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Preface

Independent component analysis (ICA) is a statistical and computational technique
for revealing hidden factors that underlie sets of random variables, measurements, or
signals. ICA defines a generative model for the observed multivariate data, which is
typically given as a large database of samples. In the model, the data variables are
assumed to be linear or nonlinear mixtures of some unknown latent variables, and
the mixing system is also unknown. The latent variables are assumed nongaussian
and mutually independent, and they are called the independent components of the
observed data. Theseindependent components, also called sources or factors, can be
found by ICA.

ICA can be seen as an extension to principal component analysis and factor
analysis. ICA is a much more powerful technique, however, capable of finding the
underlying factors or sources when these classic methodsfail completely.

The data analyzed by ICA could originate from many different kinds of applica-
tion fields, including digital images and document databases, as well as economic
indicators and psychometric measurements. In many cases, the measurements are
givenasaset of paralldl signalsor time series; theterm blind source separationisused
to characterize this problem. Typical examples are mixtures of simultaneous speech
signals that have been picked up by several microphones, brain waves recorded by
multiple sensors, interfering radio signals arriving at a mobile phone, or parallel time
series obtained from someindustrial process.

The technique of ICA is arelatively new invention. It was for the first time in-
troduced in early 1980s in the context of neural network modeling. In mid-1990s,
some highly successful new algorithms were introduced by several research groups,
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XViii PREFACE

together with impressive demonstrations on problems like the cocktail-party effect,
where the individual speech waveforms are found from their mixtures. ICA became
one of the exciting new topics, both in the field of neural networks, especially unsu-
pervised learning, and more generally in advanced statistics and signal processing.
Reported real-world applications of ICA on biomedical signal processing, audio sig-
nal separation, telecommunications, fault diagnosis, feature extraction, financial time
series analysis, and data mining began to appear.

Many articles on ICA were published during the past 20 yearsin a large number
of journals and conference proceedings in the fields of signal processing, artificial
neural networks, statistics, informationtheory, and variousapplicationfields. Several
special sessions and workshops on ICA have been arranged recently [70, 348], and
some edited collections of articles [315, 173, 150] as well as some monographs on
ICA, blind source separation, and related subjects [105, 267, 149] have appeared.
However, while highly useful for their intended readership, these existing texts typ-
icaly concentrate on some selected aspects of the ICA methods only. In the brief
scientific papers and book chapters, mathematical and statistical preliminaries are
usualy not included, which makes it very hard for a wider audience to gain full
understanding of thisfairly technical topic.

A comprehensive and detailed text book has been missing, which would cover
both the mathemati cal background and principles, algorithmic solutions, and practical
applications of the present state of the art of ICA. The present book isintended to fill
that gap, serving as afundamental introductionto ICA.

It is expected that the readership will be from a variety of disciplines, such
as statistics, signal processing, neural networks, applied mathematics, neural and
cognitive sciences, information theory, artificial intelligence, and engineering. Both
researchers, students, and practitioners will be able to use the book. We have made
every effort to makethisbook self-contained, so that areader with abasi ¢ background
in college calculus, matrix algebra, probability theory, and statistics will be able to
read it. This book is aso suitable for a graduate level university course on ICA,
which is facilitated by the exercise problems and computer assignments given in
many chapters.

Scope and contents of this book

This book provides a comprehensiveintroduction to ICA as a statistical and compu-
tational technique. The emphasisis on the fundamental mathematical principles and
basic algorithms. Much of the material is based on the original research conducted
in the authors' own research group, which is naturally reflected in the weighting of
the different topics. We give awide coverage especially to those algorithmsthat are
scalable to large problems, that is, work even with a large number of observed vari-
ables and data points. These will be increasingly used in the near future when ICA
is extensively applied in practical real-world problems instead of the toy problems
or small pilot studies that have been predominant until recently. Respectively, some-
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what less emphasisis given to more specialized signal processing methodsinvolving
convolutive mixtures, delays, and other blind source separation techniquesthan ICA.

AsICA isafast growing research areg, it isimpossible to include every reported
development in atextbook. We have tried to cover the central contributions by other
workersinthefield in their appropriate context and present an extensive bibliography
for further reference. We apologizefor any omissions of important contributionsthat
we may have overlooked.

For easier reading, the book is divided into four parts.

e Part | givesthe mathematical preliminaries. It introduces the general math-
ematical concepts needed in the rest of the book. We start with a crash course
on probability theory in Chapter 2. The reader is assumed to be familiar with
most of the basic material in this chapter, but also some concepts more spe-
cific to ICA are introduced, such as higher-order cumulants and multivariate
probability theory. Next, Chapter 3 discusses essential conceptsin optimiza-
tion theory and gradient methods, which are needed when developing ICA
algorithms. Estimation theory is reviewed in Chapter 4. A complementary
theoretical framework for ICA is information theory, covered in Chapter 5.
Part | is concluded by Chapter 6, which discusses methods related to principal
component analysis, factor analysis, and decorrel ation.

More confident readers may prefer to skip some or al of the introductory
chaptersin Part | and continue directly to the principlesof ICA in Part II.

e In Part Il, the basic ICA modd is covered and solved. This is the linear
instantaneousnoise-freemixing model thatisclassicin ICA, andformsthecore
of thel CA theory. Themodel isintroduced and the question of identifiability of
themixing matrix istreated in Chapter 7. Thefollowing chapterstreat different
methods of estimating the model. A central principleis nongaussianity, whose
relationto | CA isfirst discussed in Chapter 8. Next, the principlesof maximum
likelihood (Chapter 9) and minimum mutual information (Chapter 10) are
reviewed, and connections between these three fundamental principles are
shown. Material that is less suitable for an introductory course is covered
in Chapter 11, which discusses the algebraic approach using higher-order
cumulant tensors, and Chapter 12, which reviewsthe early work on ICA based
on nonlinear decorrelations, as well as the nonlinear principal component
approach. Practical algorithms for computing the independent components
and the mixing matrix are discussed in connection with each principle. Next,
some practical considerations, mainly related to preprocessing and dimension
reduction of thedataarediscussed in Chapter 13, including hintsto practitioners
on how toreally apply |CA totheir own problem. An overview and comparison
of the various| CA methodsis presented in Chapter 14, which thus summarizes
Part 11.

e InPartlll, different extensionsof thebasic | CA model aregiven. Thispartisby
its nature more specul ative than Part 11, since most of the extensions have been
introduced very recently, and many open problemsremain. In an introductory
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course on ICA, only selected chapters from this part may be covered. First,
in Chapter 15, wetreat the problem of introducing explicit observational noise
in the ICA model. Then the situation where there are more independent
components than observed mixtures is treated in Chapter 16. In Chapter 17,
themodel iswidely generalized to the case where the mixing process can be of
avery general nonlinear form. Chapter 18 discusses methods that estimate a
linear mixing model similar tothat of ICA, but with quitedifferent assumptions:
the componentsare not nongaussian but have some time dependenciesinstead.
Chapter 19 discusses the case where the mixing system includes convolutions.
Further extensions, in particular models where the components are no longer
required to be exactly independent, are given in Chapter 20.

e Part IV treats some applications of ICA methods. Feature extraction (Chap-
ter 21) isrelevant to both image processing and vision research. Brainimaging
applications (Chapter 22) concentrate on measurements of the electrical and
magnetic activity of the human brain. Telecommunications applications are
treated in Chapter 23. Some econometric and audio signal processing applica
tions, together with pointersto miscellaneous other applications, aretreated in
Chapter 24.

Throughout the book, we have marked with an asterisk some sections that are
rather involved and can be skipped in an introductory course.

Several of the algorithms presented in this book are available as public domain
software through the World Wide Web, both on our own Web pages and those of
other ICA researchers. Also, databases of real-world data can be found there for
testing the methods. We have made a special Web page for this book, which contains
appropriate pointers. The addressis

www. ci s. hut. fi/projects/ical book

Thereader is advised to consult this page for further information.

This book was written in cooperation between the three authors. A. Hyvéarinen
was responsible for the chapters5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 20, 21, and 22;
J. Karhunen was responsible for the chapters 2, 4, 17, 19, and 23; while E. Ojawas
responsible for the chapters 3, 6, and 12. The Chapters 1 and 24 were written jointly
by the authors.
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Introduction

Independent component analysis (ICA) is a method for finding underlying factors or
components from multivariate (multidimensional) statistical data. What distinguishes
ICA from other methods is that it looks for components that are both statistically
independent, and nongaussian. Here we briefly introduce the basic concepts, appli-
cations, and estimation principles of ICA.

1.1 LINEAR REPRESENTATION OF MULTIVARIATE DATA

1.1.1 The general statistical setting

A long-standing problem in statistics and related areas is how to find a suitable
representation of multivariate data. Representation here means that we somehow
transform the data so that its essential structure is made more visible or accessible.

In neural computation, this fundamental problem belongs to the area of unsuper-
vised learning, since the representation must be learned from the data itself without
any external input from a supervising “teacher”. A good representation is also a
central goal of many techniques in data mining and exploratory data analysis. In
signal processing, the same problem can be found in feature extraction, and also in
the source separation problem that will be considered below.

Let us assume that the data consists of a number of variables that we have observed
together. Let us denote the number of variables by m and the number of observations
by T. We can then denote the data by z;(¢) where the indices take the values
i1=1,..,mandt =1,...,T. The dimensions m and T" can be very large.
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A very general formulation of the problem can be stated as follows: What could
be a function from an m-dimensional space to an n-dimensional space such that the
transformed variables give information on the data that is otherwise hidden in the
large data set. That is, the transformed variables should be the underlying factors or
components that describe the essential structure of the data. It is hoped that these
components correspond to some physical causes that were involved in the process
that generated the data in the first place.

In most cases, we consider linear functions only, because then the interpretation
of the representation is simpler, and so is its computation. Thus, every component,
say y;, is expressed as a linear combination of the observed variables:

yi(t) =Y wijz(t), fori=1,..,n,j=1,.,m (1.1)
J

where the w;; are some coefficients that define the representation. The problem
can then be rephrased as the problem of determining the coefficients w;;. Using
linear algebra, we can express the linear transformation in Eq. (1.1) as a matrix
multiplication. Collecting the coefficients w;; in a matrix W, the equation becomes

y1(2) xy(t)
ya(1) o (t)

=W : (1.2)
yn(t) (1)

A basic statistical approach consists of considering the z;(¢) as a set of T real-
izations of m random variables. Thus each set z;(t),t = 1,...,T is a sample of
one random variable; let us denote the random variable by z;. In this framework,
we could determine the matrix W by the statistical properties of the transformed
components y;. In the following sections, we discuss some statistical properties that
could be used; one of them will lead to independent component analysis.

1.1.2 Dimension reduction methods

One statistical principle for choosing the matrix W is to limit the number of com-
ponents y; to be quite small, maybe only 1 or 2, and to determine W so that the
y; contain as much information on the data as possible. This leads to a family of
techniques called principal component analysis or factor analysis.

In a classic paper, Spearman [409] considered data that consisted of school perfor-
mance rankings given to schoolchildren in different branches of study, complemented
by some laboratory measurements. Spearman then determined W by finding a single
linear combination such that it explained the maximum amount of the variation in
the results. He claimed to find a general factor of intelligence, thus founding factor
analysis, and at the same time starting a long controversy in psychology.
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Fig. 1.1 The density function of the Laplacian distribution, which is a typical supergaussian
distribution. For comparison, the gaussian density is given by a dashed line. The Laplacian
density has a higher peak at zero, and heavier tails. Both densities are normalized to unit
variance and have zero mean.

1.1.3 Independence as a guiding principle

Another principle that has been used for determining W is independence: the com-
ponents y; should be statistically independent. This means that the value of any one
of the components gives no information on the values of the other components.

In fact, in factor analysis it is often claimed that the factors are independent,
but this is only partly true, because factor analysis assumes that the data has a
gaussian distribution. If the data is gaussian, it is simple to find components that
are independent, because for gaussian data, uncorrelated components are always
independent.

In reality, however, the data often does not follow a gaussian distribution, and the
situation is not as simple as those methods assume. For example, many real-world
data sets have supergaussian distributions. This means that the random variables
take relatively more often values that are very close to zero or very large. In other
words, the probability density of the data is peaked at zero and has heavy tails (large
values far from zero), when compared to a gaussian density of the same variance. An
example of such a probability density is shown in Fig. 1.1.

This is the starting point of ICA. We want to find statistically independent com-
ponents, in the general case where the data is nongaussian.

1.2 BLIND SOURCE SEPARATION

Let us now look at the same problem of finding a good representation, from a
different viewpoint. This is a problem in signal processing that also shows the
historical background for ICA.
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1.2.1 Observing mixtures of unknown signals

Consider a situation where there are a number of signals emitted by some physical
objects or sources. These physical sources could be, for example, different brain
areas emitting electric signals; people speaking in the same room, thus emitting
speech signals; or mobile phones emitting their radio waves. Assume further that
there are several sensors or receivers. These sensors are in different positions, so that
each records a mixture of the original source signals with slightly different weights.

For the sake of simplicity of exposition, let us say there are three underlying
source signals, and also three observed signals. Denote by x4 (t), 22 (t) and z5(t) the
observed signals, which are the amplitudes of the recorded signals at time point ¢,
and by s1(t), s2(t) and s3(¢) the original signals. The z;(¢) are then weighted sums
of the s;(t), where the coefficients depend on the distances between the sources and
the sensors:

aii s (t) + a1289 (t) + a1353(t) (1.3)
I (t) = a921S51 (t) + as282 (t) + a2383(t)
as1S1 (t) + a32582 (t) + a33S3 (t)

The a;; are constant coefficients that give the mixing weights. They are assumed
unknown, since we cannot know the values of a;; without knowing all the properties
of the physical mixing system, which can be extremely difficult in general. The
source signals s; are unknown as well, since the very problem is that we cannot
record them directly.

As an illustration, consider the waveforms in Fig. 1.2. These are three linear
mixtures z; of some original source signals. They look as if they were completely
noise, but actually, there are some quite structured underlying source signals hidden
in these observed signals.

What we would like to do is to find the original signals from the mixtures
z1(t), z2(t) and z3(¢t). This is the blind source separation (BSS) problem. Blind
means that we know very little if anything about the original sources.

We can safely assume that the mixing coefficients a;; are different enough to make
the matrix that they form invertible. Thus there exists a matrix W with coefficients
w;j, such that we can separate the s; as

S1 (t) = w111 (t) + Wi2T2 (t) + w133 (t) (1.4)
S9 (t) = W21 (t) + Wa2T2 (t) + W23T3 (t)
S3 (t) = W31 (t) + w3222 (t) + w333 (t)

Such a matrix W could be found as the inverse of the matrix that consists of the
mixing coefficients a;; in Eq. 1.3, if we knew those coefficients a;;.

Now we see that in fact this problem is mathematically similar to the one where
we wanted to find a good representation for the random data in z;(¢), as in (1.2).
Indeed, we could consider each signal z;(t),t = 1,...,T as a sample of a random
variable z;, so that the value of the random variable is given by the amplitudes of
that signal at the time points recorded.
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Fig. 1.2 The observed signals that are assumed to be mixtures of some underlying source
signals.

1.2.2 Source separation based on independence

The question now is: How can we estimate the coefficients w;; in (1.4)? We want
to obtain a general method that works in many different circumstances, and in fact
provides one answer to the very general problem that we started with: finding a
good representation of multivariate data. Therefore, we use very general statistical
properties. All we observe is the signals z1, x5 and z3, and we want to find a matrix
‘W so that the representation is given by the original source signals s1, s2, and s3.

A surprisingly simple solution to the problem can be found by considering just
the statistical independence of the signals. In fact, if the signals are not gaussian, it
is enough to determine the coefficients w;;, so that the signals

Y1 (t) = w1121 (t) + wlgdfg(t) + w133 (t) (1.5)
y2(t) = warz1(t) + worxa(t) + wazws(t)
y3(t) = ws121(t) + wazxa(t) + wazzs(t)

are statistically independent. If the signals y1, y2, and y3 are independent, then they
are equal to the original signals s1, s2, and s3. (They could be multiplied by some
scalar constants, though, but this has little significance.)

Using just this information on the statistical independence, we can in fact estimate
the coefficient matrix W for the signals in Fig. 1.2. What we obtain are the source
signals in Fig. 1.3. (These signals were estimated by the FastICA algorithm that
we shall meet in several chapters of this book.) We see that from a data set that
seemed to be just noise, we were able to estimate the original source signals, using
an algorithm that used the information on the independence only. These estimated
signals are indeed equal to those that were used in creating the mixtures in Fig. 1.2
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Fig. 1.3 The estimates of the original source signals, estimated using only the observed
mixture signals in Fig. 1.2. The original signals were found very accurately.

(the original signals are not shown, but they really are virtually identical to what the
algorithm found). Thus, in the source separation problem, the original signals were
the “independent components” of the data set.

1.3 INDEPENDENT COMPONENT ANALYSIS

1.3.1 Definition

We have now seen that the problem of blind source separation boils down to finding
a linear representation in which the components are statistically independent. In
practical situations, we cannot in general find a representation where the components
are really independent, but we can at least find components that are as independent
as possible.

This leads us to the following definition of ICA, which will be considered
in more detail in Chapter 7. Given a set of observations of random variables
(z1(t), z2(t), ...,z (t)), where t is the time or sample index, assume that they are
generated as a linear mixture of independent components:

T (t) S1 (t)
mgz(t) —A 82:(25) (1.6)
Za(t) 5a(l)

where A is some unknown matrix. Independent component analysis now consists of
estimating both the matrix A and the s;(t), when we only observe the z;(t). Note
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that we assumed here that the number of independent components s; is equal to the
number of observed variables; this is a simplifying assumption that is not completely
necessary.

Alternatively, we could define ICA as follows: find a linear transformation given by
amatrix W as in (1.2), so that the random variables y;, ¢ = 1, ..., n are as independent
as possible. This formulation is not really very different from the previous one, since
after estimating A, its inverse gives W.

It can be shown (see Section 7.5) that the problem is well-defined, that is, the
model in (1.6) can be estimated if and only if the components s; are nongaussian.
This is a fundamental requirement that also explains the main difference between
ICA and factor analysis, in which the nongaussianity of the data is not taken into
account. In fact, ICA could be considered as nongaussian factor analysis, since in
factor analysis, we are also modeling the data as linear mixtures of some underlying
factors.

1.3.2 Applications

Due to its generality the ICA model has applications in many different areas, some
of which are treated in Part IV. Some examples are:

¢ In brain imaging, we often have different sources in the brain emit signals that
are mixed up in the sensors outside of the head, just like in the basic blind
source separation model (Chapter 22).

¢ In econometrics, we often have parallel time series, and ICA could decompose
them into independent components that would give an insight to the structure
of the data set (Section 24.1).

o A somewhat different application is in image feature extraction, where we want
to find features that are as independent as possible (Chapter 21).

1.3.3 How to find the independent components

It may be very surprising that the independent components can be estimated from
linear mixtures with no more assumptions than their independence. Now we will try
to explain briefly why and how this is possible; of course, this is the main subject of
the book (especially of Part II).

Uncorrelatedness is not enough The first thing to note is that independence
is a much stronger property than uncorrelatedness. Considering the blind source sep-
aration problem, we could actually find many different uncorrelated representations
of the signals that would not be independent and would not separate the sources.
Uncorrelatedness in itself is not enough to separate the components. This is also the
reason why principal component analysis (PCA) or factor analysis cannot separate
the signals: they give components that are uncorrelated, but little more.
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Fig. 1.4 A sample of independent compo- Fig. 1.5 Uncorrelated mixtures z; and z2.
nents s; and s with uniform distributions. Horizontal axis: z1; vertical axis: zs.
Horizontal axis: si; vertical axis: ss.

Let us illustrate this with a simple example using two independent components
with uniform distributions, that is, the components can have any values inside a
certain interval with equal probability. Data from two such components are plotted
in Fig. 1.4. The data is uniformly distributed inside a square due to the independence
of the components.

Now, Fig. 1.5 shows two uncorrelated mixtures of those independent components.
Although the mixtures are uncorrelated, one sees clearly that the distributions are not
the same. The independent components are still mixed, using an orthogonal mixing
matrix, which corresponds to a rotation of the plane. One can also see that in Fig. 1.5
the components are not independent: if the component on the horizontal axis has a
value that is near the corner of the square that is in the extreme right, this clearly
restricts the possible values that the components on the vertical axis can have.

In fact, by using the well-known decorrelation methods, we can transform any
linear mixture of the independent components into uncorrelated components, in which
case the mixing is orthogonal (this will be proven in Section 7.4.2). Thus, the trick
in ICA is to estimate the orthogonal transformation that is left after decorrelation.
This is something that classic methods cannot estimate because they are based on
essentially the same covariance information as decorrelation.

Figure 1.5 also gives a hint as to why ICA is possible. By locating the edges of
the square, we could compute the rotation that gives the original components. In the
following, we consider a couple more sophisticated methods for estimating ICA.

Nonlinear decorrelation is the basic ICA method One way of stating how
independence is stronger than uncorrelatedness is to say that independence implies
nonlinear uncorrelatedness: If s; and s- are independent, then any nonlinear trans-
formations g(s1) and h(s2) are uncorrelated (in the sense that their covariance is
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zero). In contrast, for two random variables that are merely uncorrelated, such
nonlinear transformations do not have zero covariance in general.

Thus, we could attempt to perform ICA by a stronger form of decorrelation, by
finding a representation where the y; are uncorrelated even after some nonlinear
transformations. This gives a simple principle of estimating the matrix W:

ICA estimation principle 1: Nonlinear decorrelation. Find the matrix W so that
for any ¢ # j, the components y; and y; are uncorrelated, and the transformed
components g(y;) and h(y;) are uncorrelated, where g and h are some suitable
nonlinear functions.

This is a valid approach to estimating ICA: If the nonlinearities are properly chosen,
the method does find the independent components. In fact, computing nonlinear
correlations between the two mixtures in Fig. 1.5, one would immediately see that
the mixtures are not independent.

Although this principle is very intuitive, it leaves open an important question:
How should the nonlinearities g and h be chosen? Answers to this question can be
found be using principles from estimation theory and information theory. Estimation
theory provides the most classic method of estimating any statistical model: the
maximum likelihood method (Chapter 9). Information theory provides exact measures
of independence, such as mutual information (Chapter 10). Using either one of these
theories, we can determine the nonlinear functions g and h in a satisfactory way.

Independent components are the maximally nongaussian components
Another very intuitive and important principle of ICA estimation is maximum non-
gaussianity (Chapter 8). The idea is that according to the central limit theorem,
sums of nongaussian random variables are closer to gaussian that the original ones.
Therefore, if we take a linear combination y = > ; biz; of the observed mixture
variables (which, because of the linear mixing model, is a linear combination of the
independent components as well), this will be maximally nongaussian if it equals
one of the independent components. This is because if it were a real mixture of two
or more components, it would be closer to a gaussian distribution, due to the central
limit theorem.
Thus, the principle can be stated as follows

ICA estimation principle 2: Maximum nongaussianity. Find the local maxima
of nongaussianity of a linear combination y = Zz b;z; under the constraint
that the variance of y is constant. Each local maximum gives one independent
component.

To measure nongaussianity in practice, we could use, for example, the kurtosis.
Kurtosis is a higher-order cumulant, which are some kind of generalizations of
variance using higher-order polynomials. Cumulants have interesting algebraic and
statistical properties which is why they have an important part in the theory of ICA.

For example, comparing the nongaussianities of the components given by the axes
in Figs. 1.4 and 1.5, we see that in Fig. 1.5 they are smaller, and thus Fig. 1.5 cannot
give the independent components (see Chapter 8).

An interesting point is that this principle of maximum nongaussianity shows
the very close connection between ICA and an independently developed technique
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called projection pursuit. In projection pursuit, we are actually looking for maximally
nongaussian linear combinations, which are used for visualization and other purposes.
Thus, the independent components can be interpreted as projection pursuit directions.

When ICA is used to extract features, this principle of maximum nongaussianity
also shows an important connection to sparse coding that has been used in neuro-
scientific theories of feature extraction (Chapter 21). The idea in sparse coding is
to represent data with components so that only a small number of them are “active”
at the same time. It turns out that this is equivalent, in some situations, to finding
components that are maximally nongaussian.

The projection pursuit and sparse coding connections are related to a deep result
that says that ICA gives a linear representation that is as structured as possible.
This statement can be given a rigorous meaning by information-theoretic concepts
(Chapter 10), and shows that the independent components are in many ways easier
to process than the original random variables. In particular, independent components
are easier to code (compress) than the original variables.

ICA estimation needs more than covariances There are many other meth-
ods for estimating the ICA model as well. Many of them will be treated in this
book. What they all have in common is that they consider some statistics that are not
contained in the covariance matrix (the matrix that contains the covariances between
all pairs of the x;).

Using the covariance matrix, we can decorrelate the components in the ordinary
linear sense, but not any stronger. Thus, all the ICA methods use some form of
higher-order statistics, which specifically means information not contained in the
covariance matrix. Earlier, we encountered two kinds of higher-order information:
the nonlinear correlations and kurtosis. Many other kinds can be used as well.

Numerical methods are important 1In addition to the estimation principle, one
has to find an algorithm for implementing the computations needed. Because the
estimation principles use nonquadratic functions, the computations needed usually
cannot be expressed using simple linear algebra, and therefore they can be quite de-
manding. Numerical algorithms are thus an integral part of I[CA estimation methods.

The numerical methods are typically based on optimization of some objective
functions. The basic optimization method is the gradient method. Of particular
interest is a fixed-point algorithm called FastICA that has been tailored to exploit the
particular structure of the ICA problem. For example, we could use both of these
methods to find the maxima of the nongaussianity as measured by the absolute value
of kurtosis.
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1.4 HISTORY OF ICA

The technique of ICA, although not yet the name, was introduced in the early 1980s
by J. Hérault, C. Jutten, and B. Ans [178, 179, 16]. As recently reviewed by Jutten
[227], the problem first came up in 1982 in a neurophysiological setting. In a
simplified model of motion coding in muscle contraction, the outputs z1 (¢)and z(t)
were two types of sensory signals measuring muscle contraction, and s1 (¢) and s»(t)
were the angular position and velocity of a moving joint. Then it is not unreasonable
to assume that the ICA model holds between these signals. The nervous system
must be somehow able to infer the position and velocity signals s; (t), s2(t) from the
measured responses 21 (t), z2(t). One possibility for this is to learn the inverse model
using the nonlinear decorrelation principle in a simple neural network. Hérault and
Jutten proposed a specific feedback circuit to solve the problem. This approach is
covered in Chapter 12.

All through the 1980s, ICA was mostly known among French researchers, with
limited influence internationally. The few ICA presentations in international neural
network conferences in the mid-1980s were largely buried under the deluge of in-
terest in back-propagation, Hopfield networks, and Kohonen’s Self-Organizing Map
(SOM), which were actively propagated in those times. Another related field was
higher-order spectral analysis, on which the first international workshop was orga-
nized in 1989. In this workshop, early papers on ICA by J.-F. Cardoso [60] and
P. Comon [88] were given. Cardoso used algebraic methods, especially higher-order
cumulant tensors, which eventually led to the JADE algorithm [72]. The use of
fourth-order cumulants has been earlier proposed by J.-L. Lacoume [254]. In signal
processing literature, classic early papers by the French group are [228, 93, 408, 89].
A good source with historical accounts and a more complete list of references is
[227].

In signal processing, there had been earlier approaches in the related problem of
blind signal deconvolution [114, 398]. In particular, the results used in multichannel
blind deconvolution are very similar to ICA techniques.

The work of the scientists in the 1980’s was extended by, among others, A. Ci-
chocki and R. Unbehauen, who were the first to propose one of the presently most
popular ICA algorithms [82, 85, 84]. Some other papers on ICA and signal separation
from early 1990s are [57, 314]. The “nonlinear PCA” approach was introduced by the
present authors in [332, 232]. However, until the mid-1990s, ICA remained a rather
small and narrow research effort. Several algorithms were proposed that worked,
usually in somewhat restricted problems, but it was not until later that the rigorous
connections of these to statistical optimization criteria were exposed.

ICA attained wider attention and growing interest after A.J. Bell and T.J. Sejnowski
published their approach based on the infomax principle [35, 36] in the mid-90’s.
This algorithm was further refined by S.-I. Amari and his co-workers using the natural
gradient [12], and its fundamental connections to maximum likelihood estimation, as
well as to the Cichocki-Unbehauen algorithm, were established. A couple of years
later, the present authors presented the fixed-point or FastICA algorithm, [210, 192,
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197], which has contributed to the application of ICA to large-scale problems due to
its computational efficiency.

Since the mid-1990s, there has been a growing wave of papers, workshops, and
special sessions devoted to ICA. The first international workshop on ICA was held in
Aussois, France, in January 1999, and the second workshop followed in June 2000
in Helsinki, Finland. Both gathered more than 100 researchers working on ICA and
blind signal separation, and contributed to the transformation of ICA to an established
and mature field of research.



Part 1

MATHEMATICAL
PRELIMINARIES







Random Vectors and
Independence

In this chapter, we review central concepts of probability theory, statistics, and random
processes. The emphasis is on multivariate statistics and random vectors. Matters
that will be needed later in this book are discussed in more detail, including, for
example, statistical independence and higher-order statistics. The reader is assumed
to have basic knowledge on single variable probability theory, so that fundamental
definitions such as probability, elementary events, and random variables are familiar.
Readers who already have a good knowledge of multivariate statistics can skip most
of this chapter. For those who need a more extensive review or more information on
advanced matters, many good textbooks ranging from elementary ones to advanced
treatments exist. A widely used textbook covering probability, random variables, and
stochastic processes is [353].

2.1 PROBABILITY DISTRIBUTIONS AND DENSITIES

2.1.1 Distribution of a random variable

In this book, we assume that random variables are continuous-valued unless stated
otherwise. The cumulative distribution function (cdf) F, of a random variable x at
point z = xg is defined as the probability that z < xq:

F,(z9) = P(zx < x) (2.1

Allowing g to change from —oo to 0o defines the whole cdf for all values of x.
Clearly, for continuous random variables the cdf is a nonnegative, nondecreasing
(often monotonically increasing) continuous function whose values lie in the interval

15
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m

Fig. 2.1 A gaussian probability density function with mean m and standard deviation o.

0 < F,(z) < 1. From the definition, it also follows directly that F,,(—oo) = 0, and
F,(4+00) =1.

Usually a probability distribution is characterized in terms of its density function
rather than cdf. Formally, the probability density function (pdf) p. (z) of a continuous
random variable x is obtained as the derivative of its cumulative distribution function:

dFy,(z)
dx

Pa(z0) = (22

=0

In practice, the cdf is computed from the known pdf by using the inverse relationship

o
Fu(wo) = [ pa(€)de @3

—00
For simplicity, F; () is often denoted by F'(x) and p,,(x) by p(z), respectively. The
subscript referring to the random variable in question must be used when confusion
is possible.

Example 2.1 The gaussian (or normal) probability distribution is used in numerous
models and applications, for example to describe additive noise. Its density function
is given by

pa(z) = . exp <—M> (2.4)
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Here the parameter m (mean) determines the peak point of the symmetric density
function, and o (standard deviation), its effective width (flatness or sharpness of the
peak). See Figure 2.1 for an illustration.

Generally, the cdf of the gaussian density cannot be evaluated in closed form using
(2.3). The term 1/v/27w0? in front of the density (2.4) is a normalizing factor that
guarantees that the cdf becomes unity when o — oco. However, the values of the
cdf can be computed numerically using, for example, tabulated values of the error
function

x 2
erf(z) = \/%/0 exp <—%> d¢ (2.5)

The error function is closely related to the cdf of a normalized gaussian density, for
which the mean m = 0 and the variance o = 1. See [353] for details.

2.1.2 Distribution of a random vector

Assume now that x is an n-dimensional random vector
T
x = (z1,T2,.-. ,%n) (2.6)

where T' denotes the transpose. (We take the transpose because all vectors in this book
are column vectors. Note that vectors are denoted by boldface lowercase letters.) The
components 1, T2, . .. , T, of the column vector x are continuous random variables.
The concept of probability distribution generalizes easily to such a random vector.
In particular, the cumulative distribution function of x is defined by

Fy(x0) = P(x < x¢) 2.7

where P(.) again denotes the probability of the event in parentheses, and xq is
some constant value of the random vector x. The notation x < xo means that each
component of the vector x is less than or equal to the respective component of the
vector Xo. The multivariate cdf in Eq. (2.7) has similar properties to that of a single
random variable. It is a nondecreasing function of each component, with values lying
in the interval 0 < Fy(x) < 1. When all the components of x approach infinity,
F(x) achieves its upper limit 1; when any component x; — —o0, Fx(x) = 0.

The multivariate probability density function px(x) of x is defined as the derivative
of the cumulative distribution function Fx(x) with respect to all components of the
random vector X:

o9 o
Ox1 Oxy  Oxy,

Px(X0) = (2.8)

Hence

Fx(xo):/ px(x)dx:/ , / , / ’npx(x)dmn...dxgdxl
—c0 —00 J—o0 —c0 (2.9)



18 RANDOM VECTORS AND INDEPENDENCE

where g ; is the ith component of the vector xg. Clearly,

+oo
/ px(x)dx =1 (2.10)

— 00

This provides the appropriate normalization condition that a true multivariate proba-
bility density py(x) must satisfy.

In many cases, random variables have nonzero probability density functions only
on certain finite intervals. An illustrative example of such a case is presented below.

Example 2.2 Assume that the probability density function of a two-dimensional
random vector z = (x,7)7 is

3
pa2) = po.y(,g) = {7@ )z +y), v€[0,2), ye[o,1]

0, elsewhere
Let us now compute the cumulative distribution function of z. It is obtained by
integrating over both x and y, taking into account the limits of the regions where the
density is nonzero. When either 2z < 0 or y < 0, the density p,(z) and consequently
also the cdf is zero. In the region where 0 < x < 2and 0 < y < 1, the cdf is given
by

R = o) = [ [ 3@ - o€+ mdgan

3 N 1, 1
=cay |z - sz -
7Y ¥—3 Viid

In the region where 0 < z < 2 and y > 1, the upper limit in integrating over y
becomes equal to 1, and the cdf is obtained by inserting y = 1 into the preceding
expression. Similarly, in the region z > 2 and 0 < y < 1, the cdf is obtained by
inserting x = 2 to the preceding formula. Finally, if both z > 2 and y > 1, the
cdf becomes unity, showing that the probability density p,(z) has been normalized
correctly. Collecting these results yields

0, z<0ory <0

Syy(z+y— 322 —tzy), 0<z2<2,0<y<l1
Fo(z) = { 2a(1+ 3z — 1a?), 0<z<2,y>1

Sy(2 + 1y), z>20<y<1

1, r>2andy > 1

2.1.3 Joint and marginal distributions

The joint distribution of two different random vectors can be handled in a similar
manner. In particular, let y be another random vector having in general a dimension
m different from the dimension n of x. The vectors x and y can be concatenated to
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a "supervector" z” = (xT,yT), and the preceding formulas used directly. The cdf
that arises is called the joint distribution function of x and y, and is given by

Fxy(x0,y0) = P(x < %0,y < yo) (2.1D

Here xg and y, are some constant vectors having the same dimensions as x and y,
respectively, and Eq. (2.11) defines the joint probability of the event x < x, and
¥y < Yo.

The joint density function px y(x,y) of x and y is again defined formally by dif-
ferentiating the joint distribution function Fx y(x,y) with respect to all components
of the random vectors x and y. Hence, the relationship

X0 Yo
&y@mmﬁi/ / Py (& m)dnde 2.12)

holds, and the value of this integral equals unity when both xg — oc and yy — oo.
The marginal densities px(x) of x and py(y) of y are obtained by integrating
over the other random vector in their joint density px y (X, y):

mmzfpwmmm 2.13)
Dy (Y) = / Dx,y (5; Y)dg (2.14)

Example 2.3 Consider the joint density given in Example 2.2. The marginal densi-
ties of the random variables x and y are

pe(z) = /0 %(2 —z)(z +y)dy, =x€]0,2]

21 +3z-2%) z€]0,2]
o elsewhere

no) = [ Fe-2)@+yds yeb

_JEe+3y), yelo
0, elsewhere

2.2 EXPECTATIONS AND MOMENTS

2.2.1 Definition and general properties

In practice, the exact probability density function of a vector or scalar valued random
variable is usually unknown. However, one can use instead expectations of some
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functions of that random variable for performing useful analyses and processing. A
great advantage of expectations is that they can be estimated directly from the data,
even though they are formally defined in terms of the density function.

Let g(x) denote any quantity derived from the random vector x. The quantity
g(x) may be either a scalar, vector, or even a matrix. The expectation of g(x) is
denoted by E{g(x)}, and is defined by

Bg() = | ” g(p(x)dx 2.15)

Here the integral is computed over all the components of x.The integration operation

is applied separately to every component of the vector or element of the matrix,

yielding as a result another vector or matrix of the same size. If g(x) = x, we get the

expectation E{x} of x; this is discussed in more detail in the next subsection.
Expectations have some important fundamental properties.

1. Linearity. Let x;,% = 1,...,m be a set of different random vectors, and a;,
i =1,...,m, some nonrandom scalar coefficients. Then

E{zm: aixi} = in: aiE{xi} (216)
=1 =1

2. Linear transformation. Let x be an m-dimensional random vector, and A and
B some nonrandom k£ x m and m x [ matrices, respectively. Then

E{Ax} = AE{x}, E{xB}=E{x}B 2.17)

3. Transformation invariance. Let y = g(x) be a vector-valued function of the
random vector x. Then

/00 ypy(y)dy = /OO g(x)px(x)dx (2.18)

—0o0

Thus E{y} = E{g(x)}, even though the integrations are carried out over
different probability density functions.

These properties can be proved using the definition of the expectation operator
and properties of probability density functions. They are important and very helpful
in practice, allowing expressions containing expectations to be simplified without
actually needing to compute any integrals (except for possibly in the last phase).

2.2.2 Mean vector and correlation matrix

Moments of a random vector x are typical expectations used to characterize it. They
are obtained when g(x) consists of products of components of x. In particular, the
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first moment of a random vector x is called the mean vector my of x. It is defined
as the expectation of x:

my = E{x} = /00 xXpx (x)dx (2.19)

Each component m,,,; of the n-vector my is given by

o o

$z’px(x)dxz/ Tipg, (w5)dx; (2.20)

— 00

me, = E{w;} = /

— 00

where p,, (z;) is the marginal density of the ith component x; of x. This is because
integrals over all the other components of x reduce to unity due to the definition of
the marginal density.

Another important set of moments consists of correlations between pairs of com-
ponents of x. The correlation r;; between the ith and jth component of x is given
by the second moment

o0 o0 o0
ri; = E{x;2;} = / z;xpx (X)dx = / / TiTjPo; e, (Ti, Tj)dTjdr;
o0 —00 /o0 2.21)

Note that correlation can be negative or positive.
The n x n correlation matrix

Ry = E{xx'} (2.22)

of the vector x represents in a convenient form all its correlations, 7;; being the
element in row ¢ and column j of Ry.
The correlation matrix Ry has some important properties:

1. Itis a symmetric matrix: Ry = RY.
2. It is positive semidefinite:
a’Rya >0 (2.23)

for all n-vectors a. Usually in practice Ry is positive definite, meaning that
for any vector a # 0, (2.23) holds as a strict inequality.

3. All the eigenvalues of Ry are real and nonnegative (positive if Ry is positive
definite). Furthermore, all the eigenvectors of Ry are real, and can always be
chosen so that they are mutually orthonormal.

Higher-order moments can be defined analogously, but their discussion is post-
poned to Section 2.7. Instead, we shall first consider the corresponding central and
second-order moments for two different random vectors.
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2.2.3 Covariances and joint moments

Central moments are defined in a similar fashion to usual moments, but the mean
vectors of the random vectors involved are subtracted prior to computing the ex-
pectation. Clearly, central moments are only meaningful above the first order. The
quantity corresponding to the correlation matrix Ry is called the covariance matrix
Cx of x, and is given by

C, = E{(x — m,)(x — m,)7} (2.24)
The elements
cij = E{(z; — m;)(z; —my)} (2.25)

of the n x n matrix Cx are called covariances, and they are the central moments
corresponding to the correlations! r;; defined in Eq. (2.21).
The covariance matrix Cy satisfies the same properties as the correlation matrix
Rx. Using the properties of the expectation operator, it is easy to see that
Ry = Cx + mym? (2.26)

X

If the mean vector my = 0, the correlation and covariance matrices become the
same. If necessary, the data can easily be made zero mean by subtracting the
(estimated) mean vector from the data vectors as a preprocessing step. This is a usual
practice in independent component analysis, and thus in later chapters, we simply
denote by Cx the correlation/covariance matrix, often even dropping the subscript x
for simplicity.

For a single random variable z, the mean vector reduces to its mean value m, =
E{x}, the correlation matrix to the second moment E{z?}, and the covariance matrix
to the variance of ©

o2 =E{(z —m,)?} (2.27)

The relationship (2.26) then takes the simple form E{z?} = 62 + m2.
The expectation operation can be extended for functions g(x,y) of two different
random vectors x and y in terms of their joint density:

E{g(x,y)} = /_oo /_OO g(x,y)px,y (x,y)dy dx (2.28)

The integrals are computed over all the components of x and y.
Of the joint expectations, the most widely used are the cross-correlation matrix

Ry = E{xy"} (2.29)

T )i? cc” e are used, and the matrix consisting of
K
them is called the correlation matrix. In this book, the correlation matrix is defined by the formula (2.22),

which is a common practice in signal processing, neural networks, and engineering.

n classic statistics, the correlation coefficients pij =
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Fig.2.2 Anexample of negative covariance  Fig. 2.3 An example of zero covariance be-
between the random variables = and y. tween the random variables z and y.

and the cross-covariance matrix
Cyxy = E{(x — my)(y — my)’} (2.30)

Note that the dimensions of the vectors x and y can be different. Hence, the cross-
correlation and -covariance matrices are not necessarily square matrices, and they are
not symmetric in general. However, from their definitions it follows easily that
T T
Rxy = Ryx, Cxy=Cyy (2.31)
If the mean vectors of x and y are zero, the cross-correlation and cross-covariance
matrices become the same. The covariance matrix Cxy of the sum of two random

vectors x and y having the same dimension is often needed in practice. It is easy to
see that

Cx+y =Cx + ny + ny + Cy (2.32)

Correlations and covariances measure the dependence between the random vari-
ables using their second-order statistics. This is illustrated by the following example.

Example 2.4 Consider the two different joint distributions p, ,(z,y) of the zero
mean scalar random variables x and y shown in Figs. 2.2 and 2.3. In Fig. 2.2, x
and y have a clear negative covariance (or correlation). A positive value of x mostly
implies that y is negative, and vice versa. On the other hand, in the case of Fig. 2.3,
it is not possible to infer anything about the value of y by observing . Hence, their
covariance ¢,y = 0.
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2.2.4 Estimation of expectations

Usually the probability density of a random vector x is not known, but there is often
available a set of K samples x1,X2,... ,Xg from x. Using them, the expectation
(2.15) can be estimated by averaging over the sample using the formula [419]

K

Efg(x)} ~ % > e(x;) (2.33)

Jj=1

For example, applying (2.33), we get for the mean vector my of x its standard
estimator, the sample mean

1 K
my = = z; X (2.34)
J:

where the hat over m is a standard notation for an estimator of a quantity.

Similarly, if instead of the joint density px y(x,y) of the random vectors x and
y, we know K sample pairs (x1,y1), (X2,¥2),- .-, (XK, YK), We can estimate the
expectation (2.28) by

1 K
Efg(x.y)} ~ 2 > _g(x.¥)) (2.35)

j=1

For example, for the cross-correlation matrix, this yields the estimation formula
1 X
Ryy = > xy! (2.36)
j=1

Similar formulas are readily obtained for the other correlation type matrices Rxx,
Cxx, and Cyy .

2.3 UNCORRELATEDNESS AND INDEPENDENCE

2.3.1 Uncorrelatedness and whiteness

Two random vectors x and y are uncorrelated if their cross-covariance matrix Cxy
is a zero matrix:

Cxy =B{(x —my)(y —my)"} =0 (2.37)
This is equivalent to the condition

Rxy = E{xy”} = E{x}E{y"} = mxmz;

(2.38)
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In the special case of two different scalar random variables = and y (for example,
two components of a random vector z), x and y are uncorrelated if their covariance
Cyy 18 ZEro:

Cay = E{(z —mz)(y —my)} =0 (2.39)
or equivalently
rzy = E{zy} = E{z}E{y} = m,m, (2.40)

Again, in the case of zero-mean variables, zero covariance is equivalent to zero
correlation.

Another important special case concerns the correlations between the components
of a single random vector x given by the covariance matrix Cy defined in (2.24). In
this case a condition equivalent to (2.37) can never be met, because each component
of x is perfectly correlated with itself. The best that we can achieve is that different
components of x are mutually uncorrelated, leading to the uncorrelatedness condition

Cy =E{(x—my)(x —my)"} =D (2.41)
Here D is an n x n diagonal matrix

D = diag(ci1,¢09, .- » Cpp) = diag(o2 02, ,... ,02) (2.42)

r1? 7T

whose n diagonal elements are the variances o, = E{(x; — m,,)?} = ¢;; of the
components z; of x.

In particular, random vectors having zero mean and unit covariance (and hence
correlation) matrix, possibly multiplied by a constant variance o2, are said to be
white. Thus white random vectors satisfy the conditions

my =0, Ryx=Cx=1 (2.43)

where I is the n X n identity matrix.
Assume now that an orthogonal transformation defined by an n x n matrix T is
app