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Preface

Independent component analysis (ICA) is a statistical and computational technique
for revealing hidden factors that underlie sets of random variables, measurements, or
signals. ICA defines a generative model for the observed multivariate data, which is
typically given as a large database of samples. In the model, the data variables are
assumed to be linear or nonlinear mixtures of some unknown latent variables, and
the mixing system is also unknown. The latent variables are assumed nongaussian
and mutually independent, and they are called the independent components of the
observed data. These independent components, also called sources or factors, can be
found by ICA.

ICA can be seen as an extension to principal component analysis and factor
analysis. ICA is a much more powerful technique, however, capable of finding the
underlying factors or sources when these classic methods fail completely.

The data analyzed by ICA could originate from many different kinds of applica-
tion fields, including digital images and document databases, as well as economic
indicators and psychometric measurements. In many cases, the measurements are
given as a set of parallel signals or time series; the term blind source separation is used
to characterize this problem. Typical examples are mixtures of simultaneous speech
signals that have been picked up by several microphones, brain waves recorded by
multiple sensors, interfering radio signals arriving at a mobile phone, or parallel time
series obtained from some industrial process.

The technique of ICA is a relatively new invention. It was for the first time in-
troduced in early 1980s in the context of neural network modeling. In mid-1990s,
some highly successful new algorithms were introduced by several research groups,

xvii
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together with impressive demonstrations on problems like the cocktail-party effect,
where the individual speech waveforms are found from their mixtures. ICA became
one of the exciting new topics, both in the field of neural networks, especially unsu-
pervised learning, and more generally in advanced statistics and signal processing.
Reported real-world applications of ICA on biomedical signal processing, audio sig-
nal separation, telecommunications, fault diagnosis, feature extraction, financial time
series analysis, and data mining began to appear.

Many articles on ICA were published during the past 20 years in a large number
of journals and conference proceedings in the fields of signal processing, artificial
neural networks, statistics, information theory, and various application fields. Several
special sessions and workshops on ICA have been arranged recently [70, 348], and
some edited collections of articles [315, 173, 150] as well as some monographs on
ICA, blind source separation, and related subjects [105, 267, 149] have appeared.
However, while highly useful for their intended readership, these existing texts typ-
ically concentrate on some selected aspects of the ICA methods only. In the brief
scientific papers and book chapters, mathematical and statistical preliminaries are
usually not included, which makes it very hard for a wider audience to gain full
understanding of this fairly technical topic.

A comprehensive and detailed text book has been missing, which would cover
both the mathematical background and principles,algorithmic solutions, and practical
applications of the present state of the art of ICA. The present book is intended to fill
that gap, serving as a fundamental introduction to ICA.

It is expected that the readership will be from a variety of disciplines, such
as statistics, signal processing, neural networks, applied mathematics, neural and
cognitive sciences, information theory, artificial intelligence, and engineering. Both
researchers, students, and practitioners will be able to use the book. We have made
every effort to make this book self-contained, so that a reader with a basic background
in college calculus, matrix algebra, probability theory, and statistics will be able to
read it. This book is also suitable for a graduate level university course on ICA,
which is facilitated by the exercise problems and computer assignments given in
many chapters.

Scope and contents of this book

This book provides a comprehensive introduction to ICA as a statistical and compu-
tational technique. The emphasis is on the fundamental mathematical principles and
basic algorithms. Much of the material is based on the original research conducted
in the authors’ own research group, which is naturally reflected in the weighting of
the different topics. We give a wide coverage especially to those algorithms that are
scalable to large problems, that is, work even with a large number of observed vari-
ables and data points. These will be increasingly used in the near future when ICA
is extensively applied in practical real-world problems instead of the toy problems
or small pilot studies that have been predominant until recently. Respectively, some-
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what less emphasis is given to more specialized signal processing methods involving
convolutive mixtures, delays, and other blind source separation techniques than ICA.

As ICA is a fast growing research area, it is impossible to include every reported
development in a textbook. We have tried to cover the central contributions by other
workers in the field in their appropriate context and present an extensive bibliography
for further reference. We apologize for any omissions of important contributions that
we may have overlooked.

For easier reading, the book is divided into four parts.

� Part I gives the mathematical preliminaries. It introduces the general math-
ematical concepts needed in the rest of the book. We start with a crash course
on probability theory in Chapter 2. The reader is assumed to be familiar with
most of the basic material in this chapter, but also some concepts more spe-
cific to ICA are introduced, such as higher-order cumulants and multivariate
probability theory. Next, Chapter 3 discusses essential concepts in optimiza-
tion theory and gradient methods, which are needed when developing ICA
algorithms. Estimation theory is reviewed in Chapter 4. A complementary
theoretical framework for ICA is information theory, covered in Chapter 5.
Part I is concluded by Chapter 6, which discusses methods related to principal
component analysis, factor analysis, and decorrelation.

More confident readers may prefer to skip some or all of the introductory
chapters in Part I and continue directly to the principles of ICA in Part II.

� In Part II, the basic ICA model is covered and solved. This is the linear
instantaneous noise-free mixing model that is classic in ICA, and forms the core
of the ICA theory. The model is introduced and the question of identifiability of
the mixing matrix is treated in Chapter 7. The following chapters treat different
methods of estimating the model. A central principle is nongaussianity, whose
relation to ICA is first discussed in Chapter 8. Next, the principles of maximum
likelihood (Chapter 9) and minimum mutual information (Chapter 10) are
reviewed, and connections between these three fundamental principles are
shown. Material that is less suitable for an introductory course is covered
in Chapter 11, which discusses the algebraic approach using higher-order
cumulant tensors, and Chapter 12, which reviews the early work on ICA based
on nonlinear decorrelations, as well as the nonlinear principal component
approach. Practical algorithms for computing the independent components
and the mixing matrix are discussed in connection with each principle. Next,
some practical considerations, mainly related to preprocessing and dimension
reduction of the data are discussed in Chapter 13, including hints to practitioners
on how to really apply ICA to their own problem. An overview and comparison
of the various ICA methods is presented in Chapter 14, which thus summarizes
Part II.

� In Part III, different extensions of the basic ICA model are given. This part is by
its nature more speculative than Part II, since most of the extensions have been
introduced very recently, and many open problems remain. In an introductory
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course on ICA, only selected chapters from this part may be covered. First,
in Chapter 15, we treat the problem of introducing explicit observational noise
in the ICA model. Then the situation where there are more independent
components than observed mixtures is treated in Chapter 16. In Chapter 17,
the model is widely generalized to the case where the mixing process can be of
a very general nonlinear form. Chapter 18 discusses methods that estimate a
linear mixing model similar to that of ICA, but with quite different assumptions:
the components are not nongaussian but have some time dependencies instead.
Chapter 19 discusses the case where the mixing system includes convolutions.
Further extensions, in particular models where the components are no longer
required to be exactly independent, are given in Chapter 20.

� Part IV treats some applications of ICA methods. Feature extraction (Chap-
ter 21) is relevant to both image processing and vision research. Brain imaging
applications (Chapter 22) concentrate on measurements of the electrical and
magnetic activity of the human brain. Telecommunications applications are
treated in Chapter 23. Some econometric and audio signal processing applica-
tions, together with pointers to miscellaneous other applications, are treated in
Chapter 24.

Throughout the book, we have marked with an asterisk some sections that are
rather involved and can be skipped in an introductory course.

Several of the algorithms presented in this book are available as public domain
software through the World Wide Web, both on our own Web pages and those of
other ICA researchers. Also, databases of real-world data can be found there for
testing the methods. We have made a special Web page for this book, which contains
appropriate pointers. The address is

www.cis.hut.fi/projects/ica/book

The reader is advised to consult this page for further information.
This book was written in cooperation between the three authors. A. Hyvärinen

was responsible for the chapters 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 20, 21, and 22;
J. Karhunen was responsible for the chapters 2, 4, 17, 19, and 23; while E. Oja was
responsible for the chapters 3, 6, and 12. The Chapters 1 and 24 were written jointly
by the authors.
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1
Introduction

Independent component analysis (ICA) is a method for finding underlying factors or
components from multivariate (multidimensional) statistical data. What distinguishes
ICA from other methods is that it looks for components that are both statistically
independent, and nongaussian. Here we briefly introduce the basic concepts, appli-
cations, and estimation principles of ICA.

1.1 LINEAR REPRESENTATION OF MULTIVARIATE DATA

1.1.1 The general statistical setting

A long-standing problem in statistics and related areas is how to find a suitable
representation of multivariate data. Representation here means that we somehow
transform the data so that its essential structure is made more visible or accessible.

In neural computation, this fundamental problem belongs to the area of unsuper-
vised learning, since the representation must be learned from the data itself without
any external input from a supervising “teacher”. A good representation is also a
central goal of many techniques in data mining and exploratory data analysis. In
signal processing, the same problem can be found in feature extraction, and also in
the source separation problem that will be considered below.

Let us assume that the data consists of a number of variables that we have observed
together. Let us denote the number of variables by m and the number of observations
by T . We can then denote the data by xi�t� where the indices take the values
i � �� ����m and t � �� ���� T . The dimensions m and T can be very large.

1



2 INTRODUCTION

A very general formulation of the problem can be stated as follows: What could
be a function from an m-dimensional space to an n-dimensional space such that the
transformed variables give information on the data that is otherwise hidden in the
large data set. That is, the transformed variables should be the underlying factors or
components that describe the essential structure of the data. It is hoped that these
components correspond to some physical causes that were involved in the process
that generated the data in the first place.

In most cases, we consider linear functions only, because then the interpretation
of the representation is simpler, and so is its computation. Thus, every component,
say yi, is expressed as a linear combination of the observed variables:

yi�t� �
X
j

wijxj�t�� for i � �� ���� n� j � �� ����m (1.1)

where the wij are some coefficients that define the representation. The problem
can then be rephrased as the problem of determining the coefficients wij . Using
linear algebra, we can express the linear transformation in Eq. (1.1) as a matrix
multiplication. Collecting the coefficients wij in a matrixW, the equation becomes

�
BBB�

y��t�
y��t�

...
yn�t�

�
CCCA �W

�
BBB�

x��t�
x��t�

...
xm�t�

�
CCCA (1.2)

A basic statistical approach consists of considering the xi�t� as a set of T real-
izations of m random variables. Thus each set xi�t�� t � �� ���� T is a sample of
one random variable; let us denote the random variable by xi. In this framework,
we could determine the matrixW by the statistical properties of the transformed
components yi. In the following sections, we discuss some statistical properties that
could be used; one of them will lead to independent component analysis.

1.1.2 Dimension reduction methods

One statistical principle for choosing the matrixW is to limit the number of com-
ponents yi to be quite small, maybe only 1 or 2, and to determineW so that the
yi contain as much information on the data as possible. This leads to a family of
techniques called principal component analysis or factor analysis.

In a classic paper, Spearman [409] considered data that consisted of school perfor-
mance rankings given to schoolchildren in different branches of study, complemented
by some laboratory measurements. Spearman then determinedW by finding a single
linear combination such that it explained the maximum amount of the variation in
the results. He claimed to find a general factor of intelligence, thus founding factor
analysis, and at the same time starting a long controversy in psychology.
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Fig. 1.1 The density function of the Laplacian distribution, which is a typical supergaussian
distribution. For comparison, the gaussian density is given by a dashed line. The Laplacian
density has a higher peak at zero, and heavier tails. Both densities are normalized to unit
variance and have zero mean.

1.1.3 Independence as a guiding principle

Another principle that has been used for determiningW is independence: the com-
ponents yi should be statistically independent. This means that the value of any one
of the components gives no information on the values of the other components.

In fact, in factor analysis it is often claimed that the factors are independent,
but this is only partly true, because factor analysis assumes that the data has a
gaussian distribution. If the data is gaussian, it is simple to find components that
are independent, because for gaussian data, uncorrelated components are always
independent.

In reality, however, the data often does not follow a gaussian distribution, and the
situation is not as simple as those methods assume. For example, many real-world
data sets have supergaussian distributions. This means that the random variables
take relatively more often values that are very close to zero or very large. In other
words, the probability density of the data is peaked at zero and has heavy tails (large
values far from zero), when compared to a gaussian density of the same variance. An
example of such a probability density is shown in Fig. 1.1.

This is the starting point of ICA. We want to find statistically independent com-
ponents, in the general case where the data is nongaussian.

1.2 BLIND SOURCE SEPARATION

Let us now look at the same problem of finding a good representation, from a
different viewpoint. This is a problem in signal processing that also shows the
historical background for ICA.
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1.2.1 Observing mixtures of unknown signals

Consider a situation where there are a number of signals emitted by some physical
objects or sources. These physical sources could be, for example, different brain
areas emitting electric signals; people speaking in the same room, thus emitting
speech signals; or mobile phones emitting their radio waves. Assume further that
there are several sensors or receivers. These sensors are in different positions, so that
each records a mixture of the original source signals with slightly different weights.

For the sake of simplicity of exposition, let us say there are three underlying
source signals, and also three observed signals. Denote by x��t�� x��t� and x��t� the
observed signals, which are the amplitudes of the recorded signals at time point t,
and by s��t�� s��t� and s��t� the original signals. The xi�t� are then weighted sums
of the si�t�, where the coefficients depend on the distances between the sources and
the sensors:

x��t� � a��s��t� � a��s��t� � a��s��t� (1.3)

x��t� � a��s��t� � a��s��t� � a��s��t�

x��t� � a��s��t� � a��s��t� � a��s��t�

The aij are constant coefficients that give the mixing weights. They are assumed
unknown, since we cannot know the values of aij without knowing all the properties
of the physical mixing system, which can be extremely difficult in general. The
source signals si are unknown as well, since the very problem is that we cannot
record them directly.

As an illustration, consider the waveforms in Fig. 1.2. These are three linear
mixtures xi of some original source signals. They look as if they were completely
noise, but actually, there are some quite structured underlying source signals hidden
in these observed signals.

What we would like to do is to find the original signals from the mixtures
x��t�� x��t� and x��t�. This is the blind source separation (BSS) problem. Blind
means that we know very little if anything about the original sources.

We can safely assume that the mixing coefficients aij are different enough to make
the matrix that they form invertible. Thus there exists a matrixW with coefficients
wij , such that we can separate the si as

s��t� � w��x��t� � w��x��t� � w��x��t� (1.4)

s��t� � w��x��t� � w��x��t� � w��x��t�

s��t� � w��x��t� � w��x��t� � w��x��t�

Such a matrixW could be found as the inverse of the matrix that consists of the
mixing coefficients aij in Eq. 1.3, if we knew those coefficients aij .

Now we see that in fact this problem is mathematically similar to the one where
we wanted to find a good representation for the random data in xi�t�, as in (1.2).
Indeed, we could consider each signal xi�t�� t � �� ���� T as a sample of a random
variable xi, so that the value of the random variable is given by the amplitudes of
that signal at the time points recorded.
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Fig. 1.2 The observed signals that are assumed to be mixtures of some underlying source
signals.

1.2.2 Source separation based on independence

The question now is: How can we estimate the coefficients wij in (1.4)? We want
to obtain a general method that works in many different circumstances, and in fact
provides one answer to the very general problem that we started with: finding a
good representation of multivariate data. Therefore, we use very general statistical
properties. All we observe is the signals x�� x� and x�, and we want to find a matrix
W so that the representation is given by the original source signals s�� s�, and s�.

A surprisingly simple solution to the problem can be found by considering just
the statistical independence of the signals. In fact, if the signals are not gaussian, it
is enough to determine the coefficients wij , so that the signals

y��t� � w��x��t� � w��x��t� � w��x��t� (1.5)

y��t� � w��x��t� � w��x��t� � w��x��t�

y��t� � w��x��t� � w��x��t� � w��x��t�

are statistically independent. If the signals y�� y�, and y� are independent, then they
are equal to the original signals s�� s�, and s�. (They could be multiplied by some
scalar constants, though, but this has little significance.)

Using just this information on the statistical independence, we can in fact estimate
the coefficient matrixW for the signals in Fig. 1.2. What we obtain are the source
signals in Fig. 1.3. (These signals were estimated by the FastICA algorithm that
we shall meet in several chapters of this book.) We see that from a data set that
seemed to be just noise, we were able to estimate the original source signals, using
an algorithm that used the information on the independence only. These estimated
signals are indeed equal to those that were used in creating the mixtures in Fig. 1.2
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Fig. 1.3 The estimates of the original source signals, estimated using only the observed
mixture signals in Fig. 1.2. The original signals were found very accurately.

(the original signals are not shown, but they really are virtually identical to what the
algorithm found). Thus, in the source separation problem, the original signals were
the “independent components” of the data set.

1.3 INDEPENDENT COMPONENT ANALYSIS

1.3.1 Definition

We have now seen that the problem of blind source separation boils down to finding
a linear representation in which the components are statistically independent. In
practical situations, we cannot in general find a representation where the components
are really independent, but we can at least find components that are as independent
as possible.

This leads us to the following definition of ICA, which will be considered
in more detail in Chapter 7. Given a set of observations of random variables
�x��t�� x��t�� ���� xn�t��, where t is the time or sample index, assume that they are
generated as a linear mixture of independent components:

�
BBB�

x��t�
x��t�

...
xn�t�

�
CCCA � A

�
BBB�

s��t�
s��t�

...
sn�t�

�
CCCA (1.6)

whereA is some unknown matrix. Independent component analysis now consists of
estimating both the matrix A and the si�t�, when we only observe the xi�t�. Note
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that we assumed here that the number of independent components si is equal to the
number of observed variables; this is a simplifying assumption that is not completely
necessary.

Alternatively, we could define ICA as follows: find a linear transformation given by
a matrixW as in (1.2), so that the random variables yi� i � �� ���� n are as independent
as possible. This formulation is not really very different from the previous one, since
after estimatingA, its inverse givesW.

It can be shown (see Section 7.5) that the problem is well-defined, that is, the
model in (1.6) can be estimated if and only if the components si are nongaussian.
This is a fundamental requirement that also explains the main difference between
ICA and factor analysis, in which the nongaussianity of the data is not taken into
account. In fact, ICA could be considered as nongaussian factor analysis, since in
factor analysis, we are also modeling the data as linear mixtures of some underlying
factors.

1.3.2 Applications

Due to its generality the ICA model has applications in many different areas, some
of which are treated in Part IV. Some examples are:

� In brain imaging, we often have different sources in the brain emit signals that
are mixed up in the sensors outside of the head, just like in the basic blind
source separation model (Chapter 22).

� In econometrics, we often have parallel time series, and ICA could decompose
them into independent components that would give an insight to the structure
of the data set (Section 24.1).

� A somewhat different application is in image feature extraction, where we want
to find features that are as independent as possible (Chapter 21).

1.3.3 How to find the independent components

It may be very surprising that the independent components can be estimated from
linear mixtures with no more assumptions than their independence. Now we will try
to explain briefly why and how this is possible; of course, this is the main subject of
the book (especially of Part II).

Uncorrelatedness is not enough The first thing to note is that independence
is a much stronger property than uncorrelatedness. Considering the blind source sep-
aration problem, we could actually find many different uncorrelated representations
of the signals that would not be independent and would not separate the sources.
Uncorrelatedness in itself is not enough to separate the components. This is also the
reason why principal component analysis (PCA) or factor analysis cannot separate
the signals: they give components that are uncorrelated, but little more.
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Fig. 1.4 A sample of independent compo-
nents s� and s� with uniform distributions.
Horizontal axis: s�; vertical axis: s�.

Fig. 1.5 Uncorrelated mixtures x� and x�.
Horizontal axis: x�; vertical axis: x�.

Let us illustrate this with a simple example using two independent components
with uniform distributions, that is, the components can have any values inside a
certain interval with equal probability. Data from two such components are plotted
in Fig. 1.4. The data is uniformly distributed inside a square due to the independence
of the components.

Now, Fig. 1.5 shows two uncorrelated mixtures of those independent components.
Although the mixtures are uncorrelated, one sees clearly that the distributions are not
the same. The independent components are still mixed, using an orthogonal mixing
matrix, which corresponds to a rotation of the plane. One can also see that in Fig. 1.5
the components are not independent: if the component on the horizontal axis has a
value that is near the corner of the square that is in the extreme right, this clearly
restricts the possible values that the components on the vertical axis can have.

In fact, by using the well-known decorrelation methods, we can transform any
linear mixture of the independent components into uncorrelated components, in which
case the mixing is orthogonal (this will be proven in Section 7.4.2). Thus, the trick
in ICA is to estimate the orthogonal transformation that is left after decorrelation.
This is something that classic methods cannot estimate because they are based on
essentially the same covariance information as decorrelation.

Figure 1.5 also gives a hint as to why ICA is possible. By locating the edges of
the square, we could compute the rotation that gives the original components. In the
following, we consider a couple more sophisticated methods for estimating ICA.

Nonlinear decorrelation is the basic ICA method One way of stating how
independence is stronger than uncorrelatedness is to say that independence implies
nonlinear uncorrelatedness: If s� and s� are independent, then any nonlinear trans-
formations g�s�� and h�s�� are uncorrelated (in the sense that their covariance is
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zero). In contrast, for two random variables that are merely uncorrelated, such
nonlinear transformations do not have zero covariance in general.

Thus, we could attempt to perform ICA by a stronger form of decorrelation, by
finding a representation where the yi are uncorrelated even after some nonlinear
transformations. This gives a simple principle of estimating the matrixW:

ICA estimation principle 1: Nonlinear decorrelation. Find the matrixW so that
for any i �� j, the components yi and yj are uncorrelated, and the transformed
components g�yi� and h�yj� are uncorrelated, where g and h are some suitable
nonlinear functions.

This is a valid approach to estimating ICA: If the nonlinearities are properly chosen,
the method does find the independent components. In fact, computing nonlinear
correlations between the two mixtures in Fig. 1.5, one would immediately see that
the mixtures are not independent.

Although this principle is very intuitive, it leaves open an important question:
How should the nonlinearities g and h be chosen? Answers to this question can be
found be using principles from estimation theory and information theory. Estimation
theory provides the most classic method of estimating any statistical model: the
maximum likelihood method (Chapter 9). Information theory provides exact measures
of independence, such as mutual information (Chapter 10). Using either one of these
theories, we can determine the nonlinear functions g and h in a satisfactory way.

Independent components are the maximally nongaussian components
Another very intuitive and important principle of ICA estimation is maximum non-
gaussianity (Chapter 8). The idea is that according to the central limit theorem,
sums of nongaussian random variables are closer to gaussian that the original ones.
Therefore, if we take a linear combination y �

P
i
bixi of the observed mixture

variables (which, because of the linear mixing model, is a linear combination of the
independent components as well), this will be maximally nongaussian if it equals
one of the independent components. This is because if it were a real mixture of two
or more components, it would be closer to a gaussian distribution, due to the central
limit theorem.

Thus, the principle can be stated as follows

ICA estimation principle 2: Maximum nongaussianity. Find the local maxima
of nongaussianity of a linear combination y �

P
i
bixi under the constraint

that the variance of y is constant. Each local maximum gives one independent
component.

To measure nongaussianity in practice, we could use, for example, the kurtosis.
Kurtosis is a higher-order cumulant, which are some kind of generalizations of
variance using higher-order polynomials. Cumulants have interesting algebraic and
statistical properties which is why they have an important part in the theory of ICA.

For example, comparing the nongaussianities of the components given by the axes
in Figs. 1.4 and 1.5, we see that in Fig. 1.5 they are smaller, and thus Fig. 1.5 cannot
give the independent components (see Chapter 8).

An interesting point is that this principle of maximum nongaussianity shows
the very close connection between ICA and an independently developed technique
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called projection pursuit. In projection pursuit, we are actually looking for maximally
nongaussian linear combinations,which are used for visualization and other purposes.
Thus, the independent components can be interpreted as projection pursuit directions.

When ICA is used to extract features, this principle of maximum nongaussianity
also shows an important connection to sparse coding that has been used in neuro-
scientific theories of feature extraction (Chapter 21). The idea in sparse coding is
to represent data with components so that only a small number of them are “active”
at the same time. It turns out that this is equivalent, in some situations, to finding
components that are maximally nongaussian.

The projection pursuit and sparse coding connections are related to a deep result
that says that ICA gives a linear representation that is as structured as possible.
This statement can be given a rigorous meaning by information-theoretic concepts
(Chapter 10), and shows that the independent components are in many ways easier
to process than the original random variables. In particular, independent components
are easier to code (compress) than the original variables.

ICA estimation needs more than covariances There are many other meth-
ods for estimating the ICA model as well. Many of them will be treated in this
book. What they all have in common is that they consider some statistics that are not
contained in the covariance matrix (the matrix that contains the covariances between
all pairs of the xi).

Using the covariance matrix, we can decorrelate the components in the ordinary
linear sense, but not any stronger. Thus, all the ICA methods use some form of
higher-order statistics, which specifically means information not contained in the
covariance matrix. Earlier, we encountered two kinds of higher-order information:
the nonlinear correlations and kurtosis. Many other kinds can be used as well.

Numerical methods are important In addition to the estimation principle, one
has to find an algorithm for implementing the computations needed. Because the
estimation principles use nonquadratic functions, the computations needed usually
cannot be expressed using simple linear algebra, and therefore they can be quite de-
manding. Numerical algorithms are thus an integral part of ICA estimation methods.

The numerical methods are typically based on optimization of some objective
functions. The basic optimization method is the gradient method. Of particular
interest is a fixed-point algorithm called FastICA that has been tailored to exploit the
particular structure of the ICA problem. For example, we could use both of these
methods to find the maxima of the nongaussianity as measured by the absolute value
of kurtosis.
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1.4 HISTORY OF ICA

The technique of ICA, although not yet the name, was introduced in the early 1980s
by J. Hérault, C. Jutten, and B. Ans [178, 179, 16]. As recently reviewed by Jutten
[227], the problem first came up in 1982 in a neurophysiological setting. In a
simplified model of motion coding in muscle contraction, the outputs x��t�and x��t�
were two types of sensory signals measuring muscle contraction, and s��t� and s��t�
were the angular position and velocity of a moving joint. Then it is not unreasonable
to assume that the ICA model holds between these signals. The nervous system
must be somehow able to infer the position and velocity signals s��t�� s��t� from the
measured responsesx��t�� x��t�. One possibility for this is to learn the inverse model
using the nonlinear decorrelation principle in a simple neural network. Hérault and
Jutten proposed a specific feedback circuit to solve the problem. This approach is
covered in Chapter 12.

All through the 1980s, ICA was mostly known among French researchers, with
limited influence internationally. The few ICA presentations in international neural
network conferences in the mid-1980s were largely buried under the deluge of in-
terest in back-propagation, Hopfield networks, and Kohonen’s Self-Organizing Map
(SOM), which were actively propagated in those times. Another related field was
higher-order spectral analysis, on which the first international workshop was orga-
nized in 1989. In this workshop, early papers on ICA by J.-F. Cardoso [60] and
P. Comon [88] were given. Cardoso used algebraic methods, especially higher-order
cumulant tensors, which eventually led to the JADE algorithm [72]. The use of
fourth-order cumulants has been earlier proposed by J.-L. Lacoume [254]. In signal
processing literature, classic early papers by the French group are [228, 93, 408, 89].
A good source with historical accounts and a more complete list of references is
[227].

In signal processing, there had been earlier approaches in the related problem of
blind signal deconvolution [114, 398]. In particular, the results used in multichannel
blind deconvolution are very similar to ICA techniques.

The work of the scientists in the 1980’s was extended by, among others, A. Ci-
chocki and R. Unbehauen, who were the first to propose one of the presently most
popular ICA algorithms [82, 85, 84]. Some other papers on ICA and signal separation
from early 1990s are [57, 314]. The “nonlinear PCA” approach was introduced by the
present authors in [332, 232]. However, until the mid-1990s, ICA remained a rather
small and narrow research effort. Several algorithms were proposed that worked,
usually in somewhat restricted problems, but it was not until later that the rigorous
connections of these to statistical optimization criteria were exposed.

ICA attained wider attention and growing interest after A.J. Bell and T.J. Sejnowski
published their approach based on the infomax principle [35, 36] in the mid-90’s.
This algorithm was further refined by S.-I. Amari and his co-workers using the natural
gradient [12], and its fundamental connections to maximum likelihood estimation, as
well as to the Cichocki-Unbehauen algorithm, were established. A couple of years
later, the present authors presented the fixed-point or FastICA algorithm, [210, 192,
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197], which has contributed to the application of ICA to large-scale problems due to
its computational efficiency.

Since the mid-1990s, there has been a growing wave of papers, workshops, and
special sessions devoted to ICA. The first international workshop on ICA was held in
Aussois, France, in January 1999, and the second workshop followed in June 2000
in Helsinki, Finland. Both gathered more than 100 researchers working on ICA and
blind signal separation, and contributed to the transformation of ICA to an established
and mature field of research.
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MATHEMATICAL
PRELIMINARIES





2
Random Vectors and

Independence

In this chapter, we review central concepts of probability theory,statistics, and random
processes. The emphasis is on multivariate statistics and random vectors. Matters
that will be needed later in this book are discussed in more detail, including, for
example, statistical independence and higher-order statistics. The reader is assumed
to have basic knowledge on single variable probability theory, so that fundamental
definitions such as probability, elementary events, and random variables are familiar.
Readers who already have a good knowledge of multivariate statistics can skip most
of this chapter. For those who need a more extensive review or more information on
advanced matters, many good textbooks ranging from elementary ones to advanced
treatments exist. A widely used textbook covering probability, random variables, and
stochastic processes is [353].

2.1 PROBABILITY DISTRIBUTIONS AND DENSITIES

2.1.1 Distribution of a random variable

In this book, we assume that random variables are continuous-valued unless stated
otherwise. The cumulative distribution function (cdf) Fx of a random variable x at
point x � x� is defined as the probability that x � x�:

Fx�x�� � P �x � x�� (2.1)

Allowing x� to change from�� to� defines the whole cdf for all values of x.
Clearly, for continuous random variables the cdf is a nonnegative, nondecreasing

(often monotonically increasing) continuous function whose values lie in the interval

15
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σ σ

m

Fig. 2.1 A gaussian probability density function with meanm and standard deviation �.

� � Fx�x� � �. From the definition, it also follows directly that Fx���� � �, and
Fx���� � �.

Usually a probability distribution is characterized in terms of its density function
rather than cdf. Formally, the probability density function (pdf) px�x� of a continuous
random variablex is obtained as the derivative of its cumulative distribution function:

px�x�� �
dFx�x�

dx

����
x�x�

(2.2)

In practice, the cdf is computed from the known pdf by using the inverse relationship

Fx�x�� �

Z
x�

��

px���d� (2.3)

For simplicity, Fx�x� is often denoted by F �x� and px�x� by p�x�, respectively. The
subscript referring to the random variable in question must be used when confusion
is possible.

Example 2.1 The gaussian (or normal) probability distribution is used in numerous
models and applications, for example to describe additive noise. Its density function
is given by

px�x� �
�p
����

exp

�
� �x�m��

���

�
(2.4)
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Here the parameter m (mean) determines the peak point of the symmetric density
function, and � (standard deviation), its effective width (flatness or sharpness of the
peak). See Figure 2.1 for an illustration.

Generally, the cdf of the gaussian density cannot be evaluated in closed form using
(2.3). The term ��

p
���� in front of the density (2.4) is a normalizing factor that

guarantees that the cdf becomes unity when x� � �. However, the values of the
cdf can be computed numerically using, for example, tabulated values of the error
function

erf�x� �
�p
��

Z
x

�

exp

�
���

�

�
d� (2.5)

The error function is closely related to the cdf of a normalized gaussian density, for
which the mean m � � and the variance �� � �. See [353] for details.

2.1.2 Distribution of a random vector

Assume now that x is an n-dimensional random vector

x � �x�� x�� � � � � xn�
T (2.6)

whereT denotes the transpose. (We take the transpose because all vectors in this book
are column vectors. Note that vectors are denoted by boldface lowercase letters.) The
components x�� x�� � � � � xn of the column vector x are continuous random variables.
The concept of probability distribution generalizes easily to such a random vector.
In particular, the cumulative distribution function of x is defined by

Fx�x�� � P �x � x�� (2.7)

where P ��� again denotes the probability of the event in parentheses, and x� is
some constant value of the random vector x. The notation x � x� means that each
component of the vector x is less than or equal to the respective component of the
vector x�. The multivariate cdf in Eq. (2.7) has similar properties to that of a single
random variable. It is a nondecreasing function of each component, with values lying
in the interval � � Fx�x� � �. When all the components of x approach infinity,
Fx�x� achieves its upper limit �; when any component xi � ��, Fx�x� � �.

The multivariate probability density function px�x� ofx is defined as the derivative
of the cumulative distribution function Fx�x� with respect to all components of the
random vector x:

px�x�� �
�

�x�

�

�x�
� � �

�

�xn
Fx�x�

����
x�x�

(2.8)

Hence

Fx�x�� �

Z
x�

��

px�x�dx �

Z x���

��

Z x���

��

� � �

Z x��n

��

px�x�dxn � � � dx�dx�
(2.9)
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where x��i is the ith component of the vector x�. Clearly,

Z ��

��

px�x�dx � � (2.10)

This provides the appropriate normalization condition that a true multivariate proba-
bility density px�x� must satisfy.

In many cases, random variables have nonzero probability density functions only
on certain finite intervals. An illustrative example of such a case is presented below.

Example 2.2 Assume that the probability density function of a two-dimensional
random vector z = �x� y�T is

pz�z� � px�y�x� y� �

�
�

�
��� x��x � y�� x � ��� �	� y � ��� �	

�� elsewhere

Let us now compute the cumulative distribution function of z. It is obtained by
integrating over both x and y, taking into account the limits of the regions where the
density is nonzero. When either x � � or y � �, the density pz�z� and consequently
also the cdf is zero. In the region where � � x � � and � � y � �, the cdf is given
by

Fz�z� � Fx�y�x� y� �

Z y

�

Z x

�




�
��� ���� � ��d�d�

�



�
xy

�
x� y �

�



x� �

�

�
xy

�

In the region where � � x � � and y � �, the upper limit in integrating over y
becomes equal to 1, and the cdf is obtained by inserting y � � into the preceding
expression. Similarly, in the region x � � and � � y � �, the cdf is obtained by
inserting x � � to the preceding formula. Finally, if both x � � and y � �, the
cdf becomes unity, showing that the probability density pz�z� has been normalized
correctly. Collecting these results yields

Fz�z� �

��������
�������

�� x � � or y � �
�

�
xy�x� y � �

�
x� � �

�
xy�� � � x � �� � � y � �

�

�
x�� � �

�
x� �

�
x��� � � x � �� y � �

�

�
y� �

�
� �

�
y�� x � �� � � y � �

�� x � � and y � �

2.1.3 Joint and marginal distributions

The joint distribution of two different random vectors can be handled in a similar
manner. In particular, let y be another random vector having in general a dimension
m different from the dimension n of x. The vectors x and y can be concatenated to
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a "supervector" zT = �xT �yT �, and the preceding formulas used directly. The cdf
that arises is called the joint distribution function of x and y, and is given by

Fx�y�x��y�� � P �x � x��y � y�� (2.11)

Here x� and y� are some constant vectors having the same dimensions as x and y,
respectively, and Eq. (2.11) defines the joint probability of the event x � x� and
y � y�.

The joint density function px�y�x�y� of x and y is again defined formally by dif-
ferentiating the joint distribution function Fx�y�x�y� with respect to all components
of the random vectors x and y. Hence, the relationship

Fx�y�x��y�� �

Z
x�

��

Z
y�

��

px�y�����d�d� (2.12)

holds, and the value of this integral equals unity when both x� �� and y� ��.
The marginal densities px�x� of x and py�y� of y are obtained by integrating

over the other random vector in their joint density px�y�x�y�:

px�x� �

Z
�

��

px�y�x���d� (2.13)

py�y� �

Z
�

��

px�y���y�d� (2.14)

Example 2.3 Consider the joint density given in Example 2.2. The marginal densi-
ties of the random variables x and y are

px�x� �

Z
�

�

�

�
��� x��x � y�dy� x � �	� �


�

�
�

�
�� � �

�
x� x�� x � �	� �


	 elsewhere

py�y� �

Z
�

�

�

�
��� x��x � y�dx� y � �	� �


�

�
�

�
�� � �y�� y � �	� �


	� elsewhere

2.2 EXPECTATIONS AND MOMENTS

2.2.1 Definition and general properties

In practice, the exact probability density function of a vector or scalar valued random
variable is usually unknown. However, one can use instead expectations of some
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functions of that random variable for performing useful analyses and processing. A
great advantage of expectations is that they can be estimated directly from the data,
even though they are formally defined in terms of the density function.

Let g�x� denote any quantity derived from the random vector x. The quantity
g�x� may be either a scalar, vector, or even a matrix. The expectation of g�x� is
denoted by Efg�x�g, and is defined by

Efg�x�g �
Z
�

��

g�x�px�x�dx (2.15)

Here the integral is computed over all the components of x.The integration operation
is applied separately to every component of the vector or element of the matrix,
yielding as a result another vector or matrix of the same size. If g�x� = x, we get the
expectation Efxg of x; this is discussed in more detail in the next subsection.

Expectations have some important fundamental properties.

1. Linearity. Let xi, i � �� � � � �m be a set of different random vectors, and ai,
i � �� � � � �m, some nonrandom scalar coefficients. Then

Ef
mX
i��

aixig �
mX
i��

aiEfxig (2.16)

2. Linear transformation. Let x be an m-dimensional random vector, andA and
B some nonrandom k �m and m� l matrices, respectively. Then

EfAxg � AEfxg� EfxBg � EfxgB (2.17)

3. Transformation invariance. Let y � g�x� be a vector-valued function of the
random vector x. Then

Z
�

��

ypy�y�dy �

Z
�

��

g�x�px�x�dx (2.18)

Thus Efyg = Efg�x�g, even though the integrations are carried out over
different probability density functions.

These properties can be proved using the definition of the expectation operator
and properties of probability density functions. They are important and very helpful
in practice, allowing expressions containing expectations to be simplified without
actually needing to compute any integrals (except for possibly in the last phase).

2.2.2 Mean vector and correlation matrix

Moments of a random vector x are typical expectations used to characterize it. They
are obtained when g�x� consists of products of components of x. In particular, the
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first moment of a random vector x is called the mean vector mx of x. It is defined
as the expectation of x:

mx � Efxg �
Z
�

��

xpx�x�dx (2.19)

Each component mxi
of the n-vectormx is given by

mxi
� Efxig �

Z
�

��

xipx�x�dx �

Z
�

��

xipxi
�xi�dxi (2.20)

where pxi
�xi� is the marginal density of the ith component xi of x. This is because

integrals over all the other components of x reduce to unity due to the definition of
the marginal density.

Another important set of moments consists of correlations between pairs of com-
ponents of x. The correlation rij between the ith and jth component of x is given
by the second moment

rij � Efxixjg �
Z
�

��

xixjpx�x�dx �

Z
�

��

Z
�

��

xixjpxi�xj
�xi� xj�dxjdxi

(2.21)

Note that correlation can be negative or positive.
The n� n correlation matrix

Rx � EfxxT g (2.22)

of the vector x represents in a convenient form all its correlations, rij being the
element in row i and column j ofRx.

The correlation matrixRx has some important properties:

1. It is a symmetric matrix: Rx =RT
x

.

2. It is positive semidefinite:

a
T
Rxa � � (2.23)

for all n-vectors a. Usually in practice Rx is positive definite, meaning that
for any vector a �� �, (2.23) holds as a strict inequality.

3. All the eigenvalues of Rx are real and nonnegative (positive if Rx is positive
definite). Furthermore, all the eigenvectors of Rx are real, and can always be
chosen so that they are mutually orthonormal.

Higher-order moments can be defined analogously, but their discussion is post-
poned to Section 2.7. Instead, we shall first consider the corresponding central and
second-order moments for two different random vectors.
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2.2.3 Covariances and joint moments

Central moments are defined in a similar fashion to usual moments, but the mean
vectors of the random vectors involved are subtracted prior to computing the ex-
pectation. Clearly, central moments are only meaningful above the first order. The
quantity corresponding to the correlation matrix Rx is called the covariance matrix
Cx of x, and is given by

Cx � Ef�x�mx��x �mx�
T g (2.24)

The elements

cij � Ef�xi �mi��xj �mj�g (2.25)

of the n � n matrix Cx are called covariances, and they are the central moments
corresponding to the correlations1 rij defined in Eq. (2.21).

The covariance matrix Cx satisfies the same properties as the correlation matrix
Rx. Using the properties of the expectation operator, it is easy to see that

Rx � Cx �mxm
T
x

(2.26)

If the mean vector mx � �, the correlation and covariance matrices become the
same. If necessary, the data can easily be made zero mean by subtracting the
(estimated) mean vector from the data vectors as a preprocessing step. This is a usual
practice in independent component analysis, and thus in later chapters, we simply
denote byCx the correlation/covariance matrix, often even dropping the subscript x
for simplicity.

For a single random variable x, the mean vector reduces to its mean value mx =
Efxg, the correlation matrix to the second moment Efx�g, and the covariance matrix
to the variance of x

��x � Ef�x�mx�
�g (2.27)

The relationship (2.26) then takes the simple form Efx�g = ��x �m�

x.
The expectation operation can be extended for functions g�x�y� of two different

random vectors x and y in terms of their joint density:

Efg�x�y�g �
Z
�

��

Z
�

��

g�x�y�px�y�x�y�dy dx (2.28)

The integrals are computed over all the components of x and y.
Of the joint expectations, the most widely used are the cross-correlation matrix

Rxy � EfxyT g (2.29)

1In classic statistics, the correlation coefficients �ij =
cij

�ciicjj �
��� are used, and the matrix consisting of

them is called the correlation matrix. In this book, the correlation matrix is defined by the formula (2.22),
which is a common practice in signal processing, neural networks, and engineering.
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Fig. 2.2 An example of negative covariance
between the random variables x and y.
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Fig. 2.3 An example of zero covariance be-
tween the random variables x and y.

and the cross-covariance matrix

Cxy � Ef�x�mx��y �my�
T g (2.30)

Note that the dimensions of the vectors x and y can be different. Hence, the cross-
correlation and -covariance matrices are not necessarily square matrices, and they are
not symmetric in general. However, from their definitions it follows easily that

Rxy � R
T
yx

� Cxy � C
T
yx

(2.31)

If the mean vectors of x and y are zero, the cross-correlation and cross-covariance
matrices become the same. The covariance matrix Cx�y of the sum of two random
vectors x and y having the same dimension is often needed in practice. It is easy to
see that

Cx�y � Cx �Cxy �Cyx �Cy (2.32)

Correlations and covariances measure the dependence between the random vari-
ables using their second-order statistics. This is illustrated by the following example.

Example 2.4 Consider the two different joint distributions px�y�x� y� of the zero
mean scalar random variables x and y shown in Figs. 2.2 and 2.3. In Fig. 2.2, x
and y have a clear negative covariance (or correlation). A positive value of x mostly
implies that y is negative, and vice versa. On the other hand, in the case of Fig. 2.3,
it is not possible to infer anything about the value of y by observing x. Hence, their
covariance cxy � �.
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2.2.4 Estimation of expectations

Usually the probability density of a random vector x is not known, but there is often
available a set of K samples x��x�� � � � �xK from x. Using them, the expectation
(2.15) can be estimated by averaging over the sample using the formula [419]

Efg�x�g �
�

K

KX

j��

g�xj� (2.33)

For example, applying (2.33), we get for the mean vector mx of x its standard
estimator, the sample mean

�mx �
�

K

KX

j��

xj (2.34)

where the hat overm is a standard notation for an estimator of a quantity.
Similarly, if instead of the joint density px�y�x�y� of the random vectors x and

y, we know K sample pairs �x��y��� �x��y��� � � � � �xK �yK�, we can estimate the
expectation (2.28) by

Efg�x�y�g �
�

K

KX

j��

g�xj �yj� (2.35)

For example, for the cross-correlation matrix, this yields the estimation formula

�Rxy �
�

K

KX

j��

xjy
T
j (2.36)

Similar formulas are readily obtained for the other correlation type matrices Rxx,
Cxx, and Cxy.

2.3 UNCORRELATEDNESS AND INDEPENDENCE

2.3.1 Uncorrelatedness and whiteness

Two random vectors x and y are uncorrelated if their cross-covariance matrix Cxy

is a zero matrix:

Cxy � Ef�x�mx��y �my�
T g � � (2.37)

This is equivalent to the condition

Rxy � EfxyT g � EfxgEfyT g �mxm
T
y

(2.38)
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In the special case of two different scalar random variables x and y (for example,
two components of a random vector z), x and y are uncorrelated if their covariance
cxy is zero:

cxy � Ef�x�mx��y �my�g � � (2.39)

or equivalently

rxy � Efxyg � EfxgEfyg � mxmy (2.40)

Again, in the case of zero-mean variables, zero covariance is equivalent to zero
correlation.

Another important special case concerns the correlations between the components
of a single random vector x given by the covariance matrix Cx defined in (2.24). In
this case a condition equivalent to (2.37) can never be met, because each component
of x is perfectly correlated with itself. The best that we can achieve is that different
components ofx are mutually uncorrelated, leading to the uncorrelatedness condition

Cx � Ef�x�mx��x �mx�
T g � D (2.41)

HereD is an n� n diagonal matrix

D � diag�c��� c��� � � � � cnn� � diag���x� � �
�

x�
� � � � � �

�

xn
� (2.42)

whose n diagonal elements are the variances �
�

xi
= Ef�xi � mxi�

�g = cii of the
components xi of x.

In particular, random vectors having zero mean and unit covariance (and hence
correlation) matrix, possibly multiplied by a constant variance �

�, are said to be
white. Thus white random vectors satisfy the conditions

mx � �� Rx � Cx � I (2.43)

where I is the n� n identity matrix.
Assume now that an orthogonal transformation defined by an n � n matrix T is

applied to the random vector x. Mathematically, this can be expressed

y � Tx� where TTT � TT
T � I (2.44)

An orthogonal matrix T defines a rotation (change of coordinate axes) in the n-
dimensional space, preserving norms and distances. Assuming that x is white, we
get

my � EfTxg � TEfxg � Tmx � � (2.45)

and

Cy � Ry � EfTx�Tx�T g � TEfxxT gTT

� TRxT
T � TTT � I (2.46)
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showing that y is white, too. Hence we can conclude that the whiteness property is
preserved under orthogonal transformations. In fact, whitening of the original data
can be made in infinitely many ways. Whitening will be discussed in more detail
in Chapter 6, because it is a highly useful and widely used preprocessing step in
independent component analysis.

It is clear that there also exists infinitely many ways to decorrelate the original
data, because whiteness is a special case of the uncorrelatedness property.

Example 2.5 Consider the linear signal model

x � As� n (2.47)

where x is an n-dimensional random or data vector, A an n�m constant matrix, s
an m-dimensional random signal vector, and n an n-dimensional random vector that
usually describes additive noise. The correlation matrix of x then becomes

Rx � EfxxT g � Ef�As� n��As� n�T g

� EfAssTAT g� EfAsnT g� EfnsTAT g� EfnnT g

� AEfssT gAT �AEfsnT g� EfnsT gAT � EfnnT g

� ARsA
T �ARsn �RnsA

T �Rn (2.48)

Usually the noise vector n is assumed to have zero mean, and to be uncorrelated with
the signal vector s. Then the cross-correlation matrix between the signal and noise
vectors vanishes:

Rsn � EfsnT g � EfsgEfnT g � � (2.49)

Similarly, Rns � �, and the correlation matrix of x simplifies to

Rx � ARsA
T �Rn (2.50)

Another often made assumption is that the noise is white, which means here that
the components of the noise vector n are all uncorrelated and have equal variance
�
�, so that in (2.50)

Rn � �
�I (2.51)

Sometimes, for example in a noisy version of the ICA model (Chapter 15), the
components of the signal vector s are also mutually uncorrelated, so that the signal
correlation matrix becomes the diagonal matrix

Ds � diag�Efs�
�
g�Efs�

�
g� � � � �Efs�

m
g� (2.52)

where s�� s�� � � � � sm are components of the signal vector s. Then (2.50) can be
written in the form

Rx � ADsA
T � �

�I �

mX

i��

Efs�
i
gaia

T

i
� �

�I (2.53)
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where ai is the ith column vector of the matrix A.
The noisy linear signal or data model (2.47) is encountered frequently in signal

processing and other areas, and the assumptions made on s and n vary depending
on the problem at hand. It is straightforward to see that the results derived in this
example hold for the respective covariance matrices as well.

2.3.2 Statistical independence

A key concept that constitutes the foundation of independent component analysis is
statistical independence. For simplicity, consider first the case of two different scalar
random variables x and y. The random variable x is independent of y, if knowing the
value of y does not give any information on the value of x. For example, x and y can
be outcomes of two events that have nothing to do with each other, or random signals
originating from two quite different physical processes that are in no way related to
each other. Examples of such independent random variables are the value of a dice
thrown and of a coin tossed, or speech signal and background noise originating from
a ventilation system at a certain time instant.

Mathematically, statistical independence is defined in terms of probability densi-
ties. The random variables x and y are said to be independent if and only if

px�y�x� y� � px�x�py�y� (2.54)

In words, the joint density px�y�x� y� of x and y must factorize into the product
of their marginal densities px�x� and py�y�. Equivalently, independence could be
defined by replacing the probability density functions in the definition (2.54) by the
respective cumulative distribution functions, which must also be factorizable.

Independent random variables satisfy the basic property

Efg�x�h�y�g � Efg�x�gEfh�y�g (2.55)

where g�x� and h�y� are any absolutely integrable functions of x and y, respectively.
This is because

Efg�x�h�y�g �

Z
�

��

Z
�

��

g�x�h�y�px�y�x� y�dydx (2.56)

�

Z
�

��

g�x�px�x�dx

Z
�

��

h�y�py�y�dy � Efg�x�gEfh�y�g

Equation (2.55) reveals that statistical independence is a much stronger property than
uncorrelatedness. Equation (2.40), defining uncorrelatedness, is obtained from the
independence property (2.55) as a special case where both g�x� and h�y� are linear
functions, and takes into account second-order statistics (correlations or covariances)
only. However, if the random variables have gaussian distributions, independence
and uncorrelatedness become the same thing. This very special property of gaussian
distributions will be discussed in more detail in Section 2.5.

Definition (2.54) of independence generalizes in a natural way for more than
two random variables, and for random vectors. Let x�y� z� � � � � be random vectors
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which may in general have different dimensions. The independence condition for
x�y� z� � � � � is then

px�y�z�����x�y� z� � � � � � px�x�py�y�pz�z� � � � (2.57)

and the basic property (2.55) generalizes to

Efgx�x�gy�y�gz�z� � � � g � Efgx�x�gEfgy�y�gEfgz�z�g � � �
(2.58)

where gx�x�, gy�y�, and gz�z� are arbitrary functions of the random variables x, y,
and z for which the expectations in (2.58) exist.

The general definition (2.57) gives rise to a generalization of the standard notion
of statistical independence. The components of the random vector x are themselves
scalar random variables, and the same holds for y and z. Clearly, the components
of x can be mutually dependent, while they are independent with respect to the
components of the other random vectors y and z, and (2.57) still holds. A similar
argument applies to the random vectors y and z.

Example 2.6 First consider the random variables x and y discussed in Examples 2.2
and 2.3. The joint density of x and y, reproduced here for convenience,

px�y�x� y� �

�
�

�
��� x��x� y�� x � ��� ��� y � ��� 	�

�� elsewhere

is not equal to the product of their marginal densities px�x� and py�y� computed in
Example 2.3. Hence, Eq. (2.54) is not satisfied, and we conclude that x and y are not
independent. Actually this can be seen directly by observing that the joint density
fx�y�x� y� given above is not factorizable, since it cannot be written as a product of
two functions g�x� and h�y� depending only on x and y.

Consider then the joint density of a two-dimensional random vectorx � �x�� x��
T

and a one-dimensional random vector y � y given by [419]

px�y�x�y� �

�
�x� � 
x��y� x�� x� � ��� 	�� y � ��� 	�

�� elsewhere

Using the above argument, we see that the random vectors x and y are statistically
independent, but the components x� and x� of x are not independent. The exact
verification of these results is left as an exercise.

2.4 CONDITIONAL DENSITIES AND BAYES’ RULE

Thus far, we have dealt with the usual probability densities, joint densities, and
marginal densities. Still one class of probability density functions consists of con-
ditional densities. They are especially important in estimation theory, which will
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be studied in Chapter 4. Conditional densities arise when answering the following
question: “What is the probability density of a random vector x given that another
random vector y has the fixed value y�?” Here y� is typically a specific realization
of a measurement vector y.

Assuming that the joint density px�y�x�y� of x and y and their marginal densities
exist, the conditional probability density of x given y is defined as

pxjy�xjy� �
px�y�x�y�

py�y�
(2.59)

This can be interpreted as follows: assuming that the random vector y lies in the
regiony� � y � y���y, the probability thatx lies in the regionx� � x � x���x
is pxjy�x�jy���x. Here x� and y� are some constant vectors, and both �x and �y
are small. Similarly,

pyjx�yjx� �
px�y�x�y�

px�x�
(2.60)

In conditional densities, the conditioning quantity, y in (2.59) and x in (2.60), is
thought to be like a nonrandom parameter vector, even though it is actually a random
vector itself.

Example 2.7 Consider the two-dimensional joint density px�y�x� y� depicted in
Fig. 2.4. For a given constant value x�, the conditional distribution

pyjx�yjx�� �
px�y�x�� y�

px�x��

Hence, it is a one-dimensional distribution obtained by "slicing" the joint distribution
p�x� y� parallel to the y-axis at the point x � x�. Note that the denominator px�x�� is
merely a scaling constant that does not affect the shape of the conditional distribution
pyjx�yjx�� as a function of y.

Similarly, the conditional distribution pxjy�xjy�� can be obtained geometrically
by slicing the joint distribution of Fig. 2.4 parallel to the x-axis at the point y � y�.
The resulting conditional distributions are shown in Fig. 2.5 for the value x� � ����,
and Fig. 2.6 for y� � �	�
�.

From the definitions of the marginal densities px�x� of x and py�y� of y given in
Eqs. (2.13) and (2.14), we see that the denominators in (2.59) and (2.60) are obtained
by integrating the joint density px�y�x�y� over the unconditional random vector. This
also shows immediately that the conditional densities are true probability densities
satisfying

Z �

��

pxjy��jy�d� � ��

Z �

��

pyjx��jx�d� � � (2.61)

If the random vectorsx and y are statistically independent, the conditional density
pxjy�xjy� equals to the unconditional density px�x� of x, since x does not depend
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Fig. 2.4 A two-dimensional joint density of the random variables x and y.

in any way on y, and similarly pyjx�yjx� = py�y�, and both Eqs. (2.59) and (2.60)
can be written in the form

px�y�x�y� � px�x�py�y� (2.62)

which is exactly the definition of independence of the random vectors x and y.
In the general case, we get from Eqs. (2.59) and (2.60) two different expressions

for the joint density of x and y:

px�y�x�y� � pyjx�yjx�px�x� � pxjy�xjy�py�y� (2.63)

From this, for example, a solution can be found for the density of y conditioned on
x:

pyjx�yjx� �
pxjy�xjy�py�y�

px�x�
(2.64)

where the denominator can be computed by integrating the numerator if necessary:

px�x� �

Z �

��

pxjy�xj��py���d� (2.65)
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Fig. 2.5 The conditional probability den-
sity pyjx�yjx � �����.
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Fig. 2.6 The conditional probability den-
sity pxjy�xjy � ������.

Formula (2.64) (together with (2.65)) is called Bayes’ rule. This rule is important
especially in statistical estimation theory. There typically p

xjy�xjy� is the conditional
density of the measurement vector x, with y denoting the vector of unknown random
parameters. Bayes’ rule (2.64) allows the computation of the posterior density
pyjx�yjx� of the parameters y, given a specific measurement (observation) vector x,
and assuming or knowing the prior distribution py�y� of the random parameters y.
These matters will be discussed in more detail in Chapter 4.

Conditional expectations are defined similarly to the expectations defined earlier,
but the pdf appearing in the integral is now the appropriate conditional density. Hence,
for example,

Efg�x�y�jyg �

Z �

��

g���y�pxjy��jy�d� (2.66)

This is still a function of the random vector y, which is thought to be nonrandom
while computing the above expectation. The complete expectation with respect to
both x and y can be obtained by taking the expectation of (2.66) with respect to y:

Efg�x�y�g � EfEfg�x�y�jygg (2.67)

Actually, this is just an alternative two-stage procedure for computing the expectation
(2.28), following easily from Bayes’ rule.

2.5 THE MULTIVARIATE GAUSSIAN DENSITY

The multivariate gaussian or normal density has several special properties that make it
unique among probability density functions. Due to its importance, we shall discuss
it more thoroughly in this section.
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Consider an n-dimensional random vector x. It is said to be gaussian if the
probability density function of x has the form

px�x� �
�

����n���detCx����
exp

�
�
�

�
�x �mx�

TC��
x

�x�mx�

�
(2.68)

Recall that n is the dimension of x, mx its mean, and Cx the covariance matrix of
x. The notation detA is used for the determinant of a matrixA, in this case Cx. It
is easy to see that for a single random variable x (n � �), the density (2.68) reduces
to the one-dimensional gaussian pdf (2.4) discussed briefly in Example 2.1. Note
also that the covariance matrix Cx is assumed strictly positive definite, which also
implies that its inverse exists.

It can be shown that for the density (2.68)

Efxg �mx� Ef�x�mx��x�mx�
T g � Cx (2.69)

Hence callingmx the mean vector andCx the covariance matrix of the multivariate
gaussian density is justified.

2.5.1 Properties of the gaussian density

In the following, we list the most important properties of the multivariate gaussian
density omitting proofs. The proofs can be found in many books; see, for example,
[353, 419, 407].

Only first- and second-order statistics are needed Knowledge of the mean
vector mx and the covariance matrix Cx of x are sufficient for defining the multi-
variate gaussian density (2.68) completely. Therefore, all the higher-order moments
must also depend only onmx andCx. This implies that these moments do not carry
any novel information about the gaussian distribution. An important consequence of
this fact and the form of the gaussian pdf is that linear processing methods based on
first- and second-order statistical information are usually optimal for gaussian data.
For example, independent component analysis does not bring out anything new com-
pared with standard principal component analysis (to be discussed later) for gaussian
data. Similarly, linear time-invariant discrete-time filters used in classic statistical
signal processing are optimal for filtering gaussian data.

Linear transformations are gaussian If x is a gaussian random vector and
y = Ax its linear transformation, then y is also gaussian with mean vector my =
Amx and covariance matrix Cy = ACxA

T . A special case of this result says that
any linear combination of gaussian random variables is itself gaussian. This result
again has implications in standard independent component analysis: it is impossible
to estimate the ICA model for gaussian data, that is, one cannot blindly separate
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gaussian sources from their mixtures without extra knowledge of the sources, as will
be discussed in Chapter 7. 2

Marginal and conditional densities are gaussian Consider now two random
vectors x and y having dimensions n and m, respectively. Let us collect them in a
single random vector zT = �xT �yT � of dimension n �m. Its mean vector mz and
covariance matrix Cz are

mz �

�
mx

my

�
� Cz �

�
Cx Cxy

Cyx Cy

�
(2.70)

Recall that the cross-covariance matrices are transposes of each other: Cxy = CT
yx

.
Assume now that z has a jointly gaussian distribution. It can be shown that the

marginal densities px�x� and py�y� of the joint gaussian density pz�z� are gaussian.
Also the conditional densities pxjy and pyjx are n- and m-dimensional gaussian
densities, respectively. The mean and covariance matrix of the conditional density
pyjx are

myjx �my �CyxC
��
x
�x�mx� (2.71)

Cyjx � Cy �CyxC
��
x
Cxy (2.72)

Similar expressions are obtained for the mean mxjy and covariance matrix Cxjy of
the conditional density pxjy.

Uncorrelatedness and geometrical structure. We mentioned earlier that
uncorrelated gaussian random variables are also independent, a property which is
not shared by other distributions in general. Derivation of this important result is left
to the reader as an exercise. If the covariance matrixCx of the multivariate gaussian
density (2.68) is not diagonal, the components of x are correlated. Since Cx is a
symmetric and positive definite matrix, it can always be represented in the form

Cx � EDET �

nX
i��

�ieie
T

i
(2.73)

HereE is an orthogonal matrix (that is, a rotation) having as its columnse�� e�� � � � � en
the n eigenvectors ofCx, and D = diag���� ��� � � � � �n� is the diagonal matrix con-
taining the respective eigenvalues �i of Cx. Now it can readily be verified that
applying the rotation

u � ET �x�mx� (2.74)

2It is possible, however, to separate temporally correlated (nonwhite) gaussian sources using their second-
order temporal statistics on certain conditions. Such techniques are quite different from standard indepen-
dent component analysis. They will be discussed in Chapter 18.
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to x makes the components of the gaussian distribution of u uncorrelated, and hence
also independent.

Moreover, the eigenvalues �i and eigenvectors ei of the covariance matrix Cx

reveal the geometrical structure of the multivariate gaussian distribution. The con-
tours of any pdf are defined by curves of constant values of the density, given by the
equation px�x� = constant. For the multivariate gaussian density, this is equivalent
to requiring that the exponent is a constant c:

�x �mx�
T
C
��

x
�x�mx� � c (2.75)

Using (2.73), it is easy to see [419] that the contours of the multivariate gaussian
are hyperellipsoids centered at the mean vector mx. The principal axes of the
hyperellipsoids are parallel to the eigenvectors ei, and the eigenvalues �i are the
respective variances. See Fig. 2.7 for an illustration.
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Fig. 2.7 Illustration of a multivariate gaussian probability density.

2.5.2 Central limit theorem

Still another argument underlining the significance of the gaussian distribution is
provided by the central limit theorem. Let

xk �

kX

i��

zi (2.76)

be a partial sum of a sequence fzig of independent and identically distributed random
variables zi. Since the mean and variance of xk can grow without bound as k ��,
consider instead of xk the standardized variables

yk �
xk �mxk

�xk
(2.77)
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where mxk
and �xk are the mean and variance of xk.

It can be shown that the distribution of yk converges to a gaussian distribution
with zero mean and unit variance when k ��. This result is known as the central
limit theorem. Several different forms of the theorem exist, where assumptions on
independence and identical distributions have been weakened. The central limit
theorem is a primary reason that justifies modeling of many random phenomena as
gaussian random variables. For example, additive noise can often be considered to
arise as a sum of a large number of small elementary effects, and is therefore naturally
modeled as a gaussian random variable.

The central limit theorem generalizes readily to independent and identically dis-
tributed random vectors zi having a common mean mz and covariance matrix Cz.
The limiting distribution of the random vector

yk �
�p
k

kX

i��

�zi �mz� (2.78)

is multivariate gaussian with zero mean and covariance matrix Cz.
The central limit theorem has important consequences in independent component

analysis and blind source separation. A typical mixture, or component of the data
vector x, is of the form

xi �

mX

j��

aijsj (2.79)

where aij , j � �� � � � �m, are constant mixing coefficients and sj , j � �� � � � �m,
are the m unknown source signals. Even for a fairly small number of sources (say,
m � ��) the distribution of the mixture xk is usually close to gaussian. This seems
to hold in practice even though the densities of the different sources are far from each
other and far from gaussianity. Examples of this property can be found in Chapter 8,
as well as in [149].

2.6 DENSITY OF A TRANSFORMATION

Assume now that both x and y are n-dimensional random vectors that are related by
the vector mapping

y � g�x� (2.80)

for which the inverse mapping

x � g���y� (2.81)

exists and is unique. It can be shown that the density py�y� of y is obtained from the
density px�x� of x as follows:

py�y� �
�

j det Jg�g���y��jpx�g
���y�� (2.82)
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Here Jg is the Jacobian matrix

Jg�x� �

�
�����

�g��x�
�x�

�g��x�
�x�

� � � �gn�x�
�x�

�g��x�
�x�

�g��x�
�x�

� � � �gn�x�
�x�

...
...

. . .
...

�g��x�
�xn

�g��x�
�xn

� � � �gn�x�
�xn

�
�����

(2.83)

and gj�x� is the jth component of the vector function g�x�.
In the special case where the transformation (2.80) is linear and nonsingular so

that y = Ax and x = A��y, the formula (2.82) simplifies to

py�y� �
�

j detAj
px�A

��y� (2.84)

If x in (2.84) is multivariate gaussian, then y also becomes multivariate gaussian, as
was mentioned in the previous section.

Other kinds of transformations are discussed in textbooks of probability theory
[129, 353]. For example, the sum z =x�y, wherex and y are statistically independent
random variables, appears often in practice. Because the transformation between the
random variables in this case is not one-to-one, the preceding results cannot be applied
directly. But it can be shown that the pdf of z becomes the convolution integral of
the densities of x and y [129, 353, 407].

A special case of (2.82) that is important in practice is the so-called probability
integral transformation. If Fx�x� is the cumulative distribution function of a random
variable x, then the random variable

z � Fx�x� (2.85)

is uniformly distributed on the interval ��� ��. This result allows generation of random
variables having a desired distribution from uniformly distributed random numbers.
First, the cdf of the desired density is computed, and then the inverse transformation
of (2.85) is determined. Using this, one gets random variables x with the desired
density, provided that the inverse transformation of (2.85) can be computed.

2.7 HIGHER-ORDER STATISTICS

Up to this point, we have characterized random vectors primarily using their second-
order statistics. Standard methods of statistical signal processing are based on uti-
lization of this statistical information in linear discrete-time systems. Their theory is
well-developed and highly useful in many circumstances. Nevertheless, it is limited
by the assumptions of gaussianity, linearity, stationarity, etc.

From the mid-1980s, interest in higher-order statistical methods began to grow
in the signal processing community. At the same time, neural networks became
popular with the development of several new, effective learning paradigms. A basic
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idea in neural networks [172, 48] is distributed nonlinear processing of the input
data. A neural network consists of interconnected simple computational units called
neurons. The output of each neuron typically depends nonlinearly on its inputs.
These nonlinearities, for example, the hyperbolic tangent tanh�u�, also implicitly
introduce higher-order statistics for processing. This can be seen by expanding the
nonlinearities into their Taylor series; for example,

tanh�u� � u�
�

�
u� �

�

��
u� � � � � (2.86)

The scalar quantity u is in many neural networks the inner product u = wT
x of the

weight vectorw of the neuron and its input vector x. Inserting this into (2.86) shows
clearly that higher-order statistics of the components of the vector x are involved in
the computations.

Independent component analysis and blind source separation require the use of
higher-order statistics either directly or indirectly via nonlinearities. Therefore, we
discuss in the following basic concepts and results that will be needed later.

2.7.1 Kurtosis and classification of densities

In this subsection, we deal with the simple higher-order statistics of one scalar
random variable. In spite of their simplicity, these statistics are highly useful in many
situations.

Consider a scalar random variable x with the probability density function px�x�.
The jth moment �j of x is defined by the expectation

�j � Efxjg �
Z
�

��

�jpx���d�� j � �� �� � � � (2.87)

and the jth central moment �j of x respectively by

�j � Ef�x� ���
jg �

Z
�

��

�� �mx�
jpx���d�� j � �� �� � � �

(2.88)

The central moments are thus computed around the mean mx of x, which equals
its first moment ��. The second moment �� = Efx�g is the average power of x.
The central moments �� � � and �� � 	 are insignificant, while the second central
moment �� � ��x is the variance of x.

Before proceeding, we note that there exist distributions for which all the mo-
ments are not finite. Another drawback of moments is that knowing them does not
necessarily specify the probability density function uniquely. Fortunately, for most
of the distributions arising commonly all the moments are finite, and their knowledge
is in practice equivalent to the knowledge of their probability density [315].

The third central moment

�� � Ef�x�mx�
�g (2.89)
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is called the skewness. It is a useful measure of the asymmetricity of the pdf. It
is easy to see that the skewness is zero for probability densities that are symmetric
around their mean.

Consider now more specifically fourth-order moments. Higher than fourth order
moments and statistics are used seldom in practice, so we shall not discuss them.
The fourth moment �� = Efx�g is applied in some ICA algorithms because of its
simplicity. Instead of the fourth central moment �� = Ef�x � mx�

�g, the fourth-
order statistics called the kurtosis is usually employed, because it has some useful
properties not shared by the fourth central moment. Kurtosis will be derived in the
next subsection in the context of the general theory of cumulants, but it is discussed
here because of its simplicity and importance in independent component analysis and
blind source separation.

Kurtosis is defined in the zero-mean case by the equation

kurt�x� � Efx�g � ��Efx�g�� (2.90)

Alternatively, the normalized kurtosis

���x� �
Efx�g

�Efx�g��
� � (2.91)

can be used. For whitened data Efx�g � �, and both the versions of the kurtosis
reduce to

kurt�x� � ���x� � Efx�g � � (2.92)

This implies that for white data, the fourth moment Efx�g can be used instead of the
kurtosis for characterizing the distribution of x. Kurtosis is basically a normalized
version of the fourth moment.

A useful property of kurtosis is its additivity. If x and y are two statistically
independent random variables, then it holds that

kurt�x	 y� � kurt�x� 	 kurt�y� (2.93)

Note that this additivity property does not hold for the fourth moment, which shows
an important benefit of using cumulants instead of moments. Also, for any scalar
parameter �,

kurt��x� � ��kurt�x� (2.94)

Hence kurtosis is not linear with respect to its argument.
Another very important feature of kurtosis is that it is the simplest statistical

quantity for indicating the nongaussianity of a random variable. It can be shown that
if x has a gaussian distribution, its kurtosis kurt�x� is zero. This is the sense in which
kurtosis is “normalized” when compared to the fourth moment, which is not zero for
gaussian variables.

A distribution having zero kurtosis is called mesokurtic in statistical literature.
Generally, distributions having a negative kurtosis are said to be subgaussian (or
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Fig. 2.8 Example of a zero-mean uniform density.

platykurtic in statistics). If the kurtosis is positive, the respective distribution is
called supergaussian (or leptokurtic). Subgaussian probability densities tend to be
flatter than the gaussian one, or multimodal. A typical supergaussian probability
density has a sharper peak and longer tails than the gaussian pdf.

Kurtosis is often used as a quantitative measure of the nongaussianity of a random
variable or signal, but some caution must then be taken. The reason is that the kurtosis
of a supergaussian signal can have a large positive value (the maximum is infinity in
principle), but the negative value of the kurtosis of a subgaussian signal is bounded
below so that the minimum possible value is �� (when variance is normalized to
unity). Thus comparing the nongaussianity of supergaussian and subgaussian signals
with each other using plain kurtosis is not appropriate. However, kurtosis can be
used as a simple measure of nongaussianity if the signals to be compared are of the
same type, either subgaussian or supergaussian.

In computer simulations, an often used subgaussian distribution is the uniform
distribution. Its pdf for a zero-mean random variable x is

px�x� �

�
�

�a
� x � ��a� a�

�� elsewhere
(2.95)

where the parameter a determines the width (and height) of the pdf; see Fig. 2.8.
A widely used supergaussian distribution is the Laplacian or doubly exponential
distribution. Its probability density (again assuming zero mean) is

px�x� �
�

�
exp���jxj� (2.96)
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Fig. 2.9 Examples of a Laplacian density.

The only parameter � � � determines both the variance and the height of the peak of
the Laplacian density. It is easy to see that increasing the parameter � decreases the
variance of the Laplacian distribution and makes its peak value ��� at x � � higher;
see Fig. 2.9.

Both the uniform and Laplacian density can be obtained as special cases of the
generalized gaussian or exponential power family of pdf’s [53, 256]. The general
expression of the densities belonging to this family is (for zero mean)

px�x� � C exp

�
�

jxj�

�Efjxj�g

�
(2.97)

The positive real-valued power � determines the type of distribution, and C is a
scaling constant which normalizes the distribution to unit area (see [53]). (The
expectation in the denominator is a normalizing constant as well.) If the parameter
� � �, the usual gaussian density is obtained. The choice � � � yields the Laplacian
density, and � � � the uniform density. The parameter values � � � in (2.97)
give rise to supergaussian densities, and � � � to subgaussian ones. Impulsive-type
distributions are obtained from (2.97) when � � � � �.

2.7.2 Cumulants, moments, and their properties

Now we proceed to the general definition of cumulants. Assume that x is a real-
valued, zero-mean, continuous scalar random variable with probability density func-
tion px�x�.
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The first characteristic function ���� of x is defined as the continuous Fourier
transform of the pdf px�x�:

���� � Efexp ���x�g �

Z
�

��

exp���x�px�x�dx (2.98)

where � =
p�� and � is the transformed variable corresponding to x. Every

probability distribution is uniquely specified by its characteristic function, and vice
versa [353]. Expanding the characteristic function ���� into its Taylor series yields
[353, 149]

���� �

Z
�

��

�
�X
k��

xk����k

k�

�
px�x�dx �

�X
k��

Efxkg ����
k

k� (2.99)

Thus the coefficient terms of this expansion are moments Efxkg of x (assuming that
they exist). For this reason, the characteristic function���� is also called the moment
generating function.

It is often desirable to use the second characteristic function���� of x,or cumulant
generating function for reasons to be discussed later in this section. This function is
given by the natural logarithm of the first characteristic function (2.98):

���� � ln������ � ln�Efexp���x�g� (2.100)

The cumulants �k of x are defined in a similar way to the respective moments as
the coefficients of the Taylor series expansion of the second characteristic function
(2.100):

���� �
X
k��

�k
����k

k�
(2.101)

where the kth cumulant is obtained as the derivative

�k � ����k dk����

d�k

����
���

(2.102)

For a zero mean random variable x, the first four cumulants are

�� � �� �� � Efx�g� �� � Efx�g� and (2.103)

�� � Efx�g � ��Efx�g	�

Hence the first three cumulants are equal to the respective moments, and the fourth
cumulant �� is recognized to be the kurtosis defined earlier in (2.90).

We list below the respective expressions for the cumulants when the mean Efxg
of x is nonzero [319, 386, 149].

�� � Efxg
�� � Efx�g � �Efxg	�
�� � Efx�g � �Efx�gEfxg
 ��Efxg	� (2.104)

�� � Efx�g � ��Efx�g	� � �Efx�gEfxg
 ��Efx�g�Efxg	� � �Efxg	�

�
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These formulas are obtained after tedious manipulations of the second characteristic
function����. Expressions for higher-order cumulants become increasingly complex
[319, 386] and are omitted because they are applied seldom in practice.

Consider now briefly the multivariate case. Let x be a random vector and px�x�
its probability density function. The characteristic function of x is again the Fourier
transform of the pdf

���� � Efexp���x�g �
Z
�

��

exp���x�px�x�dx (2.105)

where � is now a row vector having the same dimension as x, and the integral is
computed over all components of x. The moments and cumulants of x are obtained
in a similar manner to the scalar case. Hence, moments of x are coefficients of the
Taylor series expansion of the first characteristic function ����, and the cumulants
are the coefficients of the expansion of the second characteristic function ���� =
ln������. In the multivariate case, the cumulants are often called cross-cumulants
in analogy to cross-covariances.

It can be shown that the second, third, and fourth order cumulants for a zero mean
random vector x are [319, 386, 149]

cum�xi� xj� �Efxixjg

cum�xi� xj � xk� �Efxixjxkg

cum�xi� xj � xk � xl� �Efxixjxkxlg � EfxixjgEfxkxlg (2.106)

� EfxixkgEfxjxlg � EfxixlgEfxjxkg

Hence the second cumulant is equal to the second moment Efxixjg, which in turn is
the correlation rij or covariance cij between the variables xi and xj . Similarly, the
third cumulant cum�xi� xj � xk� is equal to the third moment Efxixjxkg. However,
the fourth cumulant differs from the fourth moment Efxixjxkxlg of the random
variables xi� xj � xk� and xl.

Generally, higher-order moments correspond to correlations used in second-order
statistics, and cumulants are the higher-order counterparts of covariances. Both
moments and cumulants contain the same statistical information, because cumulants
can be expressed in terms of sums of products of moments. It is usually preferable to
work with cumulants because they present in a clearer way the additional information
provided by higher-order statistics. In particular, it can be shown that cumulants have
the following properties not shared by moments [319, 386].

1. Let x and y be statistically independent random vectors having the same
dimension, then the cumulant of their sum z = x�y is equal to the sum of the
cumulants of x and y. This property also holds for the sum of more than two
independent random vectors.

2. If the distribution of the random vector or process x is multivariate gaussian,
all its cumulants of order three and higher are identically zero.
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Thus higher-order cumulants measure the departure of a random vector from a gaus-
sian random vector with an identical mean vector and covariance matrix. This
property is highly useful, making it possible to use cumulants for extracting the
nongaussian part of a signal. For example, they make it possible to ignore additive
gaussian noise corrupting a nongaussian signal using cumulants.

Moments, cumulants, and characteristic functions have several other properties
which are not discussed here. See, for example, the books [149, 319, 386] for more
information. However, it is worth mentioning that both moments and cumulants
have symmetry properties that can be exploited to reduce the computational load in
estimating them [319].

For estimating moments and cumulants, one can apply the procedure introduced in
Section 2.2.4. However, the fourth-order cumulants cannot be estimated directly, but
one must first estimate the necessary moments as is obvious from (2.106). Practical
estimation formulas can be found in [319, 315].

A drawback in utilizing higher-order statistics is that reliable estimation of higher-
order moments and cumulants requires much more samples than for second-order
statistics [318]. Another drawback is that higher-order statistics can be very sensitive
to outliers in the data (see Section 8.3.1). For example, a few data samples having the
highest absolute values may largely determine the value of kurtosis. Higher-order
statistics can be taken into account in a more robust way by using the nonlinear
hyperbolic tangent function tanh�u�, whose values always lie in the interval ���� ��,
or some other nonlinearity that grows slower than linearly with its argument value.

2.8 STOCHASTIC PROCESSES *

2.8.1 Introduction and definition

In this section,3 we briefly discuss stochastic or random processes, defining what
they are, and introducing some basic concepts. This material is not needed in basic
independent component analysis. However, it forms a theoretical basis for blind
source separation methods utilizing time correlations and temporal information in
the data, discussed in Chapters 18 and 19. Stochastic processes are dealt with in
more detail in many books devoted either entirely or partly to the topic; see for
example [141, 157, 353, 419].

In short, stochastic or random processes are random functions of time. Stochastic
processes have two basic characteristics. First, they are functions of time, defined
on some observation interval. Second, stochastic processes are random in the sense
that before making an experiment, it is not possible to describe exactly the waveform
that is observed. Due to their nature, stochastic processes are well suited to the
characterization of many random signals encountered in practical applications, such
as voice, radar, seismic, and medical signals.

3An asterisk after the section title means that the section is more advanced material that may be skipped.
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Fig. 2.10 Sample functions of a stochastic process.

Figure 2.10 shows an example of a scalar stochastic process represented by the
set of sample functions fxj�t�g, j � �� �� � � � � n. Assume that the probability of
occurrence of the ith sample function xi�t� is Pi, and similarly for the other sample
functions. Suppose then we observe the set of waveforms fxj�t�g, j � �� �� � � � � n,
simultaneously at some time instant t � t�, as shown in Figure 2.10. Clearly, the
values fxj�t��g, j � �� �� � � � � n of the n waveforms at time t� form a discrete
random variable with n possible values, each having the respective probability of
occurrence Pj . Consider then another time instant t � t�. We obtain again a random
variable fxj�t��g, which may have a different distribution than fxj�t��g.

Usually the number of possible waveforms arising from an experiment is infinitely
large due to additive noise. At each time instant a continuous random variable having
some distribution arises instead of the discrete one discussed above. However, the
time instants t�� t�� � � � � on which the stochastic process is observed are discrete
due to sampling. Usually the observation intervals are equispaced, and the resulting
samples are represented using integer indices xj��� = xj�t��� xj��� = xj�t��� � � � for
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notational simplicity. As a result, a typical representation for a stochastic process
consists of continuous random variables at discrete (integer) time instants.

2.8.2 Stationarity, mean, and autocorrelation function

Consider a stochastic process fxj�t�g defined at discrete times t�� t�� � � � � tk. For
characterizing the process fxj�t�g completely, we should know the joint probability
density of all the random variables fxj�t��g, fxj�t��g, � � � , fxj�tk�g. The stochastic
process is said to be stationary in the strict sense if its joint density is invariant
under time shifts of origin. That is, the joint pdf of the process depends only on the
differences ti � tj between the time instants t�� t�� � � � � tk but not directly on them.

In practice, the joint probability density is not known, and its estimation from
samples would be too tedious and require an excessive number of samples even if
they were available. Therefore, stochastic processes are usually characterized in terms
of their first two moments, namely the mean and autocorrelation or autocovariance
functions. They give a coarse but useful description of the distribution. Using
these statistics is sufficient for linear processing (for example filtering) of stochastic
processes, and the number of samples needed for estimating them remains reasonable.

The mean function of the stochastic process fx�t�g is defined

mx�t� � Efx�t�g �

Z
�

��

x�t�px�t��x�t��dx�t� (2.107)

Generally, this is a function of time t. However, when the process fx�t�g is stationary,
the probability density functions of all the random variables corresponding to different
time instants become the same. This common pdf is denoted by px�x�. In such a
case, the mean function mx�t� reduces to a constant mean mx independent of time.

Similarly, the variance function of the stochastic process fx�t�g

��
x�t� � Ef�x�t��mx�t��

�g �

Z
�

��

�x�t� �mx�t��
�px�t��x�t��dx�t�

(2.108)

becomes a time-invariant constant ��
x for a stationary process.

Other second-order statistics of a random process fx�t�g are defined in a similar
manner. In particular, the autocovariance function of the process fx�t�g is given by

cx�t� �� � cov�x�t�� x�t � ��� � Ef�x�t��mx�t���x�t � ���mx�t� ���g
(2.109)

The expectation here is computed over the joint probability density of the random
variables x�t� and x�t� ��, where � is the constant time lag between the observation
times t and t� � . For the zero lag � � �, the autocovariance reduces to the variance
function (2.108). For stationary processes, the autocovariance function (2.109) is
independent of the time t, but depends on the lag � : cx�t� �� = cx���.

Analogously, the autocorrelation function of the process fx�t�g is defined by

rx�t� �� � Efx�t�x�t� ��g (2.110)
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If fx�t�g is stationary, this again depends on the time lag � only: rx�t� �� = rx���.
Generally, if the mean function mx�t� of the process is zero, the autocovariance and
autocorrelation functions become the same. If the lag � � �, the autocorrelation
function reduces to the mean-square function rx�t� �� = Efx��t�g of the process,
which becomes a constant rx��� for a stationary process fx�t�g.

These concepts can be extended for two different stochastic processes fx�t�g
and fy�t�g in an obvious manner (cf. Section 2.2.3). More specifically, the cross-
correlation function rxy�t� �� and the cross-covariance function cxy�t� �� of the
processes fx�t�g and fy�t�g are, respectively, defined by

rxy�t� �� � Efx�t�y�t� ��g (2.111)

cxy�t� �� � Ef�x�t��mx�t���y�t� ���my�t� ���g
(2.112)

Several blind source separation methods are based on the use of cross-covariance
functions (second-order temporal statistics). These methods will be discussed in
Chapter 18.

2.8.3 Wide-sense stationary processes

A very important subclass of stochastic processes consists of wide-sense stationary
(WSS) processes, which are required to satisfy the following properties:

1. The mean function mx�t� of the process is a constant mx for all t.

2. The autocorrelation function is independent of a time shift: Efx�t�x�t � ��g
= rx��� for all t.

3. The variance, or the mean-square value rx��� = Efx��t�g of the process is
finite.

The importance of wide-sense stationary stochastic processes stems from two facts.
First, they can often adequately describe the physical situation. Many practical
stochastic processes are actually at least mildly nonstationary, meaning that their
statistical properties vary slowly with time. However, such processes are usually
on short time intervals roughly WSS. Second, it is relatively easy to develop useful
mathematical algorithms for WSS processes. This in turn follows from limiting their
characterization by first- and second-order statistics.

Example 2.8 Consider the stochastic process

x�t� � a cos��t� � b sin��t� (2.113)

where a and b are scalar random variables and � a constant parameter (angular
frequency). The mean of the process x�t� is

mx�t� � Efx�t�g � Efag cos��t� � Efbg sin��t� (2.114)
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and its autocorrelation function can be written

rx�t� �� � Efx�t�x�t � ��g

�
�

�
Efa�g�cos����t� ��� � cos������

�
�

�
Efb�g�� cos����t� ��� � cos������

� Efabg�sin����t� ��� (2.115)

where we have used well-known trigonometric identities. Clearly, the process x�t�
is generally nonstationary, since both its mean and autocorrelation functions depend
on the time t.

However, if the random variables a and b are zero mean and uncorrelated with
equal variances, so that

Efag � Efbg � Efabg � 	 Efa�g � Efb�g

the mean (2.114) of the process becomes zero, and its autocorrelation function (2.115)
simplifies to

rx��� � Efa�g cos����

which depends only on the time lag � . Hence, the process is WSS in this special case
(assuming that Efa�g is finite).

Assume now that fx�t�g is a zero-mean WSS process. If necessary, the process
can easily be made zero mean by first subtracting its mean mx. It is sufficient to
consider the autocorrelation function rx��� of fx�t�g only, since the autocovariance
function cx��� coincides with it. The autocorrelation function has certain properties
that are worth noting. First, it is an even function of the time lag � :

rx���� � rx��� (2.116)

Another property is that the autocorrelation function achieves its maximum absolute
value for zero lag:

�rx�	� � rx��� � rx�	� (2.117)

The autocorrelation function rx��� measures the correlation of random variables
x�t� and x�t� �� that are � units apart in time, and thus provides a simple measure
for the dependence of these variables which is independent of the time t due to the
WSS property. Roughly speaking, the faster the stochastic process fluctuates with
time around its mean, the more rapidly the values of the autocorrelation function
rx��� decrease from their maximum rx�	� as � increases.

Using the integer notation for the samples x�i� of the stochastic process, we can
represent the last m�� samples of the stochastic process at time n using the random
vector

x�n� � �x�n�� x�n � ��� � � � � x�n�m��T (2.118)
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Assuming that the values of the autocorrelation function rx���� rx���� � � � � rx�m� are
known up to a lag of m samples, the �m� ��� �m� �� correlation (or covariance)
matrix of the process fx�n�g is defined by

Rx �

�
����

rx��� rx��� rx��� � � � rx�m�
rx��� rx��� rx��� � � � rx�m� ��

...
...

...
. . .

...
rx�m� rx�m� �� rx�m� �� � � � rx���

�
���� (2.119)

The matrix Rx satisfies all the properties of correlation matrices listed in Section
2.2.2. Furthermore, it is a Toeplitz matrix. This is generally defined so that on each
subdiagonal and on the diagonal, all the elements of Toeplitz matrix are the same.
The Toeplitz property is helpful, for example, in solving linear equations, enabling
use of faster algorithms than for more general matrices.

Higher-order statistics of a stationary stochastic process x�n� can be defined in an
analogous manner. In particular, the cumulants of x�n� have the form [315]

cumxx�j� � Efx�i�x�i� j�g

cumxxx�j� k� � Efx�i�x�i� j�x�i� k�g (2.120)

cumxxx�j� k� l� � Efx�i�x�i� j�x�i� k�x�i� l�g

� Efx�i�x�j�gEfx�k�x�l�g � Efx�i�x�k�gEfx�j�x�l�g

� Efx�i�x�l�gEfx�j�x�k�g

These definitions correspond to the formulas (2.106) given earlier for a general
random vectorx. Again, the second and third cumulant are the same as the respective
moments, but the fourth cumulant differs from the fourth moment Efx�i�x�i�j�x�i�
k�x�i � l�g. The second cumulant cumxx�j� is equal to the autocorrelation rx�j�
and autocovariance cx�j�.

2.8.4 Time averages and ergodicity

In defining the concept of a stochastic process, we noted that at each fixed time
instant t � t� the possible values x�t�� of the process constitute a random variable
having some probability distribution. An important practical problem is that these
distributions (which are different at different times if the process is nonstationary)
are not known, at least not exactly. In fact, often all that we have is just one sample of
the process corresponding to each discrete time index (since time cannot be stopped
to acquire more samples). Such a sample sequence is called a realization of the
stochastic process. In handling WSS processes, we need to know in most cases only
the mean and autocorrelation values of the process, but even they are often unknown.

A practical way to circumvent this difficulty is to replace the usual expectations of
the random variables, called ensemble averages, by long-term sample averages or time
averages computed from the available single realization. Assume that this realization
contains K samples x���� x���� � � � � x�K�. Applying the preceding principle, the
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mean of the process can be estimated using its time average

�mx�K� �
�

K

KX

k��

x�k� (2.121)

and the autocorrelation function for the lag value l using

�rx�l�K� �
�

K � l

K�lX

k��

x�k � l�x�k� (2.122)

The accuracy of these estimates depends on the number K of samples. Note also
that the latter estimate is computed over the K � l possible sample pairs having the
lag l that can be found from the sample set. The estimates (2.122) are unbiased, but
if the number of pairs K � l available for estimation is small, their variance can be
high. Therefore, the scaling factor K � l of the sum in (2.122) is often replaced by
K in order to reduce the variance of the estimated autocorrelation values �rx�l�K�,
even though the estimates then become biased [169]. As K � �, both estimates
tend toward the same value.

The stochastic process is called ergodic if the ensemble averages can be equated
to the respective time averages. Roughly speaking, a random process is ergodic with
respect to its mean and autocorrelation function if it is stationary. A more rigorous
treatment of the topic can be found for example in [169, 353, 141].

For mildly nonstationary processes, one can apply the estimation formulas (2.121)
and (2.122) by computing the time averages over a shorter time interval during which
the process can be regarded to be roughly WSS. It is important to keep this in
mind. Sometimes formula (2.122) is applied in estimating the autocorrelation values
without taking into account the stationarity of the process. The consequences can
be drastic, for example, rendering eigenvectors of the correlation matrix (2.119)
useless for practical purposes if ergodicity of the process is in reality a grossly invalid
assumption.

2.8.5 Power spectrum

A lot of insight into a WSS stochastic process is often gained by representing it in
the frequency domain. The power spectrum or spectral density of the process x�n�
provides such a representation. It is defined as the discrete Fourier transform of the
autocorrelation sequence rx���� rx���� � � � :

Sx��� �

�X

k���

rx�k� exp���k�� (2.123)

where � =
p
�� is the imaginary unit and � the angular frequency. The time

domain representation given by the autocorrelation sequence of the process can
be obtained from the power spectrum Sx��� by applying the inverse discrete-time
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Fourier transform

rx�k� �
�

��

Z �

��

Sx��� exp��k��d�� k � �� �� � � �
(2.124)

It is easy to see that the power spectrum (2.123) is always real-valued, even, and a
periodic function of the angular frequency �. Note also that the power spectrum is a
continuous function of �, while the autocorrelation sequence is discrete. In practice,
the power spectrum must be estimated from a finite number of autocorrelation values.
If the autocorrelation values rx�k�� � sufficiently quickly as the lag k grows large,
this provides an adequate approximation.

The power spectrum describes the frequency contents of the stochastic process,
showing which frequencies are present in the process and how much power they
possess. For a sinusoidal signal, the power spectrum shows a sharp peak at its
oscillating frequency. Various methods for estimating power spectra are discussed
thoroughly in the books [294, 241, 411].

Higher-order spectra can be defined in a similar manner to the power spectrum
as Fourier transforms of higher-order statistics [319, 318]. Contrary to the power
spectra, they retain information about the phase of signals, and have found many
applications in describing nongaussian, nonlinear, and nonminimum-phase signals
[318, 319, 315].

2.8.6 Stochastic signal models

A stochastic process whose power spectrum is constant for all frequencies� is called
white noise. Alternatively, white noise v�n� can be defined as a process for which
any two different samples are uncorrelated:

rv�k� � Efv�n�v�n� k�g �

�
��v � k � �

�� k � ������ � � � (2.125)

Here ��
v

is the variance of the white noise. It is easy to see that the power spectrum
of the white noise is Sv��� = ��v for all �, and that the formula (2.125) follows
from the inverse transform (2.124). The distribution of the random variable v�n�
forming the white noise can be any reasonable one, provided that the samples are
uncorrelated at different time indices. Usually this distribution is assumed to be
gaussian. The reason is that white gaussian noise is maximally random because any
two uncorrelated samples are also independent. Furthermore, such a noise process
cannot be modeled to yield an even simpler random process.

Stochastic processes or time series are frequently modeled in terms of autoregres-
sive (AR) processes. They are defined by the difference equation

x�n� � �

MX
i��

aix�n� i� � v�n� (2.126)
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where v�n� is a white noise process, and a�� � � � � aM are constant coefficients (pa-
rameters) of the AR model. The model orderM gives the number of previous samples
on which the current value x�n� of the AR process depends. The noise term v�n�
introduces randomness into the model; without it the AR model would be completely
deterministic. The coefficients a�� � � � � aM of the AR model can be computed us-
ing linear techniques from autocorrelation values estimated from the available data
[419, 241, 169]. Since the AR models describe fairly well many natural stochastic
processes, for example, speech signals, they are used in many applications. In ICA
and BSS, they can be used to model the time correlations in each source process
si�t�. This sometimes improves greatly the performance of the algorithms.

Autoregressive processes are a special case of autoregressive moving average
(ARMA) processes described by the difference equation

x�n� �

MX

i��

aix�n� i� � v�n� �

NX

i��

biv�n� i� (2.127)

Clearly, the AR model (2.126) is obtained from the ARMA model (2.127) when
the moving average (MA) coefficients b�� � � � � bN are all zero. On the other hand,
if the AR coefficients ai are all zero, the ARMA process (2.127) reduces to a MA
process of order N . The ARMA and MA models can also be used to describe
stochastic processes. However, they are applied less frequently, because estimation
of their parameters requires nonlinear techniques [241, 419, 411]. See the Appendix
of Chapter 19 for a discussion of the stability of the ARMA model and its utilization
in digital filtering.

2.9 CONCLUDING REMARKS AND REFERENCES

In this chapter, we have covered the necessary background on the theory of random
vectors, independence, higher-order statistics, and stochastic processes. Topics that
are needed in studying independent component analysis and blind source separation
have received more attention. Several books that deal more thoroughly with the
theory of random vectors exist; for example, [293, 308, 353]. Stochastic processes
are discussed in [141, 157, 353], and higher-order statistics in [386].

Many useful, well-established techniques of signal processing, statistics, and other
areas are based on analyzing random vectors and signals by means of their first- and
second-order statistics. These techniques have the virtue that they are usually fairly
easy to apply. Typically, second-order error criteria (for example, the mean-square
error) are used in context with them. In many cases, this leads to linear solutions that
are simple to compute using standard numerical techniques. On the other hand, one
can claim that techniques based on second-order statistics are optimal for gaussian
signals only. This is because they neglect the extra information contained in the
higher-order statistics, which is needed in describing nongaussian data. Independent
component analysis uses this higher-order statistical information, and is the reason
for which it is such a powerful tool.
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Problems

2.1 Derive a rule for computing the values of the cdf of the single variable gaussian
(2.4) from the known tabulated values of the error function (2.5).

2.2 Let x�� x�� � � � � xK be independent, identically distributed samples from a
distribution having a cumulative density function Fx�x�. Denote by y�� x�� � � � � yK
the sample set x�� x�� � � � � xK ordered in increasing order.

2.2.1. Show that the cdf and pdf of yK = maxfx�� � � � � xKg are

FyK �yK� � �Fx�yK��K

pyK �yK� � K�Fx�yK��K��px�yK�

2.2.2. Derive the respective expressions for the cdf and pdf of the random variable
y� = minfx�� � � � � xKg.

2.3 A two-dimensional random vector x = �x�� x��
T has the probability density

function

px�x� �

�
�

�
�x� � �x�� x�� x� � ��� 	�

� elsewhere

2.3.1. Show that this probability density is appropriately normalized.
2.3.2. Compute the cdf of the random vector x.
2.3.3. Compute the marginal distributions px��x�� and px��x��.

2.4 Computer the mean, second moment, and variance of a random variable dis-
tributed uniformly in the interval �a� b� (b � a).

2.5 Prove that expectations satisfy the linearity property (2.16).

2.6 Consider n scalar random variables xi, i � 	� 
� � � � � n, having, respectively,
the variances ��xi . Show that if the random variables xi are mutually uncorrelated,
the variance ��y of their sum y =

Pn

i�� xi equals the sum of the variances of the xi:

��y �

nX
i��

��xi

2.7 Assume that x� and x� are zero-mean, correlated random variables. Any
orthogonal transformation of x� and x� can be represented in the form

y� � cos���x� � sin���x�

y� � � sin���x� � cos���x�

where the parameter� defines the rotation angle of coordinate axes. Let Efx�
�
g = ��

�
,

Efx�
�
g = ��

�
, and Efx�x�g = �����. Find the angle � for which y� and y� become

uncorrelated.
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2.8 Consider the joint probability density of the random vectors x � �x�� x��
T

and y � y discussed in Example 2.6:

px�y�x�y� �

�
�x� � �x��y x�� x� � ��� �	� y � ��� �	

� elsewhere

2.8.1. Compute the marginal distributions px�x�, py�y�, px��x��, and px��x��.
2.8.2. Verify that the claims made on the independence of x�, x�, and y in

Example 2.6 hold.

2.9 Which conditions should the elements of the matrix

R �

�
a b

c d

�

satisfy so thatR could be a valid autocorrelation matrix of
2.9.1. A two-dimensional random vector?
2.9.2. A stationary scalar-valued stochastic process?

2.10 Show that correlation and covariance matrices satisfy the relationships (2.26)
and (2.32).

2.11 Work out Example 2.5 for the covariance matrixCx ofx, showing that similar
results are obtained. Are the assumptions required the same?

2.12 Assume that the inverseR��
x

of the correlation matrix of the n-dimensional
column random vector x exists. Show that

EfxTR��
x
xg � n

2.13 Consider a two-dimensional gaussian random vector x with mean vectormx

= �
� ��T and covariance matrix

Cx �

�

 ��
�� 


�

2.13.1. Find the eigenvalues and eigenvectors ofCx.
2.13.2. Draw a contour plot of the gaussian density similar to Figure 2.7.

2.14 Repeat the previous problem for a gaussian random vectorx that has the mean
vectormx = ��
� ��T and covariance matrix

Cx �

�

 �

�
 �

�

2.15 Assume that random variables x and y are linear combinations of two uncor-
related gaussian random variables u and v, defined by

x � �u� �v

y � 
u� v
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Assume that the mean values and variances of both u and v equal 1.
2.15.1. Determine the mean values of x and y.
2.15.2. Find the variances of x and y.
2.15.3. Form the joint density function of x and y.
2.15.4. Find the conditional density of y given x.

2.16 Show that the skewness of a random variable having a symmetric pdf is zero.

2.17 Show that the kurtosis of a gaussian random variable is zero.

2.18 Show that random variables having
2.18.1. A uniform distribution in the interval ��a� a�� a � �, are subgaussian.
2.18.2. A Laplacian distribution are supergaussian.

2.19 The exponential density has the pdf

px�x� �

�
� exp���x� x � �

� x � �

where � is a positive constant.
2.19.1. Compute the first characteristic function of the exponential distribution.
2.19.2. Using the characteristic function, determine the moments of the exponen-

tial density.

2.20 A scalar random variable x has a gamma distribution if its pdf is given by

px�x� �

�
�xb�� exp��cx� x � �

� x � �

where b and c are positive numbers and the parameter

� �
cb

��b�

is defined by the gamma function

��b� 	� �

Z
�

�

yb exp��y�dy� b � �	

The gamma function satisfies the generalized factorial condition ��b � 	� = b��b�.
For integer values, this becomes ��n� 	� = n
.

2.20.1. Show that if b � 	, the gamma distribution reduces to the standard
exponential density.

2.20.2. Show that the first characteristic function of a gamma distributed random
variable is

���� �
cb

�c� ���b
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2.20.3. Using the previous result, determine the mean, second moment, and
variance of the gamma distribution.

2.21 Let�k�x� and�k�y� be the kth-order cumulants of the scalar random variables
x and y, respectively.

2.21.1. Show that if x and y are independent, then

�k�x� y� � �k�x� � �k�y�

2.21.2. Show that �k��x� = �k�k�x�, where � is a constant.

2.22 * Show that the power spectrum Sx��� is a real-valued, even, and periodic
function of the angular frequency �.

2.23 * Consider the stochastic process

y�n� � x�n� k�� x�n� k�

where k is a constant integer andx�n� is a zero mean, wide-sense stationary stochastic
process. Let the power spectrum of x�n� be Sx��� and its autocorrelation sequence
rx���� rx���� � � � .

2.23.1. Determine the autocorrelation sequence ry�m� of the process y�n�.
2.23.2. Show that the power spectrum of y�n� is

Sy��� � �Sx��� sin
��k��

2.24 * Consider the autoregressive process (2.126).
2.24.1. Show that the autocorrelation function of the AR process satisfies the

difference equation

rx�l� � �
MX

i��

airx�l � i�� l � �

2.24.2. Using this result, show that the AR coefficients ai can be determined from
the Yule-Walker equations

Rxa � �rx

Here the autocorrelation matrix Rx defined in (2.119) has the value m = M � �, the
vector

rx � �rx���� rx�	�� � � � � rx�M�
T

and the coefficient vector
a � �a�� a�� � � � � aM 
T

2.24.3. Show that the variance of the white noise process v�n� in (2.126) is related
to the autocorrelation values by the formula

��v � rx��� �

MX

i��

airx�i�
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Computer assignments

2.1 Generate samples of a two-dimensional gaussian random vector x having zero
mean vector and the covariance matrix

Cx �

�
� ��
�� �

�

Estimate the covariance matrix and compare it with the theoretical one for the fol-
lowing numbers of samples, plotting the sample vectors in each case.

2.1.1. K � ��.
2.1.2. K � ���.
2.1.3. K � ����.

2.2 Consider generation of desired Laplacian random variables for simulation pur-
poses.

2.2.1. Using the probability integral transformation, give a formula for generating
samples of a scalar random variable with a desired Laplacian distribution from
uniformly distributed samples.

2.2.2. Extend the preceding procedure so that you get samples of two Laplacian
random variables with a desired mean vector and joint covariance matrix. (Hint: Use
the eigenvector decomposition of the covariance matrix for generating the desired
covariance matrix.)

2.2.3. Use your procedure for generating 200 samples of a two-dimensional
Laplacian random variable x with a mean vector mx = ������T and covariance
matrix

Cx �

�
� ��
�� �

�

Plot the generated samples.

2.3 * Consider the second-order autoregressive model described by the difference
equation

x�n� � a�x�n� �� � a�x�n� �� � v�n�

Here x�n� is the value of the process at time n, and v�n� is zero mean white gaussian
noise with variance ��v that “drives” the AR process. Generate 200 samples of the
process using the initial values x��� = x���� = 0 and the following coefficient values.
Plot the resulting AR process in each case.

2.3.1. a� � ���� and a� � ���	.
2.3.2. a� � ��� and a� � ���	.
2.3.3. a� � ���
�� and a� � ��
�.
2.3.4. a� � ��� and a� � ����.



3
Gradients and Optimization

Methods

The main task in the independent component analysis (ICA) problem, formulated in
Chapter 1, is to estimate a separating matrix W that will give us the independent
components. It also became clear thatW cannot generally be solved in closed form,
that is, we cannot write it as some function of the sample or training set, whose value
could be directly evaluated. Instead, the solution method is based on cost functions,
also called objective functions or contrast functions. SolutionsW to ICA are found
at the minima or maxima of these functions. Several possible ICA cost functions will
be given and discussed in detail in Parts II and III of this book. In general, statistical
estimation is largely based on optimization of cost or objective functions, as will be
seen in Chapter 4.

Minimization of multivariate functions, possibly under some constraints on the
solutions, is the subject of optimization theory. In this chapter, we discuss some
typical iterative optimization algorithms and their properties. Mostly, the algorithms
are based on the gradients of the cost functions. Therefore, vector and matrix
gradients are reviewed first, followed by the most typical ways to solve unconstrained
and constrained optimization problems with gradient-type learning algorithms.

3.1 VECTOR AND MATRIX GRADIENTS

3.1.1 Vector gradient

Consider a scalar valued function g of m variables

g � g�w�� ���� wm� � g�w�
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where we have used the notation w � �w�� ���� wm�
T . By convention, we define w

as a column vector. Assuming the function g is differentiable, its vector gradient with
respect to w is the m-dimensional column vector of partial derivatives

�g

�w
�

�
B�

�g
�w�

...
�g
�wm

�
CA (3.1)

The notation �g
�w

is just shorthand for the gradient; it should be understood that it
does not imply any kind of division by a vector, which is not a well-defined concept.
Another commonly used notation would berg orrwg.

In some iteration methods, we have also reason to use second-order gradients. We
define the second-order gradient of a function g with respect to w as

��g

�w�
�

�
BB�

��g

�w�

�

��� ��g
�w�wm

...
...

��g
�wmw�

��� ��g
�w�
m

�
CCA (3.2)

This is an m �m matrix whose elements are second order partial derivatives. It is
called the Hessian matrix of the function g�w�. It is easy to see that it is always
symmetric.

These concepts generalize to vector-valued functions; this means an n-element
vector

g�w� �

�
B�

g��w�
...

gn�w�

�
CA (3.3)

whose elements gi�w� are themselves functions ofw. The Jacobian matrix of gwith
respect to w is

�g

�w
�

�
B�

�g�
�w�

��� �gn
�w�

...
...

�g�
�wm

��� �gn
�wm

�
CA (3.4)

Thus the ith column of the Jacobian matrix is the gradient vector of gi�w� with
respect to w. The Jacobian matrix is sometimes denoted by Jg.

For computing the gradients of products and quotients of functions, as well as of
composite functions, the same rules apply as for ordinary functions of one variable.
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Thus

�f�w�g�w�

�w
�

�f�w�

�w
g�w� � f�w�

�g�w�

�w
(3.5)

�f�w��g�w�

�w
� �

�f�w�

�w
g�w�� f�w�

�g�w�

�w
��g��w� (3.6)

�f�g�w��

�w
� f ��g�w��

�g�w�

�w
(3.7)

The gradient of the composite function f�g�w�� can be generalized to any number
of nested functions, giving the same chain rule of differentiation that is valid for
functions of one variable.

3.1.2 Matrix gradient

In many of the algorithms encountered in this book, we have to consider scalar-valued
functions g of the elements of an m� n matrixW � �wij �:

g � g�W� � g�w��� ���� wij � ���� wmn� (3.8)

A typical function of this kind is the determinant ofW.
Of course, any matrix can be trivially represented as a vector by scanning the

elements row by row into a vector and reindexing. Thus, when considering the
gradient of g with respect to the matrix elements, it would suffice to use the notion
of vector gradient reviewed earlier. However, using the separate concept of matrix
gradient gives some advantages in terms of a simplified notation and sometimes
intuitively appealing results.

In analogy with the vector gradient, the matrix gradient means a matrix of the
same size m� n as matrixW, whose ijth element is the partial derivative of g with
respect to wij . Formally we can write

�g

�W
�

�
B�

�g
�w��

��� �g
�w�n

...
...

�g
�wm�

��� �g
�wmn

�
CA (3.9)

Again, the notation �g
�W

is just shorthand for the matrix gradient.
Let us look next at some examples on vector and matrix gradients. The formulas

presented in these examples will be frequently needed later in this book.

3.1.3 Examples of gradients

Example 3.1 Consider the simple linear functional ofw, or inner product

g�w� �

mX
i��

aiwi � a
T
w
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where a � �a����am�
T is a constant vector. The gradient is, according to (3.1),

�g

�w
�

�
B�

a�
...
am

�
CA (3.10)

which is the vector a. We can write

�aTw

�w
� a

Because the gradient is constant (independent of w), the Hessian matrix of g�w� �
a
T
w is zero.

Example 3.2 Next consider the quadratic form

g�w� � wT
Aw �

mX
i��

mX
j��

wiwjaij (3.11)

whereA � �aij� is a square m�m matrix. We have

�g

�w
�

�
B�

Pm

j�� wja�j �
Pm

i�� wiai�
...Pm

j�� wjamj �
Pm

i�� wiaim

�
CA (3.12)

which is equal to the vectorAw �AT
w. So,

�wT
Aw

�w
� Aw �AT

w

For symmetricA, this becomes �Aw.
The second-order gradient or Hessian becomes

��wT
Aw

�w�
�

�
B�

�a�� ��� a�m � am�

...
...

am� � a�m ��� �amm

�
CA (3.13)

which is equal to the matrixA�AT . IfA is symmetric, then the Hessian ofwT
Aw

is equal to �A.

Example 3.3 For the quadratic form (3.11), we might quite as well take the gradient
with respect toA, assuming now thatw is a constant vector. Then �wT

Aw

�aij
� wiwj .

Compiling this into matrix form, we notice that the matrix gradient is the m � m

matrixwwT .

Example 3.4 In some ICA models, we must compute the matrix gradient of the
determinant of a matrix. The determinant is a scalar function of the matrix elements
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consisting of multiplications and summations, and therefore its partial derivatives are
relatively simple to compute. Let us prove the following: IfW is an invertible square
m�m matrix whose determinant is denoted detW, then

�

�W
detW � �WT ��� detW� (3.14)

This is a good example for showing that a compact formula is obtained using the
matrix gradient; ifW were stacked into a long vector, and only the vector gradient
were used, this result could not be expressed so simply.

Instead of starting from scratch, we employ a well-known result from matrix
algebra (see, e.g., [159]), stating that the inverse of a matrixW is obtained as

W
�� �

�

detW
adj�W� (3.15)

with adj�W� the so-called adjoint ofW. The adjoint is the matrix

adj�W� �

�
�

W�� ��� Wn�

W�n ��� Wnn

�
A (3.16)

where the scalar numbers Wij are the so-called cofactors. The cofactor Wij is
obtained by first taking the �n � �� � �n � �� submatrix ofW that remains when
the ith row and jth column are removed, then computing the determinant of this
submatrix, and finally multiplying by ����i�j .

The determinant detW can also be expressed in terms of the cofactors:

detW �

nX
k��

wikWik (3.17)

Row i can be any row, and the result is always the same. In the cofactors Wik , none
of the matrix elements of the ith row appear, so the determinant is a linear function
of these elements. Taking now a partial derivative of (3.17) with respect to one of the
elements, say, wij , gives

� detW

�wij

�Wij

By definitions (3.9) and (3.16), this implies directly that

� detW

�W
� adj�W�T

But adj�W�T is equal to �detW��WT ��� by (3.15), so we have shown our result
(3.14).

This also implies that

� log j detWj

�W
�

�

j detWj

�j detWj

�W
� �WT ��� (3.18)

see (3.15). This is an example of the matrix gradient of a composite function
consisting of the log, absolute value, and det functions. This result will be needed
when the ICA problem is solved by maximum likelihood estimation in Chapter 9.
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3.1.4 Taylor series expansions of multivariate functions

In deriving some of the gradient type learning algorithms, we have to resort to Taylor
series expansions of multivariate functions. In analogy with the well-known Taylor
series expansion of a function g�w� of a scalar variable w,

g�w�� � g�w� �
dg

dw
�w� � w� � ���

d�g

dw�
�w� � w�� � ��� (3.19)

we can do a similar expansion for a function g�w� � g�w�� ���� wm� of m variables.
We have

g�w�� � g�w� � �
�g

�w
�T �w� �w� � ����w� �w�T

��g

�w�
�w� �w� � ���

(3.20)

where the derivatives are evaluated at the point w. The second term is the inner
product of the gradient vector with the vectorw��w, and the third term is a quadratic
form with the symmetric Hessian matrix ��g

�w� . The truncation error depends on the
distance kw��wk; the distance has to be small, if g�w�� is approximated using only
the first- and second-order terms.

The same expansion can be made for a scalar function of a matrix variable. The
second order term already becomes complicated because the second order gradient is
a four-dimensional tensor. But we can easily extend the first order term in (3.20), the
inner product of the gradient with the vectorw� �w, to the matrix case. Remember
that the vector inner product is defined as

�
�g

�w
�T �w� �w� �

mX

i��

�
�g

�w
�i�w

�

i � wi�

For the matrix case, this must become the sum
Pm

i��

Pm

j���
�g
�W

�ij�w
�

ij �wij�� This
is the sum of the products of corresponding elements, just like in the vectorial inner
product. This can be nicely presented in matrix form when we remember that for any
two matrices, say,A andB,

trace�AT
B� �

mX

i��

�AT
B�ii �

mX

i��

mX

j��

�A�ij �B�ij

with obvious notation. So, we have

g�W�� � g�W� � trace��
�g

�W
�T �W� �W�� � ��� (3.21)

for the first two terms in the Taylor series of a function g of a matrix variable.
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3.2 LEARNING RULES FOR UNCONSTRAINED OPTIMIZATION

3.2.1 Gradient descent

Many of the ICA criteria have the basic form of minimizing a cost function J �W�
with respect to a parameter matrixW, or possibly with respect to one of its columns
w. In many cases, there are also constraints that restrict the set of possible solutions.
A typical constraint is to require that the solution vector must have a bounded norm,
or the solution matrix has orthonormal columns.

For the unconstrained problem of minimizing a multivariate function, the most
classic approach is steepest descent or gradient descent. Let us consider in more
detail the case when the solution is a vector w; the matrix case goes through in a
completely analogous fashion.

In gradient descent, we minimize a function J �w� iteratively by starting from
some initial point w���, computing the gradient of J �w� at this point, and then
moving in the direction of the negative gradient or the steepest descent by a suitable
distance. Once there, we repeat the same procedure at the new point, and so on. For
t � �� �� ����we have the update rule

w�t� � w�t� ��� ��t�
�J �w�

�w
j
w�w�t��� (3.22)

with the gradient taken at the pointw�t� ��. The parameter ��t� gives the length of
the step in the negative gradient direction. It is often called the step size or learning
rate. Iteration (3.22) is continued until it converges, which in practice happens when
the Euclidean distance between two consequent solutions kw�t� �w�t � ��k goes
below some small tolerance level.

If there is no reason to emphasize the time or iteration step, a convenient shorthand
notation will be used throughout this book in presenting update rules of the preceding
type. Denote the difference between the new and old value by

w�t��w�t� �� � �w (3.23)

We can then write the rule (3.22) either as

�w � ��
�J �w�

�w

or even shorter as

�w � �
�J �w�

�w
The symbol� is read “is proportional to”; it is then understood that the vector on the
left-hand side, �w, has the same direction as the gradient vector on the right-hand
side, but there is a positive scalar coefficient by which the length can be adjusted. In
the upper version of the update rule, this coefficient is denoted by �. In many cases,
this learning rate can and should in fact be time dependent. Yet a third very convenient
way to write such update rules, in conformity with programming languages, is

w� w � �
�J �w�

�w
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where the symbol � means substitution, i.e., the value of the right-hand side is
computed and substituted in w.

Geometrically, a gradient descent step as in (3.22) means going downhill. The
graph of J �w� is the multidimensional equivalent of mountain terrain, and we are
always moving downwards in the steepest direction. This also immediately shows
the disadvantage of steepest descent: unless the function J �w� is very simple and
smooth, steepest descent will lead to the closest local minimum instead of a global
minimum. As such, the method offers no way to escape from a local minimum.
Nonquadratic cost functions may have many local maxima and minima. Therefore,
good initial values are important in initializing the algorithm.

Local minimum

Gradient vector minimum
Global

Fig. 3.1 Contour plot of a cost function with a local minimum.

As an example, consider the case of Fig. 3.1. A function J �w�is shown there as
a contour plot. In the region shown in the figure, there is one local minimum and one
global minimum. From the initial point chosen there, where the gradient vector has
been plotted, it is very likely that the algorithm will converge to the local minimum.

Generally, the speed of convergence can be quite low close to the minimum point,
because the gradient approaches zero there. The speed can be analyzed as follows.
Let us denote by w� the local or global minimum point where the algorithm will
eventually converge. From (3.22) we have

w�t��w� � w�t� ���w� � ��t�
�J �w�

�w
j
w�w�t��� (3.24)

Let us expand the gradient vector �J �w�
�w

element by element as a Taylor series around
the point w�, as explained in Section 3.1.4. Using only the zeroth- and first-order
terms, we have for the ith element

�J �w�

�wi

j
w�w�t��� �

�J �w�

�wi

jw�w� �

mX

j��

��J �w�

�wiwj

jw�w� �wj�t� ��� w
�
j � � ���
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Now, because w� is the point of convergence, the partial derivatives of the cost
function must be zero at w�. Using this result, and compiling the above expansion
into vector form, yields

�J �w�

�w
j
w�w�t��� � H�w���w�t � ���w�� � ���

whereH�w��is the Hessian matrix computed at the pointw � w
�. Substituting this

in (3.24) gives

w�t� �w� � �I� ��t�H�w����w�t� ���w��

This kind of convergence, which is essentially equivalent to multiplying a matrix
many times with itself, is called linear. The speed of convergence depends on the
learning rate and the size of the Hessian matrix. If the cost function J �w� is very
flat at the minimum, with second partial derivatives also small, then the Hessian is
small and the convergence is slow (for fixed ��t�). Usually, we cannot influence the
shape of the cost function, and we have to choose ��t�, given a fixed cost function.

The choice of an appropriate step length or learning rate ��t� is thus essential: too
small a value will lead to slow convergence. The value cannot be too large either: too
large a value will lead to overshooting and instability, which prevents convergence
altogether. In Fig. 3.1, too large a learning rate will cause the solution point to zigzag
around the local minimum. The problem is that we do not know the Hessian matrix
and therefore determining a good value for the learning rate is difficult.

A simple extension to the basic gradient descent, popular in neural network learn-
ing rules like the back-propagation algorithm, is to use a two-step iteration instead
of just one step like in (3.22), leading to the so-called momentum method. Neural
network literature has produced a large number of tricks for boosting steepest descent
learning by adjustable learning rates, clever choice of the initial value, etc. However,
in ICA, many of the most popular algorithms are still straightforward gradient descent
methods, in which the gradient of an appropriate contrast function is computed and
used as such in the algorithm.

3.2.2 Second-order learning

In numerical analysis, a large number of methods that are more efficient than plain
gradient descent have been introduced for minimizing or maximizing a multivariate
scalar function. They could be immediately used for the ICA problem. Their ad-
vantage is faster convergence in terms of the number of iterations required, but the
disadvantage quite often is increased computational complexity per iteration. Here
we consider second-order methods, which means that we also use the information
contained in the second-order derivatives of the cost function. Obviously, this infor-
mation relates to the curvature of the optimization terrain and should help in finding
a better direction for the next step in the iteration than just plain gradient descent.
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A good starting point is the multivariate Taylor series; see Section 3.1.4. Let us
develop the function J �w� in Taylor series around a pointw as

J �w�� � J �w� � �
�J �w�

�w
�T �w� �w� �

�

�
�w� �w�T

��J �w�

�w�
�w� �w� � ���

(3.25)

In trying to minimize the functionJ �w�, we ask what choice of the new pointw�

gives us the largest decrease in the value of J �w�. We can writew��w � 	w and

minimize the functionJ �w���J �w� � ��J �w�
�w

�T	w����	wT �
�
J �w�
�w� 	wwith

respect to 	w. The gradient of this function with respect to 	w is (see Example

3.2) equal to �J �w�
�w

� �
�
J �w�
�w� 	w; note that the Hessian matrix is symmetric. If the

Hessian is also positive definite, then the function will have a parabolic shape and the
minimum is given by the zero of the gradient. Setting the gradient to zero gives

	w � ��
��J �w�

�w�
��� �J �w�

�w

From this, the following second-order iteration rule emerges:

w
� � w� �

��J �w�

�w�
��� �J �w�

�w
(3.26)

where we have to compute the gradient and Hessian on the right-hand side at the
pointw.

Algorithm (3.26) is called Newton’s method, and it is one of the most efficient
ways for function minimization. It is, in fact, a special case of the well-known
Newton’s method for solving an equation; here it solves the equation that says that
the gradient is zero.

Newton’s method provides a fast convergence in the vicinity of the minimum,
if the Hessian matrix is positive definite there, but the method may perform poorly
farther away. A complete convergence analysis is given in [284]. It is also shown
there that the convergence of Newton’s method is quadratic; if w� is the limit of
convergence, then

kw� �w�k � �kw�w�k�

where � is a constant. This is a very strong mode of convergence. When the error on
the right-hand side is relatively small, its square can be orders of magnitude smaller.
(If the exponent is 
, the convergence is called cubic, which is somewhat better than
quadratic, although the difference is not as large as the difference between linear and
quadratic convergence.)

On the other hand, Newton’s method is computationally much more demanding
per one iteration than the steepest descent method. The inverse of the Hessian
has to be computed at each step, which is prohibitively heavy for many practical
cost functions in high dimensions. It may also happen that the Hessian matrix
becomes ill-conditioned or close to a singular matrix at some step of the algorithm,
which induces numerical errors into the iteration. One possible remedy for this is
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to regularize the algorithm by adding a diagonal matrix �I, with � small, to the
Hessian before inversion. This makes it better conditioned. This is the basis of the
Marquardt-Levenberg algorithm (see, e.g., [83]).

For error functions that can be expressed as the sum of error squares, one can apply
the so-called Gauss-Newton method instead of Newton’s method. It is intermediate
between the steepest descent and Newton’s method with respect to both the compu-
tational load and convergence speed. Also the conjugate gradient method provides a
similar compromise [46, 135, 284, 172, 407].

In ICA, these second-order methods in themselves are not often used, but the
FastICA algorithm uses an approximation of the Newton method that is tailored to
the ICA problem, and provides fast convergence with little computation per iteration.

3.2.3 The natural gradient and relative gradient

The gradient of a functionJ points in the steepest direction in the Euclidean orthog-
onal coordinate system. However, the parameter space is not always Euclidean but
has a Riemannian metric structure, as pointed out by Amari [4]. In such a case, the
steepest direction is given by the so-called natural gradient instead. Let us here only
consider the case of nonsingularm�m matrices, that are important in ICA learning
rules. It turns out that their space has a Riemannian structure with a conveniently
computable natural gradient.

Assume that we are at the pointW and wish to find a direction for a small matrix
increment �Wsuch that the value J �W � �W� is minimized, under the constraint
that the squared norm k�Wk� is constant. This is a very natural requirement, as
any step in a gradient algorithm for minimization of function g must consist of the
direction of the step and the length. Keeping the length constant, we search for the
optimal direction.

The squared norm is defined as a weighted matrix inner product

k�Wk� �� �W� �W �W

such that

� �W� �W �I�

mX

i�j��

��wij �
� � trace��WT �W�

Amari argues that, due to the Riemannian structure of the matrix space, this inner
product should have the following invariance:

� �W� �W �W�� �WM� �WM �WM

for any matrixM. PuttingM �W��, this gives

� �W� �W �W�� �WW��� �WW�� �I� trace��WT ����WT �WW����

Keeping this inner product constant, it was shown in [4] that the largest increment
for J �W � �W� is obtained in the direction of the natural gradient

�J

�Wnat

�
�J

�W
W

T
W
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So, the usual gradient at pointW must be multiplied from the right by the matrix
W

T
W. This results in the following natural gradient descent rule for the cost

function J �W�:

�W � �
�J

�W
W

T
W (3.27)

This kind of ICA learning rules will be discussed later in this book.
A related result was derived by Cardoso [71] from a slightly different starting-

point. Let us write the Taylor series of J �W � �W�:

J �W � �W� � J �W� � trace��
�J

�W
�T �W� � ���

Let us require that the displacement �W is always proportional toW itself, �W �
DW. We have

J �W �DW� � J �W� � trace��
�J

�W
�TDW� � ���

� J �W� � trace�DW�
�J

�W
�T � � ���

because by definition of the trace, trace�M�M�� � trace�M�M�� for any matrices
M��M� of a suitable size. This becomes

trace�D�
�J

�W
W

T �T � � trace��
�J

�W
W

T �TD�

The multiplier forD, or matrix �J

�W
W

T , is called the relative gradient by Cardoso.
It is the usual matrix gradient multiplied byWT .

The largest decrement in the value of J �W �DW� �J �W� is now obviously
obtained when the term trace�� �J

�W
W

T �TD� is minimized, which happens when D

is proportional to �� �J
�W
W

T �. Because �W � DW we have a gradient descent
learning rule

�W � ��
�J

�W
W

T �W

which is exactly the same as the natural gradient learning rule (3.27).

3.2.4 Stochastic gradient descent

Up to now, gradient methods were considered from a general point of view, without
assuming any specific form for the cost function J �W� or J �w�. In this section,
cost functions of a specific kind will be considered.

ICA, like many other statistical and neural network techniques, is a totally data-
dependent or data-driven technique. If we do not have any observation data, then we
cannot solve the problem at all. Therefore the ICA cost functions will depend on the
observation data. Typically, the cost functions have the form

J �w� � Efg�w�x�g (3.28)
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There x is the observation vector, that is modeled as a random vector with some
unknown density f�x�. The expectation in (3.28) is with respect to this density. In
practice, there must be a sample x����x���� ���� of these vectors available. Usually
this is the only data we have.

Especially in constrained optimization problems, the cost functions will be some-
what more complicated, but the core factor has the form of (3.28) and therefore we
consider this simplest case first. The steepest descent learning rule becomes

w�t� � w�t� ��� ��t�
�

�w
Efg�w�x�t��gj

w�w�t��� (3.29)

Again, the gradient vector is computed at the point w�t � ��. In practice, the
expectation is approximated by the sample mean of this function over the sample
x���� ����x�T �. This kind of algorithm, where the entire training set is used at every
step of the iteration to form the expectation, is called batch learning.

In principle, it is easy to form the gradient and Hessian of (3.28) because first and
second derivatives with respect to the elements of vector w can be taken inside the
expectation with respect to x; for instance,

�

�w
Efg�w�xg �

�

�w

Z
g�w� ��f���d� (3.30)

�

Z
�
�

�w
g�w� ���f���d� (3.31)

It suffices that function g�w�x� is twice differentiable with respect to the elements
of w for this operation to be allowed.

However, it may sometimes be tedious to compute the mean values or sample
averages of the appropriate functions at each iteration step. This is especially prob-
lematic if the sample x����x���� ���� is not fixed but new observations keep on coming
in the course of the iteration. The statistics of the sample vectors may also be slowly
varying, and the algorithm should be able to track this. In a learning paradigm
called on-line learning, the whole sample is not used in batch at each step of the
algorithm, but only the latest observation vector x�t� is used. Effectively, this means
that the expectation in the learning rule (3.29) is dropped and the on-line learning
rule becomes

w�t� � w�t� ��� ��t�
�

�w
g�w�x�j

w�w�t���� (3.32)

This leads to highly fluctuating directions of instantaneous gradients on subsequent
iteration steps, but the average direction in which the algorithm proceeds is still
roughly the direction of the steepest descent of the batch cost function. Generally,
stochastic gradient algorithms converge much slower than the respective steepest
descent algorithms. This is compensated by their often very low computational cost.
The computational load at one step of the iteration is considerably reduced; the value
of the function �

�w
g�w�x� has to be computed only once, for the vector x�t�. In
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the batch algorithm, when evaluating the function �

�w
Efg�w�x�g, this value must be

computed T times, once for each sample vector x�t�, then summed up and divided
by T .

The trade-off is that the on-line algorithm typically needs many more steps for
convergence. If the training sample is fixed, it must be used several times in the
algorithm. Typically the sample vectors x�t� are either picked one by one in a
cyclical order, or by random choice. The random ordering or shuffling is usually a
better choice. By running the algorithm over sufficiently many iterations over the
training set, a reasonable final accuracy can be achieved.

Examples of such stochastic gradient algorithms will be encountered later in this
book. Several learning algorithms of principal component analysis networks and the
well-known least-mean-squares algorithm, for example, are instantaneous stochastic
gradient algorithms.

Example 3.5 We assume that x satisfies the ICA model x � As, with the elements
of the source vector s statistically independent andA the mixing matrix. The problem
is to solve s andA, knowing x (or in practice, a sample from x). Due to the linearity
of this model, it is reasonable to look for the solution s as a linear function of x. One
way of doing this is to take a scalar variable y � w

T
x and try to solve the parameter

or weight vector w so that y will become equal to one of the elements of s. One
of the possible criteria for ICA, as we will see in Chapter 8, is to find y � w

T
x

such that it has maximal fourth order moment: Efy�g � Ef�wT
x��g � max. The

computational setting is such that we have a samplex����x���� ����x�T � of vectorsx,
and we should solve the vectorw that maximizes the fourth order moment of wT

x.
Now computing the gradient of the scalar function J �w� � Ef�wT

x��g gives
�J �w�
�w

� �Ef�wT
x��xg. Thus, a simple batch learning rule for the weight vector

w maximizing the cost function would be

w�t� � w�t� �� � ��t�Ef�w�t� ��Tx�t�	�x�t�g

or, in our shorthand notation introduced earlier,


w � Ef�wT
x��xg (3.33)

Note that the number 4 appearing in the gradient has been absorbed in the learn-
ing rate ��t�, whose magnitude has to be determined anyway. In practice, the
expectation at each step would be computed as the sample average over the sample
x����x���� ����x�T � as Ef�wT

x��xg � ��T
P

T

t���w
T
x�t�	�x�t�, where w is the

value of the solution vector at that iteration step.
There are some comments relating to this algorithm: first, we have a positive sign

in front of the gradient term because we actually wish to maximize, not minimize,
the cost function. So we are moving in the direction of the gradient, which shows
the direction in which the function grows fastest. Second, this is not a very good
algorithm for solving the maximization problem, because the norm of w has not
been constrained in any way; what would happen is that the norm or magnitude of
w would grow without bounds because it has the effect of increasing the value of
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the cost function. A simple normalization will solve this problem, as we will see in
Section 3.3.

3.2.5 Convergence of stochastic on-line algorithms *

A valid question is what exactly is the relation of the on-line learning algorithm (3.32)
to the corresponding batch algorithm (3.29): Does the on-line algorithm converge to
the same solution in theory? Mathematically, the two algorithms are quite different.
The batch algorithm is a deterministic iteration because the random vector x is
averaged out on the right-hand side. It can thus be analyzed with all the techniques
available for one-step iteration rules, like fixed points and contractive mappings. In
contrast, the on-line algorithm is a stochastic difference equation because the right-
hand side is a random vector, due to x�t�. Even the question of the convergence of
the algorithm is not straightforward, because the randomness causes fluctuations that
never die out unless they are deliberately frozen by letting the learning rate go to
zero.

The analysis of stochastic algorithms like (3.32) is the subject of stochastic approx-
imation; see, e.g., [253]. In brief, the analysis is based on the averaged differential
equation that is obtained from (3.32) by taking averages over x on the right-hand
side: the differential equation corresponding to (3.32) is

dw

dt
� �

�

�w
Efg�w�x�g (3.34)

This is in effect the continuous-time counterpart of the batch algorithm (3.29). Note
that the right-hand side is a function of w only; there is no dependence on x or t
(although, through expectation, it of course depends on the probability density of x).
Such differential equations are called autonomous, and they are the simplest ones to
analyze.

The theory of autonomous differential equations is very well understood. The only
possible points where the solution can converge are the fixed or stationary points,
i.e., roots of the right-hand side, because these are the points where the change in
w over time becomes zero. It is also well-known how by linearizing the right-hand
side with respect to w a stability analysis of these fixed points can be accomplished.
Especially important are the so-called asymptotically stable fixed points that are local
points of attraction.

Now, if the learning rate��t� is a suitably decreasing sequence, typically satisfying

�X

t��

��t� � � (3.35)

�X

t��

���t� � � (3.36)

and the nonlinearity g�w�x� satisfies some technical assumptions [253], then it can
be shown that the on-line algorithm (3.32) must converge to one of the asymptotically
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stable fixed points of the differential equation (3.34). These are also the convergence
points of the batch algorithm, so usually the two algorithms indeed result in the same
final solution. In practice, it is often possible to analyze the fixed points even if the
full convergence proof is intractable.

The conditions (3.35) are theoretical and do not necessarily work very well in
practice. Sometimes the learning rate is decreased at first, but then kept at a small
constant value. A good choice satisfying the conditions may be

��t� �
�

� � t

with � an appropriate constant (e.g., � � ���). This prevents the learning rate from
decreasing too quickly in the early phase of the iteration.

In many cases, however, on-line learning is used to provide a fast adaptation to a
changing environment. The learning rate is then kept constant. If the input data is
nonstationary, that is, its statistical structure changes as a function of time, this allows
the algorithm to track these changes, and adapt quickly to the changing environment.

Example 3.6 In Chapter 6, on-line PCA is discussed. One of the learning rules is as
follows:

�w � xy � y�w (3.37)

where y � w
T
x and x is a random vector. The question is where this on-line rule

might converge. We can now analyze it by forming the averaged ordinary differential
equation (ODE):

dw

dt
� Efx�xTw�� �wT

x��xTw�wg

� EfxxT gw� �wTEfxxT gw�w

� Cxw � �wT
Cxw�w

whereCx � EfxxT g is the covariance matrix of x (assumed zero-mean here). Note
that the average is taken over x, assuming w constant. The fixed points of the ODE
are given by solutions ofCxw� �wT

Cxw�w � �. As the termwT
Cxw is a scalar,

we know from elementary matrix algebra that all solutions w must be eigenvectors
of the matrix Cx. The numbers wT

Cxw are the corresponding eigenvalues. The
principal components of a random vector x are defined in terms of the eigenvectors,
as discussed in Chapter 6. With a somewhat deeper analysis, it can be shown [324]
that the only asymptotically stable fixed point is the eigenvector corresponding to the
largest eigenvalue, which gives the first principal component.

The example shows how an intractable stochastic on-line rule can be nicely ana-
lyzed by the powerful analysis tools existing for ODEs.
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3.3 LEARNING RULES FOR CONSTRAINED OPTIMIZATION

In many cases we have to minimize or maximize a function J �w� under some
additional conditions on the solution w. Generally, the constrained optimization
problem is formulated as

min J �w�� subject to Hi�w� � �� i � �� ���� k (3.38)

where J �w�, as before, is the cost function to be minimized and Hi�w� � �� i �
�� ���� k give a set of k constraint equations onw.

3.3.1 The Lagrange method

The most prominent and widely used way to take the constraints into account is the
method of Lagrange multipliers. We form the Lagrangian function

L�w� ��� ����� �k� � J �w� �

kX

i��

�iHi�w� (3.39)

where ��� ���� �k are called Lagrange multipliers. Their number k is the same as the
number of separate scalar constraint equations.

The general result is that the minimum point of the Lagrangian (3.39), where
its gradient is zero with respect to both w and all the �i gives the solution to the
original constrained optimization problem (3.38). The gradient of L�w� ��� ���� �k�
with respect to �i is simply the ith constraint function Hi�w�, so putting all these to
zero again gives the original constraint equations. The important point is that when
we form the gradient of L�w� ��� ���� �k� with respect tow and put it to zero,

�J �w�

�w
�

kX

i��

�i

�Hi�w�

�w
� � (3.40)

we have changed the minimization problem into a set of equations that is much easier
to solve.

A possible way to solve the two sets of equations, one set given by the constraints,
the other by (3.40), is, e.g., Newton iteration or some other appropriate iteration
method. These methods give learning rules that resemble the ones in the previous
section, but now instead of the gradient ofJ �w� only, the gradient ofL�w� ��� ���� �k�
will be used.

3.3.2 Projection methods

In most of the constrained optimization problems of this book, the constraints are
of the equality type and relatively simple: typically, we require that the norm of
w is constant, or some quadratic form of w is constant. We can then use another
constrained optimization scheme: projections on the constraint set. This means that
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we solve the minimization problem with an unconstrained learning rule, which might
be a simple steepest descent, Newton’s iteration, or whatever is most suitable, but
after each iteration step, the solution w at that time is projected orthogonally onto
the constraint set so that it satisfies the constraints.

Example 3.7 We continue Example 3.5 here. Let us consider the following con-
strained problem: Assumingx is a random vector,maximize the fourth-order moment
Ef�wT

x��g under the constraint kwk� � �. In the terminology of (3.38), the cost
function is J �w� � �Ef�wT

x��g (note that instead of minimization, we maximize,
hence the minus sign), and the only constraint equation is H�w� � kwk� � � � �.

Solving this by the Lagrange method, we formulate the Lagrangian as

L�w� �� � �Ef�wT
x��g� ��kwk� � ��

The gradient with respect to � again gives the constraint kwk��� � �. The gradient
with respect to w gives ��Ef�wT

x��xg � ���w�� We might try to solve the roots
of this, e.g., by Newton iteration, or by a simpler iteration of the form

	w � Ef�wT
x��xg �

�

�
w

with an appropriate learning rate and �. When comparing this to the learning rule
in Example 3.5, Eq. (3.33), we notice the additive linear term �

�
w; by choosing �

suitably, the growth in the norm of w can be controlled.
However, for this simple constraint, a much simpler way is the projection on the

constraint set. Let us consider simple steepest descent as in eq. (3.33). We only
have to normalize w after each step, which is equivalent to orthogonal projection of
w onto the unit sphere in the m-dimensional space. This unit sphere is the constraint
set. The learning rule becomes

w � w � �Ef�wT
x��xg (3.41)

w � w�kwk (3.42)

Exactly the same idea as in the preceding example applies to any cost function. This
will be utilized heavily in the ICA learning rules in the following chapters.

Sometimes a computationally easier learning rule can be obtained from an approx-
imation of the normalization. Consider steepest descent with the norm constraint,
and for simplicity let us write the update rule as

w � w � �g�w� (3.43)

w � w�kwk (3.44)

where we have denoted the gradient of the cost function by g�w�. Another way to
write this is

w�
w � �g�w�

kw � �g�w�k
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Now, assuming the learning rate � is small as is usually the case, at least in the later
iteration steps, we can expand this into a Taylor series with respect to � and get a
simplified constrained learning rule [323]. Omitting some intermediate steps, the
denominator becomes

kw� �g�w�k � �� �wTg�w�

where all terms proportional to ��or higher powers are omitted. The final result is

w � �g�w�

kw� �g�w�k
� w � �g�w� � ��g�w�Tw�w

The resulting learning rule has one extra term compared to the unconstrained rule
(3.43), and yet the norm ofw will stay approximately equal to one.

3.4 CONCLUDING REMARKS AND REFERENCES

More information on minimization algorithms in general can be found in books deal-
ing with nonlinear optimization, for example, [46, 135, 284], and their applications
[172, 407]. The speed of convergence of the algorithms is discussed in [284, 407]. A
good source for matrix gradients in general is [109]. The natural gradient is consid-
ered in detail in [118]. The momentum method and other extensions are covered in
[172]. Constrained optimization has been extensively discussed in [284]. Projection
on the unit sphere and the short-cut approximation for normalization has been dis-
cussed in [323, 324]. A rigorous analysis of the convergence of the stochastic on-line
algorithms is discussed in [253].

Problems

3.1 Show that the Jacobian matrix of the gradient vector �g
�w

with respect to w is
equal to the Hessian of g.

3.2 The trace of an m�m square matrixW is defined as the sum of its diagonal
elements

Pm

i�� wii. Compute its matrix gradient.

3.3 Show that the gradient of trace�WTMW� with respect toW, whereW is an
m� n matrix andM is an m�m matrix, is equal toMW�MTW.

3.4 Show that �
�W

log j detWj � �WT ���.

3.5 Consider the �� � matrix

W �

�
a b

c d

�

3.5.1. Compute the cofactors with respect to the first column, compute the deter-
minant, the adjoint matrix, and the inverse ofW as functions of a� b� c� d.

3.5.2. Verify in this special case that �
�W

log j detWj � �WT ���.
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3.6 Consider a cost function J �w� � G�wTx� where we can assume that x is a
constant vector. Assume that the scalar function G is twice differentiable.

3.6.1. Compute the gradient and Hessian of J �w� in the general case and in the
cases that G�t� � t� and G�t� � log cosh�t�.

3.6.2. Consider maximizing this function under the constraint that kwk � �.
Formulate the Lagrangian, its gradient (with respect to w), its Hessian, and the
Newton method for maximizing the Lagrangian.

3.7 Let p��� be a differentiable scalar function, x a constant vector, and W �
�w����wn� an m� n matrix with columnswi. Consider the cost function

J �W� �

nX

i��

log p�ui�

where ui � xTwi. Show that �

�W
J �W� � ���u�xT where u is the vector with

elements ui and ��u� is a certain function, defined element by element. Give the
form of this function. (Note: This matrix gradient is used in the maximum likelihood
approach to ICA, discussed in Chapter 9.)

3.8 Consider a general stochastic on-line ICA learning rule

�W � �I � g�y�yT �W

where y �Wx and g is a nonlinear function. Formulate
(a) the corresponding batch learning rule,
(b) the averaged differential equation.
Consider a stationary point of (a) and (b). Show that ifW is such that the elements

of y are zero-mean and independent, thenWis a stationary point.

3.9 Assume that we want to maximize a function F �w� on the unit sphere, i.e.,
under the constraint kwk � �. Prove that at the maximum, the gradient of F must
point in the same direction as w. In other words, the gradient must be equal to w
multiplied by a scalar constant. Use the Lagrangian method.

Computer assignments

Create a sample of two-dimensional gaussian dataxwith zero mean and covariance
matrix �

� �
� 	

�
�

Apply the stochastic on-line learning rule (3.37), choosing a random initial point
w and an appropriate learning rate. Try different choices for the learning rate and
see how it effects the convergence speed. Then, try to solve the same problem
using a batch learning rule by taking the averages on the right-hand side. Compare
the computational efforts of the on-line vs. batch learning rules at one step of the
iteration, and the number of steps needed for convergence in both algorithms. (Note:
The algorithm converges to the dominant eigenvector of the covariance matrix, which
can be solved in closed form.)



4
Estimation Theory

An important issue encountered in various branches of science is how to estimate the
quantities of interest from a given finite set of uncertain (noisy) measurements. This
is studied in estimation theory, which we shall discuss in this chapter.

There exist many estimation techniques developed for various situations; the
quantities to be estimated may be nonrandom or have some probability distributions
themselves, and they may be constant or time-varying. Certain estimation methods
are computationally less demanding but they are statistically suboptimal in many
situations, while statistically optimal estimation methods can have a very high com-
putational load, or they cannot be realized in many practical situations. The choice
of a suitable estimation method also depends on the assumed data model, which may
be either linear or nonlinear, dynamic or static, random or deterministic.

In this chapter, we concentrate mainly on linear data models, studying the esti-
mation of their parameters. The two cases of deterministic and random parameters
are covered, but the parameters are always assumed to be time-invariant. The meth-
ods that are widely used in context with independent component analysis (ICA) are
emphasized in this chapter. More information on estimation theory can be found in
books devoted entirely or partly to the topic, for example [299, 242, 407, 353, 419].

Prior to applying any estimation method, one must select a suitable model that
well describes the data, as well as measurements containing relevant information on
the quantities of interest. These important, but problem-specific issues will not be
discussed in this chapter. Of course, ICA is one of the models that can be used. Some
topics related to the selection and preprocessing of measurements are treated later in
Chapter 13.

77
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4.1 BASIC CONCEPTS

Assume there are T scalar measurements x���� x���� � � � � x�T � containing informa-
tion about the m quantities ��� ��� � � � � �m that we wish to estimate. The quantities �i
are called parameters hereafter. They can be compactly represented as the parameter
vector

� � ���� ��� � � � � �m�T (4.1)

Hence, the parameter vector � is an m-dimensional column vector having as its
elements the individual parameters. Similarly, the measurements can be represented
as the T -dimensional measurement or data vector1

xT � �x���� x���� � � � � x�T ��T (4.2)

Quite generally, an estimator �� of the parameter vector � is the mathematical
expression or function by which the parameters can be estimated from the measure-
ments:

�� � h�xT � � h�x���� x���� � � � � x�T �� (4.3)

For individual parameters, this becomes

��i � hi�xT �� i � �� � � � �m (4.4)

If the parameters �i are of a different type, the estimation formula (4.4) can be quite
different for different i. In other words, the components hi of the vector-valued
function h can have different functional forms. The numerical value of an estimator
��i, obtained by inserting some specific given measurements into formula (4.4), is
called the estimate of the parameter �i.

Example 4.1 Two parameters that are often needed are the mean � and variance ��

of a random variable x. Given the measurement vector (4.2), they can be estimated
from the well-known formulas, which will be derived later in this chapter:

�� �
�

T

TX

j��

x�j� (4.5)

��� �
�

T � �

TX

j��

�x�j� � ���� (4.6)

1The data vector consisting of T subsequent scalar samples is denoted in this chapter by xT for distin-
guishing it from the ICA mixture vector x, whose components consist of different mixtures.
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Example 4.2 Another example of an estimation problem is a sinusoidal signal in
noise. Assume that the measurements obey the measurement (data) model

x�j� � A sin��t�j� � �� � v�j�� j � �� � � � � T (4.7)

Here A is the amplitude, � the angular frequency, and � the phase of the sinusoid,
respectively. The measurements are made at different time instants t�j�, which are
often equispaced. They are corrupted by additive noise v�j�, which is often assumed
to be zero mean white gaussian noise. Depending on the situation, we may wish to
estimate some of the parameters A, �, and �, or all of them. In the latter case, the
parameter vector becomes � = �A��� ��T . Clearly, different formulas must be used
for estimating A, �, and �. The amplitude A depends linearly on the measurements
x�j�, while the angular frequency � and the phase � depend nonlinearly on the x�j�.
Various estimation methods for this problem are discussed, for example, in [242].

Estimation methods can be divided into two broad classes depending on whether
the parameters � are assumed to be deterministic constants, or random. In the
latter case, it is usually assumed that the parameter vector � has an associated
probability density function (pdf) p����. This pdf, called a priori density, is in
principle assumed to be completely known. In practice, such exact information is
seldom available. Rather, the probabilistic formalism allows incorporation of useful
but often somewhat vague prior information on the parameters into the estimation
procedure for improving the accuracy. This is done by assuming a suitable prior
distribution reflecting knowledge about the parameters. Estimation methods using
the a priori distribution p���� are often called Bayesian ones, because they utilize
the Bayes’ rule discussed in Section 4.6.

Another distinction between estimators can be made depending on whether they
are of batch type or on-line. In batch type estimation (also called off-line estimation),
all the measurements must first be available, and the estimates are then computed
directly from formula (4.3). In on-line estimation methods (also called adaptive or
recursive estimation), the estimates are updated using new incoming samples. Thus
the estimates are computed from the recursive formula

���j � �� � h�����j�� � h��x�j � ��� ���j�� (4.8)

where ���j� denotes the estimate based on j first measurements x���� x����� � � � x�j�.
The correction or update term h��x�j���� ���j�� depends only on the new incoming
�j ���-th sample x�j � �� and the current estimate ���j�. For example, the estimate
�� of the mean in (4.5) can be computed on-line as follows:

���j� �
j � �

j
���j � �� �

�

j
x�j� (4.9)
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4.2 PROPERTIES OF ESTIMATORS

Now briefly consider properties that a good estimator should satisfy.
Generally, assessing the quality of an estimate is based on the estimation error,

which is defined by

�� � � � �� � � � h�xT � (4.10)

Ideally, the estimation error �� should be zero, or at least zero with probability one.
But it is impossible to meet these extremely stringent requirements for a finite data
set. Therefore, one must consider less demanding criteria for the estimation error.

Unbiasedness and consistency The first requirement is that the mean value
of the error Ef��g should be zero. Taking expectations of the both sides of Eq. (4.10)
leads to the condition

Ef��g � Ef�g (4.11)

Estimators that satisfy the requirement (4.11) are called unbiased. The preceding def-
inition is applicable to random parameters. For nonrandomparameters, the respective
definition is

Ef�� j �g � � (4.12)

Generally, conditional probability densities and expectations, conditioned by the
parameter vector �, are used throughout in dealing with nonrandom parameters to
indicate that the parameters � are assumed to be deterministic constants. In this case,
the expectations are computed over the random data only.

If an estimator does not meet the unbiasedness conditions (4.11) or (4.12). it
is said to be biased. In particular, the bias b is defined as the mean value of the
estimation error:

b � Ef��g, or b � Ef�� j �g (4.13)

If the bias approaches zero as the number of measurements grows infinitely large, the
estimator is called asymptotically unbiased.

Another reasonable requirement for a good estimator �� is that it should converge
to the true value of the parameter vector�, at least in probability,2 when the number of
measurements grows infinitely large. Estimators satisfying this asymptotic property
are called consistent. Consistent estimators need not be unbiased; see [407].

Example 4.3 Assume that the observations x���� x���� � � � � x�T � are independent.
The expected value of the sample mean (4.5) is

Ef��g �
�

T

TX

j��

Efx�j�g �
�

T
T� � � (4.14)

2See for example [299, 407] for various definitions of stochastic convergence.



PROPERTIES OF ESTIMATORS 81

Thus the sample mean is an unbiased estimator of the true mean�. It is also consistent,
which can be seen by computing its variance

Ef���� ���g �
�

T �

TX

j��

Ef�x�j�� ���g �
�

T �
T�� �

��

T
(4.15)

The variance approaches zero when the number of samples T � �, implying
together with unbiasedness that the sample mean (4.5) converges in probability to the
true mean �.

Mean-square error It is useful to introduce a scalar-valued loss function L����
for describing the relative importance of specific estimation errors ��. A popular loss
function is the squared estimation error L���� = k �� k� = k � � �� k� because of its
mathematical tractability. More generally, typical properties required from a valid
loss function are that it is symmetric: L���� = L�����; convex or alternatively at least
nondecreasing; and (for convenience) that the loss corresponding to zero error is
zero: L��� = 0. The convexity property guarantees that the loss function decreases
as the estimation error decreases. See [407] for details.

The estimation error �� is a random vector depending on the (random) measurement
vector xT . Hence, the value of the loss function L���� is also a random variable. To
obtain a nonrandom error measure, is is useful to define the performance index or
error criterion E as the expectation of the respective loss function. Hence,

E � EfL����g or E � EfL���� j �g (4.16)

where the first definition is used for random parameters � and the second one for
deterministic ones.

A widely used error criterion is the mean-square error (MSE)

EMSE � Efk � � �� k�g (4.17)

If the mean-square error tends asymptotically to zero with increasing number of
measurements, the respective estimator is consistent. Another important property of
the mean-square error criterion is that it can be decomposed as (see (4.13))

EMSE � Efk �� � b k�g� k b k� (4.18)

The first term Efk �� � b k�g on the right-hand side is clearly the variance of the
estimation error ��. Thus the mean-square error EMSE measures both the variance
and the bias of an estimator ��. If the estimator is unbiased, the mean-square error
coincides with the variance of the estimator. Similar definitions hold for deterministic
parameters when the expectations in (4.17) and (4.18) are replaced by conditional
ones.

Figure 4.1 illustrates the bias b and standard deviation� (square root of the variance
��) for an estimator �� of a single scalar parameter �. In a Bayesian interpretation
(see Section 4.6), the bias and variance of the estimator �� are, respectively, the mean
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�

b

�

E����

p���jx�

��

Fig. 4.1 Bias b and standard deviation � of an estimator ��.

and variance of the posterior distribution p
��jxT

��� j x� of the estimator �� given the
observed data xT .

Still another useful measure of the quality of an estimator is given by the covariance
matrix of the estimation error

C��
� Ef����

T

g � Ef�� � ����� � ���T g (4.19)

It measures the errors of individual parameter estimates, while the mean-square error
is an overall scalar error measure for all the parameter estimates. In fact, the mean-
square error (4.17) can be obtained by summing up the diagonal elements of the error
covariance matrix (4.19), or the mean-square errors of individual parameters.

Efficiency An estimator that provides the smallest error covariance matrix among
all unbiased estimators is the best one with respect to this quality criterion. Such
an estimator is called an efficient one, because it optimally uses the information
contained in the measurements. A symmetric matrix A is said to be smaller than
another symmetric matrix B, or A � B, if the matrixB�A is positive definite.

A very important theoretical result in estimation theory is that there exists a lower
bound for the error covariance matrix (4.19) of any estimator based on available
measurements. This is provided by the Cramer-Rao lower bound. In the following
theorem, we formulate the Cramer-Rao lower bound for unknown deterministic
parameters.
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Theorem 4.1 [407] If �� is any unbiased estimator of � based on the measurement
data x, then the covariance matrix of error in the estimator is bounded below by the
inverse of the Fisher information matrix J:

Ef�� � ����� � ���T j �g � J
�� (4.20)

where

J � E

��
�

��
ln p�xT j ��

� �
�

��
ln p�xT j ��

�T
j �

�
(4.21)

Here it is assumed that the inverse J
�� exists. The term �

��
ln p�xT j �� is

recognized to be the gradient vector of the natural logarithm of the joint distribu-
tion3 p�xT j �� of the measurements xT for nonrandom parameters �. The partial
derivatives must exist and be absolutely integrable.

It should be noted that the estimator �� must be unbiased, otherwise the preceding
theorem does not hold. The theorem cannot be applied to all distributions (for
example, to the uniform one) because of the requirement of absolute integrability of
the derivatives. It may also happen that there does not exist any estimator achieving
the lower bound. Anyway, the Cramer-Rao lower bound can be computed for many
problems, providing a useful measure for testing the efficiency of specific estimation
methods designed for those problems. A more thorough discussion of the Cramer-
Rao lower bound with proofs and results for various types of parameters can be found,
for example, in [299, 242, 407, 419]. An example of computing the Cramer-Rao
lower bound will be given in Section 4.5.

Robustness In practice, an important characteristic of an estimator is its ro-
bustness [163, 188]. Roughly speaking, robustness means insensitivity to gross
measurement errors, and errors in the specification of parametric models. A typical
problem with many estimators is that they may be quite sensitive to outliers, that is,
observations that are very far from the main bulk of data. For example, consider the
estimation of the mean from ��� measurements. Assume that all the measurements
(but one) are distributed between �� and �, while one of the measurements has the
value ����. Using the simple estimator of the mean given by the sample average
in (4.5), the estimator gives a value that is not far from the value ��. Thus, the
single, probably erroneous, measurement of ���� had a very strong influence on the
estimator. The problem here is that the average corresponds to minimization of the
squared distance of measurements from the estimate [163, 188]. The square function
implies that measurements far away dominate.

Robust estimators can be obtained, for example, by considering instead of the
square error other optimization criteria that grow slower than quadratically with
the error. Examples of such criteria are the absolute value criterion and criteria

3We have here omitted the subscript x j � of the density function p�x j �� for notational simplicity. This
practice is followed in this chapter unless confusion is possible.
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that saturate as the error grows large enough [83, 163, 188]. Optimization criteria
growing faster than quadratically generally have poor robustness, because a few
large individual errors corresponding to the outliers in the data may almost solely
determine the value of the error criterion. In the case of estimating the mean, for
example, one can use the median of measurements instead of the average. This
corresponds to using the absolute value in the optimization function, and gives a very
robust estimator: the single outlier has no influence at all.

4.3 METHOD OF MOMENTS

One of the simplest and oldest estimation methods is the method of moments. It is
intuitively satisfying and often leads to computationally simple estimators, but on the
other hand, it has some theoretical weaknesses. We shall briefly discuss the moment
method because of its close relationship to higher-order statistics.

Assume now that there areT statistically independent scalar measurements or data
samples x���� x���� � � � � x�T � that have a common probability distribution p�x j ��
characterized by the parameter vector � = ���� ��� � � � � �m�T in (4.1). Recall from
Section 2.7 that the jth moment �j of x is defined by

�j � Efxj j �g �

Z
�

��

xjp�x j ��dx� j � �� �� � � � (4.22)

Here the conditional expectations are used to indicate that the parameters � are
(unknown) constants. Clearly, the moments �j are functions of the parameters �.

On the other hand, we can estimate the respective moments directly from the
measurements. Let us denote by dj the jth estimated moment, called the jth sample
moment. It is obtained from the formula (see Section 2.2)

dj �
�

T

TX
i��

�x�i��j (4.23)

The simple basic idea behind the method of moments is to equate the theoretical
moments �j with the estimated ones dj :

�j��� � �j���� ��� � � � � �m� � dj (4.24)

Usually, m equations for the m first moments j � �� � � � �m are sufficient for
solving the m unknown parameters ��� ��� � � � � �m. If Eqs. (4.24) have an acceptable
solution, the respective estimator is called the moment estimator, and it is denoted in
the following by ��MM .

Alternatively, one can use the theoretical central moments

�j � Ef�x� ���
j j �g (4.25)

and the respective estimated sample central moments

sj �
�

T � �

TX
i��

�x�i�� d��
j (4.26)
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to form the m equations

�j���� ��� � � � � �m� � sj � j � �� �� � � � �m (4.27)

for solving the unknown parameters � = ���� ��� � � � � �m�
T .

Example 4.4 Assume now that x���� x���� � � � � x�T � are independent and identi-
cally distributed samples from a random variable x having the pdf

p�x j �� �
�

��
exp

�
�
�x� ���

��

�
(4.28)

where �� � x � � and �� � �. We wish to estimate the parameter vector � =
���� ���

T using the method of moments. For doing this, let us first compute the
theoretical moments �� and ��:

�� � Efx j �g �
Z
�

��

x

��
exp

�
�
�x� ���

��

�
dx � �� � �� (4.29)

�� � Efx� j �g �
Z
�

��

x�

��
exp

�
�
�x� ���

��

�
dx � ��� � ���

� � ��
�

(4.30)

The moment estimators are obtained by equating these expressions with the first two
sample moments d� and d�, respectively, which yields

�� � �� � d� (4.31)

��� � ���
� � ��

�
� d� (4.32)

Solving these two equations leads to the moment estimates

����MM � d� � �d� � d�
�
���� (4.33)

����MM � �d� � d�
�
���� (4.34)

The other possible solution ����MM = ��d� � d�
�
���� must be rejected because the

parameter �� must be positive. In fact, it can be observed that ����MM equals the
sample estimate of the standard deviation, and ����MM can be interpreted as the mean
minus the standard deviation of the distribution, both estimated from the available
samples.

The theoretical justification for the method of moments is that the sample moments
dj are consistent estimators of the respective theoretical moments�j [407]. Similarly,
the sample central moments sj are consistent estimators of the true central moments
�j . A drawback of the moment method is that it is often inefficient. Therefore, it
is usually not applied provided that other, better estimators can be constructed. In
general, no claims can be made on the unbiasedness and consistency of estimates
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given by the method of moments. Sometimes the moment method does not even lead
to an acceptable estimator.

These negative remarks have implications in independent component analysis. Al-
gebraic, cumulant-based methods proposed for ICA are typically based on estimating
fourth-order moments and cross-moments of the components of the observation (data)
vectors. Hence, one could claim that cumulant-based ICA methods inefficiently uti-
lize, in general, the information contained in the data vectors. On the other hand,
these methods have some advantages. They will be discussed in more detail in
Chapter 11, and related methods can be found in Chapter 8 as well.

4.4 LEAST-SQUARES ESTIMATION

4.4.1 Linear least-squares method

The least-squares method can be regarded as a deterministic approach to the es-
timation problem where no assumptions on the probability distributions, etc., are
necessary. However, statistical arguments can be used to justify the least-squares
method, and they give further insight into its properties. Least-squares estimation is
discussed in numerous books, in a more thorough fashion from estimation point-of-
view, for example, in [407, 299].

In the basic linear least-squares method, the T -dimensional data vectors xT are
assumed to obey the following model:

xT �H� � vT (4.35)

Here � is again the m-dimensional parameter vector, and vT is a T -vector whose
components are the unknown measurement errors v�j�� j � �� � � � � T . The T �m

observation matrix H is assumed to be completely known. Furthermore, the number
of measurements is assumed to be at least as large as the number of unknown
parameters, so that T � m. In addition, the matrix H has the maximum rank m.

First, it can be noted that if m � T , we can set vT = �, and get a unique solution
� = H��xT . If there were more unknown parameters than measurements (m � T ),
infinitely many solutions would exist for Eqs. (4.35) satisfying the condition v =
�. However, if the measurements are noisy or contain errors, it is generally highly
desirable to have much more measurements than there are parameters to be estimated,
in order to obtain more reliable estimates. So, in the following we shall concentrate
on the case T � m.

When T � m, equation (4.35) has no solution for which vT = �. Because the
measurement errors vT are unknown, the best that we can then do is to choose an
estimator �� that minimizes in some sense the effect of the errors. For mathematical
convenience, a natural choice is to consider the least-squares criterion

ELS �
�

�
k vT k

��
�

�
�xT �H��T �xT �H�� (4.36)
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Note that this differs from the error criteria in Section 4.2 in that no expectation is
involved and the criterion ELS tries to minimize the measurement errors v, and not
directly the estimation error � � ��.

Minimization of the criterion (4.36) with respect to the unknown parameters �
leads to so-called normal equations [407, 320, 299]

�HT
H���LS � H

T
xT (4.37)

for determining the least-squares estimate ��LS of �. It is often most convenient to
solve ��LS from these linear equations. However, because we assumed that the matrix
H has full rank, we can explicitly solve the normal equations, getting

��LS � �HT
H���HT

xT �H
�
xT (4.38)

whereH� = �HT
H���HT is the pseudoinverse ofH (assuming thatH has maximal

rank m and more rows than columns: T � m) [169, 320, 299].
The least-squares estimator can be analyzed statistically by assuming that the

measurement errors have zero mean: EfvT g = �. It is easy to see that the least-
squares estimator is unbiased: Ef��LS j �g = �. Furthermore, if the covariance
matrix of the measurement errors Cv = EfvTvTT g is known, one can compute the
covariance matrix (4.19) of the estimation error. These simple analyses are left as an
exercise to the reader.

Example 4.5 The least-squares method is commonly applied in various branches of
science to linear curve fitting. The general setting here is as follows. We try to fit to
the measurements the linear model

y�t� �

mX

i��

ai�i�t� � v�t� (4.39)

Here �i�t�, i � �� �� � � � �m, are m basis functions that can be generally nonlinear
functions of the argument t — it suffices that the model (4.39) be linear with respect
to the unknown parameters ai. Assume now that there are available measurements
y�t��� y�t��� � � � � y�tT � at argument values t�� t�� � � � � tT , respectively. The linear
model (4.39) can be easily written in the vector form (4.35), where now the parameter
vector is given by

� � �a�� a�� � � � � am�T (4.40)

and the data vector by

xT � �y�t��� y�t��� � � � � y�tT ��
T (4.41)

Similarly, the vector vT = �v�t��� v�t��� � � � � v�tT ��
T contains the error terms v�ti�.

The observation matrix becomes

H �

�
����

���t�� ���t�� � � � �m�t��
���t�� ���t�� � � � �m�t��

...
...

. . .
...

���tT � ���tT � � � � �m�tT �

�
���� (4.42)
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Inserting the numerical values into (4.41) and (4.42) one can now determine H and
xT , and then compute the least-squares estimates �ai�LS of the parameters ai of the
curve from the normal equations (4.37) or directly from (4.38).

The basis functions �i�t� are often chosen so that they satisfy the orthonormality
conditions

TX

i��

�j�ti��k�ti� �

�
�� j � k

�� j �� k
(4.43)

Now H
T
H = I, since Eq. (4.43) represents this condition for the elements �j� k� of

the matrixHT
H. This implies that the normal equations (4.37) reduce to the simple

form ��LS = HT
xT . Writing out this equation for each component of ��LS provides

for the least-squares estimate of the parameter ai

�ai�LS �

TX
j��

�i�tj�y�tj�� i � �� � � � �m (4.44)

Note that the linear data model (4.35) employed in the least-squares method re-
sembles closely the noisy linear ICA modelx =As�n to be discussed in Chapter 15.
Clearly, the observation matrix H in (4.35) corresponds to the mixing matrix A, the
parameter vector � to the source vector s, and the error vector v to the noise vector
n in the noisy ICA model. These model structures are thus quite similar, but the
assumptions made on the models are clearly different. In the least-squares model the
observation matrix H is assumed to be completely known, while in the ICA model
the mixing matrix A is unknown. This lack of knowledge is compensated in ICA
by assuming that the components of the source vector s are statistically independent,
while in the least-squares model (4.35) no assumptions are needed on the parameter
vector �. Even though the models look the same, the different assumptions lead to
quite different methods for estimating the desired quantities.

The basic least-squares method is simple and widely used. Its success in practice
depends largely on how well the physical situation can be described using the linear
model (4.35). If the model (4.35) is accurate for the data and the elements of the
observation matrix H are known from the problem setting, good estimation results
can be expected.

4.4.2 Nonlinear and generalized least-squares estimators *

Generalized least-squares The least-squares problem can be generalized by
adding a symmetric and positive definite weighting matrixW to the criterion (4.36).
The weighted criterion becomes [407, 299]

EWLS � �xT �H��TW�xT �H�� (4.45)

It turns out that a natural, optimal choice for the weighting matrixW is the inverse of
the covariance matrix of the measurement errors (noise) W = C��

v
. This is because
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for this choice the resulting generalized least-squares estimator

��WLS � �HT
C
��

v
H���HT

C
��

v
xT (4.46)

also minimizes the mean-square estimation error EMSE = Efk � � �� k�j �g [407,
299]. Here it is assumed that the estimator �� is linear and unbiased. The estimator
(4.46) is often referred to as the best linear unbiased estimator (BLUE) or Gauss-
Markov estimator.

Note that (4.46) reduces to the standard least-squares solution (4.38) if Cv = ��I.
This happens, for example, when the measurement errors v�j� have zero mean and
are mutually independent and identically distributed with a common variance��. The
choiceCv = ��I also applies if we have no prior knowledge of the covariance matrix
Cv of the measurement errors. In these instances, the best linear unbiased estimator
(BLUE) minimizing the mean-square error coincides with the standard least-squares
estimator. This connection provides a strong statistical argument supporting the
use of the least-squares method, because the mean-square error criterion directly
measures the estimation error � � ��.

Nonlinear least-squares The linear data model (4.35) employed in the linear
least-squares methods is not adequate for describing the dependence between the
parameters � and the measurements xT in many instances. It is therefore natural to
consider the following more general nonlinear data model

xT � f��� � vT (4.47)

Here f is a vector-valued nonlinear and continuously differentiable function of the
parameter vector �. Each component fi��� of f��� is assumed to be a known scalar
function of the components of �.

Similarly to previously, the nonlinear least-squares criterion ENLS is defined as
the squared sum of the measurement (or modeling) errors k vT k� =

P
j �v�j��

�.
From the model (4.47), we get

ENLS � �xT � f����T �xT � f���� (4.48)

The nonlinear least-squares estimator ��NLS is the value of � that minimizes ENLS.
The nonlinear least-squares problem is thus nothing but a nonlinear optimization
problem where the goal is to find the minimum of the function ENLS . Such problems
cannot usually be solved analytically, but one must resort to iterative numerical
methods for finding the minimum. One can use any suitable nonlinear optimization
method for finding the estimate ��NLS. These optimization procedures are discussed
briefly in Chapter 3 and more thoroughly in the books referred to there.

The basic linear least-squares method can be extended in several other directions.
It generalizes easily to the case where the measurements (made, for example, at
different time instants) are vector-valued. Furthermore, the parameters can be time-
varying, and the least-squares estimator can be computed adaptively (recursively).
See, for example, the books [407, 299] for more information.
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4.5 MAXIMUM LIKELIHOOD METHOD

Maximum likelihood (ML) estimator assumes that the unknown parameters � are
constants or there is no prior information available on them. The ML estimator has
several asymptotic optimality properties that make it a theoretically desirable choice
especially when the number of samples is large. It has been applied to a wide variety
of problems in many application areas.

The maximum likelihood estimate ��ML of the parameter vector � is chosen to be
the value ��ML that maximizes the likelihood function (joint distribution)

p�xT j �� � p�x���� x���� � � � � x�T � j �� (4.49)

of the measurements x���� x���� � � � � x�T �. The maximum likelihood estimator
corresponds to the value ��ML that makes the obtained measurements most likely.

Because many density functions contain an exponential function, it is often more
convenient to deal with the log likelihood function ln p�xT j ��. Clearly, the max-
imum likelihood estimator ��ML also maximizes the log likelihood. The maximum
likelihood estimator is usually found from the solutions of the likelihood equation

�

��
ln p�xT j ��

����
����ML

� � (4.50)

The likelihood equation gives the values of � that maximize (or minimize) the
likelihood function. If the likelihood function is complicated, having several local
maxima and minima, one must choose the value ��ML that corresponds to the absolute
maximum. Sometimes the maximum likelihood estimate can be found from the
endpoints of the interval where the likelihood function is nonzero.

The construction of the likelihood function (4.49) can be very difficult if the
measurements depend on each other. Therefore, it is almost always assumed in
applying the ML method that the observations x�j� are statistically independent of
each other. Fortunately, this holds quite often in practice. Assuming independence,
the likelihood function decouples into the product

p�xT j �� �
TY

j��

p�x�j� j �� (4.51)

where p�x�i� j �� is the conditional pdf of a single scalar measurement x�j�. Note
that taking the logarithm, the product (4.51) decouples to the sum of logarithmsP

j ln p�x�j� j ��.
The vector likelihood equation (4.50) consists of m scalar equations

�

��i
ln p�xT j ��ML�

����
����ML

� �� i � �� � � � �m (4.52)

for the m parameter estimates ��i�ML, i � �� � � � �m. These equations are in general
coupled and nonlinear, so they can be solved only numerically except for simple
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cases. In several practical applications, the computational load of the maximum
likelihood method can be prohibitive, and one must resort to various approximations
for simplifying the likelihood equations or to some suboptimal estimation methods.

Example 4.6 Assume that we have T independent observations x���� � � � � x�T � of
a scalar random variable x that is gaussian distributed with mean � and variance ��.
Using (4.51), the likelihood function can be written

p�xT j �� ��� � �������T�� exp

�
�� �

���

TX
j��

�x�j� � ���

�
�

(4.53)

The log likelihood function becomes

ln p�xT j �� ��� � �
T

�
ln�������

�

���

TX
j��

�x�j� � ��� (4.54)

The first likelihood equation (4.52) is

�

��
ln p�xT j ��ML� ��

�

ML� �
�

���ML

TX
j��

�x�j�� ��ML� � 	 (4.55)

Solving this yields for the maximum likelihood estimate of the mean � the sample
mean

��ML �
�

T

TX
j��

x�j� (4.56)

The second likelihood equation is obtained by differentiating the log likelihood (4.54)
with respect to the variance ��:

�

���
ln p�xT j ��ML� ��

�

ML� � �
T

����ML



�

����ML

TX
j��

�x�j�� ��ML�
� � 	

(4.57)

From this equation, we get for the maximum likelihood estimate of the variance ��

the sample variance

���ML �
�

T

TX
j��

�x�j�� ��ML�
� (4.58)

This is a biased estimator of the true variance ��, while the sample mean ��ML is an
unbiased estimator of the mean �. The bias of the variance estimator ���ML is due
to using the estimated mean ��ML instead of the true one in (4.58). This reduces
the amount of new information that is truly available for estimation by one sample.
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Hence the unbiased estimator of the variance is given by (4.6). However, the bias of
the estimator (4.58) is usually small, and it is asymptotically unbiased.

The maximum likelihood estimator is important because it provides estimates that
have certain very desirable theoretical properties. In the following, we list briefly the
most important of them. Somewhat heuristic but illustrative proofs can be found in
[407]. For more detailed analyses, see, e.g., [477].

1. If there exists an estimator that satisfies the Cramer-Rao lower bound (4.20) as
an equality, it can be determined using the maximum likelihood method.

2. The maximum likelihood estimator ��ML is consistent.

3. The maximum likelihood estimator is asymptotically efficient. This means
that it achieves asymptotically the Cramer-Rao lower bound for the estimation
error.

Example 4.7 Let us determine the Cramer-Rao lower bound (4.20) for the mean� of
a single gaussian random variable. From (4.55), the derivative of the log likelihood
function with respect to � is

�

��
ln p�xT j �� ��� �

�

��

TX

j��

�x�j�� �� (4.59)

Because we are now considering a single parameter � only, the Fisher information
matrix reduces to the scalar quantity

J � E

��
�

��
ln p�xT j �� ���

��
j �� ��

�

� E

���
��
	

 �

��

TX
j��

�x�j�� ��

�
�
�

j �� ��

��
�� (4.60)

Since the samples x�j� are assumed to be independent, all the cross covariance terms
vanish, and (4.60) simplifies to

J �
�

��

TX
j��

Ef�x�j�� ��� j �� ��g �
T��

��
�

T

��
(4.61)

Thus the Cramer-Rao lower bound (4.20) for the mean-square error of any unbiased
estimator �� of the mean of the gaussian density is

Ef��� ���� j �g � J�� �
��

T
(4.62)

In the previous example we found that the maximum likelihood estimator ��ML of� is
the sample mean (4.56). The mean-square error Ef��� ��ML�

�g of the sample mean
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was shown earlier in Example 4.3 to be ���T . Hence the sample mean satisfies the
Cramer-Rao inequality as an equation and is an efficient estimator for independent
gaussian measurements.

The expectation-maximization (EM) algorithm [419, 172, 298, 304] provides a
general iterative approach for computing maximum likelihood estimates. The main
advantage of the EM algorithm is that it often allows treatment of difficult maximum
likelihood problems suffering from multiple parameters and highly nonlinear likeli-
hood functions in terms of simpler maximization problems. However, the application
of the EM algorithm requires care in general because it can get stuck into a local
maximum or suffer from singularity problems [48]. In context with ICA methods,
the EM algorithm has been used for estimating unknown densities of source signals.
Any probability density function can be approximated using a mixture-of-gaussians
model [48]. A popular method for finding parameters of such a model is to use
the EM algorithm. This specific but important application of the EM algorithm is
discussed in detail in [48]. For a more detailed discussion of the EM algorithm, see
references [419, 172, 298, 304].

The maximum likelihood method has a connection with the least-squares method.
Consider the nonlinear data model (4.47). Assuming that the parameters � are
unknown constants independent of the additive noise (error) vT , the (conditional)
distribution p�xT j �� of xT is the same as the distribution of vT at the point vT =
xT � f���:

p
xj��xT j �� � pv�xT � f��� j �� (4.63)

If we further assume that the noise vT is zero-mean and gaussian with the covariance
matrix ��I, the preceding distribution becomes

p�xT j �� � � exp

�
�

�

���
�xT � f����T �x� f����

�
(4.64)

where � = �����T����T is the normalizing term. Clearly, this is maximized when
the exponent

�xT � f����T �xT � f���� � k xT � f��� k� (4.65)

is minimized, since � is a constant independent of �. But the exponent (4.65)
coincides with the nonlinear least-squares criterion (4.48). Hence if in the nonlinear
data model (4.47) the noise vT is zero-mean, gaussian with the covariance matrix
Cv = ��I, and independent of the unknown parameters �, the maximum likelihood
estimator and the nonlinear least-squares estimator yield the same results.



94 ESTIMATION THEORY

4.6 BAYESIAN ESTIMATION *

All the estimation methods discussed thus far in more detail, namely the moment, the
least-squares, and the maximum likelihood methods, assume that the parameters� are
unknown deterministic constants. In Bayesian estimation methods, the parameters
� are assumed to be random themselves. This randomness is modeled using the a
priori probability density function p���� of the parameters. In Bayesian methods,
it is typically assumed that this a priori density is known. Taken strictly, this is a
very demanding assumption. In practice we usually do not have such far-reaching
information on the parameters. However, assuming some useful form for the a
priori density p���� often allows the incorporation of useful prior information on
the parameters into the estimation process. For example, we may know which is
the most typical value of the parameter �i and its typical range of variation. We can
then formulate this prior information for instance by assuming that �i is gaussian
distributed with a mean mi and variance ��i . In this case the mean mi and variance
��i contain our prior knowledge about �i (together with the gaussianity assumption).

The essence of Bayesian estimation methods is the posterior density p�jx��jxT �
of the parameters � given the data xT . Basically, the posterior density contains all
the relevant information on the parameters �. Choosing a specific estimate �� for
the parameters � among the range of values of � where the posterior density is high
or relatively high is somewhat arbitrary. The two most popular methods for doing
this are based on the mean-square error criterion and choosing the maximum of the
posterior density. These are discussed in the following subsections.

4.6.1 Minimum mean-square error estimator for random parameters

In the minimum mean-square error method for random parameters �, the optimal
estimator ��MSE is chosen by minimizing the mean-square error (MSE)

EMSE � Efk � � �� k�g (4.66)

with respect to the estimator ��. The following theorem specifies the optimal estimator.

Theorem 4.2 Assume that the parameters � and the observations xT have the
joint probability density function p��x���xT �. The minimum mean-square estimator
��MSE of � is given by the conditional expectation

��MSE � Ef�jxT g (4.67)

The theorem can be proved by first noting that the mean-square error (4.66) can
be computed in two stages. First the expectation is evaluated with respect to � only,
and after this it is taken with respect to the measurement vector x:

EMSE � Efk � � �� k�g � ExfEfk � � �� k� jxT gg (4.68)
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This expression shows that the minimization can be carried out by minimizing the
conditional expectation

Efk � � �� k� jxT g � ��
T
�� � ���

T

Ef�jxT g� Ef�T�jxT g (4.69)

The right-hand side is obtained by evaluating the squared norm and noting that �� is a
function of the observations xT only, so that it can be treated as a nonrandom vector
when computing the conditional expectation (4.69). The result (4.67) now follows
directly by computing the gradient ��� � �Ef�jxT g of (4.69) with respect to �� and
equating it to zero.

The minimum mean-square estimator ��MSE is unbiased since

Ef��MSEg � ExfEf�jxT gg � Ef�g (4.70)

The minimum mean-square estimator (4.67) is theoretically very significant be-
cause of its conceptual simplicity and generality. This result holds for all distributions
for which the joint distribution p��x���x� exists, and remains unchanged if a weight-
ing matrixW is added into the criterion (4.66) [407].

However, actual computation of the minimum mean-square estimator is often very
difficult. This is because in practice we only know or assume the prior distribution
p���� and the conditional distribution of the observations p

xj��xj�� given the pa-
rameters �. In constructing the optimal estimator (4.67), one must first compute the
posterior density from Bayes’ formula (see Section 2.4)

p�jx��jxT � �
p
xj��xT j��p����

px�xT �
(4.71)

where the denominator is computed by integrating the numerator:

px�xT � �

Z �

��

p
xj��xT j��p����d� (4.72)

The computation of the conditional expectation (4.67) then requires still another
integration. These integrals are usually impossible to evaluate at least analytically
except for special cases.

There are, however, two important special cases where the minimum mean-square
estimator ��MSE for random parameters � can be determined fairly easily. If the
estimator �� is constrained to be a linear function of the data: �� = LxT , then it can be
shown [407] that the optimal linear estimator ��LMSE minimizing the MSE criterion
(4.66) is

��LMSE �m� �C�xC
��
x
�xT �mx� (4.73)

where m� and mx are the mean vectors of � and xT , respectively, Cx is the
covariance matrix of xT , and C�x is the cross-covariance matrix of � and xT . The
error covariance matrix corresponding to the optimum linear estimator ��LMSE is

Ef�� � ��LMSE��� � ��LMSE�
T g � C� �C�xC

��
x
Cx� (4.74)
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where C� is the covariance matrix of the parameter vector �. We can conclude that
if the minimum mean-square estimator is constrained to be linear, it suffices to know
the first-order and second-order statistics of the data x and the parameters �, that is,
their means and covariance matrices.

If the joint probability density p��x���xT � of the parameters � and data xT
is gaussian, the results (4.73) and (4.74) obtained by constraining the minimum
mean-square estimator to be linear are quite generally optimal. This is because the
conditional density p�jx��jxT � is also gaussian with the conditional mean (4.73) and
covariance matrix (4.74); see section 2.5. This again underlines the fact that for
the gaussian distribution, linear processing and knowledge of first and second order
statistics are usually sufficient to obtain optimal results.

4.6.2 Wiener filtering

In this subsection, we take a somewhat different signal processing viewpoint to the
linear minimum MSE estimation. Many estimation algorithms have in fact been
developed in context with various signal processing problems [299, 171].

Consider the following linear filtering problem. Let z be an m-dimensional data
or input vector of the form

z � �z�� z�� � � � � zm�T (4.75)

and

w � �w�� w�� � � � � wm�T (4.76)

anm-dimensional weight vector with adjustable weights (elements)wi, i � �� � � � �m
operating linearly on z so that the output of the filter is

y � w
T
z (4.77)

In Wiener filtering, the goal is to determine the linear filter (4.77) that minimizes
the mean-square error

EMSE � Ef�y � d��g (4.78)

between the desired response d and the output y of the filter. Inserting (4.77) into
(4.78) and evaluating the expectation yields

EMSE � w
T
Rzw � �wT

rzd � Efd�g (4.79)

Here Rz = EfzzT g is the data correlation matrix, and rzd = Efzdg is the cross-
correlation vector between the data vector z and the desired response d. Minimizing
the mean-square error (4.79) with respect to the weight vector w provides as the
optimum solution the Wiener filter [168, 171, 419, 172]

	wMSE � R
��
z
rzd (4.80)
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provided thatRz is nonsingular. This is almost always the case in practice due to the
noise and the statistical nature of the problem. The Wiener filter is usually computed
by directly solving the linear normal equations

Rz �wMSE � rzd (4.81)

In practice, the correlation matrix Rz and the cross-correlation vector rzd are
usually unknown. They must then be replaced by their estimates, which can be
computed easily from the available finite data set. In fact the Wiener estimate then
becomes a standard least-squares estimator (see exercises). In signal processing
applications, the correlation matrix Rz is often a Toeplitz matrix, since the data
vectors z�i� consist of subsequent samples from a single signal or time series (see
Section 2.8). For this special case, various fast algorithms are available for solving
the normal equations efficiently [169, 171, 419].

4.6.3 Maximum a posteriori (MAP) estimator

Instead of minimizing the mean-square error (4.66) or some other performance index,
we can apply to Bayesian estimation the same principle as in the maximum likelihood
method. This leads to the maximum a posteriori (MAP) estimator ��MAP , which is
defined as the value of the parameter vector � that maximizes the posterior density
p�jx��jxT � of � given the measurements xT . The MAP estimator can be interpreted
as the most probable value of the parameter vector � for the available data xT . The
principle behind the MAP estimator is intuitively well justified and appealing.

We have earlier noted that the posterior density can be computed from Bayes’
formula (4.71). Note that the denominator in (4.71) is the prior density px�xT � of the
data xT which does not depend on the parameter vector �, and merely normalizes
the posterior density p�jx��jxT �. Hence for finding the MAP estimator it suffices to
find the value of � that maximizes the numerator of (4.71), which is the joint density

p��x���xT � � p
xj��xT j��p���� (4.82)

Quite similarly to the maximum likelihood method, the MAP estimator ��MAP can
usually be found by solving the (logarithmic) likelihood equation. This now has the
form

�

��
ln p���xT � �

�

��
ln p�xT j�� �

�

��
ln p��� � � (4.83)

where we have dropped the subscripts of the probability densities for notational
simplicity.

A comparison with the respective likelihood equation (4.50) for the maximum
likelihood method shows that these equations are otherwise the same, but the MAP
likelihood equation (4.83) contains an additional term ��ln p�������, which takes
into account the prior information on the parameters �. If the prior density p���
is uniform for parameter values � for which p�xT j�� is markedly greater than zero,
then the MAP and maximum likelihood estimators become the same. In this case,
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they are both obtained by finding the value �� that maximizes the conditional density
p�xT j��. This is the case when there is no prior information about the parameters �
available. However, when the prior density p��� is not uniform, the MAP and ML
estimators are usually different.

Example 4.8 Assume that we have T independent observations x���� � � � � x�T �
from a scalar random quantity x that is gaussian distributed with mean �x and
variance ��x. This time the mean �x is itself a gaussian random variable having mean
zero and the variance ���. We assume that both the variances ��x and ��� are known
and wish to estimate � using the MAP method.

Using the preceding information, it is straightforward to form the likelihood
equation for the MAP estimator ��MAP and solve it. The solution is (the derivation
is left as a exercise)

��MAP �
���

��x � T���

TX

j��

x�j� (4.84)

The case in which we do not have any prior information on � can be modeled by
letting ��� ��, reflecting our uncertainty about � [407]. Then clearly

��MAP �
�

T

TX

j��

x�j� (4.85)

so that the MAP estimator ��MAP tends to the sample mean. The same limiting value
is obtained if the number of samples T � �. This shows that the influence of the
prior information, contained in the variance ���, gradually decreases as the number
of the measurements increases. Hence asymptotically the MAP estimator coincides
with the maximum likelihood estimator ��ML which we found earlier in (4.56) to be
the sample mean (4.85).

Note also that if we are relatively confident about the prior value � of the mean
�, but the samples are very noisy so that ��x �� ���, the MAP estimator (4.84) for
small T stays close to the prior value � of �, and the number T of samples must
grow large until the MAP estimator approaches its limiting value (4.85). In contrast,
if ��� �� ��x, so that the samples are reliable compared to the prior information on
�, the MAP estimator (4.84) rapidly approaches the sample mean (4.85). Thus the
MAP estimator (4.84) weights in a meaningful way the prior information and the
samples according to their relative reliability.

Roughly speaking, the MAP estimator is a compromise between the general
minimum mean-square error estimator (4.67) and the maximum likelihood estimator.
The MAP method has the advantage over the maximum likelihood method that it
takes into account the (possibly available) prior information about the parameters
�, but it is computationally somewhat more difficult to determine because a second
term appears in the likelihood equation (4.83). On the other hand, both the ML
and MAP estimators are obtained from likelihood equations, avoiding the generally
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difficult integrations needed in computing the minimum mean-square estimator. If
the posterior distribution p��jxT � is symmetric around its peak value, the MAP
estimator and MSE estimator coincide.

There is no guarantee that the MAP estimator is unbiased. It is also generally
difficult to compute the covariance matrix of the estimation error for the MAP and
ML estimators. However, the MAP estimator is intuitively sensible, yields in most
cases good results in practice, and it has good asymptotic properties under appropriate
conditions. These desirable characteristics justify its use.

4.7 CONCLUDING REMARKS AND REFERENCES

In this chapter, we have dealt with basic concepts in estimation theory and the most
widely used estimation methods. These include the maximum likelihood method,
minimum mean-square error estimator, the maximum a posteriori method, and the
least-squares method for both linear and nonlinear data models. We have also pointed
out their interrelationships, and discussed the method of moments because of its
relationship to higher-order statistics. Somewhat different estimation methods must
be used depending on whether the parameters are considered to be deterministic, in
which case the maximum likelihood method is the most common choice, or random,
in which case Bayesian methods such as maximum a posteriori estimation can be
used.

Rigorous treatment of estimation theory requires a certain mathematical back-
ground as well as a good knowledge of probability and statistics, linear algebra, and
matrix differential calculus. The interested reader can find more information on es-
timation theory in several textbooks, including both mathematically [244, 407, 477]
and signal-processing oriented treatments [242, 299, 393, 419]. There are several
topics worth mentioning that we have not discussed in this introductory chapter.
These include dynamic estimation methods in which the parameters and/or the data
model are time dependent, for example, Kalman filtering [242, 299]. In this chapter,
we have derived several estimators by minimizing error criteria or maximizing condi-
tional probability distributions. Alternatively, optimal estimators can often be derived
from the orthogonality principle, which states that the estimator and its associated es-
timation error must be statistically orthogonal, having a zero cross-covariance matrix.

From a theoretical viewpoint, the posterior density p�jx��jxT � contains all the
information about the random parameters that the measurementsxT provide. Knowl-
edge of the posterior density allows in principle the use of any suitable optimality
criterion for determining an estimator. Figure 4.2 shows an example of a hypothetical
posterior density p�� j x� of a scalar parameter �. Because of the asymmetricity of
this density, different estimators yield different results. The minimum absolute error
estimator ��ABS minimizes the absolute error Efj � � �� jg. The choice of a specific
estimator is somewhat arbitrary, since the true value of the parameter � is unknown,
and can be anything within the range of the posterior density.
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��MAP ��MMSE��ABS ��

p���jx�

Fig. 4.2 A posterior density p�� j x�, and the respective MAP estimate ��MAP , minimum
MSE estimate ��MSE , and the minimum absolute error estimate ��ABS .

Regrettably, it is generally difficult to determine the posterior distribution in a form
that allows for convenient mathematical analysis [407]. However, various advanced
and approximative techniques have been developed to facilitate Bayesian estimation;
see [142]. When the number of measurements increases, the importance of prior
information gradually decreases, and the maximum likelihood estimator becomes
asymptotically optimal.

Finally, we point out that neural networks provide in many instances a useful
practical tool for nonlinear estimation, even though they lie outside the range of
classic estimation theory. For example, the well-known back-propagation algorithm
[48, 172, 376] is in fact a stochastic gradient algorithm for minimizing the mean-
square error criterion

EMSE � Efk d� f��� z� k�g (4.86)

Here d is the desired response vector and z the (input) data vector. The parameters
� consist of weights that are adjusted so that the mapping error (4.86) is minimized.
The nonlinear function f��� z� has enough parameters and a flexible form, so that it
can actually model with sufficient accuracy any regular nonlinear function. The back-
propagation algorithm learns the parameters � that define the estimated input-output
mapping f��� z�. See [48, 172, 376] for details and applications.
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Problems

4.1 Show that:
4.1.1. the maximum likelihood estimator of the variance (4.58) becomes unbiased

if the estimated mean ��ML is replaced in (4.58) by the true one �.
4.1.2. if the mean is estimated from the observations, one must use the formula

(4.6) for getting an unbiased estimator.

4.2 Assume that ��� and ��� are unbiased estimators of the parameter � having
variances var����� � ��� , var����� � ��� .

4.2.1. Show that for any scalar � � � � �, the estimator ��� = ���� � ��� �����
is unbiased.

4.2.2. Determine the mean-square error of ��� assuming that ��� and ��� are statis-
tically independent.

4.2.3. Find the value of � that minimizes this mean-square error.

4.3 Let the scalar random variable z be uniformly distributed on the interval ��� ��.
There exist T independent samples z���� � � � � z�T � from z. Using them, the estimate
�� = max�z�i�� is constructed for the parameter �.

4.3.1. Compute the probability density function of ��. (Hint: First construct the
cumulative distribution function.)

4.3.2. Is �� unbiased or asymptotically unbiased?
4.3.3. What is the mean-square error Ef��� � ��� j �g of the estimate ��?

4.4 Assume that you know T independent observations of a scalar quantity that
is gaussian distributed with unknown mean � and variance ��. Estimate � and ��

using the method of moments.

4.5 Assume that x���� x�	�� � � � � x�K� are independent gaussian random variables
having all the mean � and variance ��x. Then the sum of their squares

y �

KX

j��

�x�j�
�

is ��-distributed with the mean K��x and variance 	K��x. Estimate the parameters
K and ��x using the method of moments, assuming that there exist T measurements
y���� y�	�� � � � � y�T � on the sum of squares y.

4.6 Derive the normal equations (4.37) for the least-squares criterion (4.36). Justify
why these equations indeed provide the minimum of the criterion.

4.7 Assume that the measurement errors have zero mean: EfvTg = �, and that
the covariance matrix of the measurement errors is Cv = EfvTvTT g. Consider the
properties of the least-squares estimator ��LS in (4.38).

4.7.1. Show that the estimator ��LS is unbiased.
4.7.2. Compute the error covariance matrix C��

defined in (4.19).
4.7.3. Compute C��

when Cv = ��I.
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4.8 Consider line fitting using the linear least-squares method. Assume that you
know T measurements x���� x���� � � � � x�T � on the scalar quantity x made, respec-
tively, at times (or argument values) t���� t���� � � � � t�T �. The task is to fit the line

x � �� � ��t

to these measurements.
4.8.1. Construct the normal equations for this problem using the standard linear

least-squares method.
4.8.2. Assume that the sampling interval �t is constant and has been scaled so

that the measurement times are integers �� �� � � � � T . Solve the normal equations in
this important special case.

4.9 * Consider the equivalence of the generalized least-squares and linear unbiased
minimum mean-square estimators. Show that

4.9.1. The optimal solution minimizing the generalized least-squares criterion
(4.45) is

��WLS � �HT
WH���HT

WxT

4.9.2. An unbiased linear mean-square estimator ��MSE = LxT satisfies the con-
dition LH � I.

4.9.3. The mean-square error can be written in the form

EMSE � Efk � � �� k�j �g � trace�LCvL
T �

4.9.4. Minimization of the preceding criterion EMSE under the constraint LH �
I leads to the BLUE estimator (4.46).

4.10 For a fixed amount of gas, the following connection holds between the pressure
P and the volume V :

PV � � c�

where � and c are constants. Assume that we knowT pairs of measurements �Pi� Vi�.
We want to estimate the parameters � and c using the linear least-squares method.
Express the situation in the form of a matrix-vector model and explain how the
estimates are computed (you need not compute the exact solution).

4.11 Let the probability density function of a scalar-valued random variable z be

p�z j �� � ��ze��z� z � �� � � �

Determine the maximum likelihood estimate of the parameter �. There are available
T independent measurements z���� � � � � z�T � on z.

4.12 In a signal processing application five sensors placed mutually according to
a cross pattern yield, respectively, the measurements x�, x�, x�, x�, and x�, that can
be collected to the measurement vector x. The measurements are quantized with 7
bits accuracy so that their values are integers in the interval �� � � � � ��	. The joint
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density p�x j �� of the measurements is a multinomial density that depends on the
unknown parameter � as follows:

p�x j �� � k�x������x������x������ ����x������ ����x������x�

where the scaling term

k�x� �
�x� � x� � x� � x� � x���

x��x��x��x��x��

Determine the maximum likelihood estimate of the parameter � in terms of the
measurement vector x. (Here, you can here treat the individual measurements in a
similar manner as mutually independent scalar measurements.)

4.13 Consider the sum z = x��x��� � ��xK , where the scalar random variablesxi
are statistically independent and gaussian, each having the same mean 	 and variance
��x.

4.13.1. Construct the maximum likelihood estimate for the number K of the
terms in the sum.

4.13.2. Is this estimate unbiased?

4.14 * Consider direct evaluation of the Wiener filter.
4.14.1. Show that the mean-square filtering error (4.78) can be evaluated to the

form (4.79).
4.14.2. What is the minimum mean-square error given by the Wiener estimate?

4.15 The random variables x�, x�, and a third, related random variable y are jointly
distributed. Define the random vector

z � 
y� x�� x��
T

It is known that z has the mean vectormz and the covariance matrixCz given by

mz �

�
�

���
���
���

�
� � Cz �

�

�	

�
�

� � �
�  ��
� �� 

�
�

Find the optimum linear mean-square estimate of y based on x� and x�.

4.16 * Assume that you know T data vectors z���� z���� � � � � z�T � and their cor-
responding desired responses d���� d���� � � � � d�T �. Standard estimates of the corre-
lation matrix and the cross-correlation vector needed in Wiener filtering are [172]

�Rz �
�

t

TX
i��

z�i�z�i�T � �rzd �
�

T

TX
i��

z�i�d�i� (4.87)

4.16.1. Express the estimates (4.87) in matrix form and show that when they are
used in the Wiener filter (4.80) instead of the true values, the filter coincides with a
least-squares solution.
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4.16.2. What is the discrete data model corresponding to this least-squares esti-
mator?

4.17 * The joint density function of the random variables x and y is given by

pxy�x� y� � �xy� � � y � x � ��

and pxy�x� y� � � outside the region defined above.
4.17.1. Find and sketch the conditional density pyjx�y j x�.
4.17.2. Compute the MAP (maximum a posteriori) estimate of y.
4.17.3. Compute the optimal mean-square error estimate of y.

4.18 * Suppose that a scalar random variable y is of the form y = z � v, where
the pdf of v is pv�t� = t�� on the interval 	�� �
, and the pdf of z is pz�t� = �t on
the interval 	�� �
. Both the densities are zero elsewhere. There is available a single
measurement value y � ���.

4.18.1. Compute the maximum likelihood estimate of y.
4.18.2. Compute the MAP (maximum a posteriori) estimate of y.
4.18.3. Compute the minimum mean-square estimate of y.

4.19 * Consider the MAP estimator (4.84) of the mean �.
4.19.1. Derive the estimator.
4.19.2. Express the estimator in recursive form.

Computer assignments

4.1 Choose a suitable set of two-dimensional data. Plenty of real-world data can
be found for example using the links of the WWW page of this book, as well as in
[376] and at the following Web sites:
http://ferret.wrc.noaa.gov/
http://www.ics.uci.edu/ ~mlearn/MLSummary.html

4.1.1. Plot the data (or part of it, if the data set is large).
4.1.2. Based on the plot, choose a suitable function (which is linear with respect

to the parameters), and fit it to your data using the standard least-squares method.
(Alternatively, you can use nonlinear least-squares method if the parameters of the
chosen function depend nonlinearly on the data.)

4.1.3. Plot the fitted curve and the fitting error. Assess the quality of your least-
squares model.

4.2 * Use the Bayesian linear minimum mean-square estimator for predicting a
scalar measurement from other measurements.

4.2.1. Choose first a suitable data set in which the components of the data vectors
are correlated (see the previous computer assignment for finding data).

4.2.2. Compute the linear minimum mean-square estimator.
4.2.3. Compute the variance of the measurement that you have predicted and

compare it with your minimum mean-square estimation (prediction) error.



5
Information Theory

Estimation theory gives one approach to characterizing random variables. This was
based on building parametric models and describing the data by the parameters.

An alternative approach is given by information theory. Here the emphasis is on
coding. We want to code the observations. The observations can then be stored
in the memory of a computer, or transmitted by a communications channel, for
example. Finding a suitable code depends on the statistical properties of the data.
In independent component analysis (ICA), estimation theory and information theory
offer the two principal theoretical approaches.

In this chapter, the basic concepts of information theory are introduced. The latter
half of the chapter deals with a more specialized topic: approximation of entropy.
These concepts are needed in the ICA methods of Part II.

5.1 ENTROPY

5.1.1 Definition of entropy

Entropy is the basic concept of information theory. Entropy H is defined for a
discrete-valued random variableX as

H�X� � �
X

i

P �X � ai� log P �X � ai� (5.1)

where the ai are the possible values of X . Depending on what the base of the
logarithm is, different units of entropy are obtained. Usually, the logarithm with
base 2 is used, in which case the unit is called a bit. In the following the base is
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Fig. 5.1 The function f in (5.2), plotted on the interval ��� ��.

not important since it only changes the measurement scale, so it is not explicitly
mentioned.

Let us define the function f as

f�p� � �p log p� for � � p � � (5.2)

This is a nonnegative function that is zero for p � � and for p � �, and positive for
values in between; it is plotted in Fig. 5.1. Using this function, entropy can be written
as

H�X� �
X

i

f�P �X � ai�� (5.3)

Considering the shape of f , we see that the entropy is small if the probabilities
P �X � ai� are close to � or �, and large if the probabilities are in between.

In fact, the entropy of a random variable can be interpreted as the degree of
information that the observation of the variable gives. The more “random”, i.e.,
unpredictable and unstructured the variable is, the larger its entropy. Assume that the
probabilities are all close to �, expect for one that is close to � (the probabilities must
sum up to one). Then there is little randomness in the variable, since it almost always
takes the same value. This is reflected in its small entropy. On the other hand, if all
the probabilities are equal, then they are relatively far from � and �, and f takes large
values. This means that the entropy is large, which reflects the fact that the variable
is really random: We cannot predict which value it takes.

Example 5.1 Let us consider a random variable X that can have only two values, a
and b. Denote by p the probability that it has the value a, then the probability that it
is b is equal to �� p. The entropy of this random variable can be computed as

H�X� � f�p� � f��� p� (5.4)
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Thus, entropy is a simple function of p. (It does not depend on the values a and b.)
Clearly, this function has the same properties as f : it is a nonnegative function that
is zero for p � � and for p � �, and positive for values in between. In fact, it it is
maximized for p � ��� (this is left as an exercice). Thus, the entropy is largest when
the values are both obtained with a probability of ���. In contrast, if one of these
values is obtained almost always (say, with a probability of �����), the entropy of
X is small, since there is little randomness in the variable.

5.1.2 Entropy and coding length

The connection between entropy and randomness can be made more rigorous by
considering coding length. Assume that we want to find a binary code for a large
number of observations of X , so that the code uses the minimum number of bits
possible. According to the fundamental results of information theory, entropy is
very closely related to the length of the code required. Under some simplifying
assumptions, the length of the shortest code is bounded below by the entropy, and
this bound can be approached arbitrarily close, see, e.g., [97]. So, entropy gives
roughly the average minimum code length of the random variable.

Since this topic is out of the scope of this book, we will just illustrate it with two
examples.

Example 5.2 Consider again the case of a random variable with two possible values,
a and b. If the variable almost always takes the same value, its entropy is small. This
is reflected in the fact that the variable is easy to code. In fact, assume the value a
is almost always obtained. Then, one efficient code might be obtained simply by
counting how many a’s are found between two subsequent observations of b, and
writing down these numbers. If we need to code only a few numbers, we are able to
code the data very efficiently.

In the extreme case where the probability of a is �, there is actually nothing left to
code and the coding length is zero. On the other hand, if both values have the same
probability, this trick cannot be used to obtain an efficient coding mechanism, and
every value must be coded separately by one bit.

Example 5.3 Consider a random variable X that can have eight different values
with probabilities ����� ��	� ��
� ����� ���	� ���	� ���	� ���	�. The entropy of X
is � bits (this computation is left as an exercice to the reader). If we just coded the
data in the ordinary way, we would need 3 bits for every observation. But a more
intelligent way is to code frequent values with short binary strings and infrequent
values with longer strings. Here, we could use the following strings for the outcomes:
0,10,110,1110,111100,111101,111110,111111. (Note that the strings can be written
one after another with no spaces since they are designed so that one always knows
when the string ends.) With this encoding the average number of bits needed for
each outcome is only 2, which is in fact equal to the entropy. So we have gained a
33% reduction of coding length.
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5.1.3 Differential entropy

The definition of entropy for a discrete-valued random variable can be generalized
for continuous-valued random variables and vectors, in which case it is often called
differential entropy.

The differential entropy H of a random variable x with density px��� is defined
as:

H�x� � �

Z
px��� log px���d� �

Z
f�px����d� (5.5)

Differential entropy can be interpreted as a measure of randomness in the same way
as entropy. If the random variable is concentrated on certain small intervals, its
differential entropy is small.

Note that differential entropy can be negative. Ordinary entropy cannot be negative
because the function f in (5.2) is nonnegative in the interval ��� ��, and discrete
probabilities necessarily stay in this interval. But probability densities can be larger
than �, in which case f takes negative values. So, when we speak of a “small
differential entropy”, it may be negative and have a large absolute value.

It is now easy to see what kind of random variables have small entropies. They
are the ones whose probability densities take large values, since these give strong
negative contributions to the integral in (5.8). This means that certain intervals are
quite probable. Thus we again find that entropy is small when the variable is not very
random, that is, it is contained in some limited intervals with high probabilities.

Example 5.4 Consider a random variable x that has a uniform probability distribu-
tion in the interval ��� a�. Its density is given by

px��� �

�
��a� for � � � � a

�� otherwise
(5.6)

The differential entropy can be evaluated as

H�x� � �

Z
a

�

�

a
log

�

a
d� � log a (5.7)

Thus we see that the entropy is large if a is large, and small if a is small. This is
natural because the smaller a is, the less randomness there is in x. In the limit where
a goes to �, differential entropy goes to ��, because in the limit, x is no longer
random at all: it is always �.

The interpretation of entropy as coding length is more or less valid with differ-
ential entropy. The situation is more complicated, however, since the coding length
interpretation requires that we discretize (quantize) the values of x. In this case, the
coding length depends on the discretization, i.e., on the accuracy with which we want
to represent the random variable. Thus the actual coding length is given by the sum
of entropy and a function of the accuracy of representation. We will not go into the
details here; see [97] for more information.
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The definition of differential entropy can be straightforwardly generalized to the
multidimensional case. Let x be a random vector with density px���. The differential
entropy is then defined as:

H�x� � �

Z
px��� log px���d� �

Z
f�px����d� (5.8)

5.1.4 Entropy of a transformation

Consider an invertible transformation of the random vector x, say

y � f�x� (5.9)

In this section, we show the connection between the entropy of y and that of x.
A short, if somewhat sloppy derivation is as follows. (A more rigorous derivation

is given in the Appendix.) Denote by Jf��� the Jacobian matrix of the function f , i.e.,
the matrix of the partial derivatives of f at point �. The classic relation between the
density py of y and the density px of x, as given in Eq. (2.82), can then be formulated
as

py��� � px�f
������j det Jf�f������j�� (5.10)

Now, expressing the entropy as an expectation

H�y� � �Eflog py�y�g (5.11)

we get

Eflog py�y�g � Eflog�px�f
���y��j det Jf�f���y��j���g

� Eflog�px�x�j det Jf�x�j
���g � Eflog px�x�g �Eflog j det Jf�x�jg (5.12)

Thus we obtain the relation between the entropies as

H�y� � H�x� �Eflog j det Jf�x�jg (5.13)

In other words, the entropy is increased in the transformation byEflog j det Jf�x�jg.
An important special case is the linear transformation

y �Mx (5.14)

in which case we obtain

H�y� � H�x� � log j detMj (5.15)

This also shows that differential entropy is not scale-invariant. Consider a random
variable x. If we multiply it by a scalar constant, �, differential entropy changes as

H��x� � H�x� � log j�j (5.16)

Thus, just by changing the scale, we can change the differential entropy. This is why
the scale of x often is fixed before measuring its differential entropy.
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5.2 MUTUAL INFORMATION

5.2.1 Definition using entropy

Mutual information is a measure of the information that members of a set of random
variables have on the other random variables in the set. Using entropy, we can define
the mutual information I between n (scalar) random variables, xi� i � �� ���� n, as
follows

I�x�� x�� ���� xn� �

nX

i��

H�xi��H�x� (5.17)

where x is the vector containing all the xi.
Mutual information can be interpreted by using the interpretation of entropy as

code length. The terms H�xi� give the lengths of codes for the xi when these are
coded separately, and H�x� gives the code length when x is coded as a random
vector, i.e., all the components are coded in the same code. Mutual information thus
shows what code length reduction is obtained by coding the whole vector instead
of the separate components. In general, better codes can be obtained by coding the
whole vector. However, if the xi are independent, they give no information on each
other, and one could just as well code the variables separately without increasing
code length.

5.2.2 Definition using Kullback-Leibler divergence

Alternatively, mutual information can be interpreted as a distance, using what is
called the Kullback-Leibler divergence. This is defined between two n-dimensional
probability density functions (pdf’s) p� and p� as

��p�� p�� �

Z
p���� log

p����

p����
d� (5.18)

The Kullback-Leiblerdivergence can be considered as a kind of a distance between
the two probability densities, because it is always nonnegative, and zero if and only if
the two distributions are equal. This is a direct consequence of the (strict) convexity
of the negative logarithm, and the application of the classic Jensen’s inequality.
Jensen’s inequality (see [97]) says that for any strictly convex function f and any
random variable y, we have

Eff�y�g � f�Efyg� (5.19)

Take f�y� � � log�y�, and assume that y � p��x��p��x�wherex has the distribution
given by p�. Then we have

��p�� p�� � Eff�y�g � Ef� log
p��x�

p��x�
g �

Z
p����f� log

p����

p����
gd�

� f�Efyg� � � log

Z
p����f

p����

p����
gd� � � log

Z
p����d� � � (5.20)
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Moreover, we have equality in Jensen’s inequality if and only if y is constant. In our
case, it is constant if and only if the two distributions are equal, so we have proven
the announced property of the Kullback-Leibler divergence.

Kullback-Leibler divergence is not a proper distance measure, though, because it
is not symmetric.

To apply Kullback-Leibler divergence here, let us begin by considering that if
random variables xi were independent, their joint probability density could be fac-
torized according to the definition of independence. Thus one might measure the
independence of the xi as the Kullback-Leibler divergence between the real density
p� � px��� and the factorized density p� � p�����p��������pn��n�, where the pi���
are the marginal densities of the xi. In fact, simple algebraic manipulations show that
this quantity equals the mutual information that we defined using entropy in (5.17),
which is left as an exercice.

The interpretation as Kullback-Leibler divergence implies the following important
property: Mutual information is always nonnegative, and it is zero if and only if the
variables are independent. This is a direct consequence of the properties of the
Kullback-Leibler divergence.

5.3 MAXIMUM ENTROPY

5.3.1 Maximum entropy distributions

An important class of methods that have application in many domains is given by the
maximum entropy methods. These methods apply the concept of entropy to the task
of regularization.

Assume that the information available on the density px��� of the scalar random
variable x is of the form

Z
p���F i���d� � ci� for i � �� ��� (5.21)

which means in practice that we have estimated the expectations EfF i�x�g of m
different functions F i of x. (Note that i is here an index, not an exponent.)

The question is now: What is the probability density function p� that satisfies the
constraints in (5.21), and has maximum entropy among such densities? (Earlier, we
defined the entropy of random variable, but the definition can be used with pdf’s as
well.) This question can be motivated by noting that a finite number of observations
cannot tell us exactly what p is like. So we might use some kind of regularization to
obtain the most useful p compatible with these measurements. Entropy can be here
considered as a regularization measure that helps us find the least structured density
compatible with the measurements. In other words, the maximum entropy density
can be interpreted as the density that is compatible with the measurements and makes
the minimum number of assumptions on the data. This is because entropy can be
interpreted as a measure of randomness, and therefore the maximum entropy density

n�
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is the most random of all the pdf’s that satisfy the constraints. For further details on
why entropy can be used as a measure of regularity, see [97, 353].

The basic result of the maximum entropy method (see, e.g. [97, 353]) tells us that
under some regularity conditions, the density p���� which satisfies the constraints
(5.21) and has maximum entropy among all such densities, is of the form

p���� � A exp�
X

i

aiF
i���� (5.22)

Here,A and ai are constants that are determined from the ci, using the constraints
in (5.21) (i.e., by substituting the right-hand side of (5.22) for p in (5.21)), and the
constraint

R
p����d� � �. This leads in general to a system of n � � nonlinear

equations that may be difficult to solve, and in general, numerical methods must be
used.

5.3.2 Maximality property of the gaussian distribution

Now, consider the set of random variables that can take all the values on the real line,
and have zero mean and a fixed variance, say 1 (thus, we have two constraints). The
maximum entropy distribution for such variables is the gaussian distribution. This is
because by (5.22), the distribution has the form

p���� � A exp�a��
� � a��� (5.23)

and all probability densities of this form are gaussian by definition (see Section 2.5).
Thus we have the fundamental result that a gaussian variable has the largest

entropy among all random variables of unit variance. This means that entropy
could be used as a measure of nongaussianity. In fact, this shows that the gaussian
distribution is the “most random” or the least structured of all distributions. Entropy
is small for distributions that are clearly concentrated on certain values, i.e., when the
variable is clearly clustered, or has a pdf that is very “spiky”. This property can be
generalized to arbitrary variances, and what is more important, to multidimensional
spaces: The gaussian distribution has maximum entropy among all distributions with
a given covariance matrix.

5.4 NEGENTROPY

The maximality property given in Section 5.3.2 shows that entropy could be used to
define a measure of nongaussianity. A measure that is zero for a gaussian variable and
always nonnegative can be simply obtained from differential entropy, and is called
negentropy. Negentropy J is defined as follows

J�x� � H�xgauss��H�x� (5.24)
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where xgauss is a gaussian random vector of the same covariance matrix� as x. Its
entropy can be evaluated as

H�xgauss� �
�

�
log j det�j�

n

�
�� � log ��� (5.25)

where n is the dimension of x.
Due to the previously mentioned maximality property of the gaussian distribution,

negentropy is always nonnegative. Moreover, it is zero if and only if x has a gaussian
distribution, since the maximum entropy distribution is unique.

Negentropy has the additional interesting property that it is invariant for invertible
linear transformations. This is because for y �Mx we haveEfyyT g �M�MT ,
and, using preceding results, the negentropy can be computed as

J�Mx� �
�

�
log j det�M�MT �j�

n

�
�� � log ���� �H�x� � �

�
�

�
log j det�j� �

�

�
log j detMj�

n

�
�� � log ����H�x�� log j detMj

�
�

�
log j det�j�

n

�
�� � log ����H�x�

� H�xgauss��H�x� � J�x� (5.26)

In particular negentropy is scale-invariant, i.e., multiplication of a random variable by
a constant does not change its negentropy. This was not true for differential entropy,
as we saw earlier.

5.5 APPROXIMATION OF ENTROPY BY CUMULANTS

In the previous section we saw that negentropy is a principled measure of nongaus-
sianity. The problem in using negentropy is, however, that it is computationally very
difficult. To use differential entropy or negentropy in practice, we could compute the
integral in the definition in (5.8). This is, however, quite difficult since the integral
involves the probability density function. The density could be estimated using ba-
sic density estimation methods such as kernel estimators. Such a simple approach
would be very error prone, however, because the estimator would depend on the cor-
rect choice of the kernel parameters. Moreover, it would be computationally rather
complicated.

Therefore, differential entropy and negentropy remain mainly theoretical quanti-
ties. In practice, some approximations, possibly rather coarse, have to be used. In
this section and the next one we discuss different approximations of negentropy that
will be used in the ICA methods in Part II of this book.

5.5.1 Polynomial density expansions

The classic method of approximating negentropy is using higher-order cumulants
(defined in Section 2.7). These are based on the idea of using an expansion not unlike

log j detMj
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a Taylor expansion. This expansion is taken for the pdf of a random variable, say x,
in the vicinity of the gaussian density. (We only consider the case of scalar random
variables here, because it seems to be sufficient in most applications.) For simplicity,
let us first make x zero-mean and of unit variance. Then, we can make the technical
assumption that the density px��� of x is near the standardized gaussian density

���� � exp��������
p
�� (5.27)

Two expansions are usually used in this context: the Gram-Charlier expansion
and the Edgeworth expansion. They lead to very similar approximations, so we
only consider the Gram-Charlier expansion here. These expansions use the so-called
Chebyshev-Hermite polynomials, denoted by Hi where the index i is a nonnegative
integer. These polynomials are defined by the derivatives of the standardized gaussian
pdf ���� by the equation

�i����

��i
� ����iHi������� (5.28)

Thus, Hi is a polynomial of order i. These polynomials have the nice property of
forming an orthonormal system in the following sense:

Z
����Hi���Hj���d� �

�
�� if i � j

�� if i �� j
(5.29)

The Gram-Charlier expansion of the pdf of x, truncated to include the two first
nonconstant terms, is then given by

px��� � �px��� � ������ � ���x�
H����

	

� ���x�

H����

�

� (5.30)

This expansion is based on the idea that the pdf of x is very close to a gaussian
one, which allows a Taylor-like approximation to be made. Thus, the nongaussian
part of the pdf is directly given by the higher-order cumulants, in this case the third-
and fourth-order cumulants. Recall that these are called the skewness and kurtosis,
and are given by ���x� � Efx�g and ���x� � Efx�g � 	. The expansion has an
infinite number of terms, but only those given above are of interest to us. Note that
the expansion starts directly from higher-order cumulants, because we standardized
x to have zero mean and unit variance.

5.5.2 Using density expansions for entropy approximation

Now we could plug the density in (5.30) into the definition of entropy, to obtain

H�x� � �
Z

�px��� log �px���d� (5.31)

This integral is not very simple to evaluate, though. But again using the idea that
the pdf is very close to a gaussian one, we see that the cumulants in (5.30) are very
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small, and thus we can use the simple approximation

log�� � �� � �� ���� (5.32)

which gives

H�x� � �

Z
������ � ���x�

H����

��
� ���x�

H����

��
�

	log���� � ���x�
H����

��
� ���x�

H����

��
� ����x�

H����

��
� ���x�

H����

��
����


(5.33)

This expression can be simplified (see exercices). Straightforward algebraic manip-
ulations then give

H�x� � �

Z
���� log����d� �

���x�
�

�� ��
�
�����

�

�� ��
(5.34)

Thus we finally obtain an approximation of the negentropy of a standardized random
variable as

J�x� �
�

��
Efx�g� �

�

��
kurt�x�� (5.35)

This gives a computationally very simple approximation of the nongaussianity mea-
sured by negentropy.

5.6 APPROXIMATION OF ENTROPY BY NONPOLYNOMIAL
FUNCTIONS

In the previous section, we introduced cumulant-based approximations of
(neg)entropy. However, such cumulant-based methods sometimes provide a rather
poor approximation of entropy. There are two main reasons for this. First, finite-
sample estimators of higher-order cumulants are highly sensitive to outliers: their
values may depend on only a few, possibly erroneous, observations with large values.
This means that outliers may completely determine the estimates of cumulants, thus
making them useless. Second, even if the cumulants were estimated perfectly, they
mainly measure the tails of the distribution, and are largely unaffected by structure
near the center of the distribution. This is because expectations of polynomials like
the fourth power are much more strongly affected by data far away from zero than
by data close to zero.

In this section, we introduce entropy approximations that are based on an ap-
proximative maximum entropy method. The motivation for this approach is that the
entropy of a distribution cannot be determined from a given finite number of esti-
mated expectations as in (5.21), even if these were estimated exactly. As explained in
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Section 5.3, there exist an infinite number of distributions for which the constraints
in (5.21) are fulfilled, but whose entropies are very different from each other. In
particular, the differential entropy reaches�� in the limit where x takes only a finite
number of values.

A simple solution to this is the maximum entropy method. This means that we
compute the maximum entropy that is compatible with our constraints or measure-
ments in (5.21), which is a well-defined problem. This maximum entropy, or further
approximations thereof, can then be used as a meaningful approximation of the en-
tropy of a random variable. This is because in ICA we usually want to minimize
entropy. The maximum entropy method gives an upper bound for entropy, and its
minimization is likely to minimize the true entropy as well.

In this section, we first derive a first-order approximation of the maximum entropy
density for a continuous one-dimensional random variable, given a number of simple
constraints. This results in a density expansion that is somewhat similar to the
classic polynomial density expansions by Gram-Charlier and Edgeworth. Using this
approximation of density, an approximation of 1-D differential entropy is derived.
The approximation of entropy is both more exact and more robust against outliers
than the approximations based on the polynomial density expansions, without being
computationally more expensive.

5.6.1 Approximating the maximum entropy

Let us thus assume that we have observed (or, in practice, estimated) a number of
expectations of x, of the form

Z
p���F i���d� � ci� for i � �� ��� (5.36)

The functions F i are not, in general, polynomials. In fact, if we used simple
polynomials, we would end up with something very similar to what we had in the
preceding section.

Since in general the maximum entropy equations cannot be solved analytically,
we make a simple approximation of the maximum entropy density p�. This is based
on the assumption that the density p��� is not very far from the gaussian density
of the same mean and variance; this assumption is similar to the one made using
polynomial density expansions.

As with the polynomial expansions, we can assume that x has zero mean and unit
variance. Therefore we put two additional constraints in (5.36), defined by

Fn����� � �� cn�� � � (5.37)

Fn����� � ��� cn�� � � (5.38)

To further simplify the calculations, let us make another, purely technical assumption:
The functions F i� i � �� ���� n, form an orthonormal system according to the metric
defined by � in (5.27), and are orthogonal to all polynomials of second degree. In

n�
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other words, for all i� j � �� ���� n

Z
����F i���F j���d� �

�
�� if i � j

�� if i �� j
(5.39)

Z
����F i����kd� � �� for k � �� �� � (5.40)

Again, these orthogonality constraints are very similar to those of Chebyshev-Hermite
polynomials. For any set of linearly independent functionsF i (not containing second-
order polynomials), this assumption can always be made true by ordinary Gram-
Schmidt orthonormalization.

Now, note that the assumption of near-gaussianity implies that all the other ai in
(5.22) are very small compared to an�� � ����, since the exponential in (5.22)
is not far from exp�������. Thus we can make a first-order approximation of the
exponential function (detailed derivations can be found in the Appendix). This allows
for simple solutions for the constants in (5.22), and we obtain the approximative
maximum entropy density, which we denote by �p���:

�p��� � ������ �

nX
i��

ciF
i���� (5.41)

where ci � EfF i���g.
Now we can derive an approximation of differential entropy using this density

approximation. As with the polynomial density expansions, we can use (5.31) and
(5.32). After some algebraic manipulations (see the Appendix), we obtain

J�x� �
�

�

nX
i��

EfF i�x�g� (5.42)

Note that even in cases where this approximation is not very accurate, (5.42) can
be used to construct a measure of nongaussianity that is consistent in the sense that
(5.42) obtains its minimum value, 0, when x has a gaussian distribution. This is
because according to the latter part of (5.40) with k � � , we have EfF i���g � �.

5.6.2 Choosing the nonpolynomial functions

Now it remains to choose the “measuring” functions F i that define the information
given in (5.36). As noted in Section 5.6.1, one can take practically any set of
linearly independent functions, say Gi� i � �� ����m, and then apply Gram-Schmidt
orthonormalization on the set containing those functions and the monomials �k� k �
�� �� �, so as to obtain the set F i that fulfills the orthogonality assumptions in (5.39).

This can be done, in general, by numerical integration. In the practical choice of
the functions Gi, the following criteria must be emphasized:

1. The practical estimation of EfGi�x�g should not be statistically difficult. In
particular, this estimation should not be too sensitive to outliers.
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2. The maximum entropy method assumes that the function p� in (5.22) is inte-
grable. Therefore, to ensure that the maximum entropy distribution exists in
the first place, the Gi�x� must not grow faster than quadratically as a function
of jxj, because a function growing faster might lead to the nonintegrability of
p�.

3. The Gi must capture aspects of the distribution of X that are pertinent in the
computation of entropy. In particular, if the density p��� were known, the
optimal function Gopt would clearly be � log p���, because �Eflog p�x�g
gives the entropy directly  Thus , one might use for the log-densities of some
known important densities.

The first two criteria are met if the Gi�x� are functions that do not grow too fast
(not faster than quadratically) as jxj increases. This excludes, for example, the use
of higher-order polynomials, which are used in the Gram-Charlier and Edgeworth
expansions. One might then search, according to criterion 3, for log-densities of
some well-known distributions that also fulfill the first two conditions. Examples
will be given in the next subsection.

It should be noted, however, that the criteria above only delimit the space of
functions that can be used. Our framework enables the use of very different functions
(or just one) as Gi. However, if prior knowledge is available on the distributions
whose entropy is to be estimated, criterion 3 shows how to choose the optimal
function.

5.6.3 Simple special cases

A simple special case of (5.41) is obtained if one uses two functions G� and G�,
which are chosen so thatG� is odd andG� is even. Such a system of two functions can
measure the two most important features of nongaussian 1-D distributions. The odd
function measures the asymmetry, and the even function measures the dimension of
bimodality vs. peak at zero, closely related to sub- vs. supergaussianity. Classically,
these features have been measured by skewness and kurtosis, which correspond to
G��x� � x� and G��x� � x�, but we do not use these functions for the reasons
explained in Section 5.6.2. (In fact, with these choices, the approximation in (5.41)
becomes identical to the one obtained from the Gram-Charlier expansion in (5.35).)

In this special case, the approximation in (5.42) simplifies to

J�x� � k��EfG
��x�g�� � k��EfG

��x�g �EfG����g�� (5.43)

where k� and k� are positive constants (see the Appendix). Practical examples
of choices of Gi that are consistent with the requirements in Section 5.6.2 are the
following. First, for measuring bimodality/sparsity, one might use, according to the
recommendations of Section 5.6.2, the log-density of the Laplacian distribution:

G�a�x� � jxj (5.44)

For computational reasons, a smoother version of G�a might also be used. Another
choice would be the gaussian function, which can be considered as the log-density

. Gi
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of a distribution with infinitely heavy tails (since it stays constant when going to
infinity):

G�b�x� � exp��x���� (5.45)

For measuring asymmetry, one might use, on more heuristic grounds, the following
function:

G��x� � x exp��x���� (5.46)

that is smooth and robust against outliers.
Using the preceding examples one obtains two practical examples of (5.43):

Ja�x� � k��Efx exp��x����g�� � ka
�
�Efjxjg �

p
����� (5.47)

and

Jb�x� � k��Efx exp��x����g�� � kb
�
�Efexp��x����g �

p
�����

(5.48)

with k� � ����	
p
� � 
�, ka

�
� ���� � ����, and kb

�
� ������

p
� � ���. These

approximations Ja�x� and Jb�x� can be considered more robust and accurate gen-
eralizations of the approximation derived using the Gram-Charlier expansion in
Section 5.5.

Even simpler approximations of negentropy can be obtained by using only one
nonquadratic function, which amounts to omitting one of the terms in the preceding
approximations.

5.6.4 Illustration

Here we illustrate the differences in accuracy of the different approximations of
negentropy. The expectations were here evaluated exactly, ignoring finite-sample
effects. Thus these results do not illustrate the robustness of the maximum entropy
approximation with respect to outliers; this is quite evident anyway.

First, we used a family of gaussian mixture densities, defined by

p��� � ���x� � ��� �������x� ��� (5.49)

where � is a parameter that takes all the values in the interval  � � � �. This
family includes asymmetric densities of both negative and positive kurtosis. The
results are depicted in Fig. 5.2. One can see that both of the approximations Ja and
Jb introduced in Section 5.6.3 were considerably more accurate than the cumulant-
based approximation in (5.35).

Second, we considered the exponential power family of density functions:

p���� � C� exp��C�j�j�� (5.50)
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Fig. 5.2 Comparison of different approximations of negentropy for the family of mixture
densities in (5.49) parametrized by � ranging from 0 to 1 (horizontal axis). Solid curve:
true negentropy. Dotted curve: cumulant-based approximation as in (5.35). Dashed curve:
approximation Ja in (5.47). Dot-dashed curve: approximation Jb in (5.48). The two maximum
entropy approximations were clearly better than the cumulant-based one.

where � is a positive constant, and C�� C� are normalization constants that make
p� a probability density of unit variance. For different values of �, the densities in
this family exhibit different shapes. For � � �, one obtains densities of positive
kurtosis (supergaussian). For � � �, one obtains the gaussian density, and for
� � �, a density of negative kurtosis. Thus the densities in this family can be
used as examples of different symmetric nongaussian densities. In Fig. 5.3, the
different negentropy approximations are plotted for this family, using parameter
values ��� � � � �. Since the densities used are all symmetric, the first terms in the
approximations were neglected. Again, it is clear that both of the approximations
Ja and Jb introduced in Section 5.6.3 were considerably more accurate than the
cumulant-based approximation in (5.35). Especially in the case of supergaussian
densities, the cumulant-based approximation performed very poorly; this is probably
because it gives too much weight to the tails of the distribution.

5.7 CONCLUDING REMARKS AND REFERENCES

Most of the material in this chapter can be considered classic. The basic definitions
of information theory and the relevant proofs can be found, e.g., in [97, 353]. The
approximations of entropy are rather recent, however. The cumulant-based approxi-
mation was proposed in [222], and it is almost identical to those proposed in [12, 89].
The approximations of entropy using nonpolynomial functions were introduced in
[196], and they are closely related to the measures of nongaussianity that have been
proposed in the projection pursuit literature, see, e.g., [95].
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Fig. 5.3 Comparison of different approximations of negentropy for the family of densities
(5.50) parametrized by � (horizontal axis). On the left, approximations for densities of
positive kurtosis (��� � � � �) are depicted, and on the right, approximations for densities of
negative kurtosis (� � � � �). Solid curve: true negentropy. Dotted curve: cumulant-based
approximation as in (5.35). Dashed curve: approximation Ja in (5.47). Dot-dashed curve:
approximation Jb in (5.48). Clearly, the maximum entropy approximations were much better
than the cumulant-based one, especially in the case of densities of positive kurtosis.

Problems

5.1 Assume that the random variableX can have two values, a and b, as in Example
5.1. Compute the entropy as a function of the probability of obtaining a. Show that
this is maximized when the probability is ���.

5.2 Compute the entropy of X in Example 5.3.

5.3 Assume x has a Laplacian distribution of arbitrary variance with pdf

px��� �
�p
��

exp�

p
�

�
j�j� (5.51)

Compute the differential entropy.

5.4 Prove (5.15).

5.5 Prove (5.25).

5.6 Show that the definition of mutual information using Kullback-Leibler diver-
gence is equal to the one given by entropy.

5.7 Compute the three first Chebyshev-Hermite polynomials.

5.8 Prove (5.34). Use the orthogonality in (5.29), and in particular the fact that
H� and H� are orthogonal to any second-order polynomial (prove this first!). Fur-
thermore, use the fact that any expression involving a third-order monomial of the
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higher-order cumulants is infinitely smaller than terms involving only second-order
monomials (due to the assumption that the pdf is very close to gaussian).

Computer assignments

5.1 Consider random variables with (1) a uniform distribution and (2) a Laplacian
distribution, both with zero mean and unit variance. Compute their differential
entropies with numerical integration. Then, compute the approximations given by
the polynomial and nonpolynomial approximations given in this chapter. Compare
the results.

Appendix proofs

First, we give a detailed proof of (5.13). We have by (5.10)

H�y� � �

Z
py��� log py���d�

� �

Z
px�f

������j detJf�f������j�� log�px�f
������j detJf�f������j���d�

� �

Z
px�f

������ log�px�f
�������j detJf�f������j��d�

�

Z
px�f

������ log�j detJf�f������j���j det Jf�f������j��d� (A.1)

Now, let us make the change of integration variable

� � f
����� (A.2)

which gives us

H�y� � �

Z
px��� log�px����j det Jf���j

��j detJf���jd�

�

Z
px��� log�j det Jf���j

���j detJf���j��j det Jf���jd� (A.3)

where the Jacobians cancel each other, and we have

H�y� � �

Z
px��� log�px����d� �

Z
px��� log j detJf���jd� (A.4)

which gives (5.13).
Now follow the proofs connected with the entropy approximations. First, we prove (5.41).

Due to the assumption of near-gaussianity, we can write p���� as

p���� � A exp������ � an��� � �an�� � ������ �

nX
i��

aiG
i����� (A.5)
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where in the exponential, all other terms are very small with respect to the first one. Thus,
using the first-order approximation exp��� � � � �, we obtain

p���� � �A������ � an��� � �an�� � ������ �

nX

i��

aiG
i����� (A.6)

where ���� � �������� exp������� is the standardized gaussian density, and �A �
p
��A.

Due to the orthogonality constraints in (5.39), the equations for solving �A and ai become
linear and almost diagonal:

Z
p����d� � �A�� � �an�� � ����� � � (A.7)

Z
p�����d� � �Aan�� � � (A.8)

Z
p�����

�d� � �A�� � 	�an�� � ����� � � (A.9)

Z
p����G

i���d� � �Aai � ci� for i � �� ���� n (A.10)

and can be easily solved to yield �A � �� an�� � �, an�� � ���� and ai � ci� i � �� ��� n.
This gives (5.41).

Second, we prove (5.42). Using the Taylor expansion ����� log����� � �������o����,
one obtains

�
Z


p��� log 
p���d� (A.11)

� �
Z

������ �
X

ciG
i�����log�� �

X
ciG

i���� � log�����d�
(A.12)

� �
Z

���� log�����
Z

����
X

ciG
i��� log ���� (A.13)

�
Z

�����
X

ciG
i��� �

�

�
�
X

ciG
i����� � o��

X
ciG

i�������
(A.14)

� H���� �� �� �

�

X
c�i � o��

X
ci�

�� (A.15)

due to the orthogonality relationships in (5.39).
Finally, we prove (5.43), (5.47) and (5.48). First, we must orthonormalize the two functions

G� andG� according to (5.39). To do this, it is enough to determine constants 	�� 
�� ��� ��� 
�
so that the functions F ��x� � �G��x� � 	�x��
� and F ��x� � �G��x� � ��x

� � ����
�
are orthogonal to any second degree polynomials as in (5.39), and have unit norm in the metric
defined by �. In fact, as will be seen below, this modification gives a G� that is odd and a
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G� that is even, and therefore the Gi are automatically orthogonal with respect to each other.
Thus, first we solve the following equations:

Z
������G���� � ����d� � � (A.16)

Z
�����k�G���� � ���

� � ���d� � �� for k � �� � (A.17)

A straightforward solution gives:

�� � �

Z
����G�����d� (A.18)

�� �
�

�
�

Z
����G����d� �

Z
����G������d�� (A.19)

�� �
�

�
�

Z
����G������d� � �

Z
����G����d�� (A.20)

Next note that together with the standardization
R
�����G���� � ���

� � ���d� � � implies

ci � EfF i�x�g � 	EfGi�x�g �EfGi���g
�	i (A.21)

This implies (5.43), with k�i � ����	�i �. Thus we only need to determine explicitly the 	i for
each function. We solve the two equations

Z
�����G���� � ����

��	�d� � � (A.22)

Z
�����G���� � ���

� � ���
��	�d� � � (A.23)

which, after some tedious manipulations, yield:

	�� �

Z
����G�����d� � �

Z
����G����� d��� (A.24)

	�� �

Z
����G�����d� � �

Z
����G����d���

�
�

�
�

Z
����G����d� �

Z
����G������d���
 (A.25)

Evaluating the 	i for the given functions Gi, one obtains (5.47) and (5.48) by the relation
k�i � ����	�i �.



6
Principal Component

Analysis and Whitening

Principal component analysis (PCA) and the closely related Karhunen-Loève trans-
form, or the Hotelling transform, are classic techniques in statistical data analysis,
feature extraction, and data compression, stemming from the early work of Pearson
[364]. Given a set of multivariate measurements, the purpose is to find a smaller set of
variables with less redundancy, that would give as good a representation as possible.
This goal is related to the goal of independent component analysis (ICA). However,
in PCA the redundancy is measured by correlations between data elements, while
in ICA the much richer concept of independence is used, and in ICA the reduction
of the number of variables is given less emphasis. Using only the correlations as in
PCA has the advantage that the analysis can be based on second-order statistics only.
In connection with ICA, PCA is a useful preprocessing step.

The basic PCA problem is outlined in this chapter. Both the closed-form solution
and on-line learning algorithms for PCA are reviewed. Next, the related linear
statistical technique of factor analysis is discussed. The chapter is concluded by
presenting how data can be preprocessed by whitening, removing the effect of first-
and second-order statistics, which is very helpful as the first step in ICA.

6.1 PRINCIPAL COMPONENTS

The starting point for PCA is a random vector x with n elements. There is available
a sample x���� ����x�T � from this random vector. No explicit assumptions on the
probability density of the vectors are made in PCA, as long as the first- and second-
order statistics are known or can be estimated from the sample. Also, no generative
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model is assumed for vector x. Typically the elements of x are measurements like
pixel gray levels or values of a signal at different time instants. It is essential in
PCA that the elements are mutually correlated, and there is thus some redundancy
in x, making compression possible. If the elements are independent, nothing can be
achieved by PCA.

In the PCA transform, the vector x is first centered by subtracting its mean:

x� x� Efxg

The mean is in practice estimated from the available sample x���� ����x�T � (see
Chapter 4). Let us assume in the following that the centering has been done and thus
Efxg � �. Next, x is linearly transformed to another vector y with m elements,
m � n, so that the redundancy induced by the correlations is removed. This is
done by finding a rotated orthogonal coordinate system such that the elements of
x in the new coordinates become uncorrelated. At the same time, the variances of
the projections of x on the new coordinate axes are maximized so that the first axis
corresponds to the maximal variance, the second axis corresponds to the maximal
variance in the direction orthogonal to the first axis, and so on.

For instance, if x has a gaussian density that is constant over ellipsoidal surfaces
in the n-dimensional space, then the rotated coordinate system coincides with the
principal axes of the ellipsoid. A two-dimensional example is shown in Fig. 2.7 in
Chapter 2. The principal components are now the projections of the data points on the
two principal axes, e� and e�. In addition to achieving uncorrelated components, the
variances of the components (projections) also will be very different in most appli-
cations, with a considerable number of the variances so small that the corresponding
components can be discarded altogether. Those components that are left constitute
the vector y.

As an example, take a set of ��� pixel windows from a digital image,an application
that is considered in detail in Chapter 21. They are first transformed, e.g., using row-
by-row scanning, into vectors x whose elements are the gray levels of the 64 pixels
in the window. In real-time digital video transmission, it is essential to reduce this
data as much as possible without losing too much of the visual quality, because the
total amount of data is very large. Using PCA, a compressed representation vector y
can be obtained from x, which can be stored or transmitted. Typically, y can have as
few as 10 elements, and a good replica of the original �� � image window can still
be reconstructed from it. This kind of compression is possible because neighboring
elements of x, which are the gray levels of neighboring pixels in the digital image,
are heavily correlated. These correlations are utilized by PCA, allowing almost the
same information to be represented by a much smaller vector y. PCA is a linear
technique, so computing y from x is not heavy, which makes real-time processing
possible.
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6.1.1 PCA by variance maximization

In mathematical terms, consider a linear combination

y� �

nX

k��

wk�xk � w
T
�
x

of the elements x�� ���� xn of the vector x. The w��� ���� wn� are scalar coefficients or
weights, elements of an n-dimensional vector w�, and wT

�
denotes the transpose of

w�.
The factor y� is called the first principal component of x, if the variance of y� is

maximally large. Because the variance depends on both the norm and orientation of
the weight vector w� and grows without limits as the norm grows, we impose the
constraint that the norm ofw� is constant, in practice equal to 1. Thus we look for a
weight vectorw� maximizing the PCA criterion

JPCA
�

�w�� � Efy�
�
g � Ef�wT

�
x��g � w

T
�

EfxxT gw� � w
T
�
Cxw� (6.1)

so that kw�k � � (6.2)

There Ef�g is the expectation over the (unknown) density of input vector x, and the
norm of w� is the usual Euclidean norm defined as

kw�k � �wT
�
w��

��� � �
nX

k��

w�

k��
���

The matrixCx in Eq. (6.1) is the n�n covariance matrix of x (see Chapter 4) given
for the zero-mean vector x by the correlation matrix

Cx � EfxxT g (6.3)

It is well known from basic linear algebra (see, e.g., [324, 112]) that the solution
to the PCA problem is given in terms of the unit-length eigenvectors e�� ���� en of
the matrix Cx. The ordering of the eigenvectors is such that the corresponding
eigenvalues d�� ���� dn satisfy d� � d� � ��� � dn. The solution maximizing (6.1) is
given by

w� � e�

Thus the first principal component of x is y� � e
T
�
x.

The criterion JPCA
�

in eq. (6.1) can be generalized to m principal components,
with m any number between 1 and n. Denoting the m-th (� � m � n) principal
component by ym � w

T
mx, withwm the corresponding unit norm weight vector, the

variance of ym is now maximized under the constraint that ym is uncorrelated with
all the previously found principal components:

Efymykg � �� k � m� (6.4)

Note that the principal components ym have zero means because

Efymg � w
T
mEfxg � �
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The condition (6.4) yields:

Efymykg � Ef�wT
mx��w

T
k x�g � w

T
mCxwk � � (6.5)

For the second principal component, we have the condition that

w
T
�
Cw� � d�w

T
�
e� � � (6.6)

because we already know that w� � e�. We are thus looking for maximal variance
Efy�

�
g � Ef�wT

�
x��g in the subspace orthogonal to the first eigenvector ofCx. The

solution is given by
w� � e�

Likewise, recursively it follows that

wk � ek

Thus the kth principal component is yk � e
T
k x.

Exactly the same result for the wi is obtained if the variances of yi are maxi-
mized under the constraint that the principal component vectors are orthonormal, or
w
T
i wj � �ij . This is left as an exercise.

6.1.2 PCA by minimum mean-square error compression

In the preceding subsection, the principal components were defined as weighted sums
of the elements of x with maximal variance, under the constraints that the weights
are normalized and the principal components are uncorrelated with each other. It
turns out that this is strongly related to minimum mean-square error compression
of x, which is another way to pose the PCA problem. Let us search for a set of m
orthonormal basis vectors, spanning anm-dimensional subspace, such that the mean-
square error between x and its projection on the subspace is minimal. Denoting again
the basis vectors by w�� ����wm, for which we assume

w
T
i wj � �ij

the projection of x on the subspace spanned by them is
Pm

i���w
T
i x�wi. The mean-

square error (MSE) criterion, to be minimized by the orthonormal basis w�� ����wm,
becomes

JPCAMSE � Efkx�
mX

i��

�wT
i x�wik

�g (6.7)

It is easy to show (see exercises) that due to the orthogonality of the vectors wi, this
criterion can be further written as

JPCAMSE � Efkxk�g � Ef
mX

j��

�wT
j x�

�g (6.8)

� trace�Cx��

mX

j��

w
T
j Cxwj (6.9)
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It can be shown (see, e.g., [112]) that the minimum of (6.9) under the orthonor-
mality condition on the wi is given by any orthonormal basis of the PCA subspace
spanned by the m first eigenvectors e�� ���� em. However, the criterion does not spec-
ify the basis of this subspace at all. Any orthonormal basis of the subspace will give
the same optimal compression. While this ambiguity can be seen as a disadvantage,
it should be noted that there may be some other criteria by which a certain basis in
the PCA subspace is to be preferred over others. Independent component analysis is
a prime example of methods in which PCA is a useful preprocessing step, but once
the vector x has been expressed in terms of the first m eigenvectors, a further rotation
brings out the much more useful independent components.

It can also be shown [112] that the value of the minimum mean-square error of
(6.7) is

JPCAMSE �

nX

i�m��

di (6.10)

the sum of the eigenvalues corresponding to the discarded eigenvectors em��� ���� en.
If the orthonormality constraint is simply changed to

w
T
j wk � �k�jk (6.11)

where all the numbers �k are positive and different, then the mean-square error
problem will have a unique solution given by scaled eigenvectors [333].

6.1.3 Choosing the number of principal components

From the result that the principal component basis vectorswi are eigenvectors ei of
Cx, it follows that

Efy�mg � EfeTmxx
T
emg � e

T
mCxem � dm (6.12)

The variances of the principal components are thus directly given by the eigenvalues
ofCx. Note that, because the principal components have zero means, a small eigen-
value (a small variance) dm indicates that the value of the corresponding principal
component ym is mostly close to zero.

An important application of PCA is data compression. The vectorsx in the original
data set (that have first been centered by subtracting the mean) are approximated by
the truncated PCA expansion

�x �

mX

i��

yiei (6.13)

Then we know from (6.10) that the mean-square error Efkx � �xk�g is equal toPn
i�m�� di. As the eigenvalues are all positive, the error decreases when more and

more terms are included in (6.13), until the error becomes zero when m � n or all
the principal components are included. A very important practical problem is how to
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choose m in (6.13); this is a trade-off between error and the amount of data needed
for the expansion. Sometimes a rather small number of principal components are
sufficient.

Fig. 6.1 Leftmost column: some digital images in a ��� �� grid. Second column: means
of the samples. Remaining columns: reconstructions by PCA when 1, 2, 5, 16, 32, and 64
principal components were used in the expansion.

Example 6.1 In digital image processing, the amount of data is typically very large,
and data compression is necessary for storage, transmission, and feature extraction.
PCA is a simple and efficient method. Fig. 6.1 shows 10 handwritten characters that
were represented as binary ����� matrices (left column) [183]. Such images, when
scanned row by row, can be represented as 1024-dimensional vectors. For each of the
10 character classes, about 1700 handwritten samples were collected, and the sample
means and covariance matrices were computed by standard estimation methods. The
covariance matrices were ���������matrices. For each class, the first 64 principal
component vectors or eigenvectors of the covariance matrix were computed. The
second column in Fig. 6.1 shows the sample means, and the other columns show the
reconstructions (6.13) for various values of m. In the reconstructions, the sample
means have been added again to scale the images for visual display. Note how a
relatively small percentage of the 1024 principal components produces reasonable
reconstructions.
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The condition (6.12) can often be used in advance to determine the number of
principal components m, if the eigenvalues are known. The eigenvalue sequence
d�� d�� ���� dn of a covariance matrix for real-world measurement data is usually
sharply decreasing, and it is possible to set a limit below which the eigenvalues,
hence principal components, are insignificantly small. This limit determines how
many principal components are used.

Sometimes the threshold can be determined from some prior information on the
vectors x. For instance, assume that x obeys a signal-noise model

x �

mX

i��

aisi � n (6.14)

where m � n. There ai are some fixed vectors and the coefficients si are random
numbers that are zero mean and uncorrelated. We can assume that their variances
have been absorbed in vectors ai so that they have unit variances. The term n is
white noise, for which EfnnT g � ��I. Then the vectors ai span a subspace, called
the signal subspace, that has lower dimensionality than the whole space of vectors
x. The subspace orthogonal to the signal subspace is spanned by pure noise and it is
called the noise subspace.

It is easy to show (see exercises) that in this case the covariance matrix of x has a
special form:

Cx �

mX

i��

aia
T

i
� ��I (6.15)

The eigenvalues are now the eigenvalues of
Pm

i��
aia

T
i

, added by the constant ��.
But the matrix

P
m

i��
aia

T

i
has at most m nonzero eigenvalues, and these correspond

to eigenvectors that span the signal subspace. When the eigenvalues of Cx are
computed, the first m form a decreasing sequence and the rest are small constants,
equal to ��:

d� � d� � ��� � dm � dm�� � dm�� � ��� � dn � ��

It is usually possible to detect where the eigenvalues become constants, and putting
a threshold at this index, m, cuts off the eigenvalues and eigenvectors corresponding
to pure noise. Then only the signal part remains.

A more disciplined approach to this problem was given by [453]; see also [231].
They give formulas for two well-known information theoretic modeling criteria,
Akaike’s information criterion (AIC) and the minimum description length criterion
(MDL), as functions of the signal subspace dimensionm. The criteria depend on the
length T of the sample x���� ����x�T � and on the eigenvalues d�� ���� dn of the matrix
Cx. Finding the minimum point gives a good value for m.

6.1.4 Closed-form computation of PCA

To use the closed-form solution wi � ei given earlier for the PCA basis vectors, the
eigenvectors of the covariance matrixCx must be known. In the conventional use of
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PCA, there is a sufficiently large sample of vectors x available, from which the mean
and the covariance matrixCx can be estimated by standard methods (see Chapter 4).
Solving the eigenvector–eigenvalue problem forCx gives the estimate for e�. There
are several efficient numerical methods available for solving the eigenvectors, e.g.,
the QR algorithm with its variants [112, 153, 320].

However, it is not always feasible to solve the eigenvectors by standard numerical
methods. In an on-line data compression application like image or speech coding,
the data samples x�t� arrive at high speed, and it may not be possible to estimate the
covariance matrix and solve the eigenvector–eigenvalue problem once and for all.
One reason is computational: the eigenvector problem is numerically too demanding
if the dimensionalityn is large and the sampling rate is high. Another reason is that the
covariance matrixCx may not be stationary, due to fluctuating statistics in the sample
sequence x�t�, so the estimate would have to be incrementally updated. Therefore,
the PCA solution is often replaced by suboptimal nonadaptive transformations like
the discrete cosine transform [154].

6.2 PCA BY ON-LINE LEARNING

Another alternative is to derive gradient ascent algorithms or other on-line methods
for the preceding maximization problems. The algorithms will then converge to the
solutions of the problems, that is, to the eigenvectors. The advantage of this approach
is that such algorithms work on-line, using each input vector x�t� once as it becomes
available and making an incremental change to the eigenvector estimates, without
computing the covariance matrix at all. This approach is the basis of the PCA neural
network learning rules.

Neural networks provide a novel way for parallel on-line computation of the PCA
expansion. The PCA network [326] is a layer of parallel linear artificial neurons
shown in Fig. 6.2. The output of the ith unit (i � �� ����m) is yi � w

T

i
x, with x

denoting the n-dimensional input vector of the network and wi denoting the weight
vector of the ith unit. The number of units, m, will determine how many principal
components the network will compute. Sometimes this can be determined in advance
for typical inputs, or m can be equal to n if all principal components are required.

The PCA network learns the principal components by unsupervised learning rules,
by which the weight vectors are gradually updated until they become orthonormal
and tend to the theoretically correct eigenvectors. The network also has the ability to
track slowly varying statistics in the input data, maintaining its optimality when the
statistical properties of the inputs do not stay constant. Due to their parallelism and
adaptivity to input data, such learning algorithms and their implementations in neural
networks are potentially useful in feature detection and data compression tasks.

In ICA, where decorrelating the mixture variables is a useful preprocessing step,
these learning rules can be used in connection to on-line ICA.
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Fig. 6.2 The basic linear PCA layer

6.2.1 The stochastic gradient ascent algorithm

In this learning rule, the gradient of y�
�

is taken with respect tow� and the normalizing
constraint kw�k � � is taken into account. The learning rule is

w��t � �� � w��t� � ��t��y��t�x�t�� y�
�
�t�w��t��

with y��t� � w��t�
T
x�t�. This is iterated over the training set x����x���� ����. The

parameter ��t� is the learning rate controlling the speed of convergence.
In this chapter we will use the shorthand notation introduced in Chapter 3 and

write the learning rule as

	w� � ��y�x� y�
�
w�� (6.16)

The name stochastic gradient ascent (SGA) is due to the fact that the gradient is not
with respect to the variance Efy�

�
g but with respect to the instantaneous random value

y�
�
. In this way, the gradient can be updated every time a new input vector becomes

available, contrary to batch mode learning. Mathematically, this is a stochastic
approximation type of algorithm (for details, see Chapter 3). Convergence requires
that the learning rate is decreased during learning at a suitable rate. For tracking
nonstationary statistics, the learning rate should remain at a small constant value.
For a derivation of this rule, as well as for the mathematical details of its convergence,
see [323, 324, 330]. The algorithm (6.16) is often called Oja’s rule in the literature.

Likewise, taking the gradient of y�j with respect to the weight vectorwj and using
the normalization and orthogonality constraints, we end up with the learning rule

	wj � �yj �x� yjwj � �
X

i�j

yiwi� (6.17)
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On the right-hand side there is a term yjx, which is a so-called Hebbian term,
product of the output yj of the jth neuron and the input x to it. The other terms
are implicit orthonormality constraints. The case j � � gives the one-unit learning
rule (6.16) of the basic PCA neuron. The convergence of the vectorsw�� ����wm to
the eigenvectors e�� ���� em was established in [324, 330]. A modification called the
generalized Hebbian algorithm (GHA) was later presented by Sanger [391], who also
applied it to image coding, texture segmentation, and the development of receptive
fields.

6.2.2 The subspace learning algorithm

The following algorithm [324, 458]

�wj � �yj �x�
mX

i��

yiwi� (6.18)

is obtained as a constrained gradient ascent maximization of
Pm

j���w
T
j x�

�, the
mean of which gives criterion (6.9). The regular structure allows this algorithm to be
written in a simple matrix form: denoting by W � �w����wm�T the m � n matrix
whose rows are the weight vectorswj , we have the update rule

�W � ��Wxx
T
� �Wxx

T
W

T �W�� (6.19)

The network implementation of (6.18) is analogous to the SGA algorithm but
still simpler because the normalizing feedback term, depending on the other weight
vectors, is the same for all neuron units. The convergence was studied by Williams
[458], who showed that the weight vectorsw�� ����wm will not tend to the eigenvec-
tors e�� ���� em but only to some rotated basis in the subspace spanned by them, in
analogy with the minimum mean-square criterion of Section 6.1.2. For this reason,
this learning rule is called the subspace algorithm. A global convergence analysis
was given in [465, 75].

A variant of the subspace algorithm (6.18) is the weighted subspace algorithm

�wj � �yj �x� �j

mX

i��

yiwi� (6.20)

Algorithm (6.20) is similar to (6.18) except for the scalar parameters ��� ���� �m, which
are inverses of the parameters��� ���� �m in criterion (6.11). If all of them are chosen
different and positive, then it was shown by [333] that the vectors w�� ����wm will
tend to the true PCA eigenvectors e�� ���� em multiplied by scalars. The algorithm is
appealing because it produces the true eigenvectors but can be computed in a fully
parallel way in a homogeneous network. It can be easily presented in a matrix form,
analogous to (6.19).

Other related on-line algorithms have been introduced in [136, 388, 112, 450].
Some of them, like the APEX algorithm by Diamantaras and Kung [112], are based
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on a feedback neural network. Also minor components defined by the eigenvectors
corresponding to the smallest eigenvalues can be computed by similar algorithms
[326]. Overviews of these and related neural network realizations of signal processing
algorithms are given by [83, 112].

6.2.3 Recursive least-squares approach: the PAST algorithm *

The on-line algorithms reviewed in preceding sections typically suffer from slow
convergence. The learning rate ��t� would have to be tuned optimally to speed up
the convergence. One way of doing this is to use the recursive least squares (RLS)
principle.

Recursive least squares methods have a long history in statistics, adaptive signal
processing, and control; see [171, 299]. For example in adaptive signal processing,
it is well known that RLS methods converge much faster than the standard stochas-
tic gradient based least-mean-square (LMS) algorithm at the expense of somewhat
greater computational cost [171].

Consider the mean-square error criterion (6.7). The cost function is in practice
estimated from a fixed sample x���� ����x�T � as

�JPCAMSE �
�

T

TX

j��

�kx�j��

mX

i��

�wT
i x�j��wik

�� (6.21)

For simplicity of notation, let us write this in matrix form: denoting again W �
�w����wm�T we have

�JPCAMSE �
�

T

TX

j��

�kx�j��WTWx�j�k�� (6.22)

In [466], the following exponentially weighted sum was considered instead:

JMSE�t� �

tX

j��

�t�j �kx�j��W�t�TW�t�x�j�k�� (6.23)

The fixed multiplier �

T
has now been replaced by an exponential smoother �t�j ,

where the “forgetting factor” � is between 0 and 1. If � � �, all the samples are
given the same weight, and no forgetting of old data takes place. Choosing � � � is
especially useful in tracking nonstationary changes in the sources. The solution is
denoted by W�t� to indicate that it depends on the sample x���� ����x�t� up to time
index t. The problem is to solveW�t� recursively: knowingW�t� ��, we compute
W�t� from an update rule.

Note that the cost function (6.23) is fourth order in the elements of W�t�. It
can be simplified by approximating the vector W�t�x�j� in the sum (6.23) by the
vector y�j� � W�j � ��x�j�. These vectors can be easily computed because the
estimated weight matricesW�j � �� for the previous iteration steps j � �� ���� t are
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already known at step t. The approximation error is usually rather small after initial
convergence. This approximation yields the modified least-squares-type criterion

J �MSE�t� �
tX

j��

�t�j �kx�j��WT �t�y�j�k�� (6.24)

The cost function (6.24) is now of the standard form used in recursive least-squares
methods. Any of the available algorithms [299] can be used for solving the weight
matrix W�t� iteratively. The algorithm proposed by Yang [466], which he calls the
Projection Approximation Subspace Tracking (PAST) algorithm, is as follows:

y�t� � W�t� ��x�t�

h�t� � P�t� ��y�t�

m�t� � h�t���� � yT �t�h�t��

P�t� �
�

�
Tri

�
P�t� ���m�t�hT �t�

�

e�t� � x�t��WT �t� ��y�t�

W�t� � W�t� �� �m�t�eT �t� (6.25)

The notation Tri means that only the upper triangular part of the argument is
computed and its transpose is copied to the lower triangular part, making thus the
matrix P�t� symmetric. The simplest way to choose the initial values is to set both
W��� and P��� to n� n unit matrices.

The PAST algorithm (6.25) can be regarded either as a neural network learning
algorithm or adaptive signal processing algorithm. It does not require any matrix
inversions, because the most complicated operation is division by a scalar. The
computational cost is thus low. The convergence of the algorithm is relatively fast,
as shown in [466].

6.2.4 PCA and back-propagation learning in multilayer perceptrons *

Another possibility for PCA computation in neural networks is the multilayer percep-
tron (MLP) network, which learns using the back-propagation algorithm (see [172])
in unsupervised autoassociative mode. The network is depicted in Fig. 6.3.

The input and output layers have n units and the hidden layer has m � n units.
The outputs of the hidden layer are given by

h � ��W�x� b�� (6.26)

where W� is the input-to-hidden-layer weight matrix, b� is the corresponding bias
vector, and � is the activation function, to be applied elementwise. The output y of
the network is an affine linear function of the hidden-layer outputs:

y �W�h� b� (6.27)
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�

W��b�
�

W��b�

x

h � ��W�x� b��

y �W�h� b�

Fig. 6.3 The three-layer MLP in autoassociative mode.

with obvious notation.
In autoassociative mode, the same vectorsx are used both as inputs and as desired

outputs in back-propagation learning. If � is linear, then the hidden layer outputs will
become the principal components ofx [23]. For the linear network, back-propagation
learning is especially feasible because it can be shown that the "energy" function has
no local minima.

This network with a nonlinear hidden layer was suggested for data compression
by [96], and it was shown to be closely connected to the theoretical PCA by [52].
It is not equivalent to PCA, however, as shown by [220], unless the hidden layer is
linear.

6.2.5 Extensions of PCA to nonquadratic criteria *

In the on-line learning rules reviewed earlier, the explicit computation of the eigen-
vectors of the covariance matrix has been replaced by gradient ascent. This makes it
possible to widely extend the PCA criteria. In fact, any criterion J�w�� ����wn� such
that its maximum over the constraint set wT

i wj � �ij coincides with the dominant
eigenvectors of Cx, or is a basis of the subspace spanned by them, could now be
used instead. The criterion does not have to be quadratic anymore, like all the criteria
presented in Section 6.1. An advantage might then be faster convergence to the PCA
basis.
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Recently, Miao and Hua [300] proposed such a criterion: again denoting byW �
�w����wm�T the matrix whose rows are the weight vectors, this “novel information
criterion” (NIC) is

JNIC�W� �
�

�
ftrace�log�WCxW

T ��� trace�WWT �g� (6.28)

It was shown in [300] that the matrix gradient is

�JNIC�W�

�W
� CxW

T �WCxW
T ��� �WT (6.29)

Setting this to zero gives the eigenvalue–eigenvector equation forCx, so the stationary
points of this criterion are given by bases of PCA subspaces.

Other extensions and analysis of both PCA and minor component learning rules
have been given by [340, 480].

6.3 FACTOR ANALYSIS

The PCA model was discussed above as a distribution-free method with no underlying
statistical model. However, PCA can also be derived from a generative latent variable
model: assume

x � Ay � n (6.30)

where y is gaussian, zero-mean and white, so that EfyyT g � I, and n is zero-mean
gaussian white noise. It is now easy to formulate the likelihood function, because
the density of x, given y, is gaussian. Scaled eigenvectors ofCx are obtained as the
rows of A in the maximum likelihood solution, in the limiting case when the noise
tends to zero.

This approach is one of the methods for the classic statistical technique of factor
analysis (FA). It is called principal factor analysis [166]. Generally, the goal in factor
analysis is different from PCA. Factor analysis was originally developed in social
sciences and psychology. In these disciplines, the researchers want to find relevant
and meaningful factors that explain observed results [166, 243, 454]. The model has
the form of (6.30), with the interpretation that the elements of y are the unobservable
factors. The elements aij of matrix A are called factor loadings. The elements of
the additive term n are called specific factors, instead of noise. Let us make the
simplifying assumption that the data has been normalized to zero mean.

In FA we assume that the elements ofy (the factors) are uncorrelated and gaussian,
and their variances can be absorbed into the unknown matrixA so that we can assume

EfyyT g � I� (6.31)

The elements of n are uncorrelated with each other and also with the factors yi;
denoteQ � EfnnT g. It is a diagonal matrix, but the variances of the noise elements
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are generally not assumed to be equal or infinitely small, as in the special case of
principal FA. We can write the covariance matrix of the observations from (6.30) as

EfxxT g � Cx � AA
T
�Q (6.32)

In practice, we have a good estimate of Cx available, given by the sample co-
variance matrix. The main problem is then to solve the matrix A of factor loadings
and the diagonal noise covariance matrixQ such that they will explain the observed
covariances from (6.32). There is no closed-form analytic solution forA andQ.

Assuming Q is known or can be estimated, we can attempt to solve A from
AAT

� Cx �Q. The number of factors is usually constrained to be much smaller
than the number of dimensions in the data, so this equation cannot be exactly solved;
something similar to a least-squares solution should be used instead. Clearly, this
problem does not have a unique solution: any orthogonal transform or rotation of
A� AT, with T an orthogonal matrix (for which TTT

� I), will produce exactly
the same left-hand side. We need some extra constraints to make the problem more
unique.

Now, looking for a factor-based interpretation of the observed variables, FA typ-
ically tries to solve the matrix A in such a way that the variables would have high
loadings on a small number of factors, and very low loadings on the remaining fac-
tors. The results are then easier to interpret. This principle has been used in such
techniques as varimax, quartimax, and oblimin rotations. Several classic techniques
for such factor rotations are covered by Harman [166].

There are some important differences between PCA, FA, and ICA. Principal
component analysis is not based on a generative model, although it can be derived
from one. It is a linear transformation that is based either on variance maximization
or minimum mean-square error representation. The PCA model is invertible in
the (theoretical) case of no compression, i.e., when all the principal components are
retained. Once the principal componentsyihave been found, the original observations
can be readily expressed as their linear functions as x �

Pn

i��
yiwi, and also the

principal components are simply obtained as linear functions of the observations:
yi � w

T

i
x.

The FA model is a generative latent variable model; the observations are expressed
in terms of the factors, but the values of the factors cannot be directly computed from
the observations. This is due to the additive term of specific factors or noise which
is considered important in some application fields. Further, the rows of matrix A
are generally not (proportional to) eigenvectors of Cx; several different estimation
methods exist.

FA, as well as PCA, is a purely second-order statistical method: only covariances
between the observed variables are used in the estimation, which is due to the
assumption of gaussianity of the factors. The factors are further assumed to be
uncorrelated, which also implies independence in the case of gaussian data. ICA
is a similar generative latent variable model, but now the factors or independent
components are assumed to be statistically independent and nongaussian — a much
stronger assumption that removes the rotational redundancy of the FA model. In fact,
ICA can be considered as one particular method of determining the factor rotation.
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The noise term is usually omitted in the ICA model; see Chapter 15 for a detailed
discussion on this point.

6.4 WHITENING

As already discussed in Chapter 1, the ICA problem is greatly simplified if the
observed mixture vectors are first whitened or sphered. A zero-mean random vector
z � �z����zn�

T is said to be white if its elements zi are uncorrelated and have unit
variances:

Efzizjg � �ij

In terms of the covariance matrix, this obviously means that EfzzT g � I, with I
the unit matrix. The best-known example is white noise; then the elements zi would
be the intensities of noise at consequent time points i � �� �� ��� and there are no
temporal correlations in the noise process. The term “white” comes from the fact
that the power spectrum of white noise is constant over all frequencies, somewhat
like the spectrum of white light contains all colors.

A synonym for white is sphered. If the density of the vector z is radially symmetric
and suitably scaled, then it is sphered. An example is the multivariate gaussian
density that has zero mean and unit covariance matrix. The opposite does not hold:
the density of a sphered vector does not have to be radially symmetric. An example
is a two-dimensional uniform density that has the shape of a rotated square; see
Fig. 7.10. It is easy to see that in this case both the variables z� and z� on the
coordinate axes have unit variance (if the side of the square has length �

p
�) and they

are uncorrelated, independently of the rotation angle. Thus vector z is sphered, even
if the density is highly nonsymmetric. Note that the densities of the elements zi of a
sphered random vector need not be the same.

Because whitening is essentially decorrelation followed by scaling, the technique
of PCA can be used. This implies that whitening can be done with a linear operation.
The problem of whitening is now: Given a random vector x with n elements, find a
linear transformationV into another vector z such that

z � Vx

is white (sphered).
The problem has a straightforward solution in terms of the PCA expansion. Let

E � �e����en� be the matrix whose columns are the unit-norm eigenvectors of
the covariance matrix Cx � EfxxT g. These can be computed from a sample
of the vectors x either directly or by one of the on-line PCA learning rules. Let
D � diag�d����dn� be the diagonal matrix of the eigenvalues of C .Then a linear
whitening transform is given by

V � D
����

E
T (6.33)

This matrix always exists when the eigenvalues di are positive; in practice, this is not
a restriction. Remember (see Chapter 4) that Cx is positive semidefinite, in practice
positive definite for almost any natural data, so its eigenvalues will be positive.

x
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It is easy to show that the matrix V of Eq. (6.33) is indeed a whitening trans-
formation. Recalling that Cx can be written in terms of its eigenvector and eigen-
value matrices E and D as Cx � EDE

T , with E an orthogonal matrix satisfying
E
T
E � EE

T � I, it holds:

EfzzT g � VEfxxT gVT � D
����

E
T
EDE

T
ED

���� � I

The covariance of z is the unit matrix, hence z is white.
The linear operatorV of (6.33) is by no means the only unique whitening matrix.

It is easy to see that any matrixUV, withU an orthogonal matrix, is also a whitening
matrix. This is because for z � UVx it holds:

EfzzT g � UVEfxxT gVT
U

T � UIU
T � I

An important instance is the matrix ED����ET . This is a whitening matrix
because it is obtained by multiplyingV of Eq. (6.33) from the left by the orthogonal
matrixE. This matrix is called the inverse square root ofCx, and denoted byC����x ,
because it comes from the standard extension of square roots to matrices.

It is also possible to perform whitening by on-line learning rules, similar to the
PCA learning rules reviewed earlier. One such direct rule is

�V � ��I�VxxTVT �V � ��I� zzT �V (6.34)

It can be seen that at a stationary point, when the change in the value ofV is zero on
the average, it holds

�I� EfzzT g�V � �

for which a whitened z � Vx is a solution. It can be shown (see, e.g., [71]) that the
algorithm will indeed converge to a whitening transformationV.

6.5 ORTHOGONALIZATION

In some PCA and ICA algorithms, we know that in theory the solution vectors
(PCA basis vectors or ICA basis vectors) are orthogonal or orthonormal, but the
iterative algorithms do not always automatically produce orthogonality. Then it may
be necessary to orthogonalize the vectors after each iteration step, or at some suitable
intervals. In this subsection, we look into some basic orthogonalization methods.

Simply stated, the problem is as follows: given a set of n-dimensional linearly
independent vectors a�� ���� am, with m � n, compute another set of m vectors
w�� ����wm that are orthogonal or orthonormal (i.e., orthogonal and having unit
Euclidean norm) and that span the same subspace as the original vectors. This means
that each wi is some linear combination of the aj .

The classic approach is the Gram-Schmidt orthogonalization(GSO) method [284]:

w� � a� (6.35)

wj � aj �

j��X

i��

w
T
i aj

wT
i wi

wi (6.36)
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As a result, wT
i wj � � for i �� j, as is easy to show by induction. Assume that

the first j � � basis vectors are already orthogonal; from (6.36) it then follows for

any k � j that wT
kwj � w

T
k aj �

Pj��
i��

w
T
i aj

w
T
i
wi
�wT

kwi�. In the sum, all the inner

products wT
kwi are zero except the one where i � k. This term becomes equal to

w
T
k aj

w
T
k
wk

�wT
kwk� � w

T
k aj , and thus the inner productwT

kwj is zero, too.

If in the GSO eachwj is further divided by its norm, the set will be orthonormal.
The GSO is a sequential orthogonalization procedure. It is the basis of deflation
approaches to PCA and ICA. A problem with sequential orthogonalization is the
cumulation of errors.

In symmetric orthonormalizationmethods, none of the original vectorsai is treated
differently from the others. If it is sufficient to find any orthonormal basis for the
subspace spanned by the original vectors,without other constraints on the new vectors,
then this problem does not have a unique solution. This can be accomplished for
instance by first forming the matrix A � �a����am� whose columns are the vectors
to be orthogonalized, then computing �AT

A����� using the eigendecomposition of
the symmetric matrix �AT

A�, and finally putting

W � A�AT
A����� (6.37)

Obviously, for matrix W it holds WT
W � I, and its columns w�� ����wm span

the same subspace as the columns of matrix A. These vectors are thus a suitable
orthonormalized basis. This solution to the symmetric orthonormalization problem
is by no means unique; again, any matrixWU withU an orthogonal matrix will do
quite as well.

However, among these solutions, there is one specific orthogonal matrix that is
closest to matrixA (in an appropriate matrix norm). Then this matrix is the orthogonal
projection ofA onto the set of orthogonal matrices [284]. This is somewhat analogous
to the normalization of one vector a; the vector a�kak is the projection of a onto
the set of unit-norm vectors (the unit sphere). For matrices, it can be shown that the
matrix A�AT

A����� in Eq. (6.37) is in fact the unique orthogonal projection of A
onto this set.

This orthogonalization should be preferred in gradient algorithms that minimize
a function J �W� under the constraint WT

W � I. As explained in Chapter 3,
one iteration step consists of two parts: first, the matrix W is updated by the usual
gradient descent, and second, the updated matrix is projected orthogonally onto the
constraint set. For this second stage, the form given in (6.37) for orthogonalizing the
updated matrix should be used.

There are iterative methods for symmetric orthonormalization that avoid the matrix
eigendecomposition and inversion. An example is the following iterative algorithm
[197], starting from a nonorthogonal matrixW���:

W��� � W����kW���k� (6.38)

W�t� �� �
�

�
W�t��

�

�
W�t�W�t�TW�t� (6.39)
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The iteration is continued untilW�t�TW�t� � I. The convergence of this iteration
can be proven as follows [197]: matrices W�t�TW�t� and W�t � ��TW�t �
�� � �

�
W�t�TW�t� � �

�
�W�t�TW�t��� � �

�
�W�t�TW�t��� have clearly the same

eigenvectors, and the relation between the eigenvalues is

d�t� �� �
�

	
d�t� �




�
d��t� �

�

	
d��t� (6.40)

This nonlinear scalar iteration will converge on the interval ��� �� to 1 (see exercises).
Due to the original normalization, all the eigenvalues are on this interval, assuming
that the norm in the normalization is appropriately chosen (it must be a proper norm
in the space of matrices; most conventional norms, except for the Frobenius norm,
have this property). Because the eigenvalues tend to 1, the matrix itself tends to the
unit matrix.

6.6 CONCLUDING REMARKS AND REFERENCES

Good general discussions on PCA are [14, 109, 324, 112]. The variance maximiza-
tion criterion of PCA covered in Section 6.1.1 is due to Hotelling [185], while in
the original work by Pearson [364], the starting point was minimizing the squared
reconstruction error (Section 6.1.2). These are not the only criteria leading to the
PCA solution; yet another information-theoretic approach is maximization of mutual
information between the inputs and outputs in a linear gaussian channel [112]. An
expansion closely related to PCA is the Karhunen-Loève expansion for continuous
second-order stochastic processes, whose autocovariance function can be expanded
in terms of its eigenvalues and orthonormal eigenfunctions in a convergent series
[237, 283].

The on-line algorithms of Section 6.2 are especially suitable for neural network
implementations. In numerical analysis and signal processing, many other adaptive
algorithms of varying complexity have been reported for different computing hard-
ware. A good review is given by Comon and Golub [92]. Experimental results on
PCA algorithms both for finding the eigenvectors of stationary training sets, and for
tracking the slowly changing eigenvectors of nonstationary input data streams, have
been reported in [324, 391, 350]. An obvious extension of PCA neural networks
would be to use nonlinear units, e.g., perceptrons, instead of the linear units. It turns
out that such “nonlinear PCA” networks will in some cases give the independent
components of the input vectors, instead of just uncorrelated components [232, 233]
(see Chapter 12).

Good general texts on factor analysis are [166, 243, 454]. The principal FA model
has been recently discussed by [421] and [387].
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Problems

6.1 Consider the problem of maximizing the variance of ym � w
T
m
x �m �

�� ���� n� under the constraint thatwm must be of unit Euclidean norm and orthogonal
to all the previously-found principal vectors wi� i � m. Show that the solution is
given bywm � em with em the eigenvector ofCx corresponding to the mth largest
eigenvalue.

6.2 Show that the criterion (6.9) is equivalent to the mean-square error (6.7). Show
that at the optimum, ifwi � ei, the value of (6.7) is given by (6.10).

6.3 Given the data model (6.14), show that the covariance matrix has the form
(6.15).

6.4 The learning rule for a PCA neuron is based on maximization of y � �wT
x��

under constraint kwk � �. (We have now omitted the subscript 1 because only one
neuron is involved.)

6.4.1. Show that an unlimited gradient ascent method would compute the new
vectorw from

w � w � ��wT
x�x

with � the learning rate. Show that the norm of the weight vector always grows in
this case.

6.4.2. Thus the norm must be bounded. A possibility is the following update rule:

w � �w � ��wT
x�x��kw � ��wT

x�xk

Now the norm will stay equal to 1. Derive an approximation to this update rule for a
small value of �, by taking a Taylor expansion of the right-hand side with respect to
� and dropping all higher powers of �. Leave only terms linear in �. Show that the
result is

w� w� ���wT
x�x� �wT

x��w�

which is the basic PCA learning rule of Eq. (6.16).
6.4.3. Take averages with respect to the random input vector x and show that in a

stationary point of the iteration, where there is no change on the average in the value
ofw, it holds: Cxw � �wT

Cxw�w withCx � EfxxT g.
6.4.4. Show that the only possible solutions will be the eigenvectors ofCx.

6.5 The covariance matrix of vector x is

Cx �

�
��	 ��	
��	 ��	

�
(6.41)

Compute a whitening transformation for x.

6.6 * Based on the first step (6.38) of the orthogonalization algorithm, show that

 � d��� � � where d��� is any eigenvalue ofW���. Next consider iteration (6.40).
Write d�t� ��� � in terms of d�t� � �. Show that d�t� converges to 1. How fast is
the convergence?
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7
What is Independent

Component Analysis?

In this chapter, the basic concepts of independent component analysis (ICA) are
defined. We start by discussing a couple of practical applications. These serve as
motivation for the mathematical formulation of ICA, which is given in the form of a
statistical estimation problem. Then we consider under what conditions this model
can be estimated, and what exactly can be estimated.

After these basic definitions, we go on to discuss the connection between ICA
and well-known methods that are somewhat similar, namely principal component
analysis (PCA), decorrelation, whitening, and sphering. We show that these methods
do something that is weaker than ICA: they estimate essentially one half of the model.
We show that because of this, ICA is not possible for gaussian variables, since little
can be done in addition to decorrelation for gaussian variables. On the positive side,
we show that whitening is a useful thing to do before performing ICA, because it
does solve one-half of the problem and it is very easy to do.

In this chapter we do not yet consider how the ICA model can actually be estimated.
This is the subject of the next chapters, and in fact the rest of Part II.

7.1 MOTIVATION

Imagine that you are in a room where three people are speaking simultaneously. (The
number three is completely arbitrary, it could be anything larger than one.) You also
have three microphones, which you hold in different locations. The microphones give
you three recorded time signals, which we could denote by x��t�� x��t� and x��t�,
with x�� x� and x� the amplitudes, and t the time index. Each of these recorded

147
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Fig. 7.1 The original audio signals.

signals is a weighted sum of the speech signals emitted by the three speakers, which
we denote by s��t�� s��t�, and s��t�. We could express this as a linear equation:

x��t� � a��s��t� � a��s��t� � a��s��t� (7.1)

x��t� � a��s��t� � a��s��t� � a��s��t� (7.2)

x��t� � a��s��t� � a��s��t� � a��s��t� (7.3)

where the aij with i� j � �� ���� � are some parameters that depend on the distances
of the microphones from the speakers. It would be very useful if you could now
estimate the original speech signals s��t�� s��t�, and s��t�, using only the recorded
signals xi�t�. This is called the cocktail-party problem. For the time being, we omit
any time delays or other extra factors from our simplified mixing model. A more
detailed discussion of the cocktail-party problem can be found later in Section 24.2.

As an illustration, consider the waveforms in Fig. 7.1 and Fig. 7.2. The original
speech signals could look something like those in Fig. 7.1, and the mixed signals
could look like those in Fig. 7.2. The problem is to recover the “source” signals in
Fig. 7.1 using only the data in Fig. 7.2.

Actually, if we knew the mixing parametersaij , we could solve the linear equation
in (7.1) simply by inverting the linear system. The point is, however, that here we
know neither the aij nor the si�t�, so the problem is considerably more difficult.

One approach to solving this problem would be to use some information on
the statistical properties of the signals si�t� to estimate both the aij and the si�t�.
Actually, and perhaps surprisingly, it turns out that it is enough to assume that
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Fig. 7.2 The observed mixtures of the original signals in Fig. 7.1.
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Fig. 7.3 The estimates of the original signals, obtained using only the observed signals in
Fig. 7.2. The original signals were very accurately estimated, up to multiplicative signs.
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s��t�� s��t�, and s��t� are, at each time instant t, statistically independent. This
is not an unrealistic assumption in many cases, and it need not be exactly true in
practice. Independent component analysis can be used to estimate the aij based on
the information of their independence, and this allows us to separate the three original
signals, s��t�, s��t�, and s��t�, from their mixtures, x��t�, x��t�, and x��t�.

Figure 7.3 gives the three signals estimated by the ICA methods discussed in the
next chapters. As can be seen, these are very close to the original source signals
(the signs of some of the signals are reversed, but this has no significance.) These
signals were estimated using only the mixtures in Fig. 7.2, together with the very
weak assumption of the independence of the source signals.

Independent component analysis was originally developed to deal with problems
that are closely related to the cocktail-party problem. Since the recent increase of
interest in ICA, it has become clear that this principle has a lot of other interesting
applications as well, several of which are reviewed in Part IV of this book.

Consider, for example, electrical recordings of brain activity as given by an
electroencephalogram (EEG). The EEG data consists of recordings of electrical
potentials in many different locations on the scalp. These potentials are presumably
generated by mixing some underlying components of brain and muscle activity.
This situation is quite similar to the cocktail-party problem: we would like to find
the original components of brain activity, but we can only observe mixtures of the
components. ICA can reveal interesting information on brain activity by giving
access to its independent components. Such applications will be treated in detail in
Chapter 22. Furthermore, finding underlying independent causes is a central concern
in the social sciences, for example, econometrics. ICA can be used as an econometric
tool as well; see Section 24.1.

Another, very different application of ICA is feature extraction. A fundamental
problem in signal processing is to find suitable representations for image, audio or
other kind of data for tasks like compression and denoising. Data representations
are often based on (discrete) linear transformations. Standard linear transformations
widely used in image processing are, for example, the Fourier, Haar, and cosine
transforms. Each of them has its own favorable properties.

It would be most useful to estimate the linear transformation from the data itself,
in which case the transform could be ideally adapted to the kind of data that is
being processed. Figure 7.4 shows the basis functions obtained by ICA from patches
of natural images. Each image window in the set of training images would be
a superposition of these windows so that the coefficient in the superposition are
independent, at least approximately. Feature extraction by ICA will be explained in
more detail in Chapter 21.

All of the applications just described can actually be formulated in a unified
mathematical framework, that of ICA. This framework will be defined in the next
section.
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Fig. 7.4 Basis functions in ICA of natural images. These basis functions can be considered
as the independent features of images. Every image window is a linear sum of these windows.

7.2 DEFINITION OF INDEPENDENT COMPONENT ANALYSIS

7.2.1 ICA as estimation of a generative model

To rigorously define ICA, we can use a statistical “latent variables” model. We
observe n random variables x�� ���� xn, which are modeled as linear combinations of
n random variables s�� ���� sn:

xi � ai�s� � ai�s� � ���� ainsn� for all i � �� ���� n (7.4)

where the aij � i� j � �� ���� n are some real coefficients. By definition, the si are
statistically mutually independent.

This is the basic ICA model. The ICA model is a generative model, which means
that it describes how the observed data are generated by a process of mixing the
components sj . The independent components sj (often abbreviated as ICs) are latent
variables, meaning that they cannot be directly observed. Also the mixing coefficients
aij are assumed to be unknown. All we observe are the random variables xi, and we
must estimate both the mixing coefficients aij and the ICs si using the xi. This must
be done under as general assumptions as possible.

Note that we have here dropped the time index t that was used in the previous
section. This is because in this basic ICA model, we assume that each mixture xi as
well as each independent component sj is a random variable, instead of a proper time
signal or time series. The observed values xi�t�, e.g., the microphone signals in the
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cocktail party problem, are then a sample of this random variable. We also neglect
any time delays that may occur in the mixing, which is why this basic model is often
called the instantaneous mixing model.

ICA is very closely related to the method called blind source separation (BSS) or
blind signal separation. A “source” means here an original signal, i.e., independent
component, like the speaker in the cocktail-party problem. “Blind” means that we
know very little, if anything, of the mixing matrix, and make very weak assumptions
on the source signals. ICA is one method, perhaps the most widely used, for
performing blind source separation.

It is usually more convenient to use vector-matrix notation instead of the sums
as in the previous equation. Let us denote by x the random vector whose elements
are the mixtures x�� ���� xn, and likewise by s the random vector with elements
s�� ���� sn. Let us denote by A the matrix with elements aij . (Generally, bold
lowercase letters indicate vectors and bold uppercase letters denote matrices.) All
vectors are understood as column vectors; thus xT , or the transpose of x, is a row
vector. Using this vector-matrix notation, the mixing model is written as

x � As (7.5)

Sometimes we need the columns of matrix A; if we denote them by aj the model
can also be written as

x �

nX

i��

aisi (7.6)

The definition given here is the most basic one, and in Part II of this book,
we will essentially concentrate on this basic definition. Some generalizations and
modifications of the definition will be given later (especially in Part III), however.
For example, in many applications, it would be more realistic to assume that there
is some noise in the measurements, which would mean adding a noise term in the
model (see Chapter 15). For simplicity, we omit any noise terms in the basic model,
since the estimation of the noise-free model is difficult enough in itself, and seems to
be sufficient for many applications. Likewise, in many cases the number of ICs and
observed mixtures may not be equal, which is treated in Section 13.2 and Chapter 16,
and the mixing might be nonlinear, which is considered in Chapter 17. Furthermore,
let us note that an alternative definition of ICA that does not use a generative model
will be given in Chapter 10.

7.2.2 Restrictions in ICA

To make sure that the basic ICA model just given can be estimated, we have to make
certain assumptions and restrictions.

1. The independent components are assumed statistically independent.

This is the principle on which ICA rests. Surprisingly, not much more than this
assumption is needed to ascertain that the model can be estimated. This is why ICA
is such a powerful method with applications in many different areas.
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Basically, random variables y�� y�� ���� yn are said to be independent if information
on the value of yi does not give any information on the value of yj for i �� j.
Technically, independence can be defined by the probability densities. Let us denote
by p�y�� y�� ���� yn� the joint probability density function (pdf) of the yi, and by pi�yi�
the marginal pdf of yi, i.e., the pdf of yi when it is considered alone. Then we say
that the yi are independent if and only if the joint pdf is factorizable in the following
way:

p�y�� y�� ���� yn� � p��y��p��y�����pn�yn�� (7.7)

For more details, see Section 2.3.

2. The independent components must have nongaussian distributions.

Intuitively, one can say that the gaussian distributions are “too simple”. The higher-
order cumulants are zero for gaussian distributions, but such higher-order information
is essential for estimation of the ICA model, as will be seen in Section 7.4.2. Thus,
ICA is essentially impossible if the observed variables have gaussian distributions.
The case of gaussian components is treated in more detail in Section 7.5 below.
Note that in the basic model we do not assume that we know what the nongaussian
distributions of the ICs look like; if they are known, the problem will be considerably
simplified. Also, note that a completely different class of ICA methods, in which the
assumption of nongaussianity is replaced by some assumptions on the time structure
of the signals, will be considered later in Chapter 18.

3. For simplicity, we assume that the unknown mixing matrix is square.

In other words, the number of independent components is equal to the number of
observed mixtures. This assumption can sometimes be relaxed, as explained in
Chapters 13 and 16. We make it here because it simplifies the estimation very much.
Then, after estimating the matrix A, we can compute its inverse, say B, and obtain
the independent components simply by

s � Bx (7.8)

It is also assumed here that the mixing matrix is invertible. If this is not the case,
there are redundant mixtures that could be omitted, in which case the matrix would
not be square; then we find again the case where the number of mixtures is not equal
to the number of ICs.

Thus, under the preceding three assumptions (or at the minimum, the two first
ones), the ICA model is identifiable, meaning that the mixing matrix and the ICs
can be estimated up to some trivial indeterminacies that will be discussed next. We
will not prove the identifiability of the ICA model here, since the proof is quite
complicated; see the end of the chapter for references. On the other hand, in the next
chapter we develop estimation methods, and the developments there give a kind of a
nonrigorous, constructive proof of the identifiability.
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7.2.3 Ambiguities of ICA

In the ICA model in Eq. (7.5), it is easy to see that the following ambiguities or
indeterminacies will necessarily hold:

1. We cannot determine the variances (energies) of the independent components.

The reason is that, both s and A being unknown, any scalar multiplier in one of the
sources si could always be canceled by dividing the corresponding column ai of A
by the same scalar, say �i:

x �

X

i

�
�

�i

ai��si�i� (7.9)

As a consequence, we may quite as well fix the magnitudes of the independent
components. Since they are random variables, the most natural way to do this is to
assume that each has unit variance: Efs�i g � �. Then the matrix A will be adapted
in the ICA solution methods to take into account this restriction. Note that this still
leaves the ambiguity of the sign: we could multiply an independent component by
�� without affecting the model. This ambiguity is, fortunately, insignificant in most
applications.

2. We cannot determine the order of the independent components.

The reason is that, again both s and A being unknown, we can freely change the
order of the terms in the sum in (7.6), and call any of the independent components
the first one. Formally, a permutation matrix P and its inverse can be substituted in
the model to give x � AP

��
Ps. The elements of Ps are the original independent

variables sj , but in another order. The matrix AP�� is just a new unknown mixing
matrix, to be solved by the ICA algorithms.

7.2.4 Centering the variables

Without loss of generality, we can assume that both the mixture variables and the
independent components have zero mean. This assumption simplifies the theory and
algorithms quite a lot; it is made in the rest of this book.

If the assumption of zero mean is not true, we can do some preprocessing to make
it hold. This is possible by centering the observable variables, i.e., subtracting their
sample mean. This means that the original mixtures, say x� are preprocessed by

x � x
� � Efx�g (7.10)

before doing ICA. Thus the independent components are made zero mean as well,
since

Efsg � A
��
Efxg (7.11)

The mixing matrix, on the other hand, remains the same after this preprocessing, so
we can always do this without affecting the estimation of the mixing matrix. After
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Fig. 7.5 The joint distribution of the independent components s� and s� with uniform
distributions. Horizontal axis: s�, vertical axis: s�.

estimating the mixing matrix and the independent components for the zero-mean
data, the subtracted mean can be simply reconstructed by adding A��Efx�g to the
zero-mean independent components.

7.3 ILLUSTRATION OF ICA

To illustrate the ICA model in statistical terms, consider two independent components
that have the following uniform distributions:

p�si� �

�
�

�
p
�
� if jsij �

p
�

�� otherwise
(7.12)

The range of values for this uniform distribution were chosen so as to make the
mean zero and the variance equal to one, as was agreed in the previous section. The
joint density of s� and s� is then uniform on a square. This follows from the basic
definition that the joint density of two independent variables is just the product of
their marginal densities (see Eq. (7.7)): we simply need to compute the product. The
joint density is illustrated in Fig. 7.5 by showing data points randomly drawn from
this distribution.

Now let us mix these two independent components. Let us take the following
mixing matrix:

A� �

�
� ��
�� �

�
(7.13)
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Fig. 7.6 The joint distribution of the observed mixtures x� and x�. Horizontal axis: x�,
vertical axis: x�. (Not in the same scale as Fig. 7.5.)

This gives us two mixed variables, x� and x�. It is easily computed that the mixed
data has a uniform distribution on a parallelogram, as shown in Fig. 7.6. Note that
the random variables x� and x� are not independent anymore; an easy way to see this
is to consider whether it is possible to predict the value of one of them, say x�, from
the value of the other. Clearly, if x� attains one of its maximum or minimum values,
then this completely determines the value of x�. They are therefore not independent.
(For variables s� and s� the situation is different: from Fig. 7.5 it can be seen that
knowing the value of s� does not in any way help in guessing the value of s�.)

The problem of estimating the data model of ICA is now to estimate the mixing
matrixA using only information contained in the mixtures x� and x�. Actually, from
Fig. 7.6 you can see an intuitive way of estimatingA: The edges of the parallelogram
are in the directions of the columns of A. This means that we could, in principle,
estimate the ICA model by first estimating the joint density of x� and x�, and then
locating the edges. So, the problem seems to have a solution.

On the other hand, consider a mixture of ICs with a different type of distribution,
called supergaussian (see Section 2.7.1). Supergaussian random variables typically
have a pdf with a peak a zero. The marginal distribution of such an IC is given in
Fig. 7.7. The joint distribution of the original independent components is given in
Fig. 7.8, and the mixtures are shown in Fig. 7.9. Here, we see some kind of edges,
but in very different places this time.

In practice, however, locating the edges would be a very poor method because it
only works with variables that have very special distributions. For most distributions,
such edges cannot be found; we use only for illustration purposes distributions that
visually show edges. Moreover, methods based on finding edges, or other similar
heuristic methods, tend to be computationally quite complicated, and unreliable.
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Fig. 7.7 The density of one supergaussian independent component. The gaussian density i
give   by the dashed line for comparison.

Fig. 7.8 The joint distribution of the independent components s� and s� with supergaussian
distributions. Horizontal axis: s�, vertical axis: s�.

s
n
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Fig. 7.9 The joint distribution of the observed mixtures x� and x�, obtained from super-
gaussian independent components. Horizontal axis: x�, vertical axis: x�.

What we need is a method that works for any distributions of the independent
components, and works fast and reliably. Such methods are the main subject of this
book, and will be presented in Chapters 8–12. In the rest of this chapter, however,
we discuss the connection between ICA and whitening.

7.4 ICA IS STRONGER THAT WHITENING

Given some random variables, it is straightforward to linearly transform them into
uncorrelated variables. Therefore, it would be tempting to try to estimate the indepen-
dent components by such a method, which is typically called whitening or sphering,
and often implemented by principal component analysis. In this section, we show that
this is not possible, and discuss the relation between ICA and decorrelation methods.
It will be seen that whitening is, nevertheless, a useful preprocessing technique for
ICA.

7.4.1 Uncorrelatedness and whitening

A weaker form of independence is uncorrelatedness. Here we review briefly the
relevant definitions that were already encountered in Chapter 2.

Two random variables y� and y� are said to be uncorrelated, if their covariance is
zero:

cov�y�� y�� � Efy�y�g �Efy�gEfy�g � � (7.14)
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In this book, all random variables are assumed to have zero mean, unless otherwise
mentioned. Thus, covariance is equal to correlation corr�y�� y�� � Efy�y�g, and
uncorrelatedness is the same thing as zero correlation (see Section 2.2).1

If random variables are independent, they are uncorrelated. This is because if the
y� and y� are independent, then for any two functions, h� and h�, we have

Efh��y��h��y��g � Efh��y��gEfh��y��g (7.15)

see Section 2.3. Taking h��y�� � y� and h��y�� � y�, we see that this implies
uncorrelatedness.

On the other hand, uncorrelatedness does not imply independence. For example,
assume that �y�� y�� are discrete valued and follow such a distribution that the pair
are with probability ��� equal to any of the following values: ��� ��� ������� ��� ���
and ���� ��. Then y� and y� are uncorrelated, as can be simply calculated. On the
other hand,

Efy�
�
y�
�
g � � ��

�

�
� Efy�

�
gEfy�

�
g (7.16)

so the condition in Eq. (7.15) is violated, and the variables cannot be independent.
A slightly stronger property than uncorrelatedness is whiteness. Whiteness of a

zero-mean random vector, say y, means that its components are uncorrelated and
their variances equal unity. In other words, the covariance matrix (as well as the
correlation matrix) of y equals the identity matrix:

EfyyT g � I (7.17)

Consequently, whitening means that we linearly transform the observed data vector
x by linearly multiplying it with some matrix V

z � Vx (7.18)

so that we obtain a new vector z that is white. Whitening is sometimes called
sphering.

A whitening transformation is always possible. Some methods were reviewed in
Chapter 6. One popular method for whitening is to use the eigenvalue decomposition
(EVD) of the covariance matrix

EfxxT g � EDET (7.19)

where E is the orthogonal matrix of eigenvectors of EfxxT g and D is the diagonal
matrix of its eigenvalues, D � diag�d�� ���� dn�. Whitening can now be done by the
whitening matrix

V � ED����ET (7.20)

1In statistical literature, correlation is often defined as a normalized version of covariance. Here, we
use this simpler definition that is more widely spread in signal processing. In any case, the concept of
uncorrelatedness is the same.
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where the matrix D���� is computed by a simple componentwise operation as
D���� � diag�d����

�
� ���� d

����
n �. A whitening matrix computed this way is denoted

by EfxxT g���� orC����. Alternatively, whitening can be performed in connection
with principal component analysis, which gives a related whitening matrix. For
details, see Chapter 6.

7.4.2 Whitening is only half ICA

Now, suppose that the data in the ICA model is whitened, for example, by the matrix
given in (7.20). Whitening transforms the mixing matrix into a new one, �A. We have
from (7.5) and (7.18)

z � VAs � �As (7.21)

One could hope that whitening solves the ICA problem, since whiteness or uncor-
relatedness is related to independence. This is, however, not so. Uncorrelatedness
is weaker than independence, and is not in itself sufficient for estimation of the ICA
model. To see this, consider an orthogonal transformationU of z:

y � Uz (7.22)

Due to the orthogonality of U, we have

EfyyT g � Ef UT g � UIUT � I (7.23)

In other words,y is white as well. Thus, we cannot tell if the independent components
are given by z or y using the whiteness property alone. Since y could be any
orthogonal transformation of z, whitening gives the ICs only up to an orthogonal
transformation. This is not sufficient in most applications.

On the other hand, whitening is useful as a preprocessing step in ICA. The utility
of whitening resides in the fact that the new mixing matrix �A � V Ais orthogonal.
This can be seen from

EfzzT g � �AEfssTg �AT � �A �AT � I (7.24)

This means that we can restrict our search for the mixing matrix to the space of
orthogonal matrices. Instead of having to estimate the n� parameters that are the
elements of the original matrix A, we only need to estimate an orthogonal mixing
matrix �A. An orthogonal matrix contains n�n � ���� degrees of freedom. For
example, in two dimensions, an orthogonal transformation is determined by a single
angle parameter. In larger dimensions, an orthogonal matrix contains only about half
of the number of parameters of an arbitrary matrix.

Thus one can say that whitening solves half of the problem of ICA. Because
whitening is a very simple and standard procedure, much simpler than any ICA
algorithms, it is a good idea to reduce the complexity of the problem this way. The
remaining half of the parameters has to be estimated by some other method; several
will be introduced in the next chapters.

UzzT
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Fig. 7.10 The joint distribution of the whitened mixtures of uniformly distributed indepen-
dent components.

A graphical illustration of the effect of whitening can be seen in Fig. 7.10, in
which the data in Fig. 7.6 has been whitened. The square defining the distribution is
now clearly a rotated version of the original square in Fig. 7.10. All that is left is the
estimation of a single angle that gives the rotation.

In many chapters of this book, we assume that the data has been preprocessed by
whitening, in which case we denote the data by z. Even in cases where whitening
is not explicitly required, it is recommended, since it reduces the number of free
parameters and considerably increases the performance of the methods, especially
with high-dimensional data.

7.5 WHY GAUSSIAN VARIABLES ARE FORBIDDEN

Whitening also helps us understand why gaussian variables are forbidden in ICA.
Assume that the joint distribution of two ICs, s� and s�, is gaussian. This means that
their joint pdf is given by

p�s�� s�� �
�

��
exp��

s
�

�
� s

�

�

�
� �

�

��
exp��

ksk�

�
� (7.25)

(For more information on the gaussian distribution, see Section 2.5.) Now, assume
that the mixing matrix A is orthogonal. For example, we could assume that this is
so because the data has been whitened. Using the classic formula of transforming
pdf’s in (2.82), and noting that for an orthogonal matrix A�� � A

T holds, we get
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Fig. 7.11 The multivariate distribution of two independent gaussian variables.

the joint density of the mixtures x� and x� as density is given by

p�x�� x�� �
�

��
exp��

kAT
xk�

�
�j detAT j (7.26)

Due to the orthogonality ofA, we have kAT
xk� � kxk� and j detAj � �; note that

ifA is orthogonal, so is AT . Thus we have

p�x�� x�� �
�

��
exp��

kxk�

�
� (7.27)

and we see that the orthogonal mixing matrix does not change the pdf, since it does
not appear in this pdf at all. The original and mixed distributions are identical.
Therefore, there is no way how we could infer the mixing matrix from the mixtures.

The phenomenon that the orthogonal mixing matrix cannot be estimated for gaus-
sian variables is related to the property that uncorrelated jointly gaussian variables are
necessarily independent (see Section 2.5). Thus, the information on the independence
of the components does not get us any further than whitening.

Graphically, we can see this phenomenon by plotting the distribution of the or-
thogonal mixtures, which is in fact the same as the distribution of the ICs. This
distribution is illustrated in Fig. 7.11. The figure shows that the density is rotation-
ally symmetric. Therefore, it does not contain any information on the directions of
the columns of the mixing matrixA. This is whyA cannot be estimated.

Thus, in the case of gaussian independent components, we can only estimate the
ICA model up to an orthogonal transformation. In other words, the matrix A is not
identifiable for gaussian independent components. With gaussian variables, all we
can do is whiten the data. There is some choice in the whitening procedure, however;
PCA is the classic choice.
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What happens if we try to estimate the ICA model and some of the components
are gaussian, some nongaussian? In this case, we can estimate all the nongaussian
components, but the gaussian components cannot be separated from each other. In
other words, some of the estimated components will be arbitrary linear combinations
of the gaussian components. Actually, this means that in the case of just one gaussian
component, we can estimate the model, because the single gaussian component does
not have any other gaussian components that it could be mixed with.

7.6 CONCLUDING REMARKS AND REFERENCES

ICA is a very general-purposestatistical technique in which observed random data are
expressed as a linear transform of components that are statistically independent from
each other. In this chapter, we formulated ICA as the estimation of a generative model,
with independent latent variables. Such a decomposition is identifiable, i.e., well
defined, if the independent components are nongaussian (except for perhaps one). To
simplify the estimation problem, we can begin by whitening the data. This estimates
part of the parameters, but leaves an orthogonal transformation unspecified. Using
the higher-order information contained in nongaussian variables, we can estimate
this orthogonal transformation as well.

Practical methods for estimating the ICA model will be treated in the rest of Part II.
A simple approach based on finding the maxima of nongaussianity is presented first
in Chapter 8. Next, the classic maximum likelihood estimation method is applied on
ICA in Chapter 9. An information-theoretic framework that also shows a connection
between the previous two is given by mutual information in Chapter 10. Some
further methods are considered in Chapters 11 and 12. Practical considerations on
the application of ICA methods, in particular on the preprocessing of the data, are
treated in Chapter 13. The different ICA methods are compared with each other, and
the choice of the “best” method is considered in Chapter 14, which concludes Part II.

The material that we treated in this chapter can be considered classic. The ICA
model was first defined as herein in [228]; somewhat related developments were given
in [24]. The identifiability is treated in [89, 423]. Whitening was proposed in [61] as
well. In addition to this research in signal processing, a parallel neuroscientific line
of research developed ICA independently. This was started by [26, 27, 28], being
more qualitative in nature. The first quantitative results in this area were proposed
in [131], and in [335], a model that is essentially equivalent to the noisy version
of the ICA model (see Chapter 15) was proposed. More on the history of ICA
can be found in Chapter 1, as well as in [227]. For recent reviews on ICA, see
[10, 65, 201, 267, 269, 149]. A shorter tutorial text is in [212].
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Problems

matrix for x, given by (7.20).

7.2 Show that two (zero-mean) random variables that have a jointly gaussian dis-
tribution are independent if and only if they are uncorrelated. (Hint: The pdf can
be found in (2.68). Uncorrelatedness means that the covariance matrix is diagonal.
Show that this implies that the joint pdf can be factorized.)

7.3 If both x and s could be observed, how would you estimate the ICA model?
(Assume there is some noise in the data as well.)

7.4 Assume that the data x is multiplied by a matrix M. Does this change the
independent components?

7.5 In our definition, the signs of the independent components are left undeter-
mined. How could you complement the definition so that they are determined as
well?

7.6 Assume that there are more independent components than observed mixtures.
Assume further that we have been able to estimate the mixing matrix. Can we recover
the values of the independent components? What if there are more observed mixtures
than ICs?

Computer assignments

7.1 Generate samples of two independent components that follow a Laplacian
distribution (see Eq. 2.96). Mix them with three different random mixing matrices.

A in
the plots? Do the same for ICs that are obtained by taking absolute values of gaussian
random variables.

7.2 Generate samples of two independent gaussian random variables. Mix them
with a random mixing matrix. Compute a whitening matrix. Compute the product
of the whitening matrix and the mixing matrix. Show that this is almost orthogonal.
Why is it not exactly orthogonal?

 Plot  the  distributions  of  the observed  mixtures. Can  you  see  the  matrix

WHAT IS INDEPENDENT COMPONENT ANALYSIS?

7.1 Show that given a random vector x , there is only one symmetric positive
 semidefinite whitening



8
ICA by Maximization of

Nongaussianity

In this chapter, we introduce a simple and intuitive principle for estimating the
model of independent component analysis (ICA). This is based on maximization of
nongaussianity.

Nongaussianity is actually of paramount importance in ICA estimation. Without
nongaussianity the estimation is not possible at all, as shown in Section 7.5. There-
fore, it is not surprising that nongaussianity could be used as a leading principle in
ICA estimation. This is at the same time probably the main reason for the rather late
resurgence of ICA research: In most of classic statistical theory, random variables are
assumed to have gaussian distributions, thus precluding methods related to ICA. (A
completely different approach may then be possible, though, using the time structure
of the signals; see Chapter 18.)

We start by intuitively motivating the maximization of nongaussianity by the
central limit theorem. As a first practical measure of nongaussianity, we introduce
the fourth-order cumulant, or kurtosis. Using kurtosis, we derive practical algorithms
by gradient and fixed-point methods. Next, to solve some problems associated with
kurtosis, we introduce the information-theoretic quantity called negentropy as an
alternative measure of nongaussianity, and derive the corresponding algorithms for
this measure. Finally, we discuss the connection between these methods and the
technique called projection pursuit.

165
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8.1 “NONGAUSSIAN IS INDEPENDENT”

The central limit theorem is a classic result in probability theory that was presented in
Section 2.5.2. It says that the distribution of a sum of independent random variables
tends toward a gaussian distribution, under certain conditions. Loosely speaking, a
sum of two independent random variables usually has a distribution that is closer to
gaussian than any of the two original random variables.

Let us now assume that the data vector x is distributed according to the ICA data
model:

x � As (8.1)

i.e., it is a mixture of independent components. For pedagogical purposes, let us
assume in this motivating section that all the independent components have identi-
cal distributions. Estimating the independent components can be accomplished by
finding the right linear combinations of the mixture variables, since we can invert the
mixing as

s � A��x (8.2)

Thus, to estimate one of the independent components, we can consider a linear
combination of the xi. Let us denote this by y � bTx �

P
i
bixi, where b is a

vector to be determined. Note that we also have y � bTAs. Thus, y is a certain
linear combination of the si, with coefficients given by bTA. Let us denote this
vector by q. Then we have

y � bTx � qT s �
X

i

qisi (8.3)

If b were one of the rows of the inverse of A, this linear combination bTx would
actually equal one of the independent components. In that case, the corresponding q
would be such that just one of its elements is 1 and all the others are zero.

The question is now: How could we use the central limit theorem to determine b
so that it would equal one of the rows of the inverse of A? In practice, we cannot
determine such a b exactly, because we have no knowledge of matrix A, but we can
find an estimator that gives a good approximation.

Let us vary the coefficients in q, and see how the distribution of y � qT s changes.
The fundamental idea here is that since a sum of even two independent random
variables is more gaussian than the original variables, y � qT s is usually more
gaussian than any of the si and becomes least gaussian when it in fact equals one of
the si. (Note that this is strictly true only if the si have identical distributions, as we
assumed here.) In this case, obviously only one of the elements qi of q is nonzero.

We do not in practice know the values of q, but we do not need to, because
qT s � bTx by the definition of q. We can just let b vary and look at the distribution
of bTx.

Therefore, we could take as b a vector that maximizes the nongaussianity of
bTx. Such a vector would necessarily correspond to a q � ATb, which has only
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one nonzero component. This means that y � bTx � qT s equals one of the
independent components! Maximizing the nongaussianity of bTx thus gives us one
of the independent components.

In fact, the optimization landscape for nongaussianity in the n-dimensional space
of vectorsb has �n local maxima, two for each independent component, correspond-
ing to si and �si (recall that the independent components can be estimated only up
to a multiplicative sign).

We can illustrate the principle of maximizing nongaussianity by simple examples.
Let us consider two independent components that have uniform densities. (They also
have zero mean, as do all the random variables in this book.) Their joint distribution
is illustrated in Fig. 8.1, in which a sample of the independent components is plotted
on the two-dimensional (2-D) plane. Figure 8.2 also shows a histogram estimate of
the uniform densities. These variables are then linearly mixed, and the mixtures are
whitened as a preprocessing step. Whitening is explained in Section 7.4; let us recall
briefly that it means that x is linearly transformed into a random vector

z � Vx � VAs (8.4)

whose correlation matrix equals unity: EfzzT g � I. Thus the ICA model still holds,
though with a different mixing matrix. (Even without whitening, the situation would
be similar.) The joint density of the whitened mixtures is given in Fig. 8.3. It is a
rotation of the original joint density, as explained in Section 7.4.

Now, let us look at the densities of the two linear mixtures z� and z�. These are
estimated in Fig. 8.4. One can clearly see that the densities of the mixtures are closer
to a gaussian density than the densities of the independent components shown in
Fig. 8.2. Thus we see that the mixing makes the variables closer to gaussian. Finding
the rotation that rotates the square in Fig. 8.3 back to the original ICs in Fig. 8.1
would give us the two maximally nongaussian linear combinations with uniform
distributions.

A second example with very different densities shows the same result. In Fig. 8.5,
the joint distribution of very supergaussian independent components is shown. The
marginal density of a component is estimated in Fig. 8.6. The density has a large peak
at zero, as is typical of supergaussian densities (see Section 2.7.1 or below). Whitened
mixtures of the independent components are shown in Fig. 8.7. The densities of two
linear mixtures are given in Fig. 8.8. They are clearly more gaussian than the original
densities, as can be seen from the fact that the peak is much lower. Again, we see
that mixing makes the distributions more gaussian.

To recapitulate, we have formulated ICA estimation as the search for directions that
are maximally nongaussian: Each local maximum gives one independent component.
Our approach here is somewhat heuristic, but it will be seen in the next section and
Chapter 10 that it has a perfectly rigorous justification. From a practical point of
view, we now have to answer the following questions: How can the nongaussianity of
bTx be measured? And how can we compute the values of b that maximize (locally)
such a measure of nongaussianity? The rest of this chapter is devoted to answering
these questions.
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Fig. 8.1 The joint distribution of two inde-
pendent components with uniform densities.

Fig. 8.2 The estimated density of one uni-
form independent component, with the gaus-
sian density (dashed curve) given for compar-
ison.

Fig. 8.3 The joint density of two whitened mixtures of independent components with uniform
densities.
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Fig. 8.4 The marginal densities of the whitened mixtures. They are closer to the gaussian
density (given by the dashed curve) than the densities of the independent components.

Fig. 8.5 The joint distribution of the two
independent components with supergaussian
densities.

Fig. 8.6 The estimated density of one su-
pergaussian independent component.



170 ICA BY MAXIMIZATION OF NONGAUSSIANITY

Fig. 8.7 The joint distribution of two whitened mixtures of independent components with
supergaussian densities.

Fig. 8.8 The marginal densities of the whitened mixtures in Fig. 8.7. They are closer to the
gaussian density (given by dashed curve) than the densities of the independent components.
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8.2 MEASURING NONGAUSSIANITY BY KURTOSIS

8.2.1 Extrema of kurtosis give independent components

Kurtosis and its properties To use nongaussianity in ICA estimation, we must
have a quantitative measure of nongaussianity of a random variable, say y. In this
section, we show how to use kurtosis, a classic measure of nongaussianity, for ICA
estimation. Kurtosis is the name given to the fourth-order cumulant of a random
variable; for a general discussion of cumulants; see Section 2.7. Thus we obtain an
estimation method that can be considered a variant of the classic method of moments;
see Section 4.3.

The kurtosis of y, denoted by kurt�y�, is defined by

kurt�y� � Efy�g � ��Efy�g�� (8.5)

Remember that all the random variables here have zero mean; in the general case, the
definition of kurtosis is slightly more complicated. To simplify things, we can further
assume that y has been normalized so that its variance is equal to one: Efy�g � �.
Then the right-hand side simplifies to Efy�g� �. This shows that kurtosis is simply
a normalized version of the fourth moment Efy�g. For a gaussian y, the fourth
moment equals ��Efy�g��. Thus, kurtosis is zero for a gaussian random variable.
For most (but not quite all) nongaussian random variables, kurtosis is nonzero.

Kurtosis can be both positive or negative. Random variables that have a neg-
ative kurtosis are called subgaussian, and those with positive kurtosis are called
supergaussian. In statistical literature, the corresponding expressions platykurtic and
leptokurtic are also used. For details, see Section 2.7.1. Supergaussian random
variables have typically a “spiky” probability density function (pdf) with heavy tails,
i.e., the pdf is relatively large at zero and at large values of the variable, while being
small for intermediate values. A typical example is the Laplacian distribution, whose
pdf is given by

p�y� �
�p
�
exp�

p
�jyj� (8.6)

Here we have normalized the variance to unity; this pdf is illustrated in Fig. 8.9.
Subgaussian random variables, on the other hand, have typically a “flat” pdf, which
is rather constant near zero, and very small for larger values of the variable. A typical
example is the uniform distribution, whose density is given by

p�y� �

�
�

�
p
�
� if jyj � p

�

�� otherwise
(8.7)

which is normalized to unit variance as well; it is illustrated in Fig. 8.10.
Typically nongaussianity is measured by the absolute value of kurtosis. The square

of kurtosis can also be used. These measures are zero for a gaussian variable, and
greater than zero for most nongaussian random variables. There are nongaussian
random variables that have zero kurtosis, but they can be considered to be very rare.

�
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Fig. 8.9 The density function of the Laplacian distribution, which is a typical supergaussian
distribution. For comparison, the gaussian density is given by a dashed curve. Both densities
are normalized to unit variance.

Fig. 8.10 The density function of the uniform distribution, which is a typical subgaussian
distribution. For comparison, the gaussian density is given by a dashed line. Both densities
are normalized to unit variance.
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Kurtosis, or rather its absolute value, has been widely used as a measure of
nongaussianity in ICA and related fields. The main reason is its simplicity, both
computational and theoretical. Computationally, kurtosis can be estimated simply
by using the fourth moment of the sample data (if the variance is kept constant).
Theoretical analysis is simplified because of the following linearity property: If x�
and x� are two independent random variables, it holds

kurt�x� � x�� � kurt�x�� � kurt�x�� (8.8)

and

kurt��x�� � ��kurt�x�� (8.9)

where � is a constant. These properties can be easily proven using the general
definition of cumulants, see Section 2.7.2.

Optimization landscape in ICA To illustrate in a simple example what the
optimization landscape for kurtosis looks like, and how independent components
could be found by kurtosis minimization or maximization, let us look at a 2-D model
x � As. Assume that the independent components s�� s� have kurtosis values
kurt�s��� kurt�s��, respectively, both different from zero. Recall that they have unit
variances by definition. We look for one of the independent components as y � bTx.

Let us again consider the transformed vector q � ATb. Then we have y �
bTx � bTAs � qT s � q�s� � q�s�. Now, based on the additive property of
kurtosis, we have

kurt�y� � kurt�q�s�� � kurt�q�s�� � q�
�
kurt�s�� � q�

�
kurt�s��

(8.10)

On the other hand, we made the constraint that the variance of y is equal to 1,
based on the same assumption concerning s�� s�. This implies a constraint on q:
Efy�g � q�

�
� q�

�
� �. Geometrically, this means that vector q is constrained to the

unit circle on the 2-D plane.
The optimization problem is now: What are the maxima of the function jkurt�y�j �

jq�
�
kurt�s�� � q�

�
kurt�s��j on the unit circle? To begin with, we may assume for

simplicity that the kurtoses are equal to 1. In this case, we are simply considering
the function

F �q� � q�
�
� q�

�
(8.11)

Some contours of this function, i.e., curves in which this function is constant, are
shown in Fig. 8.11. The unit sphere, i.e., the set where q�

�
� q�

�
� �, is shown as well.

This gives the "optimization landscape" for the problem.
It is not hard to see that the maxima are at those points where exactly one of

the elements of vector q is zero and the other nonzero; because of the unit circle
constraint, the nonzero element must be equal to � or ��. But these points are exactly
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Fig. 8.11 The optimization landscape of kurtosis. The thick curve is the unit sphere, and
the thin curves are the contours where F in (8.11) is constant.

the ones when y equals one of the independent components �si, and the problem
has been solved.

If the kurtoses are both equal to ��, the situation is similar, because taking
the absolute values, we get exactly the same function to maximize. Finally, if
the kurtoses are completely arbitrary, as long as they are nonzero, more involved
algebraic manipulations show that the absolute value of kurtosis is still maximized
when y � bTx equals one of the independent components. A proof is given in the
exercises.

Now we see the utility of preprocessing by whitening. For whitened data z, we
seek for a linear combination wT z that maximizes nongaussianity. This simplifies
the situation here, since we have q � �VA�Tw and therefore

kqk� � �wTVA��ATVTw� � kwk� (8.12)

This means that constraining q to lie on the unit sphere is equivalent to constraining
w to be on the unit sphere. Thus we maximize the absolute value of kurtosis of
wT z under the simpler constraint that kwk � �. Also, after whitening, the linear
combinations wT z can be interpreted as projections on the line (that is, a 1-D
subspace) spanned by the vectorw. Each point on the unit sphere corresponds to one
projection.

As an example, let us consider the whitened mixtures of uniformly distributed
independent components in Fig. 8.3. We search for a vector w such that the lin-
ear combination or projection wTx has maximum nongaussianity, as illustrated in
Fig. 8.12. In this two-dimensional case, we can parameterize the points on the unit
sphere by the angle that the corresponding vectorw makes with the horizontal axis.
Then, we can plot the kurtosis of wT z as a function of this angle, which is given in
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Fig. 8.12 We search for projections (which correspond to points on the unit circle) that
maximize nongaussianity, using whitened mixtures of uniformly distributed independent com-
ponents. The projections can be parameterized by the angle.

Fig. 8.13. The plot shows kurtosis is always negative, and is minimized at approx-
imately � and ��� radians. These directions are thus such that the absolute value of
kurtosis is maximized. They can be seen in Fig. 8.12 to correspond to the directions
given by the edges of the square, and thus they do give the independent components.

In the second example, we see the same phenomenon for whitened mixtures of
supergaussian independent components. Again, we search for a vectorw such that the
projection in that direction has maximum nongaussianity, as illustrated in Fig. 8.14.
We can plot the kurtosis of wT

z as a function of the angle in which w points, as
given in Fig. 8.15. The plot shows kurtosis is always positive, and is maximized in
the directions of the independent components. These angles are the same as in the
preceding example because we used the same mixing matrix. Again, they correspond
to the directions in which the absolute value of kurtosis is maximized.

8.2.2 Gradient algorithm using kurtosis

In practice, to maximize the absolute value of kurtosis, we would start from some
vector w, compute the direction in which the absolute value of the kurtosis of
y � w

T
z is growing most strongly, based on the available sample z���� ���� z�T �

of mixture vector z, and then move the vector w in that direction. This idea is
implemented in gradient methods and their extensions.
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Fig. 8.13 The values of kurtosis for projections as a function of the angle as in Fig. 8.12.
Kurtosis is minimized, and its absolute value maximized, in the directions of the independent
components.

Fig. 8.14 Again, we search for projections that maximize nongaussianity, this time with
whitened mixtures of supergaussian independent components. The projections can be param-
eterized by the angle.
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Fig. 8.15 The values of kurtosis for projections in different angles as in Fig. 8.14. Kurtosis,
as well as its absolute value, is maximized in the directions of the independent components.

Using the principles in Chapter 3, the gradient of the absolute value of kurtosis of
w
T
z can be simply computed as

�jkurt�wT �j

�w
� � sign�kurt�wT

z���Efz�wT
z��g � �wkwk��

(8.13)

since for whitened data we have Ef�wT
z��g � kwk�. Since we are optimizing this

function on the unit sphere kwk� � �, the gradient method must be complemented
by projecting w on the unit sphere after every step. This can be done simply by
dividingw by its norm.

To further simplify the algorithm, note that since the latter term in brackets in
(8.13) would simply be changing the norm of w in the gradient algorithm, and not
its direction, it can be omitted. This is because only the direction ofw is interesting,
and any change in the norm is insignificant because the norm is normalized to unity
anyway.

Thus we obtain the following gradient algorithm:

	w � sign�kurt�wT
z��Efz�wT

z��g (8.14)

w� w�kwk (8.15)

An on-line (or adaptive) version of this algorithm can be obtained as well. This is
possible by omitting the second expectation operation in the algorithm, yielding:

	w � sign�kurt�wT
z��z�wT

z�� (8.16)

w� w�kwk (8.17)

Then every observation z�t� can be used in the algorithm at once. However, it
must be noted that when computing sign�kurt�wT

x��, the expectation operator in
the definition of kurtosis cannot be omitted. Instead, the kurtosis must be properly

z
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estimated from a time-average; of course, this time-average can be estimated on-line.
Denoting by � the estimate of the kurtosis, we could use

�� � ��wT
z�� � ��� � (8.18)

This gives the estimate of kurtosis as a kind of a running average.
Actually, in many cases one knows in advance the nature of the distributions of

the independent components, i.e., whether they are subgaussian or supergaussian.
Then one can simply plug the correct sign of kurtosis in the algorithm, and avoid its
estimation.

More general versions of this gradient algorithm are introduced in Section 8.3.4.
In the next subsection we shall introduce an algorithm that maximizes the absolute
value of kurtosis much more efficiently than the gradient method.

8.2.3 A fast fixed-point algorithm using kurtosis

In the previous subsection, we derived a gradient method for maximizing nongaus-
sianity as measured by the absolute value of kurtosis. The advantage of such gradient
methods, closely connected to learning in neural networks, is that the inputs z�t�
can be used in the algorithm at once, thus enabling fast adaptation in a nonstationary
environment. A resulting trade-off, however, is that the convergence is slow, and
depends on a good choice of the learning rate sequence. A bad choice of the learn-
ing rate can, in practice, destroy convergence. Therefore, some ways to make the
learning radically faster and more reliable may be needed. The fixed-point iteration
algorithms are such an alternative.

To derive a more efficient fixed-point iteration, we note that at a stable point of
the gradient algorithm, the gradient must point in the direction of w, that is, the
gradient must be equal tow multiplied by some scalar constant. Only in such a case,
adding the gradient to w does not change its direction, and we can have convergence
(this means that after normalization to unit norm, the value of w is not changed
except perhaps by changing its sign). This can be proven more rigorously using
the technique of Lagrange multipliers; see Exercise 3.9. Equating the gradient of
kurtosis in (8.13) with w, this means that we should have

w � �Efz�wT
z��g � �kwk�w� (8.19)

This equation immediately suggests a fixed-point algorithm where we first compute
the right-hand side, and give this as the new value for w:

w � Efz�wT
z��g � �w (8.20)

After every fixed-point iteration,w is divided by its norm to remain on the constraint
set. (Thus kwk � � always, which is why it can be omitted from (8.19).) The final
vector w gives one of the independent components as the linear combination wT

z.
In practice, the expectations in (8.20) must be replaced by their estimates.

Note that convergence of this fixed-point iteration means that the old and new
values of w point in the same direction, i.e., their dot-product is (almost) equal to
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1. It is not necessary that the vector converges to a single point, since w and �w
define the same direction. This is again because the independent components can be
defined only up to a multiplicative sign.

Actually, it turns out that such an algorithm works very well, converging very fast
and reliably. This algorithm is called FastICA [210]. The FastICA algorithm has
a couple of properties that make it clearly superior to the gradient-based algorithms
in most cases. First of all, it can be shown (see Appendix), that the convergence
of this algorithm is cubic. This means very fast convergence. Second, contrary to
gradient-based algorithms, there is no learning rate or other adjustable parameters in
the algorithm, which makes it easy to use, and more reliable. Gradient algorithms
seem to be preferable only in cases where fast adaptation in a changing environment
is necessary.

More sophisticated versions of FastICA are introduced in Section 8.3.5.

8.2.4 Examples

Here we show what happens when we run the FastICA algorithm that maximizes
the absolute value of kurtosis, using the two example data sets used in this chapter.
First we take a mixture of two uniformly distributed independent components. The
mixtures are whitened, as always in this chapter. The goal is now to find a direction
in the data that maximizes the absolute value of kurtosis, as illustrated in Fig. 8.12.

We initialize, for purposes of the illustration, the vector w as w � ��� ��T .
Running the FastICA iteration just two times, we obtain convergence. In Fig. 8.16,
the obtained vectorsw are shown. The dashed line gives the direction of w after the
first iteration, and the solid line gives the direction of w after the second iteration.
The third iteration did not significantly change the direction of w, which means that
the algorithm converged. (The corresponding vector is not plotted.) The figure shows
that the value ofw may change drastically during the iteration, because the valuesw
and �w are considered as equivalent. This is because the sign of the vector cannot
be determined in the ICA model.

The kurtoses of the projections wT
z obtained in the iterations are plotted in

Fig. 8.17, as a function of iteration count. The plot shows that the algorithm steadily
increased the absolute value of the kurtosis of the projection, until it reached conver-
gence at the third iteration.

Similar experiments were performed for the whitened mixtures of two supergaus-
sian independent components, as illustrated in Fig. 8.14. The obtained vectors are
shown in Fig. 8.18. Again, convergence was obtained after two iterations. The
kurtoses of the projectionswT

z obtained in the iterations are plotted in Fig. 8.19, as
a function of iteration count. As in the preceding experiment, the absolute value of
the kurtosis of the projection steadily increased, until it reached convergence at the
third iteration.

In these examples, we only estimated one independent component. Of course,
one often needs more than one component. Figures 8.12 and 8.14 indicate how this
can be done: The directions of the independent components are orthogonal in the
whitened space, so the second independent component can be found as the direction
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Fig. 8.16 Result of FastICA using kurtosis, for ICs with uniform distributions. Dashed line:
w after the first iteration (plotted longer than actual size). Solid line: w after the second
iteration.
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Fig. 8.17 The convergence of FastICA using kurtosis, for ICs with uniform distributions.
The value of kurtosis shown as function of iteration count.
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Fig. 8.18 Result of FastICA with kurtosis, this time for supergaussian ICs. Dash-dotted
line: w after the first iteration (plotted longer than actual size). Solid line: w after the second
iteration.
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Fig. 8.19 The convergence of FastICA using kurtosis, for supergaussian ICs. The value of
kurtosis shown as a function of iteration count.

orthogonal to the w corresponding to the estimated independent component. For
more dimensions, we need to rerun the algorithm, always constraining the currentw
to be orthogonal to the previously estimated vectors w. This will be explained in
more detail in Section 8.4.
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8.3 MEASURING NONGAUSSIANITY BY NEGENTROPY

8.3.1 Critique of kurtosis

In the preceding section, we showed how to measure nongaussianity by kurtosis,
thus obtaining a simple ICA estimation method. However, kurtosis also has some
drawbacks in practice, when its value has to be estimated from a measured sample.
The main problem is that kurtosis can be very sensitive to outliers. Assume, for
example, that a sample of 1000 values of a random variable (with zero mean and
unit variance, say) contains one value equal to 10. Then the kurtosis equals at least
��������� � � �, which means that the single value makes kurtosis large. Thus we
see that the value of kurtosis may depend on only a few observations in the tails of
the distribution, which may be erroneous or irrelevant observations. In other words,
kurtosis is not a robust measure of nongaussianity.

Thus, other measures of nongaussianity might be better than kurtosis in some sit-
uations. In this section, we shall consider negentropy, which is the second important
measure of nongaussianity. Its properties are in many ways opposite to those of
kurtosis: It is robust but computationally complicated. We also introduce compu-
tationally simple approximations of negentropy that more or less combine the good
properties of both measures.

8.3.2 Negentropy as nongaussianity measure

Negentropy is based on the information-theoretic quantity of differential entropy,
which we here call simply entropy. Entropy is the basic concept of information
theory; for a more detailed discussion, see Chapter 5. The entropy of a random
variable is related to the information that the observation of the variable gives. The
more “random”, i.e., unpredictable and unstructured the variable is, the larger its
entropy. The (differential) entropy H of a random vector y with density py��� is
defined as

H�y� � �

Z
py��� log py���d� (8.21)

A fundamental result of information theory is that a gaussian variable has the
largest entropy among all random variables of equal variance (see Section 5.3.2).
This means that entropy could be used as a measure of nongaussianity. In fact, this
shows that the gaussian distribution is the “most random” or the least structured of
all distributions. Entropy is small for distributions that are clearly concentrated on
certain values, i.e., when the variable is clearly clustered, or has a pdf that is very
“spiky”.

To obtain a measure of nongaussianity that is zero for a gaussian variable and
always nonnegative, one often uses a normalized version of differential entropy,
called negentropy. Negentropy J is defined as follows

J�y� � H�ygauss��H�y� (8.22)
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where ygauss is a gaussian random vector of the same correlation (and covariance)
matrix as y. Due to the above-mentioned properties, negentropy is always nonneg-
ative, and it is zero if and only if y has a gaussian distribution. Negentropy has the
additional interesting property that it is invariant for invertible linear transformations
(see Section 5.4).

The advantage of using negentropy, or equivalently, differential entropy, as a
measure of nongaussianity is that it is well justified by statistical theory. In fact,
negentropy is in some sense the optimal estimator of nongaussianity, as far as the
statistical performance is concerned, as will be seen in Section 14.3. The problem
in using negentropy is, however, that it is computationally very difficult. Estimating
negentropy using the definition would require an estimate (possibly nonparametric)
of the pdf. Therefore, simpler approximations of negentropy are very useful, as will
be discussed next. These will be used to derive an efficient method for ICA.

8.3.3 Approximating negentropy

In practice, we only need approximation of 1-D (neg)entropies, so we only consider
the scalar case here.

The classic method of approximating negentropy is using higher-order cumulants,
using the polynomial density expansions as explained in Section 5.5. This gives the
approximation

J�y� �
�

��
Efy�g� �

�

��
kurt�y�� (8.23)

The random variable y is assumed to be of zero mean and unit variance. Actually,
this approximation often leads to the use of kurtosis as in the preceding section.
This is because the first term on the right-hand side of (8.23) is zero in the case of
random variables with (approximately) symmetric distributions, which is quite com-
mon. In this case, the approximation in (8.23) is equivalent to the square of kurtosis.
Maximization of the square of kurtosis is of course equivalent to maximization of
its absolute value. Thus this approximation leads more or less to the method in
Section 8.2. In particular, this approximation suffers from the nonrobustness encoun-
tered with kurtosis. Therefore, we develop here more sophisticated approximations
of negentropy.

One useful approach is to generalize the higher-order cumulant approximation
so that it uses expectations of general nonquadratic functions, or “nonpolynomial
moments”. This was described in Section 5.6. In general we can replace the
polynomial functions y� and y� by any other functions Gi (where i is an index,
not a power), possibly more than two. The method then gives a simple way of
approximating the negentropy based on the expectations EfGi�y�g� As a simple
special case, we can take any two nonquadratic functions G� and G� so that G� is
odd and G� is even, and we obtain the following approximation:

J�y� � k��EfG
��y�g�� � k��EfG

��y�g �EfG����g�� (8.24)
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Fig. 8.20 The functionsG� in Eq. (8.26),G� in Eq. (8.27), given by the solid curve and the
dashed curve, respectively. The fourth power, as used in kurtosis, is given for comparison by
the dash-dotted curve.

where k� and k� are positive constants, and � is a gaussian variable of zero mean and
unit variance (i.e., standardized). The variable y is assumed to have zero mean and
unit variance. Note that even in cases where this approximation is not very accurate,
(8.24) can be used to construct a measure of nongaussianity that is consistent in the
sense that it is always nonnegative, and equal to zero if y has a gaussian distribution.
This is a generalization of the moment-based approximation in (8.23), which is
obtained by taking G��y� � y� and G��y� � y�.

In the case where we use only one nonquadratic function G, the approximation
becomes

J�y� � �EfG�y�g �EfG���g�� (8.25)

for practically any nonquadratic function G. This is a generalization of the moment-
based approximation in (8.23) if y has a symmetric distribution, in which case the first
term in (8.23) vanishes. Indeed, taking G�y� � y�, one then obtains a kurtosis-based
approximation.

But the point here is that by choosing G wisely, one obtains approximations of
negentropy that are better than the one given by (8.23). In particular, choosing a
G that does not grow too fast, one obtains more robust estimators. The following
choices of G have proved very useful:

G��y� �
�

a�
log cosha�y� (8.26)

G��y� � � exp��y���� (8.27)

where � � a� � � is some suitable constant, often taken equal to one. The functions
in (8.26)–(8.27) are illustrated in Fig. 8.20.

Thus we obtain approximations of negentropy that give a very good compromise
between the properties of the two classic nongaussianity measures given by kurtosis
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and negentropy. They are conceptually simple, fast to compute, yet have appealing
statistical properties, especially robustness. Therefore, we shall use these objective
functions in our ICA methods. Interestingly, kurtosis can be expressed in this same
framework.

8.3.4 Gradient algorithm using negentropy

Gradient algorithm As with kurtosis, we can derive a simple gradient algorithm
for maximizing negentropy. Taking the gradient of the approximation of negentropy
in (8.25) with respect to w, and taking the normalization Ef�wT

z��g � kwk� � �
into account, one obtains the following algorithm

�w � �Efzg�wT
z�g (8.28)

w � w�kwk (8.29)

where � � EfG�wT
z�g � EfG���g, � being a standardized gaussian random

variable. The normalization is necessary to project w on the unit sphere to keep the
variance of wT

z constant. The function g is the derivative of the function G used
in the approximation of negentropy. The expectation could be omitted to obtain an
on-line (adaptive) stochastic gradient algorithm.

� , which gives the algorithm a kind of “self-adaptation” quality,
can be easily estimated on-line as follows:

�� � �G�wT
z� �EfG���g�� � (8.30)

As for the function g, we can use the derivatives of the functions in (8.26)–
(8.27) that give robust approximations of negentropy. Alternatively, we could use
the derivative corresponding to the fourth power as in kurtosis, which leads to the
method that was already described in the previous section. Thus we can choose from:

g��y� � tanh�a�y� (8.31)

g��y� � y exp��y���� (8.32)

g��y� � y� (8.33)

where � � a� � � is some suitable constant, often taken as a� � �. These functions
are illustrated in Fig. 8.21.

The final form of the on-line stochastic gradient algorithm is summarized on
Table 8.1.
This algorithm can be further simplified. � does not

change the stationary points of the learning rule. Its sign does affect their stability,
though. Therefore, one can replace the � by its sign without essentially affecting the
behavior of the learning rule. This is useful, for example, in cases where we have
some a priori information on the distributions of the independent components. For
example, speech signals are usually highly supergaussian. One might thus roughly

The parameter ,

This parameter corresponds to the sign of kurtosis in (8.13).

First note that the parameter
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1. Center the data to make its mean zero.

2. Whiten the data to give z.

3. Choose an initial (e.g., random) vectorw of unit norm, and an initial value for
�.

4. Update �w � �zg�wT
z�, where g is defined e.g. as in (8.31)-(8.33)

5. Normalizew� w�kwk

6. If the sign of � is not known a priori, update�� � �G�wT
z��EfG���g���.

7. If not converged, go back to step 4.

Table 8.1 The on-line stochastic gradient algorithm for finding one maximally nongaussian
direction, i.e., estimating one independent component.

Fig. 8.21 The robust nonlinearities g� in Eq. (8.31), g� in Eq. (8.32), given by the solid line
and the dashed line, respectively. The third power in (8.33), as used in kurtosis-based methods,
is given by the dash-dotted line.
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evaluate EfG�si� � G���g for some supergaussian independent components and
then take this, or its sign, as the value of �. For example, if g is the tanh function,
then � � �� works for supergaussian independent components.

Stability analysis * This section contains a theoretical analysis that can be
skipped at first reading.

Since the approximation of negentropy in (8.25) may be rather crude, one may
wonder if the estimator obtained from (8.28) really converges to the direction of one
of the independent components, assuming the ICA data model. It can be proven
that this is so, under rather mild conditions. The key to this proof is the following
theorem, proven in the Appendix:

Theorem 8.1 Assume that the input data follows the ICA model with whitened data:
z � VAs where V is the whitening matrix, and that G is a sufficiently smooth even
function. Then the local maxima (resp. minima) ofEfG�wT

z�g under the constraint
kwk � � include those rows of the mixing matrix VA such that the corresponding
independent components si satisfy

Efsig�si�� g��si�g � � �resp. � �� (8.34)

where g��� is the derivative of G���, and g���� is the derivative of g���.

This theorem shows that practically any nonquadratic function G may be used
to perform ICA. More precisely, any function G divides the space of probability
distributions into two half-spaces, depending on whether the nonpolynomial moment
in the theorem is positive or negative. Independent components whose distribution
is in one of the half-spaces can be estimated by maximizing EfG�wT

z�g, and ICs
whose distribution is in the other half-space can be estimated by minimizing the same
function. The theorem gives the exact boundary between these two half-spaces.

In particular, this theorem implies the following:

Theorem 8.2 Assume that the input data follows the ICA data model in (8.1), and
thatG is a sufficiently smooth even function. Then the asymptotically stable points of
algorithm in (8.28) include the ith row of the inverse of the whitened mixing matrix
VA such that the corresponding independent component si fulfills

Efsig�si�� g��si�g�EfG�si�g �EfG���g� � � (8.35)

where g��� is the derivative of G���, and � is a standardized gaussian variable.

Note that if w equals the ith row of �VA���, the linear combination equals the ith
independent component: wT

z � �si.
This theorem simply says that the question of stability of the gradient learning rule

of the approximation of negentropy boils down to the question: Does the division into
two half-spaces as given by Theorem 8.1 give the same division that is given by the
sign of EfG�si��G���g? This seems to be approximately true for most reasonable
choices ofG, and distributions of the si. In particular, ifG�y� � y�, we encounter the
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kurtosis-based criterion, and the condition is fulfilled for any distribution of nonzero
kurtosis.

Theorem 8.1 also shows how to modify the algorithm in (8.28) so that it is
(practically) always stable. This is possible by defining the self-adaptation constant
� as

� � sign�Efyg�y�� g��y�g� (8.36)

The drawback with this definition is that now the algorithm cannot be interpreted as
optimization of an objective function.

8.3.5 A fast fixed-point algorithm using negentropy

As with kurtosis, a much faster method for maximizing negentropy than that given by
the gradient method, can be found using a fixed-point algorithm. The resulting Fas-
tICA algorithm [197] finds a direction, i.e., a unit vectorw, such that the projection
w
T
z maximizes nongaussianity. Nongaussianity is here measured by the approxi-

mation of negentropy J�wT
z� given in (8.25). Recall that the variance ofwT

zmust
here be constrained to unity; for whitened data, this is equivalent to constraining the
norm of w to be unity.

FastICA is based on a fixed-point iteration scheme for finding a maximum of the
nongaussianity of wT

z, as measured in (8.25). More rigorously, it can be derived
as an approximative Newton iteration. The FastICA algorithm using negentropy
combines the superior algorithmic properties resulting from the fixed-point iteration
with the preferable statistical properties due to negentropy.

Derivation of algorithm * In this subsection, we derive the fixed-point algorithm
using negentropy. This can be skipped by the reader not interested in mathematical
details.

Looking at the gradient method in (8.28) immediately suggests the following
fixed-point iteration:

w � Efzg�wT
z�g (8.37)

which would of course be followed by normalization of w. The coefficient � can be
omitted because it would be eliminated by the normalization anyway.

The iteration in (8.37) does not, however, have the good convergence properties
of the FastICA using kurtosis, because the nonpolynomial moments do not have the
same nice algebraic properties as real cumulants like kurtosis. Therefore, the iteration
in (8.37) has to be modified. This is possible because we can add w, multiplied by
some constant �, on both sides of (8.37) without modifying the fixed points. In fact,
we have

w � Efzg�wT
z�g (8.38)

�

�� � ��w � Efzg�wT
z�g� �w (8.39)
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and because of the subsequent normalization of w to unit norm, the latter equation
(8.39) gives a fixed-point iteration that has the same fixed points. Thus, by choosing
� wisely, it may be possible to obtain an algorithm that converges as fast as the
fixed-point algorithm using kurtosis. In fact, such a � can be found, as we show here.

The suitable coefficient �, and thus the FastICA algorithm, can be found using
an approximative Newton method. The Newton method is a fast method for solving
equations; see Chapter 3. When it is applied on the gradient, it gives an optimization
method that usually converges in a small number of steps. The problem with the
Newton method, however, is that it usually requires a matrix inversion at every
step. Therefore, the total computational load may not be smaller than with gradient
methods. What is quite surprising is that using the special properties of the ICA
problem, we can find an approximation of the Newton method that does not need a
matrix inversion but still converges roughly with the same number of iterations as the
real Newton method (at least in theory). This approximative Newton method gives a
fixed-point algorithm of the form (8.39).

To derive the approximative Newton method, first note that the maxima of the
approximation of the negentropy of wT

z are typically obtained at certain optima of
EfG�wT

z�g. According to the Lagrange conditions (see Chapter 3), the optima of
EfG�wT

z�g under the constraint Ef�wT
z��g � kwk� � � are obtained at points

where the gradient of the Lagrangian is zero:

Efzg�wT
z�g� �w � � (8.40)

Now let us try to solve this equation by Newton’s method, which is equivalent to
finding the optima of the Lagrangian by Newton’s method. Denoting the function
on the left-hand side of (8.40) by F , we obtain its gradient (which is the second
derivative of the Lagrangian) as

�F

�w
� EfzzT g��wT

z�g� �I (8.41)

To simplify the inversion of this matrix, we decide to approximate the first term
in (8.41). Since the data is sphered, a reasonable approximation seems to be
EfzzT g��wT

z�g � EfzzT gEfg��wT
z�g � Efg��wT

z�gI. Thus the gradient
becomes diagonal, and can easily be inverted. Thus we obtain the following approx-
imative Newton iteration:

w � w� �Efzg�wT
z�g� �w���Efg��wT

z�g� �� (8.42)

This algorithm can be further simplified by multiplying both sides of (8.42) by
� �Efg��wT

z�g. This gives, after straightforward algebraic simplification:

w� Efzg�wT
z� �Efg��wT

z�gwg (8.43)

This is the basic fixed-point iteration in FastICA.
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1. Center the data to make its mean zero.

2. Whiten the data to give z.

3. Choose an initial (e.g., random) vectorw of unit norm.

4. Let w � Efzg�wT
z�g � Efg��wT

z�gw, where g is defined, e.g., as in
(8.31)–(8.33).

5. Let w� w�kwk.

6. If not converged, go back to step 4.

Table 8.2 The FastICA algorithm for finding one maximally nongaussian direction, i.e.,
estimating one independent component. The expectations are estimated in practice as an
average over the available data sample.

The fixed-point algorithm The preceding derivation gives us the FastICA algo-
rithm that can be described as follows.

First, we choose a nonlinearity g, which is the derivative of the nonquadratic
functionG used in (8.25). For example, we can use the derivatives of the functions in
(8.26)–(8.27) that give robust approximations of negentropy. Alternatively, we could
use the derivative corresponding to the fourth power as in kurtosis, which leads to
the method that was already described in the previous section. Thus we can choose
from the same functions in (8.31)–(8.33) as with the gradient algorithm, illustrated
in Fig. 8.21.

Then we use the iteration in (8.43), followed by normalization. Thus, the basic
form of the FastICA algorithm is then as described in Table 8.2.

The functions g� can be computed as

g�

�
�y� � a���� tanh��a�y�� (8.44)

g�

�
�y� � ��� y�� exp��y���� (8.45)

g�

�
�y� � �y� (8.46)

Note that since we have constrainedEfy�g � �, the derivative in (8.46) is essentially
reduced to the constant 3.

Note that as above, convergence means that the old and new values of w point in
the same direction, i.e., the absolute value of their dot-product is (almost) equal to 1.
It is not necessary that the vector converges to a single point, sincew and�w define
the same direction.

As already discussed in connection with kurtosis, FastICA has properties that
make it clearly superior to the gradient-based algorithms when fast adaptation to
a changing environment is not needed. Even when using general approximations
of negentropy, convergence is at least quadratic, which means much faster than the
linear convergence obtained by gradient methods. Moreover, there is no learning rate
or other adjustable parameters in the algorithm, which makes it easy to use, and more
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Fig. 8.22 Results with FastICA using negentropy, for ICs with uniform distributions. Dashed
line: w after the first iteration (plotter longer than actual size). Solid line: w after the second
iteration.

reliable. Using robust approximations of negentropy instead of kurtosis enhances the
statistical properties of the resulting estimator, as discussed in Section 8.3.1.

The algorithm just given estimates only one independent component. To estimate
more independent components, different kinds of decorrelation schemes should be
used; see Section 8.4.

Examples Here we show what happens when we run this version of the FastICA
algorithm that maximizes the negentropy, using the two example data sets used
in this chapter. First we take a mixture of two uniformly distributed independent
components. The mixtures are whitened, as always in this chapter. The goal is now
to find a direction in the data that maximizes the negentropy, as illustrated in 8.12.

For purposes of the illustration,we initialize the vectorwasw � ��� ��T . Running
the FastICA iteration just two times (using the tanh nonlinearity in 8.31)), we obtain
convergence. In Fig. 8.22, the obtained vectorsw are shown. The dashed line gives
the direction of w after the first iteration, and the solid line gives the direction of w
after the second iteration. The third iteration didn’t make any significant change in
the direction of w, which means that the algorithm converged. (The corresponding
vector in not plotted.) The figure shows that the value of w may change drastically
during the iteration, because the valuesw and�w are considered as equivalent. This
is because the sign of the vector cannot be determined in the ICA model.

The negentropies of the projectionswT
z obtained in the iterations are plotted in

Fig. 8.23, as a function of iteration count. The plot shows that the algorithm steadily
increased the negentropy of the projection, until it reached convergence at the third
iteration.
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Fig. 8.23 The convergence of FastICA using negentropy, for ICs with uniform distributions.
The value of negentropy shown as a function of iteration count. (Note that the value of
negentropy was not properly scaled because a multiplying constant was omitted.)

Similar experiments were performed for the whitened mixtures of two supergaus-
sian independent components, as illustrated in Fig. 8.14. In Fig. 8.24, the obtained
vectors are shown. Convergence was obtained after three iterations. The negen-
tropies of the projections wT

z obtained in the iterations are plotted in Fig. 8.25, as
a function of iteration count. As earlier, the negentropy of the projection steadily
increased, until it reached convergence at the third iteration.

In these examples, we only estimated one independent component. In practice,
we have many more dimensions and, therefore, we usually want to estimate more
than one independent component. This can be done using a decorrelation scheme, as
will be discussed next.

8.4 ESTIMATING SEVERAL INDEPENDENT COMPONENTS

8.4.1 Constraint of uncorrelatedness

In this chapter, we have so far estimated only one independent component. This is
why these algorithms are sometimes called “one-unit” algorithms. In principle, we
could find more independent components by running the algorithm many times and
using different initial points. This would not be a reliable method of estimating many
independent components, however.

The key to extending the method of maximum nongaussianity to estimate more
independent component is based on the following property: The vectors wi cor-
responding to different independent components are orthogonal in the whitened
space, as shown in Chapter 7. To recapitulate, the independence of the com-
ponents requires that they are uncorrelated, and in the whitened space we have
Ef�wT

i z��w
T
j z�g � w

T
i wj , and therefore uncorrelatedness in equivalent to orthog-
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Fig. 8.24 Results with FastICA using negentropy, second experiment. Dashed line: w after
the first iteration (plotted longer than actual size). Solid line: w after the second iteration.
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Fig. 8.25 The convergence of FastICA using negentropy, for supergaussian ICs. The value
of negentropy shown as function of iteration count. (Again, note that the value of negentropy
was not properly scaled.)
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onality. This property is a direct consequence of the fact that after whitening, the
mixing matrix can be taken to be orthogonal. The wi are in fact by definition the
rows of the inverse of the mixing matrix, and these are equal to the columns of the
mixing matrix, because by orthogonalityA�� � AT .

Thus, to estimate several independent components, we need to run any of the one-
unit algorithms several times (possibly using several units) with vectorsw�� ����wn,
and to prevent different vectors from converging to the same maxima we must
orthogonalize the vectorsw�� ����wn after every iteration. We present in the following
different methods for achieving decorrelation.

8.4.2 Deflationary orthogonalization

A simple way of orthogonalization is deflationary orthogonalization using the Gram-
Schmidt method. This means that we estimate the independent components one by
one. When we have estimated p independent components, or p vectors w�� ����wp,
we run any one-unit algorithm for wp��, and after every iteration step subtract
from wp�� the projections �wT

p��wj�wj � j � �� ���� p of the previously estimated
p vectors, and then renormalize wp��. More precisely, we alternate the following
steps:

1. Choose m, the number of ICs to estimate. Set p� �.

2. Initializewp (e.g. randomly)

3. Do an iteration of a one-unit algorithm onwp.

4. Do the following orthogonalization:

wp � wp �

p��X

j��

�wT
pwj�wj (8.47)

5. Normalizewp by dividing it by its norm.

6. Ifwp has not converged, go back to step 3.

7. Set p � p� �. If p is not greater than the desired number of ICs, go back to
step 2.

In particular, we give the FastICA algorithm with deflationary orthogonalization
in Table 8.3.

8.4.3 Symmetric orthogonalization

In certain applications, it may be desirable to use a symmetric decorrelation, in
which no vectors are “privileged” over others. This means that the vectors wi are
not estimated one by one; instead, they are estimated in parallel. One motivation for
this is that the deflationary method has the drawback that estimation errors in the first
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vectors are cumulated in the subsequent ones by the orthogonalization. Another one
is that the symmetric orthogonalization methods enable parallel computation of ICs.

Symmetric orthogonalization is done by first doing the iterative step of the one-
unit algorithm on every vectorwi in parallel, and afterwards orthogonalizing all the
wi by special symmetric methods. In other words:

1. Choose the number of independent components to estimate, say m.

2. Initialize thewi� i � �� ����m (e.g., randomly).

3. Do an iteration of a one-unit algorithm on everywi in parallel.

4. Do a symmetric orthogonalization of the matrixW � �w�� ����wm�
T .

5. If not converged, go back to step 3.

In Chapter 6, methods for symmetric orthogonalization were discussed. The
symmetric orthogonalization ofW can be accomplished, e.g., by the classic method
involving matrix square roots,

W� �WWT �����W (8.48)

The inverse square root �WWT ����� is obtained from the eigenvalue decomposition
ofWWT � E diag�d�� ���� dm� ET as

�WWT ����� � E diag�d����
�

� ���� d����m � ET (8.49)

A simpler alternative is the following iterative algorithm:

1. LetW�W�kWk.

2. LetW� �

�
W � �

�
WW

T
W.

3. IfWWT is not close enough to identity, go back to step 2.

The norm in step 1 can be almost any ordinary matrix norm, e.g., the 2-norm or the
largest absolute row or column sum (but not the Frobenius norm); see Section 6.5 for
details.

We give a detailed version of the FastICA algorithm that uses the symmetric
orthogonalization in Table 8.4.
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1. Center the data to make its mean zero.

2. Whiten the data to give z.

3. Choose m, the number of ICs to estimate. Set counter p� �.

4. Choose an initial value of unit norm forwp, e.g., randomly.

5. Let wp � Efzg�wT
p z�g � Efg��wT

p z�gw, where g is defined, e.g., as in
(8.31)–(8.33).

6. Do the following orthogonalization:

wp � wp �

p��X

j��

�wT
pwj�wj (8.50)

7. Letwp � wp�kwpk.

8. Ifwp has not converged, go back to step 5.

9. Set p� p� �. If p � m, go back to step 4.

Table 8.3 The FastICA algorithm for estimating several ICs, with deflationary orthogonal-
ization. The expectations are estimated in practice as sample averages.

1. Center the data to make its mean zero.

2. Whiten the data to give z.

3. Choose m, the number of independent components to estimate.

4. Choose initial values for thewi� i � �� ����m, each of unit norm. Orthogonalize
the matrixW as in step 6 below.

5. For every i � �� ����m, let wi � Efzg�wT
i z�g � Efg��wT

i z�gw, where g is
defined, e.g., as in (8.31)–(8.33).

6. Do a symmetric orthogonalization of the matrixW � �w�� ����wm�
T by

W � �WWT �����W� (8.51)

or by the iterative algorithm in Sec. 8.4.3.

7. If not converged, go back to step 5.

Table 8.4 The FastICA algorithm for estimating several ICs, with symmetric orthogonal-
ization. The expectations are estimated in practice as sample averages.
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8.5 ICA AND PROJECTION PURSUIT

It is interesting to note how the approach to ICA described in this Chapter makes
explicit the connection between ICA and another technique: projection pursuit.

8.5.1 Searching for interesting directions

Projection pursuit is a technique developed in statistics for finding “interesting”
projections of multidimensional data. Such projections can then be used for optimal
visualization of the data, and for such purposes as density estimation and regression.

When projection pursuit is used for exploratory data analysis, we usually compute
a couple of the most interesting 1-D projections. (The definition of interestingness
will be treated in the next section.) Some structure of the data can then be visualized
by showing the distribution of the data in the 1-D subspaces, or on 2-D planes spanned
by two of the projection pursuit directions. This method is en extension of the classic
method of using principal component analysis (PCA) for visualization, in which the
distribution of the data is shown on the plane spanned by the two first principal
components.

An example of the problem can be seen in Fig. 8.26. In reality, projection pursuit
is of course used in situations where the number of dimensions is very large, but
for purposes of illustration, we use here a trivial 2-D example. In the figure, the
interesting projection of the data would be on the horizontal axis. This is because
that projection shows the clustering structure of the data. In contrast, projections
in very different directions (here, projection on the vertical axis) would show only
an ordinary gaussian distribution. It would thus be useful to have a method that
automatically finds the horizontal projection in this example.

8.5.2 Nongaussian is interesting

The basic question in projection pursuit is thus to define what kind of projections are
interesting.

It is usually argued that the gaussian distribution is the least interesting one, and
that the most interesting directions are those that show the least gaussian distribution.
One motivation for this is that distributions that are multimodal, i.e., show some
clustering structure, are far from gaussian.

An information-theoretic motivation for nongaussianity is that entropy is maxi-
mized by the gaussian distribution, and entropy can be considered as a measure of
the lack of structure (see Chapter 5). This is related to the interpretation of entropy
as code length: a variable that has a clear structure is usually easy to code. Thus,
since the gaussian distribution has the largest entropy, it is the most difficult to code,
and therefore it can be considered as the least structured.

The usefulness of using the most nongaussian projections for visualization can be
seen in Fig. 8.26. Here the most nongaussian projection is on the horizontal axis; this
is also the projection that most clearly shows the clustered structure of the data. On
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Fig. 8.26 An illustration of projection pursuit and the “interesting” directions. The data in
this figure is clearly divided into two clusters. The goal in projection pursuit is to find the
projection (here, on the horizontal axis) that reveals the clustering or other structure of the
data.

the other hand, the projection on the vertical direction, which is also the direction of
the first principal component, fails to show this structure. This also shows that PCA
does not use the clustering structure. In fact, clustering structure is not visible in the
covariance or correlation matrix on which PCA is based.

Thus projection pursuit is usually performed by finding the most nongaussian
projections of the data. This is the same thing that we did in this chapter to estimate the
ICA model. This means that all the nongaussianity measures and the corresponding
ICA algorithms presented in this chapter could also be called projection pursuit
“indices” and algorithms.

It should be noted that in the formulation of projection pursuit, no data model
or assumption about independent components is made. If the ICA model holds,
optimizing the ICA nongaussianity measures produce independent components; if
the model does not hold, then what we get are the projection pursuit directions.

8.6 CONCLUDING REMARKS AND REFERENCES

A fundamental approach to ICA is given by the principle of nongaussianity. The
independent components can be found by finding directions in which the data is
maximally nongaussian. Nongaussianity can be measured by entropy-based mea-
sures or cumulant-based measures like kurtosis. Estimation of the ICA model can
then be performed by maximizing such nongaussianity measures; this can be done
by gradient methods or by fixed-point algorithms. Several independent components
can be found by finding several directions of maximum nongaussianity under the
constraint of decorrelation.
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This approach is closely connected to projection pursuit, in which the maximally
nongaussian directions are considered interesting from the viewpoint of visualization
and exploratory data analysis [222, 137, 138, 95, 160, 151, 316, 414, 139]; a useful
review is provided in [189]. From a modeling viewpoint, this approach was first
developed in the context of blind deconvolution [114, 399]. Blind deconvolution,
discussed in more detail in Chapter 19, is a linear model not unlike the ICA model,
but the mixing is done by convolution of a one-dimensional signal. In the context
of ICA, the principle of nongaussianity was probably first used in [107], where the
maximality property of kurtosis was proven rigorously, and further developed in
[197, 210, 211, 291], on which this chapter is based.

Problems

8.1 Prove (8.8) and (8.9)
8.1.1. by algebraically manipulating the formulas
8.1.2. by using the general definition of cumulants (see Section 2.7.2).

8.2 Derive the gradient in (8.13).

8.3 Derive the gradient in (8.28).

8.4 What happens to the ICA algorithms in (8.28) and (8.43) if the nonlinearity g

is taken to be linear?

8.5 How does the behavior of the algorithms in (8.28) and (8.43) change if
8.5.1. a linear function is added to g?
8.5.2. a constant is added to g?

8.6 Derive a fixed-point algorithm for the third-order cumulant: Efy�g. When
could this algorithm be useful? Why is kurtosis preferred in most applications?

8.7 In this exercise, we prove the fundamental maximality property of kurtosis.
More precisely, we prove that the maxima of the function

F �q� � jkurt�qT s�j � jq�
�
kurt�s�� � q�

�
kurt�s��j (8.52)

in the constraint set kqk� � � are obtained when only one of the components of q is
nonzero. For simplicity, we consider here the 2-D case first.

8.7.1. Make the change of variables ti � q�
i
. What is the geometrical form of the

constraint set of t � �t�� t��? Note that the objective function is now quadratic.
8.7.2. Assume that both of the kurtoses are positive. What is the geometrical shape

of the sets F �t� � const.? By a geometrical argument, show that the maximum of
F �t� is obtained when one of the ti is one and the other one is zero. Show how this
proves the maximality property if the kurtoses are both positive.

8.7.3. Assume that both kurtoses are negative. Using exactly the same logic as in
the preceding point, show that the maximality property holds if the kurtoses are both
negative.



200 ICA BY MAXIMIZATION OF NONGAUSSIANITY

8.7.4. Assume that the kurtoses have different signs. What is the geometrical
shape of the sets F �t� � const. now? By geometrical arguments, show the maxi-
mality property holds even in this case.

8.7.5. Let us redo the proof algebraically. Express t� as a function of t�, and
reformulate the problem. Solve it explicitly.

8.8 * Now we extend the preceding geometric proof the n dimensions. We will
need some basic concepts of convex analysis [284].

8.8.1. Make the same change of variables. Prove that the constraint set is convex
(in fact, it is what is called a simplex).

8.8.2. Assume that the kurtoses of the si are all positive. Show that the objective
function is strictly convex.

8.8.3. Show that a strictly convex function defined on a simplex obtains its maxima
in the extremal points.

8.8.4. Show that our objective function is maximized at the points where just one
of the ti is 1 and the others are zero, and that these correspond to the independent
components.

8.8.5. Show the same when all the kurtoses are negative.
8.8.6. In the case of kurtoses of different signs, first show by a simple argument

that if ti and tj corresponding to components with kurtoses of different signs are
nonzero, the objective function can be increased by reducing one of them and in-
creasing the other by the same amount. Conclude that in the maximum, only two of
the ti, corresponding to two different signs of kurtoses, can be nonzero. Show that
the problem then reduces to what was already shown in the 2-D case.

Computer assignments

8.1 In this computer assignment, the central limit theorem is studied experimen-
tally. Let x�t�, t � �� � � � � T , be T independent random numbers distributed uni-
formly on the interval ���� ��, and

y �

TX

t��

x�t�

their sum. Generate 5000 different realizations of the random variable y for the
following numbers of terms in the sum: T � �, T � �, and T � ��.

8.1.1. Plot the experimental pdf’s of y, and compare it with the gaussian pdf
having the same (zero) mean and variance. (Hint: you can here estimate the pdf
from the generated samples simply by dividing their value range into small bins of
width 0.1 or 0.05, count the number of samples falling into each bin, and divide by
the total number of samples. You can compute the difference between the respective
gaussian and the estimated density to get a better idea of the similarity of the two
distributions.)

8.1.2. Plot the kurtoses in each case. Note that you must normalize all the
variables to unit variance. What if you don’t normalize?
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8.2 Program the FastICA algorithm in (8.4) in some computer environment.
8.2.1. Take the data x�t� in the preceding assignment as two independent compo-

nents by splitting the sample in two. Mix them using a random mixing matrix, and
estimate the model, using one of the nonlinearity in (8.31).

8.2.2. Reduce the sample size to 100. Estimate the mixing matrix again. What
do you see?

8.2.3. Try the different nonlinearities in (8.32)–(8.33). Do you see any difference?
8.2.4. Try the nonlinearity g�u� � u�. Why does this not work?

Appendix proofs

Proof of Theorem 8.1 Denote by H�w� the function to be minimized/maximized,
EfG�wT z�g. Make the orthogonal change of coordinates q � ATVTw. Then we can cal-

culate the gradient as �H�q�
�q

� Efsg�qT s�g and the Hessian as �
�
H�q�

�q�
� EfssT g��qT s�g.

Without loss of generality, it is enough to analyze the stability of the point q � e�, where
e� � ��� �� �� �� ����. Evaluating the gradient and the Hessian at point q � e�, we get using
the independence of the si,

�H�e��

�q
� e�Efs�g�s��g (A.1)

and

��H�e��

�q�
� diag�Efs��g��s��g� Efg��s��g� Efg��s��g� ����� (A.2)

Making a small perturbation � � ���� ��� ����, we obtain

H�e� � �� � H�e�� � �T
�H�e��

�q
�

�

�
�T

��H�e��

�q�
�� o�k�k��

� H�e�� �Efs�g�s��g�� � �

�
�Efs��g��s��g��� �Efg��s��g

X

i��

��i 	 � o�k�k�� (A.3)

Due to the constraint kwk � � we get �� �
p

�� ��� � ��� � ��� � �. Due to the fact thatp
�� � � � � ��� � o���, the term of order ��� in (A.3) is o�k�k��, i.e., of higher order,

and can be neglected. Using the aforementioned first-order approximation for �� we obtain
�� � �P

i��
��i �� � o�k�k��, which finally gives

H�e� � �� � H�e�� �
�

�
�Efg��s��� s�g�s��g	

X

i��

��i � o�k�k�� (A.4)

which clearly proves q � e� is an extremum, and of the type implied by the condition of the
theorem.

Proof of convergence of FastICA The convergence is proven under the assumptions
that first, the data follows the ICA data model (8.1) and second, that the expectations are
evaluated exactly.
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Let g be the nonlinearity used in the algorithm. In the case of the kurtosis-based algorithm
in Section 8.2.3, this is the cubic function, so we obtain that algorithm as a special case of the
following proof for a general g. We must also make the following technical assumption:

Efsig�si�� g��si�g �� �� for any i (A.5)

which can be considered a generalization of the condition valid when we use kurtosis, that
the kurtosis of the independent components must be nonzero. If (A.5) is true for a subset of
independent components, we can estimate just those independent components.

To begin with, make the change of variable q � ATVTw, as earlier, and assume that
q is in the neighborhood of a solution (say, q� � � as before). As shown in the proof of
Theorem 8.1, the change in q� is then of a lower order than the change in the other coordinates,
due to the constraint kqk � �. Then we can expand the terms in (8.43) using a Taylor
approximation for g and g�, first obtaining

g�qT s� � g�q�s�� � g��q�s��q
T

��s�� �
�

�
g���q�s���q

T

��s���
�

� �

�
g����q�s���q

T

��s���
� �O�kq��k

�� (A.6)

and then

g��qT s� � g��q�s�� � g���q�s��q
T

��s��

� �

�
g����q�s���q

T

��s���
� �O�kq��k

�� (A.7)

where q�� and s�� are the vectors q and s without their first components. Denote by q� the
new value of q (after one iteration). Thus we obtain, using the independence of the si and
doing some tedious but straightforward algebraic manipulations,

q�� � Efs�g�q�s��� g��q�s��g�O�kq��k
�� (A.8)

q�i � �

�
Efs�i gEfg

���s��gq
�
i

� �

�
kurt�si�Efg����s��gq�i �O�kq���k

��� for i � � (A.9)

We obtain also

q
� � q

��kq�k (A.10)

This shows clearly that under assumption (A.5), the algorithm converges (locally) to such
a vector q that q� � �� and qi � � for i � �. This means thatw � ��VA�T ���q converges,
up to the sign, to one of the rows of the inverse of the mixing matrix VA, which implies that
wT z converges to one of the si. Moreover, if Efg���s��g � �, i.e., if the si has a symmetric
distribution, as is usually the case, (A.9) shows that the convergence is cubic. In other cases,
the convergence is quadratic. If kurtosis is used, however, we always have Efg���s��g � �

and thus cubic convergence. In addition, if G�y� � y�, the local approximations are exact,
and the convergence is global.



9
ICA by Maximum

Likelihood Estimation

A very popular approach for estimating the independent component analysis (ICA)
model is maximum likelihood (ML) estimation. Maximum likelihood estimation is
a fundamental method of statistical estimation; a short introduction was provided in
Section 4.5. One interpretation of ML estimation is that we take those parameter
values as estimates that give the highest probability for the observations. In this
section, we show how to apply ML estimation to ICA estimation. We also show its
close connection to the neural network principle of maximization of information flow
(infomax).

9.1 THE LIKELIHOOD OF THE ICA MODEL

9.1.1 Deriving the likelihood

It is not difficult to derive the likelihood in the noise-free ICA model. This is based
on using the well-known result on the density of a linear transform, given in (2.82).
According to this result, the density px of the mixture vector

x � As (9.1)

can be formulated as

px�x� � j detBjps�s� � j detBj
Y

i

pi�si� (9.2)

203
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where B � A
��, and the pi denote the densities of the independent components.

This can be expressed as a function ofB � �b�� ����bn�
T and x, giving

px�x� � j detBj
Y

i

pi�b
T

i
x� (9.3)

Assume that we have T observations of x, denoted by x����x���� ����x�T �. Then the
likelihood can be obtained (see Section 4.5) as the product of this density evaluated
at the T points. This is denoted by L and considered as a function ofB:

L�B� �

TY

t��

nY

i��

pi�b
T

i x�t��j detBj (9.4)

Very often it is more practical to use the logarithm of the likelihood, since it is
algebraically simpler. This does not make any difference here since the maximum of
the logarithm is obtained at the same point as the maximum of the likelihood. The
log-likelihood is given by

logL�B� �

TX

t��

nX

i��

log pi�b
T

i
x�t�� � T log j detBj (9.5)

The basis of the logarithm makes no difference, though in the following the natural
logarithm is used.

To simplify notation and to make it consistent to what was used in the previous
chapter, we can denote the sum over the sample index t by an expectation operator,
and divide the likelihood by T to obtain

�

T
logL�B� � Ef

nX

i��

log pi�b
T

i x�g� log j detBj (9.6)

The expectation here is not the theoretical expectation, but an average computed from
the observed sample. Of course, in the algorithms the expectations are eventually
replaced by sample averages, so the distinction is purely theoretical.

9.1.2 Estimation of the densities

Problem of semiparametric estimation In the preceding, we have expressed
the likelihood as a function of the parameters of the model, which are the elements
of the mixing matrix. For simplicity, we used the elements of the inverse B of the
mixing matrix. This is allowed since the mixing matrix can be directly computed
from its inverse.

There is another thing to estimate in the ICA model, though. This is the densities of
the independent components. Actually, the likelihood is a function of these densities
as well. This makes the problem much more complicated, because the estimation
of densities is, in general, a nonparametric problem. Nonparametric means that it
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cannot be reduced to the estimation of a finite parameter set. In fact the number of
parameters to be estimated is infinite, or in practice, very large. Thus the estimation
of the ICA model has also a nonparametric part, which is why the estimation is
sometimes called “semiparametric”.

Nonparametric estimation of densities is known to be a difficult problem. Many
parameters are always more difficult to estimate than just a few; since nonparametric
problems have an infinite number of parameters, they are the most difficult to estimate.
This is why we would like to avoid the nonparametric density estimation in the ICA.
There are two ways to avoid it.

First, in some cases we might know the densities of the independent components
in advance, using some prior knowledge on the data at hand. In this case, we could
simply use these prior densities in the likelihood. Then the likelihood would really
be a function ofB only. If reasonably small errors in the specification of these prior
densities have little influence on the estimator, this procedure will give reasonable
results. In fact, it will be shown below that this is the case.

A second way to solve the problem of density estimation is to approximate the
densities of the independent components by a family of densities that are specified
by a limited number of parameters. If the number of parameters in the density family
needs to be very large, we do not gain much from this approach, since the goal was
to reduce the number of parameters to be estimated. However, if it is possible to use
a very simple family of densities to estimate the ICA model for any densities pi, we
will get a simple solution. Fortunately, this turns out to be the case. We can use an
extremely simple parameterization of the pi, consisting of the choice between two
densities, i.e., a single binary parameter.

A simple density family It turns out that in maximum likelihood estimation, it is
enough to use just two approximations of the density of an independent component.
For each independent component, we just need to determine which one of the two
approximations is better. This shows that, first, we can make small errors when we
fix the densities of the independent components, since it is enough that we use a
density that is in the same half of the space of probability densities. Second, it shows
that we can estimate the independent components using very simple models of their
densities, in particular, using models consisting of only two densities.

This situation can be compared with the one encountered in Section 8.3.4, where
we saw that any nonlinearity can be seen to divide the space of probability distributions
in half. When the distribution of an independent component is in one of the halves,
the nonlinearity can be used in the gradient method to estimate that independent
component. When the distribution is in the other half, the negative of the nonlinearity
must be used in the gradient method. In the ML case, a nonlinearity corresponds to
a density approximation.

The validity of these approaches is shown in the following theorem, whose proof
can be found in the appendix. This theorem is basically a corollary of the stability
theorem in Section 8.3.4.
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Theorem 9.1 Denote by �pi the assumed densities of the independent components,
and

gi�si� �
�

�si
log �pi�si� �

�p�
i
�si�

�pi�si�
(9.7)

Constrain the estimates of the independent components yi � b
T

i
x to be uncorrelated

and to have unit variance. Then the ML estimator is locally consistent, if the assumed
densities �pi fulfill

Efsigi�si�� g��si�g � � (9.8)

for all i.

This theorem shows rigorously that small misspecifications in the densities pi do
not affect the local consistency of the ML estimator, since sufficiently small changes
do not change the sign in (9.8).

Moreover, the theorem shows how to construct families consisting of only two
densities, so that the condition in (9.8) is true for one of these densities. For example,
consider the following log-densities:

log �p�
i
�s� � �� � � log cosh�s� (9.9)

log �p�
i
�s� � �� � �s���� log cosh�s�� (9.10)

where ��� �� are positive parameters that are fixed so as to make these two functions
logarithms of probability densities. Actually, these constants can be ignored in the
following. The factor 2 in (9.9) is not important, but it is usually used here; also, the
factor 	�� in (9.10) could be changed.

The motivation for these functions is that �p�
i

is a supergaussian density, because
the log cosh function is close to the absolute value that would give the Laplacian
density. The density given by �p�

i
is subgaussian, because it is like a gaussian log-

density, �s��� plus a constant, that has been somewhat “flattened” by the log cosh
function.

Simple computations show that the value of the nonpolynomial moment in (9.8)
is for �p�

i

�Ef� tanh�si�si 
 �	� tanh�si�
��g (9.11)

and for �p�
i

it is

Eftanh�si�si � �	� tanh�si�
��g (9.12)

since the derivative of tanh�s� equals 	 � tanh�s��, and Efs�
i
g � 	 by definition.

We see that the signs of these expressions are always opposite. Thus, for practically
any distributions of the si, one of these functions fulfills the condition, i.e., has the
desired sign, and estimation is possible. Of course, for some distribution of the si
the nonpolynomial moment in the condition could be zero, which corresponds to the
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case of zero kurtosis in cumulant-based estimation; such cases can be considered to
be very rare.

Thus we can just compute the nonpolynomial moments for the two prior distribu-
tions in (9.9) and (9.10), and choose the one that fulfills the stability condition in (9.8).
This can be done on-line during the maximization of the likelihood. This always
provides a (locally) consistent estimator, and solves the problem of semiparametric
estimation.

In fact, the nonpolynomial moment in question measures the shape of the density
function in much the same way as kurtosis. For g�s� � �s�, we would actually
obtain kurtosis. Thus, the choice of nonlinearity could be compared with the choice
whether to minimize or maximize kurtosis, as previously encountered in Section 8.2.
That choice was based on the value of the sign of kurtosis; here we use the sign of a
nonpolynomial moment.

Indeed, the nonpolynomial moment of this chapter is the same as the one encoun-
tered in Section 8.3 when using more general measures of nongaussianity. However,
it must be noted that the set of nonlinearities that we can use here is more restricted
than those used in Chapter 8. This is because the nonlinearities gi used must corre-
spond to the derivative of the logarithm of a probability density function (pdf). For
example, we cannot use the function g�s� � s� because the corresponding pdf would
be of the form exp�s����, and this is not integrable, i.e., it is not a pdf at all.

9.2 ALGORITHMS FOR MAXIMUM LIKELIHOOD ESTIMATION

To perform maximum likelihood estimation in practice, we need an algorithm to
perform the numerical maximization of likelihood. In this section, we discuss dif-
ferent methods to this end. First, we show how to derive simple gradient algorithms,
of which especially the natural gradient algorithm has been widely used. Then we
show how to derive a fixed-point algorithm, a version of FastICA, that maximizes the
likelihood faster and more reliably.

9.2.1 Gradient algorithms

The Bell-Sejnowski algorithm The simplest algorithms for maximizing likeli-
hood are obtained by gradient methods. Using the well-known results in Chapter 3,
one can easily derive the stochastic gradient of the log-likelihood in (9.6) as:

�

T

� logL

�B
� �BT ��� �Efg�Bx�xT g (9.13)

Here, g�y� � �gi�yi�� ���� gn�yn�� is a component-wise vector function that consists
of the so-called (negative) score functions gi of the distributions of si, defined as

gi � �log pi�
� �

p�

i

pi
� (9.14)
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This immediately gives the following algorithm for ML estimation:

�B � �BT ��� �Efg�Bx�xT g (9.15)

A stochastic version of this algorithm could be used as well. This means that the
expectation is omitted, and in each step of the algorithm, only one data point is used:

�B � �BT ��� � g�Bx�xT � (9.16)

This algorithm is often called the Bell-Sejnowski algorithm. It was first derived in
[36], though from a different approach using the infomax principle that is explained
in Section 9.3 below.

The algorithm in Eq. (9.15) converges very slowly, however, especially due to
the inversion of the matrix B that is needed in every step. The convergence can be
improved by whitening the data, and especially by using the natural gradient.

The natural gradient algorithm The natural (or relative) gradient method sim-
plifies the maximization of the likelihood considerably, and makes it better condi-
tioned. The principle of the natural gradient is based on the geometrical structure of
the parameter space, and is related to the principle of relative gradient, which uses
the Lie group structure of the ICA problem. See Chapter 3 for more details. In the
case of basic ICA, both of these principles amount to multiplying the right-hand side
of (9.15) by BTB. Thus we obtain

�B � �I�Efg�y�yT g�B (9.17)

Interestingly, this algorithm can be interpreted as nonlinear decorrelation. This
principle will be treated in more detail in Chapter 12. The idea is that the algo-
rithm converges when Efg�y�yT g � I, which means that the yi and gj�yj� are
uncorrelated for i �� j. This is a nonlinear extension of the ordinary requirement
of uncorrelatedness, and, in fact, this algorithm is a special case of the nonlinear
decorrelation algorithms to be introduced in Chapter 12.

In practice, one can use, for example, the two densities described in Section 9.1.2.
For supergaussian independent components, the pdf defined by (9.9) is usually used.
This means that the component-wise nonlinearity g is the tanh function:

g��y� � �� tanh�y� (9.18)

For subgaussian independent components, other functions must be used. For exam-
ple, one could use the pdf in (9.10), which leads to

g��y� � tanh�y�� y (9.19)

(Another possibility is to use g�y� � �y� for subgaussian components.) These
nonlinearities are illustrated in Fig. 9.1.

The choice between the two nonlinearities in (9.18) and (9.19) can be made by
computing the nonpolynomial moment:

Ef� tanh�si�si � �	� tanh�si�
��g (9.20)
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Fig. 9.1 The functions g� in Eq. (9.18) and g
� in Eq. (9.19), given by the solid line and the

dashed line, respectively.

using some estimates of the independent components. If this nonpolynomial moment
is positive, the nonlinearity in (9.18) should be used, otherwise the nonlinearity in
(9.19) should be used. This is because of the condition in Theorem 9.1.

The choice of nonlinearity can be made while running the gradient algorithm,
using the running estimates of the independent components to estimate the nature of
the independent components (that is, the sign of the nonpolynomial moment). Note
that the use of the polynomial moment requires that the estimates of the independent
components are first scaled properly, constraining them to unit variance, as in the
theorem. Such normalizations are often omitted in practice, which may in some cases
lead to situations in which the wrong nonlinearity is chosen.

The resulting algorithm is recapitulated in Table 9.1. In this version, whitening and
the above-mentioned normalization in the estimation of the nonpolynomial moments
are omitted; in practice, these may be very useful.

9.2.2 A fast fixed-point algorithm

Likelihood can be maximized by a fixed-point algorithm as well. The fixed-point
algorithm given by FastICA is a very fast and reliable maximization method that was
introduced in Chapter 8 to maximize the measures of nongaussianity used for ICA
estimation. Actually, the FastICA algorithm can be directly applied to maximization
of the likelihood.

The FastICA algorithm was derived in Chapter 8 for optimization ofEfG�wT
z�g

under the constraint of the unit norm ofw. In fact, maximization of likelihood gives
us an almost identical optimization problem, if we constrain the estimates of the
independent components to be white (see Chapter 7). In particular, this implies that
the term log j detWj is constant, as proven in the Appendix, and thus the likelihood
basically consists of the sum of n terms of the form optimized by FastICA. Thus
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1. Center the data to make its mean zero

2. Choose an initial (e.g., random) separating matrix B. Choose initial values
of �i� i � �� ���� n, either randomly or using prior information. Choose the
learning rates � and �� .

3. Compute y � Bx.

4. If the nonlinearities are not fixed a priori:

(a) update �i � ��� ����i � ��Ef� tanh�yi�yi � ��� tanh�yi�
��g.

(b) if �i � �, define gi as in (9.18), otherwise define it as in (9.19).

5. Update the separating matrix by

B� B� ��I� g�y�yT �B (9.21)

where g�y� � �g��y��� ���� gn�yn��
T .

6. If not converged, go back to step 3.

Table 9.1 The on-line stochastic natural gradient algorithm for maximum likelihood esti-
mation. Preliminary whitening is not shown here, but in practice it is highly recommended.

we could use directly the same kind of derivation of fixed-point iteration as used in
Chapter 8.

In Eq. (8.42) in Chapter 8 we had the following form of the FastICA algorithm
(for whitened data):

w � w� �Efzg�wT z�g� �w���Efg��wT z�g� �� (9.22)

where � can be computed from (8.40) as � � �Efyig�yi�g. If we write this in
matrix form, we obtain:

W�W � diag��i��diag��i� �Efg�y�yT g�W (9.23)

where �i is defined as����Efg��wT z���ig�, and y �Wz. To express this using
nonwhitened data, as we have done in this chapter, it is enough to multiply both sides
of (9.23) from the right by the whitening matrix. This means simply that we replace
theW by B, since we haveWz �WVx which impliesB �WV.

Thus, we obtain the basic iteration of FastICA as:

B� B� diag��i��diag��i� �Efg�y�yT g�B (9.24)

where y � Bx, �i � �Efyig�yi�g, and �i � �����i �Efg��yi�g�.
After every step, the matrixBmust be projected on the set of whitening matrices.

This can be accomplished by the classic method involving matrix square roots,

B� �BCBT �����B (9.25)
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whereC � EfxxT g is the correlation matrix of the data (see exercises). The inverse
square root is obtained as in (7.20). For alternative methods, see Section 8.4 and
Chapter 6, but note that those algorithms require that the data is prewhitened, since
they simply orthogonalize the matrix.

This version of FastICA is recapitulated in Table 9.2. FastICA could be compared
with the natural gradient method for maximizing likelihood given in (9.17). Then
we see that FastICA can be considered as a computationally optimized version of the
gradient algorithm. In FastICA, convergence speed is optimized by the choice of the
matrices diag��i� and diag��i�. These two matrices give an optimal step size to be
used in the algorithm.

Another advantage of FastICA is that it can estimate both sub- and supergaussian
independent components without any additional steps: We can fix the nonlinearity
to be equal to the tanh nonlinearity for all the independent components. The reason
is clear from (9.24): The matrix diag��i� contains estimates on the nature (sub- or
supergaussian) of the independent components. These estimates are used as in the
gradient algorithm in the previous subsection. On the other hand, the matrix diag��i�
can be considered as a scaling of the nonlinearities, since we could reformulate
�diag��i� � Efg�y�yT g� � diag��i��I � diag����

i
�Efg�y�yT g�. Thus we can

say that FastICA uses a richer parameterization of the densities than that used in
Section 9.1.2: a parameterized family instead of just two densities.

Note that in FastICA, the outputs yi are decorrelated and normalized to unit
variance after every step. No such operations are needed in the gradient algorithm.
FastICA is not stable if these additional operations are omitted. Thus the optimization
space is slightly reduced.

In the version given here, no preliminary whitening is done. In practice, it is often
highly recommended to do prewhitening, possibly combined with PCA dimension
reduction.

9.3 THE INFOMAX PRINCIPLE

An estimation principle for ICA that is very closely related to maximum likelihood
is the infomax principle [282, 36]. This is based on maximizing the output entropy,
or information flow, of a neural network with nonlinear outputs. Hence the name
infomax.

Assume that x is the input to the neural network whose outputs are of the form

yi � �i�b
T

i x� � n (9.31)

where the �i are some nonlinear scalar functions, and the bi are the weight vectors
of the neurons. The vector n is additive gaussian white noise. One then wants to
maximize the entropy of the outputs:

H�y� � H����b
T

�
x�� ���� �n�b

T

n
x�� (9.32)

This can be motivated by considering information flow in a neural network. Efficient
information transmission requires that we maximize the mutual information between
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1. Center the data to make its mean zero. Compute correlation matrix C �
EfxxT g.

2. Choose an initial (e.g., random) separating matrix B.

3. Compute

y � Bx (9.26)

�i � �Efyig�yi�g� for i � �� ���� n (9.27)

�i � �����i �Efg��yi�g�� for i � �� ���� n (9.28)

4. Update the separating matrix by

B� B� diag��i��diag��i� �Efg�y�yT g�B (9.29)

5. Decorrelate and normalize by

B� �BCBT �����B (9.30)

6. If not converged, go back to step 3.

Table 9.2 The FastICA algorithm for maximum likelihood estimation. This is a version
without whitening; in practice, whitening combined with PCA may often be useful. The
nonlinear function g is typically the tanh function.
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the inputs x and the outputs y. This problem is meaningful only if there is some
information loss in the transmission. Therefore, we assume that there is some noise
in the network. It can then be shown (see exercices) that in the limit of no noise (i.e.,
with infinitely weak noise), maximization of this mutual information is equivalent to
maximization of the output entropy in (9.32). For simplicity, we therefore assume in
the following that the noise is of zero variance.

Using the classic formula of the entropy of a transformation (see Eq. (5.13) we
have

H����b
T

�
x�� ���� �n�b

T

nx�� � H�x� �Eflog j det
�F

�B
�x�jg

(9.33)

where F�x� � ����w
T
�
x�� ���� �n�w

T
n
x�� denotes the function defined by the neural

network. We can simply calculate the derivative to obtain

Eflog j det
�F

�B
�x�jg �

X

i

Eflog��

i
�bT

i
x�g� log j detBj

(9.34)

Now we see that the output entropy is of the same form as the expectation of the
likelihood as in Eq. 9.6. The pdf’s of the independent components are here replaced
by the functions ��

i
. Thus, if the nonlinearities �i used in the neural network are

chosen as the cumulative distribution functions corresponding to the densities pi, i.e.,
��

i
��� � pi���, the output entropy is actually equal to the likelihood. This means that

infomax is equivalent to maximum likelihood estimation.

9.4 EXAMPLES

Here we show the results of applying maximum likelihood estimation to the two
mixtures introduced in Chapter 7. Here, we use whitened data. This is not strictly
necessary, but the algorithms converge much better with whitened data. The algo-
rithms were always initialized so thatB was the identity matrix.

First, we used the natural gradient ML algorithm in Table 9.1. In the first ex-
ample, we used the data consisting of two mixtures of two subgaussian (uniformly
distributed) independent components, and took the nonlinearity to be the one in
(9.18), corresponding to the density in (9.9). The algorithm did not converge prop-
erly, as shown in Fig. 9.2. This is because the nonlinearity was not correctly chosen.
Indeed, computing the nonpolynomial moment (9.20), we saw that it was negative,
which means that the nonlinearity in (9.19) should have been used. Using the correct
nonlinearity, we obtained correct convergence, as in Fig. 9.3. In both cases, several
hundred iterations were performed.

Next we did the corresponding estimation for two mixtures of two supergaussian
independent components. This time, the nonlinearity in (9.18) was the correct
one, and gave the estimates in Fig. 9.4. This could be checked by computing the
nonpolynomial moment in (9.20): It was positive. In contrast, using the nonlinearity
in (9.19) gave completely wrong estimates, as seen in Fig. 9.5.
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In contrast to the gradient algorithm, FastICA effortlessly finds the independent
components in both cases. In Fig. 9.6, the results are shown for the subgaussian data,
and in Fig. 9.7, the results are shown for the supergaussian data. In both cases the
algorithm converged correctly, in a couple of iterations.

9.5 CONCLUDING REMARKS AND REFERENCES

Maximum likelihood estimation, perhaps the most commonly used statistical esti-
mation principle, can be used to estimate the ICA model as well. It is closely related
to the infomax principle used in neural network literature. If the densities of the
independent components are known in advance, a very simple gradient algorithm can
be derived. To speed up convergence, the natural gradient version and especially the
FastICA fixed-point algorithm can be used. If the densities of the independent com-
ponents are not known, the situation is somewhat more complicated. Fortunately,
however, it is enough to use a very rough density approximation. In the extreme
case, a family that contains just two densities to approximate the densities of the
independent components is enough. The choice of the density can then be based
on the information whether the independent components are sub- or supergaussian.
Such an estimate can be simply added to the gradient methods, and it is automatically
done in FastICA.

The first approaches to using maximum likelihood estimation for ICA were in
[140, 372]; see also [368, 371]. This approach became very popular after the
introduction of the algorithm in (9.16) by Bell and Sejnowski, who derived it using the
infomax principle [36]; see also [34]. The connection between these two approaches
was later proven by [64, 322, 363]. The natural gradient algorithm in (9.17) is
sometimes called the Bell-Sejnowski algorithm as well. However, the natural gradient
extension was actually introduced only in [12, 3]; for the underlying theory, see
[4, 11, 118]. This algorithm is actually almost identical to those introduced previously
[85, 84] based on nonlinear decorrelation, and quite similar to the one in [255, 71]
(see Chapter 12). In particular, [71] used the relative gradient approach, which in this
case is closely related to the natural gradient; see Chapter 14 for more details. Our
two-density family is closely related to those in [148, 270]; for alternative approaches
on modeling the distributions of the ICs, see [121, 125, 133, 464].

The stability criterion in Theorem 9.1 has been presented in different forms by
many authors [9, 71, 67, 69, 211]. The different forms are mainly due to the
complication of different normalizations, as discussed in [67]. We chose to normalize
the components to unit variance, which gives a simple theorem and is in line with
the approach of the other chapters. Note that in [12], it was proposed that a single
very high-order polynomial nonlinearity could be used as a universal nonlinearity.
Later research has shown that this is not possible, since we need at least two different
nonlinearities, as discussed in this chapter. Moreover, a high-order polynomial leads
to very nonrobust estimators.
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Fig. 9.2 Problems of convergence with the (natural) gradient method for maximum likeli-
hood estimation. The data was two whitened mixtures of subgaussian independent components.
The nonlinearity was the one in (9.18), which was not correct in this case. The resulting es-
timates of the columns of the whitened mixing matrix are shown in the figure: they are not
aligned with the edges of the square, as they should be.

Fig. 9.3 The same as in Fig. 9.2, but with the correct nonlinearity, given by (9.19). This
time, the natural gradient algorithm gave the right result. The estimated vectors are aligned
with the edges of the square.
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Fig. 9.4 In this experiment, data was two whitened mixtures of supergaussian independent
components. The nonlinearity was the one in (9.18). The natural gradient algorithm converged
correctly.

Fig. 9.5 Again, problem of convergence with the natural gradient method for maximum
likelihood estimation. The nonlinearity was the one in (9.19), which was not correct in this
case.
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Fig. 9.6 FastICA automatically estimates the nature of the independent components, and
converges fast to the maximum likelihood solution. Here, the solution was found in 2 iterations
for subgaussian independent components.

Fig. 9.7 FastICA this time applied on supergaussian mixtures. Again, the solution was
found in 2 iterations.
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Problems

9.1 Derive the likelihood in (9.4).

9.2 Derive (9.11) and (9.12).

9.3 Derive the gradient in (9.13).

9.4 Instead of the function in (9.19), one could use the function g�y� � �y�. Show
that this corresponds to a subgaussian distribution by computing the kurtosis of the
distribution. Note the normalization constants involved.

9.5 After the preceding problem, one might be tempted to use g�y� � y� for super-
gaussian variables. Why is this not correct in the maximum likelihood framework?

9.6 Take a linear g�y� � �y. What is the interpretation of this in the ML frame-
work? Conclude (once again) that g must be nonlinear.

9.7 Assume that you use the general function family g�y� � �� tanh�a�y� instead
the simple � tanh function in (9.18), where a� � � is a constant. What is the
interpretation of a� in the likelihood framework?

9.8 Show that for a gaussian random variable, the nonpolynomial moment in (9.8)
is zero for any g.

9.9 The difference between using � tanh�y� or �� tanh�y� in the nonlinearity
(9.18) is a matter of normalization. Does it make any difference in the algorithms?
Consider separately the natural gradient algorithm and the FastICA algorithm.

9.10 Show that maximizing the mutual information of inputs and outputs in a
network of the form

yi � �i�b
T

i x� � ni (9.35)

where ni is gaussian noise, and the output and input spaces have the same dimension,
as in (9.31), is equivalent to maximizing the entropy of the outputs, in the limit of no
zero noise level. (You can compute the joint entropy of inputs and outputs using the
entropy transformation formula. Show that it is constant. Then set the noise level to
infinitely small.)

9.11 Show that after (9.25), y � Bx is white.

Computer assignments

9.1 Take random variables of (1) uniform and (2) Laplacian distribution. Compute
the values of the nonpolynomial moment in (9.8), for different nonlinearities g. Are
the moments of different signs for any nonlinearity?

9.2 Reproduce the experiments in Section 9.4.
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9.3 The densities of the independent components could be modeled by a density
family given by

p��� � c� exp�c�j�j�� (9.36)

where c� and c� are normalization constants to make this a pdf of unit variance. For
different values of �, ranging from 0 to infinity, we get distributions of different
properties.

9.3.1. What happens when we have � � �?
9.3.2. Plot the pdf’s, the logarithms of the pdf’s, and the corresponding score

functions for the following values of �: 0.2,1,2,4,10.
9.3.3. Conclude that for � � �, we have subgaussian densities, and for � � �,

we have supergaussian densities.

Appendix proofs

Here we prove Theorem 9.1. Looking at the expectation of log-likelihood, using assumed
densities �pi:

�

T
logL�B� �

nX

i��

Eflog �pi�b
T

i x�g� log j detBj (A.1)

we see that the first term on the right-hand side is a sum of terms of the form EfG�bTi x�g, as
in the stability theorem in Section 8.3.4. Using that theorem, we see immediately that the first
term is maximized when y � Bx gives independent components.

Thus if we prove that the second term remains constant under the conditions of the theorem,
the theorem is proven. Now, uncorrelatedness and unit variance of the yi means EfyyT g �
WEfxxT gWT � I, which implies

det I � � � �detWEfxxT gWT � � �detW��detEfxxT g��detWT �
(A.2)

and this implies that detW must be constant. Thus the theorem is proven.
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ICA by Minimization of

Mutual Information

An important approach for independent component analysis (ICA) estimation, in-
spired by information theory, is minimization of mutual information.

The motivation of this approach is that it may not be very realistic in many cases
to assume that the data follows the ICA model. Therefore, we would like to develop
an approach that does not assume anything about the data. What we want to have
is a general-purpose measure of the dependence of the components of a random
vector. Using such a measure, we could define ICA as a linear decomposition that
minimizes that dependence measure. Such an approach can be developed using
mutual information, which is a well-motivated information-theoretic measure of
statistical dependence.

One of the main utilities of mutual information is that it serves as a unifying
framework for many estimation principles, in particular maximum likelihood (ML)
estimation and maximization of nongaussianity. In particular, this approach gives a
rigorous justification for the heuristic principle of nongaussianity.

10.1 DEFINING ICA BY MUTUAL INFORMATION

10.1.1 Information-theoretic concepts

The information-theoretic concepts needed in this chapter were explained in Chap-
ter 5. Readers not familiar with information theory are advised to read that chapter
before this one.

221
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We recall here very briefly the basic definitions of information theory. The
differential entropy H of a random vector y with density p�y� is defined as:

H�y� � �

Z
p�y� log p�y�dy (10.1)

Entropy is closely related to the code length of the random vector. A normalized
version of entropy is given by negentropy J , which is defined as follows

J�y� � H�ygauss��H�y� (10.2)

where ygauss is a gaussian random vector of the same covariance (or correlation)
matrix as y. Negentropy is always nonnegative, and zero only for gaussian random
vectors. Mutual information I between m (scalar) random variables, yi� i � ����m is
defined as follows

I�y�� y�� ���� ym� �

mX
i��

H�yi��H�y� (10.3)

10.1.2 Mutual information as measure of dependence

We have seen earlier (Chapter 5) that mutual information is a natural measure of the
dependence between random variables. It is always nonnegative, and zero if and only
if the variables are statistically independent. Mutual information takes into account
the whole dependence structure of the variables, and not just the covariance, like
principal component analysis (PCA) and related methods.

Therefore, we can use mutual information as the criterion for finding the ICA
representation. This approach is an alternative to the model estimation approach. We
define the ICA of a random vector x as an invertible transformation:

s � Bx (10.4)

where the matrix B is determined so that the mutual information of the transformed
components si is minimized. If the data follows the ICA model, this allows estimation
of the data model. On the other hand, in this definition, we do not need to assume
that the data follows the model. In any case, minimization of mutual information can
be interpreted as giving the maximally independent components.
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10.2 MUTUAL INFORMATION AND NONGAUSSIANITY

Using the formula for the differential entropy of a transformation as given in (5.13)
of Chapter 5, we obtain a corresponding result for mutual information. We have
for an invertible linear transformation y � Bx:

I�y�� y�� ���� yn� �
X

i

H�yi��H�x�� log j detBj (10.5)

Now, let us consider what happens if we constrain the yi to be uncorrelated and of
unit variance. This means EfyyT g � BEfxxT gBT � I, which implies

det I � � � det�BEfxxT gBT � � �detB��detEfxxT g��detBT �
(10.6)

and this implies that detB must be constant since detEfxxT g does not depend
on B. Moreover, for yi of unit variance, entropy and negentropy differ only by a
constant and the sign, as can be seen in (10.2). Thus we obtain,

I�y�� y�� ���� yn� � const. �
X

i

J�yi� (10.7)

where the constant term does not depend onB. This shows the fundamental relation
between negentropy and mutual information.

We see in (10.7) that finding an invertible linear transformationB that minimizes
the mutual information is roughly equivalent to finding directions in which the ne-
gentropy is maximized. We have seen previously that negentropy is a measure of
nongaussianity. Thus, (10.7) shows that ICA estimation by minimization of mutual in-
formation is equivalent to maximizing the sum of nongaussianities of the estimates of
the independent components, when the estimates are constrained to be uncorrelated.

Thus, we see that the formulation of ICA as minimization of mutual information
gives another rigorous justification of our more heuristically introduced idea of finding
maximally nongaussian directions, as used in Chapter 8.

In practice, however, there are also some important differences between these two
criteria.

1. Negentropy, and other measures of nongaussianity, enable the deflationary, i.e.,
one-by-one, estimation of the independent components, since we can look for
the maxima of nongaussianity of a single projection bTx. This is not possible
with mutual information or most other criteria, like the likelihood.

2. A smaller difference is that in using nongaussianity, we force the estimates of
the independent components to be uncorrelated. This is not necessary when
using mutual information, because we could use the form in (10.5) directly,
as will be seen in the next section. Thus the optimization space is slightly
reduced.
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10.3 MUTUAL INFORMATION AND LIKELIHOOD

Mutual information and likelihood are intimately connected. To see the connection
between likelihood and mutual information, consider the expectation of the log-
likelihood in (9.5):

�

T
EflogL�B�g �

nX

i��

Eflog pi�b
T

i x�g� log j detBj (10.8)

If the pi were equal to the actual pdf’s of bT
i
x, the first term would be equal to

�
P

i
H�bT

i
x�. Thus the likelihood would be equal, up to an additive constant given

by the total entropy of x, to the negative of mutual information as given in Eq. (10.5).
In practice, the connection may be just as strong, or even stronger. This is because

in practice we do not know the distributions of the independent components that are
needed in ML estimation. A reasonable approach would be to estimate the density
of bT

i
x as part of the ML estimation method, and use this as an approximation of the

density of si. This is what we did in Chapter 9. Then, the pi in this approximation
of likelihood are indeed equal to the actual pdf’s bT

i
x. Thus, the equivalency would

really hold.
Conversely, to approximate mutual information, we could take a fixed approxi-

mation of the densities yi, and plug this in the definition of entropy. Denote the pdf’s
by Gi�yi� � log pi�yi�. Then we could approximate (10.5) as

I�y�� y�� ���� yn� � �
X

i

EfGi�yi�g � log j detBj �H�x�
(10.9)

Now we see that this approximation is equal to the approximation of the likelihood
used in Chapter 9 (except, again, for the global sign and the additive constant given by
H�x�). This also gives an alternative method of approximating mutual information
that is different from the approximation that uses the negentropy approximations.

10.4 ALGORITHMS FOR MINIMIZATION OF MUTUAL INFORMATION

To use mutual information in practice, we need some method of estimating or ap-
proximating it from real data. Earlier, we saw two methods for approximating mutual
entropy. The first one was based on the negentropy approximations introduced in
Section 5.6. The second one was based on using more or less fixed approximations
for the densities of the ICs in Chapter 9.

Thus, using mutual information leads essentially to the same algorithms as used for
maximization of nongaussianity in Chapter 8, or for maximum likelihood estimation
in Chapter 9. In the case of maximization of nongaussianity, the corresponding
algorithms are those that use symmetric orthogonalization, since we are maximizing
the sum of nongaussianities, so that no order exists between the components. Thus,
we do not present any new algorithms in this chapter; the reader is referred to the two
preceding chapters.
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Fig. 10.1 The convergence of FastICA for ICs with uniform distributions. The value of
mutual information shown as function of iteration count.

10.5 EXAMPLES

Here we show the results of applying minimization of mutual information to the
two mixtures introduced in Chapter 7. We use here the whitened mixtures, and the
FastICA algorithm (which is essentially identical whichever approximation of mutual
information is used). For illustration purposes, the algorithm was always initialized
so thatW was the identity matrix. The functionG was chosen as G� in (8.26).

First, we used the data consisting of two mixtures of two subgaussian (uniformly
distributed) independent components. To demonstrate the convergence of the al-
gorithm, the mutual information of the components at each iteration step is plotted
in Fig. 10.1. This was obtained by the negentropy-based approximation. At con-
vergence, after two iterations, mutual information was practically equal to zero.
The corresponding results for two supergaussian independent components are shown
in Fig. 10.2. Convergence was obtained after three iterations, after which mutual
information was practically zero.

10.6 CONCLUDING REMARKS AND REFERENCES

A rigorous approach to ICA that is different from the maximum likelihood approach
is given by minimization of mutual information. Mutual information is a natural
information-theoretic measure of dependence, and therefore it is natural to estimate
the independent components by minimizing the mutual information of their estimates.
Mutual information gives a rigorous justification of the principle of searching for
maximally nongaussian directions, and in the end turns out to be very similar to the
likelihood as well.

Mutual information can be approximated by the same methods that negentropy is
approximated. Alternatively, is can be approximated in the same way as likelihood.
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Fig. 10.2 The convergence of FastICA for ICs with supergaussian distributions. The value
of mutual information shown as function of iteration count.

Therefore, we find here very much the same objective functions and algorithms as
in maximization of nongaussianity and maximum likelihood. The same gradient and
fixed-point algorithms can be used to optimize mutual information.

Estimation of ICA by minimization of mutual information was probably first
proposed in [89], who derived an approximation based on cumulants. The idea has,
however, a longer history in the context of neural network research, where it has
been proposed as a sensory coding strategy. It was proposed in [26, 28, 30, 18],
that decomposing sensory data into features that are maximally independent is useful
as a preprocessing step. Our approach follows that of [197] for the negentropy
approximations.

A nonparametric algorithm for minimization of mutual information was proposed
in [175], and an approach based on order statistics was proposed in [369]. See
[322, 468] for a detailed analysis of the connection between mutual information and
infomax or maximum likelihood. A more general framework was proposed in [377].
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Problems

10.1 Derive the formula in (10.5).

10.2 Compute the constant in (10.7).

10.3 If the variances of the yi are not constrained to unity, does this constant
change?

10.4 Compute the mutual information for a gaussian random vector with covariance
matrixC.

Computer assignments

10.1 Create a sample of 2-D gaussian data with the two covariance matrices
�
� �

� �

�
and

�
� �

� �

�
(10.10)

Estimate numerically the mutual information using the definition. (Divide the data
into bins, i.e., boxes of fixed size, and estimate the density at each bin by computing
the number of data points that belong to that bin and dividing it by the size of the bin.
This elementary density approximation can then be used in the definition.)
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ICA by Tensorial Methods

One approach for estimation of independent component analysis (ICA) consists of
using higher-order cumulant tensor. Tensors can be considered as generalization
of matrices, or linear operators. Cumulant tensors are then generalizations of the
covariance matrix. The covariance matrix is the second-order cumulant tensor, and
the fourth order tensor is defined by the fourth-order cumulants cum�xi� xj � xk � xl�.
For an introduction to cumulants, see Section 2.7.

As explained in Chapter 6, we can use the eigenvalue decomposition of the
covariance matrix to whiten the data. This means that we transform the data so that
second-order correlations are zero. As a generalization of this principle, we can use
the fourth-order cumulant tensor to make the fourth-order cumulants zero, or at least
as small as possible. This kind of (approximative) higher-order decorrelation gives
one class of methods for ICA estimation.

11.1 DEFINITION OF CUMULANT TENSOR

We shall here consider only the fourth-order cumulant tensor, which we call for sim-
plicity the cumulant tensor. The cumulant tensor is a four-dimensional array whose
entries are given by the fourth-order cross-cumulants of the data: cum�xi� xj � xk � xl�,
where the indices i� j�k�l are from � to n. This can be considered as a “four-
dimensional matrix”, since it has four different indices instead of the usual two. For
a definition of cross-cumulants, see Eq. (2.106).

In fact, all fourth-order cumulants of linear combinations of xi can be obtained
as linear combinations of the cumulants of xi. This can be seen using the additive

229
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properties of the cumulants as discussed in Section 2.7. The kurtosis of a linear
combination is given by

kurt
X

i

wixi � cum�
X

i

wixi�
X

j

wjxj �
X

k

wkxk�
X

l

wlxl�

�
X

ijkl

w�

iw
�

jw
�

kw
�

l cum�xi� xj � xk� xl� (11.1)

Thus the (fourth-order) cumulants contain all the fourth-order information of the data,
just as the covariance matrix gives all the second-order information on the data. Note
that if the xi are independent, all the cumulants with at least two different indices are
zero, and therefore we have the formula that was already widely used in Chapter 8:
kurt
P

i qisi �
P

i q
�

i kurt�si�.
The cumulant tensor is a linear operator defined by the fourth-order cumulants

cum�xi� xj � xk� xl�. This is analogous to the case of the covariance matrix with
elements cov�xi� xj�, which defines a linear operator just as any matrix defines one.
In the case of the tensor we have a linear transformation in the space ofn�nmatrices,
instead of the space of n-dimensional vectors. The space of such matrices is a linear
space of dimension n � n, so there is nothing extraordinary in defining the linear
transformation. The i� jth element of the matrix given by the transformation, say
Fij , is defined as

Fij�M� �
X

kl

mkl cum�xi� xj � xk� xl� (11.2)

where mkl are the elements in the matrixM that is transformed.

11.2 TENSOR EIGENVALUES GIVE INDEPENDENT COMPONENTS

As any symmetric linear operator, the cumulant tensor has an eigenvalue decom-
position (EVD). An eigenmatrix of the tensor is, by definition, a matrix M such
that

F�M� � �M (11.3)

i.e., Fij�M� � �Mij , where � is a scalar eigenvalue.
The cumulant tensor is a symmetric linear operator, since in the expression

cum�xi� xj � xk� xl�, the order of the variables makes no difference. Therefore, the
tensor has an eigenvalue decomposition.

Let us consider the case where the data follows the ICA model, with whitened
data:

z � VAs �WT
s (11.4)

where we denote the whitened mixing matrix byWT . This is because it is orthogonal,
and thus it is the transpose of the separating matrixW for whitened data.
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The cumulant tensor of z has a special structure that can be seen in the eigenvalue
decomposition. In fact, every matrix of the form

M � wmw
T
m (11.5)

for m � �� ���� n is an eigenmatrix. The vector wm is here one of the rows of the
matrixW, and thus one of the columns of the whitened mixing matrixWT . To see
this, we calculate by the linearity properties of cumulants

Fij�wmw
T
m� �
X

kl

wmkwmlcum�zi� zj � zk� zl�

�
X

kl

wmkwmlcum�
X

q

wqisq�
X

q�

wq�jsq� �
X

r

wrksr�
X

r�

wr�lsr��

�
X

klqq�rr�

wmkwmlwqiwq�jwrkwr�lcum�sq � sq� � sr� sr�� (11.6)

Now, due to the independence of the si, only those cumulants where q � q� � r � r�

are nonzero. Thus we have

Fij�wmw
T
m� �
X

klq

wmkwmlwqiwqjwqkwqlkurt�sq� (11.7)

Due to the orthogonality of the rows of W, we have
P

k wmkwqk � �mq , and
similarly for index l. Thus we can take the sum first with respect to k, and then with
respect to l, which gives

Fij�wmw
T
m� �
X

lq

wmlwqiwqj�mqwqlkurt�sq�

�
X

q

wqiwqj�mq�mqkurt�sq� � wmiwmjkurt�sm� (11.8)

This proves that matrices of the form in (11.5) are eigenmatrices of the tensor. The
corresponding eigenvalues are given by the kurtoses of the independent components.
Moreover, it can be proven that all other eigenvalues of the tensor are zero.

Thus we see that if we knew the eigenmatrices of the cumulant tensor, we could
easily obtain the independent components. If the eigenvalues of the tensor, i.e., the
kurtoses of the independent components, are distinct, every eigenmatrix corresponds
to a nonzero eigenvalue of the form wmw

T
m, giving one of the columns of the

whitened mixing matrix.
If the eigenvalues are not distinct, the situation is more problematic: The eigenma-

trices are no longer uniquely defined, since any linear combinations of the matrices
wmw

T
m corresponding to the same eigenvalue are eigenmatrices of the tensor as

well. Thus, every k-fold eigenvalue corresponds to k matricesMi� i � �� ���� k that
are different linear combinations of the matrices wi�j�w

T
i�j� corresponding to the k

ICs whose indices are denoted by i�j�. The matricesMi can be thus expressed as:

Mi �

kX

j��

�jwi�j�w
T
i�j� (11.9)
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Now, vectors that can be used to construct the matrix in this way can be computed
by the eigenvalue decomposition of the matrix: Thewi�j� are the (dominant) eigen-
vectors ofMi.

Thus, after finding the eigenmatricesMi of the cumulant tensor, we can decom-
pose them by ordinary EVD, and the eigenvectors give the columns of the mixing
matrix wi. Of course, it could turn out that the eigenvalues in this latter EVD are
equal as well, in which case we have to figure out something else. In the algorithms
given below, this problem will be solved in different ways.

This result leaves the problem of how to compute the eigenvalue decomposition
of the tensor in practice. This will be treated in the next section.

11.3 COMPUTING THE TENSOR DECOMPOSITION BY A POWER
METHOD

In principle, using tensorial methods is simple. One could take any method for
computing the EVD of a symmetric matrix, and apply it on the cumulant tensor.

To do this, we must first consider the tensor as a matrix in the space of n � n

matrices. Let q be an index that goes though all the n � n couples �i� j�. Then we
can consider the elements of an n � n matrix M as a vector. This means that we
are simply vectorizing the matrices. Then the tensor can be considered as a q � q

symmetric matrix F with elements fqq� � cum�zi� zj � zi� � zj��, where the indices
�i� j� corresponds to q, and similarly for �i�� j�� and q�. It is on this matrix that we
could apply ordinary EVD algorithms, for example the well-known QR methods. The
special symmetricity properties of the tensor could be used to reduce the complexity.
Such algorithms are out of the scope of this book; see e.g. [62].

The problem with the algorithm in this category, however, is that the memory
requirements may be prohibitive, because often the coefficients of the fourth-order
tensor must be stored in memory, which requires O�n�� units of memory. The
computational load also grows quite fast. Thus these algorithms cannot be used in
high-dimensional spaces. In addition, equal eigenvalues may give problems.

In the following we discuss a simple modification of the power method, that
circumvents the computational problems with the tensor EVD. In general, the power
method is a simple way of computing the eigenvector corresponding to the largest
eigenvalue of a matrix. This algorithm consists of multiplying the matrix with the
running estimate of the eigenvector, and taking the product as the new value of the
vector. The vector is then normalized to unit length, and the iteration is continued
until convergence. The vector then gives the desired eigenvector.

We can apply the power method quite simply to the case of the cumulant tensor.
Starting from a random matrixM, we computeF�M� and take this as the new value
ofM. Then we normalizeM and go back to the iteration step. After convergence,
M will be of the form

P
k �kwi�k�w

T
i�k�. Computing its eigenvectors gives one or

more of the independent components. (In practice, though, the eigenvectors will
not be exactly of this form due to estimation errors.) To find several independent
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components, we could simply project the matrix after every step on the space of
matrices that are orthogonal to the previously found ones.

In fact, in the case of ICA, such an algorithm can be considerably simplified.
Since we know that the matriceswiw

T
i are eigenmatrices of the cumulant tensor, we

can apply the power method inside that set of matricesM � wwT only. After every
computation of the product with the tensor, we must then project the obtained matrix
back to the set of matrices of the formwwT . A very simple way of doing this is to
multiply the new matrixM� by the old vector to obtain the new vectorw� �M�

w

(which will be normalized as necessary). This can be interpreted as another power
method, this time applied on the eigenmatrix to compute its eigenvectors. Since the
best way of approximating the matrixM� in the space of matrices of the formwwT

is by using the dominant eigenvector, a single step of this ordinary power method
will at least take us closer to the dominant eigenvector, and thus to the optimal vector.

Thus we obtain an iteration of the form

w� w
T
F�wwT � (11.10)

or

wi �
X

j

wj

X

kl

wkwlcum�zi� zj � zk� zl� (11.11)

In fact, this can be manipulated algebraically to give much simpler forms. We have
equivalently

wi � cum�zi�
X

j

wjzj �
X

k

wkzk�
X

l

wlzl� � cum�zi� y� y� y�
(11.12)

where we denote by y �
P

i wizi the estimate of an independent component. By
definition of the cumulants, we have

cum�zi� y� y� y� � Efziy
�g � �EfziygEfy

�g (11.13)

We can constrain y to have unit variance, as usual. Moreover, we haveEfziyg � wi.
Thus we have

w � Efzy�g � �w (11.14)

where w is normalized to unit norm after every iteration. To find several indepen-
dent components, we can actually just constrain the w corresponding to different
independent components to be orthogonal, as is usual for whitened data.

Somewhat surprisingly, (11.14) is exactly the FastICA algorithm that was derived
as a fixed-point iteration for finding the maxima of the absolute value of kurtosis in
Chapter 8, see (8.20). We see that these two methods lead to the same algorithm.
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11.4 JOINT APPROXIMATE DIAGONALIZATION OF EIGENMATRICES

Joint approximate diagonalization of eigenmatrices (JADE) refers to one principle of
solving the problem of equal eigenvalues of the cumulant tensor. In this algorithm,
the tensor EVD is considered more as a preprocessing step.

Eigenvalue decomposition can be viewed as diagonalization. In our case, the de-
velopments in Section 11.2 can be rephrased as follows: The matrixW diagonalizes
F�M� for any M. In other words, WF�M�WT is diagonal. This is because the
matrix F is of a linear combination of terms of the form wiw

T
i , assuming that the

ICA model holds.
Thus, we could take a set of different matricesMi� i � �� ���� k, and try to make

the matricesWF�Mi�W   as diagonal as possible..In practice,  they cannot  be  made
exactly diagonal because the model does not hold exactly, and there are sampling
errors.

The diagonality of a matrix Q � WF�Mi�W
T can be measured, for example,

as the sum of the squares of off-diagonal elements:
P

k ��l q
�

kl. Equivalently, since
an orthogonal matrix W does not change the total sum of squares of a matrix,
minimization of the sum of squares of off-diagonal elements is equivalent to the
maximization of the sum of squares of diagonal elements. Thus, we could formulate
the following measure:

JJADE�W� �
X

i

kdiag�WF�Mi�W
T �k� (11.15)

where kdiag���k� means the sum of squares of the diagonal. Maximization ofJJADE

is then one method of joint approximate diagonalization of the F�Mi�.
How do we choose the matricesMi? A natural choice is to take the eigenmatrices

of the cumulant tensor. Thus we have a set of just n matrices that give all the relevant
information on the cumulants, in the sense that they span the same subspace as the
cumulant tensor. This is the basic principle of the JADE algorithm.

Another benefit associated with this choice of the Mi is that the joint diagonal-
ization criterion is then a function of the distributions of the y � Wz and a clear
link can be made to methods of previous chapters. In fact, after quite complicated
algebraic manipulations, we can obtain

JJADE�W� �
X

ijkl��iikl

cum�yi� yj � yk� yl�
� (11.16)

in other words, when we minimize JJADE we also minimize a sum of the squared
cross-cumulants of the yi. Thus, we can interpret the method as minimizing nonlinear
correlations.

JADE suffers from the same problems as all methods using an explicit tensor
EVD. Such algorithms cannot be used in high-dimensional spaces, which pose no
problem for the gradient or fixed-point algorithm of Chapters 8 and 9. In problems
of low dimensionality (small scale), however, JADE offers a competitive alternative.

T
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11.5 WEIGHTED CORRELATION MATRIX APPROACH

A method closely related to JADE is given by the eigenvalue decomposition of the
weighted correlation matrix. For historical reasons, the basic method is simply called
fourth-order blind identification (FOBI).

11.5.1 The FOBI algorithm

Consider the matrix

� � EfzzT kzk�g (11.17)

Assuming that the data follows the whitened ICA model, we have

� � EfVAssT �VA�T kVAsk�g �WT
EfssTksk�gW

(11.18)

where we have used the orthogonality of VA, and denoted the separating matrix by
W � �VA�T . Using the independence of the si, we obtain (see exercices)

� �WT diag�Efs�
i
ksk�g�W �WT diag�Efs�

i
g� n� ��W

(11.19)

Now we see that this is in fact the eigenvalue decomposition of �. It consists of the
orthogonal separating matrix W and the diagonal matrix whose entries depend on
the fourth-order moments of the si. Thus, if the eigenvalue decomposition is unique,
which is the case if the diagonal matrix has distinct elements, we can simply compute
the decomposition on�, and the separating matrix is obtained immediately.

FOBI is probably the simplest method for performing ICA. FOBI allows the com-
putation of the ICA estimates using standard methods of linear algebra on matrices
of reasonable complexity (n � n). In fact, the computation of the eigenvalue de-
composition of the matrix� is of the same complexity as whitening the data. Thus,
this method is computationally very efficient: It is probably the most efficient ICA
method that exists.

However, FOBI works only under the restriction that the kurtoses of the ICs
are all different. (If only some of the ICs have identical kurtoses, those that have
distinct kurtoses can still be estimated). This restricts the applicability of the method
considerably. In many cases, the ICs have identical distributions, and this method
fails completely.

11.5.2 From FOBI to JADE

Now we show how we can generalize FOBI to get rid of its limitations, which actually
leads us to JADE.

First, note that for whitened data, the definition of the cumulant can be written as

F�M� � Ef�zTMz�zzT g � �M� tr�M�I (11.20)
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which is left as an exercice. Thus, we could alternatively define the weighted
correlation matrix using the tensor as

� � F�I� (11.21)

because we have

F�I� � Efkzk�zzT g � �n� ��I (11.22)

and the identity matrix does not change the EVD in any significant way.
Thus we could take some matrix M and use the matrix F�M� in FOBI instead

of F�I�. This matrix would have as its eigenvalues some linear combinations of the
cumulants of the ICs. If we are lucky, these linear combinations could be distinct,
and FOBI works. But the more powerful way to utilize this general definition is to
take several matrices F�Mi� and jointly (approximately) diagonalize them. But this
is what JADE is doing, for its particular set of matrices! Thus we see how JADE is a
generalization of FOBI.

11.6 CONCLUDING REMARKS AND REFERENCES

An approach to ICA estimation that is rather different from those in the previous
chapters is given by tensorial methods. The fourth-order cumulants of mixtures give
all the fourth-order information inherent in the data. They can be used to define
a tensor, which is a generalization of the covariance matrix. Then we can apply
eigenvalue decomposition on this matrix. The eigenvectors more or less directly give
the mixing matrix for whitened data. One simple way of computing the eigenvalue
decomposition is to use the power method that turns out to be the same as the FastICA
algorithm with the cubic nonlinearity. Joint approximate diagonalization of eigen-
matrices (JADE) is another method in this category that has been successfully used in
low-dimensional problems. In the special case of distinct kurtoses, a computationally
very simple method (FOBI) can be devised.

The tensor methods were probably the first class of algorithms that performed
ICA successfully. The simple FOBI algorithm was introduced in [61], and the tensor
structure was first treated in [62, 94]. The most popular algorithm in this category
is probably the JADE algorithm as proposed in [72]. The power method given
by FastICA, another popular algorithm, is not usually interpreted from the tensor
viewpoint, as we have seen in preceding chapters. For an alternative form of the
power method, see [262]. A related method was introduced in [306]. An in-depth
overview of the tensorial method is given in [261]; see also [94]. An accessible
and fundamental paper is [68] that also introduces sophisticated modifications of the
methods. In [473], a kind of a variant of the cumulant tensor approach was proposed
by evaluating the second derivative of the characteristic function at arbitrary points.

The tensor methods, however, have become less popular recently. This is because
methods that use the whole EVD (like JADE) are restricted, for computational rea-
sons, to small dimensions. Moreover, they have statistical properties inferior to those
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methods using nonpolynomial cumulants or likelihood. With low-dimensional data,
however, they can offer an interesting alternative, and the power method that boils
down to FastICA can be used in higher dimensions as well.

Problems

11.1 Prove thatW diagonalizes F�M� as claimed in Section 11.4.

11.2 Prove (11.19)

11.3 Prove (11.20).

Computer assignments

11.1 Compute the eigenvalue decomposition of random fourth-order tensors of size
�� �� �� � and �� �� �� �. Compare the computing times. What about a tensor
of size ���� ���� ���� ���?

11.2 Generate 2-D data according to the ICA model. First, with ICs of different
distributions, and second, with identical distributions. Whiten the data, and perform
the FOBI algorithm in Section 11.5. Compare the two cases.





12
ICA by Nonlinear

Decorrelation and
Nonlinear PCA

This chapter starts by reviewing some of the early research efforts in independent
component analysis (ICA), especially the technique based on nonlinear decorrelation,
that was successfully used by Jutten, Hérault, and Ans to solve the first ICA problems.
Today, this work is mainly of historical interest, because there exist several more
efficient algorithms for ICA.

Nonlinear decorrelation can be seen as an extension of second-order methods
such as whitening and principal component analysis (PCA). These methods give
components that are uncorrelated linear combinations of input variables, as explained
in Chapter 6. We will show that independent components can in some cases be found
as nonlinearly uncorrelated linear combinations. The nonlinear functions used in
this approach introduce higher order statistics into the solution method, making ICA
possible.

We then show how the work on nonlinear decorrelation eventually lead to the
Cichocki-Unbehauen algorithm, which is essentially the same as the algorithm that
we derived in Chapter 9 using the natural gradient. Next, the criterion of nonlinear
decorrelation is extended and formalized to the theory of estimating functions, and
the closely related EASI algorithm is reviewed.

Another approach to ICA that is related to PCA is the so-called nonlinear PCA.
A nonlinear representation is sought for the input data that minimizes a least mean-
square error criterion. For the linear case, it was shown in Chapter 6 that principal
components are obtained. It turns out that in some cases the nonlinear PCA approach
gives independent components instead. We review the nonlinear PCA criterion and
show its equivalence to other criteria like maximum likelihood (ML). Then, two
typical learning rules introduced by the authors are reviewed, of which the first one

239
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is a stochastic gradient algorithm and the other one a recursive least mean-square
algorithm.

12.1 NONLINEAR CORRELATIONS AND INDEPENDENCE

The correlation between two random variables y� and y� was discussed in detail in
Chapter 2. Here we consider zero-mean variables only, so correlation and covariance
are equal. Correlation is related to independence in such a way that independent
variables are always uncorrelated. The opposite is not true, however: the variables
can be uncorrelated, yet dependent. An example is a uniform density in a rotated
square centered at the origin of the �y�� y�� space, see e.g. Fig. 8.3. Both y� and
y� are zero mean and uncorrelated, no matter what the orientation of the square, but
they are independent only if the square is aligned with the coordinate axes. In some
cases uncorrelatedness does imply independence, though; the best example is the
case when the density of �y�� y�� is constrained to be jointly gaussian.

Extending the concept of correlation, we here define the nonlinear correlation of
the random variables y� and y� as Eff�y��g�y��g. Here, f�y�� and g�y�� are two
functions, of which at least one is nonlinear. Typical examples might be polynomials
of degree higher than 1, or more complex functions like the hyperbolic tangent. This
means that one or both of the random variables are first transformed nonlinearly to
new variables f�y��� g�y�� and then the usual linear correlation between these new
variables is considered.

The question now is: Assuming that y� and y� are nonlinearly decorrelated in the
sense

Eff�y��g�y��g � � (12.1)

can we say something about their independence? We would hope that by making
this kind of nonlinear correlation zero, independence would be obtained under some
additional conditions to be specified.

There is a general theorem (see, e.g., [129]) stating that y� and y� are independent
if and only if

Eff�y��g�y��g � Eff�y��gEfg�y��g (12.2)

for all continuous functions f and g that are zero outside a finite interval. Based
on this, it seems very difficult to approach independence rigorously, because the
functions f and g are almost arbitrary. Some kind of approximations are needed.

This problem was considered by Jutten and Hérault [228]. Let us assume that f�y��
and g�y�� are smooth functions that have derivatives of all orders in a neighborhood
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of the origin. They can be expanded in Taylor series:

f�y�� � f��� � f ����y� �
�

�
f �����y�

�
� ���

�

�X

i��

fiy
i
�

g�y�� � g��� � g����y� �
�

�
g�����y�

�
� ���

�

�X

i��

giy
i
�

where fi� gi is shorthand for the coefficients of the ith powers in the series.
The product of the functions is then

f�y��g�y�� �

�X

i��

�X

j��

figjy
i
�
y
j
�

(12.3)

and condition (12.1) is equivalent to

Eff�y��g�y��g �
�X

i��

�X

j��

figjEfyi
�
y
j
�
g � � (12.4)

Obviously, a sufficient condition for this equation to hold is

Efyi
�
y
j
�
g � � (12.5)

for all indices i� j appearing in the series expansion (12.4). There may be other
solutions in which the higher order correlations are not zero, but the coefficients fi� gj

happen to be just suitable to cancel the terms and make the sum in (12.4) exactly
equal to zero. For nonpolynomial functions that have infinite Taylor expansions, such
spurious solutions can be considered unlikely (we will see later that such spurious
solutions do exist but they can be avoided by the theory of ML estimation).

Again, a sufficient condition for (12.5) to hold is that the variables y� and y� are
independent and one of Efyi

�
g� Efyj

�
g is zero. Let us require that Efyi

�
g � � for all

powers i appearing in its series expansion. But this is only possible if f�y�� is an odd
function; then the Taylor series contains only odd powers �� �� 	� ���, and the powers
i in Eq. (12.5) will also be odd. Otherwise, we have the case that even moments of
y� like the variance are zero, which is impossible unless y� is constant.

To conclude, a sufficient (but not necessary) condition for the nonlinear uncorre-
latedness (12.1) to hold is that y�and y� are independent, and for one of them, say
y�, the nonlinearity is an odd function such that f�y�� has zero mean.

The preceding discussion is informal but should make it credible that nonlinear
correlations are useful as a possible general criterion for independence. Several things
have to be decided in practice: the first one is how to actually choose the functions
f� g. Is there some natural optimality criterion that can tell us that some functions
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Fig. 12.1 The basic feedback circuit for the Hérault-Jutten algorithm. The element marked
with � is a summation

are better than some other ones? This will be answered in Sections 12.3 and 12.4.
The second problem is how we could solve Eq. (12.1), or nonlinearly decorrelate two
variables y�� y�. This is the topic of the next section.

12.2 THE HÉRAULT-JUTTEN ALGORITHM

Consider the ICA model x � As. Let us first look at a � � � case, which was
considered by Hérault, Jutten and Ans [178, 179, 226] in connection with the blind
separation of two signals from two linear mixtures. The model is then

x� � a��s� � a��s�

x� � a��s� � a��s�

Hérault and Jutten proposed the feedback circuit shown in Fig. 12.1 to solve the prob-
lem. The initial outputs are fed back to the system, and the outputs are recomputed
until an equilibrium is reached.

From Fig. 12.1 we have directly

y� � x� �m��y� (12.6)

y� � x� �m��y� (12.7)

Before inputting the mixture signals x�� x� to the network, they were normalized to
zero mean, which means that the outputs y�� y� also will have zero means. Defining a
matrixMwith off-diagonal elements m���m�� and diagonal elements equal to zero,
these equations can be compactly written as

y � x�My

Thus the input-output mapping of the network is

y � �I�M���x (12.8)
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Note that from the original ICA model we have s � A��x, provided that A is
invertible. If I�M � A, then y becomes equal to s. However, the problem in blind
separation is that the matrix A is unknown.

The solution that Jutten and Hérault introduced was to adapt the two feedback
coefficients m���m�� so that the outputs of the network y�� y� become independent.
Then the matrix A has been implicitly inverted and the original sources have been
found. For independence, they used the criterion of nonlinear correlations. They
proposed the following learning rules:

�m�� � �f�y��g�y�� (12.9)

�m�� � �f�y��g�y�� (12.10)

with � the learning rate. Both functions f���� g��� are odd functions; typically, the
functions

f�y� � y�� g�y� � arctan�y�

were used, although the method also seems to work for g�y� � y or g�y� � sign�y�.
Now, if the learning converges, then the right-hand sides must be zero on average,
implying

Eff�y��g�y��g � Eff�y��g�y��g � �

Thus independence has hopefully been attained for the outputs y�� y�. A stability
analysis for the Hérault-Jutten algorithm was presented by [408].

In the numerical computation of the matrixM according to algorithm (12.9,12.10),
the outputs y�� y� on the right-hand side must also be updated at each step of the
iteration. By Eq. (12.8), they too depend on M, and solving them requires the
inversion of matrix I �M. As noted by Cichocki and Unbehauen [84], this matrix
inversion may be computationally heavy, especially if this approach is extended to
more than two sources and mixtures. One way to circumvent this problem is to make
a rough approximation

y � �I�M���x � �I�M�x

that seems to work in practice.
Although the Hérault-Jutten algorithm was a very elegant pioneering solution to

the ICA problem, we know now that it has some drawbacks in practice. The algorithm
may work poorly or even fail to separate the sources altogether if the signals are badly
scaled or the mixing matrix is ill-conditioned. The number of sources that the method
can separate is severely limited. Also, although the local stability was shown in [408],
good global convergence behavior is not guaranteed.

12.3 THE CICHOCKI-UNBEHAUEN ALGORITHM

Starting from the Hérault-Jutten algorithm Cichocki, Unbehauen, and coworkers [82,
85, 84] derived an extension that has a much enhanced performance and reliability.
Instead of a feedback circuit like the Hérault-Jutten network in Fig. 12.1, Cichocki
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and Unbehauen proposed a feedforward network with weight matrix B, with the
mixture vector x for input and with output y � Bx. Now the dimensionality of the
problem can be higher than 2. The goal is to adapt the m �m matrix B so that the
elements of y become independent. The learning algorithm for B is as follows:

�B � ���� f�y�g�yT ��B (12.11)

where � is the learning rate, � is a diagonal matrix whose elements determine the
amplitude scaling for the elements of y (typically, � could be chosen as the unit
matrix I), and f and g are two nonlinear scalar functions; the authors proposed a
polynomial and a hyperbolic tangent. The notation f�y� means a column vector with
elements f�y��� � � � � f�yn�.

The argumentation showing that this algorithm will give independent components,
too, is based on nonlinear decorrelations. Consider the stationary solution of this
learning rule defined as the matrix for which Ef�Bg � �, with the expectation
taken over the density of the mixtures x. For this matrix, the update is on the average
zero. Because this is a stochastic-approximation-typealgorithm (see Chapter 3), such
stationarity is a necessary condition for convergence. Excluding the trivial solution
B � �, we must have

�� Eff�y�g�yT �g � �

Especially, for the off-diagonal elements, this implies

Eff�yi�g�yj�g � � (12.12)

which is exactly our definition of nonlinear decorrelation in Eq. (12.1) extended to n

output signals y�� ���� yn. The diagonal elements satisfy

Eff�yi�g�yi�g � �ii

showing that the diagonal elements�ii of matrix� only control the amplitude scaling
of the outputs.

The conclusion is that if the learning rule converges to a nonzero matrix B, then
the outputs of the network must become nonlinearly decorrelated, and hopefully
independent. The convergence analysis has been performed in [84]; for general
principles of analyzing stochastic iteration algorithms like (12.11), see Chapter 3.

The justification for the Cichocki-Unbehauen algorithm (12.11) in the original
articles was based on nonlinear decorrelations, not on any rigorous cost functions
that would be minimized by the algorithm. However, it is interesting to note that
this algorithm, first appearing in the early 1990’s, is in fact the same as the popular
natural gradient algorithm introduced later by Amari, Cichocki, and Young [12] as
an extension to the original Bell-Sejnowski algorithm [36]. All we have to do is
choose � as the unit matrix, the function g�y� as the linear function g�y� � y,
and the function f�y� as a sigmoidal related to the true density of the sources. The
Amari-Cichocki-Young algorithm and the Bell-Sejnowski algorithm were reviewed
in Chapter 9 and it was shown how the algorithms are derived from the rigorous
maximum likelihood criterion. The maximum likelihood approach also tells us what
kind of nonlinearities should be used, as discussed in Chapter 9.



THE ESTIMATING FUNCTIONS APPROACH * 245

12.4 THE ESTIMATING FUNCTIONS APPROACH *

Consider the criterion of nonlinear decorrelations being zero, generalized ton random
variables y�� ���� yn, shown in Eq. (12.12). Among the possible roots y�� ���� yn of
these equations are the source signals s�� ���� sn. When solving these in an algorithm
like the Hérault-Jutten algorithm or the Cichocki-Unbehauen algorithm, one in fact
solves the separating matrix B.

This notion was generalized and formalized by Amari and Cardoso [8] to the case
of estimating functions. Again, consider the basic ICA model x � As, s � B�x

where B� is a true separating matrix (we use this special notation here to avoid any
confusion). An estimation function is a matrix-valued function F�x�B� such that

EfF�x�B��g � �� (12.13)

This means that, taking the expectation with respect to the density of x, the true
separating matrices are roots of the equation. Once these are solved from Eq. (12.13),
the independent components are directly obtained.

Example 12.1 Given a set of nonlinear functions f��y��� ���� fn�yn�, with y � Bx,
and defining a vector function f�y� � �f��y��� ���� fn�yn��

T , a suitable estimating
function for ICA is

F�x�B� � �� f�y�yT � �� f�Bx��Bx�T (12.14)

because obviously Eff�y�yT g becomes diagonal whenB is a true separating matrix
B� and y�� ���� yn are independent and zero mean. Then the off-diagonal elements
become Effi�yi�yjg � Effi�yi�gEfyjg � �. The diagonal matrix� determines the
scales of the separated sources. Another estimating function is the right-hand side of
the learning rule (12.11),

F�x�B� � ��� f�y�g�yT ��B

There is a fundamental difference in the estimating function approach compared to
most of the other approaches to ICA: the usual starting point in ICA is a cost function
that somehow measures how independent or nongaussian the outputs yi are, and the
independent components are solved by minimizing the cost function. In contrast,
there is no such cost function here. The estimation function need not be the gradient
of any other function. In this sense, the theory of estimating functions is very general
and potentially useful for finding ICA algorithms. For a discussion of this approach
in connection with neural networks, see [328].

It is not a trivial question how to design in practice an estimation function so that
we can solve the ICA model. Even if we have two estimating functions that both
have been shaped in such a way that separating matrices are their roots, what is a
relevant measure to compare them? Statistical considerations are helpful here. Note
that in practice, the densities of the sources si and the mixtures xj are unknown in
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the ICA model. It is impossible in practice to solve Eq. (12.13) as such, because the
expectation cannot be formed. Instead, it has to be estimated using a finite sample of
x. Denoting this sample by x���� ����x�T �, we use the sample function

EfF�x�B�g �
�

T

TX

t��

F�x�t��B�

Its root �B is then an estimator for the true separating matrix. Obviously (see Chapter
4), the root �B � �B�x���� ����x�T �� is a function of the training sample, and it is
meaningful to consider its statistical properties like bias and variance. This gives a
measure of goodness for the comparison of different estimation functions. The best
estimating function is one that gives the smallest error between the true separating
matrix B� and the estimate �B.

A particularly relevant measure is (Fisher) efficiency or asymptotic variance, as
the size T of the sample x���� ����x�T � grows large (see Chapter 4). The goal is
to design an estimating function that gives the smallest variance, given the set of
observations x�t�. Then the optimal amount of information is extracted from the
training set.

The general result provided by Amari and Cardoso [8] is that estimating functions
of the form (12.14) are optimal in the sense that, given any estimating function F,
one can always find a better or at least equally good estimating function (in the sense
of efficiency) having the form

F�x�B� � �� f�y�yT (12.15)

� �� f�Bx��Bx�T (12.16)

where � is a diagonal matrix. Actually, the diagonal matrix � has no effect on the
off-diagonal elements of F�x�B� which are the ones determining the independence
between yi� yj ; the diagonal elements are simply scaling factors.

The result shows that it is unnecessary to use a nonlinear function g�y� instead of
y as the other one of the two functions in nonlinear decorrelation. Only one nonlinear
function f�y�, combined withy, is sufficient. It is interesting that functions of exactly
the type f�y�yT naturally emerge as gradients of cost functions such as likelihood;
the question of how to choose the nonlinearity f�y� is also answered in that case. A
further example is given in the following section.

The preceding analysis is not related in any way to the practical methods for finding
the roots of estimating functions. Due to the nonlinearities, closed-form solutions do
not exist and numerical algorithms have to be used. The simplest iterative stochastic
approximation algorithm for solving the roots of F�x�B� has the form

�B � ��F�x�B�� (12.17)

with � an appropriate learning rate. In fact, we now discover that the learning rules
(12.9), (12.10) and (12.11) are examples of this more general framework.
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12.5 EQUIVARIANT ADAPTIVE SEPARATION VIA INDEPENDENCE

In most of the proposed approaches to ICA, the learning rules are gradient descent
algorithms of cost (or contrast) functions. Many cases have been covered in previous
chapters. Typically, the cost function has the form J�B� � EfG�y�g, with G

some scalar function, and usually some additional constraints are used. Here again
y � Bx, and the form of the function G and the probability density of x determine
the shape of the contrast function J�B�.

It is easy to show (see the definition of matrix and vector gradients in Chapter 3)
that

�J�B�

�B
� Ef�

�G�y�

�y
�xT g � Efg�y�xT g (12.18)

where g�y� is the gradient of G�y�. If B is square and invertible, then x � B��y

and we have

�J�B�

�B
� Efg�y�yT g�BT ��� (12.19)

For appropriate nonlinearities G�y�, these gradients are estimating functions in
the sense that the elements of y must be statistically independent when the gradient
becomes zero. Note also that in the form Effg�y�yT gg�BT ���, the first factor
g�y�yT has the shape of an optimal estimating function (except for the diagonal
elements); see eq. (12.15). Now we also know how the nonlinear function g�y�
can be determined: it is directly the gradient of the function G�y� appearing in the
original cost function.

Unfortunately, the matrix inversion �BT ��� in (12.19) is cumbersome. Matrix
inversion can be avoided by using the so-called natural gradient introduced by Amari
[4]. This is covered in Chapter 3. The natural gradient is obtained in this case by
multiplying the usual matrix gradient (12.19) from the right by matrix BTB, which
gives Efg�y�yT gB. The ensuing stochastic gradient algorithm to minimize the cost
function J�B� is then

�B � ��g�y�yTB (12.20)

This learning rule again has the form of nonlinear decorrelations. Omitting the
diagonal elements in matrix in g�y�yT , the off-diagonal elements have the same
form as in the Cichocki-Unbehauen algorithm (12.11), with the two functions now
given by the linear function y and the gradient g�y�.

This gradient algorithm can also be derived using the relative gradient introduced
by Cardoso and Hvam Laheld [71]. This approach is also reviewed in Chapter
3. Based on this, the authors developed their equivariant adaptive separation via
independence (EASI) learning algorithm. To proceed from (12.20) to the EASI
learning rule, an extra step must be taken. In EASI, as in many other learning
rules for ICA, a whitening preprocessing is considered for the mixture vectors x
(see Chapter 6). We first transform x linearly to z � Vx whose elements zi have
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unit variances and zero covariances: EfzzT g � I. As also shown in Chapter 6, an
appropriate adaptation rule for whitening is

�V � ��I� zzT �V (12.21)

The ICA model using these whitened vectors instead of the original ones becomes
z � VAs, and it is easily seen that the matrixVA is an orthogonal matrix (a rotation).
Thus its inverse which gives the separating matrix is also orthogonal. As in earlier
chapters, let us denote the orthogonal separating matrix by W.

Basically, the learning rule for W would be the same as (12.20). However, as
noted by [71], certain constraints must hold in any updating ofW if the orthogonality
is to be preserved at each iteration step. Let us denote the serial update for W using
the learning rule (12.20), briefly, asW�W�DW, where nowD � ��g�y�yT .
The orthogonality condition for the updated matrix becomes

�W �DW��W �DW�T � I�D�DT �DDT � I

whereWWT � I has been substituted. AssumingD small, the first-order approxi-
mation gives the condition thatD � �DT , orDmust be skew-symmetric. Applying
this condition to the relative gradient learning rule (12.20) for W, we have

�W � ���g�y�yT � yg�y�T �W (12.22)

where now y � Wz. Contrary to the learning rule (12.20), this learning rule also
takes care of the diagonal elements of g�y�yT in a natural way, without imposing
any conditions on them.

What is left now is to combine the two learning rules (12.21) and (12.22) into
just one learning rule for the global system separation matrix. Because y �Wz �
WVx, this global separation matrix isB �WV. Assuming the same learning rates
for the two algorithms, a first order approximation gives

�B � �WV �W�V

� ���g�y�yT � yg�y�T �WV � ��WV �WzzTWTWV�

� ���yyT � I� g�y�yT � yg�y�T �B (12.23)

This is the EASI algorithm. It has the nice feature of combining both whitening
and separation into a single algorithm. A convergence analysis as well as some
experimental results are given in [71]. One can easily see the close connection to the
nonlinear decorrelation algorithm introduced earlier.

The concept of equivariance that forms part of the name of the EASI algorithm
is a general concept in statistical estimation; see, e.g., [395]. Equivariance of an
estimator means, roughly, that its performance does not depend on the actual value of
the parameter. In the context of the basic ICA model, this means that the ICs can be
estimated with the same performance what ever the mixing matrix may be. EASI was
one of the first ICA algorithms which was explicitly shown to be equivariant. In fact,
most estimators of the basic ICA model are equivariant. For a detailed discussion,
see [69].
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12.6 NONLINEAR PRINCIPAL COMPONENTS

One of the basic definitions of PCA was optimal least mean-square error compres-
sion, as explained in more detail in Chapter 6. Assuming a random m-dimensional
zero-mean vector x, we search for a lower dimensional subspace such that the
residual error between x and its orthogonal projection on the subspace is minimal,
averaged over the probability density of x. Denoting an orthonormal basis of this
subspace by w�� ����wn, the projection of x on the subspace spanned by the ba-
sis is
P

n

i��
�wT

i
x�wi. Now n is the dimension of the subspace. The minimum

mean-square criterion for PCA is

minimize Efkx�
nX

i��

�wT

i x�wik
�g (12.24)

A solution (although not the unique one) of this optimization problem is given by the
eigenvectors e�� ���� en of the data covariance matrixCx � EfxxT g. Then the linear
factorswT

i
x in the sum become the principal components eT

i
x.

For instance, if x is two-dimensional with a gaussian density, and we seek for a
one-dimensional subspace (a straight line passing through the center of the density),
then the solution is given by the principal axis of the elliptical density.

We now pose the question how this criterion and its solution are changed if a
nonlinearity is included in the criterion. Perhaps the simplest nontrivial nonlinear
extension is provided as follows. Assuming g����� ����� gn��� a set of scalar functions,
as yet unspecified, let us look at a modified criterion to be minimized with respect to
the basis vectors [232]:

J�w����wn� � Efkx�
nX

i��

gi�w
T

i x�wik
�g (12.25)

This criterion was first considered by Xu [461] who called it the “least mean-square
error reconstruction” (LMSER) criterion.

The only change with respect to (12.24) is that instead of the linear factorswT

i
x, we

now have nonlinear functions of them in the expansion that gives the approximation
to x. In the optimal solution that minimizes the criterion J�w�� ����wn�, such
factors might be termed nonlinear principal components. Therefore, the technique of
finding the basis vectorswi is here called “nonlinear principal component analysis”
(NLPCA).

It should be emphasized that practically always when a well-defined linear problem
is extended into a nonlinear one, many ambiguities and alternative definitions arise.
This is the case here, too. The term “nonlinear PCA” is by no means unique.
There are several other techniques, like the method of principal curves [167, 264]
or the nonlinear autoassociators [252, 325] that also give “nonlinear PCA”. In these
methods, the approximating subspace is a curved manifold, while the solution to the
problem posed earlier is still a linear subspace. Only the coefficients corresponding
to the principal components are nonlinear functions of x. It should be noted that
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minimizing the criterion (12.25) does not give a smaller least mean square error than
standard PCA. Instead, the virtue of this criterion is that it introduces higher-order
statistics in a simple manner via the nonlinearities gi.

Before going into any deeper analysis of (12.25), it may be instructive to see in
a simple special case how it differs from linear PCA and how it is in fact related to
ICA.

If the functions gi�y�were linear, as in the standard PCA technique, and the number
n of terms in the sum were equal to m or the dimension of x, then the representation
error always would be zero, as long as the weight vectors are chosen orthonormal.
For nonlinear functions gi�y�, however, this is usually not true. Instead, in some
cases, at least, it turns out that the optimal basis vectorswi minimizing (12.25) will
be aligned with the independent components of the input vectors.

Example 12.2 Assume thatx is a two-dimensional random vector that has a uniform
density in a unit square that is not aligned with the coordinate axesx�� x�, according to
Fig. 12.2. Then it is easily shown that the elements x�� x� are uncorrelated and have
equal variances (equal to 1/3), and the covariance matrix of x is therefore equal to
���I. Thus, except for the scaling by ���, vector x is whitened (sphered). However,
the elements are not independent. The problem is to find a rotation s � Wx of
x such that the elements of the rotated vector s are statistically independent. It is
obvious from Fig. 12.2 that the elements of smust be aligned with the orientation of
the square, because then and only then the joint density is separable into the product
of the two marginal uniform densities.

Because of the whitening, we know that the rows of the separating matrixWmust
be orthogonal. This is seen by writing

EfssTg �WEfxxT gWT �
�

�
WW

T (12.26)

Because the elements s� and s� are uncorrelated, it must hold thatwT
�
w� = 0.

The solution minimizing the criterion (12.25), with w�� w� orthogonal two-
dimensional vectors and g���� � g���� � g��� a suitable nonlinearity, provides now
a rotation into independent components. This can be seen as follows. Assume that
g is a very sharp sigmoid, e.g., g�y� � tanh���y�, which is approximately the sign
function. The term

P
�

i��
g�wT

i
x�wi in criterion (12.25) becomes

w�g�w
T

�
x� �w�g�w

T

�
x�

� w�sign�wT

�
x� �w�sign�wT

�
x�

Thus according to (12.25), each x should be optimally represented by one of the four
possible points ��w���w��, with the signs depending on the angles between x and
the basis vectors. Each choice of the two orthogonal basis vectors divides the square
of Fig. 12.2 into four quadrants, and by criterion (12.25), all the points in a given
quadrant must be represented in the least mean square sense by just one point; e.g.,
in the first quadrant where the angles between x and the basis vectors are positive,
by the point w� �w�. From Fig. 12.2, it can be seen that the optimal fit is obtained
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Fig. 12.2 A rotated uniform density

when the basis vectors are aligned with the axes s�� s�, and the pointw� �w� is the
center of the smaller square bordered by the positive s�� s� axes.

For further confirmation, it is easy to compute the theoretical value of the cost
function J�w��w�� of Eq. (12.25) when the basis vectors w� and w� are arbitrary
orthogonal vectors [327]. Denoting the angle between w� and the s� axis in Fig.
12.2 by �, we then have the minimal value of J�w��w�� for the rotation � � �, and
then the lengths of the orthogonal vectors are equal to 0.5. These are the vectors
shown in Fig. 12.2.

In the preceding example, it was assumed that the density of x is uniform. For
some other densities, the same effect of rotation into independent directions would
not be achieved. Certainly, this would not take place for gaussian densities with
equal variances, for which the criterion J�w�� ����wn� would be independent of
the orientation. Whether the criterion results in independent components, depends
strongly on the nonlinearities gi�y�. A more detailed analysis of the criterion (12.25)
and its relation to ICA is given in the next section.

12.7 THE NONLINEAR PCA CRITERION AND ICA

Interestingly, for prewhitened data, it can be shown [236] that the original nonlinear
PCA criterion of Eq. (12.25) has an exact relationship with other contrast func-
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tions like kurtosis maximization/minimization, maximum likelihood, or the so-called
Bussgang criteria. In the prewhitened case, we use z instead of x to denote the input
vector. Also, assume that in whitening, the dimension of z has been reduced to that
of s. We denote this dimension by n. In this case, it has been shown before (see
Chapter 13) that matrixW is n�n and orthogonal: it holdsWWT �WTW � I.

First, it is convenient to change to matrix formulation. Denoting by W �
�w����wn�

T the matrix that has the basis vectors wi as rows, criterion (12.25) be-
comes

J�w�� ����wn� � J�W� � Efkz�WTg�Wz�k�g� (12.27)

The function g�Wz� is a column vector with elements g��wT
�
z�� ���� gn�w

T
n z�. We

can write now [236]

kz�WTg�Wz�k� � �z�WTg�Wz��T �z�WTg�Wz��

� �z�WTg�Wz��TWTW�z�WTg�Wz��

� kWz�WWTg�Wz�k�

� ky � g�y�k�

�
nX

i��

�yi � gi�yi��
��

with y �Wz. Therefore the criterion J�W� becomes

JNLPCA�W� �

nX

i��

Ef�yi � gi�yi��
�g (12.28)

This formulation of the NLPCA criterion can now be related to several other contrast
functions.

As the first case, choose gi�y� as the odd quadratic function (the same for all i)

gi�y� �

�
y� � y� if y � �
�y� � y� if y � �

Then the criterion (12.28) becomes

Jkurt�W� �

nX
i��

Ef�yi � yi � y�i �
�g �

nX
i��

Efy�i g (12.29)

This statistic was discussed in Chapter 8. Note that because the input data has been
whitened, the variance Efy�

i
g � wT

i
Efzzgwi � wT

i
wi � �, so in the kurtosis

kurt�yi� � Efy�
i
g � 	�Efy�

i
g�� the second term is a constant and can be dropped

in kurtosis maximization/minimization. What remains is criterion (12.29). For this
function, minimizing the NLPCA criterion is exactly equivalent to minimizing the
sum of the kurtoses of yi.

As a second case, consider the maximum likelihood solution of the ICA model.
The maximum likelihood solution starts from the assumption that the density of s,
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due to independence, is factorizable: p�s� � p��s��p��s�����pn�sn�. Suppose we
have a large sample x���� �����x�T � of input vectors x available. It was shown in
Chapter 9 that the log-likelihood becomes

logL�B� �

TX

t��

nX

i��

log pi�b
T

i x�t�� � T log j detBj (12.30)

where the vectors bi are the rows of matrix B � A
��. In the case of a whitened

sample z���� ���� z�T �, the separating matrix will be orthogonal. Let us denote it
again byW. We have

logL�W� �

TX

t��

nX

i��

log pi�w
T

i z�t�� (12.31)

The second term in (12.30) is zero, because the determinant of the orthogonal matrix
W is equal to one.

Because this is a maximization problem, we can multiply the cost function (12.31)
by the constant ��T . For large T , this function tends to

JML�W� �

nX

i��

Eflog pi�yi�g (12.32)

with yi � w
T

i
z.

From this, we can easily derive the connection between the NLPCA criterion
(12.28) and the ML criterion (12.32). In minimizing the sum (12.28), an arbi-
trary additive constant and a positive multiplicative constant can be trivially added.
Therefore, in the equivalence between the two criteria, we can consider the relation
(dropping the subscript i from yi for convenience)

log pi�y� � �� ��y � gi�y��
� (12.33)

where � and � � � are some constants, yielding

pi�y� � exp����y � gi�y��
�� (12.34)

This shows how to choose the function gi�y� for any given density pi�y�.
As the third case, the form of (12.28) is quite similar to the so-called Bussgang

cost function used in blind equalization (see [170, 171]). We use Lambert’s notation
and approach [256]. He chooses only one nonlinearity g��y� � � � � � gn�y� � g�y�:

g�y� �
�Efy�gp��y�

p�y�
(12.35)

The function p�y� is the density of y and p��y�its derivative. Lambert [256] also gives
several algorithms for minimizing this cost function. Note that now in the whitened
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data case the variance of y is equal to one and the function (12.35) is simply the score
function

�
p��y�

p�y�
� �

d

dy
log p�y�

Due to the equivalence of the maximum likelihood criterion to several other criteria
like infomax or entropic criteria, further equivalences of the NLPCA criterion with
these can be established. More details are given in [236] and Chapter 14.

12.8 LEARNING RULES FOR THE NONLINEAR PCA CRITERION

Once the nonlinearities gi�y� have been chosen, it remains to actually solve the
minimization problem in the nonlinear PCA criterion. Here we present the simplest
learning algorithms for minimizing either the original NLPCA criterion (12.25) or
the prewhitened criterion (12.28). The first algorithm, the nonlinear subspace rule, is
of the stochastic gradient descent type; this means that the expectation in the criterion
is dropped and the gradient of the sample function that only depends on the present
sample of the input vector (x or z, respectively) is taken. This allows on-line learning
in which each input vector is used when it comes available and then discarded;
see Chapter 3 for more details. This algorithm is a nonlinear generalization of the
subspace rule for PCA, covered in Chapter 6. The second algorithm reviewed in this
section, the recursive least-squares learning rule, is likewise a nonlinear generalization
of the PAST algorithm for PCA covered in Chapter 6.

12.8.1 The nonlinear subspace rule

Let us first consider a stochastic gradient algorithm for the original cost function
(12.25), which in matrix form can be written as J�W� � Efkx�WTg�Wx�k�g.
This problem was considered by one of the authors [232, 233] as well as by Xu [461].
It was shown that the stochastic gradient algorithm is

�W � ��F�Wx�WrxT � g�Wx�rT � (12.36)

where

r � x�WTg�Wx� (12.37)

is the residual error term and

F�Wx� � diag�g��wT

�
x�� ���� g��wT

nx��� (12.38)

There g��y� denotes the derivative of the functiong�y�. We have made the simplifying
assumption here that all the functions g����� ���� gn��� are equal; a generalization to the
case of different functions would be straightforward but the notation would become
more cumbersome.

As motivated in more detail in [232], writing the update rule (12.36) for an
individual weight vectorwi shows that the first term in the brackets on the right-hand
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side of (12.36) affects the update of weight vectors much less than the second term,
if the error r is relatively small in norm compared to the input vector x. If the first
term is omitted, then we obtain the following learning rule:

�W � �g�y��xT � g�yT �W� (12.39)

with y the vector

y �Wx (12.40)

Comparing this learning rule to the subspace rule for ordinary PCA, eq. (6.19)
in Chapter 6, we see that the algorithms are formally similar and become the same
if g is a linear function. Both rules can be easily implemented in the one-layer PCA
network shown in Fig. 6.2 of Chapter 6; the linear outputs yi � wT

i
x must only be

changed to nonlinear versions g�yi� � g�wT

i
x�. This was the way the nonlinear

PCA learning rule was first introduced in [332] as one of the extensions to numerical
on-line PCA computation.

Originally, in [232] the criterion (12.25) and the learning scheme (12.39) were
suggested for signal separation, but the exact relation to ICA was not clear. Even
without prewhitening of the inputs x, the method can separate signals to a certain
degree. However, if the inputs x are whitened first, the separation performance is
greatly improved. The reason is that for whitened inputs, the criterion (12.25) and the
consequent learning rule are closely connected to well-known ICA objective (cost)
functions, as was shown in Section 12.7.

12.8.2 Convergence of the nonlinear subspace rule *

Let us consider the convergence and behavior of the learning rule in the case that the
ICA model holds for the data. This is a very specialized section that may be skipped.

The prewhitened form of the learning rule is

�W � �g�y��zT � g�yT �W� (12.41)

with y now the vector

y �Wz (12.42)

and z white, thus EfzzT g � I. We also have to assume that the ICA model holds,
i.e., there exists an orthogonal separating matrix M such that

s �Mz (12.43)

where the elements of s are statistically independent. With whitening, the dimension
of z has been reduced to that of s; thus both M and W are n� n matrices.

To make further analysis easier, we proceed by making a linear transformation to
the learning rule (12.41): we multiply both sides by the orthogonal separating matrix
MT , giving

��WMT � � �g�Wz��zTMT � g�zTWT �WMT � (12.44)

� �g�WMTMz��zTMT � g�zTMTMWT �WMT �
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where we have used the fact thatMTM � I. Denoting for the momentH �WMT

and using (12.43), we have

�H � �g�Hs��sT � g�sTHT �H� (12.45)

This equation has exactly the same form as the original one (12.41). Geometrically
the transformation by the orthogonal matrixMT simply means a coordinate change
to a new set of coordinates such that the elements of the input vector expressed in
these coordinates are statistically independent.

The goal in analyzing the learning rule (12.41) is to show that, starting from some
initial value, the matrixW will tend to the separating matrixM. For the transformed
weight matrix H � WMT in (12.45), this translates into the requirement that H
should tend to the unit matrix or a permutation matrix. Then y � Hs also would
tend to the vector s, or a permuted version, with independent components.

However, it turns out that in the learning rule (12.45), the unit matrix or a per-
mutation matrix generally cannot be the asymptotic or steady state solution. This
is due to the scaling given by the nonlinearity g. Instead, we can make the more
general requirement that H tends to a diagonal matrix or a diagonal matrix times a
permutation matrix. In this case the elements of y � Hs will become the elements
of the original source vector s, in some order, multiplied by some numbers. In view
of the original problem, in which the amplitudes of the signals si remain unknown,
this is actually no restriction, as independence is again attained.

To proceed, the difference equation (12.45) can be further analyzed by writing
down the corresponding averaged differential equation; for a discussion of the tech-
nique, see Chapter 3. The limit of convergenceof (12.45) is among the asymptotically
stable solutions of the averaged differential equation. In practice, this also requires
that the learning rate � is decreasing to zero at a suitable rate.

Now taking averages in (12.45) and also using the same symbol H � H�t� for
the continuous-time counterpart of the transformed weight matrixH, we obtain

dH�dt � Efg�Hs�sTg � Efg�Hs�g�sTHT �gH (12.46)

The expectations are over the (unknown) density of vector s. We are ready to state
the main result of this section:

Theorem 12.1 In the matrix differential equation (12.46), assume the following:

1. The random vector s has a symmetric density with Efsg � �;

2. The elements of s, denoted s�� ���� sn, are statistically independent;

3. The function g��� is odd, i.e., g�y� � �g��y� for all y, and at least twice
differentiable everywhere;

4. The function g��� and the density of s are such that the following conditions
hold for all i � �� ���� n:

Ai � Efs�i g
���isi�g � 	�iEfg��isi�g

���isi�sig � Efg���isi�g � �
(12.47)
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where the �i� i � �� ���� n are scalars satisfying

Efsig��isi�g � �iEfg
���isi�g (12.48)

5. Denoting

��i � Efs�i g (12.49)

Bi � Efg���isi�g (12.50)

Ci � Efg���isi�g (12.51)

Fi � Efuig��isi�g (12.52)

both eigenvalues of the �� � matrix
�

��iCj � �iCjFi �Bj ��iCiFj

��jCjFi ��jCi � �jCiFj �Bi

�
(12.53)

have strictly negative real parts for all i� j � �� ���� n.

Then the matrix

H � diag���� ���� �n� (12.54)

is an asymptotically stable stationary point of (12.46), where �i satisfies Eq. (12.48).

The proof, as well as explanations of the rather technical conditions of the theorem,
are given in [327]. The main point is that the algorithm indeed converges to a diagonal
matrix, if the initial valueH���is not too far from it. Transformingback to the original
learning rule (12.41) forW, it follows thatW converges to a separating matrix.

Some special cases were given in [327]. For example, if the nonlinearity is chosen
as the simple odd polynomial

g�y� � yq� q � �� �� �� 	� ��� (12.55)

then all the relevant variables in the conditions of the theorem, for any probability
density, will become moments of si. It can be shown (see exercises) that the stability
condition becomes

Efsq��g � qEfs�gEfsq��g � � (12.56)

Based on this, it can be shown that the linear function g�y� � y never gives asymptotic
stability, while the cubic function g�y� � y� leads to asymptotic stability provided
that the density of s satisfies

Efs�g � ��Efs�g�� � � (12.57)

This expression is exactly the kurtosis or the fourth order cumulant of s [319]. If
and only if the density is positively kurtotic (supergaussian), the stability condition
is satisfied for the cubic polynomial g�y� � y�.
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Fig. 12.3 The original images.

Example 12.3 The learning rule was applied to a signal separation problem in [235].
Consider the 9 digital images shown in Fig. 12.3. They were linearly mixed with a
randomly chosen mixing matrixA into 9 mixture images, shown in Fig. 12.4.

Whitening, shown in Fig. 12.5, is not able to separate the images. When the
learning rule (12.41) was applied to the mixtures with a tanh nonlinearity and the
matrixW was allowed to converge, it was able to separate the images as shown in
Fig. 12.6. In the figure, the images have been scaled to fit the gray levels in use; in
some cases, the sign has also been reversed to avoid image negatives.

12.8.3 The nonlinear recursive least-squares learning rule

It is also possible to effectively minimize the prewhitened NLPCA criterion (12.27)
using approximative recursive least-squares (RLS) techniques. Generally, RLS algo-
rithms converge clearly faster than their stochastic gradient counterparts, and achieve
a good final accuracy at the expense of a somewhat higher computational load. These
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M1 M2 M3

M4 M5 M6

M7 M8 M9

Fig. 12.4 The mixed images.

advantages are the result of the automatic determination of the learning rate parameter
from the input data, so that it becomes roughly optimal.

The basic symmetric algorithm for the prewhitened problem was derived by one of
the authors [347]. This is a nonlinear modification of the PAST algorithm introduced
by Yang for the standard linear PCA [466, 467]; the PAST algorithm is covered in
Chapter 6. Using index t to denote the iteration step, the algorithm is

q�t� � g�W�t� ��z�t�� � g�y�t�� (12.58)

h�t� � P�t� ��q�t� (12.59)

m�t� � h�t���� � qT �t�h�t�� (12.60)

P�t� �
�

�
Tri�P�t� ���m�t�hT �t�� (12.61)

r�t� � z�t� �WT �t� ��q�t� (12.62)

W�t� � W�t� �� �m�t�rT �t�� (12.63)

The vector variables q�t��h�t��m�t�, and r�t� and the matrix variable P�t� are
auxiliary variables, internal to the algorithm. As before, z�t� is the whitened input
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W1 W2 −W3

−W4 W5 W6

−W7 −W8 −W9

Fig. 12.5 The whitened images.

vector, y�t� is the output vector,W�t� is the weight matrix, and g is the nonlinearity
in the NLPCA criterion. The parameter � is a kind of “forgetting constant” that
should be close to unity. The notation Tri means that only the upper triangular part
of the matrix is computed and its transpose is copied to the lower triangular part,
making the resulting matrix symmetric. The initial values W��� and P��� can be
chosen as identity matrices.

This algorithm updates the whole weight matrix W�t� simultaneously, treating
all the rows of W�t� in a symmetric way. Alternatively, it is possible to compute
the weight vectors wi�t� in a sequential manner using a deflation technique. The
sequential algorithm is presented in [236]. The authors show there experimentally
that the recursive least-squares algorithms perform better and have faster convergence
than stochastic gradient algorithms like the nonlinear subspace learning rule. Yet, the
recursive algorithms are adaptive and can be used for tracking if the statistics of the
data or the mixing model are slowly varying. They seem to be robust to initial values
and have relatively low computational load. Also batch versions of the recursive
algorithm are derived in [236].
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W+NPCA2−(W+NPCA1) −(W+NPCA3)

−(W+NPCA4) W+NPCA5 W+NPCA6

W+NPCA7 W+NPCA8 W+NPCA9

Fig. 12.6 The separated images using the nonlinear PCA criterion and learning rule.

12.9 CONCLUDING REMARKS AND REFERENCES

The first part of this chapter reviewed some of the early research efforts in ICA,
especially the technique based on nonlinear decorrelations. It was based on the
work of Jutten, Hérault, and Ans [178, 179, 16]. A good overview is [227]. The
exact relation between the nonlinear decorrelation criterion and independence was
analyzed in the series of papers [228, 93, 408]. The Cichocki-Unbehauen algorithm
was introduced in [82, 85, 84]; see also [83]. For estimating functions, the reference is
[8]. The EASI algorithm was derived in [71]. The efficiency of estimating functions
can in fact be extended to the notion of superefficiency [7].

Somewhat related methods specialized for discrete-valued ICs were proposed in
[286, 379].

The review of nonlinear PCA is based on the authors’ original works [332, 232,
233, 450, 235, 331, 327, 328, 347, 236]. A good review is also [149]. Nonlinear
PCA is a versatile and useful starting point for blind signal processing. It has close
connections to other well-known ICA approaches, as was shown in this chapter; see
[236, 329]. It is unique in the sense that it is based on a least mean-square error
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formulation of the ICA problem. Due to this, recursive least mean-square algorithms
can be derived; several versions like the symmetric, sequential, and batch algorithms
are given in [236].

Problems

12.1 In the Hérault-Jutten algorithm (12.9,12.10), let f�y�� � y�
�and �y�� � y�.

Write the update equations so that only x�� x��m��, andm�� appear on the right-hand
side.

12.2 Consider the cost function (12.29). Assuming y �Wz, compute the matrix
gradient of this cost function with respect to W. Show that, except for the diagonal
elements, the matrix gradient is an estimating function, i.e., its off-diagonal elements
become zero when W is a true separating matrix for which Wz � s . What are the
diagonal elements?

12.3 Repeat the previous problem for the maximum likelihood cost function
(12.32).

12.4 Consider the stationary points of (12.46). Show that the diagonal matrix
(12.54) is a stationary point if (12.48) holds.

12.5 * In Theorem 12.1, let the nonlinearity be a simple polynomial: g�y� � yq

with q an odd positive integer. Assume for simplicity that all the sources si have the
same density, so the subscript i can be dropped in the Theorem.

12.5.1. Solve � from Eq. (12.48).
12.5.2. Show that the stability conditions reduce to Eq. (12.56).
12.5.3. Show that the linear function g�y� � y does not fulfill the stability

condition.

12.6 Consider the nonlinear subspace learning rule for whitened inputs,Eq. (12.41).
Let us combine this rule with the whitening rule (12.21) in the same way as was done to
derive the EASI algorithm (12.23): writingB �WV and �B � �WV�W�V.
Like in the EASI derivation, assume thatW is approximately orthogonal. Show that
we get the new learning rule

�B � ��g�y�yT � g�y�g�yT � � I� yyT ��

g

B



13
Practical Considerations

In the preceding chapters, we presented several approaches for the estimation of
the independent component analysis (ICA) model. In particular, several algorithms
were proposed for the estimation of the basic version of the model, which has a
square mixing matrix and no noise. Now we are, in principle, ready to apply those
algorithms on real data sets. Many such applications will be discussed in Part IV.

However, when applying the ICA algorithms to real data, some practical con-
siderations arise and need to be taken into account. In this chapter, we discuss
different problems that may arise, in particular, overlearning and noise in the data.
We also propose some preprocessing techniques (dimension reduction by principal
component analysis, time filtering) that may be useful and even necessary before the
application of the ICA algorithms in practice.

13.1 PREPROCESSING BY TIME FILTERING

The success of ICA for a given data set may depend crucially on performing some
application-dependent preprocessing steps. In the basic methods discussed in the
previous chapters, we always used centering in preprocessing, and often whitening
was done as well. Here we discuss further preprocessing methods that are not
necessary in theory, but are often very useful in practice.

263
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13.1.1 Why time filtering is possible

In many cases, the observed random variables are, in fact, time signals or time series,
which means that they describe the time course of some phenomenon or system.
Thus the sample index t in xi�t� is a time index. In such a case, it may be very useful
to filter the signals. In other words, this means taking moving averages of the time
series. Of course, in the ICA model no time structure is assumed, so filtering is not
always possible: If the sample points x�t� cannot be ordered in any meaningful way
with respect to t, filtering is not meaningful, either.

For time series, any linear filtering of the signals is allowed, since it does not
change the ICA model. In fact, if we filter linearly the observed signals xi�t� to
obtain new signals, say x�

i
�t�, the ICA model still holds for x�

i
�t�, with the same

mixing matrix. This can be seen as follows. Denote by X the matrix that contains
the observations x���� ����x�T � as its columns, and similarly for S. Then the ICA
model can be expressed as:

X � AS (13.1)

Now, time filtering ofX corresponds to multiplyingX from the right by a matrix, let
us call itM. This gives

X
� � XM � ASM � AS� (13.2)

which shows that the ICA model still remains valid. The independent components
are filtered by the same filtering that was applied on the mixtures. They are not
mixed with each other in S� because the matrixM is by definition a component-wise
filtering matrix.

Since the mixing matrix remains unchanged, we can use the filtered data in the
ICA estimating method only. After estimating the mixing matrix, we can apply the
same mixing matrix on the original data to obtain the independent components.

The question then arises what kind of filtering could be useful. In the following,
we consider three different kinds of filtering: high-pass and low-pass filtering, as
well as their compromise.
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13.1.2 Low-pass filtering

Basically, low-pass filtering means that every sample point is replaced by a weighted
average of that point and the points immediately before it.1 This is a form of
smoothing the data. Then the matrixM in (13.2) would be something like

M �
�

�

�
BBBBBBBBBBBB�

...
� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

...

�
CCCCCCCCCCCCA

(13.3)

Low-pass filtering is often used because it tends to reduce noise. This is a well-
known property in signal processing that is explained in most basic signal processing
textbooks.

In the basic ICA model, the effect of noise is more or less neglected; see Chapter 15
for a detailed discussion. Thus basic ICA methods work much better with data that
does not have much noise, and reducing noise is thus useful and sometimes even
necessary.

A possible problem with low-pass filtering is that it reduces the information in the
data, since the fast-changing, high-frequency features of the data are lost. It often
happens that this leads to a reduction of independence as well (see next section).

13.1.3 High-pass filtering and innovations

High-pass filtering is the opposite of low-pass filtering. The point is to remove slowly
changing trends from the data. Thus a low-pass filtered version is subtracted from
the signal. A classic way of doing high-pass filtering is differencing, which means
replacing every sample point by the difference between the value at that point and
the value at the preceding point. Thus, the matrixM in (13.2) would be

M �

�
BBBBBBBBBBBB�

...
� � � � �� � � � � � � � �

� � � � � �� � � � � � � �

� � � � � � �� � � � � � �

� � � � � � � �� � � � � �

� � � � � � � � �� � � � �

� � � � � � � � � � � � �

...

�
CCCCCCCCCCCCA

(13.4)

1To have a causal filter, points after the current point may be left out of the averaging.
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High-pass filtering may be useful in ICA because in certain cases it increases
the independence of the components. It often happens in practice that the compo-
nents have slowly changing trends or fluctuations, in which case they are not very
independent. If these slow fluctuations are removed by high-pass filtering the fil-
tered components are often much more independent. A more principled approach to
high-pass filtering is to consider it in the light of innovation processes.

Innovation processes Given a stochastic process s�t�, we define its innovation
process �s�t� as the error of the best prediction of s�t�, given its past. Such a best
prediction is given by the conditional expectation of s�t� given its past, because it
is the expected value of the conditional distribution of s�t� given its past. Thus the
innovation process of �s�t� is defined by

�s�t� � s�t��Efs�t�js�t� ��� s�t� ��� ���g (13.5)

The expression “innovation” describes the fact that �s�t� contains all the new infor-
mation about the process that can be obtained at time t by observing s�t�.

The concept of innovations can be utilized in the estimation of the ICA model due
to the following property:

Theorem 13.1 If x�t� and s�t� follow the basic ICA model, then the innovation
processes �x�t� and �s�t� follow the ICA model as well. In particular, the components
�si�t� are independent from each other.

On the other hand, independence of the innovations does not imply the indepen-
dence of the si�t�. Thus, the innovations are more often independent from each
other than the original processes. Moreover, one could argue that the innovations
are usually more nongaussian than the original processes. This is because the si�t�
is a kind of moving average of the innovation process, and sums tend to be more
gaussian than the original variable. Together these mean that the innovation process
is more susceptible to be independent and nongaussian, and thus to fulfill the basic
assumptions in ICA.

Innovation processes were discussed in more detail in [194], where it was also
shown that using innovations, it is possible to separate signals (images of faces) that
are otherwise strongly correlated and very difficult to separate.

The connection between innovations and ordinary filtering techniques is that the
computation of the innovation process is often rather similar to high-pass filtering.
Thus, the arguments in favor of using innovation processes apply at least partly in
favor of high-pass filtering.

A possible problem with high-pass filtering, however, is that it may increase noise
for the same reasons that low-pass filtering decreases noise.

13.1.4 Optimal filtering

Both of the preceding types of filtering have their pros and cons. The optimum would
be to find a filter that increases the independence of the components while reducing
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noise. To achieve this, some compromise between high- and low-pass filtering may
be the best solution. This leads to band-pass filtering, in which the highest and the
lowest frequencies are filtered out, leaving a suitable frequency band in between.
What this band should be depends on the data and general answers are impossible to
give.

In addition to simple low-pass/high-pass filtering, one might also use more so-
phisticated techniques. For example, one might take the (1-D) wavelet transforms of
the data [102, 290, 17]. Other time-frequency decompositions could be used as well.

13.2 PREPROCESSING BY PCA

A common preprocessing technique for multidimensional data is to reduce its dimen-
sion by principal component analysis (PCA). PCA was explained in more detail in
Chapter 6. Basically, the data is projected linearly onto a subspace

�x � Enx (13.6)

so that the maximum amount of information (in the least-squares sense) is preserved.
Reducing dimension in this way has several benefits which we discuss in the next
subsections.

13.2.1 Making the mixing matrix square

First, let us consider the case where the the number of independent components n
is smaller than the number of mixtures, say m. Performing ICA on the mixtures
directly can cause big problems in such a case, since the basic ICA model does not
hold anymore. Using PCA we can reduce the dimension of the data to n. After such
a reduction, the number of mixtures and ICs are equal, the mixing matrix is square,
and the basic ICA model holds.

The question is whether PCA is able to find the subspace correctly, so that the
n ICs can be estimated from the reduced mixtures. This is not true in general, but
in a special case it turns out to be the case. If the data consists of n ICs only, with
no noise added, the whole data is contained in an n-dimensional subspace. Using
PCA for dimension reduction clearly finds this n-dimensional subspace, since the
eigenvalues corresponding to that subspace, and only those eigenvalues, are nonzero.
Thus reducing dimension with PCA works correctly. In practice, the data is usually
not exactly contained in the subspace, due to noise and other factors, but if the noise
level is low, PCA still finds approximately the right subspace; see Section 6.1.3. In
the general case, some “weak” ICs may be lost in the dimension reduction process,
but PCA may still be a good idea for optimal estimation of the “strong” ICs [313].

Performing first PCA and then ICA has an interesting interpretation in terms of
factor analysis. In factor analysis, it is conventional that after finding the factor
subspace, the actual basis vectors for that subspace are determined by some criteria
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that make the mixing matrix as simple as possible [166]. This is called factor rotation.
Now, ICA can be interpreted as one method for determining this factor rotation, based
on higher-order statistics instead of the structure of the mixing matrix.

13.2.2 Reducing noise and preventing overlearning

A well-known benefit of reducing the dimension of the data is that it reduces noise,
as was already discussed in Chapter 6. Often, the dimensions that have been omitted
consist mainly of noise. This is especially true in the case where the number of ICs
is smaller than the number of mixtures.

Another benefit of reducing dimensions is that it prevents overlearning, to which
the rest of this subsection is devoted. Overlearning means that if the number of
parameters in a statistical model is too large when compared to the number of
available data points, the estimation of the parameters becomes difficult, maybe
impossible. The estimation of the parameters is then too much determined by the
available sample points, instead of the actual process that generated the data, which
is what we are really interested in.

Overlearning in ICA [214] typically produces estimates of the ICs that have a
single spike or bump, and are practically zero everywhere else. This is because in the
space of source signals of unit variance, nongaussianity is more or less maximized
by such spike/bump signals. This becomes easily comprehensible if we consider
the extreme case where the sample size T equals the dimension of the data m, and
these are both equal to the number of independent components n. Let us collect
the realizations x�t� of x as the columns of the matrix X, and denote by S the
corresponding matrix of the realizations of s�t�, as in (13.1). Note that now all the
matrices in (13.1) are square. This means that by changing the values of A (and
keeping X fixed), we can give any values whatsoever to the elements of S. This is
a case of serious overlearning, not unlike the classic case of regression with equal
numbers of data points and parameters.

Thus it is clear that in this case, the estimate of S that is obtained by ICA
estimation depends little on the observed data. Let us assume that the densities of
the source signals are known to be supergaussian (i.e., positively kurtotic). Then the
ICA estimation basically consists of finding a separating matrixB that maximizes a
measure of the supergaussianities (or sparsities) of the estimates of the source signals.
Intuitively, it is easy to see that sparsity is maximized when the source signals each
have only one nonzero point. Thus we see that ICA estimation with an insufficient
sample size leads to a form of overlearning that gives artifactual (spurious) source
signals. Such source signals are characterized by large spikes.

An important fact shown experimentally [214] is that a similar phenomenon is
much more likely to occur if the source signals are not independently and identically
distributed (i.i.d.) in time, but have strong time-dependencies. In such cases the
sample size needed to get rid of overlearning is much larger, and the source signals
are better characterized by bumps, i.e., low-pass filtered versions of spikes. An
intuitive way of explaining this phenomenon is to consider such a signal as being
constant onN�k blocks of k consecutive sample points. This means that the data can
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be considered as really having onlyN�k sample points; each sample point has simply
been repeated k times. Thus, in the case of overlearning, the estimation procedure
gives “spikes” that have a width of k time points, i.e., bumps.

Here we illustrate the phenomenon by separation of artificial source signals.
Three positively kurtotic signals, with 500 sample points each, were used in these
simulations, and are depicted in Fig. 13.1 a. Five hundred mixtures were produced,
and a very small amount of gaussian noise was added to each mixture separately.

As an example of a successful ICA estimation, Fig. 13.1 b shows the result of
applying the FastICA and maximum likelihood (ML) gradient ascent algorithms
(denoted by “Bell-Sejnowski”) to the mixed signals. In both approaches, the prepro-
cessing (whitening) stage included a dimension reduction of the data into the first
three principal components. It is evident that both algorithms are able to extract all
the initial signals.

In contrast, when the whitening is made with very small dimension reduction (we
took 400 dimensions), we see the emergence of spiky solutions (like Dirac functions),
which is an extreme case of kurtosis maximization (Fig. 13.1 c). The algorithm used
in FastICA was of a deflationary type, from which we plot the first five components
extracted. As for the ML gradient ascent, which was of a symmetric type, we show
five representative solutions to the 400 extracted.

Thus, we see here that without dimension reduction, we are not able to estimate
the source signals.

Fig. 13.1 d presents an intermediate stage of dimension reduction (from the original
500 mixtures we took 50 whitened vectors). We see that the actual source signals are
revealed by both methods, even though each resulting vector is more noisy than the
ones shown in Fig. 13.1 b.

For the final example, in Fig. 13.1 e, we low-pass filtered the mixed signals, prior to
the independent component analysis, using a 10 delay moving average filter. Taking
the same amount of principal components as in d, we can see that we lose all the
original source signals: the decompositions show a bumpy structure corresponding to
the low-pass filtering of the spiky outputs presented in c. Through low-pass filtering,
we have reduced the information contained in the data, and so the estimation is
rendered impossible even with this, not very weak, dimension reduction. Thus, we
see that with this low-pass filtered data, a much stronger dimension reduction by
PCA is necessary to prevent overlearning.

In addition to PCA, some kind of prior information on the mixing matrix could be
useful in preventing overlearning. This is considered in detail in Section 20.1.3.

13.3 HOW MANY COMPONENTS SHOULD BE ESTIMATED?

Another problem that often arises in practice is to decide the number of ICs to be
estimated. This problem does not arise if one simply estimates the same number
of components as the dimension of the data. This may not always be a good idea,
however.
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(a)      

(b)      

Fast ICA Bell−Sejnowski

(c)      

(d)      

(e)      

Fig. 13.1 (From [214]) Illustration of the importance of the degree of dimension reduction
and filtering in artificially generated data, using FastICA and a gradient algorithm for ML
estimation. (a) Original positively kurtotic signals. (b) ICA decomposition in which the
preprocessing includes a dimension reduction to the first 3 principal components. (c) Poor,
i.e., too weak dimension reduction. (d) Decomposition using an intermediate dimension
reduction (50 components retained). (e) Same results as in (d) but using low-pass filtered
mixtures
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First, since dimension reduction by PCA is often necessary, one must choose
the number of principal components to be retained. This is a classic problem;
see Chapter 6. It is usually solved by choosing the minimum number of principal
components that explain the data well enough, containing, for example, ��� of the
variance. Often, the dimension is actually chosen by trial and error with no theoretical
guidelines.

Second, for computational reasons we may prefer to estimate only a smaller
number of ICs than the dimension of the data (after PCA preprocessing). This is the
case when the dimension of the data is very large, and we do not want to reduce the
dimension by PCA too much, since PCA always contains the risk of not including the
ICs in the reduced data. Using FastICA and other algorithms that allow estimation of
a smaller number of components, we can thus perform a kind of dimension reduction
by ICA. In fact, this is an idea somewhat similar to projection pursuit. Here, it is
even more difficult to give any guidelines as to how many components should be
estimated. Trial and error may be the only method applicable.

Information-theoretic, Bayesian, and other criteria for determining the number of
ICs are discussed in more detail in [231, 81, 385].

13.4 CHOICE OF ALGORITHM

Now we shall briefly discuss the choice of ICA algorithm from a practical viewpoint.
As will be discussed in detail in Chapter 14, most estimation principles and objective
functions for ICA are equivalent, at least in theory. So, the main choice is reduced to
a couple of points:

� One choice is between estimating all the independent components in parallel,
or just estimating a few of them (possibly one-by-one). This corresponds to
choosing between symmetric and hierarchical decorrelation. In most cases,
symmetric decorrelation is recommended. Deflation is mainly useful in the
case where we want to estimate only a very limited number of ICs, and other
special cases. The disadvantage with deflationary orthogonalization is that the
estimation errors in the components that are estimated first accumulate and
increase the errors in the later components.

� One must also choose the nonlinearity used in the algorithms. It seems that the
robust, nonpolynomial nonlinearities are to be preferred in most applications.
The simplest thing to do is to just use the tanh function as the nonlinearity
g. This is sufficient when using FastICA. (When using gradient algorithms,
especially in the ML framework, a second function needs to be used as well;
see Chapter 9.)

� Finally, there is the choice between on-line and batch algorithms. In most
cases, the whole data set is available before the estimation, which is called
in different contexts batch, block, or off-line estimation. This is the case
where FastICA can be used, and it is the algorithm that we recommend. On-
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line or adaptive algorithms are needed in signal-processing applications where
the mixing matrix may change on-line, and fast tracking is needed. In the
on-line case, the recommended algorithms are those obtained by stochastic
gradient methods. It should also be noted that in some cases, the FastICA
algorithm may not converge well as Newton-type algorithms sometimes exhibit
oscillatory behavior. This problem can be alleviated by using gradient methods,
or combinations of the two (see [197]).

13.5 CONCLUDING REMARKS AND REFERENCES

In this chapter, we considered some practical problems in ICA. When dealing with
time signals, low-pass filtering of the data is useful to reduce noise. On the other
hand, high-pass filtering, or computing innovation processes is useful to increase the
independence and nongaussianity of the components. One of these, or their combi-
nation may be very useful in practice. Another very useful thing to do is to reduce the
dimension of the data by PCA. This reduces noise and prevents overlearning. It may
also solve the problems with data that has a smaller number of ICs than mixtures.

Problems

13.1 Take a Fourier transform on every observed signal xi�t�. Does the ICA model
still hold, and in what way?

13.2 Prove the theorem on innovations.

Computer assignments

13.1 Take a gaussian white noise sequence. Low-pass filter it by a low-pass filter
with coefficients (...,0,0,1,1,1,1,1,0,0,0,...). What does the signal look like?

13.2 High-pass filter the gaussian white noise sequence. What does the signal look
like?

13.3 Generate 100 samples of 100 independent components. Run FastICA on this
data without any mixing. What do the estimated ICs look like? Is the estimate of the
mixing matrix close to identity?



14
Overview and Comparison

of Basic ICA Methods

In the preceding chapters, we introduced several different estimation principles and
algorithms for independent component analysis (ICA). In this chapter, we provide
an overview of these methods. First, we show that all these estimation principles
are intimately connected, and the main choices are between cumulant-based vs.
negentropy/likelihood-based estimation methods, and between one-unit vs. multi-
unit methods. In other words, one must choose the nonlinearity and the decorrelation
method. We discuss the choice of the nonlinearity from the viewpoint of statistical
theory. In practice, one must also choose the optimization method. We compare the
algorithms experimentally, and show that the main choice here is between on-line
(adaptive) gradient algorithms vs. fast batch fixed-point algorithms.

At the end of this chapter, we provide a short summary of the whole of Part II,
that is, of basic ICA estimation.

14.1 OBJECTIVE FUNCTIONS VS. ALGORITHMS

A distinction that has been used throughout this book is between the formulation of
the objective function, and the algorithm used to optimize it. One might express this
in the following “equation”:

ICA method � objective function� optimization algorithm�

In the case of explicitly formulated objective functions, one can use any of the
classic optimization methods, for example, (stochastic) gradient methods and Newton
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methods. In some cases, however, the algorithm and the estimation principle may be
difficult to separate.

The properties of the ICA method depend on both of the objective function and
the optimization algorithm. In particular:

� the statistical properties (e.g., consistency, asymptotic variance, robustness) of
the ICA method depend on the choice of the objective function,

� the algorithmic properties (e.g., convergence speed, memory requirements,
numerical stability) depend on the optimization algorithm.

Ideally, these two classes of properties are independent in the sense that different
optimization methods can be used to optimize a single objective function, and a
single optimization method can be used to optimize different objective functions. In
this section, we shall first treat the choice of the objective function, and then consider
optimization of the objective function.

14.2 CONNECTIONS BETWEEN ICA ESTIMATION PRINCIPLES

Earlier, we introduced several different statistical criteria for estimation of the ICA
model, including mutual information, likelihood, nongaussianity measures, cumu-
lants, and nonlinear principal component analysis (PCA) criteria. Each of these
criteria gave an objective function whose optimization enables ICA estimation. We
have already seen that some of them are closely connected; the purpose of this section
is to recapitulate these results. In fact, almost all of these estimation principles can be
considered as different versions of the same general criterion. After this, we discuss
the differences between the principles.

14.2.1 Similarities between estimation principles

Mutual information gives a convenient starting point for showing the similarity be-
tween different estimation principles. We have for an invertible linear transformation
y � Bx:

I�y�� y�� ���� yn� �
X

i

H�yi��H�x�� log j detBj (14.1)

If we constrain the yi to be uncorrelated and of unit variance, the last term on the
right-hand side is constant; the second term does not depend on B anyway (see
Chapter 10). Recall that entropy is maximized by a gaussian distribution, when
variance is kept constant (Section 5.3). Thus we see that minimization of mutual
information means maximizing the sum of the nongaussianities of the estimated
components. If these entropies (or the corresponding negentropies) are approximated
by the approximations used in Chapter 8, we obtain the same algorithms as in that
chapter.
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Alternatively, we could approximate mutual information by approximating the
densities of the estimated ICs by some parametric family, and using the obtained
log-density approximations in the definition of entropy. Thus we obtain a method
that is essentially equivalent to maximum likelihood (ML) estimation.

The connections to other estimation principles can easily be seen using likelihood.
First of all, to see the connection to nonlinear decorrelation, it is enough to compare
the natural gradient methods for ML estimation shown in (9.17) with the nonlinear
decorrelation algorithm (12.11): they are of the same form. Thus, ML estimation
gives a principled method for choosing the nonlinearities in nonlinear decorrelation.
The nonlinearities used are determined as certain functions of the probability density
functions (pdf’s) of the independent components. Mutual information does the same
thing, of course, due to the equivalency discussed earlier. Likewise, the nonlin-
ear PCA methods were shown to be essentially equivalent to ML estimation (and,
therefore, most other methods) in Section 12.7.

The connection of the preceding principles to cumulant-based criteria can be seen
by considering the approximation of negentropy by cumulants as in Eq. (5.35):

J�y� �
�

��
Efy�g� �

�

��
kurt�y�� (14.2)

where the first term could be omitted, leaving just the term containing kurtosis.
Likewise, cumulants could be used to approximate mutual information, since mutual
information is based on entropy. More explicitly, we could consider the following
approximation of mutual information:

I�y� � c� � c�
X

i

kurt�yi�
� (14.3)

where c� and c� are some constants. This shows clearly the connection between
cumulants and minimization of mutual information. Moreover, the tensorial methods
in Chapter 11 were seen to lead to the same fixed-point algorithm as the maximization
of nongaussianity as measured by kurtosis,which shows that they are doing very much
the same thing as the other kurtosis-based methods.

14.2.2 Differences between estimation principles

There are, however, a couple of differences between the estimation principles as well.

1. Some principles (especially maximum nongaussianity) are able to estimate
single independent components, whereas others need to estimate all the com-
ponents at the same time.

2. Some objective functions use nonpolynomial functions based on the (assumed)
probability density functions of the independent components, whereas others
use polynomial functions related to cumulants. This leads to different non-
quadratic functions in the objective functions.

3. In many estimation principles, the estimates of the ICs are constrained to be
uncorrelated. This reduces somewhat the space in which the estimation is
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performed. Considering, for example, mutual information, there is no reason
why mutual information would be exactly minimized by a decomposition that
gives uncorrelated components. Thus, this decorrelation constraint slightly
reduces the theoretical performance of the estimation methods. In practice,
this may be negligible.

4. One important difference in practice is that often in ML estimation, the densities
of the ICs are fixed in advance, using prior knowledge on the independent
components. This is possible because the pdf’s of the ICs need not be known
with any great precision: in fact, it is enough to estimate whether they are sub-
or supergaussian. Nevertheless, if the prior information on the nature of the
independent components is not correct, ML estimation will give completely
wrong results, as was shown in Chapter 9. Some care must be taken with ML
estimation, therefore. In contrast, using approximations of negentropy, this
problem does not usually arise, since the approximations we have used in this
book do not depend on reasonable approximations of the densities. Therefore,
these approximations are less problematic to use.

14.3 STATISTICALLY OPTIMAL NONLINEARITIES

Thus, from a statistical viewpoint, the choice of estimation method is more or less
reduced to the choice of the nonquadratic function G that gives information on the
higher-order statistics in the form of the expectationEfG�bT

i
x�g. In the algorithms,

this choice corresponds to the choice of the nonlinearity g that is the derivative of G.
In this section, we analyze the statistical properties of different nonlinearities. This
is based on the family of approximations of negentropy given in (8.25). This family
includes kurtosis as well. For simplicity, we consider here the estimation of just one
IC, given by maximizing this nongaussianity measure. This is essentially equivalent
to the problem

max
Ef�bTx��g��

Ef�G�bTx�g (14.4)

where the sign of G depends of the estimate on the sub- or supergaussianity of bTx.
The obtained vector is denoted by bb. The two fundamental statistical properties of bb
that we analyze are asymptotic variance and robustness.

14.3.1 Comparison of asymptotic variance *

In practice, one usually has only a finite sample of T observations of the vector x.
Therefore, the expectations in the theoretical definition of the objective function are in
fact replaced by sample averages. This results in certain errors in the estimator bb, and
it is desired to make these errors as small as possible. A classic measure of this error
is asymptotic (co)variance, which means the limit of the covariance matrix of bb

p
T as

T ��. This gives an approximation of the mean-square error of bb, as was already
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discussed in Chapter 4. Comparison of, say, the traces of the asymptotic variances of
two estimators enables direct comparison of the accuracy of two estimators. One can
solve analytically for the asymptotic variance of bb, obtaining the following theorem
[193]:

Theorem 14.1 The trace of the asymptotic variance of bb as defined above for the
estimation of the independent component si, equals

VG � C�A�
Efg��si�g � �Efsig�si�g�

�

�Efsig�si�� g��si�g��
� (14.5)

where g is the derivative of G, and C�A� is a constant that depends only onA.

The theorem is proven at the appendix of this chapter.
Thus the comparison of the asymptotic variances of two estimators for two different

nonquadratic functions G boils down to a comparison of the VG. In particular, one
can use variational calculus to find a G that minimizes VG. Thus one obtains the
following theorem [193]:

Theorem 14.2 The trace of the asymptotic variance of bb is minimized when G is of
the form

Gopt�y� � c� log pi�y� � c�y
� � c� (14.6)

where pi is the density function of si, and c�� c�� c� are arbitrary constants.

For simplicity, one can choose Gopt�y� � log pi�y�. Thus, we see that the optimal
nonlinearity is in fact the one used in the definition of negentropy. This shows that
negentropy is the optimal measure of nongaussianity, at least inside those measures
that lead to estimators of the form considered here.1 Also, one sees that the optimal
function is the same as the one obtained for several units by the maximum likelihood
approach.

14.3.2 Comparison of robustness *

Another very desirable property of an estimator is robustness against outliers. This
means that single, highly erroneous observations do not have much influence on the
estimator. In this section, we shall treat the question: How does the robustness of
the estimator �b depend on the choice of the function G? The main result is that the
function G�y� should not grow fast as a function of jyj if we want robust estimators.
In particular, this means that kurtosis gives nonrobust estimators, which may be very
disadvantagous in some situations.

1One has to take into account, however, that in the definition of negentropy, the nonquadratic function is
not fixed in advance, whereas in our nongaussianity measures, G is fixed. Thus, the statistical properties
of negentropy can be only approximatively derived from our analysis.
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First, note that the robustness of �b depends also on the method of estimation used
in constraining the variance of �bTx to equal unity, or, equivalently, the whitening
method. This is a problem independent of the choice of G. In the following, we
assume that this constraint is implemented in a robust way. In particular, we assume
that the data is sphered (whitened) in a robust manner, in which case the constraint
reduces to k �wk � �, where w is the value of b for whitened data. Several robust
estimators of the variance of �wT

z or of the covariance matrix of x are presented in
the literature; see reference [163].

The robustness of the estimator �w can be analyzed using the theory of M-
estimators. Without going into technical details, the definition of an M-estimator
can be formulated as follows: an estimator is called an M-estimator if it is defined as
the solution �� for � of

Ef��z� ��g � � (14.7)

where z is a random vector and � is some function defining the estimator. Now, the
point is that the estimator �w is an M-estimator. To see this, define � � �w� ��, where
� is the Lagrangian multiplier associated with the constraint. Using the Lagrange
conditions, the estimator �w can then be formulated as the solution of Eq. (14.7) where
� is defined as follows (for sphered data):

��z� �� �

�
zg�wT

z� � c�w
kwk� � �

�
(14.8)

where c � �EzfG� �w
T
z�g �E�fG���g�

�� is an irrelevant constant.
The analysis of robustness of an M-estimator is based on the concept of an

influence function, IF �z� ���. Intuitively speaking, the influence function measures
the influence of single observations on the estimator. It would be desirable to have
an influence function that is bounded as a function of z, as this implies that even
the influence of a far-away outlier is “bounded”, and cannot change the estimate
too much. This requirement leads to one definition of robustness, which is called
B-robustness. An estimator is called B-robust, if its influence function is bounded
as a function of z, i.e., sup

z
kIF �z� ���k is finite for every ��. Even if the influence

function is not bounded, it should grow as slowly as possible when kzk grows, to
reduce the distorting effect of outliers.

It can be shown that the influence function of an M-estimator equals

IF �z� ��� � B��z� ��� (14.9)

where B is an irrelevant invertible matrix that does not depend on z. On the other
hand, using our definition of �, and denoting by � � w

T
z�kzk the cosine of the

angle between z and w , one obtains easily

k��z� �w� ���k� � C�

�

��
h��wT

z� � C�h�w
T
z� � C�

(14.10)

where C�� C�� C� are constants that do not depend on z, and h�y� � yg�y�. Thus we
see that the robustness of �w essentially depends on the behavior of the function h�u�.
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The slower h�u� grows, the more robust the estimator. However, the estimator really
cannot be B-robust, because the � in the denominator prevents the influence function
from being bounded for all z. In particular, outliers that are almost orthogonal to �w,
and have large norms, may still have a large influence on the estimator. These results
are stated in the following theorem:

Theorem 14.3 Assume that the data z is whitened (sphered) in a robust manner.
Then the influence function of the estimator �w is never bounded for all z. However,
if h�y� � yg�y� is bounded, the influence function is bounded in sets of the form
fz j �wT

z�kzk � �g for every � � �, where g is the derivative of G.

In particular, if one chooses a function G�y� that is bounded, h is also bounded,
and �w is quite robust against outliers. If this is not possible, one should at least choose
a function G�y� that does not grow very fast when jyj grows. If, in contrast, G�y�
grows very fast when jyj grows, the estimates depend mostly on a few observations far
from the origin. This leads to highly nonrobust estimators, which can be completely
ruined by just a couple of bad outliers. This is the case, for example, when kurtosis
is used, which is equivalent to using �w with G�y� � y�.

14.3.3 Practical choice of nonlinearity

It is useful to analyze the implications of the preceding theoretical results by consid-
ering the following family of density functions:

p��s� � C� exp�C�jsj
�� (14.11)

where � is a positive constant, and C�� C� are normalization constants that ensure
that p� is a probability density of unit variance. For different values of alpha, the
densities in this family exhibit different shapes. For � � � � �, one obtains a sparse,
supergaussian density (i.e., a density of positive kurtosis). For � � �, one obtains the
gaussian distribution, and for� � �, a subgaussian density (i.e., a density of negative
kurtosis). Thus the densities in this family can be used as examples of different
nongaussian densities.

Using Theorem 14.1, one sees that in terms of asymptotic variance, the optimal
nonquadratic function is of the form:

Gopt�y� � jyj� (14.12)

where the arbitrary constants have been dropped for simplicity. This implies roughly
that for supergaussian (resp. subgaussian) densities, the optimal function is a function
that grows slower than quadratically (resp. faster than quadratically). Next, recall
from Section 14.3.2 that if G�y� grows fast with jyj, the estimator becomes highly
nonrobust against outliers. Also taking into account the fact that most ICs encountered
in practice are supergaussian, one reaches the conclusion that as a general-purpose
function, one should choose a function G that resembles rather

Gopt�u� � jyj�� where � � � (14.13)



280 OVERVIEW AND COMPARISON OF BASIC ICA METHODS

The problem with such functions is, however, that they are not differentiable at � for
� � �. This can lead to problems in the numerical optimization. Thus it is better
to use approximating differentiable functions that have the same kind of qualitative
behavior. Considering � � �, in which case one has a Laplacian density, one could
use instead the function G��y� � log cosha�y where a� is a constant. This is very
similar to the so-called Huber function that is widely used in robust statistics as
a robust alternative of the square function. Note that the derivative of G� is then
the familiar tanh function (for a� � �). We have found � � a� � � to provide
a good approximation. Note that there is a trade-off between the precision of the
approximation and the smoothness of the resulting objective function.

In the case of � � �, i.e., highly supergaussian ICs, one could approximate
the behavior of Gopt for large u using a gaussian function (with a minus sign):
G��y� � � exp��y����. The derivative of this function is like a sigmoid for small
values, but goes to � for larger values. Note that this function also fulfills the
condition in Theorem 14.3, thus providing an estimator that is as robust as possible
in this framework.

Thus, we reach the following general conclusions:

� A good general-purpose function is G�y� � log cosha�y, where � � a� � �
is a constant.

� When the ICs are highly supergaussian, or when robustness is very important,
G�y� � � exp��y���� may be better.

� Using kurtosis is well justified only if the ICs are subgaussian and there are no
outliers.

In fact, these two nonpolynomial functions are those that we used in the nongaus-
sianity measures in Chapter 8 as well, and illustrated in Fig. 8.20. The functions in
Chapter 9 are also essentially the same, since addition of a linear function does not
have much influence on the estimator. Thus, the analysis of this section justifies the
use of the nonpolynomial functions that we used previously, and shows why caution
should be taken when using kurtosis.

In this section, we have used purely statistical criteria for choosing the functionG.
One important criterion for comparing ICA methods that is completely independent
of statistical considerations is the computational load. Since most of the objective
functions are computationally very similar, the computational load is essentially a
function of the optimization algorithm. The choice of the optimization algorithm
will be considered in the next section.

14.4 EXPERIMENTAL COMPARISON OF ICA ALGORITHMS

The theoretical analysis of the preceding section gives some guidelines as to which
nonlinearity (corresponding to a nonquadratic function G) should be chosen. In
this section, we compare the ICA algorithms experimentally. Thus we are able to
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analyze the computational efficiency of the different algorithms as well. This is done
by experiments, since a satisfactory theoretical analysis of convergence speed does
not seem possible. We saw previously, though, that FastICA has quadratic or cubic
convergencewhereas gradient methods have only linear convergence, but this result is
somewhat theoretical because it does not say anything about the global convergence.
In the same experiments, we validate experimentally the earlier analysis of statistical
performance in terms of asymptotic variance.

14.4.1 Experimental set-up and algorithms

Experimental setup In the following experimental comparisons, artificial data
generated from known sources was used. This is quite necessary, because only then
are the correct results known and a reliable comparison possible. The experimental
setup was the same for each algorithm in order to make the comparison as fair as
possible. We have also compared various ICA algorithms using real-world data in
[147], where experiments with artificial data also are described in somewhat more
detail. At the end of this section, conclusions from experiments with real-world data
are presented.

The algorithms were compared along the two sets of criteria, statistical and com-
putational, as was outlined in Section 14.1. The computational load was measured
as flops (basic floating-point operations, such as additions or divisions) needed for
convergence. The statistical performance, or accuracy, was measured using a perfor-
mance index, defined as

E� �

mX

i��

�

mX

j��

jpij j

maxk jpikj
� �� �

mX

j��

�

mX

i��

jpij j

maxk jpkj j
� ��

(14.14)

where pij is the ijth element of the m�m matrix P � BA. If the ICs have been
separated perfectly,P becomes a permutation matrix (where the elements may have
different signs, though). A permutation matrix is defined so that on each of its rows
and columns, only one of the elements is equal to unity while all the other elements
are zero. Clearly, the index (14.14) attains its minimum value zero for an ideal
permutation matrix. The larger the valueE� is, the poorer the statistical performance
of a separation algorithm. In certain experiments, another fairly similarly behaving
performance index, E�, was used. It differs slightly from E� in that squared values
p�ij are used instead of the absolute ones in (14.14).

ICA algorithms used The following algorithms were included in the comparison
(their abbreviations are in parentheses):

� The FastICA fixed-point algorithm. This has three variations: using kurtosis
with deflation (FP) or with symmetric orthogonalization (FPsym), and using
the tanh nonlinearity with symmetric orthogonalization (FPsymth).

� Gradient algorithms for maximum likelihood estimation, using a fixed nonlin-
earity given by � tanh. First, we have the ordinary gradient ascent algorithm,
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or the Bell-Sejnowski algorithm (BS). Second, we have the natural gradient
algorithm proposed by Amari, Cichocki and Yang [12], which is abbreviated
as ACY.

� Natural gradient MLE using an adaptive nonlinearity. (Abbreviated as ExtBS,
since this is called the “extended Bell-Sejnowski” algorithm by some authors.)
The nonlinearity was adapted using the sign of kurtosis as in reference [149],
which is essentially equivalent to the density parameterization we used in
Section 9.1.2.

� The EASI algorithm for nonlinear decorrelation, as discussed in Section 12.5.
Again, the nonlinearity used was tanh.

� The recursive least-squares algorithm for a nonlinear PCA criterion (NPCA-
RLS), discussed in Section 12.8.3. In this algorithm, the plain tanh function
could not be used for stability reasons, but a slightly modified nonlinearity was
chosen: y � tanh�y�.

Tensorial algorithms were excluded from this comparison due to the problems of
scalability discussed in Chapter 11. Some tensorial algorithms have been compared
rather thoroughly in [315]. However, the conclusions are of limited value, because
the data used in [315] always consisted of the same three subgaussian ICs.

14.4.2 Results for simulated data

Statistical performance and computational load The basic experiment
measures the computational load and statistical performance (accuracy) of the tested
algorithms. We performed experiments with 10 independent components that were
chosen supergaussian, because for this source type all the algorithms in the com-
parison worked, including ML estimation with a fixed � tanh nonlinearity. The
mixing matrixA used in our simulations consisted of uniformly distributed random
numbers. For achieving statistical reliability, the experiment was repeated over 100
different realizations of the input data. For each of the 100 realizations, the accuracy
was measured using the error index E�. The computational load was measured in
floating point operations needed for convergence.

Fig. 14.1 shows a schematic diagram of the computational load vs. the statistical
performance. The boxes typically contain 80% of the 100 trials, thus representing
standard outcomes.

As for statistical performance, Fig. 14.1 shows that best results are obtained by
using a tanh nonlinearity (with the right sign). This was to be expected according
to the theoretical analysis of Section 14.3. tanh is a good nonlinearity especially
for supergaussian ICs as in this experiment. The kurtosis-based FastICA is clearly
inferior, especially in the deflationary version. Note that the statistical performance
only depends on the nonlinearity, and not on the optimization method, as explained
in Section 14.1. All the algorithms using tanh have pretty much the same statistical
performance. Note also that no outliers were added to the data, so the robustness of
the algorithms is not measured here.
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Fig. 14.1 Computational requirements in flops versus the statistical error index E�.
(Reprinted from [147], reprint permission and copyright by World Scientific, Singapore.)

Looking at the computational load, one sees clearly that FastICA requires the
smallest amount of computation. Of the on-line algorithms, NPCA-RLS converges
fastest, probably due to its roughly optimal determination of learning parameters. For
the other on-line algorithms, the learning parameter was a constant, determined by
making some preliminary experiments so that a value providing good convergence
was found. These ordinary gradient-type algorithms have a computational load that
is about 20–50 times larger than for FastICA.

To conclude, the best results from a statistical viewpoint are obtained when using
the tanh nonlinearity with any algorithm. (Some algorithms, especially the tensorial
ones, cannot use the tanh nonlinearity, but these were excluded from this comparison
for reasons discussed earlier.) As for the computational load, the experiments show
that the FastICA algorithm is much faster than the gradient algorithms.

Convergence speed of on-line algorithms Next, we studied the convergence
speeds of the on-line algorithms. Fixed-point algorithms do not appear in this com-
parison, because they are of a different type and a direct comparison is not possible.
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Fig. 14.2 Convergence speed of on-line ICA algorithms as a function of required floating-
point operations for 10 supergaussian ICs. (Reprinted from [147], reprint permission and
copyright by World Scientific, Singapore.)

The results (shown in Fig. 14.2) are averages of 10 trials for 10 supergaussian ICs
(for which all the algorithms worked without on-line estimation of kurtosis). The
main observation is that the recursive least-squares version of the nonlinear PCA al-
gorithm (NPCA-RLS) is clearly the fastest converging of the on-line algorithms. The
difference between NPCA-RLS and the other algorithms could probably be reduced
by using simulated annealing or other more sophisticated technique for determining
the learning parameters.

For subgaussian ICs, the results were qualitatively similar to those in Fig. 14.2,
except that sometimes the EASI algorithm may converge even faster than NPCA-RLS.
However, sometimes its convergence speed was the poorest among the compared
algorithms. Generally, a weakness of on-line algorithms using stochastic gradients
is that they are fairly sensitive to the choice of the learning parameters.
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and copyright by World Scientific, Singapore.)

Error for increasing number of components We also made a short investi-
gation on how the statistical performances of the algorithms change with increasing
number of components. In Fig. 14.3, the error (square root of the error index E�) is
plotted as the function of the number of supergaussian ICs. The results are median
values over 50 different realizations of the input data. For more than five ICs, the
number of data samples was increased so that it was proportional to the square of
the number of ICs. The natural gradient ML algorithm (ACY), and its version with
adaptive nonlinearity (ExtBS), achieve some of the best accuracies, behaving very
similarly. The basic fixed-point algorithm (FP) using a cubic nonlinearity has the
poorest accuracy, but its error increases only slightly after seven ICs. On the other
hand, the version of the fixed-point algorithm which uses symmetric orthogonaliza-
tion and tanh nonlinearity (FPsymth) performs as well as the natural gradient ML
algorithm. Again, we see that it is the nonlinearity that is the most important in
determining statistical performance. For an unknown reason, the errors of the EASI
and NPCA-RLS algorithms have a peak around 5–6 ICs. For a larger number of
ICs, the accuracy of the NPCA-RLS algorithm is close to the best algorithms, while
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the error of EASI increases linearly with the number of independent components.
However, the error of all the algorithms is tolerable for most practical purposes.

Effect of noise In [147], the effect of additive gaussian noise on the performance
of ICA algorithms has been studied, too. The first conclusion is that the estimation
accuracy degrades fairly smoothly until the noise power increases up to ��� dB of
the signal power. If the amount of noise is increased even more, it may happen that
the studied ICA algorithms are not able to separate all the sources. In practice, noise
smears the separated ICs or sources, making the separation results almost useless if
there is a lot of noise present.

Another observation is that once there is even a little noise present in the data,
the error strongly depends on the condition number of the mixing matrix A. The
condition number of a matrix [320, 169] describes how close to singularity it is.

14.4.3 Comparisons with real-world data

We have compared in [147] the preceding ICA algorithms using three different
real-world data sets. The applications were projection pursuit for well-known crab
and satellite data sets, and finding interesting source signals from the biomedical
magnetoencephalographic data (see Chapter 22). For the real-world data, the true
independent components are unknown, and the assumptions made in the standard
ICA model may not hold, or hold only approximately. Hence it is only possible to
compare the performances of the ICA algorithms with each other, in the application
at hand.

The following general conclusions can be made from these experiments [147]:

1. ICA is a robust technique. Even though the assumption of statistical indepen-
dence is not strictly fulfilled, the algorithms converge towards a clear set of
components (MEG data), or a subspace of components whose dimension is
much smaller than the dimension of the problem (satellite data). This is a good
characteristic encouraging the use of ICA as a general data analysis tool.

2. The FastICA algorithm and the natural gradient ML algorithm with adaptive
nonlinearity (ExtBS) yielded usually similar results with real-world data. This
is not surprising, because there exists a close theoretical connection between
these algorithms, as discussed in Chapter 9. Another pair of similarly behaving
algorithms consisted of the EASI algorithm and the nonlinear PCA algorithm
using recursive least-squares (NPCA-RLS).

3. In difficult real-world problems, it is useful to apply several different ICA
algorithms, because they may reveal different ICs from the data. For the MEG
data, none of the compared algorithms was best in separating all types of source
signals.
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been explicitly discussed in [69]. The interpretation of nonlinear PCA criteria as
maximum likelihood estimation was presented in [236]. The connections between
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The theoretical analysis of the performance of the estimators is taken from [193].
See [69] for more information, especially on the effect of the decorrelation constraint
on the estimator. On robustness and influence functions, see such classic texts as
[163, 188].

More details on the experimental comparison can be found in [147].

14.6 SUMMARY OF BASIC ICA

Now we summarize Part II. This part treated the estimation of the basic ICA model,
i.e., the simplified model with no noise or time-structure, and a square mixing
matrix. The observed data x � �x�� ���� xn�

T is modeled as a linear transformation
of components s � �s�� ���� sn�

T that are statistically independent:

x � As (14.15)

This is a rather well-understood problem for which several approaches have been
proposed. What distinguished ICA from PCA and classic factor analysis is that the
nongaussian structure of the data is taken into account. This higher-order statistical
information (i.e., information not contained in the mean and the covariance matrix)
can be utilized, and therefore, the independent components can be actually separated,
which is not possible by PCA and classic factor analysis.

Often, the data is preprocessed by whitening (sphering), which exhausts the second
order information that is contained in the covariance matrix, and makes it easier to
use the higher-order information:

z � Vx � �VA�s (14.16)

The linear transformation VA in the model is then reduced to an orthogonal one,
i.e., a rotation. Thus, we are searching for an orthogonal matrixW so that y �Wz

should be good estimates of the independent components.
Several approaches can then be taken to utilize the higher-order information. A

principled, yet intuitive approach is given by finding linear combinations of maximum
nongaussianity, as motivated by the central limit theorem. Sums of nongaussian
random variables tend to be closer to gaussian that the original ones. Therefore if
we take a linear combination y �

P
i
wizi of the observed (whitened) variables,
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this will be maximally nongaussian if it equals one of the independent components.
Nongaussianity can be measured by kurtosis or by (approximations of) negentropy.
This principle shows the very close connection between ICA and projection pursuit,
in which the most nongaussian projections are considered as the interesting ones.

Classic estimation theory directly gives another method for ICA estimation: max-
imum likelihood estimation. An information-theoretic alternative is to minimize the
mutual information of the components. All these principles are essentially equiva-
lent or at least closely related. The principle of maximum nongaussianity has the
additional advantage of showing how to estimate the independent components one-
by-one. This is possible by a deflationary orthogonalization of the estimates of the
individual independent components.

With every estimation method, we are optimizing functions of expectations of
nonquadratic functions, which is necessary to gain access to higher-order informa-
tion. Nonquadratic functions usually cannot be maximized simply by solving the
equations: Sophisticated numerical algorithms are necessary.

The choice of the ICA algorithm is basically a choice between on-line and batch-
mode algorithms. In the on-line case, the algorithms are obtained by stochastic
gradient methods. If all the independent components are estimated in parallel, the
most popular algorithm in this category is natural gradient ascent of likelihood. The
fundamental equation in this method is

W�W� ��I� g�y�yT �W (14.17)

where the component-wise nonlinear function g is determined from the log-densities
of the independent components; see Table 9.1 for details.

In the more usual case, where the computations are made in batch-mode (off-
line), much more efficient algorithms are available. The FastICA algorithm is a very
efficient batch algorithm that can be derived either from a fixed-point iteration or as
an approximate Newton method. The fundamental iteration in FastICA is, for one
row w of W:

w� Efzg�wT z�g �Efg��wT z�gw (14.18)

where the nonlinearity g can be almost any smooth function, and w should be
normalized to unit norm at every iteration. FastICA can be used to estimate the
components either one-by-one by finding maximally nongaussian directions (see
Tables 8.3), or in parallel by maximizing nongaussianity or likelihood (see Table 8.4
or Table 9.2).

In practice, before application of these algorithms, suitable preprocessing is often
necessary (Chapter 13). In addition to the compulsory centering and whitening, it is
often advisable to perform principal component analysis to reduce the dimension of
the data, or some time filtering by taking moving averages.
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Appendix Proofs

Here we prove Theorem 14.1. Making the change of variable q � ATb, the equation defining
the optimal solutions �q becomes

X

t

stg��q
T
st� � �

X

t

sts
T

t �q (A.1)

where t � �� ���� T is the sample index, T is the sample size, and � is a Lagrangian multiplier..
Without loss of generality, let us assume that �q is near the ideal solution q � ��� �� �� ����. Note
that due to the constraint Ef�bTx��g � kqk� � �, the variance of the first component of �q,
denoted by �q� , is of a smaller order than the variance of the vector of other components, denoted
by �q��. Excluding the first component in (A.1), and making the first-order approximation
g��qT s� � g�s�� � g��s���q

T

��s��, where also s�� denotes s without its first component, one
obtains after some simple manipulations

�p
T

X

t

s���g�s��� �s�	 �
�

T

X

t

s����sT��g
��s�� � �s

T

��	�q��

p
T

(A.2)

where the sample index t has been dropped for simplicity. Making the first-order approximation
� � Efs�g�s��g, one can write (A.2) in the form u � v�q��

p
T where v converges to the

identity matrix multiplied by Efs�g�s��g � Efg��s��g, and u converges to a variable that
has a normal distribution of zero mean whose covariance matrix equals the identity matrix
multiplied by Efg��s��g � �Efs�g�s��g��. This implies the theorem, since �q�� � B��

�b,
where B�� is the inverse of AT without its first row.
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15
Noisy ICA

In real life, there is always some kind of noise present in the observations. Noise
can correspond to actual physical noise in the measuring devices, or to inaccuracies
of the model used. Therefore, it has been proposed that the independent component
analysis (ICA) model should include a noise term as well. In this chapter, we consider
different methods for estimating the ICA model when noise is present.

However, estimation of the mixing matrix seems to be quite difficult when noise
is present. It could be argued that in practice, a better approach could often be to
reduce noise in the data before performing ICA. For example, simple filtering of
time-signals is often very useful in this respect, and so is dimension reduction by
principal component analysis (PCA); see Sections 13.1.2 and 13.2.2.

In noisy ICA, we also encounter a new problem: estimation of the noise-free
realizations of the independent components (ICs). The noisy model is not invertible,
and therefore estimation of the noise-free components requires new methods. This
problem leads to some interesting forms of denoising.

15.1 DEFINITION

Here we extend the basic ICA model to the situation where noise is present. The
noise is assumed to be additive. This is a rather realistic assumption, standard in
factor analysis and signal processing, and allows for a simple formulation of the noisy
model. Thus, the noisy ICA model can be expressed as

x � As� n (15.1)

293
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where n � �n�� ���� nn�  is the noise vector. Some further assumptions on the noise
are usually made. In particular, it is assumed that

1. The noise is independent from the independent components.

2. The noise is gaussian.

The covariance matrix of the noise, say �, is often assumed to of the form �
�
I, but

this may be too restrictive in some cases. In any case, the noise covariance is assumed
to be known. Little work on estimation of an unknown noise covariance has been
conducted; see [310, 215, 19].

The identifiability of the mixing matrix in the noisy ICA model is guaranteed
under the same restrictions that are sufficient in the basic case, 1 basically meaning
independence and nongaussianity. In contrast, the realizations of the independent
components si can no longer be identified, because they cannot be completely sepa-
rated from noise.

15.2 SENSOR NOISE VS. SOURCE NOISE

In the typical case where the noise covariance is assumed to be of the form �
�
I, the

noise in Eq. (15.1) could be considered as “sensor” noise. This is because the noise
variables are separately added on each sensor, i.e., observed variable xi. This is in
contrast to “source” noise, in which the noise is added to the independent components
(sources). Source noise can be modeled with an equation slightly different from the
preceding, given by

x � A�s� n� (15.2)

where again the covariance of the noise is diagonal. In fact, we could consider the
noisy independent components, given by �si � si � ni, and rewrite the model as

x � A�s (15.3)

We see that this is just the basic ICA model, with modified independent components.
What is important is that the assumptions of the basic ICA model are still valid: the
components of �s are nongaussian and independent. Thus we can estimate the model
in (15.3) by any method for basic ICA. This gives us a perfectly suitable estimator
for the noisy ICA model. This way we can estimate the mixing matrix and the noisy
independent components. The estimation of the original independent components
from the noisy ones is an additional problem, though; see below.

This idea is, in fact, more general. Assume that the noise covariance has the form

� � AA
T
�
� (15.4)

1This seems to be admitted by the vast majority of ICA researchers. We are not aware of any rigorous
proofs of this property, though.

T
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Then the noise vector can be transformed into another one �n � A
��
n, which can be

called equivalent source noise. Then the equation (15.1) becomes

x � As�A�n � A�s� �n� (15.5)

The point is that the covariance of �n is ��
I, and thus the transformed components in

s��n are independent. Thus, we see again that the mixing matrixA can be estimated
by basic ICA methods.

To recapitulate: if the noise is added to the independent components and not to the
observed mixtures, or has a particular covariance structure, the mixing matrix can be
estimated by ordinary ICA methods. The denoising of the independent components
is another problem, though; it will be treated in Section 15.5 below.

15.3 FEW NOISE SOURCES

Another special case that reduces to the basic ICA model can be found, when the
number of noise components and independent components is not very large. In
particular, if their total number is not larger than the number of mixtures, we again
have an ordinary ICA model, in which some of the components are gaussian noise and
others are the real independent components. Such a model could still be estimated
by the basic ICA model, using one-unit algorithms with less units than the dimension
of the data.

In other words, we could define the vector of the independent components as
�s � �s�� ���� sk� n�� ���� nl�

T where the si� i � �� ���� k are the “real” independent
components and the ni� i � �� ���� l are the noise variables. Assume that the number
of mixtures equals k � l, that is the number of real ICs plus the number of noise
variables. In this case, the ordinary ICA model holds with x � A�s, where A is
a matrix that incorporates the mixing of the real ICs and the covariance structure
of the noise, and the number of the independent components in �s is equal to the
number of observed mixtures. Therefore, finding the k most nongaussian directions,
we can estimate the real independent components. We cannot estimate the remaining
dummy independent components that are actually noise variables, but we did not
want to estimate them in the first place.

The applicability of this idea is quite limited, though, since in most cases we want
to assume that the noise is added on each mixture, in which case k � l, the number
of real ICs plus the number of noise variables, is necessarily larger than the number
of mixtures, and the basic ICA model does not hold for �s.

15.4 ESTIMATION OF THE MIXING MATRIX

Not many methods for noisy ICA estimation exist in the general case. The estimation
of the noiseless model seems to be a challenging task in itself, and thus the noise is
usually neglected in order to obtain tractable and simple results. Moreover, it may
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be unrealistic in many cases to assume that the data could be divided into signals and
noise in any meaningful way.

Here we treat first the problem of estimating the mixing matrix. Estimation of the
independent components will be treated below.

15.4.1 Bias removal techniques

Perhaps the most promising approach to noisy ICA is given by bias removal tech-
niques. This means that ordinary (noise-free) ICA methods are modified so that the
bias due to noise is removed, or at least reduced.

Let us denote the noise-free data in the following by

v � As (15.6)

We can now use the basic idea of finding projections, say wT
v, in which nongaus-

sianity, is locally maximized for whitened data, with constraint kwk � �. As shown
in Chapter 8, projections in such directions give consistent estimates of the indepen-
dent components, if the measure of nongaussianity is well chosen. This approach
could be used for noisy ICA as well, if only we had measures of nongaussianity
which are immune to gaussian noise, or at least, whose values for the original data
can be easily estimated from noisy observations. We have wT

x � w
T
v � wT

n,
and thus the point is to measure the nongaussianity ofwT

v from the observedwT
x

so that the measure is not affected by the noise wT
n.

Bias removal for kurtosis If the measure of nongaussianity is kurtosis (the
fourth-order cumulant), it is almost trivial to construct one-unit methods for noisy
ICA, because kurtosis is immune to gaussian noise. This is because the kurtosis of
w
T
x equals the kurtosis of wT

v, as can be easily proven by the basic properties of
kurtosis.

It must be noted, however, that in the preliminary whitening, the effect of noise
must be taken into account; this is quite simple if the noise covariance matrix is
known. Denoting by C � EfxxT g the covariance matrix of the observed noisy
data, the ordinary whitening should be replaced by the operation

�x � �C�������x (15.7)

In other words, the covariance matrixC�� of the noise-free data should be used in
whitening instead of the covariance matrixC of the noisy data. In the following, we
call this operation “quasiwhitening”. After this operation, the quasiwhitened data �x
follows a noisy ICA model as well:

�x � Bs� �n (15.8)

where B is orthogonal, and �n is a linear transform of the original noise in (15.1).
Thus, the theorem in Chapter 8 is valid for �x, and finding local maxima of the absolute
value of kurtosis is a valid method for estimating the independent components.
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Bias removal for general nongaussianity measures As was argued in
Chapter 8, it is important in many applications to use measures of nongaussianity
that have better statistical properties than kurtosis. We introduced the following
measure:

JG�w
T
v� � �EfG�wT

v�g �EfG���g�� (15.9)

where the function G is a sufficiently regular nonquadratic function, and � is a
standardized gaussian variable.

Such a measure could be used for noisy data as well, if only we were able to
estimate JG�wT

v� of the noise-free data from the noisy observations x. Denoting
by z a nongaussian random variable, and by n a gaussian noise variable of variance
��, we should be able to express the relation between EfG�z�g and EfG�z � n�g
in simple algebraic terms. In general, this relation seems quite complicated, and can
be computed only using numerical integration.

However, it was shown in [199] that for certain choices of G, a similar relation
becomes very simple. The basic idea is to choose G to be the density function of
a zero-mean gaussian random variable, or a related function. These nonpolynomial
moments are called gaussian moments.

Denote by

�c�x� �
�

c
��

x

c
� �

�p
��c

exp�� x�

�c�
� (15.10)

the gaussian density function with variance c�, and by �
�k�
c �x� the kth (k � 	)

derivative of �c�x�. Denote further by �
��k�
c the kth integral function of �c�x�,

obtained by ���k�c �x� �
R x
� �

��k���
c ���d�, where we define ����c �x� � �c�x�. (The

lower integration limit 	 is here quite arbitrary, but has to be fixed.) Then we have
the following theorem [199]:

Theorem 15.1 Let z be any nongaussian random variable, and n an independent
gaussian noise variable of variance ��. Define the gaussian function� as in (15.10).
Then for any constant c � ��, we have

Ef�c�z�g � Ef�d�z � n�g (15.11)

with d �
p
c� � ��. Moreover, (15.11) still holds when � is replaced by ��k� for any

integer index k.

The theorem means that we can estimate the independent components from noisy
observations by maximizing a general contrast function of the form (15.9), where
the direct estimation of the statistics EfG�wT

v�g of the noise-free data is made
possible by usingG�u� � �

�k�
c �u�. We call the statistics of the formEf��k�c �wT

v�g
the gaussian moments of the data. Thus, for quasiwhitened data 
x, we maximize the
following contrast function:

max
kwk��

�Ef��k�
d�w��w

T 
x�g �Ef��k�c ���g�� (15.12)
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with d�w� �
p
c� �wT ��w. This gives a consistent (i.e., convergent) method of

estimating the noisy ICA model, as was shown in Chapter 8.
To use these results in practice, we need to choose some values for k. In fact, c

disappears from the final algorithm, so value for this parameter need not be chosen.
Two indices k for the gaussian moments seem to be of particular interest: k � � and
k � ��. The first corresponds to the gaussian density function; its use was proposed
in Chapter 8. The case k � �� is interesting because the contrast function is then
of the form of a (negative) log-density of a supergaussian variable. In fact, ������u�
can be very accurately approximated byG�u� � ��� log coshu, which was also used
in Chapter 8.

FastICA for noisy data Using the unbiased measures of nongaussianity given in
this section, we can derive a variant of the FastICA algorithm [198]. Using kurtosis
or gaussian moments give algorithms of a similar form, just like in the noise-free
case.

The algorithm takes the form [199, 198]:

w
� � Ef�xg�wT �x�g � �I� ���wEfg��wT �x�g (15.13)

where w�, the new value of w, is normalized to unit norm after every iteration, and
�� is given by

�� � Ef�n�nT g � �C�������
��C������� (15.14)

The function g is here the derivative ofG, and can thus be chosen among the following:

g��u� � tanh�u�� g��u� � u exp��u����� g��u� � u�

(15.15)

where g� is an approximation of �����, which is the gaussian cumulative distribution
function (these relations hold up to some irrelevant constants). These functions cover
essentially the nonlinearities ordinarily used in the FastICA algorithm.

15.4.2 Higher-order cumulant methods

A different approach to estimation of the mixing matrix is given by methods using
higher-order cumulants only. Higher-order cumulants are unaffected by gaussian
noise (see Section 2.7), and therefore any such estimation method would be immune
to gaussian noise. Such methods can be found in [63, 263, 471]. The problem is,
however, that such methods often use cumulants of order 6. Higher-order cumulants
are sensitive to outliers, and therefore methods using cumulants of orders higher
than 4 are unlikely to be very useful in practice. A nice feature of this approach is,
however, that we do not need to know the noise covariance matrix.

Note that the cumulant-based methods in Part II used both second- and fourth-
order cumulants. Second-order cumulants are not immune to gaussian noise, and
therefore the cumulant-based method introduced in the previous chapters would not
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be immune either. Most of the cumulant-based methods could probably be modified
to work in the noisy case, as we did in this chapter for methods maximizing the
absolute value of kurtosis.

15.4.3 Maximum likelihood methods

Another approach for estimation of the mixing matrix with noisy data is given by
maximum likelihood (ML) estimation. First, one could maximize the joint likelihood
of the mixing matrix and the realizations of the independent components, as in
[335, 195, 80]. This is given by

logL�A� s���� ���� s�T �� �

�

TX
t��

�
�

�
kAs�t�� x�t�k�

���
�

nX
i��

fi�si�t��

�
� C (15.16)

where kmk�
���

is defined asmT
�
��
m, the s�t� are the realizations of the indepen-

dent components, and C is an irrelevant constant. The fi are the logarithms of the
probability density functions (pdf’s) of the independent components. Maximization
of this joint likelihood is, however, computationally very expensive.

A more principled method would be to maximize the (marginal) likelihood of
the mixing matrix, and possibly that of the noise covariance, which was done in
[310]. This was based on the idea of approximating the densities of the independent
components as gaussian mixture densities; the application of the EM algorithm
then becomes feasible. In [42], the simpler case of discrete-valued independent
components was treated. A problem with the EM algorithm is, however, that the
computational complexity grows exponentially with the dimension of the data.

A more promising approach might be to use bias removal techniques so as to
modify existing ML algorithms to be consistent with noisy data. Actually, the bias
removal techniques given here can be interpreted as such methods; a related method
was given in [119].

Finally, let us mention a method based on the geometric interpretation of the
maximum likelihood estimator, introduced in [33], and a rather different approach
for narrow-band sources, introduced in [76].

15.5 ESTIMATION OF THE NOISE-FREE INDEPENDENT
COMPONENTS

15.5.1 Maximum a posteriori estimation

In noisy ICA, it is not enough to estimate the mixing matrix. Inverting the mixing
matrix in (15.1), we obtain

Wx � s�Wn (15.17)
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In other words, we only get noisy estimates of the independent components. There-
fore, we would like to obtain estimates of the original independent components �si
that are somehow optimal, i.e., contain minimum noise.

A simple approach to this problem would be to use the maximum a posteriori
(MAP) estimates. See Section 4.6.3 for the definition. Basically, this means that we
take the values that have maximum probability, given the x. Equivalently, we take
as �si those values that maximize the joint likelihood in (15.16), so this could also be
called a maximum likelihood (ML) estimator.

To compute the MAP estimator, let us take the gradient of the log-likelihood
(15.16) with respect to the s�t�� t � �� ���� T and equate this to 0.  Thus we obtain the
equation

�AT
�
�� �A�s�t�� �AT

�
��
x�t� � f ���s�t�� � (15.18)

where the derivative of the log-density, denoted by f �, is applied separately on each
component of the vector �s�t�.

In fact, this method gives a nonlinear generalization of classic Wiener filtering pre-
sented in Section 4.6.2. An alternative approach would be to use the time-structure
of the ICs (see Chapter 18) for denoising. This results in a method resembling the
Kalman filter; see [250, 249].

15.5.2 Special case of shrinkage estimation

Solving for the�s is not easy, however. In general, we must use numerical optimization.
A simple special case is obtained if the noise covariance is assumed to be of the same
form as in (15.4) [200, 207]. This corresponds to the case of (equivalent) source
noise. Then (15.18) gives

�s � g� �A��
x� (15.19)

where the scalar component-wise function g is obtained by inverting the relation

g���u� � u� ��f ��u� (15.20)

Thus, the MAP estimator is obtained by inverting a certain function involving f �, or
the score function [395] of the density of s. For nongaussian variables, the score
function is nonlinear, and so is g.

In general, the inversion required in (15.20) may be impossible analytically. Here
we show three examples, which will be shown to have great practical value in
Chapter 21, where the inversion can be done easily.

Example 15.1 Assume that s has a Laplacian (or double exponential) distribution of
unit variance. Then p�s� � exp��p�jsj��p�, f ��s� �

p
� sign�s�, and g takes the

form

g�u� � sign�u�max��� juj �
p
���� (15.21)

0 
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(Rigorously speaking, the function in (15.20) is not invertible in this case, but ap-
proximating it by a sequence of invertible functions, (15.21) is obtained as the limit.)
The function in (15.21) is a shrinkage function that reduces the absolute value of its
argument by a fixed amount, as depicted in Fig 15.1. Intuitively, the utility of such a
function can be seen as follows. Since the density of a supergaussian random variable
(e.g., a Laplacian random variable) has a sharp peak at zero, it can be assumed that
small values of the noisy variable correspond to pure noise, i.e., to s � �. Thresh-
olding such values to zero should thus reduce noise, and the shrinkage function can
indeed be considered a soft thresholding operator.

Example 15.2 More generally, assume that the score function is approximated as a
linear combination of the score functions of the gaussian and the Laplacian distribu-
tions:

f ��s� � as� b sign�s� (15.22)

with a� b � �. This corresponds to assuming the following density model for s:

p�s� � C exp��as���� bjsj� (15.23)

where C is an irrelevant scaling constant. This is depicted in Fig. 15.2. Then we
obtain

g�u� �
�

� � ��a
sign�u�max��� juj � b��� (15.24)

This function is a shrinkage with additional scaling, as depicted in Fig 15.1.

Example 15.3 Yet another possibility is to use the following strongly supergaussian
probability density:

p�s� �
�

�d

��� �� �� ��� ����	�������

�
p
� ��� ���� � js�dj	�����

(15.25)

with parameters �� d � �, see Fig. 15.2. When � � �, the Laplacian density is
obtained as the limit. The strong sparsity of the densities given by this model can be
seen e.g., from the fact that the kurtosis [131, 210] of these densities is always larger
than the kurtosis of the Laplacian density, and reaches infinity for � � �. Similarly,
p��� reaches infinity as � goes to zero. The resulting shrinkage function given by
(15.20) can be obtained after some straightforward algebraic manipulations as:

g�u� � sign�u�max���
juj � ad

�
�

�

�

p
�juj� ad�� � 
����� �� �

(15.26)

where a �
p
��� � ����, and g�u� is set to zero in case the square root in (15.26)

is imaginary. This is a shrinkage function that has a stronger thresholding flavor, as
depicted in Fig. 15.1.
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Fig. 15.1 Plots of the shrinkage functions. The effect of the functions is to reduce the
absolute value of its argument by a certain amount which depends on the noise level. Small
arguments are set to zero. This reduces gaussian noise for sparse random variables. Solid line:
shrinkage corresponding to Laplacian density as in (15.21). Dashed line: typical shrinkage
function obtained from (15.24). Dash-dotted line: typical shrinkage function obtained from
(15.26). For comparison, the line x � y is given by dotted line. All the densities were
normalized to unit variance, and noise variance was fixed to ��.
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Fig. 15.2 Plots of densities corresponding to models (15.23) and (15.25) of the sparse
components. Solid line: Laplacian density. Dashed line: a typical moderately supergaussian
density given by (15.23). Dash-dotted line: a typical strongly supergaussian density given by
(15.25). For comparison, gaussian density is given by dotted line.
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15.6 DENOISING BY SPARSE CODE SHRINKAGE

Although the basic purpose of noisy ICA estimation is to estimate the ICs, the model
can be used to develop an interesting denoising method as well.

Assume that we observe a noisy version,

x � v � n (15.27)

of the data x, which has previously been modeled by ICA

v � As (15.28)

To denoise x, we can compute estimates �s of the independent components by the
above MAP estimation procedure. Then we can reconstruct the data as

�v � A�s (15.29)

The point is that if the mixing matrix is orthogonal and the noise covariance is of
the form ��I, the condition in (15.4) is fulfilled. This condition of the noise is a
common one. Thus we could approximate the mixing matrix by an orthogonal one,
for example the one obtained by orthogonalization of the mixing matrix as in (8.48).

This method is called sparse code shrinkage [200, 207], since it means that we
transform the data into a sparse, i.e., supergaussian code, and then apply shrinkage
on that code. To summarize, the method is as follows.

1. First, using a noise-free training set of v, estimate ICA and orthogonalize the
mixing matrix. Denote the orthogonal mixing matrix by WT . Estimate a
density model pi�si� for each sparse component, using the models in (15.23)
and (15.25).

2. Compute for each noisy observation x�t� the corresponding noisy sparse com-
ponents u�t� � Wx�t�. Apply the shrinkage nonlinearity gi��� as defined in
(15.24), or in (15.26), on each component ui�t�, for every observation index t.
Denote the obtained components by �si�t� � gi�ui�t��.

3. Invert the transform to obtain estimates of the noise-free data, given by �v�t� �
W

T�s�t�.

For experiments using sparse code shrinkage on image denoising, see Chapter 21.
In that case, the method is closely related to wavelet shrinkage and “coring” methods
[116, 403].
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15.7 CONCLUDING REMARKS

In this chapter, we treated the estimation of the ICA model when additive sensor
noise is present. First of all, it was shown that in some cases, the mixing matrix can
be estimated with basic ICA methods without any further complications. In cases
where this is not possible, we discussed bias removal techniques for estimation of
the mixing matrix, and introduced a bias-free version of the FastICA algorithm.

Next, we considered how to estimate the noise-free independent components, i.e.,
how to denoise the initial estimates of the independent components. In the case of
supergaussian data, it was shown that this led to so-called shrinkage estimation. In
fact, we found an interesting denoising procedure called sparse code shrinkage.

Note that in contrast to Part II where we considered the estimation of the basic
ICA model, the material in this chapter is somewhat speculative in character. The
utility of many of the methods in this chapter has not been demonstrated in practice.
We would like to warn the reader not to use the noisy ICA methods lightheartedly:
It is always advisable to first attempt to denoise the data so that basic ICA methods
can be used, as discussed in Chapter 13.



16
ICA with Overcomplete

Bases

A difficult problem in independent component analysis (ICA) is encountered if the
number of mixturesxi is smaller than the number of independent components si. This
means that the mixing system is not invertible: We cannot obtain the independent
components (ICs) by simply inverting the mixing matrix A. Therefore, even if
we knew the mixing matrix exactly, we could not recover the exact values of the
independent components. This is because information is lost in the mixing process.

This situation is often called ICA with overcomplete bases. This is because we
have in the ICA model

x � As �

X

i

aisi (16.1)

where the number of “basis vectors”, ai, is larger than the dimension of the space of
x: thus this basis is “too large”, or overcomplete. Such a situation sometimes occurs
in feature extraction of images, for example.

As with noisy ICA, we actually have two different problems. First, how to estimate
the mixing matrix, and second, how to estimate the realizations of the independent
components. This is in stark contrast to ordinary ICA, where these two problems are
solved at the same time. This problem is similar to the noisy ICA in another respect
as well: It is much more difficult than the basic ICA problem, and the estimation
methods are less developed.
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16.1 ESTIMATION OF THE INDEPENDENT COMPONENTS

16.1.1 Maximum likelihood estimation

Many methods for estimating the mixing matrix use as subroutines methods that
estimate the independent components for a known mixing matrix. Therefore, we
shall first treat methods for reconstructing the independent components, assuming
that we know the mixing matrix. Let us denote by m the number of mixtures and by
n the number of independent components. Thus, the mixing matrix has size m� n

with n � m, and therefore it is not invertible.
The simplest method of estimating the independent components would be to use

the pseudoinverse of the mixing matrix. This yields

�s � A
T �AAT ���x (16.2)

In some situations, such a simple pseudoinverse gives a satisfactory solution, but in
many cases we need a more sophisticated estimate.

A more sophisticated estimator of s can be obtained by maximum likelihood
(ML) estimation [337, 275, 195], in a manner similar to the derivation of the ML or
maximum a posteriori (MAP) estimator of the noise-free independent components in
Chapter 15. We can write the posterior probability of s as follows:

p�sjx�A� � �x�As
Y

i

pi�si� (16.3)

where �x�As is an indicator function that is 1 if x � As and 0 otherwise. The (prior)
probability densities of the independent components are given by pi�si�. Thus, we
obtain the maximum likelihood estimator of s as

�s � arg max
x�As

X

i

log pi�si� (16.4)

Alternatively, we could assume that there is noise present as well. In this case, we
get a likelihood that is formally the same as with ordinary noisy mixtures in (15.16).
The only difference is in the number of components in the formula.

The problem with the maximum likelihood estimator is that it is not easy to
compute. This optimization cannot be expressed as a simple function in analytic
form in any interesting case. It can be obtained in closed form if the si have
gaussian distribution: In this case the optimum is given by the pseudoinverse in (16.2).
However, since ICA with gaussian variables is of little interest, the pseudoinverse is
not a very satisfactory solution in many cases.

In general, therefore, the estimator given by (16.4) can only be obtained by
numerical optimization. A gradient ascent method can be easily derived. One
case where the optimization is easier than usual is when the si have a Laplacian
distribution:

pi�si� �
�p
�
exp�

p
�jsij� (16.5)�
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Ignoring uninteresting constants, we have

�s � arg
x�As

X

i

jsij (16.6)

which can be formulated as a linear program and solved by classic methods for linear
programming [275].

16.1.2 The case of supergaussian components

Using a supergaussian distribution, such as the Laplacian distribution, is well justified
in feature extraction, where the components are supergaussian. Using the Laplacian
density also leads to an interesting phenomenon: The ML estimator gives coefficients
�si of which only m are nonzero. Thus, only the minimum number of the components
are activated. Thus we obtain a sparse decomposition in the sense that the components
are quite often equal to zero.

It may seem at first glance that it is useless to try to estimate the ICs by ML
estimation, because they cannot be estimated exactly in any case. This is not so,
however; due to this phenomenon of sparsity, the ML estimation is very useful. In
the case where the independent components are very supergaussian, most of them
are very close to zero because of the large peak of the pdf at zero. (This is related to
the principle of sparse coding that will be treated in more detail in Section 21.2.)

Thus, those components that are not zero may not be very many, and the system
may be invertible for those components. If we first determine which components are
likely to be clearly nonzero, and then invert that part of the linear system, we may
be able to get quite accurate reconstructions of the ICs. This is done implicitly in
the ML estimation method. For example, assume that there are three speech signals
mixed into two mixtures. Since speech signals are practically zero most of the time
(which is reflected in their strong supergaussianity), we could assume that only two
of the signals are nonzero at the same time, and successfully reconstruct those two
signals [272].

16.2 ESTIMATION OF THE MIXING MATRIX

16.2.1 Maximizing joint likelihood

To estimate the mixing matrix, one can use maximum likelihood estimation. In
the simplest case of ML estimation, we formulate the joint likelihood of A and the
realization of the si, and maximize it with respect to all these variables. It is slightly
simpler to use a noisy version of the joint likelihood. This is of the same form as the
one in Eq. (15.16):

logL�A� s���� ���� s�T �� � �

TX

t��

�
�

���
kAs�t�� x�t�k� �

nX
i��

fi�si�t��

�
�C

(16.7)

min
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where �� is the noise variance, here assumed to be infinitely small, the s�t� are the
realizations of the independent components, and C is an irrelevant constant. The
functions fi are the log-densities of the independent components.

Maximization of (16.7) with respect to A and si could be accomplished by a
global gradient ascent with respect to all the variables [337]. Another approach
to maximization of the likelihood is to use an alternating variables technique [195],
in which we first compute the ML estimates of the si�t� for a fixed A and then,
using this new    we compute the ML estimates of the         and so on. The ML
estimate of the si�t� for a given A is given by the methods of the preceding section,
considering the noise to be infinitely small. The ML estimate of A for given si�t�
can be computed as

A � �
X

t

x�t�x�t�T ���
X

t

x�t�s�t�T (16.8)

This algorithm needs some extra stabilization, however. For example, normalizing
the estimates of the si to unit norm is necessary. Further stabilization can be obtained
by first whitening the data. Then we have (considering infinitely small noise)

EfxxT g � AA
T � I (16.9)

which means that the rows of A form an orthonormal system. This orthonormality
could be enforced after every step of (16.8), for further stabilization.

16.2.2 Maximizing likelihood approximations

Maximization of the joint likelihood is a rather crude method of estimation. From
a Bayesian viewpoint, what we really want to maximize is the marginal posterior
probability of the mixing matrix. (For basic concepts of Bayesian estimation, see
Section 4.6.)

A more sophisticated form of maximum likelihood estimation can be obtained
by using a Laplace approximation of the posterior distribution of A. This improves
the stability of the algorithm, and has been successfully used for estimation of
overcomplete bases from image data [274], as well as for separation of audio signals
[272]. For details on the Laplace approximation, see [275]. An alternative for the
Laplace approximation is provided by ensemble learning; see Section 17.5.1.

A promising direction of research is given by Monte Carlo methods. These are
a class of methods often used in Bayesian estimation, and are based on numerical
integration using stochastic algorithms. One method in this class, Gibbs sampling,
has been used in [338] for overcomplete basis estimation. Monte Carlo methods
typically give estimators with good statistical properties; the drawback is that they
are computationally very demanding.

Also, one could use an expectation-maximization (EM) algorithm [310, 19]. Using
gaussian mixtures as models for the distributions of the independent components, the
algorithm can be derived in analytical form. The problem is, however, that its
complexity grows exponentially with the dimension of s, and thus it can only be used

A,s i�t�,
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in small dimensions. Suitable approximations of the algorithm might alleviate this
limitation [19].

A very different approximation of the likelihood method was derived in [195],
in which a form of competitive neural learning was used to estimate overcomplete
bases with supergaussian data. This is a computationally powerful approximation
that seems to work for certain data sets. The idea is that the extreme case of
sparsity or supergaussianity is encountered when at most one of the ICs is nonzero
at any one time. Thus we could simply assume that only one of the components is
nonzero for a given data point, for example, the one with the highest value in the
pseudoinverse reconstruction. This is not a realistic assumption in itself, but it may
give an interesting approximation of the real situation in some cases.

16.2.3 Approximate estimation using quasiorthogonality

The maximum likelihood methods discussed in the preceding sections give a well-
justified approach to ICA estimation with overcomplete bases. The problem with
most of the methods in the preceding section is that they are computationally quite
expensive. A typical application of ICA with overcomplete bases is, however, feature
extraction. In feature extraction, we usually have spaces of very high dimensions.
Therefore, we show here a method [203] that is more heuristically justified, but has
the advantage of being not more expensive computationally than methods for basic
ICA estimation. This method is based on the FastICA algorithm, combined with the
concept of quasiorthogonality.

Sparse approximately uncorrelated decompositions Our heuristic ap-
proach is justified by the fact that in feature extraction for many kinds of natural
data, the ICA model is only a rather coarse approximation. In particular, the number
of potential “independent components” seems to be infinite: The set of such com-
ponents is closer to a continuous manifold than a discrete set. One evidence for
this is that classic ICA estimation methods give different basis vectors when started
with different initial values, and the number of components thus produced does not
seem to be limited. Any classic ICA estimation method gives a rather arbitrary col-
lection of components which are somewhat independent, and have sparse marginal
distributions.

We can also assume, for simplicity, that the data is prewhitened as a preprocessing
step, as in most ICA method in Part II. Then the independent components are simply
given by the dot-products of the whitened data vector z with the basis vectors ai.

Due to the preceding considerations, we assume in our approach that what is
usually needed, is a collection of basis vectors that has the following two properties:

1. The dot-products aT
i
z of the observed data with the basis vectors have sparse

(supergaussian) marginal distributions.

2. The aT
i
z should be approximately uncorrelated (“quasiuncorrelated”). Equiva-

lently, the vectors ai should be approximately orthogonal (“quasiorthogonal”).
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A decomposition with these two properties seems to capture the essential properties
of the decomposition obtained by estimation of the ICA model. Such decompositions
could be called sparse approximately uncorrelated decompositions.

It is clear that it is possible to find highly overcomplete basis sets that have the
first property of these two. Classic ICA estimation is usually based on maximizing
the sparseness (or, in general, nongaussianity) of the dot-products, so the existence
of several different classic ICA decompositions for a given image data set shows the
existence of decompositions with the first property.

What is not obvious, however, is that it is possible to find strongly overcomplete
decompositions such that the dot-products are approximately uncorrelated. The main
point here is that this is possible because of the phenomenon of quasiorthogonality.

Quasiorthogonality in high-dimensional spaces Quasiorthogonality [247]
is a somewhat counterintuitive phenomenon encountered in very high-dimensional
spaces. In a certain sense, there is much more room for vectors in high-dimensional
spaces. The point is that in an n-dimensional space, where n is large, it is possible
to have (say) �n vectors that are practically orthogonal, i.e., their angles are close to
90 degrees. In fact, when n grows, the angles can be made arbitrarily close to 90
degrees. This must be contrasted with small-dimensional spaces: If, for example,
n � �, even the maximally separated �n � � vectors exhibit angles of 45 degrees.

For example, in image decomposition, we are usually dealing with spaces whose
dimensions are of the order of 100. Therefore, we can easily find decompositions of,
say, 400 basis vectors, such that the vectors are quite orthogonal, with practically all
the angles between basis vectors staying above 80 degrees.

FastICA with quasiorthogonalization To obtain a quasiuncorrelated sparse
decomposition as defined above, we need two things. First, a method for finding
vectors ai that have maximally sparse dot-products, and second, a method of qua-
siorthogonalization of such vectors. Actually, most classic ICA algorithms can be
considered as maximizing the nongaussianity of the dot-products with the basis vec-
tors, provided that the data is prewhitened. (This was shown in Chapter 8.) Thus the
main problem here is constructing a proper method for quasidecorrelation.

We have developed two methods for quasidecorrelation: one of them is symmet-
ric and the other one is deflationary. This dichotomy is the same as in ordinary
decorrelation methods used in ICA. As above, it is here assumed that the data is
whitened.

A simple way of achieving quasiorthogonalization is to modify the ordinary
deflation scheme based on a Gram-Schmidt-like orthogonalization. This means
that we estimate the basis vectors one by one. When we have estimated p basis
vectors a�� ���� ap, we run the one-unit fixed-point algorithm for ap��, and after
every iteration step subtract from ap�� a certain proportion of the ’projections’
a
T
p��ajaj � j � �� ���� p of the previously estimated p vectors, and then renormalize
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ap��:

1.ap�� � ap�� � �
Pp

j�� a
T
p��ajaj

2.ap�� � ap���kap��k
(16.10)

where � is a constant determining the force of quasiorthogonalization. If � � �, we
have ordinary, perfect orthogonalization. We have found in our experiments that an
� in the range ���� ��� ���� is sufficient in spaces where the dimension is 64.

In certain applications it may be desirable to use a symmetric version of quasi-
orthogonalization, in which no vectors are “privileged” over others [210, 197]. This
can be accomplished, for example, by the following algorithm:

1. A� �

�
A� �

�
AA

T
A�

2. Normalize each column ofA to unit norm
(16.11)

which is closely related to the iterative symmetric orthogonalization method used for
basic ICA in Section 8.4.3. The present algorithm is simply doing one iteration of the
iterative algorithm. In some cases, it may be necessary to do two or more iterations,
although in the experiments below, just one iteration was sufficient.

Thus, the algorithm that we propose is similar to the FastICA algorithm as de-
scribed, e.g. in Section 8.3.5 in all other respects than the orthogonalization, which
is replaced by one of the preceding quasiorthogonalization methods.

Experiments with overcomplete image bases We applied our algorithm on
image windows (patches) of �� � pixels taken from natural images. Thus, we used
ICA for feature extraction as explained in detail in Chapter 21.

The mean of the image window (DC component) was removed as a preprocess-
ing step, so the dimension of the data was 63. Both deflationary and symmetric
quasiorthogonalization were used. The nonlinearity used in the FastICA algorithm
was the hyperbolic tangent. Fig. 16.1 shows an estimated approximately 4 times
overcomplete basis (with 240 components). The sample size was 14000. The results
shown here were obtained using the symmetric approach; the deflationary approach
yielded similar results, with the parameter � fixed at ���.

The results show that the estimated basis vectors are qualitatively quite similar
to those obtained by other, computationally more expensive methods [274]; they
are also similar to those obtained by basic ICA (see Chapter 21). Moreover, by
computing the dot-products between different basis vectors, we see that the basis is,
indeed, quasiorthogonal. This validates our heuristic approach.

16.2.4 Other approaches

We mention here some other algorithms for estimation of overcomplete bases. First,
in [341], independent components with binary values were considered, and a geo-
metrically motivated method was proposed. Second, a tensorial algorithm for the
overcomplete estimation problem was proposed in [63]. Related theoretical results
were derived in [58]. Third, a natural gradient approach was developed in [5]. Fur-
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Fig. 16.1 The basis vectors of a 4 times overcomplete basis. The dimension of the data is
63 (excluding the DC component, i.e., the local mean) and the number of basis vectors is 240.
The results are shown in the original space, i.e., the inverse of the preprocessing (whitening)
was performed. The symmetric approach was used. The basis vectors are very similar to
Gabor functions or wavelets, as is typical with image data (see Chapter 21).
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ther developments on estimation of overcomplete bases using methods similar to the
preceding quasiorthogonalization algorithm can be found in [208].

16.3 CONCLUDING REMARKS

The ICA problem becomes much more complicated if there are more independent
components than observed mixtures. Basic ICA methods cannot be used as such. In
most practical applications, it may be more useful to use the basic ICA model as an
approximation of the overcomplete basis model, because the estimation of the basic
model can be performed with reliable and efficient algorithms.

When the basis is overcomplete, the formulation of the likelihood is difficult,
since the problem belongs to the class of missing data problems. Methods based
on maximum likelihood estimation are therefore computationally rather inefficient.
To obtain computationally efficient algorithms, strong approximations are necessary.
For example, one can use a modification of the FastICA algorithm that is based on
finding a quasidecorrelating sparse decomposition. This algorithm is computationally
very efficient, reducing the complexity of overcomplete basis estimation to that of
classic ICA estimation.





17
Nonlinear ICA

This chapter deals with independent component analysis (ICA) for nonlinear mixing
models. A fundamental difficulty in the nonlinear ICA problem is that it is highly
nonuniquewithout some extra constraints, which are often realized by using a suitable
regularization. We also address the nonlinear blind source separation (BSS) problem.
Contrary to the linear case, we consider it different from the respective nonlinear ICA
problem. After considering these matters, some methods introduced for solving the
nonlinear ICA or BSS problems are discussed in more detail. Special emphasis is
given to a Bayesian approach that applies ensemble learning to a flexible multilayer
perceptron model for finding the sources and nonlinear mixing mapping that have
most probably given rise to the observed mixed data. The efficiency of this method is
demonstrated using both artificial and real-world data. At the end of the chapter, other
techniques proposed for solving the nonlinear ICA and BSS problems are reviewed.

17.1 NONLINEAR ICA AND BSS

17.1.1 The nonlinear ICA and BSS problems

In many situations, the basic linear ICA or BSS model

x � As �

nX

j��

sjaj (17.1)

is too simple for describing the observed data x adequately. Hence, it is natural to
consider extension of the linear model to nonlinear mixing models. For instantaneous
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mixtures, the nonlinear mixing model has the general form

x � f�s� (17.2)

where x is the observed m-dimensional data (mixture) vector, f is an unknown real-
valued m-component mixing function, and s is an n-vector whose elements are the
n unknown independent components.

Assume now for simplicity that the number of independent components n equals
the number of mixtures m. The general nonlinear ICA problem then consists of
finding a mapping h � Rn

� R
n that gives components

y � h�x� (17.3)

that are statistically independent. A fundamental characteristic of the nonlinear
ICA problem is that in the general case, solutions always exist, and they are highly
nonunique. One reason for this is that if x and y are two independent random
variables, any of their functions f�x� and g�y� are also independent. An even more
serious problem is that in the nonlinear case,x and y can be mixed and still statistically
independent, as will be shown below. This is not unlike in the case of gaussian ICs
in a linear mixing.

In this chapter, we define BSS in a special way to clarify the distinction between
finding independent components, and finding the original sources. Thus, in the
respective nonlinear BSS problem, one should find the original source signals s
that have generated the observed data. This is usually a clearly more meaningful
and unique problem than nonlinear ICA defined above, provided that suitable prior
information is available on the sources and/or the mixing mapping. It is worth
emphasizing that if some arbitrary independent components are found for the data
generated by (17.2), they may be quite different from the true source signals. Hence
the situation differs greatly from the basic linear data model (17.1), for which the
ICA or BSS problems have the same solution. Generally, solving the nonlinear BSS
problem is not easy, and requires additional prior information or suitable regularizing
constraints.

An important special case of the general nonlinear mixing model (17.2) consists
of so-called post-nonlinear mixtures. There each mixture has the form

xi � fi

�
�

nX
j��

aijsj

�
A � i � �� � � � � n (17.4)

Thus the sources sj , j � �� � � � � n are first mixed linearly according to the basic
ICA/BSS model (17.1), but after that a nonlinear function fi is applied to them to get
the final observations xi. It can be shown [418] that for the post-nonlinear mixtures,
the indeterminacies are usually the same as for the basic linear instantaneous mixing
model (17.1). That is, the sources can be separated or the independent compo-
nents estimated up to the scaling, permutation, and sign indeterminacies under weak
conditions on the mixing matrix A and source distributions. The post-nonlinearity
assumption is useful and reasonable in many signal processing applications, because
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it can be thought of as a model for a nonlinear sensor distortion. In more general
situations, it is a restrictive and somewhat arbitrary constraint. This model will be
treated in more detail below.

Another difficulty in the general nonlinear BSS (or ICA) methods proposed thus
far is that they tend to be computationally rather demanding. Moreover, the compu-
tational load usually increases very rapidly with the dimensionality of the problem,
preventing in practice the application of nonlinear BSS methods to high-dimensional
data sets.

The nonlinear BSS and ICA methods presented in the literature could be divided
into two broad classes: generative approaches and signal transformation approaches
[438]. In the generative approaches, the goal is to find a specific model that explains
how the observations were generated. In our case, this amounts to estimating both
the source signals s and the unknown mixing mapping f��� that have generated the
observed data x through the general mapping (17.2). In the signal transformation
methods, one tries to estimate the sources directly using the inverse transformation
(17.3). In these methods, the number of estimated sources is the same as the number
of observed mixtures [438].

17.1.2 Existence and uniqueness of nonlinear ICA

The question of existence and uniqueness of solutions for nonlinear independent
component analysis has been addressed in [213]. The authors show that there always
exists an infinity of solutions if the space of the nonlinear mixing functions f is
not limited. They also present a method for constructing parameterized families
of nonlinear ICA solutions. A unique solution (up to a rotation) can be obtained
in the two-dimensional special case if the mixing mapping f is constrained to be a
conformal mapping together with some other assumptions; see [213] for details.

In the following, we present in more detail the constructive method introduced in
[213] that always yields at least one solution to the nonlinear ICA problem. This
procedure might be considered as a generalization of the well-known Gram-Schmidt
orthogonalization method. Given m independent variables y = �y�� � � � � ym� and a
variable x, a new variable ym�� = g�y� x� is constructed so that the set y�� � � � � ym��
is mutually independent.

The construction is defined recursively as follows. Assume that we have already
m independent random variables y�� � � � � ym which are jointly uniformly distributed
in ��� ��m. Here it is not a restriction to assume that the distributions of the yi are
uniform, since this follows directly from the recursion, as will be seen below; for a
single variable, uniformity can be attained by the probability integral transformation;
see (2.85). Denote by x any random variable, and by a�� � � � � am� b some nonrandom
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scalars. Define

g�a�� � � � � am� b� py�x� � P �x � bjy� � a�� � � � � ym � am�
(17.5)

�

R b
��

py�x�a�� � � � � am� ��d�

py�a�� � � � � am�

where py��� and py�x��� are the marginal probability densities of y and �y� x�,
respectively (it is assumed here implicitly that such densities exist),andP ��j�� denotes
the conditional probability. The py�x in the argument of g is to remind that g depends
on the joint probability distribution of y and x. Form � �, g is simply the cumulative
distribution function of x. Now, g as defined above gives a nonlinear decomposition,
as stated in the following theorem.

Theorem 17.1 Assume that y�� � � � � ym are independent scalar random variables
that have a joint uniform distribution in the unit cube ��� ��m. Let x be any scalar
random variable. Define g as in (17.5), and set

ym�� � g�y�� � � � � ym� x� py�x� (17.6)

Then ym�� is independent from the y�� � � � � ym, and the variables y�� � � � � ym�� are
jointly uniformly distributed in the unit cube ��� ��m��.

The theorem is proved in [213]. The constructive method given above can be used
to decompose n variables x�� � � � � xn into n independent components y�� � � � � yn,
giving a solution for the nonlinear ICA problem.

This construction also clearly shows that the decomposition in independent com-
ponents is by no means unique. For example, we could first apply a linear trans-
formation on the x to obtain another random vector x� = Lx, and then compute y�

= g��x�� with g� being defined using the above procedure, where x is replaced by
x�. Thus we obtain another decomposition of x into independent components. The
resulting decomposition y� = g��Lx� is in general different from y, and cannot be
reduced to y by any simple transformations. A more rigorous justification of the
nonuniqueness property has been given in [213].

Lin [278] has recently derived some interesting theoretical results on ICA that
are useful in describing the nonuniqueness of the general nonlinear ICA problem.
Let the matrices Hs and Hx denote the Hessians of the logarithmic probability
densities log ps�s� and log px�x� of the source vector s and mixture (data) vector x,
respectively. Then for the basic linear ICA model (17.1) it holds that

Hs � ATHxA (17.7)

where A is the mixing matrix. If the components of s are truly independent, Hs

should be a diagonal matrix. Due to the symmetry of the Hessian matrices Hs and
Hx, Eq. (17.7) imposes n�n� ���	 constraints for the elements of the n� n matrix
A. Thus a constant mixing matrixA can be solved by estimatingHx at two different
points, and assuming some values for the diagonal elements of Hs.
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If the nonlinear mapping (17.2) is twice differentiable, we can approximate it
locally at any point by the linear mixing model (17.1). There A is defined by the
first order term �f�s���s of the Taylor series expansion of f�s� at the desired point.
But now A generally changes from point to point, so that the constraint conditions
(17.7) still leave n�n� ���� degrees of freedom for determining the mixing matrix
A (omitting the diagonal elements). This also shows that the nonlinear ICA problem
is highly nonunique.

Taleb and Jutten have considered separability of nonlinear mixtures in [418, 227].
Their general conclusion is the same as earlier: Separation is impossible without
additional prior knowledge on the model, since the independence assumption alone
is not strong enough in the general nonlinear case.

17.2 SEPARATION OF POST-NONLINEAR MIXTURES

Before discussing approaches applicable to general nonlinear mixtures, let us briefly
consider blind separation methods proposed for the simpler case of post-nonlinear
mixtures (17.4). Especially Taleb and Jutten have developed BSS methods for this
case. Their main results have been represented in [418], and a short overview of their
studies on this problem can be found in [227]. In the following, we present the the
main points of their method.

A separation method for the post-nonlinear mixtures (17.4) should generally con-
sist of two subsequent parts or stages:

1. A nonlinear stage, which should cancel the nonlinear distortions fi� i �
�� � � � � n. This part consists of nonlinear functions gi��i� u�. The parameters
�i of each nonlinearity gi are adjusted so that cancellation is achieved (at least
roughly).

2. A linear stage that separates the approximately linear mixturesv obtained after
the nonlinear stage. This is done as usual by learning a n�n separating matrix
B for which the components of the output vector y = Bv of the separating
system are statistically independent (or as independent as possible).

Taleb and Jutten [418] use the mutual information I�y� between the components
y�� � � � � yn of the output vector (see Chapter 10) as the cost function and independence
criterion in both stages. For the linear part, minimization of the mutual information
leads to the familiar Bell-Sejnowski algorithm (see Chapters 10 and 9)

�I�y�

�B
� �Ef�xT g � �BT ��� (17.8)

where components �i of the vector � are score functions of the components yi of
the output vector y:

�i�u� �
d

du
log pi�u� �

p�
i
�u�

pi�u�
(17.9)
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Here pi�u� is the probability density function ofyiand p�

i
�u� its derivative. In practice,

the natural gradient algorithm is used instead of the Bell-Sejnowski algorithm (17.8);
see Chapter 9.

For the nonlinear stage, one can derive the gradient learning rule [418]

�I�y�

��k
� �E

�
� log j g�

k
��k� xk� j

��k

�
� E

�
nX

i��

�i�yi�bik
�gk��k� xk�

��k

�

Here xk is the kth component of the input vector, bik is the element ik of the matrix
B, and g�

k
is the derivative of the kth nonlinear function gk. The exact computation

algorithm depends naturally on the specific parametric form of the chosen nonlinear
mapping gk��k� xk�. In [418], a multilayer perceptron network is used for modeling
the functions gk��k� xk�, k � �� � � � � n.

In linear BSS, it suffices that the score functions (17.9) are of the right type for
achieving separation. However, their appropriate estimation is critical for the good
performance of the proposed nonlinear separation method. The score functions (17.9)
must be estimated adaptively from the output vector y. Several alternative ways to
do this are considered in [418]. An estimation method based on the Gram-Charlier
expansion performs appropriately only for mild post-nonlinear distortions. However,
another method, which estimates the score functions directly, also provides very good
results for hard nonlinearities. Experimental results are presented in [418]. A well
performing batch type method for estimating the score functions has been introduced
in a later paper [417].

Before proceeding, we mention that separation of post-nonlinear mixtures also
has been studied in [271, 267, 469] using mainly extensions of the natural gradient
algorithm.

17.3 NONLINEAR BSS USING SELF-ORGANIZING MAPS

One of the earliest ideas for achieving nonlinear BSS (or ICA) is to use Kohonen’s
self-organizing map (SOM) to that end. This method was originally introduced by
Pajunen et al. [345]. The SOM [247, 172] is a well-known mapping and visualization
method that in an unsupervised manner learns a nonlinear mapping from the data to
a usually two-dimensional grid. The learned mapping from often high-dimensional
data space to the grid is such that it tries to preserve the structure of the data as well
as possible. Another goal in the SOM method is to map the data so that it would be
uniformly distributed on the rectangular (or hexagonal) grid. This can be roughly
achieved with suitable choices [345].

If the joint probability density of two random variables is uniformly distributed
inside a rectangle, then clearly the marginal densities along the sides of the rectangle
are statistically independent. This observation gives the justification for applying
self-organizing map to nonlinear BSS or ICA. The SOM mapping provides the
regularization needed in nonlinear BSS, because it tries to preserve the structure
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of the data. This implies that the mapping should be as simple as possible while
achieving the desired goals.
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Fig. 17.1 Original source signals.
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Fig. 17.2 Nonlinear mixtures.

The following experiment [345] illustrates the use of the self-organizing map in
nonlinear blind source separation. There were two subgaussian source signals si

shown in Fig. 17.1, consisting of a sinusoid and uniformly distributed white noise.
Each source vector s was first mixed linearly using the mixing matrix

A �

�
��� ���
��� ���

�
(17.10)

After this, the data vectors x were obtained as post-nonlinear mixtures of the sources
by applying the formula (17.4), where the nonlinearity fi�t� = t�� t, i � �� 	. These
mixtures xi are depicted in Fig. 17.2.
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Fig. 17.3 Signals separated by SOM.
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Fig. 17.4 Converged SOM map.

The sources separated by the SOM method are shown in Fig. 17.3, and the
converged SOM map is illustrated in Fig. 17.4. The estimates of the source signals
in Fig. 17.3 are obtained by mapping each data vector x onto the map of Fig. 17.4,
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and reading the coordinates of the mapped data vector. Even though the preceding
experiment was carried out with post-nonlinear mixtures, the use of the SOM method
is not limited to them.

Generally speaking, there are several difficulties in applying self-organizing maps
to nonlinear blind source separation. If the sources are uniformly distributed, then
it can be heuristically justified that the regularization of the nonlinear separating
mapping provided by the SOM approximately separates the sources. But if the true
sources are not uniformly distributed, the separating mapping providing uniform
densities inevitably causes distortions, which are in general the more serious the
farther the true source densities are from the uniform ones. Of course, the SOM
method still provides an approximate solution to the nonlinear ICA problem, but this
solution may have little to do with the true source signals.

Another difficulty in using SOM for nonlinear BSS or ICA is that computational
complexity increases very rapidly with the number of the sources (dimensionality of
the map), limiting the potential application of this method to small-scale problems.
Furthermore, the mapping provided by the SOM is discrete, where the discretization
is determined by the number of grid points.

17.4 A GENERATIVE TOPOGRAPHIC MAPPING APPROACH TO
NONLINEAR BSS *

17.4.1 Background

The self-organizing map discussed briefly in the previous section is a nonlinear
mapping method that is inspired by neurobiological modeling arguments. Bishop,
Svensen and Williams introduced the generative topographic mapping (GTM) method
as a statistically more principled alternative to SOM. Their method is presented in
detail in [49].

In the basic GTM method, mutually similar impulse (delta) functions that are
equispaced on a rectangular grid are used to model the discrete uniform density in the
space of latent variables, or the joint density of the sources in our case. The mapping
from the sources to the observed data, corresponding in our nonlinear BSS problem
to the nonlinear mixing mapping (17.2), is modeled using a mixture-of-gaussians
model. The parameters of the mixture-of-gaussians model, defining the mixing
mapping, are then estimated using a maximum likelihood (ML) method (see Section
4.5) realized by the expectation-maximization (EM) algorithm [48, 172]. After this,
the inverse (separating) mapping from the data to the latent variables (sources) can
be determined.

It is well-known that any continuous smooth enough mapping can be approximated
with arbitrary accuracy using a mixture-of-gaussians model with sufficiently many
gaussian basis functions [172, 48]. Roughly stated, this provides the theoretical
basis of the GTM method. A fundamental difference of the GTM method compared
with SOM is that GTM is based on a generative approach that starts by assuming
a model for the latent variables, in our case the sources. On the other hand, SOM
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tries to separate the sources directly by starting from the data and constructing a
suitable separating signal transformation. A key benefit of GTM is its firm theoretical
foundation which helps to overcome some of the limitations of SOM. This also
provides the basis of generalizing the GTM approach to arbitrary source densities.

Using the basic GTM method instead of SOM for nonlinear blind source separation
does not yet bring out any notable improvement, because the densities of the sources
are still assumed to be uniform. However, it is straightforward to generalize the GTM
method to arbitrary known source densities. The advantage of this approach is that
one can directly regularize the inverse of the mixing mapping by using the known
source densities. This modified GTM method is then used for finding a noncomplex
mixing mapping. This approach is described in the following.

17.4.2 The modified GTM method

The modified GTM method introduced in [346] differs from the standard GTM [49]
only in that the required joint density of the latent variables (sources) is defined as
a weighted sum of delta functions instead of plain delta functions. The weighting
coefficients are determined by discretizing the known source densities. Only the main
points of the GTM method are presented here, with emphasis on the modifications
made for applying it to nonlinear blind source separation. Readers wishing to gain a
deeper understanding of the GTM method should look at the original paper [49].

The GTM method closely resembles SOM in that it uses a discrete grid of points
forming a regular array in them-dimensional latent space. As in SOM, the dimension
of the latent space is usually m � �. Vectors lying in the latent space are denoted by
s�t�; in our application they will be source vectors. The GTM method uses a set of L
fixed nonlinear basis functions f�j�s�g, j � �� � � � � L, which form a nonorthogonal
basis set. These basis functions typically consist of a regular array of spherical
gaussian functions, but the basis functions can at least in principle be of other types.

The mapping from the m-dimensional latent space to the n-dimensional data
space, which is in our case the mixing mapping of Eq. (17.2), is in GTM modeled as
a linear combination of basis functions �j :

x � f�s� �M��s�� � � ���� ��� � � � � �L�
T (17.11)

Here M is an n� L matrix of weight parameters.
Denote the node locations in the latent space by �i. Eq. (17.11) then defines a

corresponding set of reference vectors

mi �M���i� (17.12)

in data space. Each of these reference vectors then forms the center of an isotropic
gaussian distribution in data space. Denoting the common variance of these gaussians
by ���, we get

px�x j i� �

�
�

��

�n��

exp

�
�
�

�
kmi � x k�

�
(17.13)
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The probability density function for the GTM model is obtained by summing over
all of the gaussian components, yielding

px�x�t� jM� �� �

KX

i��

P �i�px�x j i�

�

KX

i��

�

K

�
�

��

�n��
exp

�
�
�

�
kmi � x k�

�
(17.14)

Here K is the total number of gaussian components, which is equal to the number of
grid points in latent space, and the prior probabilitiesP �i� of the gaussian components
are all equal to ��K.

GTM tries to represent the distribution of the observed data x in then-dimensional
data space in terms of a smallerm-dimensional nonlinear manifold [49]. The gaussian
distribution in (17.13) represents a noise or error model which is needed because the
data usually does not lie exactly in such a lower dimensional manifold. It is important
to realize that the K gaussian distributions defined in (17.13) have nothing to do with
the basis function �i, i � �� � � � � L. Usually it is advisable that the number L of
the basis functions is clearly smaller than the number K of node locations and their
respective noise distributions (17.13). In this way, one can avoid overfitting and
prevent the mixing mapping (17.11) to become overly complicated.

The unknown parameters in this model are the weight matrix M and the inverse
variance �. These parameters are estimated by fitting the model (17.14) to the
observed data vectors x����x���� � � � �x�T � using the maximum likelihood method
discussed earlier in Section 4.5. The log likelihood function of the observed data is
given by

L�M� �� �
TX
t��

log px�x�t�jM� �� �
TX
t��

log

Z
px�x�t�js�M� ��ps�s�ds

(17.15)

where ��� is the variance of x given s and M, and T is the total number of data
vectors x�t�.

For applying the modified GTM method, the probability density function ps�s�
of the source vectors s should be known. Assuming that the sources s�� s�� � � � � sm
are statistically independent, this joint density can be evaluated as the product of the
marginal densities of the individual sources:

ps�s� �

mY
i��

pi�si� (17.16)

Each marginal density is here a discrete density defined at the sampling points
corresponding to the locations of the node vectors.

The latent space in the GTM method usually has a small dimension, typically
m � �. The method can be applied in principle for m � �, but its computational
load then increases quite rapidly just like in the SOM method. For this reason, only
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two sources s� and s� are considered in the following. The dimension of the latent
space is chosen to bem � �, and we use a rectangularK��K� grid with equispaced
nodes, so that the total number of nodes is K = K� �K�. The locations of the node
points in the grid are denoted by �ij , i � �� � � � �K�� j � �� � � � �K�. One can then
write

ps�s� �

K�X

i��

K�X

j��

aij��s� �ij� �

KX

q��

aq��s��q� (17.17)

The coefficientsaij = p��i�p��j�, where p��i� and p��j� are the values of the marginal
densities p��s�� and p��s�� corresponding to the location of the node point �ij . In
(17.17), ���� is the Dirac delta function or impulse function which has the special
property that

R
g�s���s� s��ds = g�s�� if the integration extends over the point s�,

otherwise the integral is zero. In the last phase, the node points and their respective
probabilities have been reindexed again using a single index q for easier notation.
This can be done easily by going through all the node points in some prescribed
order, for example rowwise.

Inserting (17.17) into (17.15) yields

L�M� �� �

TX
t��

log

�
KX
q��

aqpx�x�t�j�q �M� ��

�
(17.18)

Computing the gradient of this expression with respect to the weight matrixM and
setting it to zero, after some manipulations yields the following equation for updating
the weight matrixM:

��T
Gold��MT

new � �T
RoldX (17.19)

In this formula,X = �x���� � � � �x�T ��T is the data matrix, and the �q� j�-th element
fqj = �j��q� of the K � L matrix � is the value of the jth basis function �j��� at
the qth node point�q . Furthermore,G is a diagonal matrix with elements

Gqq �

TX
t��

Rqt�M� �� (17.20)

and the elements of the responsibility matrixR are

Rqt �
aqpx�x�t�j�q �M� ��PK

k�� akpx�x�t�j�k�M� ��
(17.21)

Then the variance parameter � can be updated using the formula

�

�new
�

�

Tn

KX
q��

TX
t��

Rqt kMnew���q�� x�t� k
� (17.22)

where n is the dimension of the data space.
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Fig. 17.5 Source signals. Fig. 17.6 Separated signals.

In GTM, the EM algorithm is used for maximizing the likelihood. Here the E-
step (17.21) consists of computing the responsibilities Rqt, and the M-steps (17.19),
(17.22) of updating the parametersM and �. The preceding derivation is quite similar
to the one as in the original GTM method [49], only the prior density coefficients aij
= aq have been added to the model.

After a few iterations, the EM algorithm converges to the parameter values M�

and �� that maximize the log likelihood (17.15), at least locally. The optimum
values M� and �� then specify the estimated probability density (17.14) that GTM
provides for the data vectors x. Because the prior density ps�s� of the sources s
is assumed to be known, it is then straightforward to compute the posterior density
p�s�t� j x�t��M�� ��� of the sources given the observed data using the Bayes’ rule.
As mentioned in Chapter 4, this posterior density contains all the relevant information
about the sources.

However, it is often convenient to choose a specific source estimate s�t� corre-
sponding to each data vector x�t� for visualizing purposes. An often used estimate
is the mean Efs�t� j x�t��M�� ��g of the posterior density. It can be computed in
the GTM method from the simple formula [49]

�s�t� � Efs�t� j x�t��M�� ��g �

KX

q��

Rqt�q (17.23)

If the posterior density of the sources is multimodal, the posterior mean (17.23) can
give misleading results. Then it is better to use for example the maximum a posteriori
(MAP) estimate, which is simply the source value corresponding to the maximum
responsibility qmax = argmax�Rqt�, q � �� � � � �K� for each sample index t.

17.4.3 An experiment

In the following, a simple experiment involving two sources shown in Fig. 17.5
and three noisy nonlinear mixtures is described. The mixed data was generated by
transforming linear mixtures of the original sources using a multilayer perceptron
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Fig. 17.7 Joint mixture densities with superimposed maps. Top left: Joint density p�x�� x��
of mixtures x� and x�. Top right: Joint density p�x�� x�� of mixtures x� and x�. Bottom left:
Joint density p�x�� x�� of mixtures x� and x�. Bottom right: Joint density of the estimated
two source signals.

network with a volume conserving architecture (see [104]). Such an architecture was
chosen for ensuring that the total mixing mapping is bijective and therefore reversible,
and for avoiding highly complex distortions of the source densities. However, this
choice has the advantage that it makes the total mixing mapping more complex than
the post-nonlinear model (17.4). Finally, gaussian noise was added to the mixtures.

The mixtures were generated using the model

x � As� tanh�UAs� � n (17.24)

where U is an upper-diagonal matrix with zero diagonal elements. The nonzero
elements of U were drawn from a standard gaussian distribution. The matrix U
ensures volume conservation of the nonlinearity applied to As.

The modified GTM algorithm presented above was used to learn a separating
mapping. For reducing scaling effects, the mixtures were first whitened. After
whitening the mixtures are uncorrelated and have unit variance. Then the modified
GTM algorithm was run for eight iterations using a �� � grid. The number of basis
functions was L � �.
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The separated sources depicted in Fig. 17.6 can be compared with the original
sources in Fig. 17.5. The waveforms of the original sources are approximately recov-
ered, even though there is some inevitable distortion due to the noise, discretization,
and the difficulty of the problem.

The mixtures are not shown here directly because they are in three dimensions.
The two-dimensional marginal densities of the mixtures are shown in Fig. 17.7,
however. They clearly reveal the nonlinearity of the mixing mapping; in particular,
the joint density p�x�� x�� of the second and third mixtures (components of the data
vector x) is highly nonlinear. Also the joint density of the separated sources is shown
in Fig. 17.7 in the subfigure at bottom right. It indicates that a factorizable density
has been approximately obtained. The superimposed maps in the first 3 subfigures
of Figure 17.7 were obtained by mapping a �� � �� grid of source vectors s to
the mixture (data) space using the mapping (17.11) learned by the modified GTM
algorithm.

17.5 AN ENSEMBLE LEARNING APPROACH TO NONLINEAR BSS

In this section, we present a new generative approach for nonlinear blind source
separation or independent component analysis. Here the nonlinear mapping (17.2)
from the unknown sources s to the known observationsx is modeled using the familiar
multilayer perceptron (MLP) network structure [172, 48]. MLP networks have the
universal approximation property [172] for smooth continuous mappings, and they
suit well for modeling both strongly and mildly nonlinear mappings. However, the
learning procedure is based on unsupervised Bayesian ensemble learning. It is quite
different from standard back-propagation learning which minimizes the mean-square
representation error in MLP networks in a supervised manner [172, 48].

17.5.1 Ensemble learning

A flexible model family, such as MLP networks, provides infinitely many possible
explanations of different complexity for the observed data. Choosing too complex
a model results in overfitting, where the model tries to make up meaningless ex-
planations for the noise in addition to the true sources or independent components.
Choosing too simple a model results in underfitting, leaving hidden some of the true
sources that have generated the data.

An appropriate solution to this problem is that no single model should actually
be chosen. Instead, all the possible explanations should be taken into account
and weighted according to their posterior probabilities. This approach, known as
Bayesian learning [48], optimally solves the trade-off between under- and overfitting.
All the relevant information needed in choosing an appropriate model is contained
in the posterior probability density functions (pdf’s) of different model structures.
The posterior pdf’s of too simple models are low, because they leave a lot of the data
unexplained. On the other hand, too complex models occupy little probability mass,
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even though they often show a high but very narrow peak in their posterior pdf’s
corresponding to the overfitted parameters.

In practice, exact computation of the posterior pdf’s of the models is impossible.
Therefore, some suitable approximation method must be used. Ensemble learning
[180, 25, 260], also known as variational learning, is a method for parametric approx-
imation of posterior pdf’s where the search takes into account the probability mass
of the models. Therefore, it does not suffer from overfitting. The basic idea in en-
semble learning is to minimize the misfit between the posterior pdf and its parametric
approximation.

Let us denote by X � fx�t�jtg the set of available mixture (data) vectors, and by
S � fs�t�jtg the respective source vectors. Denote by � all the unknown parameters
of the mixture (data) model, which will be described in more detail in the next
subsection. Furthermore, let p�S��jX� denote the exact posterior pdf and q�S��jX�
its parametric approximation. The misfit is measured with the Kullback-Leibler (KL)
divergence JKL between the densities p and q, which is defined by the cost function

JKL � Eq

�
log

q

p

�
�

Z
q�S��jX� log

q�S��jX�

p�S��jX�
d�dS

(17.25)

The Kullback-Leibler divergence or distance measures the difference in the proba-
bility mass between the densities p and q. Its minimum value � is achieved when the
two densities are the same; see Chapter 5.

17.5.2 Model structure

As mentioned before, MLP networks are now used for modeling the nonlinear mixing
mapping f��� in (17.2). In the following, we represent the mixing model [259, 436]
in more detail. Let x�t� denote the observed data vector at time t, and s�t� the vector
of independent components (source signals) at time t. The matricesQ andA contain
the weights of the output and the hidden layers of the network, respectively, and b
and a are the respective bias vectors of the output and hidden layers. The vector
of nonlinear activation functions, applied componentwise, is denoted by g���, and
n�t� is a zero mean gaussian noise vector corrupting the observations. Using these
notations, the mixing (data) model can be written

x�t� � Qg�As�t� � a� � b� n�t� (17.26)

The hyperbolic tangent g�y� = tanh�y� is used as the nonlinear activation function,
which is a typical choice in MLP networks. Other continuous activation functions
could be used, too. The sources are assumed to be independent, and they are
modeled by mixtures of gaussians. The independence assumption is natural, because
the goal of the model is to find the underlying independent components of the
observations. By using mixtures of gaussians, one can model sufficiently well any
nongaussian distribution of the sources [48]. This type of representation has earlier
been successfully applied to the standard linear ICA model in [258].
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The parameters of the model are (1) the weight matrices A and Q, and the
bias vectors a and b; (2) the parameters of the distributions of the noise, source
signals and column vectors of the weight matrices; (3) the hyperparameters used for
defining the distributions of the biases and the parameters in the group (2). For a
more detailed description, see [259, 436]. All the parameterized distributions are
assumed to be gaussian, except for the sources, which are modeled as mixtures of
gaussians. This does not limit the generality of the approach severely, but makes
computational implementation simpler and much more efficient. The hierarchical
description of the distributions of the parameters of the model used here is a standard
procedure in probabilistic Bayesian modeling. Its strength lies in that knowledge
about equivalent status of different parameters can be easily incorporated. For
example, all the variances of the noise components have a similar status in the model.
This is reflected by the fact that their distributions are assumed to be governed by
common hyperparameters.

17.5.3 Computing Kullback-Leibler cost function *

In this subsection, the Kullback-Leibler cost function JKL defined earlier in Eq.
(17.25) in considered in more detail. For approximating and then minimizing it, we
need two things: the exact formulation of the posterior density p�S��jX� and its
parametric approximation q�S��jX�.

According to the Bayes’ rule, the posterior pdf of the unknown variables S and �
is

p�S��jX� �
p�X jS���p�Sj��p���

p�X�
(17.27)

The probability density p�X jS��� of the data X given the sources S and the
parameters � is obtained from Eq. (17.26). Let us denote the variance of the ith
component of the noise vector n�t� by  � �

i
. The distribution p�xi�t�js�t����

of the ith component xi�t� of the data vector x�t� is thus gaussian with the mean
qT
i
g�As�t� � a� + bi and variance ��

i
. Here qT

i
denotes the ith row vector of the

weight matrix Q, and bi is the ith component of the bias vector b. As usually, the
noise components ni�t� are assumed to be independent, and therefore

p�X jS��� �

TY

t��

nY

i��

p�xi�t�js�t���� (17.28)

The terms p�Sj�� and p��� in (17.27) are also products of simple gaussian dis-
tributions, and they are obtained directly from the definition of the model structure
[259, 436]. The term p�X� does not depend on the model parameters and can be
neglected.

The approximation q�S�� j X�must be simple enough for mathematical tractabil-
ity and computational efficiency. First, we assume that the source signals S are
independent of the other parameters �, so that q�S�� j X� decouples into

q�S�� j X� � q�S j X�q�� j X� (17.29)
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For the parameters �, a gaussian density with a diagonal covariance matrix is used.
This implies that the approximation q�� j X� is a product of independent gaussian
distributions:

q�� j X� �
Y

j

qj��j j X� (17.30)

The parameters of each gaussian component density qj��j j X� are its mean ��i and
variance ��i.

The source signals si�t�, i � �� � � � � n are assumed to be mutually statistically
independent, and also at different time instants (sample values) t � �� � � � � T , so that

q�S j X� �

TY

t��

nY

i��

qti�si�t� j X� (17.31)

Here the component densities qti�si�t� j X� are modeled as mixtures of gaussian
densities. Inserting Eqs. (17.31) and (17.30) into (17.29) provides the desired ap-
proximation q�S�� j X� of the posterior density.

Both the posterior densityp�S��jX� and its approximationq�S��jX� are products
of simple gaussian or mixture-of-gaussians terms, which simplifies the cost function
(17.25) considerably: it splits into expectations of many simple terms. The terms of
the form Eqflog qj� � j j X�g are negative entropies of gaussians, having the exact
values����log ����j���. The terms of the form�Eqflog p�xi�t�js�t����g are most
difficult to handle. They are approximated by applying second order Taylor series
expansions of the nonlinear activation functions as explained in [259, 436]. The
remaining terms are expectations of simple gaussian terms, which can be computed
as in [258].

The cost function JKL depends on the posterior means ��i and variances ��i of the
parameters of the network and the source signals. This is because instead of finding
a point estimate, the joint posterior pdf of the sources and parameters is estimated
in ensemble learning. The variances give information about the reliability of the
estimates.

Let us denote the two parts of the cost function (17.25) arising from the denom-
inator and numerator of the logarithm by, respectively, Jp = �Eqflog pg and Jq =
Eqflog qg. The variances ��i are obtained by differentiating (17.25) with respect to ��i
[259, 436]:

�JKL

���
�

�Jp

���
�

�Jq

���
�

�Jp

���
�

�

���
(17.32)

Equating this to zero yields a fixed-point iteration for updating the variances:

�� �

�
�
�Jp

���

�
��

(17.33)

The means ��i can be estimated from the approximate Newton iteration [259, 436]

�� � �� �
�Jp

���

�
��JKL

����

�
��

� �� �
�Jp

���
�� (17.34)
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The formulas (17.33) and (17.34) have a central role in learning.

17.5.4 Learning procedure *

Usually MLP networks learn the nonlinear input–output mapping in a supervised
manner using known input–output training pairs, for which the mean-square mapping
error is minimized using the back-propagation algorithm or some alternative method
[172, 48]. In our case, the inputs are the unknown source signals s�t�, and only
the outputs of the MLP network, namely the observed data vectors x�t�, are known.
Hence, unsupervised learning must be applied. Detailed account of the learning
method and discussion of potential problems can be found in [259, 436]. In the
following, we give an overall description of the learning method.

The practical learning procedure used in all the experiments was the same. First,
linear principal component analysis (PCA) (see Chapter 6) was applied to find sensible
initial values for the posterior means of the sources. Even though PCA is a linear
method, it yields much better initial values than a random choice. The posterior
variances of the sources are initialized to small values. Good initial values are
important for the method because it can effectively prune away unused parts of the
MLP network1.

Initially the weights of the MLP network have random values, and the network
has quite a bad representation for the data. If the sources were adapted from random
values, too, the network would consider many of the sources useless for the repre-
sentation and prune them away. This would lead to a local minimum from which
the network might not recover. Therefore the sources were fixed at the values given
by linear PCA for the first 50 sweeps through the entire data set. This allows the
MLP network to find a meaningful mapping from the sources to the observations,
thereby justifying using the sources for the representation. For the same reason,
the parameters controlling the distributions of the sources, weights, noise, and the
hyperparameters are not adapted during the first 100 sweeps. They are adapted only
after the MLP network has found sensible values for the variables whose distributions
these parameters control.

Furthermore, we first used a simpler nonlinear model where the sources had
standard gaussian distributions instead of mixtures of gaussians. This is called
nonlinear factor analysis model in the following. After this phase, the sources were
rotated using the FastICA algorithm. The rotation of the sources was compensated by
an inverse rotation of the weight matrixA of the hidden layer. The final representation
of the data was then found by continuing learning, but using now the mixture-of-
gaussians model for the sources. In [259], this representation is called nonlinear
independent factor analysis.

1Pruning techniques for neural networks are discussed, for example, in [172, 48]
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Fig. 17.8 Original sources are on the x-axis of each scatter plot and the sources estimated
by a linear ICA are on the y-axis. Signal-to-noise ratio is 0.7 dB.

17.5.5 Experimental results

In all the simulations, the total number of sweeps was 7500, where one sweep means
going through all the observations x�t� once. As explained before, a nonlinear
factor analysis (or nonlinear PCA subspace) representation using plain gaussians as
model distributions for the sources was estimated first. In the experiments, 2000
first sweeps were used for finding this intermediate representation. After a linear
ICA rotation, the final mixture-of-gaussians representation of the sources was then
estimated during the remaining 5500 sweeps. In the following, experiments with
artificially generated nonlinear data are first described, followed by separation results
on real-world process data.

Simulated data In the first experiment, there were eight sources, four subgaussian
and four supergaussian ones. The data were generated from these sources through
a nonlinear mapping, which was obtained by using a randomly initialized MLP
network having 30 hidden neurons and 20 output neurons. Gaussian noise having a
standard deviation of 0.1 was added to the data. The nonlinearity used in the hidden
neurons was chosen to be the inverse hyperbolic sine sinh���x�. This guarantees
that the nonlinear source separation algorithm using the MLP network with tanh
nonlinearities cannot use exactly the same weights.

Several different numbers of hidden neurons were tested in order to optimize
the structure of the MLP network, but the number of sources was assumed to be
known. This assumption is reasonable because it seems to be possible to optimize
the number of sources simply by minimizing the cost function, as experiments with
purely gaussian sources have shown [259, 438]. The MLP network which minimized
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Fig. 17.9 Scatter plots of the sources after 2000 sweeps of nonlinear factor analysis followed
by a rotation with a linear ICA. Signal-to-noise ratio is 13.2 dB.
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Fig. 17.10 The final separation results after using a mixture-of-gaussians model for the
sources for the last 5500 sweeps. Signal to noise ratio is 17.3 dB. The original sources have
clearly been found.

the Kullback-Leibler cost function turned out to have 50 hidden neurons. The number
of gaussians in the mixtures modeling the distribution of each source was chosen to
be three, and no attempt was made to optimize this number.

The results are depicted in Figs. 17.8, 17.9, and 17.10. Each figure shows eight
scatter plots, corresponding to each of the eight original sources. The original source
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Fig. 17.11 The remaining energy of the process data as a function of the number of extracted
components using linear and nonlinear factor analysis

which was used for generating the data appears on the x-axis, and the respective
estimated source in on the y-axis of each plot. Each point corresponds to one sample
point x�t�. The upper plots of each figure correspond to the supergaussian and the
lower plots to the subgaussian sources. The optimal result is a straight line implying
that the estimated values of the sources coincide with the true values.

Figure 17.8 shows the result given by the linear FastICA algorithm alone. Linear
ICA is able to retrieve the original sources with only 0.7 dB signal-to-noise ratio
(SNR). In practice a linear method could not deduce the number of sources, and
the result would be even worse. The poor signal-to-noise ratio shows that the data
really lies in a nonlinear subspace. Figure 17.9 depicts the results after 2000 sweeps
with gaussian sources (nonlinear factor analysis) followed by a rotation with linear
FastICA. Now the SNR is considerably better, 13.2 dB, and the sources have clearly
been retrieved. Figure 17.10 shows the final results after another 5500 sweeps when
the mixture-of-gaussians model has been used for the sources. The SNR has further
improved to 17.3 dB.

Industrial process data Another data set consisted of 30 time series of length
2480 measured using different sensors from an industrial pulp process. A human
expert preprocessed the measured signals by roughly compensating for the time lags
of the process originating from the finite speed of pulp flow through the process.
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Fig. 17.12 The ten estimated sources of the industrial pulp process. Time increases from
left to right.

Fig. 17.13 The 30 original time series are shown on each plot on top of the reconstruction
made from the sources shown in Fig. 17.12

For studying the intrinsic dimensionality of the data, linear factor analysis was
applied to the data. The result is shown in Fig. 17.11. The figure also shows the
results with nonlinear factor analysis. It is obvious that the data are quite nonlinear,
because nonlinear factor analysis is able to explain the data with 10 components
equally well as linear factor analysis (PCA) with 21 components.

Different numbers of hidden neurons and sources were tested with random initial-
izations using gaussian model for sources (nonlinear factor analysis). It turned out
that the Kullback-Leibler cost function was minimized for an MLP network having
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10 sources (outputs) and 30 hidden neurons. The same network size was chosen for
nonlinear blind source separation based on the mixture-of-gaussians model for the
sources. After 2000 sweeps using the nonlinear factor analysis model, the sources
were rotated with FastICA, and each source was modeled with a mixture of three
gaussian distributions. The learning process was then continued using this refined
model for 5500 more sweeps. The resulting sources are shown in Fig. 17.12.

Figure 17.13 shows 30 subimages, each corresponding to a specific measurement
made from the process. The original measurement appears as the upper time series
in each subimage, and the lower time series is the reconstruction of this measurement
given by the network. These reconstructions are the posterior means of the outputs
of the network when the inputs were the estimated sources shown in Fig. 17.12. The
original measurements show a great variability, but the reconstructions are strikingly
accurate. In some cases it seems that the reconstruction is less noisy than the original
signal. This is not so surprising, because generally an estimate of data reconstructed
from a smaller number of most significant components is often able to remove some
noise.

The experiments suggest that the estimated source signals can have meaningful
physical interpretations. The results are encouraging, but further studies are needed
to verify the interpretations of the signals.

The proposed ensemble learning method for nonlinear blind source separation
can be extended in several ways. An obvious extension is inclusion of time delays
into the data model, making use of the temporal information often present in the
sources. This would probably help in describing the process data even better. Using
the Bayesian framework, it is also easy to treat missing observations or only partly
known inputs.

17.6 OTHER APPROACHES

In this section, other methods proposed for nonlinear independent component analysis
or blind source separation are briefly reviewed. The interested reader can find more
information on them in the given references.

Already in 1987, Jutten [226] used soft nonlinear mixtures for assessing the
robustness and performance of the seminal Hérault-Jutten algorithm introduced for
the linear BSS problem (see Chapter 12). However, Burel [57] was probably the
first to introduce an algorithm specifically for nonlinear ICA. His method is based
on back-propagation type neural learning for parametric nonlinearities, and suffers
from high computational complexity and problems with local minima. In a series of
papers [104, 357, 355, 105, 358], Deco and Parra with their co-authors developed
methods based on volume conserving symplectic transformations for nonlinear ICA.
The constraint of volume conservation is, however, somewhat arbitrary, and so these
methods are usually not able to recover the original sources. Also their computational
load tends to be high.

The idea of using the self-organizing map [247] for the general nonlinear ICA
problem, as discussed in Section 17.3, was introduced in [345]. However, this
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approach is limited mainly to separation of sources having distributions not too
far from the uniform distribution. The nonlinear mixing process is considered to
be regular: it is required that the inverse of the mixing mapping should be the
least complex mapping which yields independent components [345]. Lin, Grier,
and Cowan [279] have independently proposed using SOM for nonlinear ICA in a
different manner by treating ICA as a computational geometry problem.

The ensemble learning approach to nonlinear ICA, discussed in more detail earlier
in this chapter, is based on using multilayer perceptron networks as a flexible model for
the nonlinear mixing mapping (17.2). Several authors have used autoassociative MLP
networks [172] discussed briefly in Chapter 6 for learning a similar type of mappings.
Both the generative model and its inversion are learned simultaneously, but separately
without utilizing the fact that the models are connected. Autoassociative MLPs have
shown some success in nonlinear data representation [172], but generally they suffer
from slow learning prone to local minima.

Most works on autoassociative MLPs use point estimates for weights and sources
obtained by minimizing the mean-square representation error for the data. It is then
impossible to reliably choose the structure of the model, and problems with over- or
underfitting can be severe. Hecht-Nielsen [176, 177] proposed so-called replicator
networks for universal optimal nonlinear coding of input data. These networks
are autoassociate MLP networks, where the data vectors are mapped onto a unit
hypercube so that the mapped data is uniformly distributed inside the hypercube.
The coordinates of the mapped data on the axes of the hypercube, called natural
coordinates, then in fact form a nonlinear ICA solution, even though this has not been
noted in the original papers [176, 177].

Hochreiter and Schmidhuber [181] have used in context with MLP networks a
method based on minimum description length, called LOCOCODE. This method
does estimate the distribution of the weights, but has no model for the sources. It
is then impossible to measure the description length of the sources. Anyway, their
method shows interesting connections with ICA; sometimes it provides a nonlinear
ICA solution, sometimes it does not [181]. Another well-known information theoretic
criterion, mutual information, is applied to measuring independence in [2, 469]. In
these papers, methods based on various MLP network structures are also introduced
for nonlinear blind separation. In particular, Yang, Amari, and Cichocki [469] deal
with extensions of the basic natural gradient method (see Chapter 9), for nonlinear
BSS, presenting also an extension based on entropy maximization and experiments
with post-nonlinear mixtures.

Xu has developed the general Bayesian Ying-Yang framework which can be
applied on ICA as well; see e.g. [462, 463].

Other general approaches proposed for solving the nonlinear ICA or BSS problems
include a pattern repulsion based method [295], a state-space modeling approach [86],
and an entropy-based method [134]. Various separation methods for the considerably
simpler case of post-nonlinear mixtures (17.4) have been introduced at least in [271,
267, 365, 418, 417].

In the ensemble learning method discussed before, the necessary regularization
for nonlinear ICA is achieved by choosing the model and sources that have most
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probably generated the observed data. Attias has applied a similar generative model
to the linear ICA problem in [19]. The ensemble learning based method described in
this chapter differs from the method introduced in [19] in that it uses a more general
nonlinear data model, and applies a fully Bayesian treatment to the hyperparameters
of the network or graphical model, too. A related extension was proposed in [20].
Connections of the ensemble learning method with other Bayesian approaches are
discussed in more detail in [259, 438].

Nonlinear independent component analysis or blind source separation are gener-
ally difficult problems both computationally and conceptually. Therefore, local linear
ICA/BSS methods have received some attention recently as a practical compromise
between linear ICA and completely nonlinear ICA or BSS. These methods are more
general than standard linear ICA in that several different linear ICA models are used
to describe the observed data. The local linear ICA models can be either overlapping,
as in the mixture-of-ICA methods introduced in [273], or nonoverlapping, as in the
clustering-based methods proposed in [234, 349].

17.7 CONCLUDING REMARKS

In this chapter, generalizations of standard linear independent component analysis
(ICA) or blind source separation (BSS) problems to nonlinear data models have been
considered. We made a distinction between the ICA and BSS problems,because in the
nonlinear case their relation is more complicated than in the linear case. In particular,
the nonlinear ICA problem is ill-posed without some suitable extra constraints or
regularization, having in general infinitely many qualitatively different solutions.

Solving the nonlinear BSS problem appropriately using only the independence
assumption of the source signals is possible only in simple special cases, for example,
when the mixtures are post-nonlinear. Otherwise, suitable additional information on
the problem is required. This extra information is often provided in the form of
regularizing constraints. Various methods proposed for regularizing the nonlinear
ICA or BSS problems have been briefly reviewed in the previous section. Another
possibility is to have more information about the sources or mixtures themselves.
An example of such an approach is the method based on the generative topographic
mapping (GTM), which requires knowledge of the probability distributions of the
sources.

A large part of this chapter has been devoted to a recently introduced fully Bayesian
approach based on ensemble learning for solving the nonlinear BSS problem. This
method applies the well-known MLP network, which is well-suited to modeling
both mildly and strongly nonlinear mappings. The proposed unsupervised ensemble-
learning method tries to find the sources and the mapping that together have most
probably generated the observed data. This regularization principle has a firm theo-
retical foundation, and it is intuitively satisfying for the nonlinear source separation
problem. The results are encouraging for both artificial and real-world data. The
ensemble-learning method allows nonlinear source separation for larger scale prob-
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lems than some previously proposed computationally quite demanding methods, and
it can be easily extended in various directions.

A lot of work remains to be done in developing suitable methods for the nonlinear
ICA and BSS problems, and understanding better which constraints are most suitable
in each situation. A number of different approaches have been proposed, but no
comparisons are yet available for assessing their strengths and weaknesses.



18
Methods using Time

Structure

The model of independent component analysis (ICA) that we have considered so
far consists of mixing independent random variables, usually linearly. In many
applications, however, what is mixed is not random variables but time signals, or
time series. This is in contrast to the basic ICA model in which the samples of x
have no particular order: We could shuffle them in any way we like, and this would
have no effect on the validity of the model, nor on the estimation methods we have
discussed. If the independent components (ICs) are time signals, the situation is quite
different.

In fact, if the ICs are time signals, they may contain much more structure than sim-
ple random variables. For example, the autocovariances (covariances over different
time lags) of the ICs are then well-defined statistics. One can then use such additional
statistics to improve the estimation of the model. This additional information can
actually make the estimation of the model possible in cases where the basic ICA
methods cannot estimate it, for example, if the ICs are gaussian but correlated over
time.

In this chapter, we consider the estimation of the ICA model when the ICs are
time signals, si�t�� t � �� ���� T , where t is the time index. In the previous chapters,
we denoted by t the sample index, but here t has a more precise meaning, since it
defines an order between the ICs. The model is then expressed by

x�t� � As�t� (18.1)

where A is assumed to be square as usual, and the ICs are of course independent. In
contrast, the ICs need not be nongaussian.

In the following, we shall make some assumptions on the time structure of the ICs
that allow for the estimation of the model. These assumptions are alternatives to the

341
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assumption of nongaussianity made in other chapters of this book. First, we shall
assume that the ICs have different autocovariances (in particular, they are all different
from zero). Second, we shall consider the case where the variances of the ICs are
nonstationary. Finally, we discuss Kolmogoroff complexity as a general framework
for ICA with time-correlated mixtures.

We do not here consider the case where it is the mixing matrix that changes in
time; see [354].

18.1 SEPARATION BY AUTOCOVARIANCES

18.1.1 Autocovariances as an alternative to nongaussianity

The simplest form of time structure is given by (linear) autocovariances. This means
covariances between the values of the signal at different time points: cov�xi�t�xi�t�
��� where � is some lag constant, � � �� �� �� ���. If the data has time-dependencies,
the autocovariances are often different from zero.

In addition to the autocovariances of one signal, we also need covariances between
two signals: cov�xi�t�xj�t � ��� where i �� j. All these statistics for a given time
lag can be grouped together in the time-lagged covariance matrix

Cx

� � Efx�t�x�t � ��T g (18.2)

The theory of time-dependent signals was briefly discussed in Section 2.8.
As we saw in Chapter 7, the problem in ICA is that the simple zero-lagged

covariance (or correlation) matrixC does not contain enough parameters to allow the
estimation of A. This means that simply finding a matrixV so that the components
of the vector

z�t� � Vx�t� (18.3)

are white, is not enough to estimate the independent components. This is because
there is an infinity of different matrices V that give decorrelated components. This
is why in basic ICA, we have to use the nongaussian structure of the independent
components, for example, by minimizing the higher-order dependencies as measured
by mutual information.

The key point here is that the information in a time-lagged covariance matrix Cx

�

could be used instead of the higher-order information [424, 303]. What we do is
to find a matrix B so that in addition to making the instantaneous covariances of
y�t� � Bx�t� go to zero, the lagged covariances are made zero as well:

Efyi�t�yj�t� ��g � �� for all i� j� � (18.4)

The motivation for this is that for the ICs si�t�, the lagged covariances are all zero due
to independence. Using these lagged covariances, we get enough extra information
to estimate the model, under certain conditions specified below. No higher-order
information is then needed.
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18.1.2 Using one time lag

In the simplest case, we can use just one time lag. Denote by � such a time lag, which
is very often taken equal to 1. A very simple algorithm can now be formulated to find
a matrix that cancels both the instantaneous covariances and the ones corresponding
to lag � .

Consider whitened data (see Chapter 6), denoted by z. Then we have for the
orthogonal separating matrixW:

Wz�t� � s�t� (18.5)

Wz�t� �� � s�t� �� (18.6)

Let us consider a slightly modified version of the lagged covariance matrix as defined
in (18.2), given by

�Cz

� �
�

�
�Cz

� � �Cz

� �
T 	 (18.7)

We have by linearity and orthogonality the relation

�Cz

�
�

�

�
W

T �Efs�t�s�t� ��T g�Efs�t� ��s�t�T g	W �W
T �Cs

�
W

(18.8)

Due to the independence of the si�t�, the time-lagged covariance matrix Cs

� �
Efs�t�s�t � ��g is diagonal; let us denote it by D. Clearly, the matrix �Cs

� equals
this same matrix. Thus we have

�Cz

�
�W

T
DW (18.9)

What this equation shows is that the matrixW is part of the eigenvalue decomposition
of �Cz

�
. The eigenvalue decomposition of this symmetric matrix is simple to compute.

In fact, the reason why we considered this matrix instead of the simple time-lagged
covariance matrix (as in [303]) was precisely that we wanted to have a symmetric
matrix, because then the eigenvalue decomposition is well defined and simple to
compute. (It is actually true that the lagged covariance matrix is symmetric if the
data exactly follows the ICA model,but estimates of such matrices are not symmetric.)

The AMUSE algorithm Thus we have a simple algorithm, called AMUSE [424],
for estimating the separating matrixW for whitened data:

1. Whiten the (zero-mean) data x to obtain z�t�.

2. Compute the eigenvalue decomposition of �Cz

�
� �

�
�C� �CT

�
	, where C� �

Efz�t�z�t� ��g is the time-lagged covariance matrix, for some lag � .

3. The rows of the separating matrixW are given by the eigenvectors.

An essentially similar algorithm was proposed in [303].
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This algorithm is very simple and fast to compute. The problem is, however, that
it only works when the eigenvectors of the matrix �C� are uniquely defined. This is
the case if the eigenvalues are all distinct (not equal to each other). If some of the
eigenvalues are equal, then the corresponding eigenvectors are not uniquely defined,
and the corresponding ICs cannot be estimated. This restricts the applicability of this
method considerably. These eigenvalues are given by cov�si�t�si�t � ���, and thus
the eigenvalues are distinct if and only if the lagged covariances are different for all
the ICs.

As a remedy to this restriction, one can search for a suitable time lag � so that
the eigenvalues are distinct, but this is not always possible: If the signals si�t� have
identical power spectra, that is, identical autocovariances, then no value of � makes
estimation possible.

18.1.3 Extension to several time lags

An extension of the AMUSE method that improves its performance is to consider
several time lags � instead of a single one. Then, it is enough that the covariances for
one of these time lags are different. Thus the choice of � is a somewhat less serious
problem.

In principle, using several time lags, we want to simultaneously diagonalize all the
corresponding lagged covariance matrices. It must be noted that the diagonalization
is not possible exactly, since the eigenvectors of the different covariance matrices
are unlikely to be identical, except in the theoretical case where the data is exactly
generated by the ICA model. So here we formulate functions that express the degree
of diagonalization obtained and find its maximum.

One simple way of measuring the diagonality of a matrixM is to use the operator

off�M� �
X

i��j

m
�

ij (18.10)

which gives the sum of squares of the off-diagonal elements M. What we now
want to do is to minimize the sum of the off-diagonal elements of several lagged
covariances of y �Wz. As before, we use the symmetric version �Cy

� of the lagged
covariance matrix. Denote by S the set of the chosen lags � . Then we can write this
as an objective function J �w�:

J��W� �
X

��S

off�W �Cz

�W
T � (18.11)

Minimizing J� under the constraint that W is orthogonal gives us the estimation
method. This minimization could be performed by (projected) gradient descent.
Another alternative is to adapt the existing methods for eigenvalue decomposition to
this simultaneous approximate diagonalization of several matrices. The algorithm
called SOBI (second-order blind identification) [43] is based on these principles, and
so is TDSEP [481].

z
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The criterionJ� can be simplified. For an orthogonal transformation,W, the sum
of the squares of the elements ofWMWT is constant.1 Thus, the “off” criterion
could be expressed as the difference of the total sum of squares minus the sum of the
squares on the diagonal. Thus we can formulate

J��W� � �
X

��S

X

i

�wT

i
�Cz

�
wi�

� (18.12)

where thewT
i

are the rows ofW. Thus, minimizing J� is equivalent to minimizing
J�.

An alternative method for measuring the diagonality can be obtained using the
approach in [240]. For any positive-definite matrixM, we have

X

i

logmii � log j detMj (18.13)

and the equality holds only for diagonalM. Thus, we could measure the nondiago-
nality ofM by

F �M� �
X

i

logmii � log j detMj (18.14)

Again, the total nondiagonality of the C� at different time lags can be measured
by the sum of these measures for different time lags. This gives us the following
objective function to minimize:

J��W� �
�

�

X

��S

F � �Cy

� � �
�

�

X

��S

F �W �Cz

�W
T � (18.15)

Just as in maximum likelihood (ML) estimation,W decouples from the term involv-
ing the logarithm of the determinant. We obtain

J��W� �
X

��S

X

i

�

�
log�wT

i
�Cz

�wi�� log j detWj �
�

�
log j det �Cz

�
j
(18.16)

Considering whitened data, in which caseW can be constrained orthogonal, we see
that the term involving the determinant is constant, and we finally have

J��W� �
X

��S

X

i

�

�
log�wT

i
�Cz

�wi� � const. (18.17)

This is in fact rather similar to the function J� in (18.12). The only difference is
that the function �u� has been replaced by ��� log�u�. What these functions have

1This is because it equals trace�WMWT �WMWT �T � � trace�WMMTWT � �
trace�WTWMMT � � trace�MMT �.
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in common is concavity, so one might speculate that many other concave functions
could be used as well.

The gradient of J� can be evaluated as

�J�

�W
�
X

��S

Q�W �Cz

� (18.18)

with

Q� � diag�W �Cz

�W
T ��� (18.19)

Thus we obtain the gradient descent algorithm

�W �
X

��S

Q�W �Cz

�
(18.20)

Here, W should be orthogonalized after every iteration. Moreover, care must
be taken so that in the inverse in (18.19), very small entries do not cause numerical
problems. A very similar gradient descent can be obtained for (18.12), the main
difference being the scalar function in the definition ofQ .

Thus we obtain an algorithm that estimates W based on autocorrelations with
several time lags. This gives a simpler alternative to methods based on joint approx-
imative diagonalization. Such an extension allows estimation of the model in some
cases where the simple method using a single time lag fails. The basic limitation
cannot be avoided, however: if the ICs have identical autocovariances (i.e., identical
power spectra), they cannot be estimated by the methods using time-lagged covari-
ances only. This is in contrast to ICA using higher-order information, where the
independent components are allowed to have identical distributions.

Further work on using autocovariances for source separation can be found in
[11, 6, 106]. In particular, the optimal weighting of different lags has be considered
in [472, 483].

18.2 SEPARATION BY NONSTATIONARITY OF VARIANCES

An alternative approach to using the time structure of the signals was introduced in
[296], where it was shown that ICA can be performed by using the nonstationarity
of the signals. The nonstationarity we are using here is the nonstationarity of the
variances of the ICs. Thus the variances of the ICs are assumed to change smoothly in
time. Note that this nonstationarity of the signals is independent from nongaussianity
or the linear autocovariances in the sense that none of them implies or presupposes
any of the other assumptions.

To illustrate the variance nonstationarity in its purest form, let us look at the signal
in Fig. 18.1. This signal was created so that it has a gaussian marginal density,
and no linear time correlations, i.e., Efx�t�x�t � ��T g � � for any lag � . Thus,

�
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Fig. 18.1 A signal with nonstationary variance.

ICs of this kind could not be separated by basic ICA methods, or using linear time-
correlations. On the other hand, the nonstationarity of the signal is clearly visible. It
is characterized by bursts of activity.

Below, we review some basic approaches to this problem. Further work can be
found in [40, 370, 126, 239, 366].

18.2.1 Using local autocorrelations

Separation of nonstationary signals could be achieved by using a variant of autocor-
relations, somewhat similar to the case of Section 18.1. It was shown in [296] that if
we find a matrixB so that the components of y�t� � Bx�t� are uncorrelated at every
time point t, we have estimated the ICs. Note that due to nonstationarity, the covari-
ance of y�t� depends on t, and thus if we force the components to be uncorrelated
for every t, we obtain a much stronger condition than simple whitening.

The (local) uncorrelatedness of y�t� could be measured using the same measures
of diagonality as used in Section 18.1.3. We use here a measure based on (18.14):

Q�B� t� �
X

i

logEtfyi�t�
�g � log j detEtfy�t�y�t�

T gj
(18.21)

The subscript t in the expectation emphasizes that the signal is nonstationary, and the
expectation is the expectation around the time point t. This function is minimized by
the separating matrix B.
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Expressing this as a function of B � �b�� ����bn�
T we obtain

Q�B� t� �
X

i

logEtf�b
T
i x�t��

�g � log j detEtfBx�t�x�t�
T
B

T gj

�
X

i

logEtf�b
T
i x�t��

�g � log j detEtfx�t�x�t�
T gj � � log j detBj (18.22)

Note that the term log j detEtfx�t�x�t�
T gj does not depend onB at all. Furthermore,

to take into account all the time points, we sum the values of Q in different time
points, and obtain the objective function

J��B� �
X

t

Q�B� t� �
X

i�t

logEtf�b
T
i x�t��

�g � � log j detBj� const.
(18.23)

As usual, we can whiten the data to obtain whitened data z, and force the separating
matrixW to be orthogonal. Then the objective function simplifies to

J��W� �
X

t

Q�W� t� �
X

i�t

logEtf�w
T
i z�t��

�g� const.
(18.24)

Thus we can compute the gradient of J� as

�J�

�W
� �
X

t

diag�Etf�w
T
i z�t��

�g���WEtfz�t�z�t�
T g�

(18.25)

The question is now: How to estimate the local variances Etf�w
T
i z�t��

�g? We
cannot simply use the sample variances, due to nonstationarity, which leads to de-
pendence between these variances and the z�t�. Instead, we have to use some local
estimates at time point t. A natural thing to do is to assume that the variance changes
slowly. Then we can estimate the local variance by local sample variances. In other
words:

�Etf�w
T
i z�t��

�g �
X

�

h����wT
i z�t� ���� (18.26)

where h is a moving average operator (low-pass filter), normalized so that the sum
of its components is one.

Thus we obtain the following algorithm:

�W �
X

t

diag� �Etf�w
T
i z�t��

�g���Wz�t�z�t�T (18.27)

where after every iteration,W is symmetrically orthogonalized (see Chapter 6), and
�Et is computed as in (18.26). Again, care must be taken that taking the inverse
of very small local variances does not cause numerical problems. This is the basic
method for estimating signals with nonstationary variances. It is a simplified form
of the algorithm in [296].
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Fig. 18.2 The energy (i.e., squares) of the initial part of the signal in Fig. 18.1. This is
clearly time-correlated.

The algorithm in (18.27) enables one to estimate the ICs using the information
on the nonstationarity of their variances. This principle is different from the ones
considered in preceding chapters and the preceding section. It was implemented by
considering simultaneously different local autocorrelations. An alternative method
for using nonstationarity will be considered next.

18.2.2 Using cross-cumulants

Nonlinear autocorrelations A second method of using nonstationarity is based
on interpreting variance nonstationarity in terms of higher-order cross-cumulants.
Thus we obtain a very simple criterion that expresses nonstationarity of variance.
To see how this works, consider the energy (i.e., squared amplitude) of the signal
in Fig. 18.1. The energies of the initial 1000 time points are shown in Fig. 18.2.
What is clearly visible is that the energies are correlated in time. This is of course a
consequence of the assumption that the variance changes smoothly in time.

Before proceeding, note that the nonstationarity of a signal depends on the time-
scale and the level of the detail in the model of the signal. If the nonstationarity of
the variance is incorporated in the model (by hidden Markov models, for example),
the signal no longer needs to be considered nonstationary [370]. This is the approach
that we choose in the following. In particular, the energies are not considered
nonstationary, but rather they are considered as stationary signals that are time-
correlated. This is simply a question of changing the viewpoint.

So, we could measure the variance nonstationarity of a signal y�t�� t � �� ���t
using a measure based on the time-correlation of energies: Efy�t��y�t� ���gwhere
� is some lag constant, often equal to one. For the sake of mathematical simplicity, it
is often useful to use cumulants instead of such basic higher-order correlations. The
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cumulant corresponding to the correlation of energies is given by the fourth-order
cross cumulant

cum�y�t�� y�t�� y�t� ��� y�t� ���

� Efy�t��y�t� ���g �Efy�t��gEfy�t� ���g � ��Efy�t�y�t� ��g��

(18.28)

This could be considered as a normalized version of the cross-correlation of energies.
In our case, where the variances are changing smoothly, this cumulant is positive
because the first term dominates the two normalizing terms.

Note that although cross-cumulants are zero for random variables with jointly
gaussian distributions, they need not be zero for variables with gaussian marginal
distributions. Thus positive cross-cumulants do not imply nongaussian marginal
distributions for the ICs, which shows that the property measured by this cross-
cumulant is indeed completely different from the property of nongaussianity.

The validity of this criterion can be easily proven. Consider a linear combination
of the observed signals xi�t� that are mixtures of original ICs, as in (18.1). This linear
combination, say bTx�t�, is a linear combination of the ICs bTx�t� � bTAs�t�, say
qT s�t� �

P
i
qisi�t�. Using the basic properties of cumulants, the nonstationarity

of such a linear combination can be evaluated as

cum�bTx�t��bTx�t��bTx�t� ���bTx�t� ���

�
X

i

q�
i
cum�si�t�� si�t�� si�t� ��� si�t� ��� (18.29)

Now, we can constrain the variance of bTx to be equal to unity to normalize the
scale (cumulants are not scale-invariant). This implies var

P
i
qisi � kqk� � �. Let

us consider what happens if we maximize nonstationarity with respect to b. This is
equivalent to the optimization problem

max
kqk���

X

i

q�
i
cum�si�t�� si�t�� si�t� ��� si�t� ��� (18.30)

This optimization problem is formally identical to the one encountered when kur-
tosis (or in general, its absolute value) is maximized to find the most nongaussian
directions, as in Chapter 8. It was proven that solutions to this optimization problem
give the ICs. In other words, the maxima of (18.30) are obtained when only one
of the qi is nonzero. This proof applies directly in our case as well, and thus we
see that the maximally nonstationary linear combinations give the ICs.2 Since the
cross-cumulants are assumed to be all positive, the problem we have here is in fact
slightly simpler since we can then simply maximize the cross-cumulant of the linear
combinations, and need not consider its absolute value as is done with kurtosis in
Chapter 8.

2Note that this statement requires that we identify nonstationarity with the energy correlations, which may
or may not be meaningful depending on the context.



SEPARATION PRINCIPLES UNIFIED 351

Thus we see that maximization of the nonstationarity, as measured by the cross-
cumulant, of a linear combination of the observed mixtures allows for the estimation
of one IC. This also gives a one-unit approach to source separation by nonstationarity.

A fixed-point algorithm To maximize the variance nonstationarity as measured
by the cross-cumulant, one can use a fixed-point algorithm derived along the same
lines as the FastICA algorithm for maximizing nongaussianity.

To begin with, let us whiten the data to obtain z�t�. Now, using the principle of
fixed-point iteration as in Chapter 8, let us equate w to the gradient of the cross-
cumulant of wT z�t�. This gives, after straightforward calculations, the following
update for w:

w� Efz�t�wT z�t��wT z�t � ����g�Efz�t� ��wT z�t � ���wT z�t���g

� �w� � �Cz

�w�wT �Cz

�w� (18.31)

where we have multiplied the gradient by ��� for notational simplicity, and the matrix
�Cz

�
is equal to �

�
�Efz�t�z�t � ��g � Efz�t�z�t � ��g	, as above. The algorithm

thus consists of iteratively computing the new value of w according to (18.31), and
normalizingw to unit norm after every step.

The convergence of the algorithm can be proven to be cubic, i.e., very fast. A
detailed proof can be constructed as with kurtosis. Let us only note here that if
the algorithm is expressed with respect to the transformed variable q, which can be
simply obtained by computing the gradient of (18.29), we have

qi � q�
i
��cum�si�t�� si�t�� si�t� ��� si�t� ���	 (18.32)

followed by normalization of the norm of q. This can be easily seen to lead to
convergence of q to a vector where only one of the qi is nonzero. The index i for
which qi will be nonzero depends on the initial value of q.

Thus we have obtained a fast fixed-point algorithm for separating ICs by non-
stationarity, using cross-cumulants. This gives an alternative for the algorithm in
the preceding subsection. This algorithm is similar to the FastICA algorithm. The
convergence of the algorithm is cubic, like the convergence of the cumulant-based
FastICA. This was based on the interpretation of a particular cross-cumulant as a
measure of nonstationarity.

18.3 SEPARATION PRINCIPLES UNIFIED

18.3.1 Comparison of separation principles

In this chapter we have discussed the separation of ICs (sources) using their time-
dependencies. In particular, we showed how to use autocorrelations and variance
nonstationarities. These two principles complement the principle of nongaussianity
that was the basis of estimation in the basic ICA model in Part II.
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This raises the question: In what situations should one use each of these methods.
The answer is basically simple: The different criteria make different assumptions on
the data, and the choice of the criterion should be made depending on the data that
we want to analyze.

First of all, in many cases the data has no time structure at all, i.e., x is a
random variable, and not a time signal. This means that the order of the samples
is arbitrary and has no significance. In that case, only the basic ICA method based
on nongaussianity can be used. So the alternatives are only meaningful if the data
comes from a source that has a time structure.

If the data does have clear time-dependencies, these usually imply nonzero au-
tocorrelation functions, and the methods based on autocorrelations can be used.
However, such methods only work if the autocorrelations are different for each IC.
In the case where some of the autocorrelations are identical, one could then try to use
the methods based on nonstationarity, since these methods utilize the time structure
but do not require the time structure of each IC to be different. The nonstationar-
ity methods work best, of course, if the time structure does consist of a changing
variance, as with the signal depicted in Fig. 18.1.

On the other hand, the basic ICA methods often work well even when the ICs have
time-dependencies. The basic methods do not use the time structure, but this does
not mean that they would be disturbed by such structure. It must be noted, though,
that the basic ICA methods may then be very far from optimal, since they do not use
the whole structure of the data.

18.3.2 Kolmogoroff complexity as a unifying framework

It is also possible to combine different types of information. For example, methods
that combine nongaussianity with autocorrelations were proposed in [202, 312]. What
is interesting is that one can formulate a general framework that encompasses all these
different principles. This framework that includes basic ICA and methods using time
structure was proposed by Pajunen [342, 343], based on the information-theoretic
concept of Kolmogoroff complexity.

As has been argued in Chapters 8 and 10, ICA can be seen as a method of finding
a transformation into components that are somehow structured. It was argued that
nongaussianity is a measure of structure. Nongaussianity can be measured by the
information-theoretic concept of entropy.

Entropy of a random variable measures the structure of its marginal distribution
only. On the other hand, in this section we have been dealing with time signals that
have different kinds of time structure, like autocorrelations and nonstationarity. How
could one measure such a more general type of structure using information-theoretic
criteria? The answer lies in Kolmogoroff complexity. One can define a very general
form of linear ICA by finding projections of the data that have low complexity in this
sense. First, let us look at the definition of Kolmogoroff complexity.

Definition of Kolmogoroff complexity The information-theoretic measures
of structure are based on the interpretation of coding length as structure. Suppose



SEPARATION PRINCIPLES UNIFIED 353

that we want to code a signal s�t�� t � �� ���� T . For simplicity, let us assume that
the signal is binary, so that every value s�t� is 0 or 1. We can code such a signal
so that every bit in the code gives the value of s�t� for one t; this is the obvious
and trivial code. In general, it is not possible to code this signal with less that T
bits. However, most natural signals have redundancy, i.e., parts of the signal can be
efficiently predicted from other parts. Such a signal can be coded, or compressed,
so that the code length is shorter than the original signal length T . It is well known
that audio or image signals, for example, can be coded so that the code length is
decreased considerably. This is because such natural signals are highly structured.
For example, image signals do not consist of random pixels, but of such higher-order
regularities as edges, contours, and areas of constant color [154].

We could thus measure the amount of structure of the signal s�t� by the amount of
compression that is possible in coding the signal. For signals of fixed length T , the
structure could be measured by the length of the shortest possible code for the signal.
Note that the signal could be compressed by many different kinds of coding schemes
developed in the coding theory literature, but we are here considering the shortest
possible code, thus maximizing the compression over all possible coding schemes.
For a more rigorous definition of the concept, see [342, 343].

ICA and Kolmogoroff complexity We can now define a generalization of ICA
as follows: Find the transformation of the data where the sum of the coding lengths
of the components is as short as possible. However, an additional operation is needed
here. We also need to consider the code length of the transformation itself [342, 343].
This leads to a framework that is closely related to the minimum description length
(MDL) principle [380, 381]. Thus the objective function we are using can be written
as follows:

J�W� �
�

T

X

i

K�bT
i
x�� log j detWj (18.33)

where K��� denotes the complexity. The latter term is related to the coding length of
the transformation, using the MDL principle.

This objective function can be considered as a generalization of mutual informa-
tion. If the signals have no time structure, their Kolmogoroff complexities are given
by their entropies, and thus we have in (18.33) the definition of mutual information.
Furthermore, in [344] it was shown how to approximate K��� by criteria using the
time structure of the signals, which proves that Kolmogoroff complexity gives a gen-
eralization of methods using time correlations as well. (More on this connection can
be found in Section 23.3.)

Kolmogoroff complexity is a rather theoretical measure, since its computation
involves finding the best coding scheme for the signal. The number of possible
coding schemes is infinite, so this optimization cannot be performed in practice with
much accuracy. In some special cases of Kolmogoroff complexity the optimization
can be performed rather accurately however. These include the above-mentioned
cases of mutual information and time-correlations.
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18.4 CONCLUDING REMARKS

In addition to the fundamental assumption of independence, another assumption that
assures that the signals have enough structure is needed for successful separation of
signals. This is because the ICA model cannot be estimated for gaussian random
variables. In basic ICA, which was treated in Part II, the assumption was the
nongaussianity of the ICs. In this chapter, we used the alternative assumption that
the ICs are time signals that have some time dependencies. Here we have at least
two cases in which separation is possible. First, the case where the signals have
different power spectra, i.e., different autocovariance functions. Second, the case
where they have nonstationary variances. All these assumptions can be considered
in the unifying framework of Kolmogoroff complexity: They can all be derived as
special cases of complexity minimization.



19
Convolutive Mixtures and

Blind Deconvolution

This chapter deals with blind deconvolution and blind separation of convolutive
mixtures.

Blind deconvolution is a signal processing problem that is closely related to basic
independent component analysis (ICA) and blind source separation (BSS). In com-
munications and related areas, blind deconvolution is often called blind equalization.
In blind deconvolution, we have only one observed signal (output) and one source
signal (input). The observed signal consists of an unknown source signal mixed with
itself at different time delays. The task is to estimate the source signal from the
observed signal only, without knowing the convolving system, the time delays, and
mixing coefficients.

Blind separation of convolutive mixtures considers the combined blind deconvolu-
tion and instantaneous blind source separation problem. This estimation task appears
under many different names in the literature: ICA with convolutive mixtures, mul-
tichannel blind deconvolution or identification, convolutive signal separation, and
blind identification of multiple-input-multiple-output (MIMO) systems. In blind
separation of convolutive mixtures, there are several source (input) signals and sev-
eral observed (output) signals just like in the instantaneous ICA problem. However,
the source signals have different time delays in each observed signal due to the finite
propagation speed in the medium. Each observed signal may also contain time-
delayed versions of the same source due to multipath propagation caused typically
by reverberations from some obstacles. Figure 23.3 in Chapter 23 shows an example
of multipath propagation in mobile communications.

In the following, we first consider the simpler blind deconvolution problem, and
after that separation of convolutive mixtures. Many techniques for convolutive mix-

355
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tures have in fact been developed by extending methods designed originally for either
the blind deconvolution or standard ICA/BSS problems. In the appendix, certain basic
concepts of discrete-time filters needed in this chapter are briefly reviewed.

19.1 BLIND DECONVOLUTION

19.1.1 Problem definition

In blind deconvolution [170, 171, 174, 315], it is assumed that the observed discrete-
time signal x�t� is generated from an unknown source signal s�t� by the convolution
model

x�t� �

�X

k���

aks�t� k� (19.1)

Thus, delayed versions of the source signal are mixed together. This situation appears
in many practical applications, for example, in communications and geophysics.

In blind deconvolution, both the source signal s�t� and the convolution coefficients
ak are unknown. Observing x�t� only, we want to estimate the source signal s�t�. In
other words, we want to find a deconvolution filter

y�t� �

�X

k���

hkx�t� k� (19.2)

which provides a good estimate of the source signal s�t� at each time instant. This
is achieved by choosing the coefficients hk of the deconvolution filter suitably. In
practice the deconvolving finite impulse response (FIR) filter (see the Appendix
for definition) in Eq. (19.2) is assumed to be of sufficient but finite length. Other
structures are possible, but this one is the standard choice.

To estimate the deconvolving filter, certain assumptions on the source signal s�t�
must be made. Usually it is assumed that the source signal values s�t� at different
times t are nongaussian, statistically independent and identically distributed (i.i.d.).
The probability distribution of the source signal s�t� may be known or unknown. The
indeterminacies remaining in the blind deconvolution problem are that the estimated
source signal may have an arbitrary scaling (and sign) and time shift compared
with the true one. This situation is similar to the permutation and sign indeterminacy
encountered in ICA; the two models are, in fact, intimately related as will be explained
in Section 19.1.4.

Of course, the preceding ideal model usually does not exactly hold in practice.
There is often additive noise present, though we have omitted noise from the model
(19.1) for simplicity. The source signal sequence may not satisfy the i.i.d condition,
and its distribution is often unknown, or we may only know that the source signal is
subgaussian or supergaussian. Hence blind deconvolution often is a difficult signal
processing task that can be solved only approximately, in practice.
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If the linear time-invariant system (19.1) is minimum phase (see the Appendix),
then the blind deconvolution problem can be solved in a straightforward way. On the
above assumptions, the deconvolving filter is simply a whitening filter that temporally
whitens the observed signal sequence fx�t�g [171, 174]. However, in many appli-
cations, for example, in telecommunications, the system is typically nonminimum
phase [174] and this simple solution cannot be used.

We shall next discuss some popular approaches to blind deconvolution. Blind
deconvolution is frequently needed in communications applications where it is con-
venient to use complex-valued data. Therefore we present most methods for this
general case. The respective algorithms for real data are obtained as special cases.
Methods for estimating the ICA model with complex-valued data are discussed later
in Section 20.3.

19.1.2 Bussgang methods

Bussgang methods [39, 171, 174, 315] include some of the earliest algorithms [152,
392] proposed for blind deconvolution, but they are still widely used. In Bussgang
methods, a noncausal FIR filter structure

y�t� �

LX

k��L

w�k�t�x�t � k� (19.3)

of length �L�� is used. Here � denotes the complex conjugate. The weightswk�t� of
the FIR filter depend on the time t, and they are adapted using the least-mean-square
(LMS) type algorithm [171]

wk�t� �� � wk�t� � �x�t� k�e��t�� k � �L� � � � � L (19.4)

where the error signal is defined by

e�t� � g�y�t��� y�t� (19.5)

In these equations, � is a positive learning parameter, y�t� is given by (19.3), and g���
is a suitably chosen nonlinearity. It is applied separately to the real and imaginary
components of y�t�. The algorithm is initialized by setting w���� � �, wk��� � ��
k �� �.

Assume that the filter length �L � � is large enough and the learning algorithm
has converged. It can be shown that then the following condition holds for the output
y�t� of the FIR filter (19.3):

Efy�t�y�t� k�g � Efy�t�g�y�t� k��g (19.6)

A stochastic process that satisfies the condition (19.6) is called a Bussgang process.
The nonlinearity g�t� can be chosen in several ways, leading to different Bussgang

type algorithms [39, 171]. The Godard algorithm [152] is the best performing
Bussgang algorithm in the sense that it is robust and has the smallest mean-square
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error after convergence; see [171] for details. The Godard algorithm minimizes the
nonconvex cost function

Jp�t� � Ef�jy�t�jp � �p�
�g (19.7)

where p is a positive integer and �p is a positive real constant defined by the statistics
of the source signal:

�p �
Efjs�t�j�pg
Efjs�t�jpg

(19.8)

The constant �p is chosen in such a way that the gradient of the cost function Jp�t�
is zero when perfect deconvolution is attained, that is, when y�t� = s�t�. The error
signal (19.5) in the gradient algorithm (19.4) for minimizing the cost function (19.7)
with respect to the weight wk�t� has the form

e�t� � y�t�jy�t�jp����p � jy�t�jp� (19.9)

In computing e�t�, the expectation in (19.7) has been omitted for getting a simpler
stochastic gradient type algorithm. The respective nonlinearity g�y�t�� is given by
[171]

g�y�t�� � y�t� � y�t�jy�t�jp����p � jy�t�jp� (19.10)

Among the family of Godard algorithms, the so-called constant modulus algorithm
(CMA) is widely used. It is obtained by setting p � � in the above formulas. The
cost function (19.7) is then related to the minimization of the kurtosis. The CMA and
more generally Godard algorithms perform appropriately for subgaussian sources
only, but in communications applications the source signals are subgaussian.1. The
CMA algorithm is the most successful blind equalization (deconvolution) algorithm
used in communications due to its low complexity, good performance, and robustness
[315].

Properties of the CMA cost function and algorithm have been studied thoroughly
in [224]. The constant modulus property possessed by many types of communications
signals has been exploited also in developing efficient algebraic blind equalization
and source separation algorithms [441]. A good general review of Bussgang type
blind deconvolution methods is [39].

19.1.3 Cumulant-based methods

Another popular group of blind deconvolution methods consists of cumulant-based
approaches [315, 170, 174, 171]. They apply explicitly higher-order statistics of
the observed signal x�t�, while in the Bussgang methods higher-order statistics

1The CMA algorithm can be applied to blind deconvolution of supergaussian sources by using a negative
learning parameter � in (19.4); see [11]
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are involved into the estimation process implicitly via the nonlinear function g���.
Cumulants have been defined and discussed briefly in Chapter 2.

Shalvi and Weinstein [398] have derived necessary and sufficient conditions and
a set of cumulant-based criteria for blind deconvolution. In particular, they intro-
duced a stochastic gradient algorithm for maximizing a constrained kurtosis based
criterion. We shall next describe this algorithm briefly, because it is computationally
simple, converges globally, and can be applied equally well to both subgaussian and
supergaussian source signals s�t�.

Assume that the source (input) signal s�t� is complex-valued and symmetric,
satisfying the condition Efs�t��g = �. Assume that the length of the causal FIR
deconvolution filter is M . The output z�t� of this filter at discrete time t can then be
expressed compactly as the inner product

z�t� � w
T �t�y�t� (19.11)

where the M -dimensional filter weight vector w�t� and output vector y�t� at time t
are respectively defined by

y�t� � �y�t�� y�t� ��� � � � � y�t�M � ���T (19.12)

w�t� � �w�t�� w�t � ��� � � � � w�t�M � ���T (19.13)

Shalvi and Weinstein’s algorithm is then given by [398, 351]

u�t� �� � u�t� � �sign��s��jz�t�j
�z�t��y��t�

w�t� �� � u�t� ��� k u�t� �� k (19.14)

Here�s is the kurtosis of s�t�, k � k is the usual Euclidean norm, and the unnormalized
filter weight vector u�t� is defined quite similarly as w�t� in (19.13).

It is important to notice that Shalvi and Weinstein’s algorithm (19.14) requires
whitening of the output signal y�t� for performing appropriately (assuming that s�t�
is white, too). For a single complex-valued signal sequence (time series) fy�t�g, the
temporal whiteness condition is

Efy�t�y��t� k�g � ��y�tk �

�
��y � t � k

�� t �� k
(19.15)

where the variance of y�t� is often normalized to unity: ��y � �. Temporal whitening
can be achieved by spectral prewhitening in the Fourier domain, or by using time-
domain techniques such as linear prediction [351]. Linear prediction techniques have
been discussed for example in the books [169, 171, 419].

Shalvi and Weinstein have presented a somewhat more complicated algorithm
for the case Efs�t��g �� � in [398]. Furthermore, they showed that there exists a
close relationship between their algorithm and the CMA algorithm discussed in the
previous subsection; see also [351]. Later, they derived fast converging but more
involved super-exponential algorithms for blind deconvolution in [399]. Shalvi and
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Weinstein have reviewed their blind deconvolution methods in [170]. Closely related
algorithms were proposed earlier in [114, 457].

It is interesting to note that Shalvi and Weinstein’s algorithm (19.14) can be
derived by maximizing the absolute value of the kurtosis of the filtered (deconvolved)
signal z�t� under the constraint that the output signal y�t� is temporally white [398,
351]. The temporal whiteness condition leads to the normalization constraint of
the weight vector w�t� in (19.14). The corresponding criterion for standard ICA is
familiar already from Chapter 8, where gradient algorithms similar to (19.14) have
been discussed. Also Shalvi and Weinstein’s super-exponential algorithm [399] is
very similar to the cumulant-based FastICA as introduced in Section 8.2.3. The
connection between blind deconvolution and ICA is discussed in more detail in the
next subsection.

Instead of cumulants, one can resort to higher-order spectra or polyspectra [319,
318]. They are defined as Fourier transforms of the cumulants quite similarly as
the power spectrum is defined as a Fourier transform of the autocorrelation function
(see Section 2.8.5). Polyspectra provide a basis for blind deconvolution and more
generally identification of nonminimum-phase systems, because they preserve phase
information of the observed signal. However, blind deconvolution methods based
on higher-order spectra tend to be computationally more complex than Bussgang
methods, and converge slowly [171]. Therefore, we shall not discuss them here. The
interested reader can find more information on those methods in [170, 171, 315].

19.1.4 Blind deconvolution using linear ICA

In defining the blind deconvolution problem, the values of the original signal s�t�
were assumed to be independent for different t and nongaussian. Therefore, the blind
deconvolution problem is formally closely related to the standard ICA problem. In
fact, one can define a vector

�s�t� � �s�t�� s�t� ��� ���� s�t� n� ���T (19.16)

by collecting n last values of the source signal, and similarly define

�x�t� � �x�t�� x�t � ��� ���� x�t� n� ���T (19.17)

Then �x and �s are n-dimensional vectors, and the convolution (19.1) can be expressed
for a finite number of values of the summation index k as

�x � A�s (19.18)

where A is a matrix that contains the coefficients ak of the convolution filter as its
rows, at different positions for each row. This is the classic matrix representation
of a filter. This representation is not exact near the top and bottom rows, but for a
sufficiently large n, it is good enough in practice.

From (19.18) we see that the blind deconvolution problem is actually (approxi-
mately) a special case of ICA. The components of s are independent, and the mixing
is linear, so we get the standard linear ICA model.
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In fact, the one-unit (deflationary) ICA algorithms in Chapter 8 can be directly
used to perform blind deconvolution. As defined above, the inputs x�t� should then
consist of sample sequences x�t�� x�t � ��� ���� x�t� n� �� of the signal x�t� to be
deconvolved. Estimating just one “independent component”, we obtain the original
deconvolved signal s�t�. If several components are estimated, they correspond
to translated versions of the original signal, so it is enough to estimate just one
component.

19.2 BLIND SEPARATION OF CONVOLUTIVE MIXTURES

19.2.1 The convolutive BSS problem

In several practical applications of ICA, some kind of convolution takes place simul-
taneously with the linear mixing. For example, in the classic cocktail-party problem,
or separation of speech signals recorded by a set of microphones, the speech signals
do not arrive in the microphones at the same time. This is because the sound travels in
the atmosphere with a very limited speed. Moreover, the microphones usually record
echos of the speakers’ voices caused by reverberations from the walls of the room
or other obstacles. These two phenomena can be modeled in terms of convolutive
mixtures. Here we have not considered noise and other complications that often
appear in practice; see Section 24.2 and [429, 430].

Blind source separation of convolutive mixtures is basically a combination of
standard instantaneous linear blind source separation and blind deconvolution. In the
convolutive mixture model, each element of the mixing matrix A in the model x�t�
= As�t� is a filter instead of a scalar. Written out for each mixture, the data model
for convolutive mixtures is given by

xi�t� �

nX

j��

X

k

aikjsj�t� k�� for i � �� ���� n (19.19)

This is a FIR filter model, where each FIR filter (for fixed indices i and j) is defined by
the coefficients aikj . Usually these coefficients are assumed to be time-independent
constants, and the number of terms over which the convolution index k runs is finite.
Again, we observe only the mixtures xi�t�, and both the independent source signals
si�t� and all the coefficients aikj must be estimated.

To invert the convolutive mixtures (19.19), a set of similar FIR filters is typically
used:

yi�t� �

nX

j��

X

k

wikjxj�t� k�� for i � �� ���� n (19.20)

The output signals y��t�� � � � � yn�t� of the separating system are estimates of the
source signals s��t�� � � � � sn�t� at discrete time t. The wikj give the coefficients of
the FIR filters of the separating system. The FIR filters used in separation can be



362 CONVOLUTIVE MIXTURES AND BLIND DECONVOLUTION

either causal or noncausal depending on the method. The number of coefficient in
each separating filter must sometimes be very large (hundreds or even thousands)
for achieving sufficient inversion accuracy. Instead of the feedforward FIR structure,
feedback (IIR type) filters have sometimes been used for separating convolutive
mixtures, an example is presented in Section 23.4. See [430] for a discussion of
mutual advantages and drawbacks of these filter structures in convolutive BSS.

At this point, it is useful to discuss relationships between the convolutive BSS
problem and the standard ICA problem on a general level [430]. Recall first than in
standard linear ICA and BSS, the indeterminacies are the scaling and the order of the
estimated independent components or sources (and their sign, which can be included
in scaling). With convolutive mixtures the indeterminacies are more severe: the order
of the estimated sources yi�t� is still arbitrary, but scaling is replaced by (arbitrary)
filtering. In practice, many of the methods proposed for convolutive mixtures filter
the estimated sources yi�t� so that they are temporally uncorrelated (white). This
follows from the strong independence condition that most of the blind separation
methods introduced for convolutive mixtures try to realize as well as possible. The
temporal whitening effect causes some inevitable distortion if the original source
signals themselves are not temporally white. Sometimes it is possible to get rid of
this by using a feedback filter structure; see [430].

Denote by

y�t� � �y��t�� y��t�� � � � � yn�t��
T (19.21)

the vector of estimated source signals. They are both temporally and spatially white
if

Efy�t�yH �t� k�g � �tkI �

�
I� t � k

�� t �� k
(19.22)

where H denotes complex conjugate transpose (Hermitian operator). The standard
spatial whitening condition Efy�t�yH �t�g = I is obtained as a special case when
t � k. The condition (19.22) is required to hold for all the lag values k for which the
separating filters (19.20) are defined. Douglas and Cichocki have introduced a simple
adaptive algorithm for whitening convolutive mixtures in [120]. Lambert and Nikias
have given an efficient temporal whitening method based on FIR matrix algebra and
Fourier transforms in [257].

Standard ICA makes use of spatial statistics of the mixtures to learn a spatial blind
separation system. In general, higher-order spatial statistics are needed for achieving
this goal. However, if the source signals are temporally correlated, second-order
spatiotemporal statistics are sufficient for blind separation under some conditions,
as shown in [424] and discussed in Chapter 18. In contrast, blind separation of
convolutive mixtures must utilize spatiotemporal statistics of the mixtures to learn a
spatiotemporal separation system.

Stationarity of the sources has a decisive role in separating convolutive mixtures,
too. If the sources have nonstationary variances, second-order spatiotemporal statis-
tics are enough as briefly discussed in [359, 456].
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For convolutive mixtures, stationary sources require higher than second-order
statistics, just as basic ICA, but the following simplification is possible [430]. Spa-
tiotemporal second-order statistics can be used to decorrelate the mixtures. This step
returns the problem to that of conventional ICA, which again requires higher-order
spatial statistics. Examples of such approaches are can be found in [78, 108, 156].
This simplification is not very widely used, however.

Alternatively, one can resort to higher-order spatiotemporal statistics from the
beginning for sources that cannot be assumed nonstationary. This approach has been
adopted in many papers, and it will be discussed briefly later in this chapter.

19.2.2 Reformulation as ordinary ICA

The simplest approach to blind separation of convolutive mixtures is to reformulate
the problem using the standard linear ICA model. This is possible because blind
deconvolution can be formulated as a special case of ICA, as we saw in (19.18).
Define now a vector �s by concatenating M time-delayed versions of every source
signal:

�s�t� � �s��t�� s��t� ��� ���� s��t�M � ��� s��t�� s��t� ��� ���� s��t�M � ���

� � � � sn�t�� sn�t� ��� ���� sn�t�M � ���T (19.23)

and define similarly a vector

�x�t� � �x��t�� x��t� ��� ���� x��t�M ���� x��t�� x��t� ��� ���� x��t�M ����

� � � � xn�t�� xn�t� ��� ���� xn�t�M � ���T (19.24)

Using these definitions, the convolutive mixing model (19.19) can be written

�x � �A�s (19.25)

where �A is a matrix containing the coefficients aikj of the FIR filters in a suitable
order. Now one can estimate the convolutive BSS model by applying ordinary ICA
methods to the standard linear ICA model (19.25).

Deflationary estimation is treated in [108, 401, 432]. These methods are based on
finding maxima of the absolute value of kurtosis, thus generalizing the kurtosis-based
methods of Chapter 8. Other examples of approaches in which the convolutive BSS
problem has been solved using conventional ICA can be found in [156, 292].

A problem with the formulation (19.25) is that when the original data vector x
is expanded to �x, its dimension grows very much. The number M of time delays
that needs to be taken into account depends on the application, but it is often tens
or hundreds, and the dimension of model (19.25) grows with the same factor, to
nM . This may lead to prohibitively high dimensions. Therefore, depending on the
application and the dimensionsn andM , this reformulation can solve the convolutive
BSS problem satisfactorily, or not.

In blind deconvolution, this is not such a big problem because we have just one
signal to begin with, and we only need to estimate one independent component, which
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is easier than estimating all of them. In convolutive BSS, however, we often need
to estimate all the independent components, and their number is nM in the model
(19.25). Thus the computations may be very burdensome, and the number of data
points needed to estimate such a large number of parameters can be prohibitive in
practical applications. This is especially true if we want to estimate the separating
system adaptively, trying to track changes in the mixing system. Estimation should
then be fast both in terms of computations and data collection time.

Regrettably, these remarks hold largely for other approaches proposed for blind
separation of convolutive mixtures, too. A fundamental reason of the computational
difficulties encountered with convolutive mixtures is the fact that the number of the
unknown parameters in the model (19.19) is so large. If the filters have lengthM , it is
M -fold compared with the respective instantaneous ICA model. This basic problem
cannot be avoided in any way.

19.2.3 Natural gradient methods

In Chapter 9, the well-known Bell-Sejnowski and natural gradient algorithms were
derived from the maximum likelihood principle. This principle was shown to be quite
closely related to the maximization of the output entropy, which is often called the
information maximization (infomax) principle; see Chapter 9. These ICA estimation
criteria and algorithms can be extended to convolutive mixtures in a straightforward
way. Early results and derivations of algorithms can be found in [13, 79, 121, 268,
363, 426, 427]. An application to CDMA communication signals will be described
later in Chapter 23.

Amari, Cichocki, and Douglas presented an elegant and systematic approach for
deriving natural gradient type algorithms for blind separation of convolutive mixtures
and related tasks. It is based on algebraic equivalences and their nice properties. Their
work has been summarized in [11], where rather general natural gradient learning
rules have been given for complex-valued data both in the time domain and z-
transform domain. The derived natural gradient rules can be implemented in either
batch, on-line, or block on-line forms [11]. In the batch form, one can use a noncausal
FIR filter structure, while the on-line algorithms require the filters to be causal.

In the following, we represent an efficient natural gradient type algorithm [10, 13]
described also in [430] for blind separation of convolutive mixtures. It can be
implemented on-line using a feedforward (FIR) filter structure in the time domain.
The algorithm is given for complex-valued data.

The separating filters are represented as a sequence of coefficient matricesWk�t�
at discrete time t and lag (delay) k. The separated output with this notation and
causal FIR filters is

y�t� �

LX

k��

Wk�t�x�t � k� (19.26)

Here x�t � k� is n-dimensional data vector containing the values of the n mixtures
(19.19) at the time instant t� k, and y�t� is the output vector whose components are
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estimates of the source signals si�t�� i � �� � � � �m. Hence y�t� has m components,
with m � n.

This matrix notation allows the derivation of a separation algorithm using the
natural gradient approach. The resulting weight matrix update algorithm, which
takes into account the causal approximation of a doubly infinite filter by delaying the
output by L samples, is as follows [13, 430]:

�Wk�t� �Wk�t�� g�y�t � L��vH �t� k�� k � �� � � � � L
(19.27)

Quite similarly as in Chapter 9, each component of the vector g applies the nonlinear-
ity gi��� to the respective component of the argument vector. The optimal nonlinearity
gi��� is the negative score function gi � p�i�pi of the distribution pi of the source
si. In (19.27), v�t� is reverse-filtered output computed using the L latest samples
backwards from the current sample:

v�t� �

LX

q��

WH
L�q�t�y�t � q� (19.28)

The vector v needs to be stored for the latest L samples to compute the update
�Wk�t� of the weight matrix Wk�t� for all lags l � �� � � � � L. The algorithm has
rather modest computational and memory requirements.

Note that if L � �, the formulas (19.27) and (19.28) reduce to the standard natural
gradient algorithm. In [13], the authors present a speech separation experiment where
about 50 seconds of mixed data were needed to achieve about 10-15 dB enhancement
in the quality of separated signals.

19.2.4 Fourier transform methods

Fourier transform techniques are useful in dealing with convolutive mixtures, because
convolutions become products between Fourier transforms in the frequency domain.

It was shown in Chapter 13 that filtering the data is allowed before performing
ICA, since filtering does not change the mixing matrix. Using the same proof, one
can see that applying Fourier transform to the data does not change the mixing matrix
either. Thus we can apply Fourier transform to both sides of Eq. (19.19). Denoting
by Xi���, Si���, and Aij��� the Fourier transforms of xi�t�, si�t�, and aij�t�,
respectively, we obtain

Xi��� �

nX

j��

Aij���Si���� for i � �� ���� n (19.29)

This shows that the convolutive mixturemodel (19.19) is transformedinto an instan-
taneous linear ICA model in the frequency domain. The price that we have to pay
for this is that the mixing matrix is now a function of the angular frequency � while
in the standard ICA/BSS problem it is constant.
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To utilize standard ICA in practice in the Fourier domain, one can take short-time
Fourier transforms of the data, instead of the global transform. This means that
the data is windowed, usually by a smooth windowing function such as a gaussian
envelope, and the Fourier transform is applied separately to each data window. The
dependency of Xi��� on � can be simplified by dividing the values of � into a
certain number of frequency bins (intervals). For every frequency bin, we have then a
number of observations of Xi���, and we can estimate the ICA model separately for
each frequency bin. Note that the ICs and the mixing matrix are now complex-valued.
See Section 20.3 on how to estimate the ICA model with complex-valued data.

The problem with this Fourier approach is the indeterminacy of permutation and
sign that is ubiquitous in ICA. The permutation and signs of the sources are usually
different in each frequency interval. For reconstructing a source signal si�t� in the
time domain, we need all its frequency components. Hence we a need some method
for choosing which source signals in different frequency intervals belong together.
To this end, various continuity criteria have been introduced by many authors; see
[15, 59, 216, 356, 397, 405, 406, 430].

Another major group of Fourier methods developed for convolutive mixtures
avoids the preceding problem by performing the actual separation in the time domain.
Only selected parts of the separation procedure are carried out in the frequency
domain. Separating filters may be easier to learn in the frequency domain because
components are now orthogonal and do not depend on each other like the time domain
coefficients [21, 430]. Examples of methods that apply their separation criterion in
the time domain but do the rest in the frequency domain are reported in [21, 257].
A frequency domain representation of the filters is learned, and they are also applied
in the frequency domain. The final time-domain result is reconstructed using for
example the overlap-save technique of digital signal processing (see [339]). Thus,
the permutation and scaling problem does not exist.

The work by Lambert and Nikias deserves special attention, see the review in
[257]. They have introduced methods that utilize the Bussgang family of cost func-
tions and standard adaptive filtering algorithms in blind separation of convolutive
mixtures. FIR matrix algebra introduced in [256] is employed as an efficient tool for
systematic development of methods. Lambert and Nikias [257] have considered three
general classes of Bussgang type cost functions, namely blind least mean-squares
(LMS), Infomax, and direct Bussgang costs. Most of these costs can be implemented
in either the time or frequency domain, or in the batch or continuously adaptive
modes. Lambert and Nikias have introduced several efficient and practical algo-
rithms for blind separation of convolutive mixtures having different computational
complexities and convergence speeds. For example, block-oriented frequency do-
main implementations can be used to perform robust blind separation on convolutive
mixtures which have hundreds or thousands of time delays [257].
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19.2.5 Spatiotemporal decorrelation methods

Consider first the noisy instantaneous linear ICA model

x�t� � As�t� � n�t� (19.30)

which has been discussed in more detail in Chapter 15. Making the standard realistic
assumption that the additive noise n�t� is independent of the source signals s�t�, the
spatial covariance matrix Cx�t� of x�t� at time t is

Cx�t� � ACs�t�A
T �Cn�t� (19.31)

where Cs�t� and Cn�t� are respectively the covariance matrices of the sources
and the noise at time t. If the sources s�t� are nonstationary with respect to their
covariances, then in general Cs�t� �� Cs�t � �� for � �� �. This allows to write
multiple conditions for different choices of � to solve for A, Cs�t�, and Cn�t�.
Note that the covariances matricesCs�t� andCn�t� are diagonal. The diagonality of
Cs�t� follows from the independence of the sources, andCn�t� can be taken diagonal
because the components of the noise vector n�t� are assumed to be uncorrelated.

We can also look at cross-covariance matrices Cx�t� t � �� = Efx�t�x�t � ��T g
over time. This approach has been mentioned in the context of convolutive mixtures
in [456], and it can be used with instantaneous mixtures as described in Chapter 18.
For convolutive mixtures, we can write in frequency domain for sample averages
[359, 356]

�Cx��� t� � A���Cs��� t�AH ��� �Cn��� t� (19.32)

where �Cx is the averaged spatial covariance matrix. If s is nonstationary, one can
again write multiple linearly independent equations for different time lags and solve
for unknowns or find LMS estimates of them by diagonalizing a number of matrices
in the frequency domain [123, 359, 356].

If the mixing system is minimum phase, decorrelation alone can provide a unique
solution, and the nonstationarity of the signals is not needed [55, 280, 402]. Many
methods have been proposed for this case, for example, in [113, 120, 149, 281,
280, 296, 389, 390, 456]. More references are given in [430]. However, such
decorrelating methods cannot necessarily be applied to practical communications
and audio separation problems, because the mixtures encountered there are often not
minimum-phase. For example in the cocktail-party problem the system is minimum
phase if each speaker is closest to his or her “own” microphone, otherwise not [430].

19.2.6 Other methods for convolutive mixtures

Many methods proposed for blind separation of convolutive mixtures are extensions
of earlier methods originally designed for either the standard linear instantaneous BSS
(ICA) problem or for the blind deconvolution problem. We have already discussed
some extensions of the natural gradient method in Section 19.2.3 and Bussgang
methods in Section 19.2.4. Bussgang methods have been generalized for convolutive
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mixtures also in [351]. Matsuoka’s method [296] for BSS of nonstationary sources is
modified for convolutive mixtures in [239] using natural gradient learning. Nguyen
Thi and Jutten [420] have generalized the seminal Hérault-Jutten algorithm described
in Chapter 12 to BSS of convolutive mixtures. Their approach has also been studied
in [74, 101]. A state-space approach for blind separation of convolutive mixtures has
been studied in [479].

There exist numerous approaches to convolutive BSS which are based on crite-
ria utilizing directly spatiotemporal higher-order statistics. Methods based on the
maximization of the sum of the squares of the kurtoses to estimate the whole sep-
arating system were introduced in [90], and further developed in [307]. Other
methods based on spatiotemporal higher-order statistics have been presented in
[1, 124, 145, 155, 218, 217, 400, 416, 422, 434, 433, 470, 471, 474]. More ref-
erences can be found in [91, 430].

19.3 CONCLUDING REMARKS

Historically, many ideas used in ICA were originally developed in the context of
blind deconvolution, which is an older topic of research than ICA. Later, it was
found that many methods developed for blind deconvolution can be directly applied
for ICA, and vice versa. Blind deconvolution can thus be considered an intellectual
ancestor of ICA. For example, Donoho proposed in [114] that the deconvolution filter
(19.2) could be found by finding the filter whose output is maximally nongaussian.
This is the same principle as used for ICA in Chapter 8. Douglas and Haykin have
explored relationships between blind deconvolution and blind source separation in
[122]. Elsewhere, it has been pointed out that Bussgang criteria are closely related
to nonlinear PCA criteria [236] and several other ICA methods [11].

In this chapter, we have briefly discussed Bussgang, cumulant, and ICA based
methods for blind deconvolution. Still one prominent class of blind deconvolution
and separation methods for convolutive mixtures consists of subspace approaches
[143, 171, 311, 315, 425]. They can be used only if the number of output signals
(observed mixtures) strictly exceeds the number of sources. Subspace methods
resort to second-order statistics and fractional sampling, and they are applicable to
cyclostationary source signals which are commonplace in communications [91].

General references on blind deconvolution are [170, 171, 174, 315]. Blind decon-
volution and separation methods for convolutive mixtures have often been developed
in context with blind channel estimation and identification problems in communica-
tions. These topics are beyond the scope of our book, but the interested reader can
find useful review chapters on blind methods in communications in [143, 144].

In the second half of this chapter, we have considered separation of convolutive
mixtures. The mixing process then takes place both temporally and spatially, which
complicates the blind separation problem considerably. Numerous methods for
handling this problem have been proposed, but it is somewhat difficult to assess
their usefulness, because comparison studies are still lacking. The large number of
parameters is a problem, making it difficult to apply convolutive BSS methods to large
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scale problems. Other practical problems in audio and communications applications
have been discussed in Torkkola’s tutorial review [430]. More information can be
found in the given references and recent reviews [257, 425, 429, 430] on convolutive
BSS.

Appendix Discrete-time filters and the z-transform

In this appendix, we briefly discuss certain basic concepts and results of discrete-time signal
processing which are needed in this chapter.

Linear causal discrete-time filters [169, 339] can generally be described by the difference
equation

y�n� �

MX

i��

�iy�n� i� � x�n� �

NX

i��

�ix�n� i� (A.1)

which is mathematically equivalent to the ARMA model (2.127) in Section 2.8.6. In (A.1),
n is discrete time, x�n� is the input signal of the filter, and y�n� its output at time instant
n. Causality means that in (A.1) there are no quantities that depend on future time instants
n � j� j � �, making it possible to compute the filter output y�n� in real time. The constant
coefficients �i, i � �� � � � � N define the FIR (Finite Impulse Response) part of the filter (A.1),
having the order M . Respectively, the coefficients �i, i � �� � � � �M define the IIR (Infinite
Impulse Response) part of the filter (A.1) with the order M .

If M � �, (A.1) defines a pure FIR filter, and if N � �, a pure IIR filter results. Either
of these filter structures is typically used in separating convolutive mixtures. The FIR filter
is more popular, because it is always stable, which means that its output y�n� is bounded for
bounded input values x�n� i� and coefficients �i. On the other hand, IIR filter can be unstable
because of its feedback (recurrent) structure.

The stability and other properties of the discrete-time filter (A.1) can be analyzed conve-
niently in terms of the z-transform [169, 339]. For a discrete-time real sequence fx�k�g, the
z-transform is defined as the series

X�z� �

�X

k���

x�k�z�k (A.2)

where z is a complex variable with real and imaginary part. For specifying the z-transform of
a sequence uniquely, one must also know its region of convergence.

The z-transform has several useful properties that follow from its definition. Of particular
importance in dealing with convolutive mixtures is the property that the z-transform of the
convolution sum

y�n� �
X

k

hkx�n� k� (A.3)

is the product of the z-transforms of the sequences fhkg and fx�n�g:

Y �z� � H�z�X�z� (A.4)
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The weights hk in (A.3) are called impulse response values, and the quantity H�z� =
Y �z��X�z� is called transfer function. The transfer function of the convolution sum (A.3) is
the z-transform of its impulse response sequence.

The Fourier transform of a sequence is obtained from its z-transform as a special case by
constraining the variable z to lie on the unit circle in the complex plane. This can be done by
setting

z � exp���� � cos��� � � sin��� (A.5)

where � is the imaginary unit and � the angular frequency. The Fourier transform has similar
convolution and other properties as the z-transform [339].

Applying the z-transform to both sides of Eq. (A.1) yields

A�z�Y �z� � B�z�X�z� (A.6)

where

A�z� � � �

MX

k��

�kz
�k� Y �z� �

MX

k��

y�n� k�z�k (A.7)

A�z� is the z-transform of the coefficients �� ��� � � � � �M where the coefficient �� � �
corresponds to y�n�, and Y �z� is the z-transform of the output sequence y�n�� � � � � y�n�M�.
B�z� and X�z� are defined quite similarly as z-transform of the coefficients �� ��� � � � � �N ,
and the respective input signal sequence x�n�� � � � � x�n�N�.

From (A.6), we get for the transfer function of the linear filter (A.1)

H�z� �
Y �z�

X�z�
�
B�z�

A�z�
(A.8)

Note that for a pure FIR filter, A�z� � �, and for pure IIR filter B�z� � �. The zeros of
denominator polynomial A�z� are called the poles of the transfer function (A.8), and the zeros
of numerator B�z� are called the zeros of (A.8). It can be shown (see for example [339]) that
the linear causal discrete-time filter (A.1) is stable if all the poles of the transfer function lie
inside the unit circle in the complex plane. This is also the stability condition for a pure IIR
filter.

From (A.8), X�z� = G�z�Y �z�, where the inverse filter G�z� has the transfer function
��H�z� =A�z��B�z�. Hence, the inverse filter of a pure FIR filter is a pure IIR filter and vice
versa. Clearly, the general stability condition for the inverse filter G�z� is that the zeros of
B�z� (and hence the zeros of the filter H�z�) in (A.8) are inside the unit circle in the complex
plane. This is also the stability condition for the inverse of a pure FIR filter.

Generally, it is desirable that both the poles and the zeros of the transfer function (A.8)
lie inside the unit circle. Then both the filter and its inverse filter exist and are stable. Such
filters are called minimum phase filters. The minimum phase property is a necessity in many
methods developed for convolutive mixtures. It should be noted that a filter that has no stable
causal inverse may have a stable noncausal inverse, realized by a nonminimum-phase filter.

These matters are discussed much more thoroughly in many textbooks of digital signal
processing and related areas; see for example [339, 302, 169, 171].



20
Other Extensions

In this chapter, we present some additional extensions of the basic independent
component analysis (ICA) model. First, we discuss the use of prior information
on the mixing matrix, especially on its sparseness. Second, we present models that
somewhat relax the assumption of the independence of the components. In the model
called independent subspace analysis, the components are divided into subspaces that
are independent, but the components inside the subspaces are not independent. In the
model of topographic ICA, higher-order dependencies are modeled by a topographic
organization. Finally, we show how to adapt some of the basic ICA algorithms to the
case where the data is complex-valued instead of real-valued.

20.1 PRIORS ON THE MIXING MATRIX

20.1.1 Motivation for prior information

No prior knowledge on the mixing matrix is used in the basic ICA model. This has the
advantage of giving the model great generality. In many application areas, however,
information on the form of the mixing matrix is available. Using prior information on
the mixing matrix is likely to give better estimates of the matrix for a given number
of data points. This is of great importance in situations where the computational
costs of ICA estimation are so high that they severely restrict the amount of data that
can be used, as well as in situations where the amount of data is restricted due to the
nature of the application.

371
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This situation can be compared to that found in nonlinear regression, where
overlearning or overfitting is a very general phenomenon [48]. The classic way
of avoiding overlearning in regression is to use regularizing priors, which typically
penalize regression functions that have large curvatures, i.e., lots of “wiggles”. This
makes it possible to use regression methods even when the number of parameters
in the model is very large compared to the number of observed data points. In the
extreme theoretical case, the number of parameters is infinite, but the model can still
be estimated from finite amounts of data by using prior information. Thus suitable
priors can reduce overlearning that was discussed in Section 13.2.2.

One example of using prior knowledge that predates modern ICA methods is the
literature on beamforming (see the discussion in [72]), where a very specific form of
the mixing matrix is represented by a small number of parameters. Another example
is in the application of ICA to magnetoencephalogaphy (see Chapter 22), where it
has been found that the independent components (ICs) can be modeled by the classic
dipole model, which shows how to constrain the form of the mixing coefficients
[246]. The problem with these methods, however, is that they may be applicable to a
few data sets only, and lose the generality that is one of the main factors in the current
flood of interest in ICA.

Prior information can be taken into account in ICA estimation by using Bayesian
prior distributions for the parameters. This means that the parameters, which in this
case are the elements of the mixing matrix, are treated as random variables. They
have a certain distribution and are thus more likely to assume certain values than
others. A short introduction to Bayesian estimation was given in Section 4.6.

In this section, we present a form of prior information on the mixing matrix
that is both general enough to be used in many applications and strong enough to
increase the performance of ICA estimation. To give some background, we first
investigate the possibility of using two simple classes of priors for the mixing matrix
A: Jeffreys’ prior and quadratic priors. We come to the conclusion that these two
classes are not very useful in ICA. Then we introduce the concept of sparse priors.
These are priors that enforce a sparse structure on the mixing matrix. In other words,
the prior penalizes mixing matrices with a larger number of significantly nonzero
entries. Thus this form of prior is analogous to the widely-used prior knowledge on
the supergaussianity or sparseness of the independent components. In fact, due to this
similarity, sparse priors are so-called conjugate priors, which implies that estimation
using this kind of priors is particularly easy: Ordinary ICA methods can be simply
adapted to using such priors.

20.1.2 Classic priors

In the following, we assume that the estimatorB of the inverse of the mixing matrix
A is constrained so that the estimates of the independent components y � Bx are
white, i.e., decorrelated and of unit variance: EfyyT g � I. This restriction greatly
facilitates the analysis. It is basically equivalent to first whitening the data and then
restricting B to be orthogonal, but here we do not want to restrict the generality of
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these results by whitening. We concentrate here on formulating priors forB � A��.
Completely analogue results hold for prior onA.

Jeffreys’ prior The classic prior in Bayesian inference is Jeffreys’ prior. It
is considered a maximally uninformative prior, which already indicates that it is
probably not useful for our purpose.

Indeed, it was shown in [342] that Jeffreys’ prior for the basic ICA model has the
form:

p�B� � j detB��j (20.1)

Now, the constraint of whiteness of the y � Bx means that B can be expressed
as B � WV, where V is a constant whitening matrix, and W is restricted to
be orthogonal. But we have detB � detW detV � detV, which implies that
Jeffreys’s prior is constant in the space of allowed estimators (i.e., decorrelatingB).
Thus we see that Jeffreys’ prior has no effect on the estimator, and therefore cannot
reduce overlearning.

Quadratic priors In regression, the use of quadratic regularizing priors is very
common [48]. It would be tempting to try to use the same idea in the context of ICA.
Especially in feature extraction, we could require the columns ofA, i.e. the features,
to be smooth in the same sense as smoothness is required from regression functions.
In other words, we could consider every column ofA as a discrete approximation of
a smooth function, and choose a prior that imposes smoothness for the underlying
continuous function. Similar arguments hold for priors defined on the rows of B,
i.e., the filters corresponding to the features.

The simplest class of regularizing priors is given by quadratic priors. We will
show here, however, that such quadratic regularizers, at least the simple class that we
define below, do not change the estimator.

Consider priors that are of the form

log p�B� �

nX

i��

bTi Mbi � const� (20.2)

where the bT
i

are the rows ofB � A��, andM is a matrix that defines the quadratic
prior. For example, forM � Iwe have a “weight decay” prior log p�B� �

P
i
kbik

�

that is often used to penalize large elements in B. Alternatively, we could include in
M some differential operators so that the prior would measure the “smoothnesses”
of the bi, in the sense explained above. The prior can be manipulated algebraically
to yield

nX

i��

bT
i
Mbi �

nX

i��

tr�MbibTi � � tr�MBTB� (20.3)

Quadratic priors have little significance in ICA estimation, however. To see this,
let us constrain the estimates of the independent components to be white as previously.
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This means that we have

EfyyT g � EfBxxTBT g � BCBT
� I (20.4)

in the space of allowed estimates, which gives after some algebraic manipulations
BTB � C��. Now we see that

nX

i��

bTi Mbi � tr�MC��� � const� (20.5)

In other words, the quadratic prior is constant. The same result can be proven for a
quadratic prior onA. Thus, quadratic priors are of little interest in ICA.

20.1.3 Sparse priors

Motivation A much more satisfactory class of priors is given by what we call
sparse priors. This means that the prior information says that most of the elements
of each row of B are zero; thus their distribution is supergaussian or sparse. The
motivation for considering sparse priors is both empirical and algorithmic.

Empirically, it has been observed in feature extraction of images (see Chapter 21)
that the obtained filters tend to be localized in space. This implies that the distribution
of the elements bij of the filterbi tends to be sparse, i.e., most elements are practically
zero. A similar phenomenon can be seen in analysis of magnetoencephalography,
where each source signal is usually captured by a limited number of sensors. This is
due to the spatial localization of the sources and the sensors.

The algorithmic appeal of sparsifying priors, on the other hand, is based on the
fact that sparse priors can be made to be conjugate priors (see below for definition).
This is a special class of priors, and means that estimation of the model using this
prior requires only very simple modifications in ordinary ICA algorithms.

Another motivation for sparse priors is their neural interpretation. Biological
neural networks are known to be sparsely connected, i.e., only a small proportion
of all possible connections between neurons are actually used. This is exactly what
sparse priors model. This interpretation is especially interesting when ICA is used in
modeling of the visual cortex (Chapter 21).

Measuring sparsity The sparsity of a random variable, say s, can be measured by
expectations of the form EfG�s�g, whereG is a nonquadratic function, for example,
the following

G�s� � �jsj� (20.6)

The use of such measures requires that the variance of s is normalized to a fixed
value, and its mean is zero. These kinds of measures were widely used in Chapter 8
to probe the higher-order structure of the estimates of the ICs. Basically, this is
a robust nonpolynomial moment that typically is a monotonic function of kurtosis.
Maximizing this function is maximizing kurtosis, thus supergaussianity and sparsity.
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In feature extraction and probably several other applications as well, the distribu-
tions of the elements of of the mixing matrix and its inverse are zero-mean due to
symmetry. Let us assume that the data x is whitened as a preprocessing step. Denote
by z the whitened data vector whose components are thus uncorrelated and have unit
variance. Constraining the estimates y � Wz of the independent components to
be white implies that W, the inverse of the whitened mixing matrix, is orthogonal.
This implies that the sum of the squares of the elements

P
j wij is equal to one for

every i. The elements of each rowwT
i of W can be then considered a realization of

a random variable of zero mean and unit variance. This means we could measure the
sparsities of the rows of W using a sparsity measure of the form (20.6).

Thus, we can define a sparse prior of the form

log p�W� �

nX
i��

nX
j��

G�wij� � const� (20.7)

where G is the logarithm of some supergaussian density function. The function G in
(20.6) is such log-density, corresponding to the Laplacian density, so we see that we
have here a measure of sparsity of thewi.

The prior in (20.7) has the nice property of being a conjugate prior. Let us assume
that the independent components are supergaussian, and for simplicity, let us further
assume that they have identical distributions, with log-density G. Now we can take
that same log-density as the log-prior density G in (20.7). Then we can write the
prior in the form

log p�W� �

nX
i��

nX
j��

G�wT
i ej� � const� (20.8)

where we denote by ei the canonical basis vectors, i.e., the ith element of ei is equal
to one, and all the others are zero. Thus the posterior distribution has the form:

log p�Wjz���� ���� z�T �� �

nX
i��

�

TX
t��

G�wT
i z�t�� �

nX
j��

G�wT
i ej�� � const�

(20.9)

This form shows that the posterior distribution has the same form as the prior
distribution (and, in fact, the original likelihood). Priors with this property are called
conjugate priors in Bayesian theory. The usefulness of conjugate priors resides in the
property that the prior can be considered to correspond to a “virtual” sample. The
posterior distribution in (20.9) has the same form as the likelihood of a sample of size
T � n, which consists of both the observed z�t� and the canonical basis vectors ei.
In other words, the posterior in (20.9) is the likelihood of the augmented (whitened)
data sample

z��t� �

�
z�t�� if � � t � T

et�T � if T � t � T � n
(20.10)
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Thus, using conjugate priors has the additional benefit that we can use exactly the
same algorithm for maximization of the posterior as in ordinary maximum likelihood
estimation of ICA. All we need to do is to add this virtual sample to the data; the
virtual sample is of the same size n as the dimension of the data.

For experiments using sparse priors in image feature extraction, see [209].

Modifying prior strength The conjugate priors given above can be generalized
by considering a family of supergaussian priors given by

log p�W� �

nX

i��

nX

j��

�G�wT
i ej� � const� (20.11)

Using this kind of prior means that the virtual sample points are weighted by some
parameter �. This parameter expresses the degree of belief that we have in the prior.
A large � means that the belief in the prior is strong. Also, the parameter � could
be different for different i, but this seems less useful here. The posterior distribution
then has the form:

log p�Wjz���� ���� z�T �� �

nX

i��

�

TX

t��

G�wT
i z�t�� �

nX

j��

�G�wT
i ej�� � const�

(20.12)

The preceding expression can be further simplified in the case where the assumed
density of the independent components is Laplacian, i.e., G�y� � �jyj. In this case,
the � can multiply the ej themselves:

log p�Wjz���� ���� z�T �� �
nX

i��

��
TX

t��

jwT
i z�t�j �

nX

j��

jwT
i ��ej�j� � const�

(20.13)

which is simpler than (20.12) from the algorithmic viewpoint: It amounts to the
addition of just n virtual data vectors of the form �ej to the data. This avoids all
the complications due to the differential weighting of sample points in (20.12), and
ensures that any conventional ICA algorithm can be used by simply adding the virtual
sample to the data. In fact, the Laplacian prior is most often used in ordinary ICA
algorithms, sometimes in the form of the log cosh function that can be considered as
a smoother approximation of the absolute value function.

Whitening and priors In the preceding derivation, we assumed that the data is
preprocessed by whitening. It should be noted that the effect of the sparse prior is
dependent on the whitening matrix. This is because sparseness is imposed on the
separating matrix of the whitened data, and the value of this matrix depends on the
whitening matrix. There is an infinity of whitening matrices, so imposing sparseness
on the whitened separating matrix may have different meanings.

On the other hand, it is not necessary to whiten the data. The preceding framework
can be used for non-white data as well. If the data is not whitened, the meaning of
the sparse prior is somewhat different, though. This is because every row of bi is not
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constrained to have unit norm for general data. Thus our measure of sparsity does
not anymore measure the sparsities of each bi. On the other hand, the developments
of the preceding section show that the sum of squares of the whole matrix

P
ij bij

does stay constant. This means that the sparsity measure is now measuring rather the
global sparsity ofB, instead of the sparsities of individual rows.

In practice, one usually wants to whiten the data for technical reasons. Then the
problems arises: How to impose the sparseness on the original separating matrix even
when the data used in the estimation algorithm needs to be whitened? The preceding
framework can be easily modified so that the sparseness is imposed on the original
separating matrix. Denote byV the whitening matrix and byB the separating matrix
for original data. Thus, we haveWV � B and z � Vx by definition. Now, we can
express the prior in (20.8) as

log p�B� �

nX

i��

nX

j��

G�bTi ej� � const. �
nX

i��

nX

j��

G�wT
i �Vej�� � const.

(20.14)

Thus, we see that the virtual sample added to z�t� now consists of the columns of the
whitening matrix, instead of the identity matrix.

Incidentally, a similar manipulation of (20.8) shows how to put the prior on the
original mixing matrix instead of the separating matrix. We always have VA �
�W��� �W

T . Thus, we obtain aTi ej � a
T
i V

T �V���T ej � w
T
i �V

���T ej . This
shows that imposing a sparse prior on A is done by using the virtual sample given
by the rows of the inverse of the whitening matrix. (Note that for whitened data,
the mixing matrix is the transpose of the separating matrix, so the fourth logical
possibility of formulating prior for the whitened mixing matrix is not different from
using a prior on the whitened separating matrix.)

In practice, the problems implied by whitening can often be solved by using a
whitening matrix that is sparse in itself. Then imposing sparseness on the whitened
separating matrix is meaningful. In the context of image feature extraction, a sparse
whitening matrix is obtained by the zero-phase whitening matrix (see [38] for dis-
cussion), for example. Then it is natural to impose the sparseness for the whitend
separating matrix, and the complications discussed in this subsection can be ignored.

20.1.4 Spatiotemporal ICA

When using sparse priors, we typically make rather similar assumptions on both the
ICs and the mixing matrix. Both are assumed to be generated so that the values
are taken from independent, typically sparse, distributions. At the limit, we might
develop a model where the very same assumptions are made on the mixing matrix
and the ICs. Such a model [412] is called spatiotemporal ICA since it does ICA both
in the temporal domain (assuming that the ICs are time signals), and in the spatial
domain, which corresponds to the spatial mixing defined by the mixing matrix.

In spatiotemporal ICA, the distinction between ICs and the mixing matrix is
completely abolished. To see why this is possible, consider the data as a single
matrix of the observed vectors as its columns: X � �x���� ����x�T ��, and likewise
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for the ICs. Then the ICA model can be expressed as

X � AS (20.15)

Now, taking a transpose of this equation, we obtain

X
T
� S

T
A
T (20.16)

Now we see that the matrix S is like a mixing matrix, withAT giving the realizations
of the “independent components”. Thus, by taking the transpose, we flip the roles of
the mixing matrix and the ICs.

In the basic ICA model, the difference between s and A is due to the statistical
assumptions made on s, which are the independent random variables,and onA, which
is a constant matrix of parameters. But with sparse priors, we made assumptions on
A that are very similar to those usually made on s. So, we can simply consider both
A and S as being generated by independent random variables, in which case either
one of the mixing equations (with or without transpose) are equally valid. This is the
basic idea in spatiotemporal ICA.

There is another important difference between S andA, though. The dimensions
of A and S are typically very different: A is square whereas S has many more
columns than rows. This difference can be abolished by considering that thereA has
many fewer columns than rows, that is, there is some redundancy in the signal.

The estimation of the spatiotemporal ICA model can be performed in a manner
rather similar to using sparse priors. The basic idea is to form a virtual sample where
the data consists of two parts, the original data and the data obtained by transposing
the data matrix. The dimensions of these data sets must be strongly reduced and
made equal to each other, using PCA-like methods. This is possible because it was
assumed that both A and ST have the same kind of redundancy: many more rows
than columns. For details, see [412], where the infomax criterion was applied on this
estimation task.

20.2 RELAXING THE INDEPENDENCE ASSUMPTION

In the ICA data model, it is assumed that the components si are independent. How-
ever, ICA is often applied on data sets, for example, on image data, in which the
obtained estimates of the independent components are not very independent, even
approximately. In fact, it is not possible, in general, to decompose a random vector
x linearly into components that are independent. This raises questions on the utility
and interpretation of the components given by ICA. Is it useful to perform ICA on
real data that does not give independent components, and if it is, how should the
results be interpreted?

One approach to this problem is to reinterpret the estimation results. A straight-
forward reinterpretation was offered in Chapter 10: ICA gives components that are as
independent as possible. Even in cases where this is not enough, we can still justify
the utility by other arguments. This is because ICA simultaneously serves certain
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other useful purposes than dependence reduction. For example, it can be interpreted
as projection pursuit (see Section 8.5) or sparse coding (see Section 21.2). Both of
these methods are based on the maximal nongaussianity property of the independent
components, and they give important insight into what ICA algorithms are really
doing.

A different approach to the problem of not finding independent components is to
relax the very assumption of independence, thus explicitly formulating new data mod-
els. In this section, we consider this approach, and present three recently developed
methods in this category. In multidimensional ICA, it is assumed that only certain
sets (subspaces) of the components are mutually independent. A closely related
method is independent subspace analysis, where a particular distribution structure
inside such subspaces is defined. Topographic ICA, on the other hand, attempts
to utilize the dependence of the estimated “independent” components to define a
topographic order.

20.2.1 Multidimensional ICA

In multidimensional independent component analysis [66, 277], a linear generative
model as in basic ICA is assumed. In contrast to basic ICA, however, the components
(responses) si are not assumed to be all mutually independent. Instead, it is assumed
that the si can be divided into couples, triplets or in general k-tuples, such that the
si inside a given k-tuple may be dependent on each other, but dependencies between
different k-tuples are not allowed.

Every k-tuple of si corresponds to k basis vectors ai. In general, the dimensional-
ity of each independent subspace need not be equal, but we assume so for simplicity.
The model can be simplified by two additional assumptions. First, even though the
components si are not all independent, we can always define them so that they are
uncorrelated, and of unit variance. In fact, linear correlations inside a givenk-tuple of
dependent components could always be removed by a linear transformation. Second,
we can assume that the data is whitened (sphered), just as in basic ICA.

These two assumptions imply that the ai are orthonormal. In particular, the
independent subspaces become orthogonal after whitening. These facts follow di-
rectly from the proof in Section 7.4.2, which applies here as well, due to our present
assumptions.

Let us denote by J the number of independent feature subspaces, and by Sj � j �

�� ���� J the set of the indices of the si belonging to the subspace of index j. Assume
that the data consists of T observed data points x�t�� t � �� ���� T . Then we can
express the likelihood L of the data, given the model as follows

L�x�t�� t � �� ���� T �bi� i � �� ���� n�

�

TY

t��

�j detBj

JY

j��

pj�b
T
i x�t�� i � Sj�� (20.17)

where pj���, which is a function of the k arguments bT
i x�t�� i � Sj , gives the

probability density inside the jth k-tuple of si. The term j detBj appears here as in
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any expression of the probability density of a transformation, giving the change in
volume produced by the linear transformation, as in Chapter 9.

The k-dimensional probability density pj��� is not specified in advance in the
general definition of multidimensional ICA [66]. Thus, the question arises how
to estimate the model of multidimensional ICA. One approach is to estimate the
basic ICA model, and then group the components into k-tuples according to their
dependence structure [66]. This is meaningful only if the independent components
are well defined and can be accurately estimated; in general we would like to utilize
the subspace structure in the estimation process. Another approach is to model
the distributions inside the subspaces by a suitable model. This is potentially very
difficult, since we then encounter the classic problem of estimating k-dimensional
distributions. One solution for this problem is given by independent subspaces
analysis, to be explained next.

20.2.2 Independent subspace analysis

Independent subspace analysis [204] is a simple model that models some dependen-
cies between the components. It is based on combining multidimensional ICA with
the principle of invariant-feature subspaces.

Invariant-feature subspaces To motivate independent subspace analysis, let us
consider the problem of feature extraction, treated in more detail in Chapter 21. In the
most basic case, features are given by linear transformations, or filters. The presence
of a given feature is detected by computing the dot-product of input data with a given
feature vector. For example, wavelet, Gabor, and Fourier transforms, as well as most
models of V1 simple cells, use such linear features (see Chapter 21). The problem
with linear features, however, is that they necessarily lack any invariance with respect
to such transformations as spatial shift or change in (local) Fourier phase [373, 248].

Kohonen [248] developed the principle of invariant-feature subspaces as an ab-
stract approach to representing features with some invariances. The principle of
invariant-feature subspaces states that one can consider an invariant feature as a lin-
ear subspace in a feature space. The value of the invariant, higher-order feature is
given by (the square of) the norm of the projection of the given data point on that
subspace, which is typically spanned by lower-order features.

A feature subspace, as any linear subspace, can always be represented by a set
of orthogonal basis vectors, say bi� i � �� ���� k, where k is the dimension of the
subspace. Then the value F �x� of the feature F with input vector x is given by

F �x� �

kX

i��

�bT
i x�

� (20.18)

In fact, this is equivalent to computing the distance between the input vector x and a
general linear combination of the vectors (possibly filters) bi of the feature subspace
[248].
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Spherical symmetry Invariant-feature subspaces can be embedded in multidi-
mensional independent component analysis by considering probability distributions
for the k-tuples of si that are spherically symmetric, i.e., depend only on the norm. In
other words, the probability density pj��� of a k-tuple can be expressed as a function
of the sum of the squares of the si� i � Sj only. For simplicity, we assume further
that the pj��� are equal for all j, i.e., for all subspaces.

This means that the logarithm of the likelihood L of the data x�t�� t � �� ���� T ,
can be expressed as

logL�x�t�� t � �� ���� T �bi� i � �� ���� n�

�
TX

t��

JX

j��

log p�
X

i�Sj

�bTi x�t��
�� � T log j detBj (20.19)

where p�
P

i�Sj
s�i � � pj�si� i � Sj� gives the probability density inside the jth

k-tuple of si.
Recall that prewhitening allows us to consider the bi to be orthonormal, which

implies that log j detBj is zero. This shows that the likelihood in Eq. (20.19) is a
function of the norms of the projections of x on the subspaces indexed by j, which
are spanned by the orthonormal basis sets given by bi� i � Sj .

In the case of clearly supergaussian components, we can use the following proba-
bility distribution:

log p�
X

i�Sj

s�i � � ���
X

i�Sj

s�i �
��� � � (20.20)

which could be considered a multi-dimensional version of the exponential distribu-
tion. The scaling constant � and the normalization constant � are determined so as
to give a probability density that is compatible with the constraint of unit variance of
the si, but they are irrelevant in the following. Thus we see that the estimation of
the model consists of finding subspaces such that the norms of the projections of the
(whitened) data on those subspaces have maximally sparse distributions.

Independent subspace analysis is a natural generalization of ordinary ICA. In fact,
if the projections on the subspaces are reduced to dot-products, i.e., projections on
one-dimensional (1-D) subspaces, the model reduces to ordinary ICA, provided that,
in addition, the independent components are assumed to have symmetric distributions.
It is to be expected that the norms of the projections on the subspaces represent some
higher-order, invariant features. The exact nature of the invariances has not been
specified in the model but will emerge from the input data, using only the prior
information on their independence.

If the subspaces have supergaussian (sparse) distributions, the dependency implied
by the model is such that components in the same subspace tend to be nonzero at the
same time. In other words, the subspaces are somehow “activated” as a whole, and
then the values of the individual components are generated according to how strongly
the subspaces are activated. This is the particular kind of dependency that is modeled
by independent subspaces in most applications, for example, with image data.
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For more details on independent subspace analysis, the reader is referred to [204].
Some experiments on image data are reported in Section 21.5 as well.

20.2.3 Topographic ICA

Another way of approaching the problem of nonexistence of independent components
is to try to somehow make the dependency structure of the estimated components
visible. This dependency structure is often very informative and could be utilized in
further processing.

Estimation of the “residual” dependency structure of estimates of independent
components could be based, for example, on computing the cross-cumulants. Typ-
ically these would be higher-order cumulants, since second-order cross-cumulants,
i.e., covariance, are typically very small, and can in fact be forced to be zero, as we did
by orthogonalization after whitening in Part II. However, using such measures raises
the question as to how such numerical estimates of the dependence structure should
be visualized or otherwise utilized. Moreover, there is another serious problem as-
sociated with simple estimation of some dependency measures from the estimates
of the independent components. This is due to the fact that often the independent
components do not form a well-defined set. Especially in image decomposition
(Chapter 21), the set of potential independent components seems to be larger than
what can be estimated at one time, in fact the set might be infinite. A classic ICA
method gives an arbitrarily chosen subset of such independent components. Thus, it is
important in many applications that the dependency information is utilized during the
estimation of the independent components, so that the estimated set of independent
components is one whose residual dependencies can be represented in a meaningful
way. (This is something we already argued in connection with independent subspace
analysis.)

Topographic ICA, introduced in [206], is a modification of the classic ICA model
in which the dependencies of the components are explicitly represented. In particular,
we propose that the residual dependency structure of the independent components,
i.e., dependencies that cannot be canceled by ICA, could be used to define a to-
pographical order between the components. The topographical order is easy to
represent by visualization, and is important in image feature extraction due to its
connections to brain modeling [206].

Our model gives a topographic map where the distance of the components in
the topographic representation is a function of the dependencies of the components.
Components that are near to each other in the topographic representation are strongly
dependent in the sense of higher-order correlations.

To obtain topographic ICA, we generalize the model defined by (20.19) so that
it models a dependence not only inside the k-tuples, but among all neighboring
components. A neighborhood relation defines a topographical order. We define the
likelihood of the model as follows:

logL�B� �

TX

t��

nX

j��

G�

nX

i��

h�i� j��bT
i x�t��

�� � T log j detBj � const� (20.21)
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Here, the h�i� j� is a neighborhood function, which expresses the strength of the
connection between the ith and jth units. It can be defined in the same way as in
other topographic maps, like the self-organizing map (SOM) [247]. The function G

is similar to the one in independent subspace analysis. The additive constant depends
only on h�i� j�.

This model thus can be considered a generalization of the model of independent
subspace analysis. In independent subspace analysis, the latent variables si are clearly
divided into k-tuples or subspaces, whereas in topographic ICA, such subspaces are
completely overlapping: Every neighborhood corresponds to one subspace.

Just as independent subspace analysis, topographic ICA usually models a situation
where nearby components tend to be active (nonzero) at the same time. This seems
to be a common dependency structure for natural sparse data [404]. In fact, the
likelihood given earlier can also be derived as an approximation of the likelihood of
a model where the variance of the ICs is controlled by some higher-order variables,
so that the variances of near-by components are strongly dependent.

For more details on topographic ICA, the reader is referred to [206]. Some
experiments on image data are reported in Chapter 21 as well.

20.3 COMPLEX-VALUED DATA

Sometimes in ICA, the ICs and/or the mixing matrix are complex-valued. For exam-
ple, in signal processing in some cases frequency (Fourier) domain representations of
signals have advantages over time-domain representations. Especially in the separa-
tion of convolutive mixtures (see Chapter 19) it is quite common to Fourier transform
the signals, which results in complex-valued signals.

In this section we show how the FastICA algorithm can be extended to complex-
valued signals. Both the ICs s and the observed mixtures x assume complex values.
For simplicity, we assume that the number of independent component variables is
the same as the number of observed linear mixtures. The mixing matrix A is of full
rank and it may be complex as well, but this need not be the case.

In addition to the assumption of the independence of the components si, an
assumption on the dependence of the real and complex parts of a single IC is made
here. We assume that every si is white in the sense that the real and imaginary parts
of sj are uncorrelated and their variances are equal; this is quite realistic in practical
problems.

Related work on complex ICA can be found in [21, 132, 305, 405].

20.3.1 Basic concepts of complex random variables

First, we review some basic concepts of complex random variables; see [419] for
more details.

A complex random variable y can be represented as y � u � iv where u and v

are real-valued random variables. The density of y is f�y� � f�u� v� � R. The
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expectation of y is Efyg � Efug� iEfvg. Two complex random variables y� and
y� are uncorrelated if Efy�y

�

�
g � Efy�gEfy�

�
g, where y� � u� iv designates the

complex conjugate of y. The covariance matrix of a zero-mean complex random
vector y � �y�� � � � � yn� is

EfyyHg �

�
��

C�� � � � C�n

...
. . .

...
Cn� � � � Cnn

�
�� (20.22)

where Cjk � Efyjy
�

kg and yH stands for the Hermitian of y, that is, y transposed
and conjugated. The data can be whitened in the usual way.

In our complex ICA model, all ICs si have zero mean and unit variance. Moreover,
we require that they have uncorrelated real and imaginary parts of equal variances.
This can be equivalently expressed as EfssHg � I and EfssT g � O. In the latter,
the expectation of the outer product of a complex random vector without the conjugate
is a null matrix. These assumptions imply that si must be strictly complex; that is,
the imaginary part of si may not in general vanish.

The definition of kurtosis can be easily generalized. For a zero-mean complex
random variable it could be defined, for example, as [305, 319]

kurt�y� � Efjyj�g �Efyy�gEfyy�g �EfyygEfy�y�g �Efyy�gEfy�yg
(20.23)

but the definitions vary with respect to the placement of conjugates ��� — actually,
there are �� ways to define the kurtosis [319]. We choose the definition in [419],
where

kurt�y� � Efjyj�g � ��Efjyj�g�� � jEfy�gj� � Efjyj�g � �
(20.24)

where the last equality holds if y is white, i.e., the real and imaginary parts of y
are uncorrelated and their variances are equal to ���. This definition of kurtosis is
intuitive since it vanishes if y is gaussian.

20.3.2 Indeterminacy of the independent components

The independent components s in the ICA model are found by searching for a matrix
B such that s � Bx. However, as in basic ICA, there are some indeterminacies. In
the real case, a scalar factor �i can be exchanged between si and a column ai of A
without changing the distribution of x: aisi � ��iai���

��

i si�. In other words, the
order, the signs and the scaling of the independent components cannot be determined.
Usually one defines the absolute scaling by defining Efs�i g � �; thus only the signs
of the independent components are indetermined.

Similarly in the complex case there is an unknown phase vj for each sj . Let us
write the decomposition

aisi � �viai��v
��

i sj� (20.25)
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where the modulus of vi is equal to one. If si has a spherically symmetric distribution,
i.e., the distribution depends on the modulus of sionly, the multiplication by a variable
vi does not change the distribution of si. Thus the distribution ofx remains unchanged
as well. From this indeterminacy it follows that it is impossible to retain the phases
of si, and BA is a matrix where in each row and each column there is one nonzero
element that is of unit modulus.

20.3.3 Choice of the nongaussianity measure

Now we generalize the framework in Chapter 8 for complex-valued signals. In
the complex case, the distributions for the complex variables are often spherically
symmetric, so only the modulus is interesting. Thus we could use a nongaussianity
measure that is based on the modulus only. Based on the measure of nongaussianity
as in (8.25), we use the following:

JG�w� � EfG�jwH
zj��g (20.26)

where G is a smooth even function, w is an n-dimensional complex vector and
EfjwH

zj�g � kwk� � �. The data is whitened, as the notation z already indicates.
This can be compared with (20.24), which gives the kurtosis of complex variables:

if we choose G�y� � y�, then JG�w� � EfjwH
zj�g. Thus J essentially measures

the kurtosis ofwH
z, which is a classic measure in higher-order statistics.

Maximizing JG we estimate one IC. Estimating n independent components is
possible, just as in the real case, by using a sum of n measures of nongaussianity, and
a constraint of orthogonality. Thus one obtains the following optimization problem:

maximize
nX

j��

JG�wi� with respect to wi� j � �� � � � � n

under constraint EfwH
k wig � �jk (20.27)

where �jk � � for j � k and �jk � � otherwise.
It is highly preferable that the estimator given by the contrast function is robust

against outliers. The more slowly G grows as its argument increases, the more robust
is the estimator. For the choice of G we propose now three different functions, the
derivatives g of which are also given:

G��y� �
p
a� � y� g��y� �

�

�
p
a� � y

(20.28)

G��y� � log�a� � y�� g��y� �
�

a� � y
(20.29)

G��y� �
�

�
y�� g��y� � y (20.30)

where a� and a� are some arbitrary constants (for example, a� � ��� and a� � ���
seem to be suitable). Of the preceding functions, G� and G� grow more slowly than
G� and thus they give more robust estimators. G� is motivated by kurtosis (20.24).
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20.3.4 Consistency of estimator

In Chapter 8 it was stated that any nonlinear learning function G divides the space of
probability distributions into two half-spaces. Independent components can be esti-
mated by either maximizing or minimizing a function similar to (20.26), depending
on which half-space their distribution lies in. A theorem for real valued signals was
presented that distinguished between maximization and minimization and gave the
exact conditions for convergence. Now we show how this idea can be generalized
to complex-valued random variables. We have the following theorem on the local
consistency of the estimators [47]:

Theorem 20.1 Assume that the input data follows the complex ICA model. The
observed mixtures are prewhitened so that EfzzHg � I. The independent com-
ponents have zero mean, unit variance, and uncorrelated real and imaginary parts
of equal variances. Also, G � R� � f�g � R is a sufficiently smooth even func-
tion. Then the local maxima (resp. minima) of EfG�jwH

zj��g under the constraint
EfjwH

zj�g � jjwjj� � � include those rows of the inverse of the whitened mixing
matrix VA such that the corresponding independent components sk satisfy

Efg�jskj
�� � jskj

� g��jskj
��� jskj

� g�jskj
��g � � �� �� resp.�

(20.31)

where g�� is the derivative of G�� and g��� is the derivative of g��.

A special case of the theorem is when g�y� � y, g��y� � �. Condition (20.31)
now reads

Efjskj
� � jskj

� � jskj
�jskj

�g � �Efjskj
�g� � � � �� �� resp.��

(20.32)

Thus the local maxima of EfG�jwH
zj��g should be found when Efjskj�g� � � �,

i.e., the kurtosis (20.24) of sk is positive. This implies that we are actually maximizing
the absolute values of kurtosis, just like in the basic case in Chapter 8.

20.3.5 Fixed-point algorithm

We now give the fixed-point algorithm for complex signals under the complex ICA
model. The algorithm searches for the extrema of EfG�jwH

zj��g. The derivation
is presented in [47].

The FastICA algorithm for one unit, using whitened data, is

w� Efx�wH
x��g�jwH

xj��g �Efg�jwH
xj�� � jwH

xj�g��jwH
xj��gw

w�
w

jjwjj
(20.33)

The one-unit algorithm can be extended to the estimation of the whole ICA
transformation in exactly the same way as in the real case. The orthogonalization
methods in Section 8.4 can be used by simply replacing every transpose operation in
the formulas by the Hermitian operation [47].
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20.3.6 Relation to independent subspaces

Our approach to complex ICA closely resembles independent subspace methods,
discussed in Section 20.2.2, and multidimensional ICA, discussed in Section 20.2.1.

In our complex ICA, the nongaussianity measure operates on jwHzj� which
can be interpreted as the norm of a projection onto a subspace. The subspace
is two-dimensional, corresponding to the real and imaginary parts of a complex
number. In contrast to the subspace method, one of the basis vectors is determined
straightforward from the other basis vector. In independent subspace analysis, the
independent subspace is determined only up to an orthogonal k� k matrix factor. In
complex ICA however, the indeterminacy is less severe: the sources are determined
up to a complex factor v, jvj � �.

It can be concluded that complex ICA is a restricted form of independent subspace
methods.

20.4 CONCLUDING REMARKS

The methods presented in the first two sections of the chapter were all related to
the case where we know more about the data than just the blind assumption of
independence. Using sparse priors, we incorporate some extra knowledge on the
sparsity of the mixing matrix in the estimation procedure. This was made very easy
by the algorithmic trick of conjugate priors.

In the methods of independent subspaces or topographic ICA, on the other hand,
we assume that we cannot really find independent components; instead we can
find groups of independent components, or components whose dependency structure
can be visualized. A special case of the subspace formalism is encountered if the
independent components are complex-valued.

Another class of extensions that we did not treat in this chapter are the so-called
semiblind methods, that is, methods in which much prior information on the mixing
is available. In the extreme case, the mixing could be almost completely known, in
which case the “blind” aspect of the method disappears. Such semiblind methods
are quite application-dependent. Some methods related to telecommunications are
treated in Chapter 23. A closely related theoretical framework is the “principal”
ICA proposed in [285]. See also [415] for a semiblind method in a brain imaging
application.





Part IV

APPLICATIONS OF ICA





21
Feature Extraction by ICA

A fundamental approach in signal processing is to design a statistical generative
model of the observed signals. The components in the generative model then give a
representation of the data. Such a representation can then be used in such tasks as
compression, denoising, and pattern recognition. This approach is also useful from a
neuroscientific viewpoint, for modeling the properties of neurons in primary sensory
areas.

In this chapter, we consider a certain class of widely used signals, which we
call natural images. This means images that we encounter in our lives all the time;
images that depict wild-life scenes, human living environments, etc. The working
hypothesis here is that this class is sufficiently homogeneous so that we can build a
statistical model using observations of those signals, and then later use this model for
processing the signals, for example, to compress or denoise them.

Naturally, we shall use independent component analysis (ICA) as the principal
model for natural images. We shall also consider the extensions of ICA introduced
in Chapter 20. We will see that ICA does provide a model that is very similar to
the most sophisticated low-level image representations used in image processing and
vision research. ICA gives a statistical justification for using those methods that have
often been more heuristically justified.

391
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21.1 LINEAR REPRESENTATIONS

21.1.1 Definition

Image representations are often based on discrete linear transformations of the ob-
served data. Consider a black-and-white image whose gray-scale value at the pixel
indexed by x and y is denoted by I�x� y�. Many basic models in image processing
express the image I�x� y� as a linear superposition of some features or basis functions
ai�x� y�:

I�x� y� �

nX

i��

ai�x� y�si (21.1)

where the si are stochastic coefficients, different for each image I�x� y�. Alterna-
tively, we can just collect all the pixel values in a single vectorx � �x�� x�� ���� xm�

T ,
in which case we can express the representation as

x � As (21.2)

just like in basic ICA. We assume here that the number of transformed components
equals the number of observed variables, although this need not be the case in general.
This kind of a linear superposition model gives a useful description on a low level
where we can ignore such higher-level nonlinear phenomena as occlusion.

In practice, we may not model a whole image using the model in (21.1). Rather,
we apply it on image patches or windows. Thus we partition the image into patches
of, for example, � � � pixels and model the patches with the model in (21.1). Care
must then be taken to avoid border effects.

Standard linear transformations widely used in image processing are, for example,
the Fourier, Haar, Gabor, and cosine transforms. Each of them has its own favorable
properties [154]. Recently, a lot of interest has been aroused by methods that
attempt to combine the good qualities of frequency-based methods (Fourier and
cosine transforms) with the basic pixel-by-pixel representation. Here we succinctly
explain some of these methods; for more details see textbooks on the subject, e.g.,
[102], or see [290].

21.1.2 Gabor analysis

Gabor functions or Gabor filters [103, 128] are functions that are extensively used
in image processing. These functions are localized with respect to three parameters:
spatial location, orientation, and frequency. This is in contrast to Fourier basis
function that are not localized in space, and the basic pixel-by-pixel representation
that is not localized in frequency or orientation.

Let us first consider, for simplicity, one-dimensional (1-D) Gabor functions instead
of the two-dimensional (2-D) functions used for images. The Gabor functions are
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Fig. 21.1 A pair of 1-D Gabor functions. These functions are localized in space as well as
in frequency. The real part is given by the solid line and the imaginary part by the dashed line.

then of the form

g�d�x� � exp�����x� x��
���cos�����x� x�� � �� � i sin�����x � x�� � ���

(21.3)

where

� � is the constant in the gaussian modulation function, which determines the
width of the function in space.

� x� defines the center of the gaussian function, i.e., the location of the function.

� � is the frequency of oscillation, i.e., the location of the function in Fourier
space.

� � is the phase of the harmonic oscillation.

Actually, one Gabor function as in (21.3) defines two scalar functions: One as its real
part and the other one as its imaginary part. Both of these are equally important, and
the representation as a complex function is done mainly for algebraic convenience.
A typical pair of 1-D Gabor functions is plotted in Fig. 21.1.

Two-dimensional Gabor functions are created by first taking a 1-D Gabor function
along one of the dimensions and multiplying it by a gaussian envelope in the other
dimension:

g�d�x� y� � exp�����y � y��
��g�d�x� (21.4)
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Fig. 21.2 A pair of 2-D Gabor function. These functions are localized in space, frequency,
and orientation. The real part is on the left, and the imaginary part on the right. These functions
have not been rotated.

where the parameter � in the gaussian envelope need not be the same in both direc-
tions. Second, this function is rotated by an orthogonal transformation of �x� y� to a
given angle. A typical pair of the real and imaginary parts of a Gabor functions are
shown in Fig. 21.2.

Gabor analysis is an example of multi-resolution analysis, which means that the
image is analyzed separately at different resolutions, or frequencies. This is because
Gabor functions can be generated at different sizes by varying the parameter �, and
at different frequencies by varying �.

An open question is what set of values should one choose for the parameters to
obtain a useful representation of the data. Many different solutions exist; see, e.g.,
[103, 266]. The wavelet bases, discussed next, give one solution.

21.1.3 Wavelets

Another closely related method of multiresolution analysis is given by wavelets
[102, 290]. Wavelet analysis is based on a single prototype function called the mother
wavelet ��x�. The basis functions (in one dimension) are obtained by translations
��x� l� and dilations or rescalings ����sx� of this basic function. Thus we use the
family of functions

�s�l�x� � ��s������sx� l� (21.5)

The variables s and l are integers that represent scale and dilation, respectively. The
scale parameter, s, indicates the width of the wavelet, while the location index, l,
gives the position of the mother wavelet. The fundamental property of wavelets is
thus the self-similarity at different scales. Note that � is real-valued.

The mother wavelet is typically localized in space as well as in frequency. Two
typical choices are shown in Fig. 21.3.

A 2-D wavelet transform is obtained in the same way as a 2-D Fourier transform:
by first taking the 1-D wavelet transforms of all rows (or all columns), and then
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Fig. 21.3 Two typical mother wavelets. On the left, a Daubechies mother wavelet, and on
the right, a Meyer mother wavelet.

Fig. 21.4 Part of a 2-D wavelet basis.
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the 1-D wavelet transform of the results of this transform. Some 2-D wavelet basis
vectors are shown in Fig. 21.4.

The wavelet representation also has the important property of being localized both
in space and in frequency, just like the Gabor transform. Important differences are
the following:

� There is no phase parameter, and the wavelets all have the same phase. Thus,
all the basis functions look the same, whereas in Gabor analysis, we have the
couples given by the real and imaginary parts. Thus we have basis vectors of
two different phases, and moreover the phase parameter can be modified. In
Gabor analysis, some functions are similar to bars, and others are similar to
edges, whereas in wavelet analysis, the basis functions are usually something
in between.

� The change in size and frequency (parameters � and � in Gabor functions) are
not independent. Instead, the change in size implies a strictly corresponding
change in frequency.

� Usually in wavelets, there is no orientation parameter either. The only orien-
tations encountered are horizontal and vertical, which come about when the
horizontal and vertical wavelets have different scales.

� The wavelet transform gives an orthogonal basis of the 1-D space. This is in
contrast to Gabor functions, which do not give an orthogonal basis.

One could say that wavelet analysis gives a basis where the size and frequency param-
eters are given fixed values that have the nice property of giving an orthogonal basis.
On the other hand, the wavelet representation is poorer than the Gabor representation
in the sense that the basis functions are not oriented, and all have the same phase.

21.2 ICA AND SPARSE CODING

The transforms just considered are fixed transforms, meaning that the basis vectors
are fixed once and for all, independent of any data. In many cases, however, it would
be interesting to estimate the transform from data. Estimation of the representation
in Eq. (21.1) consists of determining the values of si and ai�x� y� for all i and �x� y�,
given a sufficient number of observations of images, or in practice, image patches
I�x� y�.

For simplicity, let us restrict ourselves here to the basic case where the ai�x� y�
form an invertible linear system, that is, the matrixA is square. Then we can invert
the system as

si �
X

x�y

wi�x� y�I�x� y� (21.6)
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where the wi denote the inverse filters. Note that we have (using the standard ICA
notation)

ai � AA
T
wi � Cwi (21.7)

which shows a simple relation between the filters wi and the corresponding basis
vectors ai. The basis vectors are obtained by filtering the coefficients in wi by the
filtering matrix given by the autocorrelation matrix. For natural image data, the
autocorrelation matrix is typically a symmetric low-pass filtering matrix, so the basis
vectors ai are basically smoothed versions of the filters wi.

The question is then: What principles should be used to estimate a transform from
the data? Our starting point here is a representation principle called sparse coding
that has recently attracted interest both in signal processing and in theories on the
visual system [29, 336]. In sparse coding, the data vector is represented using a set
of basis vectors so that only a small number of basis vectors are activated at the same
time. In a neural network interpretation, each basis vector corresponds to one neuron,
and the coefficients si are given by their activations. Thus, only a small number of
neurons is activated for a given image patch.

Equivalently, the principle of sparse coding could be expressed by the property
that a given neuron is activated only rarely. This means that the coefficients si have
sparse distributions. The distribution of si is called sparse when si has a probability
density with a peak at zero, and heavy tails, which is the case, for example, with
the Laplacian (or double exponential) density. In general, sparseness can be equated
with supergaussianity.

In the simplest case, we can assume that the sparse coding is linear, in which
case sparse coding fits into the framework used in this chapter. One could then
estimate a linear sparse coding transformation of the data by formulating a measure
of sparseness of the components, and maximizing the measure in the set of linear
transformations. In fact, since sparsity is closely related to supergaussianity, ordinary
measures of nongaussianity, such as kurtosis and the approximations of negentropy,
could be interpreted as measures of nongaussianity as well. Maximizing sparsity
is thus one method of maximizing nongaussianity, and we saw in Chapter 8 that
maximizing nongaussianity of the components is one method of estimating the ICs.
Thus, sparse coding can be considered as one method for ICA. At the same time,
sparse coding gives a different interpretation of the goal of the transform.

The utility of sparse coding can be seen, for example, in such applications as com-
pression and denoising. In compression, since only a small subset of the components
are nonzero for a given data point, one could code the data point efficiently by coding
only those nonzero components. In denoising, one could use some testing (threshold-
ing) procedures to find out those components that are really active, and set to zero the
other components, since their observations are probably almost purely noise. This is
an intuitive interpretation of the denoising method given in Section 15.6.
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21.3 ESTIMATING ICA BASES FROM IMAGES

Thus, ICA and sparse coding give essentially equivalent methods for estimating
features from natural images, or other kinds of data sets. Here we show the results
of such an estimation. The set of images that we used consisted of natural scenes
previously used in [191]. An example can be found in Fig. 21.7 in Section 21.4.3,
upper left-hand corner.

First, we must note that ICA applied to image data usually gives one component
representing the local mean image intensity, or the DC component. This component
normally has a distribution that is not sparse; often it is even subgaussian. Thus,
it must be treated separately from the other, supergaussian components, at least if
the sparse coding interpretation is to be used. Therefore, in all experiments we first
subtract the local mean, and then estimate a suitable sparse coding basis for the rest of
the components. Because the data then has lost one linear dimension, the dimension
of the data must be reduced, for example, using principal component analysis (PCA).

Each image was first linearly normalized so that the pixels had zero mean and unit
variance. A set of 10000 image patches (windows) of ��� �� pixels were taken at
random locations from the images. From each patch the local mean was subtracted
as just explained. To remove noise, the dimension of the data was reduced to 160.
The preprocessed dataset was used as the input to the FastICA algorithm, using the
tanh nonlinearity.

Figure 21.5 shows the obtained basis vectors. The basis vectors are clearly
localized in space, as well as in frequency and orientation. Thus the features are
closely related to Gabor functions. In fact, one can approximate these basis functions
by Gabor functions, so that for each basis vector one minimizes the squared error
between the basis vector and a Gabor function; see Section 4.4. This gives very good
fits, and shows that Gabor functions are a good approximation. Alternatively, one
could characterize the ICA basis functions by noting that many of them could be
interpreted as edges or bars.

The basis vectors are also related to wavelets in the sense that they represent
more or less the same features in different scales. This means that the frequency and
the size of the envelope (i.e. the area covered by the basis vectors) are dependent.
However, the ICA basis vectors have many more degrees of freedom than wavelets.
In particular, wavelets have only two orientations, whereas ICA vectors have many
more, and wavelets have no phase difference, whereas ICA vectors have very different
phases. Some recent extensions of wavelets, such as curvelets, are much closer to
ICA basis vectors, see [115] for a review.

21.4 IMAGE DENOISING BY SPARSE CODE SHRINKAGE

In Section 15.6 we discussed a denoising method based on the estimation of the
noisy ICA model [200, 207]. Here we show how to apply this method to image
denoising. We used as data the same images as in the preceding section. To reduce
computational load, here we used image windows of � � � pixels. As explained in
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Fig. 21.5 The ICA basis vectors of natural image patches (windows). The basis vectors
give features that are localized in space, frequency, and orientation, thus resembling Gabor
functions.

Section 15.6, the basis vectors were further orthogonalized; thus the basis vectors
could be considered as orthogonal sparse coding rather than ICA.

21.4.1 Component statistics

Since sparse code shrinkage is based on the property that individual components in
the transform domain have sparse distributions, we first investigate how well this
requirement holds. At the same time we can see which of the parameterizations in
Section 15.5.2 can be used to approximate the underlying densities.

Measuring the sparseness of the distributions can be done by almost any nongaus-
sianity measure. We have chosen the most widely used measure, the normalized
kurtosis. Normalized kurtosis is defined as

��s� �
Efs�g

�Efs�g��
� � (21.8)

The kurtoses of components in our data set were about 5, on the average. Orthog-
onalization did not very significantly change the kurtosis. All the components were
supergaussian.

Next, we compared various parametrizations in the task of fitting the observed
densities. We picked one component at random from the orthogonal ��� sparse cod-
ing transform for natural scenes. First, using a nonparametric histogram technique,
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Fig. 21.6 Analysis of a randomly selected component from the orthogonalized ICA trans-
forms of natural scenes, with window size � � �. Left: Nonparametrically estimated log-
densities (solid curve) vs. the best parametrization (dashed curve). Right: Nonparametric
shrinkage nonlinearity (solid curve) vs. that given by our parametrization (dashed curve).
(Reprinted from [207], reprint permission from the IEEE Press c�2001 IEEE.)

we estimated the density of the component, and from this representation derived the
log density and the shrinkage nonlinearity shown in Fig. 21.6. Next, we fitted the
parametrized densities discussed in Section 15.5.2 to the observed density. Note that
in each case, the densities were sparser than the Laplacian density, and thus the very
sparse parametrization in (15.25) was used. In can be seen that the density and the
shrinkage nonlinearity derived from the density model match quite well those given
by nonparametric estimation.

Thus we see that the components of the sparse coding bases found are highly
supergaussian for natural image data; the sparsity assumption is valid.

21.4.2 Remarks on windowing

The theory of sparse code shrinkage was developed for general random vectors. When
applying this framework to images, certain problems arise. The simplest way to apply
the method to images would be to simply divide the image into windows, and denoise
each such window separately. This approach, however, has a couple of drawbacks:
statistical dependencies across the synthetic edges are ignored, resulting in a blocking
artifact, and the resulting procedure is not translation invariant: The algorithm is
sensitive to the precise position of the image with respect to the windowing grid.

We have solved this problem by taking a sliding window approach. This means that
we do not divide the image into distinct windows; rather we denoise every possible
N�N window of the image. We then effectively haveN� different estimated values
for each pixel, and select the final result as the mean of these values. Although
originally chosen on rather heuristic grounds, the sliding window method can be
justified by two interpretations.

The first interpretation is spin-cycling. The basic version of the recently introduced
wavelet shrinkage method is not translation-invariant, because this is not a property
of the wavelet decomposition in general. Thus, Coifman and Donoho [87] suggested
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performing wavelet shrinkage on all translated wavelet decompositions of the data,
and taking the mean of these results as the final denoised signal, calling the obtained
method spin-cycling. It is easily seen that our sliding window method is then precisely
spin-cycling of the distinct window algorithm.

The second interpretation of sliding windows is due to the method of frames.
Consider the case of decomposing a data vector into a linear combination of a set of
given vectors, where the number of given vectors is larger than the dimensionality of
the data, i.e. given x andA, whereA is anm-by-nmatrix (m � n), find the vector s,
in x � As� This has an infinite number of solutions. The classic way is to select the
solution s with minimum norm, given by �s � A

�
x� where A� is the pseudoinverse

ofA. This solution is often referred to as the method of frames solution [102]. (More
on this case of “overcomplete bases” can be found in Chapter 16.)

Now consider each basis window in each possible window position of the image
as an overcomplete basis for the whole image. Then, if the transform we use is
orthogonal, the sliding window algorithm is equivalent to calculating the method of
frames decomposition, shrinking each component, and reconstructing the image.

21.4.3 Denoising results

To begin the actual denoising experiments, a random image from the natural scene
collection was chosen for denoising, and gaussian noise of standard deviation���was
added (compared to a standard deviation of ��� for the original image). This noisy
version was subsequently denoised using the Wiener filter (Section 4.6.2) to give a
baseline comparison. Then, the sparse code shrinkage method was applied using
the estimated orthogonalized ICA transform (� � � windows), with the component
nonlinearities as given by the appropriate estimated parametrization. Figure 21.7
shows a typical result [207]. Visually, it seems that sparse code shrinkage gives the
best noise reduction while retaining the features in the image. The Wiener filter does
not really eliminate the noise. It seems as though our method is performing like a
feature detector, in that it retains those features that are clearly visible in the noisy
data but cuts out anything that is probably a result of the noise. Thus, it reduces noise
effectively due to the nonlinear nature of the shrinkage operation.

Thus, we see that sparse code shrinkage is a promising method of image denoising.
The denoising result is qualitatively quite different from those given by traditional
filtering methods, and more along the lines of wavelet shrinkage and coring results
[116, 403, 476].

21.5 INDEPENDENT SUBSPACES AND TOPOGRAPHIC ICA

The basic feature extraction schemes use linear features and linear filters as we have so
far used in this chapter. More sophisticated methods can be obtained by introducing
nonlinearities in the system. In the context of ICA, this could mean nonlinearities
that take into account the dependencies of the linear features.
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Fig. 21.7 Denoising a natural scene (noise level 0.3). Top left: The original image. Top
right: Noise added. Bottom left: After wiener filtering. Bottom right: Results after sparse
code shrinkage. (Reprinted from [207], reprint permission from the IEEE Press c�2001 IEEE.)
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In fact, it is not possible in general to decompose a random vector into independent
components. One can always obtain uncorrelated components, and this is what we
obtain with FastICA. In image feature extraction, however, one can clearly see that
the ICA components are not independent by using any measure of higher-order
correlations. Such higher-order correlations were discussed in Section 20.2, in which
extensions of the ICA model were proposed to take into account some of the remaining
dependencies.

Here we apply two of the extensions discussed in Section 20.2, independent
subspace analysis and topographic ICA, to image feature extraction [205, 204, 206].
These give interesting extensions of the linear feature framework. The data and
preprocessing were as in Section 21.3.

Figure 21.8 shows the basis vectors of the 40 feature subspaces, when subspace
dimension was chosen to be 4. It can be seen that the basis vectors associated with
a single subspace all have approximately the same orientation and frequency. Their
locations are not identical, but close to each other. The phases differ considerably.
Thus, the norm of the projection onto the subspace is relatively independent of the
phase of the input. This is in fact what the principle of invariant-feature subspaces,
one of the inspirations for independent subspace analysis, is all about. Every feature
subspace can thus be considered a generalization of a quadrature-phase filter pair
[373], giving a nonlinear feature that is localized in orientation and frequency, but
invariant to phase and somewhat invariant to location shifts. For more details, see
[204].

In topographic ICA, the neighborhood function was defined so that every neigh-
borhood consisted of a � � � square of 9 units on a 2-D torus lattice [247]. The
obtained basis vectors are shown in Fig. 21.9. The basis vectors are rather similar
to those obtained by ordinary ICA of image data. In addition, they have a clear
topographic organization. In fact, in Section 20.2.3 we discussed the connection
between independent subspace analysis and topographic ICA; this connection can be
found in Fig. 21.9. Two neighboring basis vectors in Fig. 21.9 tend to be of the same
orientation and frequency. Their locations are near to each other as well. In contrast,
their phases are very different. This means that a neighborhood of such basis vectors
is similar to an independent subspace. For more details, see [206].

21.6 NEUROPHYSIOLOGICAL CONNECTIONS

In addition to the signal processing applications, we must not forget that sparse coding
was originally developed as a model of the representation of images in the primary
visual cortex of mammals (V1).

The filters wi�x� y� can then be identified as the receptive fields of the simple cells
in the cortex, and the si are their activities when presented with a given image patch
I�x� y�. It has been shown [336] that when this model is estimated with input data
consisting of patches of natural scenes, the obtained filters wi�x� y� have the three
principal properties of simple cells in V1: they are localized, oriented, and bandpass.
The obtained filters wi have been compared quantitatively with those measured by
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Fig. 21.8 Independent subspaces of natural image data. The model gives Gabor-like basis
vectors for image windows. Every group of four basis vectors corresponds to one independent
feature subspace, or complex cell. Basis vectors in a subspace are similar in orientation,
location and frequency. In contrast, their phases are very different. (Adapted from [204].)
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Fig. 21.9 Topographic ICA of natural image data. This gives Gabor-like basis vectors as
well. Basis vectors that are similar in orientation, location and/or frequency are close to each
other. The phases of nearby basis vectors are very different, giving each neighborhood a phase
invariance. (Adapted from [206].)

single-cell recordings of the macaque cortex, and a good match for most of the
parameters was found [443, 442].

Independent subspaces, on the other hand, can be considered as a model of
complex cells [204], which is the other principal class of cells analyzing visual input
in the cortex. In fact, the invariances that emerge are quite similar to those found in
complex cells. Finally, topographic ICA can be seen as a model of the topographic
organization of the cells in the visual cortex [206].

21.7 CONCLUDING REMARKS

ICA can be used to extract independent features from different kinds of data. This is
possible by taking patches (windows) from the signals and considering these as the
multi-dimensional signals on which ICA is applied. This is closely related to sparse
coding, which means extracting features that have the property that only a small
number of features is simultaneously active. Here we considered feature extraction
from natural images, in which case we obtain a decomposition that is closely related
to the one given by wavelets or Gabor analysis. The features are localized in space as
well as in frequency, and are oriented. Such features can be used in image processing
in the same way as wavelet and Gabor methods, and they can also be used as models
of the receptive fields of simple cells in the visual cortex.
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In addition to the linear feature extraction by ICA, one can use extensions of
ICA to obtain nonlinear features. Independent subspace analysis gives features
with invariance with respect to location and phase, and topographic ICA gives a
topographic organization for the features, together with the same invariances. These
models are useful for investigating the higher-order correlations between the basic
“independent” components. Higher-order correlations between wavelet or Gabor
coefficients have been investigated in [404, 478] as well. See also [273] for a mixture
model based on ICA, where the different mixtures can be interpreted as contexts.

The ICA framework can also be used for feature extraction from other kinds of
data, for example, color and stereo images [186, 187], video data [442], audio data
[37], and hyperspectral data [360].



22
Brain Imaging Applications

With the advent of new anatomical and functional brain imaging methods, it is now
possible to collect vast amounts of data from the living human brain. It has thus
become very important to extract the essential features from the data to allow an
easier representation or interpretation of their properties. This is a very promising
area of application for independent component analysis (ICA). Not only is this an
area of rapid growth and great importance; some kinds of brain imaging data also
seem to be quite well described by the ICA model. This is especially the case
with electroencephalograms (EEG) and magnetoencephalograms (MEG), which are
recordings of electric and magnetic fields of signals emerging from neural currents
within the brain. In this chapter, we review some of these brain imaging applications,
concentrating on EEG and MEG.

22.1 ELECTRO- AND MAGNETOENCEPHALOGRAPHY

22.1.1 Classes of brain imaging techniques

Several anatomical and functional imaging methods have been developed to study the
living human brain noninvasively, that is, without any surgical procedures. One class
of methods gives anatomical (structural) images of the brain with a high spatial res-
olution, and include computerized X-ray tomography (CT) and magnetic resonance
imaging (MRI). Another class of methods gives functional information on which
parts of the brain are activated at a given time. Such brain imaging methods can help
in answering the question: What parts of the brain are needed for a given task?

407
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Well-known functional brain mapping methods include positron emission tomog-
raphy (PET) and functional MRI (fMRI), which are based on probing the changes
in metabolic activity. The time resolution of PET and fMRI is limited, due to the
slowness of the metabolic response in the brain, which is in the range of a few
seconds.

Here we concentrate on another type of functional brain imaging methods that are
characterized by a high time resolution. This is possible by measuring the electrical
activity within the brain. Electrical activity is the fundamental means by which
information is transmitted and processed in the nervous system. These methods are
the only noninvasive ones that provide direct information about the neural dynamics
on a millisecond scale. As a trade-off, the spatial resolution is worse than in fMRI,
being about 5 mm, under favorable conditions. The basic methods in this class
are electroencephalography (EEG) and magnetoencephalography (MEG) [317, 165],
which we describe next. Our exposition is based on the one in [447]; see also [162].

22.1.2 Measuring electric activity in the brain

Neurons and potentials The human brain consists of approximately ��
�� to

��
�� neurons [230]. These cells are the basic information-processing units. Signals

between neurons are transmitted by means of action potentials, which are very short
bursts of electrical activity. The action potential is transformed in the receiving
neuron to what is called a postsynaptic potential that is longer in duration, though
also weaker. Single action potentials and postsynaptic potentials are very weak and
cannot be detected as such by present noninvasive measurement devices.

Fortunately, however, neurons that have relatively strong postsynaptic potentials
at any given time tend to be clustered in the brain. Thus, the total electric current
produced in such a cluster may be large enough to be detected. This can be done by
measuring the potential distribution on the scalp by placing electrodes on it, which
is the method used in EEG. A more sophisticated method is to measure the magnetic
fields associated with the current, as is done in MEG.

EEG and MEG The total electric current in an activated region is often modeled
as a dipole. It can be assumed that in many situations, the electric activity of the brain
at any given point of time can be modeled by only a very small number of dipoles.
These dipoles produce an electric potential as well as a magnetic field distribution
that can be measured outside the head. The magnetic field is more local, as it does
not suffer from the smearing caused by the different electric conductivities of the
several layers between the brain and the measuring devices seen in EEG. This is one
of the main advantages of MEG, as it leads to a much higher spatial resolution.

EEG is used extensively for monitoring the electrical activity within the human
brain, both for research and clinical purposes. It is in fact one of the most widespread
brain mapping techniques to date. EEG is used both for the measurement of sponta-
neous activity and for the study of evoked potentials. Evoked potentials are activity
triggered by a particular stimulus that may be, for example, auditory or somatosen-
sory. Typical clinical EEG systems use around 20 electrodes, evenly distributed
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over the head. State-of-the-art EEGs may consist of a couple hundred sensors. The
signal-to noise ratio is typically quite low: the background potential distribution is
of the order of 100 microvolts, whereas the evoked potentials may be two orders of
magnitude weaker.

MEG measurements give basically very similar information to EEG, but with a
higher spatial resolution. MEG is mainly used for basic cognitive brain research.
To measure the weak magnetic fields of the brain, superconducting quantum inter-
ference devices (SQUIDs) are needed. The measurements are carried out inside a
magnetically shielded room. The superconducting characteristics of the device are
guaranteed through its immersion in liquid helium, at a temperature of �����C.
The experiments is this chapter were conducted using a Neuromag-122TM device,
manufactured by Neuromag Ltd., and located at the Low Temperature Laboratory of
the Helsinki University of Technology. The whole-scalp sensor array in this device
is composed of 122 sensors (planar gradiometers), organized in pairs at 61 locations
around the head, measuring simultaneously the tangential derivatives of the magnetic
field component normal to the helmet-shaped bottom of the dewar. The sensors are
mainly sensitive to currents that are directly below them, and tangential to the scalp.

22.1.3 Validity of the basic ICA model

The application of ICA to the study of EEG and MEG signals assumes that several
conditions are verified, at least approximately: the existence of statistically inde-
pendent source signals, their instantaneous linear mixing at the sensors, and the
stationarity of the mixing and the independent components (ICs).

The independence criterion considers solely the statistical relations between the
amplitude distributions of the signals involved, and not the morphology or physiology
of neural structures. Thus, its validity depends on the experimental situation, and
cannot be considered in general.

Because most of the energy in EEG and MEG signals lies below 1 kHz, the so-
called quasistatic approximation of Maxwell equations holds, and each time instance
can be considered separately [162]. Therefore, the propagation of the signals is
immediate, there is no need for introducing any time-delays, and the instantaneous
mixing is valid.

The nonstationarity of EEG and MEG signals is well documented [51]. When
considering the underlying source signals as stochastic processes, the requirement
of stationarity is in theory necessary to guarantee the existence of a representative
distribution of the ICs. Yet, in the implementation of batch ICA algorithms, the data
are considered as random variables, and their distributions are estimated from the
whole data set. Thus, the nonstationarity of the signals is not really a violation of the
assumptions of the model. On the other hand, the stationarity of the mixing matrix A
is crucial. Fortunately, this assumption agrees with widely accepted neuronal source
models [394, 309].
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22.2 ARTIFACT IDENTIFICATION FROM EEG AND MEG

As a first application of ICA on EEG and MEG signals, we consider separation of
artifacts. Artifacts mean signals not generated by brain activity, but by some external
disturbances, such as muscle activity. A typical example is ocular artifacts, generated
by eye muscle activity.

A review on artifact identification and removal,with special emphasis on the ocular
ones, can be found in [56, 445]. The simplest, and most widely used method consists
of discarding the portions of the recordings containing attributes (e.g., amplitude
peak, frequency contents, variance and slope) that are typical of artifacts and exceed
a determined threshold. This may lead to significant loss of data, and to complete
inability of studying interesting brain activity occuring near or during strong eye
activity, such as in visual tracking experiments.

Other methods include the subtraction of a regression portion of one or more
additional inputs (e.g., from electrooculograms, electrocardiograms, or electromyo-
grams) from the measured signals. This technique is more likely to be used in EEG
recordings, but may, in some situations, be applied to MEG. It should be noted that
this technique may lead to the insertion of undesirable new artifacts into the brain
recordings [221]. Further methods include the signal-space projection [190], and
subtracting the contributions of modeled dipoles accounting for the artifact [45]. In
both of these latter methods we need either a good model of the artifactual source
or a considerable amount of data where the amplitude of the artifact is much higher
than that of the EEG or MEG.

ICA gives a method for artifact removal where we do not need an accurate model
of the process that generated the artifacts; this is the blind aspect of the method.
Neither do we need specified observation intervals that contain mainly the artifact,
nor additional inputs; this is the unsupervised aspect of the method. Thus ICA
gives a promising method for artifact identification and removal. It was shown in
[445, 446] and [225] that artifacts can indeed be estimated by ICA alone. It turns out
that the artifacts are quite independent from the rest of the signal, and thus even this
requirement of the model is reasonably well fulfilled.

In the experiments on MEG artifact removal [446], the MEG signals were recorded
in a magnetically shielded room with the 122-channel whole-scalp magnetometer
described above. The test person was asked to blink and make horizontal saccades,
in order to produce typical ocular (eye) artifacts. Moreover, to produce myographic
(muscle) artifacts, the subject was asked to bite his teeth for as long as 20 seconds.
Yet another artifact was created by placing a digital watch one meter away from
the helmet into the shielded room. Figure 22.1 presents a subset of 12 artifact-
contaminated MEG signals, from a total of 122 used in the experiment. Several
artifact structures are evident from this figure, such as eye and muscle activity.

The results of artifact extraction using ICA are shown in Fig. 22.2. Components
IC1 and IC2 are clearly the activations of two different muscle sets, whereas IC3
and IC5 are, respectively, horizontal eye movements and blinks. Furthermore, other
disturbances with weaker signal-to-noise ratio, such as the heart beat and a digital
watch, are extracted as well (IC4 and IC8, respectively). IC9 is probably a faulty
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Fig. 22.1 A subset of 12 spontaneous MEG signals from the frontal, temporal and occipital
areas. The data contains several types of artifacts, including ocular and muscle activity, the
cardiac cycle, and environmental magnetic disturbances. (Adapted from [446].)

sensor. ICs 6 and 7 may be breathing artifacts, or alternatively artificial bumps
caused by overlearning (Section 13.2.2). For each component the left, back and right
views of the field patterns are shown. These field patterns can be computed from the
columns of the mixing matrix.

22.3 ANALYSIS OF EVOKED MAGNETIC FIELDS

Evoked magnetic fields, i.e., the magnetic fields triggered by an external stimulus, are
one of the fundamental research methods in cognitive brain research. State-of-the-art
approaches for processing magnetic evoked fields are often based on a careful expert
scrutiny of the complete data, which can be either in raw format or averaged over
several responses to repeating stimuli. At each time instance, one or several neural
sources are modeled, often as dipoles, so as to produce as good a fit to the data as
possible [238]. The choice of the time instances where this fitting should be made,
as well as the type of source models employed, are therefore crucial. Using ICA, we
can again obtain a blind decomposition without imposing any a priori structure on
the measurements.

The application of ICA in event related studies was first introduced in the blind
separation of auditory evoked potentials in [288]. This method has been further
developed using magnetic auditory and somatosensory evoked fields in [449, 448].
Interestingly, the most significant independent components that were found in these
studies seem to be of dipolar nature. Using a dipole model to calculate the source
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Fig. 22.2 Artifacts found from MEG data, using the FastICA algorithm. Three views of the
field patterns generated by each independent component are plotted on top of the respective
signal. Full lines correspond to magnetic flux exiting the head, whereas the dashed lines
correspond to the flux inwards. Zoomed portions of some of the signals are shown as well.
(Reprinted from [446], reprint permission and copyright by the MIT Press.)
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locations, we have found them to fall on very plausible brain areas. Thus, ICA
validates the conventional dipole modeling assumption in these studies. Future
studies, though, will probably find cases where the dipole model is too restrictive.

In [448], ICA was shown to be able to differentiate between somatosensory and
auditory brain responses in the case of vibrotactile stimulation, which, in addition to
tactile stimulation, also produced a concomitant sound. Principal component analysis
(PCA) has often been used to decompose signals of this kind, but as we have seen
in Chapter 7, it cannot really separate independent signals. In fact, computing the
principal components of these signals, we see that most of the principal components
still represent combined somatosensory and auditory responses [448]. In contrast,
computing the ICs, the locations of the equivalent current sources fall on the expected
brain regions for the particular stimulus, showing separation by modality.

Another study was conducted in [449], using only averaged auditory evoked fields.
The stimuli consisted of 200 tone bursts that were presented to the subject’s right
ear, using 1 s interstimulus intervals. These bursts had a duration of 100 ms, and
a frequency of 1 kHz. Figure 22.3 shows the 122 averages of the auditory evoked
responses over the head. The insert, on the left, shows a sample enlargement of such
averages, for an easier comparison with the results depicted in the next figures.

Again, we see from Figs 22.4 a and 22.4 b that PCA is unable to resolve the
complex brain response, whereas the ICA technique produces cleaner and sparser
response components. For each component presented in Fig. 22.4 a and Fig. 22.4 b,
left, top and, right side views of the corresponding field pattern are shown. Note that
the first principal component exhibits clear dipole-like pattern both over the left and
the right hemispheres, corroborating the idea of an unsuccessful segmentation of the
evoked response. Subsequent principal components, however, tend to have less and
less structured patterns.

From the field patterns associated with the independent components we see that
the evoked responses of the left hemisphere are isolated in IC1 and IC4. IC2 has
stronger presence over the right hemisphere, and IC3 fails to show any clear field
pattern structure. Furthermore, we can see that IC1 and IC2 correspond to responses
typically labeled as N1m, with the characteristic latency of around 100 ms after
the onset of the stimulation. The shorter latency of IC1, mainly reflecting activity
contralateral to the stimulated ear, agrees with the known information available for
such studies.

22.4 ICA APPLIED ON OTHER MEASUREMENT TECHNIQUES

In addition to the EEG/MEG results reported here, ICA has been applied to other
brain imaging and biomedical signals as well:

� Functional magnetic resonance images (fMRI). One can use ICA in two dif-
ferent ways, separating either independent spatial activity patterns [297], or
independent temporal activation patterns [50]. A comparison of the two modes
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Fig. 22.3 Averaged auditory evoked responses to 200 tones, using MEG. Channels MEG10
and MEG60 are used in Fig. 22.4 as representatives of one left-hemisphere and one right-
hemisphere MEG signal. Each tick in the MEG sample corresponds to 100 ms, going from
100 ms before stimulation onset to 500 ms after. (Adapted from [449].)

can be found in [367]. A combination of the two modes can be achieved by
spatiotemporal ICA, see Section 20.1.4.

� Optical imaging means directly “photographing” the surface of the brain after
making a hole in the skull. Application of ICA can be found in [374, 396]. As
in the case of fMRI signals, this is a case of separating image mixtures as in the
example in Fig. 12.4. Some theory for this particular case is further developed
in [164, 301]; also the innovations processes may be useful (see Section 13.1.3
and [194]).

� Outside the area of brain imaging, let us mention applications to the removal of
artifacts from cardiographic (heart) signals [31, 459] and magnetoneurographic
signals [482]. The idea is very similar to the one used in MEG artifact removal.
Further related work is in [32, 460]. Another neuroscientific application is in
intracellular calcium spike analysis [375].

22.5 CONCLUDING REMARKS

In this chapter we have shown examples of ICA in the analysis of brain signals.
First, ICA was shown to be suitable for extracting different types of artifacts from

EEG and MEG data, even in situations where these disturbances are smaller than the
background brain activity.
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Fig. 22.4 Principal (a) and independent (b) components found from the auditory evoked field
study. For each component, both the activation signal and three views of the corresponding
field pattern are plotted. (Adapted from [449].)
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Second, ICA can be used to decompose evoked fields or potentials. For example,
ICA was able to differentiate between somatosensory and auditory brain responses in
the case of vibrotactile stimulation. Also, it was able to discriminate between the ipsi-
and contralateral principal responses in the case of auditory evoked potentials. In
addition, the independent components, found with no other modeling assumption than
their statistical independence, exhibit field patterns that agree with the conventional
current dipole models. The equivalent current dipole sources corresponding to the
independent components fell on the brain regions expected to be activated by the
particular stimulus.

Applications of ICA have been proposed for analysis of other kinds of biomedical
data as well, including fMRI, optical imaging, and ECG.



23
Telecommunications

This chapter deals with applications of independent component analysis (ICA) and
blind source separation (BSS) methods to telecommunications. In the following,
we concentrate on code division multiple access (CDMA) techniques, because this
specific branch of telecommunications provides several possibilities for applying
ICA and BSS in a meaningful way. After an introduction to multiuser detection and
CDMA communications, we present mathematically the CDMA signal model and
show that it can be cast in the form of a noisy matrix ICA model. Then we discuss
in more detail three particular applications of ICA or BSS techniques to CDMA
data. These are a simplified complexity minimization approach for estimating fading
channels, blind separation of convolutive mixtures using an extension of the natural
gradient algorithm, and improvement of the performance of conventional CDMA
receivers using complex-valued ICA. The ultimate goal in these applications is to
detect the desired user’s symbols, but for achieving this intermediate quantities such
as fading channel or delays must usually be estimated first. At the end of the chapter,
we give references to other communications applications of ICA and related blind
techniques used in communications.

23.1 MULTIUSER DETECTION AND CDMA COMMUNICATIONS

In wireless communication systems, like mobile phones, an essential issue is division
of the common transmission medium among several users. This calls for a multiple
access communication scheme. A primary goal in designing multiple access systems
is to enable each user of the system to communicate despite the fact that the other

417
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timetime
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Fig. 23.1 A schematic diagram of the multiple access schemes FDMA, TDMA, and CDMA
[410, 382].

users occupy the same resources, possibly simultaneously. As the number of users in
the system grows, it becomes necessary to use the common resources as efficiently
as possible. These two requirements have given rise to a number of multiple access
schemes.

Figure 23.1 illustrates the most common multiple access schemes [378, 410, 444].
In frequency division multiple access (FDMA), each user is given a nonoverlapping
frequency slot in which one and only one user is allowed to operate. This prevents
interference of other users. In time division multiple access (TDMA) a similar
idea is realized in the time domain, where each user is given a unique time period
(or periods). One user can thus transmit and receive data only during his or her
predetermined time interval while the others are silent at the same time.

In CDMA [287, 378, 410, 444], there is no disjoint division in frequency and time
spaces, but each user occupies the same frequency band simultaneously. The users
are now identified by their codes, which are unique to each user. Roughly speaking,
each user applies his unique code to his information signal (data symbols) before
transmitting it through a common medium. In transmission different users’ signals
become mixed, because the same frequencies are used at the same time. Each user’s
transmitted signal can be identified from the mixture by applying his unique code at
the receiver.

In its simplest form, the code is a pseudorandom sequence of ��s, also called a
chip sequence or spreading code. In this case we speak about direct sequence (DS)
modulation [378], and call the multiple access method DS-CDMA. In DS-CDMA,
each user’s narrow-band data symbols (information bits) are spread in frequency
before actual transmission via a common medium. The spreading is carried out by
multiplying each user’s data symbols (information bits) by his unique wide-band
chip sequence (spreading code). The chip sequence varies much faster than the
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Fig. 23.2 Construction of a CDMA signal [382]. Top: Binary user’s symbols to be trans-
mitted. Middle: User’s specific spreading code (chip sequence). Bottom: Modulated CDMA
signal, obtained by multiplying user’s symbols by the spreading code.

information bit sequence. In the frequency domain, this leads to spreading of the
power spectrum of the transmitted signal. Such spread spectrum techniques are
useful because they make the transmission more robust against disturbances caused
by other signals transmitted simultaneously [444].

Example 23.1 Figure 23.2 shows an example of the formation of a CDMA signal. On
the topmost subfigure, there are 4 user’s symbols (information bits) �����������
to be transmitted.The middle subfigure shows the chip sequence (spreading code).
It is now ��������������. Each symbol is multiplied by the chip sequence in a
similar manner. This yields the modulated CDMA signal on the bottom row of Fig.
23.2, which is then transmitted. The bits in the spreading code change in this case 5
times faster that the symbols.

Let us denote the mth data symbol (information bit) by bm, and the chip sequence
by s�t�. The time period of the chip sequence is T (see Fig. 23.2), so that s�t� �
f�����g when t � ��� T �, and s�t� � � when t �� ��� T �. The length of the chip
sequence is C chips, and the time duration of each chip is Tc = T�C. The number of
bits in the observation interval is denoted by N . In Fig. 23.2, the observation interval
contains N � � symbols, and the length of the chip sequence is C � 	.
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Using these notations, the CDMA signal r�t� at time t arising in this simple
example can be written

r�t� �

NX

m��

bms�t�mT � (23.1)

In the reception of the DS-CDMA signal, the final objective is to estimate the
transmitted symbols. However, both code timing and channel estimation are often
prerequisite tasks. Detection of the desired user’s symbols is in CDMA systems
more complicated than in the simpler TDMA and FDMA systems used previously in
mobile communications. This is because the spreading code sequences of different
users are typically nonorthogonal, and because several users are transmitting their
symbols at the same time using the same frequency band. However, CDMA systems
offer several advantages over more traditional techniques [444, 382]. Their capacity
is larger, and it degrades gradually with increasing number of simultaneous users
who can be asynchronous [444]. CDMA technology is therefore a strong candidate
for future global wireless communications systems. For example, it has already been
chosen as the transmission technique for the European third generation mobile system
UMTS [334, 182], which will provide useful new services, especially multimedia
and high-bit-rate packet data.

In mobile communications systems, the required signal processing differs in the
base station (uplink) from that in the mobile phone (downlink). In the base station,
all the signals sent by different users must be detected, but there is also much more
signal processing capacity available. The codes of all the users are known but
their time delays are unknown. For delay estimation, one can use for example the
simple matched filter [378, 444], subspace approaches [44, 413], or the optimal but
computationally highly demanding maximum likelihood method [378, 444]. When
the delays have been estimated, one can estimate the other parameters such as the
fading process and symbols [444].

In downlink (mobile phone) signal processing, each user knows only its own code,
while the codes of the other users are unknown. There is less processing power than
in the base station. Also the mathematical model of the signals differs slightly, since
users share the same channel in the downlink communications. Especially the first
two features of downlink processing call for new, efficient and simple solutions.
ICA and BSS techniques provide a promising new approach to the downlink signal
processing using short spreading codes and DS-CDMA systems.

Figure 23.3 shows a typical CDMA transmission situation in an urban environ-
ment. Signal 1 arrives directly from the base station to the mobile phone in the car.
It has the smallest time delay and is the strongest signal, because it is not attenuated
by the reflection coefficients of the obstacles in the path. Due to multipath propa-
gation, the user in the car in Fig. 23.3 receives also weaker signals 2 and 3, which
have longer time delays. The existence of multipath propagation allows the signal
to interfere with itself. This phenomenon is known as intersymbol interference (ISI).
Using spreading codes and suitable processing methods, multipath interference can
be mitigated [444].
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Fig. 23.3 An example of multipath propagation in urban environment.

There are several other problems that complicate CDMA reception. One of the
most serious ones is multiple access interference (MAI), which arises from the fact
that the same frequency band is occupied simultaneously. MAI can be alleviated by
increasing the length of the spreading code, but at a fixed chip rate, this decreases
the data rate. In addition, the near–far problem arises when signals from near and
far are received at the same time. If the received powers from different users become
too different, a stronger user will seriously interfere with the weaker ones, even if
there is a small correlation between the users’ spreading codes. In the FDMA and
TDMA systems, the near–far problem does not arise because different users have
nonoverlapping frequency or time slots.

The near–far problem in the base station can be mitigated by power control, or by
multiuser detection. Efficient multiuser detection requires knowledge or estimation of
many system parameters such as propagation delay, carrier frequency, and received
power level. This is usually not possible in the downlink. However, then blind
multiuser detection techniques can be applied, provided that the spreading codes are
short enough [382].

Still other problems appearing in CDMA systems are power control, synchroniza-
tion, and fading of channels, which is present in all mobile communications systems.
Fading means variation of the signal power in mobile transmission caused for exam-
ple by buildings and changing terrain. See [378, 444, 382] for more information on
these topics.
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23.2 CDMA SIGNAL MODEL AND ICA

In this section, we represent mathematically the CDMA signal model which is studied
in slightly varying forms in this chapter. This type of models and the formation of
the observed data in them are discussed in detail in [444, 287, 382].

It is straightforward to generalize the simple model (23.1) for K users. The mth
symbol of the kth user is denoted by bkm, and sk��� is k:th user’s binary chip sequence
(spreading code). For each user k, the spreading code is defined quite similarly as in
Example 23.1. The combined signal of K simultaneous users then becomes

r�t� �
NX

m��

KX

k��

bkmsk�t�mT � � n�t� (23.2)

where n�t� denotes additive noise corrupting the observed signal.
The signal model (23.2) is not yet quite realistic, because it does not take into

account the effect of multipath propagation and fading channels. Including these
factors in (23.2) yields our desired downlink CDMA signal model for the observed
data r�t� at time t:

r�t� �

NX

m��

KX

k��

bkm

LX

l��

almsk�t�mT � dl� � n�t� (23.3)

Here the index m refers to the symbol, k to the user, and l to the path. The term
dl denotes the delay of the lth path, which is assumed to be constant during the
observation interval of N symbol bits. Each of the K simultaneous users has L

independent transmission paths. The term alm is the fading factor of the lth path
corresponding to the mth symbol.

In general, the fading coefficients alm are complex-valued. However, we can
apply standard real-valued ICA methods to the data (23.3) by using only the real part
of it. This is the case in the first two approaches to be discussed in the next two
sections, while the last method in Section 23.5 directly uses complex data.

The continuous time data (23.3) is first sampled using the chip rate, so that C
equispaced samples per symbol are taken. From subsequent discretized equispaced
data samples r�n�, C-length data vectors are then collected:

rm � �r�mC�� r�mC � ��� � � � � r��m� ��C � ���T (23.4)

Then the model (23.3) can be written in vector form as [44]

rm �

KX

k��

LX

l��

�al�m��bk�m��gkl � al�mbk�mgkl� � nm (23.5)

where nm denotes the noise vector consisting of subsequent C last samples of noise
n�t�. The vector g

kl
denotes the “early” part of the code vector, and gkl the “late”

part, respectively. These vectors are given by

g
kl

� � sk�C � dl � ��� � � � � sk�C���Tdl �
T (23.6)
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gkl � ��Tdl
� sk���� � � � � sk�C � dl� �

T (23.7)

Here dl is the discretized index representing the time delay, dl � f�� � � � � �C� ����g,
and �Tdl

is a row vector having dl zeros as its elements. The early and late parts of the
code vector arise because of the time delay dl, which means that the chip sequence
generally does not coincide with the time interval of a single user’s symbol, but
extends over two subsequent bits bk�m�� and bk�m. This effect of the time delay can
be easily observed by shifting the spreading code to the right in Fig. 23.2.

The vector model (23.5) can be expressed in compact form as a matrix model.
Define the data matrix

R � �r�� r�� � � � � rN � (23.8)

consisting of N subsequent data vectors ri. Then R can be represented as

R �GF	N (23.9)

where the C � �KL matrix G contains all the KL early and late code vectors

G � � g
��
�g

��
� � � � �g

KL
�gKL � (23.10)

and the �KL�N matrix F = �f� � � � fN � contains the symbols and fading terms

fm � �a��m��b��m��� a�mb�m� (23.11)

� � � � aL�m��bK�m��� aLmbKm�T

The vector fm represents the �KL symbols and fading terms of all the users and
paths corresponding to the mth pair of early and late code vectors.

From the physical situation, it follows that each path and user are at least ap-
proximately independent of each other [382]. Hence every product ai�m��bi�m�� or
aimbim of a symbol and the respective fading term can be regarded as an independent
source signal. Because each user’s subsequent transmitted symbols are assumed to
be independent, these products are also independent for a given user i. Denote the
independent sources a��m��b��m��� � � � � aLmbKm by yi�m�� i � �� � � � � �KL. Here
every �L sources correspond to each user, where the coefficient 2 follows from the
presence of the early and late parts.

To see the correspondence of (23.9) to ICA, let us write the noisy linear ICA
model x = As	 n in the matrix form as

X � AS	N (23.12)

The data matrix X has as its columns the data vectors x����x���� � � � � and S and
N are similarly compiled source and noise matrices whose columns consist of the
source and noise vectors s�t� and n�t�, respectively. Comparing the matrix CDMA
signal model (23.9) with (23.12) shows that it has the same form as the noisy linear
ICA model. Clearly, in the CDMA model (23.9)F is the matrix of source signals, R
is the observed data matrix, and G is the unknown mixing matrix.
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For estimating the desired user’s parameters and symbols, several techniques are
available [287, 444]. Matched filter (correlator) [378, 444] is the simplest estimator,
but it performs well only if different users’ chip sequences are orthogonal or the users
have equal powers. The matched filter suffers greatly from the near–far problem,
rendering it unsuitable for CDMA reception without a strict power control. The
so-called RAKE detector [378] is a somewhat improved version of the basic matched
filter which takes advantage of multiple propagation paths. The maximum likelihood
(ML) method [378, 444] would be optimal, but it has a very high computational load,
and requires knowledge of all the users’ codes. However, in downlink reception,
only the desired user’s code is known. To remedy this problem while preserving
acceptable performance, subspace approaches have been proposed for example in
[44]. But they are sensitive to noise, and fail when the signal subspace dimension
exceeds the processing gain. This easily occurs even with moderate system load
due to the multipath propagation. Some other semiblind methods proposed for the
CDMA problem such as the minimum mean-square estimator (MMSE) are discussed
later in this chapter and in [287, 382, 444].

It should be noted that the CDMA estimation problem is not completely blind,
because there is some prior information available. In particular, the transmitted
symbols are binary (more generally from a finite alphabet), and the spreading code
(chip sequence) is known. On the other hand, multipath propagation, possibly fading
channels, and time delays make separation of the desired user’s symbols a very
challenging estimation problem which is more complicated than the standard ICA
problem.

23.3 ESTIMATING FADING CHANNELS

23.3.1 Minimization of complexity

Pajunen [342] has recently introduced a complexity minimization approach as a true
generalization of standard ICA. In his method, temporal information contained in
the source signals is also taken into account in addition to the spatial independence
utilized by standard ICA. The goal is to optimally exploit all the available information
in blind source separation. In the special case where the sources are temporally white
(uncorrelated), complexity minimization reduces to standard ICA [342]. Complexity
minimization has been discussed in more detail in Section 18.3.

Regrettably, the original method for minimizing the Kolmogoroff complexity mea-
sure is computationally highly demanding except for small scale problems. But if the
source signals are assumed to be gaussian and nonwhite with significant time correla-
tions, the minimization task becomes much simpler [344]. Complexity minimization
then reduces to principal component analysis of temporal correlation matrices. This
method is actually just another example of blind source separation approaches based
on second-order temporal statistics; for example [424, 43], which were discussed
earlier in Chapter 18.
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In the following, we apply this simplified method to the estimation of the fad-
ing channel coefficients of the desired user in a CDMA systems. Simulations with
downlink data, propagated through a Rayleigh fading channel, show noticeable per-
formance gains compared with blind minimum mean-square error channel estimation,
which is currently a standard method for solving this problem. The material in this
section is based on the original paper [98].

We thus assume that the fading process is gaussian and complex-valued. Then the
amplitude of the fading process is Rayleigh distributed; this case is called Rayleigh
fading (see [444, 378]). We also assume that a training sequence or a preamble is
available for the desired user, although this may not always be the case in practice.
Under these conditions, only the desired user’s contribution in the sampled data is
time correlated, which is then utilized. The proposed method has the advantage that
it estimates code timing only implicitly, and hence it does not degrade the accuracy
of channel estimation.

A standard method for separating the unknown source signals is based on mini-
mization of the mutual information (see Chapter 10 and [197, 344]) of the separated
signals fm = �y��m� � � � y�KL�m��T = y:

J �y� �
X

i

H�yi� � log j detG j (23.13)

where H�yi� is the entropy of yi (see Chapter 5). But entropy has the interpretation
that it represents the optimum averaged code length of a random variable. Hence
mutual information can be expressed by using algorithmic complexity as [344]

J �y� �
X

i

K�yi� � log j detG j (23.14)

where K��� is the per-symbol Kolmogoroff complexity, given by the number of bits
needed to describe yi. By using prior information about the signals, the coding costs
can be explicitly approximated. For instance, if the signals are gaussian, indepen-
dence becomes equivalent to uncorrelatedness. Then the Kolmogoroff complexity
can be replaced by the per-symbol differential entropy, which in this case depends on
second-order statistics only.

For Rayleigh type fading transmission channels, the prior information can be for-
mulated by considering that the probability distributions of the mutually independent
source signals yi�m� have zero-mean gaussian distributions. Suppose we want to
estimate the channel coefficients of the transmission paths, by sending a given length
constant b�m � � symbol sequence to the desired user. We consider the signals
yi�m�, i � �� � � � � �L, with i representing the indexes of the �L sources correspond-
ing to the first user. Then yi�m� will actually represent the channel coefficients of all
the first user’s paths. Since we assume that the channel is Rayleigh fading, then these
signals are gaussian and time correlated. In this case, blind separation of the sources
can be achieved by using only second-order statistics. In fact, we can express the
Kolmogoroff complexity by coding these signals using principal component analysis
[344].



426 TELECOMMUNICATIONS

23.3.2 Channel estimation *

Let yi�m� = �yi�m�� � � � � yi�m � D � ��� denote the vector consisting of D last
samples of every such source signal yi�m�, i � �� � � � � �L. Here D is the number of
delayed terms, showing what is the range of time correlations taken into account when
estimating the current symbol. The information contained in any of these sources can
be approximated by the code length needed for representing the D principal com-
ponents, which have variances given by the eigenvalues of the temporal correlation
matrixCi = E�yi�m�yTi �m�� [344]. Since we assume that the transmission paths are
mutually independent, the overall entropy of the source is given by summing up the
entropies of the principal components. Using the result that the entropy of a gaussian
random variable is given by the logarithm of the variance, we get for the entropy of
each source signal

H�yi� �
�

�L

X

k

log��k �
�

�L
log detCi (23.15)

Inserting this into the cost function (23.13) yields

J �y�� �
X

i

�

�L
log detCi � log j detW j (23.16)

whereW �G�� is the separating matrix.
The separating matrixW can be estimated by using a gradient descent approach

for minimizing the cost function (23.16), leading to the update rule [344]

	W � ��
� logJ �y�

�W
� �	W (23.17)

where � is the learning rate and � is the momentum term [172] that can be introduced
to avoid getting trapped into a local minimum corresponding to a secondary path.

Let wT
i denote the ith row vector of the separating matrix W. Since only the

correlation matrix Ci of the ith source depends on wi, we can express the gradient
of the cost function by computing the partial derivatives

� log detCi

�wik

with respect to the scalar elements of the vector wT
i = �wi�� � � � � wiC �. For these

partial derivatives, one can derive the formula [344]

� log detCi

�wik
� � trace

�
C��i E

�
yTi

�yi

�wik

��
(23.18)

Since yi�m� =wT
i rm, we get

�yi

�wik
� �rk�m� � � � � rk�m�L��� (23.19)
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where rk�i is the element �k� j� of the observation matrix R defined earlier using
formulas (23.4) and (23.9).

What is left to do now is to compute the gradient update part due to the mapping
information. It can be written [344]

log j detWj �

CX

i��

log k�I�Pi�wik (23.20)

where Pi �Wi�W
T
i Wi�

��WT
i is a projection matrix onto the subspace spanned

by the column vectors of the matrix Wi = �w�� � � � �wi���. Now the cost function
can be separated, and the different independent components can be found one by
one, by taking into account the previously estimated components, contained in the
subspace spanned by the columns of the matrixWi.

Since our principal interest lies in the transmission path having the largest power,
corresponding usually to the desired user, it is sufficient to estimate the first such
independent component. In this case, the projection matrix P� becomes a zero
matrix. Then the overall gradient (23.17) for the first row wT

�
of the separating

matrix can be written

� logJ �y�

�wT
�

�
�

D
trace

�
C��
�

E

�
yT
�

�y�

�wT
�

��
�

wT
�

kwT
�
k (23.21)

It suffices to consider the special case where only the two last samples are taken
into account, so that the the delay D � �. First, second-order correlations are re-
moved from the data R by whitening. This can be done easily in terms of standard
principal component analysis as explained in Chapter 6. After whitening, the subse-
quent separating matrix will be orthogonal, and thus the second term in Eq. (23.16)
disappears, yielding the cost function

J �y� �
X

log detCk (23.22)

with the �� � autocorrelation matrices given by

Ck �

�
� E�yk�m�yk�m� ���

E�yk�m�yk�m� ��� �

�
(23.23)

In this case, the separating vectorswT
i can be found by maximizing sequentially

E�yi�m�yi�m����yi�m���yi�m��, which is the first-order correlation coefficient
of yi. It follows that the function to be maximized becomes

J�w� � wTE�rmrTm�� � rm��r
T
m�w (23.24)

So the separating vector wT
�

corresponding to the most important path is given by
the principal eigenvector of the matrix in Eq. (23.24). We have used a symmetric
expression for the correlation coefficients in order to avoid asymmetry when the
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Fig. 23.4 The original fading process (top), its estimate given by our method (middle), and
estimate given by the blind MMSE method (bottom). The signal-to-noise ratio was �� dB.

observed data set is finite. This usually improves the estimation accuracy. Finally,
we separate the desired channel coefficients by computing the quantities

a�� � w
T
�
�r (23.25)

where �r denotes whitened data vector r. This is done for all the N data vectors
contained in (23.8).

23.3.3 Comparisons and discussion

We have compared the method described and derived above to a well-performing
standard method used in multiuser detection, namely the minimum mean-square
error estimator [452, 287]. In the MMSE method, the desired signal is estimated
(up to a scaling) from the formula

aMMSE � g�
TUs�

��

s U
T
s r (23.26)

where�s andUs are the matrices containing (in the same order) the eigenvalues and
the respective eigenvectors of the data correlation matrixRRT �N . The vector g� is
a column of the matrix G defined in (23.10) corresponding to the desired user’s bit
b��m, that is, either g

��
or g

��
. The quantity aMMSE is again computed for all the N

data vectors r�� � � � � rN . If the pilot signal consists of ones, then aMMSE provides
estimates of the channel coefficients.
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Fig. 23.5 The mean-square errors of the MMSE method and our method as the function of
the signal-to-noise ratio. The number of users was K � �.

The algorithms were tested in a simulation using length C � �� quasiorthogonal
gold codes (see [378]). The number of users was K � �, and the number of
transmission paths was L � �. The powers of the channel paths were ��, ��, and
� dB respectively for every user, and the signal-to-noise ratio (SNR) varied from 30
dB to 10 dB with respect to the main path. Only the real part of the data was used.
The observation interval was N � ���� symbols long.

We compared our algorithm with the blind MMSE method, where the pilot signal
corresponding to the first user consisted of ones. The fading coefficients correspond-
ing to the strongest path were estimated using both methods. Fig. 23.4 shows the
original fading process and the estimated ones, giving an idea of the achieved accu-
racy. The figure shows that our method provides somewhat more accurate estimates
than the MMSE method, though the estimated fading process is noisy. Fig. 23.5
presents numerical values of the average mean-square error (MSE) as a function
of SNR. The complexity minimization based method performs clearly better than
the MMSE method especially at lower signal-to-noise ratios. The convergence of
the gradient approach took place in this case in 10–15 iterations for the learning
parameters � � � and � � ���.

In its current form, the proposed method needs training symbols for providing a
temporally correlated structure for the desired user’s signal. If the channel varies
rapidly during the training phase, the method is not able to estimate the channel as
the data modulation is on. This is because the temporal correlatedness of the desired
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signal is lost. A future research topic is to overcome this problem. Finally, we point
out that instead of the simplified complexity minimization approach applied here, one
could have as well tried other blind separation methods based on the time structure
of the sources. Such methods are discussed in Chapter 18.

23.4 BLIND SEPARATION OF CONVOLVED CDMA MIXTURES *

Now consider estimation of the desired user’s symbol process using a blind source
separation method developed for convolutive mixtures. Such methods have been
discussed earlier in Chapter 19. The model consists of a linear transformation of
both the independent variables (the transmitted symbols) and their delayed version,
where the delay is one time unit. For separating mixtures of delayed and convolved
independent sources, we use an extension of the natural gradient method based on
the information maximization principle [79, 13, 268, 426]. Experiments show that
the proposed method has quite competitive detection capabilities compared with
conventional symbol estimation methods.

23.4.1 Feedback architecture

The vector model (23.5) can be written

rm �

KX

k��

�
bk�m��

LX
l��

algkl

�
�

KX
k��

�
bkm

LX
l��

algkl

�
� nm

(23.27)

This model differs slightly from the fading channel model used in the previous section
in that the channel is now assumed to stay constant during the block of N symbols.
Hence, the fading coefficients al depend only on the path l but not on the symbol
index m. This type of channel is called block fading. As in the previous section, we
use only the real part of the complex-valued data. This allows application of ICA
and BSS methods developed for real-valued data to CDMA.

The model (23.27) can be further expressed in the matrix-vector form [99]

rm � G�bm �G�bm�� � nm (23.28)

where G� and G� are C �K mixing matrices corresponding to the original and the
one time unit delayed symbols. The column vectors of G� and G� are given by the
early and the late parts of the coding vectors multiplied by the fading coefficients,
respectively:

G� �

�
LX
l��

alg�l� � � � �

LX
l��

algKl

�
(23.29)

G� �

�
LX
l��

alg
�l
� � � � �

LX
l��

algKl

�
(23.30)
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The symbol vector bm contains the binary symbols (information bits) of the K users
at time index m:

bm � �b�m� b�m� � � � � bKm�
T (23.31)

The vector bm�� is defined quite similarly.
Eq. (23.28) shows that our CDMA signal model represents a linear mixture of

delayed and convolved sources in the special case where the maximum time delay is
one unit. Assuming that all the mixing matrices (users’ codes) and symbol sequences
are unknown makes the separation problem blind. One method for solving this
convolutive BSS problem is to consider a feedback architecture. Assuming that the
users are independent of each other, we can apply to the convolutive BSS problem
the principle of entropy maximization discussed earlier in Section 9.3. The weights
of the network can be optimized using the natural gradient algorithm extended for
convolutive mixtures in [13, 79, 268, 426].

The data vectors rm are preprocessed by simultaneously whitening them and
reducing their dimension toK (the number of users). Using PCA whitening (Chapter
6), the whitened data matrix becomes

�R � �
�

�

�

s UT

s R (23.32)

We can now write the whitened version of Eq. (23.28)

vm � H�bm �H�bm�� (23.33)

where vm is the whitened input vector, andH� andH� are whitened square K �K

matrices corresponding to the rectangular matrices G� and G�. From (23.33), the
symbol vector bm can be expressed in terms of the whitened data vector vm and the
previously estimated symbol vector bm�� as

bm � H��
�

�vm �H�bm��� (23.34)

The arising network architecture is depicted in Fig. 23.6.

23.4.2 Semiblind separation method

Based on this feedback architecture we propose the following algorithm for blind
symbol detection in a CDMA system.

1. Initialize randomly the matricesH� and H�.

2. Compute updates for the matricesH� andH� from the formulas [79, 268, 426]

�H� � �H��I� qmb
T

m� (23.35)

�H� � ��I�H��qmb
T

m��
(23.36)

Here I is a K �K unit matrix, and qm = f�bm� is a nonlinearly transformed
symbol vector bm. The nonlinear function f is typically a sigmoidal or cubic
nonlinearity, and it is applied componentwise to the elements of bm.
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Fig. 23.6 A feedback network for a convolutive CDMA signal model

3. Compute new estimates for the matricesH� andH� using the rule

Hi � Hi � ��Hi� i � �� � (23.37)

where � is a small learning parameter.

4. Compute new estimate of the symbol vector bm from Eq. (23.34).

5. If the matricesH� andH� have not converged, return back to step 2.

6. Apply the sign nonlinearity to each component of the final estimate of the
symbol vector bm. This quantizes the estimated symbols to the bits�� or��.

7. Identify the desired user’s symbol sequence which best fits the training se-
quence.

If some prior information on the desired user’s transmission delays is available,
it can be utilized in the initialization step 1. The update rules in step 2 have been
adapted for our special case of only one unit delay from the more general convolutive
mixture algorithms described in [268, 426]. Because of the feedback, the choice of
the learning parameter � in step 3 is essential for the convergence. We have used
a constant �, but more sophisticated iteration dependent choices would probably
make the convergence faster. In step 5, convergence is verified in terms of the mean-
square-error matrix norm. Since the transmission system is binary differential, step
6 provides the most probable value for the estimated symbol. The detector estimates
the symbols of all users up to a permutation. Therefore a pilot training sequence is
needed in step 7 to identify the desired user. Hence the method presented above is
an example of a semiblind separation approach.

23.4.3 Simulations and discussion

The method introduced in the previous section has been compared in [99] with two
standard methods used in multiuser detection, namely the matched filter (MF) and the
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minimum mean-square error (MMSE) estimator [378, 444, 382, 287]. The matched
filter estimator is simply

bMF � sign�g�T r� (23.38)

which is again computed for all the data vectors r�� � � � � rN . Here g� is a column
of the matrix G� defined in (23.29) that corresponds to the desired user’s bit b��m.
Similarly, the (linear) MMSE symbol estimator is given by

bMMSE � sign�g�TUs�
��

s UT
s r� (23.39)

The matrices �s, Us were defined earlier below Eq. (23.26).
It is noteworthy that the formula (23.39) is otherwise the same as (23.26), but

now it provides bit estimates bMMSE instead of fading channel coefficient estimates
aMMSE . The reason for this is that in the previous section the quantities to be
estimated were products of bits and fading channel coefficients, or elements of the
vector fm defined in (23.11), and the bits were all ones in the pilot training sequence.
On the other hand, in this section the vector g� also contains the fading coefficients
al (which stay constant during the observation interval) because of the definition of
the matrix G� in (23.29).

The algorithms were tested using quasiorthogonal gold codes [378] of length
C � ��. The number of users was either K � � or K � �, and the number of
transmission paths was L � �. The powers of the channel paths were, respectively,
����� and 	 dB for every user, and the signal-to-noise ratio (SNR) varied from �	
dB to 	 dB with respect to the main path. Only the real part of the data was used.
The observation interval was N � �		. A pilot training sequence of length P � 
	
was compared with the preambles of the separated sources for identifying the desired
user. A constant learning parameter � � 	�	� was used. Convergence took about 
	
iterations in the above environment.

The experimental results shown in Fig. 23.7 give the bit-error-rates (BERs) for
the compared three methods at different SNRs in the more difficult case of K � �
users. The results are qualitatively similar forK � � users [99], and are therefore not
shown here. Figure 23.7 indicates that the proposed semiblind convolutive separation
method yields clearly better detection results than the widely used matched filter or
linear minimum mean-square error estimators. The basic reason for this improved
performance is that standard methods such as the MF and MMSE estimators do not
exploit the independence of the received signals. The MMSE estimator makes the
detected sources uncorrelated [287]. Even this much weaker assumption improves
the performance clearly compared with the simple matched filter. In the studied
scenario the independence of the received signals is a reasonable assumption, and its
power becomes apparent by inspecting the results in Fig. 23.7.

We have in this section considered a batch method based on a feedback architec-
ture for symbol detection, but an adaptive version could have been used instead. The
batch method has the advantage that two observation vectors are used for estimating
the current symbol vector, which improves the estimation. There is also no need for
synchronization as is the case with the MMSE and MF methods. This is because dif-
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Fig. 23.7 The bit-error-rate (BER) for the convolutive mixture ICA, minimum mean-square
error (MMSE), and matched filter (MF) methods. The number of users wasK � �.

ferent users’ path delays are implicitly estimated simultaneously in the basis vectors
of the mixing matrices.

23.5 IMPROVING MULTIUSER DETECTION USING COMPLEX ICA *

A general drawback of ICA methods in CDMA applications is that it is difficult or even
impossible to utilize well the available prior information on the problem. However,
quite generally in any problem it is highly desirable to apply prior information
whenever available, because it usually improves estimation accuracy and overall
performance if taken into account properly. In this section, a feasible solution to
this issue is presented by using ICA as an additional processing element attached to
existing standard receiver structures.

In this section, two types of receiver structures, RAKE-ICA and MMSE-ICA
[382], are studied in a block fading CDMA downlink environment. Numerical
results indicate that the performance of RAKE and subspace MMSE detectors can
be greatly improved in terms of ICA postprocessing. This is mainly due to the facts



IMPROVING MULTIUSER DETECTION USING COMPLEX ICA * 435

that ICA efficiently utilizes the independence of the original signals, and that ICA
does not explicitly depend on erroneous timing or channel estimation. On the other
hand, the RAKE and subspace MMSE estimators can apply prior information on the
CDMA problem. Since these estimators are complex-valued, an ICA method fitted
to complex data must be used. To this end, complex FastICA algorithm (see Section
20.3 and [47]) is used.

This section is based on the references [382, 383]. The interested reader can find
more information on ICA assisted CDMA reception in them.

23.5.1 Data model

The continuous time signal model is otherwise the same as in (23.3), but the fading
coefficients alm in (23.3) are now replaced by the complex coefficients al. Thus
each path l has its own coefficient al which is assumed to remain constant during
the data block of N symbols bkm, m � �� �� � � � � N . Another difference is that the
processing window is now two symbols long while its length in the previous sections
is one symbol. Hence the samples are collected into �C-dimensional vectors

rm � �r�mC�� r�mC � ��� � � � � r��m � ��C � ���T (23.40)

instead of the C-dimensional data vectors (23.4).
Since sampling is asynchronous with respect to the symbols, the vector sample

rm in (23.40) usually contains information on three successive symbols bk�m��, bkm,
and bk�m��. The two symbols long data window has the advantage that it always
contains one complete symbol. Similarly as in (23.27), the vectors (23.40) can be
expressed in the well-known form

rm �

KX

k��

�
bk�m��

LX
l��

algkl � bkm

LX
l��

algkl � bk�m��

LX
l��

algkl

�
� nm

(23.41)

The “early” and “late” code vectors g
kl

and gkl are defined quite similarly as in Eqs.
(23.6) and (23.7). Now they just contain more zeros so that these vectors become �C-
dimensional. However, the late code vector gkl is now associated with the symbol
bk�m��, and for the middle symbol bkm the “middle” code vectors

gkl � ��Tdl
� sk���� � � � � sk�C���TC�dl

�T (23.42)

are defined, where �Tdl
is a row vector having dl zeros as its elements.

Again, the data vectors (23.41) can be represented more compactly as

rm � Gbm � nm (23.43)

which has the form of a noisy linear ICA model. The �C � 	K dimensional code
matrix G corresponds to the mixing matrix A. It is assumed to have full rank, and
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contains the code vectors and path strengths:

G �

�
LX
l��

alg
�l
�

LX
l��

alg�l�

LX
l��

alg�l� � � �

�

LX
l��

algKl�

LX
l��

algKl�

LX
l��

algKl

�
(23.44)

The �K-dimensional symbol vector

bm � �b��m��� b�m� b��m��� � � � � bK�m��� bKm� bK�m���
T

(23.45)

contains the symbols, and corresponds to the vector s of independent (or roughly
independent) sources. Note that both the code matrix G and the symbol vector bm
consists of subsequent triplets corresponding to the early, middle, and late parts.

23.5.2 ICA based receivers

In the following, we consider in more detail two ways of initializing the ICA iteration.
For a more thorough discussion, see [382]. The starting point for the receiver
development is to look at the noiseless whitened data1

zm � Vbm � �
�

�

�

s UH
s Gbm (23.46)

where �s and Us are matrices containing (in the same order) the �K principal
eigenvalues and -vectors of the data autocorrelation matrix Efrmr

H
mg, respectively.

It is easy to see that for the data model (23.43), the whitening matrix V becomes
orthonormal: VVH = I, because the symbols are uncorrelated: Efbmb

H
mg = I, and

the whitened data vectors satisfy the condition I = Efzmz
H
mg.

It suffices to estimate one column of the whitening matrix V, say its second
column v�. This is because we can then estimate the symbols b�m of the desired user
(user k � �) by applying the vector v� as follows:

vH� zm � vH� Vbm � ����� � � ���bm � b�m (23.47)

From the definitions of V and G we see that

v� � �
�

�

�

s UH
s

LX
l��

a�lg�l (23.48)

which is exactly the subspace MMSE detector [451] for dispersive channels.

1Because the data is now complex-valued, the transpose T must be replaced by the Hermitian operator
H, which equals transposition and complex conjugation.
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Equation (23.48) can be applied to separating the desired symbol b�m, but it
uses only second-order statistics. In addition, the subspace parameters as well as
the path gains and delays are always subject to estimation errors, degrading the
performance of (23.48) in separation. But we can improve the separation capability
of the estimator (23.48) by using ICA as a postprocessing tool. This is possible,
since the independence of the original sources is not utilized in deriving (23.48).
Moreover, it is meaningful to apply ICA by using the subspace MMSE estimator
(23.48) as the starting point, because it already identifies the desired user. This
identification is not possible by using ICA alone. The proposed DS-CDMA receiver
structure, which we call MMSE-ICA, consists of a subspace MMSE detector refined
by ICA iterations. The complex FastICA algorithm discussed earlier in Section
20.3 and in [47] is a natural choice for the ICA postprocessing method. It can deal
with complex-valued data, and extracts one independent component at a time, which
suffices in this application.

Alternatively, known or estimated symbols can be used for initializing the ICA
iteration. This follows from the uncorrelatedness of the symbols, since then we
have Efzmb�mg = v�, leading again to the subspace MMSE detector. Because
training symbols are not necessarily implemented in all the DS-CDMA systems, it is
preferable to first use the traditional RAKE receiver [378, 382] or multipath correlator
for detecting symbols. The RAKE estimator is nothing but a simple extension of the
matched filter for several paths. Alternatively, one can initially detect the symbols by
using the MMSE method for symbol outputs. The symbol estimates obtained initially
in terms of the RAKE detector or MMSE symbol estimator are then refined using
the complex FastICA algorithm. These structures are henceforth called as RAKE-
ICA and MMSEbit-ICA detectors, respectively. Global convergence of the complex
FastICA algorithm has been proved in [382]. The sign indeterminacy in the sources
estimated by any ICA method is removed by a comparator element, which chooses
the sign according to the RAKE receiver or subspace MMSE detector, respectively.

The proposed receiver structures are summarizes below. In step 1, an initial
estimate of the kth whitened code vector vk is computed using one of the three
standard detection methods mentioned earlier. Steps 2-5 give the procedure for
improving this initial estimate using the complex FastICA algorithm [47].

ICA-based blind interference suppression schemes [382] Let k be the
index of the desired user, and zm the whitened data vector corresponding to the
symbol vector bm. The constant � is � for complex-valued symbols, and � � � for
real-valued symbols (in the latter case, the data itself is complex, but the symbols
are real). An estimate is denoted by the hat�. Then the iterative algorithms for blind
interference suppression are as follows.

1. Initializew��� = vk�kvkk, where

(a) MMSE-ICA: vk = ��
����

s
�UH
s

P�L
l�� �al�ckl.

(b) RAKE-ICA: vk = Efzm�bRAKEkm g.

(c) MMSEbit-ICA: vk = Efzm�bMMSE
km g.
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Let t � �.

2. Compute one iteration of the complex FastICA algorithm [47]:

w�t� � Efzm�w�t� ��Hzm�
�jw�t� ��Hzmj

�g � �w�t� ��
(23.49)

3. Dividew�t� by its norm.

4. If jw�t�Hw�t� ��j is not close enough to �, set t � t��, and go back to step
2.

5. Output the vectorw = �w�t�, where � = sign�Re�w���Hw�t���.

23.5.3 Simulation results

The algorithms were tested using simulated DS-CDMA downlink data with a block
fading channel.

In the first experiment gold codes of the length C � 	� were used. The length
of the block was M � 
�� binary phase shift keying (BPSK) symbols. The channel
was fixed during the block period. The number of users was K � ��, and the
multiple access interference (MAI) per user was 
 dB. Hence, the total interference
power was ��� dB. The number of paths was L � 	. The path gains were gaussian
distributed with a zero mean, and the path delays were chosen randomly from the
interval f�� �� � � � � �C � ����g. The delays and the path gains were assumed to
be known. The signal-to-noise ratio (in the chip matched filter output) varied with
respect to the desired user from 
 dB to 	
 dB, and 10000 independent trials were
made. A constant � � 	 was used in the ICA iteration.

Figure 23.8 shows the achieved bit-error-rates (BERs) for the methods as a function
of the SNR. The performance of RAKE is quite modest due to the near–far situation.
Consequently, RAKE-ICA is able to improve the performance of the RAKE method
only marginally. Subspace MMSE detector suffers from interference floor at higher
SNRs. One reason for this is inaccurate estimation of the signal subspace. Even
though MMSE-ICA uses the same estimate for the signal subspace, it is able to
exploit the statistical independence of the source signals, and seems to follow quite
closely the equal length optimal MMSE receiver, denoted as MMSE bound.

Figure 23.9 shows the corresponding block-error-rates (BLER) for these methods.
A block is correctly estimated if all the symbols in the block are estimated correctly.
For speech and data services that do not require real-time processing, raw BLER of
���� is sufficient. For real-time data services, raw BLER of the order of ���� is
required. Figure 23.9 shows that RAKE-ICA actually improves the performance of
the RAKE method quite remarkably with respect to BLER, even though the overall
BER has not been improved that much.

More numerical experiments, including simulation results for the case of purely
complex data (� � �), can be found in [382, 383]. They clearly indicate that the
estimates given by the RAKE and subspace MMSE detectors can be greatly improved
by using ICA as a postprocessing tool.
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Fig. 23.8 Bit-error-rate as a function of SNR (�� � � � � �� dB). The system includes K � ��

users with the average MAI of � dB per interfering user. BPSK data is used.

23.6 CONCLUDING REMARKS AND REFERENCES

In this chapter, we have applied several quite different extensions of basic ICA (or
BSS) techniques to short-code CDMA data. It can be concluded that ICA often
provides significant performance gains in CDMA applications. Basically, this results
from the fact that standard CDMA detection and estimation methods do not exploit
the powerful but realistic independence assumption. At best, they utilize the much
weaker uncorrelatedness condition for the received source signals.

CDMA techniques are currently studied extensively in telecommunications, be-
cause they will be used in a form or another in future high performance mobile
communications systems. A specific feature of all telecommunications applications
of ICA is that they are almost always semiblind problems. The receiver has more or
less prior information on the communication system, typically at least the spreading
code of the desired user is known. This prior information should be combined in
a suitable way with blind ICA techniques for achieving optimal results. Another
important design feature is that practical algorithms should not be computationally
too demanding, making it possible to realize them in real time.
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Fig. 23.9 Block-error-rate as a function of SNR (�� � � � � ��dB). The system includesK � ��

users with the average MAI of � dB per interfering user. BPSK data is used.

ICA methods also have been applied to CDMA data, for example, in references
[223, 384, 100]. Other applications of blind source separation techniques to various
communications problems can be found for example in [77, 111, 130, 435]. Related
blind identification or blind equalization techniques are discussed in many papers;
see for example [41, 73, 91, 122, 146, 143, 144, 158, 184, 224, 265, 276, 287, 351,
352, 361, 425, 428, 431, 439, 440] and the references therein. Blind identification
techniques used in communications typically exploit second-order temporal statistics
(or suitable explicit higher-order statistics) instead of ICA. The interested reader can
find many more references on blind communications techniques in recent confer-
ence proceedings and journals dealing with telecommunications and statistical signal
processing.



24
Other Applications

In this chapter, we consider some further applications of independent component
analysis (ICA), including analysis of financial time series and audio signal separation.

24.1 FINANCIAL APPLICATIONS

24.1.1 Finding hidden factors in financial data

It is tempting to try ICA on financial data. There are many situations in which parallel
financial time series are available, such as currency exchange rates or daily returns
of stocks, that may have some common underlying factors. ICA might reveal some
driving mechanisms that otherwise remain hidden.

In a study of a stock portfolio [22], it was found that ICA is a complementary tool
to principal component analysis (PCA), allowing the underlying structure of the data
to be more readily observed. If one could find the maximally independent mixtures
of the original stocks, i.e., portfolios, this might help in minimizing the risk in the
investment strategy.

In [245], we applied ICA on a different problem: the cashflow of several stores
belonging to the same retail chain, trying to find the fundamental factors common
to all stores that affect the cashflow. Thus, the effect of the factors specific to any
particular store, i.e., the effect of the managerial actions taken at the individual store
and in its local environment, could be analyzed.

In this case, the mixtures in the ICA model are parallel financial time series xi�t�,
with i indexing the individual time series, i � �� � � � �m and t denoting discrete time.

441
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We assume the instantaneous ICA model

xi�t� �
X

j

aijsj�t� (24.1)

for each time series xi�t�. Thus the effect of each time-varying underlying factor or
independent component sj�t� on the measured time series is approximately linear.

The assumption of having some underlying independent components in this spe-
cific application may not be unrealistic. For example, factors like seasonal variations
due to holidays and annual variations, and factors having a sudden effect on the
purchasing power of the customers, like price changes of various commodities, can
be expected to have an effect on all the retail stores, and such factors can be assumed
to be roughly independent of each other. Yet, depending on the policy and skills of
the individual manager, e.g., advertising efforts, the effect of the factors on the cash
flow of specific retail outlets are slightly different. By ICA, it is possible to isolate
both the underlying factors and the effect weights, thus also making it possible to
group the stores on the basis of their managerial policies using only the cash flow
time series data.

The data consisted of the weekly cash flow in 40 stores that belong to the same
retail chain, covering a time span of 140 weeks. Some examples of the original data
xi�t� are shown in Fig. 24.1. The weeks of a year are shown on the horizontal axis,
starting from the first week in January. Thus for example the heightened Christmas
sales are visible in each time series before and during week 51 in both of the full
years shown.

The data were first prewhitened using PCA. The original 40-dimensional signal
vectors were projected to the subspace spanned by four principal components, and the
variances were normalized to 1. Thus the dimension of the signal space was strongly
decreased from 40. A problem in this kind of real world application is that there
is no prior knowledge on the number of independent components. Sometimes the
eigenvalue spectrum of the data covariance matrix can be used, as shown in Chapter
6, but in this case the eigenvalues decreased rather smoothly without indicating any
clear signal subspace dimension. Then the only way is to try different dimensions.
If the independent components that are found using different dimensions for the
whitened data are the same or very similar, we can trust that they are not just artifacts
produced by the compression, but truly indicate some underlying factors in the data.

Using the FastICA algorithm, four independent components (ICs) sj�t�� j �
�� ���� � were estimated. As depicted in Fig. 24.2, the FastICA algorithm has found
several clearly different fundamental factors hidden in the original data.

The factors have different interpretations. The topmost factor follows the sudden
changes that are caused by holidays etc.; the most prominent example is Christmas
time. The factor in the bottom row, on the other hand, reflects the slower seasonal
variation, with the effect of the summer holidays clearly visible. The factor in the
third row could represent a still slower variation, something resembling a trend. The
last factor, in the second row, is different from the others; it might be that this factor
follows mostly the relative competitive position of the retail chain with respect to its
competitors, but other interpretations are also possible.
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Fig. 24.1 Five samples of the 40 original cashflow time series (mean removed, normalized
to unit standard deviation). Horizontal axis: time in weeks over 140 weeks. (Adapted from
[245].)

If five ICs are estimated instead of four, then three of the found components stay
virtually the same, while the fourth one separates into two new components. Using
the found mixing coefficients aij , it is also possible to analyze the original time series
and cluster them in groups. More details on the experiments and their interpretation
can be found in [245].

24.1.2 Time series prediction by ICA

As noted in Chapter 18, the ICA transformation tends to produce component signals,
sj�t�, that can be compressed with fewer bits than the original signals, xi�t�. They
are thus more structured and regular. This gives motivation to try to predict the
signals xi�t� by first going to the ICA space, doing the prediction there, and then
transforming back to the original time series, as suggested by [362]. The prediction
can be done separately and with a different method for each component, depending
on its time structure. Hence, some interaction from the user may be needed in the
overall prediction procedure. Another possibility would be to formulate the ICA
contrast function in the first place so that it includes the prediction errors — some
work along these lines has been reported by [437].

In [289], we suggested the following basic procedure:

1. After subtracting the mean of each time series and prewhitening (after which
each time series has zero mean and unit variance), the independent components
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Fig. 24.2 Four independent components or fundamental factors found from the cashflow
data. (Adapted from [245].)

sj�t�, and the mixing matrix, A, are estimated using the FastICA algorithm.
The number of ICs can be variable.

2. For each component sj�t�, a suitable nonlinear filtering is applied to reduce the
effects of noise — smoothing for components that contain very low frequen-
cies (trend, slow cyclical variations), and high-pass filtering for components
containing high frequencies and/or sudden shocks. The nonlinear smoothing
is done by applying smoothing functions fj on the source signals sj�t�,

ssj�t� � fj �sj�t� r�� � � � � sj�t�� � � � � sj�t� k��� (24.2)

3. Each smoothed independent component is predicted separately, for instance
using some method of autoregressive (AR) modeling [455]. The prediction is
done for a number of steps into the future. This is done by applying prediction
functions, gj , on the smoothed source signals, ssj�t�:

s
p
j �t� �� � gj �s

s
j�t�� s

s
j�t� ��� � � � � ssj�t� q�� (24.3)

The next time steps are predicted by gliding the window of length q over the
measured and predicted values of the smoothed signal.

4. The predictions for each independent component are combined by weighing
them with the mixing coefficients, aij , thus obtaining the predictions, xp

i �t�,
for the original time series, xi�t�:

x
p�t� �� � As

p�t� �� (24.4)

and similarly for t� �� t� 	� � � � .
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Fig. 24.3 Prediction of real-world financial data: the upper figure represents the actual
future outcome of one of the original mixtures and the lower one the forecast obtained using
ICA prediction for an interval of 50 values.

To test the method, we applied our algorithm on a set of 10 foreign exchange
rate time series. Again, we suppose that there are some independent factors that
affect the time evolution of such time series. Economic indicators, interest rates, and
psychological factors can be the underlying factors of exchange rates, as they are
closely tied to the evolution of the currencies. Even without prediction, some of the
ICs may be useful in analyzing the impact of different external phenomena on the
foreign exchange rates [22].

The results were promising, as the ICA prediction performed better than direct
prediction. Figure 24.3 shows an example of prediction using our method. The
upper figure represents one of the original time series (mixtures) and the lower one
the forecast obtained using ICA prediction for a future interval of 50 time steps. The
algorithm seemed to predict very well especially the turning points. In Table 24.1
there is a comparison of errors obtained by applying classic AR prediction to the
original time series directly, and our method outlined above. The right-most column
shows the magnitude of the errors when no smoothing is applied to the currencies.

While ICA and AR prediction are linear techniques, the smoothing was nonlinear.
Using nonlinear smoothing, optimized for each independent component time series
separately, the prediction of the ICs is more accurately performed and the results also
are different from the direct prediction of the original time series. The noise in the
time series is strongly reduced, allowing a better prediction of the underlying factors.
The model is flexible and allows various smoothing tolerances and different orders
in the classic AR prediction method for each independent component.

In reality, especially in real world time series analysis, the data are distorted by
delays, noise, and nonlinearities. Some of these could be handled by extensions of
the basic ICA algorithms, as reported in Part III of this book.
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Table 24.1 The prediction errors (in units of 0.001) obtained with our method and the classic
AR method. Ten currency time series were considered and five independent components were
used. The amount of smoothing in classic AR prediction was varied.

Errors

Smoothing in 2 0.5 0.1 0.08 0.06 0.05 0
AR prediction

ICA prediction 2.3 2.3 2.3 2.3 2.3 2.3 2.3

AR prediction 9.7 9.1 4.7 3.9 3.4 3.1 4.2

24.2 AUDIO SEPARATION

One of the original motivations for ICA research was the cocktail-party problem, as
reviewed in the beginning of Chapter 7. The idea is that there are n sound sources
recorded by a number of microphones, and we want to separate just one of the sources.
In fact, often there is just one interesting signal, for example, a person speaking to
the microphone, and all the other sources can be considered as noise; in this case,
we have a problem of noise canceling. A typical example of a situation where we
want to separate noise (or interference) from a speech signal is a person talking to a
mobile phone in a noisy car.

If there is just one microphone, one can attempt to cancel the noise by ordinary
noise canceling methods: linear filtering, or perhaps more sophisticated techniques
like wavelet and sparse code shrinkage (Section 15.6). Such noise canceling can be
rather unsatisfactory, however. It works only if the noise has spectral characteristics
that are clearly different from those of the speech signal. One might wish to remove
the noise more effectively by collecting more data using several microphones. Since
in real-life situations the positions of the microphones with respect to the sources
can be rather arbitrary, the mixing process is not known, and it has to be estimated
blindly. In this case, we find the ICA model, and the problem is one of blind source
separation.

Blind separation of audio signals is, however, much more difficult than one might
expect. This is because the basic ICA model is a very crude approximation of the
real mixing process. In fact, here we encounter almost all the complications that we
have discussed in Part III:

� The mixing is not instantaneous. Audio signals propagate rather slowly, and
thus they arrive in the microphones at different times. Moreover, there are
echos, especially if the recording is made in a room. Thus the problem is more
adequately modeled by a convolutive version of the ICA model (Chapter 19).
The situation is thus much more complicated than with the separation of mag-
netoencephalographic (MEG) signals, which propagate fast, or with feature
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extraction, where no time delays are possible even in theory. In fact, even the
basic convolutive ICA model may not be enough because the time delays may
be fractional and may not be adequately modeled as integer multiples of the
time interval between two samples.

� Typically, the recordings are made with two microphones only. However, the
number of source signals is probably much larger than 2 in most cases, since
the noise sources may not form just one well-defined source. Thus we have
the problem of overcomplete bases (Chapter 16).

� The nonstationarity of the mixing is another important problem. The mixing
matrix may change rather quickly, due to changes in the constellation of the
speaker and the microphones. For example, one of these may be moving with
respect to the other, or the speaker may simply turn his head. This implies
that the mixing matrix must be reestimated quickly in a limited time frame,
which also means a limited number of data. Adaptive estimation methods may
alleviate this problem somewhat, but this is still a serious problem due to the
convolutive nature of the mixing. In the convolutive mixing, the number of
parameters can be very large: For example, the convolution may be modeled
by filters of the length of 1000 time points, which effectively multiplies the
number of parameters in the model by 1000. Since the number of data points
should grow with the number of parameters to obtain satisfactory estimates, it
may be next to impossible to estimate the model with the small number of data
points that one has time to collect before the mixing matrix has changed too
much.

� Noise may be considerable. There may be strong sensor noise, which means
that we should use the noisy ICA model (Chapter 15). The noise complicates
the estimation of the ICA model quite considerably,even in the basic case where
noise is assumed gaussian. On the other hand, the effect of overcomplete bases
could be modeled as noise as well. This noise may not be very gaussian,
however, making the problem even more difficult.

Due to these complications, it may be that the prior information, independence
and nongaussianity of the source signals, are not enough. To estimate the convolutive
ICA model with a large number of parameters, and a rapidly changing mixing
matrix, may require more information on the signals and the matrix. First, one
may need to combine the assumption of nongaussianity with the different time-
structure assumptions in Chapter 18. Speech signals have autocorrelations and
nonstationarities, so this information could be used [267, 216]. Second, one may need
to use some information on the mixing. For example, sparse priors (Section 20.1.3)
could be used.

It is also possible that real-life speech separation requires sophisticated modeling
of speech signals. Speech signals are highly structured, autocorrelations and nonsta-
tionarity being just the very simplest aspects of their time structure. Such approaches
were proposed in [54, 15].
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Because of these complications, audio separation is a largely unsolved problem.
For a recent review on the subject, see [429]. One of the main theoretical problems,
estimation of the convolutive ICA model, was described in Chapter 19.

24.3 FURTHER APPLICATIONS

Among further applications, let us mention

� Text document analysis [219, 229, 251]

� Radiocommunications [110, 77]

� Rotating machine monitoring [475]

� Seismic monitoring [161]

� Reflection canceling [127]

� Nuclear magnetic resonance spectroscopy [321]

� Selective transmission, which is a dual problem of blind source separation. A
set of independent source signals are adaptively premixed prior to a nondis-
persive physical mixing process so that each source can be independently
monitored in the far field [117].

Further applications can be found in the proceedings of the ICA’99 and ICA2000
workshops [70, 348].
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and factor rotation, 268
Gabor, 394
ICA, 398
in overcomplete ICA, 305
of independent subspace, 380
of PCA subspace, 128
relation to filters in ICA, 396
wavelet, 396

Batch learning, 69
Bayes’ rule, 31
Bias, 80
Blind deconvolution, 355–356

multichannel, 355, 361
Bussgang methods, 357
CMA algorithm, 358
cumulant-based methods, 358
Godard algorithm, 357
Shalvi-Weinstein algorithm, 359
using linear ICA, 360

Blind equalization, see blind deconvolution
Blind source separation, 147
Brain imaging, 407
Bussgang criterion, 253
CDMA (Code Division Multiple Access), 417
CDMA signal model, 422
Centering, 154
Central limit theorem, 34, 166
Central moment, 37, 84
Characteristic function, 41
Chip sequence, 418
Cichocki-Unbehauen algorithm, 244
Cocktail-party problem, 147, 361, 446
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and entropy, 107
and Kolmogoroff complexity, 352
and mutual information, 110

Complex-valued data, 383
Complexity minimization, 353, 424
Compression

by PCA, 126
Conjugate gradients, 67
Consistency, 80

of ICA methods, 187, 205
Convergence

of on-line algorithms, 71
speed, 65

Convolution, 369
Convolutive mixtures, 355, 361

application in CDMA, 430
Bussgang type methods, 367
Fourier transform methods, 365
natural gradient methods, 364
using autocovariances, 367
using higher-order statistics, 367
using spatiotemporal decorrelation, 367

Correlation matrix, 21–22, 26, 48
Correlation, 21

and independence, 240
nonlinear, 240

Covariance matrix, 22
of estimation error, 82, 95

Covariance, 22
Cramer-Rao lower bound, 82, 92
Cross-correlation function, 46
Cross-correlation matrix, 22
Cross-covariance function, 46
Cross-covariance matrix, 23
Cross-cumulants, 42
Cumulant generating function, 41
Cumulant tensor, 229
Cumulants, 41–42
Cumulative distribution function, 15, 17, 27, 36

joint, 19
Curve fitting, 87
Cyclostationarity, 368
Decorrelation, 132, 140

nonlinear, 239–240, 244
Denoising of images, 398
Density, see probability density
Density expansions

Edgeworth, 113
Gram-Charlier, 113
polynomial, 113

Discrete-valued components, 261, 299, 311
Distribution, see probability density
EASI algorithm, 247
Edgeworth expansion, 113
EEG, 407
Electrocardiography, 413
Electroencephalography, 407
EM algorithm, 93
Ensemble learning, 328
Entropy, 222

approximation, 113, 115
by cumulants, 113
by nonpolynomial functions, 115

definition, 105
differential, 108
maximality of gaussian distribution, 112
maximum, 111
of transformation, 109

Equivariance, 248
Ergodicity, 49
Error criterion, 81
Estimate, 78
Estimating function, 245
Estimation, 77

adaptive, 79
asymptotically unbiased, 80
batch, 79
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error, 80
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maximum a posteriori (MAP), 97
maximum likelihood, 90
minimum mean-square error, 94, 428, 433
moment, 84
of expectation, 24
off-line, 79
on-line, 79
recursive, 79
robust, 83
unbiased, 80

Estimator, see estimation (for general entry);
algorithm (for ICA entry)

Evoked fields, 411
Expectation, 19

conditional, 31
properties, 20

Expectation-maximization (EM) algorithm, 322
Factor analysis, 138

and ICA, 139, 268
nonlinear independent, 332
nonlinear, 332
principal, 138

Factor rotation, 139–140, 268
FastICA

for complex-valued data, 437
for maximum likelihood estimation, 209
for tensor decomposition, 232
using kurtosis, 178
using negentropy, 188

Feature extraction
by ICA, 150, 398
by independent subspace analysis, 401
by topographic ICA, 401
using overcomplete bases, 311

Feedback architecture, 431
Filtering

high-pass, 265
linear, 96
low-pass, 265
optimal, 266
taking innovation processes, 266
Wiener, 96

Financial time series, 441
FIR filter, 369
Fisher information matrix, 83
Fixed-point algorithm, see FastICA
FMRI, 407, 413
FOBI, 235
Fourier transform, 370
Fourth-order blind identification, 235
Gabor analysis, 392

and ICA, 398

Gauss-Newton method, 67
Gaussian density, 16

forbidden in ICA, 161
multivariate, 31
properties, 32

Generalized Hebbian algorithm (GHA), 134
Generative topographic mapping (GTM), 322
Gradient descent

deterministic, 63
stochastic, 68

Gradient, 57
natural, 67, 208, 244, 247
of function, 57
relative, 67, 247

Gram-Charlier expansion, 113
Gram-Schmidt orthogonalization, 141
Herault-Jutten algorithm, 242
Hessian matrix, 58
Higher-order statistics, 36
ICA

ambiguities in, 154
complex-valued case, 384

and factor rotation, 140, 268
and feature extraction, 398
definition, 151
identifiability, 152, 154

complex-valued case, 384
multidimensional, 379
noisy, 293
overview of estimation principles, 287
restrictions in, 152
spatiotemporal, 377
topographic, 382

applications on images, 401
with complex-valued data, 383, 435
with convolutive mixtures, 355, 361, 430
with overcomplete bases, 305–306
with subspaces, 380

IIR filter, 369
Independence, 27, 30, 33
Independent component analysis, see ICA
Independent subspace analysis, 380

and complex-valued data, 387
applications on images, 401

Infomax, 211, 430
Innovation process, 266
Intersymbol interference (ISI), 420
Jacobian matrix, 58
JADE, 234
Jeffreys’ prior, 373
Joint approximate diagonalization, 234
Karhunen-Loève transform, 143
Kolmogoroff complexity, 351, 424–425
Kullback-Leibler divergence, 110
Kurtosis, 38

as nongaussianity measure, 171
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relation with nonlinear PCA, 252

Lagrange method, 73
Laplacian density, 39, 171
Learning

algorithms, 63
batch, 69
on-line, 69
rate, 63

Least mean-square error, 249
Least-squares method, 86

generalized, 88
linear, 86
nonlinear, 89, 93
normal equations, 87

Likelihood, 90
and mutual information, 224
and nonlinear PCA, 253
and posterior density, 97
of ICA model, 203

See also maximum likelihood
Loss function, 81
Magnetic resonance imaging, 407, 413
Magnetoencephalography, 407
Magnetoneurography, 413
MAP, see maximum a posteriori
Marquardt-Levenberg algorithm, 67
Matched filter, 424, 432
Matrix

determinant, 61
gradient of function, 59
Jacobian, 36
trace, 62

Maximization of function, 57
Maximum a posteriori, 97, 299, 303, 306, 326
Maximum entropy, 111
Maximum likelihood, 90, 203, 322

consistency of, 205
in CDMA, 424

See also likelihood
Mean function, 45
Mean vector, 21
Mean-square error, 81, 94

minimization for PCA, 128
MEG, 407
Minimization of function, 57
Minimum description length, 131
Minimum-phase filter, 370
Minor components, 135
Mixture of gaussians, 322, 329
ML, see maximum likelihood
MMSE estimator, 424
MMSE-ICA detector, 434, 437–438
Model order

choosing, 131, 271
Modified GTM method, 323

Moment generating function, 41
Moment method, 84
Moments, 20, 37, 41–42

central, 22
nonpolynomial, 207

Momentum term, 426
Moving average (MA) process, 51
Multilayer perceptron, 136, 328
Multipath propagation, 420
Multiple access communications, 417
Multiple access interference (MAI), 421
Multiuser detection, 421
Mutual information, 221–222, 319

and Kullback-Leibler divergence, 110
and likelihood, 224
and nongaussianity, 223
approximation of, 223–224
definition, 110
minimization of, 221

Near–far problem, 421, 424
Negentropy, 222

approximation, 113, 115, 183
by cumulants, 113
by nonpolynomial functions, 115

as measure of nongaussianity, 182
as nongaussianity measure, 182
definition, 112
optimality, 277

Neural networks, 36
Neurons, 408
Newton’s method, 66
Noise, 446

as independent components, 295
in the ICA model, 293
reduction by low-pass filtering, 265
reduction by nonlinear filtering, 300
reduction by PCA, 268
reduction by shrinkage, 300

application on images, 398
sensor vs. source, 294

Noisy ICA
application

image processing, 398
telecommunications, 423

estimation of ICs, 299
by MAP, 299
by maximum likelihood, 299
by shrinkage, 300

estimation of mixing matrix, 295
bias removal techniques, 296
by cumulant methods, 298
by FastICA, 298
by maximum likelihood, 299

Nongaussianity, 165
and projection pursuit, 197
is interesting, 197
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measured by kurtosis, 171, 182
measured by negentropy, 182
optimal measure is negentropy, 277

Nonlinear BSS, 315
definition, 316

Nonlinear ICA, 315
definition, 316
existence and uniqueness, 317
post-nonlinear mixtures, 319
using ensemble learning, 328
using modified GTM method, 323
using self-organizing map (SOM), 320

Nonlinear mixing model, 315
Nonlinearity in algorithm

choice of, 276, 280
Nonstationarity

and tracking, 72, 133, 135, 178
definition, 46
measuring by autocorrelations, 347
measuring by cross-cumulants, 349
separation by, 346

Oja’s rule, 133
On-line learning, 69
Optical imaging, 413
Optimization methods, 57

constrained, 73
unconstrained, 63

Order statistics, 226
Orthogonalization, 141

Gram-Schmidt, 141
symmetric, 142

Overcomplete bases
and image feature extraction, 311
estimation of ICs, 306

by maximum likelihood, 306
estimation of mixing matrix, 307

by FastICA, 309
by maximum likelihood, 307

Overlearning, 268
and PCA, 269
and priors on mixing, 371

Parameter vector, 78
PAST, 136
Performance index, 81
PET, 407
Positive semidefinite, 21
Post-nonlinear mixtures, 316
Posterior, 94
Power method

higher-order, 232
Power spectrum, 49
Prediction of time series, 443
Preprocessing, 263

by PCA, 267
centering, 154
filtering, 264

whitening, 158
Principal component analysis, 125, 332

and complexity, 425
and ICA, 139, 249, 251
and whitening, 140
by on-line learning, 132
closed-form computation, 132
nonlinear, 249
number of components, 129
with nonquadratic criteria, 137

Principal curves, 249
Prior, 94

conjugate, 375
for mixing matrix, 371
Jeffreys’, 373
quadratic, 373
sparse, 374

for mixing matrix, 375
Probability density, 16

a posteriori, 94
a priori, 94
conditional, 28
double exponential, 39, 171
gaussian, 16, 42
generalized gaussian, 40
joint, 19, 22, 27, 30, 45
Laplacian, 39, 171
marginal, 19, 27, 29, 33
multivariate, 17
of a transformation, 35
posterior, 31, 328
prior, 31
uniform, 36, 39, 171

Projection matrix, 427
Projection method, 73
Projection pursuit, 197, 286
Pseudoinverse, 87
Quasiorthogonality, 310

in FastICA, 310
RAKE detector, 424, 434, 437–438
RAKE-ICA detector, 434, 438
Random variable, 15
Random vector, 17
Recursive least-squares

for nonlinear PCA, 259
for PCA, 135

Robustness, 83, 182, 277
Sample mean, 24
Sample moment, 84
Self-organizing map (SOM), 320
Semiblind methods, 387, 424, 432
Semiparametric, 204
Skewness, 38
Smoothing, 445
SOBI, 344
Sparse code shrinkage, 303, 398
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Sparse coding, 396
Sparsity

measurement of, 374
Spatiotemporal ICA, 377
Spatiotemporal statistics, 362
Sphered random vector, 140
Spreading code, 418
Stability, see consistency
Stationarity

wide-sense, 46
strict sense, 45

Stochastic approximation, 71
Stochastic gradient ascent (SGA), 133
Stochastic processes, 43
Subgaussian, 38
Subspace MMSE detector, 434, 436, 438
Subspace

learning algorithm for PCA, 134
noise, 131
nonlinear learning rule, 254
signal, 131

Subspaces
independent, 380
invariant-feature, 380

Superefficiency, 261
Supergaussian, 39
Taylor series, 62
TDSEP, 344

Tensor methods for ICA, 229
Time averages, 48
Time structure, 43

ICA estimation using, 341
Toeplitz matrix, 48
Tracking in a nonstationary environment, 72
Transfer function, 370
Unbiasedness, 80
Uncorrelatedness, 24, 27, 33

constraint of, 192
Uniform density, 36, 39

rotated, 250
Variance, 22

maximization, 127
Vector

gradient of function, 57
valued function, 58

Visual cortex, 403
Wavelets, 394

and ICA, 398
as preprocessing, 267

White noise, 50
Whiteness, 25
Whitening, 140

as preprocessing in ICA, 158
by PCA expansion, 140

Wiener filtering, 96
nonlinear, 300

Z-transform, 369
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