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ABSTRACT

This work extents the Hidden Markov Chain (HMC) model
for the unsupervised segmentation of multicomponent im-
ages. Although the vectorial extension of the model is al-
most straightforward, we are faced to the problem of esti-
mating a mixture of non-Gaussian multidimensional den-
sities. In this work, we adopt an Independent Component
Analysis (ICA) approach that allows the mutual dependance
between the layers to be taken into account in the segmenta-
tion process. Classification results on a four bands SPOT-IV
image illustrates the method. Also, a comparison is per-
formed when only mutual independence or correlation be-
tween the components is assumed.

1. INTRODUCTION

The aim of this paper is to present an extension of the HMC
model for the unsupervised segmentation of multicompo-
nent images. Such vectorial image can be obtained, for
example, from different channels (multispectral, color im-
ages), from several sensors (multisensor) or from image taken
at various moments (multitemporal). Each component ex-
hibits different characteristics of the spatial scene and the
motivation for this work is to combined their respective in-
formation in order to improve the segmentation obtained
when only one image is considered.

Precisely, in the one image case, Bayesian restoration
in the framework of the hidden Markov models (HMM)
is among the best known statistical classification methods.
This success is mainly due to the fact that when the un-
observable processX can be modeled by a finite Markov
model, thenX can be recovered from the observed process
Y using different Bayesian classification criteria like Max-
imum A Posteriori (MAP) or Maximum Posterior Mode
(MPM). Among HMMs, the Hidden Markov Chain (HMC)
models, applied to a Hilbert-Peano scan of the image [1],
constitute a fast and sometimes competitive alternative to
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hidden Markov fields, even though the latter provide a finer
and more intuitive modeling of spatial relationships.

In the case of unsupervised classification, the statistical
properties of the classes are unknown and the mixture esti-
mation problem should first be solved. In the HMC context,
iterative methods such as Expectation-Maximisation (EM)
or Stochastic EM can be used. In this study, we limit our-
selves to a third procedure called Iterative Conditional Es-
timation (ICE) [2], which has been successfully performed
in several unsupervised contexts such as sonar, medical and
radar images [3, 4, 5]. In such modalities, the noise is not
necessarily Gaussian and several generalized mixture esti-
mation algorithms have been proposed [1, 6].

When dealing with aM -layers multicomponent image,
the extension of ICE is almost straightforward but stumble
against the problem of estimating a generalized mixture of
M -dimensional non-Gaussian densities from samples. The
present work lies within the scope of this general problem.
Partial solutions to the problem have been proposed in [1, 7]
where, respectively, mutual independence and correlation
between layers have been assumed. However, such assump-
tions can not be justified in most real applications. In this
paper, we combine ICE estimation in a HMC context with
an ICA procedure in order to totaly take into account the
layers dependence in the classification process. This paper
is organized as follows. In next section, the ICE principle
is briefly recalled. Then, a generalized multidimensional
density estimation algorithm based on ICA is presented in
section 3. In section 4, the method is illustrated on a four
bands SPOT-IV image and the segmentation result is com-
pared to the ones obtained when only mutual independence
or correlation is assumed. Finally, conclusions are drawn in
section 5.

2. ICE IN A VECTORIAL HMC MODEL

The pixels of theM layers of a multicomponent images are
first transformed into 1D chains using a Hilbert-Peano scan
on each image. Hence, we getN series ofM data, de-
noted byy = (y1, ...,yN ), whereyn =

(
y1

n, ..., yM
n

)t
,

1 ≤ n ≤ N . The objective is to classify eachyn into a
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Fig. 1. Independence assumptions in the vectorial HMC
model. The dash curves represent the mutual dependance
of the observations along the layers.

set ofK classesΩ = {ω1, ..., ωK} in order to obtain the
segmented chainx = (x1, ..., xN ). The segmented image
is then reconstructed fromx by using an inverse Hilbert-
Peano scan.

The probabilistic approach developed here consists in
assuming thatxn is a realization of a random variableXn,
and eachyn is a realization of a random vectorYn =(
Y1

n, ..., YM
n

)t
. Thus the problem is to estimate the unob-

served realizationx of a random processX = (X1, ..., XN )
from the observed realizationy of a random processY =
(Y1, ...,YN ). The processX is supposed to be Markovian
and stationary. We also consider the usual two following
assumptions: the random vectors(Yn)1≤n≤N are indepen-
dent conditionally onX and the distribution of eachYn

conditionally onX is equal to its distribution conditional
on Xn. It is important to note that the random variables
(Ym

n )1≤m≤M are not assumed to be mutually independent
conditionally onXn (see Fig. 1).

In the case of unsupervised segmentation, the distribu-
tion P (X,Y) is unknown and must first be estimated in
order to apply a Bayesian classification technique. There-
fore, we have to estimate the following sets of parameters
(1 ≤ k, l ≤ K):

1. the setΠ characterizing the stationary Markov chain
X, i.e. the initial probability vectorπ = (πω1 , ..., πωK )
and the transition matrixA with entriesaωk,ωl

;

2. the set∆ characterizing the observation densities, i.e.
the parameters of theK M -dimensional distributions
fωk

. In the Gaussian case,∆ is composed of the
means and the covariance matrix.

The estimation of all the parameters inΘ = (Π,∆)
can be achieved using the general ICE algorithm. The ICE
procedure is based on the conditional expectation of some
estimators from the complete data(x,y) [2].ICE is an it-
erative method which produces a sequence of estimations
θq of parameterθ as follows : (1) initializeθ0; (2) com-

puteθq+1 = E
[
θ̂ (X,Y) |Y = y

]
, whereθ̂ (X,Y) is an

estimator of parameterθ. In practice, we interrupt the algo-
rithm at iterationQ if θQ−1 ≈ θQ. This procedure leads to
two different situations:

• For parameters inΠ, the expectation can be calcu-
lated analytically, by using the normalized Baum’s
Forward and Backward probabilities [8];

• For parameters in∆, θq+1 is not tractable. How-
ever, it can be estimated by computing the empiri-
cal mean of several estimates according toθq+1 =
1
L

∑L
l=1 θ̂

(
xl,y

)
, wherexl is aa posteriorirealiza-

tion of X conditionally onY1.

We now present three methods for the estimation of the den-
sitiesfωk

, 1 ≤ k ≤ K.

3. MULTIDIMENSIONAL DENSITY ESTIMATION

Letx be a realization ofX |Y and letz denote the data ofy
attributed to a given classωk. The Multidimensional Den-
sity Estimation (MDE) algorithms presented below should
be applied on all classes inΩ and at each ICE iteration.

If Gaussian densities are considered in a MDE prob-
lem, parameters estimation can be easily estimated from the
first and second order moments of aM -dimensional sam-
ple. However, in a number of modalities, it has been shown
that the noise can not be properly modeled by Gaussians.
Moreover, the nature and the form of the distribution of each
class in the different layers can vary (e.g. multisensor case).
However, non-Gaussian multidimensional densities can be
difficult to estimate. One solution is to decompose the prob-
lem into M one-dimensional density estimations. Several
strategies are possible, depending on the assumptions made
on the links between the components.

If independence is assumed [1],fωk
is the product ofM

densitiesg1
ωk

, ...,gM
ωk

defined onR:

fωk
(zn) =

M∏
m=1

gm
ωk

(zm
n ). (1)

However, most of the time, multicomponent images can
not be considered mutually independent. Hence, a more so-
phisticated solution consists in applying a Principal Com-
ponent Analysis (PCA) algorithm on the data before densi-
ties estimation [7]. This can be done by projectingz onto
an orthonormal system defined byW so that the new data
tn = W zn are decorrelated2. Hence, we get the following
estimation:

fωk
(zn) = |det (W)|

M∏
m=1

gm
ωk

(tmn ). (2)

1Simulations are rather simple sinceX |Y is a non stationary Markov
chain whose transition matrix is tractable analytically.

2A solution is given byWt = (C (Γz))
−1 whereC is the Choleski

decomposition andΓz is the covariance matrix of the observed data.
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Fig. 2. Four bands SPOT-IV image to be segmented (size:250× 350, N = 87500, M = 4).

However, ideally, data should be independent and this
naturally fits an ICA approach. The objective of ICA is to
find a linear transformationW′ so that the new datasn =
W′ zn are mutually independent. A solution to this prob-
lem can be find under the assumption that thesm compo-
nents are not Gaussian. This is an optimization problem that
has no analytical solution. The computation ofW′ requires
the optimisation of a ‘non-gaussianity’ criterion such as the
kurtosis or the neguentropy. For sake of reduced complex-
ity, we have chosen to adapt the one proposed by Hyvärinen
in [9]. Then, the densityfωk

can then be reconstructed using
a formula similar to Eq. (2), replacingtmn by sm

n .
It is important to note that no assumption has been done

on the shape of the 1D densities so that parametric estima-
tors (moments, maximum likelihood, ...) and non paramet-
ric estimators (kernel, orthogonal expansion) can be used.

4. SEGMENTATION RESULTS

Fig. 2 shows an extract of a SPOT-IV image of Brittany
(France) with four spectral bands (red, green, near infrared
and middle infrared). We decided to segment this multi-
component image intoK = 4 classes and to estimate the
mixture from the parametric family of exponential power
distributions :

p(x;µ, α, β) =
β

2α Γ (1/β)
e(
|x−µ|

α )β

, (3)

whereΓ(·) is the Gamma function,α andβ are respectively
the scale and shape parameters. This family includes a large
variety of symmetrical shapes, including Laplace (β = 1)
and Gaussian (β = 2) distributions. The mean was esti-
mated from the first empirical moment of samples, whereas
the shape and scale parameters were estimated using the
maximum likelihood estimator.

The set∆ is composed of the 3 parameters for theM =
4 images and theK = 4 classes (card(∆) = 48). The set
Π is composed of the 4 initial probabilities and the transi-
tion matrix of 16 entries (card(Π) = 20). Hence, 68 pa-
rameters are estimated at each ICE iteration. The initial pa-
rameter values was computed using the vectorial K-means
classification result as a realization ofX. The Bayesian
MPM classification has been performed from the values ob-
tained after 70 ICE iterations.

The class images obtained from the three MDE algo-
rithms described above have been reported in Fig. 3. The
segmentation results confirm the interest of a vectorial HMC
model for the unsupervised classification of multicompo-
nent images and the robustness of ICE in such a context.
Nevertheless, segmentations exhibit some differences directly
related to the dependence assumption made on the layers.
No general conclusion on the thematic representation of each
class can be drawn since ground truth data were not avail-
able. However, one can note that PCA and ICA based seg-
mentations are very similar. Indeed, all the estimated pa-
rameters are closed to each other. However, ICA based seg-
mentation furnishes more homogeneous regions and field
frontiers seems to be better detected.

The computation times needed to segment this multi-
component image are respectively of 23, 30 and 80 minutes
on a PC with 1.3 GHz processor running Linux. The com-
plexity of the ICE based ICA algorithm is much more im-
portant than the two other methods since the estimation of
W′ is an iterative process done for each class and at each it-
eration. However, the computation time can be significantly
reduced by performing an initial estimation from the seg-
mented image obtained with ICE based PCA. Hence, only a
small number of ICE iterations is necessary.
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Fig. 3. Segmentation of images in Fig. 2. From left to right: mutual independence, PCA and ICA based methods.

5. CONCLUSION

In this works, we described an extent of a HMC model for
the unsupervised segmentation of multicomponent images.
The extension of the HMC model to vectorial data is al-
most straightforward. However, one difficulty arises from
the estimation of non-Gaussian multidimensional distribu-
tion. In most applications, the layers hold redundant infor-
mation and mutual independence can not be assumed. In
this work, we incorporated an ICA approach in the gen-
eral ICE procedure for parameters estimation. An exam-
ple of a SPOT-IV image, and some others in radar imaging
(multiscale [10], multispectrale [11] and multitemporal im-
ages [12]), confirms the interest of the method.

It is important to note that the multicomponent segmen-
tation method presented here is valid when the number of
components is small with respect to the number of pixels.
Indeed, for example, the large number of spectral bands in
a hyperspectral image induces non consistent estimations
(Hughes phenomenon). A solution consists in reducing the
dimension by projecting the data into a lower dimension
space.
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