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Abstract. The authors propose a new solution to the blind robust wa-
termarking of digital images. In this approach we embed the watermark
into the independent components of the image. Since independent com-
ponents are related to the edges of the image, this method has a little
perceptual impact on the watermarked image. Besides, we exploit the
orthogonality of independent components and spread-spectrum gener-
ated watermarks in the blind extraction of the watermark. As extraction
algorithm we use a simple matched filter. We also improve this novel
method with standard techniques such as perceptual masking and holo-
graphic properties. Some experiments are included to illustrate the good
performance of the algorithm against compression, cropping, filtering or
quantization based attacks.

1 Introduction

Robust Watermarking (RW) of digital images [1] is one common solution to
protect owners rights. It consists of embedding another signal or mark into the
to be protected host image. We aim the watermark to be detected after severe
attacks. In addition, our watermark is designed to be transparent to the user
and we do not use the host image at detection, i.e., this is a invisible blind RW
approach.

In some RW approaches we embed the mark in the spatial domain. On the
other hand, we have methods working in a transform domain, such as the DCT
or the DWT. ICA has been recently applied to digital watermarking following
two main approaches. On the one hand, we have those approaches based on
the mixture of the host image, or some transform domain coefficients, and the
watermark [2, 3, 4]. In these methods, ICA is applied at detection to extract the
watermark. On the other hand, based on the original results in [5], we have
methods based on ICA as a transform domain where to embed the watermark

� Thanks to Spanish goverment for funding TIC-2003-03781.

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 1100–1107, 2005.

c© Springer-Verlag Berlin Heidelberg 2005



Robust Blind Image Watermarking with ICA 1101

[6, 7]. The authors in [6] develop a non-blind approach focusing mainly in the
detection stage by using non-linear techniques. In this paper we focus on simple
techniques in the embedding stage [7] such as spread-spectrum watermark, per-
ceptual masking and holographic methods, to greatly improve the blind method
in [5].

2 ICA in Image Processing

2.1 Independent Component Analysis

Independent component analysis (ICA) [8] consists of projecting a set of com-
ponents onto another statistically independent set. In the simple ICA, the l
entries of a sample t of a column vector sequence xt are projected into a space
of l components yt as statistically independent as possible. This projection is
represented by an l × l matrix B.

yt = Bxt (1)

Very much literature has been devoted to ICA algorithms. We will use here batch
algorithms that minimize the marginal entropies ME of the outputs [9]. These
algorithms have a good performance and are easy to use compared to gradient
based methods.

2.2 Application to Image Processing

There are two common applications of ICA to image processing. On the one
hand, we may assume we have l linear mixtures of l images. Therefore, we simply
need to reshape each mixture of images into a vector and then apply ICA to
separate them as in equation (1). The methods in [2, 3, 4] are based on this
approach. On the other hand, we have other approaches where only one image is
involved. These methods first decompose an image into components xt to later
apply ICA [10]. Afterwards, any image processing technique may be applied to
these, so computed, independent components (IC) [11]. Notice that each row
of B provides one independent component (an entry of vector yt). Therefore,
if we reshape each row of B into a matrix, we obtain a set of 2-dimensional
basis functions. These basis functions, also regarded as patches or features, are
closely related to well-localized and oriented Gabor filters [8]. Some other authors
suggest these basis functions to be the edges of the image [10], [12], or even to
model the receptive fields of the primary visual cortical neurons [8]. An analysis
of the image ICA components shows that many independent components are
sparse distributed and that only some basis functions are needed to represent
the image. Besides, the probability of independent components having small
amplitudes is high, but large amplitudes occurs as well [8]. In [11] these features
are used to compress or encode an image. Basic compression algorithms exploit
these ideas as they retain only the independent components with larger energy. In
addition, the authors in [11, 13] show that groups of images with similar features
may be restored from a common set of basis (rows of matrix B). Particularly, the
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projections B computed for one image can be used in the processing of another
one of the same class (text images, natural scenes,...).

The IC of an image I can be computed as follows. Assume matrix I be a
gray-scale image of size n × m.This matrix can be divided into k × k blocks or
patches [8] Cp,q to reshape them into vectors xI

t where t = (p − 1) · m/k + q.
The rows of xI

t may be then projected onto l = k2 independent components,

yI
t = BxI

t t = 1, . . . ,mn/k2 (2)

In Fig. 1 we show the spatial basis functions computed for k = 8 and Lena
Image (256 × 256). Each row matrix of the separating matrix B was reshaped
into a 8 × 8 image. They were arranged row wise in descending order of energy,
i.e., those basis functions (rows of B) providing independent components with
larger variance are located at the top rows. The top-left corner basis allows to
represent the DC component of every 8× 8 patch of the image. Notice also that
the first rows are the basis functions to build the borders of the image. Besides,
the last ones provide low energy components, details of the image.

3 Watermarking with ICA

Having the previous ideas in mind, we propose a new algorithm as follows. Firstly,
the edges of the images are the candidate areas where to embed the watermark
if we aim it to be imperceptible. Since some of the ICA basis functions are the
edges of the images, by embedding the watermark in the associate IC we improve
the invisibility of the mark. Hence, at a given PSNR, our watermark will be more
imperceptible than the one embedded by using, e.g., DCT coefficients. Secondly,
we may use a common public set of basis or rather use, following the ideas in
[11, 13], our own private ICA projection. Hence, we fulfill one of the Kerckhoffs
[14] principles, even if the attackers know we embedded the watermark using
ICA they still do not know the exact projections. In addition, this privacy of
the embedded watermark can be improved if we recall about IC tending to be
sparse. In Fig. 2 we depict the power spectral density (PSD) for the independent
components number 1 (Fig 1a) , 5 (Fig 1b) and 9 (Fig 1c) computed for the
image of Lena with k = 3. As the IC have been arranged in descending order of
energy, we have the DC component in Fig. 2a. IC number 5 in Fig. 2b has a white
noise-like frequency response. Finally, the last IC has a high frequency response.
In this paper we propose to use spread-spectrum watermark, with flat frequency
response, to be added to the middle IC. This way we improve the robustness
against any frequency based watermark filtering and most important, we en-
sure a low cross correlation between the IC and the watermark allowing blind
detection by using a simple matched filter. Finally, the spread-spectrum water-
mark can be generated using a circular convolution with the bits of copyright
information. This way we embed every bit into every pixel of the image, improv-
ing the robustness against some attacks such as cropping. We next describe the
algorithm in detail.
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Fig. 1. Example of basis functions for k = 8
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Fig. 2. Power spectral density for independent components number 1 (a), 5 (b) and 9

(c) of the Lena image for k=3

3.1 Embedding

In Fig. 3 we include a scheme for a ICA based RW algorithm. We first will
describe the basic steps of the embedding method to later discuss on its particular
features. The embedding method yields
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Fig. 3. ICA based robust watermarking algorithm

Algorithm 1: Embedding.

1 Image to column vectors. Compute the components xI
t of the n × m host

image I using k × k blocks.
2 ICA components. Compute its IC, yI

t = BxI
t , using an ICA projection B,

the key of the insertion method.
3 Insertion. Compute the IC of the marked image, yV

t , by updating yI
t with

the watermark, W .
4 Restoration. Restore the (watermarked) image V from components xV

t =
B−1yV

t .

As already dicussed, we propose the ICA projection B computed for an image
of the same kind as a private key. We use this matrix B in the watermarking of a
group of (e.g. same owner’s) images. Regarding the watermark, in [5] we used an-
other image as watermark. In this paper we embed a spread spectrum mark, i.e.,
a message (the copyright information) “modulated” by means of spread spec-
trum techniques (SS) [1], hiding every bit of the message over the entire image
(”holographic” property). Hence we endow the method with robustness against
cropping and better synchronization properties [15]. We propose to design the
watermark to have the size of one component, n/k × m/k. This watermark is
computed as the circular convolution of a key-dependent pseudorandom image
P and an image containing the bits of the message Q

W = P ⊗ Q (3)

Let’s M be a p × p matrix whose pixels are the bits of the message. We define
matrix Q as follows

Q(i, j) =
∑

rs

M(r, s)δ(i − r · nr/2, j − s · nc/2) (4)

where nr = n/(k · p) and nc = m/(k · p). Therefore, matrix Q is a zero valued
matrix except for the bits of the message, located at the center of each nr × nc

block. Once we have the watermark, we perform a perceptual masking based on
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edge detection [16] to improve the invisibility of the watermark. Now we have
the watermark ready to be embedded.

By arranging the IC components yt(i), i = 1, ..., k2 in descending order of
magnitude we have the low frequency, the medium frequency and the very high-
frequency coefficients, in this ordering. Next, we reshape the watermark into
a row vector, yW

t , and add it to the first r host image IC, yV
t . Similarly to

other frequency transform watermarking algorithms [1], we propose to embed
the watermark in the r most significant IC, excluding the first one. The first IC
is important since it is the low pass component and it is the more robust one to
compression. However, since it is not orthogonal to spread-spectrum watermarks
we cannot easily blindly extract the mark by using simple detectors. We update
the host IC as follows

yV
t (h) = yI

t (h) + αhyW
t h = 2, . . . , r (5)

where αh is a scaling factor to control the perception of the watermark. Other
techniques such as the multiplicative or exponential approaches are possible
[1]. In [5] we proposed a replacement of high-frequency components instead.
However, these components can be easily removed by a simple, e.g., compression
of the watermarked image.

3.2 Detection

In the detection of the watermark W from the (attacked) watermarked image
V we go back on the steps of the embedding Algorithm 1, as illustrated in Fig.
3. The watermark detection yields

Algorithm 2: Detection.

1 Watermarked image to column vectors. Compute the components xV
t of the

watermarked image V by dividing it in k × k patches.
2 ICA components. Compute the IC, yV

t , of the image as yV
t = BxV

t .
3 Extraction. Extract the watermark from yV

t .
4 Detection. Estimate the message and the probability of watermark detection.

Since we use a SS watermark, detection can be easily achieved by simple corre-
lation, i.e., by using a matched filter. We first compute the IC of the watermarked
image yV

t = BxV
t . Then we average all components h : αh �= 0, improving the

signal (watermark) to noise (image+attacks) ratio,

ŷW
t =

∑

h:αh �=0

yV
t (h) (6)

and reshape the resulting vector into matrix Ŵ . Finally, we estimate the copy-
right message by computing matrix Q in (4) as

Q̂ = P ⊗ Ŵ S (7)
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Table 1. Averaged bit error rate for different attacks and images performed on ICA

and DCT watermarked images, PSNR=41 dB

Attack BER ICA

AWGN 0.0243

Quantization 22 levels 0

Median (5×5) 0.0104

JPEG 20 % 0.0747

Cropping 10% 0.0278

where S denotes symmetry (W S(i, j) = W (j, i)). The values of the peaks of
this convolution are the bits of the message. The probability of detection can be
easily estimated by comparing these peaks to the rest of pixels modeled as zero
mean Gaussian noise.

4 Experimental Results

We next include an example of robust watermarking applied to nine 512×512
intensity images. We first computed xI

t with k = 3 and then the IC of the
image as yI

t = BxI
t , where matrix B was the one obtained for another image.

The watermark was generated as the spread version of a 2-dimensional message
of 8 × 8 bits. The watermark was added to the IC of the image number h =
2, 3, 4, 5, 6. The final peak signal-to-noise ratio (PSNR) was 41 dB. At this point
we must emphasize that for 41 dB the visual perception of the watermark in the
DCT approach was much more significant than in the ICA method. Besides, it
as been further improved by means of a perceptual mask.

We performed the following attacks and obtain the averaged bit error rate
(BER) included in Tab. 1. We first added white Gaussian noise with standard
deviation σ = 0.15, we requantized the image to 22 levels, then we applied a
3 × 3 median filter, the image was also JPEG compressed to 20% of its original
size and finally we cropped the 90% of the image.

5 Conclusions

In this paper we propose a new blind robust image watermarking algorithm,
where we embed the watermark into the independent components of the image.
The orthogonality between spread spectrum signals and IC is exploited in this
novel blind design. This method has a little perceptual impact compared to the
DCT approach. Besides, we propose a double-key algorithm, where the ICA
projection and the spreading codes are needed in the retrieval of the watermark.
We show that by introducing some useful and simple features in the embedding
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stage we greatly improve the performance of the method. These are the use of a
perceptual mask and the holographic approach. In the experiments included we
illustrate the good performance of this method.
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