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Abstract—Separation of sources consists of recovering a set ofinformation about mixing matrixA; it exploits only the
signals of which only instantaneous linear mixtures are observed. information carried by the received signals themselves, hence,
In many situations, noa priori information on the mixing matrix the term blind. Performance of such blind techniques is

is available: The linear mixture should be “blindly” processed. b iall ff d b ial in th
This typically occurs in narrowband array processing applica- y nature, essentially unaffected by potential errors in the

tions when the array manifold is unknown or distorted. propagation model or in array calibration (this is obviously
This paper introduces a new source separation technique ex- not the case of parametric array processing technique; see, for

ploiting the time coherence of the source signals. In contrast example, [1] and [2]). Of course, the lack of information on

with other previously reported techniques, the proposed approach e giricture ofA must be compensated by some additional
relies only on stationary second-order statistics that are based on . -
assumptions on source signals.

a joint diagonalization of a set of covariance matrices. Asymp- > - )
totic performance analysis of this method is carried out; some  For non-Gaussian independent sources, the first approach

numerical simulations are provided to illustrate the effectiveness traces back to the pioneering adaptive algorithm of Jut-

of the proposed method. ten—Hrault [3] (see also [4]-[7]). Batch algorithms, which
are based mainly on higher order cumulants, were developed

I. INTRODUCTION later; see, for instance, [8]-[11]. These algorithms exploit

only the marginal distribution of the observations. Thus,

N MANY situations of practical interest, one has to procedgey are suitable even when source signals are temporally

multidimensional observations of the form independent. Otherwise, other approaches can be developed
based on temporal correlations. Since these are second-order
x(t) = y(t) + n(t) = As(t) + n(t) (1) statistics, they are expected to be more robust in adverse

signal to noise ratios.
For cyclostationary emitters, like those encountered in dig-

i.e., x(t) is a noisy instantaneous linear mixture of source o
. . ; . . Ital or analog communication systems, a sound approach con-
signals. This model is commonplace in the field of nar-

. . sists of exploiting spectral redundancy at the cyclic frequency
rowband array processing. In this context, vec#ft) = . .
™ , ) : of the sources of interest, as proposed in [12]. However, these
[s1(£), - -, sp(t)]* contains the signals emitted lynarrow- . : :
T . methods crucially rely on the assumption that the different
band sources, vectr(t) = [y (t), -+, un(t)] contains the 0 o different cyclostationary features [13]. In addi
array output sampled at timg and matrixA is the transfer Y Y '

. . . tion, when th lic fr nci re not known in advan
function between sources and sensors. In the following, |tt§J » when the cyclic frequencies are not kno advance,

referred to as the “array matrix” or the “mixing matrix.” t'hey r_nust be estlmat_ed. . . .

Most array processing techniques rely on the modeling of A different context is considered herein: stationary sources
Each column ofA is assumed to depend on a small nur.nb ith different spectral contents. It has already been shown
of parameters. This information may be provided either at blind identification is feasible based on spatial covariance

physical modeling (for example, when the array geometry | atrices [14]-[17]. These matrices (see below) show a sim-

known and when the sources are in the far field of the array)%P structure that allows straightforward blind identification

by direct array calibration. In many circumstances, howevé)rfocedures ba_sed_on e_|_gen_decompo_5|t|on. In this paper, we
this information is not available or not reliable. introduce a blind identification technique based on a joint

Blind source separation consists in identifyirg and/or diagonalization ofseveral covariance matrices. Robustness

retrieving the source signals without resorting to anpriori is significantly increased at low additional cost by process-
ing such a matrix set rather than a unique matrix as in
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performance of the proposed method is derived. Numeridal Blind Identifiability
simulation illustrating the validity of this method are presented gafore proceeding, it is important to specify the notion of

in Section V. blind identification. In the blind context, a full identification
of the mixture matrixA is impossible because the exchange
of a fixed scalar factor between a given source signal and the
A. Assumptions corresponding column oA does not affect the observations,

We start by specifying the signal. It is assumed that e 'S shown by the following relation:

Il. PROBLEM FORMULATION

source signal vectas(t) is either H1) a deterministic ergodic " a
sequence or H2) a stationary multivariate process with x(t) = As(t) +n(t) = Z a—p%sp(t) +n(t)  (8)
H1) p=t Y
lim 7! Z s(t +7)s(t)* where oy, is an arbitrary complex factor, ara], denotes the
T—o0 N pth column of A.
def ’ Advantage can be taken of this indeterminacy by assuming,
=E[s(t +7)s(t)"] (2)  without any loss of generalityhat the source signals have unit
=diag[pi(7), -, pu(T)] (3) variance so that the dynamic range of the sources is accounted
H2) for by the magnitude of the corresponding columng\ofThis
. . normalizationconventionturns out to be convenient in the
Els(t+7)s(t)"] = diaglp1(7), -+, pa(7)] (4) sequel: it does not affect the performance results presented

where superscript * denotes the conjugate transpose obelow. Since the sources are assumed to be uncorrelated, we
vector, and diag] is the diagonal matrix formed with the have

elements of its vector valued argument. For convenience, dof . H

the same notatiorE is used for the deterministic averaging Rs(0) =1  so thatR,(0)= E[y(t)y*(t)] = AA™. (9)
operation under hypothesis H1) and for ensemble averag
under H2). This convention holds throughout. Assumptio
H1) or H2) mean that the component processés), 1 < i <

n are mutually uncorrelated, anel(r) = Efsi(* + 7)s;{(1)] " pefinition 1: Two matricesM andN are said to bessen-
denotes the autocovariance ft). tially equal if there exists a matrid® such thatM = NP,

The additive noisen(t) is modeled as a stationary, tempowqere P has exactly one nonzero entry in each row and

rally white, Zero-mean complex _ra_mdom process 'r_‘depe”d%% umn, where these entries have unit modulus. This is denoted
of the source signals. For simplicity, we also requirg) to

be spatially white, i.e M = N.
patially white, 1.€., In this paper, blind identification QA is understood as the

determination of a matrix essentially equal Ao Of course,
En(t +7)n*(t)] = 02§(1)I (5)  these indeterminacies do not impede source separation: If the
mixture matrix A is estimated up to permutation and phase
whereé(7) is the Kronecker delta, anfldenotes the identity shifts, it is still possible to determine the source signals up
matrix. The assumption of spatially white noise is not cruciato the corresponding fixed permutation and phase shifts (blind
The method presented below may be extended to the casedehtifiability is discussed at length in [18]).
an unknown noise covariance matrix (see Section IlI-A).
The m x n complex matrix A is assumed to have full ll. A SECOND-ORDER IDENTIFICATION APPROACH
column rank but is otherwise unknown. In contrast with
traditional parametric methods, no specific array geometry gr Whitening
sensor characteristics are assumed, i.e., the array manifold is

'fifis normalization still leaves undetermined the ordering and
Re phases of the columns &. The following definition is
then in order:

unknown. The first step of our procedure consists of whitening the
Under the above assumptions, the covariance matricesS§inal party(#) of the observation. This is achieved by
the array output take the following structure: applying toy(t) a whitening matrixW, i.e., an x m matrix
verifying:
R(0) = E[x(t)x*(1)] = AR (0)A" + 5’1 6)  E[Wy(ty(t)* W] = WR,(O)WH? = WAAYWH =1.
R(7) =E[x(t + 7)x*(t)] = AR (1)AY 1740 (7) (10)

Equation (10) shows that ¥V is a whitening matrix, theWA

where superscriptf denotes the complex conjugate transpodg @ 7 X 7 unitary matrix. [t follows that for any whitening

of a matrix. The aim of blind source separation is to identif%?mx W, there exists a x n unlta_lry matrix U such that

the mixture matrix and/or to recover the source signals fro = U. As a consequence, matrX can be factored as

the array _outpuix(t) witho_ut any a priori kno_vvledge of the A = W#U (11)
array manifold The potential benefit of suchkdind approach

is that source separation is essentially unaffected by errorswihere superscript# denotes the Moore—Penrose pseudoin-
the propagation model or in array calibration. verse. We note that this whitening procedure reduces the
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determination of then x n mixture matrix A to that of a This property is a direct consequence of the spectral theorem
unitary » x n matrix U. The whitened procesgt) = Wx(t) for normal matrices (see for example [19, Theorem 2.5.4]).
still obeys a linear model: We rgcall that amm x n matrix M is said to benormal if
def MM*" = MYM. The spectral theorem states that a normal

2(t) =Wx(t) = W[As(?) + n(t)] = Us(t) + Wn(t) (12) matrix M is unitarily diaggnalizablei.e., there exists a unitary
where the signal part of the whitened process now is a “unitagyatrix U and a diagonal matri® such thatMl = UDU¥. In
mixture” of the source signals. Note that all informatior@)ur Setting' the existence of the unitary maWX(j_S) for any
contained in the covariance is “exhausted” after the whiteniighe lag r is guaranteed by (14). In contrast, the existence
procedure in the sense that changldgin (12) to any other of a time lagr # 0 such that (16) holds is not trivial and
unitary matrix leaves the covariance zift) unchanged. Note cannot be checkea priori. Note that the indeterminacies
also that besides whitening, the signal part of the observatiqphase shifts and permutations) in the diagonalization of a
(multiplication by a whitening matriXxW) reduces the array normal matrix correspond precisely to those encountered in
output to an-dimensional vector. the blind source separation problem. Thus, the diagonalization

Since we have, from (6) and (A" = R(0) - 0L, (10) of R(r) for a delayr yields the relevant parametersB(r)
shows that a whitening matri¥v can be determined from thehas distinct eigenvaluesThis identification scheme may be
array output covarianc®(0), provided the noise covariancefound in slightly different forms in [14] and in [15].
matrix is known or can be estimated. A whitening matrix True indeterminacy arises in the case of degenerate eigen-
may also be determined from a linear combination of a set @dlues. It does not seem possible to deterngineiori a time
covariance matrices taken at nonzero time lags, as suggestegdn- such that the eigenvalues Bf(+) are distinct. Of course,
[14]. In any case, as shown by (11), finding a whitening matrixthe source signals have different spectral shapes, eigenvalue
still leaves undetermined a unitary factorAn This “missing degeneracy is unlikely, but the problem is not purely academic
factor” U can be determined from higher order statisticBecause it is to be expected that when an eigenval®(of
as investigated in [8]-{10]. Exploiting the time dependencgomes close to degeneracy, the robustness of determiliiing
structure (hypothesis H1 or H2), it may be also retrieved froffom an eigendecomposition is seriously affected.
covariance matrices at non zero lags, as explained below.  The sjtuation is more favorable if we consider simultaneous
diagonalization of a sgR(;)|4 =1, ---, K} of K whitened
covariance matrices.

Consider the spatially whitened covariance matriRs-) Theorem 2—Second Uniqueness Conditibet 71, 72, - -,
defined as j7i be K nonzero time lags, and I1& be a unitary matrix

such that

B. Determining the Unitary Factor

V7 #0 R(r)=WR(1)W¥H. (13) = .
V1<k<K V"R(n)V =diagldi(k), ---, d.(k)] (17)
Thesen x n complex matrices are nothing but the covariancd 1 St #J <n 3k 1 <E<S K di(k) # dj(k).  (18)

tri f th t). By (7 d (12), btain th .
matrices of the process(t). By (7) and (11), we obtain eThen, we have the following:

key relation
* V is essentially equal t&J: V = U.
Vr#0 R(r)=UR,(r)UY, (14) * A permutations on {1, ---, n} exists such that
[pl('rk)v T pn(Tk)] = [dcr(l)(k)v ) do’(n)(k)]

Since U is unitary andR,(r) is diagonal, the latter means
that we have the following property.

Property: Any whitened covariance matrix is diagonalized This is a consequence of the essential uniqueness of joint

by the unitary transformlJ. . diagonalization: see Theorem 3 below. Again, the existence

As a consequence, the unitary facldrmay be obtained as 4 5 \nitary matrixV that simultaneously diagonalizes the set
a unitary diagonalizing matrix of a whitened covariance matri covariance matriceR(r,), -+ -, R(7x)] is guaranteed for
R(r) for some lagr. More formally, we have the following 5y choice of time lags thanks to (14). Even though (18) is
theorem. , _ N much weaker than (16), it is not necessarily true; in particular,

Theorem 1—First Uniqueness Conditiohet 7 be & j, the trivial case where the sources show identical normalized
nonzero time lag and’ be a unitary matrix such that spectra, the mixing matriA cannot be identified by resorting

to Theorem 2. Conversely, when the source signals have

VAR(r)V =diag[dy, - -+, dy] (15) different normalized spectra, it is always possible to find a set

Vi<i#j<n pi(r)#pj(r). (16) oftimelagsr, -, 7x suchthat(18)is met. This corresponds
to the second-order identifiability condition found in [18].

The main point of our contribution is to consider tjoént
diagonalizationof several covariance matrices. This approach
is intended to reduce the probability that an unfortunate choice
of time lagr results in unidentifiability olU from R(7); more
[o1(7), -+, pu(T)] = [doqr)s -5 do)]- importantly, this approach generally increases the statistical

1<k<K.

Then, we have the following:

e V is essentially equal t&J: V = U.
* A permutation & on {1,---,n} exists such that
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efficiency of the procedure by inferring the value @ffrom criterion. If the matrices inM are not in the form consid-
a larger set of statistics. ered in Theorem 3, the JD criterion cannot be zeroed, and
) ) o the matrices can only be approximately jointly diagonalized.
C. Joint Diagonalization Hence, an (approximate) joint diagonalizer defines a kind
In numerical analysis, the “off” of an x n matrix M with of an “average eigen-structure.” This is particularly conve-
entries M;; is defined as nient for statistical inference where the structural information
def 5 is to be extracted from sample statistics: Even though the
off (M) = Z | M| (19) true covariance matrices considered above can be exactly
lsizjsn simultaneously diagonalized, their sample counterparts cannot
and the unitary diagonalization of a matd is equivalent pecause of the estimation errors. Hence, rather than exactly
to zeroing off (VMV) by some unitary matrixV. As diagonalizing a single covariance matrix, the approximate joint
recalled above, the spectral theorem states that only norgg{gonalization allows the information contained in a set of
matrices can be unitarily diagonalized. In addition, if a matrigoyariance matrices to be integrated in a single unitary matrix.
M is in the formM = UDU", where U is unitary and  aAnother important feature of the (possibly approximate)
D is diagonal with distinct diagonal elements, then it mayint diagonalization is the existence of a numerically efficient
be unitarily diagonalized only by unitary matrices that arggorithm for its computation. This algorithm is a general-
essentially equal tdJ, that is, if off (V/MV) = 0, then jzation of the Jacobi technique for the exact diagonalization
v ="TU. of a single Hermitian matrix [20]. This technique consists of
Consider a set = {My, ---, Mg} of K matrices of size computing the unitary diagonalizer as a product of Givens
n x n. The “joint diagonality” (JD) criterion is defined, for anygtations. It turns out that the Givens rotation parameters can
n X n matrix V, as the following nonnegative function &: pe simply computed even when the matrices to be jointly
C(M, V) def Z off (VIM,V). (20) ?iagonalized dq not show any ;ymmetry propert'y. This is par-
e icularly convenient for processing sample covariance matrlces
’ that have no reason to be exactly normal. The extension of
A unitary matrix is said to be gint diagonalizerof the set the Jacobi technique to approximate joint diagonalization is
M if it minimizes the JD criterion (20) over the set of alldescribed in Section VII-A.
unitary matrices.
Let us first consider the case where each matrix in the get

M is in the formM; = UD,U¥, whereD, is a diagonal ) . .
matrix. Then clearlyC(M, U) = 0, and this is the global Based on the previous sections, we can introduce a second-

minimum of the JD criterion (20) sind&.M, V) > 0 for any order blind identification (SOBI) algorithm. SOBI is defined
matrix V. Thus, if each matrix in the set! can be unitarily PY the fqllowmg implementation: L
diagonalized byU, then according to our definition, matrbt 1) Estimate the sample covariand&(0) from 7' data

Implementation of the SOBI Algorithm

is a joint diagonalizer ofM. This is of little interest; we are samples. Denote by, ---, A, then largest eigenval-
more interested in the uniqueness of a joint diagonalizer. We  ues andhy, ---, h, the corresponding eigenvectors of
have the following R(0).

Theorem 3—Essential Uniqueness of Joint Diagonalization:2) Under the white noise assumption, an estiméteof

Let M ={M;, ---, My} be a set of’ matrices where, for
1 < k < K, matrix My, is in the formM;, = UD; U# with
U a unitary matrix, andD;, = diag[di(k), - - -, dn(k)]. Any
joint diagonalizer ofM is essentially equal t&J if and only if

VI<iZj<n 3k 1<k<SK dik)#di(k). (21)

The essential uniqueness condition (21) is of course much W=

weaker than the requirement that each matrix4nis uniquely

the noise variance is the average of the- n smallest
eigenvalues ofR(0). The whitened signals are(t) =
[21(), -, zo(1)]¥, which are computed by;(¢t) =
(A =62~ W/ Dnrx(t) for 1 < i < n. This is equivalent
to forming a whitening matrix by

(A =63~ 2hy, o, (A, = 65~ 2 ],

unitarily diagonalizable. In particular, it is easy to construct 3) Form sample estimatds(r) by computing the sample
examples where each matrix i has a degenerate eigen- ~ covariance matrices cf(¢) for a fixed set of time lags
value spectrum but such that the joint diagonalizetAdfis T ednli=1, AR K}
nonetheless essentially unique. The proof of Theorem 3 is#4) A unitary matrixU is then obtained as joint diagonalizer
given in Section VII-B. of the set{R(7;)|j = 1, ---, K}. o

An important feature of our definition of joint diagonal- 5) The source signals are estimateds@y = U Wx(2),
ization is that it isnot required that the matrix set under and/or the mixing matriA is estimated ad = W#U.
consideration can be exactly simultaneously diagonalized by
a single unitary matrix. As a matter of fact, it is not even
required that the matrices in the set andividually unitarily
diagonalizable. This is because we do not require that theln this section, an asymptotic performance analysis of the
“off” of all the matrices are cancelled by a unitary transproposed method is carried out. To ease the derivations, we
form; a joint diagonalizer is just a minimizer of the JDmake the following additional assumptions.

IV. ASYMPTOTIC PERFORMANCE ANALYSIS



438 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 2, FEBRUARY 1997

H1’) Each source signal(t) is a circular stationary Gauss-expansion of (A#A),,|? (see Lemma 2). The final result is
ian processE|[s;(t + 7)s;(t)] =0 for 1 <7 <n and obtained by combining these two expressions.
for any time lagr. Lemma 1: Under conditions H1', H2', and H3 and for any
H2") The source signals;(t) are mutually independent andmatricesM and N in C™*™

are independent of the noisg(). lim TETr{sR(m M SR(7N
H3) The source signals are short range dependent, in the Pme r{OR() (r)N}

sense thab ., |7pi(7)| < oo. =" Tr{R(7 + )N} Tr{R(r — )M}
Hypothesis H3) is an extremely mild condition that is Tl
verified, for example, by all AR or ARMA processes. To get lim TETr{6R(m)M} Tr {§R(7;)N}
rid of phase and permutation indeterminacies, we shall assume Lo
that they are fixed in such a way that the matrix estimator =" Tr{MR(7 + 7)NR(r — 1)}
A is close to the true mixture matriA rather than to some TEL
other matrix essentially equal t. In addition, the covariance Jim TE [6R(m)I]> = 0
matrices are computed at time lags - - -, 7 such that the R
uniqueness condition of Theorem 2 is verified. where éR(7,) = R(7) — R(m), and T{M} denotes the
trace of matrixIM.
A. Performance Index Proof: See [21].

Rather than estimating the variance of the coefficients ofLemma 2: The Taylor expansion of(A#A),,|? is given
the mixing matrix, it is more relevant to source separatidior p 75 q by
to compute an index that quantifies the performance in term C 2 0 k
of interference rejection, as follows. Assume that at each tlmﬁ A)pal* =1apg (0)Cpa (O)F + Z g (0)tpq (F)

instantt an estimate of the vector of source signals is computed Llk<K
by applying to the received signal(t) the pseudoinverse of [Cap(0)Cpy (k) + Cpg (0)Cgp(F)]
the estimated mixture matrix, ie., + D apg(R)apg(DChy (k) Cop(D)
8(t) = A¥x(t) = As(t) + A¥n(t) (22) L<IR] U <K
whereA# is given byA# = U# W. We stress that in general, Lo X 5R ()|
this procedure is not optimal for recovering the source signals Z Tk
based on an estimatA. For large enough sample sizg, ith k=0
matrix A should be close to the true mixing matwx so that wi
A#A is close to the identity matrix. The performance index pr = lpr(11), vy pr(Ti)]E
used in the sequel is the interference to signal ratio (ISR), lop|? = |pqg|?
which is defined as apg(0) =1+ 05— P42
Ipg = E|(A#A)pq|2 (23) ( Pp(’fk) PZ(Tk) for k # 0
This actually defines an ISR because, by our normalization?? |0y — pqgl?
convention (9), we havé,, ~ 1 for large enoughl’. Thus, 1 x  TriISR(0
1,, measures the ratio of the power of the interference of the C(0) =—3 A#SR(0)A* + H (AfA)™
qth source to the power of theth source signal estimated as .
in (22). As a measure of the overall quality of the separation, C(k) = 1A#§R(r;)A# for k#0
we also define a global rejection level: whereIl denotes the orthogonal projector on the noise sub-
Lpers def Z (24) space (i.e., the subspace orthogonal to the range of njrix
v and C,,(.) are thepgth element of the matrixC(.).

Proof: See Section VII-C.

According to Lemma 2, the expectation (fA#A),,|?
The asymptotic variance of the estimatesfofis expected can be computed from the expectations @i,,(0)?,
to decrease a$/1" thanks to the short range dependence @f,(0)C,,(k), and Cgy,(1)Cpe(k). Lemma 1 reduces this

the observed process (assumption H3). Thus, the leading texomputation to simple algebra, yielding

of Z,, is of order 7. The purpose of this section is to 1

give its closed-form expression. Detailed computations are not  E[|Cpq(0)[°] = T {qu(o) + 0% (Jpp + Jgq)
reported herein due to lack of space. We rather outline the

B. Outline of Performance Analysis

computation below and give further details in the Appendix. + o < [ Jpal” + Jpquqﬂ
Asymptotic performance is obtgined along the following m-=

lines. We note that matrix estimate is a “function” of the E[Cyp(0)Cpq (k)] = _ L {D,, (k)

sample covariance matricR(0), R(r.), - - -, R(r)] of the 4T2

observed signat(t). The computation can then proceed in two + 07 [Jpppg (k) + Jaapp(R)]}

steps; first, we express the asymptotic moments of the sampl

_ 1 2
covariance matrices (see Lemma 1); second, we compute thE;[Cm(k)qu(l)] 4T {Dpq(l 4 k) F 0 pppg (k4 1)

leading term (in the sample covariance matrices) in the Taylor + Jygpp(k + D]+ 8(k + D)o* J gy Jpp}
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where we have set . T y ; : T .

172
Dpy(k) = / p Tp(N) fg(A) exp (2im A7y,) dA -16F |

Jpg = (AHA);ql 1
and wheref,, denotes the spectral density of thth source  _,
signal. Using the above, the ISR is asymptotically given by _

Tpg =10, + 0?1}, + 0*12, (25)
where the coefficients of the expansion are

1
Iz?q —ur aP(I(O)QDP(I(O) — 2apq(0)

Mean rejection level (B

Z 0tpq (k) Dgp (k)

1<k <K

+ Z atpq(K)epq (1) Dpg (K + 1)

1<|kl, 1<K -2 1
7 = g0 = 200(0) 3 () py () T S B !
pe 4T 1< IRI<K Number of Jointly Diagonalized Covariance Matrices
Fig. 1. Performance versus number of joint diagonalized covariance matri-
ces.
+ Z pq(k)apg(Dpg(k + 1) | Jpp
1<k UK
Note that the JD criterion could be generalized by weighting
+ | pg(0)? = 2014 (0) Z tpq (k) pp (k) each “off” term by an appropriate factor. Optimal weighting
I<|RI<K could, at least theoretically, be obtained by extending the
previous derivations. This point is left to further study.
+ Z Wpg (k) tpg(Dpp(k + 1) | Jyq
V<R <K V. PERFORMANCE EVALUATION
2 _ 1 [apg(0)?[Jpel? This section investigates the performance of the SOBI algo-
P 4T { m—n rithm by computer simulations. The validity of the asymptotic
9 performance analysis is also assessed.
2
[0+ 7=}

A. Numerical Simulations

In the simulated environment, a five-element uniform linear

. . . . . . array with half wavelength sensor spacing receives two signals
For high signal-to-noise ratio, (25) of the ISR is dominategl yhe presence of stationary complex white noise. The two

by the first termZ;,,. This term shows two important featuresg, rces are unit variance, complex circular Gaussian with
* I, is proportional to the spectral overlap of sourpesd different but overlapping spectra. The sources arrive from
g. If the sourceg and ¢ have no spectral overlap (i.e. different directions$, = 12° and ¢, = 13° (the particular
their frequency supports are disjoinfi;(A) f(A) = 0 for  structure of the array manifold is, of course, not exploited by
all A), the corresponding ISR given ki, vanishes at the SOBI algorithm). The snapshot sizefis= 1000 samples;
first order. More generally, the ISR in the high SNRhe mean overall rejection level is estimated by averaging 300
limit is proportional to the spectral overlap (this effecindependent trials.
is illustrated in the next section). Example 1: The source signals are generated by filter-
* I, is independent of the mixing matrix. In the arraying a complex circular white Gaussian processes by an AR
processing context, it means that performance in terms@bdel of order 1 with coefficient; = p; exp (46;) and
interference rejection is unaffected (surprisingly enough), = o, exp (j62). The time lags implicitly involved are
by the array geometry and, in particular, by the number QL -+, T, Wherer; is i times the time unit.
sensors. The performance depends solely on the spectrah Fig. 1, the rejection leve,.,; is plotted in decibels as a
overlap of the source signals. This (maybe surprisinginction of the number of the jointly diagonalized covariance
phenomenon has been investigated in a more genef@trices for SNR= 10 dB. The modulus of the AR coefficients
context in [22]. of the two sources is; = p» = 0.85; the angles are,
In the above algorithm, the covariance matrices involved nespectively, equal t6; = 0.5 andf, = 0.55; we are dealing
the joint diagonalization criterion (20) are uniformly weightedhere with sources presenting a large spectral overlap.

C. Discussion
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Fig. 2. Performance versus the “spectral shift’. Fig. 3. Performance versus “spectral shift”. SNR 10 dB. Dashed line:

SOBI method; solid line: the SCORE method.

Fig. 1 shows a performance gain reaching 9 dB by diag-
onalizing six matrices rather than only one. We have found It is seen in Fig. 3 that the SCORE method is less sensitive
experimentally that the most significant gain in performandgan SOBI to small values dk. In contrast, for large spectral
are obtained in difficult environments: poor SNR, small speéhift éc, the SOBI algorithm allows a performance gain
tral difference, ill-conditioned mixture matrix, etc. reaching 10 dB.

61 = 0.5. We let 6, vary asf, = 6, + &0. On the plot, Power is varied betweer25 and 0 dB. The plot shows the

the curves are labeled with the number of covariance matrid@§an rejection level in decibels as a function of the noise
used in the identification. The plot shows the rejection levBPWero=. This figure demonstrates that in the case of large
Z,ery in decibels plotted as against the “spectral shift” The spectral shift, the SOBI method shows a performance gain of

plot evidences a significant increase in rejection performant@ dB compared with the SCORE algorithm.
by including two or eight covariance matrices in the joint Of course, it would be wrong to claim that the SOBI method

diagonalization criterion. yields consistently better results than the SCORE method. We
Example 2: In this example, we compare the performanc@nly want to claim that in the situations where the sources are

of the SOBI algorithm with the self-coherence restorapufficiently” separated in the stationary frequency domain,

(SCORE) algorithm presented in the paper by Ageeal. the SOBI algorithm yields acceptable results.

[12]. In contrast with SOBI, the SCORE method assumes thatAS a final note, we want to stress that the spectral separation

the source signals are cyclostationary with different cyclf the sources is essential for the SOBI method; it is not

frequencies. required by the SCORE algorithm (or the further refinements
In this experiment, the first source is a first-order autor®f it [13], [23]), which is able to separate signals with

gressive Gaussian process & 0.85, 6 = 0) modulated @ compl_ete spectral overlap, provided they show different

by a complex exponential with normalized frequeney = Cyclostationary features.

0.3 (the signal is thus cyclostationary with cyclic frequency

2a4). The second source is also a first-order autoregressive ) S )

Gaussian procesg = 0.85, § = 0) modulated by a complex B- Experimental Validation of the Asymptotic

exponential with normalized frequeney = «; +é«. Herein, Performance Analysis

the SOBI algorithm is used by jointly diagonalizing four In this section, a series of experiments to assess the domain

covariance matrices. of validity of the first-order performance approximation (25).
The performance measure used to judge the quality of thke same settings than in Example 1 are used with the

processor output signal is the mean rejection level as defiredteption of the directions of arrivals, which are ngw= 10°

in Section IV-A. In Fig. 3, the noise level is kept constant &nd ¢, = 30°.

—10 dB, and the mean rejection level is plotted in decibels The identification is performed using three covariance ma-

as a function of the spectral shiftx, which is also half the trices, i.e.,R(1), R(2), and R(3), and the overall rejection

difference between the two cyclic frequencizs, and 2. level is evaluated over 500 independent runs.



BELOUCHRANI et al: BLIND SOURCE SEPARATION TECHNIQUE USING SECOND-ORDER STATISTICS 441

Mcun rejection level in dB
Mean rejection level in dB

gpl=—— T 1 1 L L _45

|
(98}
wn

T

1
£
=)

7

T T T T T
Sample size: 1000

-—: Experimental performance -

- Theoretic performance

1 1 L ] 1 ! L

=25 -20 -15 -10 -5 0 -16
Noise level in dB

-14 -12 -10 -8 -6 -4 -2 0
Noise level in dB

Fig. 4. Performance versus®. Dashed line: the SOBI method; solid line: Fig. 5. Performance validation verseg. Vertical lines indicate the 90%

the SCORE method.

confidence intervals as obtained by bootstrapping the percentiles.

In Fig. 5, the rejection level,.,  is plotted in decibels as -
a function of the noise powes? (which is also expressed
in decibels). The sources are first-order autoregressive with
parametersp; = p2 = 0.85 and angled; = 0.5, and
6> = 61 + 66. On the plots, the curves are labeled with the ~
spectral shiftéd. We note that the approximation is better at
high SNR and for large spectral shift. This means that the
asymptotic conditions are reached more quickly in this range.
of parameters.

In Fig. 6, the rejection level,.,; is plotted in decibels £
against sample size. On the plots, the curves are labeled as 3he
function of the noise power? in decibels. This figure shows =_3|
that the asymptotic closed-form expressions of the rejecticgﬁ
levels are pertinent from a snapshot length of about 100
samples. This means that asymptotic conditions are reached
even for small data block size. -35r

201

251

on leve.

VI. CONCLUSION
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This paper presents a new blind source separation techniqué’;
for temporally correlated sources. It is based on the “joint
diagonalization” of an arbitrary set of covariance matrice
This method shows a number of attractive features:

i) It relies only on second-order statistics of the received

signals.

ii) It allows—in contrast to higher order cumulant tech-

nigues—the separation of Gaussian sources.
iiiy The use of several covariance matrices (in contrast with
the previous proposal by [14]) makes the algorithm

200 400 600 800 1000 1200
Samples

Eig. 6. Performance validation versus samples. Vertical lines indicate the
90% confidence intervals as obtained by bootstrapping the percentiles.

with little spectral difference). The main steps of the compu-
tation of the asymptotic performance analysis are also given.

APPENDIX A

more robust: For practica| purposes, it makes very A JOINT APPROXIMATE DIAGONALIZATION ALGORITHM

unlikely indeterminacies.

The Jacobi technique [20] for diagonalizing a unique Her-

Numerical experiments show the benefit of exploiting severnalitian matrix is extended for the joint approximate diago-
covariance matrices in difficult contexts (low SNR, sourcasalization of a set of normal matrices. The proposed method
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consists of minimizing the JD criterion (20) by successive APPENDIX B
Givens rotations, which leads to solving the same problem for PROOF OF THEOREM 3

K 2 x 2 matrices: - ) ) _
The sufficiency of (21) is established by proving that any

H, = {ak bk:| (26) linear combination (with at least two nonzero factors) of the
cr  dy vectorsu;, ¢ = 1, ---, n cannot be a common eigenvector of
] . . the matricedMy, £ =1, ---, K:
for k = I}, e, KA umtary matrix V' is sought such that | o v — S cicn G0l be a common eigenvector of the
! =N
H; = V'HV (k =1, - -, K) minimizes the criterion (20). matricesM,,, k = 1, ---, K, and assume, for example, that
The unitary transformaﬂoN is parameterized by a complexa £ 0. According to (21) for any index, 1 < i < n, there
Givens rotation: exists an index: such thatd; (k) # d;(k). For this indexk,
vV cos 0 eI gin 6 27) we have by hypotheses
T |—c¢7?sinf  cos b
Denoting by aj, b}, ¢}, and dj the coefficients ofHj, Mpv = 0v =3 My

optimization of (20) amounts to finding and ¢ such that =1

Z/k |a§€/|2;|—|d§€|/2 is rr)a;dmized. Noticing th?2(|a§7|2_+_|a§€|2)_ = . .
|az, — di |* + |aj, + 43| and that the trace;, + d;, is invariant M, v = Z a;Mju, :Z a;d; (k)u,
in a unitary transformation, optimization of criterion (20) is

equivalent at each Givens step to the maximizatiogQof

and

By identification, we havexj [d;(k)—A]=0forl1<j<n.

Q= > lak = dif*. (28) Sincea; # 0 anddy(k) # di(k), this leads tok, = dy(k)
k anda; = 0. Q.E.D.
It is easily checked that Next, we establish the necessity of (21). Assume that
there exists a pair:{j) such thatd;(k) = d;(k) for k =
aj, — dj, = (ag — dy.) cos 20 — (by, + cx) sin 26 cos ¢ 1,---, K. Then, any linear combination of the vectons
— j(ex — by,) sin 26 sin ¢ (29) and u; is a common eigenvector of the matrick$;, £ =
1, K. Q.E.D.

for k =1, ..., K. Then, by defining the vectors APPENDIX C

PROOF OF LEMMA 2

e A (30) o _
T def . . . In this section, a sketch of the proof for Lemma 2 is
v = [cos 26, —sin 26 cos ¢, —sin 26 sin ¢ (31) presented. Giving a full proof is a tedious and lengthy exercise,
P [an = d, by + e, jlc — b)) (32) which goes far beyond the scope of this paper (it can be

obtained by request to the author). A part of the proof is based
the K equations (29) may be written in the form = Gv, on the result on the perturbation of the joint diagonalization
whereGT ¥ [g, ..., gx], so thatQ also reads obtained in [24]. For brevity, this result is admitted.

The square moduluf,,|* is expressed as
Q=uu=vIGGv =vI'Re(G’G)v  (33) X o
[pgl? = (W A . (34)

where we have used the fact tHat? G- being Hermitian by
construction, its imaginary part is antisymmetric and hena&e decompose the matr® A under its polar form
contributes nothing to the above quadratic form. The last step o )
is to recognize that the particular parameterization (31) of VH =WA (35)
v is equivalent to the conditiov?’v = 1. Maximizing a
guadratic form under the unit norm constraint of its argumeWchere Vis a unitary matrix, andH is a nonnegative
is classically obtained by taking to be the eigenvector of semi-defined Hermitian matrix; matrifI verifies H?> =
Re(G!G) associated with the largest eigenvalue. Recall th&” WZ WA (see [19, Theorem 7.3.2, p. 412]). According to
this is a reab x 3 symmetric matrix: The analytic expressionghe convention outlined in Section I11-A, matrH is expected
of the parameters of the Givens rotation are simply derivé@ be close to the identity matrix; lefll = H — I denote
from the coordinates of the eigenvector. The reader m#l)e estimation error of the Hermitian part 8V A. Using
check that settingk = 1 and H; Hermitian, the above standard perturbation calculus (see, for example, [25]), it can
boils down to the standard Jacobi procedure. In addition, nd¥®@ shown that
that the main cost in this kind of technique is the update LA e
under Givens rotations of the various matrices involved in 4H ~—3 AT6R(0)A
the diagonalization. This makes it clear that the cost of the 1 HA\-1
proposed procedure is similar #§ times the diagonalization + 2(m —n) Tr[HER(0)J(ATA)™ + oPR(O)]
of a single matrix. (36)
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From the polar decomposition (35), the whitened covarianbecomes

matrices can be similarly approximated at the first order, for
all £ £ 0, as

R(m) = W[AR.(K)AT + R() — R(7,)][WH

=V[HR,(k)H+ VIWSR (1) WH VIV,

[q|? = (T = §Uo)(I+ 6H) Z

~|6H - 6Uol2,  forp#gq. (39)

Including (36) and (38) in (39) leads to the Taylor expansion
(37) of Lemma 2.
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which, here, is the whitened covariance matRxr). It is
not difficult to guess (though actually difficult to prove in
mathematical terms due to the indeterminacies inherent ﬁq
these kinds of problems; see a discussion in [22] and [24]) that
if the set of matrices entering in the JD are multiplied by
commorunitary matrix, then the result of the JD will simply be
multiplied by this common matrix. Formally, I8, ---, N,
be arbitrary matrices andJ an arbitrary unitary matrix;
then, JID{UN,;U¥, ... UN,U#} = UID{Ny, ---, N, }. ]
Applying this resultin our situation, it comes from (37) that the
unitary matrixU, resulting from the JD of the set of whitened [
covariance matriceR(1), -- -, R(K), can be decomposed as [6]

(3]

A

U - VI/:J—O [7]

where the matrixU, minimizes the JD criterion for the (8]

matrices:
[

M, € HR, (k)H + VI WSR (7 )WHV, (10l
1<k<K (1]
=R,(k) + R;(k)6H + §HR (k)
+ VEWSR (1 )WV + o[6R(73)] [12]
= R,(k) + R;(k)6H + §HR (k)
+ A#SR () A*" + o[SR(m)] (sl
=R, (k) + & + o[0R(7x)] [14]
def " [15]
whereé, = R, (k)6H+SHR, (k) + A# §R(m,)A# " . Hence,
(34) can be written as (16]
. o [17]
|Ipq|2 = |(U6{H)pq|2-
[18]
As shown in [24], the unitary matrikJ, is given at first order
by [19]
[20]
UO =I+ (5U0 [21]
§Uo=3% > Z s (B)IL&RIL, + o, (B)IL.&E11,], 22]
r#s k=1 [23]
(UL = —6Uy) (38)
[24]
wherell,. = e.e} is the orthogonal projector on th¢h vector (25]

columne, of the identity matrixL,. The performance index

of this paper.
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