
A Tutorial Introduction

INDEPENDENT COMPONENT ANALYSIS
James V. Stone

INDEPENDENT COMPONENT ANALYSIS A Tutorial Introduction James V. Stone

Independent component analysis (ICA) is becoming an increasingly important tool for analyzing large data sets. In

essence, ICA separates an observed set of signal mixtures into a set of statistically independent component signals,

or source signals. In so doing, this powerful method can extract the relatively small amount of useful information typ-

ically found in large data sets. The applications for ICA range from speech processing, brain imaging, and electrical

brain signals to telecommunications and stock predictions.

In Independent Component Analysis, Jim Stone presents the essentials of ICA and related techniques (projection

pursuit and complexity pursuit) in a tutorial style, using intuitive examples described in simple geometric terms. The

treatment fills the need for a basic primer on ICA that can be used by readers of varying levels of mathematical so-

phistication, including engineers, cognitive scientists, and neuroscientists who need to know the essentials of this

evolving method.

An overview establishes the strategy implicit in ICA in terms of its essentially physical underpinnings and de-

scribes how ICA is based on the key observation that different physical processes generate outputs that are statisti-

cally independent of each other. The book then describes what Stone calls “the mathematical nuts and bolts” of how

ICA works. Presenting only essential mathematical proofs, Stone guides the reader through an exploration of the fun-

damental characteristics of ICA.

Topics covered include the geometry of mixing and unmixing; methods for blind source separation; and appli-

cations of ICA, including voice mixtures, EEG, fMRI, and fetal heart monitoring. The appendixes provide a vector ma-

trix tutorial, plus basic demonstration computer code that allows the reader to see how each mathematical method

described in the text translates into working Matlab computer code.

James V. Stone is a Reader in the Psychology Department at the University of Sheffield, England.

IN
D

E
P

E
N

D
E

N
T

 C
O

M
P

O
N

E
N

T
 A

N
A

LY
S

IS
Stone

This fantastic book provides a broad introduction to both the theory and applications of independent component

analysis. I recommend it to any student interested in exploring this emerging field.” —Martin J. McKeown, Associate

Professor of Medicine (Neurology), University of British Columbia

Independent component analysis is a recent and powerful addition to the methods that scientists and engineers have

available to explore large data sets in high-dimensional spaces. This book is a clearly written introduction to the foun-

dations of ICA and the practical issues that arise in applying it to a wide range of problems.” —Terrence J. Sejnowski,

Howard Hughes Medical Institute, Salk Institute for Biological Studies, and University of California, San Diego

This monograph provides a delightful tour, through the foothills of linear algebra to the higher echelons of inde-

pendent components analysis, in a graceful and deceptively simple way. Its careful construction, introducing concepts

as they are needed, discloses the fundamentals of source separation in a remarkably accessible and comprehen-

sive fashion.” —Karl J. Friston, University College London

The MIT Press
Massachusetts Institute of Technology
Cambridge, Massachusetts 02142
http://mitpress.mit.edu
0-262-69315-1

,!7IA2G2-gjdbfi!:t;K;k;K;k

“

“

“

A Bradford Book

cognitive neuroscience/psychology

Independent Component Analysis

Independent Component Analysis
A Tutorial Introduction

James V. Stone

A Bradford Book

The MIT Press

Cambridge, Massachusetts

London, England

© 2004 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means
(including photocopying, recording, or information storage and retrieval) without permission in writing from the
publisher.

Typeset by the author using LATEX∂ 2ε.

Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Stone, James V.
 Independent component analysis : a tutorial introduction / James V. Stone.
 p. cm.
 “A Bradford book”
 Includes bibliographical references and index.
 ISBN 0-262-69315-1 (pbk.: alk. paper)
 1. Neural networks (Computer science) 2. Multivariate analysis. I. Title.

QA76.87.S78 2004
006.3'2—dc22

2004042589
10 9 8 7 6 5 4 3 2 1

To Nikki, Sebastian, and Teleri

 Preface xi
 Acknowledgments xiii
 Abbreviations xv
 Mathematical Symbols xvii

I Independent Component Analysis and Blind Source Separation 1

1 Overview of Independent Component Analysis 5
1.1 Introduction 5
1.2 Independent Component Analysis: What Is It? 5
1.3 How Independent Component Analysis Works 8
1.4 Independent Component Analysis and Perception 8
1.5 Principal Component Analysis and Factor Analysis 9
1.6 Independent Component Analysis: What Is It Good For? 10

2 Strategies for Blind Source Separation 13
2.1 Introduction 13
2.2 Mixing Signals 13
2.3 Unmixing Signals 14
2.4 The Number of Sources and Mixtures 17
2.5 Comparing Strategies 18
2.6 Summary 18

II The Geometry of Mixtures 19

3 Mixing and Unmixing 21
3.1 Introduction 21
3.2 Signals, Variables, and Scalars 21
 3.2.1 Images as Signals 21
 3.2.2 Representing Signals: Vectors and Vector Variables 22
3.3 The Geometry of Signals 24
 3.3.1 Mixing Signals 24
 3.3.2 Unmixing Signals 27
3.4 Summary 29

4 Unmixing Using the Inner Product 31
4.1 Introduction 31
4.2 Unmixing Coeffi cients as Weight Vectors 33
 4.2.1 Extracted Signals Depend on the Orientation of Weight Vectors 34
4.3 The Inner Product 35
 4.3.1 The Geometry of the Inner Product 38
4.4 Matrices as Geometric Transformations 39

 Contents

viii Contents

 4.4.1 Geometric Transformation of Signals 39
 4.4.2 The Unmixing Matrix 40
 4.4.3 The Mixing Matrix 42
4.5 The Mixing Matrix Transforms Source Signal Axes 43
 4.5.1 Extracting One Source Signal from Two Mixtures 44
 4.5.2 Extracting Source Signals from Three Mixtures 46
4.6 Summary 49

5 Independence and Probability Density Functions 51
5.1 Introduction 51
5.2 Histograms 51
5.3 Histograms and Probability Density Functions 54
5.4 The Central Limit Theorem 56
5.5 Cumulative Density Functions 57
5.6 Moments: Mean, Variance, Skewness and Kurtosis 58
5.7 Independence and Correlation 61
5.8 Uncorrelated Pendulums 63
5.9 Summary 65

III Methods for Blind Source Separation 69

6 Projection Pursuit 71
6.1 Introduction 71
6.2 Mixtures Are Gaussian 71
6.3 Gaussian Signals: Good News, Bad News 72
6.4 Kurtosis as a Measure of Non-Normality 73
6.5 Weight Vector Angle and Kurtosis 73
6.6 Using Kurtosis to Recover Multiple Source Signals 75
6.7 Projection Pursuit and ICA Extract the Same Signals 75
6.8 When to Stop Extracting Signals 76
6.9 Summary 77

7 Independent Component Analysis 79
7.1 Introduction 79
7.2 Independence of Joint and Marginal Distributions 79
 7.2.1 Independent Events: Coin Tossing 79
 7.2.2 Independent Signals: Speech 80
7.3 Infomax: Independence and Entropy 83
 7.3.1 Infomax Overview 84
 7.3.2 Entropy 86
 7.3.3 Entropy of Univariate pdfs 90

Contents ix

 7.3.4 Entropy of Multivariate pdfs 93
 7.3.5 Using Entropy to Extract Independent Signals 99
7.4 Maximum Likelihood ICA 99
7.5 Maximum Likelihood and Infomax Equivalence 103
7.6 Extracting Source Signals Using Gradient Ascent 103
7.7 Temporal and Spatial ICA 103
7.7.1 Temporal ICA 106
7.7.2 Spatial ICA 108
7.7.3 Spatiotemporal ICA 109
7.7.4 The Size of the Unmixing Matrix 109
7.8 Summary 110

8 Complexity Pursuit 111
8.1 Introduction 111
8.2 Predictability and Complexity 112
8.3 Measuring Complexity Using Signal Predictability 113
8.4 Extracting Signals by Maximizing Predictability 115
8.5 Summary 118

9 Gradient Ascent 119
9.1 Introduction 119
9.2 Gradient Ascent on a Line 120
9.3 Gradient Ascent on a Hill 122
9.4 Second Order Methods 126
9.5 The Natural Gradient 127
9.6 Global and Local Maxima 127
9.7 Summary 128

10 Principal Component Analysis and Factor Analysis 129
10.1 Introduction 129
10.2 ICA and PCA 129
10.3 Eigenvectors and Eigenvalues 130
10.4 PCA Applied to Speech Signal Mixtures 131
10.5 Factor Analysis 133
10.6 Summary 135

IV Applications 137

11 Applications of ICA 139
11.1 Introduction 139
11.2 Temporal ICA of Voice Mixtures 139

x Contents

11.3 Temporal ICA of Electroencephalograms 140
11.4 Spatial ICA of fMRI Data 141
11.5 Spatial ICA for Color MRI Data 143
11.6 Complexity Pursuit for Fetal Heart Monitoring 144
11.7 Complexity Pursuit for Learning Stereo Disparity 145

V Appendices 149
A A Vector Matrix Tutorial 151
B Projection Pursuit Gradient Ascent 157
C Projection Pursuit: Stepwise Separation of Sources 163
D ICA Gradient Ascent 165
E Complexity Pursuit Gradient Ascent 173
F Principal Component Analysis for Preprocessing Data 179
G Independent Component Analysis Resources 183
H Recommended Reading 185
 References 187
 Index 191

This book is intended to provide the essentials of independent component analysis (ICA)
using intuitive examples described in simple geometric terms. The tutorial style adopted
should make this book suitable for readers of varying mathematical sophistication, from
the almost innumerate enthusiast to the research scientist.

In writing this book, I have not been overly concerned with much in the way of
mathematical proofs, nor with unnecessary mathematical notation. This approach can be
justified to some extent because the rapidly expanding field of independent component
analysis is replete with such formal accounts. More generally, formal mathematical proofs
require assumptions which are often physically untenable, as noted by Einstein,

As far as the laws of mathematics refer to reality, they are not certain; and as
far as they are certain, they do not refer to reality.

Most importantly, disregarding all but the most important mathematical proofs leaves
the reader free to explore the fundamental characteristics of independent component anal-
ysis without constantly tripping up the many caveats usually associated with highly math-
ematical treatments. The resultant tutorial account of independent component analysis is
essentially true, even though such essential truths may not include certain technical details
and caveats.

The tutorial approach adopted in this book has two consequences. First, important
facts are repeated as appropriate in different sections of the book. I make no apology for
this. What is obvious to the trained mathematician often bears a degree of repetition to
the novice. Second, new topics are usually introduced on a “need to know” basis. This
strategy of introducing new topics only when they are required ensures that the account of
each new topic is well motivated by the problem at hand, and can be described in terms of
relevant examples.

In attempting to understand the details of a particular method, it is often helpful to
examine computer code which implements that method. This allows the reader to exam-
ine how a given mathematical method described in the text translates into working com-
puter code. With this in mind, basic demonstration computer code is provided in appen-
dices. This code, and more complete versions of it, can be obtained from my web site:
http://www.shef.ac.uk/̃ pc1jvs.

Finally, my intention has been to cut through the distracting issues that inevitably ac-
company any new method (e.g., variants of independent component analysis methods that
are smaller, faster, or cheaper), and to describe the essential core of independent compo-
nent analysis in relation to a few intuitive examples. However, it must be acknowledged
that there are a small number of variants of independent component analysis which, while
not essential for understanding the principles of the method, are of considerable interest,
and these are described briefly.

Preface

xii Preface

Readers are encouraged to send me comments at the following address: Dr JV Stone,
Department of Psychology, Sheffield University, Western Bank, Sheffield, S10 2UR, Eng-
land. Email: j.v.stone@sheffield.ac.uk

The inspiration for this book was a workshop on “Information Theory and the Brain”
in September 1995, where Anthony Bell presented a paper (by Bell and Sejnowski) on
independent component analysis. During subsequent years my enthusiasm for this research
area increased as I came to realize that many problems can be usefully reformulated
in terms of independent component analysis. My ongoing education in such matters
was facilitated during visits to two laboratories in North America. At the University of
Toronto, Zoubin Ghahramani, Geoffrey Hinton, and Mike Revow provided a brief but
intensive education in linear models. At the Salk Institute in San Diego, discussions with
numerous members of Terry Sejnowski’s laboratory provided insights into the potential of
independent component analysis. These visits were funded by a Wellcome Mathematical
Biology Fellowship.

I would like to thank the people who read early drafts of this book: Alistair Bray,
Stephen Eglen, John Frisby, Pasha Parpia, Nikos Papadakis, Ying Zheng, and three re-
viewers: Martin McKeown plus two anonymous reviewers. Stephen Isard deserves special
mention for his meticulous comments on several drafts of the book. I would also like to
thank John Porrill for discussions of independent component analysis, and Barbara Mur-
phy at The MIT Press for much valuable advice.

Finally, and mostly, I would like to thank my wife Nikki Hunkin for her support and
encouragement in writing this book.

J.V. Stone April 2004
Department of Psychology
Sheffield University
England.

Acknowledgments

BSS blind source separation
cdf cumulative density function
CLM central limit theorem
ICA independent component analysis
PCA principal component analysis
pdf probability density function
SVD singular value decompositoin

Abbreviations

The terms signal and variable are used interchangeably. Methods particularly relevant to
symbols are given in parentheses.

|.| vector length,
absolute value of matrix determinant

. dot product of vectors, also known as inner and scalar product
A mixing matrix
a, b, c, d elements of mixing matrix A
α, β, γ, δ (alpha, beta, gamma, delta), elements of unmixing matrixW
C matrix of long-term covariances between signal mixtures
Ĉ matrix of short-term covariances between signal mixtures
D diagonal matrix of singular values (SVD)
D̃ truncated version of matrix D (SVD)
E[.] expected value
η (eta) learning rate constant
F measure of predictability (1/complexity)
g(.) cumulative density function (univariate or multivariate)
g′(.) first derivative of g, pdf corresponding to cdf g
g′′(.) second derivative of g
H(.) entropy
J Jacobian matrix of derivatives (ICA)
J Jacobian (scalar, determinant of Jacobian matrix)
K kurtosis
λ (lambda) eigenvalue (PCA), factor loading (FA), temporal weighting
M number of signal mixtures
n number of possible outcomes (e.g. two for a coin)
∇ fK (nabla) vector-valued gradient of function fK
N number of observed values in a signal (e.g. s1 = (s11 , . . . , s

N
1))

p(xt) probability that variable x has value xt

pi probability of i th out of n possible outcomes
ps(.) pdf of signal s
px (.) pdf of variable x
pxy(.) joint pdf of variables x and y
py(.) pdf of extracted signal y
pY (.) pdf of variable Y
pZ (.) pdf of variable Z
ρ(x, y) (rho) correlation between signals x and y

Mathematical Symbols

xviii Mathematical Symbols

sti t th value of i th source signal
s vector variable of source signals (extracted byW∗)
σ (sigma) standard deviation
S source signal space
Si i th axis in source signal space S
S′
i i th transformed axis, S′

i = ASi
ψ (psi) unmixing coefficient
T superscript (T) denotes transpose operator
v1 vector of mixing coefficients, vT1 = (a, b)
v2 vector of mixing coefficients, vT2 = (c, d)

U matrix of short-term covariances (complexity pursuit),
set of eigenvectors (SVD)

Ui short term variance of i th signal (complexity pursuit)
Ũ approximation to eigenvectors U (SVD)
V matrix of long-term covariances (complexity pursuit),

set of eigenvectors (SVD)
Vi long term variance of i th signal (complexity pursuit)
Ṽ approximation to eigenvectors V (SVD)
wi i th weight vector for extracting i th source signal from x
W unmixing matrix, y = Wx
W∗ optimal unmixing matrix, s = W∗x
X signal mixture space
Xi i th axis in signal mixture space X
x mean value of signal x
xti t th value of i th signal mixture
x vector variable of signal mixtures
x̃ SVD approximation to x
yi signal extracted from x by wi
y vector variable of signals extracted by matrixW
Y = g(y) cdf, integral of pdf ps(y)
Y vector variable, Y = g(y)
z vector variable of sphered mixtures (complexity pursuit)
zi i th scalar variable
Z variable
Z vector variable.

I INDEPENDENT COMPONENT ANALYSIS AND BLIND SOURCE
 SEPARATION

What is essential is invisible to the eye.

 —The Little Prince, Antoine De Saint-Exupéry, 1943

tion of contrast edges. Having identified these factors, it would then be possible to estimate
the extent to which each individual neuron depended on each factor, so that neurons could
be classified as coding for luminance or edge orientation.

In every case, it is these factors or source signals that are of primary interest, but they
are buried within a large set of measured signals, or signal mixtures. ICA can be used to
extract the source signals underlying a set of measured signal mixtures.

1.2 Independent Component Analysis: What Is It?

ICA belongs to a class of blind source separation (BSS) methods for separating data
into underlying informational components, where such data can take the form of images,
sounds, telecommunication channels or stock market prices. The term “blind” is intended

Every problem becomes very childish when once it is explained to you.
— Sherlock Holmes (The Dancing Men, A.C. Doyle, 1905)

1.1 Introduction

It is often said that we suffer from “information overload,” whereas we actually suffer from
“data overload.” The problem is that we have access to large amounts of data containing
relatively small amounts of useful information. This is true both in our daily lives, and
within many scientific disciplines. Independent component analysis (ICA) is essentially a
method for extracting useful information from data.

ICA is of interest to a wide variety of scientists and engineers because it promises to
reveal the driving forces which underlie a set of observed phenomena. These phenomena
include the firing of a set of neurons, mobile phone signals, brain images (e.g., functional
magnetic resonance imaging, fMRI), stock prices, and voices (see figure 1.1). In each case,
a large set of signals are measured, and it is known that each measured signal depends on
several distinct underlying factors, which provide the driving forces behind the changes
in the measured signals. In other words, each measured signal is essentially a mixture of
these underlying factors.

For example, the 100 stock prices in the London FTSE index represent a set of 100
time-varying measurements, each of which depends on a relatively small number of distinct
time-varying causal factors (e.g., the latest retail sales figures, unemployment rates, and
weather conditions). Thus each stock price can be viewed as a different mixture of these
factors. If these factors could be extracted from the 100 measured signals then they could
(in principle) be used to predict future movements of those 100 stock prices.

Similarly, if the time-varying outputs of 100 neurons in the visual cortex of the brain
were measured then ICA could be used to test the extent to which all 100 neurons depend
on a small set of causal factors, corresponding (for example) to luminance and the orienta-

1 Overview of Independent Component Analysis

to imply that such methods can separate data into source signals even if very little is known
about the nature of those source signals.

As an example, imagine there are two people speaking at the same time in a room
containing two microphones, as depicted in figure 1.1. If each voice signal is examined at
a fine time scale then it becomes apparent that the amplitude of one voice at any given point
in time is unrelated to the amplitude of the other voice at that time (see figure 1.2). The
reason that the amplitudes of the two voices are unrelated is that they are generated by two
unrelated physical processes (i.e., by two different people). If we know that the voices are
unrelated then one key strategy for separating voice mixtures into their constituent voice
components is to look for unrelated time-varying signals within these mixtures. Using this
strategy, the extracted signals are unrelated, just as the voices are unrelated, and it follows
that the extracted signals are the voices. So, simply knowing that each voice is unrelated
to the others suggests a strategy for separating individual voices from mixtures of voices.
This apparently mundane observation is a necessary prerequisite for understanding how

6 Chapter 1

Source 1

Source 1

Source 2

Source 2

Mixture 1

Mixture 2

Figure 1.1
ICA in a nutshell. If two people speak at the same time in a room containing two microphones then
the output of each microphone is a mixture of two voice signals. Given these two signal mixtures,
ICA can recover the two original voices or source signals. This example uses speech, but ICA can
extract source signals from any set of two or more measured signal mixtures, where each signal
mixture is assumed to consist of a mixture of source signals (see text).

ICA works. The property of being unrelated is of fundamental importance, because it can
be used to separate not only mixtures of sounds, but mixtures of almost any type (e.g.,
images as in figure 1.4, radio).1

While it is true that two voice signals are unrelated, this informal notion can be captured
in terms of statistical independence.2 If two or more signals are statistically independent
of each other then the value of one signal provides no information regarding the value of
the other signals.

Overview of Independent Component Analysis 7

Figure 1.2
ICA exploits the fact that two signals, such as voices, from different physical sources are independent.
This implies that, if the two different source voice signals shown in the top panels are examined at a
fine time scale then the amplitude of one voice (top left) at any given time provides no information
regarding the amplitude of the other voice (top right) at that time. This can be confirmed graphically
by plotting the amplitude of one voice at each time point against the corresponding amplitude of the
other voice (bottom panel). The resultant distribution of points does not indicate any obvious pattern,
suggesting that the two voice signals are independent.

0 100 200
-4

-2

0

2

4

S
ou

rc
e

S
ig

na
l 1

 A
m

pl
itu

de

Time (ms)
0 100 200

-4

-2

0

2

4

S
ou

rc
e

S
ig

na
l 2

 A
m

pl
itu

de

Time (ms)

-2 0 2
Source 1 Amplitude

-3

-2

-1

0

1

2

3
S

ou
rc

e
2

A
m

pl
itu

de

1. In fact, sounds present a harder separation problem than electromagnetic signals, such as radio. This is
because sound travels sufficiently slowly that it arrives at different sensors (microphones) at different times. This
differential delay can be overcome in practice (e.g., Lee et al., 1997). For simplicity, we will assume there is no
such delay in the speech examples considered here.

2. For brevity, we will usually use the term independence.

Before considering how ICA works, we need to introduce some terminology. As its
name suggests, independent component analysis separates a set of signal mixtures into a
corresponding set of statistically independent component signals or source signals. The
mixtures can be sounds, electrical signals, e.g., electroencephalographic (EEG) signals, or

8 Chapter 1

images (e.g., faces, fMRI data). The defining feature of the extracted signals is that each
extracted signal is statistically independent of all the other extracted signals.

1.3 How Independent Component Analysis Works

ICA is based on the simple, generic and physically realistic assumption that if different
signals are from different physical processes (e.g., different people speaking) then those
signals are statistically independent. ICA takes advantage of the fact that the implication
of this assumption can be reversed, leading to a new assumption which is logically un-
warranted but which works in practice, namely: if statistically independent signals can be
extracted from signal mixtures then these extracted signals must be from different physical
processes (e.g., different people speaking). Accordingly, ICA separates signal mixtures
into statistically independent signals. If the assumption of statistical independence is valid
then each of the signals extracted by independent component analysis will have been gen-
erated by a different physical process, and will therefore be a desired signal.

The preceding description represents the high-level strategy implicit in ICA. The math-
ematical nuts and bolts of precisely how ICA works are described in subsequent chapters.
While the nuts and bolts are necessary, grasping the essential physically motivated under-
pinnings of independent component analysis is the key to understanding these nuts and
bolts.

1.4 Independent Component Analysis and Perception

The problem of blind source separation solved by independent component analysis is anal-
ogous to the problem encountered by every newborn animal: how to decompose perceptual
inputs into their underlying physical causes. For example, if an animal looks at an object
then each retinal receptor has an output which is a function of several physical causes,
including the luminance, reflectance, slant, tilt, and motion of the object’s surface. ICA
methods have the potential to provide a rigorous model of how the decomposition of per-
ceptual inputs can be learned by making use of generic and physically plausible constraints,
such as statistical independence and spatiotemporal continuity (see chapter 11 for an exam-
ple using stereo disparity). This is not intended to suggest that the brain implements ICA,
but simply that ICA and neuronal computation are based on a common set of underlying
principles (see Barlow, 1981) for a classic and lucid account of this type of approach with
respect to uncorrelatedness rather than independence).

1.5 Principal Component Analysis and Factor Analysis

ICA is related to conventional methods for analyzing large data sets, such as principal
component analysis (PCA) and factor analysis (FA) (see chapter 10 and appendix F).
Whereas ICA finds a set of independent source signals, PCA and FA find a set of signals
with a much weaker property than independence. Specifically, PCA and FA find a set of
signals which are uncorrelated with each other. This is a crucial distinction, to which we
will return later. For example, PCA would extract a set of uncorrelated signals from a set
of mixtures. If these mixtures were microphone outputs then the extracted signals would
simply be a new set of voice mixtures. In contrast, ICA would extract a set of independent
signals from this set of mixtures, so that the extracted signals would be a set of single
voices.

Overview of Independent Component Analysis 9

Figure 1.3
Speech Separation.
Left: Each of five people speaking simultaneously generates an independent voice source signal. The
set of source signals is denoted s.
Middle: If there are five microphones present then the output of each microphone is a mixture of five
independent source signals (i.e., voices). The (unknown) speaker-microphone distances are repre-
sented by the mixing process labeled A. The set of signal mixtures is denoted x.
Right: ICA extracts five independent components from the set of signal mixtures, where each ex-
tracted signal is an estimate of one of the original source signals (i.e. single voices). The unmixing
process identified by ICA is denotedW, and the estimated source signals are denoted y. Note that
ICA re-orders signals, so that an extracted signal yi and its source signal si are not necessarily on the
same row. From (Bell & Sejnowski, 1995).

The “forward” assumption that signals from different physical processes are uncorre-
lated still holds, but the “reverse” assumption that uncorrelated signals are from different
physical processes does not. This is because lack of correlation is a weaker property than
independence. In summary, independence implies a lack of correlation, but a lack of cor-
relation does not imply independence.

1.6 Independent Component Analysis: What Is It Good For?

ICA has been applied to problems in fields as diverse as speech processing, brain imaging
(e.g., fMRI and optical imaging), electrical brain signals (e.g., EEG signals), telecommuni-
cations, and stock market prediction. However, because independent component analysis
is an evolving method which is being actively researched around the world, the limits of
what ICA may be good for have yet to be fully explored.

Two contemporary applications of ICA are presented in figures 1.3– 1.4. Note that ICA
can be used to find independent components which can take the form of speech, electrical
signals or images.

10 Chapter 1

Sources Unknown
mixing
process

Face
images

Learned
weights

Separated
outputs

A W

s x y

Figure 1.4
Face Recognition.
Left: Each of four prototypical unknown faces is a (spatial) independent source signal. The set of
four source signals is labeled s.
Middle: The faces of four people are each assumed to be a different mixture of underlying prototyp-
ical faces (left), where the mixing process is labeled A. The set of four signal mixtures is labeled x.
Right: ICA extracts a set of signals, each of which is an estimate of one of the unknown spatial
source signals. This unmixing process is labeledW, and the set of four estimated source signals is
labeled y. Note how the estimated source signals contain spatially localized features corresponding
to perceptually salient features, such as mouth and eyes. From (Bartlett, 2001).

In conclusion, ICA is based on a single physically realistic assumption: namely, that
different physical processes generate outputs that are independent of each other. In the
following chapters it will be shown how this assumption not only provides an intuitive
insight into how ICA works but also how it provides insight into how the physical world
works.

Overview of Independent Component Analysis 11

2 Strategies for Blind Source Separation

The world is full of obvious things which nobody by any chance ever observes.
— Sherlock Holmes (The Hound of the Baskervilles, A.C. Doyle, 1902).

2.1 Introduction

It should be apparent by now that, for our purposes, the world is full of mixtures of source
signals, and that most problems can be reduced to unmixing a set of mixtures into their
underlying source signals. The problem of unmixing signals is known as blind source
separation (BSS), and independent component analysis (ICA) is a specific method for
performing BSS.

In this chapter, we explore the basic concepts required for understanding BSS and the
basic strategies which underwrite BSS methods, such as ICA. We begin by examining the
generic effects of mixing signals together, and how these effects can be used as a starting
point for unmixing signals. For the present, we consider two signals only, and restrict the
examples to speech signals.

Before embarking on this informal account of mixing and unmixing, it should be noted
that we will not concern ourselves with much in the way of mathematical precision, nor
mathematical notation, in this chapter. This leaves us free to explore the fundamental char-
acteristics of mixing and unmixing without constantly tripping up the many caveats usually
associated with mathematical treatments. In short, the following account is essentially true,
and the omitted “ifs” and “buts” can wait for the more formal account given later.

As a reminder, recall that we use the term source signal to refer to an unmixed signal
(e.g., a single voice), and signal mixture, or simply mixture, to refer to a mixture of source
signals.

2.2 Mixing Signals

When two speech source signals are mixed to make two signal mixtures, as shown in figure
2.1, three effects follow. Each of these effects can be used as a basis for unmixing (but only
two of these are used by ICA).

Independence: Whereas speech source signals are statistically independent, their signal
mixtures are not. This is because each source signal is shared between both mixtures
such that the resultant commonality between signal mixtures ensures that they cannot be
independent. See figure 2.2.

Normality: If the values in a speech source signal are plotted as a histogram then a “peaky”
structure emerges, whereas a corresponding histogram of a sawtooth signal yields a flat
histogram. Crucially, a histogram of a signal mixture that is the sum of these two signals

14 Chapter 2

yields a more bell-shaped structure, as shown in figure 2.3. These bell-shaped histograms
are referred to as normal or gaussian.

Complexity. The temporal complexity of any mixture is greater than (or equal to) that
of its simplest (i.e., least complex) constituent source signal. This ensures that extracting
the least complex signal from a set of signal mixtures yields a source signal. While this
conjecture appears to be true in general, it can be observed directly if the source signals
are pure tones (sine waves), as shown in figure 2.4.

2.3 Unmixing Signals

The above informal descriptions of three effects of mixing source signals are sufficient to
establish basic principles for recovering these source signals from several sets of signal
mixtures. In each case, the line of reasoning is the same, and goes something like this:

If the signals we happen to extract from a set of mixtures are independent
like source signals, or have non-gaussian (e.g., peaky) histograms like source

5000
-4

-2

0

2

4
S

ou
rc

e
S

ig
na

l 1
A

m
pl

itu
de

-4

-2

0

2

4

S
ig

na
l M

ix
tu

re
 1

A
m

pl
itu

de
5000

-4

-2

0

2

4

S
ou

rc
e

S
ig

na
l 2

A
m

pl
itu

de

-4

-2

0

2

4

S
ig

na
l M

ix
tu

re
 2

A
m

pl
itu

de

1000 2000 3000 4000
Time (ms)

1000 2000 3000 4000 5000
Time (ms)

1000 2000 3000 4000
Time (ms)

1000 2000 3000 4000 5000
Time (ms)

Figure 2.1
Two voice source signals (left) sampled every millisecond (ms) for 5 seconds, and two different
mixtures of these voice signals (right). Each mixture could be the output of one microphone placed
at different locations in a room with two people speaking at the same time, as depicted in figure 1.1.
The different locations of microphones ensure that the two mixtures contain different proportions of
each voice signal.

Strategies for Blind Source Separation 15

signals, or have low complexity like source signals, then they must be source
signals.

By analogy, if it looks like a duck, walks like a duck, and quacks like a duck, then it
must be a duck. In general, this type of strategy can be summarized as follows:

If source signals have some property X and signal mixtures do not then given
a set of signal mixtures we should attempt to extract signals with as much X as
possible, on the understanding that these extracted signals will be the required
source signals.

Now, we can substitute “independence,” “normality,” and “complexity” for X to yield
three principles for unmixing, as follows.

Independence. If source signals are independent and signal mixtures are
not then extracting independent signals from a set of signal mixtures should
recover the required source signals (as discussed in chapter 1).

Normality. If source signals have non-gaussian (e.g., peaky) histograms and

Figure 2.2
Independence.
Amplitude values in two different signal mixtures are more highly correlated than amplitude values
in the source signals that contribute to each mixture, because each mixture contains a proportion of
each source signal. A graph (left) of values of one voice source signal versus corresponding values
of the other voice source signal from figure 2.1 therefore has very little structure, suggesting that
the two voice signals are unrelated (i.e., independent). In contrast, a graph (right) of values of one
voice signal mixture versus corresponding values of the other voice signal mixture from figure 2.1
shows that, as one mixture amplitude increases, the other mixture amplitude also increases. Thus the
amplitudes of the two mixtures, but not the voice source signals, are correlated.

-2 0 2
-3

-2

-1

0

1

2

3

S
ou

rc
e

S
ig

na
l 2

 A
m

pl
itu

de

Source Signal 1 Amplitude

-2 0 2
-3

-2

-1

0

1

2

3

S
ig

na
l M

ix
tu

re
 2

 A
m

pl
itu

de

Signal Mixture 1 Amplitude

16 Chapter 2

signal mixtures do not then extracting signals with non-gaussian histograms
from a set of signal mixtures should recover the required signals.

Complexity. If source signals have low complexity (i.e., simple) structure and
signal mixtures do not then extracting signals with low complexity from a set
of signal mixtures should recover the required signals.

Although this general type of strategy is not guaranteed to work, it sounds highly
plausible, and is very effective in practice. All we need now is a method for extracting
signals with as much X (e.g., independence) as possible from a set of signal mixtures. In
order to examine such methods, we first need to define a notation for mixing and unmixing

Figure 2.3
Normality.
Signal mixtures have gaussian or normal histograms.
Left: A speech source signal (top) and a histogram of amplitude values in that signal (bottom). A
histogram is a graphical representation of the number of times each signal amplitude occurs. Speech
signals tend to have amplitudes close to zero, so that the amplitude value with the largest count in
the histogram is at zero.
Middle: A sawtooth source signal (top) and its histogram (bottom).
Right: A signal mixture (top) which is the sum of the source signals on the left and middle, and its
histogram (bottom).
Any mixture of source signals has a histogram that tends to be more bell-shaped (normal or gaussian)
than that of any of its constituent source signals, even if the source signals have very different
histograms. For clarity, the top panels display only a small time interval of the signals used to
construct the histograms in the bottom panels.

-5
0

1000

2000

3000

4000

5000

Signal Amplitude

C
ou

nt

-4

-2

0

2

4

S
ig

na
l A

m
pl

itu
de

-2
0

500

1000

1500

Signal Amplitude

-2

-1

0

1

2

-5
0

1000

2000

3000

4000

Signal Amplitude

-4

-2

0

2

4

0 5

Time

0 2

Time

0 5

Time

Strategies for Blind Source Separation 17

signals (see chapters 3 and 4), and then use this notation to construct formal definitions of
normality, independence, and complexity.

2.4 The Number of Sources and Mixtures

One important fact about standard BSS methods such as ICA is often not appreciated until
some experience with the methods has been gained. Basically, there must be at least as
many different mixtures of a set of source signals as there are source signals. For the
example of speech signals this implies that there must be at least as many microphones
(different voice mixtures) as there are voices (source signals).

If there are more source signals than signal mixtures then BSS methods cannot easily
extract these source signals, although there are exceptions, e.g., see (Lewicki & Sejnowski,
2000). In practice, the number of signal mixtures is often larger than the number of source
signals. For example, with electroencephalography (EEG) the number of different signal
mixtures of a single set of source signals is equal to the number of electrodes on the head
(usually greater than 10), and the number of sources is typically less than 10. If the number
of source signals is known to be less than the number of signal mixtures then the number
of signals extracted by ICA can be reduced either by preprocessing signal mixtures using
principal component analysis (see section 6.8, chapter 10 and appendix F), or by specifying
the exact number of source signals to be extracted (Porrill & Stone, 1997, Amari, 1999,
Penny et al., 2001) (see end of subsection 7.7.4).

Figure 2.4
Complexity.
The complexity of a signal mixture (bottom) is greater than (or equal to) that of the simplest (i.e.,
least complex) of its constituent source signals (top). This complexity conjecture can be used as a
basis for blind source separation. The bottom signal mixture is the sum of the top two source signals.
Pure tones (sine waves) have been used in this example to emphasize the effects of mixing on signal
waveforms.

2.5 Comparing Strategies

It is striking that there are several strategies for extracting source signals from signal
mixtures, where each strategy has spawned several distinct methods. Surely, if one of these
methods is better than the rest, then why bother with the rest? First, because some methods
have practical advantages for large data sets. Second, and more importantly, because
any method stands or falls according to the assumptions implicit in that method. The
assumptions associated with every method imply a specific model of the mixing process
and of the source signals to be extracted. The precise nature of this model may not always
be obvious, but it is always present. For example, a method’s assumptions may imply a
source signal model in which the source signals are independent, or non-gaussian, or have
low complexity. Most methods give identical and perfect results for perfect (e.g., noise-
free) data. However, if noise is present (and it always is in practical applications), or if
the source signals severely violate the assumptions on which a method is based then that
method would fail. It is therefore important to have a range of methods available, so that
the method chosen is appropriate for the particular problem under consideration.

2.6 Summary

If a set of source signals are mixed to make a corresponding set of signal mixtures then
three effects follow:

• the source signals are independent, whereas the signal mixtures are not;

• the histogram of each source signal is more non-gaussian (e.g., peaky) than the
histogram of any signal mixture, which tends to have a gaussian histogram;

• the complexity of the simplest (i.e., least complex) source signal is less than (or
equal to) that of any signal mixture containing that source signal.

A general strategy for how each of these effects can form the basis of a method for
extracting source signals from a given set of signal mixtures was described.

18 Chapter 2

The reason for the above restriction on the relative numbers of source signals and
their mixtures is analogous to the problem of seeing the full shape of a complex object
from a set of snapshots. If a series of snapshots are taken from different viewpoints then
each snapshot provides new information regarding the three-dimensional structure of the
complex object. Similarly, for a given set of source signals, each signal mixture provides
a different snapshot of each source signal, and many snapshots are required in order to
estimate each individual source signal.

•

•

•

II THE GEOMETRY OF MIXTURES

3.1 Introduction

In this chapter, we introduce notation necessary for a formal understanding of the nuts and
bolts of ICA and other blind separation methods. This notation will allow us to specify
precisely what it means to “extract” a signal from a set of signal mixtures.

We begin with a notation for sets of signals like speech, and use this notation to describe
how such signals are combined to form signal mixtures. We describe how the mixing
process is specified in terms of a set of constants or mixing coefficients. We show that
if these are known then they can be used to derive a set of unmixing coefficients, which
can be used to extract source signals from signal mixtures. We then show how these
unmixing coefficients can be derived from a set of known mixing coefficients. This will
lead to an account (in subsequent chapters) of how ICA works by estimating the unmixing
coefficients, even if the mixing coefficients are not known.

3.2 Signals, Variables, and Scalars

So far we have considered ICA in the context of voices, each of which is simply a speech
signal varying over time. In order to broaden the discussion beyond speech, we need to
define a general notation for signals.

Consider a signal which varies in amplitude from moment to moment, as shown in
figure 3.1. For the sake of providing a physical example we will assume that a new signal
amplitude is recorded every millisecond. Such a signal can be denoted by

s = (s1, s2, . . . , sN), (3.1)

where s is a time-varying signal which takes amplitudes s1, then s2, then s3, and so
on (denoted as dots in equation 3.1), for N time steps (milliseconds), and ending with
amplitude sN . (The reason for writing successive signal amplitudes in a horizontal row will
become apparent later.) A quantity such as s is usually known as a signal in engineering,
and as a scalar variable in mathematics.

3.2.1 Images as Signals

Note that the amplitude of s does not have to vary over time, instead it could vary over
space, as shown in figure 3.2. For example, if a line is drawn over a picture then the gray-
level of the ink beneath that line from point to point along the line; and if many closely
spaced lines are drawn in parallel then the entire picture is captured as a series of short
signals each of which represents the gray-level variation along a single line (in fact, this is
how a TV picture is constructed). This syntactic equivalence between time-varying signals

3 Mixing and Unmixing

22 Chapter 3

(like speech) and space-varying signals (like a TV image) ensures that ICA can be applied
to either type of signal, although there will inevitably be some cost in ignoring the intrinsic
two-dimensional structure of images. While we make use of temporal (i.e., time-varying)
signals in the examples given here, it should be borne in mind that these can also be spatial.

3.2.2 Representing Signals: Vectors and Vector Variables

As we will be considering how to mix and unmix a set of two or more signals, we need
a succinct notation to represent such sets. To return to the speech example, a set of two
time-varying speech signals s1 and s2 can be represented as

s1 = (s11 , s
2
1 , . . . , s

N
1) (3.2)

s2 = (s12 , s
2
2 , . . . , s

N
2), (3.3)

0 100 200

S
ou

rc
e

1
A

m
pl

itu
de

Time (ms)
0 100 200

S
ou

rc
e

2
A

m
pl

itu
de

Time (ms)

2 4 6 8 10

S
ou

rc
e

1
A

m
pl

itu
de

Time (ms)
2 4 6 8 10

S
ou

rc
e

2
A

m
pl

itu
de

Time (ms)

-4

-2

0

2

4

-4

-2

0

2

4

-2

-1

0

1

2

3

-3

-2

-1

0

1

2

Figure 3.1
Top: Two different speech signals, sampled every millisecond for 200 milliseconds.
Bottom: Close up of speech signals, showing amplitude values over first 10 milliseconds.
Left: (s11 , s

2
1 , . . . , s

10
1) =(0.65 -0.26 0.21 2.01 2.00 -0.10 -1.05 0.32 1.21 0.53).

Right: (s12 , s
2
2 , . . . , s

10
2) =(-0.09 -1.94 0.48 -1.62 -0.09 -1.86 1.52 -0.05 -2.14 -1.26).

Mixing and Unmixing 23

where the superscripts specify time, and the subscripts specify signal identity. For example,
the amplitude of the second signal s2 during the third millisecond is denoted s32 . Now the
amplitude of both signals at this time can be represented as a pair of numbers (which will
be written in a single column for reasons that will become apparent later),(

s31
s32

)
. (3.4)

Two or more associated scalar variables represented in this way define a vector. In this
case, the vector st varies over time, and therefore defines a single vector variable, s (usually
written in bold typeface). Thus, the third element of the vector variable s (i.e., the pair of
amplitudes during the third millisecond) is a vector,

s3 =
(
s31
s32

)
(3.5)

= (s31 , s
3
2)
T , (3.6)

where T is the transpose operator. The transpose operator is simply a convenient notation
for converting row vectors to column vectors, and vice versa (see appendix A).

50 100 150 200 250

50

100

150

200

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pixel number

Figure 3.2
Independent component analysis (ICA) of images. As far as ICA is concerned an image (left) is just
a signal (right) that has been sliced up into chunks of equal length, where each chunk corresponds to
one row (or column) of an image. In this case, the signal formed by concatenating the pixel values
of two consecutive rows of the image is shown on the right where the vertical axis indicated pixel
brightness, as indicated by the arrows. Treating a two-dimensional (2D) image as if it were a one-
dimensional signal ignores the fundamental 2D structure of that image. Despite this, useful results
can be obtained using this method (e.g., chapter 11).

forms, as follows,

s =
(
s1
s2

)
(3.7)

=
(

(s11 , s21 , . . . , sN1)

(s12 , s22 , . . . , sN2)

)
(3.8)

= (s1, s2, . . . , sN). (3.9)

Although we have used two variables above, any number of signals can be represented by
a single vector variable such as s.

3.3 The Geometry of Signals

A geometric interpretation of a set of two signals can be obtained by plotting consecutive
amplitudes in s1 against corresponding amplitudes in s2, as shown in figure 3.3. This looks
messy if we insist on drawing a line between successive data points. These lines indicate
the temporal order of signal amplitudes, and as we are going to ignore temporal ordering
for now, the line will be omitted, as shown in figure 3.3.

Each data point in figure 3.3 represents the amplitude of both signals at a single point
in time. The amplitude of each signal corresponding to a given data point (i.e., at a given
point in time) can therefore be obtained by drawing a line from that data point onto each of
the axes. In this case, amplitudes of s1 are obtained by drawing a line from each data point
onto the horizontal axis S1, and s2 amplitudes are obtained by drawing a line from each
data point onto the vertical S2 axis, as shown in figure 3.3. Note that these lines are drawn
at right angles to the desired axis. As two lines at right angles are said to be orthogonal,
the amplitude obtained by drawing an orthogonal line from one data point to an axis is the
length of the orthogonal projection of that data point onto that axis.

3.3.1 Mixing Signals

Now that we have a decent representation for a set of source signals, we can specify how
such signals become signal mixtures, and then how source signals can be extracted from
these mixtures.

As usual, we begin by considering two speech signals s1 and s2. When two such speech
signals are recorded by a single microphone its output is a signal mixture which is a simple
sum of the two signals, as shown in figure 3.4. We define a signal mixture as x1 (we need
the subscript because we will consider many mixtures below). The relative proportion of

24 Chapter 3

Now the amplitudes of both signals over N milliseconds can be written succinctly as
a vector variable s, which can be rewritten in one of several mathematically equivalent

Mixing and Unmixing 25

and the distance of each source from the microphone. For simplicity, we assume the two
sound sources are equally loud.

The different distance of each source from the microphone ensures that each source
contributes a different amount to the microphone’s output x1. Let us assume that the
microphone-source distances are such that one quarter of the mixture is from source s1
and three quarters are from source s2. In other words the mixture x1 can be specified as a
weighted sum of the two source signals, as shown in figure 3.5. Thus the mixture amplitude
xt1 at a given time t is the weighted sum of the source signals s

t
1 and s

t
2 at that time

xt1 = a × st1 + b × st2, (3.10)

where the weighting or mixing coefficients a and b are given by a = 1/4 and b = 3/4. If
we consider x over all N time indices then we have

(x11 , x
2
1 , . . . , x

N
1) = a × (s11 , s

2
1 , . . . , s

N
1) + b × (s12 , s

2
2 , . . . , s

N
2). (3.11)

This can be written more succinctly as

x1 = a × s1 + b × s2. (3.12)

each signal in the mixture x1 depends on the loudness of each speech sound at its source,

-2 0 2
-3

-2

-1

0

1

2

3

S
ou

rc
e

S
ig

na
l 2

 A
m

pl
itu

de

Source Signal 1 Amplitude

-2 0 2
-3

-2

-1

0

1

2

3

S
ou

rc
e

S
ig

na
l 2

 A
m

pl
itu

de

Source Signal 1 Amplitude

Figure 3.3
Left: Graph of speech source signal s1 versus speech source signal s2. Each plotted point represents
the amplitudes of both speech signals at one point in time, with successive time points joined by
lines.
Right: The same points plotted without lines. The amplitude of signal s1 at a given time can be
obtained by drawing a vertical line from one plotted cross onto the horizontal (S1) axis, as shown.
The corresponding amplitude of signal s2 at that time is obtained by drawing a horizontal line from
the same plotted cross onto the vertical (S2) axis.

26 Chapter 3

For the sake of brevity, we usually omit the symbol (×) for multiplication:

x1 = as1 + bs2. (3.13)

As we are concerned here with unmixing a set of two signal mixtures (see figure 1.1),
we need another microphone in a different location from the first. Again, the different
distances of the sources from the microphone ensure that each source contributes a different
amount to the microphone’s output x2 such that

x2 = cs1 + ds2, (3.14)

where the mixing coefficients c and d are different from a and b because the two micro-
phones are in different locations.

Notice that the pair of signal mixtures (x1, x2) is analogous to the pair of source signals
s = (s1, s2)T , and (x1, x2) can therefore be represented as a vector variable x = (x1, x2)T .
The mixing process, represented by the four mixing coefficients (a, b, c, d), therefore

Figure 3.4
The output of a single microphone is a mixture x1 of two speech source signals s1 and s2. If the two
voice source signals are equally loud then the relative proportion of each source signal in the signal
mixture depends only on the distance from the microphone to each speaker.

Source 1

Source 2

Mixture

3.3.2 Unmixing Signals

Now that we know how signals are combined to form signal mixtures, we can consider how
to set about unmixing or extracting signals from their mixtures. For the present we assume
the source signals are two speech signals and that the mixing coefficients (a, b, c, d) are
known.

First, we need a slightly more formal definition of the problem. We know that each mi-
crophone output is a combination of source signals. The precise nature of this combination
is determined by the mixing coefficients (a, b, c, d) (which, in turn, are determined by the
source-microphone distances),

x1 = as1 + bs2 (3.15)

x2 = cs1 + ds2. (3.16)

Mixing and Unmixing 27

transforms one vector variable s to another vector variable x. This implies that each source
signal data point st = (st1, s

t
2)
T at a given time t is transformed to a corresponding signal

mixture data point xt = (xt1, x
t
2)
T , denoted as st → xt . This transformation has can be

represented geometrically, as illustrated in figure 3.6.

Figure 3.5
A signal mixture x1 (bottom) is obtained as a weighted sum of two source signals s1 and s2 (top and
middle). The weights or mixing coefficients a and b are determined by the distance of each source
from the microphone, so that x1 = as1 + bs2, where or a = 1/4 and b = 3/4 here. Pure tones (sine
waves) have been used in this example to emphasize the effects of mixing on signal waveforms.

Generating mixtures from source signals in this linear manner ensures that each source
signal can be recovered by recombining signal mixtures. The precise nature of this recom-
bination is determined by a set of unmixing coefficients (α, β, γ, δ),1

s1 = αx1 + βx2 (3.17)

s2 = γ x1 + δx2. (3.18)

Thus the problem solved by all blind source separation methods consists of finding values
for these unmixing coefficients. In geometric terms, this consists of finding the spatial
transformation which maps a set of mixtures to a set of source signals (see figure 3.6).

We have seen that, just as there is a geometric interpretation for a set of two source
signals, so there is a similar interpretation for a set of two signal mixtures x1 and x2. In
figure 3.7, each data point represents the amplitude of both signal mixtures xt = (xt1, x

t
2)
T

at a single point in time t . The amplitude of each signal mixture corresponding to a
given data point (i.e., at a given point in time) can therefore be recovered by orthogonal
projection of that point onto each of the axes, as shown in figure 3.7. However, recovering

28 Chapter 3

-2 0 2
-3

-2

-1

0

1

2

3

S
ou

rc
e

S
ig

na
l 2

 A
m

pl
itu

de

Source Signal 1 Amplitude

-5 0 5
-5

0

5

S
ig

na
l M

ix
tu

re
 2

 A
m

pl
itu

de

Signal Mixture 1 Amplitude

Figure 3.6
Geometric transformation of source signals into signal mixtures. A graph of speech source signal s1
versus speech source signal s2 is shown on the left, where each data point represents the amplitudes of
both speech signals at one point in time, as in previous figures. Each pair of speech signal amplitudes
is represented by a single data point (st1, s

t
2) which is transformed to a corresponding pair of signal

mixture amplitudes represented by a mixture data point (xt1, x
t
2) (right) (i.e., (s

t
1, s

t
2) → (xt1, x

t
2)).

As an example, the circled source signal data point on the left maps to the corresponding circled
mixture data point on the right.

1. These Greek letters are alpha (α), beta (β), gamma (γ), and delta (δ), respectively.

the amplitude of each mixture is not very interesting because we already know the signal
mixture amplitudes. On the other hand, if source signals could be recovered from a graph
of signal mixtures then that would be a different matter. Precisely how this is achieved is
the topic of the next chapter.

3.4 Summary

A notation for describing each signal as a scalar variable, and a set of signals as a vector
variable, was introduced. The process of obtaining signal mixtures from signal sources

Mixing and Unmixing 29

using a set of mixing coefficients was introduced, and the reverse process was described in
terms of a set of corresponding unmixing coefficients.

It was shown how a set of source signals can be represented as a scattergram in which
each point corresponds to the values of the signals at one time, and that a set of mixing
coefficients can be used to implement a geometric transformation of each point. The
resultant set of “mixture” points can be transformed back to the original set of “source
signal” points using a set of unmixing coefficients, which reverse the effects of the original
geometric transformation from source signals to signal mixtures.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

S
ig

na
l M

ix
tu

re
 2

 A
m

pl
itu

de

Signal Mixture 1 Amplitude

Figure 3.7
Graph of mixture x1 and corresponding amplitudes of mixture x2 (this is a copy of the figure on the
right hand side of figure 3.6). Each data point represents the amplitudes of both signal mixtures at
one point in time. The amplitude of signal mixture x1 at a given time can be obtained by drawing
a vertical line from one plotted cross onto the horizontal (X1) axis, as shown. The corresponding
amplitude of signal mixture x2 at that time is obtained by drawing a horizontal line from the same
plotted cross onto the vertical (X2) axis.

Now consider what happens to another line in S which is parallel to
s2, the vertical
axis S2 (see figure 4.2). This is transformed to an oriented line S′

2 in X just like any other
line. Note that
s2 is parallel to S2. Now, we know that parallel lines in S map to parallel
lines in X , therefore the parallel lines
s2 and S2 in S map to corresponding parallel lines

s′2 and S

′
2 in X . Moreover, all changes in s2 are associated with lines parallel to each

other and to S2 in S, and these parallel lines map to a set of lines parallel to each other and
to S′

2 in X .
A source signal can therefore be extracted from a set of signal mixtures by selecting

signal changes associated only with the orientation of the transformed axis S′
1 in X . Some-

what counter-intuitively, this is achieved by ignoring changes in X not associated with the
orientation of the transformed axis S′

2. The logic of this is that, if the signal extracted from

4.1 Introduction

In this chapter we describe how source signals can be extracted from a set of signal
mixtures given that the mixing process (i.e., the set of mixing coefficients) is known.

The basic strategy is based on the following observation. In a graph of signal mixture
x1 vs. signal mixture x2, each source signal is associated with a unique source signal
orientation, as depicted in figure 4.1. Somewhat counterintuitively, this observation can be
used to ensure that the source signals associated with all source signal orientations except
one are excluded from a signal extracted from the set of signal mixtures. In the case of
two source signals considered here, this implies that if the source signal orientation of s2
is excluded from a signal extracted from the mixtures then the extracted signal can only be
the source signal s1.

This extraction process is fairly straightforward once the required source signal orien-
tation is known, and extraction can then be implemented by orthogonal projection. The
hard task is finding such orientations, and it is this task which is executed by blind source
separation (BSS), as described in subsequent chapters.

In order to simplify matters, let us call the space defined by the source signal axes S1
and S2 as S, and the space defined by the mixture axes X1 and X2 as X , as depicted in
figure 4.1. A pair of source signal values st1 = (st1, s

t
2) defines a single point in S, such

that a change
s2 in the value of only one signal s2 is associated with a corresponding
change in position along a line parallel to the axis S2 in S, as shown in figure 4.1. Now
the particular form of transformation induced by the mixing process maps parallel lines in
S to parallel lines in X (although line orientations and lengths are usually altered during
the transformation). This is known as a linear transformation. Therefore, the line defined
by
s2 in S is transformed to an oriented line
s′2 in X , as shown in figure 4.1. (As might
be suspected, the orientation of this line is not random, but is determined by the mixing
coefficients (a, b, c, d)).

4 Unmixing Using the Inner Product

32 Chapter 4

-5 0 5
-5

0

5

S
ou

rc
e

S
ig

na
l 2

 A
m

pl
itu

de

Source Signal 1 Amplitude

-5 0 5
-5

0

5

S
ig

na
l M

ix
tu

re
 2

 A
m

pl
itu

de

Signal Mixture 1 Amplitude

∆S2
∆S2

Figure 4.1
Left: A change
s2 in the value of signal s2 induces a change in the position of the plotted point
(st1, s

t
2) that is parallel to the vertical axis S2.

Right: A change
s2 in the value of signal s2 induces a corresponding change
s′2 in the position of
the transformed point (x1, x2) which is parallel to the projected or transformed axis S

′
2.

The space defined by the axes S1 and S2 is defined as S (left), and the space defined by the axes X1
and X2 is defined as X (right).

-5 0 5
-5

0

5

S
ou

rc
e

S
ig

na
l 2

 A
m

pl
itu

de

Source Signal 1 Amplitude

S1

S2'

S2 S1'

-5 0 5
-5

0

5

S
ig

na
l M

ix
tu

re
 2

 A
m

pl
itu

de

Signal Mixture 1 Amplitude

Figure 4.2
Left: The horizontal and vertical axes S1 and S2 are orthogonal.
Right: The same transformation that maps source signals s to signal mixtures x also maps the signal
axes S1 and S2 in S to a pair of skewed axes S

′
1 and S

′
2 in X .

Unmixing Using the Inner Product 33

the mixtures does not contain any influence from s2 then that signal can only be s1.1 This
can be extended to multiple signals, by ignoring all orientations in X except that particular
orientation associated with one signal. We now examine this analysis in more detail.

4.2 Unmixing Coefficients as Weight Vectors

A source signal s1 can be extracted from a pair of mixtures x = (x1, x2)T using a pair of
unmixing coefficients (α, β) to recombine the mixtures x,

s1 = αx1 + βx2. (4.1)

Now, just as every pair xt = (xt1, x
t
2)
T of signal mixture values at time t defines a point

with coordinates (xt1, x
t
2) in X , so the pair of unmixing coefficients (α, β) defines a point

with coordinates w1 = (α, β)T , as shown in figure 4.3. Note that w1 is a column vector,

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

S
ig

na
l M

ix
tu

re
 2

 A
m

pl
itu

de

Signal Mixture 1 Amplitude

w1

Figure 4.3
In a graph of mixture values x1 vs. mixture values x2, the pair of unmixing coefficients (α, β)

defines a point with coordinates w1 = (α, β)T , where w1 is a weight vector drawn as a solid line.
The weight vector defined by these unmixing coefficients extracts source signal s1 = αx1 + βx2
from the mixtures x = (x1, x2)

T . A different weight vector w2 = (γ, δ)T (not shown) extracts
source signal s2.

1. The extracted signal is actually proportional to s1, as described in subsection 4.5.1.

the length |w1| of that vector is the length of the hypotenuse of that triangle

|w1| =
√

α2 + β2. (4.2)

34 Chapter 4

and is referred to as a weight vector in this book. In geometric terms, what is special about
the vector w1 that permits it to extract st1 from any pair of mixture data points x

t?
Well, any vector can change in only two types of ways. It can change its length, and it

can change its orientation. The length |w1| of w1 is simply the distance of the coordinates
(α, β) from the origin, and the orientation of w1 is the angle ψ between the horizontal axis
X1 and w1, as shown in figure 4.4.

4.2.1 Extracted Signals Depend on the Orientation of Weight Vectors

We can confirm that changing the length of w1 by a factor2 λ only makes the extracted
signal larger or smaller (e.g., more loud or more quiet), as follows. If we consider each
element of a vector w1 = (α, β)T as one side of a triangle, as depicted in figure 4.4 then

Figure 4.4
A weight vector w1 = (α, β)T defines a point with coordinates (α, β). The length |w1| of the vector
w1 is simply the distance of the point at (α, β) from the origin. This distance is given by the length of
the hypotenuse of a triangle with sides α and β. Thus the vectorw1 has length |w1| = (α2+β2)1/2.

-4 -2 0 2 4
-4

-3

-2

-1

0

1

2

3

4

S
ig

na
l m

ix
tu

re
 2

 a
m

pl
itu

de

Signal mixture 1 amplitude

|w1| = (α2 + β2)1/2

w1

α

β

ψ

2. This is the Greek letter lambda.

Changing the length ofw1 by a factor λ can therefore be achieved simply by changing each
element of w1 by the factor λ

λ|w1| = λ

√
α2 + β2, (4.3)

=
√

(λα)2 + (λβ)2. (4.4)

Given that w1 = (α, β)T , it follows that λw1 = ((λα), (λβ))T . The signal extracted by
the scaled vector λw1 at time t is simply a scaled version of the source signal st1,

(λwT1)xt = (λα)xt1 + (λβ)xt2, (4.5)

= λ(αxt1 + βxt2), (4.6)

= λst1. (4.7)

The length of w1 therefore affects the amplitude of the extracted signal, but does not
otherwise affect the nature of that signal. Thus, the extracted signal is a louder or attenuated
version of s1, depending on of the length of w1.

As noted by Sherlock Holmes, When you have excluded the impossible, whatever
remains, however improbable, must be the truth.3 Accordingly, if the length of w1 does
not determine what sort of signal is extracted by w1 from the mixtures x then it must be
the orientation of w1.

We can now ask the more specific question: in geometric terms, what is special about
the orientation of the weight vector w1 that permits it to extract the source signal value st1
from any pair of signal mixture values xt = (xt1, x

t
2)
T ?

We will explore this question fully over the next few pages, but the short answer is
that the axes S1 and S2 in S get transformed to a pair of skewed axes S′

1 and S
′
2 in X (see

figure 4.2), such that w1 extracts s1 only if w1 is at 90 degrees to S′
2, as shown in figure

4.9. At every other angle, a different mixture y of s1 and s2 is extracted, where the relative
proportions of s1 and s2 in y depends on the orientation of w1.

In order to investigate why this true, we need to define some additional vector-matrix
operations.

Unmixing Using the Inner Product 35

4.3 The Inner Product

For the present, consider how the mixtures xt = (xt1, x
t
2)
T at a given time t are recombined

to yield a source signal value st1 at that time

st1 = αxt1 + βxt2. (4.8)

3. From “The Beryl Coronet” by A.C. Doyle.

36 Chapter 4

The particular mixture values xt = (xt1, x
t
2)
T at time t define a vector which can be

plotted on a graph of x1 vs. x2, as depicted in figure 4.5. Similarly, the pair of unmixing
coefficients (α, β) defines a vector, which can also be plotted as a point on a graph of x1
vs. x2 (see figures 4.6 and 4.7). In fact, equation (4.8) is a longhand way of writing the
inner product of these two vectors.

The pair of unmixing coefficients α and β define a weight vector, which is by conven-
tion a column vector

w1 =
(

α

β

)
. (4.9)

As (α, β) will later form one row of a matrix of weight vectors, we need to be able to
rewrite w1 as a row vector. This is achieved using the transpose operator T introduced in
the previous chapter (also see appendix A).

wT1 =
(

α

β

)T

(4.10)

= (α, β). (4.11)

-4 -2 0 2 4
-4

-3

-2

-1

0

1

2

3

4

S
ig

na
l m

ix
tu

re
 2

 a
m

pl
itu

de

Signal mixture 1 amplitude

x

x1

x2

|x| = (x2 + x2)1/2
1 2

Figure 4.5
A single data point x = (xt1, x

t
2)
T defines a vector with coordinates (xt1, x

t
2) (the time index is

omitted in the graph above, so that x refers to a single data point). The length of the vector xt is
simply the distance of the point at (xt1, x

t
2) from the origin. This distance is given by the length of

the hypotenuse of a triangle with sides xt1 and x
t
2. Thus the vector x

t has length |xt | = (x21 + x22)
1/2

(where the t superscripts have been omitted on the right hand side of this equation).

The result of an inner product is a scalar, which in this case is st . If we consider st over all
N time steps then we have

(s11 , s
2
1 , . . . , s

N
1) = (α, β)

(
x11 , x

,
2 . . . , xN1

x12 , x
2
2 , . . . , x

N
2

)
(4.16)

= αx1 + βx2. (4.17)

= wT1 x, (4.18)

where each single-element column st1 is given by the inner product of the row vector w
T
1

and the corresponding column in x. The left hand side of equation (4.18) is simply the
source signal s1, so that

s1 = wT1 x. (4.19)

For completeness, the inner product can also be defined in terms of the lengths of xt and
w1 and the angle θ between them,

st1 = |xt ||w1| cos θ. (4.20)

From this, a key fact regarding inner products can be deduced algebraically. If θ = 90
degrees then cos θ = 0. Thus, if x and wT1 are orthogonal then their inner product is zero.
This can also be deduced geometrically from figure 4.6, as discussed in the next section.

While this describes the syntax of the inner product, it does not yield insight into
the underlying geometry, which can be shown to provide the length of the orthogonal
projection of xt onto w1.

Unmixing Using the Inner Product 37

We can now rewrite equation (4.8) as

st1 = wT1 x
t . (4.12)

The the transpose operator T should not be confused with the superscript t , which denotes
a time index.

The multiplication or product of two vectors is known as the scalar, dot, or inner
product. The inner product requires that there are as many columns in the first term (wT1)
as there are rows in the second term (xt). This is because the inner product is obtained by
multiplying each element in the row vector w1 by a corresponding element in the column
vector xt , and then adding these products together,

st1 = wT1 x
t (4.13)

= (α, β)

(
xt1
xt2

)
(4.14)

= αxt1 + βxt2. (4.15)

4.3.1 The Geometry of the Inner Product

Consider the inner product of a unit length vector4 w1 (that is, a vector with length one)
with a vector defined by a data point xt . One interpretation of the inner productwT xt is that
it splits, or decomposes, xt into two orthogonal vectors u and v (t superscripts are omitted
from u and v for clarity). These two orthogonal component vectors are related to w1 such
that w1 is parallel to u, and is orthogonal to v as shown in figure 4.6. If w1 has unit length
then the inner product is the length of the component u parallel to w1. In figure 4.6, the
vector w1 happens to be colinear with the vertical axis, so that u and v are colinear with the
vertical and horizontal axes, respectively. However, this orthogonal decomposition of xt

occurs regardless of the orientation ofw1, as depicted in figure 4.7. There,w1 is orthogonal
to the projected axis S′

2, a fact that will prove critical for extracting source signal s1.
There are two crucial points to note in the case of a unit length vector w1. First, the

value of the inner product is equal to the length of the vector u, denoted |u|. The vector

38 Chapter 4

Figure 4.6
The inner product of a vector w1 with a vector defined by a data point xt effectively decomposes xt

into two orthogonal vectors (superscripts and the subscripts are omitted in the figure). If w1 has unit
length then the value of the inner product wT1 x

t is equal to the length |u| of the vector parallel to w1.
Note that if xt is a pair of mixture values at time t then the inner product wT xt decomposes xt into
the vectors u and v, such that |u| is proportional to the value of source signal s1 at time t .

-4 -2 0 2 4
-4

-3

-2

-1

0

1

2

3

4

S
ou

rc
e

S
ig

na
l 2

 A
m

pl
itu

de

Source Signal 1 Amplitude

w

x |u|

 |v|

θ

4. The vector w1 can always be made to have unit length by dividing w1 by its length, so that w1 = w1/|w1|.

Unmixing Using the Inner Product 39

u is also the orthogonal projection of xt onto w1. Thus, the inner product implements
orthogonal projection and provides the length |u| of the orthogonal projection u of xt onto
w1. Second, if any two vectors are orthogonal then their inner product is zero (basically
because the length |u| of the orthogonal projection (u) of xt onto w1 is zero). Thus if w1
and xt are orthogonal then their inner product is zero, as implied by equation (4.20).

4.4 Matrices as Geometric Transformations

4.4.1 Geometric Transformation of Signals

Thus far, we know two apparently unrelated facts about source signals and their mixtures:
(1) each signal mixture is obtained by combining source signals, where the precise nature
of this combination is determined by a set of mixing coefficients (a, b, c, d),

x1 = as1 + bs2

x2 = cs1 + ds2, (4.21)

Figure 4.7
The inner product of a vector w1 with a vector defined by a data point xt decomposes xt into two
orthogonal vectors, u and v, where u is colinear with w1 and v is orthogonal to w1 and therefore to
u (superscripts and the subscripts are omitted in the figure). If w1 has unit length then the value of
the inner product wT1 x

t is equal to the length |u| of the component u parallel to w1. Thus the inner
product effectively provides the length |u| of the orthogonal projection u of xt onto w1. Note that
the vector v, which is orthogonal to w1, has no impact on the inner product wT1 x

t .

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

S
ig

na
l m

ix
tu

re
 2

 a
m

pl
itu

de

Signal mixture 1 amplitude

x

w

v

u

θ

and, (2) each source signal s j can be obtained by recombining signal mixtures, where
the precise nature of this recombination is determined by a set of unmixing coefficients
(α, β, γ, δ),

s1 = αx1 + βx2

s2 = γ x1 + δx2. (4.22)

As might be suspected, these facts are not actually unrelated, as illustrated in figure 4.8.
In order to explore precisely how they are related we need to establish a vector-matrix
notation for combining signals.

4.4.2 The Unmixing Matrix

Given a single data point xt1, we have s
t
1 = wT1 x

t . As shown in equation (4.18), if we
consider all N data points x = (x1, x2) then we have

(s11 , s
2
1 , . . . , s

N
1) = (α, β)

(
x11 , x21 , . . . , xN1
x12 , x22 , . . . , xN2

)
(4.23)

= (α, β)(x1, x2)
T (4.24)

= wT1 x. (4.25)

40 Chapter 4

Figure 4.8
Schematic diagram of vector-matrix representation of mixing (top) and unmixing (bottom).
Top: Two source signals s = (s1, s2)

T are transformed by an unknown 2 × 2 mixing matrix A to
form two signal mixtures x = (x1, x2)

T .
Bottom: Two signal mixtures x = (x1, x2)

T are transformed by a 2× 2 unmixing matrixW to form
two estimated source signals y = (y1, y2)

T .

Here, each single-element column st1 is given by the inner product of the row vector w
T
1

and the corresponding column in x. This can now be rewritten succinctly as

s1 = wT1 x. (4.26)

Unmixing Using the Inner Product 41

Notice that the vector w1 essentially extracts s1 from the signal mixtures x. Similarly, a
vector w2 = (γ, δ)T extracts s2 from the signal mixtures x,

(s12 , s
2
2 , . . . , s

N
2) = (γ, δ)

(
x11 , x21 , . . . , xN1
x12 , x22 , . . . , xN2

)
(4.27)

= (γ, δ)(x1, x2)
T (4.28)

= wT2 x. (4.29)

which can be rewritten succinctly as

s2 = wT2 x. (4.30)

Finally, we can define the mapping from x to s in terms of an unmixing matrix W =
(w1,w2)T with rows wT1 and w

T
2(

s11 , s21 , . . . , sN1
s12 , s22 , . . . , sN2

)
=

(
α β

γ δ

) (
x11 , x21 , . . . , xN1
x12 , x22 , . . . , xN2

)

= (w1,w2)T (x1, x2) (4.31)

= Wx. (4.32)

The first term on the left is the pair of source signals s = (s1, s2)T , so that this can be
rewritten as

s = Wx. (4.33)

Given that st1 = αxt1 + βxt2 the correct way to read equation (4.32) is as follows.
Each column in s1 is a scalar value which is obtained by taking the inner product of the

corresponding column in x with the first row vector wT1 inW. Similarly, each column in s2
is obtained by taking the inner product of the corresponding column in x with the second
row vector wT2 inW. More generally, the j th row s j in s is obtained by taking the inner
product of each column in x with the j th row inW.

The reason that a source signal can be extracted by taking the inner product of a weight
vector and a signal mixture is described after the next section, in which we examine how
signals are mapped to mixtures using vector-matrix notation.

Finally, for completeness, the transpose of s, in which each column is a source signal,
is given by swapping the order in which x andW are written, and transposing them

sT = xTWT . (4.34)

42 Chapter 4

In this book, and in most other texts, each signal is defined as a row vector. This is an
arbitrary decision, and we could equally well have defined each signal as a column vector.

Notation: The size of a data array such as x or a matrix W is by convention described
as being M × N , where the first figure M is the number of rows and N is the number of
columns.

4.4.3 The Mixing Matrix

Just as the transformation from x to s can be written succinctly using vector-matrix nota-
tion, so the transformation from s to x can be written in vector-matrix form by considering
how each mixture is obtained. The mixture x1 is a combination of source signals, and the
mixing coefficients define a vector v1 = (a, b)T :

x1 = as1 + bs2 (4.35)

= (a, b)(s1, s2)
T (4.36)

= vT1 s. (4.37)

Similarly, the mixture x2 is defined in terms of the mixing coefficients (c, d), which define
a vector v2 = (c, d)T :

x2 = cs1 + ds2 (4.38)

= (c, d)(s1, s2)
T (4.39)

= vT2 s. (4.40)

The two row vectors vT1 = (a, b) and vT2 = (c, d) can be combined into a single mixing
matrix A = (v1, v2)T such that(

x11 , x21 , . . . , xN1
x12 , x22 , . . . , xN2

)
=

(
a b
c d

) (
s11 , s21 , . . . , sN1
s12 , s22 , . . . , sN2

)

= (v1, v2)T (s1, s2) (4.41)

= As. (4.42)

Finally the above can be rewritten
x = As. (4.43)

In summary, a mixing matrix A maps points s to the points x, and an unmixing matrixW
maps x back to s, as depicted in figures 4.1 and 4.8. These mappings are defined by the
matrices A andW:

Unmixing Using the Inner Product 43

x = As (4.44)

s = Wx. (4.45)

It can be seen thatW reverses, or inverts, the effects ofA, and indeedW could be estimated
from the matrix inverse A−1, if A were known (the matrix inverse is analogous to the more
familiar inverse for scalar variables, such as x−1 = 1/x). However, as we are ultimately
concerned with findingW when A is not known, we cannot estimateW from the inverse
of A, and will not therefore describe how matrix inverses are estimated. The point is that
A andW are complementary, inasmuch as each reverses the effects of the other.

For now we will examine how unmixing occurs if we knowW, by considering how a
single axis S2 is mapped to a line S′

2 in a graph of x1 vs. x2.

4.5 The Mixing Matrix Transforms Source Signal Axes

Recall that the space defined by the axes S1 and S2 is S, and the space defined by axes X1
and X2 is X . The vector with coordinates (0, 1) lies in the axis S2 in S. We will use the
symbol S2 to refer to the vector (0, 1) and to the axis S2. The mixing matrix A can be used
to transform the vector S2 just as if it were a data point:

S′
2 = AS2 (4.46)

=
(
a b
c d

) (
0
1

)
(4.47)

=
(
0a + 1b
0c + 1d

)
(4.48)

=
(
b
d

)
. (4.49)

Thus the axis S2 in S maps to a line colinear with the vector S′
2 = (b, d)T in X . We shall

use the symbol S′
2 to refer to both the line and vector here. Similarly, the axis S1 in S maps

to a vector S′
1 = (a, c)T in X , as shown in figure 4.2. We can thus rewrite the matrix A in

terms of the transformed axes S′
1 and S

′
2,

A =
(
a b
c d

)
(4.50)

= (
S′
1, S

′
2

)
. (4.51)

Critically, changes in the value of source signal s1 induce movement of data points along
lines parallel to S1 in S, and these same changes also induce movement of data points along
lines parallel to the transformed axis S′

1 in X .

44 Chapter 4

4.5.1 Extracting One Source Signal from Two Mixtures

We have seen how a mixing matrix A maps points s to the points x, and that an unmixing
matrixW maps x back to s. In order to examine how this unmixing occurs, we consider
how a single source signal s1 is extracted by the unmixing vector w1,

s1 = wT1 x. (4.52)

If we substitute x = As into equation (4.52) then we have

s1 = wT1 (As). (4.53)

This can be considered in terms of the inner product of each column in A with the row
vector wT1 ,

s1 = wT1 As (4.54)

= wT1 (S′
1, S

′
2)(s1, s2). (4.55)

Recall that the inner product of two orthogonal vectors is zero. Now, if wT1 = (α, β) is
orthogonal to the transformed axis S′

2 = (b, d)T then, by definition,

wT1 S
′
2 = 0. (4.56)

In contrast, as shown in figure 4.9, the vectors S′
1 and w1 are not orthogonal so that the

inner product wT1 S
′
1 = (α, β)(a, c)T yields a non-zero constant k,

wT1 S
′
1 = k, (4.57)

= |S′
1||w1| cos θ, (4.58)

where θ is the angle between S′
1 and w1 (see equation (4.20)). Note that the value of k does

not depend on which data point xt is considered because xt does not appear in equation
(4.57). Substituting equations (4.56) and (4.57) into equation (4.55) yields

s1 = (k, 0)(s1, s2)
T (4.59)

= ks1 + 0s2 (4.60)

= ks1. (4.61)

Thus, a scaled version ks1 of the source signal s1 is extracted from the mixture x by taking
the inner product of each mixture data point xt with a vector wT1 that is orthogonal to the
transformed axis S′

2 in X .

Unmixing Using the Inner Product 45

The fact that s1 is scaled by an unknown constant factor k does not matter for our
purposes. This implies that we can extract source signals from signal mixtures, but we
cannot recover the amplitude of each source signal. Indeed, given source signal s1, the
signal extracted by ICA is actually ks1, where k = |S′

1||w1| cos θ . For simplicity we
assume k = 1 here so that

s1 = wT1 x. (4.62)

Recall that the length of w1 does not affect the form of s1, only its amplitude. Similarly,
the source signal s2 is extracted from the mixture x by taking the inner product of each
mixture data point xt with a vector w2 that is orthogonal to the transformed axis S′

1 in X :

s2 = wT2 x. (4.63)

Given thatW = (w1,w2)T and s = (s1, s2)T , these equations can be combined to yield

s = Wx. (4.64)

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

S
ig

na
l M

ix
tu

re
 2

 A
m

pl
itu

de

Signal Mixture 1 Amplitude

w1

S2'

Figure 4.9
The vertical axis S2 (which is colinear with the vector (0, 1)T) in S gets mapped to a line S′

2 =
(b, d)T in X by the mixing matrix A. The weight vector wT1 = (α, β) extracts source signal
s1 = wT1 x from the mixture x = (x1, x2)

T only if w1 is orthogonal to the transformed axis S′
2.

At any other orientation, w1 simply extracts a different mixture of the source signals s1 and s2.

46 Chapter 4

Thus, the matrixW extracts multiple sources signals from the mixtures x because each row
inW is a vector which is orthogonal to one transformed signal axis, S′

1 or S
′
2.

Unfortunately, we do not know the matrices W nor A. However, provided we know
that each row vector in W extracts one source signal, and we know what a source signal
should look like (see chapter 2), then we could rotate each row vector inW until the signal
extracted by that vector looks like a source signal. This is the key to implementing ICA.

4.5.2 Extracting Source Signals from Three Mixtures

Just as a source signal s1 can be extracted from a pair of mixtures x = (x1, x2)T by finding
that weight vector wT1 which is orthogonal to the transformed axis S

′
2, is it also possible to

extract s1 from three mixtures x = (x1, x2, x3)T (see figures 4.10 and 4.11).
Consider three source signals s = (s1, s2, s3)T . The signal values at a given time

Figure 4.10
Three-dimensional source signal space.
Three-dimensional space S defined by three orthogonal axes, drawn here as three orthogonal vectors
S1, S2, and S3. Any pair of vectors define a plane, and the plane P1 defined by vectors S2 and S3
is shown as a shaded region. Different values of the source signal s1 are associated with different
locations along the vector S1, and different values of the source signals s2 and s3 are associated with
different locations along the vectors S2 and S3, respectively. Note that the value of three source
signals s1, s2, and s3 at one time t defines a point with coordinates st = (S1 = st1, S2 = st2, S3 = st3)
(not shown).

the mapped axis S′
1, changes in the amplitude of source signal s2 are associated with the

Unmixing Using the Inner Product 47

st = (st1, s
t
2, s

t
3)
T define a point in a three dimensional space, so that the set of values

in s = (s1, s2, s3)T defines a cluster of points in this space. For brevity, the term three-
dimensional space is often abbreviated to 3D space, or simply 3-space.

These three source signals are transformed to three signal mixtures x = (x1, x2, x3)T

by a 3× 3 mixing matrix A
x = As. (4.65)

In common with the two-dimensional (2D) case (i.e., two signals and two mixtures), each
column of A is a vector which specifies the orientation of a mapped axis in the 3D space
X of mixtures. Thus, changes in the amplitude of source signal s1 are associated with

Figure 4.11
Three-dimensional signal mixture space.
Any pair of orthogonal vectors (e.g., S1 and S2) in S of figure 4.10 are mapped by a 3 × 3 mixing
matrix A to a pair of (usually) non-orthogonal vectors (e.g. S′

2 and S
′
3) in the 3D mixture space X ,

where they define a plane P ′
1 (shaded area). Different values of the source signal s1 are associated

with different locations along the transformed vector S′
1, and different values of the source signals s2

and s3 are associated with different locations along the transformed vectors S
′
2 and S

′
3, respectively.

If an unmixing vector w1 is orthogonal to P ′
1 then any signal extracted by w1 is unaffected by the

changes in the signals s2 and s3 associated with the mapped axes S
′
2 and S

′
3. The signal extracted by

w1 is therefore proportional to s1, where the constant of proportionality is determined by the cosine
of the angle θ between w1 and the transformed vector S′

1.

48 Chapter 4

mapped axis S′
2, and changes in the amplitude of source signal s3 are associated with the

mapped axis S′
3.

In the 2D case, it sufficed to find that weight vector w1 which was orthogonal to one
mapped axis S′

2 in order to extract s1. In the 3D case, it is necessary to find that weight
vector w1 which is orthogonal to two mapped axes S′

2 and S
′
3 in order to extract s1. This

is because any signal extracted by such a vector is unaffected by the changes in s2 and s3
associated with the mapped axes S′

2 and S
′
3.

In fact, finding such a vector is not as difficult as it sounds, because the mapped axes
S′
2 and S

′
3 are just two lines in X , and any two lines define a plane (provided they are not

colinear). Therefore, in order to extract s1 it is necessary to find that weight vector w1
which is orthogonal to the plane P ′

1 defined by the two mapped axes S
′
2 and S

′
3 in X . Note

that the plane P ′
1 is simply a transformed version of the plane P1 defined by the orthogonal

axes S2 and S3 in S.
Thus, the source signals s1, s2 and s3 can be extracted if the weight vectors w1, w2, and

w3 are each orthogonal to a different transformed plane P ′
1, P

′
2 and P

′
3, respectively. As

before, each weight vector forms one row of a 3× 3 unmixing matrixW:

W = (w1,w2,w3)T . (4.66)

The key observation is made explicit in the 3D case, as follows. In a 3D space, any vector
defines a 2D plane to which it is orthogonal. If two transformed axes, say S′

2 and S
′
3, lie

in this plane then the signal extracted by the vector w1 is unaffected by changes in every
source signal except for changes s1. In other words, w1 extracts source signal s1.

Extracting Source Signals from More Than Three Mixtures The extension beyond
two mixtures can be carried on indefinitely. In an M-dimensional (MD) space any vector
defines an (M−1)-dimensional plane to which it is is orthogonal (a ‘plane’ with more than
two dimensions is called a hyperplane).

A set of M source signals define a cloud of points in an MD space S. These M source
signals are transformed from S to M mixtures in X by an M×M mixing matrix A. In X , a
weight vector wi defines an (M−1)D hyperplane P ′

i such that wi is orthogonal to P
′
i . The

orientation of wi is chosen such that (M − 1) transformed axes lie in the hyperplane P ′
i .

Such a choice ensures that the signal extracted by the vector wi is unaffected by changes
in every source signal except for changes in si . In other words, wi extracts source signal si
from a set of M signal mixtures.

Unmixing Using the Inner Product 49

4.6 Summary

Changes in the value of each source signal in signal space are associated with a single
unknown “source signal orientation”. This orientation is determined by the mapping (A)
from signal space to mixture space.

Unmixing coefficients define weight vectors in mixture space, and each weight vector
can be used to extract a single source signal. In order for a weight vector to extract one
source signal that weight vector must be orthogonal to the orientations associated with all
but one source signal.

Just as unmixing coefficients define a weight vector, so each set of signal mixtures
values at a given time define a vector. A signal is extracted by taking the inner product
of a weight vector with the set of vectors defined by signal mixtures. This essentially
implements orthogonal projection of the signal mixture vectors onto the weight vector. As
this weight vector is orthogonal to all but one “source signal orientation,” the inner product
of the weight vector is zero with all but one source signal orientation. Consequently, only
one source signal amplitude is reflected in the signal extracted by each weight vector.

A complete set of weight vectors defines an unmixing matrix, where each weight
vector extracts a different source signal. The unmixing matrix implements a geometric
transformation from signal mixture space to source signal space. The mixing matrix
implements the reverse transformation from mixture space to source signal space.

ICA and related methods find a set of weight vectors such that each vector is orthogonal
to all source signal orientations except one. This chapter showed only how each source
signal could be extracted if the weight vector associated with each source signal had been
obtained by such a method.

5.1 Introduction

Thus far we have established that the correct weight vector can extract exactly one source
signal from a set of signal mixtures, but we do not yet have a strategy for finding such
a weight vector. Fortunately, if we know of some property possessed by source signals,
which is not also possessed by signal mixtures, then it is possible to extract source signals
from signal mixtures (see chapter 2). In practice, this translates to assuming that source
signals have more of some property (e.g., statistical independence) than signal mixtures,
and, then finding a set of unmixing coefficients that maximizes the amount of this property
in extracted signals, on the understanding that such signals are the required source signals.

In principle, it is possible to find the correct weight vector (and therefore the unmixing
coefficients) for one source signal by rotating a weight vector w1 around the origin, and
evaluating the extracted signal y = wT1 x at each orientation, until the chosen property is
maximized. In practice, there are more efficient gradient based methods for doing this,
but the “brute force” exhaustive search method just described gives a flavor of the basic
problem. This exhaustive search method is illustrated for each of the properties considered
below, and the gradient based search method is described in chapter 9.

In order to be able to estimate how much of a given property is possessed by a putative
source signal which has been extracted by a weight vector w1, we need to define a formal
measure of that property. The properties of interest to us (normality, independence, and
complexity) are defined in terms of moments of probability density functions, which are
essentially a form of normalized histograms.

5.2 Histograms

If you measure the height of a thousand people, and count the number of people with each
height, then the resultant set of counts can be used to construct a histogram. A histogram
is a graphical representation of a set of such counts (see figure 5.1).

Specifically, the heights x = {x1, x2, . . . , xN } of N = 1000 people could be used to
construct a histogram as follows. As we want to count the number of people with different
heights, we need to divide the range of measured heights into a number of intervals, say,

x = 1 inch, between 60 and 84 inches. This yields a total of 24 bins, where each bin
is defined by a lower and upper bound (e.g., the first bin’s bounds are between 60 and
61 inches, the second between 61 and 62 inches, and so on). For each bin, we count
the number of measured heights that fall between the lower and upper bound of that bin.
We would expect relatively few measurements to fall in the first bin (with bounds 60 and
61 inches) and last bins (with bounds 83 and 84 inches), because they lie at the extreme
ranges of human height. Conversely, we would expect a large proportion of measurements

5 Independence and Probability Density Functions

52 Chapter 5

to fall in bins with bounds around 72 inches, because this is a common human height. The
resultant histogram has a typical bell shape.

In a histogram, the i th bin with bounds [xi , xi+
x] provides an estimate of the number
mi of measured values that fall between xi and (xi +
x) (e.g., between 65 and 66 inches).
If the histogram is based on N measurements partitioned into M bins then the estimated
probability that x falls within the interval defined by the i th bin is equal to the area occupied
by the i th bin expressed as a proportion of the sum of areas occupied by all M bins. The
area of the i th bin is its height mi times its width
x , mi
x , and the sum of all M bin
areas is therefore

m1
x + m2
x+, . . . , +mM
x (5.1)

= (m1 + m2+, . . . , +mM) ×
x (5.2)

=
(

M∑
i=1

mi

)
×
x, (5.3)

Figure 5.1
A histogram is a graphical representation of the number of times each signal amplitude, or value,
occurs in that signal.
Left: A histogram of N amplitude values in a normal or gaussian signal mixture x sampled at each
of N points {x1, x2, . . . , xN }. A histogram is constructed by dividing possible values of x into a
number of intervals or bins [x, x +
x] where each bin has width
x , and then counting how many
sampled values of x lie within the interval associated with each bin. The value of x corresponding to
the centre of each bin is plotted on the horizontal axis, and the number of samples n(i) in the i th bin
is plotted on the vertical axis.
Middle: Outline of the histogram (obtained by drawing a curve through adjacent bin heights) it can
be seen that this is an approximation to the probability density function (pdf) px (x) (right) of x .
Right: The probability density function px (x) of x . A probability density function is essentially a
normalized version of a histogram in which the number of signal samples is assumed to be infinite,
and the bin width
x = dx is infinitesimally small. The area under the probability density function
curve is unity.

-4 -2 0 2 4
0

100

200

300

400

500

600

700

800

x
-4 -2 0 2 4

x
-4 -2 0 2 4

x

N
um

be
r

of
 s

am
pl

es
 w

ith
va

lu
e

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
ro

ba
bi

lit
y

de
ns

ity
 a

t
va

lu
e

x

0

100

200

300

400

500

600

700

800

N
um

be
r

of
 s

am
pl

es
 w

ith
va

lu
e

x

its mass per unit length (density) multiplied by the length of the section (bin width) under
consideration.

The fact that we have used a finite sample N to construct the histogram of x values
means that it has a lumpy appearance. As the sample size is increased, the bin widths can
be made smaller. In the limiting case as the bin width approaches zero (denoted
x → 0),
the height of each bin approaches a probability density, and the shape of the histogram of
x values approaches that of the probability density function (pdf) of the variable x , denoted
px (x). Thus, a pdf can be considered as an idealized histogram of some variable or signal.

Notation Before embarking on a description of probability density functions it should be
emphasized that the letter p without superscripts or subscripts always denotes a probability.
For example, p(x < xi) is the probability that x is less than xi . In contrast, the subscripted
letter x in px denotes a function, in this case a probability density function. When written
within parentheses this denotes the probability density px (x) of its argument x .

Independence and Probability Density Functions 53

where the symbol
∑
denotes summation over M terms (bins). The limits of this sum-

mation (i = 1 to i = M) are specified as subscripts and superscripts, but these are often
omitted if the values of limits are obvious. Thus the probability that x falls in the i th bin is

p(xi < x ≤ (xi +
x)) = mi
x∑
j m j
x

(5.4)

= mi
x

x
∑

j m j
(5.5)

= mi

N
(5.6)

where (xi < x ≤ (xi +
x)) is interpreted as, “xi is less than x , and x is less than or equal
to (xi +
x),” that is, x lies between xi and (xi +
x); and p(xi < x ≤ (xi +
x)) is the
probability that x lies between xi and (xi +
x).

Probability Density

For convenience, we can express each bin area as a probability by dividing it by the sum
total of all bin areas, so that the sum total of all bin areas becomes unity. Note that the
probability associated with a given bin is not the height of that bin expressed as a proportion
of the height of all bins. It is the area of that bin expressed as a proportion of the total area
of all bins. If the probability associated with a bin is its area, and this is given by its height
times its width, then it follows that the height of a bin can be interpreted as a probability
density. By analogy, the mass (probability) of a small section of wire can be obtained as

54 Chapter 5

5.3 Histograms and Probability Density Functions

A histogram is a graphical representation of a set of counts, and a histogram of people’s
heights typically yields a bell shape (see figure 5.1). This ubiquitous histogram is a good
approximation to the normal or gaussian pdf. The normal pdf is not only ubiquitous in the
sense that it is the pdf of choice when confronted with hard statistical problems (see any

-5 0 5
0

1000

2000

3000

4000

5000

Signal Amplitude

C
ou

nt

-4

-2

0

2

4

Time

S
ig

na
l A

m
pl

itu
de

-2 0 2
0

500

1000

1500

Signal Amplitude

-2

-1

0

1

2

Time

-5 0 50

1000

2000

3000

4000

Signal Amplitude

-4

-2

0

2

4

Time

Figure 5.2
Left: A speech source signal (top) and its histogram (bottom). Speech signals tend to contain a
large proportion of silence, so that the amplitude value with the largest count in the histogram is at
zero. Note that the histogram disregards any information about the temporal ordering of values in
the speech signal.
Middle: A sawtooth source signal (top) and its histogram (bottom).
Right: A signal mixture (top) which is the sum of the source signals on the left and middle, and its
histogram (bottom).
Any mixture of source signals has a histogram that tends to be more bell-shaped (normal or gaussian)
than that of any of its constituent source signals, even if the source signals have very different his-
tograms. For clarity, the top panels display only a small time interval of the signals used to construct
the histograms in the bottom panels. The speech and sawtooth signals were each normalized have
unit variance.

px (x) = 1√
2πσ 2

exp

(
− (x − x)2

2σ 2

)
, (5.7)

Independence and Probability Density Functions 55

statistics book), it is ubiquitous for the following remarkable fact. Almost any measured
quantity which depends on several underlying factors has a gaussian pdf (see figure 5.2).
Naturally, there are multiple caveats to this claim, but it is essentially true, and captures the
essence of the central limit theorem (CLT) (stated more formally at the end of this chapter).

In the case of human height it is not implausible that this depends on many underlying
factors. The CLT ensures that if we could make a histogram of the amount of each factor
across all individuals in a population then the shape of the histogram for each factor would
not substantially alter the gaussian distribution of heights in the population. In other words,
the gaussian distribution is nature’s default distribution if many factors contribute to a
given physical attribute, such as height, or arm length. This will prove crucial because we
will seek out those factors with distributions that are as non-gaussian as possible, on the
understanding that such factors cannot be mixtures, and must therefore be source signals.

For completeness, the shape of a normal pdf is shown in figure 5.3, and is defined by
the following equation

-5 0 5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x
-5 0 5

x

P
ro

ba
bi

lit
y

de
ns

ity
 a

t v
al

ue
 x

P
ro

po
rt

io
n

of
 s

am
pl

es
 le

ss
 th

an
 x

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 5.3
Left: A gaussian pdf px (x) defined by equation (5.7). The probability that x is less than or equal to
some value x0 = 0.9 is given by the total area of the shaded region.
Right: A cdf is a function g which is the integral X = g(x) of its pdf px (x), and therefore returns
the area under the pdf for any specified value x0 of x . As can be seem from the pdf on the left, the
area under px (x) between x = −∞ and x0 = 0.9 is the probability that x is less than or equal to
x0 = 0.9, and is given by g(x0) = 0.8, indicated by the dashed line.

where σ is the standard deviation, which is a measure of the variability of x (see section
5.6), and x is the mean of x . The first term (1/

√
2πσ 2) is a normalization constant which

ensures that the area under the normal pdf sums to unity.

5.4 The Central Limit Theorem

We can now state the central limit theorem more formally from a proof provided by A.
Liapunov in 1901 (see (DeGroot, 1986), p276),

If a set of signals s = (s1, s2, . . . , sM) are independent with means (µ1, µ2, . . . , µM)

and variances (σ 21 , σ 22 , . . . , σ 2M) then, for a large number M of signals s, the
signal

x =
M∑
j=1

s j , (5.8)

has a pdf which is approximately gaussian with mean
∑

j µ j and variance∑
j σ

2
j .

Note that the CLT, as stated above, does not exactly match the mixing process we are
considering because the mixture x is formed using a set of mixing coefficients, all of which
are implicitly equal to unity. Fortunately, the CLT does not place restrictions on how much
of each source signal contributes to a signal mixture, so that the above result holds true
even if the mixing coefficients are not equal to unity

x =
M∑
j=1

a j s j , (5.9)

where the a j ’s are non-zero mixing coefficients. This implies that for a mixture formed
using mixing coefficients a = a1 and b = a2

x = as1 + bs2, (5.10)

the pdf of x is approximately gaussian.
Here M = 2, which cannot be considered to be a large number of mixtures, so that the

approximation of x’s pdf to a gaussian pdf is not usually very impressive. However, this

56 Chapter 5

does not matter for our purposes, because the CLT ensures that the pdf of the mixture x is
almost always more gaussian than the pdf of its constituent source signals.

As for the means and variances of the signals mixtures, we assume throughout that
source signals have zero mean, and the variance of a mixture is simply related to its

amplitude, which (as we shall see in the later chapters) is disregarded during extraction
of source signals.

5.5 Cumulative Density Functions

Note that a pdf is not just an idealized histogram, it is a functionwhich returns a probability
density px (x). From a purely practical point of view, a graph of a pdf is a useful means to
observe the probability associated with different values of x . More importantly, it allows
us to answer questions of the form: what is the probability that x is less than or equal to
x0? Clearly, the probability that x ≤ x0 is the probability px (x)dx summed over all values
up to and including x0,

p(x ≤ x0) =
∫ x0

x=−∞
px (x) dx . (5.11)

This integral yields the area under the curve defined by px (x) between x = −∞ and
x = x0 as shown in figure 5.3, and yields an important class of function, the cumulative
density function, or cdf, usually denoted as g in this book,

g(x) = p(x ≤ x0) (5.12)

=
∫ x0

x=−∞
px (x) dx . (5.13)

Conversely, the probability p(x ≥ x0) that x ≥ x0 is given by the area between px (x0)
and px (∞). This can be evaluated with a corresponding change in the limits of integration

p(x ≥ x0) =
∫ ∞

x=x0
px (x) dx . (5.14)

Finally, the definition of the cdf as the integral of a pdf implies that the pdf px (x) is
given by the derivative dg(x)/dx of g(x) with respect to x :

px (x) = dg(x)

dx
. (5.15)

This result will prove crucial later.

Maximum Entropy Pdfs For our purposes, the cdf will prove to be important for the
following reason, explored more fully in chapter 7. If any signal x has a pdf px (x) and

Independence and Probability Density Functions 57

cdf g then the signal X = g(x) obtained by transforming x with g has a uniform (i.e., flat)
or maximum entropy pdf.

E[(x − x)n]. (5.18)

It is often convenient to assume that variables have a mean of zero (i.e., a zero first moment)

58 Chapter 5

5.6 Moments: Mean, Variance, Skewness and Kurtosis

The pdf of a signal x can be characterized in terms of its moments.

First Moment

The first moment of a pdf px corresponds to the mean value x of the signal x . This mean
value x is also known as the expected value or expectation E[x] of the variable x . For a
variable x with pdf px the first moment is

E[x] =
∫ +∞

x=−∞
px (x) x dx, (5.16)

where the summation is between−∞ and+∞. This integration corresponds to a weighted
sum, where each value of x is weighted by its probability density px (x).

This can be viewed in terms of a physical analogy to probability density. Specifically,
we know that the height of a pdf px at x is a probability density, analogous to the density
of physical objects. In this case let us suppose that the object is a metal rod and consists
of different proportions of various metals, so that its density px (x) varies with position x
along the rod, like a pdf. How could we find that point xB which would support the rod in
a balanced position? The position xB corresponds to the center of mass of the rod, and this
is obtained as

xB =
∫ R

x=0
px (x) x dx, (5.17)

where R is the length of the rod.1 This center of mass is also known as the mean value x ,
or expected value E[x] of the pdf px . For example, if the rod has uniform density then xB
would be at its mid-point xB = R/2. Note that, like a pdf, the rod has been normalized so
that it has unit mass.

Central Moments

Note that subtracting x from x yields a variable x0 = (x − x) which has zero mean, and
the first moment of x0 is known as the first central moment of x . In general, the nth central
moment of a variable is given by

1. If the limits of integration were −∞ and ∞ as in the general definition defined in equation (5.16) then this
would not alter the result because px (x) = 0 for x < 0 and for x > R.

Second Moment

The second moment E[x2] of the pdf of x is

E[x2] =
∫ +∞

x=−∞
px (x) x

2 dx, (5.19)

which can be shown to be

E[x2] = E[x]2 + E[(x − E[x])2] (5.20)

= x2 + E[(x − x)2], (5.21)

where E[(x − x)2] is known as the variance of x . The second central moment of x2 is the
variance of (x − x).

In terms of physical analogy, the second moment is related to the moment of inertia.
Given a metal rod with density px , the second moment defines that point at which the
moment of inertia is smallest, such that the force required to rotate the rod around this
point is minimal. For a rod with uniform density this point is at the middle of the rod.

The square root of the variance is the standard deviation, denoted σ , and is an important
measure of variability

σ =
√
E[(x − x)2]. (5.22)

This permits equation (5.21) to be re-written as

E[x2] = x2 + σ 2. (5.23)

Third Moment

The third moment E[x3] of the pdf of x is

E[x3] =
∫ +∞

x=−∞
px (x) x

3 dx . (5.24)

The central moment of x3 is known as skewness of x . More generally, skewness is defined
as

E[(x − x)3] =
∫
x
px (x) (x − x)3 dx . (5.25)

Independence and Probability Density Functions 59

Skewness takes account of the sign of signal values (e.g., −33 = −27), which is why it
provides a measure of the asymmetry of a pdf. The third moment will not be used in this
book, and is not considered further here.

Note that if x has zero-mean (i.e., x = 0) then the second moment is equal to the variance
σ 2,

E[x2] = σ 2, (5.33)

60 Chapter 5

Fourth Moment

The fourth moment E[x4] of the pdf of x is

E[x4] =
∫ +∞

x=−∞
px (x) x

4 dx . (5.26)

If x has zero-mean then a normalized version of E[x4] is known as kurtosis, where kurtosis
is defined in terms of a ratio that includes the fourth and second central moments,

K = E[x4]

E[x2]2
− 3. (5.27)

Essentially, kurtosis provides a measure of the fourth central moment which takes account
of a signal’s variance E[x2]. Kurtosis provides a measure of how super-gaussian or “peaky”
a pdf is (see figure 5.2). The constant 3 ensures that a gaussian pdf has zero kurtosis, super-
gaussian pdfs have positive kurtosis, and sub-gaussian pdfs have negative kurtosis.

Evaluating Moments

The different moments defined above require an infinite number of signal values. For a
finite number N of sampled points, these can be estimated as follows.

The first moment E[x] of a signal x is estimated as the mean x ,

E[x] = x (5.28)

≈ 1

N

N∑
t=1

xt , (5.29)

where xt denotes the t th value of x , and not x raised to the power t here.
From equation 5.23, the second moment E[x2] of x is estimated as

E[x2] = x2 + σ 2 (5.30)

≈
(
1

N

N∑
t=1

xt
)2

+ 1

N

N∑
t=1

(xt − x)2. (5.31)

(5.32)

≈ 1

N

N∑
t=1

(xt)2. (5.34)

We will not make use of the third moment, and its evaluation is therefore omitted here.
Finally, the fourth moment is evaluated in terms of kurtosis:

K ≈
∑

t (x
t)4∑

t (x
t)2

− 3. (5.35)

5.7 Independence and Correlation

The term “correlated” tends to be used in colloquial terms to suggest that two variables
are related in a very general sense. For example, it might be stated in a heated argument
that “there is absolutely no correlation between poverty and longevity.” In this case, the
intention is to imply that a person’s income and their longevity are completely unrelated,
or independent. However, this is not implied by the above statement, if we used the term
“correlation” according to its formal definition. All that is implied is that income and
longevity are uncorrelated, but this does not imply that they are unrelated. The essence of
this more general notion of relatedness is captured by statistical independence, which is
defined in terms of pdfs.

Just as a single variable x has a pdf px , so a pair of variables has a joint pdf pxy ,
as shown in figure 5.4. In this case, the joint pdf specifies the probability density as-
sociated with a pair of values x and y. More generally, given a vector valued variable
z = (z1, z2, . . . , zM) with M entries, a joint pdf specifies the probability density associ-
ated with any value of z.

Two variables x and y are independent if and only if

pxy(x, y) = px (x) py(y), (5.36)

where (for any joint pdf) the pdfs px (x) and py(y) are known as the marginal pdfs of the
joint pdf pxy(x, y). If two variables are independent then the joint pdf pxy can be obtained
exactly from the product of its marginal pdfs px (x) and py(y), as implied by equation
(5.36).

Independence implies that knowing the marginal pdfs px and py is equivalent to know-
ing the joint pdf pxy . In other words, the entire structure of the joint pdf is implicit in the

Independence and Probability Density Functions 61

structure of its marginal pdfs because the joint pdf can be reconstructed exactly from the
product of its marginal pdfs. In contrast, if two variables are not independent then their
joint pdf cannot be obtained from the marginal pdfs of the joint pdf.

If x and y are independent then equation (5.36) implies that

62 Chapter 5

E[x p yq] = E[x p]E[yq], (5.37)

If p = 1 and q = 1 then E[x p yq] = E[xy] is the first moment of the joint pdf pxy . The
expectation E[xy] is also known as the covariance between x and y,

E[xy] =
∫
x

∫
y
pxy(x, y) x y dx dy, (5.38)

where E[xy] is evaluated for a finite sample of N samples of the zero-mean variables x
and y as

E[xy] =
N∑
t=1

xt yt . (5.39)

Covariance is closely related to correlation ρ(x, y), which is a normalized version of
covariance,

ρ(x, y) = E[xy]

σxσy
, (5.40)

where σx and σx are the standard deviations of x and y, respectively,

Figure 5.4
The joint probability density function (pdf) of two independent high kurtosis variables (e.g., speech
signals) is indicated by the solid surface. The marginal pdf of each high kurtosis variable x and y is
plotted along one horizontal axis as a solid curve. The joint probability of observing values (xt , yt)
is indicated by the local density of plotted points on the horizontal plane. This local density is an
approximation to the joint pdf pxy(x, y), which is indicated by the height of the solid surface.

The formal similarity between measures of independence and correlation can be inter-
preted as follows. Correlation is a measure of the amount of covariation between x and
y, and depends on the first moment of the pdf pxy only. In contrast, independence is a
measure of the covariation between [x raised to powers p] and [y raised to powers q], and
depends on all moments of the pdf pxy . Thus, independence can be considered as a gener-
alized measure of correlation, such that ρ(x p, yq) = 0 for all positive integer values of p
and q.

5.8 Uncorrelated Pendulums

Consider the simple physical example of two pendulums swinging exactly in phase (i.e.,
the pendulums reach their peak and zero velocity at exactly the same time). In this case,
there is clearly a positive correlation ρ between the velocities of the pendulums. However,
what if the pendulums are started at different times, with a phase difference of 90 degrees
(as depicted in figure 5.5)? In this case, if one pendulum reaches the upper extreme of its
swing (i.e., zero velocity) at the same time as the other pendulum reaches the lower extreme
of its swing (i.e., maximum velocity) then ρ = 0. This seems counterintuitive because the
velocities of the two pendulums are obviously related to each other. Clearly, the formal
definition of correlation does not fit well with our intuitive notion of relatedness. This
notion is captured more accurately by statistical independence than it is by correlation.

In order to examine this example in more detail, we need to formalize the quantities
involved. Pendulum velocity varies with time, so that we can define a time variable t
with a range between zero and π , t = {0, ..., (4 × 360)}, which allows us to examine

Independence and Probability Density Functions 63

σx = E[xx]1/2, σy = E[yy]1/2. (5.41)

This normalization ensures that ρ varies between ρ = −1 and ρ = 1. A value of ρ = 1
implies that as x increases, so y increases in proportion to x , a value of ρ = −1 implies
that as x increases, so y decreases in proportion to x , and a value of ρ = 0 implies that as
x increases, on average y neither increases nor decreases in proportion to x .

Note that a correlation assumes p = q = 1, so that if x and y are uncorrelated then

E[xy] = E[y]E[x]. (5.42)

This equates to assuming that the first moment of the joint pdf pxy is equal to the product
of the first moments of the marginal pdfs px and py of pxy

E[x1.y1] = E[x1]E[y1]. (5.43)

In contrast, independence involves all positive integer values of p and q . Thus indepen-
dence places many more constraints on the joint pdf pxy than correlation does.

64 Chapter 5

pendulum behavior over 4 full cycles. If the two pendulums are started with a time
difference of 90 (degrees) then the velocity of the pendulums are given by x = sin(t)
and y = sin(t + 90) = cos(t). Intuitively, it can be seen that both x and y depend on t . As
can be seen from figure 5.6, the variables x and y are highly interdependent. However, the
the correlation of x and y is zero because E[xy] = 0,

ρ(x, y) = E[xy]

σxσy
(5.44)

= E[cos(t) sin(t)]

σxσy
(5.45)

= 0. (5.46)

In contrast, the correlation between the variables x p and yq as depicted in figures 5.7 and
5.8 for p = q = 2 is given by the central moment (i.e., x = (x − x), y = (y − y))

Figure 5.5
Graph of x = sin(t) (solid line) and y = cos(t) (dashed line). The variables x and y represent the
velocities of two pendulums swinging with the same frequency but with a phase difference of 90
degrees, so that when one pendulum is at the bottom of its swing (maximum velocity), the other is
at the top of its swing (zero velocity). Even though x and y are clearly related to each other, the
correlation between them is ρ(x, y) = 0.

0 100 200 300 400 500 600 700 800
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time

S
ig

na
l v

al
ue

Independence and Probability Density Functions 65

ρ(x2, y2) = E[x2y2]

σx2σy2
< 0, (5.47)

where σx2 and σy2 are the standard deviations of x
2 and y2, respectively. Thus, whereas the

correlation between x = sin(t) and y = cos(t) is zero, the fact that the value of x provides
information about the value of y is implicit in the non-zero high order correlations between
x p and yq (e.g., between x2 and y2).

5.9 Summary

In this chapter, we have learned several important facts.

• A histogram is a graphical representation of the values in a given signal x , and a
probability density function (pdf) px (x) is essentially an idealized histogram.

• Changing the ordering of values in a given signal has no effect on the pdf of that
signal.

• The central limit theorem ensures that almost any mixture of signals has a pdf which
is approximately gaussian.

Figure 5.6
Graph of x = sin(t) versus y = cos(t) for t = 0, . . . , 4× 360 defines a circle. Even though x and y
are clearly related to each other, the correlation between them is ρ(x, y) = 0. Thus correlation does
not reflect all forms of dependence between two variables.

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0.5

1.5

0

1

•

•

•

• A cumulative density function g(x) of a signal x is the integral of its pdf px (x), and
returns the proportion of values below a specified value of x . By implication, the pdf
of a signal is the derivative of that signal’s cdf.

• Two signals x and y are statistically independent only if their joint pdf pxy(x, y) is
given by the product px (x)py(y) of itsmarginal pdfs px (x) and py(y). This implies
that if two signals are independent then the central moment E[x p yq] of their joint
pdf is equal to the product E[x p]E[yq] for all positive integer values of p and q .

• If two signals are uncorrelated then the first central moment of their joint pdf
E[xy] = E[x]E[y]. However, two such signals are independent if E[x p yq] =
E[x p]E[yq] for all positive integer values of p and q.

With these facts, we can now examine the details of how to implement several source
separation methods.

66 Chapter 5

0 100 200 300 400 500 600 700 800

Time

S
ig

na
l v

al
ue

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 5.7
Graph of x2 = sin2(t) (solid line) and y2 = cos2(t) (dashed line). The variables x2 and y2 are
anti-correlated because for any value of x2, the value of y2 = 1 − x2. The correlation between x2

and y2 ρ(x2, y2) is therefore negative.

•

•

•

Independence and Probability Density Functions 67

Figure 5.8
Graph of x2 = sin(t)2 versus y2 = cos(t)2 for t = 0, . . . , 4× 360. The dependence between x and
y variables is not apparent in their correlation (see figure 5.6). However, this dependence is apparent
in high order correlations between x and y, such as the correlation ρ(x2, y2) between x2 and y2,
which is non-zero (and negative). If the variables x and y are statistically independent then all high
order correlations are zero; that is, ρ(x p, yq) = 0 for all positive integer values of p and q.

0 1
0

0.5

0.5 1.5

1

1.5

III METHODS FOR BLIND SOURCE SEPARATION

6.1 Introduction

We know that signal mixtures tend to have gaussian (normal) probability density functions,
and that source signals have non-gaussian pdfs. We also know that each source signal can
be extracted from a set of signal mixtures by taking the inner product of a weight vector
and those signal mixtures where this inner product provides an orthogonal projection of
the signal mixtures. But we do not yet know precisely how to find such a weight vector.
One type of method for doing so is exploratory projection pursuit, often referred to simply
as projection pursuit (Kruskal, 1969, Friedman et al., 1974, Fyfe & Baddeley, 1995).

Projection pursuit methods seek one projection at a time such that the extracted signal
is as non-gaussian as possible. This contrasts with ICA, which typically extracts M signals
simultaneously from M signal mixtures, which requires estimating a (possibly very large)
M × M unmixing matrix. One practical advantage of projection pursuit over ICA is that
less than M signals can be extracted if required, where each source signal is extracted from
M signal mixtures using an M-element weight vector.
The name projection pursuit derives from the fact that this method seeks a weight

vector which provides an orthogonal projection of a set of signal mixtures such that each
extracted signal has a pdf which is as non-gaussian as possible.

6.2 Mixtures Are Gaussian

Let us reconsider the example of human height. Suppose that the height of an individual
hi is the outcome of many underlying factors which include a genetic component siG ,
and dietary component siD (i.e., nature versus nurture). Let us further suppose that the
contribution of each factor to height is the same for all individuals (i.e., the nature/nurture
ratio is fixed). Finally, we need to assume that the total effect of these different factors in
each individual is the sum of their contributions. If we consider the contribution of each
factor as a constant coefficient then we can write

hi = asiG + bsiD, (6.1)

where a and b are non-zero coefficients. Each coefficient determines how height increases
with the factors siG and siD . Note that s

i
G and siD vary across individuals, whereas the

coefficients a and b are the same for all individuals. The central limit theorem (see section
5.4) ensures that the pdf of hi values is approximately gaussian irrespective of the pdf of
siG or s

i
D values, and irrespective of the constants a and b.

Of course, we should recognize equation (6.1) for what it is: the formation of a signal
mixture h by a linear combination of source signals sG and sD , using mixing coefficients
a and b. Note that h could equally well be a mixture of two voice signals.

6 Projection Pursuit

72 Chapter 6

As a further example, in signal processing it is almost always assumed that, after the
signals of interest have been extracted from a noisy stream of data, the residual noise is
gaussian. As stated above, this assumption is mathematically very convenient, but it is
also usually valid. If the residual noise is the result of many processes whose outputs are
added together then the central limit theorem (CLT) guarantees that this noise is indeed
approximately gaussian.

6.3 Gaussian Signals: Good News, Bad News

We now have to confront some good news and some bad news, when interpreting the above
in terms of signals generated by physical systems. The bad news is that the converse of
the CLT is not true in general; that is, it is not true that any gaussian signal is a mixture of
non-gaussian signals. The good news is that, in practice, gaussian signals often do consist
of a mixture of non-gaussian signals. This is good news because it means we can treat any
gaussian signal as if it consists of a mixture of non-gaussian source signals. Given a set
of such gaussian mixtures, we can then proceed to find each source signal by finding that
unmixing vector which extracts the most non-gaussian signal from the set of mixtures.

We could now proceed using two different strategies. We could define a measure of
the “distance” between the signal extracted by a given unmixing vector and a gaussian
signal, and then find the unmixing vector that maximizes this distance. This distance is
known as theKullback-Leibler divergence (see Hyvärinen et al., 2001a). A simpler strategy
consists of defining a measure of non-gaussianity and then finding the unmixing vector that
maximizes this measure. This is the strategy that will be examined here.

The fact that there are actually two types of non-gaussian signals will not detain us long,
because we shall assume (in common with most blind source separation methods) that our
source signals are of one type only. The two types are known by various terms, such
as super-gaussian and sub-gaussian, or equivalently as platykurtotic and leptokurtotic,
respectively; and a signal with zero kurtosis is mesokurtotic. A signal with a super-
gaussian pdf has most of its values clustered around zero, whereas a signal with a sub-
gaussian pdf does not, as illustrated in figure 5.2. As examples, a speech signal has a
super-gaussian pdf, and a sawtooth function and white noise have sub-gaussian pdfs (see
figure 5.2). This implies that super-gaussian signals have pdfs that are more peaky than
that of a gaussian signal, whereas a sub-gaussian signal has a pdf that is less peaky than
that of a gaussian signal. We will assume that our source signals are super-gaussian (i.e.,
like speech), although projection pursuit methods based on Kullback-Leibler divergence
can extract source signals from mixtures of super- and sub-gaussian source signals, e.g.,
FastICA Hyvärinen et al., 2001a).

Projection Pursuit 73

The informal descriptor “peaky” has a formal concomitant, which is usually defined
as the kurtosis of a signal’s pdf. If we can find an unmixing vector w that maximizes the
kurtosis of an extracted signal y = wT x then we can assume that y is a source signal. But
first, we need to explore what is meant by kurtosis.

6.4 Kurtosis as a Measure of Non-Normality

The kurtosis of the pdf of a signal (often simply referred to as the kurtosis of the signal)
was defined in equation 5.26. For a finite sample, kurtosis is computed as

K =
1
N

∑N
t=1 (y − yt)4(

1
N

∑N
t=1 (y − yt)2

)2 − 3, (6.2)

where y is the mean value of yt . This rather complex expression has only one important
term, and that is the numerator. The other terms ensure that the measured value of kurtosis
is well behaved. The constant (3) ensures that gaussian signals have zero kurtosis, super-
gaussian signals have positive kurtosis, and sub-gaussian signals have negative kurtosis.
The denominator is the variance of y, and ensures that the measured kurtosis takes account
of signal variance.

Equation (6.2) can be written more succinctly in terms of means or expected values,
denoted E[.]. Note that the numerator consists of the sum of N terms divided by N , and
is therefore an expectation (i.e., the mean of (y − yt)4 over all t). As the denominator
contains a mean we can rewrite equation (6.2)

K = E[(y − y)4]

(E[(y − y)2])2
− 3. (6.3)

6.5 Weight Vector Angle and Kurtosis

Using kurtosis as a measure of non-normality, we can now examine how the kurtosis of a
signal y = wT x extracted from a set of M mixtures x = (x1, x2, . . . , xM)T varies as the
weight vector w is rotated around the origin. Given our assumption that each source signal
s is super-gaussian we would expect

1. the kurtosis of the extracted signal y to be maximal precisely when y = s

2. the kurtosis of the extracted signal y to be maximal when w is orthogonal to the
projected axes S′

1 or S
′
2, because we know the optimal weight vector should be

orthogonal to a transformed axis S′
1 or S

′
2.

74 Chapter 6

Figure 6.1 demonstrates such a case. Note that 2 above does not provide a means of
finding source signals; because the projected axes S′

1 or S
′
2 are not usually known, it

simply provides confirmation of the geometry of the optimal weight vector in relation to
the projected axes.

In principle, the correct value ofw can be found using the brute force exhaustive search
method illustrated in figure 6.1. This involves finding that weight vector orientation at
which the kurtosis of the extracted signal is maximal. Alternatively, we could use a more
efficient gradient based method, as described in Chapter 9.

Note that the length |w| of w is irrelevant (see section 4.2.1), provided it is greater than
zero (i.e., |w| > 0), because kurtosis defined in such a way that it is unaffected by the
length of w.

The issue of how to extract more than one source signal is addressed in next section.

5

4

3

2

1

0

-1

-2

-3

-4

-5
-5 -4 -3 -2 -1 0 1 2 3 4 5

Signal Mixture 1 Amplitude

S
ig

na
l M

ix
tu

re
 2

 A
m

pl
itu

de

Figure 6.1
Graph showing how the kurtosis of an extracted signal varies with weight vector orientation for two
speech signal mixtures. The plotted points represent signal mixture 1 (x1) versus signal mixture 2
(x2). For any given orientation of a weight vector w the recovered signal y is given by the inner
product of w with the two signal mixtures x = (x1, x2), y = wT x. The kurtosis of y varies as w is
rotated around the origin. For each value of w the associated kurtosis is plotted as a distance from
the origin in the direction of w, giving a continuous curve. Critically, kurtosis is maximal when w
is orthogonal to a transformed axis S′

1 or S
′
2 (plotted as dashed lines), and w recovers exactly one

source signal at these orientations. The orientation of w corresponding to one maximum in kurtosis
is plotted as a solid line.

6.7 Projection Pursuit and ICA Extract the Same Signals

The sequential procedure described above is guaranteed to find the same independent
source signals as are found by ICA, provided certain formal conditions apply (e.g., the
source signals are independent and non-gaussian) (Hyvärinen & Oja, 1997, Hyvärinen et
al., 2001a) (p202). This appears counterintuitive because ICA explicitly maximizes a mea-
sure of independence of an entire set of extracted signals, whereas projection pursuit max-
imizes a measure of non-gaussianity for each sequentially extracted signal. Despite this
sequential extraction, projection pursuit extracts a set of mutually independent extracted
signals.

In fact, this result makes perfect sense, provided the source signals are independent and
non-gaussian. The proof can be summarized as follows.

Consider a set of M non-gaussian source signals each of which contributes to each of
M signal mixtures. If projection pursuit is used to find a signal that is maximally non-
gaussian then this signal will be one of the source signals. This is because, of all the
possible signals that could be extracted by an unmixing vector w1, the particular unmixing

Projection Pursuit 75

6.6 Using Kurtosis to Recover Multiple Source Signals

The strategy for recovering multiple source signals is very simple. It involves removing
each recovered source signal from the set of signal mixtures and then using the above
procedure to recover the next source signal from the “reduced” set of signal mixtures. This
sequential procedure is often referred to as deflation.

The only tricky part of this strategy is removing each recovered source signal from the
set of remaining signal mixtures. This is achieved using a method known asGram-Schmidt
orthogonalisation (GSO) (see appendix C).

In geometric terms, given M signal mixtures represented as points in an M-dimensional
(MD) space, GSO projects these data points onto an (M − 1)D space. Critically, if
projection pursuit extracts the M th source signal using a vector wM then this (M − 1)D
space contains the (M − 1) transformed axes (S′

1, S
′
2, . . . , S

′
M−1).

To take an example, consider the case for which initially there are M = 3 mixtures
of three sources. We can recover one source using a vector w = w3, as described in
the previous section. Note that in order for w3 to recover exactly one source signal
y3 = s3, it must be orthogonal to the plane P ′

1,2 defined by the transformed axes S
′
1 and

S′
2. Additionally, after the signal y3 is recovered we are really only interested in this plane.
This is where GSO is useful, because it projects data points in a three-dimensional (3D)
space onto a two-dimensional (2D) space (i.e., a plane). Moreover, because we know w3,
we can ensure that GSO does not project data onto any old 2D plane, but onto that 2D
plane P ′

1,2 which contains the transformed axes S
′
1 and S

′
2.

vector w1 which extracts a source signal will yield the most non-gaussian signal.
Having obtained one source signal, and then removed it from the set of mixtures (e.g.,

using GSO), projection pursuit is then used to find another maximally non-gaussian signal.
As far as projection pursuit is concerned, this is just another set of mixtures. Just as
projection pursuit extracted a source signal from the original set of M mixtures, so it will
extract a source signal from the new set of M − 1 signal mixtures, because (as before), in
so doing, projection pursuit extracts that signal which is maximally non-gaussian. Thus,
if the source signals are independent and non-gaussian then the sequential application of
projection pursuit to a decreasing number of signal mixtures results in exactly the same set
of source signals as would be obtained by ICA.

However, if the source signals are not independent then differences between the signals
extracted by ICA and projection pursuit emerge. In this case, the different functions
maximized as part of ICA and projection pursuit (i.e., independence and non-gaussianity,
respectively) will have different consequences for the estimated signals extracted by ICA
and projection pursuit.

6.8 When to Stop Extracting Signals

How can we tell when all of the source signals have been extracted? This is a fundamental
issue for all BSS methods, but it has no simple answer. In order to provide a flavour of the
type of problem we are up against, consider the following example.

There are two people speaking at the same time whilst being recorded by three micro-

76 Chapter 6

phones. A scatterplot of the two voice source signals would be a 2D graph. A scatter plot
of the three voice mixtures recorded by the microphones would show points in a 3D graph.
However, because the mixing process is linear, all of the points in this 3D space would be
in a plane. In other words, the source signals occupy a 2D subspace of the 3D mixture
space. Recall that, in general, we do not know how many sources are present.

If projection pursuit were applied to these data then the first two extracted signals would
be voices, but there would be literally nothing left to extract after this. In this case it is easy
to know when to stop: when we run out of signals to extract. However, such noise-free
cases are rarely encountered in practice. Each microphone adds noise, so that the recorded
data would not lie exactly in a plane. In this more realistic case, the “signal” is actually
microphone or sensor noise. If the sensor noise has a small amplitude relative to the signal
mixtures then the data can be preprocessed to remove such noise.

Principal Component Analysis

One standard method for reducing the amount of noise in data is principal component
analysis (PCA). Briefly, for our speech example, PCA would identify the 2D subspace

This is counter-intuitive because we, as efficient processors of temporal signals (e.g.,
speech), depend on assumptions different from those of projection pursuit, and would
therefore find it hard to separate the sound of one voice in a mixture of voices if the
mixtures were played backwards, for example (see chapter 5).

6.9 Summary

Different mixtures of a set of non-gaussian source signals tend to be gaussian. Projection
pursuit seeks a weight vector such that the signal extracted from a set of signal mixtures
is as non-gaussian as possible. It is common practice to assume that source signals are
super-gaussian, which is consistent with being highly kurtotic. Using this assumption, it
was demonstrated that if the signal extracted by a weight vector is as kurtotic as possible
then the extracted signal is a source signal.

MatLab Code Simple demonstration code is provided in appendix B.

Projection Pursuit 77

containing the source signals, and would identify the remaining one-dimensional (1D)
subspace as containing low-energy data, which we would classify as noise. Using PCA,
we could discard this 1D subspace, and use the 2D subspace as input to a source separation
method. More generally, PCA can be used to discard low-energy subspaces from high
dimensional data (see chapter 10 and appendix F).

More sophisticated methods for estimating howmany sources to extract usually involve
Bayesian estimation (e.g., see Penny et al., 2001). Such methods seek a compromise
between model complexity (e.g., the number of weight vectors in the unmixing matrix)
and the extent to which the model accounts for the observed data.

Projection Pursuit Ignores Signal Structure

It is worth noting that projection pursuit (and ICA) disregards any spatial or temporal
structure in signals. This is because projection pursuit depends on the assumption that
source signals are non-gaussian, an assumption defined in terms of the pdfs of extracted
signals. However, the pdf of any signal does not contain any information regarding the
ordering of amplitude values in that signal. The pdf of a speech signal would be the
same if the temporal order of amplitude values were re-arranged (permuted) in any order.
For example, if the temporal order of signal values were reversed, so that the speech was
heard backwards then this would have no effect on the pdf, and would therefore not affect
projection pursuit results.

“I shouldn’t be surprised if it hailed a good deal tomorrow,” Eeyore was
saying. “Blizzards and what-not. Being fine to-day doesn’t Mean Anything.
It has no sig—what’s that word? Well, it has none of that.”
— The House at Pooh Corner, AA Milne, 1928.

7.1 Introduction

ICA is essentially a multivariate, parallel version of projection pursuit. Thus, whereas
projection pursuit extracts a series of signals one at a time from a set of M signal mixtures,
ICA extracts M signals in parallel. This tends to make ICA more robust than projection
pursuit.

Statistical independence lies at the core of the ICA methods. Therefore, in order to
understand ICA, it is essential to understand independence. At an intuitive level, if two
variables y1 and y2 are independent then the value of one variable provides absolutely no
information about the value of the other variable. For example, the phase of the moon (y1)
provides no information regarding what the President had for breakfast today (y2). The
moon phase and the President’s breakfast are said to be statistically independent variables.

7.2 Independence of Joint and Marginal Distributions

7.2.1 Independent Events: Coin Tossing

Consider the pedestrian example of tossing a coin. If every toss has an outcome that is
independent of all other tosses and the probability of obtaining a head is ph = 0.5 then the
probability of obtaining two heads is

ph × ph =
2∏
i=1

ph (7.1)

= 0.52 (7.2)

= 0.25, (7.3)

where the symbol
 is standard notation for representing products. Similarly, the proba-
bility of obtaining exactly N heads from N coin tosses is

N∏
i=1

ph = pNh . (7.4)

If the coin is biased such that ph = 0.2 then the the probability of obtaining exactly N
heads is simply ph raised to the power N ,

pNh = 0.2N . (7.5)

7 Independent Component Analysis

7.2.2 Independent Signals: Speech

We can extend this discussion to more interesting examples, such as speech. By definition,
the probability that the amplitude of a voice signal s lies within an extremely small range
around the value st is given by the value of the probability density function (pdf) ps(st)
of that signal at st . For brevity, we will often abuse this technically correct, but lengthy,
definition by stating that ps(st) is simply the probability that the variable s adopts the value
st . Given that speech signals spend most of their time with near-zero amplitude, the pdf of
speech signals has a peak at s = 0, as shown in figures 2.3 and 7.1. The typical gaussian
pdf associated with signal mixtures is depicted in figure 7.2.

80 Chapter 7

For example, the probability of obtaining 5 heads with such a coin is 0.25 = 0.00032.
Note that the probability of obtaining a number of heads can be obtained as the product
of the probability of obtaining each head only because the outcomes of coin tosses are
independent events.

Figure 7.1
The joint probability density function (pdf) of two high-kurtosis variables (e.g., speech signals) is
indicated by the solid surface. The marginal pdf of each high-kurtosis variable s1 and s2 is plotted
along one horizontal axis as a solid curve. The joint probability of observing values st = (st1, s

t
2)

at time t is indicated by the local probability density of plotted points on the horizontal plane. This
probability density is an approximation to the joint pdf ps , which is indicated by the height of the
solid surface.

Now, we assume that two speech signals s1 and s2 from two different people are
independent. This implies that the joint probability ps(st1, s

t
2) that s1 = st1 when s2 = st2 is

given by the probability ps1(st1) that s1 = st1 times the probability ps2(s
t
2) that s2 = st2

ps(s
t
1, s

t
2) = ps1(s

t
1) × ps2(s

t
2). (7.6)

The joint probability for all values of s is the joint pdf ps , and can be visualized for two
variables as shown in figure 7.1, such that the probability that s = (st1, s

t
2) is given by the

height ps(s) above two horizontal axes representing values of s1 and s2. The pdfs ps1 and
ps2 are known as themarginal pdfs of the joint pdf ps . A key feature of this joint pdf is that
it can be obtained as the product of its two marginal pdfs ps1 and ps2. It bears repeating
that this is true only because the variables s1 and s2 of the marginal pdfs ps1 and ps2 are
independent.

From equation (7.6), the vector valued variable st = (st1, s
t
2) has a pdf which can be

written as
ps(st) = ps1(s

t
1) × ps2(s

t
2). (7.7)

Independent Component Analysis 81

Figure 7.2
The joint probability density function (pdf) of two gaussian variables (e.g., signal mixtures) is
indicated by the solid surface. The marginal pdf of each gaussian variable x1 and x2 is plotted
along one horizontal axis as a solid curve. The joint probability of observing values xt = (xt1, x

t
2)
T

is indicated by the local probability density of plotted points on the horizontal plane. This probability
density is an approximation to the joint pdf px , which is indicated by the height of the solid surface.

If we assume that all speech signals can be approximated by the same super-gaussian pdf
ps , so that ps = ps1 = ps2, then we can write

ps(st) = ps(s
t
1) × ps(s

t
2) (7.8)

=
2∏
i=1

ps(s
t
i). (7.9)

If we also assume that all values of each signal are independent then the probability of
obtaining the observed N values in each signal is

ps(s1) =
N∏
t=1

ps(s
t
1) (7.10)

ps(s2) =
N∏
t=1

ps(s
t
2), (7.11)

so that the probability of obtaining the N pairs of signal values is

ps(s) =
N∏
t=1

ps(st). (7.12)

82 Chapter 7

The price paid for the assumption that all values of each speech signal are independent is
that we ignore the ordering of signal values. Whilst this assumption is patently invalid, it
does permit the probability of any signal to be estimated (albeit, incorrectly if consecutive
values are similar to each other). Moreover, it permits the probability of any set of M
independent signals to be estimated over N time steps. If we substitute equation 7.9 in
equation (7.12) then

ps(s) =
N∏
t=1

M=2∏
i=1

ps(s
t
i). (7.13)

This is the probability of obtaining the observed values if the signals s1 and s2 are inde-
pendent, and if all values of st are independent.

Finally, it is common practice to express the product of terms as a sum of logarithms.
If we take the logarithm of equation (7.13) then we have

ln ps(s) = ln
N∏
t=1

M=2∏
i=1

ps(s
t
i) (7.14)

=
N∑
t=1

M=2∑
i=1

ln ps(s
t
i). (7.15)

Independent Component Analysis 83

7.3 Infomax: Independence and Entropy

Given a set of signal mixtures and an unmixing matrix which extracts a set of signals, how
do we know that the extracted signals are source signals? One way is to ascertain whether
or not the extracted signals are mutually independent. This suggests that a method for
finding source signals is to seek out those signals that are independent. In order to find
such a set, we need a measure that will let us know how close the extracted signals are
to being independent. This permits us to iteratively change the unmixing matrix so as to
increase the degree of independence of the extracted signals.

We cannot measure independence, but we can measure another quantity, entropy, which
is related in a useful way to independence.1

Entropy is a measure of the uniformity of the distribution of a bounded set of values,
such that complete uniformity corresponds to maximum entropy (see figure 7.5). Specifi-
cally, if we have a discrete set of N signal values then the entropy of this set depends on
the uniformity of the values in the set. The entropy of a set of variables is known as joint
entropy. For example, for three variables with a fixed range between zero and unity, their
entropy can be visualized as the degree of uniformity in the unit cube (see figure 7.3). Note
that if a variable is actually defined to be a probability density then its range is unity.

One way to obtain mutually independent signals is to find an unmixing matrix that
maximizes the entropy (of a fixed nonlinear function g) of the signals extracted by that
matrix. The unmixing matrix that maximizes the entropy of these signals also maximizes

Figure 7.3
Uniform densities of points for 1, 2 and 3 variables define maximum entropy distributions. In each
case, the distribution of points has no structure and fills the bounded space defined by the variable(s).
Variables with maximum entropy distributions are statistically independent of each other.

1. For an informal introduction to entropy, mutual information and information theory, see (Jessop, 1995).
Otherwise, see (Cover & Thomas, 1991, Reza, 1961)

infomax (Bell & Sejnowski, 1995).

7.3.1 Infomax Overview

First, it is important to bear in mind that maximizing entropy is simply a means to an end,
and depends on three crucial facts about bounded signals3 (Cover & Thomas, 1991):

• a set of signals with a uniform joint pdf has maximum joint entropy;

• a set of signals that have maximum joint entropy are mutually independent;

• any invertible function4 of maximum entropy signals (which are therefore mutually
independent) yields signals that are also mutually independent.

•

•

•

84 Chapter 7

the amount of shared entropy or mutual information2 between them and the set of signal
mixtures. Accordingly, finding independent signals by maximizing entropy is known as

Figure 7.4
Infomax ICA overview for two sound source signals. Left: Pairs of signals with time along the
vertical axes, and signal amplitude along the horizontal axis. Right: Scatter plots of two signals
shown on left. Each scatter plot approximates the joint probability density function of two signals.
An unknown pair of source signals s = (s1, s2)

T is transformed to a pair of observed signal mixtures
x = (x1, x2)

T by an unknownmixing matrixA, such that x = As. This pair of source signal mixtures
x = (x1, x2)

T is transformed to a pair of extracted signals y = (y1, y2)
T by an unmixing matrixW,

such that y = Wx. If this matrix is the optimal unmixing matrix then the signals y extracted byW
from x are the required source signals s, and the signals Y = (Y1, Y2) obtained by transforming y by
a model cumulative density function (cdf) g (defined by Y = g(y)) have a uniform (i.e., maximum
entropy) joint distribution.
ICAworks by adjusting the unmixing coefficients ofW in order to maximize the uniformity (entropy)
of the distribution of Y = g(y) (top right), where g is assumed to be the cdf of the source signals. If
g is the cdf of the source signals then the extracted signals y = Wx approximate the source signals.
Note that the joint pdf of Y (top right) is usually not exactly uniform because the match between the
model cdf g and the cdf of the source signals is usually not exact, nor does this match need to be
exact for ICA to work (Cardoso, 2000, Amari, 1998).

2. The mutual information between two signals is a measure of the amount of information each signal contains
about the other, and is given by the difference between the sum of their individual entropies and the joint entropy
of the two signals.

3. For the sake of brevity we assume that all signals are bounded.

4. If a function Y = g(y) is invertible then every value of Y is associated with only one value of y. As a
counterexample, Y = sin(y) is a noninvertible function because every value of Y is associated with an infinite
number of values of y.

Independent Component Analysis 85

-2 0 2 -2 0 2

-2 0 2 -2 0 2

-2 0 2 -2 0 2

-2 0 2 -2 0 2

1

0.5

0

-0.5

-1

4

3

2

1

0

-1

-2

-3

-4

4

3

2

1

0

-1

-2

-3

-4

4

3

2

1

0

-1

-2

-3

-4

0

0 2 4-2-4

0 2 4-2-4

0 2 4-2-4

1-1 -0.5 0.5

S
ou

rc
e

M
ix

tu
re

 2
 A

m
pl

itu
de

S
ou

rc
e

S
ig

na
l 2

 A
m

pl
itu

de
S

ou
rc

e
S

ig
na

l 2
 A

m
pl

itu
de

Y

g

y

W

x

A

s

The facts listed above allow us to pursue the following strategy, summarized in figure 7.4.
Given an invertible multivariate function g of signals y = Wx extracted by the unmixing
matrixW, find aW such that the signals Y = g(y) have maximum entropy.

Notation We use functions such as g to indicate both univariate and multivariate functions,
where the argument of g indicates the form is intended. For example, for a univariate
variable we have g(y), whereas for a vector valued variable y = (y1, y2, . . . , yM)T we
have g(y) = (g(y1), g(y2), . . . , g(yM))T .

It turns out that the entropy of the signals Y is maximized if the extracted signals
have a cumulative density function (cdf) which matches the cdf g. This “cdf-matching”
property is a key aspect of ICA, and is usually somewhat understated. As the derivative
of a cdf defines a corresponding pdf (see chapter 5), ICA can also be interpreted as a
method for extracting signals that match a specific pdf. For example, if is assumed that
source signals consist of images containing small bright regions then a skew-pdf model
can be used to perform spatial ICA of a sequence of observed images, e.g., see (Stone
et al., 2002). Alternatively, if it is assumed that source signals have super-gaussian pdfs
(e.g., speech) or sub-gaussian pdfs then corresponding pdf models can be used. It is thus
possible to “tune” the model pdf to the nature of the source signals to be extracted.

Note that the required signals y are found by maximizing the entropy of a related, but
different, set of signals Y = g(y). This is why maximizing entropy is a means to an end.

In order to complete the strategy, we need one more fact

• if any function g is invertible then its inverse g−1 is also invertible.

It follows that if the signals Y = g(y) are independent then the extracted signals y =
g−1(Y) are also independent.

In geometric terms, as the entropy of the signal mixtures x is fixed, maximizing the
change in entropy involved in the mapping x → Y has the effect of spreading out the
points Y as much as possible, and therefore maximizes the entropy of the points Y.

In summary, given a set of signal mixtures x and a set of identical independent model
cdfs g, we seek that unmixing matrixW which maximizes the joint entropy of the signals

•

86 Chapter 7

Y = g(y), where y = Wx are the signals extracted byW. Given the optimalW, the signals
Y have maximum entropy and are therefore independent, which ensures that the extracted
signals y = g−1(Y) are also independent because g is an invertible function. After a brief
introduction to entropy, we will examine this strategy in more detail.

7.3.2 Entropy

As stated above, entropy is essentially a measure of the uniformity of the distribution of
a variable Z with values Z1, Z2, . . . , ZN , such that complete uniformity corresponds to a
maximum entropy distribution.

In order to take account of the fact that ln p → −∞ as p → 0 or ln 0 is undefined,
we need to consider how p ln p changes in the limit as p → 0. In fact, the rate at which
p approaches zero is faster than the rate at which ln p approaches −∞ and in the limit as
p → 0 the term p ln p approaches zero. The logic of this argument also applies to the term
(1 − p) ln(1 − p) in the limit as (1 − p) → 0. Thus, equation (7.20) evaluates to zero in
the limit as p → 0 and in the limit as p → 1. A proof of this can be found in standard
calculus texts.

f h i i bi d h 5 h h bili di h f i

Independent Component Analysis 87

Entropy can also be interpreted in terms of the average amount of surprise associated
with a given event. For example, getting hit by lightning, denoted Zi = 1 (Z could stand
for “zapped” here), on a given day i would be a surprise (to say the least) because it is an
event deemed to be of very low probability:

p(Zi = 1) ≈ 0. (7.16)

The precise amount of surprise associated with the outcome Zi = 1 can be defined as

− ln p(Zi = 1) (7.17)

which is large for small values of p and small for large values of p.
In contrast, not getting hit by lightning, denoted Zi = 0 on a given day i would be

unsurprising because this has a very high probability

p(Zi = 0) ≈ 1. (7.18)

If the probability of getting hit by lightning on a given day is p(Zi = 1) then the probability
of not getting hit by lightning is (1− p(Zi = 1)). In this case, the amount of surprise is:

− ln(1− p(Zi = 1)). (7.19)

For notational simplicity we define p = p(Zi = 1).
The standard symbol for entropy is H , which is defined as the average amount of

surprise associated with the variable Z , and is given by

H(Z) = −p ln(p) − (1− p) ln(1− p). (7.20)

We now return to the more familiar example of coin tossing. In this case the average
amount of surprise is related to the bias of a given coin. If bias is defined as probability p
that a tossed coin will land heads up Zi = 1 on the i th toss then the ability to predict the
outcome of a coin toss is maximal if the coin is very biased, for example p = 1 or p = 0
(see figure 7.5). In these two cases of bias, the average amount of surprise associated with
a series of coin tosses is zero because we know the outcome for every coin toss. Both cases
correspond to a minimal entropy distribution of Zi values.

If the coin is unbiased so that p = 0.5 then the ability to predict the outcome of a coin
toss is minimal. In this case, the average amount of surprise associated with a series of
coin toss outcomes is maximal, and the distribution of outcomes has maximum entropy.
Specifically, if p = 0.5 then the entropy is

H(Z) = − ln 0.5. (7.21)

If we then construct a two-bin histogram of a series of coin toss outcomes for p = 0.5 then
the number items in the first (zero) bin is approximately equal to the number of items in
the second (one) bin. In this case, the distribution of values is uniform, and corresponds
to a maximum entropy distribution. As the bias of the coin is varied between p = 0 and
p = 1 the entropy of the distribution of zero/one values varies, as depicted in figure 7.5.
Here we have used logarithms to the base e, but the entropy is maximized by p = 0.5

irrespective of the base. If the entropy is calculated using logarithms to the base 2 then
the units of measurement are called bits, and equation (7.21) would evaluate to unity, as in
figure 7.5.

88 Chapter 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability p

E
nt

ro
py

 =
 H

(p
,1

-p
)

Figure 7.5
Entropy of coin tosses for different values of coin bias ph between zero and one. If we denote
heads as 1 and tails as 0 then the outcome of each toss is least predictable at ph = 0.5, and the
corresponding set of N outcomes has maximum entropy. This is true for entropy with log to any
base, and we have used log to the base 2 in this graph.

More generally, if the number of possible outcomes is n (e.g., for n-sided dice) where
each outcome has probability pi then the expected surprise or entropy is

H(Z) = −
n∑
i

pi ln pi . (7.22)

This has a maximum value of ln pi if all pi values are the same, that is, if the distribution
of pi ’s is uniform. Note that pi ’s define a continuous pdf pZ in the limit as n → ∞. The
important point to note is that, in general, a uniform distribution corresponds to a maximum
entropy distribution.

The general definition of entropy5 for a single (univariate) variable or signal Z with
pdf pZ is given by equation (7.22) in the limit as n → ∞

H(Z) = −
∫ +∞

z=−∞
pZ (z) ln pZ (z) dz. (7.23)

Notice that this is a weighted mean of the term ln pZ (z), analogous to the weighted means
that defined each moment of a pdf in chapter 5. Just as a moment of a pdf can be expressed
as an expected value, so entropy can be written as

H(Z) = −E[ln pZ (z)], (7.24)

which, as we have already noted, is the average surprise of the variable Z .

Independent Component Analysis 89

Evaluating Entropy

There is one important but subtle distinction to be made when evaluating the entropy of
a variable Z . We can evaluate entropy either from n values pi of the pdf as in equation
(7.22), or from a finite number N of event outcomes Z1, Z2, . . . , ZN , where each Zt could
be the outcome of a dice roll, for example. If the probability of obtaining outcome Zt is
pZ (Zt) then the amount of surprise of each outcome is− ln pZ (Zt). If entropy is given by
the average surprise then it follows that

H(Z) = − 1

N

N∑
t

ln pZ (Zt), (7.25)

which looks alarmingly different from equation (7.22). It turns out that the entropy of a
variable Z with pdf pZ can be computed from two different sets of measurements, either
from pZ itself using equation 7.22, or from a set of N observed values Z1, Z2, . . . , ZN

5. If, as above, Z is a continuous variable (i.e., in the limit as n → ∞) entropy is known as as differential entropy.
However, we will use the term entropy to refer to the entropy of both discrete and continuous variables.

90 Chapter 7

sampled from the pdf pZ (e.g., from a set of dice rolls) using equation (7.25) (in this case,
the number of values Zt sampled from the i th bin will be proportional to the height of that
bin). It is this latter form that is used in ICA.

7.3.3 Entropy of Univariate pdfs

If we now consider the signal Y = g(y), where y = wT x is a signal extracted by a single
row wT of an unmixing matrixW then the entropy of Y is estimated as

H(Y) = − 1

N

N∑
t=1

ln pY (Y t). (7.26)

We now show that

• if y is a signal with cdf g then the signal Y = g(y) has maximum entropy. This is
equivalent to saying that the pdf of Y = g(y) is uniform.

We begin by showing that the pdf pY of a signal Y = g(y) is related to the pdf of the
extracted signal y = wT x by

pY (Y) = py(y)∣∣∣ dYdy
∣∣∣ , (7.27)

where |.| denotes absolute value.6 (see figure 7.6).
If we define a small interval
y around a value y = y1 then the probability that y is

between y1 −
y/2 and y1 +
y/2 is

p(y1 −
y/2 < y ≤ y1 +
y/2) ≈ py(y
1)
y, (7.28)

where the equality becomes exact in the limit as
y → 0.
Similarly, the probability that Y is between Y 1 −
Y/2 and Y 1 +
Y/2 is

p(Y 1 −
Y/2 < Y ≤ Y 1 +
Y/2) ≈ pY (Y 1)
Y. (7.29)

The increasing monotonic (and therefore invertible) function g maps the value y1

(uniquely) to the value Y 1 = g(y1), and the interval
y to the corresponding interval

Y = g(y1 +
y/2) − g(y1 −
y/2). (7.30)

Given that Y 1 = g(y1), the probability of observing y in the range y1±
y/2 is equivalent
to the probability of observing Y in the range Y 1 ±
Y/2,

6. This account is based on that given in (Sivia, 1996, p70).

Independent Component Analysis 91

pY (Y 1)
Y = py(y
1)
y. (7.31)

Omitting superscripts and rearranging yields

pY (Y) = py(y)

y

Y
(7.32)

= py(y)

Y

y

, (7.33)

Figure 7.6
Schematic diagram of how a uniform distribution (A) is obtained if a signal is transformed by its own
cdf. A signal y = (y1, . . . , y5000) is used to construct a normalized (i.e., unit area) histogram (D),
which is an approximation to the signal’s pdf py . Only 100 of the 5000 signal values of y are shown
in C. Note that the range of signal values in y is reflected in the x-axis of the histogram in D. The
integral of py yields an approximation to the cdf g of y, with a range between zero and unity (B).
The signal Y = g(y) (not shown) has a pdf pY with a uniform distribution, shown rotated through 90
degrees in A. The signal Y has a uniform distribution because each of the (equivalent) shaded areas
pY (Y)
Y in A must equal the corresponding shaded areas py(y)
y in D. Thus, certain intervals

y on the x-axis of D get compressed when they are mapped by the cdf g to a corresponding interval

Y in A, while others get expanded. Note that the amount of compression/expansion of an interval
centered on a value yt depends on the slope (derivative) of the cdf g at yt .

This can be substituted into equation (7.26)

H(Y) = − 1

N

N∑
t=1

ln
py(yt)

ps(yt)
. (7.38)

Recall that y = wT x is extracted by the weight vector w. It follows that if a w exists such
that the pdf py of the extracted signal y can be made to match the pdf ps assumed for
the source signals then the ratio py(y)/ps(y) = 1, and is therefore constant. This implies
that the pdf pY (Y) = py(y)/ps(y) is uniform, which, in turn, implies that pY (Y) is a
maximum entropy pdf.

It follows that if an unmixing vector w exists that maximizes the entropy of the signal
Y = g(y) then the pdf py(y) of the extracted signal y = wT x will match the pdf ps(y).

92 Chapter 7

and in the limit as
y → 0 this implies

pY (Y) = py(y)
dY
dy

. (7.34)

If g were monotonically decreasing then the derivative dY/dy would be negative. In order
to take account of monotonically increasing and decreasing functions we take the absolute
value of the derivative

pY (Y) = py(y)

| dYdy | . (7.35)

In fact, we do not need to use absolute values because all cdfs are monotonically increasing,
but we include it here because it is required for the general multivariate case considered in
the next section.

Note that the quantity |dY/dy| represents the limit (dy → 0) of a ratio of lengths
(i.e., positive quantities), such that increments in y map to increments in Y . The quantity
|d(Y)/dy| is known as the Jacobian (denoted J), although this term is usually used to refer
to the determinant of a matrix J of derivatives, as in the next section. We have now justified
the result given in equation (7.27).

Given that Y = g(y), we use a prime character to denote the derivative |dY/dy| =
g′(y)

PY (Y) = py(y)

g′(y)
. (7.36)

We can omit the |.| operator here because g′(y) is a pdf, so that g′(yt) > 0. We can replace
g′ by the pdf ps assumed for the source signals g′ = ps

PY (Y) = py(y)

ps(y)
. (7.37)

Thus, the function ps acts as an implicit model of the pdfs of signals to be extracted from
the mixtures x. In other words, the function ps can be used to specify the pdf of extracted
signals because the w that maximizes entropy is the w that extracts a signal y with pdf
py(y) = ps(y).
Notice that equation (7.38) provides a measure of the similarity between the pdfs py

and ps . In fact, the negative of equation 7.38 is the discrete version of a standard measure
of the difference between two pdfs, known as the Kullback-Leibler divergence or relative
entropy. Therefore maximizing equation 7.38 corresponds to minimizing the Kullback-
Leibler divergence or relative entropy between py and ps . Some authors prefer to interpret
ICA in terms of minimizing the Kullback-Leibler divergence between py and ps . The
Kullback-Leibler divergence can be applied to both univariate pdfs (as here) or to joint
pdfs.

The pdf assumed for a source signal s is ps = g′ which implies that the function g is
the cdf of s

g =
∫
g′(y) dy (7.39)

and if the pdf of an extracted signal y is ps = g′ = py then

g =
∫

py(y) dy. (7.40)

If a weight vector exists that maximizes the entropy of Y = g(y) then the extracted signal
y has cdf g. For example, if we define g′ to be a super-gaussian pdf (i.e., a pdf with
high kurtosis) then the weight vector that maximizes the entropy of Y = g(y) will also
maximize the kurtosis of the extracted signal y = wT x. This is the cdf-matching (and,
equivalently, pdf-matching) property of ICA mentioned earlier.

In order to evaluate equation (7.38) for a given extracted signal y, we need an expres-
sion for py(y). Whilst it is possible to evaluate this in the univariate case considered here,
the resultant expression is both complicated to derive and unnecessary. This is because ICA
simultaneously extracts multiple source signals, for which the expression corresponding to
py(y) is relatively simple, as shown in the next section.

Independent Component Analysis 93

7.3.4 Entropy of Multivariate pdfs

Here we follow the general line of reasoning in the previous section to show that the above
result generalizes to multivariate pdfs.

Given two bounded variables, their joint entropy can be visualized in terms of the
amount of scatter when the values of one signal are plotted against corresponding values
of the other signal (see figure 7.3, center panel).

94 Chapter 7

More formally, the joint entropy of two variables Z = (Z1, Z2) is defined as

H(Z) = −
∫ +∞

z1=−∞

∫ +∞

z2=−∞
pZ (z1, z2) ln pZ (z1, z2) dz1 dz2, (7.41)

where the joint pdf pZ (z) = pZ (z1, z2) is the density at z = (z1, z2). This can be written
more succinctly using the vector variable z = (z1, z2)

H(Z) = −
∫
Z
pZ (z) ln pZ (z) dz, (7.42)

where the joint pdf pZ (z) = pZ (z1, z2) is the density at (z1, z2).
Just as the one-dimensional integral in equation (7.24) provides a weighted mean of

the univariate function ln pZ (z), so equation (7.42) is a weighted mean of the multivariate
function

ln pZ (z) = (ln pZ (z1), ln pZ (z2), . . . , ln pZ (zM)), (7.43)

so that the joint entropy defined in equation (7.42) can be written succinctly as

H(Z) = −E[ln pZ (z)]. (7.44)

If the M marginal pdfs (pZ (z1), pZ (z2), . . . , pZ (zM)) of the multivariate pdf pZ (z) are
independent then

ln pZ (z) = ln
M∏
i

pZ (zi) (7.45)

=
M∑
i

ln pZ (zi). (7.46)

This is a critical equation for the infomax method, because it will be used to embody the
assumption that the multivariate pdf used as a model for the source signals consists of
independent marginal pdfs, which implies that the source signals are also assumed to be
independent.

For a finite set of N values sampled from a distribution with pdf pZ , equation (7.44)
can be estimated as

H(Z) = − 1

N

N∑
t=1

ln pZ (Zt). (7.47)

We can now consider the entropy of the vector variable Y = g(y), where y = Wx is the
set of signals extracted by the unmixing matrixW. For a finite set of values sampled from

Independent Component Analysis 95

a distribution with pdf pY , the entropy of Y can be estimated as

H(Y) = − 1

N

N∑
t=1

ln pY (Yt). (7.48)

Following the same line of reasoning as was applied for a single variable Y above, it can be
shown that the entropy H(Y) of a multivariate pdf pY (Y) is maximized if it is a uniform
joint pdf.

Given that Y = g(y), the joint pdf pY can be shown to be related to the joint pdf py of
the extracted signals by the multivariate form of equation (7.35)

PY (Y) = py(y)∣∣∣∂Y∂y
∣∣∣ , (7.49)

where ∂Y/∂y is a Jacobian matrix, and the vertical bars |.| denote absolute value of the
determinant of this matrix. This will not be proven here. Instead, a geometric account
follows, which is summarized in figure 7.7.

In general, the Jacobian J is a scalar value, and is the determinant of a Jacobian matrix
J, which is an M × M matrix of partial derivatives.7 If M = 2 then the Jacobian matrix is

J = ∂Y
∂y

=
(

∂Y1/∂ y1 ∂Y2/∂ y1
∂Y1/∂ y1 ∂Y2/∂ y2

)
. (7.50)

It will prove useful to note that equation (7.49) holds for any invertible function: given any
vector variable Z = (Z1, Z2, . . . , ZM) which is any invertible function g of the variable
z = (z1, z2, . . . , zM), such that Z = g(z), the pdfs of z and Z are related by

pZ (Z) = pz(z)∣∣∣∂Z∂z
∣∣∣ . (7.51)

In the univariate case, the Jacobian was shown to be the limit of the ratio of lengths asso-
ciated with corresponding values of zt and Zt . Here, the value zt defines a point in an M di-
mensional space and the Jacobian is the ratio of volumes (volume(pZ (Zt))/volume(pz(zt)))
in the limit as volume(pz(zt)) → 0 associated with the mapping from the point zt to the
point Zt = g(zt).

Following the line of reasoning given in the univariate case, we can write

|J| = |∂Y/∂y| = g′(y). (7.52)

7. See chapter 9 for a brief account of partial derivatives.

96 Chapter 7

We can define g′ to be the pdf assumed for the source signals g′ = ps . Substituting this
into equation (7.49) yields

PY (Y) = py(y)
ps(y)

. (7.53)

This can then be substituted into equation (7.48):

H(Y) = − 1

N

N∑
t=1

ln
py(yt)
ps(yt)

. (7.54)

Figure 7.7
Maximum entropy distribution obtained from a scatter plot of two (unmixed) speech signals. If the
matrixW used to extract two signals y = Wx from two mixtures x is optimal then y = s, where s
are the required speech signals. The resultant joint distribution of points from y appears as shown
in the lower right scatter plot. The cdf g of the extracted signals y = (y1, y2)

T is the same for
y1 and y2, and is depicted in the top right graph, and in the lower left graph (reflected through the
diagonal). If each extracted signal is transformed by the function g then the joint distribution the
signals Y = g(y) is uniform (i.e., has maximum entropy), as shown in the top left scatter plot. As an
example, the arrows show how a single data point yt = (yt1, y

t
2)
T is transformed to a corresponding

data point Yt = (g(yt1), g(y
t
2))

T = g(yt) of the maximum entropy joint distribution. Here, the cdf
g is the tanh function, which implies a super-gaussian pdf for the signals plotted in the lower right
graph.

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

-2

-1

0

1

2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Independent Component Analysis 97

If an optimal unmixing matrix W exists such that the extracted signals y = Wx have a
joint pdf

py(yt) = ps(yt) (7.55)

then the ratio defined in equation (7.53) is constant. This implies that the joint pdf PY (Y)

is uniform and that the entropy H(Y) defined in equation 7.54 is maximized by the optimal
matrixW. This, in turn, implies that the variables Y are independent, so that the extracted
signals y = g−1(Y) are also independent (see subsection 7.3.1).

As in the univariate case, if an unmixing matrixW exists that maximizes the entropy of
the signal Y = g(y) then the pdf py of each extracted signal in y =Wx will match the pdf
ps . Thus, the function ps acts as a model pdf for signals to be extracted from the mixtures
x. The function ps can therefore be used to specify the pdf of extracted signals because the
W that maximizes entropy is theW that extracts a set of signals y with pdf py = ps .

However, in order to evaluate equation (7.54) for a given set of extracted signals y, we
need an expression for py(y). Given the result expressed in equation 7.51, and the mapping
y =Wx we can deduce that

py(y) = px (x)∣∣∣∂y∂x
∣∣∣ . (7.56)

We state without proof that the Jacobian |∂y/∂x| evaluates to∣∣∣∣∂y∂x
∣∣∣∣ = |W|, (7.57)

where |W| is the absolute value of the determinant of the unmixing matrixW, so that

py(y) = px (x)
|W| . (7.58)

Note that the Jacobian |W| is a constant and, in contrast to the Jacobian |∂Y/∂y|, does not
depend on the value of y. This reflects the fact that y is a linear function of x.

We cannot evaluate the pdf px (x), but this does not matter for our purposes, as we will
see shortly. Substituting equation (7.58) into equation (7.54) yields

H(Y) = − 1

N

N∑
t=1

ln
px (xt)

|W|ps(yt) . (7.59)

This can be rearranged

H(Y) = 1

N

N∑
t=1

ln ps(yt) + ln |W| − 1

N

N∑
t=1

ln px (xt), (7.60)

98 Chapter 7

where, from the general definition in equation 7.47, we can deduce that the final term in
equation 7.60 is the entropy H(x) of the set of mixtures x

H(x) = − 1

N

N∑
t=1

ln px (xt). (7.61)

Substituting this into equation (7.60) yields

H(Y) = 1

N

N∑
t=1

ln ps(yt) + ln |W| + H(x). (7.62)

The unmixing matrixW that maximizes the entropy H(Y) does so irrespective of the
pdf px (x) because px (x) defines the entropy H(x) of the mixtures xwhich cannot therefore
be affected by W. We can therefore ignore H(x) when seeking a W that maximizes
equation (7.62), and can instead define a simpler function which does not include H(x)

h(Y) = 1

N

N∑
t=1

ln ps(yt) + ln |W|. (7.63)

Finally, if the M marginal pdfs of the model joint pdf ps are independent then we can
rewrite equation (7.63) as

h(Y) = 1

N

M∑
i=1

N∑
t=1

ln ps(y
t
i) + ln |W|. (7.64)

If we substitute a commonly used super-gaussian (high-kurtosis) model pdf for the source
signals ps = (1− tanh(s)2) then we have

h(Y) = 1

N

M∑
i

N∑
t

ln(1− tanh(wTi x
t)2) + ln |W|. (7.65)

In summary, given a set of observed mixtures x, and a corresponding set of extracted
signals y = Wx we can now evaluate the quality of any putative unmixing matrixW using
equation (7.64). If the specified pdf ps = g′ corresponds to a high-kurtosis signal then
equation (7.64) will be maximized by aW that extracts high-kurtosis signals from x. As
equations 7.64 and 7.62 differ by a constant (H(x)) the unmixing matrix that maximizes
the simpler equation (7.64) also maximizes the entropy of Y defined in equation (7.62).
Thus we can deduce that, for the optimal unmixing matrix, the signals Y = g(y) have
maximum entropy and are therefore independent. As our model joint cdf has independent
marginal cdfs, this implies that the extracted signals y = g−1(Y) are also independent.

Independent Component Analysis 99

7.3.5 Using Entropy to Extract Independent Signals

In order to make use of entropy to recover source signals it is clearly necessary to consider
more than one recovered signal at a time so that the joint entropy of the set of recovered
signals can be estimated.

Having obtained a formal definition of entropy in terms of the recovered signals and
the unmixing matrix W we need a method for finding that W which maximizes entropy
of Y, and which therefore maximizes the independence of y. Once again, the brute force
exhaustive search method will do for now. In the case of two signals, this involves trying all
possible orientations for the row vectors wT1 and w

T
2 inW = (w1,w2)T . In figure 7.8, w2

is kept constant at the optimal orientation (i.e., orthogonal to S′
1) for illustrative purposes,

and the value of h is plotted as w1 is rotated through 360 degrees. As w2 is constant, the
changing value of h reflects the changing entropy associated with the signal y1 extracted
by w1. As can be seen, entropy is maximal only when w1 is at the correct orientation (i.e.,
orthogonal to S′

2).
Finally, note that if the model pdf ps matches the pdf py of the extracted signals

then maximizing the joint entropy of Y also maximizes the amount of mutual information
between x and Y see (Bell & Sejnowski, 1995). For this reason, the above exposition of
ICA is known as infomax. Next, we consider a different interpretation, which also leads to
equation (7.64).

7.4 Maximum Likelihood ICA

One common interpretation of ICA is as a maximum likelihood (ML) method for estimat-
ing the optimal unmixing matrix. Maximum likelihood estimation (MLE) is a standard
statistical tool for finding parameter values (e.g., the unmixing matrixW) that provide the
best fit of some data (e.g., the extracted signals y) to a given a model (e.g., the assumed
joint pdf ps of source signals).

The ML “model” includes a specification of a pdf, which in this case is the pdf ps of
the unknown source signals s. Using ML ICA, the objective is to find an unmixing matrix
that yields extracted signals y = Wx with a joint pdf as similar as possible to the joint pdf
ps of the unknown source signals s. As noted before, just because we do not know the
source signals does not mean that we cannot know their pdfs.

Somewhat perversely, we can consider the probability of obtaining the observed data
x in the context of such a model. We can then pose the question: given that the source
signals have a pdf ps , which particular mixing matrix A is most likely to have generated
the observed signal mixtures x? In other words, if the probability of obtaining the observed
mixtures (from some unknown source signals with pdf ps) were to vary with A then which
particular A would maximize this probability?

100 Chapter 7

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

S
ig

na
l M

ix
tu

re
 2

 A
m

pl
itu

de

Signal Mixture 1 Amplitude

S1'

S2'

Figure 7.8
Graph showing how joint entropy varies with weight vector orientation for two speech signal mix-
tures. The plotted points represent signal mixture 1 (x1) versus signal mixture 2 (x2). For the
purposes of this demonstration we have cheated by fixing one weight vector w2 (not shown) in the
2×2 weight matrixW = (w1,w2)T to be optimal (i.e., orthogonal to S′

1). This allows us to examine
the effects of rotating the weight vector w1 on entropy as it is rotated around the origin.
For any given orientation of the weight vector w1 the extracted signal y1 is given by the inner prod-
uct of wT1 with the two signal mixtures x = (x1, x2), y1 = wT1 x. The joint entropy of the pdf of
the pair of signals Y = (g(y1), g(y2)) varies as w1 is rotated around the origin, where g = tanh
is the high-kurtosis model cdf assumed for source signals. At each orientation sampled by w1, the
associated entropy is plotted as a distance from the origin in the direction of w1, giving a continuous
curve. Critically, entropy is maximal when w1 is orthogonal to the transformed axis S′

2, at which
point w1 extracts exactly one source signal s1 = y1. Here entropy is defined as in equation (7.65).
The orientation of w1 corresponding to one maximum in entropy is plotted as a solid line. Note that
this line has the same orientation as the direction of w1. This line actually connects two identical
maxima in entropy, because the vectors w1 and −w1 both have the same orientation and both there-
fore extract the same signal with a simple sign reversal (e.g., w1 extracts y1 and −w1 extracts −y1).
Note that this line is orthogonal to the transformed axis S′

1.

Independent Component Analysis 101

Note that, as A andW are inverses of each other, it does not matter whether the model
parameters are expressed in terms of A orW.

MLE is thus based on the assumption that if the model pdf ps and the model parameters
A are correct then a high probability should be obtained for the data x that were actually
observed. Conversely, if A is far from the correct parameter values then a low probability
of the observed data would be expected.

Using MLE, we call the probability of the observed data for a given set of model
parameter values (e.g., a pdf ps and a matrix A) the likelihood of the model parameter
values given the observed data.

We will assume that all source signals have the same pdf ps , and that source signals
have high-kurtosis pdfs. This may not seem much to go on, but as we have seen before,
it turns out to be a perfectly adequate criterion for extracting source signals from signal
mixtures.

Consider a (mixture) vector variable x with joint pdf px , and a (source) vector variable
s with joint pdf ps , such that y is related to x by

x = As. (7.66)

In general the relation between the pdfs of x and s is

px (x) = ps(s)

∣∣∣∣ ∂s
∂x

∣∣∣∣ , (7.67)

where |∂s/∂x| is the Jacobian of s with respect to x. Given equation (7.66), it follows that

s = A−1x (7.68)

= W∗x, (7.69)

where the optimal unmixing matrixW∗ is the inverse of the mixing matrix A. As before,
the Jacobian is ∣∣∣∣ ∂s

∂x

∣∣∣∣ = |W∗|. (7.70)

Substituting equation (7.70) into equation (7.67)

px (x) = ps(s)
∣∣W∗∣∣ . (7.71)

This is the probability of the observed data given the optimal unmixing matrix and the
source signals s = W∗x. For any non-optimal unmixing matrix W the extracted signals
are y =Wx, and the signal mixtures x have probability

102 Chapter 7

px (x) = ps(y) |W| , (7.72)

= ps(Wx) |W| . (7.73)

We would naturally expect px (x) to be maximal ifW is the optimal unmixing matrix. Thus
equation (7.73) can be used to evaluate the quality of any putative unmixing matrixW in
order to find that particularW which maximizes px (x).

We let equation (7.73) define a likelihood function L(W) ofW:

L(W) = ps(Wx)|W|. (7.74)

Thus, if we wish to find aW that is most likely to have generated the observed mixtures
x from the unknown source signals s with pdf ps then we need only(!) find thatW which
maximizes the likelihood L(W). The unmixing matrix that maximizes equation 7.74 is
known as the MLE of the optimal unmixing matrix.

We can examine this in more detail if we assume that the source signals are indepen-
dent, which implies that the joint pdf ps is the product of its M marginal pdfs, each of
which is the pdf ps of one signal yi

L(W) = ps(y)|W| (7.75)

=
M∏
i=1

ps(yi)|W| (7.76)

=
M∏
i=1

ps(wTi x)|W|, (7.77)

where wTi is a single weight vector and is a row ofW. If we assume that all values of each
source signal are independent then we can write

L(W) =
M∏
i=1

N∏
t=1

ps(y
t
i)|W| (7.78)

=
∏
i

∏
t

ps(wTi x
t)|W|. (7.79)

Finally, it is common practice to use the log likelihood, because this is easier to evaluate.
As the logarithm is a monotonic function, theW that maximizes the function L(W) also
maximizes its logarithm ln L(W). This allows us to take the logarithm of equation (7.79),
which yields the log likelihood function

ln L(W) =
∑
i

∑
t

ln ps(wTi x
t) + N ln |W|. (7.80)

Independent Component Analysis 103

We can divide this by N without affecting the optimalW:

1

N
ln L(W) = 1

N

M∑
i=1

N∑
t=1

ln ps(y
t
i) + ln |W|. (7.81)

Note that this is the same as equation (7.64).
If we substitute a commonly used high-kurtosis model pdf for the source signals ps =

(1− tanh(s)2) then we have

ln L(W) = 1

N

M∑
i

N∑
t

ln(1− tanh(wTi x
t)2) + ln |W|. (7.82)

The matrix W that maximizes this function is the maximum likelihood estimate of the
optimal unmixing matrixW∗.

7.5 Maximum Likelihood and Infomax Equivalence

It is noteworthy that both the infomax and ML approaches to ICA lead to exactly the same
equation. The infomax approach yields equation (7.64) and theMLE approach yields equa-
tion (7.81), a convergence which has been noted by many authors, e.g., (Cardoso, 1997).

Both methods depend on the frankly unrealistic assumption that the model pdf is an
exact match for the pdf of the required source signals. However, the pdf of the source
signals is not known in general. Despite this, ICA works because if the model pdf is an
approximation to the source signal pdf then the extracted signals are the source signals
(Cardoso, 2000, Amari, 1998).

7.6 Extracting Source Signals Using Gradient Ascent

Given a set of signal mixtures x, we seek an unmixing matrix W which maximizes the
entropy H(Y) of the signals Y = g(Wx), or equivalently, an unmixing matrix which
maximizes the likelihood L(W).

We can find an estimateW of the optimal matrixW∗ using the gradient ascent method
described in chapter 9 to iteratively adjust W in order to maximize the entropy of Y. In
order to perform gradient ascent efficiently, we require an expression for the gradient of
entropy with respect to the matrixW. This expression is derived in appendix D.

7.7 Temporal and Spatial ICA

In “standard” ICA, each of M temporal signal mixtures is measured over N time steps,
and M temporal source signals are recovered as y = Wx, where each source signal is
independent over time of every other source signal. However, when considering temporal

104 Chapter 7

sequences of images each image consists of a set of pixels, and each row of the data array
x is the temporal sequence of one pixel over time. Thus each column of x is an image
recorded at one point in time. So far, we have been treating the rows of x as mixtures, and
using ICA to find a set of independent temporal signals. If we treat the columns of x as
mixtures then the set of signals found by ICA are spatially independent images. ICA can
therefore be used to maximize independence over time or to maximize independence over
space (see figures 7.9 and 7.10).

Thus, ICA can be used in one of two complementary ways to extract either temporal
source signals from the rows of x using temporal ICA (tICA), or spatial source signals from
the rows of xT using spatial ICA (sICA). Extracting speech source signals from speech
mixtures is an example of tICA. In contrast, extracting features from sets of functional
magnetic resonance (fMRI) images or from a spatial array of electroencephalographic
(EEG) electrodes are examples of sICA.

Time

X

X

Figure 7.9
The general mixing process assumed for ICA for an observed temporal sequence of images (right).
Here, each of two images (left) is multiplied by a different time-varying signal (shown in two vertical
panels) to yield a temporal sequence of images, such that each image in the sequence is a different
mixture of the two images on the left.
Spatial ICA: For sICA, it is assumed that each observed image (right) is a mixture of independent
source images (left), where the contribution of each source image to the observed image sequence
varies over time, as determined by a temporal signal (drawn in vertical panels).
Temporal ICA: For tICA, it is assumed that the observed temporal sequence of gray-levels of each
pixel is a mixture of independent temporal source signals (drawn in vertical panels), where the
contribution of each source signal to an observed temporal sequence varies over (image) space.
Note that ICA usually requires that there are as many source signals as mixtures, and this constraint
not reflected in the figure.

Independent Component Analysis 105

In essence, both sICA and tICA produce a set of images and a corresponding set of
temporal sequences. However, tICA produces a set of mutually independent temporal
sequences and a corresponding dual set of unconstrained images, whereas sICA produces
mutually independent images and a corresponding dual set of unconstrained temporal
sequences.

The problems solved by tICA and sICA are essentially the same, and the algorithm
used is the same for both tICA and sICA. The difference depends on whether the data

Figure 7.10
Vector-matrix representation of mixing process for tICA and sICA. Given a temporal sequence of
images, ICA can be used to decompose signal mixtures into temporally independent signals or spa-
tially independent images. Note that each image is represented as an image vector by concatenating
its rows, so that an M × M image yields a single image vector with M × M elements.
tICA: Each row of the array x is a temporal mixture of the different independent temporal source
signals in the rows of s. Using tICA, the set of observed signal mixtures x is decomposed into a set of
independent temporal source signals and a corresponding set of unconstrained image vectors. Each
independent temporal source signal determines how the contribution of one image vector (column of
A) to the observed image sequence varies over time.
sICA: Each row of the array xT is an image mixture of the different independent spatial source sig-
nals (images) in the rows of s. Using sICA, the set of observed image mixtures xT is decomposed into
a set of independent source images and a corresponding set of unconstrained temporal signals. Each
independent source image vector determines how the contribution of one temporal signal (column
of A) to the observed temporal sequence varies over space. An alternative perspective is that each
temporal sequence determines how one independent source image vector contributes to the observed
image sequence over time.

106 Chapter 7

are assumed to be independent over time (as in speech), or independent over space (as in
fMRI). In order to examine this difference in more detail we will consider a data set which
can be analysed using either tICA or sICA.

sICA and fMRI Consider the temporal series of two-dimensional (2D) images of a brain
collected under fMRI during the course of an experiment. A simple experiment might
consist of flashing a black and white grating on and off in order to induce activation in
visual areas of the brain, such as the primary visual cortex. Even though the entire brain is
imaged as a set of 2D images about every 2 seconds, we will consider only one horizontal
slice that passes through the visual cortex. This results in a temporal sequence of 150 2D
images of the visual cortex during the course of a typical five minute scanning session.
For convenience we will assume that the temporal image sequence actually consists of 144
images.

The 144-element time course of each pixel’s gray level is assumed to consist of a
mixture of underlying temporal source signals, and is analagous to the amplitude of a
microphone output. Specifically, it is assumed that each pixel’s temporal sequence is a
mixture of the same set of underlying temporal source signals. For brevity, we refer to the
time course of each pixel’s gray level as a pixel temporal mixture. As an image is typically
256 × 256 pixels, this implies that there are effectively 65,536 temporal mixtures, which
tICA would decompose into 65,536 temporal source signals. This unwieldy number of
temporal source signals is physically implausible, so we will assume for now that each
image is 12×12 pixels so that there are only 144 pixels in each image. This short “movie”
of the activation of primary visual cortex can now be analysed using tICA or sICA. In
practice, the number of pixels in each image can be reduced using principal components
analysis (PCA) (see appendix F).

sICA and Microphone Arrays Alternatively, this could be considered in terms of an
ordered spatial array of 144 microphones arranged in a 12× 12 grid. If these microphones
are on the ceiling of a room containing 144 members of a choir then the recorded data can
be considered as a temporal sequence of images, in which each image consists of 12× 12
‘pixels’ (microphones).

7.7.1 Temporal ICA

If the rows of the image acquired at time t are concatenated then the result is a 144-element
(column) image vector xt = (xt1, x

t
2, . . . , x

t
144)

T , where xti is the gray-level of the i th pixel.
The temporal sequence of image vectors defines a vector-valued variable

x = (x1, x2, . . . , x144)T . (7.83)

Independent Component Analysis 107

Note that x is a 144× 144 array of pixel values, in which each column is an image vector,
and each row is the gray-level of one pixel over the 144 temporal sequence of image
vectors. For example, x2 is a column vector which is the image vector of the second
image in the temporal sequence of images x.

The method we have labeled as tICA would find a 144× 144 unmixing matrixWt IC A

such that the extracted temporal signals yT are mutually independent (where the subscript
T denotes temporal independence)

yT =Wt IC Ax, (7.84)

where the rows of yT are mutually independent temporal sequences

yT = (y1, y2, . . . , y144)
T . (7.85)

If yi is the i th temporal sequence, we might reasonably ask, precisely what is it that varies
over time in accordance with this sequence?

The short answer is that each temporal sequence yi defines how a specific image
contributes to the temporal sequence of image mixtures x over time. This can be seen
if we assume for the present that matrices are subject to the laws of algebra which govern
scalars. We could then multiply both sides of equation 7.84 by the inverseW−1

t IC A of the
unmixing matrixWt IC A

x = W−1
t IC AyT . (7.86)

In fact, finding the inverse of a matrix is usually a nontrivial business, but we need to know
only that it can be obtained for our purposes.

If we assume that the method has worked perfectly so that the extracted signals yT
are identical to the temporal source signals sT then the similarity of equation (7.86) to the
mixing process

x = AsT (7.87)

= AyT (7.88)

implies that
A = W−1

t IC A. (7.89)

More importantly, it implies that each column of A is an image vector, which contributes
to every column (image mixture) in x. The relative contribution of the t th image vector in
A to every column in x is specified by the i th temporal sequence (row) of yT , as shown
in figure 7.10. Thus, whereas each row yi of yT specifies a signal that is independent of
all rows in y, each column of A consists of an image that varies independently over time
according to the amplitude of yi . Note that, in general, the rows of y are constrained to

108 Chapter 7

be mutually independent, whereas the relationship between the columns (images) of A is
completely unconstrained.

7.7.2 Spatial ICA

One way to interpret sICA is to consider an image as a mixture of underlying source
images, and an image vector as a “spatial sequence” measured at a single point in time.
This contrasts nicely with tICA in which a pixel’s gray-level is considered as a temporal
mixture of underlying temporal source signals, and each temporal mixture is measured at
a single point in space (i.e., at one pixel’s location in a temporal sequence of images).

Basically, ICA finds a set of independent source signals irrespective of whether these
signals represent temporal or spatial (i.e., image vector) signals. Thus, in the case of
tICA, each row of x contains a mixture of temporal source signals and ICA finds a set
of independent temporal source signals. Similarly, if each row contained a mixture of
spatial source signals (i.e., a mixture of images) then ICA finds a set of independent spatial
source signals (i.e., source images).

Recall that x was defined in the previous section such that each column is an image
vector formed from the concatenation of consecutive rows in an image. But, for sICA, we
require that one image vector is in each row. This can be achieved as the transpose xT of x
(formed simply by rotating x through 90 degrees as indicated in figure 7.10).

The concatenation of rows might seem an odd thing to do to an image, but recall that
ICA maximizes the independence between images (defined in terms of the pdf of images)
which is the same irrespective of the spatial layout of pixel values in any single image. So
it does not matter if ICA is presented with an image in the form of an image vector because
ICA is concerned only with the set of pixel gray-levels, and not with their ordering. This
argument also applies projection pursuit because kurtosis is also unaffected by the spatial
layout of pixels. In other words, scrambling every image in the temporal sequence would
have no effect on the results of ICA (provided the scrambling process was identical for all
images in a given sequence, so that individual pixels remained aligned across a sequence
of images).8

The method we have labeled as sICA would find an unmixing matrix Ws IC A such
that the extracted spatial signals (image vectors) yS are mutually independent (where the
subscript S denotes temporal independence)

yS = Ws IC AxT , (7.90)

8. Note that we could equally well have concatenated the columns of each image instead of the rows, and it is
only necessary to keep track of whether rows or columns were concatenated when it is required to reconstitute an
image from an image vector.

Independent Component Analysis 109

where each row of yS is an image vector

yi = wTi x
T , (7.91)

where wTi is the i th row ofWs IC A.
In summary, tICA is based on the assumption that the temporal sequence of the gray-

levels of a pixel at every point in space is independent over time of temporal sequences
of all other points in space. In contrast, sICA is based on the assumption that the spatial
pattern (“spatial sequence”) of gray-levels of all pixels at every point in time is independent
over space of spatial patterns of all other points in time.

Clearly, if it reasonable to assume temporal independence for source signals underlying
a particular data set then tICA should be applied. Conversely, if it reasonable to assume
spatial independence for source signals underlying a particular data set then sICA should
be applied.

7.7.3 Spatiotemporal ICA

If both spatial and temporal independence can be assumed then spatiotemporal ICA (stICA)
can be applied. Whereas tICA assumes independence over time but not space, and sICA
assumes independence over space but not time, stICA assumes independence over time
and space (Stone et al., 2002).

7.7.4 The Size of the Unmixing Matrix

In the above examples, we have cheated a little by assuming that there are as many images
in a temporal sequence as there are pixels in each image. This yields a nice square
(144× 144) array for the entire sequence of images, and permits easy comparison of sICA
and tICA. In general this assumption is invalid, but this does not affect the descriptions of
sICA and tICA.

In the case of sICA, we treat the rows of the transposed matrix xT as mixtures. The
data array xT has N rows and M columns, where each row contains one image vector. The
unmixing matrix is then given by an N × N matrixWs IC A, such that

yS = Ws IC AxT , (7.92)

whereWs IC A is often small enough to be estimated using ICA.
However, in the case of tICA, we treat the rows of x as mixtures, where each mixture

is a temporal sequence. The number M of temporal sequences (pixels) can be much larger
than the number N of images in a sequence (M >> N , as with EEG data). This yields a
data array xwith M rows and N columns, where each row contains one temporal sequence.

110 Chapter 7

The unmixing matrix is then given by an M × M matrixWt IC A, such that

yT =Wt IC Ax. (7.93)

The M × M matrixWt IC A can be very large, because M is equal to the number of pixels
in a single image.

If the square M × M unmixing matrix is too large then it is possible to reduce it to a
smaller square K×K unmixing matrix using PCA (see appendix F). However, preprocess-
ing with PCA depends on the assumption that signals of interest are distributed amongst
the “largest” principal components (i.e., those associated with the largest eigenvalues), an
assumption which is not necessarily valid (Green et al., 2002). Alternatively, it is possi-
ble to specify the exact number K (where K is no larger than the number M of signal
mixtures) of signals to be extracted by ICA from the original data set using a non-square
K × M unmixing matrix (Porrill & Stone, 1997, Amari, 1999, Penny et al., 2001).

ICA Ignores Signal Structure It is worth noting that ICA disregards any spatial or
temporal structure in signals for the same types of reasons that projection pursuit does
(see chapters 5 and 6).

7.8 Summary

Following an introduction to independence and entropy in terms of joint pdfs, the infomax
account of ICA was described. Infomax ICA seeks that unmixing matrix which maximizes
the entropy of extracted signals after they have been transformed by a specific model joint
cdf. A key assumption is that the marginal cdfs of this joint cdf are independent (i.e., their
product yields the joint cdf), which ensures that the extracted signals are also independent.
It was noted that ICA is an essentially “cdf-matching” method which extracts signals with
a joint cdf (or equivalently a joint pdf) that match that model cdf.

Maximum likelihood ICA was introduced for finding an estimate of the optimal un-
mixing matrix. It was shown that ML ICA and infomax ICA are actually equivalent.

In practice, ICA can be applied in either the spatial or in the temporal domain. The
relation between temporal and spatial ICA was described.

MatLab Code Simple demonstration code is provided in appendix D, and code for spatial,
temporal and spatiotemporal ICA of image sequences can be downloaded from
http://www.shef.ac.uk/̃ pc1jvs.

Entia non sunt multiplicanda praeter necessitatem.
(Entities are not to be multiplied beyond necessity.)
—William of Ockham (ca. 1285–1349)

Make everything as simple as possible, but not simpler.
—Albert Einstein

8.1 Introduction

Almost every signal measured within a physical system is actually a mixture of statistically
independent source signals. However, because source signals are usually generated by
the motion of mass (e.g., a membrane), the form of physically possible source signals
is underwritten by the laws that govern how masses can move over time. This suggests
that the most parsimonious explanation for the complexity of an observed signal is that it
consists of a mixture of simpler source signals, each of which is from a different physical
source. This observation can be used as a basis for extracting source signals from mixtures
of those signals.

Given a set of source signals, a mixture of those signals is usually more complex
than the simplest (i.e., least complex) of its constituent source signals (see chapter 2).
For example, mixing two source signals yields a signal mixture which is more complex
than the simplest (i.e., least complex) of the two source signals (see figure 2.4). This
complexity conjecture1 provides the basis of a method for separating signal mixtures into
their underlying source signals, by seeking the least complex signal that can be obtained
from a set of signal mixtures. In this respect, complexity pursuit implements a form of
Ockham’s razor in deciding which signals to extract from a set of signal mixtures. This
strategy can also be used to model learning in the visual system (see section 11.7).

Complexity has received much less attention as a principle for blind source separation
(BSS) than either normality or independence.2 This may be due to the relative ease with
which formal measures of normality and independence can be formulated, and to the
difficulty in formalising the notion of complexity.

8 Complexity Pursuit

1. This conjecture is different from that expressed in (Stone, 2001) in a subtle but important manner. In (Stone,
2001), it was conjectured that each signal mixture is more complex than each of its constituent source signals, a
conjecture which is refuted in (Xie et al., [in press]), where it is proved that any mixture has a complexity that
lies between that of its least and most complex constituent source signals. The subtle difference between these
conjectures has no implications for the algorithm described here, which is the same as in (Stone, 2001), and which
is based on the simple assumption the least complex signal that can be extracted from a set of signal mixtures is
a source signal.

2. However, several authors have augmented methods based on independence with constraints derived from
complexity (e.g., Pearlmutter & Parra, 1996, Stone & Porrill, 1999, Penny et al., 2001).

112 Chapter 8

The term complexity pursuit is used here to refer to a class of methods which seek
minimally complex source signals, but the name is borrowed from a specific method
described in (Hyvärinen, 2001). The name complexity pursuit derives from the fact that
such methods seek a weight vector which provides an orthogonal projection of a set of
signal mixtures such that each extracted signal is minimally complex.

While complexity pursuit methods can be derived directly from information-theoretic
measures of complexity, such methods tend to be more general and more complicated
than is required for many BSS problems. In contrast, the particular method described
below (Stone, 2001) minimizes a very simple measure of Kolmogorov complexity (Cover
& Thomas, 1991). The measure used here and in (Stone, 2001) is similar to measures of
complexity defined in (Hyvärinen, 2001), where the connection to Kolmogorov complexity
is made explicit.

Complexity Pursuit: A Physical Analogy Although the analogy is not exact, one useful
way to gain an intuitive understanding of complexity pursuit is as follows. Consider a
length of wire which has been bent into a complex three-dimensional (3D) shape. The
shadow of this wire object is more or less complex depending on the direction of the light
source and the orientation of the wire object. If the object is slowly rotated through all
possible orientations then the projection of its 3D structure forms a shadow with varying
degrees of complexity. Clearly, there exists one orientation for the object with a projection
(shadow) that is less complex than at any other orientation. This would be the orientation
found by complexity pursuit.

As you may have guessed, each point on the wire represents the amplitudes of three
signal mixtures at one time, with contiguous points representing consecutive times. The
light source represents the weight vector which extracts a single signal, and the shadow
represents the signal extracted from the signal mixtures. However, instead of rotating the
object, we should (equivalently) rotate the direction of the light source, and ensure that a
planar surface is always opposite the light source in order to be able to observe the object’s
shadow. Here the analogy is inexact, because the shadow is two-dimensional, whereas
complexity pursuit extracts a one-dimensional signal. Despite this, the analogy provides a
rough idea of the strategy that underpins complexity pursuit.

8.2 Predictability and Complexity

One simple measure of complexity can be formulated in terms of predictability. Specif-
ically, if each value of a signal is easy to predict on the basis of previous signal values
then that signal has low complexity. Conversely, if successive values of a signal are ran-
dom (i.e., independent of each other) then prediction is in principle impossible, and such a
signal has high complexity.

Complexity Pursuit 113

As mentioned above, Kolmogorov complexity (Cover & Thomas, 1991) (which is re-
lated to entropy) provides a very robust measure of complexity. However, whereas tem-
poral predictability is intuitive and relatively easy to measure, Kolmogorov complexity is
less intuitive and is impractical to measure exactly.

We define a measure F(wi , x) of temporal predictability, which is then used to estimate
the complexity of a signal yi extracted by a given weight vector wi , where yi = wTi x.
Given a set of source signals, if one source signal si is more predictable than any of the
signal mixtures then the value of wi which maximizes the predictability of the extracted
signal yi should yield a source signal (i.e., yi = si). Note that maximal predictability
corresponds to minimal complexity, and vice versa.

8.3 Measuring Complexity Using Signal Predictability

We proceed by first defining a measure F of predictability in terms of an extracted signal
yi = wTi x. In order to extract a source signal yi = si from a set of M signal mixtures
x = (x1, x2, . . . , xM)T , we need to find that weight vector wi which maximizes the
predictability F of yi , and which therefore minimizes its complexity.

Given a weight vector wi which extracts a signal yi = (y1i , y
2
i , . . . , y

N
i) from a set

of M signal mixtures x = (x1, x2, . . . , xN) observed over N time steps, the definition of
predictability F used here is

F(wi , x) = ln

∑N
t=1(yi − yti)

2∑N
t=1(ỹ

t
i − yti)

2
(8.1)

= ln
Vi
Ui

, (8.2)

where yti = wTi x
t is the value of the extracted signal yi at time t , and xt = (xt1, x

t
2, . . . , x

t
M)T

is a vector variable of M signal mixture values at time t .
The numerator Vi is the overall variance of the extracted signal, and ensures that the

signal is not so predictable that it is constant.
The denominator Ui is a measure of the temporal “roughness” of the extracted signal

yi , such thatUi is large for “rough” signals and small for “smooth” signals. Specifically,Ui
reflects the extent to which yti is predicted by a short-term ‘moving average’ ỹ

t
i of previous

values in yi . The predicted value ỹti of y
t
i is an exponentially weighted sum of signal values

measured up to time (t − 1), such that recent values have a larger weighting than those in
the distant past:

ỹt = λ ỹ(t−1) + (1− λ) y(t−1) : 0 ≤ λ ≤ 1. (8.3)

114 Chapter 8

A typical value for λ is 0.9. Such a value implies that the predicted value for yt is given
by

ỹt = 0.9yt−1 + 0.92yt−2 + 0.93yt−3 . . . (8.4)

= 0.9yt−1 + 0.81yt−2 + 0.729yt−3 . . . (8.5)

Notice that, if λ = 0 then ỹti = yt−1i so that the predicted value of yti is simply y
t−1
i .

ỹt = 0 ỹ(t−1) + (1− 0) y(t−1) (8.6)

= y(t−1). (8.7)

This represents the simplest model of prediction because it is based on the assumption that
yi is constant (i.e., that yti = yt−1i). The fact that this assumption is violated for most
signals does not prevent the method from working because it attempts to extract signals
that have high overall variance while varying smoothly over time (i.e., signals that are
maximally consistent with the model implicit in F).

Note that maximizing F while holding Ui constant would result in a high variance
signal with no constraints on its temporal structure. Conversely, maximizing F while
holding Vi constant would result in a highly predictable and entirely useless (i.e., constant)
signal. In both cases, trivial solutions would be obtained. In contrast, the ratio F can
be maximized only if two constraints are satisfied: (1) y has a non-zero range (i.e., high
variance), and (2) the values in y change ‘slowly’ over time (i.e., they can be predicted
from previous values). Note also that the value of F is independent of the length |wi | of
wi , so that only changes in the orientation of wi affect the value of F (see chapter 4).

Reinterpreting F in Terms of Complexity For a slightly different perspective on pre-
dictability it can be shown that the wi which maximizes the predictability F of y = wT x
also minimizes a simple measure of complexity

ln
N∑
t=1

(ỹti − yti)
2, (8.8)

subject to the constraint that |wi | = 1. As the logarithmic function is monotonic, it follows
that any wi which minimizes equation (8.8) also minimizes

Ui =
N∑
t=1

(ỹti − yti)
2. (8.9)

Complexity Pursuit 115

In other words, the weight vector which extracts the most predictable signal from the set
of mixtures can also be found by minimizing Ui , if the length of wi is set to unity.

The condition that |wi | = 1 should be unsurprising given that we know (from section
4.2.1) that the length of the vector wi does not affect the form of the extracted signal, and
setting |wi | to some non-zero constant simply ensures that it cannot shrink to zero.

If we set λ = 0 then Ui is just a measure of the differences between successive values
in the extracted signal yi = wTi x. (More generally, for λ > 0 Ui is a measure of the
difference between a yti and a weighted mean of values prior to time t .)

It follows that minimizing a measure of the complexity of an extracted signal yields a
signal in which successive signal values are as similar as possible, without being the same.
Note that the difference between successive signal values could be exactly equal to zero if
|wi | = 0, but we have already specified the constraint that |wi | = 1.

8.4 Extracting Signals by Maximizing Predictability

The method can be demonstrated graphically for two source signals and two mixtures (x1
and x2) of these source signals by plotting x1 against x2 and then rotating a weight vector
wi around the origin until the value of F is maximal. The signal yi = wTi x extracted
by the weight vector at the orientation that maximizes F has maximum predictability and
therefore has minimal complexity (see figure 8.1).

Multiple signals can be extracted using two methods. First, signals can be extracted
simultaneously using the fast eigenvalue method described in appendix E. Second, signals
can be extracted sequentially, as in the case of projection pursuit. That is, each signal can
be extracted using the general gradient based method described in chapter 9, followed by
removal of that signal from the set of mixtures. After removing the first such signal, the
conjecture given on the first page of this chapter should now hold true of the remaining set
of signal mixtures. This implies that the next source signal can be obtained by seeking the
least complex signal that can be obtained from the remaining set of signal mixtures. This
process can then be repeated until all source signals have been extracted.

SeparatingMixtures of Signals with Different Pdfs Unlike ICA which includes a model
of the pdfs of extracted signals, complexity pursuit depends only on the complexity of
signals. Therefore, complexity pursuit (in common with some forms of projection pursuit)
can be used to extract signals with different pdfs (e.g., super-gaussian, sub-gaussian or
gaussian).

Three source signals s = (s1, s2, s3) are displayed in figure 8.2:

116 Chapter 8

1. a super-gaussian signal (the sound of a train whistle)

2. a sub-gaussian signal (a sine wave)

3. a gaussian signal3

5

4

3

2

1

0

-1

-2

-3

-4

-5
-5 -4 -3 -2 -1 0 1 2 3 4 5

Signal Mixture 1 Amplitude

S
ig

na
l M

ix
tu

re
 2

 A
m

pl
itu

de

Figure 8.1
Plot of how complexity varies with weight vector orientation for two speech signal mixtures. The
plotted points represent signal mixture 1 (x1) versus signal mixture 2 (x2). For any given orientation
of a weight vector w the extracted signal y is given by the inner product of wT with the two signal
mixtures x = (x1, x2)

T , y = wT x. The complexity of y varies as w is rotated around the origin.
For each orientation of w the associated complexity is plotted as a distance from the origin in the
direction of w, giving a continuous curve. Critically, complexity is minimal when w is orthogonal
to a transformed axis S′

1 or S
′
2 (plotted as dashed lines), and w extracts exactly one source signal at

each of these orientations. Here complexity is defined as 1/F , where F is the temporal predictability
of the extracted signal (see text).
The orientation ofw corresponding to one minimum in complexity is plotted as a solid line. Note that
this line has the same orientation as the direction of w2. This line actually connects two identical
minima in complexity, because the vectors w2 and −w2 both have the same orientation and both
therefore extract the same signal with a simple sign reversal (i.e., w2 extracts y2 and −w2 extracts
−y2). Note that w2 is orthogonal to the transformed axis S′

1

3. Signal 3 was generated using the randn procedure in MatLab, and temporal structure was imposed on the
signal by sorting its values in ascending order.

Complexity Pursuit 117

These three signals were mixed using a random 3 × 3 matrix A to yield a set of three
signal mixtures x = As. Each signal consisted of 3000 samples; the first 1000 samples of
each mixture are shown in figure 8.3. The three recovered signals each had a correlation
of r > 0.99 with only one of the source signals, and other correlations were close to zero.
This method has also been demonstrated to work with speech signals (Stone, 2001), and
for learning stereo disparity (see section 11.7).

Complexity Pursuit Does Not Ignore Signal Structure This class of methods includes
all methods which depend on the assumption that source signals have informative temporal
or spatial structure, e.g., (Stone, 2001, Hyvärinen, 2001) and (Molgedey & Schuster, 1994,
Attias, 2000). As has already been discussed, this contrasts with ICA and projection pursuit
which ignore all spatial and temporal structure.

Figure 8.2
Three signals with different probability density functions. A super-gaussian train whistle sound,
a sub-gaussian sine wave, and sorted gaussian noise are displayed from top to bottom. In each
graph, the source signals used to synthesize the mixtures displayed in figure 8.3 are shown in bold,
and corresponding signals recovered from those mixtures are shown as dashed lines. Each source
signal and its corresponding recovered signal have been shifted vertically for display purposes. The
correlations between source and recovered signals are greater than r=0.999. Only the first 1000 of
the 9000 samples used are shown here. The ordinal axis displays signal amplitude.

118 Chapter 8

8.5 Summary

Source signals are usually generated by the motion of mass, so that the form of physically
possible source signals is underwritten by the laws that govern how masses can move
over time. This suggests that the most parsimonious explanation for the complexity of an
observed signal is that it consists of a mixture of simpler source signals.

This simple observation was used as the basis of a method for separating signal mix-
tures into their underlying source signals, by seeking the least complex signals that can be
obtained from a set of signal mixtures.

Complexity was discussed in terms of Kolmogorov complexity. A simple measure of
complexity was defined, and the signal with the lowest complexity extracted by a weight
vector was assumed to be a source signal. The method was demonstrated on mixtures of
super-gaussian, sub-gaussian and gaussian signals.

MatLab Code Simple demonstration code is provided in appendix E, and code for ex-
traction of sound signals can be downloaded from
http://www.shef.ac.uk/̃ pc1jvs.

Figure 8.3
Three signal mixtures used as input to the method. See figure 8.2 for a description of the three
source signals used to synthesize these mixtures. Only the first 1000 of the 9000 samples used in
experiments are shown here. The vertical axis displays signal amplitude.

9.1 Introduction

Thus far, we have considered different measures (e.g., independence) that can be used to
ascertain when source signals have been recovered from signal mixtures. For example,
the more independent the extracted signals are, the more likely they are to be the required
source signals. However we have not considered how to set about maximizing such mea-
sures, other than by exhaustive search, which is a method that becomes increasingly ex-
hausting as the number of source signals increases beyond two. Moreover, the time taken to
perform the exhaustive search can grow rapidly to end-of-universe times for certain classes
of computational problems.

For these reasons, a different search strategy is required. Gradient ascent is based on
the observation that if it is desired to get to the top of a hill then one simple strategy is
to keep moving uphill until there is no more uphill left, at which time the top of the hill
should have been reached. There are several drawbacks to this strategy, but these can wait
for later discussion.

For simplicity, we will examine this strategy using kurtosis. For our purposes the height
on the “hill” corresponds to the amount of kurtosis, and the distance measured along a
horizontal ground plane corresponds to different values of the two unmixing coefficients.
Thus by incrementally changing the values of the unmixing coefficients so as to increase
the kurtosis of an extracted signal a set of optimal unmixing coefficients are obtained that
extract a maximally kurtotic signal, which we assume to be a source signal.

If you were standing on this hill of kurtosis, how would you know in which direction
to move next? In other words, how would you know how much to change each unmixing
coefficient in order to move in a direction which maximizes kurtosis? A natural and reason-
ably sensible tactic would be to choose that direction with the steepest uphill slope; that is,
the direction with the steepest gradient. A small step uphill along the direction of steepest
gradient is guaranteed to increase your height, which corresponds to increasing the kurtosis
of extracted signals. This is why the method is called gradient ascent.

This is fine for people on hills because they can see which direction has the steepest
slope. In contrast, any gradient ascent method must find an estimate of the direction of
steepest ascent by other means.

The most efficient method for finding the direction of steepest ascent at a given point
is to calculate the rate of change or derivative of the local kurtosis with respect to each
unmixing coefficient. Specifically, we can obtain the direction of steepest ascent by cal-
culating the derivative of kurtosis along the horizontal direction associated with each of
the unmixing coefficients. At a given point, the gradient of kurtosis is different for each
unmixing coefficient, so that, together, their combined gradients define a direction on the

9 Gradient Ascent

120 Chapter 9

g g g
ground plane. This direction along the ground plane corresponds to the direction of steep-
est ascent on the hill of kurtosis. Accordingly, a small move in this direction on the ground
plane is guaranteed to increase kurtosis more than any other direction. Specifically, moving
in this direction defines new values for the coefficients (corresponding to the new position
as measured on the ground plane), and these coefficients are guaranteed to extract a signal
with increased kurtosis.

In order to examine how this translates to a mathematical method, we will begin with
a simple gradient ascent problem.

9.2 Gradient Ascent on a Line

Suppose that the amount of kurtosis K of a signal extracted from a set of two signal mix-
tures depended on only one parameter, which we will call ψ . In order to maximize K we
should move up the gradient of K .

In mathematical terms, the gradient of K can be obtained by taking the derivative of K
with respect to ψ , where this derivative is denoted dK/dψ . Note that we have not actually
done anything yet, aside from defining some notation. For the present, it is sufficient to
know that if K depends on only one parameter then the derivative dK/dψ is a single,
signed number. The sign specifies which direction is up, and the magnitude of the number
specifies the steepness of the gradient.

In order to examine how this works for a simple example, let us suppose that K is
related to the square of ψ , as follows:

K = −(ψ + 1)2 + 25. (9.1)

The relationship between K and ψ is shown in figure 9.1. The value of the gradient is
indicated by an arrow for different values of ψ . The length of each arrow specifies the
magnitude of the gradient at the root of the arrow, and the direction (i.e., sign) of the
gradient (i.e., left (-) or right (+)) is implicit in the direction of each arrow. Note that, in
general, the value of the gradient at the maximum (or minimum) value of a function is
zero.

It is easy to see from figure 9.1 that the magnitude of the gradient decreases and then
increases as ψ increases from −4 to 4, and has a value of zero at ψ = −1, which
corresponds to a maximum in K . This is consistent with the gradient obtained from
differential calculus,

dK

dψ
= −2(ψ + 1), (9.2)

because
−2(ψ + 1) = 0. (9.3)

Gradient Ascent 121

We can now use this gradient to follow the gradient ascent strategy outlined above. Suppose
we begin with a value of ψ = −3, where (from equation 9.2) the gradient is

dK

dψ
= −2(ψ + 1) (9.4)

= −2(−3+ 1) (9.5)

= +4. (9.6)

The gradient ascent strategy suggests that ψ should be incremented in proportion to the
gradient.

ψnew = ψold + η
dK

dψ
, (9.7)

where η1 is a small constant, typically η = 1/1000. In this case we have

ψnew = ψold + η(+4). (9.8)

-4 -3 -2 -1 0 1 2 3 4
0

5

10

15

20

25

30

Value of parameter ψ

K
ur

to
si

s
(K

)

Figure 9.1
Graph showing how kurtosis Kwould vary in relation to a single unmixing coefficient ψ , if kurtosis
were defined by equation (9.1) (which it isn’t). The value of the gradient is indicated by an arrow at
a number of points. The length of each arrow specifies the magnitude of the gradient at the root of
the arrow, and the direction of the gradient (i.e., left or right) is given by the direction of each arrow.

1. The Greek letter eta.

122 Chapter 9

This update rule increasesψ by a small amount, which results in an increase in K . This can
be seen from figure 9.1, where a small move to the right from ψ = −3 (which increases
ψ) can be seen to increase K .

Similarly, if we begin at ψ = +3, where the gradient is dK/dψ = −8 then, using the
same gradient ascent strategy as above, we have

ψnew = ψold + η(−8). (9.9)

In this case, the gradient ascent update rule decreases ψ by a small amount, which, as
above, results in an increase in K . This can be seen from figure 9.1, where a small move
to the left from ψ = +3 (which decreases ψ) can be seen to increase K .

Note that, as the value ψ = −1 is approached the magnitude of the gradient decreases,
and at ψ = −1 the gradient is zero. This correctly implies that the change in ψ should be
zero if ψ = −1,

ψnew = ψold + η(0), (9.10)

so that at ψ = −1 no more changes are made. At this point the method of gradient ascent
is said to have converged to the solution ψ = −1. Most importantly, this is the value of
the unmixing parameter ψ which maximizes the kurtosis K of extracted signals.

9.3 Gradient Ascent on a Hill

The method described above for finding the maximum point along a single curve can be
generalised to finding the maximum point on a hill. In this case, drawing a vertical line
from the hill top to the ground plane defines values for two unmixing coefficients.

This three-dimensional (3D) hill can be generalised to n-dimensional hills which cor-
respond to n − 1 unmixing coefficients ... but we will begin with a conventional 3D hill.

Figure 9.2 shows a hypothetical graph of how kurtosis might vary as a function of two
unmixing coefficients (α, β). Each pair of coefficient values defines a point on the ground
plane, and the corresponding height of the function fK above the ground plane specifies
the kurtosis K associated with (α, β). Formally, kurtosis is defined by the function fK

K = fK (α, β). (9.11)

In this case, we cheat a little by defining kurtosis as a quadratic function

fK (α, β) = −(α2 + β2) + 25. (9.12)

To reiterate, for every pair of values (α, β) the corresponding kurtosis of the signal ex-
tracted by these coefficients is given by the height of the surface depicted in figure 9.2,
which is given by equation (9.11).

Gradient Ascent 123

Finding the direction of steepest ascent can be decomposed into a number of sub-
problems. Specifically, if the direction of steepest ascent with respect to each unmixing
coefficient is known then the the direction of steepest ascent on the ground plane can be
obtained. Now the the direction of steepest ascent with respect to each coefficient is given
by the example in the previous section.

In geometric terms, a vertical slice through the function fK at a specific value β = β1

yields a curve of the same form as that depicted in figure 9.1. This curve is defined by an
equation of the form

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1

0

1

2
0

5

10

15

20
K

ur
to

si
s

=
 f k

(α
,β

)

β

α

Figure 9.2
Graph showing how kurtosis Kwould vary in relation to two unmixing coefficients (α, β) if kur-
tosis were defined by equation (9.12) (which it isn’t). Kurtosis varies as a function fK of two
unmixing coefficients (α, β), so that K = fK (α, β). The values of (α, β) are represented by the
two horizontal axes, which define a ground plane. The dashed vertical line connects the point
(α, β, K) = (−0.8, −0.8, 0) on the ground plane with the point (α, β, K) = (−0.8, −0.8, 22.5),
and therefore intersects the surface defined by the function fK at K = 22.5. The gradient with
respect to each of the coefficients (α, β) is indicated by the two axis-aligned arrows. The resultant
of these two gradients specifies a vector-valued gradient ∇ fK = (∂ fK /∂α, ∂ fK /∂β), indicated by
the horizontal diagonal arrow. This gradient points in the direction of steepest ascent of the function
fK , as indicated by the arrow on the surface defined by fK . The function fK is known as a merit
function, and the surface it defines is often referred to as an error surface.

124 Chapter 9

K = −(α2 + β21) + 25. (9.13)

If we take the value β1 = −0.8 as an example then the value of the gradient is a scalar
which points in the direction indicated by the arrow parallel to the α axis in figure 9.2,
and has a magnitude proportional to the length of that arrow. This gradient is given by the
partial derivative

∂ fK (α, β)

∂α
= −2α. (9.14)

The term partial derivative implies that the gradient with respect to one of many possi-
ble parameters is being evaluated (in this case, “many” equals two), while ignoring the
derivatives with respect to these other parameters. Note that partial derivatives are defined
with the symbol ∂ (e.g., ∂ y/∂x), in contrast to the derivative of a scalar function which is
defined with the symbol d (e.g., dy/dx).

Similarly, a vertical slice through the function fK at a specific value α = α1 also yields
a curve of the same form as that depicted in figure 9.1. This curve is defined by an equation
of the form

K = −(α21 + β2) + 25. (9.15)

If we take the value α1 = −0.8 as an example then the value of the gradient is a scalar
which points in the direction indicated by the arrow parallel to the β axis in figure 9.2,
and has a magnitude proportional to the length of that arrow. In mathematical terms, this
gradient is given by the partial derivative

∂ fK (α, β)

∂β
= −2β. (9.16)

The direction of steepest ascent can be obtained by combining these two partial derivatives.
Specifically, in the context of the function fK , each partial derivative defines an axis-
aligned vector (

∂ fK (α, β)

∂β
, 0

)
= (−2α, 0) (9.17)(

0,
∂ fK (α, β)

∂α

)
= (0, −2β). (9.18)

The vector sum or resultant of these vectors points in the direction of steepest ascent,
as indicated by the diagonal arrow on the ground plane in figure 9.2. The resultant of
two vectors is given by their sum, which is obtained by scalar addition of corresponding
elements of each vector

Gradient Ascent 125

(
∂ fK
∂α

, 0

)
+

(
0,

∂ fK
∂β

)
=

(
0+ ∂ fK

∂α
, 0+ ∂ fK

∂β

)
(9.19)

=
(

∂ fK
∂α

,
∂ fK
∂β

)
, (9.20)

where the (α, β) arguments of the function fK have been omitted for clarity.
This vector-valued derivative is known as grad fK , and is denoted2 ∇ fK . Thus the

derivative ∇K of fK with respect to the coefficients (α, β) is exactly

∇ fK =
(

∂ fK
∂α

,
∂ fK
∂β

)
. (9.21)

To reiterate, ∂ fK /∂α is a scalar (number) which gives the gradient in the direction cor-
responding to α (i.e., the horizontal direction (α, 0)), and ∂ fK /∂β gives the gradient in
the direction corresponding to β (i.e., the horizontal direction (0, β)). Thus, ∇K is a two-
element vector which points in a direction on the ground plane, such that a small move
along this direction is guaranteed to increase the value of K .

As in the one-dimensional case, the rule for performing gradient ascent with respect to
the unmixing parameters is

wnew = wold + η∇ f TK , (9.22)

so that, provided η is sufficiently small, wnew is guaranteed to extract a signal with a higher
kurtosis that wold .

The equation (9.22) is a recipe for gradient ascent with respect to any number of
unmixing parameters. Whilst such a recipe is hard to visualize, the logic of gradient ascent
for two parameters applies equally well to n > 2 parameters.

Note that if the constant η is large then it is possible to step right past or right over the
desired maximum in fK , which is why it is important to set η to a small value and then
re-evaluate ∇ fK for each successive step.

We will refer to the above method as simple gradient ascent in order to distinguish it
from those described below.

A Caveat While the preceding discussion applies to a problem that depends on two
parameters, we already know that the unmixing problem depends on the orientation ψ

of the weight vector w = (α, β)T , and not on its length |w|. So even though the unmixing
problem appears to depend on n = 2 parameters α and β, it actually depends on only

2. The symbol ∇ is called nabla or del.

126 Chapter 9

for two parameters (α, β) is actually a problem that requires estimation of one implicit
parameter, the orientation ψ of the vector w. More generally, as the number of mixtures
is increased, the number of parameters to be estimated is one less than the number of
unmixing coefficients. In practice, this is usually ignored during gradient ascent without
any ill effects.

9.4 Second Order Methods

While the gradient ascent method described in the previous section is adequate, it has to
contend with two fundamental problems.

First, the direction of steepest descent does not necessarily point directly at the maxi-
mum, so that the path length (or number of steps) to the maximum is longer than is neces-
sary.

Second, and probably more importantly, the gradient magnitude of any function de-
creases as its maximum is approached. This, in turn, ensures that successive step sizes
decrease as the distance to the maximum decreases, because the step size is proportional
to the magnitude of the gradient. Thus, in principle, the maximum can only be reached
after an infinite number of steps (this is analogous to Zeno’s paradox). Despite this, simple
gradient ascent provides good estimates of optimal parameter values.

Both the problems specified above can be alleviated to a large extent using second
order methods. Such methods depend on estimating the local curvature of the function (as
opposed to its gradient) and using this to jump to the estimated maximum. The curvature is
simply the gradient of the gradient, and in the case of two parameters, is defined by a 2×2
matrix of second derivatives, known as a Hessian matrix. More generally, an n parameter
problem defines a function whose curvature is given by an n × n Hessian matrix. In the
case of a 2× 2 unmixing matrix the number of parameters (unmixing coefficients) is four,
which defines a 4 × 4 Hessian matrix. Second order methods such as Broyden-Fletcher-
Goldfarb-Shanno (BFGS)3 and the simpler conjugate gradient technique are beyond the
scope of this book; it suffices to say that second order methods and simple gradient ascent
arrive at the same solution for estimated parameter values, but second order methods tend
to arrive at this solution sooner. A practical introduction to these methods can be found in
(Press et al., 1989).

Note that second order methods have substantial advantages only as the maximum is
approached. This is the because the “jump” to the estimated maximum will be accurate
in terms of its direction and magnitude only if the function is well approximated by a

one parameter ψ which is a function of both α and β, where the orientation of w is given
by ψ = arctan(α/β). In general, an unmixing problem with n coefficients only depends
on n − 1 angles. This just means that the apparent problem of estimating optimal values

3. BFGS is a standard quasi-Newton search method.

Gradient Ascent 127

quadratic function at the point from which the jump is made. Fortunately, in principle,
“reasonable” functions do approximate a quadratic close to their maxima, as can be seen
both in terms of the Taylor expansion of a function and in geometric terms.

In order to see why, we will explore a geometric version of the Taylor expansion by
working back from the maximum of a function. At its maximum any function K = f (ψ)

can be locally approximated by a plane, albeit a very small plane. This is fine for our pur-
poses as we are considering local approximations. As we move away from the maximum
the local curvature of the function makes it untenable to continue to pretend that the func-
tion is locally approximately planar. At this point, we can approximate the function locally
with a low-order curved surface, specifically a surface defined by a quadratic function (as
depicted in figure 9.2). As we progress further from the maximum, the quadratic approx-
imation also begins to look a bit shaky, and we are forced to employ increasingly high
order approximating functions. In fact, the Taylor expansion can be used to approximate
a function with a linear combination of successively high order functions, such as linear
(e.g., 2ψ), quadratic (e.g., ψ2 + ψ), and cubic (e.g., ψ3 + ψ2 + ψ) functions. The main
point is that any “reasonable” function is well approximated by a quadratic function within
a small region around any chosen location, although functions are often especially “well-
behaved” for this purpose around a maximum. This ensures that the second order methods,
and the natural gradient method described below, provide considerable speed advantages
over simple gradient ascent.

9.5 The Natural Gradient

One twist on simple gradient ascent methods that has caused some excitement within the
independent component analysis (ICA) community is the natural gradient (Amari et al.,
1996, Amari, 1998, Cichocki & Amari, 2002). Essentially, the natural gradient method
induces a local warping of the function fK such that the natural gradient points directly
at the maximum of fK , provided fK is locally well approximated by a quadratic function,
which it always is close to a maximum (see above).

However, using the natural gradient method is likely to be no more efficient that em-
ploying a standard second order method (e.g., conjugate gradient), and the time complex-
ities of the two methods may not be substantially different (although these speculations
have yet to be tested empirically).

9.6 Global and Local Maxima

Each of the different gradient-based search methods described above for finding parameter
values (e.g., ψ) that maximize a given merit function (e.g., fK) yield the same solution
(i.e. final parameter values). Thus, the only difference between these search methods

128 Chapter 9

is the speed with which solutions are obtained, and not the nature of those solutions.
Additionally, the time complexity, (i.e. how the time required to find a solution scales with
the number of parameters) of these different gradient-based methods can be very similar,
e.g., see (Stone & Lister, 1994).

Given an initial set of parameter values and a merit function f , most search methods
(and all of the gradient-based methods described above) adjust the parameter values in
order to move (more or less efficiently) toward the nearest maximum in f . If f has
only one maximum then moving toward the nearest maximum represents a good strategy.
However, problems often have functions with many maxima. Rather than the single hill
considered earlier, the function f is then analogous to a mountain range. The highest
maximum of f is known as the global maximum of f , and each of the other maxima is
known as a local maximum. A major disadvantage of the gradient-based search methods is
that they tend to find local maxima.

In the case of ICA with an M × M unmixing matrix, there are at least M maxima of
equal height, each of which is associated with a permutation of columns inW. There also
appear to be other sets of M equivalent maxima, which are of a similar height to those just
described. However, this is an under-researched area, and it remains something of mystery
as to why ICA, and also projection pursuit, performs as well as they do on most problems.

The particular complexity pursuit method described in chapter 8 has a merit function
such that the optimal unmixing matrix W has one weight vector (row of W) associated
with the only global maximum, and all other weight vectors are associated with saddle
points (i.e., regions of f that look like a saddle). The details of this need not concern us
here, suffice to say that such a merit function behaves as if it has a single global maximum
with respect to the unmixing matrix W. Details of such merit functions can be found in
standard texts on linear algebra, e.g., (Borga, 1998).

9.7 Summary

Given a merit function of a set of parameters, gradient ascent was described as a method for
finding parameter values that maximize that merit function. This was introduced in terms
of finding the highest point on a hill, in one or more dimensions, where each point on the
ground plane corresponds to a specific set of parameter values, and height corresponds to
the function value. Optimal parameter values are obtained by iteratively gaining height
until there is no more height to be gained. At this point, the top of the hill is reached,
and the corresponding parameter values are optimal parameter values. It was shown that
the gradient ascent method requires an expression for the derivative of the merit function
with respect to its parameters. Second order methods were introduced as a more efficient
gradient-based method than simple gradient ascent for finding optimal parameter values.
The natural gradient was briefly described as a method that was also more efficient than
simple gradient ascent. Finally, the problem of finding a global maximum was discussed.

10.1 Introduction

ICA is not the only game in town. Historically, principal component analysis (PCA)
and factor analysis (FA) have been widely used for the same types of problems currently
being investigated with ICA. The main difference between ICA and PCA/FA is that ICA
finds non-gaussian and independent source signals, whereas PCA/FA finds source signals
which are (merely) gaussian and uncorrelated.1 This subtle distinction has far reaching
consequences for the power of ICA methods relative to PCA/FA methods.

This chapter provides a brief overview of PCA and FA in relation to ICA. For more
detailed accounts of PCA and FA, consult (Everitt, 1984, Chatfield & Collins, 2000). We
compare ICA to PCA first, and consider FA in a later section.

10.2 ICA and PCA

PCA can be interpreted in terms of blind source separation methods inasmuch as PCA is
like a version of ICA in which the source signals are assumed to be gaussian. However, the
essential difference between ICA and PCA is that PCA decomposes a set of signal mixtures
into a set of uncorrelated signals, whereas ICA decomposes a set of signal mixtures into a
set of independent signals.

In terms of moments, this implies that PCA finds a matrix which transforms the signal
mixtures x = (x1, x2) with joint probability density function (pdf) px(x1, x2) into a new
set of uncorrelated signals y = (y1, y2). Recall that uncorrelated signals have a joint pdf
py(y) such that

E[y1y2] = E[y1]E[y2]. (10.1)

In contrast, ICA seeks an unmixing matrix which transforms the signal mixtures x =
(x1, x2)with joint pdf px(x1, x2) into a new set of independent signals y = (y1, y2). Recall
that independent signals have a joint pdf py(y) such that

E[y p1 , yq2] = E[y p1]E[y
q
2], (10.2)

for every positive integer value of p and q .
Actually, PCA does more than simply find a transformation of the signal mixtures such

that the new signals are uncorrelated. PCA orders the extracted signals according to their
variances (variance can be equated with power or amplitude), so that signals associated

10 Principal Component Analysis and Factor Analysis

1. Strictly speaking, in order to make gaussian signals independent it is sufficient to make uncorrelated, so
uncorrelated gaussian signals are also independent. However, the fact remains that independent gaussian signals
are merely uncorrelated, and do not therefore correspond to any physically meaningful sources, such as different
voices.

130 Chapter 10

with high variance are deemed more important than those with low variance. In contrast,
ICA is essentially blind to the variance associated with each extracted signal.

It is worth noting that if the signals extracted by PCA are gaussian then the condition
specified in equation (10.1) implies that such signals are not only uncorrelated, they are
also independent. This is because gaussian signals have pdfs which are determined entirely
by their second moments. Once these are fixed, all higher-order moments are determined.
So, technically speaking, PCA does provide a set of independent signals, but only if these
signals are gaussian.

Specifying that a set of uncorrelated gaussian signals is required places very few con-
straints on the signals obtained. So few that an infinite number of sets of independent
gaussian signals can be obtained from any set of signal mixtures (recall that signal mixtures
tend to be gaussian). For example, a relatively simple procedure such as Gram-Schmidt
orthogonalisation (GSO) can be used to obtain a set of uncorrelated signals, and the set
so obtained depends entirely on the signal used to initialize the GSO procedure (see ap-
pendix C). This is why any procedure which obtains a unique set of signals requires more
constraints than simple decorrelation can provide. In the case of ICA, these extra con-
straints involve high order moments of the joint pdf of the set of mixtures. In the case of
PCA, these extra constraints involve an ordering of the gaussian signals obtained. Specif-
ically, PCA finds an ordered set of uncorrelated gaussian signals such that each signal
accounts for a decreasing proportion of the variability of the set of signal mixtures. The
uncorrelated nature of the signal obtained ensures that different signals account for non-
overlapping or disjoint amounts of the variability in the set of signal mixtures, where this
variability is formalized as variance.

10.3 Eigenvectors and Eigenvalues

As with ICA, the transformation from a set of zero-mean signal mixtures x = (x1, x2)T to
a set of extracted signals y = (y1, y2)T is implemented as a matrixWpca ,

y = Wpcax, (10.3)

where each row of the matrixWpca is a vector, which is known as an eigenvector, so that

Wpca = (w1,w2)T . (10.4)

Each eigenvector has unit length (i.e., |wi | = 1) and extracts exactly one signal yi , or
principal component (PC),2 from the mixtures x. The variance of each PC is known as

2. Although this distinction between eigenvectors and principal components is not always acknowledged.

Principal Component Analysis and Factor Analysis 131

its eigenvalue, which is usually denoted by the symbol3 λ. Unlike the weight vectors
of ICA, eigenvectors are mutually orthogonal, a property which ensures that they extract
uncorrelated signals.4

More formally, an eigenvector is defined with respect to the symmetric M ×M covari-
ance matrix S = xxT of the M × N data array of zero-mean variables x. The i j th element
of S is the covariance between the variables xi and x j , defined as the central moment

Si j = E[xi x j]. (10.5)

A vector wi is an eigenvector of S if

λiwTi = Swi . (10.6)

Thus, if wi is an eigenvector of the matrix S then using S to transform wi has no effect on
the orientation of wi , but the length or magnitude of |wi | is altered by a factor λi . In other
words, if wi is a eigenvector of the matrix S then S simply scales wi by a factor λi . For an
M × M matrix S there are M eigenvectors.

10.4 PCA Applied to Speech Signal Mixtures

By definition, one eigenvectorw1 found by PCA has an orientation such that the orthogonal
projection defined by the inner product

y1 = wT1 x (10.7)

extracts a signal y1 with a variance σ 21 that cannot be exceeded by a vector w1 with any
other orientation.

This can be seen graphically by rotating a unit length vector around in a two-dimensional
space defined by two signal mixtures x1 and x2, as shown in figure 10.1. In this case, the
mixtures consist of speech signals. The variance of the extracted signal at each orientation
of a vectorw is plotted as a smooth curve. When PCA is applied to such a set of mixtures it
PCA fails to extract source signals. The first eigenvector yields a maximum variance signal
(PC) with an orientation roughly mid-way between the two transformed axes S′

1 and S
′
2.

We know from chapter 4 that in order to extract one source an eigenvector must be orthog-
onal to one of these transformed axes. Otherwise the signal obtained by an eigenvector is
simply a new mixture of the source signals, as is the case here.

3. Lambda.

4. Eigenvectors are not orthogonal in general, but they are for the type of source separation problem considered
here. This is because the covariance matrix of a set of signal mixtures is symmetric, and this, in turn, guarantees
that its eigenvectors are orthogonal.

132 Chapter 10

The second eigenvector yields a minimum variance signal (PC), and it is true in general
that the final PC has minimum variance. For example, if we had considered a three-
dimensional (3D) space of mixtures then the third eigenvector would extract a minimum
variance signal (PC). Moreover, the PCs extracted by intermediate eigenvectors do not have
any physical interpretation, and do not therefore capture any specific physical properties;
they are simply determined by virtue of being orthogonal to all previous eigenvectors. In
fact, this is the defining feature of such intermediate eigenvectors. They are thus highly
constrained by the orientation of the first eigenvector, which, in turn, is determined by the
orientation associated with a maximum variance PC. The reason for emphasising this is
that the first PC, and therefore other PCs, can be altered simply by changing the amplitude
of a single mixture. For example, in the case of speech, if one voice signal s1 output is
doubled in amplitude then the first eigenvector will move toward the orientation associated
with that signal (i.e., the transformed axis S′

1). There is no limit to this process, inasmuch

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

S
ig

na
l M

ix
tu

re
 2

 A
m

pl
itu

de

Signal Mixture 1 Amplitude

Figure 10.1
PCA of two speech signals. Each solid line defines one eigenvector, which corresponds to a weight
vector in ICA. Each eigenvector has a length proportional to its eigenvalue. In contrast to ICA,
eigenvectors are always orthogonal, which ensures that they extract signals which are uncorrelated.
Note that neither of the eigenvectors are orthogonal to the transformed axes S′

1 or S
′
2 (drawn as dotted

lines), and that an eigenvector can only extract a speech signal if it is orthogonal to one of these
transformed axes. Each eigenvector therefore extracts an essentially arbitrary linear combination of
speech source signals.

Principal Component Analysis and Factor Analysis 133

as a massively amplified signal s1 will align the first eigenvector progressively closer to the
orientation of S′

1, and would extract a mixture of voice signals. This would have a large
effect on the set of eigenvectors obtained by PCA. Thus, PCA is at the mercy of the raw
power of source signals. This can be useful if it is desired to identify high variance signals,
but it is generally undesirable.

As PCA provides a set of orthogonal PCs that are ordered according to their variance,
it is often used to reduce a large number of measured variables to a smaller set of variables
consisting of the first few PCs. As the PCs with the lowest variances are discarded, this
usually ensures that the retained PCs capture the main statistical structure of the original
signal mixtures.

This ordering of extracted signals according to their variance is often used to reduce
the size of a given data set (see appendix F). For example, the number of mixtures might
be six, and PCA could be used to find six signals ordered by variance. If the variances of
the first three extracted signals are high, and the variances of the last three extracted signals
are close to zero then these could be discarded. This effectively halves the size of data set
whilst retaining most of the variance associated with the original data set. In this case the
reduced data set (y1, y2, y3)T is given by


 y11 , y

2
1 , . . . , y

N
1

y12 , y
2
2 , . . . , y

N
2

y13 , y
2
3 , . . . , y

N
3


 =


 w11, w12, . . . , w16

w21, w22, . . . , w26

w31, w32, . . . , w36







x11 , x
2
1 , . . . , x

N
1

x12 , x
2
2 , . . . , x

N
2

...

x16 , x
2
6 , . . . , x

N
6




= (w1,w2,w3)T (x1, x2, x3, x4, x5, x6)
T , (10.8)

where the eigenvectors w4,w5 and wT6 associated with low variance PCs have been dis-
carded. This can be written more succinctly as

y = Wpcax. (10.9)

An example of how PCA finds a first PC which does not correspond to any particular
source signal is given in figure 10.2.

10.5 Factor Analysis

Factor analysis (FA) is essentially a form of PCA with the addition of extra terms for
modeling the sensor noise associated with each signal mixture. In contrast, both ICA and
PCA are based on the assumption that such noise is zero.

In terms of a set of physical measurements, for instance using a set of microphones in
a room with different sound sources, FA incorporates a model of the noise associated with

134 Chapter 10

each mixture (microphone). As FA is often applied to psychological data this makes good
sense, because two different psychological tests for the same underlying psychological
competence can have very different variances, which is correctly modeled as noise by FA.

Figure 10.2
PCA, projection pursuit (PP) and ICA applied to fMRI data.
PCA, PP (labelled as “4th order”) and ICA were used to extract spatial signals from fMRI brain data.
A sequence of fMRI brain images were recorded (not shown), and the image recorded at each point
in time is treated as a signal mixture of underlying prototypical brain images. PCA, PP, and ICA
were used to estimate these prototypical images. These prototypical images reveal brain activity
in primary visual areas (shaded areas) using only PP and ICA, consistent with the visual stimuli
presented to the subject. Moreover the temporal sequence (right) associated with the prototypical
images extracted by ICA and (to a less extent) PP reflects the on-off sequence of visual stimuli.
In contrast, the temporal sequence identified by PCA bears little relation to the sequence of visual
stimulation. The correlations between the extracted temporal sequences (right) and the time course
of the on-off visual stimulation (PCA=0.46, PP=0.85, ICA=0.92). From (McKeown et al., 1998).

Principal Component Analysis and Factor Analysis 135

The model implied by FA for a given mixture xi has the form

xi = λ1s1i + λ2i s2 + ei , (10.10)

where s1 and s2 are source signals, or factors, λ1 and λ2 are mixing coefficients, or factor
loadings, and ei is the noise associated with the i th measuring device (e.g., psychological
test, microphone). Note that the symbol λ (lambda) is, by convention, used to denote factor
loadings in FA, and eigenvalues in PCA.

Using FA, the number of mixtures and source signals does not have to be the same.
Indeed, it is usually assumed that there is a small number of underlying factors for a given
set of observed mixtures.

In the case of M = 3 mixtures and K = 2 sources this can be written as


 x11 , x

2
1 , . . . , x

N
1

x12 , x
2
2 , . . . , x

N
2

x13 , x
2
3 , . . . , x

N
3


 =


 λ11, λ12

λ21, λ22

λ31, λ32


 (

s11 , s
2
1 , . . . , s

N
1

s12 , s
2
2 , . . . , s

N
2

)
+


 e11, e

2
1, . . . , e

N
1

e12, e
2
2, . . . , e

N
2

e13, e
2
3, . . . , e

N
3


 ,

or more succinctly as


 x1

x2
x3


 =


 λ1

λ2

λ3


 (

s1
s2

)
+


 e1

e2
e3


 , (10.11)

where λi = (λi1, λi2). This can be re-written as

x = �s+ e, (10.12)

where the matrix of factor loadings �5 corresponds to the mixing matrix A of ICA.

10.6 Summary

The essential difference between ICA and PCA is that PCA decomposes a set of signal
mixtures into a set of uncorrelated signals, whereas ICA decomposes a set of signal mix-
tures into a set of independent signals. It was shown that this difference is critical because
the signals extracted by PCA are under-constrained relative to those extracted by ICA and
related methods. It was shown, for example, that given a set of speech mixtures PCA
merely extracts a new set of speech mixtures which embody the weak constraint that the
set of mixtures are uncorrelated.

5. � is a capital lambda λ.

IV APPLICATIONS

11.1 Introduction

ICA has been applied to a number of different problems, most strikingly in the field of
neuroimaging. A brief overview of the results from ICA is provided in order to demonstrate
the range of applicability of ICA implemented as either spatial (sICA) or temporal ICA
(tICA).

Of the many ICA applications not included here are

• optical imaging of neurons (Brown et al., 2001);

• neuronal spike sorting (Lewicki, 1998);

• face recognition (Bartlett, 2001) (see chapter 1);

• modeling receptive fields of primary visual neurons (Bell & Sejnowski, 1997,
Hyvärinen et al., 2001b);

• predicting stock market prices (Back & Weigend, 1997);

• mobile phone communications (see (Hyvärinen et al., 2001a) for an overview);

• color-based detection of the ripeness of tomatoes
(Polder & van der Heijden, 2003).

11.2 Temporal ICA of Voice Mixtures

An example frequently cited in this book is the application of ICA to speech data. A simple
but effective demonstration of this is given the now classic paper by Bell and Sejnowski
(Bell & Sejnowski, 1995), see figure 11.1.

This example emulates five people speaking simultaneously in a room in five mi-
crophones are placed at different locations, so that each microphone records a differ-
ent mixture of the set of five voices. In this example the five voice source signals s =
(s1, s2, s3, s4, s5)T are known which permits the signals extracted by ICA to be compared
to the original source signals. A set of five signal mixtures x = (x1, x2, x3, x4, x5)T were
obtained using a randomly generated 5× 5 mixing matrix A, where x = As. Each mixture
emulates the sound recorded by one of five microphones. As speech signals have high kur-
tosis, ICA was applied to these mixtures using a high-kurtosis model cumulative denisty
function (cdf) for the source signals. The unmixing matrixW estimated by ICA was used
to extract five signals y = Wx, corresponding to the five original source signals.

This example demonstrates the general utility of ICA, and precludes many of the
problems associated with extracting speech signals from mixtures recorded in a room. For

11 Applications of ICA

140 Chapter 11

example, the different distance of each speaker from each microphone would introduce a
small lag between each voice at different microphones. Additionally, the walls introduce
echoes into each mixture. These effects can be modeled and removed, but they require
non-trivial extensions to ICA (Lee et al., 1997, Lee, 2001). For data where transmission
time is essentially zero (e.g., electrical signals as in electroencephalography (EEG)) such
problems do not arise.

11.3 Temporal ICA of Electroencephalograms

Every neuron in the human brain acts like a small electric generator when it is active.
If large numbers of neurons become simultaneously active then it is possible to measure
the resultant electrical effects at the scalp using an array of electrodes. The resultant set
of temporal series of signals is called an electroencephalogram, or EEG. If the measured

Figure 11.1
Speech Separation.
Example of ICA applied to speech data. This synthetic example emulates five people speaking
simultaneously in a room where five microphones are placed at different locations, so that each
microphone records a different mixture of the set of five voices. The five known source signals
s = (s1, s2, s3, s4, s5)

T are shown on the left. The signal mixtures x = (x1, x2, x3, x4, x5)
T were

obtained using a 5 × 5 mixing matrix A, where x = As. Independent component analysis extracts
five independent components each of which is taken to be an estimate of one of the original source
signals (i.e., single voices). (Note that independent component analysis re-orders signals, so that
an extracted signal yi and its source signal si are not necessarily on the same row). From (Bell &
Sejnowski, 1995).

Applications of ICA 141

signals result from a specific stimulus event, such as as flash of light, then the result is
known as an event-related potential or ERP.

The signal measured at each of up to 128 electrodes is known to be a mixture of
underlying source signals. One major problem confronted by EEG researchers is to extract
such source signals and to estimate where in the brain each source signal arises.

EEG data is in many ways ideally suited for ICA because there is a negligible amount of
transmission delay between the source and each electrode, and because the assumption that
each measured signal is a linear mixture of source signals is quite plausible for electrical
signals traveling through human tissue. Moreover, the inverse of the unmixing matrix
provides a spatial map of the associated scalp location of each source signal extracted by
ICA.

A classic application of ICA to ERP data was reported in (Makeig et al., 1997), see
figures 11.2 and 11.3. In this study, subjects were required to press a button whenever
a weak, slow-onset noise burst was detected. These noise bursts were called targets, to
distinguish them from non-target pure tones. The study compared ERPs of detected and
undetected targets. A tICA decomposition of the output of the 14 electrodes for ERPs
of detected and non-detected targets yielded two sets of quite distinct estimated temporal
source signals. Additionally, the spatial image (map) associated with each source signal
had a peak which differed in location and sign for detected and non-detected targets.

11.4 Spatial ICA of fMRI Data

Functional magnetic resonance imaging (fMRI) is sensitive to minute changes in the mag-
netic properties of brain tissue associated with brain activity, and can be used to record
three-dimensional (3D) images of the brain at a rate of one 3D whole-brain image every
1–3 seconds.

When a set of neurons in one part of the brain become active they induce a localized
influx of fresh, oxygenated blood cells. This has the effect of altering the local ratio of oxy-
genated to deoxygenated blood cells. This, in turn, alters the local magnetic susceptibility,
because oxygen is carried on hemoglobin within red blood cells, and hemoglobin contains
a small amount of iron, which alters its magnetic properties if it is bound to oxygen. It is
these changes in local magnetic properties that are detected with fMRI.

In a classic paper on ICA of fMRI data, McKeown et al. (McKeown et al., 1998)
scanned each subject for 6 minutes, which resulted in a temporal sequence of 144 whole-
brain 3D images. Each subject was required to alternately perform a Stroop task for 40
seconds followed by 40 seconds of a control task. The Stroop task consists of naming the
color of the ink of a printed a word such as “red” when the ink color and the printed word
refer to different colors. For example, the word “red” might be printed in green ink, and
the subject is required to name the color of the ink. As might be imagined attending to

142 Chapter 11

the ink color while ignoring the color implied by the meaning of the word requires some
mental effort, so that the Stroop task makes an ideal experiment for fMRI.

McKeown and colleagues applied spatial ICA (sICA) to the fMRI data obtained from
the Stroop task. The sequence of 144 images yielded 144 estimated spatial source signals

x W

x W

g() g(Wx)

ERP
Data

ERP
Data

ICA

Wx W-1

Activations Maps
ICA Components

Figure 11.2
Schematic overview of temporal ICA (tICA) for ERP data.
Top: tICA transforms electrode outputs into a maximum entropy (uniform) distribution (joint pdf).
Three out of 14 electrodes are shown. Their outputs form the signal mixtures x = (x1, x2, x3)

T .
tICA finds an unmixing matrix W which transforms the mixtures x into maximally independent
signals y = Wx, where y = (y1, y2, y3)

T . The unmixing matrix W is adjusted so that a function
Y = g(y) of the extracted signals y has a maximum entropy (uniform) joint pdf. The joint pdf of
the signals Y is represented by points in a cube, where each point represents the value of Yt =
(Y t1, Y

t
2, Y

t
3)
T at time t .

Bottom: Having obtained the unmixing matrixW with tICA, the estimated source signals y = Wx
can be computed. The spatial distribution or map of each source signal defines the relative amplitude
of that source signal at each point on the scalp. The spatial map associated with the i th temporal
source signal is obtained as the i th column of the the inverseW−1 of the unmixing matrixW. From
(Makeig et al., 1997).

Applications of ICA 143

(3D images). When the time course associated with each estimated source image was
computed from the inverse of the unmixing matrix, several interesting findings emerged.
The most striking finding was that one source image had a time course which almost
exactly matched the time course of the experimental protocol. Specifically, the alternating
40 seconds of Stroop task and control task were clearly indicated in the time course of
one source image, as shown in figure 11.4. Moreover, active brain regions of this source
image included the Brodmann’s area (a classic speech area) and the frontal cortex, a region
activated by complex tasks. Other estimated source images were associated with temporal
signals which suggested transient task related or head movement artifacts.

11.5 Spatial ICA for Color MRI Data

Accurate diagnosis based on magnetic resonance imagingMRI depends critically on being
able to distinguish between different brain tissues, such as white matter tracts and gray
matter. Unfortunately, standard MRI images are rendered in monochrome and do not show

Undetected TargetsDetected Targets
A

FPz

Fz

Cz

Pz

B

FPz

Fz

Cz

Pz

P2

P2

N2

N2

P3
-8 uV -12 uV

+8 +12

ERP ERP

0 250 500 1000750
msec

2500 500 1000750
msec

ICA-1

ICA-2

ICA-3

ICA-4

ICA-4

ICA-5

ICA-6

ICA-7

Figure 11.3
Temporal ICA (tICA) of ERP data for detected and undetected sounds (targets). A tICA decomposi-
tion of the output of the 14 electrodes for ERPs of detected and non-detected targets yielded two sets
of quite distinct estimated temporal source signals. The spatial image (map) associated with each
source signal had a peak which differed in location and sign for detected and non-detected targets.
The symbols to the left of each trace denote the spatial position on the scalp of the electrode used to
record that trace. The symbols P2, P3, and N2 refer to positive (P) or negative (N) ERP excursions
which occur at 200ms (e.g., P2) or 300ms (e.g., P3).

144 Chapter 11

different tissues in detail. However, it is possible to use different MRI settings such that
each setting captures a different mixture of the source signals associated with different
tissues of interest (see figures 11.5 and 11.6). For example, a proton density weighted
MRI image reflects the local density of water molecules, which varies between tissues.
The resultant image therefore constitutes a mixture of signals associated with the tissues
of interest, such that the relative influence in the image of one tissue type is related to
its water concentration. As each MRI setting detects different raw signals, each setting
provides a different mixture of the different tissue types. Spatial ICA can therefore be used
to decompose a set of these image mixtures into their underlying spatial source signals.
After calibration with respect to an actual colored image of a human brain, the extracted
MRI source images can be recombined to provide an accurate high contrast colored image
of a brain in which white matter, gray matter and cerebrospinal fluid (the fluid around the
brain) are clearly demarcated. Even though the image in the lower right of figure 11.6 is
rendered in monochrome, the high contrast between different tissues is apparent.

11.6 Complexity Pursuit for Fetal Heart Monitoring

Non-invasive methods for monitoring fetal heart rhythm inevitably yield signals that are a
mixture of maternal and fetal heart signals. Fetal magnetocardiography (FMCG) relies on

Figure 11.4
Spatial ICA (sICA) of fMRI data. sICA was applied to a temporal sequence of 144 whole-brain
three-dimensional (3D) images. Regions of significant activation are shaded light gray and regions
of significant deactivation are shaded dark gray. The figure shows a whole brain as viewed from the
back, with the associated time course of activations shown as an inset. This shows a temporal profile
which almost exactly matches the experimental protocol, which consisted of alternating 40 seconds
periods of the Stroop and control task (see text). This figure is a three-dimensional version of a figure
in (McKeown et al., 1998).

Applications of ICA 145

the magnetic field generated by electrical activity in the heart to measure the cardiac signal
(see figure 11.7). In (Araujo et al., 2003) it was shown that a simple form of complexity
pursuit (augmented with autoregressive modeling of temporal structure) could be used to
separate maternal and fetal signals from the 37 simultaneous signal mixtures measured
using FMCG. Ten of these signals are shown in figure 11.7 (left bottom panel), and the
results of applying the method to the full set of 37 mixtures are shown in the right bottom
panel where the maternal and fetal heart signals are clearly defined.

11.7 Complexity Pursuit for Learning Stereo Disparity

When looking at an object, each eye sees a slightly different image, due to the fact that
the eyes view the world from slightly different positions. The resultant small differences
between the stereo pair of images in the left and right eyes are known as stereo disparities,
and are used by the brain to estimate 3D depth. In its most rarefied form, stereo disparity
can be presented to the visual system in the form of a random dot stereogram (RDS), as
shown at the top of figure 11.8. In an RDS, each image is based on the same set of randomly
positioned dots, but small differences in the positions of certain dots between the images
of a stereo pair simulate the effects of depth on the disparity of those dots. If each image

Figure 11.5
Theoretical model for high contrast colored MRI. Each different MRI setting (i.e., T1, T2, proton
density) provides an image which in which different tissue types are more or less apparent. Thus
each MRI setting provides a different image mixture (x1, x2, x3)

T of underlying independent source
images (s1, s2, s3)

T , where each source image may be associated with only one tissue type. sICA can
be used to identify these spatial source images, which can then be recombined to yield an accurate
high contrast color image of the brain.

146 Chapter 11

of a RDS is presented to one eye by viewing through a stereoscope then a compelling 3D
structure is perceived.

Complexity pursuit has been used to learn to extract these stereo disparities from
stereo pairs of images. This was achieved using an artificial neural network to learn a
non-linear mapping from mixtures to source signals. Each input (i.e., mixture) to the
network was a pair of small corresponding regions from a stereo pair of images (e.g.,
a small region from the stereo pair in figure 11.8), and the value of the source signal

Figure 11.6
Using spatial ICA (sICA) to obtain high contrast color MRI images of the brain. Each panel shows
a horizontal slice through a head, with the eyes at the top of the panel. Three different MRI settings
(i.e., T1, T2, and proton density) each yield a different image (top left, top right, and bottom left,
respectively). Each MRI setting provides a different mixture of underlying source images, where
each source image is associated with only one tissue type. sICA can be used to identify these source
images, which can then be recombined to yield an accurate high contrast image of the brain, rendered
in monochrome here.

Applications of ICA 147

was the amount of stereo disparity implicit in each input pair of image regions. The
network was not informed of the correct output source signal (i.e., stereo disparity). The
network effectively “discovered” the notion of stereo disparity in the process of adjusting
its unmixing coefficients (weights) in order to maximise the function F defined in equation
(8.2) (Stone, 1999, Stone, 1996a, Stone, 1996b).

Complexity
Pursuit

Maternal

Fetal

MCG and FMCG – Raw Signal Maternal ICA Component

Time (Seconds) Time (Seconds)

Fetal ICA Component

M
ag

ne
tic

 F
ie

ld
 (

T
es

la
)

Figure 11.7
Fetal heart monitoring.
Top: The magnetic field generated by electrical activity in the heart is measured at 37 different
locations using fetal magnetocardiography (FMCG). Each measured signal is a different mixture
of fetal and maternal cardiac signals. Using an augmented form of complexity pursuit (Araujo
et al., 2003), the set of 37 signal mixtures was decomposed to yield two estimated source signals
corresponding to the maternal and fetal cardiac signals.
Bottom: Detail of 10/37 measured signals (left), and separated fetal and maternal cardiac signals
(right). From (Araujo et al., 2003).

148 Chapter 11

This demonstrates the general utility of the complexity pursuit strategy. Here, a non-
linear artificial neural network learned to extract stereo disparity by maximizing the func-
tion F . In contrast, the unmixing coefficients of a linear transformation (i.e., the unmixing
matrixW) were learned in order to extract multiple signals from a set of signal mixtures
by maximizing the same function F that was used in chapter 8 (Stone, 2001).

Figure 11.8
Learning stereo disparity from a pair of stereo images.
Top: Random dot stereogram. If these images are visually fused then a three dimensional image
containing a small planar surface above a background planar surface is observed.
Bottom: Network output. Corresponding patches of the stereo images were used as input to an
artificial neural network which learned by minimizing the complexity of its outputs (specifically, by
maximizing the function F). This figure represents the resultant network outputs, which correspond
to the correct three dimensional depth implied by the stereogram.

VAPPENDICES

The single key fact about vectors and matrices is that each vector represents a point located
in space and a matrix moves that point to a different location. Everything else is just details.
Some of those details are described here.
A good pragmatic introduction to linear algebra is (Lay, 1997).

Vectors A number, such as 1.234, is known as a scalar, and a vector is an ordered list of
scalars. Here is an example of a vector with two components α and β:

w = (α, β). (A.1)

Note that vectors are written in bold type. The vector w can be represented as a single
point in a graph, where the location of this point is by convention a distance of α from the
origin along the horizontal axis and a distance of β from the origin along the vertical axis.

This notation for ordered lists of two scalars can be extended to any number of scalars,
or components. For example, a vector with three components defines a point in a three-
dimensional (3D) space (e.g., a point inside a cube):

w3 = (α, β, γ). (A.2)

The only tricky issue is how to visualize vectors once the number of vector components
exceeds three. In fact, it is almost impossible to do so. Fortunately, the formal properties
of vectors with three components are pretty much the same as those with any number of
components, so any vector properties which can be visualized in three dimensions usually
hold good for spaces with more than three dimensions.

Adding Vectors The vector sum of two vectors is the addition of their corresponding
elements. Consider the addition of two pairs of scalars (x1, x2) and (α, β)

(α + x1), (β + x2). (A.3)

Clearly, (x1, x2) and (α, β) can be written as vectors:

z = (α + x1), (β + x2) (A.4)

= (x1, x2) + (α, β) (A.5)

= x+ w. (A.6)

Thus the sum of two vectors is another vector which is known as the resultant of those two
vectors.

A A Vector Matrix Tutorial

152 Appendix A

Subtracting Vectors Subtracting vectors is similarly implemented by the subtraction of
corresponding elements so that

z = x− w (A.7)

= (x1 − α), (x2 − β). (A.8)

Multiplying Vectors Consider the sum given by the multiplication of two pairs of scalars
(x1, x2) and (α, β)

y = αx1 + βx2. (A.9)

Clearly, (x1, x2) and (α, β) can be written as vectors

y = (x1, x2).(α, β), (A.10)

= x.w1, (A.11)

where equation (A.11) is to be interpreted as equation (A.9). This multiplication of corre-
sponding vector elements is known as the inner, scalar or dot product, and is often denoted
with a dot, as here. The subscript “1” is used inw1 = (α, β) because we will need to define
more w vectors soon.

Note that if x is a vector variable then we should denote the single t th pair of values as
xt = (xt1, x

t
2). However, the superscript t is omitted for now because we are considering a

single pair of values.

Vector Length First, as each vector represents a point in space it must have a distance
from the origin, and this distance is known as the vector’s length, denoted as |x| for a
vector x. For a vector x = (x1, x2) with two components this distance is given by the
length of the hypotenuse of a triangle with sides x1 and x2, so that

|x| =
√
x21 + x22 . (A.12)

This generalizes to vectors with any number M of components so that

|x| =
√
x21 + x22 , . . . , x

2
M . (A.13)

Angle between Vectors Given any two vectors the angle between them is defined by

cos θ = x.w
|x||w| . (A.14)

A Vector Matrix Tutorial 153

Note that the definition of angle vectors contains the inner product. If we rearrange
equation (A.14) then we can obtain an expression for the inner product in terms of vector
lengths and the angle between x and w:

x.w = |x||w| cos θ. (A.15)

If the lengths |x| and |w| are unity then it follows that

x.w = cos θ. (A.16)

Thus, for unit length vectors, their inner product depends only on the angle between them.
Critically, if θ = 90 degrees (π/2 radians) then the inner product is zero, because

cos 90 = 0, irrespective of the lengths of the vectors. Vectors at 90 degrees to each other
are known as orthogonal vectors, and in general the inner product of any two orthogonal
vectors is zero.

Row and Column Vectors Vectors come in two basic flavors, row vectors and column
vectors. There are sound reasons for this apparently trivial distinction.

As might be surmized, the components of a row vector are written across the page,

(x1, x2), (A.17)

whereas the components of a column vector are written down the page,(
x1
x2

)
. (A.18)

A simple notational device to transform a row vector (x1, x2) into a column vector (or vice
versa) is the transpose operator, demonstrated here

(x1, x2)
T =

(
x1
x2

)
. (A.19)

The transpose operator is denoted with a superscript T here, but this can vary between
texts.

The reason for having row and column vectors is because it is often necessary to
combine several vectors into a single matrix which is then used to multiply a single vector
x, defined here as

x = (x1, x2)
T . (A.20)

In such cases it is necessary to keep track of which vectors are row vectors and which are
column vectors. If we redefine w as a column vector,

154 Appendix A

w =
(

α

β

)
(A.21)

= (α, β)T (A.22)

then the inner product w.x can be written as

y = wT x (A.23)

= (α, β)

(
x1
x2

)
(A.24)

= x1w1 + x2w2. (A.25)

Here, each element of the row vector wT is multiplied by the corresponding element of the
column x, and the results are summed. Writing the inner product in this way allows us to
specify many pairs of such products as a vector-matrix product.

If x is a vector variable such that x1 and x2 have been measured N times (e.g., at N
time consecutive time steps) then y is a variable with N values

(y1, y2, . . . , yN) = (α, β)

(
x11 , x21 , . . . , xN1
x12 , x22 , . . . , xN2

)
(A.26)

= (α, β)

(
x1
x2

)
(A.27)

= (α, β)(x1, x2)
T (A.28)

= wT x. (A.29)

Here, each (single element) column yt1 is given by the inner product of the correspond-
ing column in x with the row vector w. This can now be rewritten succinctly as

y = wT x. (A.30)

Notice that the vector w essentially extracts y from x.

Vector Matrix Multiplication If we reset the number of times x has been measured to
N = 1 for now then we can consider the simple case of how two scalar values y1 and y2
are given by the inner products

y1 = wT1 x (A.31)

y2 = wT2 x, (A.32)

where w1 = (α, β)T and w2 = (γ, δ)T . If we consider the pair of values y1 and y2 as a
vector y = (y1, y2)T then we can rewrite equations (A.31) and (A.32) as

A Vector Matrix Tutorial 155

(y1, y2)
T = (wT1 x,w

T
2 x)

T . (A.33)

If we combine the column vectors w1 and w2 then we can define a matrixW

W = (w1,w2)T (A.34)

=
(

α β

γ δ

)
. (A.35)

We can now rewrite equation (A.33) as

(y1, y2)
T =

(
α β

γ δ

)
(x1, x2)

T . (A.36)

This can be written more succinctly as

y = Wx. (A.37)

This defines the standard syntax for vector-matrix multiplication. Note that the column
vector (x1, x2)T is multiplied by the first row in W to obtain y1 and is multiplied by the
second row inW to obtain y2.

Just as the vector x represents a point on a plane, so the point y represents a (usually
different) point on the plane. Thus the matrixW implements a linear geometric transfor-
mation of points from x to y. Essentially, the linear geometric transformation implemented
by a matrix maps straight lines to straight lines (but usually with different lengths and
orientations).

More generally, for N > 1 the t th column (yt1, y
t
2)
T in y is obtained as the product of

t th column (xt1, x
t
2)
T in x with the row vectors inW.

(
y11 , y21 , . . . , yN1
y12 , y22 , . . . , yN2

)
=

(
α β

γ δ

) (
x11 , x21 , . . . , xN1
x12 , x22 , . . . , xN2

)

= (w1,w2)T (x1, x2)
T (A.38)

= Wx. (A.39)

The first term on the left is the pair of source signals y = (y1, y2)T , so that this can be
rewritten as

y =Wx. (A.40)

Given that yt1 = αxt1 + βxt2 the correct way to read equation (A.39) is as follows.
Each (single element) column in y1 is a scalar value which is obtained by taking

the inner product of the corresponding column in x with the first row vector wT1 in W.
Similarly, each column in y2 is obtained by taking the inner product of the corresponding
column in x with the second row vector wT2 inW.

156 Appendix A

This defines the basic syntax for vector-matrix multiplication, and demonstrates that
the matrixW defines a spatial transformation of data points x to y.

Transpose of Vector-Matrix Product: It is useful to note that if

y = Wx (A.41)

then the transpose yT of this vector-matrix product is

yT = (Wx)T = xTWT , (A.42)

where the transpose of a matrix is defined by

WT =
(

α β

γ δ

)T

=
(

α γ

β δ

)
. (A.43)

Given a set of signal mixtures x and a signal y = wT x extracted from that set by an
unmixing vector w, the kurtosis of the extracted signal is

K = E[(y − y)4]

(E[(y − y)2])2
− 3. (B.1)

In order to perform gradient ascent, we require the gradient of equation (B.1) with respect
to w.

While we could find the gradient of kurtosis with respect to w using the observed set
of signal mixtures x, matters are greatly simplified if we first transform x into another set
of mixtures z that are uncorrelated with each other, where each new mixture zi has unit
variance (Hyvärinen et al., 2001a). This process is known as whitening or sphering.

Sphering Sphering is essentially decorrelation followed by scaling of each decorrelated
mixture, and can be achieved using either Gram-Schmidt orthogonalisation (GSO) or prin-
cipal component analysis (PCA). One useful form of PCA is singular value decompo-
sition (SVD) (Press et al., 1989, Lay, 1997) (see appendix F). Given a set mixtures
x = (x1, x2, . . . , xM)T in the form of an M × N array of M mixtures measured over
N time steps (for example), SVD provides a decomposition of the form

x = UDV T , (B.2)

whereU = (U1,U2, . . . ,UM) is an M×N matrix of eigenvectors, V = (V1, V2, . . . , VM)

is an N × N array of eigenvectors, and D is an N × N diagonal matrix of singular values
(where each singular value is related to the power of corresponding eigenvectors in U
and V).

Note that the eigenvectors in the columns of U and V are orthogonal and are therefore
uncorrelated. For our purposes, only U is required because each column vector in U is a
combination of column vectors in x such that all columns in U are mutually orthogonal.
Thus the column vectors in U are new signal mixtures, but they are now orthogonal
and therefore uncorrelated signal mixtures. By convention SVD provides unit length
eigenvectors in U , and we require unit variance vectors (signal mixtures). This is achieved
by rescaling each vector Ui = Ui/E(U 2i). For notational convenience we define z = U ,
where z = (z1, z2, . . . , zM)T is a set of M sphered mixtures.

The signal extracted by a weight vector w is y = wT z, and the kurtosis of y can be
written

K = E[y4]

(E[y2])2
− 3. (B.3)

B Projection Pursuit Gradient Ascent

158 Appendix B

If the weight vector w has unit length then E[(wT z)2] = 1, so that kurtosis can be written
as

K = E[(wT z)4]− 3. (B.4)

The gradient of kurtosis for an extracted signal y = wT z can then be shown to be

∂K (wT z)
∂w

= c E[z(wT z)3], (B.5)

where c is a constant of proportionality, which we set to unity for convenience. Note that
this gradient changes the length as well as the angle of w, and we know that changes in
length do not affect the form of the extracted signal (see section 4.2.1). If we restrict the
length of w to unity then the rule for updating w is

wnew = wold + η E[z(wToldz)
3z], (B.6)

where wnew is normalised to unit length after each update specified by equation (B.6)

wnew = wnew/|wnew|. (B.7)

We then set
wold = wnew, (B.8)

before repeating the update in equation (B.6).

Projection Pursuit MatLab Code

This is the core projection pursuit algorithm in MatLab. The results of running this code
are given in figure B.1. This code extracts one source signal only, and is intended to
demonstrate how projection pursuit works on a simple problem. In order to extract source
signals sequentially, a form of GSO would be required. See appendix C and (Hyvärinen et
al., 2001a).

The following code can be downloaded from http://www.shef.ac.uk/̃ pc1jvs/.

% Basic projection pursuit algorithm demonstrated on 2 sound signals,
% only one signal is extracted here.
% The default value of each parameter is given in [] brackets.

% [0] Set to 1 to hear signals.
listen=0; % set to 1 if have audio.

% [1] Set random number seed.
seed=99; rand(’seed’,seed); randn(’seed’,seed);

Projection Pursuit Gradient Ascent 159

% [2] M = number of source signals and signal mixtures.
M = 2;
% [1e4] N = number of data points per signal.
N = 1e4;

% Load data, each of M=2 rows contains a different source signal.
% Each row has N columns (signal values).

% Load standard matlab sounds (from MatLab’s datafun directory)
% Set variance of each source to unity.
load chirp; s1=y(1:N); s1=s1-mean(s1); s1=s1’/std(s1);
load gong; s2=y(1:N); s2=s2-mean(s2); s2=s2’/std(s2);

% Combine sources into vector variable s.
s=[s1; s2];

% Make mixing matrix.
A=randn(M,M)’;

% Listen to source signals ...
% [10000] Fs Sample rate of sound.
Fs=10000;
if listen soundsc(s(1,:),Fs); soundsc(s(2,:),Fs);end;

% Plot histogram of each source signal -
% this approximates pdf of each source.
figure(3);hist(s(1,:),50); drawnow;
figure(4);hist(s(2,:),50); drawnow;

0 20 40 60 80 100
2

2.5

3

3.5

4

4.5

Iteration

K
(y

)

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iteration

α
Figure B.1
Results of running projection pursuit (PP) MatLab code listed in text on two mixtures of two sound
sources.
Left: Graph of kurtosis function K during gradient ascent.
Right: Graph of angle between optimal weight vector and gradient vector during gradient ascent.
The initial correlations between the extracted signal and the two source signals are 0.8241 0.5679,
and the final correlations are 1.0000 and 0.0086.

160 Appendix B

% Make M mixures x from M source signals s.
x = A*s;

% Listen to signal mixtures signals ...
if listen soundsc(x(1,:),Fs); soundsc(x(2,:),Fs); end;

% Sphere mixtures using SVD.
[U D V]=svd(x’,0);
% Set new x to be left singular vectors of old x.
z=U;
% Each eigenvector has unit length,
% but we want unit variance mixtures ...
z=z./repmat(std(z,1),N,1);
z=z’;

% Initialise unmixing vector to random vector ...
w = randn(1,M)’;
% ... with unit length.
w=w/norm(w);

% Initialise y, the estimated source signal.
y = w’*z;

% Print out initial correlations between
% each estimated source y and every source signal s.
fprintf(’Initial correlations of source and extracted signals\n’);
%rinitial=abs(r(M+1:2*M,1:M))
r1=corrcoef([y; s1]’);
r2=corrcoef([y; s2]’);
rinitial=abs([r1(1,2) r2(1,2)])

maxiter=100; % [100] Maximum number of iterations.
eta=2e-2; % [1e-2 /2] Step size for gradient ascent.

% Make array hs to store values of function and gradient magnitude.
Ks=zeros(maxiter,1);
gs=zeros(maxiter,1);

% Begin gradient ascent on K ...
% Define known optimal weight vector ...
wopt=[-0.6125 0.7904];
for iter=1:maxiter
% Get estimated source signal, y.
y = w’*z;

% Get estimated kurtosis.
K = mean(y.ˆ4)-3;

% Find gradient @K/@w ...
y3=y.ˆ3;
yy3 = repmat(y3,2,1);
g = mean((z.*yy3)’)’;

Projection Pursuit Gradient Ascent 161

% Update w to increase K ...
w = w + eta*g;
% Set length of w to unity ...
w = w/norm(w);
% Record h and angle between wopt and gradient ...
Ks(iter)=K; gs(iter)=subspace(g,wopt’);
end;

% Plot change in K and gradient/wopt angle during optimisation.
jfig(1);plot(Ks,’k’);
title(’Function values - Kurtosis’);
xlabel(’Iteration’);ylabel(’K(y)’);
jfig(2);plot(gs,’k’);
title(’Angle \alpha Between Gradient g and Final Weight Vector w’);
xlabel(’Iteration’);ylabel(’\alpha’);

% Print out final correlations ...
r=corrcoef([y; s]’);
fprintf(’FInal correlations between source and extracted signals ...\n’);
r1=corrcoef([y; s1]’);
r2=corrcoef([y; s2]’);
rfinal=abs([r1(1,2) r2(1,2)])

% Listen to extracted signal ...
if listen soundsc(y,Fs); end;
%%%

With projection pursuit, we can extract estimated source signals y = (y1, . . . , yM)T in
a stepwise manner from M signal mixtures x = (x1, . . . , xM)T using Gram-Schmidt
orthogonalisation (GSO). This involves repeated cycles of extraction of a single signal
yi , followed by subtraction of that signal from the remaining set of signal mixtures. This
operation is repeated until all the estimated source signals have been extracted.

If projection pursuit is applied to the original set of signal mixtures x(0) = (x1(0), . . . ,
xM (0))T then a weight vector w1 is obtained which extracts a signal y1 = wT1 x(0), where
the number in parentheses (0) denotes the original set of mixtures. We can effectively
subtract y1 from each signal mixture xi (0),

xi (1) = xi (0) − E[y1xi (0)]y1
E[y21]

, (C.1)

where E denotes expected value, and the number in parentheses indexes how many recov-
ered signals have been subtracted from the original mixture xi (0). Thus after one signal
y1 has been extracted GSO yields a new set of mixtures x(1) from which y1 has been
subtracted.

GSO ensures that each extracted signal y1 is orthogonal to every mixture of signals yet
to be extracted, so that E[xi (1)y1] = 0 for i = {1, . . . ,M}.

If projection pursuit is now applied to the modified mixtures x(1) = (x1(1), . . . , xM (1))T

then the recovered signal y2 = wT2 x(1) can be subtracted from each mixture xi (1)

xi (2) = xi (1) − E[y2xi (1)]y2
E[y22].

(C.2)

This stepwise extract-and-subtract procedure can be repeated until M estimated source
signals have been extracted.

C Projection Pursuit: Stepwise Separation of Sources

If M unknown source signals s = (s1, s2, . . . , sM)T have a common cumulative density
function (cdf) g and pdf ps then given an unmixing matrix W which extracts M signals
y = (y1, y2, . . . , yM)T from a set of observed signal mixtures x, the entropy of the signals
Y = g(y) is

H(Y) = H(x) + E

[
M∑
i=1

ln ps(yi)

]
+ ln |W|, (D.1)

where yi = wTi x is the i th signal, which is extracted by the i th row of the unmixing matrix
W. This expected value will be computed using N sampled values of the mixtures x.

By definition, the pdf ps of a variable is the derivative of that variable’s cdf g

ps(y) = dg(y)/dy, (D.2)

where this derivative is denoted g′(y) = ps(y), so that we can write

H(Y) = H(x) + E

[
M∑
i=1

ln g′(yi)

]
+ ln |W|. (D.3)

We seek an unmixing matrix W that maximizes the entropy of Y. As the entropy H(x)
of the signal mixtures x is unaffected byW its contribution to H(Y) is constant, and can
therefore be ignored. We can therefore proceed by finding that matrixW that maximizes
the function

h(Y) = E

[
M∑
i=1

ln g′(yi)

]
+ ln |W|, (D.4)

which is the change in entropy associated with the mapping from x to Y. We can find
the optimal matrix W∗ using gradient ascent on h by iteratively adjusting W in order to
maximize the function h. In order to perform gradient ascent efficiently, we require an
expression for the gradient of h with respect to the matrixW.

Evaluating the Gradient of Entropy: General Case

We proceed by finding the partial derivative1 of h with respect one scalar element Wi j

of W, where Wi j is the element of the i th row and j th column of W. The weight Wi j

determines the proportion2 of the j th mixture in the i th extracted signal yi .

D ICA Gradient Ascent

1. See chapter 9 for a brief account of partial derivatives.

2. Strictly speaking,Wi j determines the proportion only if the weights that contribute to yi sum to unity, but this
is of no consequence for our purposes.

166 Appendix D

Given that y = Wx, and that every source signal has the same pdf g′, the partial
derivative of h with respect to the i j th element inW is

∂h

∂Wi j
= E

[
M∑
i=1

∂ ln g′(yi)
∂Wi j

]
+ ∂ ln |W|

∂Wi j
. (D.5)

We will evaluate each of the two derivatives on the right hand side of equation (D.5) in
turn. From the summation in

E

[
M∑
i=1

∂ ln g′(yi)
∂Wi j

]
, (D.6)

we can rewrite the term
∂ ln g′(yi)

∂Wi j
= 1

g′(yi)
∂g′(yi)
∂Wi j

. (D.7)

Using the chain rule

∂g′(yi)
∂Wi j

= dg′(yi)
dyi

∂ yi
∂Wi j

. (D.8)

The derivatives on the right hand side can be rewritten as

dg′(yi)
dyi

= g′′(yi), (D.9)

where g′′(yi) is the second derivative of g with respect to yi , and

∂ yi
∂Wi j

= x j . (D.10)

Substituting equations (D.9) and (D.10) into equation (D.8) yields

∂g′(yi)
∂Wi j

= g′′(yi)x j . (D.11)

Substituting equation (D.11) into equation (D.7) yields

∂ ln g′(yi)
∂Wi j

= 1

g′(yi)
g′′(yi)x j . (D.12)

Substituting equation (D.12) into equation (D.6) yields

E

[
M∑
i=1

∂ ln g′(yi)
∂Wi j

]
= E

[
M∑
i=1

g′′(yi)
g′(yi)

x j

]
. (D.13)

ICA Gradient Ascent 167

For notational convenience we can define

ψ(yi) = g′′(yi)
g′(yi)

, (D.14)

which yields

E

[
M∑
i=1

∂ ln g′(yi)
∂Wi j

]
= E

[
M∑
i=1

ψ(yi) x j

]
. (D.15)

Now, turning our attention to the second term on the right hand side of equation (D.5), we
state without proof

∂ ln |W|
∂Wi j

= [W−T]i j , (D.16)

where we define a special notation for the inverse of the transposed unmixing matrixW

W−T = [WT]−1. (D.17)

Thus [W−T]i j is the i j th element of the inverse of the transposed unmixing matrix W.
Substituting equation (D.16) and equation (D.13) into equation (D.5) yields

∂h

∂Wi j
= [W−T]i j + E

[
M∑
i=1

ψ(yi) x j

]
. (D.18)

If we consider all elements ofW then we have

∇h = W−T + E
[
ψ(y) xT

]
, (D.19)

where3 ∇h is an M × M (Jacobian) matrix of derivatives in which the i j th element is
∂h/∂Wi j (D.19).4

Given a finite sample of N observed mixture values of xt for t = 1, . . . , N and a
putative unmixing matrixW, the expectation E[.] can be estimated as the mean

E
[
ψ(y) xT

]
= 1

N

N∑
t=1

ψ(yt) [xt]T , (D.20)

where yt = Wxt .
Thus the gradient ascent rule, which in its most general form is

Wnew = Wold + η∇h, (D.21)

3. The symbol ∇ is pronounced nabla and terms such as ∇h are often referred to as grad h.
4. The product of an M-element column vector with an M-element row vector (e.g., ψ(y) xT) yields an M × M
matrix, known as the outer product.

168 Appendix D

can be written as

Wnew = Wold + η

(
W−T + 1

N

N∑
t=1

ψ(yT) [xt]T
)

, (D.22)

where η is a small constant. This rule for updatingW maximizes the entropy of Y = g(y).

Evaluating the Gradient For Super-Gaussian Signals

We will now derive an expression for ∇h for a specific cdf of the source signals. A
commonly used cdf to extract super-gaussian source signals is the tanh function. Given
the cdf

g(yt) = tanh(yt), (D.23)

this implies that the pdf g′ is given by the first derivative of tanh is

g′(yt) = 1− tanh2(yt), (D.24)

and that the second derivative of tanh is

g′′(yt) = dg′(yt)/dyt (D.25)

= d(1− tanh2(yt))
dyt

(D.26)

= −2 tanh(yt) d tanh(y
t)

dyt
(D.27)

= −2 tanh(yt) g′(yt), (D.28)

so that

ψ(yt) = g′′(yt)
g′(yt)

(D.29)

= −2 tanh(yt) g′(yt)
g′(yt)

(D.30)

= −2 tanh(yt). (D.31)

Substituting equation (D.31) into equation (D.19) yields

∇h = W−T + E
[
−2 tanh(yt) [xt]T

]
. (D.32)

Given a finite sample of N observed mixture values of xt for t = 1, . . . , N and a putative
unmixing matrixW such that y = Wx, the expectation E[.] can be estimated as the mean

E
[
−2 tanh(y) xT

]
= −2

N

N∑
t=1

tanh(yt) [xt]T . (D.33)

ICA Gradient Ascent 169

The rule for updatingW in order to maximize the entropy of Y = g(y) is therefore

Wnew = Wold + η

(
W−T − 2

N

N∑
t=1

tanh(yt) [xt]T
)

, (D.34)

where η is a small constant.

ICA MatLab Code

This is the core ICA algorithm in MatLab, and is based on the ICA algorithm described in
(Bell & Sejnowski, 1995). The results of running this code are given in figure D.1, and the
final correlation between the original source signals and the extracted signals is > 0.99,
even on this relatively short run of 100 iterations. This code can be downloaded from
http://www.shef.ac.uk/̃ pc1jvs/.

% Basic Bell-Sejnowski ICA algorithm demonstrated on 2 speech signals.
% The default value of each parameter is given in [] brackets.

% [0] Set to 1 to hear signals.
listen=0; % set to 1 if have audio.

% [1] Set random number seed.
seed=9; rand(’seed’,seed); randn(’seed’,seed);

0 20 40 60 80 100
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Iteration

h(
Y

)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Iteration

G
ra

di
en

t M
ag

ni
tu

de

Figure D.1
Results of running ICA MatLab code listed in text on two mixtures of two sound sources.
Left: Graph of function h during gradient ascent. This approximates the entropy of the signals
Y = g(y), where y = xW.
Right: Graph of magnitude of gradient of function h during gradient ascent. At a maximum in h the
gradient magnitude should be zero. As can be seen the gradient magnitude converges toward zero,
suggesting that a maximum has been reached.

170 Appendix D

% [2] M = number of source signals and signal mixtures.
M = 2;
% [1e4] N = number of data points per signal.
N = 1e4;

% Load data, each of M=2 rows contains a different source signal.
% Each row has N columns (signal values).

% Load standard matlab sounds (from MatLab’s datafun directory)
% Set variance of each source to unity.
load chirp; s1=y(1:N); s1=s1/std(s1);
load gong; s2=y(1:N); s2=s2/std(s2);

% Combine sources into vector variable s.
s=[s1,s2]’;

% Make new mixing matrix.
A=randn(M,M)’;

% Listen to speech signals ...
% [10000] Fs Sample rate of speech.
Fs=10000;
if listen soundsc(s(:,1),Fs); soundsc(s(:,2),Fs);end;

% Plot histogram of each source signal -
% this approximates pdf of each source.
figure(1);hist(s(1,:),50); drawnow;
figure(2);hist(s(2,:),50); drawnow;

% Make M mixures x from M source signals s.
x = A*s;

% Listen to signal mixtures signals ...
if listen soundsc(x(1,:),Fs); soundsc(x(2,:),Fs); end;

% Initialise unmixing matrix W to identity matrix.
W = eye(M,M);

% Initialise y, the estimated source signals.
y = W*x;

% Print out initial correlations between
% each estimated source y and every source signal s.
r=corrcoef([y; s]’);
fprintf(’Initial correlations of source and extracted signals\n’);
rinitial=abs(r(M+1:2*M,1:M))

maxiter=100; % [100] Maximum number of iterations.
eta=1; % [0.25] Step size for gradient ascent.

% Make array hs to store values of function and gradient magnitude.
hs=zeros(maxiter,1);
gs=zeros(maxiter,1);

ICA Gradient Ascent 171

% Begin gradient ascent on h ...
for iter=1:maxiter
% Get estimated source signals, y.
y = W*x; % wt vec in col of W.
% Get estimated maximum entropy signals Y=cdf(y).
Y = tanh(y);
% Find value of function h.
detW = abs(det(W));
h = ((1/N)*sum(sum(Y)) + 0.5*log(detW));
% Find matrix of gradients @h/@W_ij ...
g = inv(W’) - (2/N)*Y*x’;
% Update W to increase h ...
W = W + eta*g;
% Record h and magnitude of gradient ...
hs(iter)=h; gs(iter)=norm(g(:));
end;

% Plot change in h and gradient magnitude during optimization.
jfig(1);plot(hs);title(’Function values - Entropy’);
xlabel(’Iteration’);ylabel(’h(Y)’);
jfig(2);plot(gs);title(’Magnitude of Entropy Gradient’);
bookxlabel(’Iteration’);ylabel(’Gradient Magnitude’);

% Print out final correlations ...
r=corrcoef([y s]’);
fprintf(’FInal correlations between source and extracted signals ...\n’);
rfinal=abs(r(M+1:2*M,1:M))

% Listen to extracted signals ...
if listen soundsc(y(1,:),Fs); soundsc(y(2,:),Fs);end;
%%%

Extracting a Single Signal1

Consider a scalar signal mixture yi formed by the application of a weight vector wi to a set
of M signals x = (x1, x2, . . . , xM)T . Given that yi = wTi x, equation (8.2) can be rewritten
as

F = ln
wiCwTi
wi ĈwTi

, (E.1)

where C is an M×M matrix of long-term covariances between signal mixtures, and Ĉ is a
corresponding matrix of short-term covariances (see chapter 8). The long-term covariance
Ci j and the short-term covariance Ĉi j between the i th and j th mixtures are defined as

Ĉi j =
n∑
τ

(xiτ − x̂iτ)(x jτ − x̂ jτ) (E.2)

Ci j =
n∑
τ

(xiτ − xiτ)(x jτ − x jτ). (E.3)

Note that Ĉ and C need only be computed once for a given set of signal mixtures, and that
the terms (xiτ − xiτ) and (xiτ − x̂iτ), can be precomputed using fast filtering operations,
as described in (Eglen et al., 1997) (also see the MatLab code at the end of this appendix).

Gradient ascent on F with respect to wi could be used to maximize F , thereby max-
imising the predictability of yi . The derivative of F with respect to wi is

∇wi F = 2wi
Vi

C − 2wi
Ui

Ĉ . (E.4)

The function F could be maximized using gradient ascent to iteratively update wi until a
maximum of F is located

wi = wi + η∇wi F, (E.5)

where η is a small constant (typically, η = 0.001).
Unfortunately, repeated application of the above procedure to a single set of mixtures

extracts the same (most predictable) source signal. Whilst this can be prevented by using
deflation procedures (e.g., Gram-Schmidt orthonormalisation (GSO), see appendix C), a
more elegant method for extracting all of the sources simultaneously exists, as described
next.

E Complexity Pursuit Gradient Ascent

1. This appendix is based on the analysis presented in (Stone, 2001).

174 Appendix E

Simultaneous Extraction of Signals

The gradient of F is zero at a solution where, from equation (E.4)

wiC = Vi
Ui
wi Ĉ . (E.6)

Extrema in F correspond to values of wi that satisfy equation (E.6), which has the form of
a generalized eigenproblem (Borga, 1998). Solutions for wi can therefore be obtained as
eigenvectors of the matrix (Ĉ−1C), with corresponding eigenvalues γi = Vi/Ui . The first
such eigenvector defines a maximum in F , and each of the remaining eigenvectors define
saddle points in F .

The matrixW = (w1,w2, . . . ,wM)T can be obtained using a generalized eigenvalue
routine. Results presented in chapter 8 were obtained using the MatLab eigenvalue func-
tionWT = eig(C, C̃). All M signals can then be recovered,

y = Wx, (E.7)

where each row of y is one extracted signal yi . See (Borga, 1998) for a review of general-
ized eigenproblems.

If the number M of mixtures is greater than the number of source signals then a
standard procedure for reducing M consists of using principal component analysis (PCA).
PCA is used to reduce the dimensionality of the signal mixtures by discarding eigenvectors
of x which have eigenvalues close to zero (see appendix F).

Complexity Pursuit MatLab Code

This is the core complexity pursuit algorithm in MatLab. The results of running this
code are given in figure E.1. The first part of the code extracts one source signal only,
and is intended to demonstrate how complexity pursuit works on a simple problem. In
order to extract source signals sequentially a form of Gram-Schmidt orthogonalisation
would be required (e.g., see appendix C). The second part of the code extracts all three
signals simultaneously, as described above. The code below can be downloaded from
http://www.shef.ac.uk/̃ pc1jvs.

%%
% Complexity pursuit: Gradient ascent code to extract one signal, and
% code for parallel extraction of all source signals using eig function.
%%

% Set rand number seeds.
seed=1;randn(’state’,seed);rand(’state’,seed);

Complexity Pursuit Gradient Ascent 175

num_sources = 3;
num_mixtures = num_sources;
num_samples = 5000;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GET DATA.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define max mask len for convolution.
max_mask_len= 500;
% [8] n = num half lives to be used to make mask.
n = 8;

% Make source signals as set of increasingly smooth signals.

% Make mask.
% h= half-life of exponential in mask which is then convolved with random signal.
h=2; t = n*h; lambda = 2ˆ(-1/h); temp = [0:t-1]’; lambdas = ones(t,1)*lambda;
mask = lambda.ˆtemp;
mask1 = mask/sum(abs(mask));
h=4; t = n*h; lambda = 2ˆ(-1/h); temp = [0:t-1]’; lambdas = ones(t,1)*lambda;
mask = lambda.ˆtemp;
mask2 = mask/sum(abs(mask));
h=8; t = n*h; lambda = 2ˆ(-1/h); temp = [0:t-1]’; lambdas = ones(t,1)*lambda;
mask = lambda.ˆtemp;
mask3 = mask/sum(abs(mask));

0 20 40 60 80 100
0.85

0.9

0.95

1

1.05

Iteration Number

F
=

lo
g(

V
/U

)

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iteration Number

G
ra

di
en

t M
ag

ni
tu

de

Figure E.1
Results of running complexity pursuit (CP) MatLab code listed in text on three mixtures of three
sound sources.
Left: Graph of predictability function F of extracted signal y during gradient ascent, where F is
inversely related to complexity.
Right: Graph of weight vector magnitude during gradient ascent. The initial correlations between
the extracted signal and the three source signals are [0.597 0.724 0.409], and the final correlations
are [0.075 0.972 0.252], indicating that the gradient ascent method has extracted source signal 2.
Corresponding results for the parallel method are superior with correlations for this extracted signal
of [0.015 0.999 0.004].

176 Appendix E

sources = randn(num_samples,num_sources);
sources(:,1)=filter(mask1,1,sources(:,1));
sources(:,2)=filter(mask2,1,sources(:,2));
sources(:,3)=filter(mask3,1,sources(:,3));

% Transpose data.
mixtures=mixtures’;
sources=sources’;

% Make mixing matrix.
A = randn(num_sources,num_sources)’;

% Make mixtures.
mixtures = A*sources;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% COMPUTE V AND U.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Set short and long half-lives.
shf = 1;
lhf = 900000;

%%%
% Get masks to be used to find (x_tilde-x) and (x_bar-x)
% Set mask to have -1 as first element, and remaining elements must sum to unity.

% Short-term mask.
h=shf; t = n*h; lambda = 2ˆ(-1/h); temp = [0:t-1]’;
lambdas = ones(t,1)*lambda; mask = lambda.ˆtemp;
mask(1) = 0; mask = mask/sum(abs(mask)); mask(1) = -1;
s_mask=mask; s_mask_len = length(s_mask);

% Long-term mask.
h=lhf;t = n*h; t = min(t,max_mask_len); t=max(t,1);
lambda = 2ˆ(-1/h); temp = [0:t-1]’;
lambdas = ones(t,1)*lambda; mask = lambda.ˆtemp;
mask(1) = 0; mask = mask/sum(abs(mask)); mask(1) = -1;
l_mask=mask; l_mask_len = length(l_mask);
%%%

% Filter each column of mixtures array.
S=filter(s_mask,1,mixtures’)’;
L=filter(l_mask,1,mixtures’)’;

% Find short-term and long-term covariance matrices.
U=cov(S’,1);
V=cov(L’,1);

%%%
% FIND **SINGLE** SOURCE SIGNAL USING GRADIENT ASCENT.
%%%
cl=V;

cs=U;

Complexity Pursuit Gradient Ascent 177

% Make initial weight vector.
w=randn(1,num_sources);
w=w/norm(w);
w0=w;

% Use initial w0 to extract source
y0=w0*mixtures;

% Find correlation of y0 with sources
rs0=corrcoef([y0; sources]’);
fprintf(’Using Grad ascent: \n’);
fprintf(’Correlation of signal with sources extracted by initial w ...\n’);
abs(rs0(1,2:4))

% Set learning rate ...
eta=1e-1;
% Set max number of iterations ...
maxiter=100;

% Make arrays to store results.
gs=zeros(maxiter,1); % gradient magnitude |g|
Fs=zeros(maxiter,1); % function value F

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Do gradient ascent ...
for i=1:maxiter

% Get value of function F
Vi = w*cl*w’;
Ui = w*cs*w’;
F = log(Vi/Ui);

% Get gradient
g = 2*w*cl./Vi - 2*w*cs./Ui;

% Update w
w = w + eta*g;

% Record results ...
Fs(i)=F;
gs(i)=norm(g);

end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Plot results ...
figure(1); plot(Fs); xlabel(’Iteration Number’); ylabel(’F=log(V/U)’);
figure(2); plot(gs); xlabel(’Iteration Number’); ylabel(’Gradient Magnitude’);

% Use w to extract source
y1=w*mixtures;

178 Appendix E

% Find correlation of y1 with sources
rs=corrcoef([y1; sources]’);
fprintf(’Using Grad ascent:\n’);
fprintf(’ Correlation of signal with sources extracted by initial w\n’);
abs(rs(1,2:4))

%%%
% NOW USE W MATRIX FROM EIG FUNCTION TO EXTRACT **ALL** SOURCES.
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Find optimal solution as eigenvectors W.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[Wtemp d]=eig(V,U);
W=Wtemp’; W=real(W);

ys = W*mixtures;
a=[sources; ys]’; c=corrcoef(a);
rs=c(1:num_sources,num_sources+1:num_sources*2);
fprintf(’Using EIG: Correlations between sources and all recovered signals\n’);
abs(rs)
%%%

The printed output of the above code is as follows.

Using Grad ascent: Correlation of single with sources extracted by initial w ...
0.5974 0.7237 0.4092

Using Grad ascent: Correlation of single with sources extracted by initial w ...
0.0750 0.9720 0.2521

Using EIG: Correlations between sources and all recovered signals ...
0.1334 0.9919 0.0153
0.0396 0.0026 0.9995
0.9988 0.0397 0.0044

Most implementations of ICA require a square M × M unmixing matrixW, where M is
the number of signal mixtures. However, this can involve very large matrices. Principal
component analysis (PCA) can be used to to reduce the size ofW, e.g., see (Stone et al.,
2002). This is achieved by finding an approximation to the M signal mixtures in terms
of K < M new signal mixtures, where these K new mixtures are principal components.
As the data are now approximated by K principal components (PCs), a smaller K × K
unmixing matrix is required. Note that ICA would work equally well on the full set of M
new mixtures (PCs) as it would on the M observed mixtures x, but that representing x as a
set of principal components permits “irrelevant” aspects of the data to be discarded.

Given an M × N data array x, each of the M N -element row vectors in x defines a
single point in an N -dimensional space. If most of these points lie in a K -dimensional
subspace (where K
 N) then we can use K judiciously chosen basis vectors to represent
the M rows of x. For example, if all N points in a cube (i.e., an M = 3 dimensional space)
lie on one face of the cube then we can describe the points in terms of only two basis
vectors defined by K = 2 edges of that face. Such a set of K N -element basis vectors can
be obtained as eigenvectors using PCA.

A very general and useful form of PCA is singular value decomposition (SVD) (Press
et al., 1989, Lay, 1997).

In order to deal with a concrete example we assume that the columns of x contain a
temporal sequence of images, such that each column contains an image associated with
time t , as in chapter 7. Given that each column of x is an image vector of M pixels, this
implies that each column of U is a spatial eigenvector or eigenimage, and each column of
V is a temporal eigenvector or eigensequence.

Singular Value Decomposition

Given a set of signal mixtures x = (x1, x2, . . . , xN)T in the form of an M × N array of N
temporal mixtures, each measured over M time steps, SVD provides a decomposition of
the form

x = UDV T , (F.1)

where U = (U1,U2, . . . ,UN) is an M × N matrix of N (spatial) column eigenvectors,
V = (V1, V2, . . . , VN) is an N × N array of N (temporal) column eigenvectors, and D is
an N × N diagonal matrix of N ordered singular values. Each singular value is equal to
λ1/2, where λ is an eigenvalue of one eigenvector inU and V . More formally, the columns
in U are the left singular vectors and the columns in V are the right singular vectors of x.
The eigenvectors in the columns ofU and V are orthogonal and are therefore uncorrelated.

F Principal Component Analysis for Preprocessing Data

180 Appendix F

By convention SVD provides unit length eigenvectors in U and V . See section 10.3 for a
formal definition of eigenvectors.

Each eigenvalue specifies the amount of variance associated with the direction defined
by a corresponding eigenvector in U and V . We can therefore discard eigenvectors with
small eigenvalues because these account for trivial variations in the data set. If we discard
all data associated with eigenvalues below some value then we are left with K eigenvectors
which provide a reasonable approximation x̃ to the original data x:

x ≈ x̃ = Ũ D̃Ṽ T . (F.2)

Note that Ũ is an M × K matrix of K column eigenvectors, Ṽ T is a K × M matrix of K
row eigenvectors, and D̃ is a diagonal K × K matrix of K singular values.

We could perform ICA on U in order to extract independent components. However
the results would be the same as performing ICA on x. This is because U is a linear
transformation of x, so that each column in U is a linear combination of columns in
x. Therefore each column of U is simply a new mixture of source signals. However,
performing ICA on U would not reduce the size ofW.

Given that we require a small unmixing matrixW, it is desirable to use Ũ instead of
x (or equivalently U) for spatial ICA (sICA), and Ṽ instead of xT (or equivalently V) for
temporal ICA (tICA). The basic method consists of performing ICA on Ũ or Ṽ to obtain
K signals, and then using the relation x̃ = Ũ D̃Ṽ T to recover the unknown mixing matrix
A.

tICA Using SVD

Using tICA, each row of x is considered to be a temporal signal mixture

y = Wx, (F.3)

where each N -element row of y is an extracted signal andW is an N×N matrix. Replacing
the M × N data array x with the K × N matrix Ṽ T in Equation F.3 yields

y = WṼ T , (F.4)

whereW is now a K×K matrix, and each row of the K×N matrix Ṽ T is an eigensequence.
In this case, ICA extracts K N -element sequences y.

The set of dual images would normally be found in the matrix A = W−1, where each
image corresponds to one of the K extracted temporal signals. However, becauseW is a
K × K matrix (and its inverse is the same size) A =W−1 each image vector in A has only
K pixels. We can estimate the M-pixel images as follows.

Principal Component Analysis for Preprocessing Data 181

Assuming that y = s,

Ṽ T = Ay (F.5)

= W−1y, (F.6)

and given that
x̃ = Ũ D̃Ṽ T (F.7)

we have

x̃ = Ũ D̃W−1y (F.8)

= Ay, (F.9)

from which it follows that

A = Ũ D̃W−1, (F.10)

whereA is an M×K matrix in which each column is an image. Thus, we have extracted K
independent N -element sequences and their corresponding dual M-element images using
a K × K unmixing matrixW.

sICA Using SVD

Using sICA, each row of xT is considered to be a spatial signal mixture, or image. We
can use SVD to find K independent images and their corresponding dual time courses, as
follows.

Replacing xT with Ũ T in y = WxT yields

y = WŨ T , (F.11)

where each row of the K × M matrix Ũ T is an eigenimage, andW is a K × K matrix. In
this case, ICA recovers K M-element images.

The set of dual temporal sequences corresponding to the K extracted spatial signals
can be obtained as follows. If the extracted signals y are equal to the K source signals s
then A = W−1 so that

Ũ T = Ay (F.12)

= W−1y. (F.13)

Given that
x̃T = Ṽ D̃Ũ T , (F.14)

182 Appendix F

()

we can substitute Equation F.6 in Equation F.14

x̃ = Ṽ D̃W−1y (F.15)

= Ay, (F.16)

from which it follows that
A = Ṽ D̃W−1, (F.17)

where A is a matrix in which each column is a temporal sequence. Thus, we have extracted
K M-pixel images and their corresponding dual N -element time courses using a K × K
unmixing matrixW.

Note that using SVD in this manner requires an assumption that the source signals
are not distributed amongst the “smaller” eigenvectors, which are usually discarded. The
validity of this assumption is by no means guaranteed, e.g., (Green et al., 2002). For this
reason, it may be preferable to specify the exact number K (where K is no larger than the
number M of signal mixtures) of signals to be extracted by ICA from the original data set
using a non-square M × K unmixing matrix (Porrill & Stone, 1997, Amari, 1999, Penny
et al., 2001).

Books

Bartlett, M. S., (2001), Face Image Analysis by Unsupervised Learning. Kluwer Academic
Publishers; International Series on Engineering and Computer Science, Boston.

Cichocki, A., and Amari, S-I., (2002), Adaptive Blind Signal and Image Processing—
Learning Algorithms and Applications. New York, John Wiley and Sons.

Girolami, M., (1999), Self-Organising Neural Networks: Independent Component Analy-
sis and Blind Source Separation. London, Springer-Verlag.

Girolami, M, editor, (2000), Advances in Independent Component Analysis, (Perspectives
in Neural Computing). London, Springer-Verlag.

Haykin, S., editor, (2000), Unsupervised Adaptive Filtering: Blind Source Separation.
John Wiley and Sons.

Hyvärinen, A., Karhunen, J., and Oja, E., (2001), Independent Component Analysis.
London, John Wiley and Sons.

Lee, T. W., (1999), Independent Component Analysis: Theory and Applications. Kluwer
Academic Publishers.

Roberts S., and Everson, R., editors, (2001), Independent component analysis: principles
and practice. Cambridge UK, Cambridge University Press.

Mailing List

http://tsi.enst.fr/̃ cardoso/icacentral/mailinglist.html

Annual Conference

Papers presented at ICA2004, the fifth international meeting in the series, can be found
at http://ica2004.ugr.es. This includes links to papers presented at previous conference
meetings.

Demonstrations and Software on the Web

A good place to start is http://www.cnl.salk.edu/̃ tony/ica.html

ICA MatLab code for two-dimensional images, which includes skew-pdf model for image
analysis and spatiotemporal ICA options. Uses second order (conjugate gradient) method:
http://www.shef.ac.uk/̃ pc1jvs

G Independent Component Analysis Resources

184 Appendix G

ICA MatLab code: http://mole.imm.dtu.dk/toolbox/

A comprehensive ICA MatLab package (the fastICA algorithm is included):
http://www.bsp.brain.riken.go.jp/ICALAB/

MatLab code for EEG analysis: http://sccn.ucsd.edu/̃ scott/ica.html

FastICA MatLab package for projection pursuit: http://www.cis.hut.fi/projects/ica/fastica/

Complexity Pursuit: Blind source separation using temporal predictability. MatLab code
available from: http://www.shef.ac.uk/̃ pc1jvs

Relative Newton Method for Blind Source Separation: MatLab code and paper available
from: http://iew3.technion.ac.il/̃ mcib

Introductory Texts

Abbot, P., (1977). Calculus. Teach Yourself Series, London, Hodder and Stoughton.
Originally published in 1940, this remains an excellent tutorial introduction to calculus.

Ballard, D., (1997). An Introduction to Natural Computation. MIT Press, Cambrdige,
MA.
Expansive tutorial introduction to several core methods, such as vector matrix algebra,
and principal component analysis.

Bishop C.M., (1996). Neural Networks for Pattern Recognition. Oxford UK, Oxford
University Press.
Although this is principally a book on artificial neural networks, it is an excellent and
thorough introduction to maximum likelihood estimation and Bayesian methods.

Cowan, G., (1998). Statistical Data Analysis. Oxford, UK, Clarendon Press.
Sivia, D.S., (1996). Data Analysis: A Bayesian Tutorial. Oxford, UK, Clarendon Press.
Both of these slim volumes provide excellent tutorial accounts of Bayesian methods, maxi-
mum likelihood estimation and probability density functions.

Lay, D.C., (1997). Linear Algebra and its Applications. New York, Addison-Wesley.
A thorough geometric introduction to vector matrix algebra and principal component
analysis.

Reference Texts

Cover, T.M., and Thomas, J.A., (1991). Elements of Information Theory. New York, John
Wiley and Sons.
The modern reference book on information theory.

DeGroot, M.H., (1986). Probability and Statistics, 2nd Edition, Addison-Wesley, London.
A very thorough, although demanding, account of probability and probability density
functions.

Everitt, B.S., and Dunn, G., (2001). Applied Multivariate Analysis. New York, Oxford
University Press.
Includes a thorough account of principal component analysis and factor analysis.

Everitt, B.S., (1984). An Introduction to Latent Variable Methods, London, Chapman and
Hall.
The modern standard on factor analysis.

H Recommended Reading

186 Appendix H

Press, W.H., and Flannery, B.P., and Teukolsky, S.A., and Vetterling, W.T., (1989). Nu-
merical Recipes in C. Cambridge UK, Cambrdige University Press.
Originally intended as a set of practical computer programs in various languages, the text
accompanying each program is so lucid that this book is an excellent reference for topics
such as gradient ascent optimisation, conjugate gradients.

Reza, F.M., (1961). Information Theory, McGraw-Hill Inc. Reprint, New York, Dover
Publications, 1994.
An old book (originally published in 1961), but still a good substitute for Cover and
Thomas.

Amari, A, Cichocki, A, & Yang, HH. 1996. A new learning algorithm for blind signal
separation. Pages 757–763 of: Touretzky, DS, Mozer, MC, & Hasslemo, ME (eds),
Advances in neural information processing systems 8. Cambridge, MA, MIT Press.

Amari, S. 1998. Natural gradient works efficiently in learning. Neural computation, 10,
251–276.

Amari, S. 1999. Natural gradient learning for over- and under-complete bases in ica.
Neural computation, 11, 1875–1883.

Araujo, D., Barros, A. K., Baffa, O., Wakai, R., Zhao, H., & Ohnishi, N. 2003 (April).
Fetal magnetocardiographic source separation using the poles of the autocorrelation
function. Pages 833–836 of: Ica03: Fourth international symposium on ica and blind
signal separation.

Attias, H. 2000. Independent factor analysis with temporally structured factors. In: Solla,
SA, Leen, TK, &Mller, KR (eds), Advances in neural information processing systems
12. Cambridge, MA, MIT Press.

Back, AD, & Weigend, AS. 1997. A first application of independent component analysis
to extracting structure from stock returns. International journal of neural systems,
8(4), 473–484.

Barlow, HB. 1981. Cortical limiting factors in the design of the eye and the visual cortex.
Proceedings royal society london b, 212, 1–34.

Bartlett, MS. 2001. Face image analysis by unsupervised learning. Boston, Kluwer
Academic Publishers.: Kluwer International Series on Engineering and Computer
Science.

Bell, AJ, & Sejnowski, TJ. 1995. An information-maximization approach to blind separa-
tion and blind deconvolution. Neural computation, 7, 1129–1159.

Bell, AJ, & Sejnowski, TJ. 1997. The independent components of natural scenes are edge
filters. Vision research, 37(23), 3327–3338.

Borga, M. 1998. Learning multidimensional signal processing. Linkoping university,
sweden.

Brown, GD, Yamada, S, & Sejnowski, TJ. 2001. Independent components analysis (ica) at
the neural cocktail party. Trends in neuroscience, 24(1), 54–63.

References

188 References

Cardoso, J. 2000. On the stability of source separation algorithms. Journal of vlsi signal
processing systems, 26(1/2), 7–14.

Cardoso, J-F. 1997. Infomax and maximum likelihood for blind source separation. Ieee
signal processing letters, 4(4), 112–114.

Chatfield, C, & Collins, AJ. 2000. Introduction to multivariate analysis. London, Chap-
manand Hall/CRC.

Cichocki, A, & Amari, S. 2002. Adaptive blind signal and image processing - learning
algorithms and applications. London, John Wiley and Sons.

Cover, TM, & Thomas, JA. 1991. Elements of information theory. New York, John Wiley
and Sons.

DeGroot, MH. 1986. Probability and statistics, 2nd edition. UK, Addison-Wesley.

Eglen, S, Bray, A, & Stone, JV. 1997. Unsupervised discovery of invariances. Network, 8,
441–452.

Everitt, BS. 1984. An introduction to latent variable methods. London, Chapman and Hall.

Friedman, JH, , & JW, Tukey. 1974. A projection pursuit algorithm for exploratory data
analysis. Ieee transactions on computers, 23(9), 881–890.

Fyfe, C, & Baddeley, R. 1995. Non-linear data structure extraction using simple hebbian
networks. Biological cybernetics, 72, 533–541.

Green, CG, Nandy, RR, & Cordes, D. 2002. Pca-preprocessing of fmri data adversely
affects the results of ica. Proceedings of international society of magnetic resonance
in medicine, 10.

Hyvärinen, A. 2001. Complexity pursuit: Separating interesting components from time
series. Neural computation, 13, 883–898.

Hyvärinen, A, & Oja, E. 1997. A fast fixed-point algorithm for independent component
analysis. Neural computation, 9(7), 1483–1492.

Hyvärinen, A, Karhunen, J, & Oja, E. 2001a. Independent component analysis. New York,
John Wiley and Sons.

Hyvärinen, A, Hoyer, PO, & Inki, M. 2001b. Topographic independent component analy-
sis. Neural computation, 13(7), 1527–1574.

References 189

Jessop, A. 1995. Informed assessment: An introduction to information, entropy and
statistics. London, Ellis Horwood.

Kruskal, JB. 1969. Toward a practical method which helps uncover the structure of a
set of observations by finding the line transformation which optimizes a new “index
of condensation”. Pages 427–440 of: Milton, RC, & Nelder, JA (eds), Statistical
computation. New York, Academic Press.

Lay, DC. 1997. Linear algebra and its applications. New York, Addison-Wesley.

Lee, T-W. 2001. Independent component analysis. London, Kluwer Academic Press.

Lee, T-W, Bell, AJ, & Lambert, R. 1997. Blind separation of delayed and convolved
sources. Pages 758–764 of: Neural information processing systems 9. Cambridge,
MA, MIT Press.

Lewicki, MS. 1998. A review of methods for spike sorting: the detection and classification
of neural action potentials. Network: Computation in neural systems, 9(4), 53–78.

Lewicki, MS, & Sejnowski, TJ. 2000. Learning overcomplete representations. Neural
computation, 12, 337–365.

Makeig, S, Jung, T, Bell, AJ, Ghahremani, D, & Sejnowski, TJ. 1997. Blind separation
of auditory event-related brain responses into independent components. Proceedings
national academy of sciences of the united states of america, 94, 10979–10984.

McKeown, MJ, Makeig, S, Brown, GG, Jung, TP, Kindermann, SS, & Sejnowski, TJ. 1998.
Spatially independent activity patterns in functional magnetic resonance imaging data
during the stroop color-naming task. Proceedings national academy of sciences of the
united states of america, 95(Feburary), 803–810.

Molgedey, L, & Schuster, HG. 1994. Separation of a mixture of independent signals using
time delayed correlations. Physical review letters, 72(23), 3634–3637.

Pearlmutter, BA, & Parra, LC. 1996. A context-sensitive generalization of ica. In: In-
ternational conference on neural information processing, hong kong. Available from
http://www.cs.unm.edu/b̃ap/publications.html#journal.

Penny, WD, Roberts, SJ, & Everson, RM. 2001. Ica: Model order selection and dynamic
source models. Pages 299–314 of: Roberts, S, & Everson, R (eds), Independent
component analysis : principles and practice. Cambridge, UK, Cambridge University
Press.

190 References

Polder, G, & van der Heijden, GWAM. 2003. Estimation of compound distribution in
spectral images of tomatoes using independent component analysis. Pages 57–64
of: Leitner, R. (ed), Spectral imaging, international workshop of the carinthian tech
research. Austrian Computer Society.

Porrill, J, & Stone, JV. 1997 (August). Independent components analysis for signal sepa-
ration and dimension reduction. Tech. rept. 124. Psychology Department, Sheffield
University, Sheffield, UK, available from http://www.shef.ac.uk/̃ pc1jvs.

Press, WH, Flannery, BP, Teukolsky, SA, & Vetterling, WT. 1989. Numerical recipes in c.
Cambridge, UK, Cambridge University Press.

Reza, FM. 1961. Information theory. New York, McGraw-Hill.

Sivia, DS. 1996. Data analysis: A bayesian tutorial. Oxford, UK, Clarendon Press.

Stone, J V. 1996a. A canonical microfunction for learning perceptual invariances. Percep-
tion, 25(2), 207–220.

Stone, J V. 1996b. Learning perceptually salient visual parameters through spatiotemporal
smoothness constraints. Neural computation, 8(7), 1463–1492.

Stone, J V, & Lister, R. 1994. On the relative time complexities of standard and conjugate
gradient back-propagation. Pages 84–87 of: Proceedings of the ieee international
conference on neural networks, orlando, fl.

Stone, JV. 1999. Learning perceptually salient visual parameters using spatiotemporal
smoothness constraints. Pages 71–100 of: Hinton, G, & Sejnowski, T (eds), Unsu-
pervised learning:foundations of neural computation. London, MIT Press.

Stone, JV. 2001. Blind source separation using temporal predictability. Neural computa-
tion, 13(7), 1559–1574.

Stone, JV, & Porrill, J. 1999. Regularisation using spatiotemporal independence and
predictability. Sheffield university technical report 201.

Stone, JV, Porrill, J, Porter, NR, &Wilkinson, IW. 2002. Spatiotemporal independent com-
ponent analysis of event-related fmri data using skewed probability density functions.
Neuroimage, 15(2), 407–421.

Xie, S, He, Z, & Fu, Y. (in press). A note on stone’s conjecture of blind signal separation.
Neural computation.

angle
 between vectors, 37
artifi cial neural network, 145

blind source separation, 5

central limit theorem, 56
 informal defi nition, 55
central moment, 58, 131
color magnetic resonance images, 143
column
 number, convention, 42
column vector, 23
complexity, 14
 and predictability, 112
 Kolmogorov, 112
complexity conjecture, 111
complexity pursuit, 112
 gradient ascent, 173
 software, 184
correlation, 62
 and independence, 61
 and statistical independence, 63
covariance, 62, 131
covariance matrix, 131
cumulative density function, 57

determinant, 95
dot product, 37, 152
dual set, 105

EEG, see electroencephalogram
eigenimage, 179
eigensequence, 179
eigenvalue, 130, 180
eigenvector, 130, 180
 defi nition, 131
electroencephalogram
 independent component analysis, 140
entropy, 83, 86
 as surprise, 87
 defi nition, 89
 differential, 89
 evaluating, 89
 joint, 83, 93
 maximum, 89
 multivariate, 93
 relative, 93
ERP, see electroencephalogram
expectation, 58

expected value, 58
 kurtosis, 73, 157
exploratory projection pursuit, see projection pursuit

face recognition, 10
factor analysis, 9, 129, 133
fMRI, see functional magnetic resonance imaging
functional magnetic resonance imaging
 independent component analysis, 141

gaussian distribution, 55
 defi nition, 56
gaussian pdf
 signal mixture, 71
gradient ascent, 119
 Hessian matrix, 126
 multivariate, 122
 second order methods, 126
 univariate, 120
Gram-Schmidt orthogonalisation, 75, 130, 157, 163

Hessian matrix, 126
histogram, 51
 probability density, 53
 probability density function, 53

ICA, see independent component analysi
independence, see statistical independence
independent component analysis
 and blind source separation, 5
 applications, 139
 cdf-matching, 86, 93
 color magnetic resonance images, 143
 electroencephalogram, 140
 functional magnetic resonance imaging, 141
 gradient ascent, 165
 infomax and MLE, 103
 MatLab code, 169
 maximum likelihood estimation, 99
 resources, 183
 software, 183
 spatial, 108
 spatiotemporal, 109
 speech, 139
 temporal, 106
infomax, 84
infomax ICA, 83
inner product, 37, 152
 geometry, 38
 orthogonal projection, 39

 Index

192 Index

invertible function, 84

Jacobian, 101
 multivariate defi nition, 95
 univariate defi nition, 92
Jacobian matrix, 95
joint pdfs, 61
joint probability, 81

Kolmogorov complexity, 112, 113
Kullback-Leibler divergence, 72, 93
kurtosis
 defi nition, 60
 expected value, 73, 157
 non-normality, 73

leptokurtotic, 72
likelihood function, 102
linear transformation, 31, 155
log likelihood function, 102

marginal pdfs, 61
matrix, 153
 covariance, 131
 linear transformation, 155
 mixing, 42
 size, convention, 42
 unmixing, 41
maximum entropy, 88, 89
maximum entropy pdf, 57
maximum likelihood estimate, 102, 103
maximum likelihood estimation
 and ICA, 99
mesokurtotic, 72
mixing coeffi cients, 21, 25, 26
mixing signals, 13
MLE, see maximum likelihood estimation
moment
 central, 58
 numerical evaluation, 60
moments of pdf, 58
mutual information, 84, 99

natural gradient, 127
normal distribution, 55
normality, 13
number
 source signals, 17, 110, 182

orthogonal projection, 24
 inner product, 39
outer product, 167

partial derivative, 124
perception, 8
 stereo disparity, 145
platykurtotic, 72
predictability
 and complexity, 112
 defi nition, 113
principal component analysis, 9, 17, 129, 157, 179
 of speech, 131
 reducing sensor noise, 76
probability
 joint, 81
 of independent events, 79
probability density, 53
probability density function, 53
 gaussian, 55
 joint, 61, 81
 marginal, 61, 81
 speech, 80
projection pursuit, 71
 and ICA, 75
 MatLab code, 158
 software, 184

row
 number, convention, 42
row vector, 23

scalar product, 37, 152
scalar variable, 21
second order methods
 BFGS, 126
 conjugate gradients, 126
signal mixture
 gaussian, 71
signal mixtures, 5, 13
 number, 17
singular value, 180
singular value decomposition, 157, 179
skewness
 defi nition, 59
source signals, 5, 13
 number, 17, 110, 182
spatial ICA, 108
spatiotemporal ICA, 109

Index 193

speech
 independent component analysis, 139
sphering, 157
standard deviation, 59
statistical independence, 13
 and correlation, 63
 and joint pdfs, 61
 defi nition, 61
 ICA, 79
 of joint and marginal pdfs, 79
stereo disparity, 145
sub-gaussian, 72
super-gaussian, 72

temporal ICA, 106
transpose
 matrix, 156
 vector, 153
transpose operator, 23

unmixing
 general strategy, 14
unmixing coeffi cients, 21, 27
unmixing matrix
 non-square, 17, 110, 182

variance, 59
vector, 23, 151
 angle, 152
 basis, 179
 column, 23, 36
 dual, 105
 inner product, 37
 length, 34
 matrix multiplication, 154
 multiplication, 152
 orientation, 34
 outer product, 167
 resultant, 124, 151
 row, 23, 36
 subtraction, 152
 sum, 124, 151
 transpose, 36, 153
vector variable, 23

weight vector, 34
whitening, 157

	Contents
	Preface
	Acknowledgments
	Abbreviations
	Mathematical Symbols
	I INDEPENDENT COMPONENT ANALYSIS AND BLIND SOURCE SEPARATION
	1 Overview of Independent Component Analysis
	2 Strategies for Blind Source Separation
	II THE GEOMETRY OF MIXTURES
	3 Mixing and Unmixing
	4 Unmixing Using the Inner Product
	5 Independence and Probability Density Functions
	III METHODS FOR BLIND SOURCE SEPARATION
	6 Projection Pursuit
	7 Independent Component Analysis
	8 Complexity Pursuit
	9 Gradient Ascent
	10 Principal Component Analysis and Factor Analysis
	IVAPPLICATIONS
	11 Applications of ICA
	VAPPENDICES
	A A Vector Matrix Tutorial
	B Projection Pursuit Gradient Ascent
	C Projection Pursuit: Stepwise Separation of Sources
	D ICA Gradient Ascent
	E Complexity Pursuit Gradient Ascent
	F Principal Component Analysis for Preprocessing Data
	G Independent Component Analysis Resources
	H Recommended Reading
	References
	Index

