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The problem of source separation appears in many contexts. The most simple situationoccurs for two speakers. If the mixture of their voices reaches two microphones one wants toseparate both sources such that each detector registers only one voice [1]. Typical examplesinvolving many sources and many receivers are the separation of radio or radar signals byan array of antennas [2], the separation of odors in a mixture by an array of sensors, theparsing of the environment into di�erent objects by our visual system [3] or the separationof biomagnetic sources by an array of SQUIDS in magnetoencephalography [4].In 1986 Jutten and Herault [5] proposed an adaptive neural network to perform this task.It decorrelates the incoming signals via an inhibitory interaction between the output neu-rons. These authors [5{7] and recently Hop�eld [8] have demonstrated by ways of numericalsimulations that their method often works. However is range of applicability ist still openand there are situations where it fails.In this Letter we include more information about the time structure of the sources intothe adaptation process for the inhibitory interactions, i.e., we require that not only the equaltime but also the time delayed correlations between the di�erent output signals vanish. Thisleads to the following results:� The problem of separating n linear superimposed uncorrelated sources and determingtheir mixing coe�cents is reduced to an eigenvalue problem which requires the simul-taneous diagonalization of two symmetric matrices.� The learning rule for the lateral inhibitory interactions between the neurons is givenby the gradient of a cost function whose number of minima is equal to the number ofdegenerate solutions.� For Gaussian sources we �nd qualitatively the same equations of motion for the in-hibitory interactions as Jutten and Herauld but augmented by contributions arisingfrom the delay terms that are necessary for convergence.The source separation problem can be stated mathematically as follows. Assuming that2



the number of sources and detectors are equal, the input Ii (i = 1 : : : n) to each receiveris a linear mixture Ii(t) = Pnj=1 Cijaj(t) of statistical independent equilibrium signals i.e.hai(t)aj(t0)i = Ki(jt � t0j)�ij. Without restriction we assume that the mean value of thesignals is zero hai(t)i = 0. The problem is now to determine the coe�cients Cij and thesource strengths �i = Ki(0) from a measurement of Ii(t) .Since the matrix C is generally not symmetric it is not su��cient to measure the sym-metric correlation matrix hIi(t)Ij(t)i = Mij. Jutten and Herault [6] proposed to measurenonlinear correlations like hIi(t)Ij(t)3i which are nonsymmetric. Instead we suggest to mea-sure in addition to Mij the time delayed correlation matrix < Ii(t)Ij(t + �)i = �Mij. Thisyields n(n + 1) equationsMij =Xl CilCjl�l and �Mij =Xl CilCjl��l (1)for the n(n + 1) unknowns Ci6=j, �i and ��i = Ki(�).If the mixing is linear independent i.e. detC 6= 0 and the time delay parameter � hasbeen chosen such that Ki(0)Kj(�) = �i��j 6= ��i�j = Ki(�)Kj(0) for all i 6= j, the problem issolvable up to n! trivial permutations.Equation (1) shows that by construction the matrix C diagonalizes M and �M simulta-neously i.e. C�1M(CT)�1 = � and C�1 �M(CT)�1 = ��. But the elements of �ij = �i�ij and��ij = ��i�ij are not simply the eigenvalues of the matrices M and �M because generally C isnot an orthogonal matrix. Instead equation (1) leads to the eigenvalue problem(M �M�1)C = C(� ���1): (2)We note that usuallyM �M�1 is not symmetric and the diagonal elements ofC are normalizedto unity. Equation (2) can be solved by standard techniques of numerical linear algebra.In order to compare our method to that of Jutten and Herault [5] and Hop�eld [8] wenext we proceed to solve eqn. (2) by an neural network whose architecture for n = 2 is shownin Figure 1. We follow [5{8] and use linear neurons such that the output is determined by:ui(t+ 1) = � nXj=1Tijuj(t) + Ii(t); (3)3



where T is the matrix of inhibitory connections with zero diagonal elements. We also assumeas in [5{8] that the time variation of the signals is slow, so that eqn. (3) can be solved as~u(t) = (1+T)�1~I(t): (4)The matrix T is determined by the minima of the cost functionV fTpqg =Xi6=jhui(t)uj(t)i2 + hui(t)uj(t+ �)i2; (5)which occurs if the output correlations between di�erent neurons vanish i.e.hui(t)uj(t)i=hui(t)uj(t+ �)i = 0 for i 6= j.By using the explicit form of ~u according to eqn. (4) this means that the matrices(1+T)�1M(1 +TT)�1 and (1+T)�1 �M(1+TT)�1 are diagonalised by (1+T). Thereforeat the minima of V fTpqg the interaction matrix yields up to a permutation P the elementsof the mixing matrix: (1 +T) = PC, where P is a permutation matrix. The elements Tijcan be determined from V by gradient descent:_Tpq / � @V@Tpq : (6)To compare our result with that of Jutten and Herault, we consider the case n = 2 forGaussian signals. Then we obtain from eqn. (6)_T12 / hI2(t)u2(t)ihu1(t)u2(t)i+ hI2(t)u2(t+ �)ihu1(t)u2(t+ �)i (7)_T21 / hI1(t)u1(t)ihu1(t)u2(t)i+ hI1(t + �)u1(t)ihu1(t)u2(t+ �)iand from eqn. (34) of [6]_T12 / hu1(t)u2(t)3i = 3hu2(t)u2(t)ihu1(t)u2(t)i (8)_T21 / hu2(t)u1(t)3i = 3hu1(t)u1(t)ihu1(t)u2(t)iIf we neglect in eqn. (7) the delay terms, then eqns. (7) and (8) yield viahu1(t)u2(t)i = g(T12; T21) = 0 the same lines of �xed points shown in Figure 2a. Only theinclusion of the delay terms i.e. the full eqn. (7) drives the system to the correct pair of4



stable �xed points T12 = C12, T21 = C21 and T 012 = 1=C21, T 021 = 1=C12 depicted in Figure2b. In Figure 3 we compare the least squares method [9] with our approach for experimentalspeech signals (cries from di�erent babies [10]) which have been mixed by a matrix witho�diagonal elements C12 = 0:9 and C21 = 0:7. It follows again that the use of time delayedcorrelation functions improves the source separation process.Up to now we have only considered situations where the number of sources is equal tothe number of detectors. If the number m of sources is smaller than the number of sensorsn, i.e. mhn the activity of n�m neurons will vanish. The simplest case is the situation whenone source is fed to two neurons. After the adaptation process the output of one neuron willbe proportional to the source and the other neuron will be silent.If the number of sources is larger than the number of neurons our potential yields alwaysdecorrelated outputs, but the mixing matrix T will not be correct. In order to decorrelatean unknown number of linearly mixed sources one must therfore apply our approch with anincreasing number n of output neurons, until n ist so large, say n = n�, that for the �rsttime one neuron will remain silent, after the adaptation process. The number of sources isthen n� � 1 and one needs n� � 1 neurons to decorrelate them [11].Let us �nally discuss the situation for nonlinear mixing. An example is shown in eqn.(9) 0BB@ I1I2 1CCA = 0BB@ 1 c12c21 1 1CCA0BB@ a1a2 1CCA+ 0BB@ "1"1 1CCA a1a2 (9)where "1, "2 are nonlinearity parameters. In this case the neural network will completelydecorrelate hu1(t)u2(t)i = hu1(t)u2(t+ �)i = 0 but hu1(t)u2(t + 2�)i is still a function of thenonlinearity parameters, as shown in Figure 4. Therefore our method enables us to detectnonlinearities in the mixing of the sources. On the other hand on could determine the linearand nonlinear mixing coe�cients c12; c21; "1; "2 from the measureable time delayed correlationfunctions hI1(t)I2(t + �)i including more and more di�erent delays [12]. In this sense our5



approch which involves time delayed correlation functions could be generalized to solve thesource separation problem for nonlinearly mixed sources.It is a pleasure to thank R. Hornreich for stimulating discussions during the initial stepsof this work and the Deutsche Forschungsgemeinschaft for �nancial support.

6



REFERENCES[1] H.W. Strube, Signal Processing 3, 355, (1981).[2] F. Cristopher and C. Morrisean, X. Coll. GRESI, 1017, (1985).[3] C. Gray and W. Singer, Nature 338, 334, (1989).[4] S. Williamson, M. Hoke, G. Stroink and M. Kotani, eds. Advances in Biomagnetism(Plenum), New York (1990).[5] C. Jutten, J. Herault, Neural Network for Computing, AIP Conference Proc. 151, J. S.Decker, ed. 206, (1986).[6] C. Jutten, J. Herault and Guerin A., Arti�cal Intelligence and Cognitive Sciences, 231-248, Manchester Press (1988).[7] C. Jutten, J. Herault, Signal Processing 24, 1, (1991).[8] J. J. Hop�eld, Proc. Natl. Acad. Sci. (USA) 88, 6462, (1991).[9] B. Widrow, J. M. McCool, M. G. Larimore and C. R. Johnson, Proc. IEEE 64, 1151,(1976).[10] J. Hirschberg and T. Szende, Pathologische Schreistimme - Stridor und Hustenton imS�auglinsalter, Fischer Stuttgart, (1985), p. 16 cry 3 and p. 19 cry 7.[11] Even for a situation where the number of signalsm is larger than the number of detectorsn, ie. m > n but m � n(n+1)=2, one could still determine the m�n mixing matrix Cijand the Nm time delayed correlations of the sources hai(t)ai(t + l�)i (l = 0; :::; N � 1)from the Nn(n+1)=2 measured correlation functions hIi(t)Ij(t+ l�)i (l = 0; :::; N � 1).One has only to chose the number N of delays large enough to ensure that the numberof measurable variables Nn(n + 1)=2 becomes larger then the number of unknownsm(n+N � 1). However the signals ai(t) i = 1; :::; m cannot be extracted form Ii(t) i =1; :::; n because the m� n mixing matrix Cij cannot be inverted.7



[12] To determine the mixing coe�cients we have to solve the equations for k = 0; 1; 2; 3hI1(t)I1(t + k�)i = K1(k�) + c212K2(k�) + "1"2K1(k�)K2(k�)hI1(t)I2(t + k�)i = c21K1(k�) + c12K2(k�) + "1"2K1(k�)K2(k�)hI2(t)I2(t + k�)i = c221K1(k�) +K2(k�) + "1"2K1(k�)K2(k�):This are 12 equations for the 12 unknown parametersc12; c21; "1; "2; K1(0); K1(�); K1(2�); K1(3�); K2(0); K2(�); K2(2�); K2(3�). They can besolved by standard methods or by a nonlinear neural network using our potential ap-proach.
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FIG. 1. A neural network which solves the source separation problem for two lineary mixedsources.
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FIG. 2. Vector �eld plot for the two source separation problem of gaussian signals: a) for theJutten-Herault model (eqn. 8) - the two lines correspond to stable and unstable �xed points. b)for using delay terms (eqn. 7) - only two �xed points exist which are stable.11



a) b)

c) d)FIG. 3. Decorrelation of mixed signals: a) original speech signals produced by two independendcrying babies, b) mixed signals with mixing matrix ((1,0.9),(0.7,1)), c) decorrelated signals using theleast squares method [9], d) signals decorrelated using our method with delay parameter � = 0:5ms.
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3FIG. 4. The correlation C = hu1(t)u2(t + 2�)i2 as a function of the nonlinearity parameter" = "1 = "2 for eqn. 9. Only in the linear case (" = 0) all time delayed correlations will vanish.
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