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A Blind Source Separation Technique
Using Second-Order Statistics

Adel Belouchrani,Member, IEEE, Karim Abed-Meraim, Jean-Fran¸cois Cardoso,Member, IEEE,
and Eric Moulines,Member, IEEE

Abstract—Separation of sources consists of recovering a set of
signals of which only instantaneous linear mixtures are observed.
In many situations, no a priori information on the mixing matrix
is available: The linear mixture should be “blindly” processed.
This typically occurs in narrowband array processing applica-
tions when the array manifold is unknown or distorted.

This paper introduces a new source separation technique ex-
ploiting the time coherence of the source signals. In contrast
with other previously reported techniques, the proposed approach
relies only on stationary second-order statistics that are based on
a joint diagonalization of a set of covariance matrices. Asymp-
totic performance analysis of this method is carried out; some
numerical simulations are provided to illustrate the effectiveness
of the proposed method.

I. INTRODUCTION

I N MANY situations of practical interest, one has to process
multidimensional observations of the form

(1)

i.e., is a noisy instantaneous linear mixture of source
signals. This model is commonplace in the field of nar-
rowband array processing. In this context, vector

contains the signals emitted bynarrow-
band sources, vector contains the
array output sampled at time, and matrix is the transfer
function between sources and sensors. In the following, it is
referred to as the “array matrix” or the “mixing matrix.”

Most array processing techniques rely on the modeling of:
Each column of is assumed to depend on a small number
of parameters. This information may be provided either by
physical modeling (for example, when the array geometry is
known and when the sources are in the far field of the array) or
by direct array calibration. In many circumstances, however,
this information is not available or not reliable.

Blind source separation consists in identifying and/or
retrieving the source signals without resorting to anya priori
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information about mixing matrix ; it exploits only the
information carried by the received signals themselves, hence,
the term blind. Performance of such blind techniques is,
by nature, essentially unaffected by potential errors in the
propagation model or in array calibration (this is obviously
not the case of parametric array processing technique; see, for
example, [1] and [2]). Of course, the lack of information on
the structure of must be compensated by some additional
assumptions on source signals.

For non-Gaussian independent sources, the first approach
traces back to the pioneering adaptive algorithm of Jut-
ten–Hrault [3] (see also [4]–[7]). Batch algorithms, which
are based mainly on higher order cumulants, were developed
later; see, for instance, [8]–[11]. These algorithms exploit
only the marginal distribution of the observations. Thus,
they are suitable even when source signals are temporally
independent. Otherwise, other approaches can be developed
based on temporal correlations. Since these are second-order
statistics, they are expected to be more robust in adverse
signal to noise ratios.

For cyclostationary emitters, like those encountered in dig-
ital or analog communication systems, a sound approach con-
sists of exploiting spectral redundancy at the cyclic frequency
of the sources of interest, as proposed in [12]. However, these
methods crucially rely on the assumption that the different
sources have different cyclostationary features [13]. In addi-
tion, when the cyclic frequencies are not known in advance,
they must be estimated.

A different context is considered herein: stationary sources
with different spectral contents. It has already been shown
that blind identification is feasible based on spatial covariance
matrices [14]–[17]. These matrices (see below) show a sim-
ple structure that allows straightforward blind identification
procedures based on eigendecomposition. In this paper, we
introduce a blind identification technique based on a joint
diagonalization ofseveral covariance matrices. Robustness
is significantly increased at low additional cost by process-
ing such a matrix set rather than a unique matrix as in
[14].

The paper is organized as follows. In Section II, the prob-
lem of blind source separation is stated together with the
relevant hypothesis. Section III presents a second-order blind
identification technique based on “joint diagonalization” of
a set of spatial covariance matrices; an efficient Jacobi-like
algorithm for solving this problem is described in Appendix
A. In Section IV, a closed-form expression of the asymptotic
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performance of the proposed method is derived. Numerical
simulation illustrating the validity of this method are presented
in Section V.

II. PROBLEM FORMULATION

A. Assumptions

We start by specifying the signal. It is assumed that the
source signal vector is either H1) a deterministic ergodic
sequence or H2) a stationary multivariate process with

H1)

(2)

diag (3)

H2)

diag (4)

where superscript * denotes the conjugate transpose of a
vector, and diag is the diagonal matrix formed with the
elements of its vector valued argument. For convenience,
the same notation is used for the deterministic averaging
operation under hypothesis H1) and for ensemble averaging
under H2). This convention holds throughout. Assumptions
H1) or H2) mean that the component processes ,

are mutually uncorrelated, and
denotes the autocovariance of .

The additive noise is modeled as a stationary, tempo-
rally white, zero-mean complex random process independent
of the source signals. For simplicity, we also require to
be spatially white, i.e.,

(5)

where is the Kronecker delta, and denotes the identity
matrix. The assumption of spatially white noise is not crucial:
The method presented below may be extended to the case of
an unknown noise covariance matrix (see Section III-A).

The complex matrix is assumed to have full
column rank but is otherwise unknown. In contrast with
traditional parametric methods, no specific array geometry or
sensor characteristics are assumed, i.e., the array manifold is
unknown.

Under the above assumptions, the covariance matrices of
the array output take the following structure:

(6)

(7)

where superscript denotes the complex conjugate transpose
of a matrix. The aim of blind source separation is to identify
the mixture matrix and/or to recover the source signals from
the array output without any a priori knowledge of the
array manifold. The potential benefit of such ablind approach
is that source separation is essentially unaffected by errors in
the propagation model or in array calibration.

B. Blind Identifiability

Before proceeding, it is important to specify the notion of
blind identification. In the blind context, a full identification
of the mixture matrix is impossible because the exchange
of a fixed scalar factor between a given source signal and the
corresponding column of does not affect the observations,
as is shown by the following relation:

(8)

where is an arbitrary complex factor, and denotes the
th column of .
Advantage can be taken of this indeterminacy by assuming,

without any loss of generality, that the source signals have unit
variance so that the dynamic range of the sources is accounted
for by the magnitude of the corresponding columns of. This
normalizationconventionturns out to be convenient in the
sequel; it does not affect the performance results presented
below. Since the sources are assumed to be uncorrelated, we
have

so that (9)

This normalization still leaves undetermined the ordering and
the phases of the columns of. The following definition is
then in order:

Definition 1: Two matrices and are said to beessen-
tially equal if there exists a matrix such that ,
where has exactly one nonzero entry in each row and
column, where these entries have unit modulus. This is denoted

.
In this paper, blind identification of is understood as the

determination of a matrix essentially equal to. Of course,
these indeterminacies do not impede source separation: If the
mixture matrix is estimated up to permutation and phase
shifts, it is still possible to determine the source signals up
to the corresponding fixed permutation and phase shifts (blind
identifiability is discussed at length in [18]).

III. A SECOND-ORDER IDENTIFICATION APPROACH

A. Whitening

The first step of our procedure consists of whitening the
signal part of the observation. This is achieved by
applying to a whitening matrix , i.e., a matrix
verifying:

(10)
Equation (10) shows that if is a whitening matrix, then
is a unitary matrix. It follows that for any whitening
matrix , there exists a unitary matrix such that

. As a consequence, matrix can be factored as

(11)

where superscript denotes the Moore–Penrose pseudoin-
verse. We note that this whitening procedure reduces the
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determination of the mixture matrix to that of a
unitary matrix . The whitened process
still obeys a linear model:

(12)

where the signal part of the whitened process now is a “unitary
mixture” of the source signals. Note that all information
contained in the covariance is “exhausted” after the whitening
procedure in the sense that changingin (12) to any other
unitary matrix leaves the covariance of unchanged. Note
also that besides whitening, the signal part of the observations
(multiplication by a whitening matrix ) reduces the array
output to a -dimensional vector.

Since we have, from (6) and (9), , (10)
shows that a whitening matrix can be determined from the
array output covariance , provided the noise covariance
matrix is known or can be estimated. A whitening matrix
may also be determined from a linear combination of a set of
covariance matrices taken at nonzero time lags, as suggested in
[14]. In any case, as shown by (11), finding a whitening matrix
still leaves undetermined a unitary factor in. This “missing
factor” can be determined from higher order statistics
as investigated in [8]–[10]. Exploiting the time dependence
structure (hypothesis H1 or H2), it may be also retrieved from
covariance matrices at non zero lags, as explained below.

B. Determining the Unitary Factor

Consider the spatially whitened covariance matrices
defined as

(13)

These complex matrices are nothing but the covariance
matrices of the process . By (7) and (11), we obtain the
key relation

(14)

Since is unitary and is diagonal, the latter means
that we have the following property.

Property: Any whitened covariance matrix is diagonalized
by the unitary transform .

As a consequence, the unitary factormay be obtained as
a unitary diagonalizing matrix of a whitened covariance matrix

for some lag . More formally, we have the following
theorem.

Theorem 1—First Uniqueness Condition:Let be a
nonzero time lag and be a unitary matrix such that

diag (15)

(16)

Then, we have the following:

• is essentially equal to : .
• A permutation on exists such that

This property is a direct consequence of the spectral theorem
for normal matrices (see for example [19, Theorem 2.5.4]).
We recall that an matrix is said to benormal if

. The spectral theorem states that a normal
matrix is unitarily diagonalizable, i.e., there exists a unitary
matrix and a diagonal matrix such that . In
our setting, the existence of the unitary matrix(15) for any
time lag is guaranteed by (14). In contrast, the existence
of a time lag such that (16) holds is not trivial and
cannot be checkeda priori. Note that the indeterminacies
(phase shifts and permutations) in the diagonalization of a
normal matrix correspond precisely to those encountered in
the blind source separation problem. Thus, the diagonalization
of for a delay yields the relevant parameters if
has distinct eigenvalues.This identification scheme may be
found in slightly different forms in [14] and in [15].

True indeterminacy arises in the case of degenerate eigen-
values. It does not seem possible to determinea priori a time
lag such that the eigenvalues of are distinct. Of course,
if the source signals have different spectral shapes, eigenvalue
degeneracy is unlikely, but the problem is not purely academic
because it is to be expected that when an eigenvalue of
comes close to degeneracy, the robustness of determining
from an eigendecomposition is seriously affected.

The situation is more favorable if we consider simultaneous
diagonalization of a set of whitened
covariance matrices.

Theorem 2—Second Uniqueness Condition:Let
be nonzero time lags, and let be a unitary matrix

such that

diag (17)

(18)

Then, we have the following:

• is essentially equal to : .
• A permutation on exists such that

This is a consequence of the essential uniqueness of joint
diagonalization: see Theorem 3 below. Again, the existence
of a unitary matrix that simultaneously diagonalizes the set
of covariance matrices is guaranteed for
any choice of time lags thanks to (14). Even though (18) is
much weaker than (16), it is not necessarily true; in particular,
in the trivial case where the sources show identical normalized
spectra, the mixing matrix cannot be identified by resorting
to Theorem 2. Conversely, when the source signals have
different normalized spectra, it is always possible to find a set
of time lags such that (18) is met. This corresponds
to the second-order identifiability condition found in [18].

The main point of our contribution is to consider thejoint
diagonalizationof several covariance matrices. This approach
is intended to reduce the probability that an unfortunate choice
of time lag results in unidentifiability of from ; more
importantly, this approach generally increases the statistical
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efficiency of the procedure by inferring the value of from
a larger set of statistics.

C. Joint Diagonalization

In numerical analysis, the “off” of an matrix with
entries is defined as

(19)

and the unitary diagonalization of a matrix is equivalent
to zeroing by some unitary matrix . As
recalled above, the spectral theorem states that only normal
matrices can be unitarily diagonalized. In addition, if a matrix

is in the form , where is unitary and
is diagonal with distinct diagonal elements, then it may

be unitarily diagonalized only by unitary matrices that are
essentially equal to , that is, if , then

.
Consider a set of matrices of size

. The “joint diagonality” (JD) criterion is defined, for any
matrix , as the following nonnegative function of:

(20)

A unitary matrix is said to be ajoint diagonalizerof the set
if it minimizes the JD criterion (20) over the set of all

unitary matrices.
Let us first consider the case where each matrix in the set

is in the form , where is a diagonal
matrix. Then clearly, , and this is the global
minimum of the JD criterion (20) since for any
matrix . Thus, if each matrix in the set can be unitarily
diagonalized by , then according to our definition, matrix
is a joint diagonalizer of . This is of little interest; we are
more interested in the uniqueness of a joint diagonalizer. We
have the following

Theorem 3—Essential Uniqueness of Joint Diagonalization:
Let be a set of matrices where, for

, matrix is in the form with
a unitary matrix, and diag . Any

joint diagonalizer of is essentially equal to if and only if

(21)

The essential uniqueness condition (21) is of course much
weaker than the requirement that each matrix inis uniquely
unitarily diagonalizable. In particular, it is easy to construct
examples where each matrix in has a degenerate eigen-
value spectrum but such that the joint diagonalizer of is
nonetheless essentially unique. The proof of Theorem 3 is
given in Section VII-B.

An important feature of our definition of joint diagonal-
ization is that it is not required that the matrix set under
consideration can be exactly simultaneously diagonalized by
a single unitary matrix. As a matter of fact, it is not even
required that the matrices in the set areindividually unitarily
diagonalizable. This is because we do not require that the
“off” of all the matrices are cancelled by a unitary trans-
form; a joint diagonalizer is just a minimizer of the JD

criterion. If the matrices in are not in the form consid-
ered in Theorem 3, the JD criterion cannot be zeroed, and
the matrices can only be approximately jointly diagonalized.
Hence, an (approximate) joint diagonalizer defines a kind
of an “average eigen-structure.” This is particularly conve-
nient for statistical inference where the structural information
is to be extracted from sample statistics: Even though the
true covariance matrices considered above can be exactly
simultaneously diagonalized, their sample counterparts cannot
because of the estimation errors. Hence, rather than exactly
diagonalizing a single covariance matrix, the approximate joint
diagonalization allows the information contained in a set of
covariance matrices to be integrated in a single unitary matrix.

Another important feature of the (possibly approximate)
joint diagonalization is the existence of a numerically efficient
algorithm for its computation. This algorithm is a general-
ization of the Jacobi technique for the exact diagonalization
of a single Hermitian matrix [20]. This technique consists of
computing the unitary diagonalizer as a product of Givens
rotations. It turns out that the Givens rotation parameters can
be simply computed even when the matrices to be jointly
diagonalized do not show any symmetry property. This is par-
ticularly convenient for processing sample covariance matrices
that have no reason to be exactly normal. The extension of
the Jacobi technique to approximate joint diagonalization is
described in Section VII-A.

D. Implementation of the SOBI Algorithm

Based on the previous sections, we can introduce a second-
order blind identification (SOBI) algorithm. SOBI is defined
by the following implementation:

1) Estimate the sample covariance from data
samples. Denote by the largest eigenval-
ues and the corresponding eigenvectors of

.
2) Under the white noise assumption, an estimateof

the noise variance is the average of the smallest
eigenvalues of . The whitened signals are

, which are computed by
for . This is equivalent

to forming a whitening matrix by

3) Form sample estimates by computing the sample
covariance matrices of for a fixed set of time lags

.
4) A unitary matrix is then obtained as joint diagonalizer

of the set .
5) The source signals are estimated as ,

and/or the mixing matrix is estimated as .

IV. A SYMPTOTIC PERFORMANCE ANALYSIS

In this section, an asymptotic performance analysis of the
proposed method is carried out. To ease the derivations, we
make the following additional assumptions.
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H1’) Each source signal is a circular stationary Gauss-
ian process: for and
for any time lag .

H2’) The source signals are mutually independent and
are independent of the noise .

H3) The source signals are short range dependent, in the
sense that .

Hypothesis H3) is an extremely mild condition that is
verified, for example, by all AR or ARMA processes. To get
rid of phase and permutation indeterminacies, we shall assume
that they are fixed in such a way that the matrix estimator

is close to the true mixture matrix rather than to some
other matrix essentially equal to. In addition, the covariance
matrices are computed at time lags such that the
uniqueness condition of Theorem 2 is verified.

A. Performance Index

Rather than estimating the variance of the coefficients of
the mixing matrix, it is more relevant to source separation
to compute an index that quantifies the performance in terms
of interference rejection, as follows. Assume that at each time
instant an estimate of the vector of source signals is computed
by applying to the received signal the pseudoinverse of
the estimated mixture matrix, i.e.,

(22)

where is given by . We stress that in general,
this procedure is not optimal for recovering the source signals
based on an estimate . For large enough sample size,
matrix should be close to the true mixing matrix so that

is close to the identity matrix. The performance index
used in the sequel is the interference to signal ratio (ISR),
which is defined as

(23)

This actually defines an ISR because, by our normalization
convention (9), we have for large enough . Thus,

measures the ratio of the power of the interference of the
th source to the power of theth source signal estimated as

in (22). As a measure of the overall quality of the separation,
we also define a global rejection level:

(24)

B. Outline of Performance Analysis

The asymptotic variance of the estimates ofis expected
to decrease as thanks to the short range dependence of
the observed process (assumption H3). Thus, the leading term
of is of order . The purpose of this section is to
give its closed-form expression. Detailed computations are not
reported herein due to lack of space. We rather outline the
computation below and give further details in the Appendix.

Asymptotic performance is obtained along the following
lines. We note that matrix estimate is a “function” of the
sample covariance matrices of the
observed signal . The computation can then proceed in two
steps; first, we express the asymptotic moments of the sample
covariance matrices (see Lemma 1); second, we compute the
leading term (in the sample covariance matrices) in the Taylor

expansion of (see Lemma 2). The final result is
obtained by combining these two expressions.

Lemma 1: Under conditions H1’, H2’, and H3 and for any
matrices and in C

Tr

Tr Tr

Tr Tr

Tr

where , and Tr denotes the
trace of matrix .

Proof: See [21].
Lemma 2: The Taylor expansion of is given

for by

with

for

Tr

for

where denotes the orthogonal projector on the noise sub-
space (i.e., the subspace orthogonal to the range of matrix),
and are the th element of the matrix .

Proof: See Section VII-C.
According to Lemma 2, the expectation of

can be computed from the expectations of ,
, and . Lemma 1 reduces this

computation to simple algebra, yielding
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where we have set

and where denotes the spectral density of theth source
signal. Using the above, the ISR is asymptotically given by

(25)

where the coefficients of the expansion are

C. Discussion

For high signal-to-noise ratio, (25) of the ISR is dominated
by the first term . This term shows two important features.

• is proportional to the spectral overlap of sourcesand
. If the sources and have no spectral overlap (i.e.,

their frequency supports are disjoint: for
all ), the corresponding ISR given by vanishes at
first order. More generally, the ISR in the high SNR
limit is proportional to the spectral overlap (this effect
is illustrated in the next section).

• is independent of the mixing matrix. In the array
processing context, it means that performance in terms of
interference rejection is unaffected (surprisingly enough)
by the array geometry and, in particular, by the number of
sensors. The performance depends solely on the spectral
overlap of the source signals. This (maybe surprising)
phenomenon has been investigated in a more general
context in [22].

In the above algorithm, the covariance matrices involved in
the joint diagonalization criterion (20) are uniformly weighted.

Fig. 1. Performance versus number of joint diagonalized covariance matri-
ces.

Note that the JD criterion could be generalized by weighting
each “off” term by an appropriate factor. Optimal weighting
could, at least theoretically, be obtained by extending the
previous derivations. This point is left to further study.

V. PERFORMANCE EVALUATION

This section investigates the performance of the SOBI algo-
rithm by computer simulations. The validity of the asymptotic
performance analysis is also assessed.

A. Numerical Simulations

In the simulated environment, a five-element uniform linear
array with half wavelength sensor spacing receives two signals
in the presence of stationary complex white noise. The two
sources are unit variance, complex circular Gaussian with
different but overlapping spectra. The sources arrive from
different directions and (the particular
structure of the array manifold is, of course, not exploited by
the SOBI algorithm). The snapshot size is samples;
the mean overall rejection level is estimated by averaging 300
independent trials.

Example 1: The source signals are generated by filter-
ing a complex circular white Gaussian processes by an AR
model of order 1 with coefficient and

. The time lags implicitly involved are
, where is times the time unit.

In Fig. 1, the rejection level is plotted in decibels as a
function of the number of the jointly diagonalized covariance
matrices for SNR 10 dB. The modulus of the AR coefficients
of the two sources is ; the angles are,
respectively, equal to and ; we are dealing
here with sources presenting a large spectral overlap.



440 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 2, FEBRUARY 1997

Fig. 2. Performance versus the “spectral shift”��.

Fig. 1 shows a performance gain reaching 9 dB by diag-
onalizing six matrices rather than only one. We have found
experimentally that the most significant gain in performance
are obtained in difficult environments: poor SNR, small spec-
tral difference, ill-conditioned mixture matrix, etc.

In Fig. 2, the noise level is kept constant at 5 dB, and
. We let vary as . On the plot,

the curves are labeled with the number of covariance matrices
used in the identification. The plot shows the rejection level

in decibels plotted as against the “spectral shift”. The
plot evidences a significant increase in rejection performance
by including two or eight covariance matrices in the joint
diagonalization criterion.

Example 2: In this example, we compare the performance
of the SOBI algorithm with the self-coherence restoral
(SCORE) algorithm presented in the paper by Ageeet al.
[12]. In contrast with SOBI, the SCORE method assumes that
the source signals are cyclostationary with different cyclic
frequencies.

In this experiment, the first source is a first-order autore-
gressive Gaussian process ( ) modulated
by a complex exponential with normalized frequency

(the signal is thus cyclostationary with cyclic frequency
). The second source is also a first-order autoregressive

Gaussian process ( , ) modulated by a complex
exponential with normalized frequency . Herein,
the SOBI algorithm is used by jointly diagonalizing four
covariance matrices.

The performance measure used to judge the quality of the
processor output signal is the mean rejection level as defined
in Section IV-A. In Fig. 3, the noise level is kept constant at

10 dB, and the mean rejection level is plotted in decibels
as a function of the spectral shift , which is also half the
difference between the two cyclic frequencies and .

Fig. 3. Performance versus “spectral shift”: SNR= 10 dB. Dashed line:
SOBI method; solid line: the SCORE method.

It is seen in Fig. 3 that the SCORE method is less sensitive
than SOBI to small values of . In contrast, for large spectral
shift , the SOBI algorithm allows a performance gain
reaching 10 dB.

In Fig. 4, spectral shift is kept constant at 0.4. The noise
power is varied between 25 and 0 dB. The plot shows the
mean rejection level in decibels as a function of the noise
power . This figure demonstrates that in the case of large
spectral shift, the SOBI method shows a performance gain of
10 dB compared with the SCORE algorithm.

Of course, it would be wrong to claim that the SOBI method
yields consistently better results than the SCORE method. We
only want to claim that in the situations where the sources are
“sufficiently” separated in the stationary frequency domain,
the SOBI algorithm yields acceptable results.

As a final note, we want to stress that the spectral separation
of the sources is essential for the SOBI method; it is not
required by the SCORE algorithm (or the further refinements
of it [13], [23]), which is able to separate signals with
a complete spectral overlap, provided they show different
cyclostationary features.

B. Experimental Validation of the Asymptotic
Performance Analysis

In this section, a series of experiments to assess the domain
of validity of the first-order performance approximation (25).
The same settings than in Example 1 are used with the
exception of the directions of arrivals, which are now
and .

The identification is performed using three covariance ma-
trices, i.e., , , and , and the overall rejection
level is evaluated over 500 independent runs.
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Fig. 4. Performance versus�2. Dashed line: the SOBI method; solid line:
the SCORE method.

In Fig. 5, the rejection level is plotted in decibels as
a function of the noise power (which is also expressed
in decibels). The sources are first-order autoregressive with
parameters and angle , and

. On the plots, the curves are labeled with the
spectral shift . We note that the approximation is better at
high SNR and for large spectral shift. This means that the
asymptotic conditions are reached more quickly in this range
of parameters.

In Fig. 6, the rejection level is plotted in decibels
against sample size. On the plots, the curves are labeled as the
function of the noise power in decibels. This figure shows
that the asymptotic closed-form expressions of the rejection
levels are pertinent from a snapshot length of about 100
samples. This means that asymptotic conditions are reached
even for small data block size.

VI. CONCLUSION

This paper presents a new blind source separation technique
for temporally correlated sources. It is based on the “joint
diagonalization” of an arbitrary set of covariance matrices.
This method shows a number of attractive features:

i) It relies only on second-order statistics of the received
signals.

ii) It allows—in contrast to higher order cumulant tech-
niques—the separation of Gaussian sources.

iii) The use of several covariance matrices (in contrast with
the previous proposal by [14]) makes the algorithm
more robust: For practical purposes, it makes very
unlikely indeterminacies.

Numerical experiments show the benefit of exploiting several
covariance matrices in difficult contexts (low SNR, sources

Fig. 5. Performance validation versus�2. Vertical lines indicate the 90%
confidence intervals as obtained by bootstrapping the percentiles.

Fig. 6. Performance validation versus samples. Vertical lines indicate the
90% confidence intervals as obtained by bootstrapping the percentiles.

with little spectral difference). The main steps of the compu-
tation of the asymptotic performance analysis are also given.

APPENDIX A
A JOINT APPROXIMATE DIAGONALIZATION ALGORITHM

The Jacobi technique [20] for diagonalizing a unique Her-
mitian matrix is extended for the joint approximate diago-
nalization of a set of normal matrices. The proposed method
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consists of minimizing the JD criterion (20) by successive
Givens rotations, which leads to solving the same problem for

matrices:

(26)

for . A unitary matrix is sought such that
( ) minimizes the criterion (20).

The unitary transformation is parameterized by a complex
Givens rotation:

(27)

Denoting by , , , and the coefficients of ,
optimization of (20) amounts to finding and such that

is maximized. Noticing that
and that the trace is invariant

in a unitary transformation, optimization of criterion (20) is
equivalent at each Givens step to the maximization of:

(28)

It is easily checked that

(29)

for . Then, by defining the vectors

(30)

(31)

(32)

the equations (29) may be written in the form ,

where , so that also reads

Re (33)

where we have used the fact that being Hermitian by
construction, its imaginary part is antisymmetric and hence
contributes nothing to the above quadratic form. The last step
is to recognize that the particular parameterization (31) of

is equivalent to the condition . Maximizing a
quadratic form under the unit norm constraint of its argument
is classically obtained by taking to be the eigenvector of
Re associated with the largest eigenvalue. Recall that
this is a real symmetric matrix: The analytic expressions
of the parameters of the Givens rotation are simply derived
from the coordinates of the eigenvector. The reader may
check that setting and Hermitian, the above
boils down to the standard Jacobi procedure. In addition, note
that the main cost in this kind of technique is the update
under Givens rotations of the various matrices involved in
the diagonalization. This makes it clear that the cost of the
proposed procedure is similar to times the diagonalization
of a single matrix.

APPENDIX B
PROOF OF THEOREM 3

The sufficiency of (21) is established by proving that any
linear combination (with at least two nonzero factors) of the
vectors , cannot be a common eigenvector of
the matrices , :

Let be a common eigenvector of the
matrices , , and assume, for example, that

. According to (21), for any index, , there
exists an index such that . For this index ,
we have by hypotheses

and

By identification, we have for .
Since and , this leads to
and . Q.E.D.

Next, we establish the necessity of (21). Assume that
there exists a pair ( ) such that for

. Then, any linear combination of the vectors
and is a common eigenvector of the matrices ,

. Q.E.D.

APPENDIX C
PROOF OF LEMMA 2

In this section, a sketch of the proof for Lemma 2 is
presented. Giving a full proof is a tedious and lengthy exercise,
which goes far beyond the scope of this paper (it can be
obtained by request to the author). A part of the proof is based
on the result on the perturbation of the joint diagonalization
obtained in [24]. For brevity, this result is admitted.

The square modulus is expressed as

(34)

We decompose the matrix under its polar form

(35)

where is a unitary matrix, and is a nonnegative
semi-defined Hermitian matrix; matrix verifies

(see [19, Theorem 7.3.2, p. 412]). According to
the convention outlined in Section III-A, matrix is expected
to be close to the identity matrix; let denote
the estimation error of the Hermitian part of . Using
standard perturbation calculus (see, for example, [25]), it can
be shown that

Tr

(36)
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From the polar decomposition (35), the whitened covariance
matrices can be similarly approximated at the first order, for
all , as

(37)

The joint diagonalization criterion aims at searching the uni-
tary matrix that minimizes the “off” of a set of matrices,
which, here, is the whitened covariance matrix . It is
not difficult to guess (though actually difficult to prove in
mathematical terms due to the indeterminacies inherent to
these kinds of problems; see a discussion in [22] and [24]) that
if the set of matrices entering in the JD are multiplied by a
commonunitary matrix, then the result of the JD will simply be
multiplied by this common matrix. Formally, let
be arbitrary matrices and an arbitrary unitary matrix;
then, JD JD .
Applying this result in our situation, it comes from (37) that the
unitary matrix , resulting from the JD of the set of whitened
covariance matrices , can be decomposed as

where the matrix minimizes the JD criterion for the
matrices:

where . Hence,
(34) can be written as

As shown in [24], the unitary matrix is given at first order
by

(38)

where is the orthogonal projector on theth vector
column of the identity matrix . The performance index

becomes

for (39)

Including (36) and (38) in (39) leads to the Taylor expansion
of Lemma 2.
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Télécommunications, Paris, France, in 1995 in
signal processing.

He currently is with the Department of Electrical
Engineering, Melbourne University, Melbourne,
Australia, as a research fellow. His research interests
are in statistical signal processing and include
system identification, (blind) array processing, and
performance analysis.

Jean-Francois Cardoso(M’91) was born in 1958 in Tunis, Tunisia. He re-
ceived the Agr´egation de Physique degree from theÉcole Normale Sup´erieure
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