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Abstract—Dependent Component Analysis(DCA) as an 
extension of Independent Component Analysis(ICA) for 
Blind Source Separation(BSS) has more applications than 
ICA and received more and more attentions during the last 
several years in the study of signal processing and neural 
networks. After a general and detailed definition of the 
DCA model is given, the separateness and uniqueness of the 
DCA model have been discussed in theory. Then, the state-
of-art DCA algorithms are overviewed, these methods 
include multidimensional ICA, variance dependent BSS, 
subband decomposition ICA, maximum non-Gaussianity 
method, Wold decomposition method and time-frequency 
method are constructed for the BSS problem in theories 
and some simulations of these algorithms are also exhibited 
for different applications. 
 
 
Index Terms—Dependent Component Analysis(DCA), 
Blind Source Separation(BSS), Independent Component 
Analysis(ICA); Neural Network; Sparse Component 
Analysis(SCA) 
 

I.  INTRODUCTION 

Blind source separation(BSS) methods have been 
successfully applied to many areas of science[1,2]. The 
basic model assumes that the observed signals are linear 
super-positions of underlying hidden source signals. Let 
us denote the n  source signals by the vector 

, and the observed signals by 

. Now the mixing can be 
expressed as  

1( ) ( ( ), , (ns

1( ) ( ( ), , ( ))T
mt x t x t=x "

( ) ( ) ( )t t= +x As n ,                          (1) 

where the matrix  collects the mixing 
coefficients. No particular assumptions on the mixing 
coefficients are made. However, some weak structural 
assumptions are often made: for example, it is typically 
assumed that the mixing matrix is square, that is, the 
number of source signals equals the number of observed 
signals ( ), the mixing process  is defined by an 
even-determined (i.e. square) matrix and, provided that it 

is non-singular, the underlying sources can be estimated 
by a linear transformation, which we will assume here as 
well. If m , the mixing process A  is defined by an 
over-determined matrix and, provided that it is full rank, 
the underlying sources can be estimated by least-squares 
optimization or linear transformation involving matrix 
pseudo-inversion. If m

[ ] m n
ija R ×= ∈A

m n= A

n>

n< , then the mixing process is 
defined by an under-determined matrix and consequently 
source estimation becomes more involved and is usually 
achieved by some non-linear technique. For technical 
simplicity, we shall also assume that all the signals have 
zero mean, but this is no restriction since it simply means 
that the signals have been centered. 

is a vector of additive noise 
that is assumed to be zero in this paper. The problem of 
BSS is now to estimate both the source signals 

1( ) ( ( ), , ( ))T
mt n t n t=n "

( )js t  and 

the mixing matrix  based on observations of the A ( )ix t  
alone [1-2].  

In most BSS methods, the source signals are assumed 
to be statistically independent. BSS based on such a 
model is called independent component analysis (ICA). 
By using non-Gaussianity of the sources, the mixing 
matrix can be estimated and the source signals can be 
extracted under appropriate conditions. There are also 
further approaches of BSS, for example, based on the 
time structure of the ICs that allow for the estimation of 
the model. These assumptions are alternatives to the 
assumption of nongaussianity made in many works. First, 
it assumes that the ICs have different autocovariances (in 
particular, they are all different from zero). Second, it 
considers the case where the variances of the ICs are 
nonstationary. Finally, it discusses the case that the 
mixing matrix changes in time. Another increasingly 
popular and powerful assumption is that the sources have 
a parsimonious representation in a given basis, these 
methods have come to be known as sparse methods, they 
can be called as sparse component analysis. 

However, the independence property of sources may 
not hold in some real-world situations, especially in 
biomedical signal processing and image processing, and 

JOURNAL OF COMPUTERS, VOL. 5, NO. 4, APRIL 2010 589

© 2010 ACADEMY PUBLISHER
doi:10.4304/jcp.5.4.589-597

mailto:hwli@cug.edu.cn


therefore the standard ICA cannot give the expected 
results. Among many extensions of the basic ICA models, 
several researchers have studied the case where the 
source signals are not statistical independent, we call 
these models dependent component analysis(DCA) 
model as a whole. The first extended ICA model is the 
Multidimensional Independent Component Analysis 
(MICA) model[3], which is a linear generative model as 
in equation (1). In contrast to ordinary ICA, however, the 
components (responses) are not assumed to be all 
mutually independent. Instead, it is assumed that the 
source signals can be divided into couples, triplets, or in 
general i-tuples, such that the source signals inside a 
given i-tuple may be dependent on each other, but 
dependencies among different i-tuples are not allowed. 
Based on this basic extension of the ICA model, there 
have emerged lots of DCA models and corresponding 
algorithms, such as independent subspace analysis[4], 
variance dependent BSS[5-7], topographic ICA[8], and 
tree-dependent component analysis[9], subband 
decomposition ICA(SDICA)[10-13], maximum non-
Gaussianity method [14-16], spectral decomposition 
method[17], time-frequency method[18-19].  

This paper is organized as follows: Section 2 
introduces the basic ICA and DCA BSS models and the 
corresponding uniqueness and indeterminacies in detail; 
Then in section 3, we describe the state-of-art DCA 
models and methods for dependent sources in detail; 
Finally, section 4 concludes the paper. 

II.  BASIC DCA MODEL AND RELATIONSHIP WITH ICA 

In this section, we will first review the basic ICA 
model and its indeterminacy, then based on this primary 
model, the basic DCA model is discussed in detail and 
the relationship between them is given too. 

A. ICA Model 
The noiseless instantaneous ICA model [1-2] can be 

described as 
( ) ( )t =x As t                                (2) 

where , and  are defined as in part I. The 
following assumptions for the model to be identified are 
needed: 

( )ts A ( )tx

1)  The sources are statistically mutually independent; 
2) At most one of the sources has Gaussian 

distribution (If the source signals are random variables); 
3) Mixing matrix  is column full-rank. A
The task of ICA is to recover the original signals from 

the observations  without the knowledge of A  
nor . Let us consider a linear feed forward 
memoryless neural network which maps the observation 

 to 

( )tx
( )ts

( )tx ( )ty  by the following linear transform 
( ) ( ) ( )t t= = ty Wx WAs , 

where  is a separating matrix, 

is an estimate of the possibly 
scaled and permutated vector of  and also the 
network output signals whose elements are statistically 

mutually independent, so that the output signals 

[ ] n m
ijw R ×= ∈W

1( ) ( ( ), , ( ))T
nt y t y t=y "

( )ts

( )ty   
are possibly scaled estimation of source signals . ( )ts

For the indeterminacy of the model (1) itself, we can 
only get the separation matrix  satisfied W =WA QΛ , 
where 1 2{ , , , }ndiag λ λ λ= "Λ is a nonsingular diagonal 
matrix and  is a permutation matrix. Then Q

11( ) ( ) ( ) ( , , )
nk n kt t t s sλ λ= = =y Wx Q s "Λ . 

That is ( ) ( )
ii i ky t s tλ= , 1  and  

is a permutation of (1, . So there are two 
indeterminacies in ICA: (1) scaling ambiguity; (2) 
permutation ambiguity. But this does not affect the 
application of ICA, because the main information of the 
signals is included in the waveform of them. Under this 
condition, Comon proved that the separated signals , 

i n≤ ≤ 1 2( , , , )nk k k"
2, , )n"

( )iy t
1,2, ,i n= "  are mutually independent too [8]. 

Theorem 1. Let s  be a random vector with 
independent components, of which at most one is 
Gaussian. Let C  is an invertible matrix and =y Cs , 
then the following two properties are equivalent: 

(1) The components  are mutually independent; iy
(2) =C QΛ ,where  is a permutation matrix and Q

Λ  is a nonsingular diagonal matrix. 

B. DCA Model 
Multidimensional BSS is the recovery of underlying 

sources  from an observed mixtures . As usual, s  has 
to fulfill additional properties such as independence or 
diagonality of the autocovariances (if s  possesses time 
structure). However in contrast to ordinary BSS, MBSS 
is more general as some source signals are allowed to 
contain statistics except independence. One possible 
solution for MBSS is MICA-an extended ICA model [3]. 

s x

We have two approaches to relax ICA model, one is 
add structure to the sources which contain both temporal 
and spatial indices; another is relax some assumptions in 
the model (1). Instead of requiring the source 
independence conditions to hold among all sources, we 
only assume that they are valid between groups of them, 
but we do not assume any assumptions within the groups. 
This relaxed model is denoted by MICA or group ICA 
[3].  

A random vector y  is called an independent 
component of the random vector x , if there exists an 
invertible matrix A  and a decomposition 

1( , , , , ,jy )iy y=x A " " "  such that  and iy jy  are 
stochastically independent. 

For simplicity, it is often assumed that all groups are 
of the same size k , and that Nk  sources are to be 
extracted from equally many mixtures. In the case of 
MICA, MBSS implies that the source random vector s  
is now only k-independent i.e. that 1( , , )T

ks s" , , 

 is mutually independent. 

"

1( , , )s T
Nk k Nks − + "
The idea of MICA is that we do not require full 

independence of transform ( ) ( )t t=y Wx  but only 
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m
 to one, this 

cause the

utual independence of certain tuples , ,
ki iy y" . If the 

size of all tuples is restricted reduces to 
general ICA problem. In general, of  tuples 
could have different sizes, but for the sake of simplicity, 
we assume that all tuples have the same size k (we call it 
regular MICA). If the model has one tuple only, and the 
components in the tuple are statistical dependent, the 
model is the most general DCA model. Next, for 
simplicity, we give the MICA model definition and its 
indeterminacy. 

Cardoso [3] generalized ICA into MICA from the 
geometrical view. First give a definition. 

1

Definition 1. Let 1, , cE E"  be c linear subspaces of 
nR . They are said to be linearly indepe t if any nden

vector x of 1 cE E⊕ admits of a unique 

decomposition as 
c

p=∑x x , with p p

⊕"

p=1
E∈x  for 

1 p c≤ ≤ . In such ors  are 
called the linear com  the set c

 a case, the vect
ponents of

1, , cx x"
 x  on 1, ,E E" . 

Definit
x  in

co

ion 2. A random n -dimensional vector x  
admits of a MICA decompo ition 1,{x " c s , }c  

mponents if it exists  linearly independent 
‘component subspaces’ 1, , c

c
E E"  of nR  on whic

ere may som
ty he 

of

n
her decompo

Based on the basic DCA model, some extended DCA 
model view 
th

pecial case of 
e 

an

e

h the 
linear components of x  are stat ically independent.  

From definition 2, th be e ambiguities 
such as 1) maximali  of the decomposition; 2) T
Ga

ist

ussian component, so [3] give a canonical definition 
of MICA decomposition. 

Definition 3. The canonical MICA decomposition(if it 
exist) of a vector x  is the unique MICA decomposition 

 x  into 
1

c
pp

=∑x x such that: 1) there is at most one 

Gaussian compone t; 2) no non-Gaussian component 
can be furt sed into independent components. 

III.  EXTENDED DCA MODELS AND METHODS 

=

s have been developed. In this section, we re
ese state-of-art popular DCA models.  

A. Multidimensional Independent Component Analysis 
Hyvarinen and Hoyer presented a s

MICA which they called independent subspac
alysis(ISA)[4]; there the dependence within a k-tuple 

is explicitly modelled enabling the authors to propose 
better algorithms without having to resort to the 
problematic multidimensional density estimation. A 
different extension of ICA is given by topographic ICA 
[5], where dependencies between all components are 
assumed.  

The goal of a general ISA is the decomposition of an 
arbitrary random vector x  into independent components. 
If x  is to be decomposed into one-dimensional 
components, this coincides with ordinary ICA. Similarly, 
if th  independent components are required to be of the 

same dimension k , then this is denoted of fixed group 
size k  or simply ISA. So 1-ISA is equivalent to ICA. 

Le ,k n N
k-

t ∈  such that k divides n . We call an n -
di

T
k ny y− + "  

are mutually independent. A matrix  is 
dom vector

ordin
terminacies are, similar to ordinary ICA, 

in

mens dom vector y  k-inde endent if the -
dimensional random vectors 

1 1( , , ) , , (T
k ny y" "

ional ran p k

, , )
 ( , )Gl n∈W \

called a k-ISA of an n -dimensional ran  if 
Wx  is k -independe t. If k = 1, this is the same as 

ary ICA.  
Obvious inde

 x
n

vertible transforms in ( , )Gl n \  in each tuple as well 
as the fact that the order dependent k -tuples is 
not fixed. So, define for , 1, , /r s n k= "  the , )r s  sub-
k-matrix of ( )ijw

of the in
(

=W  to bmat

)
be the k k×  su rix  

, , 1
, , 1

( ij i rk rk k
j sk sk k

w = + −
= + −

"
"

 

that is the k k×  submatrix of  starting at position 
 ma

 W
( , )rk sr . A trix ( ,Gl n )∈L \  is said to be a k-

d permutatio r each 1, , /r n k= "  
there exists precisely one s with the ( , )r s  sub-  
of L  to be nonzero, and such that  submatrix is 
in , )G n \ , and if for each 1, , /

scaling an n matrix if fo
k -matrix

 this
(l s n k= "  there exists 

on  with the ( , )r s  su tisfying the 
same condition. Hence  is k-independent, also L

ly one r b-k-matrix sa
, if y y  

is k-independent. 
Two matrices A  and  are said to be k-equivalent, 

c
matrix

B
k B∼ , if there e ists su h a k-scaling and permutation 

 with 
A x

 L =A BL . As stated above, given two 
matrice  and  1 1

k
− −W V∼ such that one of 

them is a M ICA of a give vector, then so is 
the other. We will show that there are no more 
indeterminacies of MICA.  

As usual MICA can solve

s
 k- n random 

 the MBSS problem 

 W  V  with

=x As  
( , )Gl n∈A \where  and  is a k-independent n-

ional random v Fi

Howeve r the proof e more condition 
fo

s
dimens ector. nding the indeterminacies 
of MICA then shows that A  can be found except for k-
equivalence (separability), cause if =x As  and W  is 
a demixing matrix such that Wx  is k-i dent, t en 

kWA I∼ , so 1
k

−W A∼  as red.  
r, fo  we need on

be
ndepen h

desi

r A : We call A  k-admissible if for each 
, 1 , /r s n k,= "

invertible or zero. Note

b y of MICA)  Let 

 the ( ,r  sub-k-matrix of A  is either 
 that this is not a strong 

restriction—if we randomly choose A  with coefficients 
out of a continuous distribution, the  with probability 
one we get a k-admissible matrix, because the non-k-
admissible matrices belong to 

2n\  lie in a sub-manifold 
of dimension smaller than 2n . 

Theorem 2. (Separa ilit [21]

)s
 

n

( , )Gl n∈A \  and  a k-independent n-dimensional s
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ra
s s"
ndom vector having no Gaussian k-tuple 

1)T
rk rk k+ − . Assume that A  is k-admissible. 
 

( , ,
If  is again k-independent, then A  is k-equivalent 

to the identity. For the case  this is linear BSS 
separability because every matrix is 1-admissible.  

As
1k =

The MICA method used for biomedical signals are 
shown in Figure 1. 
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Figure 1.  The results using MICA method to DAISY data on http://www.tsi.enst.fr/~cardoso/RRicassp98.htm . 

B. Variance dependent BSS model 
Among many extensions of the basic ICA models, 

several researchers have studied the case where the 
source signals are not independent. The dependencies 
either need to be exactly known beforehand, or they are 
simultaneously estimated by the algorithms. Recently, a 
novel idea called double-blind approach was introduced 
by Hyvarinen et.al.[6,7]. In contrast to previous work, 
their method requires no assumption on the distributions 
of the sources and no parametric model of the 
dependencies between the components. They simply 
assume that the sources are dependent only through their 
variances and that the sources have temporal correlation. 
In the Topographic ICA[8], the dependencies of the 
sources are also caused only by their variances, but in 
contrast to the double blind case, they are determined by 
a prefixed neighborhood relation. It should be noted that 
for such dependent component models identifiability 
results have not been theoretically established so far, 
while identifiability of multidimensional ICA was proven 
by Theis [21]. 

A statistical basis of ICA was established by Amari 
and Cardoso[22] which pointed out that the ICA model is 
an example of semiparametric statistical models and 
studied estimating functions for it. In particular, they 
showed that the quasi maximum likelihood(QML) 
estimation and the natural gradient learning give a correct 
solution regardless of the true source densities which 
satisfy certain mild conditions. [7] extend their approach 
to the BSS problem. By investigating estimating 

functions for the model, they show that many of ICA 
algorithms based on the independence assumption can 
achieve consistent solutions in a local sense, even if there 
exist variance dependencies, which is astonishing and 
seems somewhat counterintuitive. For a few algorithms, 
even global consistency has been proven by different 
principles (for example, [11]). Nevertheless, our result 
goes beyond existing ones, because it covers most types 
of BSS algorithms and can give asymptotic distributions. 
The main message of this paper is that most ICA 
algorithms can be proven to be consistent in our 
framework although the data is not independent. So they 
must effectively use some concept beyond independence. 
Thus our consistency results indicate that separation can 
be done based only on normalized sources which are 
adjusted to have stationary variances and is not affected 
by the dependent activity levels. 

Hyvarinen formalized the probabilistic framework of 
variance-dependent blind separation [7]. [6] assumes that 
each source signal ( )is t  is a product of non-negative 
activity level  and underlying i.i.d. signal , 
that is, ( )

( )iv t ( )iz t
( ) ( )i i is t v t z t= . We remark that the sequences 

of the vectors T
1( , , )ns s=s " nv v=v "

nz z=z "
, T  and 

T  are considered as multivariate random 
processes in this subsection. In practice, the activity 
levels ( ) are often dependent among different signals 
and each observed signal is expressed as 

1( , , )

1( , , )

iv t  
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1

( ) ( ) ( ), 1, ,
n

i ij j j
j

x t a v t z t i
=

= =∑ " n                 (3) 

where  and  satisfy: 1)  and ( )iv t ( )iz t ( )iv t ( )jz t′  are 

independent for all i, j, t, t ; 2) each  is i.i.d. in time 

for all i, the random vector  is mutually 
independent; 3)  have zero mean and unit variance 
for all i. 

′ ( )iz t

1( , , )T
nz z=z "

( )iz t

No assumption on the distribution of  is made 
except 3). Regarding the general activity levels ’s, 

 and  are allowed to be statistically dependent, 
and furthermore, no particular assumption on these 
dependencies is made (double blind situation). We refer 
to this framework as the variance dependent BSS model 
in this paper. As stated in the assumption 2) above, the 
normalized signals  and  are mutually independent. 

iz

iv
( )iv t ( )jv t

1z 2z
However, since the sequences  and  are 

multiplied by extremely dependent activity levels  
and , respectively, the short-term variance of the source 
signals 

1z 2z

1v

2v

1s  and 2s  are highly correlated. 
Theorem 3. Assume that the signals ( )ix t  are 

generated as described in Eq. (3), and that the signals are 
preprocessed by spatial whitening to give the 
multidimensional signal . Define the objective 
function: 

( )tz

2

,
( ) [cov( ( ))] ,[ ( )] )]T T

i j
i j

J t t=∑W w z w z 2 2t− Δ ,    (4) 

where  is constrained to be 
orthogonal, and the lag  is nonzero. Assume that the 
matrix K  defined as 

1( , , )T
n=W w w"

tΔ

2 2cov( ( ), ( ))ij i js t s t t=K − Δ                     (5) 
has full rank. Then, the objective function J is (globally) 
maximized when WA equals a signed permutation matrix, 
i.e. the  equal the original sources ( )T

i tw z ( )is t  up to 
random signs. Convergence of the variance dependent 
BSS algorithm for artificially generated data are shown in 
Figure 2. 
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Figure 2.  Convergence of the variance dependent BSS algorithm for 
artificially generated data. Vertical axis: error, horizontal axis: 
iteration count. 

C. Subband Decomposition ICA(SDICA) 
Subband decomposition ICA(SDICA), an extension of 

ICA, assumes that each source is represented as the sum 
of some independent subcomponents and dependent 
subcomponents, which have different frequency bands. 
SDICA model [10-13] can considerably relax the 
assumption regarding mutual independence between the 
original sources by assuming that the wide-band source 
signals are generally dependent but some narrow-band 
subcomponents of the sources are independent. 

In general, in order to solve the SDICA problem, The 
first thing is to apply a filter to the observations to allow 
the frequency bands of the independent subcomponents to 
pass through and then apply the standard ICA algorithms 
to these filtered signals. In [12], the subband is selected 
by a priori knowledge or by comparing some simple 
statistical measures (such as -norm, pl p =1, or 0.5, or 
kurtosis) of the subband signals. Generally these selection 
methods seem to be arbitrary if we do not have the prior 
information on the subband of the independent 
subcomponents. In [10], an additional assumption that at 
least two groups of subcomponents are statistically 
independent is incorporated, so that the true mixing 
matrix can be recovered. This assumption may help solve 
some practical BSS problems. However, it does not 
necessarily hold. And even with this assumption, it 
remains a problem to divide the optimal subbands. 
Moreover, these methods cannot recover the source-
independent subcomponents. In some cases, the source-
independent subcomponents are of interest, and the 
dependent subcomponents should be removed. For 
example, the dependent subcomponents may denote the 
power supply, which yields a sinusoidal inference.  

Zhang et.al. discuss the validity of the existing 
methods for SDICA and the conditions for separability of 
the SDICA model [11]. They propose an adaptive method 
for SDICA, called band-selective ICA (BS-ICA). This 
method can automatically select the frequency band in 
which the subcomponents of the original sources are most 
independent, and consequently the mixing matrix and a 
filtered version of the source-independent subcomponents 
can be estimated. In order to do that, a linear filter on 
each observation is applied, followed by a linear 
demixing stage. The parameters in the filter and the 
demixing matrix are adjusted by minimizing the mutual 
information between the outputs. By incorporating some 
penalty term, the prior knowledge on the independent 
subcomponents can be taken into account. 

The overcomplete model is also considered in [11]. In 
overcomplete DCA model, the number of the original 
independent sources is greater than that of the 
observations, so standard ICA algorithms cannot cope 
with this problem. [11] is concerned with the 
overcomplete ICA problems in which there exists a 
subset of sources such that each source in this subset has 
some frequency band outside the frequency bands of the 
sources not in this subset. The relationship between such 
overcomplete ICA problems and SDICA is addressed. 
Based on the relationship, BS-ICA can also be exploited 
to solve this kind of overcomplete ICA problem. 
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The key idea in SDICA is the assumption that the 
wide-band source signals can be dependent; however, 
only some of their narrow-band subcomponents are 
independent [12]. In other words, all sources is  are not 
necessarily independent, but can be represented as the 
sum of several subcomponents as 

,1 ,2 ,( ) ( ) ( ) ( )i i i i Ls t s t s t s t= + + +"                   (6) 

where , ( )i ks t ,  are narrow-band 
subcomponents. And the subcomponents are mutually 
independent for only a certain set of k; more precisely, we 
assume that the subcomponents with k in this set are 
spatially independent stochastic sequences. The 
observations are still generated from the sources 

1,2, ,k = " L

is  
according to equation (2). Here we assume that the 
number of sources is equal to that of the observations and 
that the observations are zero mean. Similar to ICA, the 
goal of SDICA is to estimate the mixing matrix, the 
original sources, and the source-independent 
subcomponents if possible. 

SDICA can be performed by the structure in Figure 3. 
As the first step, we apply a filter  to filter out the 
dependent subcomponents of the sources. Suppose  
exactly allows one independent subcomponent, say, the 
kth subcomponent

( )h t
( )h t

, ( )i ks t  pass through. Let 

. ( )
1,( ) [ ( ), ,k

kt s t=s " , ( )]T
n ks t . Then the filtered 

observations  
( )( ) ( ) [ ( ) ( )( )] ( )kh t t h t t t∗ = ∗ =x A s As . 

Therefore, in the second step, we just need to apply an 
ICA algorithm to the filtered observations, and we can 
obtain the demixing matrix W  associated with the 
mixing matrix .  A

 
Figure 3.  The structure to perform SDICA. 

In the existing methods for SDICA, the frequency 
subband in which source sub-components are 
independent is determined by either some a priori 
information or exploiting the stronger assumption that at 
least two of the subcomponents are statistically 
independent. In practice, ICA is mainly used for BSS, so 
the exact a priori information on  is usually 
unavailable. The assumption that at least two of the 
subcomponents are statistically independent is not 
necessarily true, and the design of the optimal filter  
for good performance remains a problem. It is therefore 
very useful to develop a method that adaptively estimates 
the optimal filter , such that the source-independent 
subcomponents pass through it and the dependent 
subcomponents are attenuated, and consequently both the 
mixing matrix A and the source-independent 

subcomponents can be recovered. Band-selective ICA 
(BS-ICA) is such a method [11]. 

( )h t

( )h t

( )h t

Separability of SDICA 
In last section we briefly reviewed the existing 

methods for SDICA. Now we provide the theoretical 
foundations that sustain these methods. Furthermore, we 
discuss why it is possible to adaptively estimate the 
SDICA separation system { (  without a priori 
knowledge on . 

), }h t W
( )h t

Proposition 1. Let  be the observations in the 
SDICA model. Under assumptions 1 and 2, the outputs of 
the SDICA separation system in Figure 3, , are 
spatially independent stochastic sequences if and only if 
the filter  filters out the dependent subcomponents 

( )tx

( )iy t

( )h t

, ( )i Ds t  and  is a generalized permutation matrix. WA
Proposition 2. Let  be the observations in the 

SDICA model. Under assumptions 1 to 5, the outputs of 
the SDICA separation system, , are instantaneously 
independent if and only if the filter  filters out the 
dependent subcomponents 

( )tx

( )iy t
( )h t

, ( )i Ds t  and WA is a 
generalized permutation matrix. 

Assumptions 1 to 5 [11] are generally not very 
restrictive. And it is important to emphasize that it is 
possible for proposition 2 to be true even when some of 
the assumptions are violated. According to proposition 2, 
the SDICA model generated observations can be 
separated by the SDICA separation system in Figure 3 
and the filter  and the demixing matrix W in the 
SDICA system can be obtained by making  
mutually independent using the Band-selective method. 

( )h t
( )iy t

In order to investigate the performance of the SDICA 
BSS algorithm, the simulation is shown below, the source 
signals are selected as harmonic signals as proposed in 
[30], the four source signals are generated as follows: 

1 1

2 2

( ) 0.5cos(2 /1024 1.9);
( ) 0.9cos(2 /1024 0.8);

s t tN
s t tN

π
π

= +
= +

 

3 3

4 4

( ) 1.6cos(2 /1024 0.1);
( ) 2.0cos(2 /1024 0.2).

s t tN
s t tN

π
π

= +
= +

 

where 1 50N = , 2 170N = , , .  3 290N = 4 410N =
The source signals were contaminated with additive 

moving average(MA)(2) noise, and the signal-to-noise 
ratio(SNR) is 0db. The noise model is 

( ) ( ) 0.45 ( 1) 0.95 ( 2)n t e t e t e t= − − + −  
where .  ( ) (0,1)e t N∼

The mixed harmonic signals in noise is generated by 
the ICA based harmonic retrieval models [30] and 1 2l = , 

1 4l = , 1 6l = , 1 8l = . The source harmonic signals, 
mixtures with no noise, and their Fourier transformation 
are displayed in figure3(a) and figure3 (b), respectively. 

The separation results of adaptive filter based method 
is given in figure3(c). Because of the algorithm by the 
adaptive filter based method is affected by the noise 
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greatly, we also give the separated results in the case of 
no noise which is given in figure3(c).  
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Figure 4.  (a)The source signals and their FFT; (b)The simulation 
results using adaptive filter based method with no noise. The data 
length is 1024, we show only the first 256 for clear comparison with 
source signals. 

D. Maximum non-Gaussianity Method 
In ICA applications, non-Gaussianity measures are 

used based on the following fundamental idea: the 
outputs of a linear mixing process that preserves 
variances, have higher entropies than the inputs. This 
general statement can be precisely expressed in 
mathematical terms when source signals are mutually 
independent as a consequence of central limit theorem 
(CLT) which tell us that the linear mixture of n 
independent signals with finite variances will became 
asymptotically Gaussian (as N grows towards ∞ ). 
Moreover, Donoho, in his classical paper on blind 
deconvolution [25] has shown that any finite linear 

combinations of independent random variables are “more 
nearly” Gaussian than the individual components. 

Of course, when signals (variables) are dependent, the 
classical CLT does not hold and we cannot be sure that 
maximum NG(MaxNG) method will reach to the sources. 
Moreover, in [14], a particular case where this method 
fails is presented, but fortunately this is not the case in 
most of real world scenarios. They present many 
experimental results showing that the method is useful in 
many cases, even when the independence of sources is 
relaxed and also we show that MaxNG performs always 
better than MinMI. Besides, there are many experimental 
evidences from other authors, in the framework of blind 
deconvolution, where independence of input variables is 
not required [26]. Particularly, in [25] there is an example 
of dependent variables that can be reconstructed using the 
minimum entropy method. 

The theoretical conditions to be satisfied by sources in 
order to assure MaxNG to work, may be based on those 
that allow us to generalize the CLT to special dependent 
variables. Enormous amount of work have been 
published since long time ago establishing different 
sufficient conditions for this generalization. Anyway the 
characterization of the type of dependence of variables 
that guarantees the generalization of CLT is cumbersome 
and remains as an open issue at present.  

The definition of the MaxNG method is as follows: 
Definition 4.[14]. The maximum NG (minimum entropy) 

method consists of searching for the linear combinations 
of mixtures that give source estimates with maximum 
non-Gaussian (minimum entropy) distributions restricting 
the space of search to the unit-variance signals space. 
More specifically, sources are estimated through relation 
=y Dx  over the space of invertible separating matrices 

D providing signals  with unit-variances 
(which is equivalent to imposing the covariance matrix 

 to have ones in its main diagonal). 

0 , , My y −" 1

T=yy xxR DR D
Let us now introduce a natural measure of NG based 

on the -Euclidean distance of an estimated pdf to the 
normal (Gaussian) pdf. Considering a continuous random 
variable y with zero-mean and unit-variance, we define 
our NG measure of a pdf 

2L

yp  denoted by ( )ypΓ , as 
following: 

2( ) [ ( ) ( )]y yp y p y dyΓ Φ= −∫ ,                    (8) 

where the integral is defined in Lebesgue sense and is 
taken on all the range of variable y, and  is the 
Gaussian pdf:  

( )yΦ

21 1( ) (0,1) exp
22

y N yΦ
π

⎛= = −⎜
⎝ ⎠

⎞
⎟               (9) 

Clearly, Eq. (8) is the square of the distance between 
functions ( )yΦ  and ( )yp y  in . We restrict our 

analysis to the case where 

2L

( )yp y is a continuous function 
for simple mathematical treatment. Note that zero is a 
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lower bound of ( )ypΓ  and is attained 

when ( ) ( )yp y yΦ= . 
Suppose that our data are samples of the random 

variable y: . If the number of 
samples is large enough, generally, we can obtain a good 
estimation of the unknown pdf 

(0), (1), , ( )y y y N"

ˆ ( )yp y  using the non-
parametric technique, namely Parzen window, with a 
Gaussian kernel [27] as follows: 

1

0

1ˆ ( )
N

y
i

y y ip y
Nh h

Φ
−

=

−⎛= ⎜
⎝ ⎠

∑ ( ) ⎞
⎟ ,                   (10) 

where N is the number of samples, h is a parameter which 
affects the width and height of the windows functions in 
the summation, and  is the Gaussian window or 
kernel as was defined in (9). In the following it will show 
that the selection of Gaussian kernel allows us to derive 
some useful relationships. 

( )yΦ

Working with Eq. (8) we divide our NG measure in 
three parts as follows: 

2

1 ( )
2

( ) ( ) 2 ( ) ( ) ( )

y y

y y

p p

2

( )

yp y dy y p y dy p y dy
Γ Γ

π

Γ Φ Φ

1 2

= − +∫ ∫ ∫��	�
����	���
 ��	�

 (11) 

The first term of the right hand side in Eq. (11) can be 
analytically calculated and it takes 1 2 π  value. Only 
the second 1( ( ))ypΓ  and third 2( ( ))ypΓ  terms are 

dependent on the pdf yp . 

Replacing ( )yp y  by ˆ ( )yp y  given by Eq. (10) and 
using properties of the convolution of Gaussian functions, 
we arrive finally to the following formulas [14]: 

1

1 2 2
0

2ˆ( )
1 1

N

y
i

y ip
N h h

Γ Φ
−

=

⎛−
= ⎜

+ +⎝ ⎠
∑ ( ) ⎞

⎟ ,         (12) 

1 1

2 2
0 0

1 ( )ˆ( )
2 2

N N

y
i j

y j y ip
N h h

Γ Φ
− −

= =

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑∑ ( ) .       (13) 

We propose to set  which is the value 
that guarantees to attain the minimum mean integrated 
square error (MISE) in the pdf estimation for a Gaussian 
kernel. This value is optimum for the pdf estimation and 
it is reasonable to expect good estimates of our non-
Gaussian distance as well. 

1/ 51.06h N −= ×

While the Euclidean distance is a very common way to 
measure distances between functions and it was already 
used in some separation algorithms (see [28] where a 
calculation of this distance is based on orthogonal 
polynomial expansions), the set of formulas (12) and (13), 
which are obtained using Parzen windows technique are 
new. 

There is also an interesting direct connection between 
term 2 ( )ypΓ  in our Eq. (13) and Renyi entropy of order 

2 , which is defined as 
2
( )RH y

2

2( ) log ( )R yH y p y=− ∫

E. Spectral(Wold Decomposition) Method[25] 

dy

t

 

and was used before in BSS and feature extraction (see 
[29]). 

For signal model: 
( ) ( ) ( )t t= +x As n , 

there are some assumptions: 
1) Each element of  is a zero-mean stationary 

process. 
( )ts

2)  is zero-mean stationary, white random vector 
process, independent of the source signals. 

( )tn

3) A has full column rank, i.e. rank(A)=n, otherwise A 
can have any unknown form. 

It must be emphasized that we do not impose any 
assumption about the independence or uncorrelation of 
source signals. In other words, source signals can be 
correlated, and only the following assumption is 
considered: 

4) Source signals are jointly stationary. 
The aim in BSS is to recover the source signals from 

the observations, and for attaining this target we try to 
identify the mixing matrix A. Two indeterminacies are 
exist as the classic BSS problem. 

F. Time-Frequency Method[18,19]

Assumption 1. 
1) The mixing matrix A is such that ,0ija ≠ ,i j∀ . 
2) The power of each source is non-negligible at least 

at some times t. 
Assumption 2. For each source is  there exist some 

adjacent TF windows ( , )j kt ω  centered on time jt and 

angular frequency kω  where only is  occurs, i.e. where: 
( , )l j kS t ω �  ( , ),i j kS t l iω ∀ ≠  
Assumption 3. When several sources occur in a given 

set of adjacent TF windows they should vary so that 
( , )tα ω  does not take the same value in all these 

windows. Especially,  
1) At least one of the sources must take significantly 

different TF values in these windows; 
2) The sources should not vary proportionally and 

11

21

( , )
( , )

( , )

N
m mm

N
m mm

a S t
t

a S t

ω
α ω

ω
=

=

= ∑
∑

. 

Assumption 4. There exists a TF area  where 

only source 

( , )q kΓ ω

is  occurs and, ( , ) ( , ),j k q kt ω Γ ω∀ ∈  

1( , ) ( , )j k i jN t S t kω ω�  and 2 ( , ) ( , )j k i jN t S t kω ω� . 

IV.  CONCLUSIONS 

In most BSS methods, the source signals are assumed 
to be statistically independent. BSS based on such a 
model is called ICA. However, the independence 
property of sources may not hold in some real-world 
situations, especially in biomedical signal processing and 
image processing, and therefore the standard ICA cannot 
give the expected results. Some extended data models 
have been developed to relax the independence 
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assumption in the standard ICA model, we call them 
DCA as a whole. DCA as an extended ICA model has 
more application than ICA and received more and more 
attentions during the last several years in the study of 
signal processing, neural network and applications. As 
two important BSS methods, ICA and DCA have many 
relations from the models to the optical algorithms. In 
this paper, we describe the overall basic DCA model in 
detail, moreover, the relationships between ICA and these 
DCA models have also been shown. The separateness and 
uniqueness is discussed of some special DCA models too. 
At last, the state-of-art DCA algorithms are overviewed 
from different theory foundations, such as, 
multidimensional ICA, variance dependent BSS, subband 
decomposition ICA, maximum non-Gaussianity method, 
Wold decomposition method and time-frequency method 
are constructed for the BSS problem in theories and some 
simulations of these algorithms are also exhibited for 
different applications. 
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