T0 is represented by the orthonormal
unit vectors q1; q2; . . . ; qm 0þ1. These unit vectors are chosen in a similar
manner to that used for the (m 0 þ 1 ¼ 3)-dimensional case discussed above; see
Figures 4.2-1 and 4.3-1. Specifically, q1 is chosen to line up with t1; q2 to be in
the plane of t1 and t2 but orthogonal to t1; q3 to be in the three-dimensional
space of t1, t2, and t3 but orthogonal to t1 and t2; and so on, to qm0þ1 to be
orthogonal to the m 0-dimensional space of T. Moreover qm 0þ1 lines up with the
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part of Y ðnÞ not in the space of T, that is, with

Y ðnÞ � Y 0
1 ¼ Y 0

2 ð4:3-55Þ

Also

kY 0
2 k¼ min kEk ð4:3-56Þ

In summary, for a general s-dimensional Y ðnÞ, Y 0
1 is the projection of Y ðnÞ

onto the m 0-dimensional column space of T represented by q1; q2; . . . ; qm 0,
while Y 0

2 is the projection of Y ðnÞ onto the coordinate qm 0þ1 that lines up with
Y ðnÞ � Y 0

1 and is perpendicular to the m 0-dimensional column space of T. The
remaining coordinates of the s-dimensional row space of T and Y ðnÞ are defined
by unit vectors qm 0þ2; . . . ; qs, which are orthogonal to the ðm 0 þ 1Þ-dimensional
column space of T0 represented by q1; q2; . . . ; qm 0þ1. Hence Y ðnÞ when repre-
sented in this space has no components along qm 0þ2; . . . ; qs Thus Y 0

ðnÞ, which
represents YðnÞ expressed in the new orthonormal space q1; . . . ; qs is given by

Y 0
ðnÞ ¼

Y 0
1

----

Y 0
2

----

0

2

66664

3

77775

|fflfflffl{zfflfflffl}
1

gm 0

g1

gs � m 0 � 1

ð4:3-57Þ

Furthermore for this general case (4.3-39) becomes

F ¼

F1

----

F2

----

F3

2

66664

3

77775

|fflfflffl{zfflfflffl}
s

gm 0

g1

gs � m 0 � 1

ð4:3-58Þ

where

F1 ¼

qT
1

qT

..

.

qT
m 0

2

66664

3

77775

|fflfflfflffl{zfflfflfflffl}
s

9
>>>>=

>>>>;

m0 ð4:3-58aÞ

F2 ¼ qT
m 0þ1

 !

|fflfflfflffl{zfflfflfflffl}
s

g 1 ð4:3-58bÞ
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and

F3 ¼

qT
m0þ2

qT
m0þ3

..

.

qT
s

2

66664

3

77775

|fflfflfflfflffl{zfflfflfflfflffl}
s

9
>>>=

>>>;

s � m 0 � 1 ð4:3-58cÞ

Physically F1 projects Y ðnÞ onto the m 0-dimensional column space of T ; F2

projects Y ðnÞ onto the coordinate aligned along the unit qm 0þ1, which is in turn
lined up with Y ðnÞ � Y 0

1 [see (4.3-50)]; and finally F3 projects Y ðnÞ onto the
space qm 0þ2; . . . ; qs orthogonal to q1; . . . ; qm 0þ1 forming a null vector, as
indicated in (4.3-57).

Using (4.3-58) the general form of (4.3-43) becomes

FT ¼

F1

---

F2

---

F2

2

66664

3

77775
T ¼

F1T

---

F2T

---

F3T

2

66664

3

77775
¼

U

---

0

---

0

2

66664

3

77775

|fflfflffl{zfflfflffl}
m 0

gm 0

g 1

g s � m 0 � 1

ð4:3-59Þ

In turn, if F is applied to the augmented matrix T0 given by (4.3-54) with tm0þ1

given by (4.3-53), we obtain, for arbitrary s and m0,

F T0 ¼

U

---

0

---

0

---

2

6666664

|ffl{zffl}
m 0

j
-

j
-

j
-

Y 0
1

--

Y 0
2

--

0

--

3

7777775

|ffl{zffl}
1

gm 0

g 1

g s � m 0 � 1

ð4:3-60Þ

This follows from (4.3-57) and (4.3-59).
The computation of the orthonormal vectors q1; . . . ; qm 0 could be done off-

line in advance if the transition–observation T were known in advance. For
example, if the time T between measurements was fixed for the transition–
observation matrix T of (4.1-18) or (4.1-28), then the matrix T would be known
in advance for arbitrary s and hence q1; . . . ; qm 0 , could be calulated off-line
in advance. However, implicit in having the matrix T be given by (4.1-18) or
(4.1-28) is that a track update measurement yi is obtained at every observation
time. In real-world trackers, this is not usually the case, the target echo fading at
random times so that at these times no observation is made of yi at these times i.
In this practical case T is not known in advance.

ORTHONORMAL TRANSFORMATION AND VOLTAGE-PROCESSING METHOD 187



More details on the above Gram-Schmidt method for generation of the
orthonormal set of unit vectors q1; q2; . . . ; qs are given in Chapter 13. Further
details on the transformation F in general and on two other forms of this
transformation, the Givens and Householder, are given in respectively Chapters
10 and 12.

4.4 ADAPTIVE NULLING, THE ORTHONORMAL
TRANSFORMATION, AND THE LSE

The orthonormal transformation transcribed above can be applied to obtain a
solution to the adaptive sidelobe cancellation problem in a manner paralleling
closely that in which the least-squares solution was obtained using the
orthonormal transformation. Figure 4.4-1 shows a typical adaptive sidelobe
canceler. The sidelobe canceler is used to cancel out jammer (or other)

Figure 4.4-1 Sidelobe canceler (SLC).
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interference coming in through the antenna sidelobes of the radar’s (or
communication system’s) main antenna [1, 83–87]. Auxiliary antennas are used
to generate a replica of the jammer signal in the main antenna output. By
substracting this replica from the output of the main antenna, the jammer
interference in the main channel is removed. We will elaborate more fully on
this sidelobe canceler problem and how the auxiliary channels are used to
generate the jammer replica in the remainder of this section. Those not
interested in the sidelobe canceler problem may skip the remainder of this
section.

For a radar system usually the main antenna has a high-gain, narrow-beam
pattern. This beam is pointed in a direction of space where the target is being
looked for. To be specific, assume the main beam is formed by a horizontally
oriented linear array antenna consisting of P radiating elements [88]. This array
electronically scans a vertically oriented fan beam in azimuth in order to locate
targets. Figure 4.4-2 shows the main-beam antenna pattern in azimuth when the
peak of the main-antenna main lobe is pointed at an angle �0. Shown in Figure
4.4-2 is the main-antenna main lobe and its sidelobes As indicated, the radar is

Figure 4.4-2 Main beam and sidelobe canceler auxiliary beam.
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looking for the possible presence of a target in the main-antenna main lobe
pointed in the direction �0.

For Figure 4.4-1 the voltage s i represents the ith time sample of the main-
antenna output. This signal consists of the weak echo from the target when a
target is present in the antenna main lobe plus interference. The interference is
composed of the radar receiver noise and, if jammers are present, the jammer
signal. The jammers are assumed to be located at azimuth angles other than the
one where the antenna main lobe is located; see Figure 4.4-2. Hence the
jammers are located so as to be coming in through the sidelobes of the main
antenna, as indicated in Figure 4.4-2. Here, J jammers are assumed to be present.

The jammer signals coming in through the main-antenna sidelobes can be
large in amplitude. Specifically the total jammer interference in the main-
antenna output can be 10’s of decibels larger than the receiver thermal noise in
the main-channel output. As a consequence the interference can reduce the
radar system sensitivity by 10’s of decibels. Hence, it is desired to remove the
interference jammer signals from the main-channel output. If we could generate
using another antenna, or antennas, a replica of the jammer signal in the main-
channel output, we could subtract it from the main-channel output and as a
result eliminate the jammer interference present in the main channel. It is the m0

auxiliary antennas of Figure 4.4-1 that are used to generate this replica of the
jammer signal in the main channel.

The voltage vij of Figure 4.4-1 represents the voltage signal output form the
jth auxiliary antenna at time i. This signal consists of J-jammer signals plus the
thermal noise at the output of the auxiliary-antenna receiver. The echo signal in
the auxiliary-antenna outputs is assumed negligible. The auxiliary antenna
could be obtained using a random set m0 of the P element linear main array
antenna. These J elements are shared with the main antenna. Each such radiating
element has a low-gain, broad-beam antenna pattern. The pattern formed from
one of the auxiliary radar elements is shown in Figure 4.4-2. The other auxiliary
radiating elements will have the same antenna pattern. It is possible to find a set
of weightings wj for the auxiliary antenna outputs that when added form the
desired replica of the total jammer signal in the main-antenna output.

In order to find such weights, it is necessary that the number of auxiliary
antenna be greater than or equal to the number J of jammers present. The
question remains as to how to find the weights wj, j ¼ 1; ; . . . ;m 0, that will
generate a replica of the total jammer interference. We shall now show how
these weights are obtained by using an orthonormal transformation as done
above for the least-squares problems.

Represent the set of signal voltages s i; i ¼ 1; 2; . . . ; s, by the column matrix

s ¼

s1

s2

..

.

ss

2

6664

3

7775
ð4:4-1Þ
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the auxiliary channel voltages vij; i ¼ 1; 2; . . . ; s; j ¼ 1; 2; . . . ;m 0, by the matrix

V ¼

v11 v12 � � � v1m 0

v21 v22 � � � v2m 0

..

. ..
.

vs1 vs2 � � � vsm 0

2

6664

3

7775
ð4:4-2Þ

and the weights wj, j ¼ 1; 2; . . . ;m 0, by the column matrix

Wm 0 ¼

w1

w2

..

.

wm 0

2

6664

3

7775
ð4:4-3Þ

Let ai be the ith time sample output of the auxiliary channel summer of Figure
4.4-1. These ai can be represented by the column matrix

A ¼

a1

a2

..

.

as

2

6664

3

7775
ð4:4-4Þ

It follows from the above that

A ¼ V Wm 0 ð4:4-5Þ
Note that

ai ¼ Vim 0Wm 0 ð4:4-6Þ

where Vim 0 is the ith row of V, that is,

Vim 0 ¼ ½vil v i2 . . . vim 0 	 ð4:4-6aÞ

Let " i be the difference between the main-channel output voltage s i and the
auxiliary-antenna summer output voltage ai, that is,

" i ¼ s i � ai ð4:4-7Þ
Let the column matrix of these differences be given by

E ¼

"1

"2

..

.

" s

2

6664

3

7775
ð4:4-8Þ

Then from (4.4-1) to (4.4-8)

E ¼ S � V Wm 0 ð4:4-9Þ
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The sidelobe canceler problem can be stated as finding the weights wi,
i ¼ 1; . . . ;m 0, that cause the " i to be minimum. The voltages ai do not contain
the target echo signal (because of the low gain of the auxiliary antenna). Hence
the weak echo signal in the main channel will not be canceled out. Thus
minimizing " i will result in a minimum interference and maximum signal-to-
interference ratio at the output of the main channel. To find the wi that minimize
the " i, we proceed just as was done for the least-squares problem above in
Section 4.3. Specifically, we minimize " i by minimizing the sum of the squares
of the " i, that is, by minimizing

Xs

i¼1

"2
1 ¼kEk2¼ E TE ð4:4-10Þ

Minimizing kEk2 maximizes the output signal-to-interference ratio as long as
the signal in the auxiliary channels do not effectively contain any signal
component [94].

To obtain the minimum of kEk2, we parallel the minimization procedure
used in Section 4.3 above. Specificaly, first, we apply an orthonormal
transformation to (4.4-9) F to E to obtain

FE ¼ �
U

--

0

2

4

3

5

|fflffl{zfflffl}
m 0

Wm 0 þ
S 0

1

--

S 0
2

2

4

3

5

|fflfflffl{zfflfflffl}
1

$
m 0

$
s � m 0

ð4:4-11Þ

which becomes

FE ¼ �
UWm 0

-------

0

2

64

3

75þ
S 0

1

---

S 0
2

2

64

3

75

$
m 0

$
s � m 0

¼ �
UWm 0 � S 0

1

--------------

�S 0
2

2

64

3

75 ð4:4-12Þ

where

U ¼ F1V ð4:4-12aÞ
F2V ¼ ½0	 ð4:4-12bÞ

S 0
1 ¼ F1S ð4:4-12cÞ

S 0
2 ¼ F2S ð4:4-12dÞ

F ¼
F1

--

F2

2

64

3

75

$
m 0

$
s � m 0

ð4:4-12eÞ

192 LEAST-SQUARES AND MINIMUM–VARIANCE ESTIMATES



and where U is an upper triangular matrix as was the case for the least-squares
problem [see, e.g., (4.3-29a)] and F1 is the first m 0 rows of F and F2 the
remaining s � m 0.

Here F1 and F2 have parallel physical meanings to the F1 and F2 of the
least-squares problem above. As in the case for the least-squares problem,
F transforms the s-dimensional column vectors of the matrix V to a new
s-dimensional orthonormal coordinate system whose unit vector directions are
defined by the rows of F. The first m0 orthonormal row vectors of F, designated
as F1, define a subspace of the s-dimensional space. Specifically they define the
m 0-dimensional space spanned and defined by the m 0 column vectors of V. The
remaining s � m 0 orthonormal row vectors of F1, designated as F2, are
orthogonal to the space spanned by F1 and form the remaining (s � m 0)-
dimensional space of the s-dimsensional space. Thus, physically S 0

1 given by
(4.4-12c) is the projection of S onto the space spanned by F1, or equivalently,
the column space of V. In turn S 0

2 is the projection of S onto the (s � m 0)-
dimensional space orthogonal to F1.

From (4.3-20), (4.3-45) and (4.3-49) the magnitude squared of (4.4-12)
becomes

kFEk2 ¼kEk2 ¼kUWm 0 � S 0
1 k2 þ kS 0

2 k2 ð4:4-13Þ

We can now determine the wi that minimizes kEk2 above. The term kS 0
2 k2 is

independent of the wi and hence plays no role in the minimization of kEk2.
Only the term kUWm 0 � S 0

1 k2 plays a role in this minimization. Because this
term consists of m 0 equations with m 0 unknown wi, it can be set equal to zero
[just as is done to obtain (4.3-33) from (4.3-49)]. Thus

kUWm 0 � S 0
1 k2¼ 0 ð4:4-14Þ

The above is true when

UWm 0 ¼ S 0
1 ð4:4-15Þ

Here we have m 0 equations to solve for the m 0 wi. Because U is upper
triangular, the equations of (4.4-15) are in the Gauss elimination forms and
hence the back-substitution method can be used to solve for the wi as done
for (4.3-33a) and (4.3-33b) above for the least-squares problem. Thus, we
have found the wi that minimize the main-channel output interference for
Figure 4.4-1.

The procedure described above for obtaining the weights of the sidelobe
canceler is known as the voltage-processing method, just as it was when
used for the least-squares problem of Section 4.3. This is opposed to the
power methods, which obtain the weights wi using the equation [83–86, 94]

Wm 0 ¼ M̂�1
̂ ð4:4-16Þ
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where the m 0 � n matrix M̂ is the estimate of the spatial covariance matrix of
the voltages vij across the array and 
̂ is a column matrix of the estimates of the
cross correlations between the main-antenna output and the m 0 auxiliary-channel
outputs. Specifically, the p, q element of M̂ designated as m̂pq is an estimate of

mpq ¼ vipv
iq ð4:4-17Þ

where the overbar means time average, that is, average over the time index i and
the asterisk signifies complex conjugate, the voltage samples being complex
numbers. In (4.4-17) the mean of v ij is assumed to be zero. Typically m̂pq can be
obtained from

m̂pq ¼ 1

r

Xr

i¼1

vipv
iq ð4:4-18Þ

for r large enough. When p ¼ q, m̂pq is a power term. For this reason the
method using (4.4-16) to obtain Wm0 is referred to as the power method. For the
voltage-processing method the power in the signal is not calculated in order to
determine Wm 0 . Instead the signal terms are used to determine Wm 0 ; hence this
method is referred to as the voltage method. The above voltage-processing
method for doing sidelobe canceling is described in references 83 and 89.

The jth element of the s-dimensional column matrix 
̂ is an estimate of


 j ¼ vijs


i ð4:4-19Þ

This estimate can be obtained using


̂ j ¼
1

r

Xr

i¼1

vijs


i ð4:4-20Þ

Here again we are calculating power terms, that is, the product of voltages.
A dedicated circuit implementation of the voltage-processing method for a

sidelobe canceler is described in references 83 and 89–92. This implementation
uses a parallel-processor architecture called a systolic array. This type of
processor can be used to solve the least-squares problem via the voltage-
processing method as described above. A description of the use of the systolic
array to solve the least-squares problem is given in Section 11.3.

Although the sidelobe canceler was applied to a linear array above, it
applies to two-dimensional arrays as well and to the case where the main
antenna is a reflector with the auxiliary antennas being other antennas, usually
of low gain.

In the above, the sidelobe canceler of Figure 4.4-1 was physically viewed as
generating by the use of the auxiliary antenna, a replica of the jammer
interference in the main antenna with this replica being subtracted from the
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main-antenna output to cancel out this interference in the main channel. It is
also useful to view the sidelobe canceler from another point of view to obtain
further insight into it. Specifically, the auxiliary antenna can be viewed as
putting nulls in the sidelobes of the main antenna in the directions that the
jammers are located with the consequence that they are prevented from entering
the main antenna.

The least-squares problem described above can be applied to a fully adaptive
array antenna. An example of such an array antenna is the linear array of m 0 þ 1
elements shown in Figure 4.4-3. Here the array main beam is set to be steered to
an off-boresight angle �0. This is the angle at which a target is to be looked for
by the radar. Assume, however, that J jammers are present, as shown in Figure
4.4-3. The jammers are located at angles other than the angle �0 of the main
beam so that the jammer interference signals come in through the sidelobes of
the array antenna. These interference signals are assumed to be strong enough
so as to be larger in total than the radar receiver noise. What is desired then is to
adaptively change the weights wi of the array so as to remove the interfering
signals while still maintaining the main-beam lobe in the direction �0 at which
one is looking for a target.

McWhirter [93; see also 83, 94] has shown that the fully adaptive array
problem is exactly equivalent to be sidelobe canceler problem discussed earlier.
He showed that the fully adaptive array problem is transformed to a sidelobe
canceler problem if the fully adaptive array is followed by the preprocessor

Figure 4.4-3 Fully adaptive phased array.
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shown in Figure 4.4-4. At the output of the preprocessor the ðm0 þ 1Þst array
element output times a constant � becomes the main-channel input for the
sidelobe canceler that follows the preprocessor while the remaining m 0 outputs
of the preprocessor becomes the auxiliary outputs for the sidelobe canceler.
Physically the constants c1; c2; . . . ; cm 0 of Figure 4.4-4 together with cm 0þ1 ¼ 1
for the (m 0 þ 1)st array element represent the weights to be used to steer the
array to the off-boresight angle �0 if no jammer is present. Let this set of m 0 þ 1
constants be represented by the (m 0 þ 1)-dimensional steering vector Cm 0þ1.
This steering vector is given by [88].

Cm 0þ1 ¼

c1

c2

..

.

cr

..

.

cm 0

cm 0þ1

2

66666666664

3

77777777775

¼

" jm 0� 0

" jðm 0�1Þ� 0

..

.

" jðm 0�rþ1Þ� 0

..

.

" j� 0

1

2

66666666664

3

77777777775

ð4:4-21Þ

Figure 4.4-4 Transformation of fully adaptive array to sidelobe canceler.
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where

�0 ¼ 2�d sin �0


ð4:4-21aÞ

and where d is the separation between adjacent radiating elements and  is the
propagation wavelength of the radar transmitted signal as in (3.5-3).

In Figure 4.4-4 the (m 0 þ 1)st element forms a two-element antenna array
with each of the other elements. Consider the two-element array formed by the
(m 0 þ 1)st element and rth element. Figure 4.4-5 shows such a two-element
array. This two-element array has an antenna gain pattern that has a null in the
direction �0, the direction in which we want to look for a target and hence the
direction where we want the adapted array to have a high-gain beam formed. It
is because of this null that the sidelobe canceler following the preprocessor of
Figure 4.4-4 does not corrupt the formation of the main lobe in the direction �0.
The magnitude of the voltage gain pattern of the two-element array antenna is
given by [88]

Gð�Þ ¼ j sin ½ 1
2
ðm 0 � r þ 1Þ�	 ð4:4-22Þ

where

� ¼ 2�dð sin �� sin �0Þ


ð4:4-22aÞ

Examining (4.4-22) we see that, as we desired to show, the two-element array

Figure 4.4-5 Two-element array formed from rth and (m þ 1)st elements of full array.
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antenna has a null in the direction �0, the direction at which we want to look for
a target.

We will now develop the circuit of Figure 4.4-4 and prove that it transforms
the fully adaptive array problem to the sidelobe canceler problem. For the fully
adaptive array of Figure 4.4-3 we want to minimize the output power as was
done for the sidelobe canceler problem of Figure 4.4-1. Specifically one wants
to minimize

e i ¼ Vi;m 0þ1Wm 0þ1 ð4:4-23Þ

where

Vi;m 0þ1 ¼ ½vi1 vi2 � � � vi;m 0þ1	 ð4:4-23aÞ

Wm 0þ1 ¼

w1

w2

..

.

wm 0þ1

2

66664

3

77775
ð4:4-23bÞ

However, in order to prevent the deterioration of the array main-lobe beam
in the direction �0, where one seeks a target, the following constraint must
be added:

C T
m 0þ1Wm 0þ1 ¼ � ð4:4-24Þ

where Cm 0þ1 is the steering vector given by (4.4-21) and that is used to steer the
array main lobe in the direction �0 if no jammers were present. The constraint
(4.4-24) ensures that the adapted array will maintain its gain in the direction �0

when adaptation jammers are present.
Let Cm 0 , Wm 0 , and Vi;m 0 be respectively the m 0-dimensional matrices obtained

if the (m 0 þ 1)st element is dropped from the matrices Cm 0þ1, Wm 0þ1, and
Vi;m 0þ1. Then we can write Cm 0þ1, Wm 0þ1, and Vi;m 0þ1 as

Cm 0þ1 ¼
Cm 0

--

cm 0þ1

2

64

3

75 ¼
Cm 0

--

1

2

64

3

75 ð4:4-25Þ

Wm 0þ1 ¼
Wm 0

------

wm 0þ1

2

64

3

75 ð4:4-26Þ

Vi;m 0þ1 ¼ Vi;m 0 vi;m 0þ1

 !
ð4:4-27Þ

Substituting (4.4-25) and (4.4-26) into (4.4-24) yields

wm 0þ1 ¼ �� C T
m 0Wm 0 ð4:4-28Þ
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Now substituting (4.4-26), (4.4-27), and (4.4-28) into (4.4-23) yields

" i ¼ Vi;m 0Wm 0 þ vi;m 0þ1wm 0þ1

¼ Vi;m 0Wm 0 þ vi;m 0þ1 �� C T
m 0Wm 0

� �

¼ ðVi;m 0 � vi;m 0þ1C T
m 0 ÞWm 0 þ �vi;m 0þ1

¼ �vi;m 0þ1 � a 0
i ð4:4-29Þ

where

a 0
i ¼ �ðVi;m 0 � vi;m0þ1CT

m 0 ÞWm 0 ð4:4-29aÞ

On comparing (4.4-29) with (4.4-7) for the sidelobe canceler, we see, after
some reflection, that they are identical with �vi;m 0þ1 replacing s i and a 0

i

replacing ai. Furthermore, on comparing (4.4-29a) with (4.4-6), we see that a 0
i

and ai would be identical if it were not for the term �vi:m 0þ1C T
m 0 in a 0

i and the
negative sign on the right side of (4.4-29a). It is the term �vi;m 0þ1 C T

m 0 that
forms the preprocessor transformation in Figure 4.4-4. The difference in the
sign of the right-hand sides of a 0

i and ai results from a choice of convention.
Specifically, it results from choosing a subtractor to combine the auxiliary
channel sum with the main channel for the sidelobe canceler in Figure 4.4-1. If
we chose to add the auxiliary channel to the sum channel, then the expressions
for both a 0

i and ai would have a negative sign on the right-hand side. In this case
the sign of the weight Wm 0 in the sidelobe canceler of Figure 4.4-1 would
reverse.

Because (4.4-29) is in the form of the sidelobe canceler problem, we have
transformed our fully adaptive array problem to the sidelobe canceler problem
as we set out to do. This completes our proof.

As in the case for the sidelobe canceler, the weights of the adapted full
array of Figure 4.4-3 can be thought of as producing nulls in the array antenna
pattern in the direction that the jammers are located [84–87, 96] while
maintaining the main-lobe peak in the direction where a target is being looked
for or tracked.

Another completely different method exists for transforming the fully
adaptive array problem of Figure 4.4-3 to the sidelobe canceler problem of
Figure 4.4-1. This alternate method involves the use of what is called beam
space. In this approach the output of the linear array antenna of m 0 þ 1 elements
are input into a beamformer network that simultaneously generates m 0 þ 1
contiguous beams, as shown in Figure 4.4-6. These m 0 þ 1 beams can be
formed using a microwave lens [88] (like a Rotman lens [95]), a Butler matrix
[88], or a digital Fourier transformation. The output of these beams are applied
to a sidelobe canceler. The beam pointing at the angle �0, the angle direction at
which a target is being looked for, becomes the main antenna beam for the
sidelobe canceler. The other m 0 beam output become the auxiliary-antenna
beam inputs for the sidelobe canceler.

ADAPTIVE NULLING, THE ORTHONORMAL TRANSFORMATION, AND THE LSE 199



An improvement of this approach called the adaptive-adaptive array was
developed by Brookner and Howell [1, 96]. They noted that not all m
auxiliary beams are needed in the sidelobe canceler. Only those beam that
contain a jammer are needed. Hence, if there are J jammers, only J beams are
needed.

4.5 MINIMUM-VARIANCE ESTIMATE

The least-squares estimate developed in the last section does not require any
knowledge of the statistics of the measurement noise N ðnÞ. The weight vector W
of (4.1-30) is only dependent on M and �. If we knew in addition the covariance
matrix of N ðnÞ, then an estimate, which in some sense is better, can be
developed. Specifically, an estimate that minimizes the variance of the error of
the estimate of Xn can be obtained. This is the estimate that minimizes the
diagonal elements of the covariance matrix of the estimate. Let S
n;n be the
covariance matrix of any arbitrary linear estimate X


n;n of Xn. Then the
minimum-variance estimate covariance matrix S

� 

n;n has the properties

ðS
� 


n;nÞ i;i � ðS
n;nÞ i;i ð4:5-1Þ

for all i, where ðS� 
n;nÞ i;i is the ith diagonal element of S
� 


n;n. The covariance

Figure 4.4-6 Array antenna beamformer.
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matrix for any linear estimate given by (4.1-30) is given by [5, p. 186]

S
n;n ¼ WR ðnÞW
T ð4:5-2Þ

where R ðnÞ is the covariance matrix of the measurement errors, that is,

R ðnÞ ¼ EfN ðnÞN
T
ðnÞg for EfNðnÞg ¼ 0 ð4:5-3Þ

The linear estimate (4.1-30) for which (4.5-1) is true, and as a consequence is a
minimum variance estimate, has weight W given by [5, p.190]

W
�
¼ ðT T R�1

ðnÞTÞ
�1

T T R�1
ðnÞ ð4:5-4Þ

The covariance matrix for the minimum-variance estimate is readily shown to
be given by [5, p. 191] (problem 4.5-4)

S
� 


n;n ¼ ðT T R�1
ðnÞTÞ

�1 ð4:5-5Þ

The minimum-variance estimate weight given by (4.5-4) is unbiased and unique
[5, p. 190]. When the measurement error covariance matrix R ðnÞ is equal to a
constant times the identity matrix I, that is,

R ðnÞ ¼ �2
x I ð4:5-6Þ

then the minimum-variance estimate weight given by (4.5-4) becomes the least-
squares estimate weight given by (4.1-32). If Y ðnÞ has a multidimensional
Gaussian distribution, then the minimum-variance estimate also becomes the
maximum-likelihood estimate [5, p. 203].

The minimum-variance estimate, in addition to being an estimate for which
the values of the diagonal elements of its covariance matrix are minimized, also
has the properties that if S
n;n is the covariance matrix of any other estimate
of Xn, then

C ¼ S
n;n � S
� 


n;n ð4:5-7Þ

is positive semidefinite (or equivalently nonnegative definite) [5, p. 193]; that is,
for any column matrix V ¼ ½V1; . . . ;Vm	T

[9]

VTCV � 0 ð4:5-8Þ

Equation (4.5-1) follows directly from (4.5-8) and (4.5-7). To show this, simply
let Vi ¼ 0 for all i except one.
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A prediction-ahead estimate X
� 


nþh;n can be obtained from the minimum-
variance estimate X

� 

n;n at time n by using

X
� 


nþh;n ¼ �hX
� 


n;n ð4:5-9Þ

The question arises as to whether the predicted-ahead estimate obtained using
the minimum-variance estimate X

� 

n;n is also a minimum-variance estimate. The

answer is yes [5, p. 197]. Moreover (4.5-8) and (4.5-7) hold for the covariance
of the predicted-ahead minimum-variance estimate. In addition the results also
hold if h is negative, that is, for rectrodiction (prediction to a past time prior to
when the measurement were obtained). The covariance matrix for the pre-
diction minimum-variance estimate is easily shown to be given by [5, p. 197]

S
� 


nþh;n ¼ �hS
� 


n;n �h
� �T ð4:5-10Þ

In reference 5 the minimum-variance estimate is given for the case where the
target trajectory equation of motion is time varying. The same changes to make
the time-invariant least-squares estimate a time-varying estimate apply for the
minimum-variance estimate, that is, M, T, and �, are replaced by their time-
varying counterparts Mn, Tn, and �ðt n;n�1Þ.

The minimum-variance estimate is a generalization of an estimate obtained
by minimizing the weighted least-squares error given by

eðX

n;nÞ ¼

X

i

½ðY ðnÞi � ðTX

n;nÞ i 	

2 1

�2
i

ð4:5-11Þ

or

eðX

n;nÞ ¼ ½Y ðnÞ � T X


n;n 	
T ½Diag R ðnÞ 	�1½ Y ðnÞ � T X


n;n 	 ð4:5-12Þ

where Diag R ðnÞ is a matrix consisting of the diagonal elements of the
measurement noise covariance matrix R ðnÞ (whose ith diagonal element is given
by �2

i ), with all off-diagonal elements being 0 and ðY ðnÞÞ i the ith element of the
column matrix Y ðnÞ. In contrast, the minimum-variance estimate of Xn

minimizes

eðX

n;nÞ ¼ ðY ðnÞ � T X


n;nÞ
T
R�1

ðnÞðY ðnÞ � T X

n;nÞ ð4:5-13Þ

It was Aitken who suggested the use of the minimization of (4.5-13). This was
in 1934 [97].

The minimization of (4.5-13) gives the classical weighted least-squares
estimate. Gauss used the minimization of (4.5-12); this was in 1795 (when he
was just 18 years old) but first published in 1809 [98]. We will call the estimate
based on (4.5-12) the ‘‘quasi’’-weighted least-squares estimate. Note that when
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R ðnÞ is diagonal, the weighted least-squares estimate and the quasi-weighted
least squares estimate are identical.

From (4.5-11) one sees an interesting property of the quasi-weighted least-
squares estimate that also applies to the classical weighted least-squares
estimate. Specifically, the quasi-weighted least-squares estimate weights the
errors according to their importance. [Using the classical weighted least-squares
error criteria of (4.5-13) does this in a more general way.] As a result the
more accurate the measurement ðY ðnÞÞ i of Y ðnÞ is, the closer to it the estimate
X


n;n is placed. The weighting consists of dividing each squared error by its
own variance. We saw this kind of weighted least-squared estimate being
used in Sections 2.3, 2.5, and 2.6 for the Kalman filter; see (2.3-1), (2.5-9), and
(2.6-7).

As indicated above, when R ðnÞ is diagonal, the classical least-squares
estimate is identical to the quasi-weighted least-squares estimate that minimizes
(4.5-11). Let us examine the physical significance of this further. When we are
fitting an mth-degree polynomial, as given by (4.1-44), to the data such that
(4.5-11) is minimized, we are forcing the data points that have the highest
accuracy to have the smallest errors, that is, the smallest deviations from the
best-fitting polynomial. For the constant-velocity target radar example of
Section 4.1, the sum of the errors given by (4.1-38) becomes the following
weighted sum:

en ¼
Xn

j¼0

1

�2
j

ðyj � x
j;nÞ
2 ð4:5-14Þ

with x
j;n still defined by (4.1-35) and �2
j being the variance of the jth radar

range measurement.
The range accuracy can vary from look to look due to a number of factors.

The power SNR could be varying from one look to the next. This could be due
to any number of factors—target cross-sectional variations from look to look,
planned or adaptive variations in the radar transmitter energy from look to look,
or planned variations of the radar signal bandwidth from look to look. For a
pulse compression radar the radar range accuracy for the ith look is given by
[99]

� i ¼
�r

kM

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2SNRi

p ð4:5-15Þ

where �r is the radar range resolution defined as the echo 3 dB down (half-
power) width after pulse compression, SNR i is the single look receiver output
SNR for the ith look, and kM is a constant equal to about 1.6. The above results
apply for the chirp waveform pulse compression system described in Section
3.5.1. The results apply for the chirp waveform system using a matched receiver
as long as the time sidelobes of the compressed signal are no more than about
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50 dB down. (Typically the results also apply for pulse compression systems
using nonuniform spectrum transmitter waveforms as long as the compressed
pulse sidelobes are no more than 50 dB down.) The range resolution �r
depends on the signal bandwidth. For a radar using a chirp waveform (see
Section 3.5.1)

�r ¼ k0

2cBs

ð4:5-16Þ

where Bs is the chirp waveform bandwidth, c is the velocity of light (3 � 108

m/sec), and k0 is a constant typically between about 0.9 and 1.3 depending
on the receiver mismatch weighting. For 15-dB sidelobes k0 _¼ 0:9; for 30- to
50-dB sidelobes k0 _¼ 1:3 [88].

In a radar the values of Bs, k0, and kM are known for a given look and the
echo SNR can be measured. Thus � i is known (or at least can be estimated) for
the ith look, and hence the minimum-variance estimate polynomial fit to the
target trajectory can be obtained for radar systems.

As a by-product of the above weighting, an important property for both the
quasi- and classical weighted least-squares estimate is that the estimate is
independent of the units used for Xn; that is, the same performance is obtained
independent of the units used for the coordinates of Xn. The units can all be
different from each other in fact. This arises from the normalization of each
squared error term by its own variance with the same units used for both. This
invariance property does not apply for the least-squares error estimate that
minimizes (4.1-31).

To prove that W
�

given by (4.5-4) is the minimum-variance weight, we simply
differentiate (4.5-13) with rspect to X


n;n, set the result equal to zero, and solve
for X


n;n as done in (4.1-46); see problem 4.5-1.
In the next few chapters we apply the results developed in this chapter to

develop the fixed-memory polynomial g–h, g–h–k, and higher order filters. This
is followed by the development of the expanding-memory and fading-memory
filters, which are put in recursive form.
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5
FIXED-MEMORY POLYNOMIAL
FILTER

5.1 INTRODUCTION

In Section 1.2.10 we presented the growing-memory g–h filter. For n fixed
this filter becomes a fixed-memory filter with the n most recent samples of
data being processed by the filter, sliding-window fashion. In this chapter
we derive a higher order form of this filter. We develop this higher order
fixed-memory polynomial filter by applying the least-squares results given by
(4.1-32). As in Section 1.2.10 we assume that only measurements of the target
range, designated as xðtÞ, are available, that is, the measurements are one-
dimensional, hence r ¼ 0 in (4.1-1a). The state vector is given by (4.1-2). We
first use a direct approach that involves representing xðtÞ by an arbitrary mth
polynomial and applying (4.1-32) [5, pp. 225–228]. This approach is given
in Section 5.2. This direct approach unfortunately requires a matrix
inversion. In Section 4.3 we developed the voltage-processing approach, which
did not require a matrix inversion. In Section 5.3 we present another approach
that does not require a matrix inversion. This approach also has the advantage
of leading to the development of a recursive form, to be given in Section 6.3,
for the growing-memory filter. The approach of Section 5.3 involves using the
discrete-time orthogonal Legendre polynomial (DOLP) representation for the
polynomial fit. As indicated, previously the approach using the Legendre
orthogonal polynomial representation is equivalent to the voltage-processing
approach. We shall prove this equivalence in Section 14.4. In so doing,
better insight into the Legendre orthogonal polynomial fit approach will be
obtained.
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5.2 DIRECT APPROACH (USING NONORTHOGONAL
mTH-DEGREE POLYNOMIAL FIT)

Assume a sequence of L þ 1 one-dimensional measurements given by

Y ðnÞ ¼ ½ yn; yn�1; . . . ; yn�L�T ð5:2-1Þ

with n being the last time a measurement was made. We assume that the
underlying process xðtÞ that generated these data can be approximated by a
polynomial of degree m as indicated by (4.1-44), which we rewrite here as

xðtÞ ¼ p�ðtÞ ¼ ½ p�ðtÞ�n ¼
Xm

j¼0

ðajÞn t j ð5:2-2Þ

What we want is a least-squares estimate for the coefficients ðajÞn of this
polynomial t. The subscript n on the coefficient ðajÞn for the jth polynomial
term is used because the estimate of these coefficients will depend on n, the last
observation time at which a measurement was made. The subscript n on
½ p�ðtÞ�n similarly is used to indicate that n is the last time a measurement was
made.

Let t ¼ rT . Then (5.2-2) becomes

p� ¼ p�ðr TÞ ¼ ½ p�ðrÞ�n ¼
Xm

j¼0

ðajÞnr j T j ð5:2-3Þ

or

p� ¼ ½ p�ðrÞ�n ¼
Xm

j¼0

ðz�j Þnr j ð5:2-4Þ

where

ðz�j Þn ¼ ðajÞnT j ð5:2-4aÞ

where r becomes a new integer time index for the polynomial p�. Physically r
represents the measurement time index just as n does; it is just referenced to a
different starting time. The origin for r is the time at which the first
measurement Yn�L is made for the fixed-memory filter; see Figure 5.2-1.

We want the above polynomial to provide a least-square fit to the measured
data. This can be achieved by applying the results of Section 4.1 directly. To do
this, we must find T of (4.1-32). We can choose for the state vector Xn the
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coefficients of the polynomial fit given by

Xn 	 X 0
n ¼

ðz�0 Þn

ðz�1 Þn

..

.

ðz�mÞn

2

66664

3

77775
ð5:2-5Þ

[Note that here Xn is given by an ðm þ 1Þ-state matrix (as was the case for
(4.1-2) instead of m, as in (4.1-1b).] It then follows that the matrix T is given by

T 	 T 0 ¼

L0 L1 L2 . . . Lm

ðL � 1Þ0 ðL � 1Þ1 ðL � 1Þ2 . . . ðL � 1Þm

..

. ..
. ..

. . .
. ..

.

00 ¼ 1 01 02 ..
.

0m

2

66664

3

77775
ð5:2-6Þ

(The prime is used on the matrices T and Xn above because we shall shortly
develop an alternate, more standard form for the process state vector that uses
different expressions for T and Xn:)

It is now a straightforward matter to substitute (5.2-5) and (5.2-6) into
(4.1-32) to obtain the least-squares estimate weight W �. Substituting this value
for the weight into (4.2-30) then yields the least-squares estimate X�

n;n in terms
of the coefficients ðz�i Þn of (5.2-5). Knowing these coefficients, we can use
(5.2-3) to estimate X�

n;n at time n by choosing r ¼ L. By choosing r ¼ L þ h, we

Figure 5.2-1 Polynominal fit p� ¼ ½ p� ðrÞ� n to range measurements y i. (From
Morrison [5, p. 226].)
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obtain the prediction estimate X�
nþh;n. This approach has the disadvantage of

requiring a matrix inversion in evaluating ðT T TÞ�1
of (4.1-32). Except for

when T tT is 2 � 2, this matrix inversion has to be done numerically on the
computer, an algebraic solution not being conveniently obtained [5, p. 228].

An approach is developed in the next section that uses an orthogonal
polynomial representation for the polynomial fit given by (5.2-3) and as a result
does not require a matrix inversion. This new approach also gives further insight
into the polynomial least-squares fit. This new approach, as we indicated, is the
same as the voltage-processing method described in Section 4.3, which also
does not require a matrix inversion. We shall prove this equivalence in Section
14.4.

Before proceeding we will relate the coefficients aj and z�j to D jxðtÞ. The
second coefficients of these parameters have been dropped for simplicity. By
differentiating the jth term of (5.2-2), we obtain

aj ¼
1

j !
D jxðtÞ ¼ 1

j !

d j

dt j
xðtÞ ð5:2-7Þ

Hence

z�j ¼ ajT
j ¼ T j

j !
D jxðtÞ ¼ T j

j !

d j

dt j
xðtÞ ð5:2-8Þ

The parameter z�j is a constant times DjxðtÞ. Hence in the literature it is called
the scaled jth-state derivative [5]. We shall discuss it further shortly.

5.3 DISCRETE ORTHOGONAL LEGENDRE POLYNOMIAL
APPROACH

As indicated above, an approach is developed in this section that leads to a
simple analytical expression for the least-squares polynomial that does not
require a matrix inversion. It involves expressing the polynomial fit of (5.2-3) in
terms of the discrete orthonormal Legendre polynomials [5, pp. 228–235].
Specifically, the estimating polynomial is expressed, as done in (4.1-45), as

½ p�ðrÞ�n ¼
Xm

j¼0

ð� jÞn� jðrÞ ð5:3-1Þ

where � jðrÞ is the normalized discrete Legendre polynomial of degree j.
Specifically � jðrÞ is a polynomial in r of degree j. It is given by

� jðrÞ ¼
1

cj

pjðrÞ ð5:3-1aÞ
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where pjðrÞ is the unnormalized discrete Legendre polynomial of degree j and
the � iðrÞ and � jðrÞ for r ¼ 0; . . . ; L are orthogonal for i 6¼ j, that is, they obey
the relation

XL

r¼0

� iðrÞ� jðrÞ ¼ � ij ð5:3-2Þ

where � ij is the Kronecker delta function defined by

� ij ¼
1 for i ¼ j

0 for i 6¼ j

� 	
ð5:3-2aÞ

Because (5.3-2) equals 1 for i ¼ j, the � iðrÞ and � jðrÞ are called orthonormal. A
least-squares estimate for the coefficients ð� jÞn will be shortly determined from
which ½ p�ðrÞ�n is determined.

In turn the discrete Legendre polynomial is given by

pjðrÞ ¼ pðr; j; LÞ ð5:3-3Þ

with

pðr; j; LÞ ¼
Xj

�¼0

ð�1Þ� j

�


 �
j þ �
�


 �
r ð�Þ

L ð�Þ ð5:3-4Þ

where

x ðmÞ ¼ xðx � 1Þðx � 2Þ . . . ðx � m þ 1Þ ð5:3-4aÞ

The normalizing constant of (5.3-1a) is given by

cj ¼ cð j; LÞ ð5:3-5Þ

where

½cð j;LÞ�2 ¼
XL

r¼0

½ pðr; j; LÞ�2

¼ ðL þ j þ 1Þð jþ1Þ

ð2 j þ 1ÞL ð jÞ

ð5:3-5aÞ

From (5.3-3), (5.3-1a), and (5.3-2) it follows that the discrete Legendre poly-
nomials satisfy the orthogonality condition

XL

r¼0

pðr; i;LÞpðr; j; LÞ ¼ 0 i 6¼ j ð5:3-6Þ
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Table 5.3-1 gives the first four discrete Legendre polynomials. Note that pjðrÞ
and pðr; i; LÞ are used here to represent the Legendre polynomial, whereas
p; p�; pðtÞ, and pðrÞ are used to represent a general polynomial. The presence
of the subscript or the three variables in the argument of the Legendre
polynomial make it distinguishable from the general polynomials, such as
given by (4.1-44), (4.1-45), and (5.3-1).

The error given by (4.1-31) becomes

en ¼
XL

r¼0

yn�Lþr � ½ p�ðrÞ�n

� 2 ð5:3-7Þ

Substituting (5.3-1) into (5.3-7), differentiating with respect to ð� iÞn, and
setting the result equal to 0 yield, after some straightforward manipulation [5],

XL

k¼0

Xm

j¼0

ð� jÞn� iðkÞ� jðkÞ ¼
XL

k¼0

yn�Lþk� iðkÞi ¼ 0; 1; . . . ;m ð5:3-8Þ

where for convenience r is replaced by k. Changing the order of the summation
yields in turn

Xm

j¼0

ð� jÞn

XL

k¼0

� iðkÞ� jðkÞ ¼
XL

k¼0

yn�Lþk� iðkÞ ð5:3-9Þ

Using (5.3-2) yields the least-squares estimate for ð� iÞn given by

ð� jÞ�n ¼
XL

k¼0

yn�Lþk� jðkÞ j ¼ 0; 1; . . . ;m ð5:3-10Þ

TABLE 5.3-1. First Four Discrete Orthogonal Legendre
Polynomials

pðx; 0; LÞ ¼ 1

pðx; 1; LÞ ¼ 1 � 2
x

L

pðx; 2; LÞ ¼ 1 � 6
x

L
þ 6

xðx � 1Þ
LðL � 1Þ

pðx; 3; LÞ ¼ 1 � 12
x

L
þ 30

xðx � 1Þ
LðL � 1Þ � 20

xðx � 1Þðx � 2Þ
LðL � 1ÞðL � 2Þ

pðx; 4; LÞ ¼ 1 � 20
x

L
þ 90

xðx � 1Þ
LðL � 1Þ � 140

xðx � 1Þðx � 2Þ
LðL � 1ÞðL � 2Þ

þ 70
xðx � 1Þðx � 2Þðx � 3Þ
LðL � 1ÞðL � 2ÞðL � 3Þ
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Substituting the above in (5.3-1) yields finally

½ p�ðrÞ�n ¼
Xm

j¼0

XL

k¼0

yn�Lþk� jðkÞ
" #

� jðrÞ ð5:3-11Þ

The above final answer requires no matrix inversion for the least-squares
estimate solution. This results from the use of the orthogonal polynomial
representation. Equation (5.3-11) gives an explicit general functional expression
for the least-squares estimate polynomial fit directly in terms of the
measurements y i. This was not the case when using the direct approach of
Section 5.2, which did not involve the orthogonal polynomial representation.
There a matrix inversion was required. If the entries in this matrix are in
algebraic or functional form, then, as mentioned before, this matrix inversion
cannot be carried out algebraically easily except when the matrix to be inverted
is 2 � 2 [5, p. 228]. For large matrices the matrix entries need to be specific
numerical values with the inverse obtained on a computer; the inverse then is
not in algebraic or functional form.

The least-squares estimate polynomial solution given by (5.3-11) can be used
to estimate the process values at times in the future ðr > LÞ or past ðr < LÞ.
Estimates of the derivatives of the process can also be obtained by
differentiating (5.3-11) [5]. To do this, we let t ¼ r T , where T is the time
between the measurements yi. Then dt ¼ Tdr and

D ¼ d

dt
¼ 1

T

d

dr
ð5:3-12Þ

Applying this to (5.3-11) yields the following expression for the least-squares
polynomial fit estimate p� and its derivatives [5, p. 231]

½Dip�ðrÞ�n ¼ 1

T i

Xm

j¼0

XL

k¼0

yn�Lþk� jðkÞ
" #

d i

dr i
� jðrÞ ð5:3-13Þ

At time n þ 1 when the measurement ynþ1 is received, the L þ 1 measurements
Y ðnÞ of (5.2-1) can be replaced by the L þ 1 measurements of

Y ðnþ1Þ ¼ ðynþ1; yn; . . . ; yn�Lþ1ÞT ð5:3-14Þ

A new fixed-memory polynomial filter least-squares estimate is now obtained.
Equation (5.3-11) is again used to obtain the estimating polynomial ½ p�ðiÞ�nþ1.
This new polynomial estimate is based on the latest L þ 1 measurements. But
now time has moved one interval T forward, and the measurements used are
those made at times n � L þ 1 to n þ 1 to give the new coefficient estimates
ð� jÞ�nþ1 in (5.3-10) for the time-shifted data. This process is then repeated at
time n þ 2 when Ynþ2 is obtained, and so on.
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5.4 REPRESENTATION OF POLYNOMIAL FIT IN TERMS OF
ITS DERIVATIVES (STATE VARIABLE REPRESENTATION OF
POLYNOMIAL FIT IN TERMS OF PROCESS DERIVATIVES)

We begin by developing in this section a very useful alternate representation for
the polynomial function of time. This representation lets us obtain the
transformation matrix for the process that provides an alternate way to obtain
the process state variable estimate at other times. Instead of expressing the
polynomial process in terms of the nth-degree polynomial ½ p�ðrÞ�n, it is
possible to express the process in terms of its first m derivatives at any time,
as shall now be shown.

For a process given by an mth-degree polynomial, its state vector at any time
n can be expressed in terms of its first m derivatives by

XðtnÞ ¼ Xn ¼

x

Dx

..

.

Dmx

2

664

3

775 ¼

xn

Dxn

..

.

Dmxn

2

6664

3

7775
ð5:4-1Þ

where D is defined by (5.3-12). Let

yn ¼ xn þ �n ð5:4-2Þ

If we assume that only xn is measured and not its derivatives, then

Yn ¼ MXn þ Nn ð5:4-3Þ

where because range is the only measurement

M ¼ ½1 0 0 . . . 0 � ð5:4-3aÞ

and Yn and Nn are 1 � 1 matrices given by

Yn ¼ ½ yn � and Nn ¼ ½ �n � ð5:4-3bÞ

For definiteness and convenience in the ensuing discussion let us assume that
the polynomial fit p� is of degree 2, that is, m ¼ 2 and is given by

xn ¼ ða0Þn þ ða1ÞnrT þ ð1=2!Þða2Þnr 2T 2 ð5:4-4Þ

where we have now shifted the origin of r so that r ¼ 0 at time n, the time at
which the estimate X�

n;n is to be obtained. Then

Dxn ¼ 1

T
ða1T þ a2rT 2Þ ¼ a1 for r ¼ 0 ð5:4-5Þ

D2xn ¼ a2 ð5:4-6Þ
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where for simplicity the subscript n on ai has been dropped. It is next easy to
show for m ¼ 2 that the transition matrix � that goes from the state Xn to Xnþ1

is given by

� ¼
1 T

1

2
T 2

0 1 T

0 0 1

2

664

3

775 ð5:4-7Þ

The reader can verify this by substituting (5.4-4) to (5.4-6) into (5.4-1) and
multiplying by (5.4-7). The transition matrix that goes from Xn to Xnþh is �h =
�h.

For the case where measurements are available at L þ 1 times as given by
(5.2-1),

Y ðnÞ ¼

MXn

-------

MXn�1

-------

..

.

-------

MXn�L

2

666666664

3

777777775

þ

�n

------

�n�1

------

..

.

------

�n�L

2

666666664

3

777777775

ð5:4-8Þ

which in turn can be written as

Y ðnÞ ¼

MXn

-------

M��1Xn

-----------

..

.

----------

M��LXn

2

666666664

3

777777775

þ

�n

-----

�n�1

------

..

.

------

�n�L

2

666666664

3

777777775

ð5:4-9Þ

or

Y ðnÞ ¼

M

----

M��1

--------

..

.

--------

M��L

2

666666664

3

777777775

Xn þ

�n

-----

�n�1

-----

..

.

-----

�n�L

2

666666664

3

777777775

ð5:4-10Þ
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or

Y ðnÞ ¼ TXn þ N ðnÞ ð5:4-11Þ

where

T ¼

M

----

M��1

-------

..

.

-------

M��L

2

666666664

3

777777775

N ðnÞ ¼

�n

-----

�n�1

-----

..

.

-----

�n�L

2

666666664

3

777777775

ð5:4-11aÞ

Note that the above results [(5.4-8) to (5.4-11a) with (5.2-1)] are a special case
of (4.1-5) to (4.1-11b). Here the Yi and Ni are 1 � 1 column matrices [see
(5.4-3b)] instead of ðr þ 1Þ � 1 column matrices [as in (4.1-1a) and (4.1-1c)].

Sometimes in the literature, instead of representing the state vector Xn by its
derivatives, as done in (5.4-1) for a process represented by an mth-degree
polynomial, the scaled derivatives z j of (5.2-8) are used to form the scaled state
vector Zn given by

Zn ¼

z0

z1

z2

..

.

zm

2

6666666664

3

7777777775

¼

z

_z

�z

..

.

Dmz

2

6666666664

3

7777777775

¼

x

TDx

T 2

2!
D2x

..

.

T m

m!
Dmx

0

BBBBBBBBB@

1

CCCCCCCCCA

n

ð5:4-12Þ

where, as before T is the time between the measurements. The transition matrix
for the scaled state vector Zn when m ¼ 2 is given by

� z ¼
1 1 1

0 1 2

0 0 1

2

4

3

5 ð5:4-13Þ

where the subscript z is used here to emphasize that � is the transition matrix
for the scaled state vector zn.

5.5 REPRESENTATION OF LEAST-SQUARES ESTIMATE IN
TERMS OF DERIVATIVE STATE VECTOR

The least-squares estimate of the process state vector given by (5.4-1) can be
written at time r ¼ L þ h as [with now the origin of r again at n � L as given in
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Figure (5.2-1)]

X�
nþh;n ¼

p�ðL þ hÞ
Dp�ðL þ hÞ

..

.

Dmp�ðL þ hÞ

2

6664

3

7775

n

ð5:5-1Þ

For simplicity the subscript n has been dropped from p�ðrÞ. Sometimes we
shall drop the r variable as well, just leaving p�.

In terms of the scaled state vector one obtains

Z �
nþh;n ¼

p�ðL þ hÞ
TDp�ðL þ hÞ

T 2

2!
D2p�ðL þ hÞ

..

.

T m

m!
Dmp�ðL þ hÞ

2

6666666664

3

7777777775

n

ð5:5-2Þ

Using the orthogonal polynomial least-squares solution given by (5.3-11) and
(5.3-13), it can be shown that the least-squares solution for Znþh is [5, p. 237]

Z �
nþh;n ¼ WðhÞ zY ðnÞ ð5:5-3Þ

TABLE 5.5-1. Elements of Associate Stirling Matrix S of First Kind for
i , j ¼ 0, . . . , 10

i j 0 1 2 3 4 5 6 7 8 9 10

0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 1 2 6 24 120 720 5,040 40,320 362,880
2 0 0 1 3 11 50 274 1,764 13,068 109,584 1,026,576
3 0 0 0 1 6 35 225 1,624 13,132 118,124 1,172,700
4 0 0 0 0 1 10 85 735 6,769 67,284 723,680
5 0 0 0 0 0 1 15 175 1,960 22,449 269,325
6 0 0 0 0 0 0 1 21 322 4,536 63,273
7 0 0 0 0 0 0 0 1 28 546 9,450
8 0 0 0 0 0 0 0 0 1 36 870
9 0 0 0 0 0 0 0 0 0 1 45

10 0 0 0 0 0 0 0 0 0 0 1

Note: Used to obtain weights of optimum least-squares fixed-memory filter.

Source: From Morrison [5, p. 85].
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where [5, p. 239]

WðhÞ z ¼ �ðhÞ zSGCB ð5:5-3aÞ

where S is the associate Stirling matrix of the first kind. Values for S are given in
Table 5.5-1 for i, j up to 10. The recursive expression for the i, j element of
S; ½S � i; j; is given by [5, p. 116]

½S � i; j ¼ ½S � i�1;j�1 þ ð j � 1Þ½S � i; j�1 ð5:5-4Þ

where initially

½S �0;0 ¼ 1 and ½S �0; j ¼ 0 ¼ ½S � i;0 for i; j  1 ð5:5-4aÞ

The i,jth term of the matrix G is given by

½G� i; j ¼ ð�1Þ j j

i


 �
j þ 1

i


 �
1

L ðiÞ ð5:5-5Þ

TABLE 5.5-2. Factor of Elements of G Matrix for i, j ¼ 1, . . . , 10

i j 0 1 2 3 4 5 6 7 8 9 10

0 1 � 1 1 � 1 1 � 1 1 � 1 1 � 1 1
1 � 2 6 � 12 20 � 30 42 � 56 72 � 90 110
2 6 � 30 90 � 210 420 � 756 1,260 � 1,980 2,970
3 � 20 140 � 560 1,680 � 4,200 9,240 � 18,480 34,320
4 70 � 630 3,150 � 11,550 34,650 � 90,090 210,210
5 � 252 2,772 � 16,632 72,072 � 252,252 756,756
6 924 � 12,012 84,084 � 420,420 1,681,680
7 � 3,432 51,480 � 411,840 2,333,760
8 12,870 � 218,790 1,969,110
9 � 48,620 923,780
10 184,756

Notes: Used to obtain weights of optimum least-squares fixed-memory filter. The G matrix is
defined by

½G� ij ¼ ð�1Þ j j

i


 �
j þ i

i


 �
1

L ðiÞ :

Displayed above is

ð�1Þ j j

i


 �
j þ i

i


 �

Example: ½G� 3;5 ¼ �560=L ð3Þ, ½G� 7;8 ¼ 51; 480=L ð7Þ.
With appropriate adjustment of signs, the above matrix also gives the coefficients of the discrete
Legendre polynomials [see (5.3-4)].

Source: From Morrison [5, p. 241].
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Values of ½G � ij for 0 � i; j � 10 are given in Table 5.5-2. Those of the matrix B
are given by

½B � ij ¼ piðrÞj r¼L�j for
0 � i � m

0 � j � L
ð5:5-6Þ

The matrix C is diagonal, with the diagonal elements given by

½C � ij ¼
1

c2
j

� ij 0 � i; j � m ð5:5-7Þ

where � ij is the Kronecker delta function defined by (5.3-2a). Finally the i; j
element of �ðhÞ z is defined by

½�ðhÞz � ij ¼
j

i


 �
h j�1 0 � i; j � m ð5:5-8Þ

where � ð0Þ ¼ I. Using (5.5-4) to (5.5-8) and or Tables 5.5-1 and 5.5-2, (5.5-3a)
can be programmed on a computer to provide optimum weight WðhÞ, and by
the use of (5.5-3), least-squares estimate of the scaled state vector. Note that
i ¼ j ¼ 0 is first element of the above matrices.

5.6 VARIANCE OF LEAST-SQUARES POLYNOMIAL ESTIMATE

Substituting (5.4-11) into (5.5-3) yields

Z �
nþh;n ¼ WðhÞ zTXn þ WðhÞ zN ðnÞ ð5:6-1Þ

It then directly follows that the covariance matrix of the scaled least-squares
estimate Z �

nþh;n is given by

sS
�
nþh;n ¼ WðhÞ zR ðnÞWðhÞT

z ð5:6-2Þ

where R ðnÞ is the covariance matrix of N ðnÞ. Often the measurements have zero
mean and are uncorrelated with equal variance 
2

x . In this case R ðnÞ is given by
(4.5-6), and (5.6-2) becomes

sS
�
nþh;n ¼ 
2

xWðhÞ zWðhÞT
z ð5:6-3Þ

which can be calculated numerically on a computer once WðhÞ is programmed
using (5.5-3a).

When the polynomial fit p� is of degree m ¼ 1, reference 5 ( p. 243) shows
that the above results yield the following algebraic form for the covariance
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matrix for the scaled least-squares state vector estimate Z �
n;n;

sS
�
n;n ¼ 
2

x

2ð2L þ 1Þ
ðL þ 2ÞðL þ 1Þ

6

ðL þ 2ÞðL þ 1Þ

6

ðL þ 2ÞðL þ 1Þ
12

ðL þ 2ÞðL þ 1ÞL

2

6664

3

7775
ð5:6-4Þ

In addition the covariance matrix for the one-step-ahead scaled prediction state
vector Z �

nþ1;n is given by [5, p. 245]

sS
�
nþ1;n ¼ 
2

x

2ð2L þ 3Þ
ðL þ 1ÞL

6

ðL þ 1ÞL

6

ðL þ 1ÞL
12

ðL þ 2ÞðL þ 1ÞL

0

BBB@

1

CCCA
ð5:6-5Þ

It is readily shown [5, p. 245] that the covariance matrix for the unscaled
prediction rate vector X�

nþh;n is given by

S�nþh;n ¼ DðTÞ sS
�
nþh;nDðTÞ ð5:6-6Þ

where

½DðTÞ� ij ¼
j !

T j
� ij 0 � i; j � m ð5:6-6aÞ

In the above we have used the unsubscripted S for the covariance matrix of the
unscaled state vector and sS for the covariance matrix of the scaled state vector
Z �. [In reference 5 (p. 246) S is used for the unscaled vector and S for the
scaled vector, see Table 5.6-1.]

It can be easily shown [5, p. 245] that

½S�nþh;n� ij ¼
i ! j !

T iþj
½ sS

�
nþh;n� ij

¼ 
2
x

T iþj

Xm

k¼0

d i

dr i
� kðrÞ

d j

dr j
� kðrÞ

����
r¼Lþh

ð5:6-7Þ

TABLE 5.6-1. Covariance Matrix Notation

Brookner (this book) Morrison [5]

Unscaled S (capital S) S (sans serif capital S)
Scaled s S (subscripted capital S) S (italic capital S)
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5.7 SIMPLE EXAMPLE

Assume R ðnÞ is diagonal as given by (4.5-6) with 
 x ¼ 10 ft. We want to design
a first-degree (that is, m ¼ 1) fixed-memory smoothing filter whose rms one-
step position prediction error is 3 ft. From (5.6-5) the variance of the one-step
prediction is given by the 0,0 element of (5.6-5), that is,

½ sS
�
nþ1;n�0;0 ¼ 
2

x

2ð2L þ 3Þ
ðL þ 1ÞL ð5:7-1Þ

(In this chapter 5 and chapter 7, to be consistent with the literature [5], we index
the rows and columns of the covariance matrix starting with the first being 0,
the second 1, and so on, corresponding with the derivative being estimated).
Substituting into the above yields

9 ¼ 100 � 2ð2L þ 3Þ
ðL þ 1ÞL ð5:7-2Þ

Solving yields that L ¼ 45 is needed; thus L þ 1 ¼ 46 measurements are
required in Y ðnÞ. The variance of the unscaled velocity estimate can be obtained
using (5.6-5) and (5.6-6) to yield [5, p. 246]

½S�nþ1;n�1;1 ¼ 1

T 2
½ sS

�
nþ1;n�1;1

¼ 1

T 2

2

x

12

ðL þ 2ÞðL þ 1ÞL

¼ 0:0123

T 2

ð5:7-3Þ

Assume it is desired that the rms velocity error be 4 ft /sec. Then from (5.7-3) it
follows that T ¼ 0:028 sec, or equivalently, about 36 measurements per second
must be made.

5.8 DEPENDENCE OF COVARIANCE ON L, T, m, AND h

Using (5.6-7) it can be shown that for large L [5, p. 250]

½S�nþh;n� ij �
� ij

T iþjL iþjþ1

2

x ð5:8-1Þ

where � ij is a constant dependent on h and m but not on L. Values for � ii for
i;m ¼ 0; . . . ; 10 are given in Table 5.8-1 for h ¼ 0 and h ¼ 1, that is, for
filtering to the present time n and for one-step-ahead prediction. Table 5.8-2
gives � ii for h ¼ � 1

2
L, that is, smoothing to the center of the observation
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interval. Knowing � ii from these tables and using (5.8-1), the variance ½S�nþh;n� ii

can be obtained for h ¼ 0, 1, or � 1
2

L for large L.
As mentioned in Section 1.2.4.4, often in the literature the normalized value

of the covariance matrix elements is defined. As before, the normalized
covariance matrix elements are normalized relative to the covariance of the
measurement error 
2

x and referred to as the variance reduction factors (VRFs)
[5, p. 256]; see Section 1.2.4.4. Thus

VRFf½S�nþh;n� ij ¼
1


2
x

½S�nþh;n� ij ð5:8-2Þ

From (5.8-1) it is apparent that the covariance elements decrease with
increasing L. Consider a diagonal element of the covariance matrix defined by
(5.8-1). Assume T, L, and 
2

x are fixed. The question we want to address is how
½S�nþh;n� ii varies with m. We see that it depends on the variation � ii with m.
Examining Table 5.8-1 indicates that � ii increases with increasing m; hence, the
diagonal elements of the covariance matrix increase with increasing m. Because
of this increase with m, it follows that it is desirable to keep m as small as
possible. This subject will be discussed further in Sections 5.9 and 5.10.

It is not difficult to show [5, p. 254] from (5.6-7) that, for a fixed m and L,
½S�nþh;n� ii is a polynomial in h of degree 2ðm � iÞ with its zeros in the
observation interval from n � L to n or equivalently in the interval
h ¼ �L; . . . ; 0. As a result it increases monotonically outside the observation
interval, as shown in Figure 5.8-1. Consequently, predictions or retrodictions far

Figure 5.8-1 Functional monotonic increase of variance [S�nþh;n� ii of h-step prediction
and retrodiction outside of data interval for least-squares fixed-memory filter. (From
Morrison [5, p. 254].)
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Figure 5.8-2 Plot of L � ½S�nþh;n� 0;0 for fixed-memory filter for m ¼ 2 and L ! 1.
(From Morrison [5, p. 255].)

Figure 5.8-3 Plot of L � ½S�nþh;n� 0;0 for fixed-memory filter for m ¼ 3 and L ! 1.
(From Morrison [5, p. 255].)
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outside the measurement interval should be avoided. Figures 5.8-2 and 5.8-3
give plots of ½S�nþh;n�0;0 for m ¼ 2 and m ¼ 3. These curves are at their
minimum value or near their minimum value at the center of the data interval.
For this reason, it is desirable when determining the state of the target to smooth
to the center of the observation interval if appropriate.

Examination of (5.8-1) indicates that, for L and m fixed, ½S�nþh;n� ij increases
as T is reduced whenever i or j or both are greater than 0. For i ¼ j ¼ 0,
½S�nþh;n� ij is independent of T. Note that the filter integration time is given by

Tf ¼ LT ð5:8-3Þ

Thus reducing T while keeping Tf fixed causes ½S�nþh;n� ij to decrease
monotonically; see (5.8-1). In this case L increases as T decreases so that an
ever-increasing number of measurements is obtained over the fixed interval Tf .
As a result ½S�nþh;n� ij will decrease to zero in theory as L increases. However, in
practice, as T goes to zero, the measurements will become correlated so that at
some point the variance will not decrease as L increases, or equivalently, as T
decreases.

Let us use (5.8-1) to obtain the square root of ½S�nþh;n� ii for large L for
important special cases. Specifically for m ¼ 1 and L ¼ n


n;n


x

¼ 
nþ1;n


x

¼ 2
ffiffiffi
L

p ð5:8-4Þ

_
n;n


x

¼ _
nþ1;n


x

¼ 2
ffiffiffi
3

p

Tf

ffiffiffi
L

p ð5:8-5Þ


m;n


x

¼ 1
ffiffiffi
L

p ð5:8-6Þ

_
m;n


x

¼ 2
ffiffiffi
3

p

Tf

ffiffiffi
L

p ð5:8-7Þ

where m as a subscript here is used to represent the midpoint time index, that is,
m ¼ 1

2
n.

The above are extremely useful equations for quick back-of-the-envelope
designs for determining sensitivity to system parameters for the aid-in-system
design and for checks for detailed simulations. For m ¼ 2 we obtain


n;n


x

¼ 
nþ1;n


x

¼ 3
ffiffiffi
L

p ð5:8-8Þ

�
n;n


x

¼ �
nþ1;n


x

¼ 8
ffiffiffi
3

p

Tf

ffiffiffi
L

p ð5:8-9Þ

�
n;n


x

¼ �
nþ1;n


x

¼ 12
ffiffiffi
5

p

T 2
f

ffiffiffi
L

p ð5:8-10Þ
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m;n


 x

¼ 1:5
ffiffiffi
L

p ð5:8-11Þ

_
m;n


 x

¼ 2
ffiffiffi
3

p

Tf

ffiffiffi
L

p ð5:8-12Þ

�
m;n


 x

¼ 12
ffiffiffi
5

p

T 2
f

ffiffiffi
L

p ð5:8-13Þ

The above clearly indicates the penalty in the estimate in going from an
m ¼ 1 to an m ¼ 2 filter if it is not needed. Specifically,


n;n=
 x

� �
m¼2


n;n=
 x

� �
m¼1

¼

nþ1;n=
x

� �
m¼2


nþ1;n=
x

� �
m¼1

¼ 1:5 ð5:8-14Þ

_
n;n=
 x

� �
m¼2

_
n;n=
 x

� �
m¼1

¼
_
nþ1;n=
x

� �
m¼2

_
nþ1;n=
x

� �
m¼1

¼ 4 ð5:8-15Þ


m;n=
 x

� �
m¼2


m;n=
 x

� �
m¼1

¼ 1:5 ð5:8-16Þ

_
m;n=
 x

� �
m¼2

_
m;n=
 x

� �
m¼1

¼ 1 ð5:8-17Þ

Of course if the target has an acceleration and an m ¼ 1 filter is used, then a
bias error would be suffered if an m ¼ 1 g–h filter is used instead of an m ¼ 2
g–h–k filter; see problem 5.8-1.

5.9 SYSTEMATIC ERRORS (BIAS, LAG, OR DYNAMIC ERROR)

In Sections 5.2 and 5.3 we used a polynomial of degree m to fit to L þ 1
measurements given by the vector Y ðnÞ of (5.2-1) when obtaining our least-
squares estimate of x�n;n. The question arises as to what errors we incur if the
target trajectory is a polynomial of degree larger than m or is not a polynomial
at all. The estimate x�n;n will then have a systematic error as well as a random
error due to the measurement errors of (5.4-2) or more generally (4.1-1c). The
magnitude of this systematic error will be developed in this section. Also, in
Section 1.2.4.5 we pointed out that for the constant g–h filter it did not pay to
have the rms of the predicted position estimate 
nþ1;n much smaller than the
bias error b� or vice versa. As a result these errors were balanced. We
somewhat arbitrarily chose b� to equal 3
nþ1;n. We shall in this section show
that the same type of situation prevails for the general least-squares polynomial
estimate. In the next section we shall balance these errors by choosing
b� ¼ 
nþ1;n.
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First let us recall that even if the trajectory is not actually given by a
polynomial, there always exists a polynomial of sufficiently high degree that
can approximate the trajectory as accurately as desired. Let this degree be d and
let the polynomial be given by

pðtÞ ¼
Xd

k¼0

akt k ð5:9-1Þ

Then the trajectory state vector at time n can be written as

An ¼

pðtÞ
DpðtÞ

..

.

DdpðtÞ

2

6664

3

7775

t¼nT

ð5:9-2Þ

Assume that a polynomial of degree m < d, such as (5.2-2), is used to obtain the
least-squares estimate (5.3-11) of the trajectory. Then the resultant estimate
X�

n;n can now be written in terms of An plus the random part N �
n;n of the error in

the estimate plus a systematic error term Bn;n, which we express as �Bn;n;
specifically,

X�
n;n ¼ An � B�

n;n þ N �
n;n ð5:9-3Þ

where

B�
n;n ¼

b�ðtÞ
Db�ðtÞ

..

.

Ddb�ðtÞ

2

6664

3

7775

t¼nT

ð5:9-3aÞ

where b�ðtÞ is the systematic error for the trajectory position estimate. Here,
b�ðtÞ is a polynomial of degree d whose first m terms equal zero (the terms of
degree less than or equal to m) because the least-squares estimating
polynomials of degree m provide an unbiased estimate of the target trajectory
up to degree m; see Section 4.1.

(It should be pointed out that b�ðtÞ actually depends on the observation
interval over which the least-squares estimate is being obtained. As a result it
should be written as ½b�ðtÞ�n. For simplicity we have dropped the subscript n,
and it should be understood that the bias error is indeed dependent on n.)

Using the orthogonal Legendre polynomial representation of Section 5.3 for
b�ðtÞ it can be shown that [5, p. 268]

ðb�i Þnþh;n ¼ d i

dt i
b�ðrÞ

� �

n

����
r¼Lþh

¼ 1

T i

Xd

j¼mþ1

ð� jÞn

d i

dr i
p jðrÞ

����
r¼Lþh

ð5:9-4Þ
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where

ð� jÞn ¼ 1

c2
j

XL

k¼0

xn�Lþk p jðkÞ for m þ 1 � j � d ð5:9-4aÞ

where cj is given by (5.3-5) and r is indexed as in Fig. 5.2-1.
Equation (5.9-4) is the weighted sum of the product of an orthogonal

Legendre polynomial and one of its derivatives. Likewise the diagonal
covariance elements given by ½S�nþh;n� ii of (5.6-7) are made of such sums.
The zeros of these polynomials and in addition their derivatives are inside the
observation interval; see Figures 5.9-1 and 5.9-2. It is for this reason that the
covariance matrix and their derivatives are small in the observation interval and
increase monotonically outside; see Figures 5.8-2 and 5.8-3. Because the
systematic errors and their derivatives are made up of a similar sum, the same is
thus true for them. Half of the polynomials and their derivatives have a zero at
the center of the observation interval.

These results are not surprising since the polynomial fit ½ p�ðrÞ�n was
designed to provide a least-squares fit to the data inside the observation interval
and nothing was stated as to how well the fit would be outside the observation
interval. As a result the point on the trajectory where the target state vector is
best known or nearly best known, in the sense of having a minimum bias error,

Figure 5.9-1 Plot of orthogonal Legendre polynomial pðx; 4, 50) and its first two
derivatives. (From Morrison [5, p. 269].)
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is the center of the observation interval. The same was true relative to the
covariance of the target estimate, tending to be minimum or near minimum at
the center of the observation interval. Hence the time at which the best estimate
of the state vector of the target is obtained is at or near the center of the
observation interval. It is for this reason that smoothing to the center of the
observation interval is often done; see Sections 3.5.2 and 5.8.

From (5.9-4) it follows that the systematic errors decrease as the order m of
the polynomial fit increases. This occurs until m ¼ d, at which point there is no
systematic error. In reference 5 it is also shown that for a given L and m the
systematic error decreases as T decreases. This is not surprising since it is well
known that a polynomial fit of degree m to a set of data points L þ 1 provides a
better fit when the data points are observed over a small interval rather than a
large interval. In reference 5 it is shown that the magnitude of the systematic
error of (5.9-4) increases as L increases when T is fixed. Hence, for a fixed T,L
(or equivalently Tf ) should be chosen as small as possible in order to minimize
the systematic error. This is opposite to what is needed to minimize the estimate
covariance elements given by (5.8-1). There it is required to have L, or
equivalently Tf , as large as possible.

We thus can not simultaneously minimize the systematic error and the
estimate noise error using the least-squares polynomial fit described above.
Consequently, a compromise choice for L is needed that balances the systematic
error and the estimate noise error so that they are of the same order of

Figure 5.9-2 Plot of orthogonal Legendre polynomial p(x; 5, 50) and its first two
derivatives. (From Morrison [5, p. 269].)
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magnitude as was done in Section 1.2.4.5; see (1.2-22) and (1.2-23). One way
of doing this is described in the next section.

5.10 BALANCING SYSTEMATIC AND RANDOM ESTIMATION
ERRORS

Assume that when no measurement errors are present the data set given by Y ðnÞ
of (5.2-1) can be described at time t ¼ nT with negligible error by the
polynomial of degree d given by

pðtÞ ¼
Xd

k¼0

ðakÞnt k ð5:10-1Þ

Assume that the power series pðtÞ given above converges rapidly so that if it is
truncated to a polynomial of degree m then the truncation error is dominated by
the first neglected term ðamþ1Þn t mþ1. Then (to within a sign) the ith derivative
of the systematic error can be expressed as [5, p. 275]

Dib�ðrÞ � 1

T i

ðamþ1ÞnT mþ1L ðmþ1Þ

2m þ 2

m þ 1


 �
d i

dr i
pmþ1ðrÞ ð5:10-2Þ

Let us determine the systematic error at the end of the observation interval, that
is, at r ¼ L; see Figure 5.2-1. For r ¼ L it follows from (5.3-3) and (5.3-4) that
jpmþ1ðLÞj ¼ pðL;m þ 1; LÞ ¼ 1. Hence the systematic error is bounded by [5, p.
276]

j½b�ðLÞj � jamþ1jT mþ1Lmþ1

2m þ 2

m þ 1


 � ð5:10-3Þ

where jamþ1j is the magnitude of an estimated known bound on the coefficient
amþ1 of the ðm þ 1Þst term and

n

m


 �
¼ n!

m!ðn � mÞ! ð5:10-3aÞ

is the standard binomial coefficient, and x ðmÞ is defined by (5.3-4a).
In contrast, from (5.8-1) the variance of the smoothed position error is [5,

p. 276]

½S�n;n�0;0 ¼ �0;0ðmÞ
L


2
x ð5:10-4Þ

where �0;0 is written as �0;0ðmÞ to emphasize its dependence on m. The term
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�0;0ðmÞ is determined from Table 5.8-1. Equation (5.10-3) clearly shows how
the systematic error increases with increasing L, while (5.10-4) shows how the
variance of the trajectory position error decreases with increasing L.

To balance the systematic and random prediction errors, jb�ðrÞj is set equal
to k times the rms prediction error, as done in Section 1.2.4.5. There k was set
equal to 3; see (1.2-23). Here let us set k ¼ 1. For a given m we find the L that
makes the systematic error and the rms of the random error equal. We add the
two errors to find the total error. We do this for m ¼ 0; 1; 2; . . . . Then we select
the m that results in the lowest total error. This procedure allows the
determination of the L and m that gives simultaneously the lowest total error
and the best balance between the systematic and random errors.

5.11 TREND REMOVAL

Sometimes the trajectory of the target is known approximately. For example,
this could be the case when tracking a satellite whose orbit is approximately
known. Generally the trajectory of the satellite is known to be given by some
elliptical equation of motion having approximately known parameters. Assume
that a set of L þ 1 new measurements Y ðnÞ given by (5.2-1) is made at the times
n � L; . . . ; n of the satellite position. We want to use these L þ 1 measurements
to improve our known estimate of the target trajectory. We cannot directly use
our linear least-squares Legendre polynomial filtering described in Section 5.3
for a target having its dynamics described by this elliptical trajectory. This is
because the target motion is not described by a polynomial function of time.
Instead the motion dynamics of the target is described by an elliptical path that
is not nonlinear. This problem can be circumvented because the exact elliptical
trajectory of the target can be approximated by a polynomial trajectory of high
enough degree, d as given by (5.9-1), such that it has negligible error. The linear
least-squares orthogonal Legendre polynomial filtering process described in
Section 5.3 can then be applied to the trajectory to obtain an estimating
polynomial of degree m � d that fits the data. An improvement on this
polynomial approximation procedure will actually be used. This improvement
reduces the degree m of the approximating polynomial fit that has to be used.
This in turn is important because we saw in Section 5.8 that the variance of the
least-squares estimate decreases with decreasing m. With this technique the
polynomial of degree d, which has negligble errors, actually never has to be
found. As we shall see, the technique involves a trend removal from the most
recent data of the trajectory. The technique is general in that it can be applied to
a linear as well as a nonlinear motion dynamics case where either is described
by a high-order polynomial of degree d.

This trend removal approach applies to any situation where we have an initial
approximate polynomial fit of degree m to the trajectory (the actual dynamics
being linear or nonlinear) based on the past data. Assume that L þ 1 new
observations Y ðnÞ of (5.2-1) have been obtained and that we want to improve our
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estimate of the trajectory. Then we use the existing polynomial fit based on the
past data to obtain an estimate of what the L þ 1 new observations should be.
We next find the differences between the actual new L þ 1 measurements and
their predictions based on the past measurements. Let �Y ðnÞ [given by (5.11-3)]
represent this set of L þ 1 differences. It is to this set of differences �Y ðnÞ that
the least-squares estimate procedure is applied in order to update the target
trajectory. That is, we find a best-fitting polynomial to the differences �Y ðnÞ
rather than Y ðnÞ. The advantage is that the �Y ðnÞ has most of its motion (trend)
removed from it and we are left with mostly the rms errors and some part of the
trajectory trend that the past data does not allow us to predict. This trend
removal technique is now detailed.

Assume that based on past data we know the approximate elliptical orbit can
be approximated by a polynomial of degree m given by (4.1-44), that is,

p�ðtÞ ¼
Xm

k¼0

akt k ð5:11-1Þ

Next form the differences

�yn�i ¼ yn�i � p�n�i for 0 � i � L ð5:11-2Þ

where

p�n�i ¼ p�ðt n�iÞ ¼ p�½ðn � iÞT � ð5:11-2aÞ

The above set of L þ 1 differences terms can be thought of as forming the new
measurement vector �Y ðnÞ is given by

�Y ðnÞ ¼ ð�yn; �yn�1; . . . ; �yn�LÞT ð5:11-3Þ

Assume no measurement noise errors are present in the �yn�i. Then the set of
L þ 1 measurements defined by �Y ðnÞ is exactly described by the difference
polynomial given by

�pðtÞ ¼ pðtÞ � p�ðtÞ ¼
Xd

i¼0

ðai � aiÞt i ð5:11-4Þ

where pðtÞ is the polynomial of degree d that describes with negligible error the
true trajectory, pðtÞ being given by (5.10-1). The least-squares orthogonal
Legendre polynomial fit described in Section 5.3 can now be applied to �Y ðnÞ to
obtain an estimate for this difference polynomial �p. Instead of the estimate
X�

nþh;n for the state vector at time n þ h, the estimate �X�
nþh;n given by

�X�
nþh;n ¼ X�

nþh;n � X nþh;n ð5:11-5Þ
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is obtained, where

X nþh;n ¼

p�ðtÞ
Dp�ðtÞ

..

.

Dmp�ðtÞ

2

6664

3

7775

t¼ðnþhÞT

ð5:11-5aÞ

The desired estimate X�
nþh;n is obtained from �X�

nþh;n by adding X nþh;n to
�X�

nþh;n.
Applying the least-squares filtering to the data set �Y ðnÞ instead of Y ðnÞ yields

a much smaller systematic error. This is because the mth-degree polynomial fit
to the data set �Y ðnÞ has coefficients that are much smaller than those for Y ðnÞ,
the known trend in the data set being removed. Most important, as a result of
this trend removal, the dominant truncation error coefficient resulting when
an mth-degree polynomial fit is used is now given by amþ1 � amþ1 instead
of amþ1; see (5.11-4). In turn this will result in the systematic error given by
(5.10-3) being smaller. As a result the degree m of the polynomial fit can be
reduced and L can be increased, with both of these leading to a reduction in the
covariance matrix of the estimate and in turn a reduction of the sum of the
systematic plus random error, that is, the total error.
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6
EXPANDING-MEMORY
(GROWING-MEMORY)
POLYNOMIAL FILTERS

6.1 INTRODUCTION

The fixed-memory flter described in Chapter 5 has two important disadvan-
tages. First, all the data obtained over the last L þ 1 observations have to be
stored. This can result in excessive memory requirements in some instances.
Second, at each new observation the last L þ 1 data samples have to be
reprocessed to obtain the update estimate with no use being made of the
previous estimate calculations. This can lead to a large computer load. When
these disadvantages are not a problem, the fixed-memory filter would be used
generally. Two filters that do not have these two disadvantages are the
expanding-memory filter and the fading memory filter. The expanding
memory filter is, as discussed in Section 1.2.10 and later in Section 7.6,
suitable for track initiation and will be covered in detail in this chapter.
The fading memory filter as discussed in Chapter 1 is used for steady state
tracking, as is the fixed-memory filter, and will be covered in detail in
Chapter 7.

Before proceeding it is important to highlight the advantages of the
fixed-memory filter. First, if bad data is acquired, the effect on the filter
will only last for a finite time because the filter has a finite memory of
duration L þ 1; that is, the fixed-memory filter has a finite transient
response. Second, fixed-memory filters of short duration have the advantage
of allowing simple processor models to be used when the actual process
model is complex or even unknown because simple models can be used
over short observation intervals. These two advantages are also obtained
when using a short memory for the fading-memory filter discussed in
Chapter 7.
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6.2 EXTRAPOLATION FROM FIXED-MEMORY FILTER
RESULTS

All the results given in Chapter 5 for the fixed-memory filter apply directly to
the expanding-memory filter except now L is increasing with time instead of
being fixed. To allow for the variation of L, it is convenient to replace the
variable L by n and to have the first observation yn�L be designated as y0. The
measurement vector Y ðnÞ of (5.2-1) becomes

Y ðnÞ ¼ ½ yn; yn�1; . . . ; y0�T ð6:2-1Þ

where n is now an increasing variable. The filter estimate is now based on all
the n þ 1 past measurements. All the equations developed in Chapter 5 for the
fixed-memory state vector estimate covariance matrix [such as (5.6-4), (5.6-7),
and (5.8-1)] and systematic error [such as (5.10-2) and (5.10-3)] apply with L
replaced by n. The least-squares polynomial fit equations given by (5.3-11),
(5.3-13), and (5.5-3) also applies with L again replaced by n.

In this form the smoothing filter has the disadvantage, as already mentioned,
of generally not making use of any of the previous estimate calculations in
order to come up with the newest estimate calculation based on the latest
measurement. An important characteristic of the expanding-memory filter, for
which n increases, is that it can be put in a recursive form that allows it to make
use of the last estimate plus the newest observation yn to derive the latest
estimate with the past measurements ð y0; y1; . . . ; yn�1Þ not being needed. This
results in a considerable savings in computation and memory requirements
because the last n measurements do not have to be stored, only the most recent
state vector estimate, X�

n;n�1. This estimate contains all the information needed
relative to the past measurements to provide the next least-squares estimate.
The next section gives the recursive form of the least-squares estimate
orthogonal Legendre filter.

6.3 RECURSIVE FORM

It can be shown [5, pp. 348–362] after quite some manipulation that the filter
form given by (5.3-13) can be put in the recursive forms of Table 6.3-1 for a
one-state predictor when m ¼ 0; 1; 2; 3. The results are given in terms of the
scaled state vector Z �

nþ1;n [see (5.4-12)]. As indicated before only the last one-

state update vector Z �
n;n�1 has to be remembered to do the update. This is an

amazing result. It says that the last one-step update state vector Z �
n;n�1 of

dimension m þ 1 contains all the information about the previous n observations
in order to obtain the linear least-squares polynomial fit to the past data Y ðn�1Þ
and the newest measurement yn. Stated another way, the state vector Z �

n;n�1 is a
sufficient statistic [8, 9, 100].
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TABLE 6.3-1. Expanding-Memory Polynomial Filter

Define

z�0
z�1
z�2

z�3

0

BBBBBB@

1

CCCCCCA

nþ1;n

¼

x�
T _x�

T 2

2!
�x�

T 3

3!
_�x�

0

BBBBBB@

1

CCCCCCA

nþ1;n

" n 	 y n � z�0
� �

n;n�1

Degree 0 a:

z�0
� �

nþ1;n
¼ z�0
� �

n;n�1
þ 1

n þ 1
" n

Degree 1a:

z�1
� �

nþ1;n
¼ z�1
� �

n;n�1
þ 6

ðn þ 2Þðn þ 1Þ "n

z�0
� �

nþ1;n
¼ z�0
� �

n;n�1
þ z�1
� �

nþ1;n
þ 2ð2n þ 1Þ
ðn þ 2Þðn þ 1Þ "n

Degree 2 a:

z�2
� �

nþ1;n
¼ z�2
� �

n;n�1
þ 30

ðn þ 3Þðn þ 2Þðn þ 1Þ " n

z�1
� �

nþ1;n
¼ z�1
� �

n;n�1
þ 2 z�2
� �

nþ1;n
þ 18ð2n þ 1Þ
ðn þ 3Þðn þ 2Þðn þ 1Þ " n

z�0
� �

nþ1;n
¼ z�0
� �

n;n�1
þðz�1 Þ nþ1;n � z�2

� �
nþ1;n

þ 3ð3n2 þ 3n þ 2Þ
ðn þ 3Þðn þ 2Þðn þ 1Þ " n

Degree 3 a:

z�3
� �

nþ1;n
¼ z�3
� �

n;n�1
þ 140

ðn þ 4Þðn þ 3Þðn þ 2Þðn þ 1Þ " n

z�2
� �

nþ1;n
¼ z�2
� �

n;n�1
þ 3 z�3
� �

nþ1;n
þ 120ð2n þ 1Þ

ðn þ 4Þðn þ 3Þðn þ 2Þðn þ 1Þ "n

z�1
� �

nþ1;n
¼ z�1
� �

n;n�1
þ 2 z�2
� �

nþ1;n
� 3 z�3
� �

nþ1;n
þ 20ð6n2 þ 6n þ 5Þ

ðn þ 4Þðn þ 3Þðn þ 2Þðn þ 1Þ " n

z�0
� �

nþ1;n
¼ z�0
� �

n;n�1
þ z�1
� �

nþ1;n
� z�2
� �

nþ1;n

þ ðz�3 Þ nþ1;n þ
8ð2n3 þ 3n2 þ 7n þ 3Þ

ðn þ 4Þðn þ 3Þðn þ 2Þðn þ 1Þ "n

a In all cases, n starts at zero.

Source: From Morrison [5].
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The filter equations given in Table 6.3-1 for m ¼ 1 are exactly the same as
those of the g–h growing-memory filter originally given in Section 1.2.10 for
track initiation; compare (1.2-38a) and (1.2-38b) with the expressions for g and
h given in Table 6.3-1 for m ¼ 1; see problem 6.5-2. The filter of Section 1.2.10
and Table 6.3-1 for m ¼ 1 are for a target characterized as having a constant-
velocity dynamics model. The equations in Table 6.3-1 for m ¼ 2 are for when
the target dynamics has a constant acceleration and corresponds to the g–h–k
growing-memory filter. The equations for m ¼ 3 are the corresponding
equations for when the target dynamics have a constant jerk, that is, a constant
rate of change of acceleration. Practically, filters of higher order than m ¼ 3 are
not warranted. Beyond jerk are the yank and snatch, respectively, the fourth and
fifth derivatives of position. The equation for m ¼ 0 is for a stationary target. In
this case the filter estimate of the target position is simply an average of the
n þ 1 measurements as it should be; see (4.2-23) and the discussion
immediately before it. Thus we have developed the growing-memory g–h
filter and its higher and lower order forms from the theory of least-squares
estimation. In the next few sections we shall present results relative to the
growing-memory filter with respect to its stability, track initiation, estimate
variance, and systematic error.

6.4 STABILITY

Recursive differential equations such as those of Table 6.3-1 are called stable if
any transient responses induced into them die out eventually. (Stated more
rigorously, a differential equation is stable if its natural modes, when excited,
die out eventually.) It can be shown that all the recursive differential expanding-
memory filter equations of Table 6.3-1 are stable.

6.5 TRACK INITIATION

The track initiation of the expanding-memory filters of Table 6.3-1 needs an
initial estimate of Z �

n;n�1 for some starting n. If no a prori estimate is available,
then the first m þ 1 data points could be used to obtain an estimate for Z �

m;m�1,
where m is the order of the expanding-memory filter being used. This could be
done by simply fitting an mth-order polynomial filter through the first m þ 1
data points, using, for example, the Lagrange interpolation method [5].
However, an easier and better method is available. It turns out that we can
pick any arbitrary value for Z �

0;�1 and the growing memory filter will yield the
right value for the scaled state vector Z �

mþ1;m at time m. In fact the estimate
Z �

mþ1;m will be least-squares mth-order polynomial fit to the first m þ 1 data
samples independent of the value chosen for Z �

0;�1; see problems 6.5-1 and
6.5-2. This is what we want. Filters having this property are said to be self-
starting.
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6.6 VARIANCE REDUCTION FACTOR

For large n the VRF for the expanding-memory filter can be obtained using
(5.8-1) and Tables (5.8-1) and (5.8-2) with L replaced by n. Expressions for the
VRF for arbitrary n are given in Table 6.6-1 for the one-step predictor when
m ¼ 0, 1, 2, 3. Comparing the one-step predictor variance of Table 6.6-1 for
m ¼ 1 with that given in Section 1.2.10 for the growing-memory filter indicates
that they are identical, as they should be; see (1.2-42). Also note that the same
variance is obtained from (5.6-5) for the least-squares fixed-memory filter.

TABLE 6.6-1. VRF for Expanding-Memory One-Step Predictorsa

(Diagonal Elements of S�nþ1;n)

Degree (m) Output VRF

0 x�nþ1;n

1

ðn þ 1Þ ð1Þ

1 _x�nþ1;n

12

T 2ðn þ 2Þ ð3Þ

x�nþ1;n

2ð2n þ 3Þ
ðn þ 1Þ ð2Þ

2 �x�nþ1;n

720

T 4ðn þ 3Þ ð5Þ

_x�nþ1;n

192n2 þ 744n þ 684

T 2ðn þ 3Þ ð5Þ

x�nþ1;n

9n2 þ 27n þ 24

ðn þ 1Þ ð3Þ

3 _�x�nþ1;n

100; 800

T 6ðn þ 4Þ ð7Þ

�x�nþ1;n

25; 920n2 þ 102; 240n þ 95; 040

T 4ðn þ 4Þ ð7Þ

_x�nþ1;n

1200n4 þ 10; 200n 3 þ 31; 800n 2 þ 43; 800n þ 23; 200

T 2ðn þ 4Þð7Þ

x�nþ1;n

16n 3 þ 72n 2 þ 152n þ 120

ðn þ 1Þ ð4Þ

aRecall that x ðmÞ ¼ xðx � 1Þðx � 2Þ 
 
 
 ðx � m þ 1Þ; see (5.3-4a).

Source: (From Morrison [5].)
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6.7 SYSTEMATIC ERRORS

Because the systematic error of the expanding-memory filter grows as n grows
(see Section 5.10), this filter cannot be cycled indefinitely. The fixed-memory
filter of Chapter 5 and g–h fading-memory filter of Section 1.2.6 do not have
this problem. The g–h fading-memory filter and its higher order forms are
developed in the next section from the least-squares estimate theory results
developed in Section 4.1.
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7
FADING-MEMORY (DISCOUNTED
LEAST-SQUARES) FILTER

7.1 DISCOUNTED LEAST-SQUARES ESTIMATE

The fading-memory filter introduced in Chapter 1, is similar to the fixed-
memory filter in that it has essentially a finite memory and is used for tracking a
target in steady state. As indicated in Section 1.2.6, for the fading-memory filter
the data vector is semi-infinite and given by

Y ðnÞ ¼ ½ yn; yn�1; . . .�T ð7:1-1Þ

The filter realizes essentially finite memory for this semi-infinite data set by
having, as indicated in section 1.2.6, a fading-memory. As for the case of the
fixed-memory filter in Chapter 5, we now want to fit a polynomial p� ¼
½ p�ðrÞ�n [see (5.2-3), e.g.)] to the semi-infinite data set given by (7.1-1).
Here, however, it is essential that the old, stale data not play as great a role in
determining the polynomial fit to the data, because we now has a semi-infinite
set of measurements. For example, if the latest measurement is at time n and the
target made a turn at data sample n-10, then we do not want the samples prior
to the n � 10 affecting the polynomial fit as much. The least-squares
polynomial fit for the fixed-memory filter minimized the sum of the squares
of the errors given by (5.3-7). If we applied this criteria to our filter, then
the same importance (or weight) would be given an error resulting from
the most recent measurement as well as one resulting for an old
measurement. To circumvent this undesirable feature, we now weight the
error due to the old data less than that due to recent data. This is achieved
using a discounted, least-squares weighting as done in (1.2-34); that is, we
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minimize

en ¼
X1

r¼0

fyn�r � p�ðrÞ
� �

n
g2� r ð7:1-2Þ

where here positive r is now running backward in time and

0 � � < 1 ð7:1-2aÞ

The parameter � here determines the discounting of the old data errors, as done
in Section 1.2.6. For the most recent measurement yn; r ¼ 0 in (7.1-2) and
�0 ¼ 1 with the error based on the most recent measurement at time r ¼ 0
being given maximum weight. For the one-time-interval-old data yn�1; r ¼ 1
and � r ¼ � so that these one-time-interval-old data are not given as much
weight (because 0 � � < 1), with the result that the error for the polynomial
fit to this data point can be greater than it was for the most recent data point
in obtaining the best estimating polynomial, which satisfies (7.1-2). For the
two-time-interval-old data point given by yn�2, r ¼ 2 and � r ¼ �2, and the error
for this time sample can even be bigger, and so forth. Thus with this weighting
the errors relative to the fitting polynomial are discounted more and more as the
data gets older and older. The minimum of (7.1-2) gives us what we called in
Section 1.2.6 a discounted least-squares fit of the polynomial to the semi-
infinite data set. The memory of the resulting filter is dependent on �. The
smaller � is the shorter the filter memory because the faster the filter discounts
the older data. This filter is also called the fading-memory filter. It is a
generalization of the fading-memory g–h filter of Section 1.2.6. The g–h filter of
Section 1.2.6 is of degree m ¼ 1, here we fit a polynomial p� of arbitrary
degree m.

To find the polynomial fit p� of degree m that minimizes (7.1-2), an
orthogonal polynomial representation of p� is used, just as was done for the
fixed-memory filter when minimizing (5.3-7) by the use of the Legendre
polynomial; see (5.3-1). Now, however, because the data is semi-infinite and
because of the discount weighting by � r, a different orthogonal polynomial is
needed. The discrete orthogonal polynomial used now is the discrete Laguerre
polynomial described in the next section.

7.2 ORTHOGONAL LAGUERRE POLYNOMIAL APPROACH

The discounted least-squares estimate polynomial p� that minimizes (7.1-2)
is represented by the sum of normalized orthogonal polynomials as done in
(5.3-1) except that the orthonormal discrete Laguerre polynomial � jðrÞ of
degree j is defined by the equations [5, pp. 500–501]

� jðrÞ ¼ KjpjðrÞ ð7:2-1Þ
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where

Kj ¼
1

cj

¼ 1 � �

� j

� � 1
2

ð7:2-1aÞ

cj ¼ cð j; �Þ ð7:2-bÞ

½c ð j; �Þ�2 ¼ � j

1 � �
ð7:2-1cÞ

pjðrÞ ¼ pðr; j; �Þ

¼ � j
Xj

�¼0

ð�1Þ� j

�

� �
1 � �

�

� ��
r

�

� �
ð7:2-1dÞ

where pðr; j; �Þ is the orthogonal discrete Laguerre polynomial, which obeys the
following discrete orthogonal relationship:

X1

r¼0

pðr; i; �Þpðr; j; �Þ ¼ 0 j 6¼ i

½c ð j; �Þ�2
j ¼ i

�
ð7:2-2Þ

Tabel 7.2-1 gives the first four discrete Laguerre polynomials. The orthonormal
Laguerre polynomial � jðrÞ obeys the orthonormal relationship

X1

r¼0

� iðrÞ� jðrÞ� r ¼ � ij ð7:2-3Þ

TABLE 7.2-1. First Four Orthogonal Discrete Laguerre Polynomials

pðx; 0; �Þ ¼ 1

pðx; 1; �Þ ¼ � 1 � 1 � �

�
x

	 


pðx; 2; �Þ ¼ � 2 1 � 2
1 � �

�

� �
x þ 1 � �

�

� � 2
xðx � 1Þ

2!

" #

pðx; 3; �Þ ¼ � 3 1 � 3
1 � �

�

� �
x þ 3

1 � �

�

� �2
xðx � 1Þ

2!
� 1 � �

�

� �3
xðx � 1Þðx � 2Þ

3!

" #

pðx; 4; �Þ ¼ � 4

"

1 � 4
1 � �

�

� �
x þ 6

1 � �

�

� �2
xðx � 1Þ

2!

� 4
1 � �

�

� �3
xðx � 1Þðx � 2Þ

3!
þ 1 � �

�

� �4
xðx � 1Þðx � 2Þðx � 3Þ

4!

#
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Substituting (7.2-1) into (5.3-1), and this in turn into (7.1-2), and performing the
minimization yields [5, p. 502]

ð� jÞn ¼
X1

k¼0

yn�k� jðkÞ� k 0 � j � m ð7:2-4Þ

However, the above solution is not recursive. After some manipulation [5, pp.
504–506], it can be shown that the discounted least-squares mth-degree
polynomial filter estimate for the ith derivative of x, designated as Dix�, is
given by the recursive solution

ðDix�Þn�r;n ¼ � 1

T

� �iXm

j¼0

d i

dr i
� jðrÞ

	 

Kj�

jð1 � qÞ j

ð1 � q�Þ jþ1

( )

yn ð7:2-5Þ

where q is the backward-shifting operator given by

qkyn ¼ yn�k ð7:2-5aÞ

for k an integer and q has the following properties:

ð1 � qÞ2 ¼ 1 � 2q þ q2 ð7:2-6Þ
ð1 � qÞ�1 ¼ 1 þ q þ q2 þ � � � ð7:2-7Þ

¼
X1

k¼0

qk

ð� � qÞ�1 ¼ ��1 1 � q

�

� ��1

¼ ��1 1 þ q

�
þ q

�

� �2

þ � � �
 !

ð7:2-8Þ

It is not apparent at first that (7.2-5) provides a recursive solution for Dix�. To
verify this the reader should write out (7.2-5) for i ¼ 0 and m ¼ 1. Using (7.2-5)
the recursive equations of Table 7.2-2 for the fading-memory filters are obtained
for m ¼ 0; . . . ; 4 [5, pp. 506–507].

The filter equations for m ¼ 1 are identical to the fading memory g–h filter of
Section 1.2.6. Specifically, compare g and h of (1.2-35a) and (1.2-35b) with
those of Table 7.2-2 for m ¼ 1. Thus we have developed the fading-memory
g–h filter from the least-squares estimate as desired. In the next sections we
shall discuss the fading-memory filter stability, variance, track initiation, and
systematic error, as well as the issue of balancing systematic and random
prediction errors and compare this filter with the fixed-memory filter. Note that
the recursive fading-memory filters given by Table 7.2-2 only depend on the
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TABLE 7.2-2. Fading-Memory Polynomial Filter

Define

z�0
z�1

z�2

z�3

z�4

0

BBBBBBBBBBBB@

1

CCCCCCCCCCCCA

nþ1;n

¼

x�

TDx�

T 2

2!
D 2x�

T 3

3!
D 3x�

T 4

4!
D 4x�

0

BBBBBBBBBBBB@

1

CCCCCCCCCCCCA

nþ1;n

" n ¼ yn � z�0
� �

n;n�1

Degree 0:

z�0
� �

nþ1;n
¼ z�0
� �

n;n�1
þð1 � �Þ" n

Degree 1:

z�1
� �

nþ1;n
¼ z�1
� �

n;n�1
þð1 � �Þ 2" n

z�0
� �

nþ1;n
¼ z�0
� �

n;n�1
þ z�1
� �

nþ1;n
þð1 � � 2Þ" n

Degree 2:

z�2
� �

nþ1;n
¼ z�2
� �

n;n�1
þ 1

2
ð1 � �Þ 3" n

z�1
� �

nþ1;n
¼ z�1
� �

n;n�1
þ2 z�2
� �

nþ1;n
þ 3

2
ð1 � �Þ 2ð1 þ �Þ" n

z�0
� �

nþ1;n
¼ z�0
� �

n;n�1
þ z�1
� �

nþ1;n
� z�2
� �

nþ1;n
þ 1 � � 3
� �

" n

Degree 3:

z�3
� �

nþ1;n
¼ z�3
� �

n;n�1
þ 1

6
ð1 � �Þ 4" n

z�2
� �

nþ1;n
¼ z�2
� �

n;n�1
þ3 z�3
� �

nþ1;n
þð1 � �Þ 3ð1 þ �Þ" n

z�1
� �

nþ1;n
¼ z�1
� �

n;n�1
þ2 z�2
� �

nþ1;n
�3 z�3
� �

nþ1;n
þ 1

6
ð1 � �Þ 2ð11 þ 14�þ 11� 2Þ" n

z�0
� �

nþ1;n
¼ z�0
� �

n;n�1
þ z�1
� �

nþ1;n
� z�2
� �

nþ1;n
þ z�3
� �

nþ1;n
þ 1 � � 4
� �

" n

Degree 4:

z�4
� �

nþ1;n
¼ z�4
� �

n;n�1
þ 1

24
ð1 � �Þ 5" n

z�3
� �

nþ1;n
¼ z�3
� �

n;n�1
þ4 z�4
� �

nþ1;n
þ 5

12
ð1 � �Þ 4ð1 þ �Þ" n

z�2
� �

nþ1;n
¼ z�2
� �

n;n�1
þ3 z�3
� �

nþ1;n
�6 z�4
� �

nþ1;n
þ 5

24
ð1 � �Þ 3 7 þ 10 �þ 7� 2ð Þ" n

z�1
� �

nþ1;n
¼ z�1
� �

n;n�1
þ2 z�2
� �

nþ1;n
�3 z�3
� �

nþ1;n
þ4 z�4
� �

nþ1;n

þ 5
12
ð1 � �Þ 2

5 þ 7�þ 7�2 þ 5� 3ð Þ" n

z�0
� �

nþ1;n
¼ z�0
� �

n;n�1
þ z�1
� �

nþ1;n
� z�2
� �

nþ1;n
þ z�3
� �

nþ1;n
� z�4
� �

nþ1;n
þ 1 � � 5
� �

" n

Source: From Morrison [5].
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past infinite set of measurements yn, yn�1; . . . through the past prediction
estimate Z �

n;n�1 just as was the case for the expanding-memory filter of Section
6.3. Hence as in that case Z �

n;n�1is a sufficient statistic.

7.3 STABILITY

The fading-memory filters described in Section 7.2 are all stable for j�j < 1. For
large n the transient (natural modes) of the fading-memory filter vary as nm�n

[5, p. 508]. As a result the transient error persists longer the larger m is. Thus it
is desired to keep m as small as possible in order to keep the transient as short as
possible. On the other hand the filter systematic errors increase with decreasing
m. Hence a compromise is needed.

Making � smaller will also cause the transient to die out faster. However,
making � smaller will also reduce the filter memory (as was the case for the
discounted least-squares g–h filter of Section 1.2.6), the old data not being
weighted as heavily; see (7.1-2). Based on the results obtained for the fixed-
memory filter, it follows that the shorter the memory time the smaller the
systematic errors but the larger the variance of the filter estimates. This results
in another compromise being needed. In Section 7.8 we discuss the balancing of
the systematic and random errors.

7.4 VARIANCE REDUCTION FACTORS

The VRF for the fading-memory filter is given in Table 7.4-1 for the one-step
predictor when m ¼ 0; . . . ; 3: A general expression for the i, j covariance matrix
elements is given by [5, p. 528]

½S�n�r;n� ij ¼ 
2
x

ð1 � �Þ iþjþ1� ijð�; r;mÞ
T iþj

ð7:4-1Þ

where values of the diagonal � iið�; r;mÞ are given in Table 7.4-2 for
i � 0; . . . ; 10 and m ¼ 0; . . . ; 10 when � is close to unity. For the fading-
memory one-step predictor with m ¼ 1, the exact covariance matrix is given by
[5, p. 532]

sS
�
nþ1;n ¼ 
2

x

ð1 � �Þ 5 þ 4�þ �2ð Þ
ð1 þ �Þ3

ð1 � �Þ2ð3 þ �Þ
ð1 þ �Þ3

ð1 � �Þ2ð3 þ �Þ
ð1 þ �Þ3

2ð1 � �Þ3

ð1 þ �Þ3

0

BBBB@

1

CCCCA
ð7:4-2Þ

The variance for the one-step position predictor given by (7.4-2) (the 0,0
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element) agrees with the results given in Section 1.2.10 for the fading-memory
g–h filter; see (1.2-41). The results of (7.4-2) also agree with those of Table
7.4-1 for m ¼ 1.

7.5 COMPARISON WITH FIXED-MEMORY POLYNOMIAL
FILTER

The fading-memory filter is very similar to the fixed-memory filter of Chapter 5
in that (unlike the expanding-memory filter)it has effectively a fixed memory.

TABLE 7.4-1. Fading-Memory Filter VRF for One-Step Predictor

Degree (m) Output VRF (0 < � < 1)

0 x�nþ1;n

1 � �

1 þ �

1 Dxnþ1;n�
2

T 2

ð1 � �Þ3

ð1 þ �Þ3

x�nþ1;n

1 � �

ð1 þ �Þ 3
ð5 þ 4�þ � 2Þ

2 D 2x�nþ1;n

6

T 4

ð1 � �Þ 5

ð1 þ �Þ 5

Dx�nþ1;n

1

T 2

ð1 � �Þ 3

ð1 þ �Þ 5

49 þ 50�þ 13� 2

2

� �

x�nþ1;n

1 � �

ð1 þ �Þ 5
ð19 þ 24�þ 16�2 þ 6� 3 þ �4Þ

3 D 3x�nþ1;n

20

T 6

ð1 � �Þ 7

ð1 þ �Þ 7

D 2x�nþ1;n

1

T 4

ð1 � �Þ 5

ð1 þ �Þ 7
ð126 þ 152�þ 46�2Þ

Dx�nþ1;n

1

T 2

ð1 � �Þ 3

ð1 þ �Þ 7

2797 þ 4; 634�þ 3; 810� 2 þ 1; 706� 3 þ 373� 4

18

� �

x�nþ1;n

1 � �

ð1 þ �Þ7
ð69 þ 104�þ 97�2 þ 64� 3 þ 29� 4 þ 8� 5 þ � 6Þ

Note: The VRF of D ix� is defined as EfðD ix�nþ1;nÞ
2g=
 2

x and is thus the diagonal element of the
estimate covariance matrix when the variance of the input errors is unity.

Source: From Morrison [5, pp. 526, 527].
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As indicated previously, this memory depends on �. The question we address in
this section is what is the effective memory of the fading-memory filter. A
natural basis is to find the � for which the variance of the fading-memory filter
estimate is identical to that of the fixed-memory filter. We first answer this
question for the one-step predictor of first degree ðm ¼ 1Þ: Equation (5.6-5)
gives the covariance matrix for the fixed-memory filter while (7.4-2) gives it for
the fading-memory filter. Equating the 0, 0 elements of these two matrices gives
L _¼ 30 for � ¼ 0:9. Thus the fading-memory filter has an effective memory
(smoothing time) of 30T. Note the same procedure of equating variances was
used in Section 1.2.10 [see (1.2-40)] for track initiation. There it was used to
determine the time to transition from the track initiation growing-memory filter
to the g–h steady-state fading-memory filter. From the above we see that the
track initiation transition time turns out to be the time when the memory of the
growing-memory filter equals that for the fading-memory filter. This is an
intuitively satisfying result. It says that for minimum transient in switching
from the track initiation filter to the steady state filter, we should transition
when the growing-memory filter has processed as much data as the fading-
memory filter uses in steady state.

Equation the 1,1 elements yields a slightly different value for L. Specifically
for � ¼ 0:9, L¼: 34 is obtained. Equating the off-diagonal elements yields
L¼: 32. Thus equating the three distinct covariance matrix terms yields
three different L. They are reasonably close however. Using Table 7.4-2 one can
obtain the one-step predictor VRF for the fading-memory filter for � close to
unity.

Similarly, from Table 5.8-1 one can obtain the one-step predictor VRFs for
the fixed-memory filter for large L. Equating corresponding covariance matrix
elements obtained with these tables will yield the effective memory of the
fading-memory filter as a function of � when � is close to unity, that is, when the
filter memory is large. By way of example, using the position estimate variance
terms when m ¼ 1, one obtains [5, p. 534].

4

L
¼ 1:25ð1 � �Þ ð7:5-1Þ

or equivalently

L ¼ 3:2

1 � �
ð7:5-2Þ

In general, equating other elements of the covariance matrices yields an
equation of the form

L ¼ const

1 � �
ð7:5-3Þ
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The constants obtained using Tables 7.4-2 and 5.8-1 are tabulated in Table 7.5-1
for i ¼ 0; . . . ; 10 and m ¼ 0; . . . ; 10.

7.6 TRACK INITIATION

In Sections 1.2.10 and 1.3 track initiation was discussed for the fading-memory
g–h and g–h–k filters, which are, respectively, the m ¼ 1, 2 fading-memory
filters being discussed here in Chapter 7. The basic method for track initiation
described Sections 1.2.10 and 1.3 can be extended, in general, to any degree
fading-memory filter. We will now review this subject to get further insight into
track initiation and to extend the results to higher degree fading-memory filters.

We would like to initiate the fading-memory filter at time n ¼ 0 with some
scaled vector Z0;�1, which is as close as possible to the true state of the target.
In general, we do not have the a priori knowledge that permits the initiation of
the fading-memory filter at time n ¼ 0. In this case the filter could be started at
some later time like n ¼ n0 when sufficient information is available to obtain a
good estimate of Z �

n 0þ1;n 0
. One possibility is to fit a polynomial through the first

m þ 1 samples so that n0 ¼ m and use this to provide the estimate for
Z �

nþ1;n ¼ Z �
mþ1;m. This is essentially what was done to initiate track for the

expanding-memory filter. Using this approach, however, does not give a good
estimate for the steady-state fading-memory filter.

To see why the state estimate Z �
n 0þ1;n 0

so obtained is not a good one, consider
a fading-memory filter that has been operating satisfactory in steady state for a

TABLE 7.5-1. Memory L þ 1 of Fixed-Memory Filter Equal to That of
Fading-Memory Filter with Discounting Parameter h

i m 0 1 2 3 4 5 6 7 8 9 10

0 2.00 3.20 4.36 5.51 6.63 7.75 8.85 9.96 11.0 12.1 13.2
1 3.63 4.79 5.92 7.04 8.15 9.25 10.4 11.4 12.5 13.6
2 5.21 6.34 7.46 8.56 9.66 10.8 11.8 12.9 14.0
3 6.76 7.87 8.98 10.1 11.2 12.3 13.3 14.4
4 8.29 9.40 10.5 11.6 12.7 13.7 14.8
5 9.82 10.9 12.0 13.1 14.2 15.2
6 11.3 12.4 13.5 14.6 15.7
7 12.8 13.9 15.0 16.1
8 14.4 15.4 16.5
9 15.8 16.9
10 17.4

Note: L ¼ const:=ð1 � �Þ.
Example: Let m ¼ 1. Equating position VRFs gives L ¼ 3:2=ð1 � �Þ. Equating velocity VRFs
gives L ¼ 3:63=ð1 � �Þ. Let � ¼ 0:9. Then L ¼ 32 or L ¼ 36, respectively.

Source: From Morrison [5, p. 535].
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while. At a time n it has a scaled one-step prediction state vector Z �
n;n�1, which

together with the observation yn yields the updated scaled estimate Z �
nþ1;n; see

Table 7.2-2. What distinguishes Z �
nþ1;n from Z �

mþ1;m obtained above? The
estimate Z �

nþ1;n has the steady-state variance and steady-state systematic error
expected for the fading-memory filter being used. On the other hand, Z �

mþ1;m
does not have a variance or systematic error expected in steady state if the
effective memory of the fading-memory filter is much larger than m þ 1.
Instead, its variance will be much larger because the amount of data used to
estimate Z �

mþ1;m is much shorter than that used in the steady state to estimate
Z �

nþ1;n. The systematic error, on the other hand, will be much smaller because a
smaller length of data is used to estimate the sealed vector Z �

mþ1;m. However, the
total error, random plus systematic, will be larger for the estimate Z �

mþ1;m than
for Z �

nþ1;n.
What is needed is an estimate for Z �

n 0þ1;n 0
obtained using a larger set of

measurements than the first m þ 1 samples. The way to obtain such an estimate
is to use an expanding-memory filter of the same degree m as the fading-
memory filter to obtain this estimate at a time n ¼ n0. The time n0 is that for
which the expanding-memory filter has the same variance as the fading-memory

Figure 7.6-1 Starting transient error for critically damped one-step predictor filter of
degree m ¼ 3 when critically damped filter itself is used for track initiation after first
four data points are fitted to third-degree polynomial in order to initialize filter.
Parameters � ¼ 0:945; T ¼ 0:05 sec, and 
 x ¼ 5 ft. (From Morrison [5, p. 541].)
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filter in steady state, both filters having the same degree m. At this time the two
filters have the same memory. Also, at this time n0 the systematic error Z �

n 0þ1;n 0

will approximately match that of the fading-memory filter in steady state. This
is exactly the procedure used in Section 1.2.10 for track initiation of the fading-
memory g–h filter. Here we are applying the procedure to higher order
(arbitrary m) fading-memory filters.

In Section 7.5 we discussed how to determine the memory L þ 1 of an
expanding-memory filter that has the same variance as that of a fading-memory
filter having the same degree. Thus those results can be used to determine the
memory n0 þ 1 of the expanding-memory filter needed to estimate Z �

n 0þ1;n 0
.

The Z �
n0þ1;n 0

obtained from the expanding-memory filter at time n ¼ n0 is then
used to start the fading-memory filter at time n ¼ n0 þ 1. To obtain the estimate
Z �

n 0þ1;n 0
, the expanding-memory filter is used to track the target for the first

n0 þ 1 measurements. As discussed in Section 6.5, the expanding-memory filter
is self-starting and hence needs no special track initiation procedures; it can be
started at time zero with any scaled vector Z �

0;�1.
Figure 1.3-7 gave an example of the initiation of a critically damped g–h–k

filter, or equivalently a fading-memory filter of degree 2 (i.e., m ¼ 2), using a
polynomial fit to the first m þ 1 observations to obtain Z �

mþ1;m. The transient
resulting is clearly very objectional. Figure 1.3-8 gives the result when an

Figure 7.6-2 Starting transient error for critically damped one-step predictor filter of
degree 3 when expanding-memory polynomial filter is used for track initiation. Switch
from expanding-memory polynomial filter to g–h–k critically damped filter occurs after
101st observation, that is, n0 ¼ 100. Parameters: � ¼ 0:945; T ¼ 0:05 sec, and

 x ¼ 5 ft. (From Morrison [5, p. 542].)
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expanding-memory filter is used for track initiation in the manner described
above. The transient is now much smaller. A second example is given in
Figures 7.6-1 and 7.6-2 for a third degree (m ¼ 3) filter. Figure 7.6-1 shows
the poor results obtained when a polynomial fit to the first m þ 1 observa-
tions is used for track initiation. In contrast Figure 7.6-2 shows the
excellent results obtained when an expanding-memory filter is used for track
initiation.

7.7 SYSTEMATIC ERRORS

A procedure similar to that used for the fixed-memory polynomial filter in
Sections 5.9 and 5.10 can be used to obtain the systematic error b�ðrÞ for the
fading-memory filter. Instead of using the orthogonal Legendre polynomial, the
orthogonal Laguerre polynomial is used for the representation of the systematic
error. The resulting equation for the bound on the systematic error, equivalent to
(5.10-3), for the fading-memory filter is [5, p. 547]

b�ðrÞ ¼ ðamþ1ÞnT mþ1ðm þ 1Þ!
ð1 � �Þmþ1

pmþ1ðrÞ ð7:7-1Þ

where pmþ1ðrÞ is defined by (7.2-1d).

7.8 BALANCING THE SYSTEMATIC AND RANDOM
PREDICTION ERROR

As indicated at the end of Section 7.3, the fading-memory filter systematic and
random errors have to be balanced in a similar manner to the used for the fixed-
memory filter in Section 5.10. The memory for the fading-memory filter is
determined by the value of �. For a given m, just as was done for the fixed-
memory filter, the value of � can be found that results in a balance of the
systematic error bounded by (7.7-1) and the random error variance given by
(7.4-1) or (7.4-2). This would be done for m ¼ 0; 1; . . . to find the m that results
in the minimum total error, that is, the sum of the systematic and estimate
random error, just as was done for the fixed-memory filter; see last paragraph of
Section 5.10.
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8
GENERAL FORM FOR LINEAR
TIME-INVARIANT SYSTEM

8.1 TARGET DYNAMICS DESCRIBED BY POLYNOMIAL AS A
FUNCTION OF TIME

8.1.1 Introduction

In Section 1.1 we defined the target dynamics model for target having a
constant velocity; see (1.1-1). A constant-velocity target is one whose trajectory
can be expressed by a polynomial of degree 1 in time, that is, d ¼ 1, in (5.9-1).
(In turn, the tracking filter need only be of degree 1, i.e., m ¼ 1.) Alternately, it
is a target for which the first derivative of its position versus time is a constant.
In Section 2.4 we rewrote the target dynamics model in matrix form using the
transition matrix �; see (2.4-1), (2.4-1a), and (2.4-1b). In Section 1.3 we gave
the target dynamics model for a constant accelerating target, that is, a target
whose trajectory follows a polynomial of degree 2 so that d ¼ 2; see (1.3-1).
We saw that this target also can be alternatively expressed in terms of the
transition equation as given by (2.4-1) with the state vector by (5.4-1) for m ¼ 2
and the transition matrix by (5.4-7); see also (2.9-9). In general, a target whose
dynamics are described exactly by a dth-degree polynomial given by (5.9-1) can
also have its target dynamics expressed by (2.4-1), which we repeat here for
convenience:

Xnþ1 ¼ �Xn

where the state vector Xn is now defined by (5.4-1) with m replaced by d and the
transition matrix is a generalized form of (5.4-7). Note that in this text d
represents the true degree of the target dynamics while m is the degree used by
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the tracking filter to approximate the target dynamics. For the nonlinear
dynamics model case, discussed briefly in Section 5.11 when considering the
tracking of a satellite, d is the degree of the polynomial that approximates the
elliptical motion of the satellite to negligible error.

We shall now give three ways to derive the transition matrix of a target
whose dynamics are described by an arbitrary degree polynomial. In the process
we give three different methods for describing the target dynamics for a target
whose motion is given by a polynomial.

8.1.2 Linear Constant-Coefficient Differential Equation

Assume that the target dynamics is described exactly by the dth-degree
polynomial given by (5.9-1). Then its dth derivative equals a constant, that is,

DdxðtÞ ¼ const ð8:1-1Þ

while its ðd þ 1Þth derivative equals zero, that is,

Ddþ1xðtÞ ¼ 0 ð8:1-2Þ

As a result the class of all targets described by polynomials of degree d are also
described by the simple linear constant-coefficient differential equation given
by (8.1-2). Given (8.1-1) or (8.1-2) it is a straightforward manner to obtain the
target dynamics model form given by (1.1-1) or (2.4-1) to (2.4-1b) for the case
where d ¼ 1. Specifically, from (8.1-1) it follows that for this d ¼ 1 case

DxðtÞ ¼ _xðtÞ ¼ const ð8:1-3Þ

Thus

_xnþ1 ¼ _xn ð8:1-4Þ

Integrating this last equation yields

xnþ1 ¼ xn þ T _xn ð8:1-5Þ

Equations (8.1-4) and (8.1-5) are the target dynamics equations for the
constant-velocity target given by (1.1-1). Putting the above two equations in
matrix form yields (2.4-1) with the transition matrix � given by (2.4-1b), the
desired result. In a similar manner, starting with (8.1-1), one can derive the
form of the target dynamics for d ¼ 2 given by (1.3-1) with, in turn, � given
by (5.4-7). Thus for a target whose dynamics are given by a polynomial of
degree d, it is possible to obtain from the differential equation form for the
target dynamics given by (8.1-1) or (8.1-2), the transition matrix � by
integration.
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8.1.3 Constant-Coefficient Linear Differential Vector Equation for
State Vector X(t)

A second method for obtaining the transition matrix � will now be developed.
As indicated above, in general, a target for which

DdxðtÞ ¼ const ð8:1-6Þ

can be expressed by

Xnþ1 ¼ �Xn ð8:1-7Þ

Assume a target described exactly by a polynomial of degree 2, that is, d ¼ 2.
Its continuous state vector can be written as

XðtÞ ¼
xðtÞ
_xðtÞ
�xðtÞ

2

4

3

5 ¼
xðtÞ

DxðtÞ
D2xðtÞ

2

4

3

5 ð8:1-8Þ

It is easily seen that this state vector satisfies the following constant-coefficient
linear differential vector equation:

DxðtÞ
D2xðtÞ
D3xðtÞ

2

4

3

5 ¼
0 1 0

0 0 1

0 0 0

2

4

3

5
xðtÞ

DxðtÞ
D2xðtÞ

2

4

3

5 ð8:1-9Þ

or

d

dt
XðtÞ ¼ AXðtÞ ð8:1-10Þ

where

A ¼
0 1 0

0 0 1

0 0 0

2

4

3

5 ð8:1-10aÞ

The constant-coefficient linear differential vector equation given by (8.1-9), or
more generally by (8.1-10), is a very useful form that is often used in the
literature to describe the target dynamics of a time-invariant linear system. As
shown in the next section, it applies to a more general class of target dynamics
models than given by the polynomial trajectory. Let us proceed, however, for
the time being assuming that the target trajectory is described exactly by a
polynomial. We shall now show that the transition matrix � can be obtained
from the matrix A of (8.1-10).
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First express Xðt þ &Þ in a vector Taylor expansion as

Xðt þ &Þ ¼ XðtÞ þ &DXðtÞ þ & 2

2!
D2XðtÞ � � �

¼
X1

�¼0

& �

� !
DnXðtÞ ð8:1-11Þ

From (8.1-10)

D�XðtÞ ¼ A�XðtÞ ð8:1-12Þ

Therefore (8.1-11) becomes

Xðt þ &Þ ¼
X1

�¼0

ð&AÞ�

� !

" #

XðtÞ ð8:1-13Þ

We know from simple algebra that

ex ¼
X1

�¼0

x�

� !
ð8:1-14Þ

Comparing (8.1-14) with (8.1-13), one would expect that

X1

�¼0

ð&AÞ�

� !
¼ expð&AÞ ¼ Gð&AÞ ð8:1-15Þ

Although A is now a matrix, (8.1-15) indeed does hold with exp ¼ e being to a
matrix power being defined by (8.1-15). Moreover, the exponent function
Gð�AÞ has the properties one expects for an exponential. These are [5, p. 95]

Gð&1AÞGð&2AÞ ¼ G½ð&1 þ &2ÞA� ð8:1-16Þ
½Gð&1AÞ�k ¼ Gðk&1AÞ ð8:1-17Þ

d

d&
Gð&AÞ ¼ Gð&AÞA ð8:1-18Þ

We can thus rewrite (8.1-13) as

Xðt þ &Þ ¼ expð&AÞXðtÞ ð8:1-19Þ

Comparing (8.1-19) with (8.1-7), we see immediately that the transition matrix
is

�ð&Þ ¼ expð&AÞ ð8:1-20Þ
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for the target whose dynamics are described by the constant-coefficient
linear vector differential equation given by (8.1-10). Substituting (8.1-20) into
(8.1-19) yields

Xðtn þ &Þ ¼ �ð&ÞXðt nÞ ð8:1-21Þ

Also from (8.1-15), and (8.1-20) it follows

�ð&Þ ¼ I þ &A þ & 2

2!
A2 þ & 3

3!
A3 þ � � � ð8:1-22Þ

From (8.1-17) it follows that

ðexp &AÞ k ¼ exp k&A ð8:1-23Þ

Therefore

½�ð&Þ�k ¼ �ðk&Þ ð8:1-24Þ

By way of example, assume a target having a polynomial trajectory of degree
d ¼ 2. From (8.1-10a) we have A. Substituting this value for A into (8.1-22) and
letting & ¼ T yields (5.4-7), the transition matrix for the constant-accelerating
target as desired.

8.1.4 Constant-Coefficient Linear Differential Vector Equation for
Transition Matrix �

A third useful alternate way for obtaining � is now developed [5. pp. 96–97].
First, from (8.1-21) we have

Xð&Þ ¼ �ð&ÞXð0Þ ð8:1-25Þ

Differentiating with respect to & yields

d

d&
�ð&Þ

� 	
Xð0Þ ¼ d

d&
Xð&Þ ð8:1-26Þ

The differentiation of a matrix by & consists of differentiating each element
of the matrix with respect to &. Applying (8.1-10) and (8.1-25) to (8.1-26)
yields

d

d&
�ð&Þ

� 	
Xð0Þ ¼ AXð&Þ

¼ A�ð&ÞXð0Þ ð8:1-27Þ
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Thus

d

d&
�ð&Þ ¼ A�ð&Þ ð8:1-28Þ

On comparing (8.1-28) with (8.1-10) we see that the state vector XðtÞ and the
transition matrix �ð&Þ both satisfy the same linear, time-invariant differential
vector equation. Moreover, given this differential equation, it is possible to
obtain �ð&Þ by numerically integrating it. This provides a third method for
obtaining �ð&Þ.

Define the matrix inverse of � by �, that is,

�ð&Þ ¼ ½�ð&Þ�	1 ð8:1-29Þ

The inverse � satisfies the associated differential equation [5, p. 97]

d

d&
�ð&Þ ¼ 	�ð&ÞA ð8:1-30Þ

Thus �ð&Þ can be obtained by numerically integrating the above equation.
To show that (8.1-30) is true, we first verify that the solution to (8.1-30) is

�ð&Þ ¼ �ð0Þexpð	&AÞ ð8:1-31Þ

This we do by differentiating the above to obtain

d

d&
�ð&Þ ¼ 	�ð0Þ½expð	&AÞ�A

¼ 	�ð&ÞA ð8:1-32Þ

Thus (8.1-31) satisfies (8.1-30), as we wished to show. For �ð0Þ let us choose

�ð0Þ ¼ I ð8:1-33Þ

This yields for �ð&Þ the following:

�ð&Þ ¼ expð	&ÞA ð8:1-34Þ

It now only remains to show that the above is the inverse of �. To do this, we
use (8.1-16), which yields

expð&AÞexpð	&AÞ ¼ expð0Þ
¼ I ð8:1-35Þ

This completes our proof that �	1 ¼ � and � satisfies (8.1-30).
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For a target whose trajectory is given by a polynomial, it does not make
sense to use the three ways given in this section to obtain �. The � can easily be
obtained by using the straightforward method illustrated in Section 2.4; see
(2.4-1), (2.4-1a), and (2.4-1b) and (1.3-1) in Section 1.3. However, as shall be
seen later, for more complicated target models, use of the method involving the
integration of the differential equation given by (8.1-28) represents the
preferred method. In the next section we show that (8.1-10) applies to a more
general class of targets than given by a polynomial trajectory.

8.2 MORE GENERAL MODEL CONSISTING OF THE SUM OF
THE PRODUCT OF POLYNOMIALS AND EXPONENTIALS

In the preceeding section we showed that the whole class of target dynamics
consisting of polynomials of degree d are generated by the differential equation
given by (8.1-2). In this section we consider the target whose trajectory is
described by the sum of the product of polynomials and exponentials as given
by

xðtÞ ¼
Xk

j¼0

pjðtÞe�j t ð8:2-1Þ

where pjðtÞ is a polynomial whose degree shall be specified shortly. The above
xðtÞ is the solution of the more general [than (8.1-2)] linear, constant-coefficient
differential vector equation given by [5, pp. 92–94]

ðDdþ1 þ �dDd þ � � � þ �1D þ �0ÞxðtÞ ¼ 0 ð8:2-2Þ

We see that (8.1-2) is the special case of (8.2-2) for which �0 ¼ �1 ¼ � � � ¼
�d ¼ 0. The � j of (8.2-1) are the k distinct roots of the characteristic equation

�dþ1 þ �d�
d þ � � � þ �1�þ �0 ¼ 0 ð8:2-3Þ

The degree of pjðtÞ is 1 less than the multiplicity of the root � j of the
characteristic equation.

By way of example let d ¼ 2. Then

ðD3 þ �2D2 þ �1D þ �0ÞxðtÞ ¼ 0 ð8:2-4Þ

Let the state vector XðtÞ for this process defined by (8.1-8). Then it follows
directly from (8.2-4) that

d

dt
XðtÞ ¼

_x
�x
_�x

0

@

1

A

t

¼
0 1 0

0 0 1

	�0 	�1 	�2

0

@

1

A
x

_x
�x

0

@

1

A

t

ð8:2-5Þ
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or

d

dt
XðtÞ ¼ AXðtÞ ð8:2-6Þ

where

A 

0 1 0

0 0 1

	�0 	�1 	�2

0

@

1

A ð8:2-6aÞ

This gives us a more general form for A than obtained for targets following
exactly a polynomial trajectory as given in Section 8.1; see (8.1-10a).

The matrix A above can be made even more general. To do this, let

X̂ðtÞ ¼ GXðtÞ ð8:2-7Þ

where G is an arbitrary constant 3 � 3 nonsingular matrix. Applying (8.2-7) to
(8.2-6) yields

d

dt
G	1X̂ðtÞ ¼ AG	1X̂ðtÞ ð8:2-8Þ

Because G is a constant, the above becomes

G	1 d

dt
X̂ðtÞ ¼ AG	1X̂ðtÞ ð8:2-9Þ

or

d

dt
X̂ðtÞ ¼ GAG	1X̂ðtÞ ð8:2-10Þ

or finally

d

dt
X̂ðtÞ ¼ BX̂ðtÞ ð8:2-11Þ

where

B ¼ GAG	1 ð8:2-11aÞ

Because G is arbitrary, B is arbitrary, but constant. Thus, (8.2-6) applies where
A can be an arbitrary matrix and not just (8.2-6a).
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9
GENERAL RECURSIVE MINIMUM-
VARIANCE GROWING-MEMORY
FILTER (BAYES AND KALMAN
FILTERS WITHOUT TARGET
PROCESS NOISE)

9.1 INTRODUCTION

In Section 6.3 we developed a recursive least-squares growing memory-filter for
the case where the target trajectory is approximated by a polynomial. In this
chapter we develop a recursive least-squares growing-memory filter that is not
restricted to having the target trajectory approximated by a polynomial [5. pp.
461–482]. The only requirement is that Yn�i, the measurement vector at time
n � i, be linearly related to Xn�i in the error-free situation. The Yn�i can be
made up to multiple measurements obtained at the time n � i as in (4.1-1a)
instead of a single measurement of a single coordinate, as was the case in
(4.1-20), where Yn�1 ¼ ½yn�1�. The Yn�i could, for example, be a two-
dimensional measurement of the target slant range and Doppler velocity.
Extensions to other cases, such as the measurement of three-dimensional polar
coordinates of the target, are given in Section 16.2 and Chapter 17.

Assume that at time n we have L þ 1 observations Yn, Yn�1; . . . ; Yn�L

obtained at, respectively, times n; n � 1; . . . ; n � L. These L þ 1 observations
are represented by the matrix Y ðnÞ of (4.1-11a). Next assume that at some later
time n þ 1 we have another observation Ynþ1 given by

Ynþ1 ¼ M�Xn þ Nnþ1 ð9:1-1Þ

Assume also that at time n we have a minimum-variance estimate of X�
n;n based

on the past L þ 1 measurements represented by Y ðnÞ. This estimate is given by
(4.1-30) with Wn given by (4.5-4).

In turn the covariance matrix S
	 �

n;n is given by (4.5-5). Now to determine the

new minimum-variance estimate X�
nþ1;nþ1 from the set of data consisting of Y ðnÞ
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and Ynþ1, one could again use (4.1-30) and (4.5-4) with Y ðnÞ now replaced by
Y ðnþ1Þ, which is Y ðnÞ of (4.1-11a) with Ynþ1 added to it. Correspondingly the
matrices T and R ðnÞ would then be appropriately changed to account for the
increase in Y ðnÞ to include Ynþ1. This approach, however, has the disadvantage
that it does not make use of the extensive computations carried out to compute
the previously minimum-variance estimate X�

n;n based on the past data Y ðnÞ.
Moreover, it turns out that if Ynþ1 is independent of Y ðnÞ, then the minimum-
variance estimate of X�

nþ1;nþ1 can be obtained directly from Ynþ1 and X�
n;n and

their respective variances Rnþ1 and S�n;n. This is done by obtaining the
minimum-variance estimate of X�

nþ1;nþ1 using Ynþ1 and X�
n;n together with their

variances. No use is made of the original data set Y ðnÞ. This says that the
estimate X�

n;n and its covariance matrix S�n;n contain all the information we need
about the previous L þ 1 measurements, that is, about Y ðnÞ. Here, X�

n;n and its
covariance matrix are sufficient statistics for the information contained in the
past measurement vector Y ðnÞ together with its covariance matrix R ðnÞ. (This is
similar to the situation where we developed the recursive equations for the
growing- and fading-memory filters in Sections 6.3, 7.2, and 1.2.6.)

9.2 BAYES FILTER

The recursive form of the minimum variance estimate based on Ynþ1 and X�
n;n is

given by [5, p. 464]

X
	 �

nþ1;nþ1 ¼ X
	 �

nþ1;n þ H
	

nþ1ðYnþ1 � MX
	 �

nþ1;nÞ ð9:2-1Þ

where

H
	

nþ1 ¼ S
	 �

nþ1;nþ1M T R�1
1 ð9:2-1aÞ

S
	 �

nþ1;nþ1 ¼ ½ðS
	 �

nþ1;nÞ
�1 þ M T R�1

1 M��1 ð9:2-1bÞ

S
	 �

nþ1;n ¼ �S
	 �

n;n�
T ð9:2-1cÞ

X
	 �

nþ1;n ¼ �X
	 �

n;n ð9:2-1dÞ

The above recursive filter is often referred to in the literature as the Bayes filter
(this is because it can also be derived using the Bayes theorem on conditional
probabilities [128].) The only requirement needed for the recursive minimum-
variance filter to apply is that Ynþ1 be independent of Y ðnÞ. When another
measurement Ynþ2 is obtained at a later time n þ 2, which is independent of the
previous measurements, then the above equations (indexed up one) can be used
again to obtain the estimate X

	 �
nþ2;nþ2. If Y ðnÞ and Ynþ1 are dependent, the Bayes

filter could still be used except that it would not now provide the minimum-
variance estimate. If the variates are reasonably uncorrelated though, the
estimate should be a good one.
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9.3 KALMAN FILTER (WITHOUT PROCESS NOISE)

If we apply the inversion lemma given by (2.6-14) to (9.2-1b), we obtain after
some manipulations the following equivalent algebraic equation for the
recursive minimum-variance growing-memory filter estimate [5, p. 465]:

X
	 �

n;n ¼ X
	 �

n;n�1 þ H
	

nðYn � MX�
n;n�1Þ ð9:3-1Þ

where

H
	

n ¼ S
	 �

n;n�1M TðR1 þ MS �n;n�1M TÞ�1 ð9:3-1aÞ

S
	 �

n;n ¼ ð1 � HnMÞS
	 �

n;n�1 ð9:3-1bÞ

S
	 �

n;n�1 ¼ �S
	 �

n�1;n�1�
T ð9:3-1cÞ

X
	 �

n;n�1 ¼ �X
	 �

n�1;n�1 ð9:3-1dÞ

The preceding Kalman filter equations are the same as given by (2.4-4a) to
(2.4-4j) except that the target model dynamic noise (Un or equivalently its
covariance matrix Qn) is not included. Not including the target model dynamic
noise in the Kalman filter can lead to computational problems for the Kalman
filter [5, Section 12.4]. This form of the Kalman filter is not generally used for
this reason, and it is not a form proposed by Kalman. The Kalman filter with the
target process noise included is revisited in Chapter 18.

9.4 COMPARISON OF BAYES AND KALMAN FILTERS

As discussed in Sections 2.3, 2.5, and 2.6, the recursive minimum-variance
growing-memory filter estimate is a weighted sum of the estimates Ynþ1 and
X�

nþ1;n with the weighting being done according to the importance of the two
estimates; see (2.3-1), (2.5-9), and (2.6-7). Specifically, it can be shown that the
recursive minimum-variance estimate can be written in the form [5, p. 385]

X
	 �

nþ1;nþ1 ¼ S
	 �

nþ1;nþ1½ðS
	 �

nþ1;nÞ
�1

X
	 �

nþ1;n þ MR�1
1 Ynþ1� ð9:4-1Þ

If the covariance matrix of ynþ1 is dependent on n, then R1 is replaced by Rnþ1.
The recursive minimum-variance Bayes and Kalman filter estimates are
maximum-likelihood estimates when Ynþ1 and Y ðnÞ are uncorrelated and
Gaussian. All the other properties given in Section 4.5 for the minimum-
variance estimate also apply. The Kalman filter has the advantage over the
Bayes filter of eliminating the need for two matrix inversions in (9.2-1b), which
have a size equal to the state vector X�

n;n [which can be large, e.g., 10 
 10 for
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the example (2.4-6)]. The Kalman filter on the other hand only requires a single
matrix inversion in (9.3-1a) of an order equal to the measurement vector Ynþ1

(which has a dimension 4 
 4) for the example of Section 2.4 where the target
is measured in polar coordinates; see (2.4-7)). It is also possible to incorporate
these four measurements one at a time if they are independent of each other. In
this case no matrix inversion is needed.

9.5 EXTENSION TO MULTIPLE MEASUREMENT CASE

In the Bayes and Kalman filters it is not necessary for Ynþ1 to be just a single
measurement at time tnþ1. The term Ynþ1 could be generalized to consist of
L þ 1 measurements at L þ 1 times given by

Ynþ1; Yn;Yn�1; . . . ;Yn�Lþ1 ð9:4-2Þ

For this more general case we can express the above L þ 1 measurements as a
vector given by

Y ðnþ1Þ ¼

Ynþ1

----

Yn

----

..

.

----

Yn�Lþ1

2

666666664

3

777777775

ð9:4-3Þ

Then from (4.1-5) through (4.1-10), (4.1-11) follows. It then immediately
follows that (9.2-1) through (9.2-1d) and (9.3-1) through (9.3-1d) apply with M
replaced by T of (4.1-11b) and Ynþ1 replaced by Y ðnþ1Þ of (9.4-3).
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10
VOLTAGE LEAST-SQUARES
ALGORITHMS REVISITED

10.1 COMPUTATION PROBLEMS

The least-squares estimates and minimum-variance estimates described in
Section 4.1 and 4.5 and Chapter 9 all require the inversion of one or more
matrices. Computing the inverse of a matrix can lead to computational
problems due to standard computer round-offs [5, pp. 314–320]. To illustrate
this assume that

s ¼ 1 þ " ð10:1-1Þ

Assume a six-decimal digit capability in the computer. Thus, if s ¼ 1:000008,
then the computer would round this off to 1.00000. If, on the other hand,
s ¼ 1:000015, then the computer would round this off to 1.00001. Hence,
although the change in " is large, a reduction of 33.3% for the second case (i.e.,
0.000005=0.000015), the change in s is small, 5 parts in 106 (i.e., 0.000005=
1.000015). This small error in s would seem to produce negligible effects on the
computations. However, in carrying out a matrix inversion, it can lead to serious
errors as indicated in the example to be given now. Assume the nearly singular
matrix [5]

A ¼ s 1

1 1

� �
ð10:1-2Þ

where s ¼ 1 þ ". Inverting A algebraically gives

A�1 ¼ 1

s � 1

1 �1

�1 s

� �
ð10:1-3Þ
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If " ¼ 0:000015, then from (10.1-3) we obtain the following value for A�1

without truncation errors:

A�1 ¼

1 �1

�1 1:000015

� �

0:000015

¼ 104
6:66 �6:66

�6:66 6:66

� �
ð10:1-4Þ

However, if " is truncated to 0.00001, then (10.1-3) yields

A�1 ¼

1 �1

�1 1:00001

� �

0:00001

� 104
10 �10

�10 10

� �
ð10:1-5Þ

Thus the 5 parts in 106 error in s results in a 50% error in each of the elements
of A�1.

Increasing the computation precision can help. This, however, can be costly
in computer hardware and /or computer time. There are, however, alternative
ways to cope with this problem. When doing a LSE problem this involves the
use of the voltage least-squares, also called square-root algorithms, which are
not as sensitive to computer round-off errors. This method was introduced in
Section 4.3 and will be described in greater detail in Section 10.2 and Chapters
11 to 14. Section 10.2.3 discusses a measure, called the condition number, for
determining the accuracy needed to invert a matrix.

The inverse of the matrices in (4.1-32) and (4.5-4) will be singular or nearly
singular when the time between measurements is very small, that is, when the
time between measurements T of (4.1-18) or (4.1-28) is small. Physically, if
range measurements are only being made and they are too close together, then
the velocity of the state vector X�

n;n cannot be accurately estimated. Mathe-
matically, the rows of T matrix become very dependent when the measurements
are too close together in time. When this happens, the matrices of the least-
squares and minimum-variance estimates tend to be singular. When the
columns of T are dependent, the matrix is said to not have full column rank. Full
column rank is required for estimating X�

n;n [5, Section 8.8]. The matrix T has
full column rank when its columns are independent. It does not have full rank if
one of its columns is equal to zero.

The examples of matrix T given by (4.1-18) for a constant-velocity target
and (4.1-28) for a constant-accelerating target show that the matrix T will
not have full rank when the time between measurements T is very small. When
the time between measurements T is small enough, the second column of
(4.1-18) becomes rounded off to zero, and the second and third columns of
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(4.1-28) likewise become rounded off to zero. Hence matrices T do not have full
rank when time T between measurements is very small.

This singularity situation is improved sometimes if in addition to measuring
range another parameter is measured, such as the Doppler velocity or the target
angular position. Consider a target moving along the x axis as shown in Figure
10.1-1. Assume the radar is located as indicated and that it is only making slant
range measurements of the target’s position. At the time when the target passes
through the origin, the tracker will have difficulty estimating the target’s
velocity and acceleration. This is because the target range only changes slightly
during this time so that the target behaves essentially like a stationary target
even though it could be moving rapidly. If, in addition, the radar measured the
target aspect angle  , it would be able to provide good estimates of the velocity
and acceleration as it passed through the origin. In contrast, if the target were
being tracked far from the origin, way off to the right on the x axis in Figure
10.1-1, range only measurements would then provide a good estimate of the
target’s velocity and acceleration.

If the radar only measured target azimuth, then the radar measurements
would convey more information when the target passed through the origin than
when it was far from the origin. Thus it is desirable to make two essentially
independent parameter measurements on the target, with these being essentially
orthogonal to each other. Doing this would prevent the matrix inversion from
tending toward singularity, or equivalently, prevent T from not having full rank.

Methods are available to help minimize the sensitivity to the computer
round-off error problem discussed above. They are called square-root filtering
[79] or voltage-processing filtering. This type of technique was introduced in
Section 4.3. Specifically the Gram–Schmidt method was used to introduce this
type of technique. In this chapter we will first give further general details on the
technique followed by detailed discussions of the Givens, Householder, and
Gram-Schmidt methods in Chapters 11 to 13. For completeness, clarity,
convenience and in order that this chapter stand on its own, some of the results

Figure 10.1-1 Geometry for example
of target flying by radar. (From Morrison
[5, p. 319].)
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given in Section 4.3 will be repeated. However, it is highly recommended that if
Sections 4.2 and 4.3 are not fresh in the reader’s mind that he or she reread them
before reading the rest of this chapter.

10.2 ORTHOGONAL TRANSFORMATION OF
LEAST-SQUARES ESTIMATE ERROR

We proceed initially by applying an orthonormal transformation to eðX�
n;nÞ of

(4.1-31) [79]. Let F be an orthonormal transformation matrix. It then follows
from (4.3-9) to (4.3-11), and also from (4.3-16) and (4.3-17) and reference 79
(p. 57), that

F T F ¼ I ¼ FF T ð10:2-1Þ

and

F�1 ¼ F T ð10:2-2Þ

Also

kF Yk ¼ kYk ð10:2-3Þ

where k 	 k is the Euclidean norm defined by (4.2-40) and repeated here
[79, 101]:

kyk ¼ ðyT yÞ1=2 ð10:2-4Þ

Thus eðX�
n;nÞ of (4.1-31) is the square of the Euclidean norm of

E ¼ T X�
n;n � Y ðnÞ ð10:2-5Þ

or

eðX�
n;nÞ ¼ kEk2 ¼ eT ð10:2-6Þ

where eT was first used in (1.2-33).
Applying an s 
 s orthonormal transformation F to E, it follows from

(4.3-21), and also reference 79 (p. 57), that

eðX�
n;nÞ ¼ kF Ek2 ¼ kF T X�

n;n � F Y ðnÞk2

¼ kðF TÞX�
n;n � ðF Y ðnÞÞk2 ð10:2-7Þ
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Assume here that X�
n;n is an m 0 
 1 matrix, that T is s 
 m 0, and that Y ðnÞ is

s 
 1. As indicated in Section 4.3 [see, e.g., (4.3-31) and (4.3-59)] and to be
further indicated in the next section, F can be chosen so that the transformed
matrix T 0 ¼ FT is given by

T 0 ¼ F T ¼ U

0

� �

|ffl{zffl}
m0

gm 0

gs � m 0 ð10:2-8Þ

where U is an upper triangular matrix. For example U is of the form

U ¼

u11 u12 u13 u14

0 u22 u23 u24

0 0 u33 u34

0 0 0 u44

2

664

3

775 ð10:2-9Þ

for m 0 ¼ 4. In turn

F T X�
n;n ¼

U X�
n;n

-------

0

2

4

3

5
gm 0

gs � m 0
ð10:2-10Þ

and

F Y ðnÞ ¼
Y 0

1

---

Y 0
2

2

4

3

5

o
m 0
o

s � m 0
ð10:2-11Þ

On substituting (10.2-10) and (10.2-11) into (10.2-7) for eðX�
n;nÞ, it is a

straightforward matter to show that

eðX�
n;nÞ ¼ eðU X�

n;n � Y 0
1Þ þ eðY 0

2Þ ð10:2-12Þ

or equivalently

eðX�
n;nÞ ¼ kU X�

n;n � Y 0
1k

2 þ kY 0
2k

2 ð10:2-13Þ

This was shown in Section 4.3 for the special case where s ¼ 3, m 0 ¼ 2; see
(4.3-49). We shall now show that it is true for arbitrary s and m 0. Equations
(10.2-12) and (10.3-13) follow directly from the fact that F T X�

n;n and F Y ðnÞ are
column matrices so that F T X�

n;n � F Y ðnÞ is a column matrix, E being given by
(10.2-5). Let the elements of FE be designate as " 01 ¼ 1; 2; . . . ; s. Hence from
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(10.2-5), (10.2-10), and (10.2-11)

FE ¼ E 0 ¼

" 01
" 02
..
.

" 0m 0

------

" 0m 0þ1

..

.

" 0s

2

6666666666664

3

7777777777775

¼
U X�

n;n � Y 0
1

--------------

�Y 0
2

2

4

3

5

o
m 0

o
s � m 0

ð10:2-14Þ

From (10.2-3), (10.2-4), (10.2-6), and (10.2-14) it follows that

eðX�
n;nÞ ¼ kEk2 ¼ kFEk ¼ ðFEÞTðFEÞ ¼

Xm 0

i¼1

"2
1 þ

Xs

i¼m 0þ1

"2
1 ð10:2-15Þ

which yields (10.2-12) and (10.2-13) for arbitrary s and m 0, as we wished to
show.

The least-squares estimate X�
n;n now becomes the X�

n;n that minimizes
(10.2-13). Here, X�

n;n is not in the second term of the above equation so that this
term is independent of X�

n;n. Only the first term can be affected by varying X�
n;n.

The minimum eðX�
n;nÞ is achieved by making the first term equal to zero by

setting " 01 ¼ " 0m 0 ¼ 0, as done in Section 4.3, to yield

UX�
n;n ¼ Y 0

1 ð10:2-16Þ

The X�
n;n that satisfies (10.2-16) is the least-squares estimate being sought.

Because U is an upper triangular matrix, it is trivial to solve for X�
n;n using

(10.2-16). To illustrate, assume that U is given by (10.2-9) and that

X�
n;n ¼

x�1
x�2
x�3
x�4

2

6664

3

7775
ð10:2-17Þ

and

Y 0
1 ¼

y 0
1

y 0
2

y 0
3

y 0
4

2

664

3

775 ð10:2-18Þ
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We start with the bottom equation of (10.2-16) to solve for x�4 first. This
equation is

u44x�4 ¼ y 0
4 ð10:2-19Þ

and trivially

x�4 ¼ y 0
4

u44

ð10:2-20Þ

We next use the second equation from the bottom of (10.2-16), which is

u33x�3 þ u34x�4 ¼ y 0
3 ð10:2-21Þ

Because x�4 is known, we can readily solve for the only unknown x�3 to yield

x�3 ¼ y 0
3 � u34x�4

u33

ð10:2-22Þ

In a similar manner the third equation from the bottom of (10.2-16) can be used
to solve for x�2 , and in turn the top equation then is used to solve for x�1 .

The above technique for solving (10.2-16) when U is an upper triangular
matrix is called the ‘‘back-substitution’’ method. This back-substitution method
avoids the need to solve (10.2-16) for X�

n;n using

X�
n;n ¼ U�1Y 0

1 ð10:2-23Þ

with the need to compute the inverse of U. The transformation of T to the upper
triangular matrix T 0 followed by the use of the back-substitution method to
solve (10.2-16) for X�

n;n is called voltage least-squares filtering or square-root
processing. The use of voltage least-squares filtering is less sensitive to
computer round-off errors than is the technique using (4.1-30) with W given by
(4.1-32). (When an algorithm is less sensitive to round-off errors, it is said to be
more accurate [79, p. 68].) The above algorithm is also more stable, that is,
accumulated round-off errors will not cause it to diverge [79, p. 68].

In Section 4.3 we introduced the Gram–Schmidt method for performing the
orthonormal transformation F. In the three ensuing sections, we shall detail this
method and introduce two additional orthonormal transformations F that can
make T have the upper triangular form of (10.2-8).

Before proceeding, we shall develop further the physical significance to the
orthonormal transformation and the matrix U, something that we started in
Section 4.3. We shall also give some feel for why the square-root method is
more accurate, and then finally some additional physical feel for why and when
inaccuracies occur. First, let us revisit the a physical interpretation of the
orthonormal transformation.
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10.2.1 Physical Interpretation of Orthogonal Transformation

Per our discussions in Sections 4.2 and 4.3 [see (4.2-2) and (4.3-54) and the
discussion relating to these equations] we know that we can think of the
transition–observation matrix T as consisting of m 0 column vectors t1; . . . ; tm 0 ,
with t i being the ith column vector defined in an s-dimensional orthogonal
hyperspace [101]. Thus T can be written as

T ¼ ½t1t2 . . . tm 0 � ð10:2-24Þ

where

t i ¼

t1i

t2i

..

.

t si

2

6664

3

7775
ð10:2-24aÞ

whose entries represent the coordinates of t i. As indicated in Section 4.3 and
done again here in more detail for the case arbitrary s and m 0, the orthogonal
transformation F puts these m 0 column vectors t1; . . . ; tm 0 of the transition–
observation matrix into a new orthogonal space. The coordinate directions in
this new space are represented in the original orthogonal hyperspace by the s
orthonormal unit row vectors of F. These row vectors are f i ¼ qT

i ; i ¼ 1; . . . ; s;
see (4.3-40a), (4.3-40b), and (4.3-58) to (4.3-58c). Thus

F ¼

f1

f2

..

.

f s

2

6664

3

7775
ð10:2-25Þ

The coordinates of the unit vector f i are defined by the entries of the ith row of
F, which is given by the s-dimensional row matrix

f i ¼ ½ f i1 f i2 � � � f is� ð10:2-26Þ

From the discussion on projection matrices given in Section 4.2, we know
that the magnitude of the projection of the vector t1 onto the unit vector f i is
given by f it1; specifically, see (4.2-36) and the discussion immediately
following it. [Note that the transpose of f i is not needed because f i is a row
matrix and not a column matrix as was the case in (4.2-35) for t̂1.] The direction
of this projection is given by the vector f i. Thus paralleling (4.2-35) the
projection of t1 onto f i is given by the vector

pi ¼ ð f it1Þf i ð10:2-27Þ
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In the new space represented by the unit row vectors of F, the transformed
vector t1 is paralleling (4.2-33), represented by

t1F ¼
Xs

i¼1

pi ¼ ð f1t1Þ f1 þ ð f2t1Þ f2 þ � � � þ ð f st1Þ f s ð10:2-28Þ

If we represent this vector in the F row coordinate system by a column matrix
whose entries designate the amplitudes of the respective row unit vectors f i

then, paralleling (4.3-4),

t1F ¼

f1t1

f2t1

..

.

fst1

0

BBB@

1

CCCA
ð10:2-29Þ

But this is nothing more than the product of F with t1:

Ft1 ¼

f1t1

f2t1

..

.

fst1

2

6664

3

7775
ð10:2-30Þ

Thus the transformation of the vector t1 by F gives us the coordinates of t1 in
the row unit vector space of F, as we wished to show.

From (10.2-8) and (10.2-9) it follows that we wish to pick F such that

Ft1 ¼

f1t1

f2t1

f3t1

..

.

fst1

2

666664

3

777775
¼

u11

0

0

..

.

0

2

66664

3

77775
ð10:2-31Þ

Physically, this mean that the vector t1 lies along the vector f1 and is orthogonal
to all the other f i. Hence f1 of F is chosen to lie along t1, as done in Section 4.3;
see (4.3-27) and the discussion after (4.3-54). Since the matrix F is to be
orthonormal, f2; . . . ; f s are picked to be orthonormal to f1 and in this way make
f i t1 ¼ 0 for i ¼ 2; 3; . . . ; s, thus forcing all the i ¼ 2; 3; . . . ; s coordinates to be
zero in (10.2-31).

Now consider the projection of the vector represented by the second column
of T, that is, t2, onto the row space of F. From (10.2-8) and (10.2-9), and
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paralleling (4.3-28),

Ft2 ¼

f1t2

f2t2

f3t2

..

.

fst2

2

666664

3

777775
¼

u12

u22

0

..

.

0

2

66664

3

77775
ð10:2-32Þ

This tells us that t2 lies in the two-dimensional plane formed by the two row
vectors f1 and f2 and is to be in turn orthogonal to the remaining ðs � 2Þ-
dimensional space defined by f3; f4; . . . ; f s. Consequently f2 is picked to form,
in conjunction with f1, the plane containing the space spanned by the vectors t1

and t2. The row vector f i, for i � m 0, is chosen so that in conjunction with the
vectors f1; . . . ; f i�1 the vectors f1; . . . ; f i span the i-dimensional space defined
by the vectors t1; . . . ; t i and is to be orthogonal to the space defined by the
remaining vectors f iþ1; . . . ; f s. Thus

Ft i ¼

u1j

..

.

uii

0

..

.

0

---

0

..

.

0

2

66666666666666664

3

77777777777777775

9
>>>>>>>>=

>>>>>>>>;
9
>>=

>>;

m 0

s � m0

ð10:2-33Þ

Thus f1; . . . ; fm 0 , span the same space as defined by t1; . . . ; tm 0 and

Ftm0 ¼

f1tm 0

..

.

fm 0 tm 0

----------

fm 0þ1tm 0

..

.

f stm 0

2

66666666664

3

77777777775

¼

u1m 0

..

.

um 0m 0

------

0

..

.

0

2

6666666664

3

7777777775

9
>=

>;
9
>=

>;

m 0

s � m 0

ð10:2-34Þ
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Define F1 and F2 as the matirces formed by, respectively, the first m 0 rows of
F and remaining s � m 0 bottom rows of F. Then

F1 ¼
f1

..

.

fm 0

2

64

3

75 ð10:2-35Þ

and

F2 ¼
fm 0þ1

..

.

f s

2

64

3

75 ð10:2-36Þ

and

F ¼
F1

---

F2

2

4

3

5
gm0

gs � m0
ð10:2-37Þ

and from (10.2-8) and (10.2-31) to (10.2-34)

FT ¼
F1T

------

F2T

2

4

3

5 ¼
U

---

0

2

4

3

5
gm 0

g s � m 0
ð10:2-38Þ

From the discussion given above and (10.2-38), we know that the row vectors of
F1 spans the m 0-dimensional space of the column vectors of T while the row
vectors of F2 spans the ðs � m 0Þ-dimensional space orthogonal to the space of
T. Furthermore F projects the column vectors of T only onto the space defined
by the first m 0 row vectors of F, with T being orthogonal to the remaining
ðs � m 0Þ-dimensional space spanned by the remaining s � m 0 row vectors of F.

Consider now the transformation given by (10.2-11) that projects the data
vector Y ðnÞ onto the row space of T. It can be rewritten as

FY ðnÞ ¼
F1Y ðnÞ
--------

F2Y ðnÞ

2

4

3

5 ¼
Y 0

1

----

Y 0
2

2

4

3

5 ð10:2-39Þ

From the above it follows that Y 0
1 is physically the projection of Y ðnÞ onto the

space spanned by F1, or equivalently, spanned by t1; . . . ; tm 0, while Y 0
2 is

physically the projection of Y ðnÞ onto the space spanned by F2, the ðs � m 0Þ-
dimensional space orthogonal to the space spanned by t1; . . . ; tm 0. This is
reminiscent of our discussion in Section 4.2 relative to Figure 4.2-1. From that
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discussion it follows that Y 0
1 is the projection of Y ðnÞ onto the space spanned by

the columns of T, which here is identical to the row spanned by F1, while Y 0
2 is

orthogonal to this space, which here is identical to the space spanned by the
rows of F2. The Y 0

2 part of Y ðnÞ is due to the measurement noise N ðnÞ. It
corresponds to the Y ð2Þ � TX2 part of Figure 4.2-1. The Y 0

2 part of Y ðnÞ does not
enter into the determination of the least-squares estimate X�

n;n. Only the part of
Y ðnÞ projected into the column space of T, designated as Y 0

1, enters into the
determination of X�

n;n, as was the case for Figure 4.2-1. Because (10.2-16) is
true, the least-squares estimate of Xn;n, is that X�

n;n that combines the columns of
U to form the projection of Y ðnÞ onto the space spanned by the columns of T,
that is, to form Y 0

1. Thus the orthonormal transformation F projects Y ðnÞ onto the
space spanned by the columns of the matrix T and then sets Y 0

1 ¼ UX�
n;n to find

the least-squares estimate X�
n;n per the discussion relative to Figure 4.2-1. This

discussion gives us good physical insight into this powerful and beautiful
orthonormal transformation.

10.2.2 Physical Interpretation of U

It is apparent from the discussion in Section 10.2.1 that Y 0
1 and Y 0

2 of (10.2-11)
and (10.2-39) represent the original measurement set Y ðnÞ of (4.1-11) and
(4.1-11a) in a new orthonormal s-dimensional space. Furthermore it is only
Y 0

1 that is needed to estimate Xn, it being in the m 0-dimensional space that
Xn is constrained to whereas Y 0

2 is orthogonal to it. We can think of the
m 0-dimensional column matrix Y 0

1 as the equivalent set of measurement to
Y ðnÞ made in this m 0-dimensional space, which is the space spanned by
the columns of the T matrix. When s > m 0, the overdetermined case, Y 0

1

represents the sufficient m 0-dimensional measurements replacing the original
s-dimensional vector Y ðnÞ. [Recall that Y ðnÞ originally consisted of L þ 1
measurements each of dimension r þ 1, see (4.1-1a), (4.1-5), and (4.1-11a), so
that s ¼ ðr þ 1ÞðL þ 1Þ > m 0 whereas the equivalent sufficient statistic
measurement Y1 has only dimension m 0]. For the equivalent space let us find
the equivalent measurement equation to that (4.1-11). Doing this gives further
physical insight into the transformation to the matrix U.

Let

X�
n;n ¼ Xn þ N 00

m 0 ð10:2-40Þ

where N 00
m 0 is the error in the least-squares estimate X�

n;n and Xn is the true value
of X. Substituting (10.2-40) in (10.2-16) yields

UðXn þ N 00
m 0 Þ ¼ Y 0

1 ð10:2-41Þ

which in turn can be written as

Y 0
1 ¼ UXn þ N 0

m 0 ð10:2-42Þ
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where

N 0
m 0 ¼ UN 00

m 0 ð10:2-42aÞ

Equation (10.2-42) represents our sought-after equivalent measurement
equation to that of (4.1-11). We see that Y 0

1, U, and N 0
m 0 replace, respectively,

Y ðnÞ, T, and N ðnÞ. Thus, physically the U represents the transition–observation
matrix for the transformed m-dimensional space.

Because the transformation F leads to (10.2-16) and because (10.2-16)
consists of m 0 equations and m 0 unknowns, we know from the discussion in
Section 10.2 that the least-squares solution for Xn is given by (10.2-23).

It would be comforting to confirm that we also get the least-squares solution
(10.2-23) if we apply our general least-squares solution obtained in Section 4.1,
that is (4.1-30) with W given by (4.1-32), to the equivalent measurement system
represented by (10.2-42). Using the fact that now

T ¼ U ð10:2-43Þ

we obtain from (4.1-30) and (4.1-32) that

X�
n;n ¼ ðU TUÞ�1

U T Y 0
1 ð10:2-44Þ

which becomes

X�
n;n ¼ U�1U�TU T Y 0

1 ð10:2-45Þ

and which in turn yields (10.2-23), as we intended to show. In the above
equation we have taken the liberty to use U�T to represent ðU TÞ�1

.
Now let us obtain the covariance of the least-squares estimate X�

n;n using
(10.2-42). From (10.2-16) and (10.2-42) we have

UX�
n;n ¼ UXn þ N 0

m 0 ð10:2-46Þ

which can be rewritten as

X�
n;n � Xn ¼ U�1N 0

m 0 ð10:2-47Þ

Thus the covariance of X�
n;n becomes

COVðX�
n;n � X nÞ ¼ S�n;n ¼ E ½ ðX�

n;n � XnÞðX�
n;n � XnÞT � ð10:2-48Þ

¼ U�1E ½N 0
m 0N

0T
m 0 �U�T ð10:2-48aÞ

¼ U�1COVðN 0
m 0 ÞU�T ð10:2-48bÞ
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(In replacing E ½N 0
m 0N 0T

m 0 � by COVðN 0
m 0 Þ it is assumed that the mean of N 0

m 0 is
zero. We shall see shortly that this is indeed the case). It remains now to find
COVðN 0

m 0 Þ.
From (4.1-11)

TXn ¼ Y ðnÞ � N ðnÞ ð10:2-49Þ

Applying the orthonormal transformation F of (10.2-8) yields

FTXn ¼ FY ðnÞ � FN ðnÞ ð10:2-50Þ

which from (10.2-37) to (10.2-39) can be rewritten as

UXn

0

� �
¼ Y 0

1

Y 0
2

� �
� F1N ðnÞ

F2N ðnÞ

� �
ð10:2-51Þ

Comparing (10.2-51) with (10.2-42) we see that

N 0
m 0 ¼ F1N ðnÞ ð10:2-52Þ

Thus

COVðN 0
m 0 Þ ¼ E ½N 0

m 0N
0T
m 0 �

¼ F1E ½N ðnÞN
T
ðnÞ �F T

1

ð10:2-53Þ

Assume that

E ½N ðnÞN
T
ðnÞ � ¼ �2I s ð10:2-54Þ

where I s is the s 
 s identity matrix. Then

COVðN 0
m 0 Þ ¼ F1�

2I sF
T
1

¼ �2Im 0
ð10:2-55Þ

where use was made of (10.2-1). Substituting (10.2-55) into (10.2-48b) yields

S�n;n ¼ COVðX�
n;n � XnÞ ¼ �2U�1U�T ð10:2-56Þ

Dividing both sides by �2, we see that U�1U�T is the normalized covariance
matrix of the least-squares estimate. Its elements are the VRF for the least-
squares estimate X�

n;n; see Sections 1.2.4.4 and 5.8. The term U�1 is called the
‘‘square root’’ of U�1U�T [79, pp. 17–18]. (The square root of a matrix is
nonunique. These square roots are related to one another by an orthonormal
transformation. Any matrix B that is positive definite has a square root, which
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we designate as S, with B ¼ SST [79, pp. 17–18]. When S is a complex square
root of B;B ¼ SSH , where H is the transpose complex conjugate [79]). Thus
U�1 is a square root of the VRF matrix of the least-squares estimate Xn;n. It is
because U�1 is the square root of the VRF matrix of a least-squares estimate
that the method being described in this section is called the square-root method.
It is important to emphasize that to obtain the square-root matrix one does not
obtain a direct square root in the usual sense but instead obtains it via an
orthonormal transformation as indicated above and in the following sections.

We can also obtain S�n;n, instead of by (10.2-56), by applying (5.6-2) to the
equivalent measurement system represented by (10.2-42). For the new
measurement WðhÞ ¼ U�1, and the covariance of the measurement noise
R ðnÞ becomes COVðN 0

nÞ given (10.2-55). Hence (5.6-2) becomes

S�n;n ¼ U�1�2ImU�T ¼ �2U�1U�T ð10:2-57Þ

as we wished to show. We have assumed that the mean of N ðnÞ is zero. From
(10.2-52) it then follows that the mean of N 0

m 0 is zero as required for (10.2-48b)
to follow from (10.2-48a).

The development of Section 4.3, which introduced the Gram–Schmidt
procedure, gave us a physical feel for why U is upper triangular; see specifically
(4.3-24) to (4.3-29). Further physical insight into the elements of the matrix U is
given in Chapter 13 when the Gram–Schmidt orthonormal transformation F is
again discussed.

10.2.3 Reasons the Square-Root Procedure Provides Better Accuracy

Loosely speaking, by using the square-root algorithms, we are replacing
numbers that range from 10�N to 10N by numbers that range from 10�N=2 to
10N=2 [78, p. 126]. As a result, when using the square-root algorithm, the
computer needs a numerical precision half that required when using the non-
square-root algorithm given by the normal equation (4.1-30) with the weight
given by (4.1-32) for the least-squares solution. There is, however, a price
paid—more operations (adds and multiplies) are needed with square-root
algorithms. This shall be elaborated on in Section 14.1.

A simple example is now given that further illustrates the advantage of using
the square-root algorithm. Assume B is diagonal matrix given by

B ¼ Diag ½ 1; "; "; " � ð10:2-58Þ

If " ¼ 0:000001 and the computations were carried out to only five-decimal-
place accuracy, then the above matrix would be interpreted as

B ¼ Diag ½ 1; 0; 0; 0 � ð10:2-59Þ

which is a singular matrix and hence noninvertible. If, on the other hand, the
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square root of B given by S were used in the computation, then

S ¼ Diag½1; "1=2; "1=2; "1=2� ð10:2-60Þ

where

"1=2 ¼ 0:001 ð10:2-60aÞ

and the five-decimal-place accuracy of the computer no longer presents a
problem, S being properly evaluated as a nonsingular matrix.

A measure of the accuracy needed for inverting a matrix B is the condition
number. The condition number C is the ratio of the magnitude of the largest to
the smallest eigenvalue of the matrix [81–83, 89, 102, 103], that is, the condi-
tion number of the matrix B is

CðBÞ ¼ �M

�m

����

���� ð10:2-61Þ

where �M and �m are, respectively, the largest and smallest eigenvalues of B.
The eigenvalues of a general matrix B are given by the roots of the charac-
teristic equation:

det½B � �I� ¼ 0 ð10:2-62Þ

where det stands for ‘‘determinant of’’. For a diagonal matrix the eigenvalues
are given by the diagonal elements of the matrix. Thus for the matrix B of
(10.2-58) the largest eigenvalue is �M ¼ 1 and the smallest eigenvalue is
�m ¼ " ¼ 0:000001 and

CðBÞ ¼ 1

"
¼ 106 ð10:2-63Þ

On the other hand, the condition number for the square root of B given by
(10.2-60) is

CðSÞ ¼ �M

�m

����

����

1=2

¼ 1

"1=2
¼ 103 ð10:2-64Þ

The dynamic range of B is thus 60 dB, whereas that of S is 30 dB. The computer
accuracy, or equivalently, word length needed to ensure that B is nonsingular
and invertible is [103]

Wordlength fto invert Bg � log2

�M

�m

����

���� ð10:2-65Þ
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In contrast the word length needed to ensure that S is invertible is

Wordlength ðto invert S ¼ B1=2Þ � 1
2

log2

�M

�m

����

����

� �
ð10:2-66Þ

For " ¼ 0:000001 the word lengths for B and S become, respectively, 20 and 10
bits.

10.2.4 When and Why Inaccuracies Occur

Consider the constant-velocity target least-squares estimate problem given in
Sections 1.2.6 and 1.2.10, that is, the least-squares fit of a straight-line
trajectory to a set of data points. The least-squares estimate trajectory is a
straight line defined by two parameters, the slope of the line v�0 and the y
intercept x�0 : see Figure 1.2-10. The least-squares estimate fit is given by the
line for which the error eT of (1.2-33) is minimum. Two plots of eT versus v0

and x0 are given in Figure 10.2-1 for two different cases. The case on the left is
for when the measured data points fit a line with little error. A situation for
which this is the case is illustrated in Figure 10.2-2a. Such a situation is called
well-conditioned. For the second case on the right of Figure 10.2-1 the slope v0

of the line fitting through the data points is not well defined, but the x0 intercept
is well defined. This situation is illustrated in Figure 10.2-2b. This is called a
bad-conditioned or an ill-conditioned situation. For the ill-conditioned situation
of Figure 10.2-2b the minimum of eT in the v0 dimension is not sharply defined.
Big changes in v0 result in small changes in eT . Thus, it is difficult to estimate
v0. To find the minimum point great accuracy is needed in calculating eT , and
even then one is not ensured to obtaining a good estimate. Cases like this need
the square-root procedure.

Figure 10.2-1 Surface of sum of squared differences eT between trajectory range data
and linear fit to trajectory as function of estimate for well-conditioned and badly
conditioned cases. (After Scheffé [104].)
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We now describe a way for telling when we have a well-conditioned or ill-
conditioned situation. Consider the matrix

H ¼

@ 2eT

@v̂2
0

@eT

@v̂0@x̂0

@eT

@v̂0@x̂0

@ 2eT

@x̂2
0

2

6664

3

7775
ð10:2-67Þ

which is called the curvature matrix or Hessian matrix [9]. The eigenvalues of
this matrix give us the curvature along the v̂0 and x̂0 directions for the cases
illustrated in Figure 10.2-1; see also Figure 10.2-3.

We now define the eigenvector of a matrix. The ith eigenvector of a matrix B
is given by the column matrix X, which satisfies [105]

BX ¼ � iX ð10:2-68Þ

Figure 10.2-2 Examples of trajectory range data y that lead to well-conditioned and
badly conditioned cases. (After Scheffé [104].)

Figure 10.2-3 Eigenvalues of curvature matrix (Hessian matrix) for (a) well
conditioned and (b) badly conditioned cases. (After Scheffé [104].)
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where � i is the ith eigenvalue of the matrix B. The v̂0 and x̂0 directions for the
example of Figure 10.2-1 are the eigenvector directions; see Figure 10.2-3.

The addition of noise will cause one to go from the very well-conditioned
case illustrated in Figure 10.2-4a to the ill-condition situation illustrated in
Figure 10.2-4b.

There are three different orthonormal transformations F that can be used to
transform the matrix T into the upper triangular form given by (10.2-8). One of
these, the Gram–Schmidt, was introduced in Section 4.3, the other two are the
Givens and Householder transformations. All three of these will be discussed
in detail in the next three chapters. These three different transformations are
mathematically equivalent in that they result in identical answers if the com-
putations are carried out with perfect precision. However, they each have
slightly different sensitivities to computer round-off errors. Because they are
computationally different, they require different numbers of adds and multiples
to arrive at the answers. Finally, the signal processor architectural implementa-
tion of the three algorithms are different. One of them (the Givens approach)
lends itself to a particularly desirable parallel processor architecture, called the
systolic architecture.

Figure 10.2-4 Effect of noise on conditioning. (After Scheffé [104].)
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11
GIVENS ORTHONORMAL
TRANSFORMATION

11.1 THE TRANSFORMATION

The Givens orthonormal transformation for making a matrix upper triangular
is made up of successive elementary Givens orthonormal transformations
G1;G2; . . . to be defined shortly. Consider the matrix T expressed by

T ¼

t11 t12 t13

t21 t22 t23

t31 t32 t33

t41 t42 t43

2

664

3

775 ð11:1-1Þ

First, using the simple Givens orthonormal transformation matrix G1 the matrix
T is transformed to

G1T ¼

ðt11Þ1 ðt12Þ1 ðt13Þ1

0 ðt22Þ1 ðt23Þ1

t31 t32 t33

t41 t42 t43

2

664

3

775 ð11:1-2Þ

The transformation G1 forces the 2,1 term of the matrix T to be zero. Now
applying another elementary Givens orthonormal transformation G2 to the
above matrix yields

G2G1T ¼

ðt11Þ2 ðt12Þ2 ðt13Þ2

0 ðt22Þ1 ðt23Þ1

0 ðt32Þ2 ðt33Þ2

t41 t42 t43

2

664

3

775 ð11:1-3Þ
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The second transformation G2 forces the 3, 1 term to be zero. Applying in turn
the third Givens orthonormal transformation G3 to the above matrix now yields

G3G2G1T ¼

ðt11Þ3 ðt12Þ3 ðt13Þ3

0 ðt22Þ1 ðt23Þ1

0 ðt32Þ2 ðt33Þ2

0 ðt42Þ3 ðt43Þ3

2

664

3

775 ð11:1-4Þ

Application of these successive elementary Givens orthonormal transforma-
tions has forced all the elements of the first column of T to zero below the first
element. This process is now repeated for the second column of the above
matrix with another set of elementary Givens orthonormal transformations so as
to force all the elements below the diagonal of the second column to be zero.
This process is next repeated for the third and last column of the matrix so as to
force the elements below the diagonal to be zero, yielding the desired upper
triangular matrix expressed by

U

--

0

2

4

3

5 ¼

u11 u12 u13

0 u22 u23

0 0 u33

0 0 0

2

664

3

775 ð11:1-5Þ

The first elementary Givens orthonormal transformation G1 above is given as

G1 ¼

c1 s1 j 0 0

�s1 c1 j 0 0

--------------------------

0 0 j 1 0

0 0 j 0 1

2

66664

3

77775
ð11:1-6Þ

where

c1 ¼ cos �1 ¼ t11

ðt 2
11 þ t 2

21Þ
1=2

ð11:1-6aÞ

and

s1 ¼ sin �1 ¼ t21

ðt 2
11 þ t 2

21Þ
1=2

ð11:1-6bÞ

Examination of (11.1-6) indicates that each of its row matrices (vectors) have
unit amplitude and are orthogonal with each other, as should be the case
because G1 is an orthonormal transformation. Physically the Givens
orthonormal transformation G1 can be thought of as projecting the column
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vectors of the matrix T onto the row space of G1, as discussed in Section 10.2.1;
see also Section 4.3. The new space to which G1 transforms T is such that for
the first column matrix of T, designated as t1, the new second coordinate t21 is
zero while the first coordinate, t11, is not; see (11.1-2). Alternately, we can view
the transformation G1 as rotating the vector t1 so as to achieve the same result.
Specifically, we can think of G1 as rotating the two-dimensional vector formed
by the first two coordinates of t1 such that it lines up with the x axis.
Equivalently, we can view G1 as physically performing a rotation of the first
two rows of the matrix T so as to make the term t21 equal zero. This is the
viewpoint that we shall first take. This rotation (called a Givens rotation) is
achieved by the upper left-hand corner 2 � 2 matrix of (11.1-6), that is, by the
matrix

G 0
1 ¼ c1 s1

�s1 c1

� �
ð11:1-7Þ

which acts on the first two rows of the matrix T as follows:

c1 s1

�s1 c1

� �
t11 t12 t13

t21 t22 t23

� �
¼ ðt11Þ1 ðt12Þ1 ðt13Þ1

0 ðt22Þ1 ðt23Þ1

� �
ð11:1-8Þ

Using (11.1-6a) and (11.1-6b), it is easy to verify that

ðt11Þ1 ¼ c1t11 þ s1t21

¼ ðt 2
11 þ t 2

21Þ
1=2

ð11:1-9Þ

and that the lower left-hand component of the matrix on the right-hand side of
(11.1-8) above is zero, that is,

ðt21Þ1 ¼ �s1t11 þ c1t21

¼ 0
ð11:1-10Þ

The rotation performed by the matrix G 0
1 of (11.1-7) is illustrated in Figure

11.1-1. Consider the vector

�t0 ¼ t11i þ t21 j ð11:1-11Þ

formed by the first two coordinates of the first column matrix t1 of T. Here i and
j are unit direction vectors for respectively the first and second coordinates of t1,
the x and y coordinates respectively. Figure 11.1-1a shows these vectors. The
matrix G 0

1 rotates the vector �t0 through an angle �1 defined by (11.1-6a) or
(11.1-6b) to form a new vector �t1 having the same magnitude but now aligned
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Figure 11.1-1 (a) Givens rotation of vector �t0 in x–y plane onto x axis forming vector
�t1. (b) Two Givens rotations of three-dimensional vector �t 2 to form vector �t3 aligned
along x axis.
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along the x axis so as to be given by

�t1 ¼ ðt 2
11 þ t 2

21Þ
1=2

i þ 0j ð11:1-12Þ

The second Givens orthonormal transformation G2 of (11.1-3) is given as

G2 ¼

c2 0 s2 0

0 1 0 0

�s2 0 c2 0

0 0 0 1

2

664

3

775 ð11:1-13Þ

where

c2 ¼ cos �2 ¼ ðt11Þ1

½ðt11Þ2
1 þ t 2

31

1=2

ð11:1-13aÞ

and

s2 ¼ sin �2 ¼ t31

½ðt11Þ2
1 þ t 2

31

1=2

ð11:1-13bÞ

This Givens rotation yields, for the top left-hand corner element of the
transformed matrix,

ðt11Þ2 ¼ ½ðt11Þ2
1 þ t 2

31

1=2

¼ ½t 2
11 þ t 2

21 þ t 2
31


1=2
ð11:1-14Þ

and, for the third element in the first column,

ðt31Þ2 ¼ 0 ð11:1-15Þ

Figure 11.1-1b illustrates the first rotation by �1 and the second rotation by the
amount �2. Here the three-dimensional vector �t2 is given by

�t2 ¼ �t0 þ kt31

¼ it11 þ jt21 þ kt31

ð11:1-16Þ

where k is the unit vector along the z axis. This vector is first rotated by G1 onto
the x–z plane to form �t1 þ kt13 and then rotated by G2 onto the x axis to yield
the new vector �t3:

�t3 ¼ ½t 2
11 þ t 2

21 þ t 2
31


1=2
i ð11:1-17Þ
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To get further physical insight into the Givens transformation G1, we will
now view it as transforming the column space of the matrix T onto the new
space defined by the row vectors of the matrix G1. We first consider the
projection of the first column vector t1 of T onto the row space of G1. (A word is
in order relative to our notation. Note that whereas t1 is the whole s-dimen-
sional first column of T, the vector�t0 consists of only the first two coordinates of
t1. The vector �t1 is just �t0 rotated onto the x axis while the vector �t2 is a vector
formed by just the first three coordinates of t1.) We will consider the projection
of t1 onto the successive rows of G1, starting with the first, in order to obtain the
coordinates of t1 after projecting it into the row space of G1.

Designate the first row of G1 as the vector g1 whose coordinates (in the
original x, y, z,. . . coordinate system; see Section 4.3) are given by the entries of
the first row of G1. This vector g1 is a unit vector lying in the plane defined by
the first two coordinates of the column vector t1 of T. This plane is the x, y space
of Figure 11.1-2a. Moreover, g1 is chosen to lie along the vector �t0 formed by
the first two coordinates of t1 with the remaining coordinates being zero.
Hence, from Figure 11.1-2a and (11.1-6)

g1 ¼ i cos �1 þ j sin �1 þ k � 0 þ 0 þ � � � ð11:1-18Þ

where i, j, and k are the unit vectors in the x, y, and z directions of the
rectangular coordinate system (see Figure 11.1-2c). They are also the unit
vector directions for the vector formed by the first three coordinates of the
column vectors of T, that is, of the vector t1.

Figure 11.1-2 (a) Transformation of vector formed by first two coordinates of t1,
designated �T0, into g 1, g2 two-dimensional space from x; y space. (b) Transformation of
vector formed by �t 0 ¼ g1 k �t0 k and kt31(effectively first three coordinates of �t1),
designated as �t2, into (g 1Þ

2
, ðg3Þ 2 space. (c) Givens unit vectors.
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The projection of t1 onto g1 is given by the dot product of t1 and g1 [see
(4.2-36)], or equivalently by the product of the first row of G1 by the first
column of T as given by (4.2-37) for the three-dimensional case. Because only
the x, y coordinates of g1 are nonzero, only the first two coordinates of t1 enter
into this product, or equivalent, projection. Thus we can think of g1 as a two
element vector to get

g1 � t1 ¼ g1 ��t0 ð11:1-19Þ

Figure 11.1-2 (Continued)
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Applying (11.1-6a) and (11.1-6b) to �t0 of (11.1-11) yields

�t0 ¼ ik�t0k cos �1 þ jk�t0k sin �1 ð11:1-20Þ

Substituting (11.1-18) and (11.1-20) into (11.1-19) and using (11.1-9) yield

g1 � t1 ¼ g1 ��t0 ¼ k�t0k ¼ ðt11Þ1 ð11:1-21Þ

That is, the projection of �t0 into g1 is equal to the magnitude of �t0, as we saw it
should be from the above discussion relative to thinking of G1 as doing a
rotation of �t0. This result also follows because, as indicated above, the unit
vector g1 was chosen to lie not only in the x, y plane but also along the vector
�t0; see (11.1-18) and (11.1-20).

Equation (11.1-21) gives us the first coordinate of the projection of t1 onto
the s-dimensional row space of G1. Now let us determine the second coordinate
obtained by projecting t1 onto the second-row unit vector of G1, which we
designate as g2. The vector g2 is also in the x, y plane of Figure 11.1-2a but
perpendicular to g1. Specifically, from Figure 11.1-2a and (11.1-6) it follows
that

g2 ¼ �i sin �1 þ j cos �1 þ k � 0 þ 0 þ � � � ð11:1-22Þ

The projection of t1 onto g2 is given by

g2 � t1 ¼ g2 ��t0 ð11:1-23Þ

and substituting (11.1-20) and (11.1-22) into the above equation yields

g2t1 ¼ �sin �1 cos �1 þ cos �1 sin �1 ¼ 0 ð11:1-24Þ

which, based on (11.1-2) and (11.1-8), is what it should be. Physically (11.1-24)
should be zero because g2 is orthogonal to the direction of g1, which is lined up
with the direction of t1 and in turn �t0.

Equation (11.1-24) gives us the second coordinate of the projection of t1 onto
the s-dimensional space of G1. Now we determine the third coordinate by
projecting t1 onto the third-row unit vector of G1, which we designate as g3.
Examining (11.1-6), we see that the third row consists of zero entries except for
the third-column entry, which is a 1. Consequently, the projection of t1 onto the
third-row unit vector g3 leaves the third coordinate of t1 unchanged. Stated
another way, g3 is a unit vector aligned along the third coordinate of t1. This
follows because all the coordinates of g3 are zero except the third, which is
unity. Consequently, projecting t1 onto g3 leaves the third coordinate of t1

unchanged. The same is true for the remaining coordinates of t1; they are
unchanged by the transformation G1 because the ith-row vector gi, i > 2, is a
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unit vector lined up with the ith coordinate of t1; see (11.1-6). Although for
(11.1-6) s ¼ 4, this result is true when G1 is an s � s matrix. In this case, the
lower right-hand corner ðs � 2Þ � ðs � 2Þ matrix of G1 is the identity matrix
with the elements to its left being zero. Thus Figure 11.1-2a illustrates the
projection of the vector �t0, defined by the first two coordinates of t1, onto the
space defined by the first two unit row vectors g1 and g2 of G1.

This completes the proof that G1 projects T into the form given by (11.1-2).
Designate this projected vector t1 as ðt1Þ1. In summary, G1 transforms
the columns of T to a new coordinate system for which the coordinates of
T have the form given by (11.1-2) with ðt21Þ1 ¼ 0. We will let ðt1Þ1

represent the column vector t1, the first column of T, in this new coordinate
system.

Let us carry one step further our discussion of viewing the simple Gi

Givens transformations as projecting the column space of the matrix T onto
the space defined by the row vectors of Gi. This is now done by detailing
this projection for G2. On examining (11.1-13) it is seen that only the first
and third coordinates are altered by this projection, the unit vectors of G2

represented by the other rows of G2 being unit vectors aligned along the
other coordinates of the matrix T. Now consider the unit vectors ðg1Þ2 and
ðg3Þ2 defined by the first and third rows of G2. On examining (11.1-16),
(11.1-13a), (11.1-13b), and (11.1-13), it can be verified that ðg1Þ2 is
chosen to line up with the vector defined by the first- and third-row coordi-
nates of ðt1Þ1, with all other coordinates set equal to zero, while ðg3Þ2 is
chosen to be orthogonal to ðg1Þ2. This situation is illustrated in Figure
11.1-2b; see also Figure 11.1-2c. In this figure �t2 is the vector formed by
the first- and third-row coordinates of ðt1Þ1; see (11.1-2) and (11.1-16). As
a consequence of this choice for ðg1Þ2, the projection of �t2 onto ðg1Þ2, which
is the first coordinate of the vector G2ðt1Þ1, has a magnitude equal to the
magnitude of �t2, which is the desired ðt11Þ2 of (11.1-3); see also (11.1-14).
In turn �t2 equals the magnitude of the first three coordinates of t1; see
(11.1-14). Moreover, this last result follows because ðg1Þ2 in the
above is actually chosen to line up with the first three coordinates of the
vector t1.

Because ðg3Þ2 is orthogonal to ðg1Þ2 and in turn �t2, the third coordinate
of G2ðt1Þ1 given by ðg3Þ2ðt1Þ1 ¼ ðg3Þ2

�t2, equals zero. This results in the
first column of G2G1T being in the form given in (11.1-3), as desired.
Figure 11.1-2b illustrates the projection of the vector �t2, defined by the vectors
�t0 and kt31, onto the space defined by the first and third rows of G2, or
equivalently, the unit vector rows ðg1Þ2 and ðg3Þ2 of G2. The physical
significance of the succeeding Givens transformations follows in a similar
manner. This completes our interpretation of the Givens transformations as an
orthogonal coordinate transformation. In Chapter 13 we shall relate the Givens
transformation to the Gram–Schmidt transformation introduced in Section 4.3.
In Chapter 12 we shall relate the Givens transformation to the Householder
transformation.
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The transformations can be conveniently applied to T and Y ðnÞ simul-
taneously by generating the augmented matrix T0 given by

T0 ¼ ½T jY ðnÞ
 ð11:1-25Þ

and then applying the Givens orthonormal transformation to it. [This parallels
the procedure followed in Section 4.3 where such an augmented matrix was
generated to apply the Gram–Schmidt transformation to T and Y ðnÞ simul-
taneously; see (4.3-54) and the discussions related to it]. To be concrete, assume
that T is a 2 � 3 matrix given by

T ¼
t11 t12

t21 t22

t31 t32

2

4

3

5 ð11:1-26Þ

and

Y ðnÞ ¼
y1

y2

y3

2

4

3

5 ð11:1-27Þ

Also assume

X
n;n ¼

x1
x2

� �
ð11:1-28Þ

Then (11.1-25) becomes

T0 ¼
t11 t12 y1

t21 t22 y2

t31 t32 y3

2

4

3

5 ð11:1-29Þ

After three Givens rotations (11.1-29) becomes

T 0
0 ¼ FT0 ¼

ðt11Þ3 ðt12Þ3 j ðy1Þ3

0 ðt22Þ3 j ðy2Þ3

---------------- j --------

0 0 j ðy3Þ3

2

664

3

775 ð11:1-30Þ

As shall be shown shortly, the square of the lower right element ðy3Þ3 is the
numerical value of the least-squares residue error given by (4.1-31), that is,

½ðy3Þ3

2 ¼ ðy3Þ2

3 ¼ eðX
n;nÞ ð11:1-31Þ

[This result was already shown in Section 4.3; specifically see (4.3-38).] The
2 � 2 upper left-hand corner matrix of t’s corresponds to the upper triangular
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matrix of u’s of (10.2-8) or (10.2-9). We have used the entries ðt ijÞ3 instead of
uij in matrix T 0

0 given by (11.1-30) in order to emphasize that three elementary
Givens rotations are being used to transform the T matrix to the U matrix. The
following gives step by step the Givens orthonormal rotation transformations
for a 3 � 2 matrix T : Let

T ¼
t11 t12

t21 t22

t31 t32

2

4

3

5

(a) The first Givens rotation by matrix G1 is given as

G1T ¼
c1 s1 0

�s1 c1 0

0 0 1

2

64

3

75

t11 t12

t21 t22

t31 t32

2

64

3

75 ¼
c1t11 þ s1t21 c1t12 þ s1t22

�s1t11 þ c1t21 �s1t12 þ c1t22

t31 t32

2

64

3

75

¼
ðt11Þ1 ðt12Þ1

0 ðt22Þ1

t31 t32

2

64

3

75

where

c1 ¼ t11ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t 2

11 þ t 2
21

p s1 ¼ t21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t 2

11 þ t 2
21

p

ðt11Þ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t 2

11 þ t 2
21

q

Therefore

c1 ¼ t11

ðt11Þ1

s1 ¼ t21

ðt11Þ1

Thus

c1t11 þ s1t21 ¼ t11

ðt11Þ1

t11 þ
t21

ðt11Þ1

t21 ¼ t 2
11 þ t 2

21

ðt11Þ1

¼ ðt11Þ2
1

ðt11Þ1

¼ ðt11Þ1

�s1t11 þ c1t21 ¼ � t21

ðt11Þ1

t11 þ
t11

ðt11Þ1

t21 ¼ 0 ¼ ðt21Þ1

c1t12 þ s1t22 ¼ t11

ðt11Þ1

t12 þ
t21

ðt11Þ1

t22 ¼ ðt12Þ1

�s1t12 þ c1t22 ¼ � t21

ðt11Þ1

t12 þ
t11

ðt11Þ1

t22 ¼ ðt22Þ1
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(b) The second Givens rotation by matrix G2 yields

G2G1T ¼
c2 0 s2

0 1 0

�s2 0 c2

2

64

3

75

ðt11Þ1 ðt12Þ1

0 ðt22Þ1

t31 t32

2

64

3

75

¼
c2ðt11Þ1 þ s2t31 c2ðt12Þ1 þ s2t32

0 ðt22Þ2 ¼ ðt22Þ1

s2ðt11Þ1 þ c2t31 s2ðt12Þ1 þ c2t32

2

64

3

75

where

c2 ¼ ðt11Þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt11Þ2

1 þ t 2
31

q s2 ¼ t31ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt11Þ2

1 þ t 2
31

q

ðt11Þ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt11Þ2

1 þ ðt31Þ2
q

c2 ¼ ðt11Þ1

ðt11Þ2

s2 ¼ t31

ðt11Þ2

c2ðt11Þ1 þ s2t31 ¼ ðt11Þ1

ðt11Þ2

ðt11Þ1 þ
t31

ðt11Þ2

t31 ¼ ðt11Þ2
2

ðt11Þ2

¼ ðt11Þ2

�s2ðt11Þ1 þ c2t31 ¼ � t31

ðt11Þ2

ðt11Þ1 þ
ðt11Þ1

ðt11Þ2

t31 ¼ 0

c2ðt12Þ1 þ s2t32 ¼ ðt11Þ1

ðt11Þ2

ðt12Þ1 þ
t31

ðt11Þ2

t32 ¼ ðt12Þ2

�s2ðt12Þ1 þ c2t32 ¼ � t31

ðt11Þ2

ðt12Þ1 þ
ðt11Þ1

ðt11Þ2

t32 ¼ ðt32Þ2

(c) The third Givens rotation by matrix G3 yields

G3G2G1T ¼
1 0 0

0 c3 s3

0 �s3 c3

2

64

3

75

ðt11Þ2 ðt12Þ2

0 ðt22Þ2

0 ðt32Þ2

2

64

3

75

¼

ðt11Þ2 ðt12Þ2

0 c3ðt22Þ2 þ s3ðt32Þ2

¼ ðt22Þ3

0 �s3ðt22Þ2 þ c3ðt32Þ2

¼ ðt32Þ3 ¼ 0

2

6666664

3

7777775

¼
ðt11Þ2 ðt12Þ2

0 ðt22Þ3

0 0

2

64

3

75
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where

c3 ¼ ðt22Þ2

ðt22Þ3

s3 ¼ ðt32Þ2

ðt22Þ3

ðt22Þ3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt22Þ2

2 þ ðt32Þ2
2

q

c3ðt22Þ2 þ s3ðt33Þ2 ¼ ðt22Þ2

ðt22Þ3

ðt22Þ2 þ
ðt32Þ2

ðt22Þ3

ðt32Þ2

¼ ðt22Þ2
2 þ ðt32Þ2

2

ðt22Þ3

� ðt22Þ3

�s3ðt22Þ2 þ c3ðt32Þ2 ¼ �ðt32Þ2

ðt22Þ3

ðt22Þ2 þ
ðt22Þ2

ðt22Þ3

ðt32Þ2 ¼ 0

As in Section 10.2, the Givens transformation yields a set of m 0 equations in
the Gauss elimination form; see (10.2-16). It was indicated in Section 4.3 that
the set of equations obtained using the voltage procedure will differ from those
generally obtained if the normal Gauss elimination procedure is used. First note
that the procedure for obtaining the Gauss elimination form is not unique.
Usually, to eliminate the t21 term of (11.1-1), the factor t21=t11 times the first
row is subtracted from the second row. We could have just as well have
subtracted kðt21=t11Þ times the first row from k times the second row, where k is
an arbitrary constant. This is what we are doing when using the Givens trans-
formation G1 of (11.1-6), with c1 and s1 given by (11.1-6a) and (11.1-6b). In
this case the constant k is c1. This value of k was chosen over unity to make
the rows of G1 be unit vectors, which makes F an orthonormal transformation.
Why do we want to make F an orthonormal matrix? It turns out that the
sensitivity to computer round-off errors of our least-squares solution to
(10.2-16) is minimized if the Gauss elimination form is obtained by the use of
an orthonormal transformation, that is, if the matrices U and Y 0

1 are obtained
from T and Y ðnÞ using an orthonormal transformation matrix F [129].

11.2 EXAMPLE

By way of numerical example let

T ¼
1 1 � "

1 � " 1

1 1

2

4

3

5 ð11:2-1Þ

We chose this T because it is one for which round-off errors can lead to a
problem when " is very small. Specifically, when " is small enough, the
computer round-off errors will cause the columns of T to be considered
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essentially identical so as to lead to a degenerate situation of the type discussed
in Chapter 10. This is precisely the type of situation for which the Givens
orthonormal transformation procedure is designed to work. The T example
given by (11.2-1) was originally suggested by Golub [102; see also 79, p. 91].

We shall pick a fairly large " for our example so as to be able to calculate the
orthonormalized T on a hand calculator (such as the HP15C or HP32S) without
running into computational round-off problems. Toward this end we pick
" ¼ 0:1. Applying three Givens rotations yields, for the transformed T matrix,

G1G2G3T ¼ T 0 ¼

1:676305461 1:670339961

0 0:141295480

-------------------------------------

0 0

2

664

3

775 ð11:2-2Þ

The following are step-by-step hand calculations for Givens orthonormal
rotation transformations of the 3 � 2 matrix T of (11.2-1) for " ¼ 0:1:

T ¼
1 0:9

0:9 1

1 1

2

4

3

5 ¼
t11 t12

t21 t22

t31 t32

2

4

3

5

(a) For the first Givens rotation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t 2

11 þ t 2
21

q
¼ 1:345362405 ¼ ðt11Þ1 c1 ¼ 0:743294146

s1 ¼ 0:668964732

so that

G1T ¼
ðt11Þ1 ðt12Þ1

ðt21Þ1 ðt22Þ1

ðt31Þ1 ðt32Þ1

2

4

3

5 ¼
1:345362405 1:337929463

0 0:141225888

1 1

2

4

3

5

(b) For the second Givens rotation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt11Þ2

1 þ ðt31Þ2
1

q
¼ 1:676305461 ¼ ðt11Þ2 c2 ¼ 0:802575924

s2 ¼ 0:596549986

so that

G2G1T ¼
ðt11Þ2 ðt12Þ2

ðt21Þ2 ðt22Þ2

ðt31Þ2 ðt32Þ2

2

4

3

5 ¼
1:676305461 1:670339961

0 0:141225888

0 0:004434121

2

4

3

5

296 GIVENS ORTHONORMAL TRANSFORMATION



(c) For the third Givens rotation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt22Þ2

2 þ ðt32Þ2
2

q
¼ 0:141295480 ¼ ðt22Þ3

so that

G3G2G1T ¼
ðt11Þ3 ðt12Þ3

ðt21Þ3 ðt22Þ3

ðt31Þ3 ðt32Þ3

2

4

3

5 ¼
1:676305461 1:670339961

0 0:141295480

0 0

2

4

3

5

which agrees with (11.2-2).

It would be desirable to obtain an exact solution in terms of " for the matrix FT
and for the estimate X

n;n obtained using this T and the measured data. In
general, one would not have an exact solution. However, for the simple example
given it is possible to get such an exact solution. This is convenient because it
allows examination of the relative accuracies of various algorithms being
described in these sections for obtaining the least-squares solution when T is
given by (11.2-1). The effect of different computer precision could also be
examined. This is exactly what is done in reference 79 (pp. 91–100). We will
next provide the exact solution to FT.

It is possible to obtain the sought-after exact solution in terms of " using
three Givens rotations of (11.2-1). After much straightforward algebra one
obtains [79, pp. 91–96]

ðt11Þ3 ¼ p ¼ ½2 þ ð1 � "Þ2
1=2 ð11:2-3Þ

ðt12Þ3 ¼ 3 � 2"

p
ð11:2-4Þ

ðt22Þ3 ¼ "ð&Þ1=2

p
ð11:2-5Þ

ðy1Þ3 ¼ y1 þ ð1 � "Þy2 þ y3

p
ð11:2-6Þ

ðy2Þ3 ¼ ð1 � "Þy1 þ y2 þ y3 � ðt12Þ3ðy1Þ3

ðt22Þ3

ð11:2-7Þ

ðy3Þ2
3 ¼ y2

1 þ y2
2 þ y2

3 � ðy1Þ2
3 þ ðy2Þ2

3 ð11:2-8Þ

where

p ¼ ½2 þ ð1 � "Þ2
1=2 ð11:2-9Þ
and

& ¼ 6 � 4"þ "2 ð11:2-10Þ
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Using the above results for (11.1-30) it is a straightforward matter to now
solve (10.2-16) by the back-substitution method. From the above (10.2-16)
becomes

ðt11Þ3 ðt12Þ3

0 ðt22Þ3

� �
x1
x2

� �
¼

ðy1Þ3

ðy2Þ3

� �
ð11:2-11Þ

Solving yields, for the exact least-squares estimate solution,

x1 ¼ 1

&

ð3 � "Þy1 � ½3ð1 � "Þ þ "2
y2

"
þ y3

� �
ð11:2-12Þ

and

x2 ¼ 1

&

ð3 � "Þy2 � ½3ð1 � "Þ þ "2
y1

"
þ y3

� �
ð11:2-13Þ

[Reference 79 (pp. 91–95) actually uses a different procedure for obtaining the
above exact solutions that we now outline. Let Ci be the ith column vector of
the matrix (11.1-29) and let Ui be the ith column vector of the orthonormalized
transformed version of this matrix given by (11.1-30). It turns out that after an
orthonormal transformation the inner products of corresponding columns of
these matrices are preserved, that is,

C T
i Cj ¼ U T

i Uj for all i; j ð11:2-14Þ

By evaluating (11.2-14) for all i, j inner products, it is a straightforward matter
to solve for all the terms of (11.1-30), giving the solutions of (11.2-3) through
(11.2-10). Specifically one proceeds by first computing the inner products for
i ¼ j ¼ 1 to solve for ðt11Þ3. Next the inner products for i ¼ 1 and j ¼ 2,3 are
obtained to solve for respectively ðt12Þ3 and ðy1Þ3. Then we obtain the inner
product for i ¼ j ¼ 2 to solve for ðt22Þ3. The inner product for i=2 and j=3 then
gives ðy2Þ3. Finally the last inner product of i ¼ j ¼ 3 yields the ðy3Þ3. This
procedure is very much similar to the back-substitution procedure.]

11.3 SYSTOLIC ARRAY IMPLEMENTATION

11.3.1 Systolic Array

The Givens orthonormal transformation for triangularizing the augmented
matrix T0 described above can be implemented using a parallel-circuit
architecture called a systolic array that shall be defined shortly. It should be
cautioned that the systolic array described here would not be used in those cases
where the T matrix is known in advance; see the discussion at the end of Section
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4.3. For these cases some of the computations for triangularizing the T matrix
can be done off-line. For the sidelobe canceler problem described in Section
4.4. the equivalent matrix to the T matrix, the matrix V, consists of random
varibles (the random auxiliary antenna data) and hence the triangularization of
V cannot be done in advance. Because of the important application of the
systolic array implementation to the sidelobe canceler problem and for
completeness, we include its description here. It may have possible application
to some least-squares tracking problems.

To introduce the idea of a systolic array, we consider the problem of matrix
multiplication as given by

x11 x12 x13

x21 x22 x23

x31 x32 x33

2

4

3

5
a1

a2

a3

2

4

3

5 ¼
y1

y2

y3

2

4

3

5 ð11:3-1Þ

Figure 11.3-1 Matrix–vector multiplication with systolic array. (After McWhirter
[140].)
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The above matrix multiplication can be carried out with the systolic array
shown in Figure 11.3-1. Each square of the systolic array does a multiplication
and addition as indicated. The outputs yi, i= 1, 2, 3, are generated as the outputs
of the rightmost box. The inputs for a given column of the xij are shown
staggered in the figure. This is necessary because the output of the box labeled
ai�1 is needed before the calculations for the box labeled ai can be carried out.
To better understand what is happening, let us follow the computation of y1.
First a1x11 is computed at the first clock cycle in the box labeled a1. Then
a1x11 þ a2x12 is calculated on the next clock cycle in the box labeled a2.
Finally, the desired output a1x11 þ a2x12 þ a3x13 ¼ y1 is computed on the
third clock cycle in the box labeled a3. While y1 is being calculated, y2 and y3

are being calculated behind it.

Figure 11.3-2 (a) Systolic array implementation of Givens orthonormal transforma-
tion. (b) Computations performed by circular boundary and rectangular internal cells of
systolic array implementing Givens orthonormal transformation. (After Kung, H. T. and
W. M. Gentleman, ‘‘Matrix Triangularization by Systolic Arrays,’’ Proceedings of the
SPIE, 1981, Vol. 298, Real Time Signal Processing IV.)
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Now we will define a systolic array. It is a collection of individual computer
boxes or elements, many of which do identical computations. These elements
do calculations in parallel and most importantly have only a connection to
adjacent computer boxes, or elements, as is the case for the systolic array of
Figure 11.3-2. A key feature of the systolic array is that the computations are
carried out in parallel by many computer processors, thus providing a high
throughput. The computer elements making up the systolic array could be
arranged as a one-dimensional array, as in Figure 11.3-1, a two-dimensional
array (as is the case for the systolic array needed to do the Givens ortho-
normalization), or a three-dimensional array. We now give the two-dimensional
systolic array needed to do the Givens orthonormal transformation.

The systolic array required to do the Givens orthonormal transformation is
given in Figure 11.3-2 [106]. It consists of two types of computer elements,
those in the square boxes and those in the circular boxes. The circular elements
compute the ci’s and s i’s of (11.1-6a) and (11.1-6b) needed for the Givens
rotation, the ith-row circular box calculating the ci’s and s i’s for the ith row of
T0. Assume T0 is a ðm 0 þ 1Þ � s matrix. Then, except for the bottom circular
box, the circular boxes calculate elements ðt iiÞk. The bottom circular box
calculates ðymþ1Þ k, where k ¼ 1; 2; . . . ; s 0 and s 0 is the number of Givens

Figure 11.3-2 (Continued)
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rotations needed to complete the orthonormal transformation to obtain
T 0

0 ¼ FT0; see, for example, (11.1-30). At the end of the computations the
circular boxes contain

ðt iiÞ s 0 ¼ uii i ¼ 1; . . . ;m 0 ð11:3-2Þ

and the bottom circular box contains

ðymþ1Þ s 0 ¼ ½enðX
n;nÞ


1=2 ð11:3-3Þ

The inner square boxes calculate ðt ijÞk for i 6¼ j. At the completion of the
triangularization the inner square boxes contain

ðt ijÞ s 0 ¼ uij for i 6¼ j ð11:3-4Þ

The right-hand boundary square boxes calculate ðyiÞ k and at the end of the
Givens orthonormal transformation contain

ðyiÞ s 0 i ¼ 1; . . . ;m 0 ð11:3-5Þ

Figure 11.3-3 shows the step-by-step computations involved in the Givens
orthonormalization of T given by (11.2-1) for " ¼ 0:1. At the end of the
orthonormalization the array contains the orthonormalized T given by (11.2-2).

Having performed the Givens orthonormal transformation of T0 using the
systolic array, it is now possible to calculate the desired least-squares estimate
X

n;n; which is an m 0 � 1 array containing the elements x1 ; . . . ; xm 0 . This is done
using the back-substitution method to solve (10.2-16) as described in Sections
4.3 and 10.2. This back substitution can also be carried out using another
systolic array [107; see also 106]. Cascading these two systolic arrays together
yields the systolic array of Figure 11.3-4 [106].

In the above systolic array implementation the circular elements have more
complex computations than do the square elements. The circular elements
require a square-root operation [see (11.1-6a) and (11.1-6b)] whereas the square
elements only require multiplication and add operations. A square-root free
implementation of the Givens rotation algorithm has been developed [106, 108,
109]. It is only when this square-root free algorithm is implemented that the
diagonal connections between the circular elements indicated in Figure 11.3-2
are needed. For the square-root algorithm given above they are not needed
[106; see Figure 11.3-2b].

For the sidelobe canceler problem of Section 4.4 we are interested in
calculating the least-squares residual and not the weight vector. McWhirter [89,
94] has developed an efficient triangular systolic array (like that of Figure 11.3-2)
which computes the residue without the need for the back-substitution systolic
array of Figure 11.3-4. The residual is obtained as the output of the bottom
circular element of the systolic array. Both square-root and square-root free
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Figure 11.3-3 Step-by-step calculations involved in the Givens orthonormalization of
T using a systolic array: (a) Initialization. (b) After first clock cycle at n ¼ 0. (c) After
second clock cycle at n ¼ 1. (d ) After third clock cycle at n ¼ 2. (e) After fourth clock
cycle at n ¼ 3. ( f ) After fifth and final clock cycle at n ¼ 4.
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Figure 11.3-3 (Continued)
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Figure 11.3-3 (Continued)
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versions have been developed [89, 94]. These implementations offer significant
reduction in hardware complexity and are less sensitive to round-off errors.

An alternative to using the above square-root algorithm or the square-root
free algorithm is to use the Coordinate Rotation Digital Computer (CORDIC)
algorithm [110] to perform the Givens transformations on the matrix T. This
CORDIC algorithm will perform the Givens rotations just using additions and
subtractions, no square-root operation being needed. The CORDIC algorithm
provides a simple means for doing trigonometric calculations. It is the
algorithm used on Hewlett-Packard calculators for trigonometric computations
[111]. Given the two-dimensional vector ðt11; t21Þ of Figure 11.1-1, the
CORDIC algorithm will, in the first circular box, determine the rotated vector�t1

of (11.1-12) and the angle �1 through which the vector was rotated, this angle

Figure 11.3-4 Systolic array implementation of least squares estimate. After Kung,
H. T. and W. M. Gentleman, ‘‘Matrix Triangularization by Systolic Arrays,’’
Proceedings of the SPIE, 1981, Vol. 298, Real Time Signal Processing IV.)
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being mathematically given by (11.1-6a) or (11.1-6b). It is necessary to know
this angle �1 in order to rotate the remaining two-dimensional vector pairs
ðt1i; t2iÞ of the first two rows of the matrix T by �1 to complete the orthonormal
transformation of the first two rows of the matrix T by G1. The CORDIC
algorithm will perform these latter rotations in the square boxes on the first row.
The pair of numbers ðt11; t21Þ forming the two-dimensional vector �t0 of Figure
11.1-1 can be thought of as a complex number having a real part t11 and an
imaginary part t21. The CORDIC algorithm can just as well be applied to
complex numbers to determine their magnitude and angle or to rotate them
through some arbitrary angle �.

11.3.2 CORDIC Algorithm

The process of using the CORDIC algorithm to determine the magnitude and
angle of a complex number x þ jy is called vectoring [110]. The process of
using the CORDIC algorithm to rotate a complex number x þ jy by some angle
� is called rotation [110]. Without loss of generality, in the following we will
describe these two CORDIC algorithms as applied to complex numbers.

Assume that we are given a complex number x1 þ jy having a magnitude R1

and an angle �1, that is,

x1 þ jy1 ¼ R1ff �1 ð11:3-6Þ

The CORDIC vectoring algorithm rotates this complex number into the real
axis to form the real number R1ff 0�. In the process it determines the angle �1 of
the complex number and its magnitude R1. The rotation is carried out through a
series of n � 1 small rotations of magnitude � i for i ¼ 2; 3; . . . ; n � 1, these
rotations only requiring additions and subtractions. The basis for the CORDIC
algorithm is that any angle � can be approximated by the sum of such smaller
clockwise or counterclockwise rotations � i, specifically, by

�1¼: � 0n ¼
Xn

i¼2

r i� i n � 2 ð11:3-7Þ

where

r i ¼ �1 ð11:3-7aÞ

How r i and � i are determined will be given in the following paragraphs.
Equation (11.3-7) applies as long as j�1j � 90�. If

180� � j�1j > 90� ð11:3-8Þ

it is easy to make j�1j � 90� by a simple rotation of � by � 90� depending on
whether respectively �1 < 0� or �1 > 0�. This 90� rotation is illustrated in
Figure 11.3-5. Mathematically, if x1 < 0 and y1 > 0, then 0 > 90� and the real
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and imaginary parts of the 90� rotated complex number are given by

x2 ¼ y1 ð11:3-9aÞ
y2 ¼ �x1 ð11:3-9bÞ

Thus the 90� rotated vector becomes

R2ff �2 ¼ y1 � jx1 ð11:3-10Þ

If x1 < 0 and y1 < 0, then �2 < �90� and the coordinates of the rotated vector
complex number become

x2 ¼ �y1 ð11:3-11aÞ
y2 ¼ x1 ð11:3-11bÞ

Thus the 90� rotated complex number becomes

R2ff �2 ¼ �y1 þ jx1 ð11:3-12Þ

If j�1j � 90�, then no 90� rotation is necessary. For this case, for convenience,
we determine the x2 and y2 coordinates by simply defining them to be identical

Figure 11.3-5 First CORDIC rotation.
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to x1 and y1. Specifically,

x2 ¼ x1 ð11:3-13aÞ
y2 ¼ y1 ð11:3-13bÞ

Also then

R2ff �2 ¼ R1ff �1 ð11:3-14Þ

The angle of rotation � i is given by

� i ¼ tan�12�ði�2Þ i ¼ 2; 3; . . . ; n ð11:3-15Þ

Table 11.3-1 gives a list of values of � i for i ¼ 1; . . . ; 11. The direction of the
rotation of � i is determined by the sign of r i; see (11.3-7a). We shall show how
to determine r i shortly. The magnitude R of the complex number given by
(11.3-6) is determined using the following.

CORDIC Vectoring Algorithm: For i ¼ 2; . . . ; n, if

yi � 0 ð11:3-16Þ

then

r i ¼ þ1 ð11:3-17Þ

If

yi < 0 ð11:3-18Þ

TABLE 11.3-1. CORDIC Algorithm Angle Rotations � 1 and
Magnitude Changes K 0

i That Result From Them

i � i K 0
i K i

1 (90�)
2 45�

3 26.56505118 1.414213562 1.414213562
4 14.03624347 1.118033989 1.581138830
5 7.125016349 1.030776406 1.629800601
6 3.576334375 1.007782219 1.642484066
7 1.789910608 1.001951221 1.645688915
8 0.895173710 1.000488162 1.646492278
9 0.447614171 1.000122063 1.646693254
10 0.223810500 1.000030517 1.646743506
11 0.111905677 1.000007629 1.646756069
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then

r i ¼ �1 ð11:3-19Þ

Where

xiþ1 ¼ xi þ r i 2�ði�2Þyi ð11:3-20aÞ
yiþ1 ¼ yi � r i 2�ði�2Þxi ð11:3-20bÞ

and

� 0iþ1 ¼ � 0i þ r i� i ð11:3-20cÞ

The above (11.3-20a) and (11.3-20b) rotation of xi þ jy i by � i is illustrated
in Figure 11.3-6. At i ¼ n, if n is great enough, then

xnþ1 ¼: Knþ1R1 ð11:3-21Þ
ynþ1 ¼: 0 ð11:3-22Þ

and

�2 ¼: � 0nþ1 ð11:3-23Þ

where

Knþ1 ¼
Yn

i¼2

K 0
iþ1 ð11:3-24Þ

and

K 0
iþ1 ¼ ð1 þ 2�2ði�2ÞÞ1=2 ð11:3-25Þ

Figure 11.3-6 The ith CORDIC rotation by angle a i for r i ¼ 1.
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The above CORDIC vectoring algorithm given by (11.3-16) to (11.3-25)
holds for �2 negative.

Table 11.3-1 tabulates K 0
1 for i ¼ 3; . . . ; 11. We see from (11.3-21) that xnþ1

gives R1 to within a known factor Knþ1 given by (11.3-24).
By way of examples let

x ¼ x1 ¼ �0:788010754 ð11:3-26Þ
y ¼ y1 ¼ 0:615661475 ð11:3-27Þ

It is apparent that �1 > 90�, it being 142�. Thus we first have to make �1 � 90�

using (11.3-9a) and (11.3-9b) to yield

x2 ¼ 0:615661475 ð11:3-28Þ
y2 ¼ 0:788010754 ð11:3-29Þ

Now �2¼142��90�¼52�. Stepping through the CORDIC vectoring algorithm
given above, we obtained the results of Table 11.3-2 for i ¼ 2; . . . ; 11. This
table indicates that for i ¼ 11 we get �2 ¼: � 011 ¼ 51:96646609, which is
accurate to 0.064% for this 11-bit representation of �1. Note that �2 ¼: � 011 can
be represented by the sequence of �1’s given by r i for i ¼ 2; 3; . . . ; n. For the
example given above this sequence is given by (þ1, þ1, �1, �1, þ1, �1, �1,
þ1, þ1, þ1). The magnitude of x1 þ jy1 equals 1.00000000. The magnitude of
x11 þ jy11 equals 1.646756071. Dividing by K11 of Table 11.3-2 gives
1.000000001. Hence the magnitude R11 ¼ jx11 þ jy11j is accurate to
0.0000001%.

CORDIC Rotation Algorithm: For this algorithm the vector

R1ff
1 ¼ x1 þ jy1 ð11:3-30Þ

is to be rotated by the angle �1. If 180� � j�1j � 90�; then we first have to
rotate the complex number R1ff
1 given by (11.3-30) by 90� to produce the
vector R2ff
2, which only has to be rotated by �2 ¼ �1 � 90�. To rotate
the complex number of (11.3-30) by 90�, a procedure equivalent to that
shown in Figure 11.3-5 or given by (11.3-9a) and (11.3-9b) or (11.3-11a) and
(11.3-11b) is used. Next the rotation by �2 is performed by carrying out
small rotations of � i for i ¼ 2; 3; . . . ; n using the following:

If

�2 � � 0i � 0� ð11:3-31Þ

then

r i ¼ þ1 ð11:3-32Þ
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If

�2 � � 0i < 0 ð11:3-33Þ

then

r i ¼ �1 ð11:3-34Þ
xiþ1 ¼ xi � r i 2�ði�2Þyi ð11:3-35Þ
yiþ1 ¼ yi þ r i 2�ði�2Þxi ð11:3-36Þ
� 0iþ1 ¼ � 0i þ r i � i i ¼ 2; 3; . . . ð11:3-37Þ

When n is large enough, �2 � �nþ1 ¼: 0 and xnþ1 and ynþ1 are the desired
rotated vector real and imaginary coordinates multiplied by the known factor
Knþ1 of (11.3-24). Figure 11.3-7 gives a circuit for rotating x1 þ jy1 by �1

from the sequence of �i rotations given above. If the CORDIC r i’s that
represent �1 are known in advance, the rotation can be performed just using
(11.3-35) and (11.3-36) without having to use (11.3-37), which is just needed
to determine the values of the r i’s from (11.3-31) to (11.3-34). This is exactly
the situation one has for the Givens systolic array for Figure 11.3-2a. For this
systolic array the CORDIC vectoring algorithm is used in the first circular
element of each row to determine the angle �1 by which two-dimensional

Figure 11.3-7 Circuit implementation of CORDIC rotation algorithm. (For simplicity
multiplication of rotated output vector by factor K nþ1 is omitted in writing rotated
output vector (xout, y out).)
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vectors in the square boxes of the same row have to be rotated. Because the
CORDIC vectoring algorithm is used to determine �1, one has �1 in terms of
the r i’s. Thus the rotation by �1 in the square boxes along the same row can
be easily performed. Note that � 02 ¼ r2�2. The above CORDIC rotation
algorithm given by (11.3-31) to (11.3-37) holds for �2 negative. The
convention being used is a positive �2 results in a counterclockwise rotation.

The known factor Knþ1 with which the rotated vectors are multiplied can be
divided out by using a binary approximation for the necessary division so that
just adds and subtracts are needed to perform this division. Alternately, it is
possible to use a CORDIC algorithm that does not result in the rotated vector
being multiplied by the known factor Knþ1; see [112]. This compensated
CORDIC Rotation algorithm, which leaves the magnitude of the complex
number unchanged after rotations, is considerably more complex than the
uncompensated one given earlier. However, this may not be a significant
disadvantage if serial arithmetic is used because usually the arithmetic part of
serial computation is generally a small part of the total.

In the above discussion the entries of the matrix T0 were assumed to be real
and the Givens orthonormal transformation for real numbers was presented.
When the t ij’s or the yi’s (or both) are complex numbers as the latter would be
for a radar data, the Givens orthonormal transformation of (11.1-7) is expressed
as [83, 89, 113]

c1 s1
�s1 c1

� �
ð11:3-39Þ

where (11.1-6a) and (11.1-6b) become

c1 ¼ jt11j
ðjt11j2 þ jt21j2Þ1=2

ð11:3-39aÞ

s1 ¼ t21

t11

� �
c1 ð11:3-39bÞ

A CORDIC algorithm exists for rotating complex numbers [90, 91]. A wafer-
scale implementation of the systolic array of Figure 11.3-2 was implemented by
Rader at Lincoln Laboratories, MIT for the case where the data are complex
[90–92]. This unit handled a matrix T having 64 columns. It was the size of a
Walkman compact disc and consumed only 10 W.
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12
HOUSEHOLDER ORTHONORMAL
TRANSFORMATION

In the preceding chapter we showed how the elementary Givens orthonormal
transformation triangularized a matrix by successfully zeroing out one element
at a time below the diagonal of each column. With the Householder
orthonormal transformation all the elements below the diagonal of a given
column are zeroed out simultaneously with one Householder transformation.
Specifically, with the first Householder transformation H1, all the elements
below the first element in the first column are simultaneously zeroed out,
resulting in the form given by (11.1-4). With the second Householder
transformation H2 all the elements below the second element of the second
column are zeroed out, and so on.

The Householder orthonormal transformation requires fewer multiplies and
adds than does the Givens transformation in order to obtain the transformed
upper triangular matrix of (10.2-8) [103]. The Householder transformation,
however, does not lend itself to a systolic array parallel-processor type of
implementation as did the Givens transformation. Hence the Householder may
be preferred when a centralized processor is to be used but not if a custom
systolic signal processor is used.

12.1 COMPARISON OF HOUSEHOLDER AND GIVENS
TRANSFORMATIONS

Let us initially physically interpret the Householder orthonormal transformation
as transforming the augmented matrix T0 to a new coordinate system, as we did
for the Givens transformations. For the first orthonormal Householder trans-
formation H1 the s rows are unit vectors, designated as hi for the ith row, onto
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which the columns of T0 are projected. The first-row vector h1 is chosen to line
up with the vector formed by the first column of T0; designated as t1. Hence, the
projection of t1 onto this coordinate yields a value for the first coordinate in the
transformed space equal to the full length of t1, that is, equal to k t1 k. The
remaining s � 1 unit row vectors of Hi, designated as hi, i ¼ 2; . . . ; s, are
chosen to be orthonormal to h1: As a result they are orthonormal to t1 since h1

lines up with t1. Hence the projections of t1 onto the hi; i ¼ 2; . . . ; s, are all
zero. As a result H1T0 produce a transformed matrix of the form given by
(11.1-4) as desired. This is in contrast to the simple Givens transformations
G1;G2; . . . ;Gs�1 of the left-hand side of (11.1-4), which achieves the same
outcome as H1 does but in small steps. Here, G1 first projects the column
vector t1 of T0 onto a row space that is identical to that of the column space of
T0 with the exception of the first two coordinates. The first two coordinates,
designated in Figure 11.1-2a as the x, y coordinates, are altered in the new
coordinate system defined by G1. The first of these two new coordinates, whose
direction is defined by the first-row unit vector g1, of G1, is lined up with
the vector formed by the first two coordinates of t1, designated as �t0; see
(11.1-1) and Figure 11.1-2a. The second of these new coordinates,
whose direction is defined by the second-row unit vector g2 of G1, is
orthogonal to g1 and in turn �t0, but in the plane defined by the first two
coordinates of t1, that is, the x, y plane. As a result G1T0 gives rise to the
form given by (11.1-2).

The second Givens transformation G2 projects the first-column vector ðt1Þ1

of G1T0 onto a row space identical to that of ðt1Þ1 except for the first and third
coordinates. The first-row unit vector ðg1Þ2 of G2 is lined up with the direction
defined by the vector formed by the first and third coordinates of G1T0. This
vector was designated as �t2; see (11.1-16) and Figures 11.1-2b,c. From the
definition of�t2 recall also that it is lined up with the first three coordinates of t1.
The third-row unit vector ðg3Þ2 is lined up in a direction orthogonal to ðg1Þ2 in
the two-dimensional space formed by the first and third coordinates of the
vector ðt1Þ2; see Figures 11.1-2b,c. As a result the projection of ðt1Þ1 onto the
row space of G2 gives rise to the form given by (11.1-3). Finally, applying the
third Givens transformation G3 yields the desired form of (11.1-4) obtained
with one Householder transformations H1: For this example T0 is a 4 � 3
matrix, that is, s ¼ 4: For arbitrary s; s � 1 simple Givens transformations
G1; . . . ;Gs�1 achieve the same form for the transformed matrix that one
Householder transformation H1 does, that is,

H1 � Gs�1 � � �G2G1 ð12:1-1Þ

Elements on the right and left hand sides of (12.1-1) will be identical except the
sign of corresponding rows can be different if the unit row transform vectors of
these transforms have opposite directions; see Section 13.1.

Let us recapitulate what the Givens transformations are doing. The first, G1,
projects T0 onto a space whose first coordinate unit vector g1 (defined by the
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first row of G1; see Section 11.1) lines up with the direction of the two-
dimensional vector formed by the first two coordinates of t1. The second
coordinate of the new space is along the unit vector g2 (defined by the
second row of G1) orthogonal to the first coordinate but in the plane defined
by the first two coordinates of t1. The remaining coordinates of the space
defined by G1 are unchanged. In this transformed space the second coordinate
of t1 is zero; see (11.1-2). This in effect replaces two coordinates with one
for the first two coordinates of t1, the other coordinate being zero. The next
Givens transformation now projects the transformed t1, which is ðt1Þ1, onto
the row space of G2. Here the first-row unit vector ðg1Þ2 of G2 is lined up
with the vector formed by first and third coordinates of ðt1Þ1, which is
designated as �t2 in (11.1-16) and Figures 11.1-2b,c. Again the second
coordinate is orthogonal to the first but in the plane defined by the first
and third coordinates of ðt1Þ1. In this new coordinate system the second
and the third coordinates of t1 are zero; see (11.1-3). This simple Givens
transformation again replaces two coordinates of ðt1Þ1, the first and third,
with one, the second being zero. The first and second simple Givens transfor-
mations together in effect line up the first row of G1G2 with the vector
formed by the first three coordinates of t1. This continues until on the
s � 1 Givens transformation the unit vector formed by the first row of
Gs�1 � � �G2G1 lines up with the vector formed by t1 to produce the form
given by (11.1-4). In a similar way, the first Householder transformation
H1 does in one transformation what s � 1 simple Givens transformations
do. Similarly H2 does in one transformation what s � 2 Givens transfor-
mations do; and so on.

12.2 FIRST HOUSEHOLDER TRANSFORMATION

We now develop in equation form the first Householder transformation H1. A
geometric development [80, 102, 109, 114] is used in order to give further
insight into the Householder transformation. Consider the s � ðm 0 þ 1Þ
dimensional augmented matrix T0 whose columns are of dimension s. As
done previously, we will talk of the columns as s-dimensional vectors in
s-dimensional hyperspace. Designate the first column as the vector t1. Form
h 0 given by

h 0 ¼ t1þ k t1 k i ð12:1-2Þ

where i is the unit vector along the x axis of this s-dimensional hyperspace,
that is, the column space of T0; see Figure 12.1-1. The vector i is given by
(4.2-38) for s ¼ 3. Physically let us view the first Householder transformation
H1 as a rotation of t1. Then i in Figure 12.1-1 is the direction into which we
want to rotate t1 in order to have the transformed t1, designated as ðt1Þ1H , be
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given by

ðt1Þ1H ¼ H1t1 ¼ ½k t1 k 0 0 � � � 0 �T ð12:1-3Þ

that is, in order for the first column of H1T0 to have the form given by the
first column of (11.1-4). In Figure 12.1-1, the vector h 0 forms the horizontal
axis, which is not the x axis that is along the unit vector i. Because H1t1 in
Figure 12.1-1 is the mirror image of t1 about this horizontal axis, the
Householder transformation is called a ‘‘reflection.’’

Let h be the unit vector along h 0; then

h ¼ h 0

k h 0 k ð12:1-4Þ

Let t1c be the component of t1 along the direction h. Then

t1c ¼ ðt T
1 hÞh ð12:1-5Þ

Designate t1s as the component of t1 along the direction perpendicular to h but
in the plane formed by t1 and i. Then

t1s ¼ t1 � t1c

¼ t1 � ðt T
1 hÞh

ð12:1-6Þ

Figure 12.1-1 Householder reflection transformation H1 for three-dimensional space.
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Then from geometry (see Figure 12.1-1)

H1t1 ¼ t1c � t1s

¼ ðt T
1 hÞh � ½t1 � ðt T

1 hÞh�
¼ 2ðt T

1 hÞh � t1

¼ 2hðt T
1 hÞ � t1

¼ 2hhT t1 � t1

¼ 2hhT � I
� �

t1 ð12:1-7Þ

Hence

H1 ¼ 2hhT � I ð12:1-8Þ

By picking h as given by (12.1-2) and (12.1-4), the vector t1 is rotated (actually
reflected) using (12.1-8) onto i as desired. After the reflection of t1 the vector
has the same magnitude as it had before the reflection, that is, its magnitude is
given by k t1 k. Moreover, as desired, the magnitude of the first element of
the transformed vector ðt1Þ1H has the same magnitude value as the original
vector t1 with the value of the rest of the coordinate elements being zero.
Specifically

H1t1 ¼ H1

t11

t21

..

.

t s1

2

66664

3

77775
¼

k t1 k
0

0

..

.

0

2

66664

3

77775
¼ ðt1Þ1H ð12:1-9Þ

where

k t1 k¼ ðjt11j2 þ jt11j2 þ � � � þ jt s1j2Þ1=2 ð12:1-9aÞ

The subscript 1 on H is used to indicate that this is the first House-
holder transformation on the matrix T0, with more Householder transforms
to follow in order to zero out the elements below the remaining diagonal
elements.

In the above we have only talked about applying the s � s Householder
transformation H1 matrix to the first column of T0. In actuality it is applied to
all columns of T0. This is achieved by forming the product H1T0. Doing this
yields a matrix of the form given by the right-hand side of (11.1-4) as desired.
In this way we have physically reflected the first column of T0 onto the first
coordinate of the column space of T0 (the x coordinate) by the use of the
Householder transformation H1.
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12.3 SECOND AND HIGHER ORDER HOUSEHOLDER
TRANSFORMATIONS

The second Householder transformation H2 is applied to H1T0 to do a
collapsing of the vector formed by the lower s � 1 elements of the second
column of H1T0 onto the second coordinate. Designate as ðt 02Þ1H the ðs � 1Þ-
dimensional vector formed by the lower s � 1 elements of the second column of
H1T0, the elements starting with the diagonal element and including all the
elements below it. It is to be reflected onto the ðs � 1Þ-dimensional vector
j 0 ¼ ½100 � � � 0�T

that physically is the unit vector in the direction of the second
coordinate of the second column of the matrix H1T0. When this is done, all the
elements below the diagonal of the seond column are made equal to zero. The
top element is unchanged. The Householder transformation needed to do this is
an ðs � 1Þ � ðs � 1Þ matrix that we designate as H 0

2: This transformation H 0
2

operates on the ðs � 1Þ � ðm 0Þ matrix in the lower right-hand corner of the
transformed s � ðm 0 þ 1Þ matrix H1T0.

From H 0
2 we now form the Householder transformation matrix H2 given by

H2 ¼ I1 0

0 H 0
2

	 

g 1

g s � 1
ð12:2-1Þ

where I1 is the 1 � 1 identity matrix and H2 is now an s � s matrix. When the
orthonormal transformation matrix H2 is applied to H1T0; it transforms all
elements below the diagonal elements of the second column to zero and causes
the transformed second diagonal element to have a magnitude equal to the
magnitude of the (s � 1)-dimensional column vector ðt 02Þ1H before the
transformation and leaves the top element of the second column unchanged.
This procedure is now repeated for the third column of the transformed matrix
H2H1T0 and so on, the ith such transformation being given by

Hi ¼
I i�1 �0

0 H 0
i

	 

g i � 1

g s � i þ 1
ð12:2-2Þ

The last transformation needed to triangularize the augmented matrix T0 so as
to have it in the form given by (11.1-30) is i ¼ m 0 þ 1.

It is important to point out that it is not necessary to actually compute the
Householder transformation Hi’s given above using (12.1-8). The transformed
columns are actually computed using the second form of the H1t1 given by
(12.1-7), specifically by

H1t1 ¼ �t1 þ 2ðt T
1 hÞh ð12:2-3Þ

In turn the above can be written as

H1t1 ¼ �t1 þ
2ðt T

1 h 0Þh 0

h 0T h 0 ð12:2-4Þ
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for obtaining the transformed t1 with h 0 given by (12.1-2). For detailed
computer Householder transformation algorithms the reader is referred to
references 79 to 81. Some of these references also discuss the accuracy of using
the Householder transformation for solving the least-squares estimate relative to
other methods discussed in this book.

Some final comments are worth making relative to the Householder trans-
formation. In the above we applied m 0 þ 1 Householder transformations so as to
transform the augmented matrix T0 (11.1-25) into an upper triangular matrix
form. Specifically, applying the orthonormal transformation formed by

F ¼ Hm 0þ1Hm 0 � � �H2H1 ð12:2-5Þ

to (11.1-25), we obtain the transformed matrix T 0
0 given by

T 0
0 ¼ F T0 ¼ F½T jY ðnÞ�
¼ ½F T jF Y ðnÞ�

¼

U

---

0

---

0

2

6666664

|ffl{zffl}
m0

j
-----

j
-----

j

Y 0
1

-----

Y 0
2

-----

Y 0
3

3

7777775

|ffl{zffl}
1

gm 0

g 1

g s � m 0 � 1

ð12:2-6Þ

with Y 0
3 ¼ 0. [The above is the same result as obtained in Section 4.3 using the

Gram–Schmidt onthogonalization procedure; see (4.3-60).] The vector Y 0
3 is

forced to be zero by the last Householder transformation Hm 0þ1 of (12.2-5). To
determine X�

n;n it is actually not necessary to carry out the last Householder
transformation with the result that some computational savings are achieved.
The last Householder transformation does not affect Y 0

1 and in turn X�
n;n; see

(10.2-16). Making Y 0
3 ¼ 0 forces the residue error eðX�

n;n) of (4.1-31) to be
given by ðY 0

2Þ
2
, that is,

eðX�
n;nÞ ¼ ðY 0

2Þ
2 ð12:2-7Þ

This property was pointed out previously when (11.1-31) and (11.3-3) were
given and before that in Section 4.3; see, for example, (4.3-56). If the last
Householder transformation Hm 0þ1 is not carried out, then Y 0

3 is not zero and

eðX�
n;nÞ ¼ ðY 0

2Þ
2 þ k Y 0

3 k2 ð12:2-8Þ

A similar comment applies for the Givens transformation of Chapter 11.
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13
GRAM–SCHMIDT ORTHONORMAL
TRANSFORMATION

13.1 CLASSICAL GRAM–SCHMIDT ORTHONORMAL
TRANSFORMATION

The Gram–Schmidt orthonormalization procedure was introduced in Section
4.3 in order to introduce the orthonormal transformation F applied to the
matrix T. The Gram–Schmidt orthonormalization procedure described there
is called the classical Gram–Schmidt (CGS) orthogonilization procedure.
The CGS procedure was developed in detail for the case s ¼ 3, m 0 ¼ 2,
and then these results were extrapolated to the general case of arbitrary s
and m 0. In this section we shall develop the CGS procedure in greater
detail.

The CGS procedure is sensitive to computer round-off errors. There is a
modified version of the Gram-Schmidt procedure that is not sensitive to
computer round-off errors. This is referred to as the modified Gram–Schmidt
(MGS). After developing the general CGS results, we shall develop the
MGS procedure. One might ask why explain the CGS procedure at all. It is
better to start with a description of the CGS procedure because, first, it is
simpler to explain, second, it makes it easier to obtain a physical feel for
the Gram–Schmidt orthogonalization, and third, it provides a physical feel
for its relationship to the Householder and in turn Givens transformations.
Hence, we shall first again start with a description of the CGS procedure.

As described in Section 4.3, starting with the m 0 þ 1 vectors t1; t2; . . . ; tm 0þ1,
we transform these to m 0 þ 1 orthogonal vectors, which we designate as
q 0

1; q
0
2; . . . ; q

0
m 0þ1. Having this orthogonal set, the desired orthonormal set

of Section 4.3 (see Figure 4.3-1) can be obtained by dividing q 0
i by its

magnitude k q 0
i k to form qi: We start by picking the first vector q 0

1 equal to t1,
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that is

q 0
1 ¼ t1 ð13:1-1Þ

At this point the matrix

T0 ¼ ½t1 t2 � � � tm 0þ1	 ð13:1-2Þ

can be thought of as being transformed to the matrix

T 0
ð1Þ ¼ ½q 0

1 t2 � � � tm 0þ1	 ð13:1-3Þ

Next q 0
2 is formed by making it equal to t2 less its component along the

direction of q 0
1. From (4.2-41) it follows that the vector component of t2 along

t1, or equivalently q 0
1, is given by

t2c ¼
ðq 0T

1 t2Þq 0
1

q 0T
1 q 0

1

ð13:1-4Þ

Let

r 0
12 ¼ ðq 0T

1 t2Þ
q 0T

i q 0
1

ð13:1-5Þ

Then (13.1-4) becomes

t2c ¼ r 0
12q 0

1 ð13:1-6Þ

In turn

q 0
2 ¼ t2 
 t2c ð13:1-7Þ

or

q 0
2 ¼ t2 
 r 0

12q 0
1 ð13:1-8Þ

At this point T0 can be thought of as being transformed to

T 0
ð2Þ ¼ ½q 0

1 q 0
2 t3 � � � tm 0þ1	 ð13:1-9Þ

Next q 0
3 is formed by making it equal to t3, less the sum of its two com-

ponents along the directions of the first two orthogonal vectors q 0
1 and q 0

2. Using
(4.2-41) again yields that the component of t3 along q 0

1 and q 0
2 is given by

t3c ¼
ðq 0 T

1 t3Þq 0
1

q 0T
1 q 0

1

þ ðq 0 T
2 t3Þq 0

2

q 0 T
2 q 0

2

ð13:1-10Þ
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In general let

r 0
ij ¼

q 0T
i t j

q 0T
i q 0

i

ð13:1-11Þ

for j > i > 1. Then (13.1-10) can be written as

t3c ¼ r 0
13q 0

1 þ r 0
23q 0

2 ð13:1-12Þ

In turn q 0
3 becomes

q 0
3 ¼ t3 
 t3c ð13:1-13Þ

or

q 0
3 ¼ t3 
 r 0

13q 0
1 
 r 0

23q 0
2 ð13:1-14Þ

At this point T0 can be thought of as being transformed to

T ð3Þ ¼ ½ q 0
1 q 0

2 q 0
3 t4 � � � tm 0þ1	 ð13:1-15Þ

The formation of q 0
4; q

0
5; . . . ; q

0
m 0þ1 follows the same procedure as used above to

form q 0
1, q 0

2, and q 0
3. As a result it is easy to show that, for j > 2,

q 0
j ¼ t j 


Xj
1

i¼1

r
0

ijq
0
i ð13:1-16Þ

and after the ðm 0 þ 1Þst step T0 is given by

T 0
m 0þ1 ¼ ½ q 0

1 q 0
2 � � � q 0

m 0þ1	 ¼ Q 0 ð13:1-17Þ

For simplicity, for now let us assume m 0 ¼ 2. Doing this makes it easier to
develop the results we seek. The form of the results obtained using m 0 ¼ 2
apply for the general case of arbitrary m 0 to which the results can be easily
generalized. From (13.1-1), (13.1-8) and (13.1-14) it follows that

t1 ¼ q 0
1 ð13:1-18aÞ

t2 ¼ r 0
12q 0

1 þ q 0
2 ð13:1-18bÞ

t3 ¼ r 0
13q 0

1 þ r 0
23q 0

2 þ q 0
3 ð13:1-18cÞ

We can rewrite the above equations in matrix form as

½ t1 t2 t3	 ¼ ½ q 0
1 q 0

2 q 0
3	

1 r 0
12 r 0

13

0 1 r 0
23

0 0 1

2

4

3

5 ð13:1-19Þ
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where it should be emphasized that the matrix entries t i and q 0
1 are themselves

column matrices. In turn, the above can be rewritten as

T0 ¼ Q 0R 0 ð13:1-20Þ

where T0 is given by (13.1-2), Q 0 is given by (13.1-17), and for m 0 ¼ 2

R 0 ¼
1 r 0

12 r 0
13

0 1 r 0
23

0 0 1

2

4

3

5 ð13:1-21Þ

We can orthonormalize Q by dividing each orthogonal vector q 0
i by its

magnitude k q 0
i k to form the unitary vector qi

q i ¼
q 0

i

k q 0
i k

ð13:1-22Þ

and in turn obtain

Q ¼ ½q1 q2 � � � qm 0þ1	 ð13:1-23Þ

Let the magnitudes of the q 0
i be given by the diagonal matrix

D0 ¼ Diag ½k q 0
1 k; k q 0

2 k; . . . ; k q 0
m 0þ1 k	 ð13:1-24Þ

It is easy to see that Q is obtained by postmultiplying Q 0 by D
1
0 . Thus

Q ¼ Q 0D
1
0 ð13:1-25Þ

Using (13.1-24) it follows that (13.1-20) can be written as

T0 ¼ Q 0D
1
0 D0R 0 ð13:1-26Þ

which on using (13.1-25) becomes

T0 ¼ QR ð13:1-27Þ

where

R ¼ D0R 0 ð13:1-27aÞ

Substituting (13.1-24) and (13.1-21) into (13.1-27a) yields

R ¼
k q 0

1 k r 00
12 r 00

13

0 k q 0
2 k r 00

23

0 0 k q 0
3 k

2

6664

3

7775
ð13:1-28Þ
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where

r 00
ij ¼ r 0

ij k q 0
i k ð13:1-28aÞ

Using (13.1-11) yields

r 00
ij ¼

q 0T
i t j

q 0T
i q 0

i

k q 0
i k ð13:1-29Þ

which becomes

r 00
ij ¼ qT

i t j ð13:1-30Þ

for j > i > 1.
Multiplying both sides of (13.1-27) by QT yields

QT T0 ¼ R ð13:1-31Þ

where use was made of the fact that

QT Q ¼ I ð13:1-32Þ

which follows because the columns of Q are orthonormal. In the above Q is an
s � ðm 0 þ 1Þ matrix and I is the ðm 0 þ 1Þ � ðm 0 þ 1Þ identity matrix. Because
also the transformed matrix R is upper triangular, see (13.1-28), we obtain the
very important result that QT is the desired orthonormal transformation matrix
F of (10.2-8) or equivalently of (12.2-6) for the matrix T0, that is,

F ¼ QT ð13:1-33Þ

Strictly speaking QT should be a square matrix to obey all the properties of an
orthonormal matrix F given by (10.2-1) to (10.2-3). In fact it is an s � ðm 0 þ 1Þ
matrix. This problem can be readily remedied by augmenting QT to include the
unit vectors qm 0þ2 to qs when s > m 0 þ 1, where these are orthonormal vectors
in the s-dimensional hyperspace of the matrix T0. These vectors are orthogonal
to the ðm 0 þ 1Þ-dimensional column space of T0 spanned by the m 0 þ 1 vectors
q1 to qm 0þ1. Thus to form F, Q of (13.1-23) is augmented to become

Q ¼ ½q1 q2 � � � qm 0þ1 qm 0þ2 � � � qs	 ð13:1-34Þ

The matrix Q 0 is similarly augmented to include the vectors q 0
m 0þ2 to q 0

s. Also
the matrix D0 is augmented to include s 
 m 0 
 1 ones after the ðm0 þ 1Þst
terms. It shall be apparent, shortly, if it is not already apparent, that the vectors
qm 0þ2 to qs actually do not have to be determined in applying the Gram–
Schmidt orthonormalization procedures. Moreover, the matrices Q, Q 0, and D0

do not in fact have to be augmented.
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For arbitrary m 0 and s � m 0, it is now easy to show that R of (13.1-28)
becomes (12.2-6) with Y 0

3 ¼ 0. Hence, in general, (13.1-31) becomes the
desired upper triangular form given by (12.2-6) with Y 0

3 ¼ 0, that is,

R ¼ QT T0 ¼

U

----

0

----

0

2

66664

|fflffl{zfflffl}
m 0

j
j
j
j
j

Y 0
1

-----

Y 0
2

-----

0

3

77775

|fflfflffl{zfflfflffl}
1

gm 0

g1

gs 
 m 0 
 1

ð3:1-35Þ

For our m0 ¼ 2 example of (13.1-28) and Section 4.3 [see (4.3-12) and (4.3-24)
to (4.3-29a)]

R ¼
kq 0

1k r 00
12 r 00

13

0 kq 0
2k r 00

23

0 0 kq 0
3k

2

4

3

5 ¼
u11 u12 y 0

1

0 u22 y 0
2

0 0 y 0
3

2

4

3

5 ð13:1-36Þ

u11 ¼ kq01k ð13:1-37aÞ
u12 ¼ r0012 ð13:1-37bÞ
u22 ¼ kq02k ð13:1-37cÞ
y01 ¼ r 00

13 ð13:1-37dÞ
y02 ¼ r 00

23 ð13:1-37eÞ
y03 ¼ kq03k ð13:1-37fÞ

Because the bottom s
m 0 
1 rows of R are zero, we can drop these rows in
R above. This would be achieved if we did not augment Q. However, even
though in carrying out the Gram–Schmidt procedure we do not have to
augument Q;Q 0; and D0; for pedagogic reasons and to be consistent with our
presentations in Section 4.3 and Chapters 10 to 12, in the following we shall
consider these matrices as augmented.

From (13.1-27a)

R 0 ¼ D
1
0 R ð13:1-38Þ

Thus, we have that, in general, for arbitrary s > m 0,

R 0 ¼

U 0

----

0

----

0

2

66664

|fflffl{zfflffl}
m 0

j
j
j
j
j

Y 00
1

-----

1

-----

0

3

77775

|fflfflffl{zfflfflffl}
1

gm 0

g1

gs 
 m 0 
 1

ð3:1-39Þ
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where

U 0 ¼ D
1U ð13:1-39aÞ
Y 00

1 ¼ D
1Y 0
1 ð13:1-39bÞ

and D is the unaugmented D0 of (13.1-24) without its ðm 0 þ 1Þst entry, that is,

D ¼ Diag½ kq 0
1k; kq 0

2k; . . . ; kq 0
m 0k 	 ð13:1-40Þ

On examining the above CGS procedure, we see that in the process of
transforming the columns of T0 into an orthonormal set Q, we simultaneously
generate the desired upper triangular matrix given by (12.2-6) with Y 0

3 ¼ 0, that
is, (13.1-35) or equivalently (4.3-60). For instance, for our m 0 ¼ 2 example,
(13.1-28) is obtained using the r 00

ij and k q 0
1 k terms needed to orthonormalize

T0. It now remains to give a physical explanation for why this happens. How is
the orthonormal matrix Q related to the Householder transformations and in
turn the simple Givens transformation? Finally, how are the elements of R given
by (13.1-35) obtained using the CGS procedure related to those of (12.2-6)
obtained using the Householder or Givens transformation?

The answer is that the orthonormal transform matrix F obtained using the
CGS procedure is identical to those obtained using the Givens and Householder
transformations. Thus all three methods will give rise to identical transformed
augmented matrices T 0

0 ¼ FT0. This follows from the uniqueness of the
orthonormal set of transformation vectors f i of F needed to put T 0

0 in the upper
triangular form. Putting T 0

0 in upper triangular form causes the solution to be in
the Gauss elimination form. This form is not unique but is unique if the
orthonormal transformation F is used. That is, except if some of the unit row
vectors of F are chosen to have opposite directions for the transforms in which
case the signs of the corresponding rows of the transformed matrices T 0

0 will
have opposite sign. (If the entries of T 0

0 can be complex numbers then the unit
vectors of F can differ by an arbitrary phase.) Also the identicalness of the F’s
for the three transforms applies only to the first m 0 þ 1 rows. The remaining
s 
 m 0 
 1 rows can be quite arbitrary as long as they are orthonormal to the
first m 0 þ 1 rows.

Let us now explain what is physically happening with the CGS ortho-
gonalization procedure. To do this we will relate the CGS orthogonalization
procedure with the Householder transformation. For the first Householder
transformation H1, the first row unit vector h1 is chosen to line up in the
direction of the vector t1 of the first row of T0; see the beginning of Chapter 12.
This is exactly the way q1 is chosen for the CGS procedure; see (13.1-1) and
(4.3-1) and Figure 4.3-1. Next, for the second Householder transformation H2

[see (12.2-1)], the second row unit vector ðh2Þ2 is chosen to be orthonormal to
h1 of H1 and in the plane formed by the vectors t1 and t2 or equivalently h1 and
t2 Again, this is exactly how q 0

2, and equivalently q2, is picked in the CGS
method; see (13.1-8) and the related discussion immediately before it. That
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ðh2Þ2 is in the plane of h1, and t2 follows from the fact that the transformation
H2 leads to the second column of H2H1T0 having only its top two elements.
This means that t2 has only components along h1 and ðh2Þ2, the unit vector
directions for which the first two elements of the second column of H2H1T0

gives the coordinates. The unit vectors h1 and ðh2Þ2 become the unit vectors for
the first two rows of F formed from the Householder transformations as given
by (12.2-5). This follows from the form of Hi as given in (12.2-2). We see that
Hi for i � 2 has an identity matrix for its upper-left-hand corner matrix. Hence
h1 of H1 and ðh2Þ2 of H2 are not effected in the product that forms F from
(12.2-5). As a result, the projections of t1; t2; . . . ; t s onto h1 are not affected by
the ensuing Householder transformations H2; . . . ;Hmþ1. It still remains to
verify that h1 and ðh2Þ2 are orthogonal. The unit vector h1 is along the vector t1

of T0. The unit vector ðh2Þ2 has to be orthogonal to h1 because t1 does not
project the component along ðh2Þ2, the 2,1 element of H2H1T0 being zero as is
the 2,1 element of FT0 when F is formed by the Householder transformations;
see (12.2-1) and (12.2-6). By picking the first coordinate of the row vector
ðh2Þ2 to be zero, we forced this to happen. As a result of this zero choice for the
first entry of the row matrix ðh2Þ2, the first column element of H1T0 does not
project onto ðh2Þ2, the first column of H1T0 only having a nonzero element in
its first entry, the element for which ðh2Þ2 is zero.

Next, for the Householder transform H3 of (12.2-2), the third row unit vector
ðh3Þ3 is chosen to be orthonormal to h1 and ðh2Þ2 but in the space formed by
h1, ðh2Þ2, and t3 or equivalently t1, t2, and t3. Again, this is exactly how q 0

3 is
picked with the CGS procedure; see (13.1-14). In this way see that the unit row
vectors of F obtained with Householder transformation are identical to the
orthonormal column vectors of Q, and in turn row vectors of QT , obtained with
the CGS procedure.

In Section 4.2 the Givens transformation was related to the Householder
transformation; see (12.1-1) and the discussion just before and after it. In the
above paragraphs we related the Householder transformation to the CGS
procedure. We now can relate the Givens transformation directly to the CGS
procedure. To do this we use the simple example of (4.2-1), which was the
example used to introduce the CGS procedure in Section 4.3. For this case only
three Givens transformations G1, G2, and G3 are needed to form the upper
triangular matrix T as given by (4.3-29). As indicated in Chapter 12, each of
these Givens transformations represents a change from the immediately preced-
ing orthogonal coordinate system to a new orthogonal coordinate system with
the change being only in two of the coordinates of one of the unit vector
directions making up these coordinate systems. Specifically, each new
coordinate system is obtained by a single rotation in one of the planes of the
s-dimensional orthogonal space making up the columns of the matrix T. This is
illustrated in Figures 13.1-1 to 13.1-3.

We saw above that the CGS procedure forms during the orthogonalization
process the upper triangular matrix R 0 of (13.1-21) and (13.1-39), which is
related to the upper triangular matrix R [see (13.1-27a)], which becomes equal
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to FT0 of (12.2-6) and (3.1-35) in general. As we shall see now, the CGS
orthogonalization generation of R 0 gives us a physical significance for R 0 and
U 0 and in turn for R and U.

Examination of (13.1-18a) to (13.1-18c) and (13.1-19) give us a physical
explanation for why the CGS orthogonalization procedure produces an upper
triangular R 0 and in turn upper triangular R. [The development given in Section
4.3, which introduced the CGS procedure, also gave us a physical feel for why
R is upper triangular; see specifically (4.3-24) to (4.3-29).] Note that the ortho-
gonal vectors q 0

1; . . . ; q
0
i are chosen to form t i; that is t i is the weighted sum of

q 0
1; . . . ; q

0
i with the weight for qi equaling 1; see (13.1-18a) to (13.1-18c). The

ith column of R 0 gives the coefficients of the weightings for the qj’s,
j ¼ 1; 2; . . . ;m 0 þ 1 for forming t i from the q 0

i’s; see (13.1-19). Because t i is
only formed by the weighted sum of q 0

1; . . . ; q
0
i, the coefficients of

q 0
iþ1; . . . ; q

0
m 0þ1 are zero, forcing the elements below the diagonal of the ith

column to be zero, and in turn forcing R 0 to be upper triangular. Furthermore,
physically, the coefficients of the ith column of R 0 give us the amplitude change
that the orthogonal vectors q 0

1; . . . ; q
0
i need to have to form t i; see (13.1-18a) to

(13.1-19). Worded another way, the i, j element r 0
ij of R 0 times k q 0

j k gives the
component of t j along the direction qj. Thus we now have a physical feel for the
entries of R 0 and in turn U 0 [see (13.1-39)]. To get a physical interpretation of

Figure 13.1-1 Givens transformation G1 of t1.
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Figure 13.1-2 Givens transformation G2 of G1t 1.

Figure 13.1-3 Givens transformation G 3 of G 2G1t2.
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(a)

(b)
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the elements of R we refer back to (4.3-24) to (4.3-26). We see that the entries
of the ith column give us the magnitudes of the components of the ith column of
T0 along the unit vectors q1; q2; q3. This physical interpretation of R also
follows, after a little reflection, from the fact that the ith row of R is just k q 0

i k
larger than that of R 0; see (13.1-28a) and (13.1-28). Further insight can be
gained by studying the circuit diagram for the CGS orthogonalization given in
Figure 13.1-4.

Having obtained U and Y 0
1 from R, which is obtained using the CGS method,

it is possible to obtain the least-square estimate X�
n;n using (10.2-16). It is worth

noting that it is not necessary to determine R in order to determine U and Y 0
1 for

(10.2-16). The least-squares estimate can be obtained directly from R 0.
Specificaly multiplying both sides of (10.2-16) by D
1 yields

D
1UX�
n;n ¼ D
1Y 0

1 ð13:1-41Þ

Applying (13.1-39a) and (13.1-39b) yields

U 0X�
n;n ¼ Y 00

1 ð13:1-42Þ

The matrices U 0 and Y 00
1 are obtained directly from R 0; see (13.1-39). The least-

squares estimate X�
n;n is obtained directly from (13.1-42) using the back-

substitution method. Hence R 0 obtained in the CGS orthogonalization of T0 can
be used directly to obtain the least-squares estimate X�

n;n without having to
calculate R. The least-squares residue error is still given by

eðX�
n;nÞ ¼ ðY 0

2Þ
2 ¼ kq 0ðm 0 þ 1Þk ð13:1-43Þ

where use was made of the generalized form of (13.1-28) with kq 0
3k replaced by

kq 0
m 0þ1k.

13.2 MODIFIED GRAM-SCHMIDT ORTHONORMAL
TRANSFORMATION

As indicated previously, the Gram–Schmidt procedure described is referred to
as the classical Gram–Schmidt procedure [76, 80–82, 101, 102, 115–118, 139].
There is another form called the modified Gram–Schmidt (MGS) procedure [76,
80–82, 101, 102, 115–118, 139]. The modified Gram–Schmidt, which we shall

3

Figure 13.1-4 (a) Circuit implementation of classical Gram–Schmidt (CGS) orthogo-
nalization. Box BCGS generates from vector t j an output vector q 0

j orthogonal to q 0
1 to

q 0
j
1; see (13.1-14) and (13.1-16). (b) Basic classical Gram–Schmidt (BCGS) circuit. It

generates from t j the vector q 0
j that is orthogonal to vectors q 0

1; q
0
2; . . . ; q

0
j
1.
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describe in this section, gives the same answers as the classical Gram–Schmidt
procedure if there are no computer round-off errors. However, when computer
round-off errors are present, the answers obtained are not the same. Answers
obtained with the CGS method are much less accurate. This is illustrated very
clearly in reference 101, using the following example for the augmented matrix
T0:

T0 ¼

1 1 1

1:01 1 1

1 1:01 1

1 1 1:01

2

664

3

775 ð13:2-1Þ

A computer round-off to four significant figures was assumed. Using the
classical Gram–Schmidt procedure to obtain the orthonormal matrix Q yields
[101]

Q ¼
0:4988 
0:6705 � 10
2 
0:7765 � 10
2

0:5037 
0:7075 
0:8193

0:4988 0:7066 0:4107

0:4988 
0:6705 � 10
2 0:4001

2

664

3

775 ð13:2-2Þ

From (13.2-2), qT
2 q3 ¼ 0:8672, which theoretically should be zero since q2 and

q3 should be orthonormal. On the other hand, using the modified Gram–
Schmidt yields [101]

Q ¼
0:4988 
0:6705 � 10
2 0:3918 � 10
2

0:5037 
0:7075 
0:4134

0:4988 0:7066 
0:4061

0:4988 
0:6705 � 10
2 0:8151

2

664

3

775 ð13:2-3Þ

with now qT
2 q3 ¼ 0:00003872, a result much closer to zero, the value it should

have in the absence of errors.
The MGS does the same thing in principle as the CGS; that is, it obtains the

orthogonal vector set Q 0 of (13.1-17) from T0. The difference is that an
algorithm less sensitive to computer round-off errors is used to calculate the qi

with the MGS procedure. As indicated, if there were no computer round-off
errors, both the MGS and the CGS algorithms would give identical q 0

i and r 0
ij.

However, because of computer round-off errors, the MGS procedure gives a
more accurate result, as illustrated in the above example. The algorithm for the
CGS for calculating q 0

j is given by (13.1-16). It forms q 0
j by subtracting from t j

the components of t j parallel to q 0
2; . . . ; q

0
j
1. The MGS does the same thing

but uses a different algorithms for calculating the components of t j parallel
to q 0

1; . . . ; q
0
j
1. Also, these components are subtracted sequentially as we shall

see. We now develop the MGS method.
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We start by developing q 0
j for the MGS method. From (4.2-41) or (13.1-4) it

follows that the vector component of t j parallel to q 0
1 is given by

ðt jÞ1 ¼ q 0T
1 t j

q 0T
1 q 0

1

q 0
1 ¼ r1jq

0
1 ð13:2-4Þ

where r ij without the prime is r 0
ij for the MGS method given by

r1j ¼
q 0T

1 t j

q 0T
1 q 0

1

ð13:2-4aÞ

Subtracting this component first from t j yields

t
ð2Þ
j ¼ t j 
 r1jq

0
1 ð13:2-5Þ

The above MGS calculation of the component of t j parallel to q 0
1, designated

as ðt jÞ1 in (13.2-4), is identical to that used for the CGS procedure. This is seen
by examination of (13.1-16) and (13.1-11). Specifically, the first term on the
right of (13.1-16) together with the first term (the i ¼ 1 term) of the summa-
tion are identical to (13.2-5) when we note that r1j of (13.2-4a) equals r 0

1j of
(13.1-11). We write r1i here without a prime even though it is identical to r 0

1j

of (13.1-11) for the CGS algorithm. This because shortly we shall see a
difference in the calculation of r ij for the MGS algorithm when i > 1.

Next we want to calculate the component of t j parallel to q 0
2 so as to remove

it also from t j as done for the CGS algorighm in (13.1-16) by the i ¼ 2 term of
the summation. In (13.1-16) this component is calculated for the CGS algorithm
by protecting t j onto q 0

2 to give

ðt jÞ2c ¼
q 0T

2 t j

q 0T
2 q 0

2

q 0
2 ¼ r02jq

0
2 ð13:2-6Þ

where

r 0
2j ¼

q 0T
2 t j

q 0T
2 q 0

2

ð13:2-6aÞ

However, we could also have obtained this component of t j parallel to q 0
2 by

projecting t
ð2Þ
j onto q 0

2. The vector t
ð2Þ
j is the same as t j except that it has had

the component parallel to q 0
1 removed. Hence t

ð2Þ
j and t j have the same value for

the component parallel to q 0
2. The MGS algorithm uses t

ð2Þ
j instead of t j for

calculating the component parallel to q 0
2 to yield

ðt jÞ2 ¼
q 0T

2 t
ð2Þ
j

q 0T
2 q 0

2

q 0
2 ¼ r2jq

0
2 ð13:2-7Þ
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where

r 0
2j ¼

q 0T
2 t

ð2Þ
j

q 0T
2 q 0

2

ð13:2-7aÞ

Here, ðt jÞ2 and ðt jÞ2c are identical if there are no computer round-off errors, that
is,

ðt jÞ2 ¼ ðt jÞ2c ð13:2-8Þ

and

r2j ¼ r 0
2j ð13:2-8aÞ

However, if there are computer round-off errors, then different results are
obtained for ðt jÞ2 and ðt jÞ2c and for r2j and r 0

2j. It is because r2j uses t
ð2Þ
j [see

(13.2-7a)] while r 0
2j uses t j [see (13.2-6a) and (13.1-11)] that we use a prime to

distinguish these two r’s, even though physically they represent the same
quantity, that is, the amplitude weighting on the vector q 0

2 needed to make it
equal to component of t j along the vector q2 direction.

It is because (13.2-7a) uses t
ð2Þ
j , which does not contain the component

parallel to q 0
1, that the MGS procedure provides a more accurate calculation of

r2j and in turn the component of t j parallel to q 0
2 [81]. Because t

ð2Þ
j does not

contain the component parallel to q 0
1, it is smaller than t j and, as a result, gives a

more accurate r 0
2j [81]. We require a smaller dynamic range when t

ð2Þ
j is used

instead of t j in the calculation of r2j and in turn q 0
j. This same type of

computation improvement is carried forward in calculating r ij for
i ¼ 3; . . . ; j 
 1 as we now see.

Next the MGS method subtracts ðt jÞ2 from t
ð2Þ
j to yield

t
ð3Þ
j ¼ t

ð2Þ
j 
 r2jq

0
2 ð13:2-9Þ

Then the MGS subtracts the component of t j parallel to q 0
3 from t

ð3Þ
j to form

t
ð4Þ
j , using t

ð3Þ
j instead of t j (as done with the CGS algorithm) in the calculation

of r3j for better accuracy, specifically

t
ð4Þ
j ¼ t

ð3Þ
j 
 r3jq

0
3 ð13:2-10Þ

where

r3j ¼
q 0T

3 t
ð3Þ
j

q 0T
3 q 0

3

ð13:2-10aÞ
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Continuing the MGS procedure gives for the ith step, where the component
parallel to q 0

1 is removed,

t
ðiþ1Þ
j ¼ t

ðiÞ
j 
 r ijq

0
i ð13:2-11Þ

r ij ¼
q 0T

i t
ðiÞ
j

q 0T
i q 0

i

ð13:2-12Þ

where r ij applies for j > i � 1. Here t
ðiÞ
j is used with the MGS algorithm instead

of t j as was done for the CGS algorithm in (13.1-11). Finally, for the last step
where the component parallel to q 0

j
1 is removed, we have

q 0
j ¼ t

ð jÞ
j ¼ t

j
1
j 
 r j
1 j; j q 0

j
1 ð13:2-13Þ

Figure 13.2-1 (a) Circuit implementation of modified Gram–Schmidt (MGS)
orthogonalization. Box labeled BMGS generates from the two input vectors an output
vector orthogonal to rightmost input vector. It is called a basic modified Gram–Schmidt
(BMGS) orthogonalizer. Use of ðm 0 þ 1Þm 0=2 of these basic Gram–Schmidt
orthogonalizers arranged as shown orthogonalizes m þ 1 vectors t1; t 2; . . . ; tm 0þ1 into
orthogonal set (q 0

1; q
0
2; . . . ; q

0
m 0þ1). (b) The BMGS orthogonalizer circuits.
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Again, it cannot be overemphasized that the classical and modified Gram–
Schmidt algorithms give the same answer when there are no round-off errors.

In the literature the MGS algorithm is described usually slightly differently.
The order of the computation is different but not as it affects the algorithm or its
accuracy. When the component of t j parallel to q 0

i is removed, it is removed at
the same time from t k, k ¼ j þ 1; . . . ;m 0 þ 1. Specifically, when q 0

1 and q 0
2 are

formed,

T 0
ð2Þ ¼ ½q 0

1 q 0
2 t

ð2Þ
3 . . . t

ð2Þ
m 0þ1	 ð13:2-14Þ

instead of (13.1-9). When q 0
3 is formed,

T 0
ð3Þ ¼ ½q 0

1 q 0
2 q 0

3 t
ð3Þ
4 . . . t

ð3Þ
m 0þ1	 ð13:2-15Þ

instead of (13.1-15). And so on.
A circuit implementation of the MGS algorithm is given in Figure 13.2-1.

Comparing the circuit implementation for the MGS and CGS algorithms,
respectively, in Figures 13.1-4 and 13.2-1 further emphasizes the difference
between them. The reader should benefit further from discussions in reference
81 as well as the other references mentioned in this section relative to the
Gram–Schmidt algorithm.

Figure 13.2-1 (Continued)
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14
MORE ON VOLTAGE-PROCESSING
TECHNIQUES

14.1 COMPARISON OF DIFFERENT VOLTAGE
LEAST-SQUARES ALGORITHM TECHNIQUES

Table 14.1-1 gives a comparison for the computer requirements for the different
voltage techniques discussed in the previous chapter. The comparison includes
the computer requirements needed when using the normal equations given by
(4.1-30) with the optimum least-squares weight W given by (4.1-32). Table
14.1-1 indicates that the normal equation requires the smallest number of
computations (at least when s > m, the case of interest), followed by the
Householder orthonormalization, then by the modified Gram–Schmidt, and
finally the Givens orthogonalization. However, the Givens algorithm computa-
tion count does not assume the use of the efficient CORDIC algorithm.

The assumption is made that all the elements of the augmented matrix T0 are
real. When complex data is being dealt with, then the counts given will be
somewhat higher, a complex multiply requiring four real multiplies and two
real adds, a complex add requiring two real adds. The Householder algorithm
has a slight advantage over the Givens and modified Gram–Schmidt algorithms
relative to computer accuracy. Table 14.1-2 gives a summary of the comparison
of the voltage least-squares estimation algorithms.

Before leaving this section, another useful least-squares estimate example is
given showing a comparison of the poor results obtained using the normal
equations and the excellent results obtained using the modified Gram–Schmidt
algorithm. For this example (obtained from reference 82)
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T ¼

1 1 1

" 0 0

0 " 0

0 0 "

2

6664

3

7775
ð14:1-1Þ

Y ðnÞ ¼ Y ð4Þ ¼

1

0

0

0

2

6664

3

7775
ð14:1-2Þ

for (4.1-11a). We now slove for the least-squares estimate using the normal
equations given by (4.1-30) and (4.1-32). We shall at first obtain the exact
solution. Toward this end, we calculate

T T T ¼
1 þ "2 1 1

1 1 þ "2 1

1 1 1 þ "2

2

4

3

5 ð14:1-3Þ

and

T TY ð4Þ ¼
1

1

1

2

4

3

5 ð14:1-4Þ

Then from (4.1-30) and (4.1-32) it follows that the exact solution (no round-off
errors) is

X�
n;n ¼ 1

3 þ "2

1

1

1

2

4

3

5 ð14:1-5Þ

TABLE 14.1-1. Operation Counts for Various Least-Squares
Computational Methods

Asymptotic Number
Method of Operations a

Normal equations (power method) 1
2

sm 2 þ 1
6

m 3

Householder orthogonalization sm 2 � 1
3

m 3

Modified Gram–Schmidt sm 2

Givens orthogonalization 2 sm 2 � 2
3

m3

Note: The matrix T is assumed to be an s � m matrix.

Source: From references 80 and 81.
a An operation is a multiply, or divide, plus and add.
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Now we obtain the normal equation solution. Assume eight-digit floating-point
arithmetic. If " ¼ 10�4, then 1 þ "2 ¼ 1:00000001, which is rounded off to
1.0000000. The matrix T T T then is thought to contain all 1’s for its entries and
becomes singular and noninvertable so that no least-squares estimate is
obtainable using the normal equations (4.1-30) and (4.1-32).

Next let us apply the modified Gram–Schmidt algorithm to this same
example. The same eight-digit floating-point arithmetic is assumed. It follows
that Q 0 of (13.1-20) becomes

Q 0 ¼

1 0 0 0

" �" � 1
2
" � 1

3
"

0 " � 1
2
" � 1

3
"

0 " " � 1
3
"

2

6664

3

7775
ð14:1-6Þ

TABLE 14.1-2. Voltage Least-Squares Estimate Algorithms
(Orthonormal Transforms): Trade-offs

Householder
Lowest cost on a serial (nonparallel, single-central-processor) machine
Best numerical behavior (by a small margin)

Givens Rotations
Introduces one zero at a time and as a result is more costly in number of

computations required
However, allows parallel implementations: linear and triangular systolic arrays
Rotations can be efficiently implemented in hardware using CORDIC

number representations
Square-root free version requires computations equal to that of Householder but is

no longer orthogonal and requires large dynamic range (generally alright if
floating point used)

Modified Gram–Schmidt
Like Givens MGS is more costly than Householder
Like Givens is amenable to systolic implementation
Provides joint order/time recursive updates

General Comment: Where accuracy is an issue, the orthonormal transforms
(voltage methods) are the algorithms of choice over the normal equation.
With the development of microcomputers having high precision, like 32 and 64 bits
floating point, accuracy is less of an issue. Where a high throughput is needed,
the systolic architecture offered by the Givens approach can provide the high
throughput of parallel processing.

Source: After Steinhardt [138].
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and U 0 and Y 00
1 of (13.1-39) becomes

U 0 ¼
1 1 1

0 1 1
2

0 0 1

2

4

3

5 ð14:1-7Þ

and

Y 00
1 ¼

1
1
2
1
3

2

4

3

5 ð14:1-8Þ

Finally substituting the above in (13.1-42) and solving using the back-
substitution method yields

X�
n;n ¼ 1

3

1

1

1

2

4

3

5 ð14:1-9Þ

which is close to the exact solution of (14.1-5).
Those who desire to further pursue the voltage techniques described are

urged to read references 76, 79, 81 to 83, 89, 91, 101 to 103, 115, 118 to 122,
and 139. References 79, 115, 119, 121, and 122 apply the voltage techniques to
the Kalman filter; see Section 14.5.

14.2 QR DECOMPOSITION

In the literature what is called the QR decomposition method is described for
solving the least-squares estimation problem [81, 89, 102]. This involves the
decomposition of the augmented matrix T0 into a product of matrices
designated as QR as done in (13.1-27) when carrying out the Gram–Schmidt
algorithm in Chapter 13. Thus the Gram–Schmidt is a QR decomposition
method. It follows that the same is true for the Householder and Givens
methods. These give rise to the upper triangular R when the augmented T0 is
multiplied by an orthogonal transformation QT , that is, QT T0 ¼ R; see, for
example (11.1-30) or (12.2-6), where QT ¼ F for these equations. Thus from
(10.2-1), QQT T0 ¼ T0 ¼ QR, and the augmented matrix takes the form QR, as
desired.

An additional physical interpretation of the matrices Q and R can be given
that is worthwhile for obtaining further insight into this decomposition of the
augmented matrix T0. When Q is orthonormal, its magnitude is in effect unity,
and it can be thought of as containing the phase information of the augmented
matrix T0. The matrix R then contains the amplitude information of T0. The QR
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can then be thought of as the polar decompostion of the augmented matrix T0

into its amplitude R and phase Q components. That this is true can be rigorously
proven by the use of Hilbert space [104].

14.3 SEQUENTIAL SQUARE-ROOT (RECURSIVE)
PROCESSING

Consider the example augmented matrix T0 given by (11.1-29). In this matrix
time is represented by the first subscript i of two subscripts of the elements t ij,
and the only subscript i of yi. Thus the first row represents the observation
obtained first, at time i ¼ 1, and the bottom row the measurement made last. For
convenience we shall reverse the order of the rows so that the most recent
measurement is contained in the top row. Then without any loss of information
(11.1-29) becomes

T0 ¼
t31 t32 y3

t21 t22 y2

t11 t12 y1

2

4

3

5 ð14:3-1Þ

To solve for the least-squares estimate, we multiply the above augmented
matrix T0 by an orthonormal transformtion matrix to obtain the upper triangular
matrix given by

T 0
0 ¼

ðt31Þ3 ðt32Þ3 j ðy3Þ3

0 ðt22Þ3 j ðy2Þ3

----- ----- j -----

0 0 j ðy1Þ3

2

664

3

775 ð14:3-2Þ

The entries in this matrix differ from those of (11.1-30) because of the
reordering done. Using the back-substitution method, we can solve for the least-
squares estimate by applying (14.3-2) to (10.2-16).

Assume now that we have obtained a new measurement at time i ¼ 4. Then
(14.3-1) becomes

T0 ¼

t41 t42 y4

t31 t32 y3

t21 t22 y2

t11 t12 y1

2

664

3

775 ð14:3-3Þ

We now want to solve for the least-squares estimate based on the use of all four
measurements obtained at i ¼ 1; 2; 3; 4. A straightforward method to obtain the
least-squares would be to repeat the process carried out for (14.3-1), that is,
triangularize (14.3-3) by applying an orthonormal transformation and then use
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the back-substitution procedure. This method has the disadvantage, however, of
not making any use of the computations made previously at time i ¼ 3.

To make use of the previous computations, one adds the new measurements
obtained at time i ¼ 4 to (14.3-2) instead of (14.3-1) to obtain the augmented
matrix [79]

T 0
0 ¼

t41 t42 y4

ðt31Þ3 ðt32Þ3 ðy3Þ3

0 ðt22Þ3 ðy2Þ3

0 0 ðy1Þ3

2

664

3

775 ð14:3-4Þ

One can now apply an orthonormal transformation to (14.3-4) to upper
triangularize it and use the back substitution to obtain the least-squares
estimate. This estimate will be based on all the measurements at i ¼ 1; 2; 3; 4.
The computations required when starting with (14.3-4) would be less than when
starting with (14.3-3) because of the larger number of zero entries in the former
matrix. This is readily apparent when the Givens procedure is used.
Furthermore the systolic array implementation for the Givens algorithm as
represented by Figures 11.3-2 and 11.3-4 is well suited to implementing the
sequential algorithm described above.

The sequential procedure outlined above would only be used if the least-
squares estimate solutions are needed at the intermediate times
i ¼ 1; 2; 3; 4; . . . ; j; . . . ; etc. This is typically the case for the radar filtering
problem. If we did not need these intermediate estimates, it is more efficient to
only obtain the estimate at time i ¼ s at which the last measurement is made
[79]. This would be done by only triangularizing the final augmented matrix T0

containing all the measurements from i ¼ 1; . . . ; s.
Sometimes one desires a discounted least-squares estimate: see Section 1.2.6

and Chapter 7. To obtain such an estimate using the above sequential procedure,
one multiplies all the elements of the upper triangularized matrix T0 by � where
0 < � < 1 before augmenting T0 to include the new measurement as done in
(14.3-4). Thus (14.3-4) becomes instead

T0 ¼

t41 t42 y4

�ðt31Þ3 �ðt32Þ3 �ðy3Þ3

0 �ðt22Þ3 �ðy2Þ3

0 0 �ðy1Þ3

2

664

3

775 ð14:3-5Þ

The multiplication by � is done at each update. Such a discounted (or
equivalently weighted) least-squares estimate is obtained using the systolic
arrays of Figures 11.3-2 and 11.3-4 by multiplying the elements of the systolic
array by � at each update; see references 83 and 89.

The sequential method described above is sometimes referred to in the
literature as the sequential square-root information filter (SRIF) [79]. The
reader is referred to reference 79 for the application of the sequential SRIF to

344 MORE ON VOLTAGE-PROCESSING TECHNIQUES



the Kalman filter. The reader is also referred to references 78, 81 to 83, 89, 102,
and 119.

14.4 EQUIVALENCE BETWEEN VOLTAGE-PROCESSING
METHODS AND DISCRETE ORTHOGONAL LEGENDRE
POLYNOMIAL APPROACH

Here we will show that the voltage-processing least-square approach of Section
4.3 and Chapters 10 to 13 becomes the DOLP approach of Section 5.3 when a
polynomial of degree m is being fitted to the data, that is, when the target
motion as a function of time is assumed to be described by a polynomial of
degree m, and when the times between measurements are equal. Consider again
the case where only range xðrÞ ¼ xr is measured. Assume, [see (5.2-3)], that the
range trajectory can be approximated by the polynomial of degree m

xðrÞ ¼ xr ¼ pðtÞ ¼
Xm

j¼0

ajðrTÞ j ð14:4-1Þ

where for simplicity in notation we dropped the bar over the aj. Alternately
from (5.2-4)

xðrÞ ¼ xr ¼ pðtÞ ¼
Xm

j¼0

z jr
j ð14:4-2Þ

where

z j ¼ ajT
j ð14:4-2aÞ

where z j is the scaled jth state derivative; see (5.2-8). The values of
xr; r ¼ 0; . . . ; s, can be represented by the column matrix

X ¼

x0

x1

..

.

xr

..

.

xs

2

66666664

3

77777775

ð14:4-3Þ

Note that the column matrix X defined above is different from the column
matrix used up until now. The X defined above is physically the matrix of the
true ranges at times r ¼ 0; 1; 2; . . . ; s. It is the range measurements yr made
without the measurement noise error, for example, Nn of (4.1-1) or N ðnÞ of
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(4.1-11a). The X defined up until now was the m 0 � 1 column matrix of the
process state vector. When this state vector X is multiplied by the observation
matrix M or the transition–observation matrix T, it produces the range matrix X
defined by (14.4-3). This is the only section where we will use X as defined by
(14.4-3). Which X we are talking about will be clear from the text. Which of
these two X’s is being used will also be clear because the state vector X�

n always
has the lowercase subscript s or n or 3. The range matrix will usually not have a
subscript or will have the capital subscript Z or B as we shall see shortly.

Applying (14.4-2) to (14.4-3) yields

X ¼

x0

x1

x2

..

.

xr

..

.

xs

2

66666666664

3

77777777775

¼

z0 þ 0 þ . . . þ 0

z0 þ z1 þ . . . þ zm1m

z0 þ z12 þ . . . þ zm2m

..

. ..
.

z0 þ z1r þ . . . þ zmr m

..

. ..
.

z0 þ z1s þ . . . þ zmsm

2

66666666664

3

77777777775

ð14:4-4Þ

or

X ¼ T Zs ð14:4-5Þ

where

Zs ¼

z0

z1

z2

..

.

zm

2

666664

3

777775
ð14:4-5aÞ

and

T ¼

1 0 0 . . . 0

10 11 12 . . . 1m

20 21 22 . . . 2m

..

. ..
. ..

. ..
.

r 0 r 1 r 2 . . . r m

..

. ..
. ..

. ..
.

s0 s1 s2 . . . sm

2

6666666664

3

7777777775

¼

1 0 0 . . . 0

1 1 1 . . . 1

1 21 22 . . . 2m

..

. ..
. ..

. ..
.

1 r r 2 . . . r m

..

. ..
. ..

. ..
.

1 s s2 . . . sm

2

6666666664

3

7777777775

ð14:4-5bÞ

Physically Zs is the scaled state matrix Zn of (5.4-12) for index time s instead of
n; see also (5.2-8) and (14.4-2a). Here, T is the transition–observation matrix for
the scaled state matrix Zs.

346 MORE ON VOLTAGE-PROCESSING TECHNIQUES



Physically, (14.4-5) is the same as (4.1-11) when no noise measurements
errors are present, that is, when N ðnÞ ¼ 0. As indicated, Zs is scaled version of
the state matrix Xn of (4.1-11) or (4.1-2) and the matrix T of (14.4-5) is the
transition–observation matrix of (4.1-11) or (4.1-11b) for the scaled state matrix
Zs, which is different from the transition–observation matrix T for Xs. The
range xðrÞ trajectory is modeled by a polynomial of degree m, hence Xs and in
turn its scaled form Zs have a dimension m 0 � 1 where m 0 ¼ m þ 1; see (4.1-2)
and discussion immediately following.

Now from (5.3-1) we know that xðrÞ can be expressed in terms of DOLP
� jðrÞ, j ¼ 0; . . . ;m as

xðrÞ ¼ xr ¼
Xm

j¼0

� j� jðrÞ ð14:4-6Þ

where for simplicity we have dropped the subscript n on � j. In turn, using
(14.4-6), the column matrix of xr, r ¼ 0; . . . ; s, can be written as

X ¼

x0

x1

x2

..

.

xr

..

.

xs

2

66666666664

3

77777777775

¼

�0ð0Þ �1ð0Þ . . . �mð0Þ
�0ð1Þ �1ð1Þ . . . �mð0Þ
�0ð2Þ �1ð2Þ . . . �mð2Þ

..

. ..
. ..

.

�0ðrÞ �1ðrÞ . . . �mðrÞ
..
. ..

. ..
.

�0ðsÞ �1ðsÞ . . . �mðsÞ

2

66666666664

3

77777777775

�0

�1

�2

..

.

� r

..

.

�m

2

66666666664

3

77777777775

ð14:4-7Þ

or

X ¼ PB ð14:4-8Þ

where

P ¼

�0ð0Þ �1ð0Þ . . . �mð0Þ
�0ð1Þ �1ð1Þ . . . �mð1Þ
�0ð2Þ �1ð2Þ . . . �mð2Þ

..

. ..
. ..

.

�0ðrÞ �1ðrÞ . . . �mðrÞ
..
. ..

. ..
.

�0ðsÞ �1ðsÞ . . . �mðsÞ

2

66666666664

3

77777777775

ð14:4-8aÞ
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and

B ¼

�0

�1

..

.

� r

..

.

�m

2

666666664

3

777777775

ð14:4-8bÞ

The DOLP � jðrÞ can be written as

�0ðrÞ ¼ c00 ð14:4-9aÞ
�1ðrÞ ¼ c10 þ c11r ð14:4-9bÞ
�2ðrÞ ¼ c20 þ c21r þ c22 r 2 ð14:4-9cÞ
�mðrÞ ¼ cm0 þ cm1r þ cm2 r 2 þ . . .þ cmm r m ð14:4-9dÞ

where the coefficients cij can be obtained from the equations of Section 5.3. In
matrix form (14.4-9a) to (14.4-9d) is expressed by

P ¼ TC ð14:4-10Þ

where T is defined by (14.4-5b) and C is given by the upper triangular matrix of
DOLP coefficients:

C ¼

c00 c10 c20 . . . cm�1;0 cm0

0 c11 c21 . . . cm�1;1 cm1

0 0 c22 . . . cm�1;2 cm2

0 0 0 
 

..
. ..

. ..
. ..

. ..
.

0 0 0 . . . cm�1;m�1 cm;m�1

0 0 0 . . . 0 cmm

2

666666664

3

777777775

ð14:4-10aÞ

Substituting (14.4-10) into (14.4-8) yields

X ¼ TCB ð14:4-11Þ

for the range matrix X in terms of the DOLP. Now xr is the actual range. What
we measure is the noise-corrupted range yr, r ¼ 0; 1; 2; . . . ; s, given by

yr ¼ xr þ 	 r ð14:4-12Þ

as in (4.1-1) to (4.1-1c). In matrix form this becomes

Y ¼ X þ N ð14:4-13Þ
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where

N ¼

	1

	2

..

.

	 s

2

6664

3

7775
ð14:4-13aÞ

and Y is an ðs þ 1Þ � 1 column matrix of yr, r ¼ 0; 1; . . . ; s. Thus here the
numbers of measurements yr equals s þ 1; not s as in (4.1-10).

What we are looking for is an estimate of the ranges x0; . . . ; xs designated as
x�0 ; . . . ; x�s or X�. Specifically, we are looking for the least-squares estimate
based on the range measurements y0; . . . ; ys or Y of (14.4-12) and (14.4-13). If
we use our polynomial expression for xr, then we are looking for the least-
squares estimate of the polynomial coefficients, that is, of the aj of (14.4-1)
or alternately the least-squares estimate of the scaled aj, that is, z i given by
(14.4-2a) or (5.2-8) or the column matrix of (14.4-5). Designate the least-
squares estimate of Zs as Z �

s . From (14.4-5)

X�
Z ¼ T Z �

s ð14:4-14Þ

where the subscript Z on the range matrix X� is used to indicate that to obtain
the estimate of the range matrix X of (14.4-3) we are using the polynomial fit
for xr given by (14.4-2) in terms of the scaled derivatives of x i, that is, by the
state coordinates z i of (14.4-2a) and (14.4-5a). Similarly, if we use the DOLP
representation for xr, then the least-squares estimate of the range matrix X is
obtained from the least-squares estimate of B, designated as B�. Specifically,
using (14.4-11) gives

X�
B ¼ TCB� ð14:4-15Þ

where the subscript B on X� is used to indicate that the estimate is obtained
using the DOLP representation for the range matrix X.

From (4.1-31) we know that the least-squares estimate of Zs is given by the
Zs, which minimizes the magnitude of the column error matrix EZ given by

EZ ¼ Y � XZ ¼ Y � T Zs ð14:4-16Þ

Similarly, the least-squares estimate of B is given by the B, which minimizes the
magnitude squared of the column error matrix EB given by

EB ¼ Y � XB ¼ Y � TCB ð14:4-17Þ

To apply the voltage-processing procedure to (14.4-16) to obtain the least-
squares estimate Z �

s of Zs, we want to apply an orthonormal transformation F to
(14.4-16), which transforms it into m 0 equations of the m 0 unknowns of Zs, with
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these equations being in the Gauss elimination form as done in Section 4.3 and
Chapters 10 to 13. Note that because the � jðrÞ are the DOLP terms, the columns
of P are orthonormal. This follows from (5.3-2). Hence the rows of the
transpose of P, PT , are orthonormal and PT is an orthonormal transformation,
like F of (13.1-33). Strictly speaking, PT is not an orthonormal transformation
because it is not square, it being of dimension m 0 � ðs þ 1Þ. [This is because P
only spans the m 0-dimensional subspace of (s+1)-dimensional space of X.
Specifically, it spans only the column space of T. Here, P could be augmented to
span the whole (s+1)-dimensional, but this is not necessary. This is the same
situation we had for F of (13.1-33)]. Let us try PT as this orthonormal
transformation.

Multiplying both sides of (14.4-16) by PT and reversing the sign of EZ yields

PTEZ ¼ PTT Zs � PT Y ð14:4-18Þ

or

E 0
1Z ¼ PT T Zs � Y 0

1 ð14:4-19Þ

where

E 0
1Z ¼ PT EZ ð14:4-19aÞ
Y 0

1 ¼ PT Y ð14:4-19bÞ

Now applying the transform PT to (14.4-10) yields

PT P ¼ PT TC ð14:4-20Þ

But

PT P ¼ I ð14:4-21Þ

where I is the m 0 � m 0 identity matrix. (Note that because P is not a square
matrix, PPT 6¼ I.) Thus

PT TC ¼ I ð14:4-22Þ

Postmultiplying both sides of (14.4-22) by C�1 yields

PT TCC�1 ¼ C�1 ð14:4-23Þ

or

C�1 ¼ PT T ð14:4-24Þ
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Substituting (14.4-24) into (14.4-19) yields

E 0
1Z ¼ C�1Zs � Y 0

1 ð14:4-25Þ

Because C is upper triangular, it can be shown that its inverse is upper triangular
(see problem 14.4-1). Thus C�1 is an upper triangular matrix and equivalent to
U of the voltage-processing method. Thus

U ¼ C�1 ð14:4-26Þ

Then (14.4-25) becomes

E 0
1Z ¼ UZs � Y 0

1 ð14:4-27Þ

Thus the transformation PT puts (14.4-16) in the form obtained when using the
voltage-processing method, and hence PT is a suitable voltage-processing
method orthonomal transformation as we hoped it would be.

Equation (14.4-25) or (14.4-27) consists of m 0 ¼ m þ 1 equations with m+1
unknown z i’s to be solved for such that kE 0

1Zk is minimum. Hence, as was the
case for (4.3-31) and (10.2-14), the minimum kE 0

1Zk is obtained by setting E 0
1Z

equal to zero to obtain for (14.4-25) and (14.4-27)

Y 0
1 ¼ C�1Z �

s ð14:4-28Þ

which when using (14.4-26) becomes

Y 0
1 ¼ UZ �

s ð14:4-29Þ

Solving for Z �
s in (14.4-28) or (14.4-29) gives the desired least-squares estimate

Z �
s . Equation (14.4-29) is equivalent to (10.2-16) of the voltage-processing

method for estimating the unscaled X�
n;n. Because C�1 and in turn U, are upper

triangular, Z �
s can be easily solved for using the back-substitution method, as

discussed relative to solving (10.2-16) for X�
n;n. However, because we know C

when xr is modeled to be a polynomial in time, it being the matrix of
coefficients of the DOLP, we can solve (14.4-28) or (14.4-29) without using
back substitution. Instead, we can solve for Z �

s directly by writing (14.4-28) as

Z �
s ¼ CY 0

1 ¼ CPT Y ð14:4-30Þ

where use was made of (14.4-19b). [Note that Equation (14.4-27) for estimating
Z is equivalent to (4.3-45) and (10.2-14) used in the process of estimating X�

s ,
the unscaled Zs; with Y 0

2 not present. The orthonormal transformation PT here,
see (14.4-18), for example, is equivalent to that of F of (10.2-14) except there
the rows of F were made to span the s-dimensional space of Y ðnÞ while here, as
indicated above, the rows of PT only span the m þ 1 ¼ m 0-dimensional space of
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the columns of T given by (14.4-5b). It is for this reason that Y 0
2 is not present in

(14.4-25).]
Thus the voltage-processsing least-squares solution when fitting a poly-

nomial fit of degree m to the data becomes a straightforward solution given by
(14.4-30) with the orthonormal matrix P given by the matrix of DOLP given by
(14.4-8a) and the upper triangular matrix C given by the matrix of DOLP
coefficients given by (14.4-10a) with both of these matrices known beforehand.
Thus the Gram-Schmidt, Givens, or Householder transformations do not have to
be carried out for the voltage-processing method when a polynomial fit is made
to data. In addition, the voltage-processing orthonormal transformation F equals
PT and hence is known beforehand. Also, the upper triangular matrix U is equal
to C�1 and is known beforehand also. Moreover, U does not have to be
calculated because (14.4-30) can be used to solve for Z �

s directly.
It remains to relate the resultant voltage-processing method solution given by

(14.4-30) with the DOLP solution. From (5.3-10) we know that the DOLP least-
squares solution for � j is given by

��j ¼
Xs

r¼0

� jðrÞyr ð14:4-31Þ

Using (14.4-8a), this can be written as

B� ¼ PT Y ð14:4-32Þ

On examining (14.4-30) we see that our Z �
s obtained using the voltage-

processing method with F ¼ PT is given in terms of the DOLP solution for B�
given above. Specifically, applying (14.4-32) to (14.4-30) yields

Z �
s ¼ CB� ð14:4-33Þ

Computationally, we see that the voltage-processing solution is identical to the
DOLP solution when the data is modeled by a polynomial of degree m and the
times between measurements are equal.

Finally, the least-squares estimate of X of (14.4-3) can be obtained by
applying (14.4-33) to (14.4-5) to yield

X� ¼ TCB� ð14:4-34Þ

which on applying (14.4-32) becomes

X� ¼ TCPTY ð14:4-35Þ

Alternately, we could apply (14.4-32) directly to (14.4-8) to obtain

X� ¼ PPT Y ð14:4-36Þ
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Both solutions, (14.4-35) and (14.4-36), are identical since, from (14.4-10),
P ¼ TC. It is just that the order of the calculations are different. In either case
we do not need to obtain a matrix inverse or use the back-substitution method
because here we know the matrices Cð¼ U�1Þ and PTð¼ FÞ.

Let us recapitulate the important results obtained in this section. The main
point is that the DOLP approach is equivalent to the voltage-processing
approach. Moreover, when the voltage-processing method is used to provide a
least-squares polynomial fit of degree m; . . . ; s þ 1 consecutive data points
equally spaced in time with s þ 1 > m 0 ¼ m þ 1, the voltage-processing matrix
U and the transformation matrix F of Chapters 10 to 13 are known in advance.
Specifically, U is given by the inverse of the matrix C of the coefficient of the
DOLP given by (14.4-10a). Moreover, C�1 does not need to be evaluated
because we can obtain the scaled least-squares estimate of Z �

s by using
(14.4-30). Thus, for the case where a least-squares polynomial fit is being made
to the data, the voltage-processing approach becomes the DOLP approach with
U�1 given by C and F ¼ PT . This is indeed a beautiful result.

It is important to point out that U (and in turn U�1) and F of the voltage-
processing approach are known in advance, as discussed above, only if there are
no missing measurements yj, j ¼ 0; 1; 2; . . . ; s. In the real world, some yj will
be missing due to weak signals. In this case T and in turn U are not known in
advance, the drop out of data points being random events.

14.5 SQUARE-ROOT KALMAN FILTERS

The Kalman filters discussed up until now and in Chapter 18 use a power
method of computation. They involve calculating the covariance matrix of the
predicted and filtered state vectors; see, for example, (9.3-1a) to (9.3-1d) and
(2.4-4a) to (2.4-4j). There are square-root Kalman filter algorithms that
compute the square-root of these covariance matrices and hence are less
sensitive to round-off errors [79, 115, 119, 121, 122]. A similar filter is the U-D
covariance factorization filter discussed elsewhere [79, 119, 121, 122]. (In
Section 10.2.2 we pointed out that U�1 is the square root of the covariance
matrix S�n;n. Similarly UD1=2 is another form of the square root of S�n;n where U
is an upper triangular matrix and D is a diagonal matrix. (Note that the square
root of (13.1-39a) is of this form.) The question arises as to how to tell if one
needs these square-root-type filters or can the simpler, conventional power
method type filters be used. The answer is to simulate the power method filter
on a general-purpose computer with double or triple precision and determine
for what computation roundoff one runs into performance and stability
problems. If for the accuracy to be used with the conventional filter, one does
not run into a performance or stability problem, then the conventional filters
described here can be used. If not, then the square-root filters should be
considered.
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15
LINEAR TIME-VARIANT SYSTEM

15.1 INTRODUCTION

In this chapter we extend the results of Chapters 4 and 8 to systems having
time-variant dynamic models and observation schemes [5, pp. 99–104]. For a
time-varying observation system, the observation matrix M of (4.1-1) and
(4.1-5) could be different at different times, that is, for different n. Thus the
observation equation becomes

Yn ¼ MnXn þ Nn ð15:1-1Þ

For a time-varying dynamics model the transition matrix � would be different
at different times. In this case � of (8.1-7) is replaced by �ðt n; tn�1Þ to indicate
a dependence of � on time. Thus the transition from time n to n þ 1 is now
given by

Xnþ1 ¼ �ðt nþ1; tnÞXn ð15:1-2Þ

The results of Section 4.1 now apply with M, �, and T replaced by Mn,
�ðtn; t n�iÞ, and Tn, respectively; see (4.1-5) through (4.1-31). Accordingly, the
least-squares and minimum-variance weight estimates given by (4.1-32) and
(4.5-4) apply for the time-variant model when the same appropriate changes are
made [5]. It should be noted that with � replaced by �ðt n; tn�iÞ, the results
apply to the case of nonequal spacing between observations. We will now
present the dynamic model differential equation and show how it can be
numerically integrated to obtain �ðtn; t n�iÞ.
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15.2 DYNAMIC MODEL

For the linear, time-variant dynamic model, the differential equation (8.1-10)
becomes the following linear, time-variant vector equation [5, p. 99]:

d

dt
XðtÞ ¼ AðtÞXðtÞ ð15:2-1Þ

where the constant A matrix is replaced by the time-varying matrix AðtÞ, a
matrix of parameters that change with time. For a process described by (15.2-1)
there exists a transition matrix �ðt n þ �; t nÞ that transforms the state vector at
time t n to tn þ �, that is,

Xðt n þ �Þ ¼ �ðt n þ �; tnÞXðt nÞ ð15:2-2Þ

This replaces (8.1-21) for the time-invariant case. It should be apparent that it is
necessary that

�ðt n; tnÞ ¼ I ð15:2-3Þ

15.3 TRANSITION MATRIX DIFFERENTIAL EQUATION

We now show that the transition matrix for the time-variant case satisfies the
time-varying model differential equation given by (15.2-1), thus paralleling the
situation for the time-invariant case; see (8.1-25) and (8.1-28). Specifically, we
shall show that [5, p. 102]

d

d�
�ðtn þ �; tnÞ ¼ Aðtn þ �Þ�ðt n þ �; t nÞ ð15:3-1Þ

The above equation can be numerically integrated to obtain � as shall be
discussed shortly.

To prove (15.3-1), differentiate (15.2-2) with respect to � to obtain [5, p. 101]

d

d�
½�ðt n þ �; t nÞXðt nÞ� ¼

d

d�
Xðt n þ �Þ ð15:3-2Þ

Applying (15.2-1) (15.2-2) yields

d

d�
½�ðtn þ �; t nÞXðtnÞ� ¼ Aðtn þ �ÞXðtn þ �Þ

¼ Aðtn þ �Þ�ðt n þ �; t nÞXðt nÞ
ð15:3-3Þ

Because XðtnÞ can have any value, (15.3-1) follows, which is what we wanted
to show.
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One simple way to numerically integrate (15.3-1) to obtain �ðtn þ �; tnÞ is to
use the Taylor expansion. Let � ¼ mh, where m is an integer to be specified
shortly. Starting with k ¼ 1 and ending with k ¼ m, we use the Taylor
expansion to obtain [5, p. 102]

�ðtn þ kh; tnÞ ¼ �½tn þ ðk � 1Þh; t n� þ h
d

d�
�½t n þ ðk � 1Þh; t n� ð15:3-4Þ

which becomes [5, p. 102]

�ðtn þ kh; t nÞ ¼ fI þ h A½tn þ ðk � 1Þh�g�½tn þ ðk � 1Þh; t n�
k ¼ 1; 2; 3; . . . ;m

ð15:3-5Þ

At k ¼ m we obtain the desired �ðtn þ �; tnÞ. In (15.3-4) m is chosen large
enough to make h small enough so that the second-order terms of the Taylor
expansion can be neglected. The value of m can be determined by evaluating
(15.3-5) with successively higher values of m until the change in the calculated
value of �ðtn þ �; t nÞ with increasing m is inconsequential.

Equation (15.2-2) is used to transition backward in time when rewritten as

XðtnÞ ¼ �ðtn; t n þ �ÞXðt n þ �Þ ð15:3-6Þ

The above is obtained by letting � be negative in (15.2-2). It thus follows that
the inverse of �ðtn þ �; tnÞ is

�ðtn; tn þ �Þ ¼ ½�ðt n þ �; t nÞ��1 ð15:3-7Þ

Thus interchanging the arguments of � gives us its inverse. In the literature the
inverse of � is written as  and given by

 ðtn þ �; tnÞ ¼ ½�ðtn þ �; tnÞ��1 ð15:3-8Þ

It is a straightforward matter to show that  satisfies the time-varying associated
differential equation [5, p. 103]

d

d�
 ðtn þ �; tnÞ ¼ � ðt n þ �; tnÞAðtn þ �Þ ð15:3-9Þ

thus paralleling the situation for the time-invariant case; see (8.1-30).
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16
NONLINEAR OBSERVATION SCHEME
AND DYNAMIC MODEL (EXTENDED
KALMAN FILTER)

16.1 INTRODUCTION

In this section we extend the results for the linear time-invariant and time-
variant cases to where the observations are nonlinearly related to the state
vector and/or the target dynamics model is a nonlinear relationship [5, pp. 105–
111, 166–171, 298–300]. The approachs involve the use of linearization
procedures. This linearization allows us to apply the linear least-squares and
minimum-variance theory results obtained so far. When these linearization
procedures are used with the Kalman filter, we obtain what is called the
extended Kalman filter [7, 122].

16.2 NONLINEAR OBSERVATION SCHEME

When the observation variables are nonlinearly related to the state vector
coordinates, (15.1-1) becomes [5, pp. 166–171]

Yn ¼ GðXnÞ þ Nn ð16:2-1Þ

where GðXnÞ is a vector of nonlinear functions of the state variables.
Specifically,

GðXnÞ ¼

g1ðXnÞ
g2ðXnÞ

..

.

gnðXnÞ

2

6664

3

7775
ð16:2-2Þ
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A common nonlinear observation situation for the radar is where the
measurements are obtained in polar coordinates while the target is tracked in
cartesian coordinates. Hence the state vector is given by

XðtÞ ¼ X ¼
x

y

z

2

4

3

5 ð16:2-3Þ

While the observation vector is

YðtÞ ¼ Y ¼
Rs

�
�

2

4

3

5 ð16:2-4Þ

The nonlinear equation relating Rs, �, and � to x, y, and z are given by (1.5-3),
that is g1ðXÞ, g2ðXÞ, and g3ðXÞ are given by, respectively, (1.5-3a) to (1.5-3c).
The inverse equations are given by (1.5-2). The least-squares and minimum-
variance estimates developed in Chapters 4 and 9 require a linear observation
scheme. It is possible to linearize a nonlinear observation scheme. Such a
linearization can be achieved when an approximate estimate of the target
trajectory has already been obtained from previous measurements.

One important class of applications where the linearization can be applied is
when the target equations of motion are exactly known with only the specific
parameters of the equations of motion not being known. Such is the case for
unpowered targets whose equations of motion are controlled by gravity and
possibly atmospheric drag. This occurs for a ballistic projectile passing through
the atmosphere, an exoatmospheric ballistic missile, a satellite in orbit, and a
planetary object. For these cases the past measurements on the target would
provide an estimate of the target state vector �Xðt � �Þ at some past time t � �
(typically the last time measurements were made on the target). This nominal
state vector estimate of �Xðt � �Þ would be used to estimate the parameters in the
known equations of motion for the target. In turn the equations of motion with
these estimated parameters would be used to propagate the target ahead to the
time t at which the next measurement is being made. This provides us with an
estimate for the state vector �XðtÞ that shall be used for linearizing the nonlinear
observation measurements. Shortly we shall give the equations of motion for
a ballistic projectile passing through the atmosphere in order to illustrate this
method more concretely.

For those applications where the exact equations of motion are not known,
such as when tracking an aircraft, the polynomial approximation of Chapters 5
to 7 can be used to estimate �Xðt � �Þ and in turn �XðtÞ with, the transition matrix
� for a polynomial trajectory being used to determine �XðtÞ from �Xðt � �Þ. The
prediction from t � � to t cannot be made too far into the future because the
predicted state vector would then have too large an error. In passing let us point
out that the polynomial fit can be used also to obtain the initial state estimate
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�Xðt � �Þ. For a satellite the insertion parameters can be used to obtain the initial
trajectory parameters, and in turn the initial state vector �Xðt � �Þ. In the
following paragraphs we will illustrate the linearization of the nonlinear
observation equation of (16.2-1) by an example.

Assume a ballistic projectile for which a nominal state vector estimate �XðtÞ
has been obtained. If �XðtÞ is reasonably accurate (as we shall assume it to be), it
will differ from the true state vector �XðtÞ by a small amount given by �XðtÞ, that
is,

XðtÞ ¼ �XðtÞ þ �XðtÞ ð16:2-5Þ

Using GðXnÞ of (16.2-1) we can calculate the observation vector Yn that one
expects to see at time n (which corresponds to the time t). It is given by

�Yn ¼ Gð�XnÞ ð16:2-6Þ

This nominally expected value for the measurement vector �Yn will differ from
the observed Yn by a small amount �Yn given by

�Y n ¼ Yn � �Yn ð16:2-7Þ

Applying (16.2-1), (16.2-5), and (16.2-6) to the above equation yields

�Y n ¼ Gð�Xn þ �X nÞ � Gð�XnÞ þ Nn ð16:2-8Þ

Applying the Taylor series to the first term on the right-hand side of the above
equation yields [5, p. 169]

�Yn ¼ Mð�XnÞ �Xn þ Nn ð16:2-9Þ

where [5, p. 169]

½Mð�XnÞ� ij ¼
dgiðXÞ

dxj

����
X¼�X n

ð16:2-10Þ

The second-order Taylor series terms have been dropped in the above equation.
By way of example, for the rectangular-to-spherical coordinate case g1ðXÞ,

as indicated above, is given by the first equation of (1.5-3a) with x1 ¼ x, x2 ¼ y,
x3 ¼ z, and

½Mð�XnÞ�11 ¼
�X
�Rs

ð16:2-11Þ

where

�Rs ¼ ð�x2 þ �y2 þ �z2Þ1=2 ð16:2-11aÞ
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Equation (16.2-9) is the sought after linearized observation equation, where
�Yn replaces Yn and �Xn replaces Xn. We shall shortly describe how to use the
linearized observation equation given by (16.2-9) to obtain an improved
estimate of the target trajectory. Briefly, what is done is the differential
measurement vector �Yn is used to obtain an estimate �X�ðt nÞ of the
differential state vector �Xn using the linear estimation theory developed up
until now. This estimate �X�ðtnÞ is then added to the estimate �Xn based on the
past data to in turn obtain the new state vector estimate X�ðt nÞ. This becomes
clearer if we use the notation of Section 1.2 and let X�

k;k be the estimate at some
past time k based on measurements made at time k and earlier. Using the target
dynamics model, X�

k;k is used to obtain the prediction estimate at time n
designated as X�

n;k. From �Yn and X�
n;k an estimate for �Xðt nÞ, designated as

�X�ðtnÞ; is obtained. Adding the estimate �X�ðtnÞ to X�
n;k yields the desired

updated estimate X�
n;n. To obtain the estimate �X�ðtnÞ, which for simplicity we

write as �X�, it is necessary to know the covariance matrices of X�
n;k and Yn.

The covariance of Yn is assumed known. For the linear case the covariance of
X�

n;k can be obtained from that of X�
k;k using target dynamics transition matrix �

and (4.5-10), (9.2-1c), or (17.1-1) to be given shortly. If the target dynamics are
nonlinear, then a linearization is needed. In Chapter 17 a detailed description is
given of this linearization. Discussed in Section 16.3 is how this linearization is
used to obtain the transition matrix for a target having a nonlinear dynamics
model so that an equation equivalent to (4.5-10) or (9.2-1c) can be used to
obtain the covariance of X�

n;k.

16.3 NONLINEAR DYNAMIC MODEL

The linear time-invariant and time-variant differential equations given by
(8.1-10) and (15.2-1), respectively, become, for a nonlinear target dynamics
model [5, pp. 105–111],

d

dt
XðtÞ ¼ F½XðtÞ; t� ð16:3-1Þ

where, as before, XðtÞ is the state vector while F is a vector of nonlinear
functions of the elements of X, and perhaps of time t if it is also time variant. To
be more specific and by way of example let

XðtÞ ¼ x0ðtÞ
x1ðtÞ

� 	
ð16:3-2Þ

and

F½XðtÞ� ¼ f 0ðx0; x1Þ
f 1ðx0; x1Þ

� 	
ð16:3-3Þ
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Then (16.3-1) becomes

d

dt
x0ðtÞ ¼ f0½x0ðtÞ; x1ðtÞ� ð16:3-4aÞ

d

dt
x1ðtÞ ¼ f1½x0ðtÞ; x1ðtÞ� ð16:3-4bÞ

As was done for the nonlinear observation equation given by (16.2-1), we
would like to linearize (16.3-1) so that the linear estimation theory developed
up until now can be applied. As discussed before, this is possible if we have an
estimate of the target trajectory based on previous measurements and have in
turn its state vector �XðtÞ at time t. Differentiating (16.2-5) yields

d

dt
XðtÞ ¼ d

dt
�XðtÞ þ d

dt
�XðtÞ ð16:3-5Þ

Using (16.3-1) and (16.3-5) yields

d

dt
�XðtÞ þ d

dt
�XðtÞ ¼ F½�XðtÞ þ �XðtÞ� ð16:3-6Þ

For simplicity we have dropped the second variable t in F, the possible variation
with time of F being implicitly understood.

Applying (16.3-6) to (16.3-4a) yields

d

dt
�x0ðtÞ þ

d

dt
�x0ðtÞ ¼ f0½�x0ðtÞ þ �x0ðtÞ;�x1ðtÞ þ �x1ðtÞ� ð16:3-7Þ

Applying the Taylor expansion to the right-hand side of (16.3-7) yields [5, p.
109]

d

dt
�x0ðtÞ þ

d

dt
�x0ðtÞ ¼ f0ð�x0;�x1Þ þ

df0

dx0

����
�x 0
�x 1

	 �x0 þ
df0

dx1

����
�x 0
�x 1

	 �x1 ð16:3-8Þ

where all second-order terms of the Taylor expansion have been dropped. By
the same process we obtain for (16.3-4b) [5, p. 109]

d

dt
�x1ðtÞ þ

d

dt
�x1ðtÞ ¼ f1ð�x0;�x1Þ þ

df1

dx0

����
�x 0
�x 1

	 �x0 þ
df1

dx1

����
�x 0
�x 1

	 �x1 ð16:3-9Þ

But from (16.3-1) [see also (16.3-4a) and (16.3-4b)]

d

dt
�XðtÞ ¼ F½�XðtÞ� ð16:3-10Þ
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Hence (16.3-8) and (16.3-9) become [5, p. 109]

d

dt
�x0ðtÞ

d

dt
�x1ðtÞ

0

BB@

1

CCA ¼

df0

dx0

df0

dx1

df1

dx0

df1

dx1

0

BB@

1

CCA

�������� �x 0ðtÞ
�x 1ðtÞ

�x0ðtÞ
�x1ðtÞ

� �
ð16:3-11Þ

The above can be rewritten as [5, p. 109]

d

dt
�XðtÞ ¼ A½�X ðtÞ��XðtÞ ð16:3-12Þ

where

½A½ �X ðtÞ�� i;j ¼
df iðXÞ

dxj

����
X¼�XðtÞ

ð16:3-12aÞ

Equation (16.3-12) is the desired linearized form of the nonlinear dynamics
model given by (16.3-1). It is of the same form as (15.2-1). To achieve the
linearization, the matrix AðtÞ is replaced by A½�XðtÞ� while the state vector X is
replaced by the differential state vector �X.

We are now in a position to apply the linear estimation theory developed up
until now to the differential state vector �X to obtain its estimate �X�. Having
this we can then form the new estimate X� by adding �X� to �X. We shall give
the details of how this is done in the next section. Before doing this a few
additional points will be made and an example of the linearization of the
nonlinear dynamics model given.

Because (16.3-12) is linear and time variant, it follows from (15.2-2) that the
transition equation for �X is [5, p. 111]

�Xðtn þ �Þ ¼ �ðt n þ �; t n; �XÞ�Xðt nÞ ð16:3-13Þ

where � depends on �X as well as on time. This transition matrix and its inverse
satisfy the differential equations [5, p. 111]

d

d�
�ðt n þ �; t n; �XÞ ¼ A½ �X ðtn þ �Þ��ðt n þ �; tn; �XÞ ð16:3-14Þ

d

d�
 ðt n þ �; t n; �XÞ ¼ � ðt n þ �; tn; �XÞA½ �X ðtn þ �Þ� ð16:3-15Þ

corresponding to the respective linear time-variant forms given by (15.3-1) and
(15.3-9). The desired transition matrix �ðtn þ �; tnÞ or actually �ðtn; t kÞ can be
obtained by numerical integration of (16.3-14) using the dynamics model
matrix A½ �X ðtÞ� and the initial condition �ðt n; tn; �XÞ ¼ I. This in turn lets us
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determine the covariance matrix of X�
n;k from that of X�

k;k as mentioned at the
end of Section 16.2. The predicted estimate X�

n;k is determined from X�
k;k itself

by numerically integrating the original nonlinear target dynamics equations
given by (16.3-1); see also (16.3-4). Having X�

n;k and Yn and their covariances,
the minimum variance theory can be applied to obtain the combined estimate
for X�

n;n as done in Section 4.5 and Chapter 9; see, for example (9.4-1). This is
detailed in the next chapter. Before proceeding to that chapter an example
linearization of the nonlinear differential dynamic equation shall be given. This
example shall be used in the next chapter.

Assume we wish to track a ballistic projectile through the atmosphere. We
will now develop its nonlinear differential equations of motion corresponding to
(16.3-1). For simplicity, the assumption is made that the radar is located in the
plane of the projectiles trajectory. As a result, it is necessary to consider only
two coordinates, the horizontal coordinate x1 and the vertical coordinate x2. For
further simplicity a flat earth is assumed. We define the target state vector as

X ¼

x1

x2

_x1

_x2

2

664

3

775 ð16:3-16Þ

The derivative of the state vector becomes

dx

dt
¼

_x1

_x2

�x1

�x2

2

664

3

775 ð16:3-17Þ

The acceleration components in the vector on the right-hand side of the
above equation depend on the atmospheric drag force and the pull of gravity.
Once we have replaced these acceleration components in (16.3-17) by their
relationship in terms of the atmospheric drag and gravity, we have obtained the
sought after form of the nonlinear dynamics model cooresponding to (16.3-1).
The atmospheric drag equation for the projectile is approximated by [5, p. 105]

f d ¼ 1
2
	v2
 ð16:3-18Þ

where 	 is the atmospheric density, v is the projectile speed, and 
 is an
atmospheric drag constant. Specifically,


 ¼ CDA ð16:3-19Þ

where CD is an atmospheric drag coefficient dependent on the body shape and A
is the projection of the cross-sectional area of the target on a plane
perpendicular to the direction of motion. The parameter 
 is related to the

NONLINEAR DYNAMIC MODEL 363



ballistic coefficient � of (2.4-6) in Section 2.4, by the relationship


 ¼ m

�
ð16:3-20Þ

since � is given by (2.4-9). Physically, 
 represents the effective target drag
area. The atmospheric density as a function of altitude is fairly well
approximated by the exponential law given by [5, p. 105]

	 ¼ 	0e�kx 2 ð16:3-21Þ

where 	0 and k are known constants.
To replace the acceleration components in (16.3-17) by their atmospheric

drag and gravity relationships, we proceed as follows. First, the drag force is
resolved into its x1 and x2 components by writing the velocity as a velocity
vector given by

V ¼ vV̂ ð16:3-22Þ

where V̂ is the unit velocity vector along the ballistic target velocity
direction. The atmospheric drag force can then be written as a vector Fd given
by

Fd ¼ � 1
2
	
v2V̂ ð16:3-23Þ

Let î and k̂ be the unit vectors along the x1 and x2 coordinates. Then

V ¼ _x 1̂i þ _x2k̂ ð16:3-24Þ

and

V̂ ¼ _x 1̂i þ _x2k̂

v
ð16:3-25Þ

Thus

Fd ¼ � 1
2
	
vð _x 1̂i þ _x2k̂Þ ð16:3-26Þ

and hence

m�x1 ¼ � 1
2
	
v _x1 ð16:3-27Þ

and

m�x2 ¼ � 1
2
	
v _x2 � mg ð16:3-28Þ
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Substituting the above two equations in (16.3-1) and using (16.3-16) and
(16.3-21) yield [5, p. 107]

_x1

_x2

�x1

�x2

2

666664

3

777775
¼

_x1

_x2

� 	0


2m
e�kx 2ð _x2

1 þ _x2
2Þ

1=2 _x1

�	0


2m
e�kx 2ð _x2

1 þ _x2
2Þ

1=2 _x2 � g

2

666664

3

777775
ð16:3-29Þ

Applying (16.3-12a) yields [5, p. 110]

A ½XðtÞ� ¼
0 j 0 j 1 j 0

-- -- -- -- -- -- -- -- -- -- -- -- -- --

0 j 0 j 0 j 1

-- -- -- -- -- -- -- -- -- -- -- -- -- --

0 j ck�v�_x 1exp �k�x 2ð Þ j �c
�v 2 þ �_x 2

1

�v

� �
exp �k�x 2ð Þ j � c�_x 1

�_x 2

v

� �
exp �k�x 2ð Þ

-- -- -- -- -- -- -- -- -- -- -- -- --

0 j ck�v�_x 2exp �k�x 2ð Þ j � c�_x 1
�_x 2

�v

� �
exp �k�x 2ð Þ j �c

�v 2 þ �_x 2
2

�v

� �
exp �k�x 2ð Þ

2

666666666666666664

3

777777777777777775

ð16:3-30Þ

where

c ¼ 	0


2m
ð16:3-30aÞ

�v ¼ ð�_x2
1 þ �_x2

2Þ
1=2 ð16:3-30bÞ

�x1 ¼ �x1ðtÞ etc: ð16:3-30cÞ

In the above 
, the target effective drag area, was assumed to be known.
More generally, it is unknown. In this case it must also be estimated based on
the projectile trajectory measurements. The dependence of 
 and _
 on the
trajectory velocity and other state vector parameters provides a nonlinear
differential equation of the form given by [5, p. 299]

d

dt


ðtÞ
_
ðtÞ

� �
¼ F½x1; x2;�x1;�x2; 
ðtÞ; �
ðtÞ� ð16:3-31Þ

The above equation is of the same form as the nonlinear differential target
dynamics equation given by (16.3-1). The two-element state vector given on the
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left side of the above equation must be now estimated. This is done by
adding this two-element state vector to the four-estimate state vector given
by (16.3-16) to give a six-state vector instead of a four-state vector. [In
Section 2.4 we gave an example where the target drag area � had to be
estimated; see (2.4-6).]
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17
BAYES ALGORITHM WITH ITERATIVE
DIFFERENTIAL CORRECTION
FOR NONLINEAR SYSTEMS

17.1 DETERMINATION OF UPDATED ESTIMATES

We are now in a position to obtain the updated estimate for the nonlinear
observation and target dynamic model cases [5, pp. 424–443]. We shall use the
example of the ballistic projectile traveling through the atmosphere for
definiteness in our discussion. Assume that the past measurements have
permitted us to obtain the state vector estimate �Xðt � �Þ at the time t � �, the
last time observations were made on the target. As done at the end of Section
16.2, it is convenient to designate this past time t � � with the index k and write
�Xðt � �Þ as X�

k;k. Assume that the measurements are being made in polar
coordinates while the projectile is being tracked in rectangular coordinates, that
is, the state-vector is given in rectangular coordinates, as done in Section 16.2.
[Although previously the projectile trajectory plane was assumed to contain the
radar, we will no longer make this assumption. We will implicitly assume that
the radar is located outside the plane of the trajectory. It is left to the reader to
extend (16.3-29) and (16.3-30) to this case. This is rather straightforward, and
we shall refer to these equations in the following discussions as if this
generalization has been made. This extension is given elsewhere [5, pp. 106–
110].]

By numerically integrating the differential equation given by (16.3-29)
starting with �Xðt � �Þ at time t � � we can determine �XðtÞ. As before we
now find it convenient to also refer to �XðtÞ ¼ �Xn as X�

n;k, it being the estimate
of the predicted state vector at time t (or n) based on the measurement at
time � < t (or k < n). We can compute the transition matrix �n;k by numerical
integration of the differential equation given by (16.3-14) with A given by
(16.3-30). In turn �n;k can be used to determine the covariance matrix of �XðtÞ

367

Tracking and Kalman Filtering Made Easy. Eli Brookner
Copyright # 1998 John Wiley & Sons, Inc.

ISBNs: 0-471-18407-1 (Hardback); 0-471-22419-7 (Electronic)



using [5, p. 431]

S�n;k ¼ �ðt n; t k; �XÞS�k;k�ðtn; t k; �XÞT ð17:1-1Þ

assuming we know Sk;k. Assume that at time t (or n) we get the measurement
Yn. Thus at time n we have Yn and the estimate X�

n;k, based on the past data,
with their corresponding covariance matrices R1 and S�n;k, respectively. What is
desired is to combine these to obtain the updated estimate X�

n;n. We would like
to use the Bayes filter to do this. We can do this by using the linearized
nonlinear observation equations. This is done by replacing the nonlinear
observation equation (16.2-1) by its linearized version of (16.2-9). The linear-
ized observation matrix MðX�

n;nÞ [which replaces the nonlinear G of (16.2-1)] is
then used for M in (9.2-1) of the Bayes filter. Also Yn and X�

n;k are replaced by
their differentials in (9.2-1). They are designated as, respectively, �Yn and �X�

n;k.
These differentials are determined shortly.

One might think at first that the Bayes filter can be applied without the use
of the linearization of the nonlinear observation equations. This is because in
(9.2-1) for X

� �
n;n, we can replace ðYn � MX�

n;kÞ by Yn � Gð�XnÞ without using the
linearization of the observations. However, as we see shortly, the calculation of
Hn requires the use of Mð�XnÞ; see (17.1-5a) and (17.1-5b). Also Mð�XÞ is needed
to calculate S�n1;n for use in the next update calculation, as done using (17.1-5b).
Physically we need to calculate Mð�XnÞ to find the minimum variance estimate
X�

n;n as the weighted sum of Yn and X�
n;k because to do this we need both of the

variates to be combined in the same coordinate system and we need their
variances in this same coordinate system. Calculating Mð�XnÞ allows us to do the
latter by using (16.2-9). The Bayes filter of (17.1-5) implicitly chooses the
coordinates of X�

n;s for the common coordinate system.
The differentials are now determined. Using (16.2-6) with G given by

(1.5-3), we can calculate �Yn in terms of �X obtained as described above. Using in
turn (16.2-7), we calculate �Yn to be given by

�Yn ¼ Yn � �Yn ð17:1-2Þ

where

�Yn ¼ GðX�
n;kÞ ð17:1-2aÞ

from (16.2-6).
For convenience the differential �X�

n;k is referenced relative to X�
n;k. If we

knew Xn, the differential �X�
n;k could be given by

�X�
n;k ¼ X�

n;k � Xn ð17:1-3Þ

But we do not know Xn, it being what we are trying to estimate. As a result, we
do the next best thing. The differential is referenced relative to our best estimate
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of X based on the past data, which is X�
n;k. As a result

�X�
n;k ¼ X�

n;k � X�
n;k

¼ 0
ð17:1-4Þ

This may seem strange, but it is due to our choice of reference for �X�
n;k. This

will become clearer as we proceed.
We are now in a position to apply the Bayes filter. In place of Ynþ1 and

X
� �

nþ1;n in (9.2-1) to (9.2-1d) we use respectively, �Yn and �X�
n;k [= 0, because of

(17.1-4)]. Moreover, the Bayes filter of (9.2-1) to (9.2-1d) now becomes, for
finding our updated differential estimate �X�

n;n [5, pp. 431–432],

�X�
n;n ¼ �X�

n;k þ H
�

n½�Yn � MðX�
n;kÞ�X�

n;k	 ð17:1-5Þ

where �X�
n;k ¼ 0 in the above and

H
�

n ¼ S
� �

n;n½MðX�
n;kÞ	

T
R�1

1 ð17:1-5aÞ

S
� �

n;n ¼ fðS�
�
n;kÞ

�1 þ ½MðX�
n;kÞ	

T
R�1

1 MðX�
n;kÞg

�1 ð17:1-5bÞ

But

�X�
n;n ¼ X�

n;n � X�
n;k ð17:1-6Þ

all the diferential vectors being referred to X�n;k: The updated estimate X�n;n is
thus obtained from (17.1-6) to be

X�
n;n ¼ X�

n;k þ �X�
n;n ð17:1-7Þ

This is our desired updated estimate.
In obtaining the above update X�

n;n, we have used a linearization of the
nonlinear observation equations. The new updated estimate will have a bias, but
it should be less than the bias in the original estimate �Xn. In fact, having the
updated estimate X�

n;n, it is now possible to iterate the whole process we just
went through a second time to obtain a still better estimate for X�

n;n. Let us
designate the above updated estimate X�

n;n obtained on the first cycle as ðX�
n;nÞ1

and correspondingly designate �X�
n;n as ð�X�

n;nÞ1. Now ðX�
n;nÞ1 can be used in

place of X�
n;k to obtain a new �Yn and �X�

n;k, which we shall call ð�YnÞ2 and
ð�X�

n;kÞ2, given by

ð�YnÞ2 ¼ Yn � ð�YnÞ2 ð17:1-8Þ
where

ð�YnÞ2 ¼ G½ðX�
n;nÞ1	 ð17:1-8aÞ

and

ð�X�
n;kÞ2 ¼ X�

n;k � ðX�
n;nÞ1 ð17:1-8bÞ
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Note that ð�Xn;kÞ2 is now not equal to zero. This is because ðX�
n;nÞ1 is no longer

X�
n;k. The covariance of ð�Xn;kÞ2

2 still is S�n;k and that of ð�YnÞ2 still is R1.
Applying the Bayes filter, again using the new differential measurement and
prediction estimate vector, yields ð�X�

n;nÞ2 and in turn ðX�
n;nÞ2 from

ðX�
n;nÞ2 ¼ ðX�

n;nÞ1 þ ð�X�
n;nÞ2 ð17:1-9Þ

This procedure could be repeated with still better and better estimates
obtained for X�

n;n. The procedure would be terminated when [5, p. 433]

½ðX�
n;nÞ rþ1 � Xð�n;nÞ r	

T ½ðX�
n;nÞ rþ1 � Xð�n;nÞ r	 < " ð17:1-10Þ

Generally, the first cycle estimate ðX�
n;nÞ1 is sufficiently accurate. The above use

of the Bayes algorithm with no iteration is basically the filter developed by
Swerling [123] before Kalman; see the Appendix.

Once the final update X�
n;n has been obtained, the whole process would be

repeated when a new observation Ynþm is obtained at a later time n þ m. The
subscript n þ m is used here instead of n þ 1 to emphasize that the time instant
between measurements need not necessarily be equal. Then X�

nþm;n would be
obtained by integrating forward the nonlinear equation of motion given by
(16.3-1). This X�

nþm;n would be used to obtain �X�
nþm;n, �Ynþm, and MðX�

nþm;nÞ
using (17.1-2), (17.1-2a), (17.1-4), and (16.2-10). Integrating (16.3-14),
�ðtnþm; tn; �XÞ would be obtained, from which in turn S�nþm;n would be obtained
using (17.1-1). Using the Bayes filter, specifically (17.1-5) to (17.1-5b),
�X�

nþm;nþm would then be obtained and, in turn, the desired next update state
vector X�

nþm;nþm.

17.2 EXTENSION TO MULTIPLE MEASUREMENT CASE

We will now extend the results of Section 17.2 to the case where a number of
measurements, let us say L þ 1 measurements, are simultaneously used to
update the target trajectory estimate as done in Section 9.5 for the Bayes
and Kalman filters when the observation scheme and target dynamics model
are linear. For concreteness we will still use the example consisting of a
projectile passing through the atmosphere. Assume measurements are made
at the L þ 1 time instances tn�L, t n�Lþ1; . . . ; tn�1, and t n, where these times
are not necessarily equally spaced. Let these L þ 1 measurement be given
by

Yn�L;Yn�Lþ1; . . . ; Yn�1;Yn ð17:2-1Þ

where Yn�i is a measurement vector of the projectile position in polar
coordinates; see (16.2-4). [This is in contrast to (5.2-1) where the measurement
yn�i was not a vector but just the measurement of one target parameter, e.g.,
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range.] Let us put the L þ 1 vector measurements in the form

Y ðnÞ ¼

Yn

----

Yn�1

----

..

.

----

Yn�L

0

BBBBBBBB@

1

CCCCCCCCA

ð17:2-2Þ

For the case of the projectile target being considered the observation scheme
and the target dynamics model are nonlinear. To use the measurement vector
(17.2-2) for updating the Bayes filter or Kalman filter, as done at the end of
Chapter 9 through the use of T, requires the linearization of the L þ 1
observations. Using the development given above for linearizing the nonlinear
observation and dynamic model, this becomes a simple procedure [5] and will
now be detailed.

As before, let X�
k;k be an estimate of the state vector of the projectile based on

measurements prior to the L þ 1 new measurements. Using the dynamic
equations given by (16.3-1) we can bring X�

k;k forward to the times of the L þ 1
new measurements to obtain X�

n;k;X
�
n�1;k; . . . ;X

�
n�L;k from which in turn we

obtain �Yn; �Yn�1; . . . ; �Yn�L through the use of (17.1-2a) and then in turn obtain
the differential measurement vector

�Y ðnÞ ¼

�Yn

-----

Yn�1

-----

..

.

-----

�Yn�L

0

BBBBBBBB@

1

CCCCCCCCA

ð17:2-3Þ

by the use of (17.1-2).
Having the above �Y ðnÞ we wish to obtain an update to the predicted X’s

given by X�
n;k;X

�
n�1;k; . . . ;X

�
n�L;k. However, rather than update all L þ 1 X ’s, it is

better to update a representative X along the trajectory. This representative X
would be updated using all the L þ 1 measurements contained in Y ðnÞ or
equivalently �Y ðnÞ. First, using (16.2-9), we obtain

�Y ðnÞ ¼

Mð�XnÞ �Xn

----------

Mð�Xn�1Þ �Xn�1

----------

..

.

----------

Mð�Xn�LÞ �Xn�L

2

666666664

3

777777775

þ

Nn

----

Nn�1

----

..

.

----

Nn�L

2

666666664

3

777777775

ð17:2-4Þ
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where M is defined by (16.2-10) and where, for simplicity of notation, �Xn�i is
used in place of X�

n�i;k, which is X�
k;k brought forward to time n � i. It is the

�Xn, �Xn�1, . . . , �Xn�L that we want to update based on the differential
measurement matrix �Y ðnÞ. Instead, as mentioned above, we will now
reference all the differential state vectors �Xn�i at time t n�i; i ¼ 0; . . . ;L,
to some reference time t c;n ¼ t cn. It is generally best to choose the time
t cn to be at or near the center observation of the L þ 1 observations. The
transition matrix from the time tcn to the time tn�i of any measurement can
be obtained by integrating (16.3-14). Using these transition matrices, (17.2-4)
becomes

�Y ðnÞ ¼

Mð�XnÞ�ðtn; t cn; �XcnÞ�Xcn

-----------------

Mð�Xn�1Þ�ðtn�1; t cn; �XcnÞ�Xcn

-----------------

..

.

-----------------

Mð�Xn�LÞ�ðtn�L; t cn; �XcnÞ�Xcn

2

666666664

3

777777775

þ

Nn

----

Nn�1

----

..

.

----

Nn�L

2

666666664

3

777777775

ð17:2-5Þ

where �Xcn, also designated as X�
cn;k, is the value of X�

k;k brought forward to time
t cn.

Equation (17.2-5) can now be written as

�Y ðnÞ ¼ Tc;n �Xcn þ N ðnÞ ð17:2-6Þ

where

Tc;n ¼

Mn�ðtn; t cn; �XcnÞ
-------------

Mn�1�ðtn�1; t cn; �XcnÞ
-------------

..

.

-------------

Mn�L�ðtn�L; t cn; �XcnÞ

2

666666664

3

777777775

ð17:2-6aÞ

and

N ðnÞ ¼

Nn

----

Nn�1

----

..

.

----

Nn�L

2

666666664

3

777777775

ð17:2-6bÞ
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and

Mn�i ¼ Mð�Xn�iÞ ð17:2-6cÞ

Referencing �X relative to �Xcn ¼ X�
cn;k yields

�X�
cn;k ¼ X�

cn;k � X�
cn;k

¼ 0
ð17:2-7Þ

The above parallels (17.1-4)
We can now apply the Bayes Filter of (17.1-5) to (17.1-5b) or Kalman filter

of (9.3-1) to (9.3-1d) to update the projectile trajectory based on the L þ 1
measurements. This is done for the Bayes filter of (17.1-5) to (17.1-5b) by
replacing M by Tcn and R1 by R ðnÞ, which is the covariance matrix of �Y ðnÞ;
specifically, (17.1-5) to (17.1-5b) become

�X�
cn;cn ¼ �X�

cn;k þ H
�

cnð�Y ðnÞ � Tcn�X
�
cn;kÞ ð17:2-8Þ

where

H
�

cn ¼ S
� �

cn;cnT T
cnR�1

ðnÞ ð17:2-8aÞ

S
� �

cn;cn ¼ ½ðS� �cn;kÞ
�1 þ T T

cnR�1
ðnÞTcn	�1 ð17:2-8bÞ

and from (17.1-1)

S
� �

cn;k ¼ �ðt cn; t k; �XcnÞ S
� �

k;k�ðt cn; t k; �XcnÞT ð17:2-8cÞ

Having �X�
cn;cn; one can obtain the desired update

X�
cn;cn ¼ �Xcn þ �X�

cn;cn ð17:2-9Þ

Having this new first estimate X�
cn;cn for X at time t cn, which we now

designate as ðX�
cn;cnÞ1, we could obtain an improved estimate designated as

ðX�
cn;cnÞ2. This is done by iterating the whole process described above with �X

now referenced relative to ðX�
cn;cnÞ1, as done in (17.1-8b) when Y ðnÞ consisted of

one measurement.
If, in applying the above recursive Bayes filter, it was assumed that the

variance of the estimate based on the past data was infinite or at least extremely
large, then the recursive relation would actually degenerate into a nonrecursive
minimum variance estimate based on the most recent L þ 1 measurements as
given by

X�
cn;cn ¼ �Xcn þ ðT T

cnR�1
ðnÞTcnÞ�1

T T
cnR�1

ðnÞ½Y ðnÞ � Gð�XcnÞ	 ð17:2-10Þ
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The above equation follows from (4.1-30) with W given by (4.5-4) for the
minimum variance estimate.

17.3 HISTORICAL BACKGROUND

The iterative differential correction procedure described in this chapter was first
introduced by Gauss in 1795 [5]. There is an interesting story [5, 122, 124]
relating to Gauss’s development of his least-squares estimate and the iterative
differential correction. At that time the astronomers of the world had been
looking for a missing planet for about 30 years. There was Mercury, Venus,
Earth, Mars, and then the missing planet or planetoid. It has been theorized that
because the planet had fragmented into planetoids (asteroids) it was so difficult
to locate. It was finally on January 1, 1801, that an Italian astronomer, Giuseppe
Piazzi, spotted for the first time one of these planetoids. There was great
rejoicing among the world’s astronomers. However, the astronomers soon
became concerned because the planetoid was out of view after 41 days, and
they feared it would possibly not be found for another 30 years. At this time
Gauss, who was then 23 years old, gathered the data that Piazzi had obtained on
the planetoid Ceres. Over a period of a few months he applied his weighted
least-squares estimate and the iterative differential correction techniques to
determine the orbit of Ceres. In December of 1801, he sent his results to Piazzi
who was then able to sight it again on the last day of 1801.
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18
KALMAN FILTER REVISITED

18.1 INTRODUCTION

In Section 2.6 we developed the Kalman filter as the minimization of a
quadratic error function. In Chapter 9 we developed the Kalman filter from the
minimum variance estimate for the case where there is no driving noise present
in the target dynamics model. In this chapter we develop the Kalman filter for
more general case [5, pp. 603–618]. The concept of the Kalman filter as a
fading-memory filter shall be presented. Also its use for eliminating bias error
buildup will be presented. Finally, the use of the Kalman filter driving noise to
prevent instabilities in the filter is discussed.

18.2 KALMAN FILTER TARGET DYNAMIC MODEL

The target model considered by Kalman [19, 20] is given by [5, p. 604]

d

dt
XðtÞ ¼ AðtÞXðtÞ þ DðtÞUðtÞ ð18:2-1Þ

where AðtÞ is as defined for the time-varying target dynamic model given in
(15.2-1), DðtÞ is a time-varying matrix and UðtÞ is a vector consisting of
random variables to be defined shortly. The term UðtÞ is known as the process-
noise or forcing function. Its inclusion has beneficial properties to be indicated
later. The matrix DðtÞ need not be square and as a result UðtÞ need not have the
same dimension as XðtÞ. The solution to the above linear differential equation is
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[5, p. 605]

XðtÞ ¼ �ðt; tn�1ÞXðtn�1Þ þ
ð t

t n�1

�ðt; �ÞDð�ÞUð�Þd� ð18:2-2Þ

where � is the transition matrix obtained from the homogeneous part of
(18.2-1), that is, the differential equation without the driving-noise term
DðtÞUðtÞ, which is the random part of the target dynamic model. Consequently,
� satisfies (15.3-1).

The time-discrete form of (18.2-1) is given by [5, p. 606]

XðtnÞ ¼ �ðtn; t n�1ÞXðtn�1Þ þ Vðt n; tn�1Þ ð18:2-3Þ

where

Vðt; tn�1Þ ¼
ð t

t n�1

�ðt; �ÞDð�ÞUð�Þd� ð18:2-4Þ

The model process noise UðtÞ is white noise, that is,

E½UðtÞ� ¼ 0 ð18:2-5Þ

and

E½UðtÞUðt 0ÞT � ¼ KðtÞ�ðt � t 0Þ ð18:2-6Þ

where KðtÞ is a nonnegative definite matrix dependent on time and �ðtÞ is the
Dirac delta function given by

�ðt � t 0Þ ¼ 0 t 0 6¼ t ð18:2-7Þ

with

ð b

a

�ðt � t 0Þ dt ¼ 1 a < t 0 < b ð18:2-8Þ

18.3 KALMAN’S ORIGINAL RESULTS

By way of history as mentioned previously, the least-square and minimum-
variance estimates developed in Sections 4.1 and 4.5 have their origins in the
work done by Gauss in 1795. The least mean-square error estimate, which
obtains the minimum of the ensemble expected value of the squared difference
between the true and estimated values, was independently developed by
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Kolmogorov [125] and Wiener [126] in 1941 and 1942, respectively. Next, the
Kalman filter [19, 20] was developed, it providing an estimate of a random
variable that satisfies a linear differential equation driven by white noise [see
(18.2-1)]. In this section the Kalman filter as developed in [19] is summarized
together with other results obtained in that study. The least mean-square error
criteria was used by Kalman and when the driving noise is not present the
results are consistent with those obtained using the least-squares error estimate,
and minimum-variance estimate given previously.

Kalman [19] defines the optimal estimate as that which (if it exists)
minimizes the expected value of a loss function Lð"Þ, that is, it minimizes
E½Lð"Þ�, which is the expected loss, where

" ¼ x
n;n � xn ð18:3-1Þ

where x
n;n is an estimate of xn, the parameter to be estimated based on the n þ 1
observations given by

Y ðnÞ ¼ ðy0; y1; y2; . . . ; ynÞT ð18:3-2Þ

It is assumed that the above random variables have a joint probability density
function given by pðxn;Y ðnÞÞ. A scalar function Lð"Þ is a loss function if it
satisfies

ðiÞ Lð0Þ ¼ 0 ð18:3-3aÞ
ðiiÞ Lð" 0Þ > Lð" 00Þ > 0 if " 0 > " 00 > 0 ð18:3-3bÞ
ðiiiÞ Lð"Þ ¼ Lð�"Þ ð18:3-3cÞ

Example loss functions are Lð"Þ ¼ "2 and Lð"Þ ¼ j"j. Kalman [19] gives the
following very powerful optimal estimate theorem

Theorem 1 [5, pp. 610–611] The optimal estimate x
n;n of xn based on the
observation Y ðnÞ is given by

x
n;n ¼ E½xnjY ðnÞ� ð18:3-4Þ

If the conditional density function for xn given Y ðnÞ represented by pðxnjY ðnÞÞ is
(a) unimodel and (b) symmetric about its conditional expectation E½xnjY ðnÞ�.

The above theorem gives the amazing result that the optimum estimate
(18.3-4) is independent of the loss function as long as (18.3-3a) to (18.3-3c)
applies, it only depending on pðxnjY ðnÞÞ. An example of a conditional density
function that satisfies conditions (a) and (b) is the Gaussian distribution.
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In general, the conditional expectation E ½ xnjY ðnÞ� is nonlinear and difficult
to compute. If the loss function is assumed to be the quadratic loss function
Lð"Þ ¼ "2, then conditions (a) and (b) above can be relaxed, it now only being
necessary for the conditional density function to have a finite second moment in
order for (18.3-4) to be optimal.

Before proceeding to Kalman’s second powerful theorem, the concept of
orthogonal projection for random variables must be introduced. Let � i and � j

be two random variables. In vector terms these two random variables are
independent of each other if � i is not just a constant multiple of � j.
Furthermore, if [5, p. 611]

� ¼ � i� i þ � j� j ð18:3-5Þ

is a linear combination of � i and � j, then � is said to lie in the two-dimensional
space defined by � i and � j. A basis for this space can be formed using the
Gram–Schmidt orthogonalization procedure. Specifically, let [5, p. 611]

ei ¼ � i ð18:3-6Þ

and

ej ¼ � j �
Ef� i� jg
Ef�2

i g
� i ð18:3-7Þ

It is seen that

Efeie jg ¼ 0 i 6¼ j ð18:3-8Þ

The above equation represents the orthogonality condition. (The idea of
orthogonal projection for random variables follows by virtue of the one-for-one
analogy with the theory of linear vector space. Note that whereas in linear
algebra an inner product is used, here the expected value of the product of the
random variables is used.) If we normalize ei and ej by dividing by their
respective standard deviations, then we have ‘‘unit length’’ random variables
and form an orthonormal basis for the space defined by � i and � j. Let ei and ej

now designate these orthonormal variables. Then

Efeie jg ¼ � ij ð18:3-9Þ

where � ij is the Kronecker � function, which equals 1 when i ¼ j and equals 0
otherwise.

Let 	 be any random variable that is not necessarily a linear combination of
� i and � j. Then the orthogonal projection of 	 onto the � i; � j space is defined
by [5, p. 612]

�	 ¼ eiEf	eig þ ejEf	ejg ð18:3-10Þ
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Define

~	 ¼ 	 � �	 ð18:3-11Þ

Then it is easy to see that [5, p. 612]

Ef ~	eig ¼ 0 ¼ Ef ~	ejg ð18:3-12Þ

which indicates that �	 is orthogonal to the space � i; � j. Thus 	 has been broken
up into two parts, the �	 part in the space � i, � j, called the orthogonal projection
of 	 onto the � i, � j space, and the ~	 part orthogonal to this space. The
above concept of orthogonality for random variables can be generalized to an
n-dimensional space. (A less confusing labeling than ‘‘orthogonal projection’’
would probably be just ‘‘projection.’’)

We are now ready to give Kalman’s important Theorem 2.

Theorem 2 [5, pp. 612–613] The optimum estimate x
n;n of xn based on the
measurements Y ðnÞ is equal to the orthogonal projection of xn onto the space
defined by Y ðnÞ if

1. The random variables xn; y0; y1; . . . ; yn all have zero mean and either
2. (a) xn and Y ðnÞ are just Gaussian or (b) the estimate is restricted to being a

linear function of the measurement Y ðnÞ and Lð"Þ ¼ "2.

The above optimum estimate is linear for the Gaussian case. This is because
the projection of xn onto Y ðnÞ is a linear combination of the element of Y ðnÞ. But
in the class of linear estimates the orthogonal projection always minimizes the
expected quadratic loss given by E ½ "2 �. Note that the more general estimate
given by Kalman’s Theorem 1 will not be linear.

Up till now the observations yi and the variable xn to be estimated were
assumed to be scaler. Kalman actually gives his results for the case where they
are vectors, and hence Kalman’s Theorem 1 and Theorem 2 apply when these
variables are vectors. We shall now apply Kalman’s Theorem 2 to obtain the
form of the Kalman filter given by him.

Let the target dynamics model be given by (18.2-1) and let the observation
scheme be given by [5, p. 613]

YðtÞ ¼ MðtÞXðtÞ ð18:3-13Þ

Note that Kalman, in giving (18.3-13), does not include any measurement noise
term NðtÞ. Because of this, the Kalman filter form he gives is different from that
given previously in this book (see Section 2.4). We shall later show that his
form can be transformed to be identical to the forms given earlier in this book.
The measurement YðtÞ given in (18.3-13) is assumed to be a vector. Let us
assume that observations are made at times i ¼ 0; 1; . . . ; n and can be
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represented by measurement vector given by

Y ðnÞ �

Y ðnÞ
---

Yn�1

---

..

.

---

Y0

2

666666664

3

777777775

ð18:3-14Þ

What is desired is the estimate X

nþ1;n of Xnþ1, which minimizes E½Lð"Þ�.

Applying Kalman’s Theorem 2, we find that the optimum estimate is given by
the projection of Xnþ1 onto Y ðnÞ of (18.3-14). In reference 19 Kalman shows
that this solution is given by the recursive relationships [5, p. 614]

�

n ¼ �ðn þ 1; nÞP


n M T
n ðMnP


n M T
n Þ

�1 ð18:3-15aÞ
�
ðn þ 1; nÞ ¼ �ðn þ 1; nÞ ��


n Mn ð18:3-15bÞ
X


nþ1;n ¼ �
ðn þ 1; nÞX

n;n�1 þ�


n Yn ð18:3-15cÞ
P


nþ1 ¼ �
ðn þ 1; nÞP

n �


ðn þ 1; nÞT þ Qnþ1;n ð18:3-15dÞ

The above form of the Kalman filter has essentially the notation used by
Kalman in reference 19; see also reference 5. Physically, �ðn þ 1; nÞ is the
transition matrix of the unforced system as specified by (18.2-3). Defined
earlier, Mn is the observation matrix, Qnþ1;n is the covariance matrix of the
vector Vðt nþ1; tnÞ, and the matrix P


nþ1 is the covariance matrix of the estimate
X


nþ1:n.
We will now put the Kalman filter given by (18.3-15a) to (18.3-15d) in the

form of (2.4-4a) to (2.4-4j) or basically (9.3-1) to (9.3-1d). The discrete version
of the target dynamics model of (18.2-3) can be written as [5, p. 614]

Xnþ1 ¼ �ðn þ 1; nÞXn þ Vnþ1;n ð18:3-16Þ

The observation equation with the measurement noise included can be written
as

Yn ¼ MnXn þ Nn ð18:3-17Þ

instead of (18.3-13), which does not include the measurement noise. Define an
augmented state vector [5, p. 614]

X 0
n ¼

Xn

----

Nn

2

4

3

5 ð18:3-18Þ

380 KALMAN FILTER REVISITED



and augmented driving noise vector [5, p. 615]

V 0
nþ1;n ¼

Vnþ1;n

-------

Nnþ1

2

4

3

5 ð18:3-19Þ

Define also the augmented transition matrix [5, p. 615]

� 0ðn þ 1; nÞ ¼
�ðn þ 1; nÞ j 0

-------------- j
0 j 0

2

4

3

5 ð18:3-20Þ

and the augmented observation matrix

M 0
n ¼ ðMn j IÞ ð18:3-21Þ

It then follows that (18.3-16) can be written as [5, p. 615]

X 0
nþ1 ¼ � 0ðn þ 1; nÞX 0

n þ V 0
nþ1;n ð18:3-22Þ

and (18.3-17) as [5, p. 615]

Yn ¼ M 0
nX 0

n ð18:3-23Þ

which have the same identical forms as (18.2-3) and (18.3-13), respectively, and
to which Kalman’s Theorem 2 was applied to obtain (18.3-15). Replacing the
unprimed parameters of (8.3-15) with their above-primed parameters yields [5,
p. 616]

X

n;n ¼ X


n;n�1 þ HnðYn � MnX

n;n�1Þ ð18:3-24aÞ

Hn ¼ S
n;n�1M T
n ðRn þ MnS
n;n�1M T

n Þ
�1 ð18:3-24bÞ

S
n;n ¼ ðI � HnMnÞS
n;n�1 ð18:3-24cÞ
S
n;n�1 ¼ �ðn; n � 1ÞS
n�1;n�1�ðn; n � 1ÞT þ Qn;n�1 ð18:3-24dÞ
X


n;n�1 ¼ �ðn; n � 1ÞX

n�1;n�1 ð18:3-24eÞ

where Qnþ1;n is the covariance matrix of Vnþ1;n and Rnþ1 is the covariance
matrix of Nnþ1. The above form of the Kalman filter given by (18.3-24a) to
(18.3-24e) is essentially exactly that given by (2.4-4a) to (2.4-4j) and (9.3-1) to
(9.3-1d) when the latter two are extended to the case of a time-varying
dynamics model.

Comparing (9.3-1) to (9.3-1d) developed using the minimum-variance
estimate with (18.3-24a) to (18.3-24e) developed using the Kalman filter
projection theorem for minimizing the loss function, we see that they differ by
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the presence of the Q term, the variance of the driving noise vector. It is
gratifying to see that the two radically different aproaches led to essentially the
same algorithms. Moreover, when the driving noise vector V goes to 0, then
(18.3-24a) to (18.3-24e) is essentially the same as given by (9.3-1) to (9.3-1d),
the Q term in (18.3-24d) dropping out. With V present Xn is no longer
determined by Xn�1 completely. The larger the variance of V, the lower the
dependence of Xn on Xn�1 and as a result the less the Kalman filter estimate
X


n;n should and will depend on the past measurements. Put in another way the
larger V is the smaller the Kalman filter memory. The Kalman filter in effect
thus has a fading memory built into it. Viewed from another point of view, the
larger Q is in (18.3-24d) the larger S
n;n�1 becomes. The larger S
n;n�1 is the less
weight is given to X


n;n�1 in forming X

n;n, which means that the filter memory is

fading faster.
The matrix Q is often introduced for purely practical reasons even if the

presence of a process noise term in the target dynamics model cannot be
justified. It can be used to counter the buildup of a bias error. The shorter the
filter memory the lower the bias error will be. The filter fading rate can be
controlled adaptively to prevent bias error buildup or to respond to a target
maneuver. This is done by observing the filter residual given by either

rn ¼ ðYn � MnX

n;nÞ

TðYn � MnX

n;nÞ ð18:3-25Þ

or

rn ¼ ðYn � MnX

n;nÞ

TðS
n;nÞ
�1ðYn � MnX


n;nÞ ð18:3-26Þ

The quantity

sn ¼ Yn � MnX

n;n ð18:3-27Þ

in the above two equations is often called the innovation process or just
innovation in the literature [7, 127]. The innovation process is white noise when
the optimum filter is being used.

Another benefit of the presence of Q in (18.3-24d) is that it prevents S
 from
staying singular once it becomes singular for any reason at any given time. A
matrix is singular when its determinent is equal to zero. The matrix S
 can
become singular when the observations being made at one instant of time are
perfect [5]. If this occurs, then the elements of H in (18.3-24a) becomes 0, and
H becomes singular. When this occurs, the Kalman filter without process noise
stops functioning — it no longer accepts new data, all new data being given a 0
weight by H ¼ 0. This is prevented when Q is present because if, for example,
S
n�1;n�1 is singular at time n � 1, the presence of Qn;n�1 in (18.3-24d) will
make S
n;n�1 nonsingular.
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A P P E N D I X

COMPARISON OF SWERLING’S AND
KALMAN’S FORMULATIONS OF
SWERLING–KALMAN FILTERS

PETER SWERLING

A.1 INTRODUCTION

In the late 1950s and early 1960s Swerling and Kalman independently
developed what amounts to the same technique of recursive statistically
optimum estimation [1–3]. It is of some interest to compare their formulations
with respect to features that have some reasonably substantial relevance to
actual applications of the last 35 years, particularly applications to tracking
(include orbit prediction — as used henceforth, ‘‘tracking’’ includes but is not
limited to orbit prediction).

Swerling was motivated by applications to estimating the orbits of earth
satellites or other space vehicles. Though thus motivated, his actual formulation
is presented in terms of an abstract n-component system vector with abstract
dynamics, not specialized to orbit estimation. Kalman was motivated by the aim
of deriving new ways to solve linear filtering and prediction problems. Swerling
presented his results as recursive implementations of the Gauss method of least
squares (somewhat genrealized to allow nondiagonal quadratic forms, which is
necessary for statistical optimality); Kalman’s development was presented as a
recursive way to implement the solution of Wiener filtering and prediction.
Specific features of the respective presentations were influenced by these
motivations, but it is a simple matter to show either equivalence of the actual
results or the straightforward extension of either author’s results to the other’s,
as discussed below.

The defining essence of these statistically optimum recursive estimation
methods is as follows:

(a) At any given time, all observational data available up to that time are
employed to form a statistically optimum (minimum-variance) estimate
of state parameters.
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(b) However, at any given time one does not retain the whole record of all
previous observations; rather, all observations up to that time are
encapsulated in a current state vector estimate, that is, in a vector of n
scalar estimates, n being the number of components of the state vector,
together with the n � n error covariance matrix of the state vector
estimate.

(c) When new observational data become available, they are optimally
combined with the most recent state vector estimate based on previous
observations to form a new (‘‘updated’’) optimum estimate. The update
equation involves the error covariance matrix of the estimate based on
previous observations, which is also updated to a new error covariance
matrix based on all observations including the latest.

The following is not an introduction to the subject. It is assumed that the
reader is familiar with the basic concepts and nomenclature.

A.2 COMPARISON OF SWERLING’S AND KALMAN’S
FORMULATIONS

A.2.1 Linear and Nonlinear Cases

Linear cases are those in which the relations between error-free observations
and the state are linear and the state dynamics are described by linear equations.
Nonlinear cases are those in which these relations are nonlinear. A large
majority of applications, particularly to tracking, involve nonlinear relations.

In nonlinear cases, various matrices and vectors appearing in the update
equations depend on the state vector or, more precisely, on an estimate of the
state vector. In linear cases these dependences on the state vector disappear.

Swerling’s initial formulation [1] included both linear and nonlinear cases
(necessarily, since the motivation was orbit prediction). In fact, his initial
formulation is directly for nonlinear cases; the linear case would be a
specialization. Swerling actually gives two different formulations for nonlinear
cases, which become identical in linear cases.

Kalman’s initial formulation [2, 3] is for linear cases. However, it is a
simple matter to extend Kalman’s results to nonlinear cases. This has been
done by later investigators in a variety of ways with respect to specific
computational details. The resulting approaches have come to be known as the
extended Kalman filter. Thus, the extended Kalman filter is the original
Swerling filter.

A.2.2 System Noise

Kalman’s initial formulation is in terms of estimating parameters of a system,
which is considered to be a Markov random process.
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Swerling’s initial formulation considers the system to vary deterministically.
In the first part of [1] he considers the system parameters to be constant. Then
he extends the formulation to time-varying systems, the variation with time
being deterministically described. (He actually gives two ways of extending the
results to time-varying systems and two variations of the second way.)

It is a simple matter to extend Swerling’s results to include Markov system
statistics. The most straightforward way to do this is to use as a springboard his
second way of treating time-varying systems in the section of reference 1
entitled ‘‘Modified Stagewise Procedure for Time-Varying Elements.’’ Using
somewhat simpler notation than in [1], the system dynamics are described by

Xðt þ�tÞ ¼ F½XðtÞ; t; t þ�t� ðA:2-1Þ

Then, absent a new observation, the estimate of X is extrapolated via Eq.
(A.2-1) and its error covariance matrix is extrapolated in the manner dictated by
the first-order expansion of F.

In order to treat the case where XðtÞ is a Markov process, replace Eq. (A.2-1)
by

Xðt þ�tÞ ¼ F½XðtÞ; t; t þ�t� þ �Xðt; t þ�tÞ ðA:2-2Þ

where �X is a zero-mean uncorrelated increment. Then, in the absence of a new
observation,

(a) the estimate of X is extrapolated in the same way as before, that is, via
Eq. (A.2-1) with �X � 0.

(b) the error covariance matrix is extrapolated by adding the covariance
matrix of �X to the extrapolation which would be obtained for �X � 0.

The updating equations for incorporating new observational data are the same
in either case.

In a later work [4] Swerling showed how to apply optimum recursive
estimation to cases where both the system and the observation noise are random
processes with essentially arbitrary covariance properties, that is, either or both
can be non-Markov. This extension is by no means straightforward. The
resulting update equations take the form of partial difference or partial
differential equations.

A.2.3 Observation Noise

Swerling [1] considered observation noise to be correlated in blocks, with zero
correlation between blocks and arbitrary intrablock correlation.

Kalman [2] does not explicitly include observation noise, but it is a simple
matter to include Markov observation noise by augmenting the state vector to
include observation noise components as well as system components. The same
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trick could be used to extend Swerling’s formulation to include correlated
Markov observation noise, once it has been extended to include Markov system
noise as described in Section A.2.2. Kalman and Bucy in [3] explicitly assume
white (uncorrelated) observation noise.

A.2.4 Matrix Inversion

The matrix inversion issue arises in relation to Swerling’s formulation as
follows. The method of updating the system estimate when incorporating a new
observation depends on the error covariance matrix C, but the most ‘‘natural’’
way to update the error covariance matrix itself is to update its inverse C	1 and
then invert. This imposes the need to invert an n � n matrix each time new
observational data become available, n being the number of components of the
system. Thirty-odd years ago this imposed an uncomfortable computing load;
even with today’s computing power, there is still a motive to reduce the order of
matrices that need to be inverted.

Swerling [1, Eqs. (47) and (48)] stated a method of avoiding matrix inversion
altogether by introducing new (scalar) observations one at a time and also
assuming observation errors to be uncorrelated. Blackman in a 1964 review
work [5] describes a method due to R. H. Battin of avoiding matrix inversion by
introducing new observations one at a time [5, Section VI]; he also shows [5,
Section VII] how to generalize these methods to allow new observations to be
introduced k at a time with k < n, in which case matrices of order k � k need to
be inverted.

A close scrutiny of Kalman’s equations [2, Eqs. (28) to (32)] reveals that the
order of matrices that need to be inverted is (in our present notation) k � k
where new scalar observational data are introduced k at a time.

A.2.5 Imperfect Knowledge of System Dynamics

In many applications, including almost all tracking applications, the system
dynamics are imperfectly known. Another way of saying this is that the
function F in Eqs. (A.2-1) and (A.2-2) is not exactly known. Swerling [1] refers
to this as ‘‘unknown perturbations;’’ much other literature refers to ‘‘plant
model errors.’’

We will assume that such imperfect knowledge of F cannot validly be
modeled as uncorrelated increments having the same status as �X in Eq.
(A.2-2). This is the case in the vast majority of applications; in a sense it is true
by definition, since if imperfect knowledge of F could be so modeled, it would
be regarded as part of system noise.

An example arises in the tracking of maneuvering airborne targets when the
higher derivatives of target motion are not described by known functions of the
positions and velocities (in the six-component models) or of the positions,
velocities, and accelerations (in the nine-component models).
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In the presence of such plant model errors it is necessary to give the recursive
estimation algorithm a fading memory to avoid unacceptable growth in the
estimation errors. Swerling [1] suggests a method in which the elements of the
extrapolated error covariance matrix are multiplied by a set of multiplicative
factors. He does this in such a way that different components of the system state
vector can be associated with different rates of fading memory, a feature that
can be important in some applications. For example, suppose in orbit prediction
that the orbit is described by the six osculating Keplerian elements. Certain
orbital elements, for example, the inclination of the orbital plane, are much
more stable in the presence of perturbations than others.

Swerling’s multiplication method is ad hoc in that it does not purport to
achieve statistical optimality. Indeed in order to attempt to achieve statistical
optimality, it would be necessary to associate a statistical model with errors in
the knowledge of F and in practice this usually is very difficult to do.

Kalman [2, 3] does not explicitly address this kind of imperfect knowledge
of system dynamics. However, his algorithm contains a covariance matrix that
is added to the extrapolated error covariance matrix, stemming from the
presence of system noise (cf. the discussion in Section A.2.2). An additive
covariance matrix of this type can also be used as an ad hoc way of providing a
fading memory in the presence of plant model errors, even though the statistical
properties of the latter differ from those assumed by Kalman for system noise.
This is often the approach used to provide a fading memory (e.g., in the
tracking of maneuvering targets). In fact, in tracking applications, when an
additive deweighting matrix appears in the extrapolation of the error covariance
matrix, in the majority of cases it is there to deal with the imperfect knowledge
of system dynamics rather than with system noise of the type modeled by
Kalman.
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PROBLEMS

1.2.1-1 Show that (1.2-11a) and (1.2-11b) for g and h independent of n can be
put in the following standard feedback filter form [12]:

x�nþ1;n ¼ ðg þ hÞyn � gyn�1 þ ð2 � g � hÞx�n;n�1

þ ðg � 1Þx�n�1;n�2Þ
ðP1:2:1-1aÞ

In the recursion equation given by (P1.2.1-1a), x�nþ1;n is written in terms of the
last two measurements yn, yn�1 and the preceding two position predictions
x�n;n�1, x�n�1;n�2. Hint: Substitute (1.2-11a) for _xnþ1;n into (1.2-11b). Then use
prediction equation (1.2-11b) for x�n;n�1 to solve for _x�n;n�1.

#1.2.1-2 Find recursion a equation similar to (P1.2.1-1a) for x�n;n.

#1.2.1-3 Repeat problem 1.2.1-2 for _x�n;n.

388

Notes: (1) Many of the problems derive important results: g–h recursive filter equation
(problems 1.2.1-1 and 1.2.6-5), g–h filter bias error (1.2.4.3-1 and 1.2.6-4), g–h filter VRF for
x�nþ1;n (1.2.4.4-1 and 1.2.6-2), relationship between g and h for critically damped filter (1.2.6-1)
and for Benedict–Bordner filter (2.4-1), g–h filter transient error (1.2.6-3), stability conditions for
g–h filter (1.2.9-1), relationship between g, h, T, � 2

u; and � 2
x for steady-state Kalman filter (2.4-1),

minimum-variance estimate (4.5-1), Bayes filter (9.2-1), Kalman filter without dynamic noise
(9.3-1). These problems and their informative solutions form an integral part of the text. Other
problems give a further feel for filter design parameters; see for instance the examples of Table
P2.10-1 (in the solution section) and the problems associated with it.
(2) Problems marked with a dagger involve difficult algebraic manipulations.
(3) Problems marked with the pound symbol are those for which no solutions are provided.
(4) Equations and tables marked with double daggers are in the solution section. For example,
Problem (1.2.6-1a) yy is found in the solution to Problem 1.2.6-1.
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1.2.4.3-1 Using (P1.2.1-1a) derive the bias errors b� given by (1.2-15). Hint:
Apply constant-acceleration input

yn ¼ 1
2
�xðnTÞ2

n ¼ 0; 1; . . . ; n ðP1:2:4:3-1aÞ

to filter. The output at time in steady state n will be the desired output plus the
bias error b�:

x�nþ1;n ¼ 1
2
�xðn þ 1Þ2

T 2 þ b� ðP1:2:4:3-1bÞ

Similar expressions can be written for x�n;n�1 and x�n�1;n�2 that allow us to solve
(P1.2.1-1a) for b�.

#1.2.4.3-2 Using the results of problem 1.2.1-2 derive b�n;n given by
(1.2-16a).

#1.2.4.3-3 Using the results of problem 1.2.1-3 derive _b�n;n given by (1.2-16b).

y1.2.4.4-1 Using (P1.2.1-1a) derive the VRF equation for �2
nþ1;n given by

(1.2-19).

Hint: Square (P1.2.1-1a) and obtain its expected value making use of fact
that yn is independent of ym for m 6¼ n and that we are in steady-state condi-
tions so that the expected values are independent of n. Multiply (P1.2.1-1a) re-
written for x�n;n�1 by yn�1 to obtain E ½ x�n;n�1yn�1
 and by x�n�1;n�2 to obtain
E ½ x�n;n�1x�n�1;n�2
.

#1.2.4.4-2 Using the results of problem 1.2.1-2, derive the VRF equation for
�2

n;n given by (1.2-20).

y#1.2.4.4-3 Derive (1.2-21).

1.2.5-1 (a) For a normalized acceleration AN = 3.0, find the Benedict–
Bordner filter for which 3�nþ1;n ¼ b�. Use Figure 1.2-7. Verify that these
values for 3� and b�N obtained from Figure 1.2-7 agree with the values obtained
from (1.2-19) and (1.2-15).

(b) For AN = 3.0 find the Benedict–Bordner filter for which ETN of (1.2-31)
is minimum. Use Figure 1.2-9.

(c) Compare the normalized total errors ETN for these designs. How much
lower is this total error when the minimum ETN design is used? Compare the
values of b�=� x and 3�nþ1;n=� x obtained for these designs.

1.2.5-2 Repeat problems 1.2.5-1(a) through (c) for AN = 0.001.

#1.2.5-3 Repeat problems 1.2.5-1(a) through (c) for AN = 0.1.
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1.2.6-1 (a) Find the z-transform of (P1.2.1-1a) and in turn the transfer
function HpðzÞ ¼ X�

nþ1;nðzÞ=YnðzÞ, where X�
nþ1;nðzÞ and YnðzÞ are the z-

transforms of x�nþ1;n and yn. For simplicity we will drop the arguments of the z-

transform to give X�
nþ1;n and Yn for the z-transforms.

(b) Find the poles of the g–h filter transfer function Hp.

(c) Using the solution to (b), prove the relationship (1.2-36) between h and g
for the critically damped filter.

y1.2.6-2 Obtain the g–h filter VRF for �2
nþ1;n given by (1.2-19) using the

z-transform function HpðzÞ of problem 1.2.6-1.

y1.2.6-3 Derive the expression for the transient error of a g–h filter given by
(1.2-28).

Hint: Use z-transforms. Specifically apply the z-transform of the input ramp
function to the g–h filter prediction z-transform obtained from problem 1.2.6-1,
specifically given by (P1.2.6-1c). Subtract from this the ideal predicted out-
put to generate the transient error sequence "n, n ¼ 0; 1; 2; . . . ; n. Use

(P1.2.6-2d)yy to evaluate the transient error with HpðzÞ replaced by EðzÞ, the
z-transform of "n.

1.2.6-4 From the z-transform of the transient error "n for constant-
acceleration input given by (P1.2.4.3-1a) and the final-value theorem [130]

lim
n!1

"n ¼ lim
z!1

ð1 � z�1ÞEðzÞ ðP1:2:6-4aÞ

where EðzÞ is the z-transform of "n, derive b� given by (1.2-15).

y1.2.6-5 Obtain the g–h recursive feedback filter given by (P1.2.1-1a) using
the z-transform of (1.2-8a), (1.2-8b), (1.2-10a) and (1.2-10b) for g and h
constant.

Hint: Divide the z-transform of these equations by the z-transform of
yn;that is YnðzÞ, to obtain z-transforms of the filter transfer functions for x�nþ1;n,
x�n;n, _x�n;n, and _x�nþ1;n. We will have four equations with four unknowns that
can be used to solve for the four unknown transfer functions. Obtaining the
appropriate inverse transfer function of the resulting HpðzÞ gives (P1.2.1-1a);
see reference 131.

1.2.6-6 Repeat problem 1.2.5-1 for the critically damped filter using Figures
1.2-13 to 1.2-15.

1.2.6-7 Repeat problem 1.2.6-6 for AN = 0.001.
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1.2.6-8 Repeat problem 1.2.6-6 for AN = 0.003.

#1.2.6-9 Using the procedure outlined in problem 1.2.6-3, derive the transient
error given by (1.2-29)

#1.2.6-10 Using the procedure outlined in problem 1.2.6-4, derive b�n;n of
(1.2-16a).

#1.2.6-11 Using the procedure of problem 1.2.6-5, derive the g–h recursive
feedback filter for x�n;n.

#1.2.6-12 Repeat problem 1.2.6-6 for AN = 0.1.

y#1.2.6-13 Using the procedure of problem 1.2.6-3 derive (1.2-30).

#1.2.7-1 Verify the results of examples 2 and 2a of Table 1.2-6 for the g–h
Bendict–Bordner filter.

1.2.7-2 (a) Verify results of examples 1a, 1b, and 1c of Table 1.2-7 for the
critically dampled g–h filter.

(b) Repeat example 1c for �xmax ¼ 1g and �nþ1;n = 150 ft.
(c) Repeat (b) with � x ¼167 ft and �nþ1;n=�x = 3.

1.2.7-3 Assume an air route surveillance radar with pulse width ¼ 1 ms so that
the range resolution is 500 ft; range accuracy �x ¼ 500 ft; scan period

T ¼ 10 sec; gmax ¼ 0:2 g ¼ 6:4 ft/sec2. Require
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARðx�nþ1;nÞ

q
¼ 608 ft.

(a) Design a g–h Benedict-Bordner filter.
(b) Determine b�, Dx �

nþ1;n
=�v2.

#1.2.7-4 (Continuation of problem 1.2-7-3)
(a) Simulate the filter of problem 1.2.7-3 on the computer. See how well it

tracks the turn maneuver of Figure P1.2.7-4. At the start of the turn maneuver it
is assumed that the filter is in steady state with x�n;n�1 ¼ yn.

Assume that the range error is Gaussian with 500 ft rms error independent
from measurement to measurement; the range window for update is
 3½ð608Þ2 þ ð500Þ2
1=2 ¼ 2; 360 ft; and the range-to-radar distance is much
greater than 16.46 nmi. Does the filter maintain track during the maneuver? Plot
the tracking-filter error ðyn � x�n;n�1Þ versus n.

(b) Repeat for R ¼ 10 nmi and 1 nmi

#1.2.7-5 Repeat problems 1.2.7-3 and 1.2.7-4 for a fading-memory filter.

#1.2.7-6 Assume �x ¼ 150 ft and �xmax ¼ 2g. Find the Benedict g–h filter for
which 3� ¼ b�N ¼ 1. What is T and b�. Use Figure 1.2-7.
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#1.2.7-7 Repeat problem 1.2.7-6 for a critically damped g–h filter.

#1.2.7-8 Design a Benedict–Bordner g–h filter for � x ¼ 150 ft,

�xmax ¼ 2g ¼ 64 ft/sec2, and ð�nþ1;n=�xÞ ¼ 1. Use (1.2-22) to solve for b� and

then (1.2-15) to solve for T. Find �nþ1;n, �n;n, and _�nþ1;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARð _x�nþ1;nÞ

q

using (1.2-19) to (1.2-21) and check that these same values are obtained using

Figure 1.2-7.

1.2.9-1 Using the z-transform function HpðzÞ obtained in problem 1.2.6-1,
which is

HpðzÞ ¼
z½ðg þ hÞz � g


z2 þ ðg þ h � 2Þz þ ð1 � gÞ ðP:1:2:6-1cÞyy

derive the stability conditions given by (1.2-37a) to (1.2-37c). Hint: Use the
transform

u ¼ z � 1

z þ 1
ðP:1:2:9-1aÞ

which maps the interior of the unit circle of the z-plane into the left-hand plane
[132].

1.2.10-1 (Continuation of problem 1.2.7-3)
Specify the track initiation filter for problem 1.2.7-3 and its weights gn and hn.
Determine for which n a switch is to take place from a track initiation filter to
the Benedict–Bordner filter designed in problem 1.2.7-3.

P1.2.7-4 Trajectory of maneuvering target.
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#1.2.10-2 (Continuation of problems 1.2.7-3 and 1.2.10-1)
(a) Simulate the filters of problems 1.2.7-4 and 1.2.10-1 going from

detection at t ¼ 0 (n ¼ 0) to steady state operation at t ¼ 100ðn ¼ 10Þ sec
¼ 1000 sec. Assume the approaching constant-velocity target is detected at
t ¼ 0 ðn ¼ 0Þ; the range error is Gaussian with 500 ft rms error independent
from measurement to measurement; and the range window for update is
2; 360 ft.

(b) Find the probability of x�nþ1;n not falling in the range window in steady
state.

(c) Repeat (a) and (b) for a range window of ð2
3
Þ2; 360 ¼  1; 575 ft.

1.2.10-3 Specify the track initiation filter for problem 1.2.7-5.

1.2.10-4 Verify (1.2-41) using (1.2-19), (1.2-35a), and (1.2-35b).

#1.2.10-5 For a critically damped g–h filter for what � is VRFðx�nþ1;nÞ ¼ 3:0,
1.0, 0.1, 0.03.

1.3-1 Show that (1.3-10a) to (1.3-10c) satisfy (1.3-9).

#2.3-1 Derive (2.3-4) from (2.3-1).

2.4-1 Show that g and h are related by (2.1-4) for the steady-state two-state
Kalman filter having the dynamic model given by (2.4-10). Also show that �2

x ,
T, and �2

u are related to g and h by (2.1-5) for this case. Hint: Start with (2.4-4e),
(2.4-4f), and (2.4-4j). Substitute (2.4-4j) into (2.4-4f ). Expand these matrices
out, equating corresponding terms on each side of the equation. Assume steady-
state conditions, in which case the term of S�n;n�1 equal those of S�n�1;n�2, so that
the subscript n can be dropped. This is true also for Hn and Qn. Solving the
equations that result leads to (2.1-4) and (2.1-5).

2.4-2 Using the results of problem 2.4-1 and extending these results by using

(2.4-4j) to obtain S�n�1;n�1 from S�n;n�1, which we will for smplicity denote as

respectively �S and Ŝ in steady state, obtain expressions for the steady-state
components of the matrices �S and Ŝ for the g–h Kalman filter having the
dynamics model gives by (2.1-1a) and (2.1-1b) with VARðunÞ ¼ �2

u. Show that
ŝ12 ¼ ŝ21 and �s12 ¼ �s21.

#2.4-3 (a) Using (2.1-5) find steady-state g–h Kalman filter parameters g and
h for the case where the target dynamics model is given by (2.1-1a) and (2.1-1b)
with un independent of unþj for j 6¼ 0 with the variance of un equal to �2

u

independent of n for �x ¼ 150 ft, �u ¼ 90:9 ft/sec, and T ¼ 1:421 sec. (Note
that the T used here is that of the Benedict–Bordner filter of problem 1.2.7-8.
Also the �u used here was obtained from (2.1-6) using B ¼ 1 and T ¼ 1:421 sec
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and �xmax ¼ 2g ¼ 64 ft/sec2 of problem 1.2.7-8.) Using the results of problem
2.4-2, solve for �nþ1;n, �n;n, _�nþ1;n, and _�n;n. Using (2.4-4f), show how ŝ ij

depends on �s ij and T and from the relationship obtain �nþ1;n and _�nþ1;n from
�n;n and _�n;n and verify that the numerical values agree with those obtained
above. Plot �nþ";n and _�nþ";n versus time, where 0 � " � 1, for n ¼ 0; 1; 2; 3,
assuming track starts for n � 0.

(b) For the Benedict–Bordner filter having the same g, h, and T obtained for
(a) above, find �nþ1;n, �n;n, and _�nþ1;n for �2

u ¼ 0. Plot �nþ";n versus time,
0 � " � 1, n ¼ 0; 1; 2; 3. Compare these values with those obtained for the
steady-state g–h Kalman filter above. Explain why values for �nþ1;n, �n;n and
_�nþ1;n are smaller. Also find b� for �xmax ¼ 2g ¼ 64 ft=sec2, the value of
problem 1.2.7-8. Note that b� 6¼ 3�nþ1;n. What do we have to do to have the
equality hold.

#2.8-1 Following the procedure outlined in problem 2.4-1 derive (2.8-4) and
(2.8-5) for the Asquith–Friedland filter.

#2.9-1 Prove that (2.9-8) leads to (2.9-9) for small T=� .

2.10-1 Design the g–h–k filter using design curves of Figures 2.10-1 to
2.10-10. Assume � x ¼ 170 ft, �nþ1;n=�x ¼ 2, � ¼ 3 sec, �x ¼ 1 g. Find (a) T, g,
h, k, and �n;n; (b) _�nþ1;n, _�n;n, ��nþ1;n, ��n;n, and �m;n, _�m;n, ��m;n, where m is
time at the midpoint of the data interval; that is, find the midpoint smoothed
position, velocity, and acceleration.

2.10-2 Repeat problem 2.10-1(a) for � ¼ 20 sec, all other assumptions
remaining the same.

2.10-3 Repeat problem 2.10-1(a) for �a ¼ 5 g, �x ¼ 30 ft, and � ¼ 5 sec, all
other assumptions remaining the same.

2.10-4 Repeat problem 2.10-1(a) for � ¼ 20 sec, �nþ1;n=�x ¼ 3:33, and �x

and �x still 170 ft and 1g, respectively.

2.10-5 Design a Singer filter for � ¼ 20 sec, T ¼ 4 sec, �x ¼ 170 ft, and
�x ¼ 1 g. Find �nþ1 and �n.

2.10-6 For the example problem in Section 2.10 design a critically damped
g–h–k filter with b� ¼ 3�nþ1;n. To obtain the maximum jerk �x, use (2.5-13)
with C ¼ 1 and use � ¼ 3 sec in place of T and let �w ¼ �a in (2.4-13). Use
Figure 1.3-1. Compare g, h, k, � ¼ �nþ1;n=� x, and �n;n=�x values with those of
the example of Section 2.10.

2.10-7 Repeat problem 2.10-6 so as to obtain a critically damped g–h–k filter
that minimizes ETN . Use Figure 1.3-3.
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2.10-8 Repeat problem 2.10-6 for an optimum g–h–k filter. Use Figure 1.3-4.

2.10-9 Repeat problem 2.10-6 to obtain an optimum g–h–k filter that
minimizes ETN . Use Figure 1.3-6.

#2.10-10 Design a g–h–k filter using design curves of Figures 2.10-1 to
2.10-10. Assume � x ¼ 50 ft, �nþ1;n=�x ¼ 1, � ¼ 10 sec, and �x ¼ 1 g. Find (a) T,
g, h, k, and �n;n; (b) _�nþ1;n, _�n;n, ��nþ1;n, ��n;n and �m;n, _�m;n, ��m;n, where m is
time at the midpoint of the data interval; that is, find the midpoint smoothed
position, velocity, and acceleration.

#2.10-11 Design a Singer filter for � ¼ 2 sec, T ¼ 2 sec, � x ¼ 30 ft, and
�x ¼ 1 g. Find g, h, k, �nþ1, and �n:

#2.10-12 For problem 2.10-10 design a critically damped g–h–k filter with
b� ¼ 3�nþ1;n. To obtain the maximum jerk �x, use (2.4-13) with C ¼ 1 and use
� ¼ 10 sec in place of T and let �w ¼ �a. Use Figure 1.3-1. Compare g, h, k,
� ¼ �nþ1;n=�x, and �n;n=� x values with those of problem 2.10.10.

#2.10-13 Repeat problem 2.10-12 so as to obtain a critically damped g–h–k
filter that minimizes ETN . Use Figure 1.3-3.

#2.10-14 Repeat problem 2.10-12 for an optimum g–h–k. Use Figure 1.3-4.

#2.10-15 Repeat problem 2.10-12 to obtain an optimum g–h–k filter that
minimizes ETN : Use Figure 1.3-6.

#2.10-16 Repeat problem 2.10-11 for � ¼ 10 sec, everything else being the
same.

#2.10-17 The steady-state Singer g–h–k Kalman filter should degenerate to
the steady-state g–h Kalman filter having the target dynamics model given by
(2.1-1a) and (2.1-1b) with VARðunÞ ¼ �2

u when �=T ¼: 0:5. We will check this
in this problem by comparing a steady-state Singer filter design equivalent to
the steady-state g–h Kalman filte design of problem 2.4-3. For this purpose,
for the equivalent Singer filter design use T ¼ 1:421 sec, �x ¼ 150 ft, and
�a ¼ �xmax ¼ 64 ft/sec2, the value of �xmax used to obtain �2

u in problem 2.4-3.
Find g, h, k; �nþ1;n, �n;n, _�nþ1;n, and _�n;n for the equivalent Singer filter and
compare these values with those obtained for the steady-state g–h Kalman filter
of problem 2.4-3.

3.5.1.4-1 (a) Assume a radar carrier frequency f c ¼ 1232:5 MHz, a chirp
signal with a bandwidth Bs ¼ 1 MHz, and uncompressed pulse width
TU ¼ 2000msec (typical Cobra Dane radar track parameters). Calculate �r,
�t, and �R for a target Doppler velocity of 15,000 ft/sec.
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(b) Assume a radar carrier frequency of 1275 MHz, a chirp signal with a
bandwidth Bs ¼ 200 MHz, and uncompressed pulse width TU ¼ 1000msec
(typical Cobra Dane radar wide-band parameters). Calculate �r, �t, and �R
for a target Doppler velocity of 15, 000 ft=sec.

(c) Repeat (a) for a chirp waveform with TU ¼ 150msec and Bs ¼ 5 MHz,
f c ¼ 1232:5 MHz, and target Doppler velocity of 15, 000 ft=sec (possible Cobra
Dane track parameters).

(d) Repeat (c) with TU ¼ 1500 msec, everything else remaining same
(another possible set of Cobra Dane track parameters).

3.5.1.4-2 Redo the first and second examples at the end of Section 3.5.1.4 for
the calculation of �R of (3.5-14) when the acceleration ad is 10 g, all other
assumptions being the same.

#3.5.1.4-3 Assume a radar carrier frequency f c ¼ 10 GHz, a chirp signal with
a bandwidth Bs ¼ 1 MHz, and uncompressed pulse width TU ¼ 200msec.
Calculate �r, �t, and �R for a target Doppler velocity of 3000 ft/sec.

#3.5.1.4-4 For problem 3.5.1.4-3 calculate the change in �R due to a target
acceleration of 10 g.

3.5.2-1 (a) Use the same assumptions as for problem 2.10-5 except that an
upchirp waveform is used having Bs ¼ 1 MHz and TU ¼ 4 msec with the
carrier frequency f c ¼ 10 GHz ¼ 1010 Hz. Find �n;n. Compare to the �n;n

obtained in problem 2.10-5 with a nonchirped waveform.

(b) Repeat (a) for a downchirped waveform. Compare to results for
nonchirped and upchirped waveforms.

#3.5.2-2 (a) Use the same assumptions as for problem 2.10-16 except that an
upchirp waveform is used having Bs ¼ 5 MHz and TU ¼ 200msec with carrier
frequency f c ¼ 14 GHz. Find �n;n. Compare to the �n;n obtained in problem
2.10-16 with a nonchirped waveform.

(b) Repeat (a) for a downchirped waveform. Compare to results for
nonchirped and upchirped waveforms.

4.1-1 (a) Derive (4.1-17) by substituting (4.1-15) and (2.4-3a) into (4.1-13).

#(b) Derive (4.1-18).

#4.1-2 Verify that (4.1-15) is the inverse of (2.4-1b) by multiplying � by ��1.
Similarly verify that (4.1-26) is inverse of (4.1-4).

#4.1-3 Verify (4.1-28).
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4.1-4 (a) For the constant-velocity target with L ¼ 1, use T gives by
(4.1-17) to obtain Ŵ from (4.1-32). Verify that this Ŵ is T �1. Why is this
the case? Note that the Ŵ obtained here is for the filtered estimate X�

n;n; see
(4.1-30).

#(b) Repeat for L ¼ 2.

4.5-1 Differentiate (4.5-13) with respect to X�
n;n, as done in (4.1-46), to derive

(4.5-4). Hint: See the differentiation of (2.6-7) in Section 2.6.

4.5-2 From problem 4.1-4(a) the least-squares weight Ŵ for estimating X�
n;n is

given as

Ŵ ¼ Ŵðh ¼ 0Þ ¼
1 0

1

T
� 1

T

2

4

3

5 ðP4:5-2aÞ

for m ¼ 1 and L ¼ 1. Using (4.5-9), it follows that the one-step predictor least-
squares weight is

Ŵðh ¼ 1Þ ¼ �Ŵðh ¼ 0Þ ðP4:5-2bÞ
Using (P4.5-2a) and (P4.5-2b), obtain Ŵðh ¼ 1Þ. Determine the components of
X�

2;1 ¼ �X�
1;1 using (P4.5-2b) and the X�

1;1 of the solution of problem 4.1-4.

#4.5-3 Derive (4.5-2).

#4.5-4 Derive (4.5-5).

#5.4-1 Verify that (5.4-7) transitions Xn to Xnþ1 by substituting (5.4-4) to
(5.4-6) into (5.4-1) and then multiplying by (5.4-7).

5.5-1 Verify that the 3 � 3 transition matrix (5.4-13) �ðhÞ z for the scaled state
vector Zn for h ¼ 1 is obtained from (5.5-8) for the constant-accelerating target
(m ¼ 2) model.

5.5-2 Using (5.5-3a) to (5.5-8) obtain

Ŵðh ¼ 1Þ ¼
2 �1

1

T
� 1

T

2

4

3

5

for the constant-velocity target (m ¼ 1) with L ¼ 1. This answer agrees with
that of problem 4.5-2. In the process of obtaining Ŵðh ¼ 1Þ, also obtain
Ŵðh ¼ 0Þ.

5.5-3 Using Ŵðh ¼ 0Þ of problem 5.5-2 and (5.6-3), verify (5.6-5) for
L ¼ 1.
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5.5-4 Using (5.5-3a) to (5.3-9), verify that for m ¼ 1 and L ¼ 4 the one-step
predictor least-squares weight is given by

Wðh ¼ 1Þ ¼ 1

10

8 5 2 �1 �4

2 1 0 �1 �2

� �

#5.5-5 Using ŴðhÞ of problem 5.5-4 and (5.5-3), verify that (5.6-5) applies
for L ¼ 4.

5.6-1 Using (2.4-4f ) and (2.4-1b), obtain (5.6-5) from (5.6-4) for Qn ¼ 0.

5.6-2 Using (5.6-7), (5.6-4), and (5.6-5), obtain the unscaled covariance
matrices S�n;n and S�nþ1;n for the least-squares filter for the constant-velocity
(m ¼ 1) target dynamics model.

#5.6-3 Using the S�n;n obtained in problem 5.6-2, obtain S�nþ1;n using (2.4-4f )
and (2.4-1b). How does ½S�nþ1;n
0;0 vary with T ?

#5.6-4 Verify that ½ sS
�
nþ1;n
0;0 of (5.6-5) agrees with the variance of the one-

step g–h expanding-memory polynomial given by (1.2-42) and with (1.2-19).

#5.6-5 Verify that j s S�nþ1;nj1;1, j s S�n;nj0;0, and j s S�n;nj1;1 of (5.6-5) and (5.6-4)
agree with (1.2-20) and (1.2-21).

#5.7-1 Find the memory needed for the first-degree (m ¼ 1) fixed-memory
smoothing filter that will result in �nþ1;n=�x ¼ 3. Compare the result to that of
problem 1.2.7-2. What does this say the switching time is for a growing-
memory track initiation filter for the g–h filter of problem 1.2.7-2?

#5.7-2 Using (5.7-3), find the T needed to make ½S�nþ1;n
1;1 ¼ ð100 ft=secÞ2
for

the constant-velocity target, one-step predictor if �x ¼ 167 ft.

#5.8-1 Using Table 5.8-1, obtain ½S�nþ1;n
0;0 and ½S�nþ1;n
1;1 for the m ¼ 1 one-
step predictor filter for L large. Compare these results with those of (5.7-1) and
(5.7-3). Do they agree?

#5.8-2 Using Table 5.8-2, obtain ½S�nþ1;h
0;0 and ½S�nþh;n
1;1 for h ¼ � 1
2

L,
that is, for smoothing to the center of the data interval for the m ¼ 1 one-
step predictor filter for L large. Compare these results with those of
problem 5.8-1.

5.8-3 (a) Show that the accuracy of the endpoint location obtained by
predicting from the midpoint estimate is the same as the endpoint estimate of
(5.8-4) for large L and m ¼ 1.
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(b) Show that the accuracy of the start-of-track location obtained by
retrodiction from the endpoint estimate is the same as the accuracy of the end-
of-track position given by (5.8-4) for L large and m ¼ 1 target dynamics model.

6.5-1 Verify that for m ¼ 0 degree growing-memory filter, the prediction
output x�1;0 at time n ¼ 0 is independent of the initial value x�0;�1 ¼ x0 assumed.

6.5-2 Verify that for the m ¼ 1 degree growing-memory filter, the prediction
outputs x�2;1 and _x�2;1 are independent of the initial values x�0;�1 ¼ x0 and
_x�0;�1 ¼ 	0 assumed.

#6.5-3 Verify that for the m ¼ 2 degree growing-memory filter, the prediction
outputs x�3;2, _x�3;2, and �x�3;2 are independent of the initial values x�0;�1, _x�0;�1, and
�x�0;�1.

7.2-1 (a) Put the degree 2 (m ¼ 2) fading-memory filter of (1.3-2) and (1.3-3)
into the form given in Table 7.2-2.

(b) Find, g, h, and k in terms of � for the m ¼ 2 fading-memory filter.

7.2-2 Find g, h, k for the growing-memory filter of Table 6.3-1 using the form
for the g–h–k filter given in problem 7.2.1.

#7.2-3 Show that (7.2-5) leads to a recursive solution for x�nþ1;n; specifically
the feedback form of (P1.2.1-1a), when i ¼ 0, m ¼ 1, and r ¼ 1, the one-stop
prediction case.

#7.4-1 Verify that the variance of the one-step predictor for the critically
damped g–h filter of (1.2-41) agrees with the results obtained from (7.4-2).

7.4-2 (a) Design a fading-memory m ¼ 2 filter that has the same g of 0.87 as
obtained for the Singer g–h–k filter of Section 2.10.

(b) Find �nþ1;n=� x for the above fading-memory filter. First use the
expression for the VRF for the m ¼ 2 fading-memory filter given in Table 7.4-1.
Next use the expression for the VRF of the general g–h–k filter given by (1.3-4)
and compare results. Compare these results with those of the Singer g–h–k filter
of Section 2.10 having the same g.

(c) Obtain �nþ1;n=�x for the Singer g–h–k filter of Section 2.10 if the target
has constant acceleration.

#7.5-1 Find the memory L þ 1 of an m ¼ 1 fixed-memory filter that has the
same �nþ1;n=� x as obtained with the fading-memory g–h filter of problem
1.2.7-2(b) (for which � ¼ 0:1653, g ¼ 0:973, h ¼ 0:697).

8.1-1 Obtain the A matrix of (8.1-10) for a constant-velocity target.
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8.1-2 Using the results of problem 8.1-1 and (8.1-22), obtain the transition
matrix for a constant-velocity target. Compare with (2.4-1b).

8.1-3 Derive the transition matrix given by (4.1-4) for a constant-accelerating
target using (8.1-10a) and (8.1-22).

#8.1-4 Find the matrix A and transition matrices for a constant-jerk target, that
is, a target for which _�x ¼ const.

9.3-1 Derive (9.3-1) to (9.3-1d) from (9.2-1) to (9.2-1d) using the matrix
inversion lemma given by (2.6-14).

#9.3-2 Verify that the Kalman filter equations of (9.3-1) to (9.3-1d) are
identical to those of (2.4-4a) to (2.4-4j).

9.4-1 Derive (9.2-1) from (9.4-1). Hint: Add and subtract M TR�1
nþ1M X

� �
nþ1;n

to respectively the first and second terms inside the bracket and then use
(9.2-1b).

10.2-1 Show that (8.2-3) is the characteristic equation [given by (10.2-62)]
for the general form of the matrix (8.2-6a). Hint: Use method of induction.
Expand arbitrary m 0 � m 0 detriment jA � 
Ij using its first column cofactors
[101].

#11.2-1 Find the Givens transformed matrix T of (11.2-1) for " of 0.09 instead
of 0.1.

y#11.2-2 Derive (11.2-3) to (11.2-10) using (11.2-14).

y#11.2-3 Derive (11.2-12) and (11.2-13).

#11.3.2-1 Determine the magnitude and phase of the complex number
�0:544 þ j0:735 using the CORDIC vectoring algorithm. Use an 11-bit
representation, as done for the example of Table 11.3-2.

#11.3.2-2 Rotate the complex number 0:7881010754 þ j0:615661475 by
� 142� using the CORDIC rotation algorithm. Use a 11-CORDIC rotation.

#11.3.2-3 Repeat problem 11.3.2-2 using the results of Table 11.3-2, that is,
using the binary sequence of r i ’s of Table 11.3-2.

#11.3.2-4 Repeat problem 11.3.2-3 for þ142� rotation.

#11.3.2-5 Derive CORDIC vectoring algorithm given by (11.3-16) to
(11.3-25). Hint: Use Figure 11.3-6.

400 PROBLEMS



#11.3.2-6 Derive CORDIC rotation algorithms given by (11.3-31) to
(11.3-37) plus (11.3-21), (11.3-22), (11.3-24), and (11.3-25).

#12.3-1 Find the two Householder transformations needed to transform T of
(11.2-1) with " ¼ 0:1 into the upper triangular form of (11.2-2), the example
used after (11.2-1) and also used in Figure 11.3-3 to demonstrate a systolic
array implementation of the Givens procedure. Calculate the matrices obtained
after each Householder transformation.

#13.2-1 Verify (13.2-2) and (13.2-3) and obtain QT Q for both matrices.

#13.2-2 Calculate the orthonormal transformation matrix F for the matrix
(13.2-1) using the Givens transformation procedure with computer round-off to
four significant figures. How does it compare to F ¼ QT obtained using the
MGS approach.

#13.2-3 Repeat problem 13.2-3 using the Householder procedure.

#13.2-4 Using the MGS procedure calculate the matrices R 0, Q 0, R, and Q for
T given by (11.2-1) for " ¼ 0:1. Compare these results with those obtained
using the Givens procedure [immediately after (11.2-1)] and the Householder
procedure [problem (12.3-1)].

#14.1-1 Verify (14.1-5).

#14.1-2 Verify (14.1-6) to (14.1-9) using the MGS algorithm.

14.4-1 Show that the inverse of a square upper triangular matrix is upper
triangular. Hint: Use the method of induction, first showing it is true for a 2 � 2
matrix and then showing it is true for an r � r matrix if true for an
ðr � 1Þ � ðr � 1Þ matrix.

#16.2-1 Calculate ½Mð�XnÞ
 ij for i, j ¼ 1, 2, 3 for the rectangular-to-spherical
coordinate case in which the measurements are being made in spherical
coordinates and the tracking is being done in rectangular coordinates.

#16.3-1 Derive (16.3-30).

#16.3-2 Extend (16.3-29) and (16.3-30) to the three-dimensional (x; y; z)
coordinate case.
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SYMBOLS AND ACRONYMS

Special Notation

k � k magnitude, also called Euclidean norm, of column matrix
in s-dimensional hyperspace; see (4.2-40)

U�T ðU TÞ�1
for matrix U; see (10.2-45) and the discussion

immediately following

VAR(�) Variance of quantity in parentheses

��i (��1Þ i
; see (4.1-8) and the discussion immediately

followingÐ
integral signP
Summation

� Used as superscript to mean estimate; see (1.2-4) and related
discussion; used in Section 4.4 and (11.3-39) as superscript
to mean complex conjugate

Roman Letters

ad Target acceleration along radar line of sight; see
discussion just prior to (3.5-14)

�aj �ak for j ¼ k

ð�ajÞn Estimate �aj of aj based on measurements made up to and
including time n; see (5.2-2) and the discussion following

ak Coefficient of kth term of accurate polynomial fit of
degree d to trajectory; see (5.9-1)

�ak Coefficient of t k term of polynomial approximation of
degree m to data [see (4.1-44)]; ¼ �aj for k ¼ j
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(akÞn ak for trajectory whose last time sample is at time n; see
(5.10-1)

an Random target acceleration occurring between time n
and n þ 1 for Asquith–Friedland dynamics model; see
Section 2.8

a1; a2; . . . ; ai ith time sample for auxiliary channel output sum voltage
of sidelobe canceler; see (4.4-4) to (4.4-6) and Figure 4.4-1

A Constant-coefficient matrix for linear state vector differ-
ential equation; see (8.1-10)

Column matrix of auxiliary channel output sum voltages
for sidelobe canceler; see (4.4-4) and (4.4-5) and
Figure 4.4-1

A ðtÞ Time-varying coefficient matrix for linear time-varying
state vector differential equation; see (15.2-1)

Amax Maximum target random acceleration for Singer dynamic
model; see Section 2.9

An Trajectory accurate state vector representation in terms of
its first d derivatives at time n; see (5.9-2)

b�ðtÞ Systematic error for trajectory position estimate; see
(5.9-3a) and discussion following

b� Steady-state prediction bias error of g–h filter when
tracking constant acceleration target; see Section 1.2.4.3

b�ðrÞ ¼ b�ðLÞ Systematic error at respectively time r and L; see (5.10-2)
and (7.7-1)

B�
n;n Systematic error in estimate X�

n;n; see (5.9-3)

Bs Signal bandwidth; see Section 3.5.1

cð j;LÞ See (5.3-5a)

cð j; �Þ See (7.2-1c)

ci Cosine element of ith Givens transformation matrix Gi;
see (11.1-6), (11.1-6a), (11.1-13), and (11.1-13a)

cj See (5.3-5) and (7.2-1b), where cj has different meanings
for respectively the Legendre the Laguerre polynomials

cD Atmospheric dimensionless drag coefficient; see (2.4-9)
and (16.3-19) and related discussions

D Derivative with respect to time [see (5.3-12)];
¼ Dm for m ¼ 1;
¼ D0 without k q 0

mþ1 k term [see (13.1-40)]

Dd dth derivation with respect to time; see (4.1-2a) and (8.1-6)

D2 Statistical distance used for nearest-neighbor data associa-
tion; see Section 3.3.1

Second derivative of function; see (4.1-2a)
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Dx �
nþ1;n

Transient error of one-step predictor; see Section 1.2.5

D0 Diagnonal matrix of elements k q 0
1 k to k q 0

mþ1 k; see
(13.1-24)

eðXnÞ Another form of en, the sum of squares of deviations
between estimates and measurements; see (4.2-9) and
related discussion

eD Total discounted weighted sum of squares of deviations
between data points and straight-line fit to data; see
(1.2-34)

en sum of squares of deviations between estimates and
measurements; see (4.1-37) and (4.1-38)

eT Total sum of squares of deviations between data points
and straight-line estimate fit to date; see (1.2-33)

E Total weighted sum of squared errors for one-dimensional
case where only range is measured; see (2.5-12)

Column matrix of deviations en, n ¼ 1; 2; . . . ; see
(4.3-22a) and (4.3-18), Figure 4.2-1, and Section 10.2

f c Radar carrier frequency; see (3.5-4)

fd Target Doppler shift, see (3.5-3)

f1; f2 . . . ith row of F; see (10.2-25); also (4.3-15)

F Orthonormal transformation matrix; see (4.3-14) and
related discussion and Chapters 10 to 14

F½X ðtÞ; t� Vector of nonlinear function of elements of X(t) used to
define nonlinear dynamic model; see (16.3-1)

F1 Part of transformation matrix F (first m 0 rows) that projects
Y ðnÞ onto Tp space and transforms T to matrix U; see
discussion in Section 4.3 starting with paragraph contain-
ing (4.3-39) and Section 10.2; for 3-dimensional example
of (4.2-1) to (4.2-4), Tp is the 2-dimensional plane of
Figure 4.2-1

F2 Part of transformation matrix F (m 0 þ 1st row) that
projects Y ðnÞ onto coordinate perpendicular to Tp space,
specifically the coordinate defined by unit vector qm 0þ1

in direction Y ðnÞ �Y 0
1; see discussion in Section 4.3

starting with paragraph containing (4.3-39); for
3-dimensional example of (4.2-1) to (4.2-4), qm 0þ1 ¼ q3

coordinate direction of Figure 4.3-1 perpendicular to Tp

plane

F3 Part of transformation matrix F (rows m 0 þ 2 to s) that
projects Y ðnÞ onto space perpendicular to ðm 0 þ 1Þ-
dimensional column space of T0; see (4.3-58c) and
(4.3-59) and related discussions
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g Weighting constant in g–h (and g–h–k) filter equations
associated with position update; see Sections 1.2.1 and
1.3

gi ith row unit vector of G1; see discussion in paragraph
containing (11.1-18) and the four paragraphs immediately
after

ðgiÞ2 ith row vector of G2; see discussion in third and fourth
paragraph after one containing (11.1-24)

gn g at update time n

G 0
1 2�2 matrix that represents rotation part of first Givens

transformation G1; see (11.1-7)

G1;G2; . . . ;Gi ith Givens transformation; see Section 11.1

h Weighting constant in g–h (and g–h–k) filter equation
associated with velocity update; see Sections 1.2.1 and 1.3

hn h at update time n

Hð!Þ Transfer function of filter that produces Singer model
correlated acceleration for white-noise input; see
Section 2.9

Hn Matrix giving tracking-filter constants; see (2.4-5) and
(2.4-4e); also (9.2-1) to (9.2-1d) and (9.3-1) to (9.3-1d)

H1;H2; . . . ;Hi ith Householder reflection transformations; see
Chapter 12

i Unit vector along x axis for x, y, z orthogonal coordinate
system; see discussion just before (4.2-38)
Time index as in (4.1-20)

I Identity matrix, i.e., matrix whose diagonal elements are
unity and whose off-diagonal elements are zero; see
(4.2-29) and (4.5-6)

I s s�s identify matrix I; see (10.2-54)

j Unit vector along y axis for x, y, z orthogonal coordinate
system; see discussion just before (4.2-38)

J Total weighted sum of square errors for multidimensional
case; see Section 2.6

Time index representing data endpoint; see Section 2.10

k Weighting constant in g–h–k filter equation associated
with acceleration update; see Section 1.3

Unit vector along z axis for x, y, z orthogonal coordinate
system; see discussion just before (4.2-38)

kn k at update time n

k1; k2 Weighting constants for combined linear estimate; see
(2.5-1)
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L L þ 1 equals number of measurements made in fixed-
memory filter (which is filter memory); see (5.2-1) and
Figure 5.2-1 and related discussions

m Target mass; see (2.4-9) and (16.3-20)

Degree of approximate polynomial fit to data; see (4.1-44)

Degree of tracking filter, i.e., degree of polynomial fit used
by tracking filter; see (1.1-1) (where m ¼ 1), (1.3-1)
(where m ¼ 2), and (4.1-44) and Tables 6.3-1 and 7.2-2
and relative discussions

m 0 Number of states of state vector Xn; see paragraph after
(4.1-2a)

mpq p,q element of true spatial covariance matrix of auxiliary
elements of sidelobe canceler; see (4.4-17)

m̂pq p,q element of M̂; see (4.4-16) and following discussion

M Observation matrix; see (2.4-3a) and Section 4.1

Integer number, used to establish number of detections
needed to establish track or drop track; see Section 3.2

M̂ Estimate of spatial covariance matrix of auxiliary voltages
of sidelobe canceler; see (4.4-16) and related discussions

n Time or scan index

Last time at which an observation was made for the
expanding-memory filter; see (1.2-38a) and (1.2-38b) and
(6.2-1)

naðtÞ White noise; used for Singer dynamics model; see
Section 2.9

Nn Observation (measurement) error matrix at time n; see
(2.4-3b) and Sections 2.4 and 4.1

N ðnÞ Observation error matrix for times n; n � 1; . . . ; n � L; see
(4.1-11a) and (4.1-10)

p(r, j, L) pj(r); see (5.3-3) and (5.3-4)

pðr; j; �Þ See (7.2-1d)

p(t) Accurate polynomial fit of degree d to trajectory; see
(5.9-1)

p� Abbreviated form of ½ p�ðrÞ�n; see (5.2-3)

p�ðrÞ Polynomial fit to data as a function of integer time index r;
see (4.1-45) and discussion immediately after it; see also
(5.2-3) and following discussion

½ p�ðrÞ�n p�ðrÞ with the subscript n indicating the last time a
measurement was made for estimating p�ðrÞ; see (5.2-3)
and (5.3-1)
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p�ðtÞ Polynomial fit to data as a function of time variable t; see
(4.1-44)

pjðrÞ Unnormalized discrete-time orthogonal Legendre poly-
nomial of degree j; see (5.3-1a), (5.3-3), and (5.3-4)

Unnormalized discrete-time orthogonal Laguerre poly-
nomial; see (7.2-1d) and related discussion

pjðtÞ Polynomial coefficient for sum of products of polynomials
and expontential model for x(t); see (8.2-1)

pt Projection of Y ðnÞ onto Tp when Tp is a one-dimensional
space, i.e., pt is p�T when Tp is a line instead of a plane;
see (4.2-32) and relative discussion

pT Vector formed by linear combination of columns of matrix
T ; hence a vector in column space of T ; see (4.2-8) and
related discussion; see also Figure 4.2-1 for special case
where pT is a two-dimensional vector in Tp plane

p�T Projection of data measurements given by Y ð3Þ onto plane
Tp; this vector provided the optimum least-squares
estimate; see (4.2-24) and related discussion; in general
p�T is projection if Y ðnÞ onto hyperspace formed by column
space of T; see Chapter 10

p1; p2 Dimensionless Fitzgerald design parameters used for
Singer g–h–k filter design curves; see Section 2.10

p1; p2; . . . ; pi p i equals vector component of column vector t1 along unit
row vector f i of Fð f i ¼ qT

i Þ; see (10.2-27)

p1; p2; . . . ; ps Components of pT vector; see (4.2-8)

p3 Fitzgerald normalized parameter used for determining
performance of Singer g–h–k Kalman steady-state filter
when chirp waveform is used by radar for tracking; see
(3.5-16) and Section 3.5-2

P Projection matrix, projects Y ð3Þ onto plane Tp; see (4.2-25)
and related discussion; in general, P projects Y ðnÞ onto
column space of T

Pmax Probability of target having maximum acceleration Amax

for Singer dynamics model; see Section 2.9

P0 Probability of target having no acceleration for Singer
dynamics model; see Section 2.9

q Backward-shifting operator; see (7.2-5a)

qij ith coordinate of unit vector qj; see (4.3-5)

q1; q2; q3 Orthonormal unit vectors for new coordinate system
replacing x,y,z coordinate system; see Figure 4.3-1 and
related discussion in Section 4.3; when Tp is an m-
dimensional space, q1; q2 become q1; q2; . . . ; qm 0 and
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q1; q2; q3 become q1; q2; . . . ; qs; see the discussion in
paragraphs following (4.3-52) and Chapter 13

q1; . . . ; qm 0 Orthonormal unit vectors spanning m 0-dimensional
space Tp; see discussion following (4.3-52) and
Chapter 13

q1; . . . ; qs Orthonormal unit vectors spanning s-dimensional Y ðnÞ
space of the coordinates of Y ðnÞ; see discussions following
(4.3-52) and Chapter 13; orthonormal vectors
q1; q2; . . . ; qs formed from q 0

1; q
0
2; . . . ; q

0
s by making the

latter unitary; see (13.1-22)

q 0
1; q

0
2; . . . ; q

0
s Orthogonal vectors spanning s-dimensional space of

coordinates of Y ðnÞ; formed by applying Gram–Schmidt
orthogonalization to columns of T0; see Chapter 13

Q Matrix of unit vectors q1; q2; . . . ; see (4.3-7), (13.1-23),
and (13.1-34) and related discussion

Q 0 Matrix of orthogonal vectors q 0
1; q

0
2; . . . ; q

0
m 0þ1; see

(13.1-17)

Qn Covariance of dynamic model driving noise vector Un;
see (2.4-4g)

r r þ 1 equals number of dimensions in which target
is tracked; see (2.4-7) and (4.1-1a) and related
discussions

r ij Physically the same as r 0
ij except that it is computed using

t
ðiÞ
j instead of t j; where t

ðiÞ
j is t j minus its vector com-

ponents along q1; q2; . . . ; qi�i; see discussion in Chapter
13 following (13.2-3)

r 0
ij Physically, magnitude of projection of t j onto unit vector

qi normalized by k q 0
i k; see (13.1-11); alternately, dot

product of t j and q 0
i normalized by k q 0

i k2; see (13.1-11),
r 0

ij times q 0
i equals vector component of t j along qi; here

the projection r 0
ij is computed using full vector t j, i.e.,

using the CGS procedure; see discussion in Chapter 13
following (13.2-3)

r 00
ij Physically, magnitude of vector component of t j along qi;

see (13.1-28a) and (13.1-30)

r12 r 0
12; see discussion in Chapter 13 following (13.2-3)

r 0
12 Physically, magnitude of projection of t2 onto unit vector

q1 normalized by k q 0
1 k; see (13.1-5); alternately, dot

product of t2 and q 0
i normalized by k q 0

1 k2; r 0
12 times q 0

1

equals t2c, the vector components of t2 along q1; see
(13.1-6) and the discussion just before it

R Range to target; see Sections 1.5 and 1.1
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s � ðm 0 þ 1Þ matrix representing T0 transformed by QT ;
see (13.1-35) and related discussion; example R for s ¼ 3,
m 0 ¼ 2 given by (13.1-36).

R 0 Matrix of r 0
ij projection terms; see (13.1-21) and (13.1-39)

Rc Range of closest approach for a target flyby trajectory; see
Section 1.5 and Figure 1.5-1

Moving-target ambiguous range indicated by radar using
chirp waveform, also called extrapolated range; see
Section 3.5.1.4 and (3.5-6) and (3.5-7)

Rn Covariance of observation error matrix Nn or equivalently
Yn; see (2.4-4i) and Chapter 9

R ðnÞ Covariance of measurement error matrix N ðnÞ or equiva-
lently Y ðnÞ; see (4.5-3)

R1;R2 Range for ith (i¼ 1, 2) target; see Section 1.1

s Dimension of Y ðnÞ; see (4.1-10) to (4.1-11a) and (4.1-30)
and related discussion; see also (4.3-57) and (10.2-7) and
related discussion

s 0 Number of Givens transformations needed to form
orthonormal transformation F as in (10.2-8); see discus-
sion in paragraph containing (11.3-2)

s i Sine element of ith Givens transformation matrix Gi; see
(11.1-6), (11.1-6b), (11.1-13), and (11.1-13b)

s1; s2; . . . ; s i s i is ith time sample for main antenna signal of sidelobe
canceler; see (4.4-1) and Figure 4.4-1

S Covariance matrix of state vector X; see (1.4-2) and
discussion just before this equation

Main antenna signal vector for sidelobe canceler; see
(4.1-1) and Figure 4.4-1

S
�

n;n Covariance of minimum-variance estimate X
 �

n;n; see first
paragraph of Section 4.5

S�n;n�1 Covariance of estimate state vector X�
n;n�1; see (2.4-4f )

and (2.4-4h)

S�n;n Covariance of state vector X�
n;n; see (2.4-4j)

Snþh; n Covariance of prediction state vector estimate X�
nþh;n; see

(5.6-6) and (2.4-4h) for h¼ 1

½S�nþh;n � ij i, j element of S�nþh;n; see (5.6-7)

S


nþh;n Covariance of minimum-variance estimate X


nþh;n; see
(4.5-10)

s S
 �

nþh;n Covariance matrix of scaled least-squares estimate Z �
nþh;n;

see (5.6-2) and related discussions; see also Table 5.6-1

½ s Snþh;n� ij i, j element of s Snþh;n; see (5.6-7)
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S 0
1 Projection of S onto space spanned by F1, which in turn

is the space spanned by V for sidelobe canceler; see
(4.4-12c) and related discussions in paragraph containing
this equation and following paragraph

S 0
2 Projection of S onto space spanned by F2 of sidelobe

canceler; see (4.4-12d) and related discussion in paragraph
containing this equation and the following paragraph

t Time variable; see Figure 1.1-7 and Sections 1.1 and
1.2.4.2

Matrix T when it is a column matrix; see (4.2-19) and
(4.2-21d) and related discussion

t i ith column of matrix T or T0; see (4.2-2)

t̂ i t i when it is a unit vector; see discussion before (4.2-28)

t ij i; j element of transition–observation matrix T or its
augmented form T0; see (4.1-11b), (4.2-1) and (4.3-54), and
(11.1-1), (11.1-25), and (11.1-29) and related discussions

ðt ijÞ k i, j element of transition–observation matrix T or its
augmented form T0 after application of k Givens
transformations; see beginning of Chapter 11

t
ðiÞ
j t j minus its vector components along q1; q2; . . . ; qi�1; see

discussion in Chapter 13 following paragraph (13.2-3)

ðt jÞ2c Vector component of t j along q2 when computed using
CGS method, subscript c indicating that CGS method
is being used; see discussion in paragraph containing
(13.2-6) and remaining part of this section

t1; t2 Time at scan n � 1 and n; see Section 1.1 and Figure 1.1-7

�t0 Vector formed by first two coordinates (x,y coordinates)
of vector t1 (formed by first column of T or T0); see
(11.1-11) and Figure 11.1-1

�t1 Vector �t0 after rotation by G1; i.e., after it is rotated into x
axis; see (11.1-12) and Figure 11.1-1

t1F Representation of vector t1 as sum of vector components
of t1 along new transformed orthonormal axis directions
defined by rows of transformation matrix F; see (10.2-28)
and (10.2-29) and discussion 2 following

t2c Vector component of t2 along t1 see (13.1-4) and
discussion just before it

�t2 Vector formed by first three coordinates (the x, y, z
coordinates) of vector t1 (formed by first column of T or
T0); see (11.1-16) and Figure 11.1-2

�t3 Vector �t2 after rotation by successively G1 and G2, i.e.,
after rotation onto x axis; see (11.1-17) and Figure 11.1-2
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T Scan-to-scan period or time between measurements; see
Section 1.1

When used as superscript indicates matrix transpose; see
Section 1.4 and (1.4-1)

Transition–observation matrix; see (4.1-11b), examples
given after this equation, and discussion immediately after
(4.1-24); see also discussion in paragraph immediately
before that containing (4.1-12)

T 0 T transformed by F or equivalently columns of T
expressed in new q1; q2 . . . orthonormal coordinate
system; see (10.2-8)

Tf Fixed-memory filter smoothing time; see (5.8-3)

T0 Augmented transition–observation matrix T; see (4.3-54)
and (11.1-25) and related discussion

T 0
0 T0 transformed by F or equivalently columns of T0

expressed in new q1; q2; . . . orthonormal coordinate
system; see (12.2-6)

Tp Column space of matrix T; see Section 4.2; see Figure
4.2-1 for special case where Tp is a plane

TU Uncompressed pulse width of chirp waveform; see
Section 3.5-1

uij i; j element of upper triangular transformed matrix U; see
(4.3-29) and (4.3-29a) and (10.2-8) and (10.2-9); physi-
cally, uij is ith coordinate of column matrix vector t j

expressed in new orthonormal coordinate space
q1; q2; . . . ; see paragraph containing (4.3-24) and Section
10.2-2

un Random part of target velocity; change in target velocity
from time n to n þ 1; see Chapter 2 and (2.1-1b)

U Upper triangular transformed matrix T ; see (4.3-29)
and (4.3-29a) and (10.2-8) and (10.2-9) and related
discussions; see also Section 10.2.2 and definition of uij

above

Un Dynamic model driving noise vector at time n; see (2.4-2)

vd Target Doppler velocity; see Section 3.5.1.4

vij ith time sample for jth auxiliary antenna signal of sidelobe
canceler; see (4.4-2) and Figure 4.4-1

v�0 Velocity estimate or equivalently slope of best-fitting line
(constant-velocity trajectory) to data; see Section 1.2.6
and Figure 1.2-10

V Matrix of auxiliary antenna voltage time samples for
sidelobe canceler; see (4.4-2) and Figure 4.4-1

SYMBOLS AND ACRONYMS 411



Vim Row matrix of m 0 auxiliary antenna outputs at time i for
sidelobe canceler; see (4.4-6a) and Figure 4.4-1

VAR(�) Variance of quantity in parentheses; see Section 1.2.4.4

W Linear estimate weight row matrix; see (4.1-30)

Ŵ Optimum least-squares weight matrix; see (4.1-32)

W


Optimum minimum-variance weight matrix; see (4.5-4)

W 0
m Column matrix of sidelobe canceler weights; see (4.4-3)

and Figure 4.4-1

x Target true range; see Sections 1.1 and 1.2.1
x coordinate of x, y, z coordinate system; see Section 1.5
and Figures 1.5-2 and 4.3-1.

_x Target true velocity; see Sections 1.1 and 1.2.1

�x Target true acceleration; see Section 1.2.4.2

_�x Third derivative of x with respect to time; see (1.2-13) and
(8.2-5) for example

x ðmÞ See (5.3-4a)

x�c Optimum combined linear estimate; see Section 2.5.1

xn True target range at scan n or time n; see Sections 1.1,
1.2.1, and 2.4

�xn x�n;n ¼ filtered estimate of x; see discussion just before
(1.2-9a)

x̂ n x�n;n�1 ¼ one-step prediction of x; see discussion just
before (1.2-9a)

_xn True target velocity at scan n or time n; see Sections 1.1,
1.2.1, and 2.4

�_xn _x�n;n ¼ filtered estimate of _x; see discussion just before
(1.2-9a)

_̂xn _x�n:n�1 ¼ one-step prediction of _x; see discussion just
before (1.2-9a)

�xn True target acceleration �x at scan n or time n; see
Sections 1.2.4.3 and 1.3

x�n;n Filtered estimate of x at time n (first subscript n) based on
measurements made up to and including time n (second
subscript n); see (1.2-7) and the discussion immediately
before and after (1.2-4)

X�
nþh;n Predicted estimate of state vector X at time n þ h (first

subscript n þ h) based on measurements made up to and
including time n (second subscript n); see (2.4-4a), where
h ¼ 1, and the discussion immediately before and after
(1.2-4); this is h-step predictor if h > 0, it is retrodiction if
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h < 0, and it is filtered estimate if h¼ 0; see (4.5-9) and
(5.5-1)

x�nþ1;n Predicted estimate of x at time n þ 1 (first subscript n þ 1)
based on measurements made up to and including time n
(second subscript n); see (1.2-10b) and the discussion
immediately before and after (1.2-4); this is a one-step
predictor

x�0 Intercept along y axis of best-fitting line to data; see
Section 1.2.6 and Figure 1.2-10; physically x�0 is estimate
of x at time n ¼ 0

x�1 ; x�2 Two estimates of x; see Section 2.5.1

First and second coordinates of X�
n;n; see (10.2-17)

x�1 ; x�2 ; x�3 ; x�4 Components of state vector estimate X�
n;n; see (10.2-17)

Xn Target true state vector at time n; see (2.4-1a), (4.1-1b),
and (4.1-3)

X 0
n Xn given by matrix of scaled jth–state derivatives z�i

� �
n
,

hence it is scaled state vector; see (5.2-5) and (5.4-12)

X�
n;n Filtered estimate of target state vector Xn at time n (first

subscript n) based on measurements made up to and
including time n (second subscript n); see (2.4-4b) and
discussion immediately before and after (1.2.1-4)

X
 �

n;n Minimum-variance estimate of X�
n;n; see paragraph

containing (4.5-9)
�Xnþh;n Estimate of state vector at time n þ h given by its first

m þ 1 derivatives; last measurement on which estimate is
based is made at time n; see (5.11-5a) and discussion
immediately before and after (1.2-4)

X�
nþ1;n Predicted estimate of state vector Xnþ1 at time n þ 1 (first

subscript n þ 1) based on measurements made up to and
including time n (second subscript n); see (2.4-4a),
(2.4-4c), and (2.4-6)

y y coordinate of x, y, z orthonormal coordinate system; see
Section 1.5 and Figures 1.5-2 and 4.3-1

y 0
i Amplitude of ith coordinate of Y ð3Þ expressed in q1; q2; q3

coordinate system; see (4.3-4) and related discussions

ðyiÞk ith component of column matrix Y ðnÞ after k Givens
transformations; see (11.1-30)

yn Target range measurement at time n; see Section 1.2.1;
measurement of any general parameter at time n; see
(5.2-1)

Yn Measurement matrix for time n; see (2.4-3), (2.4-7), and
(2.4-8) and Section 4.1
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Y ðnÞ Measurement matrix for times n; n � 1; . . . ; n � L; see
(4.1-11) and (4.1-11a)

Y 0
1 For three-dimensional example of (4.2-1 to 4.2-4) [s ¼ 3

for Y ðnÞ of (4.1-11a)], it is projection of Y ð3Þ onto
plane Tp; Y 0

1 is expressed in q1; q2; q3 coordinates; see
(4.3-34a), (4.3-42), and (4.3-42a) and discussion leading
up to this equation in Section 4.3; for the general case of
arbitrary s; Y 0

1 is projection of Y ðnÞ onto Tp column space
of T; see discussion following (4.3-49) of Section 4.3

Y 0
2 For 3-dimensional example of (4.2-1) to (4.2-7) [s ¼ 3 for

Y ðnÞ of (4.1-11a)], it is projection of Y ð3Þ onto direction q3

perpendicular to plane Tp; Y 0
2 is expressed in q1; q2; q3

coordinates; see (4.3-42), (4.3-42b), and (4.3-50) and
related discussion to these equation; for general case of
arbitrary s; Y 0

2 is projection of Y ðnÞ onto coordinate
perpendicular to space Tp formed by column space of T,
specifically coordinate defined by unit vector qm 0þ1 in
direction Y ðnÞ � Y 0

1; see (4.3-50) and discussion just
preceding it; physically ðY 0

2Þ
2

is minimum least-squares
error; see (12.2-7) [Note: Because Y 0

2 is a one element
matrix we have taken the liberty of writing kY 0

2k
2

as ðY 0
2Þ

2
.

Y 0
ð3Þ Y ð3Þ expressed in q1; q2; q3 coordinate system; see

(4.3-13) and related discussion

z z coordinate of x, y, z orthonormal coordinate system; see
Section 1.5 and Figures 1.5-2 and 4.3-1

Zn Scaled state vector Xn; see (5.4-12)

Z �
nþh;n Scaled estimate state vector X�

nþh;n; see (5.5-2)

Greek Letters

� Weighting constant in �–� (and �–�–� ) filter equation
associated with position update; see Sections 1.2.2 and
1.3

� Weighting constant in �–� (and �–�–� ) filter equation
associated with velocity update; see Sections 1.2.2 and 1.3

Atmospheric ballistic coefficient; see (2.4-9) and
(16.3-20).

ð� jÞn �k with k ¼ j and time n; the last time at which a
measurement was made; see (5.3-1) and (7.2-4) and
discussion just prior to latter equation

�k kth coefficient of least-squares discrete-time orthogonal
Legendre or Laquerre polynomial fit to data; see
(4.1-45), (5.3-1), and (7.2-4) and related discussions
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� Weighting constant in �–�–� filter equation associated
with acceleration update; see Section 1.3

�0; �1; . . . Coefficients of linear, constant-coefficient differential
vector equation given by (8.2-2)

�pðtÞ Difference between accurate polynomial fit of degree d
and estimated polynomial fit of degree m to trajectory; see
(5.11-4) and related discussion

�r Radar range resolution; see Section 3.5.2 and (4.5-16)

�R Apparent range displacement of target’s observed position
due to its Doppler velocity when chirp waveform is used;
position target would have at future (past) time �t if
upchirp (downchirp) waveform is used and it had no
acceleration; see Section 3.5.1.4

�Ra Shift of target position due to target acceleration; see
(3.5-15) and Section 3.5.1.4

�t Small (delta) change in time t; see (1.2-13)

Time later that ambiguous range measurement is correct
for target moving away when upchirp is used; see Section
3.5.1.4

�yn�i Deviation of yn�i from estimate p�n�i; see (5.11-2)

�Y ðnÞ Matrix of L þ 1 �yn�i values; see (5.11-3)

�	 Time later at which a longer range target echo arrives; see
Section 3.5.1.4 and (3.5-5)

" 0i ith coordinate of deviation column matrix E expressed in
q1; q2; . . . coordinates, i.e., magnitude of component of E
along qi direction; see (4.3-30) to (4.3-32)

"1; "2; "n; . . . Deviation between measurement yn at time n and
estimate x�n ; see Figure 1.2-10 and (1.2-32), (4.3-22a),
and (4.3-23)

Difference voltages at output of sidelobe canceler at time
n; see (4.4-7) to (4.4-9) and Figure 4.4-1.

& Small change in time; see (8.1-11)

� Discounting factor used for discounted least-squares filter;
see Section 1.2.6 and (7.1-2), (7.1-2a), and related
discussions

Azimuth angle of target; see Sections 1.4 and 1.1 and
Figure 1.5-2

Azimuth between vectors; see for example (4.2-36).

� i Rotation performed by ith Givens transformation; see
(11.1-6a), (11.1-6b), (11.1-13a), and (11.1-13b)

�3 3-dB radar beamwidth; see Section 2.10
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� Weighting factor; see (1.2-26)

Radar wavelength; see Section 3.5.1.4

� ij Constant in equation for covariance of least-squares
estimate X�

nþh;n; see (5.8-1) and (7.4-1) and Tables 5.8-1,
5.8-2, and 7.4-2 and related discussions

� j Root of equation given by (8.2-3) which is the
characteristic equation for the matrix A of (8.2-6a); see
also (10.2-62) and related discussion

Eigenvalues of matrix; see (10.2-62) and related
discussion

̂ Estimate of cross correlation between main antenna and
auxiliary antenna outputs of sidelobe canceler; see
(4.4-16) and related discussion

 j jth cross correlation between main antenna and jth
auxiliary channel output of sidelobe canceler; see (4.4-19)

̂ j jth element of ̂, i.e., estimate of  j; see (4.4-20)

� rms of sum of range prediction and measurement; see
Section 1.1

�ðx�nþ1;nÞ �nþ1;n; see Section 1.2.4.5

_� Abbreviated form for rms of steady-state Singer g–h–k
Kalman filter filtered and one-step prediction velocity
estimates; see Figure 2.10-6

�� Abbreviated form for rms of steady-state Singer g–h–k
Kalman filter filtered and one-step prediction acceleration
estimates; see Figure 2.10-7

�a rms of an; see (2.8-2)

rms of target random acceleration for Singer model; see
Section 2.9

�c rms of optimum combined linear estimate x�c ; see Section
2.5

�cx rms of cross-range measurement; see Section 2.10 and
(2.10-6)

�i rms of ith measurement; see (4.5-11) and (4.5-15) and
related discussion

�nþ1;n rms of prediction estimate x�nþ1;n; see Section 1.2.4.5

�u rms of un; see Chapter 2, specifically discussion just after
(2.1-1b)

�x ��; see Section 1.2.4.4

�� rms of radar angle measurement; see Section 2.10

�� rms error of range measurement yn; rms of �n; see Section
1.2.4.4

416 SYMBOLS AND ACRONYMS



�1; �2 rms of estimates x�1 and x�2 ; see Section 2.5

	 Correlation time of random target acceleration for Singer
model; see Section 2.9

	c Compressed pulse width for chirp waveform; see Section
3.5.1

� Target elevation angle; see Section 1.5 and Figure 1.5-2

� jðrÞ Discrete-time orthonormal Legendre polynomial of degree
j; see (5.3-1a)

Discrete-time orthonormal Laguerre polynomial; see
(7.2-1).

� Sate transition matrix; see Section 2.4 and Chapter 4

�ðT ; 	Þ Transition matrix for Singer dynamics model; see Section
2.9

� i Transition matrix for transitioning state vector Xn�i from
time n� i to n; see (4.1-6)

� z Transition matrix for scaled state vector Zn; see (5.4-13)
and (5.5-8) for example

	 Inverse of �; see (8.1-29)

! Radian frequency ¼ 2�f ; see Section 2.9, specifically
(2.9-3) and related discussion

Acronyms

APL Applied Physical Laboratory

ASR Airport Surveillance Radar; see Sections 1.1 and 1.5

BCGS Basic classical Gram–Schmidt (circuit); see Figure 13.1-4

BMEWS Ballistic Missile Early Warning System; see Figure 1.1-11

BMGS Basic modified Gram–Schmidt (circuit); see Figure 13.2-1

CFAR Constant false-alarm rate; see Section 3.1.4

CGS Classical Gram–Schmidt; see first paragraph of Chapter
13 and discussion after paragraph containing (13.1-43)

CORDIC Coordinate Rotation Digital Computer; see last paragraph
of Section 11.3.1 and Section 11.3.2

CPI Coherent processing interval; see Section 3.1.2.1

DCS Dual coordinate system; see Section 1.5

DOLP Discrete–time orthogonal Legendre polynomials; see
Sections 5.3 and 14.4

FAA Federal Aviation Administration

HiPAR High Performance Precision Approach Radar; see Section
1.1 and Figure 1.1-8
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IADT Integrated Automatic Detection and Tracking; see Section
1.5

ICBM Intercontinental ballistic missile; see Sections 1.1 and 1.5

IF Intermediate frequency of radar receiver; see Section 3.5.1

JPDA Joint probabilistic data association; see Section 3.3.2

LFM Linear frequency modulation; see Section 3.5.1

MGS Modified Gram–Schmidt; see discussion after paragraph
containing (13.1-43)

MTD moving-target detector; see Section 3.1.2.1

NAFEC National Aviation Facilities Engineering Center; see
Section 3.1.2.1

PAR Pulse Acquisition Radar; see Section 1.1 and Figure 1.1-5

PC Pulse compression ratio for chirp waveform; see (3.5-1)
and related discussion

ROTHR Relocatable Over-the-Horizon Radar; see Section 1.1 and
Figure 1.1-17

SLC Sidelobe canceler; see Figure 4.4-1

SNR Signal-to-noise ratio; see Section 2.2

TWS Track-while-scan; see Sections 1.1 and 3.4 and Figure
1.1-2 to 1.1-6

VAR Variance; see Section 1.2.4.4

VHSIC Very high speed integrated circuit; see Section 3.3.2

VLSI Very large scale integrated circuitry; see Section 3.3.2

VRF Variance reduction factor, the normalized variance of an
estimate; see Section 1.2.4.4 and (5.8-2)
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SOLUTION TO SELECTED PROBLEMS

1.2.1-1 From (1.2-11a) and (1.2-11b)

_x�nþ1; n ¼ _x�n; n�1 þ
h

T
ðyn � x�n; n�1Þ

x�nþ1; n ¼ x�n; n�1 þ T _x�nþ1; n þ gðyn � x�n; n�1Þ

The corresponding prediction equations for n are given by

_x�n; n�1 ¼ _x�n�1; n�2 þ
h

T
ðyn�1 � x�n�1; n�2Þ ðP1:2:1-1bÞ

x�n; n�1 ¼ x�n�1; n�2 þ T _x�n; n�1 þ gðyn�1 � x�n�1; n�2Þ ðP1:2:1-1cÞ

Substituting (1.2-11a) into (1.2-11b) for _x�n¼1; n yields

x�nþ1; n ¼ x�n;n�1 þ T _x�n; n�1 þ hðyn � x�n; n�1Þ þ gðyn � x�n; n�1Þ
¼ x�n; n�1ð1 � g � hÞ þ ðg þ hÞyn þ T _x�n;n�1 ðP1.2.1-1dÞ

Solving for T _x�n:n�1 in (P1.2.1-1c) and substituting into (P1.2-1d) yield

x�nþ1;n ¼ ð1�g� hÞx�n;n�1þðg þ hÞyn þ x�n;n�1 � x�n�1;n�2 � gðyn�1 � x�n�1;n�2Þ
¼ ð2 � g � hÞx�n;n�1 þ ðg � 1Þx�n�1;n�2 þ ðg þ hÞyn � gyn�1

ðP1:2:1-1eÞ

which is the same as (P1.2.1-1a).
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Recursive expressions similar to (P1.2.1-1a) for x�nþ1;n can also be obtained
for the filtered position estimate x�n;n and the velocity estimate _x�n;n.

1.2.4.3-1 For x�n;n�1 and x�n�1;n�2 we get

x�n;n�1 ¼ 1
2
�xðnÞ2

T 2 þ b� ðP1:2:4:3-1cÞ
x�n�1;n�2 ¼ 1

2
xðn � 1Þ2

T 2 þ b� ðP1:2:4:3-1dÞ

From (P1.2.4.3-1a)

yn�1 ¼ 1
2
�xðn � 1Þ2

T 2 ðP1:2:4:3-1eÞ

Substituting (P1.2.4.3-1a) to (P1.2.4.3-1e) into (P1.2.1-1a) and solving for b�
yield (1.2-15).

1.2.4.4-1 The variance of x�nþ1;n will be independent of the constant-velocity
target trajectory assumed. Hence for ease in the analysis we will assume a zero-
velocity target at range zero. Thus yn will consist only of the measurement
noise �n. Hence the expected value of x�2

nþ1;n is the variance of x�nþ1;n. Thus
squaring (P1.2.1-1a) and obtaining its expected value yield

E x�2
nþ1;n

� �
¼ ��nþ1;n

¼ ðg þ hÞ2�2
x þ g2�2

x þ ð2 � g � hÞ2�2
nþ1;n þ ðg � 1Þ2�2

nþ1;n

2gð2 � g � hÞE½yn�1x�n;n�1� þ 2ð2 � g � hÞðg � 1ÞE½x�n;n�1x�n�1;n�2�
ðP1:2:4:4-1aÞ

where use was made of

E ½ ynx�n;n�1 � ¼ E ½ ynx�n�1;n�2 � ¼ E ½ yn;n�1x�n�1;n�2 � ¼ 0

To obtain E ½ yn�1x�n;n�1 � in (P1.2.4.4-1a) above, rewrite (P1.2.1-1a) for x�n;n�1,
multiply by yn�1; and obtain the expected value of the resulting equation to
yield

E ½ yn�1x�n;n�1 � ¼ ðg þ hÞ�2
x ðP1:2:4:4-1bÞ

To obtain E ½ x�n;n�1x�n�1;n�2 �, multiply (P1.2.1-1a) rewritten for x�n;n�1 by
x�n�1;n�2 and obtain the expected value, yielding

ð2 � gÞE ½ x�n;n�1x�n�1;n�2 � ¼ �gðg þ hÞ�2
x þ ð2 � g � hÞ�2

nþ1;n ðP1:2:4:4-1cÞ

Substituting (P1.2.4.4-1b) and (P1.2.4.4-c) into (P1.2.4.4-1a) yields (1.2-19)
after much manipulation, as we desired to show.
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1.2.5-1 (a) In Figure 1.2-7, b� ¼ 3�nþ1;n for AN ¼ 3:0 when the AN ¼ 3:0
curve crosses the 3� ¼ 3�nþ1;n=� x curve. At this point, b�N ¼ 3� ¼ 4:7. Hence
ETN ¼ 9:4. Also at this point g ¼ 0:86 so that, from (1.2-36), h ¼ 0:649.

(b) From Figure 1.2-9, for AN ¼ 3:0 the minimum ETN is 9.3, obtained, for
g ¼ 0:91, so that h ¼ 0:760. For this minimum design b�N ¼ 4:15, 3� ¼ 5:15.

(c) For the minimum design ETN is 1% smaller. Although b�N 6¼ 3�, they are
almost equal with 3�=b�N ¼ 1:24.

1.2.5-2 (a) For AN ¼ 0:001, b�N ¼ 3� ¼ 0:62 for g ¼ 0:048. Hence
ETN ¼ 1:24 and h ¼ 0:0012.

(b) For AN ¼ 0:001 the minimum ETN is 1.1. At this point b�N ¼ 0:2,
3� ¼ 0:8, and g ¼ 0:10. Hence h ¼ 0:0098.

(c) For the minimum design ETN is 11% smaller. At this minimum point
3�=b�N ¼ 4:0 instead of 1.0. We can conclude from this that the minimum point
is very broad.

1.2.6-1 The z-transform of xðnÞ ¼ xn is defined by [132, 133]

F½xðnÞ� ¼ XðzÞ ¼
X1

n¼�1
xðnÞz�n ¼

X1

n¼�1
xnz�n ðP1:2:6-1aÞ

F½xðn � mÞ� ¼ XðzÞz�m ðP1:2:6-1bÞ

Applying the above to (P1.2.1-1a) yields

X�
nþ1;n ¼ ðg þ hÞYn � gYnz�1 þ ð2 � g � hÞX�

nþ1;nz�1 þ ðg � 1ÞX�
nþ1;nz�2

and in turn

X�
nþ1;n

Yn

¼ HpðzÞ ¼ Hp ¼ g þ h � gz�1

1 � ð2 � g � hÞz�1 � ðg � 1Þz�2

Hp ¼ z½ðg þ hÞz � g �
z2 þ ðg þ h � 2Þz þ ð1 � gÞ ðP1:2:6-1cÞ

(b) The denominator is a quadratic function in z, and its roots, which are the
poles of Hp, are readily found to be

z1;2 ¼ 1
2
½ 2 � g � h � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 � g � hÞ2 þ 4ðg � 1Þ

q
� ðP1:2:6-1dÞ

(c) For critical damped conditions the poles must be real and equal; hence
from (P1.2.6-1d) it is necessary that

ð2 � g � hÞ2 þ 4ðg � 1Þ ¼ 0

which leads to (1.2-36), as we desired to show.
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1.2.6-2 The input to the g–h filter consists of the sequence yn; n ¼ �1; . . . ; n,
where the yn’s consists of the actual target range xn plus the measurement noise
�n given by (1.2-17). The output of the filter will consist of the deterministic
part plus a noise part due to the input measurement noise �n. Let the output
noise part be designated as �0ðnÞ at time n. The variance of this output, in
steady state, will be �2

nþ1;n. The output due to the input noise sequence �n can be
readily determined from the inpulse response of the filter. Let hn; n ¼ 0; . . . ;1,
be the impulse response of the filter to an impulse applied at time zero. Then

�0ðnÞ ¼
X1

i¼n

hi�n�i ðP1:2:6-2aÞ

The impulse response can be obtained from the inverse of HpðzÞ given by
(P1.2.6-1c). This inverse response is the sum of the residues of the poles of
HpðzÞ inside the unit circle in the z-plane [132]. The variance of �0ðnÞ is
obtained by squaring �0ðnÞ and obtaining its expected value to yield

E½� 2
0ðnÞ� ¼ �2

nþ1;n ¼ �2
x

X1

i¼0

h2
i ðP1:2:6-2bÞ

use being made of the independence of � i from � j for i 6¼ j. Thus

VRFðx�nþ1;nÞ ¼
X1

i¼0

h2
i ðP1:2:6�2cÞ

But [130, 131]

X1

i¼0

h2
i ¼ 1

2�i

þ
HpðzÞHpðz�1Þz�1dz ðP1:2:6-2dÞ

in which the path of integration is the unit circle in the z-plane. Thus
VRFðx�nþ1;nÞ is the sum of the residues of the integrand of (P1.2.6-2d) inside the
unit circle. Let the integrand of (P1.2.6-2d) be represented by FðzÞ; then 2�i
times the residue of FðzÞ at the simple first-order pole z i is given by [132].

Ri ¼ ðz � z iÞFðzÞ
����

z¼z i

ðP1:2:6-2eÞ

or

Ri ¼ ðz � z iÞHpðzÞHpðz�1Þz�1

����
z¼z i

ðP1:2:6-2fÞ
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The poles of FðzÞ inside the unit circles are given by the poles of HpðzÞ,
which were determined to be given by (P1.2.6-1d). Thus substituting z1 and z2

of (P1.2.6-1d) into (P1.2.6-2f) to obtain R1 and R2 and adding these give
(P1.2.6-2d), which is (P1.2.6-2c) and hence (1.2-19).

Alternately, one can use the following [131, p. 420] relationships to evaluate
(P1.2.6-2d): If HðzÞ is the z-transform of hn and

HðzÞ ¼ b0z2 þ b1z þ b2

a0z2 þ a1z þ a2

ðP1:2:6-2gÞ

then

X1

i¼0

h2
i ¼ a0e1B0 � a0a1B1 þ ða2

1 � a2e1ÞB2

a0½ða2
0 � a2

2Þe1 � ða0a1 � a1a2Þa1�
ðP1:2:6-2hÞ

where

B0 ¼ b2
0 þ b2

1 þ b2
2 B1 ¼ 2ðb0b1 þ b1b2Þ ðP1:2:6-2iÞ

B2 ¼ 2b0b2 e1 ¼ a0 þ a2 ðP1:2:6-2jÞ

1.2.6-3 A unity noiseless jump in velocity at time n ¼ 0 is given by

yn ¼ nT n ¼ 0; . . . ; n ðP1:2:6-3aÞ

Its z-transform is [130]

YðzÞ ¼ Yn ¼ Tz�1

ð1 � z�1Þ2
ðP1:2:6-3bÞ

The filter for x�nþ1;n gives the value for time n þ 1 at time n. Hence ideally it
produces ynþ1 at time n. Thus the desired filter output sequence is

sn ¼ ðn þ 1ÞT n ¼ 0; 1; . . . ; n ðP1:2:6-3cÞ

From (P1.2.6-1a) we see that the coefficient of z�n for the z-transform of yn

gives the amplitude of the nth time sample of yn. To make this time sample
occur at time n � 1, we multiply the z-transform of yn by z so that the amplitude
of z�nþ1 is now yn with the result that yn occurs at time n � 1. Thus the
z-transform of (P1.2.6-3c), designate as SnðzÞ, is obtained by multiplying
(P1.2.6-3b) by z to obtain

SnðzÞ ¼
T

ð1 � z�1Þ2
ðP1:2:6-3dÞ
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The output of the prediction filter to yn is obtained by multiplying
(P1.2.6-1c) by (P1.2.6-3b). Subtracting from this (P1.2.6-3d) gives the
z-transform, EðzÞ, of the error transient "n; n ¼ 0; 1; 2; . . . ; n, given by

EðzÞ ¼ X�
nþ1;n � Sn ðP1:2:6-3eÞ

or

EðzÞ ¼ �T

1 � ð2 � g � hÞz�1 � ðg � 1Þz�2
ðP1:2:6-3fÞ

From (P1.2.6-2d) it follows that

X1

i¼0

"2
i ¼ 1

2�i

þ
EðzÞEðz�1Þz�1dz ðP1:2:6-3gÞ

in which again the path of intergration is the unit circle in the z-plane. Thus the
transient error is the sum of the residues of the integrand of (P1.2.6-3g) inside
the unit circle; see solution to problem 1.2.6-2. Evaluating the sum of these
residues gives (1.2-28) for a unity step in velocity, that is, for �v ¼ 1. In a
similar manner (1.2-29) and (1.2-30) can be derived.

1.2.6-4 The z-transform of the noiseless measurements of a constant-
accelerating target as given by (P1.2.4.3-1a) is [130]

ynðzÞ ¼ Yn ¼ �x
T 2z�1ð1 þ z�1Þ

2ð1 � z�1Þ3
ðP1:2:6-4bÞ

The desired output is given by

sn ¼ ynþ1 ðP1:2:6-4cÞ

Hence the z-transform of sn; designated as sn or SnðzÞ, is z times (P1.2.6-4b), or

SnðzÞ ¼ Sn ¼ �x
T 2ð1 þ z�1Þ
2ð1 � z�1Þ3

ðP1:2:6-4dÞ

The z-transform of x�nþ1; n, designated as X�
nþ1; nðzÞ ¼ X�

nþ1; n when constant-
accelerating target noiseless measurements are inputs, is given by

X�
nþ1;n ¼ YnHp ðP1:2:6-4eÞ
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where Hp is given by (P1.2.6-1c) and Yn by (P1.2.6-4b). The z-transform of the
error "n; n ¼ 0; 1; . . . ; n, is then given by

EðZÞ ¼ X�
nþ1;n � Sn ðP1:2:6-4fÞ

Applying the final value theorem to (P1.2.6-4f ) yields (1.2-15)

1.2.6-5 The z-transforms of (1.2-8a), (1.2-8b), (1.2-10a), and (1.2-10b) are

_X�
n; n�1 ¼ z�1 _X�

n�1; n�1 ðP1:2:6-5aÞ

X�
n; n�1 ¼ z�1X�

n�1; n�1 þ T _X�
n; n�1 ðP1:2:6-5bÞ

_X�
n; n ¼ _X�

n; n�1 þ
h

T
½Yn � X�

n; n�1� ðP1:2:6-5cÞ

X�
n; n ¼ X�

n; n�1 þ g½Yn � X�
n; n�1� ðP1:2:6-5dÞ

where (1.2-10a) and (1.2-10b) were written for prediction to time n instead of
n þ 1. Dividing by Yn yields

H 0
pd ¼ z�1Hfd ðP1:2:6-5eÞ

H 0
p ¼ z�1Hf þ TH 0

pd ðP1:2:6-5fÞ

Hfp ¼ H 0
pd þ

h

T
1 � H 0

p

h i
ðP1:2:6-5gÞ

Hf ¼ H 0
p þ g 1 � H 0

p

h i
ðP1:2:6-5hÞ

where

H 0
pd ¼

_X�
n; n�1

Yn

ðP1:2:6-5iÞ

H 0
p ¼

X�
n; n�1

Yn

ðP1:2:6-5jÞ

Hf ¼
X�

n; n

Yn

ðP1:2:6-5kÞ

Hfd ¼
_X�

n; n

Yn

ðP1:2:6-5lÞ

where the subscript f stands for filtered, p for predicted, and d for derivative.
The set of equations (P1.2.6-5e) to (P1.2.6-5h) represents four equations with

four unknown transfer functions which can be solved for. Here, H 0
pd is given by

(P1.2.6-5e) and can hence be eliminated from (P1.2.6-5f ) to (P1.2.6-5h),
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leaving three equations with three unknowns. Solving yields [131]

H 0
p ¼ zðg þ hÞ � g

z2 þ ðg þ h � 2Þz þ 1 � g
ðP1:2:6-5mÞ

Hf ¼
zðgz þ h � gÞ

z2 þ ðg þ h � 2Þz þ 1 � g
ðP1:2:6-5nÞ

Hfd ¼ h

T

zðz � 1Þ
z2 þ ðg þ h � 2Þz þ 1 � g

ðP1:2:6-5oÞ

H 0
pd ¼ z�1Hfd ðP1:2:6-5pÞ

What we really want instead of H 0
p is

Hp ¼
X�

nþ1; n

Yn

ðP1:2:6-5qÞ

see solution to problem 1.2.6-1. Because

X�
n; n�1 ¼ z�1X�

nþ1; n ðP1:2:6-5rÞ

from (P1.2.6-5j)

H 0
p ¼

z�1X�
nþ1; n

Yn

¼ z�1Hp ðP1:2:6-5sÞ

and

Hp ¼ zH 0
p ðP1:2:6-5tÞ

Hp ¼ z½ðg þ hÞz � g�
z2 þ ðg þ h � 2Þz þ ð1 � gÞ ðP1:2:6-5uÞ

which is identical to (P1.2.6-1c). Using (P1.2.6-5q) for Hp in (P1.2.6-5u),
multiplying out the denominator, and obtaining the inverse z-transform
immediately lead to (P1.2.1-1a). In a similar manner, the recursive equations
for x�n; n and _x�n; n can be obtained.

1.2.6-6 (a) For AN ¼ 3:0, Figure 1.2-13 indicates that b�N ¼ 3� ¼ 5:0 for
g ¼ 0:95. Hence ETN ¼ 10:0, and from (1.2-35a) and (1.2-35b), 	 ¼ 0:224 and
h ¼ 0:603.

(b) For AN ¼ 3:0, from Figure 1.2-15 the minimum ETN is 9.4 with b�N ¼ 3:7
and 3� ¼ 5:7. At this point g ¼ 0:98 so that 	 ¼ 0:141 and h ¼ 0:737.

(c) For the minimum design, ETN is 6% smaller. At this minimum point, b�N
almost equals 3�; specifically, 3�=b�N ¼ 1:54.
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1.2.6-7 (a) For AN ¼ 0:001, b�N ¼ 3� ¼ 0:66 for g ¼ 0:08. Hence
ETN ¼ 1:32, 	 ¼ 0:959, and h ¼ 0:00167.

(b) For AN ¼ 0:001 from Figure 1.2-15 the minimum ETN is 1.15 with
b�N ¼ 0:20, 3� ¼ 0:95, and g ¼ 0:135 so that 	 ¼ 0:930 and h ¼ 0:0049.

(c) For the minimum design ETN is 13% smaller. At this point 3�=b�N ¼ 4:75.

1.2.6-8 (a) For AN ¼ 0:003, b�N ¼ 3� ¼ 0:83 for g ¼ 0:115. Hence
ETN ¼ 1:66, 	 ¼ 0:941, and h ¼ 0:0035.

(b) For AN ¼ 0:003, from Figure 1.2.6-15 the minimum ETN is 1.4 with
b�N ¼ 0:25, 3� ¼ 1:15, and g ¼ 0:19 so that 	 ¼ 0:90 and h ¼ 0:01.

(c) For the minimum design ETN is 16% smaler. At this point 3�=b�N ¼ 4:6.

1.2.7-2 (b) Here �nþ1;n=� x ¼ 3. Hence from (1.2-41), 	 ¼ 0:1653. From
(1.2-35a) and (1.2-35b), g ¼ 0:973 and h ¼ 0:697. Using (1.2-23) and (1.2-15)
yields T ¼ 3:13 sec; this update time is possibly a little fast for some track-
while-scan systems.

(c) Because �nþ1;n=� x ¼ 3, again 	 ¼ 0:1653, g ¼ 0:973, and h ¼ 0:697.
But now T ¼ 5:72 sec, a reasonable update time for a track-while-scan system.
To require large update times, it is necessary that �nþ1; n be large and �xmax be
low. Note that the g–h filter obtained has a short memory, 	 being small.

1.2.7-3

VRF x�nþ1;n

� �
¼ 608 0

500 0


 �2

¼ ð1:216Þ2 ¼ 1:479

From (1.2-19)

VRFðx�n¼1; nÞ ¼
2g2 þ 2h þ gh

gð4 � 2g � hÞ ¼ 1:479 ð1Þ

and from (1.2-27)

h ¼ g2

2 � g
ð2Þ

Solving (1) and (2) yields g ¼ 0:739 and h ¼ 0:434. Alternatively Table 1.2-4
could be used or Figure 1.2-7. Then b� ¼ ��xT 2=h ¼ �ð0:2gÞ102=0:434 ¼
�1475 ft, and

D�
x nþ1; n

�v2
¼ T 2ð2 � gÞ

ghð4 � 2g � hÞ ¼ 188:3 sec2

Note that b�=3�nþ1;n ¼ 0:809 here.
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1.2.7-5 From (1.2.41), 	 ¼ 0:400.
From (1.2-16a), and (1.2-16b) g ¼ 0:840, h ¼ 0:360.
From (1.2-28), Dx�nþ1;n=�v2 ¼ 195:9 sec2, larger than the value of

188.3 sec2 obtained for the Benedict–Bordner filter design of problem 1.2.7-3.
From (1.2-15), b� ¼ �1778 ft versus �1475 ft for problem 1.2.7-3.
Note that b�=3�nþ1;n ¼ 0:975. One could reduce b� to �1445 ft by

decreasing T to 9 sec, in which case b�=3�nþ1;n ¼ 0:790.

1.2.7-8

g ¼ 0:628 h ¼ 0:287 T ¼ 1:421 sec

�nþ1;n ¼ 150 ft �n;n ¼ 109:5 ft _�nþ1;n ¼ 34:5 ft=sec

1.2.9-1 For the g–h to be stable, the poles of (P1.2.6-1c) in the z-plane must be
within the unit circle centered about the origin. Alternatively the poles must be
in the left hand of u given by the transformation of (P1.2.9-1a). To apply
(P1.2.9-1a), we rewrite it as [132]

z ¼ 1 þ u

1 � u
ðP1:2:9-1bÞ

and substitute into the denominator of (P1.2.6-1c) and set the result equal to
zero to obtain

u2ð4 � 2g � hÞ þ uð2gÞ þ h ¼ 0 ðP1:2:9-1cÞ

The Routh–Hurwitz criterion [133] states that for a second-degree polynomial
the roots are in the left-hand plane if all the coefficients are greater than zero,
which leads immediately to (1.2-37a) to (1.2-37b) as we desired to show.

1.2.10-1 (a) The expanding-memory polynomial g–h filter used for track
initiation is

hn ¼ 6

ðn þ 2Þðn þ 1Þ ð1:2-38aÞ

gn

2ð2n þ 1Þ
ðn þ 2Þðn þ 1Þ ð1:2-38bÞ

(1) Assume the target first range measurement is made at n ¼ 0 and is given
by y0. We do not know the target velocity yet, so logically the prediction of
range at time n ¼ 1 is chosen to be x�1;0 ¼ y0. The growing-memory g–h
filter also gives this result. For n ¼ 0, g0 ¼ 1 from (1.2.-38b). Hence from
(1.2-8b)

x�0;0 ¼ x�0;�1 þ ðy0 � x�0;�1Þ
¼ y0
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Because we do not know a priori the target velocity at time n ¼ 0, in (1.2-10b)
we set _x�0;1 ¼ 0 so that (1.2-10b) yields

x�1;0 ¼ x�0;0 ¼ y0

(2) When the second range measurement y1 at time n ¼ 1 is obtained, the
target velocity at time n ¼ 1 can be estimated. It is logically given by

_x�1;1 ¼ y1 � y0

T

This is the same estimate obtained using the g–h growing-memory filter. At
n ¼ 1, from (1.2-38a), h ¼ 1. Using (1.2-8a), we have

_x�1;1 ¼ 0 þ
y1 � x�1;0

T
¼ 0 þ y1 � y0

T

the same as that obtained above.
From (1.2-38), g1 ¼ 1. Hence from (1.2-8b) we have

x�1;1 ¼ x�1;0 þ ðy1 � x�1;0Þ
¼ y0 þ ðy1 � y0Þ
¼ y1

Physically, this also follows because the least-squares best-fitting line to the first
two measurements is a line going through these first two measurements.

From (1.2-38a), _x�2;1 ¼ _x�1;1, and from (1.2-10b)

x�2;1 ¼ y1 þ T
y1 � y0

T
¼ y1 þ y1 � y0

¼ 2y1 � y0

(b) Switchover to Benedict–Bordner filter occur when

VARðx�nþ1;nÞ for expanding-memory polynomial filter

¼ VARðx�nþ1;nÞ for Benedict--Bordner filter
ð1:2-40Þ

Substituting (1.2-19) and (1.2-42) yields

2ð2n þ 3Þ
ðn þ 1Þn ¼ 2g2 þ 2h þ gh

gð4 � 2g � hÞ ¼ 608 0

500 0


 �2

¼ 1:479

Solving for n yields n ¼ 3:04 ¼ 3; hence the switchover occurs at n ¼ 3.
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1.2.10-2 (b) 0.26%
(c) 4.56%.

1.2.10-3 The track initiation filter is exactly the same as obtained for the
Benedict–Bordner filter, the switch over occurring at the same time.

1.2.10-4 From (1.2-19)

VRF x�nþ1;n

� �
¼ 2g2 þ 2h þ gh

gð4 � 2g � hÞ

Substituting (1.2-35a) (1.2-35b) yields

VRFðx�nþ1; nÞ ¼
2ð1 � 	2Þ2 þ 2ð1 � 	Þ2 þ ð1 � 	2Þð1 � 	Þ2

ð1 � 	2Þ½4 � 2ð1 � 	2Þ � ð1 � 	Þ2�

¼ 2ð1 � 	Þ2ð1 þ 	Þ2 þ 2ð1 � 	Þ2 þ ð1 � 	2Þð1 � 	Þ2

ð1 � 	Þð1 þ 	Þ 4 � 2 þ 2	2 � 1 þ 2	� 	2½ �

¼ 2ð1 � 	Þð1 þ 	Þ2 þ 2ð1 � 	Þ þ ð1 � 	2Þð1 � 	Þ
ð1 þ 	Þ 1 þ 2	þ 	2½ �

¼ ð1 � 	Þ½2ð1 � 	Þ2 þ 2 þ ð1 � 	2Þ�
ð1 þ 	Þ 1 þ 2	þ 	2½ �

¼ ð1 � 	Þ 2 þ 4	þ 2	2 þ 2 þ 1 � 	2½ �
ð1 þ 	Þ3

¼ ð1 � 	Þð5 þ 4	þ 	2Þ
ð1 þ 	Þ3

1.3-1 Substituting (1.3-10c) into (1.3-9) yields

2h � g g þ h þ h2

4g


 �
¼ 0 ðP1:3-1Þ

Multiplying out (P1.3-1) and transposing terms yield

2h ¼ g2 þ gh þ 1

4
h2

or

g2 þ gh þ 1
4

h2 � 2h
� 

¼ 0

Solving for g yields (1.3-10a).
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2.4-1 From (2.4-4e) we have, in steady state,

Hn ¼ S�n;n�1M T ½Rn þ MS�n; n�1M T ��1

Substituting (2.4-4j) into (2.4-4f ), we have

S�n; n�1 ¼ �½1 � Hn�1M�S�n�1; n�2�
T þ Qn ðP:4-1aÞ

Dropping the subscript n for steady state and replacing the predictor covariance
matrix S�n;n�1 by Ŝ, the above equations become

H ¼ ŜM T R þ MŜM T
� ��1 ðP2:4-1bÞ

Ŝ ¼ �½1 � HM�Ŝ�T þ Q ðP2:4-1cÞ

The matrix H is given by (2.4-5), but for simplicity we shall write it as

H ¼ w1

w2

� �
ðP2:4-1dÞ

w1 and w2 being the Kalman filter weights. The terms � and M are given by
respectively (2.4-1b) and (2.4-3a). Let Ŝ be given by

Ŝ ¼ s11 s12

s12 s22

� �
ðP2:4-1eÞ

The matrix R from (2.4-4i) and (2.4-3b) and the fact that E � 2
n

� �
¼ �2

x is the
1  1 matrix

R ¼ ½�2
x � ðP2:4-1fÞ

We will write �2
x as r for simplicity. Substituting into (P2.4-1b) yields

w1

w2

� �
¼ s11 s12

s12 s22

� �
1

0

� �
r þ ½1 0� s11 s12

s12 s22

� �
1

0

� �� ��1

ðP2:4-1gÞ

which readily yields

w1 ¼ s11

r þ s11

ðP2.4-1hÞ

w2 ¼ s12

r þ s11

ð P2.4-1iÞ
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Proceeding in a similar way with (P2.4-1c), after substitution and setting
identical terms equal, we obtain

s11 ¼ ð1 � w1Þ � Tw2½ �s11 þ Ts12 þ ð1 � w1Þ � Tw2½ �Ts12 þ T 2s22 ðP2:4-1jÞ
s12 ¼ ð1 � w1Þ � Tw2½ �s12 þ Ts22 ðP2:4-1kÞ
s22 ¼ �w2s12 þ s22 þ u ðP2:4-1lÞ

where u is used in place of �2
u for simplicity.

Solve (P2.4-1k) for T 2s22 and substitute into (P2.4-1j). Next divide (P2.4-1i)
by (P2.4-1h) to obtain

s12 ¼ w2

w1

s11 ðP2.4-1m)

Substitute this into the new (P2.4-1j) and get

T w2 ¼ w2
1

2 � w1

ðP2:4-1nÞ

From (2.4-5) we know that

w1 ¼ g ðP2:4-1oÞ

w2 ¼ h

T
ðP2:4-1pÞ

Applying the above to (P2.4-1n) yields (2.1-4), which we desired to get.
Using (P2.4-1h), we solve for s11 to obtain

s11 ¼ w1r

1 � w1

ðP2:4-1qÞ

From (P2.4-1l) we get

s12 ¼ u

w2

ðP2.4-1rÞ

Substituting (P2.4-1q) and (P2.4-1r) into (P2.4-1i) yields

u

r
¼ w2

2

1 � w1

ðP2:4-1sÞ

Using (P2.4-1n) yields

T 2 u

r
¼ w4

1

ð2 � w1Þ2ð1 � w1Þ
ðP2:4-1tÞ

Using (P2.4-1o) yields (2.1-5), as we desired to show.
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2.4-2 Let ŝ ij and �s ij be the ij components of respectively Ŝ and �S; then

ŝ11 ¼ g�2
x

1 � g
ðP2:4-2aÞ

ŝ12 ¼ �2
u

h
T ðP2:4-2bÞ

ŝ22 ¼ �2
u

h
ðg þ hÞ ¼ �s22 þ �2

u ðP2:4-2cÞ

�s11 ¼ ð1 � gÞ̂s11 ¼ g�2
x ðP2:4-2dÞ

�s12 ¼ ð1 � gÞ̂s12 ðP2:4-2eÞ

�s22 ¼ �2
u

g

h
ðP2:4-2fÞ

2.4-3 (a) g ¼ 0:742, h ¼ 0:438, �nþ1;n ¼ 255 ft, �n;n ¼ 129:2 ft, _�nþ1;n ¼
149:2 ft/sec, and _�n;n ¼ 118:3 ft/sec.

(b) �nþ1;n ¼ 183:4 ft, �n; n ¼ 121:0 ft, _�nþ1; n ¼ 52:7 ft=sec and b� ¼ 295 ft
(¼ 1:608�nþ1; nÞ.

Ŝ ¼ ŝ11 ŝ12

ŝ12 ŝ22

� �
¼ �s11 þ 2T �s12 þT 2�s22 �s12 þ T�s22

�s12 þ T�s22 �s22

� �
ð2:4-3aÞ

2.10-1 (a) From Figure 2.10-4, for �nþ1;n=� x ¼ 2, p2 � 1 if the solution is at
the peak of a p2 ¼ contstant curve:

p2 ¼ T 2 �a

�x

¼ 32 ft=sec
2

170 ft
T 2 ¼ 0:1882 T 2

Hence 0.1882T 2 � 1 or T � 2:31 sec. Choose T ¼ 2:3 sec.
Then from (2.10-1), p1 ¼ 
=T ¼ 3=2:3 ¼ 1:304, which is consistent with

the value in Figure 2.10-4 for p2 ¼ 1 and no iterations are needed, just as was
the case for the example in Section 2.10. From Figures 2.10-1 to 2.10-3 and
2.10-5, for p1 ¼ 1:30 and p2 ¼ 1, g ¼ 0:8, h ¼ 0:56, k ¼ 0:066, and
�n;n=�x ¼ 0:88. Hence �n;n ¼ 150 ft. It is worth noting that this example and
that of Section 2.10 required no iteration primarily because we are working in a
region of Figure 2.10-4 where the p2 ¼ const curves are very flat. We will find
this to be almost the case for problems 2.10-2 through 2.10-4. The region where
the peak of the p2 ¼ const curves are less flat (more peaked require large
p2ð> 10Þ and large �nþ1;n=� xð> 8ÞÞ. Typically our designs do not have
�nþn;1=� x > 8. Alternatively, a region away from the peak where the curves are
not flat requires that p2 be large and p1 be very small or large for �nþ1;n=�x to
have a practical value.

(b) From Figures 2.10-6 and 2.10-7 T _�nþ1;n=� x ¼ 1:6, T _�n;n=�x ¼ 1:0, and
T 2��nþ1;n=� x¼: T 2��n;n=�x ¼ 1:0. Thus _�nþ1;n ¼ 118 ft/sec, _�n;n ¼ 73:9 ft/sec,
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and ��n;n ¼ ��nþ1;n ¼ 32:1 ft/sec2. From Figures 2.10-8 to 2.10-10 �m;n=�n;n ¼
0:64, _�m;n= _�n;n ¼ 0:42; and ��m;n=��n;n ¼ 0:70: Thus �m;n ¼ 0:64 (150 ft)
¼ 96 ft, _�m;n ¼ 0:42(73.9 ft/sec)¼ 31.0 ft/sec, and ��m;n ¼ 0:70ð32:1Þ ¼ 22:5
ft/sec2.

2.10-2 Based on the solution for problem 2.10-1, again in Figure 2.10-4 first
try p2 � 1 and again p2 ¼ 0:1882T 2 � 1. Hence T ¼ 2:3 sec and p1 ¼ 
=
T ¼ 20=2:3 ¼ 8:7. Checking with Figure 2.10-4 yields, for p1 ¼ 8:7 and
�nþ1;n=� x ¼ 2, p2 ¼ 1:05, close to the value of p2 ¼ 1:0. Choosing to do an
iteration (one may argue that an interation really is not necessary), we now
choose p2 ¼ 1:05 for the iteration. Then p2 ¼ 0:1882T 2 ¼ 1:05 and
T ¼ 2:36 sec. Thus p1 ¼ 20=2:36 ¼ 8:5, which is consistent with
�nþ1;n=� x ¼ 2 and p2 ¼ 1:05 in Figure 2.10-4. From Figures 2.10-1 to 2.10-3
and 2.10-5, for p1 ¼ 8:5 and p2 ¼ 1:05, g ¼ 0:8, h ¼ 0:54, k ¼ 0:093, and
�n;n=�x ¼ 0:89. Hence �n;n ¼ 151 ft.

2.10-3 Again, based on the solution for problem 2.10-1, from Figure 2.10-4,
first try p2 � 1, and from (2.10-2)

p2 ¼ T 2 �a

�x

¼ T 2 5ð32Þ
30

¼ 5:33T 2

Hence p2 ¼ 5:33T 2 � 1 so that T � 0:433 sec. Choose T ¼ 0:433 sec; then
from (2.10-1) p1 ¼ 
=T ¼ 5=0:433 ¼ 11:55. Checking with Figure 2.10-4
yields for p1 ¼ 11:55 and �nþ1;n=� x ¼ 2, p2 ¼ 1:05, again close to the value of
p1 ¼ 1:0. Choosing to do an iteration, we now choose p2 ¼ 1:05. Then
T ¼ 0:444 sec and p1 ¼ 11:3, which is consistent with �nþ1;n=�x ¼ 2 and
p2 ¼ 1:05 in Figure 2.10-4. From Figures 2.10-1 to 2.10-3 and 2.10-5, for
p1 ¼ 11:3 and p2 ¼ 1:05, g ¼ 0:78, h ¼ 0:52, k ¼ 0:087, and �n;n=�x ¼ 0:88.
Hence �n;n ¼ 26:4 ft.

2.10-4 From Figure 2.10-4 for �nþ1;n=� x ¼ 3:33, p2 � 2:5 for the solution
to be at the peak of a p2 ¼const curve, as was the case for the example of
Section 2.10. Also from problem 2.10-1 again p2 ¼ 0:1882T 2. For
p2 ¼ 0:1882T 2 � 2:5, T � 3:64 sec. Choose T ¼ 3:64 sec. From (2.10-1),
p1 ¼ 
=T ¼ 20=3:64 ¼ 5:49. Checking with Figure 2.10-4 yields, for
p1 ¼ 5:49 and �nþ1; n=� x ¼ 3:33, p2 ¼ 2:8, which is not consistent with the
value of p2 ¼ 2:5. For the second iteration, we use p2 ¼ 2:8: Then
T � 3:86 sec. Use T ¼ 3:86 sec. Now p1 ¼ 5:2, which is consistent with
p2 ¼ 2:8 and �nþ1;n=� x ¼ 3:33 in Figure 2.10-4. From Figure 2.10-1 to 2.10-3
and 2.10-5, for p1 ¼ 5:2 and p2 ¼ 2:8, g ¼ 0:87, h ¼ 0:83, k ¼ 0:17, and
�n;n=�x ¼ 0:93. Hence �n;n ¼ 158 ft.

It is worth comparing this filter with the g–h critically damped filter design
of problem 1.2.7-2(c) for which �xmax, �nþ1;n, and �x are almost the same. The
g–h–k filter obtained here has a longer memory, g ¼ 0:87 and h ¼ 0:83 here and
g ¼ 0:973 and h ¼ 0:697 for problem 1.2.7-2(c). From (1.2-35a) the g of 0.87 is
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equivalent to a 	 of 0.36 for a critically damped filter, whereas 	 ¼ 0:1653 for
the critically damped g–h filter of problem 1.2.7-2(c). (From problem 7.2-2 we
find that for a g–h–k critically damped filter g ¼ 1 � 	3 so that 	 ¼ 0:507
actually.) Also note that a shorter update is needed with the g–h–k
(T ¼ 3:86 sec) than the g–h critically damped filter (T ¼ 5:72 sec), by about a
factor of about 1.5.

Table P2.10-1 summarizes the Singer g–h–k filter designs given in Section
2.10 and problems 2.10-1 to 2.10-4.

2.10-5 Enough parameters are given here to define p1 and p2 directly from
(2.10-1) and (2.10-2), without any iteration, yielding p1 ¼ 5 and p2 ¼ 3. From
Figures 2.10-4 and 2.10-5, it then follows that �nþ1;n=�x ¼ 3:7 and
�n; n=�x ¼ 0:94; Hence �nþ1;n ¼ 630 ft and �n;n ¼ 160 ft. Because p1 and p2

are close to the value of problem 2.10-4, the values of g, h, and k as obtained
from Figures 2.10-1 to 2.10-3 will be about the same as for problem 2.10-4; see
Table P2.10-1.

2.10-6 For the example of Section 2.10, �a ¼ 30 m=sec2. Hence �w ¼
�a ¼ 30 m=sec2, and from (2.4-13), _�x ¼ 10 m=sec3. From Figure 1.3-1,
JN ¼ T 3 _�x=�cx ¼ ð2 secÞ3

(10 m/sec3)/50 m ¼ 1:6, where we used the value
T ¼ 2 sec of the example. From Figure 1.3-1 it follows that b�N ¼ 3� for
3� ¼ 6:1 ¼ b�N : Then � ¼ 2:03 and ETN ¼ 12:2: Also from Figure 1.3-1,
h ¼ 0:82: Because b�N ¼ JN=2k (see Figure 1.3-1), it follows that k ¼ 0:13.
From (1.3-8c) it follows in turn that 	 ¼ 0:362. Hence from (1.3-8a), g ¼ 0:870.
Using (1.3-6) yields �n;n=� x ¼ 0:905. Note that these values for g, h, k, �, and
�n;n=�x are very similar to those obtained for the g–h–k filter of Section 2.10;
see Table P2.10-1. As a check, we used (1.3-8b) with 	 ¼ 0:362 to yield
h ¼ 0:83, which is in good agreement with the values obtained above. Using
(1.3-4) yields � ¼ 1:92, which is also in good agreement with the value
obtained above. The differences are due to the inaccuracies in reading the curves.

2.10-7 From Figure 1.3-3, for JN ¼ 1:6 the minimum ETN design yields
ETN ¼ 11:7, h ¼ 1:1, 3� ¼ 7:7, b�N ¼ 4:0, and � ¼ 2:57. Because b�N ¼ JN=2k,
k ¼ 0:20. From (1.3-8c), 	 ¼ 0:263. Thus from (1.3-8a), g ¼ 0:931. Using
(1.3-6) yields �n;n=�x ¼ 0:897. Note that these values for g, h, k differ
somewhat from the values obtained for problem 2.10-6 and the example of
Section 2.10. The values for � and �n;n=�x are similar; see Table P2.10-1.

2.10-8 As in problem 2.10-6, �w ¼ �a ¼ 30 m/sec2, _�x ¼ 10 m/sec3, and
JN ¼ 1:6. From Figure 1.3-4 it follows that b�N ¼ 3� for 3� ¼ 5:8 ¼ b�N. Then
ETN ¼ 11:6 and � ¼ 1:93. Also from Figure 1.3-4, h ¼ 0::69. Because
b�N ¼ JN=2k (see Figure 1.3-4), it follows that k ¼ 0:14. Using (1.3-10a)
yields g ¼ 0:83. Using (1.3-6) yields �n;n=�x ¼ 0:779. These values for g, h, k,
�, and �n;n=�x are somewhat similar to those of the g–h–k filter of the examples
of Section 2.10 and of problem 2.10-6; see Table P2.10-1.
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2.10-9 Again as in problem 2.10-6, �w ¼ �a ¼ 30 m=sec2, _�x ¼ 10 m=sec3,
and JN ¼ 1:6. From Figure 1.3-6, for JN ¼ 1:6 the minimum ETN design yields
ETN ¼ 10:0, h ¼ 0:93, 3� ¼ 6:8, b�N ¼ 3:2, and � ¼ 2:27. Because
b�N ¼ JN=2k, k ¼ 0:25. Using (1.3-10a) yields g ¼ 0:90. Using (1.3-6) yields
�n;n=�x ¼ 0:862. These values for g, h, k, �, and �n;n=�x are in reasonable
agreement with those of the example of Section 2.10; see Table P2.10-1.

2.10-17

Steady-State Steady-State
Singer g–h–k g–h Kalman

Filter Filter

g 0.71 0.742
h 0.4 0.438
k 0.03 0.000
�nþ1;n (ft) 237 255
�n;n (ft) 126 129.2
_�nþ1;n (ft /sec) 137 149.2
�n;n (ft /sec) 73.9 118.3

We see on comparing the values of the steady-state g–h–k Singer filter with
those of the steady-state g–h Kalman that they are indeed approximately
equivalent, as we desired to show.

3.5.1.4-1 (a) From (3.5-9), �t ¼ 2:47 sec. Thus �R ¼ 37; 000 ft; �r ¼
c=2Bs ¼ 492 ft. Hence �R=�r ¼ 75:3.

(b) From (3.5-9), now �t¼6:83 msec. Thus �R¼95:6 ft. Now �r ¼ 2:46 ft,
and �R=�r ¼ 38:9.

(c) From (3.5-9), �t ¼ 0:0370 sec, and now �R ¼ 555 ft, �r ¼ 98:4 ft, and
�R=�r ¼ 5:64, one-seventh of the �R=�r in (b) because TU is one-seventh as
large.

(d) From (3.5-9), �t ¼ 0:370 sec and now �R ¼ 5550 ft, �r ¼ 98:4 ft, and
�R=�r ¼ 56:4, 10 times the �R=�r in (c) because TU is 10 times larger.

3.5.1.4-2 Now �Ra is 100 times bigger so that, for example 1, �Ra ¼ 1600 ft
and �R ¼ 2106 ft, instead of the 506 ft for ad ¼ 0; for example 2, �Ra ¼ 4 ft,
so that �R ¼ 28:7 ft instead of the 24.7 ft for ad ¼ 0.

3.5.2-1 (a) From the solution to problem 2.10-5, p1 ¼ 5, and p2 ¼ 3. From
(3.5-9) and (3.5-16), p3 ¼ 10. Hence from Figure 3.5-7, �n;n=�x ¼ 0:30, so that
�n;n ¼ 51 ft when we use an upchirp. In problem 2.10-5, �n;n ¼ 160 ft when a
nonchirped waveform was used. Thus using an upchirp waveform improves the
accuracy of �n;n by 160=51 ¼ 3:1, about a factor of 3. For this example we
assumed that the range measurement accuracy was about one-third of the
waveform resolution of �r ¼ c=2Bs ¼ 492 ft to yield � x ¼ 170 ft.
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(b) For a downchirp, p3 ¼ �10, and from Figure 3.5-7, we see that
�n;n=�x � 10, so that �n;n � 1700 ft, way over 10 times worse than with a
nonchirped waveform and way over 30 times worse than with the downchirp
waveform.

4.1-1 From (4.1-15) and (2.4-3a)

��1 ¼
1 �T

0 1

� �

M ¼ ½1 0 �

Thus, M��1 of (4.1-13) becomes

M��1 ¼ ½1 0 � 1 �T

0 1

� �
¼ ½1 � T �

Substituting the above and (2.4-3a) into (4.1-13) yields (4.1-17).

4.1-4 (a) From (4.1-17)

T ¼ 1 0

1 �T

� �

Hence

T T ¼ 1 1

0 �T

� �

and

T T T ¼ 1 1

0 �T

� �
1 0

1 �T

� �
¼ 2 �T

�T T 2

� �

From matrix theory the �ij element of the inverse A�1 of a matrix A is given by

� ij ¼ � Aji

jA j ðP4:1-4aÞ

where Aji is the ji cofactor of A. Specifically, Aji is ð�1Þ iþj
times the

dererminant of the matrix A with its jth row and ith column deleted and jAj is
the determinant of A. Hence

½T T T ��1 ¼
1

1

T
1

T

2

T 2

2

64

3

75
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Check

1
1

T
1

T

2

T 2

2

64

3

75
2 �T

�T T 2

� �
¼ 1 0

0 1

� �

Therefore

Ŵ ¼ T T T
� ��1

T T ¼
1

1

T

1

T

2

T 2

2

664

3

775
1 1

0 �T

� �
¼

1 0
1

T
�1

T

" #

ðP4.1-4bÞ

ŴT ¼
1 0
1

T
�1

T

" #
1 0

1 �T

� �
¼

1 0

0 1

� �

Hence

1 0

1 �T

� ��1

¼
1 0

1

T
�1

T

2

4

3

5

Above Ŵ is the inverse of T. This follows because we are dealing with a case
where there are as many equations in (4.1-11) as there are unknowns when we
try to solve for Xn ¼ X�

n;n, the N ðnÞ term being dropped. In this case T is
nonsingular and (4.1-11) can be solved for X�

n;n by inverting T to give

X�
n;n ¼ T �1Y ðnÞ ðP4:1-4cÞ

This is called the deterministic case. For this case our best least-squares fitting
line of Figure 1.2-10 fits through the data points; there are only two points and a
straight line fits exactly through these two data points. The error en of (4.1-31)
is zero for this case. Here

X�
1;1 ¼ x�1;1

_x�1;1

� �
¼ T �1Y1 ¼ 1 0

1 �T

� ��1
y1

y0

� �
¼

1 0

1

T
�1

T

2

4

3

5 y1

y0

� �

Therefore

x�1;1 ¼ y1 _x�1;1 ¼ y1 � y0

T

as one expacts for the straight-line fit to the two data points.

4.5-1 From (2.6-10) we see that the derivative of (4.5-13) is

2ðY ðnÞ � TX�
n; nÞ

T
R�1

ðnÞð�TÞ ¼ 0
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Hence
ðY T

ðnÞ � X�T
n; n T TÞR�1

ðnÞ T ¼ 0

Expanding yields

Y T
ðnÞR

�1
ðnÞT ¼ X T

n; nT TR�1
ðnÞT

Taking the transpose of both sides yields

T T R�1
ðnÞ Y ðnÞ ¼ T TR�1

ðnÞ T Xn;n

Thus
X�

n;n ¼ ðT T R�1
ðnÞTÞ

�1
T T R�1

ðnÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
W
�

Y ðnÞ

The coefficient of Yn above is W
�
, which agrees with (4.5-4).

4.5-2 Substituting (P4.5-2a) and (2.4-1b) into (P4.5-2b) yields

Ŵðh ¼ 1Þ ¼ �Ŵðh ¼ 0Þ ¼ 1 T

0 1

� � 1 0

1

T
�1

T

2

4

3

5 ¼
2 �1

1

T
�1

T

2

4

3

5 ðP4:5-2cÞ

Therefore extending the solution to problem 4.1-4a, we get

X�
2;1 ¼

x�2;1
_x�2;1

" #

¼
2 �1
1

T
�1

T

" #
y1

y0

� �

x�2;1 ¼ 2y1 � y0 ¼ y1 þ ðy1 � y0Þ

_x�2;1 ¼ y1 � y0

T

5.5-1 In (5.5-8)
j

i


 �
¼ j !

i !ð j � iÞ!

Hence from (5.5-8), for h ¼ 1

�ð1Þ00 ¼ 1

�ð1Þ01 ¼ 1

0


 �
11 ¼ 1

�ð1Þ02 ¼ 2

0


 �
12 ¼ 2 !

0 !2 !
¼ 1

�ð1Þ10 ¼ 0

1


 �
1�1 ¼ 0 !

1 !ð�1Þ! ¼
1

1 ¼ 0
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because ð�nÞ! ¼ 1 when n is a positive integer. Also

�ð1Þ11 ¼ 1

1


 �
10 ¼ 1!

1!ð0 !Þ ¼ 1

�ð1Þ12 ¼ 2

1


 �
11 ¼ 2 !

1!1!
¼ 2

�ð1Þ20 ¼ 0

2


 �
1�2 ¼ 0!

2 !ð�2 !Þ ¼
1

1 ¼ 0

�ð1Þ21 ¼ 1

2


 �
1�1 ¼ 1!

2 !ð�1Þ ! ¼
1

1 ¼ 0

�ð1Þ22 ¼ 2

2


 �
10 ¼ 2 !

2 !0 !
¼ 1

Thus (5.4-13) follows, as we desired to show.

5.5-2 From (5.5-3a)

WðhÞ z ¼ �ðhÞ zSGCB

Thus

Wðh ¼ 1Þ z ¼ �ð1Þ zSGCB ðP5:5-2aÞ

and

Wðh ¼ 0Þ z ¼ SGCB ðP:5:5-2bÞ

and

Wðh ¼ 1Þ z ¼ �ð1Þ zWðh ¼ 0Þ ðP5:5-2cÞ

From the solution to problem 5.5-1 it follows that �ð1Þ z of (5.5-3a) is given
by

�ð1Þ z ¼
1 1

0 1

� �
ðP5:5-2dÞ

From (5.5-4), for m ¼ 1, S is a 2  2 matrix and ½ S �00 ¼ 1, ½ S �01 ¼ 0 ¼ ½ S �10,
½ S �11 ¼ ½ S �00 þ 0 � 0 ¼ 1. Thus

S ¼ 1 0

0 1

� �
ðP5:5-2eÞ
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From (5.5-5), G is also a 2  2 matrix for m ¼ 1, and from (5.5-5) and
(5.3-4a)

½G �00 ¼ ð1Þð1Þð1Þ 1

1
¼ 1

½G �01 ¼ ð�1Þ 1

0


 �
1

0


 �
1

1
¼ �1

½G �10 ¼ ð�1Þ0 0

1


 �
1

1


 �
1

L ð1Þ ¼
0!

1!ð�1Þ!
1

L
¼ 0

½G �11 ¼ ð�1Þ1 1

1


 �
2

1


 �
1

L ð1Þ ¼ ð�1Þ 1 !

1 !0 !


 �
2 !

1 !1 !


 �
1

L
¼ � 2

L

ðP5:5-2fÞ

Therefore for L ¼ 1

G ¼ 1 �1

0 �2

� �

Here, C is also a 2  2 matrix for m ¼ 1, and from (5.3-5) and (5.3-5a), C is
diagonal, with

½C � jj ¼
1

c2
j

for 0 � j � m ð5:5-7Þ

where

c2
j ¼ ðL þ j þ 1Þð jþ1Þ

ð2j þ 1ÞL ð jÞ ð5:3-5aÞ

and

c2
0 ¼ L þ 1

ð1Þð1Þ ¼ L þ 1 ¼ 2

c2
1 ¼ ðL þ 2Þð2Þ

ð3ÞL ð1Þ ¼ ðL þ 2ÞðL þ 1Þ
3L

¼ 2

Thus for L ¼ 1

½C �00 ¼ 1
2

½C�11 ¼ 1
2

and

C ¼
1
2

0

0 1
2

� �
ðP5:5-2gÞ
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For m ¼ 1, L ¼ 1, B is also a 2  2 matrix, and from (5.5-6), (5.3-3), and
(5.3-4)

½B � ij ¼ piðL � jÞ ¼ pðL � j; i; LÞ

¼
Xi

�¼0

ð�1Þ� i

�


 �
i þ �

�


 �
ðL � jÞð�Þ

L ð�Þ

½B �00 ¼ p0ðL � 0Þ ¼ ð�1Þ0 0

0


 �
0

0


 �
ðL � 0Þð0Þ

L ð0Þ ¼ þ1

½B �01 ¼ p0ðL � 1Þ ¼ ð�1Þ0 0

0


 �
0

0


 �
ðL � 1Þð0Þ

L ð0Þ ¼ þ1

½B �10 ¼ p1ðL � 0Þ ¼ ð�1Þ0 1

0


 �
1 þ 0

0


 �
ðL � 0Þ0

L ð0Þ ¼ 1

" #

þ ð�1Þ1 1

1


 �
1 þ 1

1


 �
ðL � 0Þð1Þ

L ð1Þ ¼ �2

" #

¼ �1

½B �11 ¼ p1ðL � 1Þ ¼ ð�1Þ0 1

0


 �
1

0


 �
ðL � 1Þð0Þ

L ð0Þ ¼ 1

" #

þ ð�1Þ1 1

1


 �
2

1


 �
ðL � 1Þ1

L ð1Þ ¼ �2
L � 1

L
¼ 0

" #

¼ þ1

Therefore

B ¼ 1 1

�1 1

� �
ðP5:5-2hÞ

Substituting (P5.5-2e) to (P5.5-2h) into (P5.5-2b) yields

Wðh ¼ 0Þ z ¼
1 0

0 1

� �
1 �1

0 �2

� � 1
2

0

0 1
2

" #
1 1

�1 1

� �

¼
1 �1

0 �2

� �
1 1

�1 1

� �
1

2


 �

¼
2 0

2 �2

� �
1

2

¼
1 0

1 �1

� �
ðP5:5-2iÞ
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From (P5.5-2c) and (P5.5-2d)

Wðh ¼ 1Þ z ¼
1 1

0 1

� �
1 0

1 �1

� �
¼ 2 �1

1 �1

� �
ðP5:5-2jÞ

The above is Wðh ¼ 1Þ for Z �
nþ1;n. On comparing (5.4-1) for Xn with (5.4-12)

for Zn, we see that, for m ¼ 1,

Zn ¼ 1 0

0 T

� �
Xn ðP5:5-2kÞ

or

x

TDx

� �
¼ 1 0

0 T

� �
x

Dx

� �

Because

1 0

0 T

� ��1

¼
1 0

0
1

T

" #

it follows that

Xn ¼
1 0

0
1

T

" #

Zn ðP5:5-2lÞ

Thus Wðh ¼ 1Þ for X�
nþ1; n is given by

Wðh ¼ 1Þ ¼
1 0

0
1

T

" #

Wðh ¼ 1Þ z ¼
1 0

0
1

T

" #
2 �1

1 �1

� �

¼
2 �1
1

T
� 1

T

" #

as we desired to show. Also from (P5.5-2l) and (P5.5-2i)

Wðh ¼ 0Þ ¼
1 0

0
1

T

" #

Wðh ¼ 0Þ z ¼
1 0

0
1

T

" #
1 0

1 �1

� �

¼
1 0
1

T
� 1

T

" #

which agrees with (P4.5-2a) and (P4.1-4b).

5.5-3 From (P5.5-2j)

Ŵðh ¼ 1Þ z ¼
2 �1

1 �1

� �
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From (5.6-3)

sS
�
nþh; n ¼ �2

xWðhÞzWðhÞT
z

¼ �2
x

2 �1

1 �1

� �
2 1

�1 �1

� �
¼ �2

x

5 3

3 2

� �
ðP5:5-3aÞ

for h ¼ 1. From (5.6-5) for L ¼ 1

sS
�
nþ1;n ¼ �2

x

5 3

3 2

� �

5.5-4 As in problem 5.5-2, all the matrices except B of (5.5-3a) have
dimension 2  2 with the matrices S and �ðh ¼ 1Þ z the same as in problem
5.5-2. The matrix B has dimension ðL þ 1Þ  2; see (5.5-6). Now from (5.5-5)
for L ¼ 4

½G �00 ¼ ð�1Þ0ð1Þð1Þ 1

1
¼ 1

½G �01 ¼ ð�1Þ0 1

0


 �
1

0


 �
ð1Þ 1

1
¼ �1

½G �10 ¼ ð�1Þ0 0

1


 �
1

1


 �
1

4 ð1Þ ¼
0!

1!ð�1Þ!
1

4
¼ 0

½G �11 ¼ ð�1Þ 1

1


 �
2

1


 �
1

4 ð1Þ ¼ � 1

2

Therefore for L ¼ 4

G ¼ 1 �1

0 � 1
2

� �
ð5:5-4aÞ

From (5.5-7) and (5.3-5a), C is diagonal, with

½C � jj ¼
1

c2
j

c2
j ¼ ðL þ j þ 1Þð jþ1Þ

ð2j þ 1ÞL ð jÞ

Hence (see solution to problem 5.5-2)

c2
0 ¼ L þ 1

c2
1 ¼ ðL þ 2ÞðL þ 1Þ

3L
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and for L ¼ 4, c2
0 ¼ 5 and c2

1 ¼ 5
2
. Thus

C ¼
1
5

0

0 2
5

� �
ðP5:5-4bÞ

We could determine the components of the matrix B using (5.5-6), (5.3-3),
and (5.3-4), as was done in problem 5.5-2. Instead we shall now make use of
Table 5.3-1 with its simple expressions of the orthogonal discrete Legendre
polynomials. From Table 5.3-1

pðx; 0;LÞ ¼ 1 ðP5:5-4cÞ

pðx; 1;LÞ ¼ 1 � 2
x

L
ðP5:5-4dÞ

From (5.5-6)

½B � ij ¼ piðr ¼ L � jÞ ¼ piðL � jÞ ¼ pðL � j; i;LÞ ðP5:5-4eÞ

Thus from (P5.5-4b) to (P5.5-4d)

½B �00 ¼ pðL; 0; LÞ ¼ 1

½B �01 ¼ pðL � 1; 0; LÞ ¼ 1

½B �0j ¼ pðL � j; 0;LÞ ¼ 1 for j ¼ 2; 3; 4

½B �1j ¼ pðL � j; 1;LÞ ¼ 1 � 2
L�j

L
¼2j � L

L
for j ¼ 0; 1; 2; 3; 4

Thus for L ¼ 4

½B �10 ¼ �1 ½B �11 ¼ � 1
2

½B �21 ¼ 0 ½B �31 ¼ 1
2

½B �41 ¼ 1

Therefore

B ¼ 1 1 1 1 1

�1 � 1
2

0 1
2

1

� �
ðP5:5-4fÞ

Substituting (P5.5-2d), (P5.5-2e), (P.5.5-4a), (P5.5-4b), (P5.5-4f ) into (5.5-3a)
yields the sought-after Wðh ¼ 1Þ.

5.6-1

� ¼
1 T

0 1

� �
ð2:4-1bÞ

S�nþ1; n ¼ �S�n;n�T þ Qn ð2:4-4fÞ
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sS
�
n;n ¼ �2

x

2ð2L þ 1Þ
ðL þ 2ÞðL þ 1Þ

6

ðL þ 2ÞðL þ 1Þ

6

ðL þ 2ÞðL þ 1Þ
12

ðL þ 2ÞðL þ 1ÞL

2

6664

3

7775
ð5:6-4Þ

� z ¼
1 1

0 1

� �
;�T

z ¼ 1 0

1 1

� �

� z sS
�
n;n ¼ �2

x

4ðL þ 2Þ
ðL þ 2ÞðL þ 1Þ

6

ðL þ 1ÞL
6

ðL þ 2ÞðL þ 1Þ
12

ðL þ 2ÞðL þ 1ÞL

2

664

3

775

� z sS
�
n;n�

T
z ¼

2ð2L þ 3Þ
ðL þ 1ÞL

6

ðL þ 1ÞL
6ðL þ 2Þ

ðL þ 2ÞðL þ 1ÞL
12

ðL þ 2ÞðL þ 1ÞL

2

664

3

775

5.6-2

S�nþh;n

h i

ij
¼ i ! j !

T iþj
|{z}

a ij

sS
�
nþh;n

h i

i; j
ð5:6-7Þ

a00 ¼ 1 a10 ¼ 1

T
a01 ¼ 1

T
a11 ¼ 1

T 2

Thus

S�nþ1;n ¼

2ð2L þ 3Þ
ðL þ 1ÞL

6

TðL þ 1ÞL
6

TðL þ 1ÞL
12

T 2ðL þ 2ÞðL þ 1ÞL

2

664

3

775

S�n;n ¼ �2
x

2ð2L þ 1Þ
ðL þ 2ÞðL þ 1Þ

6

TðL þ 2ÞðL þ 1Þ
6

TðL þ 2ÞðL þ 1Þ
12

T 2ðL þ 2ÞðL þ 1ÞL

2

664

3

775

5.8-3 (a) The endpoint location estimate in terms of the midpoint location
estimate is, constant velocity target model ðm ¼ 1Þ,

x�n;n ¼ x�m; n þ
1

2
Tf _x

�
m; n
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where m in the subscript is the midpoint time index, that is, m ¼ 1
2

n. Because
the estimate is unbiased, the variance of x�n;n is given by

VARðx�n;nÞ ¼ ðx�n;nÞ
2 ¼ ðx�m;nÞ

2 þ Tf x�m;n _x�m;n þ 1
4

T 2
f ð _x�m;nÞ

2

where the overbar signifies ensemble average here. The cross-correlation term
x�m; n _x�m; n is zero for the midterm estimate; hence, using (5.8-6) and (5.8-7), we
get

VARðx�n;nÞ
�2

x

¼ 1

L
þ

T 2
f

4

12

T 2
f L

¼ 4

L

which agrees with (5.8-4), as we desired to show.
(b) The start-of-track estimate in terms of the end-of-track estimate is given

by

x�0; n ¼ x�n; n � Tf _x
�
n; n

The variance of x�0;n is given by

VAR ðx�0;nÞ ¼ ðx�0;nÞ
2 ¼ ðx�n;nÞ

2 � 2Tf x�n;n _x�n;n þ T 2
f ð _x�n;nÞ

2

Here the cross-selection term x�n;n _x�n;n is not zero. It is given by the 0,1 term of
(5.6-4), which becomes 6=L2 for large L. Thus from (5.8-4) and (5.8-5) and
using (5.6-7)

VARðx�0;nÞ ¼
4

L
� 2Tf

6

TL2
þ T 2

f

12

T 2
f L

¼ 4

L

which again agrees with (5.8-4), as we desired to show.

6.5-1 From Table 6.3-1 for m ¼ 0

x�nþ1; n ¼ x�n; n�1 þ
1

n þ 1
ðyn � x�n; n�1Þ

For n ¼ 0 we get

x�1;0 ¼ x�0;�1 þ ðyn � x�0;�1Þ

or

x�1;0 ¼ yn

as we desired to prove.
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6.5-2 From Table 6.3-1 and (1.2-11a) and (1.2-11b), for the growing-memory
filter when m ¼ 1, we get

x�nþ1; n ¼ _x�n; n�1 þ
hn

T
"n ðP6:5-2aÞ

_x�nþ1; n ¼ x�n; n�1 þ T _x�nþ1; n þ gn"n ðP6:5-2bÞ

where

gn ¼ 2ð2n þ 1Þ
ðn þ 2Þðn þ 1Þ ðP6:5-2cÞ

hn ¼ 6

ðn þ 2Þðn þ 1Þ ðP6:5-2dÞ

"n ¼ yn � x�n;n�1 ðP6:5-2eÞ

[Note that the equations for gn and hn given above agree with (1.2-38a) and
(1.2-38b).] Thus g0 ¼ 1, h0 ¼ 3, g1 ¼ 1 and h1 ¼ 1. We have assumed initial
position and velocity values x0 and �0 for n ¼ 0. Thus for n ¼ 0 we get

_x�1;0 ¼ �0 þ
h0

T
ðy0 � x0Þ ¼ �0 þ

y0

T
� x0

T

_x�1;0 ¼ x0 þ T _x�1;0 þ g0ðy0 � x0Þ
¼ x0 þ T�0 þ h0ðy0 � x0Þ þ g0ðy0 � x0Þ
¼ x0 þ T�0 þ 3y0 � 3x0 þ y0 � x0

¼ T�0 þ 4y0 � 3x0

For n ¼ 1 we get

_x�2;1 ¼ _x�1;0 þ
h1

T
ðy1 � x�1;0Þ

¼ �0 þ
h0

T
ðy0 � x0Þ þ

h1

T
ðy1 � T�0 � 4y0 þ 3x0Þ

¼ 3y0

T
þ y1

T
� 4y0

T

or

_x�2;1 ¼ y1 � y0

T
ðP6:5-2fÞ

which is independent of the initial values x0 and �0.
For n ¼ 1 we get for

x�2;1 ¼ x�1;0 þ T _x�2;1 þ g1ðy1 � x�1;0Þ
¼ ðy1 � y0Þ þ y1
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or

x�2;1 ¼ 2y1 � y0 ðP6:5-2gÞ

which is also independent of x0 and �0, as we desired to show. Finally note that
the above values for x�2;1 and _x�2;1 given by (P6.5-2f ) and (P6.5-2g) agree with
the least-squares fixed-memory filter solution of problem 4.5-2

7.2-1 (a) After a little manipulation (1.3-2) and (1.3-3) can be put in the form

�x�nþ1; n ¼ �x�n; n�1 þ
2k

T 2
"n ðP7:2-1aÞ

_x�nþ1; n ¼ _x�n; n�1 þ �x�nþ1; nT þ h

T
"n ðP7:2-1bÞ

x�nþ1; n ¼ x�n; n�1 þ _x�nþ1; nT � �x�nþ1; n

T 2

2
þ g"n ðP7:2-1cÞ

where

"n ¼ yn � x�n; n�1 ðP7:2-1dÞ

Next making use of (5.4-12) yields

ðz�0 Þnþ1; n ¼ z�nþ1; n ¼ x�nþ1;n ðP7:2-1eÞ
ðz�1 Þnþ1; n ¼ _z�nþ1; n ¼ T _x�nþ1; n ðP7:2-1fÞ

ðz�2 Þnþ1; n ¼ �z�nþ1; n ¼ T 2

2!
�x�nþ1; n ðP7:2-1gÞ

Applying (P7.2-1e) to (P7.2-1g) to (P7.2-1a) to (P7.2-1c) yields, finally,

�z�nþ1; n ¼ �z�n; n�1 þ k"n ðP7:2-1hÞ
_z�nþ1; n ¼ _z�n; n�1 þ 2�z�nþ1; n þ h"n ðP7:2-1iÞ
z�nþ1; n ¼ z�n; n�1 þ _z�nþ1; n � �z�nþ1; n þ g"n ðP7:2-1jÞ

(b) Comparing (P7.2-1h) to (P7.2-1j) with the corresponding m ¼ 2
equations of Table 7.2-2 yields

g ¼ 1 � 	3 ðP7:2-1kÞ
h ¼ 3

2
ð1 � 	Þ2ð1 þ 	Þ ¼ 3

2
ð1 � 	2Þð1 � 	Þ ðP7:2-1lÞ

k ¼ 1
2
ð1 � 	Þ3 ðP7:2-1mÞ
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7.2-2 Comparing (P7.2-1a) to (P7.2-1c) with the results of Table 6.3-1 for
m ¼ 2 yields, that for the growing-memory g–h–k filter,

gn ¼ 3ð3n2 þ 3n þ 2Þ
ðn þ 3Þðn þ 2Þðn þ 1Þ ðP7:2-2aÞ

hn ¼ 18ð2n þ 1Þ
ðn þ 3Þðn þ 2Þðn þ 1Þ ðP7:2-2bÞ

kn ¼ 30

ðn þ 3Þðn þ 2Þðn þ 1Þ ðP7:2-2cÞ

7.4-2 (a) From the solution to problem 7.2-1

g ¼ 1 � 	3 ðP7:2-2kÞ

Hence for g ¼ 0:87, 	 ¼ 0:507. From (P7.2-1l) and (P7.2-1m), h ¼ 0:550 and
k ¼ 0:0601, which are much smaller than the values of g ¼ 0:81, h ¼ 0:81, and
k ¼ 0:14 for the Singer filter of Section 2.10; see Table P2.10-1.

(b) Form Table 7.4-1

�nþ1;n

�x


 �2

¼ 1 � 	

ð1 þ 	Þ5
ð19 þ 24	þ 16	2 þ 6	3 þ 	4Þ ðP7:4-2aÞ

Thus �nþ1;n=�x ¼ 1:51. Using (1.3-4) gives the same result. This result
for �nþ1;n=� x is somewhat smaller than the value of 3.33 obtained with the
Singer filters for the target having the dynamics defined by Singer; see Table
P2.10-1.

(c) For this Singer filter g ¼ 0:87, h ¼ 0:81, and k ¼ 0:14, and using (1.3-4),
we obtain �nþ1;n=� x ¼ 1:9, which is much smaller than the value of 3.33 of
Table P2.10-1. This we attribute to the smaller tracking and prediction error
resulting when the target has a constant acceleration rather than the Singer
dynamics model. The critically damped filter has a still smaller �nþ1; n=�x of
1.5. This we attribute to the smaller h and k of the critically damped filter than
for the Singer filter. A smaller h and k implies more memory in the filter.

8.1-1

DxðtÞ ¼ _xðtÞ D2xðtÞ ¼ 0

Therefore

DxðtÞ
D2xðtÞ

� �
¼

0 1

0 0

� �
xðtÞ

DxðtÞ

� �
ðP8:1-1aÞ

A ¼
0 1

0 0

� �
ðP8:1-1bÞ
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8.1-2 Using (8.1-21),

Xðtn þ Þ ¼ �ðÞXðtnÞ

yields

Xðt n þ TÞ ¼ �ðTÞXðt nÞ ðP8:1-2aÞ

But from (8.1-22)

�ðTÞ ¼ I þ TA þ T 2

2!
A2 þ T 3

3!
A3

Using

A ¼ 0 1

0 0

� �
ðP8:1-1bÞ

we get

A2 ¼ 0 1

0 0

� �
0 1

0 0

� �
¼ 0 0

0 0

� �

Therefore

�ðTÞ ¼ 1 0

0 1

� �
þ T

0 1

0 0

� �
ðP8:1-2bÞ

or

�ðTÞ ¼ 1 T

0 1

� �
ðP8:1-2cÞ

which agrees with (2.4-1b).

8.1-3 Using

A ¼
0 1 0

0 0 1

0 0 0

2

4

3

5 ð8:1-10aÞ

we get

A2 ¼
0 1 0

0 0 1

0 0 0

2

4

3

5
0 1 0

0 0 1

0 0 0

2

4

3

5 ¼
0 0 1

0 0 0

0 0 0

2

4

3

5
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A3 ¼
0 0 1

0 0 0

0 0 0

2

4

3

5
0 1 0

0 0 1

0 0 0

2

4

3

5 ¼
0 0 0

0 0 0

0 0 0

2

4

3

5

Substituting into (8.1-22) yields

�ðTÞ ¼
1 0 0

0 1 0

0 0 1

2

4

3

5þ
0 T 0

0 0 T

0 0 0

2

4

3

5þ
0 0 1

2
T 2

0 0 0

0 0 0

2

4

3

5

or

�ðTÞ ¼
1 T 1

2
T 2

0 1 T

0 0 1

2

4

3

5

which agrees with (4.1-4).

9.3-1 Applying (2.6-14) to the right-hand side of (9.2-1b) yields

ðS� ��1
nþ1; nþM TR�1

nþ1MÞ�1¼S
� �

nþ1; n � S
� �

nþ1; nM TðRnþ1 þ MS
� �

nþ1; nM TÞ�1
MS

� �
nþ1; n

ð1Þ

Postmultiplying both sides of the above by M T R�1
nþ1 yields

ðS� ��1
nþ1; n þ M T R�1

nþ1MÞ�1
M T R�1

nþ1

¼ S
� �

nþ1; nM T R�1
nþ1 � S

� �
nþ1; nM T

 ðRnþ1 þ M S
� �

nþ1; nM TÞ�1
M S

� �
nþ1; nM T R�1

nþ1

¼ S
� �

nþ1; nM TðRnþ1 þ M S
� �

nþ1; nM TÞ�1

 ½ðRnþ1 þ M S
� �

nþ1; nM TÞR�1
nþ1 � M S

� �
nþ1; nM T R�1

nþ1�

¼ S
� �

nþ1; nM TðRnþ1 þ M S
� �

nþ1; nM TÞ�1

ð2Þ

Substituting the left-hand side of (9.2-1b) for the inverse on the left-hand side of
(2) yields

S
� �

nþ1; nþ1M T R�1
n ¼ S

� �
nþ1; nM TðRnþ1 þ M S

� �
nþ1; nM TÞ�1 ð3Þ

But from (9.2-1a) the left-hand side of (3) equals H
�

nþ1. This alternate form for
H
�

nþ1 is the Kalman filter form of (9.3-1a). Using this alternate form for H
�

nþ1 on
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the right-hand side of (1) yields

ðS� ��1
nþ1; n þ M T R�1

nþ1MÞ�1 ¼ S
� �

nþ1; n � H
�

nþ1M S
� �

nþ1; n

¼ ð1 � H
�

nþ1MÞS� �nþ1; n

ð4Þ

The left-hand side of (4) is, from (9.2-1b), equal to S
� �

nþ1;nþ1. Making this
substitution gives (9.3-1b). This completes our derivation of the Kalman filter
equations.

9.4-1 From (9.4-1)

X
� �

nþ1; nþ1 ¼ S
� �

nþ1; nþ1 S
� ��1

nþ1; nX
� �

nþ1; n þ M T R�1
nþ1Ynþ1

h i

þ S
� �

nþ1; nþ1M T R�1
nþ1M X

� �
nþ1;n � S

� �
nþ1; nþ1M T R�1

nþ1M X
� �

nþ1; n

¼ S
� �

nþ1; nþ1ðS
� ��1

nþ1; n þ M T R�1
nþ1MÞX� �nþ1; n

þ S
� �

nþ1; nþ1M T R�1
nþ1ðYnþ1 � M X

� �
nþ1; nÞ

Using (9.2-1b) lets us replace the term in the first bracket above by S��1
nþ1;nþ1 to

yield

X
� �

nþ1; nþ1 ¼ X
� �

nþ1; n þ S
� �

nþ1; nþ1M T R�1
nþ1½ðYnþ1Þ � MX

� �
nþ1; n�

Finally using (9.2-1a) yields (9.2-1).

14.4-1 Assume a 2  2 upper triangle matrix

B2 ¼ 1 �
0 1

� �

Let its inverse be

B�1
2 ¼ a b

c d

� �

Then

1 �
0 1

� �
a b

c d

� �
¼ a þ �c b þ �d

c d

� �
¼ 1 0

0 1

� �

Hence

c ¼ 0 d ¼ 1 a ¼ 1 b ¼ ��d ¼ ��
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and the inverse of B2 is

B�1
2 ¼ 1 ��

0 1

� �

which is upper triangular.
We now show that if the inverse of a square upper triangular matrix of

dimension ðr � 1Þ  ðr � 1Þ is upper triangular, then so is the inverse of the
square upper triangular matrix of dimension r  r upper triangular, thus
completing our proof. Let Br be an upper triangular matrix of dimension r  r.
Let it be partitioned as shown below:

Br ¼
"

Br�1

--

D
|fflffl{zfflffl}

r � 1

j
--

j

C

--

E
|{z}

1

# gr � 1

g1

where Br�1 is an upper triangular ðr � 1Þ  ðr � 1Þ matrix; E is a 1  1 matrix,
which we shall now call e; and D is a 1  ðr � 1Þ matrix of zeroes. From [134]
the inverse of Br can be written as

B�1
r ¼

"
X

--

Z
|{z}
r � 1

j
--

j

Y

--

U
|{z}

1

# gr � 1

g1

where

X ¼ Br�1 � Ce�1D
� ��1

U ¼ e � DB�1
r�1C

� ��1

Y ¼ �B�1
r�1CU

Z ¼ �e�1DX

Because the elements of D are composed of zeroes, it follows that

X ¼ B�1
r�1 U ¼ 1

e
Z ¼ 0

Thus B�1
r becomes

B�1
r ¼

"
B�1

r�1

--

0
|fflffl{zfflffl}

r � 1

j
--

j

Y

--
1
e|{z}
1

# gr � 1

g1

which is upper triangular if B�1
r�1 is upper triangular. This completes our proof.
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104. Scheffé, M., formerly Raytheon Company, now at Lincoln Lab, MIT, Lexington,
MA, private communication 1989.

105. Arbenz, K. and A. Wohlhauser, Advanced Mathematics for Practicing Engineers,
Artech House, Norwood, MA, 1986.

106. Kung, H. T. and W. M. Gentleman, ‘‘Matrix Triangularization by Systolic Arrays,’’
Proceedings of the SPIE, 1981, Vol. 298, Real-Time Signal Processing IV, pp. 19–26.

107. Kung, H. T. and C. L. Leiserson, ‘‘Systolic Arrays (for VLSI),’’ in Sparse Matrix
Proceedings 1978, I. S. Duff and G. W. Stewart (Eds.), Society of Industrial and
Applied Mathematics, Philadelphia, Pub., 1979, pp. 256–282. A slightly different
version appears in Introduction to VLSI Systems, by C. A. Mead and L. A. Conway,
Addison-Wesley, Reading, MA, 1980, Section 8.3.7.

108. Gentleman, W. M., ‘‘Least-Squares Computations by Givens Transformation
without Square Roots,’’ J. Inst. Math. Appl., Vol. 2, 1973, pp. 329–336.

109. Hammarling, S., ‘‘A Note on Modifications to the Givens Plane Rotations.’’ J. Inst.
Math. Appl., Vol. 13, 1974, pp. 215–218.

110. Volder, J. E., ‘‘The CORDIC Trigonometric Computing Technique,’’ IRE Transac-
tions on Electronic Computers, September 1959, pp. 330–334.

111. Cochran, D. S., ‘‘Algorithms and Accuracy in the HP-35,’’ Hewlett-Packard
Journal, June 1972, pp. 10–11.

112. Despain, A. M. ‘‘Fourier Transform Computers Using CORDIC Iterations,’’ IEEE
Transactions on Computers, Vol. C-23, No. 10, October 1974, pp. 993–1001.

113. Schreiber, R. and P. Kuekes, ‘‘Systolic Linear Algebra Machines in Digital Signal
Processing,’’ in VLSI and Modern Signal Processing, S. Y. Kung et al. (Eds.),
Prentice-Hall, Englewood Cliffs, NJ, 1985, p. 401.

114. Steinhardt, A. O., ‘‘Householder Tranforms in Signal Processing,’’ IEEE ASSP
Magazine, July, 1988, pp. 4–12.

115. Kaminski, P. G., E. Bryson, Jr., and S. F. Schmidt, ‘‘Discrete Square Root Filtering:
A Survey of Current Techniques,’’ IEEE Transactions on Automatic Control, Vol.
AC-16, No 6, December 1971, pp. 727–736.

116. Orfanidis, S. J., Optimum Signal Processing, 2nd ed., MacMillan New York, 1988.

117. Longley, J. W., ‘‘Least Squares Computations Using Orthogonalization Methods,’’
in Notes in Pure and Applied Mathematics, Marcel Dekker, New York, 1984.

118. Bjorck, A., ‘‘Solving Linear Least Squares Problems by Gram-Schmidt Orthogo-
nalization,’’ BIT, Vol. 7, pp. 1–21, 1976.

119. Maybeck, P. S., Stochastic Models, Estimation and Control, Vol. 1, Academic New
York, 1979.

120. Rice, J. R., ‘‘Experiments on Gram-Schmidt Orthogonalization,’’ Math. Comp. Vol.
20, 1966, pp. 325–328.

462 REFERENCES



121. Brown, R. G. and P. Y. C. Hwang, Introduction to Random Signals and Applied
Kalman Filtering. 2nd ed., Wiley, New York, 1992.

122. Grewal, M. S., and A. P. Andrews, Kalman Filtering Theory and Practice, Prentice-
Hall, Englewood Cliffs, NJ, 1993.

123. Swerling, P., ‘‘First Order Error Propagation in a Stagewise Smoothing Procedure
for Statellite Observations,’’ Journal of Astronautical Sciences, Vol. 6, Autumn
1959, pp. 46–52.

124. Morrison, N., ‘‘Tracking and Smoothing,’’ Boston IEEE Modern Radar Technol-
ogy, Lecture Series, November 20, 1973.

125. Kolmogorov, A. N., ‘‘Interpolation and Extrapolation of Stationary Random
Sequences,’’ translated by W. Doyle and J. Selin, Report No. RM-3090-PR, Rand
Corp., Santa Monrica, CA, 1962 (first published in 1941 in the USSR Science
Academy Bulletin).

126. Wiener, N., ‘‘The Extrapolation, Interpolation, and Smoothing of Stationary Time
Series,’’ OSRD 370, Report to the Services 19, Research Project DIC-6037, MIT,
Cambridge, MA, February 1942.

127. Kailath, T., ‘‘A View of Three Decades of Linear Filtering Theory,’’ IEEE
Transactions on Information Theory, Vol. IT-20, 1974, pp. 146–181.

128. Lee, R. C. K., Optimal Estimation, Identification and Control, Research Mono-
graph 28, MIT Press, Cambridge, MA, Chapter 3.

129. Rader, C., Lincoln Laboratory, MIT, Lexington, MA, private communication 1991

130. Ragazzini, J. R. and G. F. Franklin, Sampled-Data Control Systems, McGraw-Hill,
New York, 1958.

131. Cadzow, T. A., Discrete-Time Systems, Prentice-Hall, Englewood Cliffs, NJ, 1973.

132. Papoulis, A., Signal Analysis, McGraw-Hill, New York, 1977.

133. Kuo, B. C., Automatic Control Systems, Prentice-Hall, Englewood Cliffs, NJ, 1962.

134. Selby, S. M., Standard Mathematical Tables, Chemical Rubber Co., Boca Raton,
FL, 1973.

135. Proceedings of Paris International Radar Conferences, December 1978, April 1984,
and May, 1994. Pub. by Comité Radar, Paris.
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