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Abstract 

Independent Component Analysis (ICA) is a signal processing method to extract 
independent sources given only observed data that are mixtures of the unknown 
sources. Recently, blind source separation by ICA has received attention because 
of its potential signal processing applications such as speech enhancement systems, 
telecommunications and medical signal processing. 

This book presents theories and applications of ICA. Based on theories in proba­
bilistic models, information theory and artificial neural networks several unsupervised 
learning algorithms are presented that can perform ICA. The seemingly different the­
ories such as infomax, maximum likelihood estimation, negentropy maximization, 
nonlinear PCA, Bussgang algorithm and cumulant-based methods are reviewed and 
put in an information theoretic framework to unify several lines of ICA research (Lee 
et al., 1998a). An extension of the infomax algorithm of Bell and Sejnowski (1995) is 
presented that is able to blindly separate mixed signals with sub- and super-Gaussian 
source distributions (Girolami, 1997b; Lee et al., 1998b). The learning algorithms 
are furthermore extended to deal with the multichannel blind deconvolution prob­
lem. The use of filters allows the separation of voices recorded in a real environment 
(cocktail party problem). Several constraints in the ICA formulation such as the 
linear model assumption, the number of sensors and the low-noise assumption, are 
tackled with new methods. In particular, an overcomplete representation of the ICA 
formulation (Lewicki and Sejnowski, 1998c) whcih includes an additive noise model 
can be used to infer more sources than sensors. 

The second part of the book presents signal processing applications of ICA to real­
world problems. The ICA algorithm has been successfully applied to many biomedi­
cal signal processing problems such as the analysis of electroencephalographic (EEG) 
data (Makeig et al., 1997; Jung et al., 1998a) and functional magnetic resonance 
imaging (fMRI) data (McKeown et al., 1998b). Bell and Sejnowski (1997) suggested 
that independent components of natural scenes are edge filters. Those independent 
image components can be used as features in pattern classification problems such as 
visual lip-reading and face recognition systems. The ICA algorithm can be further­
more embedded in an expectation maximization framework with the goal to classify 
clusters of ICA models. This approach is an extension of the Gaussian mixture model 
for non-Gaussian priors. Results on classification benchmarks demonstrate that ICA 
cluster models can improve classification results. 

ICA is a fairly new and a generally applicable method to several theoretical and 
practical challenges in signal processing. Successful results in EEG, fMRI, speech 
enhancement and face recognition systems demonstrate its power and its wide range 
of potential applications. 
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Preface 

At a meeting held on April 13-16, 1986 in Snowbird Utah on Neural Networks for 
Computing Jeanny Herault and Christian Jutten (Herault and Jutten, 1986) con­
tributed a research paper entitled" Space or time adaptive signal processing by neural 
network models". They presented a recurrent neural network model and a learning 
algorithm based on a version of the Hebb learning rule that, they claimed, was able to 
blindly separate mixtures of independent signals. They demonstrated the separation 
of two mixed signals and also mentioned the possibility of unmixing stereoscopic 
visual signals with four mixtures. This paper opens a remarkable chapter in the 
history of signal processing, a chapter that is hardly more than 10 years old. 

The problem of source separation is an old one in electrical engineering and has 
been well studied; many algorithms exist depending on the nature of the mixed sig­
nals. The problem of blind source separation is more difficult since without knowl­
edge of the signals that have been mixed, it is not possible to design appropriate 
preprocessing to optimally separate them. The only assumption made by Herault 
and Jutten was independence, but additional constraints are needed on the proba­
bility distribution of the sources. If one assumes, as is often done, that the source 
signals are Gaussian, then it is easy to show that this problem has no general so­
lution. Subsequent research has shown that the best performance was obtained by 
the Herault-Jutten network when the source signals were sub-Gaussian (Cohen and 
Andreou, 1992); that is, for signals whose kurtosis was less than that of a Gaussian 
distribution. 

In the neural network field, this network model was overshadowed at the time by 
the more popular Hopfield network, which would soon be eclipsed in popularity by the 
backpropagation algorithm for multilayer perceptrons. Nonetheless, a line of research 
was begun that only gradually made clear the true nature of the problem. As is often 
the case, what is important is not the specifics of the algorithm, but the way the 
problem is formulated. The general framework for independent component analysis 
introduced by Herault and Jutten is most clearly stated in Comon (1994). Within 
the signal processing community, a cornucopia of ever more sophisticated algorithms 
was developed based on cumulants, generalizing the third-order nonlinearity first 
used by Herault and Jutten. 

xiii 
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By 1994 the forefront of the neural network field had moved from supervised 
learning algorithms to unsupervised learning. A fast and efficient ICA algorithm 
was needed that could scale up with the size of the problem at least as well as 
backpropagation, which by this time was being used on networks with over a million 
weights. Anthony Bell in my laboratory was working on an infomax (Linsker, 1992) 
approach to ICA. Tony's first results were obtained using Mathematica and a version 
of his algorithm that depended on inverting a matrix (Bell and Sejnowski, 1995). 
This was probably fortunate since the long pauses during convergence gave him 
ample time to think about the problem and to benefit from vigorous discussions 
with Nicol Schraudolph and Paul Viola, who at the time were sharing an office 
with a wonderful view of the Pacific Ocean. Both Nici and Paul were working on 
problems that involved estimating entropy gradients, so there was a keen competition 
to see whose algorithm would perform best. During this period, Tony collaborated 
by long-distance with Te-Won Lee, who at the time was visiting Carnegie- Mellon 
University, on blind source separation of acoustically recorded sound mixtures, taking 
into account time delays. 

Amari (1997a) soon realized that the infomax ICA algorithm could be improved 
by using the natural gradient, which multiplies the gradient of the feedforward weight 
matrix W by a positive definite matrix WTW, and speeds up the convergence by 
eliminating the matrix inversion. This improvement, which was independently dis­
covered by Cardoso and Laheld (1996), allows infomax ICA to be scaled up and makes 
it a practical algorithm for a variety of real-world problems. However, the original 
infomax ICA algorithm was only suitable for super-Gaussian sources. Te-Won Lee 
realized that a key to generalizing the infomax algorithm to arbitrary non-Gaussian 
sources was to estimate moments of the source signals and to switch the algorithm 
appropriately. In collaboration with Mark Girolami, who had been working on sim­
ilar algorithms in the context of projection pursuit, he soon developed an efficient 
extended version of the infomax ICA algorithm (Lee, Girolami and Sejnowski, 1998) 
that is suitable for general non-Gaussian signals. All of these developments are pre­
sented in this book with a clarity that makes them accessible to anyone with an 
interest in ICA. 

Another important component of this book is the comparison between several 
different approaches that have been taken to blind source separation, which include 
maximum likelihood, Bussgang methods based on cumulants, and projections pursuit 
and negentropy methods. Te-Won Lee shows that these are all closely related to 
the infomax framework (Lee, Girolami, Bell and Sejnowski, 1998). Thus, a large 
number of researchers who have attacked ICA from a variety of different directions 
are converging on a common set of principles and, ultimately, a well understood 
class of algorithms. There is still much work that is left to do. It is still true as 
Herault and Jutten mention in their 1986 paper, "We cannot prove convergence of 
this algorithm because of nonlinearity of the adaptation law and nonstationarity of 
the signals." We still do not have an adequate explanation for why ICA does converge 
for so many problems, almost always to the same solutions, even when the signals 
were not derived from independent sources. 



PREFACE XV 

What makes this book especially valuable to the practitioner is that it also includes 
examples of several real-world applications. Although the blind separation of mix­
tures of prerecorded signals is a useful benchmark, a more challenging problem is to 
apply leA to recordings of real-world signals for which the underlying sources, if any, 
are unknown. An important example is the application of extended infomax leA to 
electroencephalographic (EEG) recordings of scalp potentials in humans. The elec­
trical signals originating from the brain are quite weak at the scalp, in the microvolt 
range, and there are larger artifactual components arising from eye movements and 
muscles. It has been a difficult challenge to eliminate these artifacts without altering 
the brain signals. leA is ideally suited to this task, since the brain and the scalp are 
good volume conductors and to a good approximation, the recordings are different 
linear mixtures of the brain signals and the artifacts. The extended infomax leA 
algorithm has proven to be the best method yet for separating out these artifacts, 
which include sub-Gaussian sources such as 60 Hz line noise and blinks, from the 
brain signals, which are generally super-Gaussian (Jung et al., 1998a). The future 
of this algorithm looks quite bright for biomedical applications, including the anal­
ysis of extremely large datsets from functional Magnetic Resonance Imaging (fMRI) 
experiments (McKeown et al., 1998b). 

leA can be applied to many problems where mixtures are not orthogonal and 
the source signals are not Gaussian. Most information bearing signals have these 
characteristics. There are many interesting theoretical problems in leA that have 
yet to be solved and there are many new applications, such as data mining, that have 
yet to be explored. The appearance of this book marks an important milestone in 
the maturation of leA research. The theoretical framework developed here should 
provide a strong foundation for future research and applications. 
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INTRODUCTION 

"Begin at the beginning," the King said, gravely, " and go on 
till you come to the end; then stop." 
Lewis Carroll 

A new star is born: leA 

Recently, blind source separation by Independent Component Analysis (ICA) has 
received attention because of its potential applications in signal processing such as 
in speech recognition systems, telecommunications and medical signal processing. 

The goal of blind source separation (BSS) is to recover independent sources given 
only sensor observations that are linear mixtures of independent source signals. The 
term blind indicates that both the source signals and the way the signals were mixed 
are unknown. Independent Component Analysis (ICA) is a method for solving the 
blind source separation problem. It finds a linear coordinate system (the unmixing 
system) such that the resulting signals are statistically independent. In contrast 
to correlation-based transformations such as Principal Component Analysis (PCA), 
ICA not only decorrelates the signals (2nd-order statistics) but also reduces higher­
order statistical dependencies. In other words, leA is a method for finding a linear 
non-orthogonal co-ordinate system in any multivariate data. The directions of the 
axes of this co-ordinate system are determined by both the second and higher order 
statistics of the original data. The goal is to perform a linear transform which makes 
the resulting variables as statistically independent from each other as possible. 

Two different research communities have considered the analysis of independent 
components. On one hand, the study of separating mixed sources observed in an 
array of sensors has been a classical and difficult signal processing problem. The 
seminal work on blind source separation was by Herault and Jutten (1986) where 
they introduced an adaptive algorithm in a simple feedback architecture that was 
able to separate several unknown independent sources. Their approach has been fur­
ther developed by Jutten and Herault (1991), Karhunen and Joutsensalo (1994), anQ 
Cichocki et al. (1994). Comon (1994) elaborated the concept of independent compo­
nent analysis and proposed cost functions related to the approximate minimization 
of mutual information between the-sensors. 

In parallel to blind source separation studies, unsupervised learning rules based 
on information theory were proposed by Linsker (1992). The goal was to maximize 
the mutual information between the inputs and outputs of a neural network. This 
approach is related to the principle of redundancy reduction suggested by Barlow 
(1961) as a coding strategy in neurons. Each neuron should encode features that are 

xxix 
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as statistically independent as possible from other neurons over a natural ensemble 
of inputs; decorrelation as a strategy for visual processing was explored by Atick 
(1992). Nadal and Parga (1994) showed that in the low-noise case, the maximum 
of the mutual information between the input and output of a neural network im­
plied that the output distribution was factorial; that is, the multivariate probability 
density function (p.d.f.) can be factorized as a product of marginal p.dJ.s. Roth 
and Baram (1996) and Bell and Sejnowski (1995) independently derived stochastic 
gradient learning rules for this maximization and applied them, respectively, to fore­
casting, time series analysis, and the blind separation of sources. Bell and Sejnowski 
(1995) put the blind source separation problem into an information-theoretic frame­
work and demonstrated the separation and deconvolution of mixed sources. Their 
adaptive methods are more plausible from a neural processing perspective than the 
cumulant-based cost functions proposed Comon (1994). A similar adaptive method 
for source separation was proposed by Cardoso and Laheld (1996). 

Other algorithms for performing lCA have been proposed from different view­
points. Maximum Likelihood Estimation (MLE) approaches to lCA were first pro­
posed by Gaeta and Lacoume (1990) and elaborated by Pham et al. (1992). Pearl­
mutter and Parra (1996), MacKay (1996) and Cardoso (1997) showed that the in­
fomax approach of Bell and Sejnowski (1995) and the maximum likelihood estima­
tion approach are equivalent. Girolami and Fyfe (1997c) motivated by information­
theoretic indices for Exploratory Projection Pursuit (EPP) used marginal negentropy 
as a projection index and showed that kurtosis-seeking projection pursuit will extract 
one of the underlying sources from a linear mixture. A multiple output EPP net­
work was developed to allow full separation of all the underlying sources (Girolami 
and Fyfe, 1997b). Nonlinear PCA algorithms for lCA which have been developed by 
Karhunen and Joutsensalo (1994), Xu (1993) and Oja (1997) can also be viewed from 
the infomax principle since they approximately minimize the sum of squares of the 
fourth-order marginal cumulants (Comon, 1994) and therefore approximately mini­
mize the mutual information of the network outputs (Girolami and Fyfe, 1997d). Bell 
and Sejnowski (1995) have pointed out a similarity between their infomax algorithm 
and the Bussgang algorithm in signal processing and Lambert (1996) elucidated the 
connection between three different Bussgang cost functions. Lee et al. (1998a) show 
how the Bussgang property relates to the infomax principle and how all of these 
seemingly different approaches can be put into a unifying framework for the source 
separation problem based on an information theoretic approach. 

The original infomax learning rule for blind separation by Bell and Sejnowski 
(1995) was suitable for super-Gaussian sources. An extension of the infomax algo­
rithm of Bell and Sejnowski (1995) is presented in Lee et al. (1998b) that is able 
to blindly separate mixed signals with sub- and super-Gaussian source distributions. 
This was achieved by using a simple type of learning rule first derived by Giro­
lami (1997b) by choosing negentropy as a projection pursuit index. Parameterized 
probability distributions that have sub- and super-Gaussian regimes were used to 
derive a general learning rule that preserves the simple architecture proposed by Bell 
and Sejnowski (1995), is optimized using the natural gradient by Amari (1998), and 
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uses the stability analysis of Cardoso and Laheld (1996) to switch between sub- and 
super-Gaussian regimes. 

Extensive simulations have been performed to demonstrate the power of the learn­
ing algorithm. However, instantaneous mixing and unmixing simulations are toy 
problems and the challenge lies in dealing with real world data. Makeig et al. (1996) 
have applied the original infomax algorithm to EEG and ERP data showing that the 
algorithm can extract EEG activations and isolate artifacts. Jung et al. (1998a) show 
that the extended infomax algorithm is able to linearly decompose EEG artifacts such 
as line noise, eye blinks, and cardiac noise into independent components with sub­
and super-Gaussian distributions. McKeown et al. (1998b) have used the extended 
ICA algorithm to investigate task-related human brain activity in fMRI data. By 
determining the brain regions that contained significant amounts of specific tempo­
rally independent components, they were able to specify the spatial distribution of 
transiently task-related brain activations. Other potential applications may result 
from exploring independent features in natural images. Bell and Sejnowski (1997) 
suggest that independent components of natural scenes are edge filters. The filters 
are localized, mostly oriented and similar to Gabor like filters. The outputs of the 
ICA filters are sparsely distributed. Bartlett and Sejnowski (1997) and Gray et al. 
(1998) demonstrate the successful use of the ICA filters as features in face recogni­
tion tasks and lipreading tasks respectively. In a similar manner, Bell and Sejnowski 
(1996) applied the infomax algorithm to learning higher-order structure of a natural 
sound. 

For these applications, the instantaneous mixing model may be appropriate be­
cause the propagation delays are negligible. However, in real environments substan­
tial time-delays may occur and an architecture and algorithm is needed to account 
for the mixing of time-delayed sources and convolved sources. The multichannel 
blind source separation problem has been addressed by Yellin and Weinstein (1994) 
and Nguyen-Thi and Jutten (1995) and others based on 4th-order cumulants cri­
teria. An extension to time-delays and convolved sources from the infomax view­
point using a feedback architecture was developed by Torkkola (1996a). Lee et al. 
(1997a) extended the blind source separation problem to a full feedback system and 
a full feedforward system. The feedforward architecture allows the inversion of non­
minimum phase systems. In addition, the rules are extended using polynomial filter 
matrix algebra in the frequency domain (Lambert, 1996). The proposed method can 
successfully separate voices and music recorded in a real environment. Lee et al. 
(1997b) showed that the recognition rate of an automatic speech recognition system 
was increased after separating the speech signals. 

Since ICA is restricted and relies on several assumptions researchers have started 
to tackle a few limitations of ICA. One obvious but non-trivial extension is the 
nonlinear mixing model. In (Hermann and Yang, 1996; Lin and Cowan, 1997; Pa­
junen, 1996) nonlinear components are extracted using self-organizing-feature-maps 
(SOFM). Other researchers (Burel, 1992; Lee et al., 1997c; Taleb and Jutten, 1997; 
Yang et al., 1997; Hochreiter and Schmidhuber, 1998) have used a more direct ex­
tension to the previously presented ICA models. They include certain flexible non­
linearities in the mixing model and the goal is to invert the linear mixing matrix 
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as well as the nonlinear mixing. More recently, Hochreiter and Schmidhuber (1998) 
have proposed low complexity coding and decoding approaches for nonlinear ICA. 
Another limitation is the under-determined problem in ICA, i.e. having less sensors 
than sources. Lee et al. (1998c) demonstrated that al} overcomplete representation 
(Lewicki and Sejnowski, 1998b) of the data can be used to learn non-square mixing 
matrices and to infer more sources than sensors. The· overcomplete framework also 
allows additive noise in the ICA model and can therefore be used to separate noisy 
mixtures. 

There is now a substantial amount of literature on ICA and BSS. Reviews of the 
different theories can be found in Cardoso and Comon (1996); Cardoso (1998b); Lee 
et al. (1998a) and Nadal and Parga (1997). Several neural network learning rules are 
reviewed and discussed by Karhunen (1996); Cichocki and Unbehauen (1996) and 
Karhunen et al. (1997a). 

ICA is a fairly new and a generally applicable method to several challenges in 
signal processing. It reveals a diversity of theoretical questions and opens a variety 
of potential applications. Successful results in EEG, fMRI, speech recognition and 
face recognition systems indicate the power and optimistic expectations in the new 
paradigm. 

Organization of the book 

This book is partitioned into Theory and Applications of ICA. The theory part of 
ICA includes(basic theory (chapter 1), ICA (chapter 2), unifying approach for ICA 
(chapter 3), multichannel deconvolution (chapter 4), overcomplete ICA (chapter 5) 
and nonlinear ICA (chapter 6). 

• Chapter 1 starts with an introduction to Bayesian probability theory, information 
theory, artificial neural networks and higher-order statistics. Only some basics 
and some properties that are needed are recalled to further derive and explain the 
methods and algorithms performing ICA. 

• Chapter 2 states the ICA problem and explains why decorrelation-based meth­
ods fail to separate sources and why higher-order methods are needed to solve 
this problem. The unsupervised learning algorithm by Bell and Sejnowski (1995) 
is analyzed that is able to blindly separate mixed sources with super-Gaussian 
distributions. An extension of this algorithm is presented that is able to blindly 
separate mixed signals with sub- and super-Gaussian source distributions (Giro­
lami, 1997b; Lee et al., 1998b). 

• Chapter 3 presents different theories recently proposed for lCA and show how 
they lead to the same iterative learning algorithm for blind separation of mixed 
independent sources. Those seemingly different theories are reviewed and put in 
an information theoretic framework to unify several lines of research. 

• Chapter 4 deals with time-delayed and convolved sources, the multichannel blind 
deconvolution problem. Learning algorithms for the feedforward and feedback 
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architecture are presented. These methods is applied to multisensory recordings 
and is able to separate voices and music recorded in real environments. 

• Chapter 5 presents ICA results using an overcomplete representation (Lewicki 
and Sejnowski, 1998b). This generalization includes an additive noise model and 
allows the separation of more sources than mixtures. 

• Chapter 6 tries to eliminate several constraints in the standard ICA formulation. 
The linear model is generalized by simple nonlinear mixing models for nonlinear 
ICA. A set of learning algorithms are derived and verified in simulations. 

The applications part of ICA includes ICA for biomedical signal processing (chap­
ter 7), feature extraction (chapter 8) and ICA for unsupervised classification (chap­
ter 9). 

• Chapter 7 presents examples on how ICA can be used to (1) isolate artifacts 
in EEG recordings and (2) to detect transiently activated brain signals in fMRI 
experiments. 

• Chapter 8 demonstrates how ICA can extract features from natural images. Those 
features can be used in recognition systems such as face recognition and lipreading 
systems to improve overall performance. 

• Chapter 9 shows how the ICA algorithm..can be further embedded in an expec­
tation maximization framework with the goal to classify mixtures of ICA models. 
This approach is an extension of the Gaussian mixture model for non-Gaus~ian 
priors. Results on several classification benchmarks demonstrate that ICA cluster 
models can improve many classification results. 

Chapter 10 gives conclusions by summarizing the main results and discussing 
future challenges in ICA research. 
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Everything should be made as simple as possible, 
but not simpler. 
Albert Einstein 

1.1 OVERVIEW 

1 BASICS 

This chapter is an introduction to the basics of Bayesian probability theory, informa­
tion theory, artificial neural networks and statistical signal processing. The mat.erial 
presented here was selected from several textbooks. The goal of this chapter is 
to cover the basic notions and terminologies used throughout the thesis. It is not 
intended to give a broad understanding of the theories but rather to recall some 
definitions and their relations to each other. 

Bayesian probability theory is summarized by giving definitions for maximum a 
posteriori estimation and maximum likelihood estimation. Information theory is 
divided into basic definitions, the notion of differential entropy and the maximum 
entropy property. The section on artificial neural networks focuses on unsupervised 
learning algorithms for data analysis. For example, a simple single neuron can find 
directions of maximal variance in a data set using Oja's learning rule. Its extension 
to the generalized Hebbian algorithm can perform the well known principal compo­
nent analysis (peA). Another example for unsupervised learning algorithms is the 
information maximization preservation principle (infomax principle) proposed by 
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Linsker (1989) in a single layer feedforward networks and its relation to redundancy 
reduction. The last section deals with a brief summary about higher-order statis­
tics. Important properties and definitions of higher-order moments and higher-order 
cumulants are presented. 

There are several books that cover the summarized theories in much detail and 
precision. For example, David MacKay's book (MacKay, 1998) on Information 
Theory, Inference and Learning Algorithm is a good textbook that covers the 
summarized theories in great detail!. A good book on information theory is Elements 
of Information Theory by Cover and Thomas (1991). On neural networks, books by 
Haykin (1994b), Bishop (1995), Rojas (1996) and Hertz et al. (1991) give excellent 
overviews and explanations of neural networks. Bayesian probability theory is well 
explained by Box and Tiao (1992) and Bayesian theory from a neural perspective 
is presented by MacKay (1995). General statistics are in books by Stuart and Ord 
(1987) and Papoulis (1990). Cichocki and Unbehauen (1994) and Kosko (1992) 
present statistical signal processing applications using neural networks. 

This chapter is organized as follows: In section 1.2 we present basic definitions for 
Bayesian probability theory, section 1.3 gives an introduction to information theory, 
section 1.4 presents some unsupervised learning algorithms in artificial neural net­
works and section 1.5 gives basic definitions and properties of higher-order moments 
and cumulants. The chapter closes with a brief discussion about some common 
relationships between the summarized theories. 

1.2 BAYESIAN PROBABILITY THEORY 

Bayesian reasoning provides a probabilistic approach to estimation and inference. It 
is based on the assumption that the quantities of interest are governed by probability 
distributions, and that optimal decisions can be made by reasoning about these 
probabilities together with the data. Bayesian approaches provide a framework for 
learning algorithms that manipulate probabilities directly as well as for learning 
algorithms that do not explicitly manipulate probabilities. Features of Bayesian 
approaches include the following facts: 

• Bayesian methods can provide a standard of optimal decision making to compare 
different practical methods. 

• Prior knowledge can be combined with the observed data to determine the final 
probability of a model. 

• Each observed training example incrementally decreases or increases the estimated 
probability that a hypothesis or model is correct. This provides a more general 
method than methods that eliminate a model if it is inconsistent with any single 
observation. 

In learning, a common interest is the determination of the best model from some 
model space given the observed data. In other words, what is the most probable 
model w among a set of M models n given a data sample X plus any prior knowledge 
about the various models. Here, Bayes theorem provides a way to calculate the 
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probability of a model based on its prior probability and the observed data itself. It 
is defined for any model w as 

P( -IX) = P(XIWi)P(Wi) 
w, P(X) (1.1) 

where P(Xlw) is the conditional probability or posterior probability of the observa­
tion X given the model w, P(w) is the probability of the model (prior probability of 
w) and similarly P(X) is the prior probability that the data X is observed. P(wIX) 
is called the posterior probability of w because it reflects the confidence that w holds 
after the data X has been observed. In contrast to the prior P(w), the posterior 
probability P(wIX) reflects the influence of X whereas P(w) is independent of X. 

In many learning situations, there is a set of models n = {WI,···, Wi, ... , W M } 
and the task is to find the most probable model Wi E n given the observed data X. 
The maximally probable model is called a Maximum A Posteriori (MAP) hypothesis. 
The MAP hypothesis can be determined using the Bayes theorem. 

WMAP arg max P(wIX) 
wEn 

P(Xlw)P(w) 
arg~:~ P(X) 

argmax P(Xlw)P(w). 
wEn 

(1.2) 

In the final step of eq.1.2 P(X) is dropped because it is a constant independent of 
w. 

In some cases, it can be assumed that every model is equally probable a priori 
(P(Wi) = P(Wj) for all i,j). Then, eq.1.2 further simplifies and it is sufficient to 
consider only the term P(Xlw) to find the most probable model. P(Xlw) is also 
called a Maximum Likelihood (ML) hypothesis 

WML = argmaxP(Xlw) 
wEn 

(1.3) 

where WML is the most probable model among other models Wi E n describing the 
observation X. 

1.3 INFORMATION THEORY 

Information is closely related to randomness or surprisal of an outcome. For example, 
in a coin tossing experiment that has normally two equip rob able outcomes: head and 
tail, the information that can be gained from each experiment is that the probability 
of observing a head is 0.5. This process is still random and it may be surprising that 
a head is observed although a tail was guessed. However, if it is known that someone 
made a fake coin with both sides of the coin showing heads the outcome of each 
experiment would not be surprising because there is nothing random. In fact, this 
deterministic experiment provides no information and its outcome is always certain. 
A way to measure the randomness of the coin tossing experiment depending on the 
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Figure 1.1. Entropy as a function of the probability P(x) for the coin tossing experiment. Max­

imum entropy is achieved for equiprobable outcomes and the entropy is zero for deterministic 

outcomes P(x)=l and P(x)=O. 

bias of the coin reveals whether the result is equiprobable, slightly biased towards 
one side or even fake. Shannon (1948) proposed entropy H(X) as an appropriate 
measure. Entropy is defined as 

1 
H(X) = L P(x) log P(x)' 

xEAx 

(1.4) 

where the ensemble X is a random variable x with a set of possible outcomes, 
Ax' = {al,a2, ... } and L:aiEAz P(x = ai) = 1. For P(x) = 0 the entropy is zero 
by definition. H(X) is always greater o,r equal zero. Note that throughout this sec­
tion and as opposed to the other sections x is not a continuous variable but a limited 
set of possible outcomes of a random variable X. In the coin tossing experiment 
i = 2 and H(X) can be plotted as the function of the probability P(x). 

Notice that in figure 1.1 the curve is symmetrical, and rises to a maximum when 
the two symbols (head, tail) are equally likely. It falls towards zero once the other 
symbol becomes dominant and H (X) is zero when the probability of the symbols are 
deterministic. In general, for a given number of symbols (ai's) the entropy has its 
largest value only when the symbols are equally probable. The resulting real value 
(code length) for H(X) can be described in bits when the log of base 2 is used and 
nats when the natural log is used. 
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The joint entropy of two random variables X and Y is defined as 

H(X,Y) = 
1 L P(x,y) log P(i,y) 

:J:,yEAxAy 

It is additive for independent variables 

H(X, Y) = H(X) + H(Y) iff P(x, y) = P(x)P(y). 

Eq.1.6 equals eq.1.5 as follows 

H(X,Y) = 

= 

1 L P(x)P(y) log P(x)P(y) 
:J:,yEAxAy 

1 1 L P(x)P(y) log P(x) + L P(x)P(y) log P(y) 
:J:,yEAxAy :J:,yEAxAy 

(1.5) 

(1.6) 

1 1 L P(x)( L P(y)) log P(x) + L P(y)( L P(x)) log P(y) 
:J:EAx yEAy yEA y :J:EAx 

1 1 L P(x) log P(x) + L P(y) log P(y) 
:J:EAx yEAy 

= 

= H(X) + H(Y). (1.7) 

The conditional entropy of X given y = bk is the entropy of the conditional 
probability distribution P(xly = bk) 

(1.8) 

The conditional entropy of X given Y is the average over y of the conditional 
entropy of X given y and therefore measures the average uncertainty that remains 
about x when y is known 

H(XIY) = 
1 L P(x, y) log P(xly = bk ) 

:J:,yEAxAy 

(1.9) 

The mutual information between X and Y is the sum of marginal entropies minus 
the joint entropy. 

J(X; Y) _ H(X) + H(Y) - H(X, Y) 

= H(X) - H(XIY). 

(1.10) 

It is always greater than zero and it measures the reduction in uncertainty about x 
that results from learning the value of y. 

The joint entropy H(X, Y), the conditional entropy H(XIY) and the marginal 
entropy H(X) or H(Y) are related as follows 

H(X, Y) = H(X) + H(YIX) = H(Y) + H(XIY). (1.11) 
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H(x,y) 

H(Xlt\ 
H(x) H(y) 

Figure 1.2. Marginal entropies H(X) and H(Y), joint entropy H(X, Y), conditional entropy 

H(XIY) and the mutual information J(X; Y). 

The relative entropy also known as Kullback-Leibler divergence (KL divergence) 
between two probability distributions P(x) and Q(x) that are defined over the same 
alphabet Ax is 

_" P(x) 
D(PIIQ) = ~ P(x) log Q(x)' 

x 

(1.12) 

The mutual information leX; Y) is a special form of the relative entropy or KL 
divergence and measures the distance between the joint entropy and the product 
distribution 

J(X; Y) = D(P(x, y)IIP(x)P(y». (1.13) 

1.3.1 Differential Entropy 

So far the entropy terms were based on discrete probability distributions where the 
number of samples is finite, i.e. a random variable has a finite number of symbols. 
The entropy terms for a continuous random variable x is called differential entropy. 
It is defined as 

100 1 
hex) == p(x)log-( )dx, 

-00 p x 
(1.14) 

where p(x) is the probability density function (p.d.f.) of a continuous random vari­
able x. Differential entropy has the same properties and definitions as entropy in 
terms of its relation to conditional entropy, joint entropy and mutual information. 
Therefore, the above equations (eq.1.6, eq.1.8 and eq.1.10) are equivalent for differ­
ential entropies. One distinct difference however, is that differential entropies cannot 
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be described in code length because differential entropies can take on negative values. 
In fact, the differential entropy can be proven to be -00 (Cover and Thomas, 1991; 
Haykin, 1994b) 

00 
H(X) = - lim L p(xi)c5x 10g(P(xi)c5x) 

Oz-+O. 
t=-oo 

_ [00 p(x) logp(x)dx _ lim 10gc5x [00 p(x)dx. 
J -00 Oz-+O J-oo 

(1.15) 

(1.16) 

Eq.1.15 is the definition of entropy when the quantization of x converges to zero. The 
first term of the right hand side of eq.1.16 is by definition the differential entropy. 
Rewriting eq.1.16 in terms of the differential entropy, it follows that 

h(x) = H(X) + lim 10gc5x, 
oz-+o 

(1.17) 

because the integration over p( x) is one. In the limit as c5x approaches zero, log c5x 
approaches minus infinity. Hence, the differential entropy of a continuous random 
variable is negative infinitively large. However, this problem can be circumvented 
by adopting the term log c5x as reference. This is common in case of comparing two 
differential entropies which have a common reference (-00) and hence their relative 
entropy is positive. 

When the Gaussian probability density is used as a common reference the relative 
entropy is called negentropy J(X). 

J(X) = D(P(x)lIpa(x)) 

J p(x) log :;~~) dx 

= J p(x) logp(x)dx - J p(x) logpa(x)dx 

Ha(X) - H(X) 

(1.18) 

(1.19) 

where Ha(X) is the entropy of the Gaussian distribution with the same mean and 
variance as p(x) and H(X) is the entropy 2 of the random variable x. The integral 
J p(x) logpa(x)dx is the entropy of a Gaussian distribution for any distribution of 
p(x) when p(x) and pa(x) yield the same variance (Cover and Thomas, 1991, page 
234). 

1.3.2 Maximum Entropy 

Under certain constraints it is possible to find a RV whose p.d.f. has the maximal 
entropy. The maximum entropy of a distribution is derived for (1) an amplitude 
bounded RV and for (2) a RV with fixed variance. 
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Theorem 1.1 (Maximum entropy of an amplitude bounded RV) The entropy 
of an amplitude bounded RV is H(X) ~ log IN x I where IN x I denotes the number of 
elements in the range of X, with equality if and only if X has a uniform distribution 
over Nx. 

Proof 1.1 Let q(x) = IJx I be the uniform probability distribution junction over N x 
and let p( x) be the probability distribution for X. Then 

D(Pllq) = LP(x) log :~=~ 
1 

= LP(x) log INxl- LP(x) log p(x) 

= log INxl- H(X). (1.20) 

Since the relative entropy is non-negative it follows that 

° ~ D(pllq) = loglNxl- H(X) (1.21) 

and therefore, 

H(X) ~ log INxl. (1.22) 

Hence, the uniform distribution has the highest entropy when X is of a given ampli­
tude range. 

Theorem 1.2 (Maximum entropy of a RV with fixed variance) Let the con­
tinuous random variable x have zero mean and variance a; then H(x) ~ ! log(21Te)a; 
(entropy of x is always smaller than the entropy of a normal distribution) with equal­
ity iff x ex N(O, a;) where N(O, a;) is the normal distribution. 

Proof 1.2 Let p(x) be any density satisfying J p(x)x2 dx = a;. Let N(O, a;) be a 
density of a normal distribution with zero-mean. Then 

° < D(PIIN(O, a;)) {1.23} 

< ! p(x) 
p(x) log N(O, a;) 

< -H(x) -! p(x)logN(O,a;) 

< -H(x) - ! N(O,a;)logN(O,a~) 
< -H(x) + H(N(O,a~)) 

H(x) < H(N(O,a~)) 

where the substitution J p( x) log N (0, a;) = J N (0, a;) log N (0, a;) follows from the 
fact that p(x) and N(O, a;) yield the same variance of the quadratic form log N(O, a;) 
(Cover and Thomas, 1991; page 234). The last inequality in eq.1.23 states that for 
a given variance, the normal distribution has the highest entropy. 
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1.4 ARTIFICIAL NEURAL NETWORKS 

Artificial neural networks provide a general and practical method for learning func­
tions from examples. The works have been inspired in part by the observation of 
biological learning systems. The task of understanding how the brain works is one 
of the outstanding unsolved problems in science (Churchland and Sejnowski, 1992). 
Neural network models are intended to elucidate how computation is is performed 
in neurons. The use of neural networks in engineering is to create machines that 
can learn. In particular, neural networks were used to perform pattern recognition 
such that it learns to recognize handwritten characters and spoken words. Another 
motivation arises from complex systems since neural networks can be build of very 
complex nets of interconnected neurons. An interesting property is the adaptive 
behavior of the complex system towards its environment. 

Typically an artificial neural network can be characterized with three specifica­
tions: architecture, activation function and learning rule. The architecture specifies 
what variables are involved in the model and their topological relationships. The 
variables in a neural network are the weights of the connections between neurons 
and the activities of the neurons. The activation function and the weights describe 
the dynamics between the input and the output of a neuron. The learning rule spec­
ifies the way in which the neural network's weights change with time. The learning 
rule usually depends on the activities of the neurons, the weights and the input and 
output values of the neural network. If the learning algorithm depends on addi­
tional target values supplied by a teacher by labeling the data the learning process 
is called supervised learning. However, if the learning rules can be derived from ob­
jective functions and the data is not prelabeled the learning process is unsupervised. 
Alternatively, learning rules are created from heuristics. 

The terminologies used for neural networks are explained in the following example. 
Figure 1.3 shows a simple single neuron that takes input values Xl, X2, ••• ,XN and 
generates an output signal y. The architecture is a feedforward system because the 
connections are directed from the input to the output of the neuron. The activation 
function can be performed in two steps: First, the activation is computed as the inner 
product of a given n-dimensional input vector x = [Xl, X2, ••• ,XN V and a learnable 
n-dimensional weight vector w = [WI, W2, .•. , W N]T 

N 

(1.24) 

Second, the output y is computed as a function f(u) of the activation. There are 
several possible activation functions, e.g . 

• Linear: y(u) = u 

• Sigmoid (logistic function): y(u) = l+ex~(-u) 
• Threshold function: 

y(u) = { 1 
-1 

u>O 
u~O 
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An objective function, error function or cost function 3 can be defined as a function 
of w to measure how well the network solves a given task. The objective function is 
a sum of terms, one for each input-target pair Xk, Tk, measuring how close the scalar 
output y(x; w) is to the target. During training, the algorithm adjusts w in such a 
way as to find a w that minimizes the objective function. Instead of minimizing the 
function many learning rules make use of the gradient of the objective function with 
respect to w. 

The error at time t may be defined as the difference between the target response 
T(t) and the actual response y(t). A commonly used objective function is the mean­
squared-error criterion 

(1.25) 

where k denotes the k-th neuron and the k-th error term is ek = Yk(t) - Tk(t). In the 
single neuron case the objective has only one term (O(t) = !e2 (t)). The expectation 
can be 'replaced by a training set of samples x. Now, the online stochastic gradient 
descent learning rule can be derived by minimizing the "gradient of the objective 
function. 

aO(t) -a- = e(t)Xi(t). 
Wi 

(1.26) 

The learning rule is then 

(1.27) 

where to is the learning rate. This learning rule requires a teacher that labels the 
input vector with a target to specify what the neurons output should be. 

1.4.1 Neural networks using unsupervjsed learning rules 

Unsupervised learning rules are intended to learn from just a set of examples or 
observations x. The purpose of an unsupervised or self-organizing learning rule is to 
discover significant patterns or features In the input data. 

One important self-organizing principle is the Hebbian learning rule (Hebb, 1949). 
Roughly speaking, if there are two simultaneously active neurons on either side of a 
connection then the weight of that connection is increased. Hebbian learning can be 
demonstrated in a single neuron. The change in synaptic weight in a single neuron 
is 

(1.28) 

The weight update is then 

(1.29) 
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Figure 1.3. A simple single neuron consists of: inputs Xi. weights Wi and activation function 

f(wx). The output is y = f(wx). 

However, this form of representation leads to an exponential growth of Wi with 
increasing training samples. One way to impose a limit in the growth of Wi is to 
incorporate a normalization term (Oja, 1982) 

Wi(t + 1) = Wi(t) + Ey(t)Xi(t) . 
(I:i(Wi(t) + Ey(t)Xi(t))2)1/2 

For small E eq.1.30 can be approximately written as (Haykin, 1994b) 

Wi(t + 1) = Wi(t) + Ey(t)[Xi(t) - y(t)Wi] . 

(1.30) 

(1.31) 

The term y(t)Xi(t) is the Hebbian self-amplification rule and y(t)Wi is called the 
forgetting factor (Oja, 1982). The latter becomes more important with a stronger 
response y(t): To demonstrate the function of Oja's learning rule 1000 data samples 
were randomly generated. The data were processed with the learning rule and w 
was updated at each sample with a fixed learning rate of E = 0.005. Figure 1.4 shows 
a 2-dimensional data space and the weight vector w that points in the direction of 
maximal variance. In fact, this process corresponds to finding a principal component. 
The mathematical proof of convergence and stability is in Hertz et al. (1991). 

A common stat~stical method for analyzing data is Principal Component Analysis 
(PCA). It is closely related to Singular Value Decomposition (SVD) and in communi­
cation theory PCA is known as Karhunen-Loeve transform. PCA is a decorrelation­
based method that finds a linear transformation W given the data x so that (1) the 
output vectors u are uncorrelated, (2) the basis vectors of Ware orthogonal to each 
other and (3) the eigenvalues of Ware ordered. To satisfy the decorrelation criterion 
(1), the covariance matrix output data u must be a diagonal matrix D 

(1.32) 

where u = Wx and the entries of the diagonal matrix D contain eigenvalues of 
the linear system W. There are many matrices W that satisfy eq.1.32. The PCA 
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Oja's learning rule for a single neuron 
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Figure 1.4. Oja's learning rule applied in a single neuron. The weight vector (doted line) finds 

the direction of maximum variance. 

solution is uniquely defined and gives a matrix W p such that the basis vectors of 
W p are orthogonal to each other and ordered according to the eigenvalues. The 
orthogonality (2) is satisfied when 

(1.33) 

where S is a diagonal scaling matrix. This solution is also called the global decorre­
lating solution because the PCA filters (rows of W p) are ordered (3) according to 
the amplitude spectrum of the data. 

It has been demonstrated how a single neuron is capable of finding the direction 
of maximal variance. This function can be extended in a feedforward single layer 
of neurons, that can perform PCA. Consider a neural network shown in figure 1.5. 
The network has N inputs and N neurons. Each neuron in the output layer of the 
network is linear. The synaptic weights Wij are connecting the i-th inputs and the 
j-th neuron, where here i = 1"", Nand j = 1"", N. The output of neuron j at 
time t is produced in response to the set of inputs Xi(t) 

N 

Yj(t) = L Wij(t)Xi(t). (1.34) 
i==l 
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Figure 1.5. Single layer feedforward neural network. The input vector is x, the synaptic weight 

matrix is Wand the output vector is y. 

The weight Wij(t) is adapted in the generalized form of Hebbian learning (Sanger, 
1989) 

(1.35) 

Eq.1.35 is known as the Generalized Hebbian Algorithm (GHA) and can be written 
in the matrix notation as follows 

(1.36) 

where 

j 

x'(t) = x(t) - LWk(t)Yk(t). (1.37) 
k=l 

Based on the number of neurons in the GHA network the following observations 
are made 

• For j = 1 and x' = x, eq.1.36 reduces to eq.1.31 for a single neuron. This 
neuron will discover the first principal component, i.e. the largest eigenvalue and 
associated eigenvector of the input vector x(t). 

• For j = 2 and x' = x - Wl (n)Yl (t), if the first neuron has learned the first 
principal component, the second neuron sees x' from which the first eigenvector of 
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the correlation matrix has been removed. Therefore, the second neuron extracts 
the first principal component of x' which is equivalent to the second principal 
component, i.e. the second largest eigenvalue of the data. It is perpendicular to 
the first principal component. 

This can be proceeded for the remaining neurons and it is clear that each output 
represents a particular eigenvector of the correlation matrix of the input vector, and 
that the individual outputs are ordered by decreasing eigenvalue. The convergence 
theorem of the GHA is shown in Haykin (1994b). 

There are several applications associated with PCA. The PCA transformation is 
designed in such a way that the data set may be represented by a number of reduced 
number of effective features and still retain most of the intrinsic information content 
of the data. It therefore performs a dimensionality reduction and may be used for 
example in image coding where an image is reconstructed given only the first few 
principal components. This data compression technique allows a transmission of 
reduced data through a limited-bandwidth channel. 

1.4.2 The Principle of Maximum Entropy Preservation 

The principle of maximum entropy preservation (infomax) is closely related to the 
concept of channel capacity which is Shannon's (1948) second theorem of the math­
ematical theory of communication: the channel coding theorem. A neural network 
may be viewed as a communication system receiving inputs and efficiently coding it. 

The relation of sensory coding strategy and neural coding was pointed out by 
Barlow (1961). He proposed Redundancy reduction as a property for the study 
of human sensory coding. The idea was to formulate an objective function based 
on information theoretic criteria that one thinks a neural code should satisfy. In 
this context Barlow suggested that neurons in the receptive field such as the visual 
reception and the olfactory reception reduce redundant information that leads to 
factorial code. This assumes that each neuron is independent of the features encoded 
by the other neurons. Atick (1992) proposed a linear neural network for visual 
processing to perform redundancy reduction. The method is similar to Linsker's 
infomax principle that was formulated in a linear neural network. Linsker's (1989) 
principle of maximum information preservation suggested the following: 

The transformation of a vector x observed in the input layer of a neural network to 
a vector y produced in the output of the output layer jointly maximize information 
about the activities in the input layer. The parameter to be maximized is the aver­
age mutual information between the input vector x and the output vector y, in the 
presence of processing noise. 

Here, the goal of the neurons in the network is to maximize the mutual informa­
tion between the sensory inputs and the network outputs. This maximization can 
be formulated .as the principle of maximum entropy preservation in a single layer 
feedforward network under certain circumstances which are dependent on the neural 
output distributjons, the type of activation function and the noise model. For sim­
plicity, the application of the infomax principle is demonstrated in a network with 
two neurons as shown in figure 1.6. It is assumed that the neurons include additive 
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Xl --------=-=--i.~.--. Yl 

X2 ____________ -=~ 

Figure 1.6. A linear neural network with two inputs and two neurons. Gaussian noise sources 

nl and n2 are added at the neurons. 

noise sources nl and n2 and a linear activation function Y = feu) = u. In the follow­
ing, the mutual information in the network is computed as a function of the noise 
variance of nl and n2. The outputs of the neurons in figure 1.6 are 

Yl = WUXI + W12 X 2 + nl 

Y2 = W21 X l + W22 X 2 + n2· 

The mutual information between x and y is 

l(x; y) = H(x) + H(y) - H(x, y) . 

(1.38) 

(1.39) 

The joint entropy H(x, y) = H(x) - H(n) because the linear mapping from x to y is 
determined by the weight matrix Wand the noise sources. It is therefore determin­
istic up to the noise sources. Another interpretation is that l(x ; y) = H(y) - H(ylx) 
and the conditional entropy H(ylx) is the information that the neuron conveys about 
n rather then about x . Therefore, H(ylx) = H(n) and it follows that 

l(x; y) = H(y) - H(n) . (1.40) 

Information maximization in the linear network is achieved when Yl and Y2 have 
Gaussian distributions. Note that the entropy of a distribution with a fixed variance 
is maximum for the Gaussian distribution (see section 1.3.2). This is here the case 
since the amplitudes of Yl and Y2 are not bounded and the activation functions are 
linear. The entropy terms in eq.1.40 can be computed as follows: A n-dimensional 
multivariate Gaussian distribution is defined as 

(1.41 ) 
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where det(C) is the determinant of the covariance matrix C = (yyT). The entropy 
of the output neurons y is then (Cover and Thomas, 1991) 

1 
H(y) = "2 log [(2?Te)N det(C)] . (1.42) 

The joint entropy for a Gaussian distributed noise signal with variance (Tn for N = 2 
is (Haykin, 1994b) 

(1.43) 

where it is assumed that both noise variances are equivalent. The mutual information 
from eq.1.40, eq.1.42 and eq.1.43 for the network is then 

( det(C») I(x;y) = log ~ . (1.44) 

The mutual information between the output vector y and the input vector x in 
eq.1.44 depends on the noise variance. Maximizing eq.1.44 is equivalent to maximiz­
ing the determinant of the covariance matrix C. The covariance matrix C in the 
network with two neurons is 

(1.45) 

The elements of the covariance matrix can be written as variances of Y1 and Y2 

Cll = (T~ + (T; (1.46) 

C21 = C12 = (T1 (T2P21 

C22 (T~ + (T~, 

where P21 is the correlation coefficient of Y2 and Y1. The determinant of the covariance 
matrix is 

det(C) CUC22 - C12C21 (1.47) 

= (T~ + (T~((T~ + (T~) + (T~(T~(1- P~1). 

Eq.1.47 can be maximize under two different noise-level conditions (Haykin, 1994b) 

• Large noise variance: The third term of eq.1.47 can now be neglected. For 
a fixed noise variance maximizing det(C) is achieved by maximizing the noise 
terms either (T~ or (T~. Linsker concludes that a high noise level favors redundancy 
at the outputs, i.e. the two neurons compute the same linear combination of 
inputs, given that there is only one such combination that yields a response with 
maximum variance . 

• Low noise variance: The third term in eq.1.47 becomes relatively important and 
the mutual information is maximized by an optimal tradeoff between two options: 
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keeping the output variance O'~ and O'~ large, and making the outputs Yl and Y2 
uncorrelated. Here, the neurons try to compute different linear combinations of 
inputs, even though such a choice may result in a reduced output variance. 

In this example, the mutual information was maximized between the inputs and 
the outputs of a neural network. In the case of low additive noise signals the infomax 
principle will decorrelate the output signals. Note that this derivation was based on 
the assumptions that the activation functions were linear. The assumptions about 
the network properties are important. The chapter on ICA shows how the infomax 
principle can be used to perform ICA by modifying these assumptions. 

1.5 HIGHER-ORDER STATISTICS 

This section presents the basic definitions and relations of moments and cumulants 
which are important properties describing higher-order statistics of a RV. 

Higher-order statistics of a RV are necessary to describe random process in which 
the behavior of the RV is non-Gaussian. A Gaussian process can be described en­
tirely using second-order statistics, i.e. mean and variance. However, non-Gaussian 
processes have in addition. to first- and second-order statistics higher-order informa­
tion that describe the form of the process (e.g. skewness, kurtosis). Moments and 
cumulants can be used to describe any distribution of a RV. For simplicity, moments 
and cumulants are described using a single RV whereas cross-cumulants involve at 
least two RVs. Books and articles on higher-order statistics are DeGroot (1986); 
Stuart and Ord (1987); Papoulis (1990); Cadzow (1996). 

1.5.1 Moments 

A stationary random time series can be thought of as being generated by a sequence 
of samples of an underlying generating random variable. The p.d.f. is a continuous 
function of x- and governs the generation of x. For any random variable, the p.d.f. 
of x can be described in terms of a set of discrete parameters called moments 

(1.48) 

where /-Lx(n) denotes the nth-order moment. The first-order moment (/-Lx(l) = m x) is 
referred to as the mean value of x, i.e. it corresponds to.the center of the distribution. 
Central moments provide a set of parameters that describe the manner in which the 
distribution is about its mean value m x . 

(1.49) 

Central moments m and moments J.L are identical when the mean is zero. The second­
order central moment is referred to as the variance: 0'; = m;. The third-order central 
moment measures the skewness of the p.d.f. about its mean value. It is zero for a 
symmetrical p.d.f.s. The fourth-order central moment is used to measure the excess 
or flatness (i.e. kurtosis) of the p.d.f. 
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Consider now some properties of the Fourier transform of the random variable x 
i.e. the expected value of the exponential function x which is commonly used in the 
signal processing community. The Fourier transform of the p.d.f. is called '¢x (r), the 
moment generating function (m.g.f.) of x 

1+00 

,¢x(r) = -00 eiTXp(x)dx = E{eirx }. (1.50) 

It possesses all the properties associated with the Fourier transform. 
Suppose that the m.g.f. of x exists for all values of r in some interval around the 

point r = O. It can be shown that the derivative a'¢x(r)/ar in eq.1.50 is equal to 
the expectation of the derivative 

a'¢x(r) .. a { (. )}! { a (.)! } 
ar = ar E exp Jrx r=O = E ar exp Jrx r=O . (1.51) 

But since 

:r exp(jrx)!r=o = xexp(jrx)!r=o = x, (1.52) 

it follows that 

(1.53) 

The derivative of the m.g.f. at r = 0 is the mean of x. More generally, if the m.g.f. 
exists for all values of r in an interval around the point r = 0, then it can be shown 
that the n-th derivative will satisfy 

(1.54) 

One important property of m.g.f. is that the sum of independent random variables 
has a simple form. 

Theorem 1.3 (Property of m.g.f.) Xl,···, Xn are independent random variables 
and '¢(x;)(r) denote the corresponding m.g.f. for i = 1,···,n. x is the sum of 
independent variables x = Xl + ... + Xn the '¢(x)(r) denotes the m.g.f. ofx. Then 
for any value of r it follows 

n 

'¢x(r) = II '¢(x;) (r). (1.55) 
i=l 

Proof 1.3 By definition 
n 

'¢x(r) = E{exp(rx)} = E{exp(r(xl + ... + xn ))} = E{II exp(rxi)}. 
i=l (1.56) 

Since the random variables are independent the product of the exponentials is the 
product of lhe expected value of the exponentials. Hence, 

n 

'¢x(r) = II '¢x;(r). (1.57) 
i=l 
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1.5.2 Cumulants 

The logarithm of the m.g.f. 'l/Jx (r) is called the cumulant generating function (c.g.f.) 

(1.58) 

An interpretation of the cumulant generating function is obtained by making a Taylor 
series expansion in rk about its origin. The coefficients of the Taylor series term rk, 
multiplied by (_j)k is called the k-th order cumulant and is given by 

. k 8dk if> x ( r ) 
Ck = (-J) 8dr k !T=O. (1.59) 

Cumulants can characterize random variables as functions of mean and moments. 
For example, the first four cumulants for a single RV are (Stuart and Ord, 1987) 

(1.60) 

where mn are central moments. 

• The first-order cumulant is exactly the mean of x as derived in eq.1.53. 

• The second-order cumulant is the variance of x. 

• The third-order cumulant is the same the third-order moment. 

• The fourth-order cumulant has the fourth-order moment and six other second­
order moments which are summarized in 3m~ because there is only one RV. 

1.5.3 Cross-cumulants 

The term cross-cumulants describes cumulants of more than one RV. For example, 
the second-order cumulant of two RVs is defined as 

(1.61) 

which are elements of the covariance matrix of two RVs. The 4th-order order cross­
cumulants are defined as 

~{ml(xl)ml(x2)ml(x3)ml(x4)} -
~{ml(xl)ml(x2)}~{ml(x3)ml(x4)} -
~{ml(xl)ml(x3)}~{ml(x2)ml(x4)} -
~{ml (xdml (X4) }~{ ml (x2)ml (X3)}. (1.62) 

Eq.1.62 reduces to the 4th-order cumulants (kurtosis) for a single variable in eq.1.60 
when Xl = X2 = X3 = X4· 
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1.6 SUMMARY 

This chapter briefly summarized the basics of the theories that are necessary to 
understand the material presented in the following theory chapters. 

Bayesian probability theory provides a general framework for estimation and infer­
ence. Information theory gives a measure of redund~cy which is related to channel 
capacity for the transmission rate in communications. Maximum entropy is achieved 
for a signal with given variance when its p.d.f. is Gaussian. For an amplitude 
bounded signal, the entropy is maximum when its distribution is uniform. Artificial 
neural networks are biologically inspired and can be ·used in a broad and interdis-, 
plinary field. The focus in this chapter was on unsupervised learning algorithms for 
simple feedforward neural networks. A single neuron can find the direction of maxi­
mum variance using a Hebbian learning rule and the extension to a single layer neural 
network is capable of performing principle component analysis. Linsker (1989) sug­
gested that the objective of a neural network is to maximize the mutual information 
between the inputs and outputs. A discussion on a simple two by two neural net­
work with varying noise quantities showed that in the low noise case maximizing the 
entropy at the outputs reduced the redundancy among the outputs for an optimal 
information flow. Moments and cumulants are parameters that convey information 
about the distribution of a random variable. In particular, non-Gaussian variables 
may be described using higher-order moments and cumulants. 

The next chapter shows how learning algorithms can be derived based on the 
presented theories that perform blind source separation. 
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Notes 

1. It is available online via his homepage: http://wol.ra.phy.cam.ac . uk/mackay / i tprnn/#book 

2. Note that throughout the book, H(.) is referred to as differential entropy. h(x) was merely 
used in this section to distinguish between the entropies of a discrete random variable (RV) and a 
continuous RV. 

3. The three terms can be used interchangeably in this context. 



2 INDEPENDENT COMPONENT 
ANALYSIS 

The world beyond second-order statistics 
Anthony Bell 

2.1 OVERVIEW 

The goal of blind source separation (BSS) is to recover independent sources given 
only sensor observations that are linear mixtures of independent source signals. The 
term blind indicates that both the source signals and the way the signals were mixed 
are unknown. Independent Component Analysis (ICA) is a method for solving the 
blind source separation problem. It is a way to find a linear coordinate system (the 
unmixing system) such that the resulting signals are as statistically independent 
from each other as possible. In contrast to correlation-based transformations such as 
Principal Component Analysis (PCA), ICA not only decorrelates the signals (2nd­
order statistics) but also reduces higher-order statistical dependencies. 

Two different research communities have considered the analysis of independent 
components. On one hand, the st~dy of separating mixed sources observed in an 
array of sensors has been a classical and difficult signal processing problem. The 
seminal work on blind source separation was by Herault and Jutten (1986) where 
they introduced an adaptive algorithm in a simple feedback architecture that was 
able to separate several unknown independent sources. Their approach has been fur­
ther developed by Jutten and Herault (1991), Karhunen and Joutsensalo (1994), and 
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Cichocki et al. (1994). Comon (1994) elaborated the concept of independent compo­
nent analysis and proposed cost functions related to the approximate minimization 
of mutual information between the sensors. 

In parallel to blind source separation studies, unsupervised learning rules based 
on information theory were proposed by Linsker (1992). The goal was to maximize 
the mutual information between the inputs and outputs of a neural network. This 
approach is related to the principle of redundancy reduction suggested by Barlow 
(1961) as a coding strategy in neurons. Each neuron should encode features that are 
as statistically independent as possible from other neurons over a natural ensemble 
of inputs; decorrelation as a strategy for visual processing was explored by Atick 
(1992). Nadal and Parga (1994) showed that in the low-noise case, the maximum 
of the mutual information between the input and output of a neural network im­
plied that the output distribution was factorial; that is, the multivariate probability 
density function (p.d.f.) can be factorized as a product of marginal p.d.f.s. Roth 
and Baram (1996) and Bell and Sejnowski (1995) independently derived stochastic 
gradient learning rules for this maximization and applied them, respectively, to fore­
casting, time series analysis, and the blind separation of sources. Bell and Sejnowski 
(1995) put the blind source separation problem into an information-theoretic frame­
work and demonstrated the separation and deconvolution of mixed sources. Their 
adaptive methods are more plausible from a neural processing perspective than the 
cumulant-based cost functions proposed Comon (1994). A similar adaptive method 
for source separation was proposed by Cardoso and Laheld (1996). 

The original infomax learning rule for blind separation by Bell and Sejnowski 
(1995) was suitable for super-Gaussian sources, i.e. sources with probability density 
~~mctions (p.d.f.s) sharply peaked with heavy tails and positive kurtosis (normalized 
fth-order cumulant). As illustrated in Bell and Sejnowski (1995) their algorithm 
fails to separate sources that have negative kurtosis (sub-Gaussian). An extension 
of the infomax algorithm of Bell and Sejnowski (1995) is presented in Lee et al. 
(1998b) that is able to blindly separate mixed signals with sub- and super-Gaussian 
source distributions. This was achieved by using a simple type of learning rule first 
derived by Girolami (1997b) by choosing negentropy as a projection pursuit index. 
Parameterized probability distributions that have sub- and super-Gaussian regimes 
were used to derive a general learning rule that preserves the simple architecture 
proposed by Bell and Sejnowski (1995), is optimized using the natural gradient by 
Amari (1998), and uses the stability analysis of Cardoso and Laheld (1996) to switch 
between sub- and super-Gaussian regimes. 

There are two important properties in ICA: the natural gradient and the robust­
ness in ICA against parameter mismatch. The natural gradient (Amari, 1998), or 
equivalently the relative gradient Cardoso and Laheld (1996) gives fast convergence. 
A simple nonlinearity used in the ICA learning rule is related to the source density 
model. However, it is robust against a parametric mismatch between the infomax 
density estimation and the true source density. Conditions are shown under which 
the infomax algorithm still converges to an ICA solution. Computer simulations 
demonstrate that the extended infomax algorithm can successfully separate 20 mix­
tures of the following sources: 10 sound tracks obtained from Pearlmutter, 6 speech 
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& sound signals used in (Bell and Sejnowski, 1995), 3 uniformly distributed sub­
Gaussian noise signals and one noise source with a Gaussian distribution. However, 
instantaneous mixing and unmixing simulations are toy problems and the real chal­
lenge lies in dealing with real-world data. Results on biomedical recordings are shown 
in chapter 6. 

This chapter has two intentions: First, it serves as an introduction to lCA by 
formulating the blind source separation problem, by comparing the lCA method to 
PCA and by summarizing the Bell and Sejnowski (1995) infomax learning algorithm 
that separates super-Gaussian sources. Second, this chapter presents an extension of 
the infomax algorithm that is able to blindly separate mixed signals with sub- and 
super-Gaussian source distributions. 

The organization of this chapter is as follows: Section 2.2 states the problem and 
the assumptions for lCA. Section 2.3 demonstrates why decorrelation-based algo­
rithms fail to separate independent sources. Section 2.4 reviews the infomax approach 
by Bell and Sejnowski (1995) and in section 2.5 the extended infomax learning algo­
rithm is presented that can' separate mixtures of sub- and super-Gaussian sources. 
This learning algorithm is applied to simulations in section 2.7. The results of the ex­
tended infomax algorithm are compared to the original infomax learning algorithm. 
Sections 2.8.1 gives an intuitive explanation for the 'natural' gradient proposed by 
Amari et al. (1996); Amari (1998) or 'relative' gradient proposed by Cardoso and 
Laheld (1996). Section 2.8.2 gives an intuitive explanation for the robustness in blind 
source separation. Finally, several lCA issues are discussed in section 2.9. 

2.2 PROBLEM STATEMENT AND ASSUMPTIONS 

Assume that there is an M-dimensional zero-mean vector s(t) = [Sl (t),· .. , SM(t)jT, 
such that the components Si(t) are mutually independent. The vector s(t) corre­
sponds to M independent scalar-valued source signals Si(t). The multivariate p.dJ. 
of the vector can be rewritten as the product of marginal independent distributions. 

M 

p(s) = IIpi(si). (2.1) 
i=l 

A data vector x(t) = [Xl (t),· .. , XN(t)jT is observed at each time point t, such that 

x(t) = As(t), (2.2) 

where A is a full rank N x M scalar matrix. As the components of the observed 
vectors are no longer independent, the multivariate p.dJ. will not satisfy the p.dJ. 
product equality. If the components of s(t) are such that at most one source is 
normally distributed then it is possible to extract the sources s(t) from the received 
mixtures x(t) (Comon, 1994). The mutual information of the observed vector is 
given by the Kullback-Leibler (KL) divergence of the multivariate density from the 
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Figure 2.1. The instantaneous mixing and unmixing model. Independent sources s become 

mixed by A. The observed sources are x. The goal is to learn W that inverts the mixing A 
and u are the estimates of the recovered sources. The infomax approach is one way to find the 

unmixing system W . It requires a nonlinear transfer function g(u). 

product of the marginal (univariate) densities 

I(Xl,X2,"',XN) = 

1+00 1+00 1+00 P(XI X2 ... XN) 
. .. P(Xl,X2,"',XN)log 'N' , dXldx2···dxN. 

-00 -00 -00 ni=l Pi(Xi) 
(2 .3) 

For simplicity, 

I(x) = J p(x) log :(x) dx. 
ni=l Pi(Xi) 

(2.4) 

The mutual information will always be positive and will only equal zero when the 
components are independent (Cover and Thomas, 1991). 

The goal of ICA is to find a linear transformation W of the dependent sensor 
signals x that makes the outputs as independent as possible 

u(t) = Wx(t) = WAs(t) , (2.5) 

where u is an estimate of the sources. The sources are exactly recovered when W is 
the inverse of A up to a permutation and scale change. 

P=RS=WA, (2.6) 

where R is a permutation matrix and S is the scaling matrix. The two matrices 
define the performance matrix P so that if P is normalized and reordered a perfect 
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separation leads to the identity matrix. For the linear mixing and un mixing model, 
he following assumptions are adopted (Comon, 1994; Cardoso and Laheld, 1996) 

1. The number of sensors is greater than or equal to the number of sources N 2: M. 

2. The sources s(t) are at each time instant mutually independent. 

3. At most one source is normally distributed. 

4. No sensor noise or only low additive noise signals are permitted. 

Assumption 1 is needed to make A a full rank matrix. Assumption 2 is the basis of 
ICA and can be expressed as follows 

M 

p(s(t)) = IIp(si(t)). (2.7) 
i=l 

For assumption 3 the unmixing of two Gaussian sources is ill posed when the sources 
are white random processes. Non-white Gaussian processes may be recovered with 
time-decorrelation methods if they have different spectra (Molgedey and Schuster, 
1994). However, pure Gaussian processes are rare in real data. Assumption 4 is 
necessary to satisfy the infomax condition, in which the mutual information between 
outputs is only minimized for the low noise case (Linsker, 1992; Nadal and Parga, 
1994). However, one can imagine that noise is an independent source itself and if as 
many sensor outputs are available as the number of sources the noise signal can be 
segregated from the mixtures. 

2.3 THE POVERTY OF peA 

Principal Component Analysis (PCA) is a popular tool for multivariate data analy­
sis. Chapter 1, showed a single layer feedforward neural network that can find the 
principal components in the data using the Generalized Hebbian Algorithm (GHA). 
PCA is a decorrelation-based method and Linsker (1989) showed that performing 
infomax in a linear neural network decorrelated the outputs in the low noise case. 
Here, simple examples are presented to illustrate that decorrelation-based algorithms 
such as PCA cannot be used to separate independent sources. The reason for com­
paring PCA with ICA is due to the familiarity of PCA to most readers and due to 
some close relationships between ICA and PCA. 

There are many ways to perform decorrelation. As described in chapter 1, PCA 
filters (rows of W p) give an orthogonal solution. Another decor relation method 
is the symmetrical solution which assumes that the filters of W z are symmetrical 
(zero-phase) and therefore they are called Zero-phase Component Analysis (ZCA) 
(Bell and Sejnowski, 1997). If W z is symmetrical then W z = W~. PCA can be 
computed using the GHA but a simple singular value decomposition method (Jolliffe, 
1986; Kaliath, 1980) can be used as well 

(2.8) 



32 ICA THEORY AND APPLICATIONS 

where D is the diagonal matrix of eigenvalues and E are the eigenvectors of the 
covariance matrix (columns of E) so that D and E satisfy 

(2.9) 

PCA is now applied to two simple blind source separation problems. The first sim­
ulation example involves two uniformly distributed sources 81 and 82. The sources 
are linearly independent because the values of one source does not convey any in­
formation about the other source. Figure 2.2 (a) shows the scatter-plot of the two 
original sources. The sources are linearly mixed as follows 

x = As (2.10) 

[ :~] = [~ ~] [ :~ ] . 

Figure 2.2 (b) shows the scatter-plot of the mixtures. The distribution along the 
axis Xl and X2 are now dependent and the form of the density is stretched according 
to the mixing matrix. Applying PCA to the mixed data Xl and X2 results in two 
principal components. The first principal component is the axis accounting for the 
highest variance in the data and the second principal component is the axis orthog­
onal to first principal component axis. Figure 2.2 (c) shows the PCA solution and 
the result differs from the original since the two principal axis are still dependent. 
Due to the decorrelation property of PCA the data is sphered. However, the data 
needs to be rotated to correspond to the original source solution. The ICA solution 
in figure 2.2 (d) does not only sphere (decorrelate) the data but also effectively ro­
tates it such that the axis of Ul and U2 have the same direction as the axis of 81 

and 82. Since PCA is a decorrelation-based method and its objective is to decor­
relate signals and not to make them independent this result may not be surprising. 
Independence however, and hence the separation of independent sources is achieved 
when the joint p.d.f. factorizes. When the sources are Gaussian distributed the 
joint p.dJ. for a multivariate Gaussian distribution factorizes when the marginal 
p.dJ.s are decorrelated because a Gaussian process is entirely described by 1 st_ and 
2nd-order statistics. When the sources are not Gaussian distributed the joint p.d.£. 
will not be factorized when the sources are decorrelated. As described in section 1.5 
non-Gaussian distributions can be parameterized using higher-order moments and 
cumulants. Therefore, the joint p.dJ. of non-Gaussian densities will only factorize, 
i.e. achieve independence when the sources are decorrelated and their higher-order 
correlations are removed as well. 

The second simulation example in figure 2.3 (a) and (b) shows the time course 
of two speech signals 81 and 82. The signals are linearly mixed as in the previous 
example in eq.2.1O. 

Figure 2.3 (top) shows the two original sources, the linearly mixed signals Xl and 
X2 (second row), the recovered signals using PCA (third row) and the recovered 
signals using ICA (bottom). The performance matrix P = WA is a measure for the 
separation quality. Due to possible scaling and permutation the performance matrix 
should be a diagonal matrix after normalizing and reordering. The performance 
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Figure 2.2. Top-left: scatter-plot of the original sources, Top-right: the mixtures, Bottom-left: 
the recovered sources using PCA, Bottom-right: the recovered sources using ICA. 
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Figure 2.3. Top: the original sources, second row: the mixtures, third row: the recovered sources 
using PCA, bottom: the recovered sources using ICA. 
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matrix for the PCA solution is 

[ 1.3706 2.2301] 
0.3483 -0.1628 . 

The off-diagonal coefficients indicate that the sources have not been separated. The 
performance matrix for the lCA solution is 

[ 0.088 15.0864] 
12.5293 0.0569 . 

The solution indicates that the recovered sources are permuted and scaled which can 
be seen in figure 2.3 (bottom). 

These simple examples illustrate that decorrelation-based methods cannot be used 
to separate independent sources. A method is necessary that can approximately take 
into account all higher-order correlations and make the signals truly independent. 

2.4 THE INFORMATION MAXIMIZATION APPROACH TO ICA 

Nadal and Parga (1994) showed that in the low-noise case, the maximum of the 
mutual information between the inputs x and outputs y of a neural processor im­
plied that the output distributions were factorial. In other words, maximizing the 
information transfer in a nonlinear neural network minimizes the mutual informa­
tion among the outputs (factorial code) when optimization is done over both the 
synaptic weights and the nonlinear transfer function. Roth and Baram (1996) and 
Bell and Sejnowski (1995) independently derived stochastic gradient learning rules 
for this maximization and applied them, respectively to forecasting and time series 
analysis, and the blind separation of sources. Bell and Sejnowski (1995) proposed 
a simple learning algorithm for a feedforward neural network that blindly separates 
linear mixtures x of independent sources s using information maximization. They 
show that maximizing the joint entropy H(y) of the output of a neural processor 
can approximately minimize the mutual information among the output components 
Yi = gi(Ui) where gi(Ui) is an invertible monotonic nonlinearity and u = Wx. 

The joint entropy at the outputs of a neural network is 

(2.11) 

where H(Yi) are the marginal entropies of the outputs and I(Yl,···, YN) is their 
mutual information. Maximizing H(Yl, ... ,YN) consists of maximizing the marginal 
entropies and minimizing the mutual information. The outputs yare amplitude­
bounded random variables and therefore the marginal entropies are maximum for a 
uniform distribution of Yi. Maximizing the joint entropy will also decrease I (Yl, ... , Y N ) 
since the mutual information is always positive. For I(Yl,···, YN) = 0 the joint en­
tropy is the sum of marginal entropies 

(2.12) 

The maximal value for H(Yl,···, YN) is achieved when the mutual information among 
the bounded random variables Yl,···, YN is zero and their marginal distribution is 
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uniform. As shown below, this implies that the nonlinearity gi(Ui) has the form of 
the cumulative density function (c.d.f.) of the true source distribution Si. There 
are now two sets of parameters that determine the maximum joint entropy: the 
nonlinearity Yi = gi(Ui) and the synaptic efficacies W. Bell and Sejnowski (1995) 
chose the nonlinearity to be a fixed logistic function. This is equivalent to assuming 
a prior distribution of the sources: a super-Gaussian distribution with heavy tails 
and a peak centered at the mean. The only remaining parameters to adapt are the 
synaptic weights. They can be found by maximizing the joint entropy with respect 
to W. The derivative of eq.2.11 with respect to W relates to the KL divergence 
between the multivariate uniform distribution denoted as Pl(Y) and multivariate 
uniform estimate p(y) in the following form 

8H(y) 8 
8W = 8W(-D(Pl(y)llp(y))). (2.13) 

In the limit when the transfer functions gi (Ui) and Ware optimized the joint entropy 
H(y) is maximum and p(y) = Pl(y) so that I(y) = O. S'ince gi(Ui) is an invertible 
mapping from Ui to Yi the KL divergence in eq.2.13 is equal to the KL divergence 
between the estimate of the source distribution p(u) and the sources p(s). 

(2.14) 

If the mutual information between the outputs is zero I(Yl, ... ,YN) = 0, the mutual 
information before the nonlinearity I( Ul, ... ,UN) must be zero as well since the 
nonlinearity does not introduce any dependencies. The relation between Yi and Ui 
and the nonlinear transfer function is (Papoulis, 1990) 

(2.15) 

For a uniform distribution of Yi, it follows that 

(2.16) 

This assumes that Ui is an independent variable with a distribution that is approxi­
mately the form of the derivative of the nonlinearity. In case of the logistic function, 
the appropriate p.d.f. is shown in figure 2.4 (bottom). The logistic function p.d.f. 
has longer tails than the Gaussian p.d.f. In fact, the logistic function p.d.f. is a 
rough estimate for distributions of music and speech signals (see figure 2.5) because 
their tails are longer and heavier than the tails of the Gaussian distribution. 

Bell and Sejnowski (1995) separated mixtures of several music and speech signals 
using infomax with a logistic activation function. Will infomax always minimize the 
mutual information? Bell and Sejnowski (1995) answer this question in a thought 
experiment where they illustrate that when there is a mismatch between the source 
p.d.f. and the slope of the nonlinearity a maximal joint entropy value can be achieved 
with I(y) > 0 that is higher than the joint entropy with I(y) = 0 (due to lower 
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Figure 2.4. Top: logistic function and bottom: the derivate of the logistic function. 

marginal entropies). In those cases, infomax will not minimize the mutual infor­
mation. This is exactly the case when the mismatch between the nonlinearity and 
cumulative density function (c.d.f.) of the true source distribution does not satisfy 
the robustness criteria. An intuitive explanation is presented in section 2.8.2 for the 
convergence to an ICA solution although the nonlinearity does not accurately relate 
to the source density. 

2.5 DERIVATION OF THE INFOMAX LEARNING RULE FOR leA 

In this section the derivation of the infomax learning rule by Bell and Sejnowski 
(1995) is summarized. 

The derivation is based on a simple neural network architecture that can realize 
the mapping from x to y = g(u) is a single-layer feedforward neural network with a 
nonlinear output activation function. The nonlinearity gi(U) is essential for minimiz­
ing the mutual information to perform ICA. Another interpretation for the use of 
the nonlinearity is that it provides a combination of higher-order statistics through 
its Taylor series expansion that is essential to minimize higher-order correlations. 
The learning rule can be derived by maximizing the output entropy H(y) of a neural 
processor, as proposed by Bell and Sejnowski (1995). 
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Figure 2.5. Left: p.d.f of a speech signal. Right: p.d.f. of a music signal. 

The joint entropy at the outputs of a neural network is 

(2.17) 

where H(Yi) are the marginal entropies of the outputs and I(Yl,···, YN) is their 
mutual information. Eq.2.17 in vector notation is 

H(y) = H(yd + ... + H(YN) - I(y). (2.18) 

Each marginal entropy can be written as 

H(Yi) = -E{logp(Yi)}. (2.19) 

The nonlinear mapping between the output density P(Yi) and source estimate density 
p(Ui) can be described by the absolute value of the derivative with respect to Ui 
(Papoulis, 1990) 

p(Ui) 
P(Yi) = 1!!JI..i1 ' 

au. 
(2.20) 



INDEPENDENT COMPONENT ANALYSIS 39 

which can be substituted in eq.2.19 giving 

Rewriting eq.2.18 gives 

H(y) = 

H(y) = 

p(Ui) 
H(Yi) = -E{log !!JJi. }. 

I au: I 

p(Ul) p(UN) 
-E{log -} + ... - E{log --} - I(y) 

I ~I laYNI 
aU! aUN 

N 
" P(Ui) - L.J E{log !!JJi. } - I(y). 
i=l lau. I 

Taking the derivative of the joint entropy is now 

N 
aH(y) = ~(-I( )) _ ~ "E{lo P(Ui)}. 
aw aw y awf;;t gl~1 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

This equation makes a clear relation between maximizing the joint entropy of the 
output of the neural processor and minimizing the mutual information between the 
components at the outputs. A direct minimization of the mutual information is 
achieved when p( Ui) = I ~ I is satisfied, i.e. the density of the estimated source Ui 
is the derivative of the nonlinear activation function Yi. In other words, the mutual 
information will be minimized when the nonlinearity Yi = gi{Ui) is the cumulative 
density function of the source estimates Ui. In case of a mismatch between the 
estimated source density p{ Ui) and the derivative of the nonlinear activation function 
~ the maximum of H(y) may be achieved without I{y) being zero. In this case the 

error term atv L:;:l E{log Pb:~)} exists and may interfere during the minimization 
I~I 

process of I(y). Therefore, eq.2.24 suggests that the minimization process of I{y) 
depends on the source density estimate modeled by the nonlinearity gi(Ui). To what 
extend the density estimate must approximate the true source density is still an 
open question. Simulation results in section 2.8.2 suggest conditions under which 
the infomax algorithm will separate independent sources. 

Assume that the error term in eq.2.24 is negligible due to the assumption that the 
nonlinearity gi(Ui) is flexible and able to sufficiently approximate the source density. 
In this case the error term vanishes and the maximum of the joint entropy H (y) can 
be found by deriving H{y) with respect to W, i.e. computing the gradient of H{y). 

aH(y) a 
aw = aw (-E{logIJI}), (2.25) 

where the nonlinear mapping between the output density p{y) and input density 
p(x) can be described by the Jacobian (Papoulis, 1990) 

p{x) 
p{y) = IJ{x)I' (2.26) 
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This transformation can be seen as a volume conserving transformation (Deco and 
Brauer, 1995). The term -E{logp(x)} in eq.2.25 does not depend on the parameter 
W. Now consider a training set of the data x so that the stochastic learning rule 
can now be approximated without the expectation term 

aH(y) a 
aw = aw log IJI· (2.27) 

The term IJI is the absolute value of the Jacobian of the transformation from x to 
y. It is the determinant of the matrix of partial derivatives 

[

!!JJ.J.. 
8x, 

J(x) = deF : 
!!.JJ.n.. 
8x, 

(2.28) 

Considering the elements of the Jacobian, each partial derivative has the following 
form 

(2.29) 

Since there are no connections between the outputs of the neuron the partial deriva­
tive ayi/aUj is non-zero for i = j only. Therefore the Jacobian can be rewritten 
as 

N 

J(x) = det(W) II I ~~i.l. 
i=1 ' 

Substituting eq.2.30 in eq.2.27 it follows 

aH(y) 
aw 

The first term in eq.2.31 is 

a ay· ( N) aw log I det(W)I[!l au: I 

N 
a a '"' aYi aw log I det(W)I + aw ~ log lau.1 

i=1 .' 

N 
a '"' a aYi aw log I det(W)1 + ~ aw log lau.l. 

i=1 ' 

because the determinant of W can be expressed as 

N 

det(W) = L wijcof(wij). 
j=1 

(2.30) 

(2.31) 

(2.32) 

(2.33) 
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The second term in eq.2.31can be further computed as 

(2.34) 

Define the derivative of the nonlinearity Yi with respect to Ui as an approximation 
of the source density p(Ui). 

(2.35) 

From eq.2.35 and eq.2.34 it follows that 

8 ;., I I 8Yi I ()~~) T 
8W ~ og 8U i = pen) x . (2.36) 

Now the first and second term in eq.2.31 are computed and the learning infomax 
rule is (Bell and Sejnowski, 1995) 

8H(y) = (WT)-l + (()~~)) xT. 
8W pen) 

(2.37) 

This learning rule is a result of the gradient of the entropy function and involves a 
computationally intensive matrix inversion. 

A much more efficient way to maximize the joint entropy is to follow the 'natural' 
gradient. The natural gradient rescales the entropy gr~dient by post-multiplying the 
entropy gradient by WTW giving 

6.Wex: 8H(y)WT W = [I + (()~~)) n T ] W, 
8W pen) 

(2.38) 

as proposed by Amari et al. (1996), or equivalently the relative gradient by Cardoso 
and Laheld (1996). 1 denotes the identity matrix. An intuition about the natural 
gradient is in subsection 2.8.1. Furthermore define the nonlinearity 

()p(u) 

<p(n) = -~, 
pen) 

which is also called the score function and the equation in eq.2.38 reads 

(2.39) 

(2.40) 

The form of <p(n) plays an important role in separating sub- and super Gaussian 
sources because it is a function of the nonlinearity Yi and therefore a function of the 
source estimate. For super-Gaussian sources, Bell and Sejnowski (1995) presented a 
table with activation functions and their resulting nonlinearity <p(n) for the learning 
rule. 
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2.6 A SIMPLE BUT GENERAL leA LEARNING RULE 

An alternative way to derive the general learning rule is given by the maximum 
likelihood formulation (MLE). The MLE approach to blind source separation was 
first proposed by Gaeta and Lacoume (1990), Pham and Garrat (1997) and was 
pursued more recently by Pearlmutter and Parra (1996) and Cardoso (1997). The 
probability density function of the observations x can be expressed as (Amari and 
Cardoso, 1997) 

p(x) = I det(W)lp(u), (2.41) 

where p(u) = n~l Pi(Ui) is the hypothesized distribution of p(s). The log-likelihood 
of eq.2.41 is 

N 

L(u, W) = log I det(W)1 + L logpi(ui). (2.42) 
i=l 

Maximizing the log-likelihood with respect to W gives a learning algorithm for W 
(Bell and Sejnowski, 1995) 

(2.43) 

where 

8p(u) [8P(UtJ 8P(UN)]T 
( ) 8u 8u! 8UN <pu =---= ---, ... ----

p(u) P(Ul) 'p(UN) 
(2.44) 

An efficient way to maximize the log-likelihood is to follow the 'natural' gradient 
(Amari, 1998) 

(2.45) 

as proposed by Amari et al. (1996) or relative gradient, Cardoso and Laheld (1996). 
Here WTW rescales the gradient, simplifies the learning rule in eq.2.43 and speeds 
convergence considerably. It has been shown that the general learning algorithm in 
eq.2.45 can be derived from several theoretical viewpoints such as MLE (Pearlmutter 
and Parra, 1996), infomax (Bell and Sejnowski, 1995) and negentropy maximization 
(Girolami and Fyfe, 1997c). Lee et al. (1998a) review these techniques and show 
their relation to each other. 

The parametric density estimate Pi(Ui) plays an essential role in the success of 
the learning rule in eq.2.45. Local convergence is assured if Pi(Ui) is the derivative 
of the log-densities of the sources (Pham and Garrat, 1997). If gi(U) is chosen to 
be a logistic function (gi(Ui) = tanh(ui)) so that <p(u) = 2tanh(u) the learning rule 
reduces to that in Bell and Sejnowski (1995) with the natural gradient 

~W ex [I - 2tanh(u)uT] W. (2.46) 
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Theoretical considerations as well as empirical observations 1 have shown that this 
algorithm is limited to separating sources with super-Gaussian distributions. The 
sigmoid function used in Bell and Sejnowski (1995) provides a priori knowledge about 
the source distribution, Le. the super-Gaussian shape of the sources. However, they 
also discuss a 'flexible' sigmoid function (a sigmoid function with parameters p, r 
so that g(Ui) = f g(ui)P(l - g(Ui)t) can be used to match the source distribution. 
The idea of modeling a parametric nonlinearity has been further investigated and 
generalized by Pearlmutter and Parra (1996) in their contextual ICA (cICA) al­
gorithm. They model the p.d.f. in a parametric form by taking into account the 
temporal information and by choosing Pi(Ui) as a weighted sum of several logistic 
density functions with variable means and scales. Moulines et al. (1997) and Xu 
et al. (1997) model the underlying p.d.f. with mixtures of Gaussians and show that 
they can separate sub and super-Gaussian sources. These parametric modeling ap­
proaches are in general computationally expensive. In addition, our empirical results 
on EEG and event related potentials (ERP) using contextual ICA indicate that cICA 
can fail to find independent components. One possible source of error may be due 
to the limited number of recorded time points (e.g. 600 data points for ERPs) from 
which a reliable density estimate is difficult. 

2.6.1 Deriving the extended infomax learning rule to separate sub- and 

super-Gaussian sources 

The purpose of the extended infomax algorithm is to provide a simple learning 
rule with a fixed nonlinearity that can separate sources with a variety of distri­
butions. One way of generalizing the learning rule to sources with either sub- or 
super-Gaussian distributions is to approximate the estimated p.d.f. with an Edge­
worth expansion or Gram-Charlier expansion (Stuart and Ord, 1987) as proposed by 
Girolami and Fyfe (1997c). In Girolami (1997b) a parametric density estimate was 
used to derive the same learning rule without making any approximations as shown 
below. 

A symmetric strictly sub-Gaussian density can be modeled using a symmetri­
cal form of the Pearson mixture model (Pearson, 1894) as follows (Girolami, 1998, 
1997b). 

(2.47) 

where N(f..L, a2 ) is the normal density with mean f..L and variance a2 • Figure 2.6 shows 
the form of the density p( u) for a2 = 1 with varying f..L = [0· . ·2]. For f..L = 0 p( u) is a 
Gaussian model whereas for e.g. f..Li = 1.5 the p(u) is dearly bimodal. The kurtosis 
k4 (normalized 4th-order cumulant) of p(u) is 

C4 -2f..L4 
/'i, - - - ...,....,,---'-::.,-::-

- c~ - (f..L2 + a 2 )2 , (2.48) 

where Ci is the ith-order cumulant . (Girolami, 1997b) Depending on the values of f..L 
and a 2 the kurtosis lies between -2 and O. So eq.2.47 defines a strictly sub-Gaussian 
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Figure 2.6. Estimated sub-Gaussian density models for the extended infomax learning rule with 

(72 = 1 and /-Li = {O · · · 2} . For /-Li = 1.5 the density becomes clearly bimodal. 
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symmetric density when J.t > O. Defining a = -/fI and applying eq.2.47 the term <p(u) 
is now 

a~(u) u (exp(au) - exp(-au)) 
<p(u) = - p(~) = (72 - a exp(au) + exp( -au) . (2.49) 

Using the definition of the hyperbolic tangent 

u J.t (J.t) <p(u) = - - -tanh -u . (72 (72 (72 (2.50) 

Setting J.t = 1 and (72 = 1 eq.2.50 reduces to 

<p(u) = u - tanh(u). (2.51) 

The learning rule for strictly sub-Gaussian sources is now (eq.2.45 and eq.2.51) 

~ W <X [I + tanh(u)uT - uuT] W. (2.52) 

In the case of unimodal super-Gaussian sources the following density model is adopted 

p(u) <X Pc (u)sech2 (u), (2.53) 

where pc(u) = N(O, 1) is a zero-mean Gaussian density with unit variance. Figure 2.7 
shows the density model for p( u). The nonlinearity <p( u) is now 

op(u) 

<p(u) = - p(~) = u + tanh(u). (2.54) 

The learning rule for super-Gaussian sources is (eq.2.45 and eq.2.54) 

(2.55) 

The difference between the super-Gaussian learning rule in eq.2.55 and the sub­
Gaussian learning rule eq.2.52 is the sign before the tanh-function: 

~ W {[I -tanh(u)uT - UUT] W : super - Gaussian 
<X [I + tanh(u)uT - uuT] W : sub - Gaussian 

(2.56) 

The learning rules differ in the sign before the tanh-function and can be determined 
using a switching criterion. Girolami (1997b) employs the sign of kurtosis of the anal­
ysis as a switching criterion. However, as there is no general definition for sub- and 
super-Gaussian sources a valid choice for a switching criterion is based on stability 
criteria which is presented in the next subsection. 



46 ICA THEORY AND APPLICATIONS 

1== Super-Gaussian 
0.9 Gaussian 

0.8 

0.7 

0.6 

p(u) 0.5 

0.4 

0.3 

0.2 

0.1 , 
I 

I .-
0 

~, 

-3 -2 -1 0 2 3 

U 

Figure 2.7. Density model for the super-Gaussian distribution. The super-Gaussian model has 

a heavier tail than the normal density. 
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2.6.2 Switching between nonlinearities 

The switching between the sub- and super-Gaussian learning rule is 

AWex [I _ Ktanh(u)uT _ uuT ] W { k i = 1 : super - Gau~sian 
k i = -1 : sub - Gaussian (2.57) 

where k i are elements of the N-dimensional diagonal matrix K. The switching mo­
ments k i can be derived from the generic stability analysis of separating solutions 
as employed by Cardoso and Laheld (1996) 2, Pham and Garrat (1997) and Amari 
et al. (1997a). In the stability analysis the mean field is approximated by a first-order 
perturbation in the parameters of the separating matrix. The linear approximation 
near the stationary point is the gradient of the mean field at the stationary point. 
The real part of the eigenvalues of the derivative of the mean field must be negative 
so that the parameters are on average pulled back to the stationary point 

A sufficient condition guaranteeing asymptotic stability can be derived (Cardoso, 
1998b, 1998c) so that 

K,i > 0 

where K,i is 

and 

Substituting eq.2.60 in eq.2.59 gives 

/l;i = E{kisech2(ui) + I}E{un - E{[ki tanh(ui) + ui]uil 

ki (E{sech2(ui)}E{un - E{[tanh(ui)]ui}). 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

To ensure K,i > 0 the sign of k i must be the same as the sign of E{sech2(ui)}E{un­
E{[tanh(ui)]ui}. Therefore the learning rule in eq.2.57 is used where the ki's are 

(2.63) 

2.6.3 The hyperbolic-Cauchy density model 

Another parametric density model is presented that may be used for the separation 
of sub- and super-Gaussian sources. Define the parametric mixture density as 

p(u) ex sech2(u + b) + sech2(u - b). (2.64) 

Figure 2.8 shows the parametric density as a function of b. For b = 0 the parametric 
density is proportional to the hyperbolic-Cauchy distribution and is therefore suited 
for separating super-Gaussian sources. For b = 2 the parametric density estimator 
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Figure 2.-8. p(u) as a function of b. For b = 0 the density estimate is suited to separate 
super-Gaussian sources. If for example b = 2 the density estimate is bimodal and therefore suited 

to separated sub-Gaussian sources. 
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has a bimodal 3 distribution with negative kurtosis and is therefore suitable for 
separating sub-Gaussian sources 

a 
cp(u) = --logp(u) = -2 tanh(u) + 2tanh(u + b) + 2tanh(u - b). au (2.65) 

Th-e learning algorithm for sub- and super-Gaussian sources is· now (eq.2.65 and 
eq.2.45) 

.6.Wcx: [I + 2tanh(u)uT -2tanh(u+b)uT -2tanh(u-b)uT ]W. 
(2.66) 

When b = 0 (where 0 is a N-dim. vector with elements 0) then the learning rule 
reduces to 

.6.Wcx: [I-2tanh(u)uT ]W, (2.67) 

which is exactly the learning rule in Bell and Sejnowski (1995) with the natural 
gradient extension. For b > 1, the parametric density is bimodal (as shown in 
figure 2.8) and the learning rule is suitable for separating signals with sub-Gaussian 
distributions. Here again the sign of the general stability criteria may be used in 
eq.2.58 and "'i in eq.2.59 to determine bi so that the learning rule can switch between 
bi = 0 and for example bi = 2. Figure 2.9 shows a comparison between the range of 
kurtosis values of the parametric mixture density models in eq.2.47 and eq.2.64. The 
kurtosis value is shown as a function of the shaping parameter J.L for the symmetric 
Pearson density model and b for the hyperbolic-Cauchy mixture density model. The 
kurtosis for the Pearson model is strictly negative except for J.L = 0 when the kurtosis 
is zero. Because the kurtosis for the hyperbolic-Cauchy model ranges from positive 
to negative, it may be used to separate signals with both sub- and super-Gaussian 
densities. 

2.7 SIMULATIONS 

Extensive simulations and experiments were performed on recorded data to verify 
the performance of the extended infomax algorithm eq.2.56. The results demonstrate 
that the algorithm is able to separate a large number of sources with a wide variety 
of sub- and super-Gaussian distributions. The performance of the extended infomax 
learning rule in eq.2.45 is compared to the original infomax learning rule eq.2.46. 

2.7.1 10 Mixed Sound Sources 

Ten mixed sound sources were obtained which were separated by contextual ICA 
as described in Pearlmutter and Parra (1996). No prewhitening is required since 
the transformation W is not restricted to a rotation in contrast to nonlinear PCA 
(Karhunen et al., 1997c). All 55000 data points were passed 20 times through the 
learning rule using a block size (batch) of 300. This corresponds to 3666 iterations 
(weight updates). The learning rate was fixed at 0.0005. Figure 2.10 shows the error 
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Figure 2.9. The kurtosis value is shown as a function of the shaping parameter I-" and b (I-" for 
the Pearson density model and b for the hyperbolic-Cauchy density model). Both models approach 
k4 = -2 as the shaping parameter increases. The kurtosis for the Pearson model is strictly 
negative except for I-" = O. The kurtosis for the hyperbolic-Cauchy model ranges from positive 
to negative so that we may use this single parametric model to separate signals with sub- and 
super-Gaussian densities. 
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Table 2.1. Simulation results with 10 sources 

-0.09 -0.38 0.14 -0.10 -0.06 0.93 -0.36 -0.54 0.17 114.81 

1-11.21 -0.01 0.14 0.05 -0.08 0.02 0.07 0.21 -0.12 -0.68 

0.15 0.08 -0.08 -0.02 110.21 -0.02 0.15 (};05 0.07 0.17 

0.39 0.61 -0.70 -0.07 0.14 0.32 -0.08 0...85 [[ZJ -0.16 

0.04 0.76 114.91 0.03 0.03 -0.17 0.18 -0.31 -0.19 0.04 

0.11 112.91 -0.54 -0.23 -0.43 -0.21 -0.12 0.05 0.07 0.18 

0.45 0.16 -0.02 @]] 0.24 0.98 -0.39 -0.97 0.06 -0.08 

0.31 0.14 0.23 0.03 -0.14 1-17.31 -0.39 -0.25 0.19 0.39 

-0.54 -0.81 0.62 0.84 -0.18 0.47 -0.04 110.51 -0.92 0.12 

-0.08 -0.26 0.15 -0.10 0.49 0.01 1-10.31 0.59 0.33 -0.94 

The performance matrix P for 10 mixed sound sources after one pass through the data. P is already 
close to the identity matrix after rescaling and reordering. 

measure during learning. Both learning rules converged. The small variations of the 
extended infomax algorithm (upper curve) were due to the adaptation process of K. 
The matrix K was initialized to the identity matrix and during the learning process 
the elements of K converge to -lor 1 to extract sub- or super-Gaussian sources 
respectively. In this simulation example, sources 7,8 and 9 are close to Gaussian and 
slight variations of their density estimation change the sign. Annealing of the learning 
rate reduced the variation (Lee and Sejnowski, 1997). All the music signals had 
super-Gaussians distribution and therefore were separable by the original infomax 
algorithm. The sources are already well separated after one pass through the data 
(about 10 sec on a Sparc 10 workstation using MATLAB) as shown in table 2.1: 

For all experiments and simulations, a momentum term helped to accelerate the 
convergence of the algorithm 

~ Wen + 1) = (1 - a)~ Wen) + aW(n), (2.68) 

where a takes into account the history of Wand a can be increased with increasing 
number of weight updates (as n -+ 00, a -+ 1). 

The performance during the learning process was monitored by the error measure 
that was proposed by Amari et al. (1996) 

N (N ) N (N ) E = IPij I _ 1 + IPij I - 1 t; ~ maxk IPik I ~ t; maxk IPkj I ' (2.69) 

where Pij are elements of the performance matrix P = WA. P is close to a per­
mutation of the scaled identity matrix when the sources are separated. Figure 2.10 
shows the error measure during the learning process. 

The observation in this simulation is that compared to contextual ICA which 
converged after several hundred passes (Pearlmutter 1997; personal communication) 
the original infomax algorithm shows faster convergence. 
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Figure 2.10. Error measure E in eq.2.69 for the separation of 10 sound sources. The upper 

curve is the performance for extended infomax and the lower curve shows the performance for the 

original infomax. 

To compare the speed of the extended infomax algorithm witp another closely 
related ones, the 10 mixed sound sources were separated using the extended ex­
ploratory projection pursuit network with inhibitory lateral connections Girolami 
and Fyfe (1997b). The single feedforward neural network converged several times 
faster than this architecture using the same learning rate and a block size of 1. Larger 
block sizes can be used in the feedforward network but not the feedback networks, 
which increases the convergence speed considerably due to a more reliable estimate 
of the switching matrix K. 

2.7.2 20 Mixed Sound Sources 

In this simulation experiment 20 sources of the following were separated: 10 sound 
tracks obtained from Pearlmutter, 6 speech & sound signals used in Bell and Se­
jnowski (1995), 3 uniformly distributed sub-Gaussian noise signals and one noise 
source with a Gaussian distribution. The kurtosis of the 20 sources are shown in 
table 2.2. The densities of the mixtures were close to the Gaussian distributions. 
The following parameters were used: learning rate fixed at 0.0005, block size of 100 
data points, 150 passes through the data (41250 iterations). 

Figure 2.11 shows the performance of the matrix P after the rows were manually 
reordered and normalized to unity. P is close to the identity matrix and its off 
diagonal elements indicate the amount of error. In this simulation k4 is employed as 
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Table 2.2. Simulation results with 20 sources 

Source Source Original Recovered Recovered SNR for 
number type kurtosis kurtosis, kurtosis, ext. infomax 

infomax ext. infomax 
1 Music 1 2.4733 2.4754 2.4759 43.4 
2 Music 2 1.5135 1.5129 1.5052 55.2 
3 Music 3 2.4176 2.4206 2.4044 44.1 

. 4 Music 4 1.076 1.0720 1.0840 31.7 
5 Music 5 1.0317 1.0347 1.0488 43.6 
6 Music 6 1.8626 1.8653 1.8467 48.1 

7 Music 7 0.7867 0.8029 0.7871 32.7 

8 Music 8 0.4639 0.2753 0.4591 29.4 
9 Music 9 0.5714 0.5874 0.5733 36.4 

10 Music 10 2.6358 2.6327 2.6343 46.4 
11 Speech 1 6.6645 6.6652 6.6663 54.3 
12 Speech 2 3.3355 3.3389 3.3324 50.5 
13 Music 11 1.1082 1.1072 1.1053 48.1 
14 Speech 3 7.2846 7.2828 7.2875 50.5 
15 Music 12 2.8308 2.8198 2.8217 52.6 
16 Speech 4 10.8838 10.8738 10.8128 57.1 
17 DnL Noise 1 -1.1959 -0.2172 -1.1955 61.4 
18 DnL Noise 2 -1.2031 -0.2080 -1.2013 67.7 
19 DnL Noise 3 -1.1966 -0.2016 -1.1955 63.6 
20 Gauss. Noise -0.0148 -0.0964 -0.03t)9 24.9 

Kurtosis of the 20 original signal sources and the kurtosis of the recovered signals from original 
infomax and e~tended infomax. The source signals range from highly kurtotic speech signals, 
Gaussian noise (kurtosis is zero) to noise sources with uniform distribution (negative kurtosis). 
Boxes are placed around sources that failed to clearly separate. In addition, the SNR is computed 
for extended infomax. 

a measure of the recovery of the sources. The original infomax algorithm separated 
most of the positive kurtotic sources. However, it failed to extract several sources 
including two sup~r-Gaussian sources (music 7 & 8)' with low kurtosis (0.78 and 
0.46 respectively). In contrast, figure 2.12 shows that the performance matrix P for 
the extended infomax algorithm is close to the identity matrix. In a listening test, 
there was a clear separation of all sources from their mixtures. Note that although 
the sources ranged from Laplacian distributions (p(s) <X exp( -lsI), e.g. speech), 
Gaussian noise, to uniformly distributed noise, they were all separated using one 
nonlinearity. 

The simulation results suggest that the super-Gaussian and sub-Gaussian density 
estimates in eq.2.47 and eq.2.53 are sufficient to separate the true sources. The 
learning algorithms in eq.2.56 and eq.2.66 performed almost identically. 
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Figure 2.11. Performance matrix P for the separation of 20 sources using the original infomax 

algorithm after normalizing and reordering. Most super-Gaussian sources were recovered. How­

ever, the three sub-Gaussian sources (17.18.19), the Gaussian source (20) and two super-Gaussian 

sources (7, 8) remain mixed and alias in other sources. In total , 14 sources were extracted and 6 

channels remained mixed (see Table 2). 
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Figure 2.12. Performance matrix P for the separation of 20 sources using the extended infomax 
algorithm after normalizing and reordering. P is approximately the identity matrix which indicates 

nearly perfect separation. 
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2.8 CONVERGENCE PROPERTIES IN BLIND SOURCE SEPARATION 

In this section, intuitive explanations are presented for two important convergence 
properties of the general learning rule in eq.2.45 when applied to source separation: 
(1) The natural gradient (Amari, 1998) or relative gradient (Cardoso and Laheld, 
1996) property and (2) the robustness property in blind source separation. The 
former optimizes the convergence speed and the latter implies that a rough density 
estimation via the nonlinearity in the learning rule is sufficient to extract a variety 
of source distributions under certain conditions. 

2.8.1 An intuition for the natural gradient 

The natural gradient (Amari, 1998) or relative gradient (Cardoso and Laheld, 1996) 
is an important improvement to the blind source separation problem. The theory is 
presented in Amari et al. (1996); Amari (1997a, 1998) fr9m an information geometry 
viewpoint. Here, an intuitive explanation is presented giving the principal thoughts 
leading to the derivation of the natural gradient. 

The units of the learning algorithm on the left and right side of eq.2.37 do not 
match and hence the rate of convergence depends on the scales of the axes. The 
natural gradient (Amari, 1997a, 1998) or relative gradient (Cardoso and Laheld, 
1996) greatly improves convergence of ICA by making the gradient invariant to the 
scale on the axes. 

The normal entropy gradient (Euclidean gradient) assumes that the space of W is 
orthonormal, that is, each Wij is of unit length and points in an orthogonal direction 
to the others. In this case the metric tensor is the identity matrix: Wij .Wkl = <5(ij)(kl). 

This space ts called the I-space. 
The space of non-orthonormal and non-singular (det(W) =I- O} matrices W is 

called the W -space. An important property of this space is that the entropy gradient 
with respect to W can move along an arbitrary curved manifold. The entropy 
gradient is given by the differential of the curved space, say f(x}. For a scalar 
function f(x) the Taylor expansion of the gradient (differential of f(x)) is 

f(x + D.x) - f(x) = a~~) D.x. (2.70) 

Differential geometry (Aris, 1962) can be used to extend eq.2.70 to the matrices. 

f(W + D.W) - f(W) = (vf(W), D.W}w, (2.71) 

where the gradient operator V f(W) is sought that is natural to W. i.e. the metric in 
space W of the natural gradient is not depending on the point in W. This is further 
described using the subscript W. This space will not necessarily be Euclidean, i.e 
have orthogonal basis vectors. Define a space of matrices with non-singular orthonor­
mal matrices W called the space of identity matrices (I space). The Euclidean space 
(such as a Cartesian frame for reference) is an example where the matrix differential 
is now 

f(W + D. W) - f(W) = (V f(W), D. Wh- (2.72) 
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Regarding the convergence property of the gradient in each space, it is required 
that they are the same. The difference is the metric. Figure 2.13 shows that the 
convergence property for the Euclidean space is faster than the non-Euclidean space 
W for the same metric. To find the metric for the non-orthonormal space of W that 
may be used in the Euclidean space, it is necessary to rescale the Euclidean gradient 
so that it equals the natural gradient. The rescaling factor is found by setting the 
space W and I equal to each other after the space W has been mapped from W 
to I using the transformation W-1. Amari (1998) showed that the metric of the 
inner product ('i:/ feW), 6. W)w is equivalent to the inner product of 'i:! f(W)W-1 
at WW-l for any W-1. This is due to the Riemannian structure of the space of 
N x N nonsingular matrices. The Riemannian structure is a differentiable manifold 
(hyperplane) with a positive definite metric W. The right side of eq.2.71 can'now 
be written as follows 

(2.73) 

Now define the space of matrices in eq.2.72 to be the same as in eq.2.73 so that 

(2.74) 

The inner product of matrices is equivalent to the trace function 

tr [W-T 'i:! f(W)T 6. WW-1] = tr [V feW? 6. W] . (2.75) 

Since tr [AB] = tr [BA] eq.2.75 is also 

tr [W-1W-T'i:!f(W)T 6.W] 

tr{W-1W-T'i:! f(W)T 6.W] - tr [V f(W)T 6. W] 

tr [(W-1 W-T 'i:! f(W)T - V f(W)T)6. W] 

= tr [V f(W)T 6. W] 

= 0 

= o. (2.76) 

Since 6. W is arbitrary the remaining matrix which left multiply must equal the zero 
matrix. It follows therefore that 

w-1w-T'i:!f(W)T = 
'i:! f(W)T 

'i:! feW) = 

vf(W? 
wTwv f(W)T 

Vf(W)WTW. (2.77) 

The natural gradient operator within the parameter space of arbitrary square ma­
trices is equivalent to the Euclidean gradient operator post multiplied by the matrix 
transpose and matrix product. The convergence performance will then be the most 
efficient. A more detailed derivation of this intuitive explanation is presented by 
Yang and Amari (1997). 
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Figure 2.13. For a fixed metric, the gradient in the orthonormal space exhibits optimal conver­

gence because it points to the center of the solution. For non orthogonal solutions a mapping into 

an orthonormal solution provides the most efficient performance. 

2.8.2 Robustness to parameter mismatch 

The insights in sections 2.4 suggest that the estimation of the true source densities 
should be crucial to extract the sources. Many researchers have therefore tried to find 
the separating matrix W as well as a parametric estimate of the nonlinearity (Pearl­
mutter and Parra, 1996; Moulines et al., 1997; Xu et al., 1997). Pearlmutter and 
Parra (1996) proposed a contextual lCA (cICA) algorithm that assumed a weighted 
sum of parametric logistic functions to model the source density. Moulines et al. 
(1997) and Xu et al. (1997) model the underlying p.d.f. with mixtures of Gaussians 
showing that they can also separate sub and super-Gaussian sources. These para­
metric modeling approaches in general are computationally expensive. In addition, 
empirical results by Lee et al. (1998b) and Makeig (personal communication) on 
electroencephalographic (EEG) data and data from event related potentials (ERP) 
using cICA indicate that it can fail to find independent components when the num­
ber of time-samples is too small to give a reliable density estimate, e.g. 600 data 
points for ERPs. 

However, simulation results performed by many researchers show that ICA al­
gorithms with a fixed nonlinearity converge to a separating solution although the 
nonlinearity implies a crude approximation of the underlying sources. Bell and Se­
jnowski (1995) report that the infomax algorithm can separate 10 super-Gaussian 
sources such as music and speech using only one logistic function that imposes a 
simple super-Gaussian prior. Lee et al. (1998b) report that the 10 sound sources 
used by Pearlmutter and Parra (1996) can be separated easily and with faster conver-
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gence than cICA using the logistic function instead of a parametric density estimator. 
Amari (1997b) calls this 'superefficiency' because one can extract the sources sur­
prisingly well in simulations and real data experiments. He shows that under certain 
conditions a rough estimator will give a sufficient solution 4 suggesting that the co­
variance of the estimation error decreased on the order of 1/t2 , t being the number 
of time-points. Unfortunately, decreasing the error of the covariance does not imply 
that the error variance of the extracted signals decreases. Cardoso (1997) suggests in­
tuitively that a model-mismatch will still converge to a satisfactory solution because 
sources may be recovered up to scaling factors. 

Simulation results in section 2.7 indicate that in presence of only one class of 
sources (either sub- or super-Gaussian sources) the algorithm using a single fixed 
nonlinearity converge to a separated solution. Furthermore, several simulations were 
performed in this section where mixtures of a wide range of symmetrical super­
Gaussian source distributions were separated using different nonlinearities that de­
liberately showed a mismatch between the source density estimate and the randomly 
generated source priors. The observation is that the algorithm always converged to 
a separating solution while the speed of convergence and the scale of the separated 
sources were different. The same observations were made for sub-Gaussian sources. 

It is therefore assumed that the following are sufficient conditions for the algo­
rithm to exhibit robustness to parameter mismatch and convergence to a separating 
solution when the p.d.f.s of the sources s belong to only one class of sources (sub­
Gaussian or super-Gaussian density). 

1. The extended infomax learning rule is used 

b. W ex { [I + f(u)uT - auuT] W 
[I - f(u)uT - auuT] W 

super - Gaussian 
sub - Gaussian 

(2.78) 

2. f( Ui) is a monotone nonlinearity and has the form of the derivative of the log­
density of P(Si) where P(Si) has the form of an arbitrary symmetrical super­
Gaussian distribution. 

Condition (2) is similar to Amari (1997b) condition on superefficiency that holds 
when f(Ui) is an odd function and P(Si) is an even function. 

Consider the case when f( Ui) = 8p(;t2{)8u i. When a = 0 and p( Ui) is the derivative 
of the logistic function, the learning rule in eq.2.78 reduces to the infomax learning 
rule as proposed by Bell and Sejnowski (1995). For a = 1 and P(Ui) = sech(ui) 
the the learning rule in eq.2.78 reduces to eq.2.56. The constant a is not critical 
for super-Gaussian sources. However, for sub-Gaussians it is necessary that a > 0 
to satisfy the approximations for sub-Gaussian sources. The robustness formulation 
for eq.2.78 now requires that f(.) .is an odd nonlinear function of any symmetric 
super-Gaussian density (even functions for Si) when only one class of sources are 
observed. 

Several simulations were performed to verify the robustness in ICA. To this end, 
ten zero-mean white sources with symmetrical distributions were generated ranging 
from highly super-Gaussian distribution (high kurtosis) to a Gaussian distribution 
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Table 2.3. Robustness testing simulation with 10 sources 

Source Original recovered recovered recovered 
number kurtosis kurtosis It ( u) kurtosis h(u) kurtosis fa ( u) 

1 24.478 24.4691 24.4541 24.4560 
2 15.538 15.5432 15.5403 15.5327 
3 13.508 13.5054 13.5019 13.4920 
4 8.0094 8.0083 8.0065 8.0001 
5 5.5211 5.5274 5.5258 5.5174 
6 4.9338 4.9212 4.9410 4.9243 
7 2.8468 2.8489 2.8482 2.8462 
8 1.7084 1.7052 1.7086 1.7051 
9 0.9305 0.9286 0.9277 0.9250 

10 0.4691 0.4645 0.4639 0.4637 

Ten zero-mean white sources with symmetrical distributions ranging from highly super-Gaussian 
distribution (high kurtosis) to a Gaussian distribution. Sources are recovered using h (u) = sign(u), 
h(u) = tanh(u) and Ja(u) = abs(uO.9 ) x sign(u). 
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Figure 2.14. P.d.f.s of source with a low and a high kurtosis. 

(kurtosis is zero). Figure 2.14 shows the density of the sources with the highest and 
lowest kurtosis. The kurtosis of all original signals are shown in table 2.3. The goal 
was to recover the sources with the different nonlinearities accounting for different 
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Convergence for three different nonlinearities 
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Figure 2.15. Error measure given the number of iterations. Convergence for three different 

nonlinearities: (a) h (b) h and (c) h· 

source density estimations. The following nonlinearities were chosen 

h(u) 

h(u) 

h(u) 

sign(u) 

tanh(u) 

abs(uo.9 ) x sign(u), 

(2.79) 

(2.80) 

(2.81) 

where x denotes an array multiplication. II and h can be derived from the gener­
alized Gaussian nonlinearity 

g(Ui) IX exp( -Iuin (2.82) 

where r is the shape parameter. For r = 1 eq.2.82 reduces to the Laplacian density 
and therefore leads to h. For r = 1.9 eq.2.82 leads to h. Note that for r = 2 eq.2.82 
is the Gaussian density. Note furthermore that the relation between f(.) and g(.) 
is the derivative of the log density of the derivative of g(.) and g(.) approximates 
the c.dJ. of the source distribution. Therefore, h is suited to separate Laplacian 
distributed data ((p( Si) IX exp( -lsi I)) and h is more likely to separate densities that 
are close to a Gaussian density. 

In this simulation the ten sources were randomly mixed and separated with each 
nonlinearity h, hand h. In each case the learning rate was fixed at 0.0001 and the 
data (20000 time points) was passed 30 times through the algorithm. Figure 2.15 
shows the convergence of the error measure for all three nonlinearities. The speed 
of convergence for h is the fastest and the convergence of h is still much faster 
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than for fa. This result may not be surprising due to SW which is proportional to 
f(u)uT in eq.2.78. For II the change in AW is proportional to uT whereas for 12, 
A W is proportional to kuT where Ikl :::; 1 depending on the slope of the nonlinearity. 
Effectively, the decreasing slope of the nonlinearity cap be thought of as decreasing 
the fixed learning rate. In other words, II may converge with the same speed as fa 
when the learning rate for II is set much lower than for fa. 

Simular results were obtained on separating mixed sub-Gaussian distributions 
with the three nonlinearities. The sign of the nonlinearities fi need to be changed 
according to eq.2.78 and the algorithm again converg~d for each nonlinearity. 

The simulation results and the robustness conditions suggest that infomax effec­
tively needs a projection into a super-Gaussian prior or a sub-Gaussian prior only. 
Given the general extended infomax learning rule in eq.2.78, the algorithm will con­
verge into a separating solution. 

2.9 DISCUSSIONS 

2.9.1 Comparison to other algorithms and architectures 

The infomax algorithm (Bell and Sejnowski, 1995) presented here for a feedforward 
architecture has been shown effective and efficient on several datasets. Other .al­
gorithms that were tested were slower in convergence. The same simulations were 
performed using the extended exploratory projection pursuit network with inhibitory 
lateral connections (Girolami and Fyfe, 1997b) and a hierarchical Hebbian feedfor­
ward and anti-Hebbian feedback learning network. The single feedforward neural 
network converged several times faster than these other architectures using the same 
learning rate and a block size of 1. Larger block sizes can be used in the feedforward 
network but not in the feedback network. The use of larger block sizes increases 
the convergence speed considerably due to a more reliable estimate of the switching 
moments k i • 

2.9.2 Applications to real world problems 

The extended infomax algorithm has recently been applied to real world problems 
such as analyzing electroencephalographic (EEG) data (Makeig et al., 1997; Jung 
et al., 1998a) and functional magnetic resonance imaging (fMRI) data (McKeown 
et al., 1998b). Makeig et al. (1996) showed that the Bell and Sejnowski (1995) 
algorithm is able to linearly decompose EEG activity and artifacts. Jung et al. 
(1998a) show that the extended infomax algorithm is able to additionally extract 
sub-Gaussian artifacts such as line noise and eye movements. The reported results 
for the separation of eye-movement artifacts from EEG recordings have immediate 
application to medical and research data. Independently, Vigario et al. (1996) re­
ported similar findings for EEG recordings using a fixed-point algorithm for ICA 
(Hyvaerinen and Oja, 1997a). It would be useful to compare this and other ICA 
algorithms on the same data sets to assess their merits. Compared to traditional 
techniques in EEG analysis extended infomax requires less supervision and is easy 
to apply (see Makeig et al. (1997); Jung et al. (1998a)). In addition to the very en-
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couraging results on EEG data McKeown et al. (1998b) have demonstrated another 
successful use of the extended infomax algorithm on £MRI recordings. They inves­
tigated task-related human brain activity in £MRI data. In this application, they 
considered both spatial and temporal ICA and found that the extended infomax al­
gorithm extracted sub-Gaussian temporal components that could not be extracted 
with the original infomax algorithm. 

2.9.3 Biological plausibility 

Linsker's infomax principle and the sensory coding strategy proposed by Atick (1992) 
were biologically motivated. However, the learning rule in eq.2.56 in a single layer 
feedforward neural network is non-local and would be more difficult to implement. An 
examples of a local learning rule using eq.2.56 is the extended exploratory projection 
pursuit network with inhibitory lateral connections (Girolami and Fyfe, 1997b). A 
feedback architecture with local learning rules is presented by Cichocki et al. (1995). 

Recently Nadal and Parga (1997) have suggested that the infomax learning rule 
can be related to the BCM theory of synaptic plasticity (Bienenstock et al., 1982). 

2.9.4 Limitations and future research 

The extended infomax learning algorithm makes several assumptions that limit its 
effectiveness. 

First, the algorithm requires the number of sensors tribe the same or greater 
than the number of sources (N ~ M). The case when there are more sources than 
sensors, N < M, is of theoretical and practical interest. Given only one or two 
sensors that observe more than two sources is it still possible to recover all sources? 
Preliminary results by Lewicki and Sejnowski (1998b) suggest that an overcomplete 
representation of the data can to some extent extract the independent components 
using a priori knowledge of the source distribution. This has been applied by Lee 
et al. (1998c) to separate three sources from two sensors. 

Second, researchers have recently tackled the problem of nonlinear mixing phe­
nomena. Yang et al. (1997), Taleb and Jutten (1997) and Lee et al. (1997c) propose 
extensions when linear mixing is combined with certain nonlinear mixing models. 
Other approaches use self-organizing feature maps to identify nonlinear features in 
the data (Lin and Cowan, 1997; Pajunen and Karhunen, 1997). 

Third, sources may not be stationary, i.e. sources may appear and disappear and 
move (speaker moving in a room). In these cases, the weight matrix W may change 
completely from one time point to the next. This is a challenging problem for all 
existing ICA algorithms. 

Fourth, sensor noise may influence separation and should be included in the model 
(Nadal and Parga, 1994; Moulines et al., 1997). Much more work needs to be done 
to determine the effect of noise on performance. 

In addition to these limitations, there are other issues that deserve further re­
search. In particular, it remains an open question to what extent the learning rule 
is robust to parametric mismatch given a limited number of data points. 
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Despite these limitations, the extended infomax ICA algorithm presented here 
should have many applications where both sub-Gaussian and super-Gaussian sources 
need to be separated without additional prior knowledge of their statistical proper­
ties. 

2.9.5 Conclusions 

The extended infomax ICA algorithm is a promising generalization that satisfies a 
general stability criterion for mixed sub-Gaussian and super-Gaussian sources (Car­
doso and Laheld, 1996). Based on the learning algorithm first derived by Girolami 
(1997b) and the natural gradient, the extended infomax algorithm has shown excel­
lent performance on several large real data sets derived from electrical and blood flow 
measurements of functional activity in the brain. Compared to the originally pro­
posed infomax algorithm (Bell and Sejnowski, 1995), the extended infomax algorithm 
separates a wider range of source signals whilst maintaining its simplicity. 
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Notes 

1. as detailed in section 4 of Bell and Sejnowski (1995) 

2. see eqs. 40 and 41 in their paper. 

3. Symmetric bimodal densities considered in this paper are sub-Gaussian, however this is not 
always the case. 

4. The presented estimation theory is related to the semiparametrical statistical approach by 
Amari and Cardoso (1997) and the stability analysis of adaptive blind source separation (Amari 
et ai., 1997a) 



3 A UNIFYING 
INFORMATION-THEORETIC FRAMEWORK 

FOR ICA 
Good order is the foundation of all things. 
Edmund Burke 

3.1 OVERVIEW 

This chapter shows that different theories recently proposed for lCA lead to the 
same iterative learning algorithm for blind separation of mixed independent sources. 
Those theories are reviewed and it is suggested that information theory can be used 
to unify several lines of research. 

Bell and Sejnowski (1995) put the blind source separation problem into an infor­
mation theoretic framework and demonstrated the separation and deconvolution of 
mixed sources. Their adaptive methods are more plausible from a neural processing 
perspective than the cumulant-based cost functions proposed by Comon (1994). A 
similar adaptive method for source separation was proposed by Cardoso and Laheld 
(1996). Other algorithms for performing ICA have been proposed from different 
viewpoints. Maximum Likelihood Estimation (MLE) approaches to ICA were first 
proposed by Gaeta and Lacoume (1990) and elaborated by Pham et al. (1992). 
Pearlmutter and Parra (1996), MacKay (1996) and Cardoso (1997) showed that the 
infomax approach of Bell and Sejnowski (1995) and the maximum likelihood estima­
tion approach are equivalent. Girolami and Fyfe (1997c) motivated by information­
theoretic indices for Exploratory Projection Pursuit (EPP) used marginal negentropy 
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as a projection index and showed that kurtosis-seeking projection pursuit will extract 
one of the underlying sources from a linear mixture. A multiple output EPP net­
work was developed to allow full separation of all the underlying sources (Girolami 
and Fyfe, 1997b). Nonlinear peA algorithms for leA which have been developed by 
Karhunen and Joutsensalo (1994), Xu (1993) and Oja (1997) can also be viewed from 
the infomax principle since they approximately minimize the sum of squares of the 
fourth-order marginal cumulants (eomon, 1994) and therefore approximately mini­
mize the mutual information ofthe network outputs (Girolami and Fyfe, 1997d). Bell 
and Sejnowski (1995) have pointed out a similarity between their infomax algorithm 
and the Bussgang algorithm in signal processing and Lambert (1996) elucidated the 
connection between three different Bussgang cost functions. Lee et al. (1998a) show 
how the Bussgang property relates to the infomax principle and how all of these 
seemingly different approaches can be put into a unifying framework for the source 
separation problem based on an information theoretic approach. 

This chapter is organized as follows: Section 3.2 reviews briefly the infomax ap­
proach by Bell and Sejnowski (1995). Section 3.3, 3.4,· 3.5, 3.6 and 3.7 describe 
respectively the relation between infomax, MLE, negentropy maximization, nonlin­
ear peA, higher-order statistics and the Bussgang property. Finally conclusions are 
presented in section 3.8. 

3.2 INFORMATION MAXIMIZATION 

Nadal and Parga (1994) showed that in the low-noise case, the maximum of the mu­
tual information between the inputs x and outputs y of a neural processor implied 
that the output distributions were factorial. In other words, maximizing the informa­
tion transfer in a nonlinear neural network minimizes the mutual information among 
the outputs (factorial code) when optimization is performed over both the synaptic 
weights Wand the nonlinear transfer function g(n). Roth and Baram (1996) and 
Bell and Sejnowski (1995) independently derived stochastic gradient learning rules 
for this maximization and applied them, respectively to forecasting, time series anal­
ysis, and the blind separation of sources. Furthermore, Deco and Obradovic (1996) 
present a detailed study of an unsupervised information-theoretic approach to leA. 

Bell and Sejnowski (1995) proposed a simple learning algorithm for a feedforward 
neural network that blindly separates linear mixtures x of independent sources s us­
ing information maximization. They show that maximizing the joint entropy H (y) 
of the output of a neural processor can approximately minimize the mutual informa­
tion among the output components Yi = g( Ui) where g( Ui) is an invertible monotonic 
nonlinearity and n = Wx. 

The joint entropy at the outputs of a neural network is 

(3.1) 

where H(Yi) are the marginal entropies of the outputs and I(Yl,···, YN) is their 
mutual information. Maximizing H (Yl , ... , Y N) consists of maximizing the marginal 
entropies and minimizing the mutual information. The outputs y are amplitude­
bounded random variables and therefore the marginal entropies are maximum for a 
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uniform distribution of Yi. Maximizing the joint entropy will also decrease I (Yl, ... , Y N ) 
since the mutual information is always positive. For I (Yl, ... , Y N) = 0 the joint en­
tropy is the sum of marginal entropies 

(3.2) 

The maximal value for H(Yl, ... ,YN) is achieved when the mutual information among 
the bounded random variables Yl, ... , Y N is zero and their marginal distribution is 
unifonn. As shGwn below, this implies that the nonlinearity g(Ui) has the form of 
the cumulative density function (c.d.f.) of the true source distribution Si. Bell and 
Sejnowski (1995) chose the nonlinearity to be a fixed logistic function. This is equiv­
alent to assumJng a prior distribution of the sources: a super-Gaussian distribution 
with heavy tails and a peak centered at the mean. The weights W are determined 
by maximizing the joint entropy with respect to W. The derivative of eq.3.1 with 
respect to W can be written in terms of the KL divergen.ce between the multivariate 
uniform distribution denoted as Pl(Y) and the multivariate uniform estimate p(y). 

(~.3) 

In the limit when the transfer function g( Ui) and Ware optimized the joint entropy 
H(y) is maximum and p(y) = Pl(y) so that I(y) = O. If g(Ui) is an invertible 
mapping from Ui to Yi, the KL divergence in eq.3.3 is equal to the KL divergence 
between the estimate of the source distribution p(u) and the sources pes). 

(3.4) 

Since the KL divergence is invariant under an invertible transformation. If the mutual 
information between the outputs is zero I(Yl,··· ,YN) = 0, the mutual information 
before the nonlinearity I( Ul, ... ,UN) must also be zero since the nonlinearity does 
not introduce any dependencies. 

The learning rule with the natural gradient extension was derived in chapter 2 as 

(3.5) 

where 

<p(u) = _-..fUL = -~ ... -~ 
8p(u) [8P(Ut} 8P(UN)]T 

p(u) p(ut} , , p(UN) (3.6) 

3.3 NEGENTROPY MAXIMIZATION 

Another approach related to minimizing the mutual information between the Ui'S 
is maximizing negentropy (Girolami, 1997b). Girolami and Fyfe (1997d, 1997b), 
motivated by information-theoretic indices for Exploratory Projection Pursuit (EPP) 
used marginal negentropy as a projection index. EPP is a statistical method that 
allows structure in high-dimensional data to be identified (Friedman, 1987). This is 
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achieved by projecting the data onto a low-dimensional subspace and searching for 
structure in the projection. Projections that identify non-Gaussian structure such as 
multiple modes are interesting from the point of view of identifying potential higher­
order structure within high-dimensional data. Projections that are maximally non­
Gaussian are highly desirable in pursuing informative views of the data (Friedman, 
1987). Girolami (1997b) showed that if the observed data fits a latent variable 
model (Everitt, 1984), which conforms to the deterministic lCA mixing model, then 
a kurtosis-seeking projection pursuit will extract one of the underlying sources. A 
multiple output EPP network was also developed to allow full separation of all the 
underlying sources (Girolami and Fyfe, 1997b). Jones and Sibson (1987) noted that 
approximately symmetrical and almost Gaussian (low kurtosis) clustered projections 
can sometimes be difficult to identify with indices based on third- and fourth-order 
moments and suggested the use of indices based on information theoretic criteria. 
Girolami and Fyfe (1997b) developed single and multiple output algorithms for EPP 
based on negentropy maximization. He showed that a negentropy maximizing pursuit 
will perform a general lCA on sources which may be either sub- or super-Gaussian. 
The negentropy of the output neurons can be stochastically maximized by driving 
their distributions maximally away from Gaussian distributions. Girolami (1997b) 
showed that maximizing the output data negentropy is identical to minimizing the 
mutual information of the output data which has been shown to be equivalent to 
lCA for observed data that can be modeled as a sum of independent latent variables. 
A brief derivation follows: 

Negentropy is defined as the KL divergence between p(u) and the Gaussian dis­
tribution pa(u) with the same mean and covariance as p(u) (Cover and Thomas, 
1991) 

J(u) = D(P(u)llpa(u)) = f p(u) log ;;~) du, (3.7) 

where u is the vector of estimated sources given the parameters W (u = Wx). The 
parametric form of the output is factorable I1~1 P(Ui) with the equality p(u) = 

I1~1 p(Ui) holding only when all Ui'S are independent, i.e. the mutual information 
is zero (I(u) = 0). Assume that u is decorrelated and that u/s are factorable but 
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not factorized (J(u) i L~l J(Ui))· 

N N 
LJ(Ui) L D(p(Ui)llpG(Ui)) (3.8) 
i=l i=l J p(ud J p(UN) p( U1) log -(-) dU1 + ... + p( UN) log ( ) dUN 

PG U1 PG UN 
(3.9) 

J ()l l1~lp(ui) d P u og N U 

11i=l PG(Ui) 
(3.10) 

J p(u) log 11~1 p(Ui) du 
PG(u) 

(3.11) 

J p(u) log 11f-1 p(Ui) du + J p(u) log p(u) du 
p(u) PG(u) 

(3.12) 

N 
D(IIp(ui)llp(u)) + J(u) (3.13) 

i=l 

-I(u) + J(u). (3.14) 

The sum of negentropies can be written as a sum of KL divergences. The substitution 
PG(u) = l1~lPG(ui) in eq.3.11 follows from the assumption that u is decorrelated. 
The first term in eq.3.14 is the negative of the mutual information (-I(u)). The 
second term can be further expanded 

i=l 

-I(u) - H(u) - J p(u) logpG(u)du 

= -I(u) - H(x) -log(1 det(W)I) 
1 

-"21og«2?re)N det( (uuT ))). 

(3.15) 

(3.16) 

There are two terms that need to be justified for the equality of eq.3.15 and eq.3.16. 
First, the term H(u) can be substituted by H(x)+log(1 det(W)I) because of the p.d.f. 
transformation equality in eq.2.26 and u = Wx. Second, the integral J p(u) logpG(u)du 
is the entropy of a Gaussian distribution for any distribution of p(u) when p(u) and 
PG(u) yield the same covariance matrix (Cover and Thomas, 1991, page 234). Since 
the Ui'S were assumed uncorrelated its covariance matrix is identity and therefore 
the determinant is one. Therefore it follows that 

N 1 ?: J(Ui) = -I(u) - H(x) - "21og«2?re)N). 
,=1 

(3.17) 

The negentropy can be maximized by using the stochastic gradient ascent 

a N a 1 
aw L J(Ui) = aw (-I(u) - H(x) - "2 1og«2?re)N)). (3.18) 

i=l 
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The input data entropy and the nonlinear function of the input data covariance 
matrix are not functions of the weight parameters and so maximizing the sum of 
marginal negentropies with respect to W is equiv.ilent to minimizing the mutual 
information 

(3.19) 

This leads to exactly the same learning rule as in section 3.3 using infomax. Maxi­
mizing ~~1 J(Ui) with respect to Win eq.3.16 gives 

a~ t,J(Ui) = a~ [I P(U)IOg(llp(Ui))dU+ ~IOg((2ne)N)l 
[) [ N = avy E{log(ilp(Ui))} log(det(W))+ 

+~ IOg((2ne)N)] . (3.20) 

Note that as in eq.2.45 only the first and second terms in eq.3.20 depend on W 

(3.21) 

Although the derivation of the learning rule in eq.3.21 depends on the assumption 
that U is decorrelated Girolami (1997b) showed that a slightly different objective 
function related to maximizing the marginal negentropies leads to the same learning 
algorithm in eq.3.21 without making the assumption that U is decorrelated. 

3.4 MAXIMUM LIKELIHOOD ESTIMATION 

The goal of MLE is to model the observation x as being gen~rated from latent 
variables s via a linear mapping A. In the noiseless case, a parametric density 
estimator p{x; a) can be used to find the parameter vector a that minimizes the 
difference between the generative mode1 p(x; a) and the observed distribution p{x). 
Note that a can be considered the basis vectors of A so that p(x; a) is an estimate of 
the observed vector p{x). The difference between the estimate and the observation 
can be measured using the KL divergence 

D(P{x),p{x; a)) = jp{x) log A
P{ (~)) dx = H{x) - jp{x) logp(x; a), 

P x, a (3.22) 

where p{x) is the p.d.f. of the observation x and p{x; a) is a parametric estimate of 
the distribution p(x). The divergence D(P(x)lIp{x; a)) is zero only if our estimate 
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p(x; a) matches the observation p(x). Pearlmutter and Parra (1997) and Cardoso 
(1997) showed that infomax and MLE are equivalent for ICA, as briefly described 
here.· The normalized log-likelihood of p(x; a) is 

1 N 

L(a) = N L logp(xi; a), 
i=1 

(3.23) 

where N is the number of independent realizations of x. The log-likelihood converges 
in probability, by the law of large numbers, to its expectation 

L(a) = J p(x) logp(x; a)dx. 

Note that this can be rewritten 

L(a) -J p(x) logp(x)dx - J p(x) log pf~7~) dx 

H(x) - D(p(x)llp(x; a)). 

(3.24) 

(3.25) 

Since H(x) is not dependent on W, maximizing the log-likelihood minimizes the KL 
divergence between the observed density p(x) and the estimated density p(x; a) 

oL(a) 0 , 
oW = - oWD(p(x)llp(x; a)). (3.26) 

Since A is an invertible matrix and the KL divergence is invariant under an in­
vertible transformation, minimizing the KL divergence in eq.3.26 minimizes the KL 
divergence between the estimate of the sources p(u) and the true source distribution 
p(s) 

oL(a) 0 , 
oW = - oWD(p(s)llp(u)). (3.27) 

Therefore eq.3.27 and eq.3.3 are equivalent for ICA. 

3.5 HIGHER-ORDER MOMENTS AND CUMULANTS 

In the previous sections, the nonlinearity of the output approximated the c.dJ. of 
the true source density. Here cumulants are examined to study the higher-order 
correlations between the sources. 

If the observed vector has a covariance matrix (xxT ) = E{ xxT } then the mutual 
information in eq.2.4 can be expressed as (Comon, 1994) 

N 1 (TIN (X2)) 
I(x) = J(x) - L J(Xi) + -log .=1 • , 

i=1 2 det( (xxT )) 
(3.28) 

where (x;) in eq.3.28 are the diagonal elements of the covariance matrix. J(x) is the 
multivariate negentropy as in eq.3.7 and J(Xi) are the marginal negentropies 

(3.29) 
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If a spatial whitening transformation (diagonalization of the covariance matrix) is 
used to remove the second-order redundancy in the data, i = Vx, where V denotes 
the whitening transformation matrix and (iiT ) = I then det( (iiT )) = 1 and the 
mutual information of the spatially white data reduces to 

N 

J(i) = J(i) - L Ji(Xi). (3.30) 
i=l 

A further transformation u = Wi using higher-order correlations is required to re­
duce the remaining redundancy within the vector for non-Gaussian sources. This 
transformation seeks an orthogonal matrix that accounts for the correct rotation of 
the data. Comon (1994) minimized the degree of dependence among outputs using 
contrast functions approximated by the Edgeworth expansion of the KL divergence. 
He determined the orthogonal matrix from the higher-order cumulants. Note that 
cumulants are used to describe characteristics of non-Gaussian processes. The trun­
cated Edgeworth expansion (Stuart and Ord, 1987) of p(Ui) written in terms of its 
nth-order cumulants and Hermite polynomials, denoted as kn and hn respectively, is 

[ 1 1 10 2 
p(Ui) = Pa(Ui) 1 + ,k3h3(Ui) + 4,k4h4(Ui) + ,k4h6 (Ui) 

3. . 6. 
1 35 280 3 

+ 5!k5 h5 (Ui) + 7! k3k4h7(Ui) + 9fk3h9 (Ui) 

1 56 35 2 
+ 5!k5 h5 (Ui) + 8! k3 k5 h8(Ui) + 8! k4h8(Ui) 

2100 2 15400 4 ] + 10! k3k4h lO (Ui) + ~k3h12(Ui) , (3.31) 

where Pa (Ui) denotes the Gaussian density. The cumulants kn are coefficients related 
to the form of the p.d.f. of Ui and they can be expressed in terms of moments. The 
terms hk(Ui) are the orthogonal Hermite polynomials defined as (Stuart and Ord, 
1987) 

kOkpa(Ui) 
(-1) ouk = hk(Ui)pa(Ui), (3.32) 

which can be computed recursively 

1 (3.33) 

Uihk-l - (k - 1)hk- 2. 

The validity of the truncated series expansion approximation in eq.3.31 is discussed 
in Stuart and Ord (1987). Expansion terms higher than fourth-order can lead to 
excessive fluctuations at the tails of the distribution leading potentially to negative 
values. Therefore, the expansion in eq.3.31 is truncated at fourth-order. After substi­
tuting the expression for marginal negentropies J(Ui) in eq.3.29 into eq.3.31 (Comon, 
1994), J(Ui) becomes 

J(Ui) ~ 112k~(i) + 418k~(i) + :8kj(i) + ~k~(i)k4(i). (3.34) 
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Assuming that the p.d.f. of the signals under consideration are approximately sym­
metric then the third-order cumulants will have a negligible contribution in eq.3.34. 
The mutual information in eq.3.28 of the transformed data u is now approximated 
by 

1 N 

J(u) ~ J(u) - 48 L k~(i). 
i=l 

J(u) is invariant under an orthogonal transformation 

J(u) / p(u) log :;~2) du 

1 
H(u) - "21og((27re)N det((uuT ))) 

H(5I.:) + log(det(W)) - ~ log((27re)N det(W(5I.:5I.:T}WT)) 

= H(5I.:) - ~IOg((27re)N det((5I.:5I.:T))) 

(3.35) 

= H(5I.:) - Ha(5I.:) = J(5I.:), (3.36) 

where Ha(5I.:) is the entropy of a normal density the following matrix determinant 
equalities have been employed 

det(W(5I.:5I.:T}WT) = det(W) det((5I.:5I.:T}) det(WT) 

det(WT) = det(W). 

(3.37) 

(3.38) 

Since u is a result of a rotation of 51.: the negentropy J(u) is equal to J(5I.:) and the 
approximation for mutual information can be rewritten as 

N 

J(u) ~ J(5I.:) - :8 L k~(i). 
i=l 

(3.39) 

Thus, under an orthogonal transformation, the mutual information of the data can 
be approximately minimized by maximizing the sum of squares of the fourth-order 
marginal cumulants. Maximizing the contrast function is approximately equivalent 
to maximizing the sum of marginal negentropies. This corroborates the claim that 
maximizing the marginal negentropies with respect to W minimizes mutual infor­
mation. 

Therefore, Comon (1994) proposed the following contrast function 

N 

<J.)max = L k~(i). 
i=l 

(3.40) 

(3.41) 

Here, the higher-order statistics are approximated by cumulants up to 4th-order and 
their maximization requires intensive computation using a batch-based method. 
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3.6 NONLINEAR PCA 

The nonlinear extension of Oja's Principle Component Analysis (PCA) subspace 
network (Oja, 1982), originally developed by Karhunen and Joutsensalo (1994) and 
Xu (1993), has no an apparent connection to the infomax principle, but has been 
shown to separate whitened linear mixtures of sources (Karhunen et al., 1997c; Oja 
and Karhunen, 1995; Karhunen et al., 1995). A major shortcoming of the algorithm 
is that is has been restricted to the separation of sub-Gaussian sources, because of 
stability requirements. Another property is that the data have to be prewhitened. 
Those two characteristics have led Girolami and Fyfe (1997d) to relate the nonlinear 
PCA algorithm to the infomax principle showing that it is an approximate online 
adaptive equivalent of the batch algorithm proposed by Comon (1994). 

In this section, the results in Girolami and Fyfe (1997d) and their generalization 
to cope with sub- and super-Gaussian source distributions are summarized. Their 
generalization is an alternative form of the nonlinear PCA rule which satisfies the 
dynamic and asymptotic stability criteria for the algorithm (Girolami and Fyfe, 
1997d). 

In nonlinear PCA, the input signals x are first prewhitened giving X, where 
(xxT ) = I. The learning rule is an approximate stochastic gradient descent al­
gorithm that minimizes the mean-squared error incurred in representing a vector by 
a nonlinear projection f(Wx) onto a basis of reduced dimensionality 

x = x' + e = W f(Wx) + e, (3.42) 

where x is a nonlinear estimate of x and e denotes the estimation error. Next, 
minimize a cost function C(W) to find a linear transformation W giving u = WX 
where u are the estimated sources and W is constrained to be orthonormal WTW = 
I. 

(3.43) 

where C(W) is a scalar resulting from an inner product and IT is a row vector of 
length N with ones as its elements. Rewriting eq.3.43 in its transpose form gives 

C(W) = E{(xTx - fT(Wx) - xTWf(Wx) + fT(Wx)WTWf(Wx))}. 
(3.44) 

Since the observed data is spatially white it follows that: E{WT xxTW} = I. As­
suming unit variance for the independent components Ui the cost function is now 

C(W) = N + E{(- fT(u)u - uT f(u) + fT(u)f(u))}. (3.45) 

3 3 
For a polynomial such as (f(u) = '; ) or (f(u) = - '; ) or a hyperbolic nonlinear 

function which has a cubic as the dominating element, the term is f(u) = ,;3 and 
therefore 

u 3 u 3 u3 u3 
C(W) ~ N +E{_(_)TU - uT - + (-f-} 

3 3 3 3· 
(3.46) 
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(U3)T u 3 2 T 3 (u3)T u 3 fi Now the rightmost term 9 can be neglected as aU U» 9 is satis ed 
for white standardized data (Girolami, 1997b). The cost function can be rewritten 
as 

2 N N 

C(W) ~ N - -E{L un = (N - 2) - 2/3(E{L un - 3), 
3 ~1 ~1 

(3.47) 

where N is the number of sources and the term (E{ut} - 3) is the expression for the 
fourth-order marginal cumulant (unnormalized kurtosis). Hence, for spatially white 
standardized data the cost function can be considered as the negative sum of the 
marginal fourth order cumulants of the linearly transformed data 

N 

C(W) ~ - L k4 (i). (3.48) 
i=l 

Minimizing the cost function in eq.3.48 is equivalent to maximizing the sum of 
fourth-order cumulants when the kurtosis of the estimated sources is positive (super­
Gaussian). Optimization of eq.3.48 with respect to W is equivalent to maximization 
of the sum of squares of the marginal fourth-order cumulants, for mixtures of strictly 
super-Gaussian sources. The function 

N 

~max = L kJ(i), (3.49) 
i=l 

is equivalent to Comon's contrast function in eq.3.41. Comon (1994) has shown that 
maximizing this contrast function approximately minimizes the mutual information. 

Consider now the case when the activation function is feu) = - ~3. Applying the 
same reduction as above, the cost function has the following form 

M 

C(W) ~ L k4 (i). (3.50) 
i=l 

Minimizing the cost function in eq.3.50 is equivalent to maximizing the sum of 
fourth-order cumulants when the kurtosis of the estimated sources is negative (sub­
Gaussian). Hence, the contrast function is the same as in eq.3.49 but for a different 
nonlinear term. The negatively cubic term can be understood as accounting for a 
different prior on the source distribution. The differences in the learning rules in 
eq.3.48 and eq.3.50 can be summarized and formulated in a general cost function 
(Girolami and Fyfe, 1997d) 

M 

C(W) == -sign(f(u)) L k4(i), (3.51) 
i=l 

where sign(f(u)) is the sign function of the nonlinearity used at the output neurons 
3 

and feu) = ± ~ . Note that this new form of minimization of the signal represen-
tation error criterion is valid for observed data which is zero-mean and spatially 
white. 
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The MSE (Mean-Squared-Error) of the cost function in eq.3.51 relates to the 
mutual information as shown in section 3.5 under the further assumption that prob­
ability densities are more or less symmetric so that' the third-order cumulant terms 
within expansion can be removed from the fourth-order approximation of the Edge­
worth expansion. The mutual information can then be approximated as follows (see 
section 3.5), 

N 

leu) ~ J(x) - :8 L k~(i). 
i=l 

(3.52) 

As in section 3.5 maximizing the marginal negentropies with respect to W minimizes 
mutual information giving 

(3.53) 

which corroborates that maximizing the sum of marginal cumulants or minimizing 
the MSE of the cost function derived for nonlinear PCA" can be interpreted as an 
approximate information-theoretic contrast for ICA. 

3.7 BUSSGANG ALGORITHMS 

Bussgang algorithms have been introduced by Bellini (1994) to perform blind decon­
volution. Lambert (1996) proposes three different multichannel blind deconvolution 
(separation and deconvolution) algorithms based on three classes of Bussgang cost 
functions. These algorithms are similar to the information-theoretic learning algo­
rithm (Bell and Sejnowski, 1995) but the relationship to the infomax algorithm is not 
obvious. Intuitive explanations have been proposed by Bell and Sejnowski (1995); 
Lambert and Bell (1997); Girolami and Fyfe (1997c) and Lee et al. (1997b). Here, it 
is shown how the Bussgang algorithm can be interpreted as an information-theoretic 
cost function. 

A white zero-mean stochastic process Ut has the Bussgang property if it satisfies 
(Bellini, 1994) 

(3.54) 

where the subscript denotes time-points t and its time-shifted version t + k and 
the Bussgang nonlinearity f(.) is some monotone nonlinear function. The Bussgang 
property in eq.3.54 states that the autocorrelation function of Ut is equal to the 
cross-correlation function between the process Ut and the output of a nonlinearity 
f(Ut) where both correlation functions are measured for the same lag. 

The Bussgang property in eq.3.54 may be rewritten for spatial processes as follows 

(3.55) 

where the subscripts i,j denote independent (white) stochastic processes. In fact 
eq.3.54 differs from eq.3.55 only insofar as the subscripts refer to spatial rather than 
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temporal samples, which allows us to relate the Bussgang property to the spatial lCA 
formulation. Now, the left side of eq.3.55 describes the second-order cross-correlation 
between two estimated sources and the right side of eq.3.55 accounts for higher-order 
cross-correlation between these estimates due to the nonlinearity f (.) that can be 
thought of as a combination of higher-order terms in a Taylor series expansion. 

A common way to derive a learning rule in blind deconvolution is to estimate the 
mean-squared error between the estimate Ui and the true source Si. However, since 
the true source is not available another estimator is needed. A valid estimator would 
be a nonlinear estimate f(Ui) where the form of the function f(.) has to reflect some 
information about the true signals Si. Define a cost function C that minimizes the 
MSE between the source estimate Ui and a Bussgang nonlinear estimate f(Ui). For 
simplicity, consider only one source estimate Ui 

(3.56) 

The form of the Bussgang nonlinearity can be derived from the maximum a posteriori 
(MAP) model by forming a conditional log-likelihood model given the observed data 
as follows. 

For an independent source Si, the estimated source Ui can be modeled as the 
source Si plus an independent noise source n such that Ui = Si + n. Define an error 
variable Zi as the difference between the true source signal and the estimated source 
signal 

(3.57) 

Assume that Ui can be estimated by the nonlinear function f(Ui) giving 

(3.58) 

The conditional density of the source given the variable Zi can be described by the 
MAP model 

(3.59) 

Assume that p(zilsi) can be modeled as a white zero-mean Gaussian process giving 

(3.60) 

where K is a constant and a; = a; + a; is the variance of Ui. The justification 
of a Gaussian process for the conditional estimator p(zilsi) is that the sum of N 
(N » 1) zero-mean independent sources Si sum up to a Gaussian observation due 
to the central limit theorem. Substituting eq.3.60 in eq.3.59 and taking the logarithm 
of the conditional estimate in eq.3.59 it follows that 

(3.61) 
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The derivative of eq.3.61 with respect to Si gives 

8log(P(silzi)) (Zi - Si) 8Iog(p(si)) 
---=...;=:-:----=-....:....:... = + . 

8s i O"~ 8s i 
(3.62) 

When the estimation error is minimized eq.3.62 is zero and solving for Zi gives the 
following expression 

(3.63) 

Now comparing eq.3.63 with eq.3.58 and assuming unit variance for Ui (O"~ = 1), the 
form for the Bussgang nonlinear estimator must satisfy 

8p(s;} 

f(Si) = 8(S;), 
PSi 

(3.64) 

which is proportional to the deriva:tive of the log-density of the true source distribu­
tion. 

Applying eq.3.64 to the initial Bussgang property by rewriting eq.3.55 in matrix 
form gives 

E{uuT } E{J(u)uT } 

E{uuT} - E{J(u)uT } = 0 

E{WAssT ATWT} - E{J(u)uT } = o. (3.65) 

The left side of eq.3.65 is the identity matrix when W =; A -1 is assumed. Multiplying 
eq.3.65 with W gives 

[I - E{J(u)uT }] W = o. (3.66) 

The optimal Bussgang nonlinearity f(u) when applied to ICA must be equivalent to 

8p(u) 

f(u) = - p(~) , (3.67) 

which is precisely the score function <p(u) in eq.2.44. Therefore, 

[I - E{<p(u)uT },] W = 0 (3.68) 

which is exactly the convergence criterion for the infomax learning rule in eq.2.45. 
The justification of the Bussgang nonlinearity in eq.3.64 also corroborates the info­
max principle and its application to blind source separation and blind deconvolution. 

3.8 CONCLUSION 

Several lines of research on ICA were unified within an information-theoretic frame­
work. This framework may be is well suited to further investigate ICA from many 
different theoretical viewpoints. 



4 BLIND SEPARATION OF 
TIME-DELAYED AND CONVOLVED 

SOURCES 
We know that this is our son, and that he was born blind. 
But by what means he now seeth, we know not 
or who hath opened his eyes, we know not ... 
John (9:20) 

4.1 OVERVIEW 

This chapter considers the multichannel blind deconvolution problem. Blind decon­
volution refers to the problem of determining the impulse response of a system where 
the output is usually accessible and the system as well as the input are inaccessi­
ble. Multichannel blind deconvolution refers to the fact that multiple channels are 
observable and multiple sources are mixed and convolved simultaneously. 

The single channel blind deconvolution problem has been well studied in the sig­
nal processing community where algorithms have been proposed for problems such 
as reverberation cancelation, seismic deconvolution, and image restoration (Widrow 
and Stearns, 1985; Haykin, 1994a; Mendel, 1990). Many second-order decorrelation 
methods were proposed (Feder et al., 1993; Haykin, 1991) which give satisfying so­
lutions when the convolving system was minimum-phase (Haykin, 1991). Usually 
non-minimum phase systems are assumed and blind deconvolution involves the use 
of nonlinear adaptive filtering algorithms designed to extract higher-order statistical 
information from the received signals. One class of nonlinear blind deconvolution 
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algorithm is referred to as Bussgang 1 algorithm (Bellini, 1994). A more direct ap­
proach to include higher-order statistics is the use of cumulants up to fourth-order 
(Yellin and Weinstein, 1994; Nguyen-Thi and Jutten, 1995; Comon, 1996; Icart and' 
Gautier, 1996). 

An information-theoretic approach to blind deconvolution was proposed by Bell 
and Sejnowski (1995). The link between the Bussgang algorithm and the infomax 
algorithm is at a first glance not obvious. Bell and Sejnowski (1995) pointed out 
the similarity between the two algorithms and Lambert (1996) gave an intuitive 
explanation for the relation. In chapter 3, the Bussgang algorithm was related to 
infomax. Other neural multichannel blind deconvolution algorithms were proposed 
by Back (1994); Girolami and Fyfe (1997a); Cichocki et al. (1997); Douglas et al. 
(1997); Lee et al. (1997a). 

The goal in this chapter is to tackle the problem of separating voices recorded 
in real environments. This problem is related to the cocktail party problem where 
a listener can extract one voice from an ensemble of different voices corrupted by 
music and noise in the background. The situation may be modeled as a linear mixing 
and filtering of independent sources. For this assumption, a matrix of filters must 
be learned that approximately inverts the mixing. Bell and Sejnowski (1995) showed 
that infomax can be used to deconvolve independent sources. Torkkola (1996a) ex­
tended this approach to a feedback inverting system with only cross filters. A full 
filter feedback system was presented in Lee et al. (1997a). Independently, Cichocki 
et al. (1997) derived learning rules for the full feedback system. Here, two different 
inverting system architectures are proposed: (1) a feedback architecture w1;lere the 
inverting system is approximated by a full matrix of IrR filters and (2) a feedforward 
architecture in which a full matrix of FIR filters is used. The advantage of using a 
feedback system is that a parsimony of parameters may be sufficient to approximate 
the inverse system. Simulations demonstrate that the algorithm is capable of finding 
the correct parameters and therefore is able to invert the mixing system. A disadvan­
tage is that the full filter architectures whiten the original sources and one possible 
way to prevent this is to approximate the inverse system with only cross filters as 
proposed by Torkkola (1996b). Another aspect is the problem of finding correct 
time-delays for natural signals since they are correlated over time. An inaccurate 
time-delay estimation may result into an incorrect system inverse and therefore the 
time-delay learning rule for the feedforward system was omitted and the time-delays 
were incorporated simply as part of the FIR filter. Also, since feedback systems are 
limited to minimum-phase systems a feedforward system is proposed to give a more 
general inverse system. The learning rules for the feedforward architecture can be 
derived in the same manner. However, a more efficient way of computing the system 
inverse is to make use of the polynomial filter algebra as proposed by Lambert (1996). 
The learning rule is effectively updated in the frequency domain where the convolu­
tion operator Qecomes a simple multiplication. The FIR polynomials in the matrix 
notation can be treated as coefficients of a scalar matrix. The power of this method is 
demonstrated by separating two voices recorded in a real environment. Preliminary 
results of speech enhancement in an automatic speech recognition system are shown 
indicating that this method may be used as a preprocessing step. 
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Another way of separating mixed sources recorded in real environments is the time­
delayed decorrelation (TDD) approach (Molgedey and Schuster, 1994; Belouchrani 
et al., 1997). Although the method is based on decorrelation only it achieve source 
separation by simultaneously decorrelating the signals for different time-lags. This 
approach requires non-white spectra and its performance is dependent on the degree 
of spectral overlap between the signals. The TDD algorithm can be extended to 
multichannel deconvolution (Ehlers and Schuster, 1997; Murata et al., 1998; Lee 
et al., 1998e) by applying the algorithm to each frequency bin in the spectrogram of 
the observations. Since the decorrelation aspect in TDD has its weakness it can be 
replaced by an ICA assumption resulting in better separation quality. 

This chapter is organized as follows: The problem statement and the assumptions 
are formulated in section 4.2. Two architectures are proposed to solve the problem: 
(1) A feedback architecture where the inverting system is approximated by a full 
matrix of IIR filters in. section 4.3 and (2) A feedforward architecture in which a full 
matrix of FIR filters is used (section 4.4). In each subsection, the learning rules are 
derived using the infomax principle and the convergence of the learning algorithms 
are demonstrated in simulations. The polynomial FIR matrix algebra is explained 
in subsection 4.4.1 and section 4.5 shows experimental results with recordings in a 
real environment. Section 4.6 summarizes how the infomax algorithm for multichan­
nel source separation problem can be viewed from three classes of direct Bussgang 
cost functions Lambert (1996). Section 4.7 presents the time-delayed decorrela­
tion method for the multichannel source separation problem as an alternative. This 
principle can be extended to to time-delayed ICA in section 4.8. Conclusions are 
presented in section 4.9 with a summary of this chapter and a discussion on future 
research issues. 

4.2 PROBLEM STATEMENT AND ASSUMPTIONS 

Assume that_ there is an N dimensional zero mean vector set) such that set) = 
[SI (t),· .. ,SN(t)]T, the components are mutually independent. The vector set) cor­
responds to N independent scalar valued source signals Si(t). The N signals are 
transmitted through a medium so that an array of N sensors picks up a set of sig­
nals x(t) = [Xl(t) ... XN(t)]T, each of which has been mixed, delayed and filtered as 
follows 

N M-l 

Xi(t) = L L aijkSj(t - Dij"- k). (4.1) 
j=1 k=O 

Dij are entries in a matrix of delays and there is an M-point filter, aij, between 
the the jth source and the ith sensor. The problem is to invert this environmental 
scrambling without knowledge of it, thus recovering the original signals, set). 

The success for separating sources depends on the assumptions made in chapter 2. 
In addition, there are some modifications necessary: 

1. The matrix of filters is invertible. 

2. Each source is white, i.e.: there are no dependencies between time points. 
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Assumption (1) is an extension to the requirement of a full rank matrix for instanta­
neous mixing. Here, it is required that the matrix of filters is full rank and therefore 
invertible. Assumption (2), on the other hand, is not true for natural signals. The 
proposed algorithm will whiten, i.e. it will remove dependencies across time which 
already existed in the original source signals, Si. However, it is possible to restore the 
characteristic autocorrelations (amplitude spectra) of the sources by post-processing 
(Haykin, 1991). 

The mixing process can be formulated in the frequency domain as 

X(z) = A(z)S(z), (4.2) 

where A(z) is the matrix of finite impulse response (FIR) filters and S(z) and X(z) 
are the vectors of source· signals and mixed signals respectively. The convolution op­
eration in the time domain corresponds to a multiplication in the frequency domain. 

The true inverse is the FIR matrix inverse with elements (for a two by two case 
W(z)) 

~l ~ AU(i) , 
~(z 

(4.3) 

where ~(z) is the determinant of the filter matrix 

~(z) = All (Z)A22 (Z) - A12 (Z)A21 (Z). (404) 

In general the elements of the inverse system Wij can be approximated by FIR 
filters. Feedback inverse systems may be used as well which offer a more compact 
representation of the solution in terms of the number of filter-taps required for a 
sufficient approximation. The feedback system can be realized by Infinite Impulse 
Response (I1R) filters and is also called an Auto Regressive Moving Average (ARMA) 
model 2. One major disadvantage of the ARMA model is that it is applicable to the 
inversion of minimum-phase systems only, i.e., the transfer function of the system 
has all of its poles and zeros inside the unit circle in the z-plane. Then the unmixing 
system will be stable. 

The following sections consider the learning rules and give simulation results for 
both systems: feedback and feedforward. 

4.3 FEEDBACK ARCHITECTURE 

Torkkola (1996a) has addressed the problem of solving the delay-compensation prob­
lem with a feedback architecture. Such an architecture can, in principle, solve this 
problem, as shown earlier by Platt and Faggin (1992). Torkkola (1996b) also gener­
alized the feedback architecture to remove dependencies across time, to achieve the 
deconvolution of mixtures which have been filtered, as in eqo4.l. His architecture for 
doing this can be expressed as 

N M 

Ui(t) = WiXi(t) - L L WijkUj(t - dij - k), 
;=1 k=l 
#i 

(4.5) 
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where a set of cross filters W ij performs the unmixing and deconvolution, while a 
single feedforward weight, Wi performs a scaling operation (gain control). 

Although he presented good results, this architecture can fail in principle. This 
is because each 'leading' cross weight Wij1 carries activation about the mixtures at 
the previous time step, x(t - 1). It will thus be impossible to exactly cancel out 
interference at Ui from the sources, x(t) at the current time point. In the limiting 
case of white sources, this rule will fail completely, since it relies on adjacent time 
points being correlated. For this reason, Torkkola's architecture is extended to a full 
matrix of feedback filters, including 'instantaneous' weights. Such a system may be 
written as 

N M-1 

Ui(t) = Xi(t) - L L WijkUj(t - dij - k), (4.6) 
j=l k=O 

and is shown in figure 4.1. For the reason of simplicity, the figure 4.1 shows the case 
for two sensors and two sources. Because terms in Ui(t) appear on both sides of the 
equation, this system can be written in vector terms 

M-1 

u(t) = x(t) - Wou(t) - L WkU(t - k), (4.7) 
k=l 

and in order to solve it as follows 

M-1 

u(t) = (I + W O)-l(x(t) - L WkU(t - k)). (4.8) 
k=l 

In these equations, there is a feedback unmixing matrix, Wk, for each time point 
of the filter, but the 'leading matrix', Wo has a -special status in solving for u(t). 
The delay terms, dij have disappeared, partly due to awkwardnesses introduced in 
moving to vector notation. The delays may be considered to be simply zero-taps, 
and therefore can be thought of as part of the filter. However, it is often convenient 
to parameterize them separately, since one meter of distance in air at an 8 kHz 
sampling rate, corresponds to a whole 25 taps of a filter. To this end, the delays are 
reintroduced in a position between the 'leading matrix' and the rest of the filters, 
giving the following equivalent system 

u(t) = (I + W O)-l(X(t) - net(t)), (4.9) 
N M-1 

neti(t) = L L WijkUj(t - dij - k)). (4.10) 
j=l k=l 

4.3.1 Learning Rules 

Learning in this architecture is performed by maximizing the joint entropy, H(y(t)), 
of the random vector y(t) = g(u(t)) , where 9 is a bounded monotonic nonlinear 
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maxzmzze H (y ) 

"" A(z) W(z) 
~-------4c::J~----~ 

X I ~+--------------------~ UI 

Figure 4.1. The feedback architecture of eq.4.13. which is used to separate and deconvolve 
signals. Each box represents a causal filter and a circle denotes a time-delay. 

function (a sigmoid function) . In the static feedback case of eqA.10, when M = 1, 
the learning rule for the feedback weights W 0 is just a coordinate transform of the 
rule for feedforward weights, W, in the equivalent architecture of u(t) = Wx(t) . 
Since W == (I + W 0) -1, it follows that W 0 = W- 1 - I, which, due to the quotient 
rule for matrix differentiation, differentiates as 

(4.11) 

EqA.11 can be found by a first order approximation of a small perturbation in W 
as follows 

WW-1 

(W + ~W)(W-1 + ~W-1) 
WW-1 + W~W-l + ~WW-l + ~W~W-l 

W~W-l + ~WW-l 
~Wo == ~W-l = 

I 

I 

I 

(4.12) 

I 
_(W-l)~W(W-l). 

Substituting into eq.2A5 gives the natural gradient 3 rule for static feedback 
weights 

(4.13) 
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where the elements of yare 

(4.14) 

In case of a logistic activation function 

, 1 
Yi = 1- 2 , 

1 + exp( -Ui) 
(4.15) 

the learning rule is then suited to separate super-Gaussian sources. However, one can 
formulate y so that it takes into account both distributions sub- and super-Gaussian 
sources (Lee et al., 1998b) 

Yss = -Ktanh(u) - u (4.16) 

where ki are elements of the N-dimensional diagonal matrix K. The switching pa­
rameter k i can be derived from the generic stability analysis of separating solutions 
as employed in chapter 2. For the reason of simplicity, this chapter considers the 
separation of super-Gaussian sources, hence eq.4.15, only. The extension to sub- and 
super-Gaussians is straightforward. 

The procedure for instantaneous feedback weights may be extended to networks 
involving filters. For the feedforward filter architecture u(t) = L~~i Wkx(t - k), 
the natural gradient rule (for k > 0) is 

( 4.17) 

where, for convenience, time has become subscripted. Performing the same coordi­
nate transforms as for W 0 above, gives the rule 

D. W k ex: -(I + W k)yuLk. (4.18) 

Finally, for the delays in eq.4.10, the derivation leads to 

aH(y) , M-i a 
D.dij ex: ~ = -Yi L at WijkU(t - dij - k). 

tJ k=i 
(4.19) 

This rule is different from that in Torkkola (1996a) because it uses the collected tem­
poral gradient information from all the taps. The algorithms of eq.4.13, eq.4.18 and 
eq.4.19 are the ones we use in the following simulation experiment on the architecture 
of eq.4.lO. 

4.3.2 Simulations 

To verify the convergence of the learning rules in eq.4.13, eq.4.18 and eq.4.19 an IIR 
filter system is used as shown in figure 4.1. The super-Gaussian white noise sources 
were generated·artificially and then mixed and delayed in the time domain as follows 

Al1(n) = 0.9 + 0.5n- i + 0.3n-2 
A 12 (n) = -0.7n-5 - 0.3n-6 - 0.2n-7 

A2i(n) = 0.5n-5 + 0.3n-6 + 0.2n-7 (4.20) 
A22(n) = 0.8 - O.ln-i. 
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The mixing system, A(z), is determined by transforming the filter coefficients in the 
frequency domain and forming the determinant of the filter matrix. By computing 
the roots of the determinant, the zeros of the system A(z) can be determined. For 
the minimum-phase system all zeros are inside the unit circle. In the case of eq.4.20 
A(z) had all zeros inside the unit circle. Hence, A(z) can be inverted using a stable 
causal IIR system since all poles of the inverting systems are inside the unit circle. 
In the frequency domain the weight filters have the following form 

(4.21) 

This leads to the following solution for the weight filters 

Wl1 (z) = ~L)A22(Z) W22 (Z) = ~(z)Al1(Z) 
W12(Z) = - ~(z)A21(Z) W21 (z) = - ~L)A12(Z), (4.22) 

where ~(z) = Wl1 (Z)W22 (Z) - W12 (Z)W21 (z)). Figure 4.2 (a) to (d) shows the 
learned filters and the time-delays. Figure 4.2 (e) and (f) show the overall perfor­
mance of the mixing and unmixing system. Note that the figures 4.2 (e) and (f) 
show the direct filter path as well as the cross filter path. 

For this simulation, artificial data was used and the time-delays are easily learned 
simultaneously. However, for natural signals such as speech signals the delay learning 
rule depends on initial values of the learning algorithm. Due to the high correlation 
between natural signals local minima and maxima may occur in the entropy over 
time-delays diagram. 

Simulations are performed on adaptive delays for the mixing of two speech signals. 
The speech signals (10 sec each) were mixed together statically by choosing M=l 
with the cross delay values D12 and D21 fixed at (25,25). By varying the delays 
D12 and D21 the surface of the entropy over a range of ±25 time-delays can be 
analyzed as shown in figure 4.3. The absolute maximum is reached at D(25,25) 
which corresponds to the maximum entropy at the correct learned delay values. The 
minima and maxima in figure 4.3 indicate the high correlation between two speech 
signals. 

4.4 FEEDFORWARD ARCHITECTURE 

The feedforward architecture is shown in figure 4.4 and can be described as 

N M-l 

Ui(t) = L L WijkXj(t - k). 
j=l k=O 

(4.23) 

In this, there are filters, Wij, which supposedly reproduce, at the Ui, the original 
uncorrupted source signals, Si. This was the architecture implicitly assumed in Bell 
and Sejnowski (1995). The time-delays are not learned separately due to the reasons 
explained in the previous section. However, the time-delays can be incorporated as 
part of the deconvolving filter. 
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Figure 4.2. Learned Filters and time-delays W(z) (a)-(d) according to eq.4.13. eq.4.18 and 
eq.4.19 for the full feedback system and the overall performance for both rows (e) and (f). 

The advantage of the feedforward system is that it can learn a more general inverse 
system since it can approximate a solution for non-minimum phase mixing systems 
A(z). For example, a non-minimum phase system will occur when a microphone 
picks up an echo that is stronger than the direct signal. Then the increase in negative 
phase is directly related to the amount of temporal delay of a narrowband component 
at that frequen.cy, Hence, the minimum phase lag property or the minimum group 
delay property of a non-minimum-phase system is not guaranteed. Since one cannot 
obtain prior knowledge about the mixing properties in real recordings it is more 
general to assume a non-minimum phase system which may have a non-causal filter 
system inverse. Strictly non-causal filters (dependency on an infinite number of past 
time-samples) cannot be implemented. However, any non-minimum or true phase 
system can be expressed as H(z) = Hmin(z)HAP(Z) where Hmin(Z) is a minimum 
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Figure 4.3. Entropy as a function of the delays D12 and D21 . Two linear mixed speech samples 
were used to compute the entropy surface. 

phase system and HAP(Z) is an all-pass system. Hmin(Z) has all its poles and 
zeros inside the unit circle and HAP(Z) represents a time delay with a unit frequency 
magnitude response. Therefore, HAP(Z) preserves the amplitude frequency spectrum 
and imposes a time delay on H(z) by reflecting the zeros outside the unit circle 
to their conjugate reciprocal location inside the unit circle. By time-delaying the 
inverting system up to M /2 taps, M being the size of the inverting filter, a M /2-
order HAP(Z) filter is incorporated. This is a technique to realize non-causal systems. 

4.4.1 Learning Rules 

The learning rules for the feedforward system can be derived in the same manner 
as for the feedback case. The mixing and unmixing system in figure 4.4 can be 
written in the frequency domain representation where the elements of the matrices 
are filters. Then, the multiplication operation replaces the convolution property. 
Lambert (1996) and Lambert and Nikias (1995b, 1995a) showed that FIR polynomial 
matrix algebra can be used as an efficient tool to elegantly solve problems for the 
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maximize H (y ) 

" A(z) W(z) 
g(u) 

Figure 4.4. The feedforward architecture of eq.4.23, which is used to separate and deconvolve 
signals. Each box represents a causal or non-causal filter. 

multichannel source separation. The goal of using the FIR polynomial matrix algebra 
is to extend the algebra of scalar matrices to the algebra of matrices of filters (time­
domain) or polynomials (freq. domain). The methods for computing functions of 
an FIR filter, such as an inverse, involve the formation of a circulant data matrix. 
Due to this nature one can move to the frequency domain representation where 
eigencolumns of the circulant matrix are the discrete Fourier basis functions of the 
FFT of corresponding length. The filters now become polynomials of the Laurent 
series extension (z-transform) and the convolution and deconvolution of filters is 
reduced to multiplication and division of polynomials. For example, the inverse of a 
filter w(t) is such a computation and can be formulated as follows 

W(t)-l = FFTSHIFT(IFFT(FFT[OOO··· w(t)· ·· 000])-1 )). (4.24) 

The prep ending of postpending of zeros is needed to produce a good estimate of 
the double-sided Laurent series expansion to allow for non-causal expansions of non­
minimum phase roots . The circular reordering in the time domain shifts the zeroth 
lag to the center of the filter (FFTSHIFT). Lambert (1996) presents a complete proof 
and justification of FIR polynomials. The learning algorithm for the two sources and 
two sensors problem can be reformulated from eq.2.45 as follows 

~W(z) ( 4.25) 
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where I and 0 denote vectors (of the length of the FFT operation) of ones and zeros 
respectively. Note that the neural processor 'Iii still operates in the time domain and 
the FFT is applied at the output and * denotes the complex conjugate form. The 
more general form to separate sub- and super-GaussiCl.ll sources is 

~W(z) = (4.26) 

( [ I 0] [FFT(Yl)] [ J * o I + FFT(Y2) FFT(ud FFT(U2) 

_ [ FFT(Ul) ] [FFT( ) FFT( \ J*) [Wll(Z) 
FFT(U2) Ul U2,. x W12 (Z) 

where now 1li = -Kii tanh(ui). Eq.4.26 is analogous to eq.2.56 for the instantaneous 
case. Both equations, Eq.4.25 and eq.4.26, are of the form of the least mean squared 
(LMS) adaptive filters. A fast implementation of the LMS adaptive filters in the 
frequency domain can be achieved by employing the overlap and save block LMS 
technique (Oppenheim and Schafer, 1989), i.e. two blocks are processed simultane­
ously and Xk is shifted by one block after each iteration. 

X(z) = FFT[x(k_l)n ... Xkn-1Xkn ... Xkn+n-l]. (4.27) 

For a block size of 1024 FFT-points the method is 16 times faster than the conventional 
LMS method (Ferrara, 1980). 

4.4.2 Simulations 

To verify the learning algorithm in eq.4.25 the FIR mixing filter system in figure 4.4 
was used in which the sources had been mixed with a non-minimum-phase system. 
A slight modification of the mixing system in eq.4.20 was necessary to transform 
a minimum phase system to a non-minimum phase system. This was achieved by 
changing the filter All(n) as follows 

All(n) = 1 + 1.0n-1 - 0.75n~2. (4.28) 

The mixing system has now a zero outside the unit circle as shown in figure 4.5. The 
pole-zero diagram is computed by taking the roots of the polynomial in eq.4.28. In 
figure 4.6 the learned filter system W(z) for inverting the mixing system in eq.4.20 
are shown. Compared to the filters in figure 4.2 the learned filters have non-zero 
filter taps before the leading taps at half the filter size. The implementation of 
M /2 filter taps is a way to stabilize a resulting non-causal solution. The leading 
weights are chosen to be at half the filter size (M/2). Non-causality of the filters are 
clearly observed for W12 , W21 where non-zero coefficients are observed in front of the 
leading weights. Figure 4.6 (e) and (f) show the overall performance for the mixing 
and unmixing system, P(z) = A(z) * W(z). 

4.5 EXPERIMENTS IN REAL ENVIRONMENTS 

Several experiments in a normal office room (3 m x 4 m) and a conference room (8 
m x 5.5 m) were conducted. The position of the two distant talking microphones 4 



BLIND SEPARATION OF TIME-DELAYED AND CONVOLVED SOURCES 95 

Pole-Zero diagram 
1.5r---~-----------------' 

0.5 

• 

-0.5 

-1 

-1.5'----':----:'-,------,'----:'-::-----'----:-' 
-1.5 -1 -0.5 0 0.5 1.5 

Amplitude 

Figure 4.5. The pole-zero diagram of a non-minimum phase mixing system in eq.4.28. The filter 
has one zero outside the unit circle. An inverting system requires a pole outside the unit circle 
which leads to instability in a feedback system. .. 

and the location of the sources had been varied for each experiment. In the first 
set of experiments one speaker saying the digits from one to ten while loud music 
was playing in the background was recorded. In this experimental setup the sources 
and sensors were placed in a rectangular (60 cm x 40 cm) order with 60 cm distance 
between the sources and the sensors. 

Figure 4.7(a) and (b) shows the recorded signals where the speech signal had been 
heavily corrupted by a music signal. The learning algorithm in eq.4.25 was applied 
to a recording of 7 sec sampled at 16 kHz (120000 time points). The learning rate 
was fixed at 0.0001; a momentum term and a block size of 256 data points was used. 
The unmixed signals were obtained using 128 taps FIR filters which cover a delay of 
3.2 ms corresponding roughly to 1 m. The algorithm converged in 30 passes through 
the data. The separated signals are shown in figure 4.7 (c) and (d). A listening test 
showed a clean speech separation. The learned filters are shown in figure 4.8. Better 
separation quality were obtained with longer filters. In figure 4.9 the learned filters 
are shown when a large block size of 16000 data points and 1024 taps for each filter 
was used. This filter can now cover a delay of about 32 ms (about 10 m). A larger 
block size is beneficial to minimize the influence of variances in the speech signal. 

In each filter, the leading tap is followed by a strong negative tap which indicates 
that the infomax algorithm tries to decorrelate adjacent time points. This effect is 
called whitening and it increases the energy in the higher frequency spectrum and 



96 ICA THEORY AND APPLICATIONS 

a 
0.5 

Learned filters for the feedforward system 
1 

b 
0.5 

-0.5L--~--~--~--...I -0.5L--~--~--~-----' 

c 

e 

o 10 

o 10 

20 
w11 

20 
w21 

30 40 

30 40 

d 1 

0.5 

o 10 20 
w12 

30 40 

_0.5L--~--~--~----..J 

o 10 20 
w22 

30 40 

Performance filters W(z)*A(z) 
2~----~----~ 

-,1 L-____ ~ _____ -1 

o 50 
performance row 1 

100 

f 
0.5 

"" o "u·,~" 

-0.5 L-____ ~ _____ -' 

o 50 100 
performance row 2 

Figure 4.6. Learned Filters W(z) (a)-(d) for the feedforward system using FIR polynomial 
matrix algebra in eq.4.2S and the overall performance for both rows (e) and (f). (e) shows 

[P1l(Z),P21(Z») and (f) shows [P12 (Z),P22 (Z»). 

reduces the energy in the lower frequency band. Whitened speech signals sound 
sharper than their original. This effect can be compensated by postprocessing the 
unmixed signals with a dewhitening filter. 

Another set of experiments were performed with two people speaking simultane­
ously. Figure 4.10 (a) and (b) show the signals recorded with the same setup but 
with another person saying the digits one to ten in Spanish (uno dos ... diez) in­
stead ofthe music source. The separated signals are shown in figure 4.10 (c) and (d). 
A listening test shows an almost clean speech separation 5. An objective measure 
for the quality of separation is difficult to obtain since the original signals are not 
available. Human perception usually varies and a more objective measure are results 
from an automatic speech recognition system. 
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\ 
'\ 

Figure 4.7. Cartoon of the cocktail party problem . People are talking while music is playing in 

the background. In an experiment in a normal office room (3m x 4m) the voice of one person and 

the background music was recorded with two microphones. The sources and sensors were placed in 

a rectangular (60 cm x 40 cm) order with 60 cm distance between the source and the microphone. 



98 ICA THEORY AND APPLICATIONS 
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Figure 4.9. FIR 128-tap filters that unmixed and deconvolved the speech and music signals. 
Leading weights of the channel filters W 1l and W 22 are at 64-taps. Cross-channel filters are W 21 

and W12 . 
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Figure 4.10. FIR 1024-tap filters that unmixed and deconvolved the speech and music signals. 
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Figure 4.11. Microphone outputs of two speakers recorded in a normal office room (a) micro­

phone 1 and (b) microphone 2. The separated speakers are shown in (c) Spanish digits uno dos 
.. . diez and (d) English digits one two ... ten. 
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Table 4.1. Speech recognition results [recognition rate in %]. 

Recog. rate No. of words mixtures separation 
Speech-Music 100 14 % 64 % 
Speech-Speech 100 42 % 61 % 

TOTAL 200 28 % 62.5 % 

4.5.1 Speech Recognition Results 

A prospective application of the multichannel blind separation algorithms are spon­
taneous speecq recognition 6 tasks. The best speech recognizer may fail completely 
in the presence of background music or competing speakers as in the teleconferenc­
ing problem. An automatic speech recognition system was used to obtain speech 
recognition results on the separated speech signals. Th~ recognizer was trained on 
the Wall Street Journal task 7. The recognition results are listed in table 4.5.1. High 
recognition errors rates were obtained when the microphone outputs were applied to 
the recognition engine. Significantly row recognition error rates were obtained once 
the separated signals were presented to the recognizer. The results can be further 
improved by postprocessing the separated signals, e.g., zeroing out the noisy part 
with a low signal-power detector and by using a speech recognizer trained on digits. 

4.6 BUSSGANG ALGORITHMS 

The goal of this section is to present an alternative methods to the infomax algorithm. 
Another way of deriving the infomax learning rules from the Bussgang property ~as 
described in chapter 2. This section briefly summarizes how the infomax learning 
rules for multichannel source separation problems can be seen from the Bussgang 
property. Lambert (1996) derived three classes of direct Bussgang cost functions. 
The Bussgang property in the frequency domain is as follows 

where U(z) are the estimated source in the frequency representation, Y(z) are the 
frequency representations of y(u) in eq.4.15 and the superscript H denotes the con­
jugate transpose. The Bussgang form in eq.4.29 can be rewritten as 

(4.30) 

which gives the first direct Bussgang algorithm cost function. The update for the 
weight filters is (Lambert, 1996) 

W(Z)n+l = W(z)n + €(U(z) - Y(z))X(zf, (4.31) 

and its form is similar to the form of the blind least mean squared error method. 
Eq.4.29 can be rewritten in the second form 

W(z)A(z)E{S(z)s(zf}A(z)H = E{Y(z)X(z)T}. (4.32) 
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Since at convergence the terms are (S(z)S(zf = I(z)) and (W(z)A(z) = I(z)) 
where I(z) is an identity matrix of filters, second form for the Bussgang algorithm 
cost function can be written as 

(4.33) 

which is of the same form of the original infomax algorithm (Bell and Sejnowski, 
1995). A third form of the direct Bussgang algorithm can be formulated as follows 
(Lambert, 1996) 

E{U(Z)U(Z)T}W(Z) = E{Y(z)U(z)T}W(z), (4.34) 

where E{U(z)U(z)T} converges to I(z) for the correct weight matrix W(z) 
A(Z)-l. The third form leads to a new weight update (Lambert, 1996) 

- T W(z)n+1 = W(z)n + f(I(z) - Y(z)U(z) )W(z), (4.35) 

which has exactly the form of the original infomax algorithm supplied with the 
natural or relative gradient. The three Bussgang algorithms are valid derivations 
from the Bussgang property. However, the reasoning for the Bussgang algorithm 
becomes clear when relating it to the infomax principle. A justification why the third 
form converges faster than the other forms cannot be explained by this derivation. 

4.7 TIME-DELAYED DECORRELATION METHODS 

There are several other approaches to the multichannel deconvolution problem. One 
interesting' approach is the time-delayed decorrelation method which gives similar 
separation performance under certain conditions. 

Although chapter 2 suggested that decorrelation-based methods fail to separate 
sources, there exist methods to separate sources using higher-order order informa­
tion in different time-lags. The basic ideas is to extend the the decorrelation-based 
method to simultaneously time-delayed decorrelation (TDD). The goal of TDD is 
now to diagonalize the covariance matrix Co = (x(t)x(t)T) for r = 0 (no time­
delay) and at the same time to diagonalize the covariance matrix for a given delay 
C r = (x(t)x(t - r)T). The covariance matrix can be decomposed into a matrix A 
and a diagonal matrix A as follows 

(4.36) 

(4.37) 

This leads to an eigenvalue problem as described in Molgedey and Schuster (1994); 
Belouchrani et al. (1997) 

(CoC;l)A = A(AoA;l), (4.38) 

where the elements of A are the eigenvalues of the corresponding covariance matrix. 
The TDD algorithm can be extended to a matrix of filters (Ehlers and Schuster, 1997; 
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Murata et al., 1998; Lee et al., 1998e). The main extension consists of transforming 
the signals Xi(t) into the frequency domain Xi(Z) and hence creating a spectrogram. 
A correlation matrix can be computed as in eqA.38 for each frequency bin. The 
inverse of A(z) multiplied with the spectrogram results in the frequency domain 
decorrelated signals which can be reconstructed using an IFFT and overlap and zero­
padding technique. The unmixing filters in the time-domain are obtained by IFFT 
of A(z). There are two optimizing steps improving the separation performance: (a) 
setting the direct filters to identity and therefore avoiding the whitening problem 
(b) optimizing a decorrelation-based cost function (Ehlers and Schuster, 1997) (c) 
optimizing T as a function of decorrelation cost function. Point (c) is crucial to 
achieve good separation results and therefore TDD requires a secondary optimization 
step. The main advantage of the TDD algorithm is the computational efficiency in 
computing the cross-filters since no adaptation is necessary. An online-version of this 
algorithm could be implemented in a block mode in which successive blocks of data 
points (e.g. 128, 256) are processed. 

A simple TDD algorithm (Molgedey and Schuster, 1994) has been shown to be 
highly effective under the minimum-phase constraint. The TDD algorithm can in 
some circumstances achieve the same separation quality much faster which is impor­
tant for online implementations. The TDD formulation was introduced also earlier 
by other researchers, e.g. Tong et al. (1991) and Belouchrani et al. (1993). Feder 
et al. (1993) proposed a method for multichannel signal separation by decorrelating 
the outputs. Chan et al. (1996) used a decorrelation algorithm based on a constant 
power and a constant diagonalization constraint. Many other methods have been 
proposed that decorrelate the output signals (Choi and Cichocki, 1997; Douglas and 
Cichocki, 1997). Extensions to fourth-order decorrelation techniques were proposed 
by Yellin and Weinstein (1996); Nguyen-Thi and Jutten (1995) and Comon (1996). 

For the multichannel blind deconvolution problem good separation results were 
shown. It is assumed that the results were obtained assuming a minimum-phase 
mixing system. In this case, the transfer function of the mixing system has all of its 
poles and zeros inside the unit circle in the z-plane. The feedback and feedforward 
unmixing system will be stable (Haykin, 1991). For a minimum-phase system, the 
information about the signals is preserved in the second-order statistics (Oppenheim 
and Schafer, 1989). Then, power spectral estimation may give a sufficient answer 
(Bellini, 1994). This may explain the success of simple decorrelation-based method 
for blind deconvolution. The minimum-phase assumption in room recordings may 
hold for situations where the microphones are placed close to the sources and in 
environments with little echos (e.g. an anechoic chamber). For most real world 
experiments, the general assumption that the mixing system is non-minimum-phase 
may be more appropriate. 

4.7.1 Experimental Results with TDD 

Figure 4.7.1 shows an example of a recording in a room obtained by Yellin and 
Weinstein (1996). Here, a music signal and a voice signal that was played by an 
audio system and the signals were recorded with two microphones located close to 
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(a) Microphone #1 

(b) Microphone #2 

(c) Recovered speech signal using TOO 

(d) Recovered music signal using TOO 

(e) Recovered speech signal using infomax 

(1) Recovered music signar usirlg infomax 

Figure 4.12. Room recordings from Yellin and Weinstein (1996): (a) microphone I, (b) micro­
phone 2. The separated signals using the TOO algorithm are shown for speech and music in (c) 
and (d). Slightly better results were obtained with eq.4.2S as shown in (e) and (f) . 

the sources (60 cm). Figure 4.7.1(a) and (b) show the recorded signals. Two cross 
filters with 128 taps each were computed using the TDD algorithm. The unmixed 
signals were obtained after 10 seconds ,on a Sparc10 workstation using MATLAB. 
Figure 4.7.1 (c) shows the recovered spe~ch signal and figure 4.7.1(d) shows the music 
signal using the TDD algorithm by Molgedey and Schuster (1994) . For the same 
recording the learning rule in eq.4.25 was used giving slightly better separating results 
shown in figure 4.7.1 (e) and (f) with the same set of parameters. Its convergence 
however, was slow (about 5 min with annealing the learning rate). The infomax 
results are very similar to the results obtained by Yellin and Weinstein (1996) using 
a fourth-order cumulant-based method. Unfortunately, the signal to noise ratio is 
not measurable due to the unavailability of the original speech and music signals. 
The use of the TDD algorithm as a preprocessing step for infomax approximately 
doubled the convergence speed. In many experiments such as the recordings by 
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Ehlers and Schuster (1997) and Lee et al. (1997b) the TDD algorithm by itself gave 
results similar in quality to infomax. 

4.7.2 Discussions on TDD 

Separation results of room recordings using the TDD algorithm and the infomax 
ICA algorithm were presented. While in general infomax achieved better separa­
tion results than the TDD algorithm, the convergence speed was slow. The TDD 
algorithm, however, may allow for online implementations for real-time applications 
such as speech recognition and may be used as a preprocessing step for infomax to 
speed up convergence. Additional improvements can be made in optimizing the TDD 
algorithm and its combination with infomax. 

An extension of infomax to timed-delayed infomax was proposed by Attias and 
Schreiner (1998) called the dynamic component analysis (DCA). The main differ­
ence to Bell and Sejnowski's infomax principle is to ensure independent components 
at several different time lags. The consequence is a spatio-temporal redundancy 
reduction that can be used to find instantaneous unmixing matrices and filters. 

4.8 SPECTROGRAM ICA 

This section presents an alternative solution to multichannel blind deconvolution and 
its implementation. This method is similar to the dynamic component analysis by 
Attias and Schreiner (1998). A brief summary of the method is shown in figure 4.13. 
The main idea is to perform ICA on the spectrogram of the observations. 

The implementation of the algorithm is demonstrated on a simple example (fig­
ure 4.13) and the steps are as follows 

1. Generate spectrogram for the signals Xl (t) and X2 (t) using the Fourier transfor­
mation and the overlap-save technique. 

2. Perform ICA on the spectrogram for each frequency bin. Since the values of 
the spectrogram are complex. There are two ways to solve the complex ICA 
problem. An extension of the infomax algorithm for complex values is presented 
in Smaragdis (1997). The idea is to use a complex activation function instead of 
the usual nonlinearity. Another method for ICA on complex valued data is the 
JADE algorithm (Cardoso and Soloumiac, 1993; Cardoso, 1998a). 

3. The JADE algorithm uses the Jacobi rotation. This rotation is an optimization 
procedure that finds an optimal rotation between orthogonal matrices so that 
the resulting matrix is the closest orthogonal compromise between all cumulant 
solutions for one frequency bin. 

4. The unmixed signals Ui(Z) can now be found for each frequency bin. 

5. Since the signals may be permuted and scaled. They are first rescaled and un­
permuted as suggested by Murata et al. (1998). Rescaling factors are found 
by projecting the signals back to the observations Xi and by determining the 
contributions from each Ui. Permutation is corrected by finding the correlations 
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Time 

Figure 4.13. An alternative multichannel deconvolution method . A complex-valued leA algo­
rithm is applied to each frequency bin of the observed data. The resulting unmixed blocks are 
rescaled and reordered and transformed back to the time domain . 

between adjacent blocks of unmixed signals. The signals Ui are reordered so that 
a maximum correlation coefficient is achieved for each channel. 

6. The rescaled and reordered signals u(z} are transformed back into the time domain 
by using the inverse Fourier transformation and the overlap-save technique. 

4.9 CONCLUSIONS 

Methods were presented for the blind separation of time-delayed and convolved 
sources: the multichannel blind deconvolution problem. The feedback architecture 
gives a compact representation with respect to the number of parameters and learning 
rules were presented for a full feedback filter system including time-delays. Unfortu­
nately, recordings in real environments exhibit non-minimum-phase characteristics 



BLIND SEPARATION OF TIME-DELAYED AND CONVOLVED SOURCES 107 

which require a feedforward architecture for the unmixing system. The learning al­
gorithm is efficiently updated using the polynomial filter algebra in the frequency 
domain. The significance of this method is shown by separating voices recorded in 
a normal room. This method may be used as a preprocessing step in speech recog­
nition systems to increase the recognition rate. Other approaches are discussed and 
compared to the infomax approach. The TDD algorithm may allow for online im­
plementations for real-time applications such as speech recognition and may be used 
as a preprocessing step for infomax to speed up convergence. 

4.9.1 Future Research 

The multichannel blind source separation problem is subject to further investigation 
due to its complexity and its problems in real world applications. Many potential ap­
plications may benefit from the new methods. In particular, communication systems 
such as quadrature phase shift keying (QPSK) coding schemes and code division 
multiple access (CDMA) with robustness to fading and noise, speech recognition 
systems and cross-talk elimination in telephone channels. 

To this end, the following inherent problems need to be tackled for further steps 
towards applications: 

• Nonstationarity of Sources 

An important observation was that slight movement of speaking people had a 
severe effect on the separation quality. Since the transfer function for the filter 
system changed over time the learned filters represented the averaged unmixing 
system which may results in poor separation quality depending on the degree of 
movements. 

• Online filter estimation 

The number of filters increases quadratically with the number of sensors. Each 
filter may have 200 or more taps which signifies that the iterative estimation 
of all parameters (ex 200N2 ) is computationally expensive. Decorrelation-based 
algorithms converge much faster and may give good results for minimum-phase 
systems. Analog VLSI circuits may be developed to incorporate the multichannel 
deconvolution algorithm as an online preprocessing method. 

• Single-channel blind equalization 

This problem is related to the underdetermined problem in ICA. Some limited 
approaches have been proposed by Nelson and Wan (1997a, 1997b) where they 
used a Kalman filtering approach for single channel speech enhancement. However 
this approach needs to be extended to filters. A multiple input and single output 
system (beamforming) for source separation was proposed by Li and Sejnowski 
(1995).The incorporation of temporal structure is key to solving the single chan­
nel source separation problem. An approach by Lewicki and Sejnowski (1998a) 
indicate first steps towards solving this inherently difficult problem. 

• Nonlinear Filtering 
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Nonlinear phenomena may occur in the mixing process due to nonlinear charac­
teristics of the microphones. Lee et al. (1997c) propose a method to deal with 
nonlinear transfer functions after a linear mixing (see next chapter). Other re­
cently proposed nonlinear ICA approaches have not been applied to the convolved 
or time-delayed sources . 

• Frequency-based blind source separation 

The polynomial filter algebra is an efficient computational tool in the frequency 
domain. Algorithms may be of interest that work entirely in the frequency domain. 
Smaragdis (1997) uses a method based on infomax in the frequency domain. The 
justification that infomax will work in other domains such as the Fourier domain 
and the wavelet domain has not been elucidated. 

• Auditory Scene Analysis 

Auditory scene analysis is related to perception of auditory stimuli and is con­
cerned with the questions of deciding how many sound sources there are, what are 
the characteristics of each source, and where each source is located. Those ques­
tions are fundamental issues in ICA and a link to the auditory scene analysis may 
suggest new techniques that might lead to a further understanding of the human 
auditory system and optimization of current techniques for finding a satisfactory 
solution to the cocktail-party-problem. 
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Notes 

1. Its name is due to statistics of the deconvolved signal which are approximately Bussgang 
(Bellini, 1994). The Bussgang statistic refers to Bussgang at Bell Labs who found that the autocor­
relation and the correlation between the signal and its nonlinearly transformed signal exhibit the 
same characteristics. 

2. A model that can measure the power spectrum with a pole-zero transfer function 

3. The natural gradient is also valid in the multichannel case (Amari et al., 1997b). 

4. i.e. microphones that can record signal sources witch may be far away from the micropholle. 

5. These audio-files are available in http://www . en!. salk. edu/ ",tew-on/. 

6. Fundamentals in speech recognition are presented by Rabiner and Juang (1993) and Deller 
et al. (1993). 

7. The speech recognizer is trained with speech signals obtained from various people reading 
parts of the Wall Street Journal. 



5 ICA USING OVERCOMPLETE 
REPRESENTATIONS 

Big Brother is watching you. 
George Orwell (" 1984") 

In this chapter ,empirical results are shown for the blind source separation of 
more sources'than mixtures using a framework proposed for learning overcomplete 
representations recently developed by Lewicki and Sejnowski (1998b). 

One of the major drawback of ICA but also one distinct feature of ICA is that the 
standard formulation ofICA requires at least as many sensors as sources. Lewicki and 
Sejnowski (1998b) have proposed a generalized ICA method for learning overcom­
plete representations of the data that allows for more basis vectors than dimensions 
in the input. This technique assumes a linear mixi~g model with additive noise 
and involves two steps: (1) learning an overcomplete basis for the observed data 
and (2) inferring sources given a sparse prior on the coefficients. The goal of this 
method is illustrated in figure 5.1. In a two-dimensional data space, the observations 
x in figure 5.1(a,b) were generated by a linear mixture of 2 independent random 
sparse sources. In this space, figure 5.1(a) shows orthogonal basis vectors (princi­
ple component analysis, PCA) and figure 5.1(b) shows independent basis vectors. 
IT the 2-dimensional observed data are generated by 3 sparse sources as shown in 
figure 5.1(c, d) the complete ICA representation (c) cannot model the data ade­
quately but the overcomplete ICA representation (d) finds 3 basis vectors that fit 
the underlying distribution of the data. 
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Figure 5.1. Illustration of basis vectors in a two-dimensional data space with two 2 sparse 
sources (top) or three sparse sources (bottom), (a) peA finds orthogonal basis vectors and (b) 
leA representation finds independent basis vectors. (c) leA cannot model the data distribution 
adequately with three sources but (d) the overcomplete leA representation finds 3 basis vectors 
that match the underlying data distribution (see Lewicki and Sejnowski). 

In this chapter, the learning rules for overcomplete leA are briefly summarized 
in section 5.1, as derived by Lewicki and Sejnowski (1998c). In section 5.2, simu­
lation results are presented for speech signals and music signals. The discussion in 
section 5.3 covers related work and future research issues. 
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5.1 LEARNING OVERCOMPLETE REPRESENTATIONS 

The observed M-dimensional data x = [Xl,···,XM]T may be modeled as a linear 
overcomplete mixing matrix, A, (M x N) 1 with additive noise. 

x = As+n, (5.1) 

where s = [SI,···, SN]T are the sources and n is assumed to be a white Gaussian 
noise with variance 0'2 so that 

1 
log P(xIA, s) ex - 20'2 (x - As). (5.2) 

It is also assumed that the sources Si are mutually independent, so that the joint 
probability distribution has the form P(s) = n:!1 P(Si), and each source Si has a 
sparse distribution, such as the Laplacian density P(Si) ex exp( -alsiD. 

Given the above model and assumptions, the goal is to infer both the basis vectors 
A and the sources s given the mixtures x. 

5.1.1 Inferring the sources s 

Due to the additive noise and the rectangular mixing matrix A, the solution for 
s cannot be found by the pseudo-inverse s = A +x. A probabilistic approach to 
estimating the sources is based on finding the maximum a posteriori value of s: 

s = maxP(slx,A) 
s 

maxP(xIA, s)P(s). (5.3) 
s 

Given basis vectors A, and observation x eq.5.3 can be optimized by gradient ascent 
on the log posterior distribution (Lewicki and Sejnowski, 1998b, 1998c). 

5.1.2 Learning the basis vectors A 

The objective for learning the basis vectors, A, is to maximize the probability of the 
data which requires marginalizing over all possible sources 

P(xIA) = J P(xIA, s)P(s)ds. (5.4) 

For general overcomplete bases, this integral is intractable. For the special case of 
zero noise and A invertible (a complete basis), the integral in eq.5.4 is solvable and 
leads to the standard ICA learning algorithm (Bell and Sejnowski, 1995j Cardoso, 
1998bj Lee et al., 1998a). Lewicki and Sejnowski (1998c) approximated eq.5.4 by fit­
ting a multivariate Gaussian around s. The basis vectors were learned by performing 
gradient ascent on the approximation to log P(xIA): 

D.A ex AAT a: 10gP(xIA) ~ -A(¢(s)sT + I), (5.5) 
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where <p( Hi) = 8log P( Bi) / OBi is called the score function, and I is the identity matrix. 
The prefactor AAT produces the natural gradient extension (Amari, 1997a, 1998) 
which speeds convergence. Note that A in eq.5.5 is not restricted to be a square 
matrix. The derivation is described in Lewicki and Sejnowski (1998c). 

5.2 EXPERIMENTAL RESULTS 

5.2.1 Blind Separation of Speech Signals 

Speech signals with silent time segments are sparsely distributed and will be approx­
imated by a Laplacian model. Three speech signals from the same speaker, sampled 
at 8 kHz with 8 bits per sample, were taken from the TIMIT database and are shown 
in figure 5.2 (top). We mixed the three speech signals into two mixtures as follows 

[ 1 1/0. 1/0.] [ S1(t) 1 o 1/0. -1/0. S2(t). 
S3(t) 

(5.6) 
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Figure 5.2. Demonstration of the separation of three speech signals from two mixtures. (Top 
row) The time course of 3 speech signals. (Middle row) Two observations of three mixed speech 
signals. (Bottom row) The inferred speech signals. 

Figure 5.2 (middle) shows the time course of the two mixed speech signals. The 
2-dimensional scatter plot (Xl against X2) in figure 5.3 (left) shows the three direc­
tions of the data. The three basis vectors of A were initially chosen randomly and 
were learned using eq.5.5. The learning process converged after 50 iterations. When 
more than 3 basis vectors were chosen, the amplitude of the redundant basis vectors 
converged to zero. The noise level l was set to 3 bits out of 8, i.e. the maximum 
amplitude of the noise signal was 23 /28 ~ 3% of the data range. Figure 5.3(right) 
shows the learned basis vectors. The sources were inferred using eq.5.3 and were 
recovered up to permutation and sign. Figure 5.2 (bottom) shows the three inferred 
speech signals after re-ordering and sign correction. The signal to noise ratio (SNR) 
for the separation was 20 dB, 17 dB and 21 dB respectively. Experiments with dif­
ferent speech signals and different mixing matrices yielded similar results . Although 
the temporal structure of the speech signal was not taken into consideration in the 
model, the separation quality was good 2 . 

The assumed noise-level, l, determines whether a data point should be considered 
as noise or as signal. A high noise-level ignores a wide range of data points around 
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Figure 5.3. Left: Two-dimensional scatter plot of the two mixed signals. The three basis 
vectors were randomly initialized. Right : After convergence the learned basis functions are 
shown as arrows along the three speech signals. The learned basis vectors may be permuted and 
have a different sign. 

zero and puts more weight on outliers when finding the basis vecto~s and when infer­
ring the sources. This is significant in case of additive noise, where the appropriate 
noise-level may be adjusted to infer the sources. Figure 5.4 shows the SNR as a 
function of the noise-level t. Reasonably good SNR results were obtained for noise 
levels up to 6 bits (a maximum of the noise amplitude of 25% ) and the performance 
degraded rapidly for a noise level of 7 bits or 8 bits. 

The method of Lin et al. (1997) was also applied (see discussion) to this dataset. 
They inferred the sources by assuming that there was only one non-zero source at a 
given time sample. Using this method the SNR decreased by 4 dB, 2 dB and 7dB 
respectively. 

5.2.2 Blind Separation of Speech and Music Signals 

Experiments on music mixed with speech signals were performed as well. The dis­
tributions of music signals are in general less sparse than for speech signals and 
therefore the Laplacian density model may be less accurate. Three sources (the first 
two speech signals in the above example and one music signal) were mixed into two 
mixtures. Figure 5.5 shows the original signals, the mixtures and the inferred signals. 

The SNR of tlie inferred signals using a noise-level of 3-bits were 17.3 dB and 
16.8 dB for the speech signals and 14.2 dB for the music signal. The results were 
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Signal to noise ratio for 3 inferred speech signals 
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Figure 5.4. Signal to noise ratio (SNR) as a function of noise-level l. * = speech signal 1; + = 
speech signal 2 and 0 = speech signal 3. 

comparable to those with the three speech signals despite the fact that the sparseness 
assumption on the sources was violated by the music source. 

5.2.3 Preliminary results with other mixtures 

Several speech mixing experiments were performed with varying number of sources 
and sensors.· With two mixtures the proposed method was able to extract up to 
4 mixed speech signals but the algorithm failed to find correct basis vectors when 
more than 4 sources were mixed into 2 observations. However, 5 speech signals were 
extracted from observations of 3 mixtures. 

The formulation used here may also be used to unmix signals that were mixed 
with additive noise as assumed for the model in eq.5.1. Preliminary results indicate 
that overcomplete leA can recover highly noisy mixtures and obtain a reasonable 
SNR. For noise-levels of 4 to 7 bits, the leA algorithm used here recovered two mixed 
speech signals with additive Gaussian noise with a 5 dB to 10 dB improvement in 
SNR compared to the standard leA (Bell and Sejnowski, 1995). 

5.3 DISCUSSION 

5.3.1 Comparison to other methods 

The problem of separating more sources than observations has been treated several 
other methods. Pajunen (1997) and Hermann and Yang (1996) proposed methods 
for the special case of binary sources. Pajunen (1997) used a maximum likelihood 
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Figure 5.5. Blind separation of speech and music. (Top row) The time course of 2 speech 
signals and a music signal. (Middle row) These were mixed into two observations. (Bottom row) 
The inferred speech and music signals. 

approach to reduce the problem to finding M clusters in the mixture space. Hermann 
and Yang (1996) applied self-organizing maps to find the clusters for binary sources. 
Lin et aL (1997) proposed a method for continuous signals by employing image anal­
ysis tools to detect geometric structure of the 2-dimensional mixture data locating 
the extremal density directions and thus finding the basis vectors. The sources were 
inferred by assuming that there was only one non-zero output at a given time, i.e. 
each data point was assigned to one source with the closest basis vector and all other 
sources were set to zero. In the presented experiments, this inference method gave 
inferior SNR for the speech separation example. The overcomplete ICA approach 
can be applied to continuous signals and is not restricted to binary sources. Further­
more, the probabilistic framework allows more flexible models which might lead to 
more accurate inferences. 

Overcomplete representations can be learned in high-dimensional data space. For 
example, Lewicki and Olshausen (1998) used two times overcomplete basis to find 
2 x 144 basis vectors for 12 by 12 patches of natural images. 
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5.3.2 Conclusions 

The results presented here demonstrate that overcomplete representations can be 
used for blind source separation when there are more sources than mixtures. Rea­
sonably good separations were obtained for two mixtures of 3 speech signals and for 
two mixtures of 2 speech signals and 1 music signal. Overcomplete representations 
reduce to ICA when the number of mixtures is equal to or greater than the number 
of sources. Currently investigations include the use of overcomplete representations 
of EEG data for artifact removal and for EEG signal detection with small numbers 
of sensors. 
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Notes 

1. In most leA formulations, the matrix A is restricted M ~ N, which is not imposed here. 

2. The original, mixed and inferred signals are available in http://www . enl. salk. edu/ ~tewon/. 



6 FIRST STEPS TOWARDS NONLINEAR 

leA 

... and nothing shall be impossible unto you. 
Matthew (17:20) 

6.1 OVERVIEW 

In many real world situations the linear assumption is an approximation of nonlin­
ear phenomena. For several situations the linear assumption may lead to incorrect 
solutions. Therefore the goal in this chapter is to formulate an ICA framework that 
is able to separate nonlinear mixing models. Researchers have very recently started 
addressing the ICA formulation to nonlinear mixing models (Burel, 1992; Hermann 
and Yang, 1996; Lee et al., 1997c; Lin and Cowan, 1997; Pajunen, 1996; Taleb and 
Jutten, 1997; Yang et al., 1997) The proposed nonlinear ICA methods can be roughly 
divided into two classes of approaches. The first class of methods is an obvious ex­
tension to the linear ICA model where nonlinear mixing models are added to the 
linear model al.ld the task is to find the inverse of the linear model as well as the 
inverse of the nonlinear model (B1}rel, 1992; Lee et al., 1997c; Taleb and Jutten, 
1997; Yang et al., 1997). The nonlinearities are often parameterized allowing limited 
flexibility. More recently, Hochreiter and Schmidhuber (1998) have proposed low 
complexity coding and decoding approaches for nonlinear ICA. The second class of 
methods uses self-organizing-maps (SOM) to extract nonlinear features in the data 
(Hermann and Yang, 1996; Lin and Cowan, 1997; Pajunen, 1996) Their approach 
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is more flexible and to some extent parameter-free which allows greater freedom of 
nonlinear representation. 

In this chapter, the focus is on the first class of methods. A set of algorithms 
are proposed for the nonlinear mixing problem using parametric nonlinear functions. 
First, a model is presented where the mixing process is performed in two stages: 
a linear mixing followed by a nonlinear transfer function. A parametric sigmoidal 
nonlinearity and nonlinearities approximated by higher-order polynomials are sug­
gested to solve the post-nonlinear problem. A similar approach was independently 
proposed by Taleb and Jutten (1997). They approximated the inverse transfer func­
tion by multilayer perceptrons (MLP) that were trained in an unsupervised manner. 
Those models may be justified for several biomedical signal analysis problems such as 
functional magnetic resonance imaging (fMRI) and electroencephalpgraphic (EEG) 
data analysis. It may also be used to account for intrinsic nonlinearities in a micro­
phone that has been used in speech recording experiments. For these problems this 
model may be an appropriate representation of the actual physical phenomenon. The 
main drawback of this simple model is that the problem becomes inherently difficult 
and intractable when nonlinear mixing occurs between the cross-channels. A general 
framework is impossible and therefore a second simple nonlinear mixing model is 
proposed that takes the mixing into account up to second-order statistics. It can be 
shown that for certain cases, the mixed signals can be nonlinearly expanded the up 
to second-order. By applying a linear transformation onto the expanded mixtures 
the independent sources can be recovered under certain circumstances. Due to am­
biguity introduced by the nonlinear mixing process a set of independent realizations 
are derived, in which one realization recovers the sources. 

This chapter is organized as follows: In section 6.2, the first nonlinear model is 
presented and a set of learning rules is derived in section 6.3 based on the information 
maximization criterion. The learning rules are verified via simulation in section 6.4. 
In section 6.5 a second mixing model is proposed that is called a linearization method 
to nonlinear leA. Other methods and future research are discussed in section 6.6. 

6.2 A SIMPLE NONLINEAR MIXING MODEL 

Figure 6.2 shows the mixing system which is divided into a linear mixing part and 
a nonlinear transfer part. Each channel i consists of an invertible nonlinear transfer 
function fi(ti). The un mixing system is the inverse sequence of the mixing system. 
Figure 6.2 shows that first the nonlinear transfer function is inverted in each channel 
i with hi(Xi) and second the sources are unmixed by applying W to z. The sources s 
are recovered if hi(Xi) and Ware the inverse functions for fi(ti) and A respectively. 

This model uses the following signals: s [81, 82 ... ,8 N f, 
t [h , t2, ... , t N f , x [Xl,X2, ... ,XN]T, Z [ZI,Z2, ... ,ZN]T, 
U [Ul,U2, ... ,UN]T, f [h(tl),h(t2), ... ,fN(tN)f, 
h = [hI (xd, h2(X2)"'" hN(XN )]T. Furthermore, the signals are related by the fol-
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Figure 6.1. Mixing and un mixing model for nonlinear leA: The mixing stage consists of a 
linear mixing matrix A and a nonlinear transfer function ret). The un mixing stage consists 
of the inverse operation - the equalization of the nonlinear transfer function g(x) and the 
unmixing matrix W 

lowing equations 

t = A·s 

x f(t) 

z h(x) 

u w· z = W· h[f(A · s)] . 

6.3 LEARNING ALGORITHM 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

Bell and Sejnowski (1995) have proposed an information-theoretic approach where 
they maximize the mutual information that an output y of a neural processor con­
tains about its input x. They have shown that for monotone and bounded mappings 
g(u) and u = Wx, the mutual information between inputs and outputs can be maxi­
mized by maximizing the entropy of the outputs alone where the output pdf satisfies 
(see chapter 2) 

p(x) 
p(y) = IJI' (6.5) 

with J being the determinant of the Jacobian of the neural transfer function g(u) . 
This principle is adopted for the nonlinear mixing model in figure 6.2 and derive 
learning rules for the estimation of Wand the parameters in h(.). 

The joint entropy of the signals y is given by 

H(y) = -E{logp(y)} = E{log IJI} - E{logp(x)}. (6.6) 

Information maximization is performed by maximizing the first term with respect to 
the parameters of the unmixing functions. The goal is to learn the elements of the 
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linear unmixing matrix Wand the set of parameters f~r the nonlinearities hi(Xi). 
Using a gradient ascent algorithm the derivative of the entropy function with respect 
to Wij and the parameters of the nonlinearity is 

(6.7) 

The second term in eq.6.6 is independent of all model parameters. Hence, the gra­
dient of equation (6.7) is as follows 

(N) (N) a a a ,aYi a ahi 
aw log IJI = aw log I det(W)I + aw log II au' + aw log II ax' . 
. i=l Z i=l Z (6.8) 

Considering the set of parameters W, a better way to maximize entropy in the 
feedforward and feedback system is not to follow the .Euclidean gradient but the 
'natural' gradient (Amari, 1997a) 

tJ.W ()( a:':)WTW. (6.9) 

This is an optimal rescaling of the entropy gradient. It simplifies the learning rule 
and speeds convergence considerably (see section 2.8.1). 

6.3.1 Learning Rules for Sigmoidal Nonlinear Mixing 

The infomax criterion holds for the model in figure 6.2 since independent variables 
cannot become dependent by passing them through an invertible nonlinearity. Hence, 
the mutual information before and after the nonlinear stage is not affected. 

For the derivation of the learning rule for the Wij the last term of eq.6.8 is not 
considered. Therefore, the learning rule for W is 

tJ. W ()( (WT)-l + (1 - 2y)hT,,(x). 

Considering the natural gradient from equation (6.9) if follows 

tJ. W ()( W + (1 - 2y)uT W. 

(6,10) 

(6.11) 

Although this learning rule is derived for super-Gaussian sources the rule may be 
extended to the separation of sub-Gaussian sources as presented in chapter 2 (see 
eq.2.56). For the reason of simplicity, the learning rules for a logistic activation 
function is derived which is well suited to separate super-Gaussian sources. Consider 
the parametric form of the nonlinear transfer function Ii 

(6.12) 

where &i denotes the scaling and (Ti the slope of the transfer function. For this case, 
hi(Xi) provides the inverse function by 

(6.13) 
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whereas the equalities ri = 1/ai and d = 1/8i hold in the ideal case. Gradient ascent 
on the entropy function to learn the parameters d and r gives 

and 

Llr ex aH(y) 
ar 

and Ad aH(y) 
u ex ad 

aH y a a a i a ahi (N) (N) f. = ar log I det(W)1 + ar log g a~i + ar log II aXi 

aH(y) a a aYi a ahi 

(6.14) 

(6.15) 

(N) (N) ---ad = ad log I det(W) I + ad log II aUi + ad log II aXi . 
• =1 .=1 (6.16) 

The term (det W) in the equations (6.15) and (6.16) is independent of rand d. 
Hence, 

N a 
= ~)1- 2Yi)Wij ar. hj(Xj) 

i=l J 

N 

= -2arctanh(dj xj) L)1 - 2Yi)Wij (6.17) 
i=l 

and 

a aYi 
(

N ) 
adj log !! aUi 

(6.18) 

The third term is 

(
N ) ~log ahi _ ~ 

ar· II ax· - r· 
J i=l' J 

(6.19) 

and 

(6.20) 

6.3.2 Learning Rules for Flexible Nonlinearities 

A weakness of the sigmoidal nonlinearity is that the learning rules can be successfully 
applied to only those problems which fit to the parametric structure of a sigmoid. 
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The microphone sensor nonlinearities may be approximated by a sigmoid function. 
However, in certain situations where the a priori knowledge about the mixing model 
is not given a more flexible nonlinear transfer function is required. Assume that 
a nonlinearity may be approximated by polynomials of Qth-order. This nonlinear 
stage may be described as 

Q 

/j(tj) = L /jk . t~-l. (6.21) 
k=l 

The inverse hj(xj) of the function in eq.6.21 results in an expression which is in 
general complicated. Therefore it is assumed that the inverse may be approximated 
by pth-order polynomials. Then, the inverse is 

p 

hj(xj) = L hjk . X~-l. (6.22) 
k=l 

In the same manner, a gradient ascent on the entropy function is performed to learn 
the parameters hjk 

8H(y) 
tl.hjk (X 8hjk . (6.23) 

Performing this operation on eq.1.4, the learning rule for finding hjk is the sum of 
the following two terms 

N 8 
~)1- 2Yi)Wij 8h. hj(xj) 
i=l 3k 

N 

= X~-l L(l - 2Yi)Wij 
i=l 

and 

p (6.24) 

L (m -1)· h j ,mx j-2 
m=l 

6.4 SIMULATION RESULTS 

Sigmoidal N onlinearities 

To verify the validity of the model and the convergence of the learning rules, several 
experiments were performed with the architecture shown in figure 6.2. Figure 6.4 
shows the result of the mixing and unmixing system. Two independent white noise 
sources with super-Gaussian distributions were generated artificially and are shown 
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Figure 6.2. Mixing and unmixing simulation for super-Gaussian sources, scatter-plot: (a) 
independent sources (b) linearly mixed sources (c) nonlinear mixing (d) initially unmixed 
nonlinearity (e) initially separated signals u (f) finally separated signals u . 
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in a scatter plot in figure 6.4 (a). The sources were first mixed linearly (b) and then 
transferred nonlinearly (c) with a logistic function Ii-

Xl = II (0.5tl) 

X2 = h(t2). 

(6.25) 

(6.26) 

The unmixing results in figure 6.4 (d) and (e) when the nonlinearities are initialized 
identically and the unmixing matrix W is chosen randomly. The algorithm converged 
after presenting 500 samples and the unmixed signals are shown in figure 6.4(f). The 
Signal to Noise Ratio (SNR) for the observed mixed signals Xl, X2 are -6.3 dB and 
-6.1 dB respectively. For the unmixed signals UI,U2 the SNR is increased to 8.9 dB 
and 8.0 dB respectively. 

Flexible N onlinearities 

As for the logistic nonlinearities, several experiments were performed with the 
architecture shown in figure 6.2 to verify the learning rules for flexible nonlinearities. 
For the linear and nonlinear mixing stage the same mixing matrix as in eq.6.26 was 
used. The independent sources were white noise signals with sub-Gaussian distri­
butions. A scatter plot of the sources is depicted in figure 6.2 (a). The unmixing 
W and the coefficients hjk of the nonlinearity forming polynomials are chosen ran­
domly with Q = P. Figure 6.2 (f) shows the results after presenting 1000 samples. 
Better separation results were obtained when the order of the inverse nonlinearity 
h(.) was higher than the order of the nonlinearity I(t). The stability of the poly­
nomial nonlinearity is highly dependent on the initial value of the coefficients. Its 
form was imposed to approximate an invertible nonlinearity. When applied to the 
sigmoidal nonlinearity in the previous section the polynomial approximation gave 
similar results. 

In figure 6.3 (a) and (b) the time course of a sinusoid signal and a white noise signal 
with super-Gaussian distribution are shown.~ The signals were mixed linearly (c,d) 
and transformed by a nonlinear transfer function I(t) where I(t) was an invertible 
5th-order polynomial function. The inverse nonlinearity hex) was approximated by 
a 8th-order polynomial function. The time course of the recovered signals are shown 
in figure 6.3 (e) and (f). 

6.5 A LINEARIZATION APPROACH TO NONLINEAR ICA 

This section presents a more general approach to nonlinear mixing. Instead of con­
sidering a linear mixing and a nonlinear transfer function model the nonlinear mixing 
is formulated as follows 
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Figure 6.4. Mixing and unmixing simulation using flexible nonlinearities. (Top) Time 
course of the original signals, (2nd row) the linear mixtures, (3rd row) the mixtures after 
the nonlinear transfer function and (bottom) the recovered sources. 

h(8l,"',8N) 
fN(8l, ... , 8N). (6.27) 

The observations Xl, X2, ... , XN are nonlinear functions h, 12, ... , fN of the inde-
pendent sources 81,82, ... , 8 N. 

The nonlinearity h can be written in a Taylor series expansion as 

(6.28) 

where the Taylor expansion is about So and Rn(s) is called the Lagrange's form of 
the remainder in the Taylor series expansion of fi(')' The Taylor series expansion 
can be approximated up to second-order around zero-mean sources giving 

2 

h(8l,"',8N) = Laksk +R2(S) (6.29) 
k=O 
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where ak are the characteristic coefficients of f(.) up to kth-order. 
For simplicity, consider two sources and two sensors. Furthermore, assume that 

the sources can become mixed up to second-order only. Then, Xl and X2 reduces to 
the following form 

(6.30) 

where 8~O,I) denotes that the signal can be taken either to the power of zero (which 
leads to one) or one (which gives the signal). Eq.6.30 approximates the nonlinear 
observation of two independent sources up to second-order mixing. 

The two signals Xl and X2 can be nonlinearly expanded using a polynomial series 
truncated at second order. This gives the following 5 signals 

Xel = Xl 

Xe2 = X2 

Xe3 = X~ 
Xe4 = X~ 
Xe5 = XIX2· (6.31) 

Given the expanded observation, the idea is now to apply a linear transformation 
so that the expanded observation becomes linearly independent (Wiskott, personal 
communication). In fact, this principle is related to some ideas in support vector 
machines used for classification (Vapnik et al., 1997). 

Assume a simple example 

Xl = an81 

X2 = a2282 + aI28~. (6.32) 

The second-order expanded terms are 

Xel = Xl = an81 

Xe2 = X2 = a2282 + a128~ 
Xe3 = x2 - a 2 82 

I - n I 

Xe4 = 2_ 2 2 2 2 2 4 4 
X2 - a22 8 2 + a22a n 8 28 1 + a n 8 1 

Xe5 = XIX2 = a1l8la2282 + a~18~. (6.33) 

A linear transformation W is sought that makes the expanded terms independent 
(u = Wxe). One possible solution for this example is when the weights to UI are 
all zero except for the direct weight Xel. This gives UI = Xel = an81. The other 
source can be recovered when U2 = X e2 - Xe3 = a2282. However, this is not the only 
solution. The following equations give a valid solution as well 

UI = Xe3=a~18~ 
U2 = Xe2 - Xe3 = a2282· (6.34) 
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Clearly, 'Ul and 'U2 are independent but the original sources are not recovered. Hence, 
an independence criteria is not sufficient to recover the original source. The ICA 
solution is satisfied when the outputs 'Ui are independent which is the case for eq.6.33 
and eq.6.34. 

Several simulations were performed using this example and changing the coeffi­
cients aij in eq.6.32. The initial signals 'Ul and 'U2 are shown in figure 6.32 (bottom­
left). After five passes through the 3000 points data the sources are recovered. In 
figure 6.5 the scatter-plot is shown for all possible combinations between the outputs 
'Ui, 'Uj. Figure 6.5 (c) shows the other valid solution in eq.6.34. Except of (a) and (c) 
all other scatter-plots show dependencies between the sources. Since the recovered 
sources can be permuted, the valid solutions have to be verified by another mea­
sure of independence between the outputs 'Ui that decides which combination of two 
outputs is most independent. 

6.6 DISCUSSIONS 

6.6.1 Other approaches to nonlinear leA 

Other approaches to the nonlinear ICA problem using self-organizing maps (SOM) 
were proposed by Hermann and Yang (1996); Lin and Cowan (1997); Pajunen (1996). 
SOM constitute a class of vector quantizers that impose a prescribed topological 
order on the reference (input) vectors (Kohonen, 1989). When the network structure 
is equivalent to the topology of the sources, i.e. if the common Cartesian product 
of one dimensional spaces is used, then for certain conditions the SOM represent 
the inverse of the mixing transformation. This is achieved by mapping the mixed 
observation signals onto a regular output grid where each coordinate of the SOM 
output represents one source. An advantage of SOMs is that they can provide a non­
parametric approach to the nonlinear ICA framework. In fact, 80Ms can be used 
in certain cases for under-determined problems (Lin et al., 1997) and noisy input 
signals. However, the nature of SOM-based approaches allows to recover sources 
only in a discretized manner or via interpolation. The introduced quantization error 
can be reduced by increasing the size of the network. The number of sources and 
the size of the network have a great impact on the computational cost (exponentially 
with the number of sources). Therefore, SOMs are more suited for low dimensional 
problems with low precision. 

Similar approaches to our presented methods using the linear mixing and non­
linear transfer function was developed by Taleb and Jutten (1997) Other methods 
considering cross channel nonlinearities were proposed by Burel (1992) and Yang 
et al. (1997). In their approaches, the nonlinear observation f(x) was linearly mixed 
by a second mixing matrix W 2 . The learning rules can be derived to find Wl, W 2 

and one nonlinearity h(x). In contrast to their approach, subject of our future in­
terest is to find nonlinear cross-channels which can be parameterized independently 
from the channel transfer functions. 
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valid solutions. 
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6.6.2 Conclusions and future research 

Two nonlinear ICA approach were presented. In the first model, a set of learning 
rules was derived for the nonlinear blind source separation problem based on the 
information maximization criterion where the mixing model was divided into a lin­
ear mixing part and a nonlinear transfer channel. The proposed algorithms were 
focused on a parametric sigmoidal nonlinearity and higher order polynomials. Sim­
ulation results were performed to verify the learning rules. In the second model, an 
approach that can incorporate a more general mixing model was proposed by using 
a polynomial expansion and linearization method. 
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7 BIOMEDICAL APPLICATiONs OF ICA 

I am not built for academic writings. 
Action is my domain. 
Gandhi 

7.1 OVERVIEW 

This chapter deals with the application of ICA to biomedical data. In biomedical 
recordings multiple sensors are used to record some physiological phenomena. Of­
ten these sensors are located close to each other, so that they simultaneously record 
signals that are highly correlated with each other. For example, in electroencephalo­
graphic (EEG) recordings the sensors are placed at the scalp within a few centimeters 
of each other. Therefore, the sensors not only record brain activity transmitted by 
volume conduction from a few dynamic neocortical processes but also artifactual 
signals, such as noise independent of brain processes, that overlap with neural brain 
activity that and may be present in all sensors. In this case, a useful tool for EEG 
researchers would be a method for segregating neural brain activity from artifactual 
noise signals, or even more interesting, a method that can segregate overlapping neu­
ral activities into independent components. Given some major assumptions about 
EEG signals: (1) that they sum approximately linearly, and (2) are temporally in­
dependent, ICA may be an appropriate tool to blindly separate overlapping EEG 
signals and artifacts into independent components. 
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Makeig et al. (1996) have first applied spatial leA (using instantaneous mixing 
only) to the analysis of EEG data and event-related potential (ERP) data using the 
original infomax algorithm (Bell and Sejnowski, 1995). Their results indicate that 
EEG recordings can be decomposed into overlapping EEG phenomena, including 
alpha and theta bursts. Furthermore, they indicate that leA is able to segregate 
obvious artifactual components. Independently, Vigario et al. (1996) and Karhunen 
et al. (1997b) report similar findings for EEG recordings using a fixed-point al­
gorithm (Hyvaerinen and Oja, 1997a; Hyvaerinen, 1997) related to minimizing the 
4th-order cumulants. 

A general assumption made in EEG and ERP analysis is that the signals are 
generated by distinct neural sources, i.e. cortical patches, neural networks or all 
assemblies. Furthermore, the temporal distribution of EEG activations are sparse 
assuming each macroscopic source is active during only a small part of the experiment 
(Makeig et al., 1997). For this case, the original infomax algorithm is well suited to 
decompose overlapping EEG activities. However, some artifacts in the data, e.g. line 
noise, are nearly constantly active, exhibiting a distribution that is sub-Gaussian. For 
these cases, Jung et al. (1998a) showed that the extended infomax (Lee et al., 1998b) 
algorithm is able to linearly decompose EEG artifacts into independent components 
having both sub- and super-Gaussian distributions. 

EEG recordings are one example of using leA for biomedical signal processing. 
There may be many more applications in which leA shows superior analysis quali­
ties than traditional statistical methods such as peA. Very recently, McKeown et al. 
(1998b) have used the extended leA algorithm to investigate task-related human 
brain activity in functional'Magnet·ic Resonance Imaging (fMRI) data. fMin tech­
niques have recently been shown to be a powerful method of studying neocortical 
dynamic functions. In fMRI data there are thousands of data charmels' which record 
brain activity simultaneously at different brain locations (voxels). Therefore, this 
technique can show for each location (layer or brain slice· and coordinate) the time 
course of its activation. However, the slight spread of brain activity onto many ad­
jacent voxels lead to a smeared version of the original signals. Here as well, artifacts 
occur during the recording. Under these circumstances leA may again' be an ap­
propriate tool to discover independent components in fMRI data and to segregate 
artifacts from the data. 

This chapter summarizes the main results obtained using the extended infomax 
algorithm on EEG and fMRI data. First, it is demonstrated how the algorithm 
can isolate artifacts from overlapping EEG signals such as alpha and theta bursts. 
The algorithm can effectively separate 60 Hz line noise from all channels into one 
channel. Second, on another set of EEG data, the extended infomax algorithm 
can effectively isolate eye blinks, eye movements, line noise, cardiac contamination 
and muscle noise from EEG recordings. Those artifacts can be removed from the 
leA represent&tion which, when projected back into the data space, is then free of 
the artifacts. Other independent components which can be separately projected back 
onto the scalp show patterns of activity related to the neurophysiology of the subject. 
Third, the effects 'of using the extended infomax algorithm to analyze fMRI data is 
summarized. By imposing independent spatial fMRI maps, sparse and localized 
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maps are found showing voxels that have either consistently or transiently task­
related brain activations. These activations are difficult to detect in raw fMRI data. 
Compared to other methods, such as PCA, ICA detects more regions of task-related 
brain activations, corroborating findings of Positron Emission Tomography (PET) 
studies. ~. 

The following literature is suggested for details about the physiological interpre­
tation and comparison to other methods of ERP, EEG and fMRI analysis: A general 
book on EEG analysis from an engineering perspective, Nunez (1981); a good review 
of ERP studies given by Hillyard and Picton (1980); a book on MRI and fMRI Toga 
and Mazziotta (1996). Regarding the application of ICA to EEG, ERP and fMRI 
data, Makeig et al. (1997), Jung ei"al. (1998d) and McKeown et al. (1998b) explain 
the methods and results in detail. 

This chapter is organized as follows: In section 7.2 the use of extended infomax 
for EEG analysis is demonstrated. Section 7.3 describes the methods and results 
of isolating artifacts in EEG. Section 7.4 describes how extended infomax can be 
used to find consistently and transiently task-related brain activations in fMRI data. 
Finally, in section 7.5 the limitations and future research in ICA for biomedical data 
analysis is discussed. 

7.2 ICA OF ELECTROENCEPHALOGRAPHIC DATA 

Electroencephalographic (EEG) recordings of brain electrical activity measure changes 
in potential difference between pairs of points on the human scalp. Scalp recordings 
also include artifacts such as line noise, eye movements, blinks and cardiac sig­
nals (ECG) which can present serious problems for analyzing and interpreting EEG 
recordings (Berg and Scherg, 1991). 

The ICA algorithm appears to be very effective for performing source separation 
in domains where, (1) the mixing medium is linear and propagation delays are neg­
ligible, (2) the time courses of the sources are independent, and (3) the number of 
sources is greater or equal the number of sensors, i.e. if N sensors are used the ICA 
algorithm can separate a maximum of N sources. In the case of EEG signals, volume 
conduction is thought to be linear and instantaneous, hence assumption (1) is satis­
fied. Assumption (2) is also reasonable because the sources of eye and muscle activity, 
line noise, and cardiac signals are not generally time locked to the sources of EEG 
activity which is thought to reflect activity of cortical neurons. Assumption (3) is 
questionable since the effective number of statistically-independent signals contribut­
ing to the scalp EEG is unknown. However, numerical simulations have confirmed 
that the ICA algorithm can accurately identify the time courses of activation and 
the scalp topographies of relatively large and temporally-independent sources from 
simulated scalp recordings, even in the presence of a large number of low-level and 
temporally-independent source activities (Ghahremani et al., 1996; Makeig et al., 
1997). 

For EEG analysis, the rows of the input matrix x are the EEG signals recorded at 
different electrodes, the rows of the output data matrix u = Wx are time courses of 
activation of the ICA components, and the columns of the inverse matrix W-1 give 
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Figure 7.1. The location of the electrodes for 14 channels according to the International 10-20 
System. 

the projection strengths of the respective components onto the scalp sensors. The 
scalp topographies of the components allows to examine their biological plausibility 
(e.g., eye activity should project mainly to frontal sites). For artifactual removal, 
the unwanted components can be eliminated by setting the corresponding source 
components to zero in U (estimated independent components) and projecting back 
to a new dataset x that is free of the artifacts. The inverse projection is performed in 
two steps because the basis functioqs of Ware not orthogonal. The solution W can 
be separated into an orthogonal matrix Worth and a whitening matrix V as follows 

W = VWorth. (7.1) . 

To project back into x, first project u onto W;;-~h (Utmp. = W~hU ) giving Utmp 
and second project as x = V-1Utmp. 

7.2.1 Simple examples of applying leA to EEG data 

EEG data sets were analyzed that were collected to develop a method of objectively 
monitoring the alertness of operators listening for auditory signals (Makeig and Inlow, 
1993; Jung et al., 1996). During half-hour session, the subject was asked to push one 
button whenever they detected an auditory target stimulus. EEG was collected from 
14 electrodes located at sites of the International 10-20 System at a sampling rate 
of 312.5 Hz. Figure 7.1 shows the ordering of the electrodes. The extended infomax 
algorithm was applied to the 14 channels of 10 seconds of data with the following 
parameters: learning rate fixed at 0.0005, 100 passes with block size of 100 (3125 
weight updates). The power spectrum was computed for each channel and the power 
in a band arolUld 60 Hz was used to compute relative power for each channel and 
each separated component. 

Figure 7.2 shows the time course of 14 channels EEG and figure 7.3 shows the inde­
pendent components found by the extended infomax algorithm. Several observations 
on the leA components in figure 7.3 and its power spectrum are of interest 
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• Alpha bursts (about 11 Hz) are detected in components 1 and 5. Alpha band 
activity (8-12 Hz) occurs most often when eyes are closed and the subject is 
relaxed. Most subjects have more than one alpha rhythm, with somewhat different 
frequencies and scalp patterns. 

• Theta bursts (about 7 Hz) are detected in components 4, 6 and 9. Theta-band 
rhythms (4-8 Hz) also have different patterns and may occur under distinctly 
different conditions. For example, during drowsiness increases in theta activity 
accompany transient losses of awareness or microsleeps (Makeig and Inlow, 1993), 
while frontal theta bursts occur during intense concentration. 

• An eye blink is detected in component 2, at 8 sec. 

• 60 Hz line noise in component 3 (see figure 7.4,bottom). The extended infomax 
algorithm effectively concentrates the line noise present in nearly all the channels 
into one leA component. 

In addition, figure 7.4 (top) shows the ratio of power near 60 Hz distributed 
over the channels. In the-EEG data, the 60 Hz is dominant in channels 4 and 14. 
However, all channels exhibit 60 Hz line noise. Figure 7.4 (middle) shows that the 
original infomax algorithm cannot concentrate the line noise into one component. 
In contrast, extended infomax (figure 7.4, bottom) picks up the 60 Hz line noise 
component and concentrates it mainly in one sub-Gaussian component, channel 3. 

Figure 7.5 shows another EEG data set with 23 channels including 2 EOG (elec­
trooculogram) channels. The eye blinks near 5 sec and 7 sec contaminated all of 
the channels. Figure 7.6. shows the leA components without normalizing the com­
ponents with respect to their contribution to the raw data. leA -component 1 in 
figure 7.6 contained the pure eye blink signal. Small periodic muscle spiking at the 
temporal sit~s (T3' and T4) was extracted into leA component 14. 

Experiments with several different EEG data sets confirmed that the separation 
of artifactual signals was highly reliable. In particular, severe line noise signals could 
always be decomposed into one or two components with sub-Gaussian distributions. 
Jung et al. (1998a) show further that eye movement also can be extracted. In 
these cases, the originally proposed algorithm by Bell and Sejnowski (1995) could 
not clearly isolate the artifacts. 

7.3 EEG ARTIFACT REMOVAL USING EXTENDED INFOMAX 

Severe contamination of EEG activity by eye movements, blinks, and muscle, heart 
and line noise presents a serious problem for EEG interpretation and analysis. Eye 
movements, muscle noise, heart signals, and line noise often produce large and dis­
tracting artifacts in EEG recordings. Rejecting EEG segments with artifacts larger 
than an arbitrarily preset value is the most commonly used method for dealing with 
artifacts in research settings. However, when limited data are available, or blinks 
and muscle movements occur too frequently, as in some patient groups, the amount 
of data lost to artifact rejection may be intolerable. Here, the results in Jung et al. 
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Figure 7.2. A 10-sec portion of the EEG time series with prominent alpha rhythms (8-21 Hz). 
The location of the recording electrode from the scalp is indicated on the left of each trace. The 
electrooculogram (EOG) recording is taken from the temples. 
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Figure 7.3. The 14 ICA components extracted from the EEG data in figure 7.2. Components 
3, 4. 7, 8 and 10 have sub-Gaussian distributions in the others have super-Gaussian distributions_ 
There is an eye movement artifact at 8 seconds. Line noise is concentrated in component 3. The 
prominent rhythms in components 1,4,5,6 and 9 have different time courses and scalp distributions. 
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Figure 7.5. EEG data set with 23 channels including 2 EOG channels. At around 4-5 sec and 
6-7 sec artifacts from severe eye blinks contaminate the data set. 
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Figure 7.6. Extended infomax ICA components derived from the EEG recordings in figure 7,5, 

The eye blinks are clearly concentrated in component 1. Component 14 contains the steady state 

signal. 
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(1998a, 1998c) and Jung et al. (1998b) are summarized in which several other arti­
facts are extracted using the extended infomax algorithm. 

7.3.1 Methods and Materials 

An EEG data set used in the analysis was collected from 19 scalp electrodes placed 
according to the International 10-20 System and from 2 EOG placements, all re­
ferred to the left mastoid. The sampling rate was 256 Hz. ICA decomposition was 
performed on 5-sec EEG epochs from each data set using Matlab 4.2c on a DEC 
2100A 5/300 processor. The learning batch size was 90, and initial learning rate was 
0.001. Learning rate was gradually reduced to 5 x 10-6 during 80 training iterations 
requiring 6.6 min of computer time. Figure 7.7 (left) shows a 5-sec portion of the 
recorded EEG time series and its ICA component activations in figure 7.7 (middle). 
Figure 7.8 shows the time course. of five artifacts and figure 7.9 shows the scalp map 
of four artifactual signals. These maps are generated as follows: 1) The column of 
the inverse weight matrix W accounts for the amount of intensity that a compo­
nent contributes to each electrode. 2) The intensity of an electrode is mapped into 
a circle. 3) A colormap is assigned to display the magnitude of the component at 
each electrode. 4) Corresponding to the electrode's position, a two dimensional grid 
of data points can be generated by interpolating between the electrodes giving the 
scalp map. To obtain 'corrected' EEG signals shown in figure 7.7 (right) the back 
projection method in eq.7.1 is used to remove the artifactual signals. 

The artifactual signals are discussed below in more detail: 

• Eye movement artifacts 

Eye movement artifacts at 0.5, 2.0 and 4.7 sec (left) are detected and isolated to 
ICA component 2 (middle left), even though the training data contains no EOG 
reference channel. The scalp map of the component captures the spread of EOG 
activity to frontal sites. Component 5 represents horizontal eye movements, After 
eliminating these two components and projecting the remaining components onto 
the scalp channels, the 'corrected' EEG data (right) are free of these artifacts. 

• Muscle artifacts 

Left temporal muscle activity in the data is concentrated in ICA component 3 
(Fig. 7.7, top middle). The ICA component 3 reveals the presence of small periodic 
muscle spiking in left frontal channels (e.g., F4) which is highly obscured in the 
original data. 

• Cardiac contamination and line noise 

Line noise has a sub-Gaussian distribution and so could not be clearly isolated 
by the original infomax algorithm. By contrast, the extended infomax algorithm 
effectively concentrates the line noise present in nearly all the channels into ICA 
component 4. The widespread cardiac contamination in the EEG data (left) is 
concentrated in ICA component 11. 

After eliminating these five artifactual components, the 'corrected' EEG data 
(right) are free of these artifacts. 
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Figure 7.7. Artifact removal using the extended infomax algorithm. A 5-sec portion of the EEG 
time series (left), ICA components accounting for eye movements, cardiac signals, and line noise 
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(right). 
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Figure 7.8. Time course of the five artifactual components only. ICA components accounting 
for eye blinks, muscle noise, cardiac noise signals, and slow eye movement. 
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Figure 7.9. Scalp map of 4 artifactual components. Maps accounting for (l:top-Ieft) eye blinks, 
(2:top-right) muscle noise, (3:bottom-left) cardiac noise signal and (4:bottom-right) show eye 

movement. 

7.3.2 Discussion of EEG applications 

leA appears to be a generally applicable and effective method for removing a wide 
variety of artifacts from EEG records. There are several advantages of the method: 
(1) leA is computationally efficient. (2) leA is generally applicable to removal of 
a wide variety of EEG artifacts. It simultaneously separates both the EEG and its 
artifacts into independent components based on the statistics of the data, without 
relying on the availability of 'clean' reference channels. This avoids the problem of 
mutual contamination between regressing and regressed channels. (3) No arbitrary 
thresholds (variable across sessions) are needed to determine when regression should 
be performed. (4) Separate analyses are not required to remove different classes of 
artifacts. Once the training is complete, artifact-free EEG records in all channels can 
then be derived by simultaneously eliminating the contributions of various identified 
artifactual sources in the EEG record. However, because leA is a statistical method, 
its results may not be meaningful when the amount of data or number of channels are 
insufficient. Future work includes determining the data length and number of input 
channels needed to remove artifacts of various types, and comparing the performance 
of the leA method to that of other approaches. 

7.4 FUNCTIONAL MAGNETIC RESONANCE IMAGING ANALYSIS 

Functional Magnetic Resonance Imaging 1 (fMRI) 2 allows humans to be monitored 
during the performance of psychomotor tasks with moderately high temporal ('" 2 
sec) and spatial ('" 5mm2 ) resolution. The different paramagnetic susceptibilities 
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of oxygenerated and deoxy-hemoglobin provide the basis for the noninvasive Blood 
Oxygenation Level Dependent (BOLD 3) contrast measure most often used in current 
fMRl studies. Although blood volume and BOLD-signal responses to local neural 
activity changes are relatively slow, with rise times of about 5 to 8 sec, hemodynamic 
responses to stimulus and task onsets are generally reproducible between trials and 
sessions. 

Current echo-planar technology allows to acquire MRl images up to 20 times a 
second. However due to the hemodynamic delay and due to changes arising from 
machine noise, subtle subject movements and heart and breathing rhythms it is very 
difficult to detect task-related activations. The noh task-related signals may even 
account for most of the observed BOLD signal variance (Kwong et al., 1992). 

Traditional statistical method to enhance fMRl data are based on subtraction 
and correlation averaged over a number of task-block cycles. Averaging over task­
blocks however, reduces the sensibility offMRl analysis tp changes in brain activation 
occurring in one portion of a trial. Such transiently task-related (TTR) activations 
may arise from changes in subject 'performance, variations in subject arousal and 
attention or effort, or changes produced by learning. Therefore, it is desirable not to 
average over the fMRl data and to use a method that can find TTR activations. 

McKeown et al. (1998b) have used ICA to find components that are transiently, 
time-locked to the behavioral experiment as well as consistently task-related (CTR) 
activations. Their results suggest that ICA can be used to explore a wide range of 
psychological and neuro-cognitive processes occurring during relatively unstructured 
fMRl experiments. 

7.4.1 EMRl Methods 

A subject participated in two 6 min trials of a Stroop color-naming task. Each trial 
consists of five 40 sec control blocks alternating with four experimental task blocks. 
In the control blocks, the subject was simply required to covertly name the color of 
a displayed rectangle (red, blue or green) while in the Stroop-task blocks, the subject 
was required to name the discordant color of the script used to print a color name. 
For example, if the word 'green' was presented in blue script, the subject was to 
covertly 'say' the word 'blue' without speaking it. This experiment follows a pattern 
of alternating task blocks which represent our reference function. The goal is to find 
brain activations that are highly correlated with the reference function indicating 
that neural activity in the detected area may be required for this task. 

A 1.5T GE Signa MRI system was used to monitor brain activity using the BOLD 
contrast. Ten 64 x 64 echo planar, gradient recalled (TR = 2500 ms, TE = 40 ms) 
axial images (5 mm think, 1 mm inter-slice gap) with a 24 cm field of view were 
collected at 2.5 sec sampling intervals corresponding to 146 images for each slice. 
Ten slices through the brain are recorded simultaneously from 10.000 voxels. So, at 
each time point 10.000 data points are acquired 

The main assumption that is made to perform ICA on fMRI data is that the maps 
(slices of fMRl images) are independent of each other. A justification for this stems 
from observations made from different studies (fMRl, PET, EEG) suggesting that 
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Time course of 10 randomly selected voxels 

Time (2 min) 

Figure 7.10. Time course of 10 randomly selected voxels recorded near the visual cortex. 

brain activations are sparsely localized. The raw £MRl data however, shows smeared 
activations and inconsistency during different trials. ICA is applied to a data matrix 
x where the columns are the time-course of one voxel and the rows represent 10.000 
voxels. For this data set a 146 x 146 weight matrix W is learned using the extended 
infomax learning algorithm in eq.2.56 with the following parameters: learning rate 
fixed at 0.0001, momentum term, block size of 100 and 300 passes through the data. 
Learning took about 4 hours with Matlab 4.2c on a DEC 2100A 5/300 processor. 

7.4.2 EMRI Results 

Figure 7.10 shows the raw £MRl data by selecting 10 voxels from the visual cortex. 
The signals correlated with the Stroop task reference function 4 are difficult to de­
tect. In MRl, noise signals may significantly dominate so that the reference function 
is not detectable. Performing ICA transforms the data into independent maps. Vox­
els are found with time-courses that match exactly the time-courses of the reference 
function. Figure 7.11 shows the time-courses of the same voxels which are now highly 
correlated 5 with the reference function meaning that these brain areas are signifi­
cantly task related. Figure 7.12 shows the map of one slice of the ICA-transformed 
£MRl data. Voxels that are correlated with the reference function are localized in the 
visual cortex (bottom of the slice image) and the left frontal cortex. These results 
suggest first that the neural activity in the visual cortex is active during the Stroop 
experiment. This is not surprising since the Stroop task is a visual task and the 
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Time course of 10 randomly selected voxels after using leA 

Time (2 min) 

Figure 7.11. The same voxels show activations corresponding to the experiment after leA trans­
formation. 

difference between the alternating experiments are well captured consistently active 
in the visual cortex. However, the results also suggest that there are frontal neural 
activities which most likely indicate neural computations performed by the brain 
during the Stroop task. These results confirm previous Positron Emission Tomogra­
phy (PET) studies which reported occipital and medial frontal activations. Frontal 
activations have recently been linked to visual-spatial attention (Nobre et al., 1997), 
language processing (Binder, 1997) and working memory (Manoach et al., 1997) 
which may be involved in Stroop-task performance. 

The same experiments were analyzed using other techniques. Figure 7.13 shows 
the results of PCA, 4th-order cumulants and extended infomax. Clearly, extended 
infomax is able to extract a time-course signal closely matching the Stroop task 
reference function. 

7.4.3 Discussions and Conclusions on fMRI 

The assumption about spatial independence of fMRI components used in the analysis 
may not be obvious although it matches neurophysiological observations. In fact, the 
idea was first introduced to make the algorithm computationally feasible (McKeown, 
personal communication). However, a temporal ICA formulation can be applied as 
follows: Given the time-course signals from the voxels, assume that each voxel records 
independent signals such as signals from neural activity and noise artifacts. Apply 
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Figure 7.12. Brain maps of activations using different separation techniques. (top) Results of 
PCA analysis. (middle) results using 4 th-order cumulants (Comon, 1994), and (bottom) results 

from the extended infomax algorithm. 
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Figure 1.13. Comparison of different methods wit~Jespect to the Stroop task reference function. 
(top) Results from the PCA analysis; (middle) results from using 4th-order cumulants (Comon. 
1994); (bottom) results using the extended infomax algorithm. (r denotes the correlation between 
the reference function and the detected component signal.) 
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the extended infomax algorithm to separate the mixed observations into independent 
components. In this data set, there are 10.000 sensors (voxels) and only 146 time 
points. Due to computational complexity (finding a 10.000 x 10.000 weight matrix) 
the following process is used: Define brain regions which are strongly active in accord 
with the task-related reference function as a region of interest (ROI) (McKeown et al., 
1998a), i.e. a region consisting of 2000 voxels with high correlations between the voxel 
time-courses and the reference function. Use PCA to compress the data into a lO-by-
146 point data set by projecting onto the 10 largest eigenvectors. Initial results using 
temporal ICA on the fMRI ROI data showed that this method can find activations 
in the frontal as well as in the visual area. Activations in the visual area are due 
to the visual nature of the task. However, frontal activations suggest which areas in 
the frontal cortex might account for brain cognitive or executive activity during the 
tasks. In addition to these activations, McKeown et al. (1998a) also find transiently 
activated time-courses correlated to the Stroop reference function during one or two 
of the alternating test blocks. This may shed light on learning mechanisms in which 
some areas may be activated only when given a new task. 

Several questions about ICA decomposition still need to be addressed: ICA is a 
linear method and is still able to give good results even though most researchers as­
sume that the hemodynamic response function is nonlinear and therefore the sensors 
should sum signals in a nonlinear manner. FUrthermore, the response function also 
includes time-delays which are not considered in these experiments. 

However, ICA seems to be sensitive to both transiently and consistently task­
related brain activations. The method gives highly reproducible results and is con­
sistent across different trials and different subjects. It may be also used to isolate 
artifactual components from fMRI data. 

7.5 CONCLUSIONS AND FUTURE RESEARCH 

The application of ICA to EEG and fMRI data analysis was presented. Given EEG 
data, ICA has been shown to separate overlapping EEG activities as well as interfer­
ing artifactual signals. Given fMRJ data, ICA gives useful results for investigating 
task-related human brain activity. Spatial ICA on fMRI data gives sparsely dis­
tributed independent maps identifying local areas whose activations correspond to 
the time course of the reference function. In addition to obvious activity in the 
visual cortex during the Stroop task, the algorithm also detected consistently and 
transiently task-related brain activations in the frontal cortex, suggesting which parts 
of this brain area may contribute to the subject's computational or cognitive efforts 
during the task. 

The presented methods for EEG and fMRI analysis are potential applications 
which may be considered as important software and hardware tools in the near 
future. An online-version of the algorithm mounted on a DSP chip might be useful 
for detecting sources during an experiment, allowing clinicians to make more reliable 
decisions based on the immediate ICA results. 

There are several issues that researchers have just begun to address: 

1. Nonlinear mixing 
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2. Nonstationary behavior 

3. Blind deconvolution, time delays 

4. Reliability given only a small data set. 

Issue (1) is in particular of interest for fMRI where several models for the hemody­
namic response function exist and this may be included as a priori knowledge for 
nonlinear mixed ICA. Issue (2) is now being addressed with different techniques and 
is being tested on EEG data (see chapter 9). Issue (3) may not apply for EEG but is 
of significance for fMRI data. Although there are methods for convolved and time­
delayed sources as proposed in chapter 4, applications to multichannel biomedical 
data have still several problems. One problem is the number of filters that increases 
quadratically with the number of sensors. To give a reliable filter estimate, it is 
crucial to ensure a sufficient amount of training data which is in many cases lim­
ited. E.g., in fMRI 146 time-points are sampled, whereas in speech processing it is 
simple to record 100000 time samples. A statistical preprocessing technique for ICA 
to estimate the weight parameters given only a small data set (4) is presented by 
Koehler et al. (1997) combining a statistical method with infomax. This method 
gives a more reliable estimates and speeds up convergence. 

Other potential biomedical applications such as the analysis of olfactory data and 
magnetoencephalographic (MEG) data are subject of future investigations. 
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Notes 

1. MRI is a method to obtain images of various parts of the body without the use of x-rays. 
In contrast to x-rays and CAT scans, a MRI scanner consists of a large and very strong magnet in 
which the patient lies. A radio wave antenna is used to send signals to the body and then receive 
signals back. Given the received signals which are changing magnetic fields that are much weaker 
than the steady strong magnetic field of the main magnet, an image of the body can be computed 
at almost any particular angle. 

2. Functional MRI refers to the use of MRI scans with a specific task such as psychomotor 
tasks to observe brain activity during performance. fMRI detects subtle increases in blood flow 
associated with activation of parts of the brain and may be useful for preoperative neurosurgical 
planning, epilepsy evaluation, and "mapping" of the brain. 

3. The basis of the BOLD technique lies on the fact that MRI images can be made sensitive 
to local oxygen concentrations in tissue. This effect has been applied almost exclusively in the 
human brain to map cortical regions responsible for performing various cognitive tasks, since the 
oxygenation level in active cortex changes between baseline and tasking conditions. 

4. Since the task is an alternating visual task the reference function is expected to exhibit a 
square wave type signal 

5. One may ask why ICA results in correlated data. The answer is that a spatial ICA was 
performed, assuming independent image maps in contrast to temporal ICA giving temporally inde­
pendent components. 



8 ICA FOR FEATURE EXTRACTION 

On ne voit bien qu'avec Ie coeur. 
L 'essentiel est invisible pour les yeux. 
Antoine de Saint-Exupery 

8.1 OVERVIEW 

Barlow (1961) proposed that the goal of sensory coding is to transform the input 
signals such that it reduces the redundancy between the inputs. Atick (1992) and 
Atick and Redlich (1993) have used correlation-based methods suggesting that the 
principle of redundancy reduction may be applied towards the understanding of 
coding principles in retinal cells in the visual cortex (Field, 1994). This strategy 
may be used for the purpose of efficient coding for natural images since they are not 
purely random but contain structure. Natural images have oriented lines, edges and 
other structures that have dependencies of higher-order statistics. These localized 
structures can be described mainly by the phase spectrum. For example, an edge 
occurs locally and has its phase spectrum aligned across different spatial frequencies. 
Correlation-based approaches are phase-blind, i.e. they can capture only the power 
spectrum and higher-order methods are needed to account for localized oriented 
structures. Olshausen and Field (1996) considered a network that maximizes the 
sparseness of the representation of natural images and showed that the extracted 
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features are localized and oriented. Those features are similar to receptive fields in 
the primate striate cortex. 

Along this line of research Bell and Sejnowski (1997) suggest that independent 
components of natural scenes are edge filters. They apply the infomax learning 
rule (Bell and Sejnowski, 1995) to an ensemble of natural scenes and find sets of 
visual filters (features) that are localized and oriented. Compared to results from 
decorrelation-based methods such as PCA, the lCA filters are sparsely distributed 
outputs and similar to Gabor filters 1 found by Olshausen and Field (1996) using 
the sparseness-maximization network. 

This chapter reviews the suggestion of Bell and Sejnowski (1997) that lCA can be 
used to extract features (filters) from natural scenes that are localized edge detectors. 
Their results are briefly summarized and confirmed by using the extended infomax 
algorithm (eq.2.56) that the independent component of natural images are sparsely 
localized filters. To this end, both algorithms are applied to 10 natural images and 
compare their features. Similar findings have been reported by Hyvaerinen and Oja 
(1997b) and Karhunen et al. (1997b) using the fixed-point algorithm. This is not 
surprising since their algorithm can as well separate sub- and super-Gaussian com­
ponents. The fixed-point algorithm (Hyvaerinen and Oja, 1997a) is closely related 
to Comon (1994) cumulant maximizing approach discussed in chapter 3. 

Bartlett and Sejnowski (1997) and Gray et al. (1998) demonstrate the successful 
use of lCA filters as features in face recognition tasks and lipreading tasks respec­
tively. 

The organization of the chapter is as follows: The methods suggested by Bell and 
Sejnowski (1997) are reviewed in section 8.2. The extended infomax algorithm is 
applied to 10 natural images in section 8.3. A brief summary is given for the use of 
lCA features in face recognition and lip-reading tasks in section 8.4. Other potential 
applications are discussed in section 8.5. 

8.2 leA OF NATURAL IMAGES 

The methods and obtained results by Bell and Sejnowski (1997) are briefly reviewed. 
Their proposed method extract features from natural scenes by assuming a linear 
image synthesis model (Olshausen and Field, 1996). Such a model is shown in fig­
ure 8.2 where each patch x of an image is a linear combination of several underlying 
basis functions. Here, the columns of A are the basis functions and the image patch 
is generated according to the following linear model 

x=As (8.1) 

where s represents the weightening of the basis functions A to form x. s can be 
thought as 'causes' of the images where a linear synthesis of these causes constitute 
the observations x. Figure 8.1 shows the linear image synthesis model with the 
columns of s representing the causes, rows of A are the basis functions and the 
columns of x are the observed image patches. The goal of the recognition model in 
figure 8.3 is to find a matrix W so that u = Wx are the underlying causes when 
W = A -1. The basis functions are then rows of W. Therefore, learning W gives 
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Figure 8.1. Linear image synthesis model with causes s, basis functions A and observed image 

patches u . 
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Figure 8.2. Cartoon of a linear synthesis model. Images are composed linearly of basis functions 
A mixed with the amplitudes of the causes si . For simplicity, only 4 basis functions are shown . 

rise about what constitutes a 'cause'. In terms of the visual processing strategy the 
rows of Ware the receptive fields. 

Bell and Sejnowski (1997) applied the infomax learning rule in eq.2.46 to four 
natural images 2. Their methodology and their main results are well described in 
Bell and Sejnowski (1997) . 

8.3 leA OF NATURAL IMAGES USING EXTENDED INFOMAX 

The goal in this section is to repeat the experiment in Bell and Sejnowski (1997) 
using the extended infomax algorithm in eq.2.56 (Lee et aI., 1998b). The motivation 
is to find in addition to sparse super-Gaussian representations also low-kurtotic sub­
Gaussian representations. 

Ten natural images including the four images used in Bell and Sejnowski (1997) 
are taken for this experiment. 16.700 patches of size 12 x 12 pixels from those 
images were randomly selected. Each sample is a column in the observation matrix 
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Figure 8.3. Cartoon of an image recognition model. The goal of efficient coding is to learn the 
basis functions W to recover the 'causes' Si. 

x (144 x 16700). The basis functions W was learned using the extended infomax 
algorithm in eq.2.56 with the following parameters: block size of 50, a fixed learning 
rate of 0.0001 and 100 passes through the data (33400 weight updates). A momentum 
term was used as well. The learned W had a dimension of 144 x 144. Figure 8.4 
shows the complete set of le.arned fi.lters. 

Each filter represents a row of Wand they are ordered in length of the filter vector 
where the filters at the top correspond to filters producing a higher entropy at the 
outputs. The ICA filters are localized and mostly oriented. In this order, the filters 
consist of one DC filter (top left), 3 filters close to the DC filter (2-4) and 72 oriented 
filters. 46 of them were diagonal, 12 are vertical and 14 horizontal. There are also 
48 localized checkerboard patterns. The outputs of the filters u are mostly sparse 
distributed. The output of the DC component was close to a Gaussian distribution 
and all the other outputs signals were kurtotic. The extended infomax' algorithm 
detected the DC component as one sub-Gaussian component. The kurtosis values 
ranged from low kurtotic (k4 = -0.06 for the output of the DC filter) up to high 
kurtotic outputs (k4 = 15) for the output of the checkerboard-like filters . The mean 
kurtosis for all Ui'S was 8.8. Roughly the same results have been reproduced by 
using the original infomax learning rule. The DC filter learned by using the original 
infomax algorithm (Bell and Sejnowski, 1995) was very similar to the low kurtotic 
output detected by the extended infomax algorithm. These results suggest that 
independent components in natural images are almost solely generated by sparse 
filters . 

8.4 ICA FOR FEATURE EXTRACTION 

A valid question one may ask is if the learned filters (features) W can be used as 
an efficient code to discriminate the observed data. In other words, can the outputs 
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Figure 8.4. leA on natural images using extended infomax. The matrix of 144 filters obtained 
by training on 16.700 random samples from natural images of size 12 X 12 pixels. Each filter is 
a row of the matrix W . and they are ordered left-to-right. top-to-bottom in reverse order of the 
length of the filter vector. 
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of an ICA transformation be used to discriminate observations? Furthermore, is it 
possible to use the ICA features as information in classification systems so that more 
reliable decisions are made? 

Bartlett and Sejnowski (1997) and Gray et al. (1998) demonstrate the successful 
use of ICA filters as features in face recognition tasks and lipreading tasks respec­
tively. A brief summary of their methods follows: 

• Example Face Recognition 

The goal in face recognition is to train a system so that it can recognize and clas­
sify familiar faces given a different image of the trained face. The test images may 
show faces in a different pose or under different lighting conditions. Traditional 
methods to face recognition have employed PCA-like methods Turk and Pentland 
(1991). Bartlett and Sejnowski (1997) compare the face recognition performance 
of PCA and ICA for two different tasks: (1) different pose and (2) different light­
ing condition. They show that for both tasks ICA outperforms PCA. The method 
is roughly as follows: The rows of the face images constitute the data matrix x. 
Performing ICA, a transformation W is learned so that u (u = Wx) represent 
independent face images. Nearest neighbor classification is performed on the co­
efficients of u. In comparing PCA and ICA, nearest-neighbor classification of the 
ICA representation outperformed the PCA representation. 

• Example Lipreading 

The goal in the lipreading task is to recognize a word given' only a sequence 
of lip images that are observable when the word is spoken. The recognizer is 
first trained on features of the lip images labeled according to the spoken word. 
Then, the performance of the recognizer is tested by classifying a new sequence 
of lip images. Gray et al. (1998) have compared local and global PCA and ICA 
representations. Their method can be roughly summarized as follows: . They first 
extract features that represent the images: Optical flow representations have been 
used to account for temporal processing. Spatial information have been extracted 
using either local or global PCA or ICA. In global ICA/PCA one can think of an 
ensemble of entire lip images x that is decomposed into independent components 
u using a linear transformation W where the rows of Ware global features. Lo­
cal ICA/PCA involves small patches of the lip images to extract W. Only one 
of four classes (global ICA/PCA and local ICA/PCA)) of features are then used 
to train the parameters in an Hidden Markov Models (HMM). HMM are proba­
bilistic methods that enable to model the observed features in probabilistic states 
and probabi.listic transitions between states. A certain parametric combination 
of states and transitions determine the probability of the observation of certain 
features that are associated with features from a labeled training example. Their 
result suggest that local features are more suitable for their task and that local 
PCA performed slightly better than local ICA. 
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8.5 DISCUSSIONS AND CONCLUSIONS 

Results were presented using the extended infomax algorithm that corroborate the 
findings of Bell and Sejnowski (1997) and Olshausen and Field (1996) that the inde­
pendent components of natural scenes are localized and oriented edge detectors. 

Bell and Sejnowski (1997) included many discussion issues and additionally a de­
tailed comparison with decorrelation-based methods (peA and zero-phase whitening 
filters). An approach proposed by Lewicki and Sejnowski (1998b) is able to learn 
an overcomplete bases to find efficient sound codes as well as image codes in audio 
signals and images respectively (chapter 5). Overcomplete bases have a greater num­
ber of basis vectors than the dimensionality of their input vectors Simoncelli et al. 
(1992). For natural images Lewicki and Olshausen (1998) show that the overcom­
plete bases are localized and oriented and confirm the results obtained earlier by 
Olshausen and Field (1996) and Bell and Sejnowski (1997) using complete bases. In 
contrast to complete bases they show that higher degrees of overcompleteness can 
better model the observed data. An application to noise removal is presented in 
Lewicki and Olshausen (1998) where they demonstrate that the learned bases form 
efficient codes that have better denoising properties than traditional complete basis 
and overcomplete Fourier and wavelet bases. Potential applications of this technique 
include new data compression techniques. 

There are several issues subject to future research efforts. Edges are the first 
level of invariance and can be detected by a linear transformation. However, one 
might wish to find transformation that are invariant to shifting, scaling and rotation 
(Bell and Sejnowski, 1997). From a biology point of view the discussed algorithms 
are non-local, i.e. the neuron makes use of information which is present in other 
neurons without having the necessary connection. Therefore, the algorithms have to 
be reconsidered for image processing issues in the visual cortex. 

In a similar manner, Bell and Sejnowski (1996) applied the infomax algorithm to 
learning higher-order structure of a natural sound. 

Hateren and Ruderman (1998) performed leA on time varying images (video) 
and showed that leA yields spatiotemporal filtering like in simple cells. 
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Notes 

1. Gabor wavelets are of similar shape as the receptive fields of simple cells in the primary 
visual cortex (VI). They are localized in both space and frequency domains and have the shape of 
plane waves restricted by a Gaussian envelope function. 

2. The images are available in (ftp:/Iftp.cnl.salk.edu/pub/tony/VRimages). 



9 UNSUPERVISED CLASSIFICATION 
WITH ICA MIXTURE MODELS 

Zwei Seelen wohnen; ach; in meiner Brust. 
Goethe. " Faust" 

9.1 OVERVIEW 

This chapter presents an unsupervised classification algorithm based on an lCA 
mixture model (Lee et al., 1998d). The mixture model is a model in which the 
observed data can be categorized into several data classes. The data in each class is 
generated by a linear mixture of independent sources and is called an lCA class. The 
goal of the learning algorithm is first to find the independent sources and the mixing 
matrix for each lCA class and second to compute the posterior probability of the class 
membership of a given data point. The first step of the algorithm employs a standard 
ICA algorithm to learn the basis vectors (mixing matrix) and the bias terms. In the 
second step, the algorithm computes for each ICA class the probability of the ICA 
class given the data. This approach can be seen as an extension of the Gaussian 
mixture model in which the clusters can have non-Gaussian structure. Performance 
on a standard classification problem, the Iris flower data set, demonstrate that the 
new algorithm achieves highly competitive classification results. 

ICA is a technique to find a linear non-orthogonal co-ordinate system in multi­
variate data. The directions of the axes of this co-ordinate system are determined 
by both the second and higher order statistics of the observed data x. The goal is 
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to linearly transform the data such that the resulting data S is as statistically inde­
pendent from each other as possible (Bell and Sejnowski, 1995; Cardoso and Laheld, 
1996; Lee et aI., 1998a). 

Successful applications of separating mixed speech ~ignals (Lee et aI., 1997a) and 
removing artifacts from EEG recordings (Jung et aI., 1998a) have demonstrated that 
ICA is a useful tool to find independent components' in real world data. Girolami 
(1997b) showed how ICA can be used to find independent clusters in data sets. Here, 
a new learning algorithm is presented that can be used to identify several classes in 
the observed data in such a way that the data in each class are generated by a 
mixture of independent components. 

9.2 THE leA MIXTURE MODEL 

Assume that there are K classes of M-dimensional zero-mean vectors Sk, such that 
the components Si within each class are mutually independent. Each class of in­
dependent sources Sk corresponds to M independent scalar-valued sources Si. The 
multivariate p.d.f. of the vector can be written as the product of marginal inde­
pendent distributions p(sIO) = nf!lP(Silwi) where 0 = Wl,"',WM is the set of 
parameters describing the density of s. 

Sk = [Sl"",Sm"",sM]T,m=I, .. ·,M 

S [Sl"",Sk"",SK]T,k= 1,···,K. 

Define an ICA class Xk (N-dimensional vector) as a class in which the independent 
components Sk are mixed linearly by a mixing matrix (basis vectors). 

(9.1) 

where Ak is a full rank N x M scalar matrix and bk = [b1 ,···, bN] is the bias term. 
An ICA mixture model is defined as follows . 

(9.2) 

where Xk is an ICA class with 

(9.3) 

For simplicity, consider here the case where the number of sources is equal to the 
number of mixtures N = M. Here, X denotes all observed data, i.e. K sets of 
observations Xk each being generated by classes of mixed independent sources Sk. 
The mixing matrix Ak and the bias term bk is different for each class. 

Figure 9.1 shows a simple example of classifying an ICA mixture model. There 
are 2 ICA classes (+) and (0), where each class was generated by two independent 
variables, 2 bias terms and 2 basis vectors. Class (0) was generated by 2 uniform dis­
tributed sources whereas class (+) was generated by 2 Laplacian distributed sources. 

In order to correctly classify the observed data X the task is to learn the following 
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Figure 9.1. A simple example for classifying an ICA mixture model. There are 2 ICA classes (+) 
and (0). each class was generated by two independent variables. 2 bias terms and 2 basis vectors. 
Class (0) was generated by 2 uniform distributed sources as indicated next to the data class. Class 

(+) was generated by 2 Laplacian distributed sources with a sharp peak at the bias and heavy 

tails. 

1. The lCA parameters for each class Ck = {Ak,p(Sk)}. 

2. The probability of each class P(Cklx, A k) for the given data point. 

(1) involves estimating the prior of the sources Pk(S) and learning the mixing matrices 
Ak using a standard lCA algorithm. Furthermore, the bias terms b k must be learned 
adaptively as well. (2) involves learning the likelihood of the data sample for each 
class given the model estimates from (1). 

For example, assume that the basis functions Ak and the bias terms b k are learned 
correctly as indicated by the arrows in figure 9.1. If the test data sample is drawn 
from the uniform distribution (0) then the log-likelihood of class (0) is greater than 
the log-likelihood of class (+) (logP(xICo,Ao,) > 10gP(xIC+,A+,)). The pos­
terior probability of each class (Co, C+) can be computed given the appropriate 
log-likelihoods and the class priors. 
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The learning algorithm can be derived by an expectation maximization (EM) 
approach Ghahramani (1994) and implemented in the following steps: 

1. Compute the log-likelihood of the data for each class 

logP(xICk,Ak) = logP(s) -log(det IAI) (9.4) 

2. Compute the probability for each class 

(9.5) 

3. Learn adaptively the basis functions A and the bias terms b for each class. The 
basis functions A are learned according to the extended infomax ICA learning 
rule by Lee et al. (1998b) and by taking into account the probability for each 
class 

(9.6) 

(9.7) 

Note that any ICA learning algorithm can be used to learn the gradient. For the 
bias term the learning rule is 

(9.8) 

where t is the index in the training data (1, ... ,t, ... ,T). 

The three steps in the learning algorithm increase the total likelihood of the data. 

P(xIA 1:K ,C1:K) = LP(xIAk,Ck)P(Ck). 
k 

(9.9) 

The extended infomax ICA learning rule (see chapter 2) is able to blindly separate 
mixed sources with sub- and super-Gaussian distributions. This is achieved by using 
a simple type of learning rule first derived by Girolami (1998). The learning rule in 
Lee et al. (1998b) uses the stability analysis of Cardoso and Laheld (1996) to switch 
between sub- and super-Gaussian regimes. The learning rule for W (an estimate of 
the inverse of A) is 

6. W ex [I - K tanh(u)uT _ uuT] W { k~ = 1 ~ super - Gau~sian 
k i - -1 . sub - Gaussian (9.10) 

where k i are elements of the N-dimensional diagonal matrix K and u = Wx. The 
ki's are (Lee et al., 1998b) 

(9.11) 
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For the log-likelihood estimation in eq.9.4 the term P(s) can be approximated as 
follows 

10gP(s) ~ - ~n ISnl 

10gP(s) ~ - ~n (log(cosh(sn)) - ~) 
super - Gaussian 

sub - Gaussian 
(9.12) 

For super-Gaussian densities, the approximation is achieved by a Laplacian density 
model. In case of sub-Gaussian densities, P(s) is approximated by a bimodal density 
of the form in eq.2.57. Although the source density approximation is crude it has been 
demonstrated that simple density models are sufficient for standard leA problems 
(Lee et aI., 1998b). 

The testing procedure this accomplished by processing each the test data sample 
using learned parameters Ak and b k. The probability of the class P( Ck lx, A k ) is 
computed and the corresponding label is compared to the highest class probability. 

9.3 SIMULATIONS 

To demonstrate the validity of the learning algorithm random data was generated 
and drawn from different classes. The steps in the above section were used to learn 
the parameters and to classify the data. Figure 9.2 gives a simulation example of 
how several classes may be represented in a two-dimensional data space. Each class 
was generated as two random variables with an arbitrary density function. Then, for 
each class the two variables were mixed by a random mixing matrix A and a random 
bias vector b. In this example, the algorithm had to find four mixing matrices and 
four bias vectors given only the two dimensional data set. To verify the classification 
process, the data was divided into training and testing data sets. For training, the 
parameters were randomly initialized. Given the observed data set X = [Xl, ... , X4] 
the algorithm converged in 30 iterations through the data. The arrows in figure 
9.2 indicate the basis vectors Ak and the bias terms b k were found correctly for 
the different classes. Testing was accomplished by processing each instance with 
the learned parameters Ak and bk. The probability of the class P( Ck lx, A k) was 
computed and the corresponding instance label was compared to the highest class 
probability. For this simulation example the classification error on the test set was 
7.5% although the classes had several overlapping areas. For comparison with other 
methods, the same data were applied using the k-means (Euclidean distance measure) 
clustering algorithm optimized with the EM algorithm. This method gave an error 
of 11.3%. 

9.4 IRIS DATA CLASSIFICATION 

To compare the proposed method to other classification algorithms, the method has 
been applied to classify real data from the machine learning benchmark (Merz and 
Murphy, 1998). As an example the classification of the well known iris flower data set 
is shown here. The data set (Fisher, 1936) contains 3 classes, 4 numeric attributes 
of 50 instances each, where each class refers to a type of iris plant. One class is 
linearly separable from the other two, but the other two are not linearly separable 
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Figure 9.2: An example of classification of a mixture of independent components. There are 4 
different classes, each generated by two independent variables and bias terms. The algorithm is 
able to find the independent directions (basis vectors) and bias terms for each class. 

from each other. The complete data set was divided into training set (75%) and 
testing set (25%). The algorithm converged after one hundred passes through the 
training data. The classification error on the training data set was 2% whereas the 
error on the test data set was 3.3%. For comparison, Freund (1995) used a simple 
classifier with an additional boosting methocf and reported an error rate of 4.8%. A 
k-means clustering using the EM algorithm gave an error rate of 4.12%. 

This is a classical data set in statistics and the improvement in performance from 
the previous reported results is highly significant. 

9.5 CONCLUSIONS 

The new algorithm for unsupervised classification presented here is based on a max­
imum likelihood mixture model using independent component analysis to model the 
structure of the clusters. The algorithm demonstrated on simulated and real world 
data that its classification results are highly competitive. 
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This new method is similar to to other approaches such as the mixture density 
networks by Bishop (1994) in which a neural network was used to find arbitrary 
density functions. The two steps of the proposed algorithm can be derived from the 
EM algorithm for density estimation (Ghahramani, 1994; Amari, 1995). 

This algorithm reduces to the Gaussian mixture model when the source priors are 
Gaussian. Purely Gaussian structure, however, is rare in real data sets. Here priors 
of the form of super-Gaussian and sub-Gaussian densities were used. But these could 
be extended as proposed by Moulines et al. (1997) and Attias (1998). The proposed 
model was used for learning a complete set of basis functions without additive noise. 
However, the method can be extended to take into account additive Gaussian noise 
and an overcomplete set of basis vectors (Lewicki and Sejnowski, 1998b). 

Other applications of the proposed method include modeling the context switching 
in blind source separation which occurs when the observed signals are mixed with 
a non-stationary mixing matrix. This can be significant in the automatic detection 
of sleep stages by observing EEG signals. The lCA mixture model may be used 
to automatically identify these stages due to the changing source priors and their 
mixing. 



10 CONCLUSIONS AND FUTURE 
RESEARCH 

In the end is my beginning 
T.S. Eliot 

10.1 CONCLUSIONS 

Theories and applications of leA were presented. The first part of the book fo­
cused on unsupervised learning algorithms for leA. Based on fundamental theories 
in probabilistic models, information theory and artificial neural networks several 
unsupervised learning algorithms such as infomax, maximum likelihood estimation, 
negentropy maximization, nonlinear peA, Bussgang algorithm and cumulant-based 
methods are presented that can perform leA. Those seemingly different theories are 
reviewed and put in an information theoretic framework to unify several lines of 
research. An extension of the infomax algorithm of Bell and Sejnowski (1995) is pre­
sented that is able to blindly separate mixed signals with sub- and super-Gaussian 
source distributions (Girolami, 1997b; Lee et al., 1998b). The learning algorithms 
are furthermore extended to deal with the multichannel blind deconvolution prob­
lem. The use of filters allows the separation of voices recorded in a real environment 
(cocktail party problem). Although the leA formulation has several constraints such 
as the linear model assumption, the number of sensors and the low-noise assumption, 
it can be demonstrated that new methods can loosen some constraints. In particu­
lar, an overcomplete representation of the leA formulation (Lewicki and Sejnowski, 
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1998c) can be used to represent more basis functions than the dimensionality of the 
data. This method is therefore able to model and to infer more sources than sensors. 
The advantage of the inference model is that it 'indudes a noisy rcA model and is 
therefore able to cope with additive noise. However, the overcomplete representa­
tion appears more sensitive to the source density mismatch than the complete lCA 
representatipn. A few steps towards nonlinear lCA were presented. This issue is ill 
conditioned and has in general not a unique solution. However, given 'appropriate 
constraints there are certain solvable models such as the two stage model Lee et al. 
(1997c) in which a nonlinear transfer function follows after the linear mixing. 

The second part of the book presented applications of lCA to real-worfd problems. 
The lCA algorithm has been successfully applied to many biomedical signal process­
ing problems such as the analysis of electroencephalographic (EEG) data (Makeig 
et al., 1997; Jung et al., 1998a). Makeig et al. (1996) have applied the original 
infomax algorithm (Bell and Sejnowski, 1995) to EEG and ERP data showing that 
the algorithm can extract EEG activations and isolate artifacts. Jung et al. (1998a) 
show that the extended infomax algorithm (Lee et al., 1998b) is able to linearly 
decompose EEG artifacts such as line noise, eye blinks, and cardiac noise into inde­
pendent components with sub- and super-Gaussian distributions. McKeown et al. 
(1998b) have used the extended lCA algorithm to investigate task-related human 
brain activity in fMRI data. Another area of applications can result from exploring 
independent features in images. Bell and Sejnowski (1997) suggested th,at indepen­
dent components of natural scenes are edge filters~ Those features may be used in 
pattern classification problems such as visual lip-reading and face recognition tasks 
to improve its recognition performance. The lCA algorithm can be furthermore em­
bedded in an expectation maximization framework with the goal to classify clusters 
of lCA models. This approach is an extension of the Gaussian mixture model for 
no~-Gaussian priors. Results on classification benchmarks demonstrate that lCA 
cluster models can improve classification results. 

Although several limitations and assumptions impedes the use of lCA, it seems ap­
propriate to conjecture that the algorithms and methods are useful tools with many 
potential applications where many second-order statistical methods reach their lim­
its. Potential applications are now being optimized and may take a few more years 
until they will be commercially used. Several researchers believe that these tech­
niques will have a huge impact on engi~eering methods and industrial applications. 

10.2 FUTURE RESEARCH 

There are many issues subject to further investigation. As pointed out in chapter 2 
lCA relies on several model assumptions that may be inaccurate or even incorrect. 
Those issues are highlighted and their potential solutions are discussed . 

• Nonlinear mixing problem 

Researchers have recently tackled the problem of. nonlinear mixing phenomena. 
Burel (1992); Lee et al. (1997c); Taleb and Jutten (1997); Yang et al. (1997); 
Hochreiter and Schmidhuber (1998) propose extensions when linear mixing is 
combined with certain nonlinear mixing models. Other approaches include self-
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organizing feature maps to identify nonlinear features in the data (Hermann and 
Yang, 1996; Lin and Cowan, 1997; Pajunen, 1996). Chapter 6 presented some 
simplified models and their solutions. However, the methods are far from being 
generally applicable. The nonlinear ICA problem needs to be well defined and 
constrained to a solvable solution. Furthermore, the independence assumption 
and the nonlinear ICA model are two contradictory terms because there are no 
more unique solutions to nonlinear ICA models, e.g. the nonlinearly mixed signals 
may be linearly independent. Perhaps drastically different principles have to be 
addressed so that sources can be separated by self-organizing principles that are 
not necessarily relying on information-theoretic principles. 

• Underdetermined ICA 

The underdetermined problem in ICA, i.e. having more sources than sensors 
N < M is of theoretical and practical interest. The over complete ICA represen­
tation (Lewicki and Sejnowski, 1998c) is highly promising. However, its imple­
mentation is rather complicated and other methods may be required that use a 
priori knowledge of the source distribution. In particular, semi-blind methods, i.e. 
method that use a priori information about the source density or the temporal 
structure of the source, are of interest. The incorporation of temporal structure 
is key to solving the single channel source separation problem. An approach by 
Lewicki and Sejnowski (1998a) indicate first steps towards solving this inherently 
difficult problem. 

• Noisy ICA 
Only a few papers have discussed ICA in the presence of additive noise (Nadal and 
Parga, 1994; Attias, 1998) and much more work needs to be done to determine 
the effect of noise on performance. Although the overcomplete ICA framework 
by Lewicki and Sejnowski (1998c) uses an additive noise model the illference is 
based on the sparse source assumption it needs to be extended for general source 
separation issues. There may be other generative models Hinton and Ghahra­
mani (1997) in a Bayesian framework that can cope with additive noise. A very 
promising idea to solve this problem is the independent factor analysis by Attias 
(1998). It is a generalization of factor analysis, PCA and ICA in which the model 
parameters are learned using an EM algorithm. 

• Non-stationarity problem 

Sources may not be stationary, i.e. sources may appear, disappear or move 
(speaker moving in a room). In these cases, the weight matrix W may change 
completely from one time point to the next. Unsupervised methods are required 
that take into account abrupt changes in real environments. Nadal and Parga 
(1998) have proposed some analytical method for time-dependent mixtures. Mu­
rata et al. (1997) suggest an adaptation of the learning rate to cope with changing 
environments. Matsuoka et al. (1995) use a neural network to separate nonstation­
ary signals. A promising off-line method to analyze the non-stationarity problem 
in ICA is the ICA mixture model presented in chapter 9. The different classes 
may account for the different mixing models or changing mixing environments. 
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There are several potential applications that have not been investigated exten­
sively yet but may be of great significance. It is conjectured that ICA can be applied 
to find independent signals in any multi-sensory array recordings of real data. Fur­
thermore, ICA may be useful to find structure in high dimensional data space for 
data mining purposes, e.g. structures in medical databases that may be significant 
for clinical patient evaluation. A few applications for further investigations are sug­
gested. 

• leA for spike train separation 

Brown et al. (1988) used ICA to separate action potential trains in multiple­
neuron, multiple-detector recordings. They showed that the extended infomax 
ICA algorithm can separate the recordings into single neurons. Similar results 
were obtained by Laubach and Nicolelis (1998) where they applied ICA to multi­
sensory spike trains recorded in the motor cortex of rats. Their finding suggests 
that neuronal interactions are distributed sparsely within the motor cortex. 

• leA on recordings from the olfactory system 

Hopfield (1991) suggested that the olfactory computation may be related to fac­
torial code representation. The application of ICA to data from the olfactory 
system is currently investigated (Kauer and White, personal communication) to 
test the hypothesis. 

• leA in communications 

Complex valued signal mixing occurs in radio channels. This is a problem in 
current mobile communication applications such as CDMA (Code Division Mul­
tiple Access) systems. Torkkola (1998) incorporated prior knowledge about the 
source distributions into the nonlinear transfer function and adaptively found 
time-varying mixing matrices. In simulations, he showed that infomax can be 
successfully applied to unmix radio signals in fading channels. 

• leA for data mining 

Data mining, the extraction of hidden predictive information from large databases, 
is a powerful new technology with great potential to help companies focus on 
the most important information in their data warehouses. Lizhong and Moody 
(1997) explored ICA for financial data modeling. More recently, Girolami (1997a) 
suggested projection pursuit networks for data mining. They compared their data 
cluster projections by ICA and found different results which were more significant 
than other traditional methods. Isbell and Viola (1998) used ICA for text retrieval 
in high-dimensional text data bases. The goal is to find a subset of a collection of 
documents relevant to a user's information request. This technique may have an 
impact on Internet search engines. The ICA mixture model in Lee et al. (1998d) 
can be applied to general data mining purposes. Regarding the findings of the 
simple ICA methods it is assumed that the ICA mixture model will be able to 
extend the formulation into more unsupervised classification problems. 

• Biological evidence of leA? 
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An interesting question from a neuroscience viewpoint is the understanding of 
learning mechanisms with factorial codes. Although the learning rules in eq.2.46 
and eq.2.56 in a single feedforward architecture are non-local, i.e. the neurons 
must know information about the synaptic weights of neighboring neurons without 
being connected to them. There are a few local learning rules for lCA. The 
Herault-Jutten architecture has a local learning rule. The extended exploratory 
projection pursuit network with inhibitory lateral connections (Girolami and Fyfe, 
1997b) has a local learning rule as well. Field (1994) suggested that factorial code 
is an efficient coding strategy for visual sensory processing. There may be further 
evidence of factorial coding principles in other neurons such as the cerebellum 
that might use efficient coding schemes for motor control and prediction (Coenen 
et al., 1998) . 

• leA chip 

A CMOS integration of Herault-Jutten cells was realized by Vittoz and Arreguit 
(1989). A VLSl chip implementation of the Herault-Jutten algorithm was realized 
by Cohen and Andreou (1992). However, the stability of the Herault-Jutten al­
gorithm is sensitive with respect to the mixing condition (Sorouchyari, 1991) due 
to the missing equivariance property. Therefore, current investigations include 
the implementation of the extended infomax algorithm in VLSL An extension 
to time-delays and convolved mixtures may be of practical interest and will be 
addressed in the near future. 
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