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Abstract— Independent Component Analysis (ICA) provides
a sparse representation of natural images in terms of a set
of oriented bases. So far, the interest on this result lay on its
apparent connection to the neural processing of the mammalian
primary visual cortex. In this paper we provide an analysis from
a formal (not physiological) point of view. We show that ICA of
a natural image is equivalent to filtering the image using a high-
pass filter, followed by a sampling. This result determines, on the
one hand, the sparse distribution of the independent components
and, on the other hand, that the image bases resemble “edges” of
the original image. Some experiments are included to illustrate
the theoretical conclusions.

I. INTRODUCTION

Independent Component Analysis (ICA) is a technique for
studying multivariate data that has received great interest in
the last few years [4], [5], [9]. It is succinctly as follows: let
the observed multidimensional data be represented as a matrix
X with N rows and T columns, where N is the number of
variables and T is the number of observations recorded on each
variable. The goal of ICA is to calculate the square matrix B

that linearly transforms X into a matrix

Y = BX (1)

containing new variables (the “independent components”) that
are as independent “as possible”, in the sense of maximizing
or minimizing some “measure of independence”.

The interest on the application of ICA to natural images
started from the results presented by Bell and Sejnowski in
[2], that greatly resemble the behaviour of some neurons of
the mammalian primary visual cortex, the simple cells [1],
[6], [11]. In particular, the columns of matrix A = B

−1,
in this context known as ICA bases, represent oriented and
localized structures, very similar to those of the receptive fields
of simple cells. Besides, the independent components obtained
are sparsely distributed, like the observed responses of these
simple cells1.

Many authors have suggested other approaches or explana-
tions to this connection between ICA and the human visual
system (see, for example, [3], [10], [8], [15]), but no one
has provided a mathematical analysis to explain the results
obtained by Bell and Sejnowski. This contribution is intended

1Similar results were found by Olshausen and Field in [13] by sparse
coding.

to fill this gap from a purely formal (not physiological)
approach.

There are two main results presented in this paper. First,
we show that the so-called ICA filters (i.e., the rows of matrix
B) can be expressed as a weighted sum of the eigenvectors
of the data correlation matrix, with the weighting coefficients
dependent on the corresponding eigenvalues. In the case of
natural images, these ICA filters are mainly high-pass.

Secondly, we show that each independent component can be
obtained by filtering the whole image using a rotated version
of the corresponding ICA filter, followed by a sampling of the
result. Considering the high-pass nature of the filters used, this
new approach to ICA explains the results obtained by other
authors.

II. NOTATION AND PREPROCESSING

Throughout the paper, xij will stand for the (i, j)th entry
of matrix X. Using a Matlab-like notation, the kth row of
X will be denoted as xk: = [xk1, . . . , xkT ], and its lth column
will be x:l = [x1l, . . . , xNl]

† († means “transpose”). The same
conventions hold for all the other matrices. For simplicity it is
supposed that the mean value has been subtracted from each
row so that 1

T

∑T
n=1

xkn = 0 ∀k.
For convenience, the data are usually transformed into

uncorrelated variables by means of a whitening matrix, W:

X̄ = WX = D
−1/2

V
†
X (2)

where D
−1/2 = diag(λ

−1/2

1 , ..., λ
−1/2

N ), being λ1 ≥ . . . ≥
λN the eigenvalues of the sample data correlation matrix,
Rx = 1

T XX
†; V = (v1| . . . |vN ) is the matrix containing,

by columns, the corresponding eigenvectors (Rx vj = λj vj).
The ICA model (1) can be now written as

Y = B̄ X̄ (3)

where B̄ = BW
−1. It is straightforward to show that matrix

B̄ is orthogonal, i.e., B̄B̄
† = I (I is the identity matrix).

III. FASTICA REVISITED

In this paper we will only focus on the independent com-
ponents obtained by the popular algorithm FastICA [9],
based on the maximization of the kurtosis [8]. We have two
reasons for this decision: 1.) the kurtosis is mathematically
tractable and 2.) it has been proved that most ICA methods
are essentially equivalent in absence of noise and outliers [8]:
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consequently, analyzing FastICA is as valid as analyzing any
other method. We first analyze the problem in which only the
first independent component is calculated. The extension to
the rest of independent components is discussed later on.

Let y1: = [y11, . . . , y1T ] be the first independent component

and define y
3
1:

def
= [y3

11, . . . , y
3
1T ]. With this notation, the basic

FastICA iteration can be expressed as follows:

1) y1: ←− b̄1: X̄

2) b̄1: ←− 1

T y
3
1: X̄

† − 3 b̄1:

3) b̄1: ←− b̄1:/‖b̄1:‖
These three steps are repeated until convergence (←− means
“update”). The update logically stops when

b̄1: ∝ y
3
1: X̄

† (4)

where “∝” means “proportional to”. Post-multiplying both
sides with the whitening matrix W, and using that b1: =
b̄1: W, we get

b̄1: W ∝ y
3
1: X̄

†
W ⇒ b1: ∝ y

3
1: X̄

†
W (5)

Using the definition of W (see (2)) in (5) we get:

b1: ∝ y
3
1: X̄

†
D

−1/2
V

† (6)

from which we get, after some algebra, the essential relation:

b
†
1: ∝

N∑
n=1

γnvn (7)

where vn is the nth eigenvector of the data correlation matrix
Rx and

γn =

∑T
k=1

x̄nk y3
1k√

λn

(a)∝ b̄1n√
λn

(8)

Here, b̄1n is the (1, n)th entry of B̄ and (a) follows from (4).
Remark.- Eqn. (7) indicates that the first ICA filter can

be written as a linear combination of the eigenvectors of the
data correlation matrix. This is not surprising a priori, since
these eigenvectors always form an orthogonal basis of the
space. Observe that the smaller the coefficient γn the stronger
the corresponding eigenvector is expected to be present. In
the following sections we will explore this matter when the
observed data is obtained from a natural image.

IV. THE EIGENVALUES AND EIGENVECTORS OF THE

CORRELATION MATRIX OF A NATURAL IMAGE

From now on, let us consider that the data matrix X is
obtained from a natural image as follows: we divide the
image into

√
N ×

√
N patches and stack their pixels into

N × 1 vectors that will be the columns of X (i.e., the kth
column of X corresponds to the kth patch of the image). In
this case, it is well-known that, due to the great correlation
between neighbouring pixels, most of the eigenvalues of
the data correlation matrix, Rx, are negligible [12]. This is
the basis of the image compression. To illustrate it, let us
consider the Karhunen-Loeve Transform (KLT), that provides

a representation of each image patch (each column of X) in
terms of the eigenvectors of the data correlation matrix [12]:

x:k = Vsk , k = 1, ..., T (9)

where V is the matrix of eigenvectors of Rx and the vector
sk = [s1k, ..., sNk]† contains the coefficients of the transfor-
mation. The KLT is characterized because the approximation
of x:k given by the N × 1 vector s̃k = [s1k, ..., srk, 0, ..., 0]†

(r < N )
x̃:k = V s̃k (10)

has minimum mean square error, and it is given by Er =∑N
n=r λn [12]. As the frequency content of a natural image

is mainly low-pass, the eigenvectors associated to the greatest
eigenvalues correspond mainly to the lower frequency content.
As more eigenvectors are considered in (10), more high-pass
content (more details) is included.

Since the smallest eigenvalues are negligible compared to
the greatest ones and considering that ‖b̄1:‖ = 1 (see step
3) of the basic FastICA iteration given in Section III), a
conclusion emerges for γn (8): only those γn corresponding
to the smallest eigenvalues will take significant values, leading
to the approximation

b
†
1: ∝

N∑
n=m

γnvn , 1 << m ≤ N (11)

This means that the first ICA filter b1: can be approximated
by the weighted sum of the eigenvectors associated to the
smallest eigenvalues of the data correlation matrix. Since they
correspond to the high-frequency content of the image, the
first ICA filter will have high-pass characteristics. To see the
implications of this fundamental result, we need to introduce
the following innovative approach to ICA.

V. ICA AS A 2-D “FILTERING-SAMPLING” PROCESS

Knowing the matrix B, we can obtain the independent
components as stated in (1). In this section we propose a
technique to obtain these independent components from the
original image (not from the matrix X), consisting of a 2-D
filtering followed by a sampling. This new interpretation of
the independent component analysis of a natural image seems
to be an unnecessary complication, but it is of great relevance
for our analysis.

For convenience, we represent the kth image patch by the
2-D sequence, xk(n1, n2), with n1, n2 = 0, ...,

√
N − 1 (i.e.

the mapping of the N × 1 vector x:k to an image). Similarly,
b1(n1, n2) represents the first ICA filter, so that

y1k =

N∑
i=1

b1i xik =

√
N−1∑

n1=0

√
N−1∑

n2=0

b1(n1, n2)xk(n1, n2) (12)

The most-right part of this identity clearly reminds a convolu-
tion. To state it more properly, let us define the 2-D sequence
bR
1 (n1, n2) as b1(n1, n2) rotated 180◦ counterclockwise:

bR
1 (n1, n2) = b1(

√
N − 1 − n1,

√
N − 1 − n2) (13)
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After some cumbersome algebra one finds that

ypk = z(
√

N − 1,
√

N − 1) (14)

where z(n1, n2) is the 2-D convolution between the patch
xk(n1, n2) and bR

1 (n1, n2).
In other words, each element of y1: is the filtering of an

image patch with the corresponding ICA filter rotated 180◦

counterclockwise, followed by the sampling of the filter output
at n1 =

√
N − 1, n2 =

√
N − 1. It is straightforward to show

that an equivalent result will be obtained by filtering the whole
image (rather than filtering isolated patches).

Finally, observe that the magnitude responses of the filters
bR
1 (n1, n2) and b1(n1, n2) are the same because the rotation

only affects their phase response. In particular, if b1(n1, n2)
is a high-pass filter then bR

1 (n1, n2) will be also high-pass. In
conclusion: ICA is equivalent to a high-pass filtering and a
sampling of the image.

VI. EXTENSION TO SEVERAL INDEPENDENT COMPONENT

In practice, the FastICA algorithm is executed as many
times as the number of desired independent components [9]. In
the jth iteration it is imposed that the corresponding b̄j: has to
be orthogonal to the b̄k:, k = 1, ..., j − 1 previously obtained.
The jth independent component is then obtained as yj: =
b̄j: X̄ = bj: X. This procedure introduces a new constraint
(i.e. orthogonality), but (7) and (8) are still satisfied so that
the general conclusions in the preceding Sections still hold.

VII. EXPERIMENTS AND DISCUSSION

Consider the natural, grey-scale image shown in Fig. 1. We
divide it into 12 × 12 patches to compose the data matrix X

(144 × 2688).

Fig. 1. The “monarch” image (504 × 768) (available in
http://links.uwaterloo.ca/colorset.base.html).

Firstly, we analyze the frequency content of the ICA filters,
obtained by mapping the rows of B into 12 × 12 patches. In
Fig. 2 we show the magnitudes of the 2-D Fourier Transforms
corresponding to some of the ICA filters. As predicted, all of
them are high-pass.

In Fig. 3 we show the filtered images obtained with the
first and the last ICA filter. Fig. 4 represents the independent
components (i.e., the rows of matrix Y) corresponding to the
ICA filters of Fig. 2. They are clearly sparse, which is in
agreement with the results obtained by other authors [7], [8].

Fig. 2. Some of the 12 × 12 ICA filters (1, 15, 30, 50, 65, 80, 100, 120
and 144) obtained for the “monarch” image.

Fig. 3. The “monarch” image filtered with the first and the last “ICA filter”.

This can be now explained as follows: our previous derivation
indicates that ICA mainly performs a high-pass filtering of
the image data. Carrying out a high-pass filtering of a natural
image, only the edges are enhanced whereas most of the image
is attenuated or even eliminated2. So, when we sample the
filter output it is expected that most samples of the filtered
image are small: only those samples at the edges will take
significative values and the resulting independent component
will be, consequently, “sparse”. Furthermore, observe that each
independent component has one very large element. This is
expected because such a solution maximizes the kurtosis, and
we can not forget that this is the objective of the FastICA
algorithm [8]3.

2Consequently, the filtered image will have a very sparse distribution,
characterized by a sharp histogram centered around zero

3It is easy to show that the unity-variance signal with maximum kurtosis
is the signal in which all its elements vanish excepting one.
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It also follows from above that the “large values” of
the independent components are not randomly placed: they
correspond to “edges” of the image. From (1) we obtain that
each image patch x:k can be decomposed in terms of a set of
basic building blocks or ICA bases:

x:k =
N∑

j=1

yjk a:j (15)

where a:j is the jth column of matrix A = B
−1. As we said,

in each independent component yj:, j = 1, ..., N , there is
one dominant value, say yjdj

. The index dj is different from
one independent component to another, due to the orthogonal
relation among the ICA filters, meaning that:

x:dj
� yjdj

a:j (16)

That is, each ICA basis, a:j is approximately proportional to
an image patch x:dj

that correspond to an “edge”. Several
authors had reported that the ICA basis resemble “edges” [7],
[8] but, to the best of our knowledge, no purely mathematical
arguments had been proposed to explain it so far (even though
that the explanation is really simple, as we have shown).
To illustrate this point, in Fig. 5 we show the ICA bases
corresponding to the “monarch” image. Most of them are like
patches of the image corresponding to the edges, due to the
dominant element present in each independent component.

Fig. 4. Some of the independent components corresponding to the “monarch”
image.

VIII. CONCLUSIONS

We have analyzed the results obtained by performing In-
dependent Component Analysis (ICA) to natural images. In
particular, we have focused on the solutions given by the
popular algorithm FastICA, which is based on the maximiza-
tion of the kurtosis. It is shown that the ICA filters that
generate the independent components have mainly high-pass
characteristics. It has been proven that this property explains
the fact that only a small portion of the elements of each
independent component take significant values that correspond
to the “edges” of the image. To the best of our knowledge,

Fig. 5. “ICA bases” (12 × 12) corresponding to the “monarch” image.

only physiological arguments had been given to explain this
matter so far. It has been proven also that the presence of one
dominant value, different for each independent component,
is responsible of the fact that the ICA basis are similar to
the edges of the original image. The latter is a new result,
unpublished in the existing literature: so far, it had been shown
in previous works only that the ICA bases resemble “edges”
and no relation with the image had been put in manifest.
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