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ABSTRACT

This communication presents a simple algebraic method
for the extraction of independent components in
multidimensional data. Since statistical independence is a
much stronger property than uncorrelation, it is possible, using
higher-order moments, to identify source signatures in array
data without any a-priori model for propagation or reception,
that is, without directional vector parametrization, provided
that the emitting sources be independent with different
probability distributions. We propose such a "blind"
identification procedure. Source signatures are directly
identified as covariance eigenvectors after data have been
orthonormalized and non linearily weighted. Potential
applications to Array Processing are illustrated by a simulation
consisting in a simultaneous range-bearing estimation with a
passive array.

INTRODUCTION

For a lot of reasons (of various kinds), the most common
Signal Processing methods deal with second-order statistics,
expressed in terms of covariance matrices. It is well known
that Gaussian stochastic processes are exhaustively described
by their second-order statistics. Nonetheless, when the
Gaussian assumption is not valid, some information is lost by
retaining only second-order statistics.

This information, which can be expressed in terms of
cumulants [1], is sometimes necessary, for instance in the
problem of identifying a non-minimal phase process [2,3]. In
the recent years, research on higher-order statistics has mainly
focused on Time Series Analysis, often using more specific
description tools such as bispectra [4,5]. In contrast, less
attention was given to applications in Multidimensional Signal
Processing.

In Array Processing, recently proposed methods for High
Resolution are also based on structural analysis of the second-
order covariance. Impressive performances may be achieved
by giving a priori information about signal propagation from
sources to sensors in terms of "directional" or "steering"
vectors. For a superimposition of narrowband plane waves
impinging on a uniform linear array of identical sensors, these
steering vectors show linear phase and, as a consequence, the
problem of source location is analog to a harmonic retrieval
problem. Most of the work on using higher order information

in Array Processing has been done within this framework
[6,7,8]. However, actual physical settings are often such that
source signatures (directional vectors) depart from the
assumed model. As expected, model-based methods are very
sensitive to such discrepancies. Multipath, unknown antenna
deformation are among the common causes of severe
performance degradation.

It is the purpose of this communication to present a simple
algebraic method allowing source identification when NO a
priori information about the propagation and the reception is
available. The key requirement is that the observed data
consist in a linear superimposition of statistically independent
components. It may seem strange that such a blind
identification procedure be possible, but it should be recalled
that statistical independence between sources is a much
stronger requirement than mere uncorrelation. The question of
blind separation of multidimensional components by taking
advantage of statistical independence has already been
adressed in recent litterature. A non-linear adaptive procedure
has been proposed in [9,10] while a direct solution using
explicitely cumulants was given for the case of two sources
and two sensors in [11]. In contrast, we propose here a simple
algebraic method to separate an arbitrary number of sources,
given measurements from a larger number of sensors.

THE SOURCE SEPARATION PROBLEM

We are given an arbitrary array of N sensors providing
samples in time and space of some random field. The situation
we are interested in is the following. There are several sources
located at different points in space, numbered with index i.
The source i emits at time t a random message αi(t). Influence
of source i on the sensor array is described by a fixed vector Xi
called the "source signature". At time t, the observed data
vector X (t) is the linear superimposition of the contributions
from each source:

(M)









Xi : unknown deterministic vector

αi(t) : real or complex valued stochastic variable

X (t) =
sources
Σ αi(t) Xi

The preceeding model (M) is quite general and underlies most
of the narrow-band beamforming and bearing estimation
methods. In these methods, however, source signatures are



usually assumed to be of known structure, parameterized by
angular position. We do not want to introduce such an a priori
knowledge in our problem, but we assume in place that

(H) The source messages αi are zero-mean stationnary
independent processes.

Because independence is a strong statistical property, it is
generally possible to solve the problem:

Given the model (M) and hypothesis (H), separate the
sources, that is, extract signatures Xi and messages αi(t) from
the observations X (t).

In the following, we omit explicit dependancy on time t.
We will also assume to be in the general case where the source
signatures Xi are linearily independent vectors. A point to be
noted, when examining the model equation (M), is that any
identification procedure can be successful only up to a scale
factor. This is obvious since multiplication of a source
message αi by a constant factor combined with a division of
the corresponding signature Xi by the same factor leaves the
observation X unchanged. So we are free, without any loss of
generality, to normalize either the source amplitudes or the
signature norms, In the following we choose the
normalization:

(1) E(
�
αi

� 2)=1 for all sources

SECOND-ORDER IDENTIFICATION

Statistical second-order information contained in the data
is expressed by the covariance matrix:

(2) RX = E(XX T)

where X T denotes the conjugate transpose of vector X.
Expression of the covariance in terms of the model is
immediate since the αi ′s are independent, zero mean and
normalized, yielding:

(3) RX =
sources
Σ XiXi

T

For simplicity we assume in the following that there are
exactly N sources so that RX is full rank (since in the general
case, signatures are linearily independent). This is not an
actual restriction: we could introduce simple modifications
(consisting in working in the "signal subspace") which would
leave essentially unchanged the method to be exposed but this
is postponed to a following section in order to keep notations
as simple as possible.

Starting from an estimate of the covariance it is impossible
to solve equation 3 for unique Xi ′s without incorporating more
information. This degeneracy can be explicited as follows.
The covariance being symmetric, it can be factorized into:

(4) RX = CC T

where C is a (non necessarily symmetric) full rank matrix.
Many covariance factorizations exist but, to our our purpose,
we do not need to specify one. By direct substitution it is
easily checked that if (Xi)i =1,N is a set of vectors verifying
equation 3 then another solution is (CUC −TXi)i =1,N where U is
any unitary (UU T = I) matrix. Hence, second-order
information alone allows the problem to be solved only up to a

unitary transform. If a model is at hand for signatures Xi (for
instance angular parametrization of Xi as a directional vector
in a source bearing estimation problem) then this degeneracy
can be overcome and identification can be completed. If no
such model is available, we are facing a "blind" identification
problem and more information is to be extracted from the data
themselves: higher order moments are needed.

FOURTH-ORDER BLIND IDENTIFICATION

Our method for blind identification using fourth-order
moments operates in two steps: orthonormalization and
quadratic weighting. Orthonormalization is nothing new and,
in our case, may be seen as a preprocessing intended to extract
all second-order structure from the data. We use a covariance
factorization as in equation 4 to form a new set of data
according to:

(5) Y = C −1 X

We have

RY = E(YY T) = C −1RXC −T = I

where I denotes the identity matrix, so that second-order
information is no longer present in the new data set Y. The
linear model for X is turned into a linear model for Y:

(6) Y =
i =1
Σ
N

αiYi with Yi = C −1 Xi

From 3 and 5 it appears that:

(7)
i =1
Σ
N

YiYi
T = I

which means that the Yi ′s form an orthonormal set of vectors,
justifying the term "orthonormalization" for this first step.

The second step consists in forming a quadratically
weighted covariance defined by:

(8) R̃Y = E(
�
Y
� 2YY T)

which may also be seen as the usual covariance of the random
variable

�
Y
�
Y. The structure of this weighted covariance

matrix is easily derived. The Yi ′s forming an orthonormal

basis, we have
�
Y
� 2 =

k =1
Σ
N �

αk
� 2 so that:

�
Y
� 2YY T =

i =1
Σ
N

j =1
Σ
N

k =1
Σ
N �

αk
� 2αiαj

*YiY j
T

Let us consider the three cases:

• If i≠ j then, for any k, k differs from either i or j. If, for
instance, k≠i then E(αiαj

* � αk
� 2) = E (αi).E(αj

* � αk
� 2) = 0

• If i = j=k then E(αiαj
* � αk

� 2) = E(
�
αi

� 4)

• If i = j≠k then E(αiαj
* � αk

� 2) = E(
�
αi

� 2).E(
�
αk

� 2) = 1

Finally, we get for the weighted covariance the expression:

(9) R̃Y =
i =1
Σ
N

( µi + N − 1 ) YiYi
T

where we denote the fourth-order moment: µi = E(
�
αi

� 4).



This last equation gives a solution to our problem because the
Yi ′s, being orthonormal, appear as the eigenvectors of the
weighted covariance. Hence blind identification of
superimposed independent components is achieved through
the following fourth-order blind identification (FOBI)
algorithm:

doublebox,expand,tab (%),delim ; c s l|l. FOBI : FOURTH-
ORDER BLIND IDENTIFICATION = Form the data
covariance % RX = E(XX T) Factorize the covariance %
RX = CC T Orthonormalize the data % Y = C −1X Form the
weighted covariance % R̃Y = E( � Y � 2YY T) Extract eigenvectors

% R̃Y =
i =1
Σ
N

(µi+N−1) YiYi
T Extract the messages %

αi = Yi
TY Or identify the signatures % Xi = CYi

RESTRICTIONS, EXTENSIONS AND OTHER COMMENTS

Singular Covariance

If there are less sources than sensors, slight modifications are
to be introduced as the RX covariance is no longer full rank
and its square root C is no longer invertible. If there are M <
N sources, then the null subspace of RX has dimensionality
M-N. Its orthogonal subspace, called the "signal subspace" is
of dimension M and is generated by the signatures Xi i =1,M.
This subspace can be determined from the knowledge of the
covariance. Since it contains all the signatures, projecting the
observed data on it preserves the information but changes the
apparent dimensionality of the observations to value M. In this
subspace the covariance is not singular and the FOBI
algorithm can operate exactly as previously described. The
only change is that the total amount of computation is
decreased by dimensionality reduction.

Degeneracy

There is an obvious restriction to the previous method. A
difficulty arises if some eigenvalues of the weighted
covariance are equal, so that equation 9 does not uniquely
determine the Yi . In our case, this condition is equivalent to
two sources having identical (or close enough) normalized
fourth-order moments. However, under accidental
degeneracy, FOBI fails only partially: only those sources
having identical fourth-order normalized moments remain
unseparable while the others signatures can be identified, and
corresponding messages separated. In addition, there is a
"built-in" warning in the method: eigenvalues are extracted
together with eigenvectors so that the detection of two close
eigenvalues is an indication that corresponding signatures (and
only them) cannot be reliably identified. Incidentally, this
shows that we can afford the presence of one Gaussian source,
but no more than one, if we aim at complete separation, as all
normalized complex Gaussian variable are such that µi = 2.

Extension to Higher Order Moments.

Degeneracy due to identical kurtosis can be overcome by
extending our scheme to higher moments. Introduction of a
quadratically weighted covariance as in definition 8 may be
seen as a "trick" to make fourth-order moments appear within
the covariance structure. If a different weighting is applied,
moments of order higher than 4 affect the eigenvalues of the
weighted covariance. As an example, if we consider:

(10) R̃̃Y = E 
 � Y � 4YY T


it comes easily, by reasoning as in the preceeding section, that:

(11) R̃̃Y =
i =1
Σ
N

( λi + (2N −3) µi + c ) YiYi
T

where we have set λi = E ( � αi � 6) and c = (N −1)(N −2) +
i
Σµi

and where it is also assumed that third-order moments of all
the distributions are null. Hence moments of order 6 appear in
the eigenvalues of the new weighted covariance and, if
different from one source to another, allow discrimination
between sources with (possibly) equal fourth-order moments.
More generally, let us consider an arbitrary weighting
function g and define:

(12) R Y
g = E 

g( � Y � 2) YY T


In addition let us assume that the source distributions are
symmetric, so that odd-order moments are null. By expanding
the g function in Taylor series, it comes, following the usual
line:

(13) R Y
g =

i =1
Σ
N

gi YiYi
T

where gi is some combination of even-order moments of the
sources according to:

(14) gi = E



� αi � 2 g



 j
Σ � αj � 2









Hence, for symmetric sources distribution, the Yi ′s remain
eigenvectors of any weighted covariance, and we can expect
that, if source probability distributions are all different, there
exist weighting functions g such that the weighted covariance
R Y

g eigenvalues are not degenerate. Again, should this
degeneracy appear while running the method, it would be
readily detectable by eigenvalues inspection.

PRELIMINARY EXPERIMENTS

It is quite uneasy to compare FOBI with others methods
since basic assumptions and evaluation criteria are necessarily
different. Nonetheless we show here simulations intended to
demonstrate its ability to deal with source location problems.
We run, on the same set set of data, FOBI and the MUSIC
algorithm [12]. We consider a passive listening linear array of
8 identical sensors. Distance between sensors is 1 m and
wavelength is 2 m. Two sources are present: the first one is
Gaussian, located 100 m away from the array at a 5 degrees
bearing, the second one is a binary source located 200 m away
at 10 degrees. Due to finite distance, phase of directional
vectors are not purely linear but contains a small quadratic



term (in Fresnel approximation) whose amplitude is directly
related to source range. As a consequence, the MUSIC
algorithm is unadjusted because its localisation function is
computed assuming a linear phase directional vector. If
sources were located at infinite distance, this noise-free
MUSIC simulation would easily success in resolving the two
peaks Due to near-field phase distortion, the sources are hardly
resolved, as shown in figure a.
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figure a : MUSIC localisation function
in a near-field situation

Note that we did not introduce any noise so that this poor
performance is only due to MUSIC ignoring source ranges.

In contrast, the blind algorithm yields estimates of the
actual directional vector. From this FOBI estimates, bearing
and range can then be extracted. We used a simple
unoptimized range-bearing extraction procedure: for each
estimated signature, we performed a linear regression on the
phase derivative and determined the bearing from the origin of
the regression line while range was determined from the
regression slope. In figure b, each point is a bearing-range
estimate for statistics accumulated on 400 samples. The figure
shows 16 estimates to give an idea of the estimation variance,
(not very realistic, though, as no noise is present in this simple
simulation).
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figure b : bearing-range estimates from FOBI signatures
16 experiments with 400 accumulated samples
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CONCLUSION

When a multidimensional signal consists in a linear
superimposition of independent components, blind (model-
free) identification of these components is possible. To this
purpose, we have proposed a straightforward method
operating in two steps: orthonormalization and distortion
(weighting). This is not an iterative algorithm: independent
components are readily identified as eigenvectors of a
modified covariance so that only standard numerical
procedures are to be used. The basic FOBI algorithm relies on
fourth-order moments, but may as well be tuned for
exploitation of moments of higher order. As its main
limitation, our algorithm is not able to discriminate
components with identical probability distribution. A simple
but original application to array processing was also given: a
simultaneous range-bearing estimation in passive listening.
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