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Preface

Decision making always happens in our daily life, for example, choosing a car to
buy, or selecting an electronic product from Amazon or Ebay. In the traditional
multiple criteria decision making models, all evaluation values are precise, which is
too ideal to match our daily life. To make it more applicable and efficient, the
decision making models should depict the situation as close as possible to the
real-world, but sometimes it is very difficult or impossible due to the incomplete
information or knowledge and the complexity and uncertainty involved in the
practical decision making problems. Many different theories and tools were pro-
posed in the realm of decision making, such as the probability theory. However, in
many cases, uncertainty is not probabilistic in nature but rather imprecise or vague,
for example, “fast” speed, “cheap” price, “good” student, and so forth. The fuzzy
set theory, which was originally introduced by Zadeh (1965), is one of the most
efficient decision aid techniques providing the ability to deal with imprecise and
vague information. Nonetheless, to cope with imperfect or imprecise information
that two or more sources of vagueness appear simultaneously, the traditional fuzzy
set shows some limitations. Hence, it has been extended into several different
forms, such as the type 2 fuzzy set, the type n fuzzy set, the interval-valued fuzzy
set, the fuzzy multisets, and so on. All these extensions are based on the same
rationale that it is not clear to assign the membership degree of an element to a fixed
set. Recently, Torra (2010) proposed a new generalized type of fuzzy set called
hesitant fuzzy set. The motivation of introducing such a set is that sometimes the
uncertain membership degree is not due to possibility distribution (as in type 2
fuzzy set), or a margin of error (as in interval fuzzy set), but because of a set of
possible values. The hesitant fuzzy set shows many advantages over the traditional
fuzzy set and its extensions, especially in group decision making with anonymity.
It opens new perspectives for research on decision making under hesitant fuzzy
environments.

In this book, we give a thorough and systematic introduction to the latest
research results on hesitant fuzzy decision making theory, which include the
operational laws of hesitant fuzzy sets, the correlation and entropy measures of
hesitant fuzzy sets, the hesitant fuzzy hybrid weighted aggregation operators,



the hesitant fuzzy multiple criteria decision making methods with complete or
incomplete weights, the hesitant fuzzy preference relation theory, etc. We apply
these methodologies to various fields such as decision making, medical diagnosis,
cluster analysis, service quality management, e-learning management, environ-
mental management, etc. The book is constructed into six chapters that deal with
different but related issues, which are listed as follows:

Chapter 1 mainly introduces the state of the art of hesitant fuzzy sets. The
chapter first defines the concept of hesitant fuzzy set. The mean and hesitant degrees
of a hesitant fuzzy element are also defined. Then the chapter defines the opera-
tional laws of hesitant fuzzy elements, especially the subtraction and division
operations. A theorem is given to show that the dimension of the derived hesitant
fuzzy element may increase as the addition or multiplication operations are done,
and thus, some adjusted operations are given. The comparison laws of hesitant
fuzzy elements are given based on the score function and variance function of the
hesitant fuzzy element. We also introduce the extensions of hesitant fuzzy sets,
including the interval-valued hesitant fuzzy set, the dual hesitant fuzzy set and the
hesitant fuzzy linguistic term set.

Chapter 2 introduces some novel correlation and entropy measures of hesitant
fuzzy sets and applies them to hesitant fuzzy decision making. The chapter first
points out the weakness of the existing correlation measures of hesitant fuzzy sets,
and then introduces a novel correlation coefficient formula to measure the rela-
tionship between two hesitant fuzzy sets. The definitions of mean and variance of a
hesitant fuzzy set are introduced. The weighted correlation coefficients are also
defined. This chapter then applies the correlation coefficients to medical diagnosis
and cluster analysis. After analyzing the existing entropy measures of hesitant fuzzy
sets, this chapter introduces some novel two-tuple entropy measures of hesitant
fuzzy sets.

Chapter 3 mainly introduces the hesitant fuzzy hybrid weighted aggregation
operators for hesitant fuzzy information. The chapter first introduces the hesitant
fuzzy weighted aggregation operators, such as the hesitant fuzzy weighted aver-
aging operator, the hesitant fuzzy weighted geometric operator, the adjusted hesi-
tant fuzzy weighted averaging operator, the adjusted hesitant fuzzy weighted
geometric operator, the hesitant fuzzy ordered weighted averaging operator, the
hesitant fuzzy ordered weighted geometric operator, the hesitant fuzzy hybrid
averaging operator and the hesitant fuzzy hybrid geometric operator. Then the
chapter points out the drawbacks of the existing hesitant fuzzy hybrid operators that
they do not satisfy the desirable property, i.e., idempotency. To circumvent this
flaw, a sort of new hesitant fuzzy hybrid weighted aggregation operators are
introduced, such as the hesitant fuzzy hybrid weighted averaging operator, the
hesitant fuzzy hybrid weighted geometric operator, the quasi hesitant fuzzy hybrid
weighted averaging operator, the quasi hesitant fuzzy hybrid weighted geometric
operator, and their generalized and induced forms. The properties of these operators
are investigated in-depth. Finally, we apply these hesitant fuzzy weighted aggre-
gation operators to multiple criteria decision making with hesitant fuzzy
information.



Chapter 4 introduces the hesitant fuzzy multiple criteria decision making
methods with complete weight information. After describing the hesitant fuzzy
multiple criteria decision making problem and the basic idea of the VIKOR method,
the chapter introduces the procedure of hesitant fuzzy VIKOR method to handle the
problems where the assessments of alternatives on different criteria are given as
hesitant fuzzy element and the weights of criteria are completely given as crisp
values. This chapter applies the hesitant fuzzy VIKOR method to a service quality
management problem. In addition, we also introduce the hesitant fuzzy ELECTRE
methods, including the hesitant fuzzy ELECTRE I and the hesitant fuzzy
ELECTRE II, for hesitant fuzzy multiple criteria decision making and apply these
two methods to solve practical decision making problems.

Chapter 5 introduces the hesitant fuzzy multiple criteria decision making
methods with incomplete weight information. Based on the definitions of hesitant
fuzzy positive ideal solution and the hesitant fuzzy negative ideal solution, the
satisfaction degree of an alternative is introduced. Then, we construct several
optimization models to derive the weights of criteria, and discuss the interactive
method for multiple criteria decision making problems with hesitant fuzzy infor-
mation. In addition, we introduce the minimum deviation methods for hesitant
fuzzy multiple criteria decision making with incomplete weight information and
address the corresponding interval-valued cases. This chapter also presents how to
solve the hesitant fuzzy multiple stages multiple criteria decision making problems
where the weights of different stages are unknown.

Chapter 6 introduces the hesitant fuzzy preference relation and its multiplicative
consistency as well as its consistency index. The chapter defines the concept of
hesitant fuzzy preference relation and investigates its desirable properties. The
concepts of multiplicative consistency, perfect multiplicative consistency and
acceptable multiplicative consistency of a hesitant fuzzy preference relation are
defined. Then the chapter introduces two algorithms to improve the consistency
level of a hesitant fuzzy preference relation. The chapter provides a method to
determine the values of the consistency index of hesitant fuzzy preference relations
with different orders. Afterwards, we investigate the consensus reaching process of
group decision making based on the hesitant fuzzy preference relations. Finally, the
chapter presents how to use interval-valued hesitant fuzzy preference relation in
group decision making.

This book is suitable for the engineers, technicians, and researchers in the fields
of fuzzy mathematics, operations research, information science, management sci-
ence and engineering, etc. It can also be used as a textbook for postgraduate and
senior-year undergraduate students of the relevant professional institutions of
higher learning.

This work was supported in part by the National Natural Science Foundation of
China under Grants 71501135, 61273209, and 71571123, the China Postdoctoral
Science Foundation under Grants 2016T90863 and 2016M602698, the Scientific
Research Foundation for Excellent Young Scholars at Sichuan University under
Grant 2016SCU04A23, and the Scientific Research Foundation for Scholars at
Sichuan University under Grant 1082204112042.
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Abstract

The hesitant fuzzy set, which permits the membership degree of an element to a set
presented by several possible values between 0 and 1, is an extension of the fuzzy
set. Hesitant fuzzy set shows many advantages over traditional fuzzy set and its
other extensions, especially in group decision making with anonymity. It opens new
perspectives for research on decision making under hesitant environments. Since it
was first introduced by Torra in 2010, hesitant fuzzy set theory has been widely
investigated and applied to a variety of fields. In this book, we give a thorough and
systematic introduction to the latest research results on hesitant fuzzy decision
making theory, which include the operational laws of hesitant fuzzy sets, the cor-
relation and entropy measures of hesitant fuzzy sets, the hesitant fuzzy hybrid
weighted aggregation operators, the hesitant fuzzy multiple criteria decision making
methods with complete or incomplete weight information, the hesitant fuzzy
preference relation theory, etc. We apply these methodologies to various fields such
as decision making, medical diagnosis, cluster analysis, service quality manage-
ment, e-learning management, environmental management, etc. This book is suit-
able for the engineers, technicians, and researchers in the fields of fuzzy
mathematics, operations research, information science, management science and
engineering, etc. It can also be used as a textbook for postgraduate and senior-year
undergraduate students of the relevant professional institutions of higher learning.



Chapter 1
Hesitant Fuzzy Set and Its Extensions

As uncertainty takes place almost everywhere in our daily life, many different tools
have been developed to recognize, represent, manipulate, and tackle such uncer-
tainty. Among the most popular theories to handle uncertainty include the proba-
bility theory and the fuzzy set theory, which are proposed to interpret statistical
uncertainty and fuzzy uncertainty, respectively. These two types of models possess
philosophically different kinds of information: the probability theory conveys
information about relative frequencies, while the fuzzy set theory represents simi-
larities of objects to the imprecisely defined properties (Bezdek 1993). Since it was
originally introduced by Zadeh (1965), the fuzzy set has turned out to be one of the
most efficient decision aid techniques providing the ability to deal with uncertainty
and vagueness. After the pioneering work of Zadeh (1965), the fuzzy set theory has
been extended in a number of directions, the most impressive one of which relates
to the representation of the membership grades of the underlying fuzzy set (Yager
2014). Recently, on the basis of the extensional forms of fuzzy set, Torra (2010)
proposed a new generalized type of fuzzy set called hesitant fuzzy set (HFS), which
opens new perspectives for further research on decision making under hesitant
environments.

HFS shows many advantages over traditional fuzzy set and its other extensions,
especially in group decision making with anonymity. The HFS has attracted many
scholars’ attentions. Torra (2010) firstly gave the concept of HFS, and defined the
complement, union and intersection of HFSs. Furthermore, Torra and Narukawa
(2009) presented an extension principle permitting to generalize the existing
operations on fuzzy sets to HFSs, and described the application of this new type of
set in the framework of decision making. Xu and Xia (2011a, b) originally gave the
mathematical expressions of HFS, and investigated the distance, similarity and
correlation measures for HFSs. Torra (2010) also established the relationship
between HFS and intuitionistic fuzzy set (IFS), based on which, Xia and Xu
(2011a) gave some operational laws for HFSs, such as the addition and multipli-
cation operations. Afterwards, Liao and Xu (2014a) introduced the subtraction and
division operations over HFSs.



In this chapter, we first introduce the HFS and its operations, and then give the
subtraction and division operations over HFSs. The motivation of introducing these
operations for HFSs is based on the relationship between HFS and IFS: HFS
encompasses IFS as a particular case and the envelope of a HFS is an IFS (Torra
2010). Several operational laws of these two operations over HFSs are given. The
relationship between IFS and HFS is further verified in terms of these two opera-
tions. In addition, the relationships between these two operations are established.
We also discuss the comparison laws for HFSs. HFS has been extended into dif-
ferent forms, such as the interval-valued hesitant fuzzy set (IVHFS) (Chen et al.
2013b), the dual hesitant fuzzy set (DHFS) (Zhu et al. 2012) and the hesitant fuzzy
linguistic term set (Rodríguez et al. 2012). In this chapter, we also introduce the
definitions, the operational laws and the comparison laws of these extended HFSs.

1.1 Hesitant Fuzzy Set

1.1.1 Introduction to Hesitant Fuzzy Set

Zadeh (1965) introduced the concept of fuzzy set, which leads to a completely new
and very active research area today named as fuzzy logic.

Definition 1.1 (Zadeh 1965). An ordinary fuzzy set F in a set X is characterized by
a membership function lF which takes the values in the interval ½0; 1�; i.e., lF :
X ! ½0; 1�: The value of lF at x; lFðxÞ; named fuzzy number, represents the grade
of membership (grade, for short) of x in F and is a point in ½0; 1�:

For example, we can use the fuzzy set

F ¼ lFðx1Þ=x1 þ lFðx2Þ=x2 þ þ lFðx3Þ=x3 þ lFðx4Þ=x4
¼ 1=0þ 0:9=0:1þ 0:7=0:2þ 0:4=0:3

ð1:1Þ

to represent the linguistic term “low”, where the operation “þ ” stands for logical
sum (or).

As the membership grades in a fuzzy set are expressed as precise values drawn
from the unit interval ½0; 1�; the fuzzy set cannot capture the human ability in
expressing imprecise and vague membership grades of a fuzzy set. On the one
hand, in realistic decision making, imprecision may arise due to the unquantifiable
information, incomplete information, unobtainable information, partial ignorance,
and so forth. To cope with imperfect and imprecise information that two or more
sources of vagueness appear simultaneously, the traditional fuzzy set shows some
limitations. It uses a crisp number in unit interval [0,1] as a membership degree of
an element to a set; however, very often, such a crisp number is difficult to be
determined by a decision maker (or an expert). On the other hand, if a group of
decision makers (or experts) are asked to evaluate the candidate alternatives, they
often find some disagreements among themselves. Since the decision makers (or

2 1 Hesitant Fuzzy Set and Its Extensions



experts) may have different opinions over the alternatives and they cannot persuade
each other easily, a consensus result is hard to be obtained but a set of possible
values. In such a case, the traditional fuzzy set cannot be used to depict the group’s
opinions. Hence, the classical fuzzy set has been extended into several different
forms, such as the IFS (Atanassov 1986), the interval-valued IFS (Atanassov and
Gargov 1989), the type 2 fuzzy set (Mizumoto and Tanaka 1976), the type n fuzzy
set (Dubois and Prade 1980), and the fuzzy multisets (also named the fuzzy bags)
(Yager 1986). All these extensions are based on the same rationale that it is not
clear to assign the membership degree of an element to a fixed set.

The IFS, which assigns to each element a membership degree, a
non-membership degree and a hesitancy degree, is more powerful than fuzzy set in
dealing with vagueness and uncertainty.

Definition 1.2 (Atanassov 1983, 2012). Let a crisp set X be fixed and let A � X be
a fixed set. An IFS A� on X is an object of the following form:

A� ¼ f\x; lAðxÞ; vAðxÞ[ jx 2 Xg ð1:2Þ

where the functions lA : A ! ½0; 1� and vA : A ! ½0; 1� define the degree of
membership and the degree of non-membership of the element x 2 X to the set A,
respectively, and for every x 2 X

0� lA þ mA � 1 ð1:3Þ
Obviously, every ordinary fuzzy set has the form:

A� ¼ f\x; lAðxÞ; 1� lAðxÞ[ jx 2 Xg ð1:4Þ

That is to say, the ordinary fuzzy set is a special case of IFS.
For each IFS A� on X

pAðxÞ ¼ 1� lAðxÞ � mAðxÞ ð1:5Þ

is called the degree of non-determinacy (uncertainty) of the membership of the
element x 2 X to the set A. In the case of ordinary fuzzy sets, pAðxÞ ¼ 0 for every
x 2 X:

However, when giving the membership degree of an element to a set, the dif-
ficulty of establishing the membership degree is not because we have some pos-
sibility distribution (as in type 2 fuzzy set), or a margin of error (as in interval fuzzy
set and IFS), but because we have a set of possible values. In such cases, HFS, as a
generalization of fuzzy set, permits the membership degree of an element to a set
presented by several possible values between 0 and 1. It can better describe the
situations where people have hesitancy in providing their preferences over objects
in the process of decision making. The HFS was originally proposed by Torra
(2010).

1.1 Hesitant Fuzzy Set 3



Definition 1.3 (Torra 2010). Let X be a fixed set, a HFS on X is in terms of a
function h that when applied to X returns a subset of ½0; 1�:

To be easily understood, Xia and Xu (2011a) represented the HFS in terms of the
following mathematical symbol:

H ¼ f\x; hAðxÞ[ jx 2 Xg ð1:6Þ

where hAðxÞ is a set of values in ½0; 1�; denoting the possible membership degrees of
the element x 2 X to the set A � X: For convenience, Xia and Xu (2011b) called
hAðxÞ a hesitant fuzzy element (HFE), which denotes a basic component of the
HFS.

Since the possible values of the membership degree in a HFS are random, the
HFS is, to some extent, more natural in representing the fuzziness and vagueness
than all the other extensional forms of fuzzy set. On the one hand, it is very close to
human’s cognitive process by using HFS. It is noted that modeling fuzzy infor-
mation by other extended forms of fuzzy set is based on the elicitation of single or
interval values that should encompass and express the information provided by the
decision makers (or experts) when determining the membership of an element to a
given set. Nevertheless, in some cases, the decision makers (or experts) involved in
the problem may have a set of possible values, and thus cannot provide a single or
an interval value to express their preferences or assessments because they are
thinking of several possible values at the same time. In such a case, the HFS, whose
membership degree is represented by a set of possible values, can solve this
problem perfectly, while the other extensions of fuzzy set are invalid.

On the other hand, due to the increasing complexity of socio-economic envi-
ronments, it is less and less possible for single decision maker (or expert) to
consider all relevant aspects of a problem when evaluating the considered objects.
Hence, in order to get a more reasonable decision result, a decision organization,
such as the board of directors of a company, which contains a collection of decision
makers (or experts), is set up explicitly or implicitly to assess the alternatives. As
pointed by Yu (1973), “when a group of individuals intend to form a corporation
with themselves as the shareholders or form a union to increase their total bar-
gaining power, they usually find some disagreements among themselves. The dis-
agreements come from the difference in their subjective evaluations of the decision
making problems which arise.” Since the decision makers (or experts) may have
different opinions over the alternatives due to their different knowledge back-
grounds or benefits and they cannot persuade each other easily, a consensus
evaluation result is sometimes hard to obtain but several possible evaluation values.
Then the HFS is suitable to handle this issue, and it is more powerful than all the
other extended fuzzy sets. For example, suppose that a decision organization is
asked to provide the degree to which an alternative is superior to another, and the
decision makers prefer to use the values between 0 and 1 to express their prefer-
ences. Some decision makers in the organization provide 0:2; some provide 0:6;
and the others provide 0:8: These three parts cannot persuade each other, and thus,
the degree to which the alternative is superior to the other can be represented by the
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hesitant fuzzy element (HFE) f0:2; 0:6; 0:8g. Note that the HFE f0:2; 0:6; 0:8g can
describe the above situation more objectively than the crisp number 0:2 (or 0:6 or
0:8Þ, or the interval-valued fuzzy number ½0:2; 0:8�; or the intuitionistic fuzzy
number ð0:2; 0:8Þ; because the degrees to which an alternative is superior to another
are not the convex combination of 0:2 and 0:8; or the interval between 0:2 and 0:8;
but just three possible values 0:2; 0:6 and 0:8: If we use any of the extended fuzzy
sets to represent the assessments given by these three parts of the decision orga-
nization, much useful information may be lost and this may lead to an unreasonable
decision. Therefore, it is more suitable and powerful to describe the uncertain
evaluation information by HFS.

The HFS encompasses IFS as a particular case, and it is a particular case of type
2 fuzzy set. The typical HFS is the one where hðxÞ is finite. Torra (2010) gave some
special HFEs for x in X:

(1) Empty set: hðxÞ ¼ f0g, denoted as O� for simplicity.
(2) Full set: hðxÞ ¼ f1g, denoted as E�.
(3) Complete ignorance (all is possible): hðxÞ ¼ ½0; 1�; denoted as U�.
(4) Nonsense set: hðxÞ ¼ ��.

Liao and Xu (2014a) made some deep clarifications on these special HFEs from
the view points of the definition of HFS and also from the practical decision making
process. As presented in the definition, the HFS on a reference set X is in terms of a
function h that when applied to X returns a subset of ½0; 1�: Hence, if the HFS
h returns no value, it is adequate for us to assert that h is a nonsense set.
Analogously, if it returns the set ½0; 1�; which means all values between 0 and 1 are
possible, we call it complete ignorance. Particularly, if it returns only one value
c 2 ½0; 1�; this certainly makes sense because single value c 2 ½0; 1� can also be seen
as a subset of ½0; 1�; i.e., we can take c as ½c; c�: When c ¼ 0; which means the
membership degree is zero, then we call it the empty set; if c ¼ 1; then we call it the
full set. Note that we shall not take the empty set as the set that there is no any value
in it, and we also should not take the full set as the set of all possible values. This is
the difference between the HFS and the traditional set. The interpretation of these
four special HFEs in decision making process is obvious. Consider that an orga-
nization with several experts from different areas evaluates an alternative using
HFS. The empty set depicts that all experts oppose the alternative. The full set
means that all experts agree with it. The complete ignorance represents that all
experts have no idea on the alternative, and the nonsense set implies nonsense.

Given an intuitionistic fuzzy number (IFN) (Xu 2007b)ðx; lAðxÞ; mAðxÞÞ; its
corresponding HFE is straightforward: hðxÞ ¼ ½lAðxÞ; 1� mAðxÞ� if lAðxÞ 6¼ 1�
mAðxÞ: But, the construction of IFN from HFE is not so easy when the HFE contains
more than one value for each x 2 X: As for this issue, Torra (2010) pointed out that
the envelope of a HFE is an IFN, expressed in the following definition:

Definition 1.4 (Torra 2010). Given a HFE h, the IFN AenvðhÞ is defined as the
envelope of h, where AenvðhÞ can be represented as h�; 1� hþð Þ; with h� ¼
min c c 2 hjf g and hþ ¼max cjc 2 hf g:
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Definition 1.5 (Liao et al. 2015b). For a reference set X; let hðxÞ ¼ fc1; c2; . . .; clg
be a HFE with ck (k ¼ 1; 2; . . .; lÞ being the possible membership grades of x 2 X to
a given set and l being the number of values in hðxÞ: The mean of the HFE hðxÞ is
defined as:

�hðxÞ ¼ 1
l

Xl

k¼1
ck ð1:7Þ

Definition 1.6 (Liao et al. 2015b). For a reference set X; let hðxÞ ¼ fc1; c2; . . .; clg
be a HFE with ck (k ¼ 1; 2; . . .; lÞ being the possible membership grades of x 2 X to
a given set and l being the number of values in hðxÞ: The hesitant degree of the HFE
hðxÞ is defined as:

uhðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l

Xl

k¼1
ck � �hðxÞð Þ½ �2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l

Xl

k¼1
ck �

1
l

Xl

k¼1
ck

� �� �2s
ð1:8Þ

Example 1.1 (Liao et al. 2015b). For two HFEs h1 ¼ f0:1; 0:3; 0:5g and
h2 ¼ f0:1; 0:3; 0:8g, based on Eqs. (1.7) and (1.8), we have �h1 ¼ 0:45; �h2 ¼ 0:6;
uh1 ¼ 0:2217; and uh2 ¼ 0:3786: Therefore, the HFE h2 is more hesitant than the
HFE h1.

1.1.2 Operational Laws of Hesitant Fuzzy Elements

Torra (2010) defined some operations such as complement, union and intersection
for HFEs:

Definition 1.7 (Torra 2010). For three HFEs h; h1 and h2, the following operations
are defined:

(1) Lower bound: h�ðxÞ ¼ min hðxÞ:
(2) Upper bound: hþ ðxÞ ¼ max hðxÞ:
(3) hc ¼ [ c2h 1� cf g:
(4) h1 [ h2 ¼ h 2 h1 [ h2jh�maxðh�1 ; h�2 Þ

� �
:

(5) h1 \ h2 ¼ h 2 h1 [ h2jh�minðhþ
1 ; hþ

2 Þ� �
:

Afterwards, Xia and Xu (2011a) gave other forms of (4) and (5) as follows:

(6) h1 [ h2 ¼ [ c12h1;c22h2max c1; c2f g:
(7) h1 \ h2 ¼ [ c12h1;c22h2min c1; c2f g:

Torra (2010) further studied the relationships between HFEs and IFNs:

Proposition 1.1 (Torra 2010). Let h; h1 and h2 be three HFEs. Then,

(1) AenvðhcÞ ¼ AenvðhÞð Þc.
(2) Aenvðh1 [ h2Þ ¼ Aenvðh1Þ [Aenvðh2Þ:
(3) Aenvðh1 \ h2Þ ¼ Aenvðh1Þ \Aenvðh2Þ:
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Proposition 1.2 (Torra 2010). Let h1 and h2 be two HFEs with hðxÞ being a
nonempty convex set for all x in X; i.e., h1 and h2 are IFNs. Then,

(1) hc1 is equivalent to IFS complement.
(2) h1 \ h2 is equivalent to IFS intersection.
(3) h1 [ h2 is equivalent to IFS union.

Proposition 1.2 reveals that the operations defined for HFEs are consistent with
the ones for IFNs. Based on the relationships between HFEs and IFNs, Xia and Xu
(2011a) gave some operational laws for HFEs.

Definition 1.8 (Xia and Xu 2011a). Let h; h1 and h2 be three HFEs, and k be a
positive real number, then

(1) hk ¼ [ c2h ck
� �

:

(2) kh ¼ [ c2h 1� ð1� cÞk
n o

:

(3) h1 	 h2 ¼ [ c12h1;c22h2 c1 þ c2 � c1c2f g:
(4) h1 
 h2 ¼ [ c12h1;c22h2 c1c2f g:

Let hj(j ¼ 1; 2; . . .; nÞ be a collection of HFEs, Liao et al. (2014a) generalized
(3) and (4) in Definition 1.8 to the following forms:

(5) 	n
j¼1

hj ¼ [ cj2hj 1�Qn
j¼1 ð1� cjÞ

n o
:

(6) 
n
j¼1

hj ¼ [ cj2hj
Qn

j¼1 cj
n o

:

It is noted that the number of values in different HFEs may be different. Let lhj be
the number of the HFE hj. Based on the above operational laws, the following
theorem holds:

Theorem 1.1 (Liao et al. 2014a). Suppose h1 and h2 are two HFEs, then

lh1	h2 ¼ lh1 � lh2 ; lh1
h2 ¼ lh1 � lh2 ð1:9Þ
Similarly, it also holds when there are n different HFEs, i.e.,

l	n
j¼1

hj
¼

Yn

j¼1
lhj ; l
n

j¼1
hj
¼

Yn

j¼1
lhj ð1:10Þ

Example 1.2 (Liao and Xu 2013). Let h1 ¼ ð0:1; 0:2; 0:7Þ and h2 ¼ ð0:2; 0:4Þ be
two HFEs, then by the operational laws of HFSs given in Definition 1.8, we have

h1 	 h2 ¼ [ c12h1;c22h2 c1 þ c2 � c1c2f g
¼ f0:1þ 0:2� 0:1 � 0:2; 0:1þ 0:4� 0:1 � 0:4; 0:2þ 0:2� 0:2 � 0:2; 0:2þ 0:4� 0:2 � 0:4;
0:7þ 0:2� 0:7 � 0:2; 0:7þ 0:4� 0:7 � 0:4g ¼ f0:28; 0:36; 0:46; 0:52; 0:76; 0:82g
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h1 
 h2 ¼ [ c12h1;c22h2 c1c2f g ¼ f0:1 � 0:2; 0:1 � 0:4; 0:2 � 0:2; 0:2 � 0:4; 0:7 � 0:2; 0:7 � 0:4g
¼ f0:02; 0:04; 0:04; 0:08; 0:14; 0:28g

Thus, lh1	h2 ¼ 6 ¼ 3� 2 ¼ lh1 � lh2 , lh1
h2 ¼ 6 ¼ 3� 2 ¼ lh1 � lh2 .
Theorem 1.1 and Example 1.2 reveal that the dimension of the derived HFE may

increase as the addition or multiplication operations are done, which may increase
the complexity of calculation. In order not to increase the dimension of the derived
HFE in the process of calculation, Liao et al. (2014a) adjusted the operational laws
of HFEs into the following forms:

Definition 1.9 (Liao et al. 2014a). Let hj(j ¼ 1; 2; . . .; nÞ be a collection of HFEs,
and k be a positive real number, then

(1) hk ¼ fðhrðtÞÞk; t ¼ 1; 2; . . .; lg.
(2) kh ¼ f1� ð1� hrðtÞÞk; t ¼ 1; 2; . . .; lg.
(3) h1 	 h2 ¼ fhrðtÞ1 þ hrðtÞ2 � hrðtÞ1 hrðtÞ2 ; t ¼ 1; 2; . . .; lg.
(4) h1 
 h2 ¼ fhrðtÞ1 hrðtÞ2 ; t ¼ 1; 2; . . .; lg.
(5) 	n

j¼1
hj ¼ f1�Qn

j¼1 ð1� hrðtÞj Þ; t ¼ 1; 2; . . .; lg.

(6) 
n
j¼1

hj ¼ fQn
j¼1 h

rðtÞ
j ; t ¼ 1; 2; . . .; lg.

where hrðtÞj is the tth smallest value in hj.

Example 1.3 (Liao and Xu 2013). Let h1 ¼ f0:2; 0:3; 0:5; 0:8g and h2 ¼
f0:4; 0:6; 0:8g be two HFEs respectively. Taking addition and multiplication
operations as an example, by using Definition 1.9, we have

h1 	 h2 ¼ hrðtÞ1 þ hrðtÞ2 � hrðtÞ1 hrðtÞ2

			t ¼ 1; 2; 3; 4
n o

¼ 0:2þ 0:4� 0:2� 0:4; 0:3þ 0:5� 0:3� 0:5f ; 0:5þ 0:6� 0:5� 0:6; 0:8þ 0:8� 0:8� 0:8g
¼ 0:52; 0:65; 0:8; 0:96f g

h1 
 h2 ¼ hrðtÞ1 hrðtÞ2

			t ¼ 1; 2; . . .; l
n o

¼ 0:2� 0:4; 0:3� 0:5; 0:5� 0:6; 0:8� 0:8f g
¼ 0:08; 0:15; 0:3; 0:64f g

It is noted that neither Torra (2010) nor Xia and Xu (2011a) paid any attention to
the subtraction and division operations over HFEs. The subtraction and division
operations are significantly important in forming the integral theoretical framework
of HFS. Meanwhile, it is also an indispensable foundation in developing some
well-known decision making method such as PROMETHEE with hesitant fuzzy
information. Hence, in the following, we introduce these basic operations over HFEs.

Considering the relationships between IFS and HFS, to start our investigation, let
us first review the subtraction and division operations over IFSs. The subtraction and
division operations over IFSs were firstly proposed by Atanassov and Riečan (2006).
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Later, Chen (2007) also introduced these operations for IFSs, which were derived
from the deconvolution for equations using addition and multiplication operations of
IFSs, and the forms of these two operations they proposed were similar to those of
Atanassov and Riečan (2006). Based on the different versions of the operation
“negation”, Atanassov (2009) further developed a family of different kinds of sub-
traction operations for IFSs. Among all these different subtraction operations,
Atanassov (2012) finally chose the following forms as the standard definitions for
subtraction and division operations over IFSs in his recent published book:

Definition 1.10 (Atanassov 2012). For two given IFSs A and B, the subtraction and
division operations have the forms:

A�B ¼ x; lA�BðxÞ; mA�BðxÞ

 �jx 2 X

� � ð1:11Þ

where

lA�BðxÞ ¼
if lAðxÞ� lBðxÞ and vAðxÞ� vBðxÞ

lAðxÞ�lBðxÞ
1�lBðxÞ and vBðxÞ[ 0

and vAðxÞpB � pAðxÞvBðxÞ
0; otherwise

8>><
>>: ð1:12Þ

and

mA�BðxÞ ¼
if lAðxÞ� lBðxÞ and mAðxÞ� mBðxÞ

mAðxÞ
mBðxÞ ; and mBðxÞ[ 0

and mAðxÞpBðxÞ� pAðxÞmBðxÞ
1; otherwise

8>><
>>: ð1:13Þ

and

A�B ¼ x; lA�BðxÞ; mA�BðxÞ

 �jx 2 X

� � ð1:14Þ

where

lA�BðxÞ ¼
if lAðxÞ� lBðxÞ and vAðxÞ� vBðxÞ

lAðxÞ
lBðxÞ ; and lBðxÞ[ 0

and lAðxÞpBðxÞ� pAðxÞlBðxÞ
0; otherwise

8>><
>>: ð1:15Þ

and

mA�BðxÞ ¼
if lAðxÞ� lBðxÞ and mAðxÞ� mBðxÞ

mAðxÞ�mBðxÞ
1�mBðxÞ and lBðxÞ[ 0

and lAðxÞpBðxÞ� pAðxÞlBðxÞ
1 otherwise

8>><
>>: ð1:16Þ
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Inspired by Definition 1.10 and based on the relationships between IFSs and
HFSs, the definitions of subtraction and division operations over HFEs can be
introduced:

Definition 1.11 (Liao and Xu 2014a). Let h, h1 and h2 be three HFEs, then

(1) h1�h2 ¼ [ c12h1;c22h2 tf g; where

t ¼
c1�c2
1�c2

; if c1 � c2 and c2 6¼ 1
0; otherwise

�

(2) h1�h2 ¼ [ c12h1;c22h2 tf g; where

t ¼
c1
c2
; if c1 � c2 and c2 6¼ 0

1; otherwise

�
To make it more adequate, let h�U� ¼ O�,h�U� ¼ O�. According to Definition

1.11, it is obvious that for any HFE h, the following equations hold:

• h�h ¼ O�; h�O� ¼ h; h�E� ¼ O�.
• h�h ¼ E�; h�E� ¼ h; h�O� ¼ E�.

In addition, it follows from the above equations that some special cases hold:

• E��E� ¼ O�; U��E� ¼ O�; O��E� ¼ O�.
• E��U� ¼ O�; U��U� ¼ O�; O��U� ¼ O�.
• E��O� ¼ E�; U��O� ¼ U�; O��O� ¼ O�.
• E��E� ¼ E�; U��E� ¼ U�; O��E� ¼ O�.
• E��U� ¼ O�; U��U� ¼ O�; O��U� ¼ O�.
• E��O� ¼ E�; U��O� ¼ E�; O��O� ¼ E�.

For the brevity of presentation, in the process of theoretical derivation thereafter,
we shall not consider the particular case where t ¼ 0 in subtraction operation and
t ¼ 1 in division operation. It is noted that the HFS encompasses the IFS as a
particular case; thus, the subtraction and division operations over HFEs should be
equivalent to the subtraction and division operations over IFNs when not consid-
ering the nonmembership degree of each IFN. Comparing Definitions 1.10 and
1.11, we can see that this requirement is met. The following theorems show that the
subtraction and division operations over HFEs in Definition 1.11 are convincing
and they satisfy some basic properties:

Theorem 1.2 (Liao and Xu 2014a). Let h1 and h2 be two HFEs, then

(1) h1�h2ð Þ 	 h2 ¼ h1, if c1 � c2; c2 6¼ 1:
(2) h1�h2ð Þ 
 h2 ¼ h1, if c1 � c2; c2 6¼ 0:

Theorem 1.3 (Liao and Xu 2014a). Let h1 and h2 be two HFEs, k[ 0; then

(1) k h1�h2ð Þ ¼ kh1�kh2, if c1 � c2; c2 6¼ 1:
(2) h1�h2ð Þk¼ hk1�hk2, if c1 � c2; c2 6¼ 0:
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Theorem 1.4 (Liao and Xu 2014a). Let h ¼ [ c2h cf g be a HFE, and k1 � k2 [ 0;
then

(1) k1h�k2h ¼ k1 � k2ð Þh; if c 6¼ 1:
(2) hk1�hk2 ¼ h k1�k2ð Þ, if c 6¼ 0:

Theorem 1.5 (Liao and Xu 2014a). For three HFEs h1, h2, and h3, the following
conclusions are valid:

(1) h1�h2�h3 ¼ h1�h3�h2, if
c1 � c2;c1 � c3;c2 6¼ 1;c3 6¼ 1;c1 � c2 � c3 þ c2c3 � 0:

(2) h1�h2�h3 ¼ h1�h3�h2, if c1 � c2c3; c2 6¼ 0; c3 6¼ 0:

Theorem 1.6 (Liao and Xu 2014a). For three HFEs h1, h2, and h3, the following
conclusions are valid:

(1) h1�h2�h3 ¼ h1� h2 	 h3ð Þ; if
c1 � c2; c1 � c3;c2 6¼ 1;c3 6¼ 1;c1 � c2 � c3 þ c2c3 � 0:

(2) h1�h2�h3 ¼ h1� h2 
 h3ð Þ; if c1 � c2c3; c2 6¼ 0;c3 6¼ 0:

It should be noted that in the above theorems, the equations hold only under the
given precondition. Moreover, the relationship between IFNs and HFEs can be
further verified in terms of these two operations:

Theorem 1.7 (Liao and Xu 2014a). Let h1 and h2 be two HFEs, then

(1) Aenvðh1�h2Þ ¼ Aenvðh1Þ�Aenvðh2Þ:
(2) Aenvðh1�h2Þ ¼ Aenvðh1Þ�Aenvðh2Þ:

Theorem 1.7 further reveals that the subtraction and division operations defined
for HFEs are consistent with the ones for IFNs. The following theorem reveals the
relationship between these two operations:

Theorem 1.8 (Liao and Xu 2014a). For two HFEs h1 and h2, the following
conclusions are valid:

(1) hc1�hc2 ¼ h1�h2ð Þc.
(2) hc1�hc2 ¼ h1�h2ð Þc.

Example 1.4 (Liao and Xu 2014a). Consider two HFEs h1 ¼ f0:3; 0:2g and
h2 ¼ f0:1; 0:2g. According to Definition 1.11, we have

h1�h2 ¼ 0:3� 0:1
1� 0:1

;
0:3� 0:2
1� 0:2

;
0:2� 0:1
1� 0:1

;
0:2� 0:2
1� 0:2

� 

¼ 2

9
;
1
8
;
1
9
; 0

� 

In addition, as hc1 ¼ f0:7; 0:8g, and hc2 ¼ f0:9; 0:8g, by Definition 1.11, we

obtain
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hc1�hc2 ¼
0:7
0:9

;
0:8
0:9

;
0:7
0:8

;
0:8
0:8

� 

¼ 7

9
;
8
9
;
7
8
; 1

� 


Since

h1�h2ð Þc¼ 1� 2
9
; 1� 1

8
; 1� 1

9
; 1� 0

� 

¼ 7

9
;
8
9
;
7
8
; 1

� 


Then, h1�h2ð Þc¼ hc1�hc2, which verifies (2) of Theorem 1.8. In analogous, (1) of
Theorem 1.8 can also be verified.

The subtraction and division operations are significantly important in forming
the integral theoretical framework of HFS. Meanwhile, it is also critical in devel-
oping some well-known decision making method such as PROMETHEE
(Behzadian et al. 2010) with hesitant fuzzy information. The operations of HFEs
can be immediately extended into interval-valued HFEs and dual HFEs.

1.1.3 Comparison Laws of Hesitant Fuzzy Elements

It is noted that the number of values in different HFEs may be different. Let lhj be
the number of values in hj. For two HFEs h1 and h2, let l ¼ maxflh1 ; lh2g. To
operate correctly, Xu and Xia (2011a) gave the following regulation, which is based
on the assumption that all the decision makers are pessimistic: If lh1\lh2 , then h1
should be extended by adding the minimum value in it until it has the same length
with h2; If lh1 [ lh2 , then h2 should be extended by adding the minimum value in it
until it has the same length with h1. For example, let h1 ¼ f0:1; 0:2; 0:3g,
h2 ¼ f0:4; 0:5g. To operate correctly, we should extend h2 until it has the same
length with h1. The pessimist may extend it as h2 ¼ f0:4; 0:4; 0:5g, and the optimist
may extend h2 as h2 ¼ f0:4; 0:5; 0:5g which adds the maximum value instead. The
results may be different if we extend the shorter one by adding different values. It is
reasonable because the decision makers’ risk preferences can directly influence the
final decision. As to the situation where the decision makers are neither pessimistic
nor optimistic, then the added value should be the mean value of the shorter HFE.
We can also extend the shorter one by adding the value of 0:5 in it. In such a case,
we assume that the decision makers have uncertain information.

Xia and Xu (2011a) defined the score function of a HFE:

Definition 1.12 (Xia and Xu 2011a). For a HFE h;

sðhÞ ¼ 1
lh

X
c2h c ð1:17Þ
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is called the score function of h; where lh is the number of values in h: For two
HFEs h1 and h2, if sðh1Þ[ sðh2Þ; then h1 [ h2; if sðh1Þ ¼ sðh2Þ; then h1 ¼ h2.

However, in some special cases, this comparison law cannot be used to distin-
guish two HFEs:

Example 1.5 (Liao et al. 2014a). Let h1 ¼ ð0:1; 0:2; 0:6Þ and h2 ¼ ð0:2; 0:4Þ be two
HFEs, then by (1.17), we have

sðh1Þ ¼ 0:1þ 0:2þ 06
3

¼ 0:3; sðh2Þ ¼ 0:2þ 0:4
2

¼ 0:3:

Since sðh1Þ ¼ sðh2Þ; we cannot tell the difference between h1 and h2 by only
using Definition 1.12. Actually, such a case is common in practice. Hence, Liao
et al. (2014a) introduced the variance function of HFE.

Definition 1.13 (Liao et al. 2014a). For a HFE h;

v1ðhÞ ¼ 1
lh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ci;cj2h

ðci � cjÞ2
r

ð1:18Þ

is called the variance function of h; where lh is the number of values in h; and v1ðhÞ
is called the variance degree of h: For two HFEs h1 and h2, if v1ðh1Þ[ v1ðh2Þ; then
h1\h2; if v1ðh1Þ ¼ v1ðh2Þ; then h1 ¼ h2.

Example 1.6 (Liao et al. 2014a). According to Eq. (1.18), in Example 1.5, we have

v1ðh1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:22 þ 0:42 þ 0:52

p

3
¼ 0:2160; v1ðh2Þ ¼

ffiffiffiffiffiffiffiffiffi
0:22

p

2
¼ 0:1

Then, v1ðh1Þ[ v1ðh2Þ; i.e., the variance degree of h1 is higher than that of h2.
Thus, h1\h2.

From the above analysis, we can see that the relationship between the score
function and the variance function is similar to the relationship between mean and
variance in statistics. It is noted that recently, Liao and Xu (2015c) modified the
variance function into the following form:

v2ðhÞ ¼ 2
lhðlh � 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ci;cj2h

ðci � cjÞ2
r

ð1:19Þ

where lh in the coefficient of Eq. (1.18) is replaced by C2
lh ¼

lhðlh�1Þ
2 :

In addition, Chen et al. (2015) introduced the deviation function of a HFE:

Definition 1.14 (Chen et al. 2015). For a HFE h, we define the deviation degree
v3ðhÞ of h as:

v3ðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
lh

X
c2h ðc� sðhÞÞ2

r
ð1:20Þ
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As it can be seen that v3ðhÞ is just conventional standard variance in statistics,
which reflects the deviation degree between all values in the HFE h and their mean
value.

Based on the score function sðhÞ and the variance function vqðhÞ(q ¼ 1; 2; 3Þ, a
comparison scheme can be developed to rank any HFEs (Liao et al. 2014a):

• If sðh1Þ\sðh2Þ; then h1\h2;
• If sðh1Þ ¼ sðh2Þ; then

– If vqðh1Þ\vqðh2Þ; then h1 [ h2.
– If vqðh1Þ ¼ vqðh2Þ; then h1 ¼ h2.

Note that we cannot claim that “For two HFEs h1 and h2, if vðh1Þ[ vðh2Þ; then
h1\h2; If vðh1Þ ¼ vðh2Þ; then h1 ¼ h2” due to the fact that sometimes variance is
bad, while sometimes variance is good. This assentation holds only under the
precondition that sðh1Þ ¼ sðh2Þ: It is well known that an efficient estimator is a
measure of the variance of an estimate’s sampling distribution in statistics. Hence,
under the condition that the score values are equal, which implies that the average
values are the same in statistics, it is appropriate to stipulate that the smaller the
variance, the more stable the HFE, and thus, the greater the HFE. Similar schemes
can be seen in the process of comparing two vague sets (Hong and Choi 2000), and
also the comparison between two IFNs (Xu and Yager 2006).

1.2 Extensions of Hesitant Fuzzy Set

1.2.1 Interval-Valued Hesitant Fuzzy Set

In many decision making problems, due to the insufficiency of available informa-
tion, it may be difficult for decision makers (or experts) to exactly quantify the
membership degrees of an element to a set by crisp numbers but by interval-valued
numbers within [0, 1]. Consequently, it is necessary to introduce the concept of
interval-valued hesitant fuzzy set (IVHFS), which permits the membership degree
of an element to a given set to have a few different interval values. The situation is
similar to that encounters in intuitionistic fuzzy environment where the concept of
IFS has been extended to interval-valued IFS (Atanassov and Gargov 1989).

Definition 1.15 (Chen et al. 2013b). Let X be a reference set, and D½0; 1� be the set
of all closed subintervals of [0, 1]. An IVHFS on X is

~H ¼ f\x; ~hAðxÞ[ x 2 Xgj ð1:21Þ
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where ~hAðxÞ : X ! D½0; 1� denotes all possible interval-valued membership degrees
of the element x 2 X to the set A � X: For convenience, we call ~hAðxÞ an
interval-valued hesitant fuzzy element (IVHFE), which reads

~hAðxÞ ¼ ~c ~c 2 ~hAðxÞ
		� � ð1:22Þ

Here ~c ¼ ½~cL;~cU � is an interval-valued number. ~cL ¼ inf ~c and ~cU ¼ sup~c rep-
resent the lower and upper limits of ~c; respectively.

The IVHFE is the basic unit of the IVHFS. It can be considered as a special case of
the IVHFS. The relationship between IVHFE and IVHFS is similar to that between
the interval-valued fuzzy number and interval-valued fuzzy set (Zadeh 1975).

Example 1.7 (Chen et al. 2013b). Let X ¼ fx1; x2g be a reference set, and the
IVHFEs hAðx1Þ ¼ f½0:1; 0:3�; ½ 0:4; 0:5�g and
hAðx2Þ ¼f½0:1; 0:2�; ½0:3; 0:5�; ½0:7; 0:9�g denote the membership degrees of xiði ¼
1; 2Þ to a set A � X respectively. We call ~H an IVHFS, where

~H ¼ f\x1; f½0:1; 0:3�; ½0:4; 0:5�g[ ;\x2; f½0:1; 0:2�; ½0:3; 0:5�; ½0:7; 0:9�gg

When a decision making problem needs to be characterized by interval-valued
numbers rather than crisp numbers, the IVHFS is a preferable choice because it has
a great ability in handling imprecise and ambiguous information. For example,
supposing two decision makers (or experts) discuss the membership degree of an
element x to a set A, one wants to assign [0.3, 0.5] and the other wants to assign
[0.6, 0.7]. They cannot reach consensus. In such a circumstance, the degree can be
represented by an IVHFE {[0.3, 0.5], [0.6, 0.7]}. Furthermore, in a usual
interval-valued fuzzy logic, it is common to average these interval membership
degrees or take the smallest interval that contains all these interval degrees.
However, the IVHFE can keep all interval values proposed by the decision makers
(or experts). That is to say, potentially, it keeps more information about the decision
makers’ (or experts’) opinions, the information that is normally dismissed. It
therefore can give a better result in information aggregation.

It should be noted that when the upper and lower bounds of the interval values
are identical, the IVHFS becomes the HFS, indicating that the HFS is a special case
of the IVHFS. Moreover, when the membership degree of each element belonging
to a given set only has an interval value, the IVHFE reduces to the interval-valued
fuzzy number and the IVHFS becomes the interval-valued fuzzy set. We can
introduce some special IVHFEs, such as:

(1) Empty set: ~O� ¼ \x; ~h
ðxÞ[ jx 2 X
� �

; where ~h
ðxÞ ¼ 0; 0½ �f g; 8x 2 X:

(2) Full set: ~E� ¼ \x; ~h�ðxÞ[ jx 2 X
� �

; where ~h�ðxÞ ¼ 1; 1½ �f g; 8x 2 X:

(3) Complete ignorance (all is possible): ~U� ¼ \x; ~hðxÞ[ jx 2 X
� �

; where
~hðxÞ ¼ 0; 1½ �f g; 8x 2 X:

(4) Nonsense set: ~�� ¼ \x; ~hðxÞ[ jx 2 X
� �

; where ~hðxÞ ¼ �, 8x 2 X:
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Chen et al. (2013b) defined some operations on IVHFEs through the connection
between IVHFEs and HFEs.

Definition 1.16 (Chen et al. 2013b). Let ~h; ~h1 and ~h2 be three IVHFEs, then

(1) ~hc ¼ ½1� ~cU ; 1� ~cL� ~c 2 ~h
		� �

:

(2) ~h1 [ ~h2 ¼ ½max ~cL1 ;~c
L
2


 �
;max ~cU1 ;~c

U
2


 �� ~c1 2 ~h1;~c2 2 ~h2
		� �

:

(3) ~h1 \ ~h2 ¼ ½min ~cL1 ;~c
L
2


 �
;min ~cU1 ;~c

U
2


 �� ~c1 2 ~h1;~c2 2 ~h2
		� �

:

(4) ~hk ¼ ½ð~cLÞk; ð~cUÞk� ~c 2 ~h
		n o

; k[ 0:

(5) k~h ¼ ½1� ð1� ~cLÞk; 1� ð1� ~cUÞk� ~c 2 ~h
		n o

; k[ 0:

(6) ~h1 	 ~h2 ¼ ½~cL1 þ~cL2 � ~cL1 � ~cL2 ; ~cU1 þ~cU2 � ~cU1 � ~cU2 � ~c1 2 ~h1;~c2 2 ~h2
		� �

:

(7) ~h1 
 ~h2 ¼ ½~cL1 � ~cL2 ; ~cU1 � ~cU2 � ~c1 2 ~h1;~c2 2 ~h2
		� �

:

Example 1.8 (Chen and Xu 2014). Suppose there are three IVHFEs ~h1 ¼
0:4; 0:6½ �f g; ~h2 ¼ 0:2; 0:3½ �; 0:5; 0:7½ �; 0:6; 0:8½ �f g; ~h3 ¼ 0:3; 0:4½ �; 0:7; 0:8½ �f g:

Let k ¼ 2; then we have

ð1Þ ~hc3 ¼ 1� ~cU3 ; 1� ~cL3
� �

~c3 2 ~h3
		� �

¼ 1� 0:8; 1� 0:7½ �; 1� 0:4; 1� 0:3½ �f g ¼ 0:2; 0:3½ �; 0:6; 0:7½ �f g:

ð2Þ ~h1 [ ~h2 ¼ max ~cL1 ;~c
L
2


 �
;max ~cU1 ;~c

U
2


 �� �
~c1 2 ~h1;~c2 2 ~h2
		� �

¼ max 0:4; 0:2ð Þ;max 0:6; 0:3ð Þ½ �; max 0:4; 0:5ð Þ;max 0:6; 0:7ð Þ½ �;f
max 0:4; 0:6ð Þ;max 0:6; 0:8ð Þ½ �g

¼ 0:4; 0:6½ �; 0:5; 0:7½ �; 0:6; 0:8½ �f g:

ð3Þ ~h1 \ ~h2 ¼ min ~cL1 ;~c
L
2


 �
;min ~cU1 ;~c

U
2


 �� �
~c1 2 ~h1;~c2 2 ~h2
		� �

¼ min 0:4; 0:2ð Þ;min 0:6; 0:3ð Þ½ �; min 0:4; 0:5ð Þ;min 0:6; 0:7ð Þ½ �;f
min 0:4; 0:6ð Þ;min 0:6; 0:8ð Þ½ �

¼ 0:2; 0:3½ �; 0:4; 0:6½ �f g
Noted that the symbol “{}” means the set of interval-valued numbers.

Considering that any two elements in a set must be different, the repeated elements
are thus deleted.

ð4Þ ~h1 	 ~h2 ¼ ~cL1 þ~cL2 � ~cL1 � ~cL2 ; ~cU1 þ~cU2 � ~cU1 � ~cU2
� �

~c1 2 ~h1;~c2 2 ~h2
		� �

¼ 0:4þ 0:2� 0:4 � 0:2; 0:6þ 0:3� 0:6 � 0:3½ �; 0:4þ 0:5� 0:4 � 0:5; 0:6þ 0:7� 0:6 � 0:7½ �f ;

0:4þ 0:6� 0:4 � 0:6; 0:6þ 0:8� 0:6 � 0:8½ �g
¼ 0:52; 0:72½ �; 0:7; 0:88½ �; 0:76; 0:92½ �f g:
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ð5Þ ~h1 
 ~h2 ¼ ~cL1 � ~cL2 ; ~cU1 � ~cU2
� �

~c1 2 ~h1;~c2 2 ~h2
		� �

¼ 0:4 � 0:2 ; 0:6 � 0:3½ �; 0:4 � 0:5 ; 0:6 � 0:7½ �f ; 0:4 � 0:6 ; 0:6 � 0:8½ �g
¼ 0:08; 0:18½ �; 0:2; 0:42½ �f ; 0:24; 0:48½ �g:

ð6Þ k~h3 ¼ 1� ð1� ~cL3Þ2; 1� ð1� ~cU3 Þ2
h i

~c3 2 ~h3
		n o

¼ 1� 1� 0:3ð Þ2; 1� 1� 0:4ð Þ2
h i

; 1� 1� 0:7ð Þ2; 1� 1� 0:8ð Þ2
h in o

¼ 0:51; 0:64½ �; 0:91; 0:96½ �f g:

ð7Þ ~h23 ¼ ð~cL3Þ2; ð~cU3 Þ2
h i

~c3 2 ~h3
		n o

¼ ð0:3Þ2; ð0:4Þ2
h i

; ð0:7Þ2; ð0:8Þ2
h in o

¼ 0:09; 0:16½ �; 0:49; 0:64½ �f g:

It is pointed out that if ~cL ¼ ~cU , then the operations in Definition 1.16 reduce to
those of HFEs.

Theorem 1.9 (Chen and Xu 2014). Let ~h be an IVHFE and k; k1; k2 [ 0; then

(1) ~h[ ~h ¼ ~h; ~h\ ~h ¼ ~h:
(2) ~h[ ~h
 ¼ ~h; ~h\ ~h
 ¼ ~h
.
(3) ~h[ ~h� ¼ ~h�, ~h\ ~h� ¼ ~h:
(4) ~h	 ~h
 ¼ ~h; ~h
 ~h
 ¼ ~h
.
(5) ~h	 ~h� ¼ ~h�, ~h
 ~h� ¼ ~h:
(6) k~h
 ¼ ~h
, k~h� ¼ ~h�.

(7) ~h


 �k¼ ~h
, ~h�


 �k¼ ~h�.

(8) ~hk1

 �k2¼ ~hk2


 �k1¼ ~hk1k2 , k2 k1~h

 � ¼ k1 k2~h


 � ¼ k1k2ð Þ~h:

Theorem 1.10 (Chen and Xu 2014). Let ~h1, ~h2 and ~h3 be three IVHFEs, then

(1) ~h1 [ ~h2 ¼ ~h2 [ ~h1.
(2) ~h1 \ ~h2 ¼ ~h2 \ ~h1.
(3) ~h1 \ ð~h2 \ ~h3Þ ¼ ð~h1 \ ~h2Þ \ ~h3.
(4) ~h1 [ ð~h2 [ ~h3Þ ¼ ð~h1 [ ~h2Þ [ ~h3.
(5) ~h1 	 ð~h2 	 ~h3Þ ¼ ð~h1 	 ~h2Þ 	 ~h3.
(6) ~h1 
 ð~h2 
 ~h3Þ ¼ ð~h1 
 ~h2Þ 
 ~h3.
(7) ~h1 \ ð~h2 [ ~h3Þ ¼ ~h1 \ ~h2


 �[ ~h1 \ ~h3

 �

:

(8) ~h1 [ ð~h2 \ ~h3Þ ¼ ~h1 [ ~h2

 �\ ~h1 [ ~h3


 �
:
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Theorem 1.11 (Chen and Xu 2014). Let ~h1 and ~h2 be two IVHFEs, then

(1) ~h1 \ ð~h1 [ ~h2Þ ¼ ~h1.
(2) ~h1 [ ~h1 \ ~h2


 � ¼ ~h1.

Theorem 1.12 (Chen and Xu 2014). Let ~h1 and ~h2 be two IVHFEs and k[ 0; then

(1) kð~h1 [ ~h2Þ ¼ k~h1 [ k~h2.
(2) kð~h1 \ ~h2Þ ¼ k~h1 \ k~h2.
(3) ð~h1 [ ~h2Þk ¼ ~hk1 [ ~hk2.

(4) ð~h1 \ ~h2Þk ¼ ~hk1 \ ~hk2.

Theorem 1.13 (Chen et al. 2013b). Let ~h; ~h1 and ~h2 be three IVHFEs, we have

(1) ~h1 	 ~h2 ¼ ~h2 	 ~h1.
(2) ~h1 
 ~h2 ¼ ~h2 
 ~h1.
(3) kð~h1 	 ~h2Þ ¼ k~h1 	 k~h2, k[ 0:
(4) ð~h1 
 ~h2Þk ¼ ~hk1 
 ~hk2, k[ 0:
(5) k1~h	 k2~h ¼ ðk1 þ k2Þ~h; k1; k2 [ 0:
(6) ~hk1 
 ~hk2 ¼ ~hðk1 þ k2Þ, k1; k2 [ 0:

Proof For three IVHFEs ~h; ~h1 and ~h2, we have

(1) ~h1 	 ~h2 ¼ ½~cL1 þ~cL2 � ~cL1 � ~cL2 ; ~cU1 þ~cU2 � ~cU1 � ~cU2 � ~c1 2 ~h1;~c2 2 ~h2
		� �

¼ ½~cL2 þ~cL1 � ~cL2 � ~cL1 ; ~cU2 þ~cU1 � ~cU2 � ~cU1 � ~c1 2 ~h1;~c2 2 ~h2
		� �

¼ ~h2 	 ~h1

.

ð2Þ ~h1 
 ~h2 ¼ ½~cL1 � ~cL1 ; ~cU1 � ~cU1 � ~c1 2 ~h1;~c2 2 ~h2
		� �

¼ ½~cL2 � ~cL1 ; ~cU2 � ~cU2 � ~c1 2 ~h1;~c2 2 ~h2
		� � ¼ ~h2 
 ~h1:

ð3Þ kð~h1 	 ~h2Þ ¼ ½1� ð1� ð~cL1 þ~cL2 � ~cL1 � ~cL2ÞÞk; 1� ð1� ð~cU1 þ~cU2 � ~cU1 � ~cU2 ÞÞk� ~c1 2 ~h1;~c2 2 ~h2
		n o

¼ ½1� ð1� ~cL1Þkð1� ~cL2Þk; 1� ð1� ~cU1 Þkð1� ~cU2 Þk� ~c1 2 ~h1;~c2 2 ~h2
		n o

¼ ½1� ð1� ~cL1Þkþ 1� ð1� ~cL2Þk � ð1� ð1� ~cL1ÞkÞð1� ð1� ~cL2ÞkÞ;
n
1� ð1� ~cU1 Þk þ 1� ð1� ~cU2 Þk � ð1� ð1� ~cU1 ÞkÞð1� ð1� ~cU2 ÞkÞ� ~c1 2 ~h1;~c2 2 ~h2

		 o
¼ k~h1 	 k~h2:
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ð4Þ ð~h1 
 ~h2Þk ¼ ½ð~cL1 � ~cL2Þk; ð~cU1 � ~cU2 Þk� ~c1 2 ~h1;~c2 2 ~h2
		n o

¼ ½ð~cL1Þk � ð~cL2Þk; ð~cU1 Þk � ð~cU2 Þk� ~c1 2 ~h1;~c2 2 ~h2
		n o

¼ ~hk1 
 ~hk2:

ð5Þ k1~h	 k2~h ¼ ½1� ð1� ~cLÞk1 þ 1� ð1� ~cLÞk2 � ð1� ð1� ~cLÞk1Þð1� ð1� ~cLÞk2Þ;
n
1� ð1� ~cUÞk1 þ 1� ð1� ~cUÞk2 � ð1� ð1� ~cUÞk1Þð1� ð1� ~cUÞk2Þ� ~c 2 ~h

		 o
¼ ½1� ð1� ~cLÞk1ð1� ~cLÞk2 ; 1� ð1� ~cUÞk1ð1� ~cUÞk2 � ~c 2 ~h

		n o
¼ ½1� ð1� ~cLÞk1 þ k2 ; 1� ð1� ~cUÞk1 þ k2 � ~c 2 ~h

		n o
¼ ðk1þ k2Þ~h:

(6) ~hk1 
 ~hk2 ¼ ½ð~cLÞk1 � ð~cLÞk2 ; ð~cUÞk1 � ð~cUÞk2 � ~c 2 ~h
		n o

¼ ½ð~cLÞk1 þ k2 ; ð~cUÞk1 þ k2 � ~c 2 ~h
		n o

¼ ~hðk1 þ k2Þ:h
:

This completes the proof.
The relationships between the defined operations on IVHFEs are given in

Theorem 1.14.

Theorem 1.14 (Chen et al. 2013b). For three IVHFEs ~h; ~h1 and ~h2, we have

(1) ~hc1 [ ~hc2 ¼ ~h1 \ ~h2

 �c

.

(2) ~hc1 \ ~hc2 ¼ ~h1 [ ~h2

 �c

.

(3) ð~hcÞk ¼ ðk~hÞc.
(4) kð~hcÞ ¼ ð~hkÞc.
(5) ~hc1 	 ~hc2 ¼ ~h1 
 ~h2


 �c
.

(6) ~hc1 
 ~hc2 ¼ ~h1 	 ~h2

 �c

.

Proof For three IVHFEs ~h; ~h1 and ~h2, we have

ð1Þ ~hc1 [ ~hc2 ¼ maxð1� ~cU1 ; 1� ~cU2 Þ;maxð1� ~cL1 ; 1� ~cL2Þ
� �

~c1 2 h1;~c2 2 h2j� �
¼ 1�minð~cU1 ;~cU2 Þ; 1�minð~cL1 ;~cL2Þ

� �
~c1 2 h1;~c2 2 h2j� � ¼ ð~h1 \ ~h2Þc:

ð2Þ ~hc1 \ ~hc2 ¼ minð1� ~cU1 ; 1� ~cU2 Þ;minð1� ~cL1 ; 1� ~cL2Þ
� �

~c1 2 h1;~c2 2 h2j� �
¼ 1�maxð~cU1 ;~cU2 Þ; 1�maxð~cL1 ;~cL1Þ

� �
~c1 2 h1;~c2 2 h2j� � ¼ ð~h1 [ ~h2Þc:

ð3Þ ð~hcÞk ¼ ð1� ~cUÞk; ð1� ~cLÞk
h i

~c 2 ~h
		n o

¼ 1� ð1� ~cLÞk; 1� ð1� ~cUÞk
h i

~c 2 ~h
		n oC

¼ ðk~hÞc:
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ð4Þ k~hc ¼ k 1� ~cU ; 1� ~cL
� �

~c 2 ~h
		� � ¼ 1� ð1� ð1� ~cUÞÞk; 1� ð1� ð1� ~cLÞÞk

h i
~c 2 ~h
		n o

¼ 1� ð~cUÞk; 1� ð~cLÞk
h i

~c 2 ~h
		n o

¼ ð~hkÞc:

ð5Þ ~hc1 	 ~hc2 ¼ ð1� ~cU1 Þþ ð1� ~cU2 Þ � ð1� ~cU1 Þð1� ~cU2 Þ;
��

ð1� ~cL1Þþ ð1� ~cL2Þ � ð1� ~cL1Þð1� ~cL2Þ
�
~c1 2 ~h1;~c2 2 ~h2
		 �

¼ 1� ~cU1 � ~cU2 ; 1� ~cL1 � ~cL2
� �

~c1 2 ~h1;~c2 2 ~h2
		� � ¼ ~h1 
 ~h2


 �c
:

ð6Þ ~hc1 
 ~hc2 ¼ ð1� ~cU1 Þð1� ~cU2 Þ; ð1� ~cL1Þð1� ~cL2Þ
� �

~c1 2 ~h1;~c2 2 ~h2
		� �

¼ 1� ð~cU1 þ~cU2 � ~cU1 � ~cU2 Þ; 1� ð~cL1 þ~cL2 � ~cL1 � ~cL2Þ
� �

~c1 2 ~h1;~c2 2 ~h2
		� � ¼ ~h1 	 ~h2


 �c
:h

This completes the proof.
Since the number of interval values for different IVHFEs could be different and

the interval values are usually out of order, we arrange them in any order using
Eq. (1.23). To facilitate the calculation between two IVHFEs, we let l ¼
maxfl~a; l~bg with l~a and l~b being the number of intervals in the IVHFEs ~a and ~b: To
operate correctly, we give the following regulation: when l~a 6¼l~b, we can make them
equivalent through adding elements to the IVHFE that has a less number of ele-
ments. In terms of pessimistic principles, the smallest element can be added while
the opposite case will be adopted following optimistic principles. In this study we
adopt the latter. Specifically, if l~a\l~b, then ~a should be extended by adding the

maximum value in it until it has the same length as ~b; if l~a [ l~b, then
~b should be

extended by adding the maximum value in it until it has the same length as ~a:

Definition 1.17 (Xu and Da 2002). Let ~a ¼ ½~aL; ~aU � and ~b ¼ ½~bL; ~bU � be two
interval numbers, and k� 0; then

(1) ~a ¼ ~b , ~aL ¼ ~bL and ~aU ¼ ~bU .
(2) ~aþ ~b ¼ ½~aL þ ~bL; ~aU þ ~bU �:
(3) k~a ¼ ½k~aL; k~aU �; especially, k~a ¼ 0; if k ¼ 0:

The possibility degree is proposed to compare two interval numbers:

Definition 1.18 (Xu and Da 2002). Let ~a ¼ ½~aL; ~aU � and ~b ¼ ½~bL; ~bU �; and let l~a ¼
~aU � ~aL and l~b ¼ ~bU � ~bL. Then the degree of possibility of ~a� ~b is formulated by

pð~a� ~bÞ ¼ max 1�max
~bU � ~aL

l~a þ l~b
; 0

� �
; 0

� 

ð1:23Þ

The score function for IVHFEs is defined as follows:
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Definition 1.19 (Chen et al. 2013b). For an IVHFE ~h;

sð~hÞ ¼ 1
l~h

X
~c2~h ~c ð1:24Þ

is called the score function of ~h with l~h being the number of interval values in ~h; and
sð~hÞ is an interval value belonging to [0, 1]. For two IVHFEs ~h1 and ~h2, if
sð~h1Þ� sð~h2Þ; then ~h1 � ~h2.

Note that we can compare two scores using Eq. (1.23). Moreover, with
Definition 1.19, we can compare two IVHFEs.

1.2.2 Dual Hesitant Fuzzy Set

Zhu et al. (2012) defined the dual hesitant fuzzy set in terms of two functions that
return two sets of membership values and nonmembership values respectively for
each element in the domain:

Definition 1.20 (Zhu et al. 2012). Let X be a fixed set, then a dual hesitant fuzzy
set (DHFS) D on X is described as:

D ¼ f\x; hAðxÞ; gAðxÞ[ jx 2 Xg ð1:25Þ

in which hAðxÞ and gAðxÞ are two sets of some values in ½0; 1�; denoting the possible
membership degrees and nonmembership degrees of the element x 2 X to the set
A � X respectively, with the conditions:

0� c; g� 1; 0� cþ þ gþ � 1; ð1:26Þ

where c 2 hAðxÞ; g 2 gAðxÞ; cþ 2 hþ ðxÞ ¼ [ c2hAðxÞmaxfcg, and gþ 2 gþ ðxÞ ¼
[ g2gAðxÞmaxfgg for all x 2 X: For convenience, the pair dAðxÞ ¼ ðhAðxÞ; gAðxÞÞ is
called a dual hesitant fuzzy element (DHFE) denoted by d ¼ ðh; gÞ; with the
conditions: c 2 h; g 2 g; cþ 2 hþ ¼[ c2hmaxfcg, gþ 2 gþ ¼ [ g2gmaxfgg,
0� c; g� 1 and 0� cþ þ gþ � 1:

There are some special DHFEs:

(1) Complete uncertainty: d ¼ ðf0g; f1gÞ:
(2) Complete certainty: d ¼ ðf1g; f0gÞ:
(3) Complete ill-known (all is possible): d ¼ ½0; 1�:
(4) Nonsense element: d ¼ �, i.e., h ¼ �; g ¼ �.

For a given d 6¼ �, if h and g have only one value c and g respectively, and
cþ g\1; then the DHFS reduces to an IFS. If h and g have only one value c and g
respectively, and cþ g ¼ 1; or h owns one value, and g ¼ �, then the DHFS
reduces to a fuzzy set. If g ¼ � and h 6¼ �, then the DHFS reduces to a HFS.
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Hence, the DHFS encompasses the fuzzy set, the IFS, and the HFS as special cases.
DHFS consists of two parts, i.e., the membership hesitancy function and the
non-membership hesitancy function, which confront several different possible
values indicating the cognitive degrees whether certainty or uncertainty. As we all
know, when the decision makers provide their judgments over the objects, the more
the information they take into account, the more the values we will obtain from the
decision makers. As the DHFS can reflect the original information given by the
decision makers as much as possible, it can be regarded as a more comprehensive
set supporting a more flexible approach.

For simplicity, let c� 2 h� ¼ [ c2hðxÞminfcg, g� 2 g� ¼ [ g2gðxÞminfgg. cþ
and gþ are defined as above. For a typical DHFS, h and g can be represented by
two intervals as:

h ¼ ½c�; cþ �; g ¼ ½g�; gþ � ð1:27Þ

Based on Definition 1.4, there is a transformation between IFN and HFE, we can
also transform g to the second HFE h2ðxÞ ¼ ½1� gþ ; 1� g�� denoting the possible
membership degrees of the element x 2 X to the set A � X: In this way, both h and
h2 indicate the membership degrees. As such, we can use a “nested interval” to
represent dðxÞ as:

d ¼ ½½c�; cþ �; ½1� gþ ; 1� g��� ð1:28Þ

The common ground of these sets is to reflect fuzzy degrees to an object,
according to either fuzzy numbers or interval-valued fuzzy numbers. Therefore, we
use nonempty closed interval as a uniform framework to represent a DHFE d;
which is divided into different cases as follows:

d ¼

�; if g ¼ � and h ¼ �
ðcÞ if g ¼ � and h 6¼ �; c� ¼ cþ ¼ c

if g 6¼ � and h 6¼ �; c� ¼ cþ ¼ c ¼ 1� g� ¼ 1� gþ¼ 1� g

�
ð1� gÞ; if g 6¼ � and h ¼ �; g� ¼ gþ ¼ g

*

½c�; cþ �; if g ¼ � and h 6¼ �; c� 6¼ cþ

½1� gþ ; 1� g��; if g 6¼ � and h ¼ �; g� 6¼ gþ

�
c; ½1� gþ ; 1� g��½ �; if g 6¼ � and h 6¼ �; g� 6¼ gþ ; c� ¼ cþ ¼ c
½c�; cþ �; g½ �; if g 6¼ � and h 6¼ �; c� 6¼ cþ ; g� ¼ gþ ¼ g

�
½c�; cþ �; ½1� gþ ; 1� g��½ �; if g 6¼ � and h 6¼ �; g� 6¼ gþ ; c� 6¼ cþ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð1:29Þ

Equation (1.29) reflects the connections between DHFS and other types of fuzzy
set extensions. The merit of DHFS is more flexible to be valued in multifold ways
according to the practical demands than the existing sets, taking into account much
more information given by decision makers.

The complement of the DHFS can be defined regarding to different situations.
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Definition 1.21 (Zhu et al. 2012). Given a DHFE represented by the function d;
and d 6¼ �, its complement is defined as:

dc ¼
ð[ g2gfgg; [ c2hfcgÞ; if g 6¼ � and h 6¼ �
ð [ c2hf1� cg; f�gÞ; if g ¼ � and h 6¼ �
ðf�g; [ g2gf1� ggÞ; if h ¼ � and g 6¼ �

8<
: ð1:30Þ

Apparently, the complement can be correspondingly represented as ðdcÞc ¼ d:
For two DHFSs d1 and d2, the corresponding lower and upper bounds to h and g

are h�, hþ , g� and gþ , respectively, where h� ¼ [ c2hminfcg,
hþ ¼ [ c2hmaxfcg, g� ¼ [ g2gminfgg, and gþ ¼ [ g2gmax gf g: Then the union
and intersection of DHFSs can be defined as follows:

Definition 1.22 (Zhu et al. 2012). Let d1 and d2 be two DHFEs. Then,

(1) d1 [ d2 ¼ ðfh 2 ðh1 [ h2Þjh�maxðh�1 ; h�2 Þg; fg 2 ðg1 \ g2Þjg�minðgþ
1 ; gþ

2 ÞgÞ:
(2) d1 \ d2 ¼ ðfh 2 ðh1 \ h2Þjh�minðhþ

1 ; hþ
2 Þg; fg 2 ðg1 [ g2Þjg�maxðg�1 ; g�2 ÞgÞ:

Example 1.9 (Zhu et al. 2012). Let d1 ¼ ðf0:1; 0:3; 0:4g; f0:3; 0:5gÞ and d2 ¼
ðf0:2; 0:5g; f0:1; 0:2; 0:4gÞ be two DHFEs, then we have

(1) Complement: dc1 ¼ ðf0:3; 0:5g; f0:1; 0:3; 0:4gÞ:
(2) Union: d1 [ d2 ¼ ðf0; 2; 0:3; 0:4; 0:5g; f0:1; 0:2; 0:3; 0:4gÞ:
(3) Intersection: d1 \ d2 ¼ ðf0; 1; 0:2; 0:3; 0:4g; f0:3; 0:4; 0:5gÞ:

Definition 1.23 (Zhu et al. 2012). For two DHFEs d1 and d2, let n be a positive
integer, then the following operations are valid:

ð1Þ d1 	 d2 ¼ ðhd1 	 hd2 ; gd1 
 gd2Þ
¼ ð[ cd12hd1 ;cd22hd2 fcd1 þ cd2 � cd1cd2g; [ gd12gd1 ;gd22gd2 fgd1gd2gÞ:

ð2Þ d1 
 d2 ¼ ðhd1 
 hd2 ; gd1 	 gd2Þ
¼ ð[ cd12hd1 ;cd22hd2 fcd1cd2g; [ gd12gd1 ;gd22gd2fgd1 þ gd2 � gd1gd2gÞ:

(3) nd ¼ ð[ cd2hdf1� ð1� cdÞng; [ gd2gdfðgdÞngÞ:
(4) dn ¼ ð[ cd2hdfðcdÞng; [ gd2gdf1� ð1� gdÞngÞ:

Theorem 1.15 (Zhu et al. 2012). Let d; d1 and d2 be any three DHFEs, k� 0;
then

(1) d1 	 d2 ¼ d2 	 d1.
(2) d1 
 d2 ¼ d2 
 d1.
(3) kðd1 
 d2Þ ¼ kd1 
 kd2.
(4) ðd1 
 d2Þk ¼ dk1 
 dk2.
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It is noted that the above operations for DHFEs are based on the Algebraic
t-conorm and t-norm. In fact, there are various types of t-conorm and t-norm. If we
replace the Algebraic t-conorm and t-norm in the above operations for DHFEs with
other forms of t-conorm and t-norm, we shall get more operational methods for
DHFEs. For example, the Einstein t-conorm and t-norm are given as:

SEðx; yÞ ¼ xþ y
1þ xy

; TEðx; yÞ ¼ xy
1þð1� xÞð1� yÞ ð1:31Þ

Based on the Einstein t-conorm and t-norm, Zhao et al. (2015) defined the
Einstein sum and the Einstein product of DHFEs as follows:

Definition 1.24 (Zhao et al. 2016a). For any two DHFEs d1 ¼ ðh1; g1Þ and d2 ¼
ðh2; g2Þ; we have

ð1Þ d1 _	d2 ¼ ð[ c
1
2h1 ;c22h2f

c
1
þ c

2

1þ c
1
c
2

g; [ g
1
2g1 ;g22g2 f

g
1
g

2

1þð1� g
1
Þð1� g

2
ÞgÞ:

ð2Þ d1 _
d2 ¼ ð[ c
1
2h1 ;c22h2f

c
1
c
2

1þð1� c
1
Þð1� c

2
Þg; [ g

1
2g1 ;g22g2 f

g
1
þ g

2

1þ g
1
g

2

gÞ:

To get the Einstein scalar multiplication and the Einstein power for DHFEs, the
following theorems are introduced:

Theorem 1.16 (Zhao et al. 2016a). Let d ¼ ðh; gÞ be a DHFE, and n be any
positive real number, then

nd ¼ ð[ c2hfð1þ cÞn � ð1� cÞn
ð1þ cÞn þð1� cÞng; [ g2gf 2gn

ð2� gÞn þ gn
gÞ ð1:32Þ

where nd ¼ d _	d _	 � � � _	d
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{n

: Moreover, nd is a DHFE.

Proof We use mathematical induction to prove that Eq. (1.32) holds for the pos-
itive integer n:

(1) For n ¼ 1; it is obvious that Eq. (1.32) holds.
(2) Assume Eq. (1.32) holds for n ¼ k: Then for n ¼ kþ 1; we have

ðkþ 1Þd ¼ kd _	d ¼ ð[ c2hfð1þ cÞk � ð1� cÞk
ð1þ cÞk þð1� cÞkg; [ g2gf 2gk

ð2� gÞk þ gk
gÞ _	ð[ c2hfcg; [ g2gfggÞ

¼ ð[ c2hf
ð1þ cÞk�ð1�cÞk
ð1þ cÞk þ ð1�cÞk þ c

1þ ð1þ cÞk�ð1�cÞk
ð1þ cÞk þð1�cÞk c

g; [ g2gf
2gk

ð2�gÞk þ gk
g

1þð1� 2gk

ð2�gÞk þ gk
Þð1� gÞ

gÞ

¼ ð[ c2hfð1þ cÞkþ 1 � ð1� cÞkþ 1

ð1þ cÞkþ 1 þð1� cÞkþ 1g; [ g2gf 2gkþ 1

ð2� gÞkþ 1 þ gkþ 1
gÞ

Thus, Eq. (1.32) holds for n ¼ kþ 1:
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In the following, we prove that Theorem 1.16 holds when n is a positive real
number.

Since 0� c� 1; 0� g� 1; 1� 2� g� 2; and 1� c� g� 0; 1� g� c� 0;
obviously, we have

0� ð1þ cÞn � ð1� cÞn
ð1þ cÞn þð1� cÞn � 1 ð1:33Þ

0� 2gn

ð2� gÞn þ gn
� 1 ð1:34Þ

0� ð1þ cÞn � ð1� cÞn
ð1þ cÞn þð1� cÞn � ð1þ cÞn � ð1� cÞn

ð1þ cÞn þ gn
� ð1þ cÞn � gn

ð1þ cÞn þ gn
ð1:35Þ

0� 2gn

ð2� gÞn þ gn
¼ 2gn

ð1þð1� gÞÞn þ gn
� 2gn

ð1þð1� gÞÞn þ gn
� 2gn

ð1þ cÞn þ gn

ð1:36Þ

From Eqs. (1.35) and (1.36), we have

0� ð1þ cÞn � ð1� cÞn
ð1þ cÞn þð1� cÞn þ 2gn

ð2� gÞn þ gn
� 1 ð1:37Þ

Combining Eqs. (1.33), (1.34) and (1.37), we know that the DHFE nd is a
DHFE for any positive real number n. This completes the proof of Theorem 1.16.

Theorem 1.17 (Zhao et al. 2016a). Let d ¼ ðh; gÞ be a DHFE, and n be any
positive real number, then

dn ¼ ð[ c2hf 2cn

ð2� cÞn þ cn
g; [ g2gfð1þ gÞn � ð1� gÞn

ð1þ gÞn þð1� gÞngÞ ð1:38Þ

where dn ¼ d _
d _
 � � � _
d
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{n

; and dn is a DHFE.
Based on Theorems 1.16 and 1.17, the Einstein scalar multiplication and the

Einstein power of DHFE can be defined:

Definition 1.25 (Zhao et al. 2016a). Let d ¼ ðh; gÞ be a DHFE, k[ 0; then

(1) kd ¼ ð[ c2hfð1þ cÞk�ð1�cÞk
ð1þ cÞk þð1�cÞkg; [ g2gf 2gk

ð2�gÞk þ gk
gÞ:

(2) dk ¼ ð[ c2hf 2ck

ð2�cÞk þ ck
g; [ g2gf ð1þ gÞk�ð1�gÞk

ð1þ gÞk þð1�gÞkgÞ:
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Theorem 1.18 (Zhao et al. 2016a). Let d; d1 and d2 be any three DHFEs, k[ 0;
then

(1) d1 _	d2 ¼ d2 _	d1.
(2) d1 _
d2 ¼ d2 _
d1.
(3) kðd1 _	d2Þ ¼ kd1 _	kd2.
(4) ðd1 _
d2Þk ¼ dk1 _
dk2 .
(5) k1d _	k2d ¼ ðk1 _	k2Þd:
(6) dk1 _
dk2 ¼ dk1 þ k2 .

Proof (1) and (2) are obvious. We prove (3) and (5), while (4) and (6) can be
proven similarly.

(3) kðd1 _	d2Þ ¼ kð [ c
1
2h1 ;c22h2f

c
1
þ c

2

1þ c
1
c
2

g; [ g
1
2g1 ;g22g2 f

g
1
g

2

1þð1� g
1
Þð1� g

2
ÞgÞ

¼ ð[ c
1
2h1 ;c22h2f

ð1þ c
1
þ c

2
1þ c

1
c
2
Þk � ð1� c

1
þ c

2
1þ c

1
c
2
Þk

ð1þ c
1
þ c

2
1þ c

1
c
2
Þk þð1� c

1
þ c

2
1þ c

1
c
2
Þk
g;

[ g
1
2g1 ;g22g2 f

2ð g
1
g
2

1þð1�g
1
Þð1�g

2
ÞÞk

ð2� g
1
g
2

1þð1�g
1
Þð1�g

2
ÞÞk þð g

1
g
2

1þð1�g
1
Þð1�g

2
ÞÞk

gÞ

¼ ð[ c
1
2h1 ;c22h2f

ð1þ c
1
Þkð1þ c

2
Þk � ð1� c

1
Þkð1� c

2
Þk

ð1þ c
1
Þkð1þ c

2
Þk þð1� c

1
Þkð1� c

2
Þk
g;

[ g
1
2g1 ;g22g2 f

2ðg
1
g

2
Þk

ð2� g
1
Þkð2� g

2
Þk þðg

1
g

2
Þk
gÞ

kd1 _	kd2 ¼ ð[ c12h1f
ð1þ c1Þk � ð1� c1Þk
ð1þ c1Þkþ ð1� c1Þk

g; [ g12g1f
2gk1

ð2� g1Þk þ gk1
gÞ

_	ð[ c22h2f
ð1þ c2Þk � ð1� c2Þk
ð1þ c2Þkþ ð1� c2Þk

g; [ g22g2f
2gk2

ð2� g2Þkþ gk2
gÞ

¼ ð[ c
1
2h1 ;c22h2 f

ð1þ c1Þk�ð1�c1Þk
ð1þ c1Þk þð1�c1Þk

þ ð1þ c2Þk�ð1�c2Þk
ð1þ c2Þk þð1�c2Þk

1þ ð1þ c1Þk�ð1�c1Þk
ð1þ c1Þk þð1�c1Þk

ð1þ c2Þk�ð1�c2Þk
ð1þ c2Þk þð1�c2Þk

g;

[ g
1
2g1 ;g22g2 f

2gk1
ð2�g1Þk þ gk1

2gk2
ð2�g2Þk þ gk2

1þð1� 2gk1
ð2�g1Þk þ gk1

Þð1� 2gk2
ð2�g2Þk þ gk2

Þ
gÞ

¼ ð[ c
1
2h1 ;c22h2 f

ð1þ c
1
Þkð1þ c

2
Þk � ð1� c

1
Þkð1� c

2
Þk

ð1þ c
1
Þkð1þ c

2
Þk þð1� c

1
Þkð1� c

2
Þkg;

[ g
1
2g1 ;g22g2 f

2ðg
1
g
2
Þk

ð2� g
1
Þkð2� g

2
Þk þðg

1
g

2
ÞkgÞ:
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Thus, kðd1 _	d2Þ ¼ kd1 _	kd2.

ð5Þ k1d _	k2d ¼ ð[ c2hfð1þ cÞk1 � ð1� cÞk1
ð1þ cÞk1 þð1� cÞk1

g; [ g2gf 2gk1

ð2� gÞk1 þ gk1
gÞ

_	ð[ c2hfð1þ cÞk2 � ð1� cÞk2
ð1þ cÞk2 þð1� cÞk2

g; [ g2gf 2gk2

ð2� gÞk2 þ gk2
gÞ

¼ ð[ c2hf
ð1þ cÞk1�ð1�cÞk1
ð1þ cÞk1 þð1�cÞk1 þ

ð1þ cÞk2�ð1�cÞk2
ð1þ cÞk2 þð1�cÞk2

1þ ð1þ cÞk1�ð1�cÞk1
ð1þ cÞk1 þð1�cÞk1

ð1þ cÞk2�ð1�cÞk2
ð1þ cÞk2 þð1�cÞk2

g;

[ g2gf
2gk1

ð2�gÞk1 þ gk1
2gk2

ð2�gÞk2 þ gk2

1þð1� 2gk1

ð2�gÞk1 þ gk1
Þð1� 2gk2

ð2�gÞk2 þ gk2
Þ
gÞ

¼ ð[ c2hfð1þ cÞk1 þ k2 � ð1� cÞk1 þ k2

ð1þ cÞk1 þ k2 þð1� cÞk1 þ k2
g;

[ g2gf 2gk1 þ k2

ð2� gÞk1 þ k2 þ gk1 þ k2
gÞ ¼ ðk1 _	k2Þd:

Thus, k1d _	k2d ¼ ðk1 _	k2Þd: This completes the proof.
To compare the DHFEs, inspired by the comparison method of HFEs, the fol-

lowing definition is given:

Definition 1.26 (Zhu et al. 2012). Let d ¼ fh; gg be any two DHFEs,

sðdÞ ¼ 1
lh

X
c2h

c� 1
lg

X
g2g

g ð1:39Þ

is called the score function of d; and

pðdÞ ¼ 1
lh

X
c2h

cþ 1
lg

X
g2g

g ð1:40Þ

is called the accuracy function of d; where lh and lg are the numbers of the elements
in h and g; respectively.

Based on the score function and accuracy function of DHFEs, the following
scheme is proposed to compare any two DHFEs d1 and d2:

(1) If sðd1Þ[ sðd2Þ, then d1 is superior to d2, denoted by d1 � d2.
(2) If sðd1Þ ¼ sðd2Þ, then

(a) if pðd1Þ ¼ pðd2Þ, then d1 is equivalent to d2, denoted by d1 � d2.
(b) If pðd1Þ[ pðd2Þ, then d1 is superior than d2, denoted by d1 � d2.
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Example 1.10 (Zhu et al. 2012). Let d1 ¼ ðf0:1; 0:3g; f0:3; 0:5gÞ and d2 ¼
ðf0:2; 0:4g; f0:4; 0:6gÞ be two DHFEs, then based on Definition 1.26, we obtain
sðd1Þ ¼ sðd2Þ ¼ 0; pðd2Þð¼ 0:8Þ[ pðd1Þð¼ 0:6Þ: Thus, d2 � d1.

1.2.3 Hesitant Fuzzy Linguistic Term Set

It is noted that the above mentioned different forms of fuzzy sets suit the problems
that are defined as quantitative situations. However, in real world decision making
problems, many aspects of different activities cannot be assessed in a quantitative
form, but rather in a qualitative one. Using linguistic information to express experts’
opinions is suitable and straightforward because it is very close to human’s cog-
nitive processes. A common approach to model linguistic information is the fuzzy
linguistic approach proposed by Zadeh (1975), which represents qualitative infor-
mation as linguistic variables. Although it is less precise than a number, the lin-
guistic variable, defined as “a variable whose values are not numbers but words or
sentences in a natural or artificial language”, enhances the flexibility and reliability
of decision making models and provides good results in different fields.
Nevertheless, similar to fuzzy sets, the fuzzy linguistic approach has some limita-
tions and thus different linguistic representation models have been introduced, such
as the 2-tuple fuzzy linguistic representation model (Herrera and Martínez 2000),
the linguistic model based on type-2 fuzzy set (Türkşen 2002), the virtual linguistic
model (Xu 2004a), the proportional 2-tuple model (Wang and Hao 2006), and so
on. However, all these extended models are still very limited due to the fact that
they are based on the elicitation of single or simple terms that should encompass
and describe the information provided by decision makers (or experts) regarding to
a linguistic variable. When the experts hesitate among different linguistic terms and
need to use a more complex linguistic term that is not usually defined in the
linguistic term set to depict their assessments, the above mentioned fuzzy linguistic
approaches are out of use. Thus, motivated by the HFS, Rodríguez et al. (2012)
proposed the concept of hesitant fuzzy linguistic term set (HFLTS), which provides
a different and great flexible form to represent the assessments of decision makers.

In fuzzy linguistic approach, the decision makers’ opinions are taken as the
values of a linguistic variable which is established by linguistic descriptors and their
corresponding semantics (Herrera and Herrera-Viedma 2000b). Once the experts
provide the linguistic evaluation information, the following step is to translate these
linguistic inputs into a machine manipulative format in which the computation can
be carried out. Such translation is conducted by some fuzzy tools. Meanwhile, the
outputs of the computing with words (CWW) model should also be easy to be
converted into the linguistic information. To do so, Xu (2005b) proposed the
subscript-symmetric additive linguistic term set, shown as
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S ¼ fstjt ¼ �s; . . .;�1; 0; 1; . . .; sg ð1:41Þ

where the mid linguistic label s0 represents an assessment of “indifference”, and the
rest of them are placed symmetrically around it. In particular, s�s and ss are the
lower and upper bounds of the linguistic labels used by the decision makers in
practical applications. s is a positive integer, and S satisfies the following
conditions:

(1) If a[ b, then sa [ sb;
(2) The negation operator is defined: neg ðsaÞ ¼ s�a, especially, neg ðs0Þ ¼ s0.

The linguistic term set S is a discrete linguistic term set and thus is not con-
venient for calculation and analysis. To preserve all given linguistic information,
Xu (2005b) extended the discrete linguistic term set to a continuous linguistic term
set �S ¼ fsaj a 2 ½�q; q�g, where qðq[ sÞ is a sufficiently large positive integer. In
general, the linguistic term sa(sa 2 SÞ is determined by the decision makers, and the
virtual linguistic term �sa(�sa 2 �SÞ only appears in computation. The virtual linguistic
term provides a tool to compute with the linguistic terms. The mapping between
virtual linguistic terms and their corresponding semantics is easy to build, shown as
Fig. 1.1 (Liao et al. 2014b).

As traditional fuzzy linguistic approach can only use single linguistic term, such
as “medium”, “high” or “a little high”, to represent the value of a linguistic variable
but cannot express complicated linguistic expressions such as “between medium
and high”, “at least a little high”, Rodríguez et al. (2012) introduced the concept of
HFLTS, which can be used to elicit several linguistic terms or linguistic expression
for a linguistic variable.

Definition 1.27 (Rodríguez et al. 2012). Let S ¼ fs0; . . .; ssg be a linguistic term
set. A HFLTS, HS, is an ordered finite subset of the consecutive linguistic terms of S:

Since Definition 1.27 does not give any mathematical form for HFLTS, Liao
et al. (2015a) redefined the HFLTS mathematically as follows, which is much easier
to be understood. Liao and Xu (2015c) also replaced the linguistic term set by the
subscript-symmetric linguistic term set S ¼ fstjt ¼ �s; . . .;�1; 0; 1; . . .; sg.

0 0.17 0.33 0.5 0.67 0.83 1

3s

none
− 2s

very low
− 1s

low
− 0s

medium
1s

high
2s

very high
3s

perfect

1.3s

0.551 0.881

1.6s−

0.068 0.399

Fig. 1.1 Semantics of virtual
linguistic terms
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Definition 1.28 (Liao et al. 2015a). Let x 2 X; be fixed and S ¼ fstjt ¼
�s; . . .;�1; 0; 1; . . .; sg be a linguistic term set. A HFLTS in X; HS, is in mathe-
matical terms of

HS ¼ f\x; hSðxÞ[ jx 2 Xg ð1:42Þ

where the function hSðxÞ : X ! S defines the possible membership grades of the
element x 2 X to the set A � X and for every x 2 X; the value of hSðxÞ is repre-
sented by a set of some values in the linguistic term set S and can be expressed as
hSðxÞ ¼ sul

ðxÞjsul
ðxÞ 2 S; l ¼ 1; . . .; LðxÞ� �

with ul 2 f�s; . . .;�1; 0; 1; . . .; sg
being the subscript of a linguistic term sul

ðxÞ and LðxÞ being the number of lin-
guistic terms in hSðxÞ:

For convenience, Liao et al. (2015a) called hSðxÞ the hesitant fuzzy linguistic
element (HFLE) and let HS be the set of all HFLEs on S: For simplicity, hSðxÞ;
sul

ðxÞ and LðxÞ can be written respectively as hS, sul
and L for short. There are

several special HFLEs, such as:

(1) empty HFLE: hS ¼ fg.
(2) full HFLE: hS ¼ S:
(3) the complement of HFLE hS: hcS ¼ S� hS ¼ sul

jsul
2 S and sul

62 hS
� �

:

Although the HFLTS can be used to elicit several linguistic values for a lin-
guistic variable, it is still not similar to the human way of thinking and reasoning.
Thus, Rodríguez et al. (2012) further proposed a context-free grammar to generate
simple but elaborated linguistic expressions ll that are more similar to the human
expressions and can be easily represented by means of HFLTS. The grammar GH is
a 4-tuple ðVN ;VT ; I;PÞ where VN is a set of nonterminal symbols, VT is the set of
terminals’ symbols, I is the starting symbols, and P is the production rules.

Definition 1.29 (Rodríguez et al. 2012). Let S be a linguistic term set, and GH be a
context-free grammar. The elements of GH ¼ ðVN ;VT ; I;PÞ are defined as:

VN ¼ f\primary term[;\composite term[;

\unary relation[;\binary relation[;\conjunction[ g
VT ¼ flower than; greater than; at least; at most; between;
I 2 VN ;
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P ¼ fI ::¼ \primary term[ j\composite term[
\composite term[ ::¼ \unary relation[\primary term[ j

\binary relation[\conjunction[\primary term[
\primary term[ ::¼ s�sj � � � js�1js0js1j � � � jss
\unary relation[ ::¼ lower thanjgreater than
\binary relation[ ::¼ between

\conjunction[ ::¼ andg:
Note: In the above definition, the brackets enclose optional elements and the

symbol “|” indicates alternative elements.
The expressions ll generated by the context-free grammar GH may be either

single valued linguistic terms st 2 S or linguistic expressions. The transformation
function EGH can be used to transform the expressions ll that are produced by GH

into HFLTS.

Definition 1.30 (Rodríguez et al. 2012). Let EGH be a function that transforms
linguistic expressions ll 2 Sll, obtained by using GH , into the HFLTS HS. S is the
linguistic term set used by GH , and Sll is the expression domain generated by GH :

EGH : Sll ! HS ð1:43Þ

The linguistic expression generated by GH using the production rules are con-
verted into HFLTS by means of the following transformations:

• EGH ðstÞ ¼ fstjst 2 Sg;
• EGH ðat most smÞ ¼ fstjst 2 S and st � smg;
• EGH ðlower than smÞ ¼ fstjst 2 S and st\smg;
• EGH ðat least smÞ ¼ fstjst 2 S and st � smg;
• EGH ðgreat than smÞ ¼ fstjst 2 S and st [ smg;
• EGH ðbetween sm and snÞ ¼ fstjst 2 S and sm � st � sng.

With the transformation function EGH defined as Definition 1.30, it is easy to
transform the initial linguistic expressions into HFLTS. Liao et al. (2015a) used a
figure (see Fig. 1.2) to show the relationships among the context-free grammar GH ,
the linguistic expression ll and the HFLTS HS.

Example 1.11 (Liao et al. 2015a). Quality management is more and more popular
in our daily life. In the process of quality management, many aspects of certain
products cannot be measured as crisp values but only qualitative values. Here we

Transformation 
function 

Context-free 
grammar 

Experts judgments
Lingusitic 

expressions 
HFLTS

ll

HG
HGE

SH

Fig. 1.2 The way to obtain a HFLTS

1.2 Extensions of Hesitant Fuzzy Set 31



just consider a simple example that an expert evaluates the operational complexity
of three automatic systems, represented as x1, x2 and x3. Since this criterion is
qualitative, it is impossible to give crisp values but only linguistic terms. The
operational complexity of these automatic systems can be taken as a linguistic
variable. The linguistic term set for the operational complexity can be set up as:

S ¼ fs�3 ¼ very complex; s�2 ¼ complex; s�1 ¼ a little complex; s0 ¼ medium;

s1 ¼ a little easy; s2 ¼ easy; s3 ¼ very easyg
With the linguistic term set and also the context-free grammar, the expert deter-

mines his/her judgments over these three automatic systems with linguistic expres-
sions, which are ll1 ¼ at least a little easy; ll2 ¼ between complex and medium and
ll3 ¼great than easy: These linguistic expressions are similar to human way of
thinking and they can reflect the expert’s hesitant cognition intuitively. Using the
transformation function EGH , a HFLTS can be yielded as HSðxÞ ¼
f\x1; hSðx1Þ[ ;\x2; hSðx2Þ[ ;\x3; hSðx3Þ[ g with hSðx1Þ ¼ fs1; s2; s3g,
hSðx2Þ ¼ fs�2; s�1; s0g, and hSðx3Þ ¼ fs3g being three HFLEs.

Example 1.12 (Liao et al. 2015a). Consider a simple example that a Chief
Information Officer (CIO) of a company evaluates the candidate ERP system in
terms of three criteria, i.e., x1 (potential cost), x2 (function), and x3 (operation
complexity). Since the three criteria are qualitative, the CIO gives his evaluation
values in linguistic expressions. Different criteria are associated with different lin-
guistic term sets and different semantics. The linguistic term sets for these three
criteria are set up as:

S1 ¼fs�3 ¼ very expensive; s�2 ¼ expensive; s�1 ¼ a little expensive; s0 ¼ medium;

s1 ¼ a little cheap; s2 ¼ cheap; s3 ¼ very cheapg

S2 ¼fs�3 ¼ none; s�2 ¼ very low; s�1 ¼ low; s0 ¼ medium;

s1 ¼ high; s2 ¼ very high; s3 ¼ perfectg

S3 ¼ fs�3 ¼ too complex; s�2 ¼ complex; s�1 ¼ a little complex; s0 ¼ medium;

s1 ¼ a little easy; s2 ¼ easy; s3 ¼ every easyg

respectively.With these linguistic term sets and also the context-free grammar, the CIO
provides his evaluation values in linguistic expressions for a ERP system as: ll1 ¼
between cheap and very cheap; ll2 ¼ at least high; ll3 ¼ great than easy:Using the
transformation function EGH , a HFLTS is obtained as HðxÞ ¼ f\x1; hS1ðx1Þ[ ;
\x2; hS2ðx2Þ[ ;\x3; hS3ðx3Þ[ g with hS1ðx1Þ ¼ fs2; s3js2; s3 2 S1g, hS2ðx2Þ ¼
fs1; s2; s3j s1; s2; s3 2 S2g and hS3ðx3Þ ¼ fs3js3 2 S3g. Furthermore, if we ignore the
influence of different semantics over different linguistic term sets on the criteria, i.e.,
let S ¼ fs�3; s�2; s�1; s0; s1; s2; s3g, then the HFLTS HðxÞ can be rewritten as
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HSðxÞ ¼ f\x1; hSðx1Þ[ ;\x2; hSðx2Þ[ ;\x3; hSðx3Þ[ g with hSðx1Þ ¼ fs2; s3g,
hSðx2Þ ¼fs1; s2; s3g and hSðx3Þ ¼ fs3g.

From Examples 1.11 and 1.12, we can find that X; in Definition 1.28, could be
either a set of objects on a linguistic variable or a set of linguistic variables of an
object (in this case, the influence of different semantics over different linguistic term
sets on different linguistic variables should be ignored).

Rodríguez et al. (2012) defined the complement, union and intersection of
HFLTSs:

Definition 1.31 (Rodríguez et al. 2012). For three HFLEs hS, h1S and h2S, the fol-
lowing operations are defined:

(1) Lower bound: h�S ¼ minðstÞ ¼ sk, st 2 hS and st � sk, 8t:
(2) Upper bound: hþ

S ¼ maxðstÞ ¼ sk, st 2 hS and st � sk, 8t:
(3) hcS ¼ S� hS ¼ fstjst 2 S and st 62 hSg.
(4) h1S [ h2S ¼ fstjst 2 h1S or st 2 h2Sg.
(5) h1S \ h2S ¼ fstjst 2 h1S and st 2 h2Sg.

For a HFLE hS ¼ sul
jl ¼ 1; 2; . . .; L

� �
; the linguistic terms in it might be out of

order. To simplify the computation, we can arrange the linguistic terms sul

(l ¼ 1; . . .;LÞ in any of the following orders (Liao and Xu 2015c): ① ascending
order d : ð1; 2; . . .; nÞ ! ð1; 2; . . .; nÞ is a permutation satisfying dl � dlþ 1, l ¼
1; . . .; L; ② descending order g : ð1; 2; . . .; nÞ !ð1; 2; . . .; nÞ is a permutation sat-
isfying gl � glþ 1, l ¼ 1; . . .; L: In addition, considering that different HFLEs may
have different numbers of linguistic terms, we can extend the short HFLEs by
adding some linguistic terms in it till they have same length. Liao et al. (2014b)
introduced a method to add linguistic terms in a HFLE. For a HFLE hS ¼
sul

jl ¼ 1; 2; . . .; L
� �

; let sþ and s� be the maximal and minimal linguistic terms in
the HFLE hS, defined as sþ ¼ maxul

sul
jl ¼ 1; 2; . . .; L

� �
and s� ¼

min
ul

sul
jl ¼ 1; 2; . . .; L

� �
; respectively, and n ð0� n� 1Þ be an optimized parame-

ter, then we can add the linguistic term:

�s ¼ nsþ 	 1� nð Þs� ð1:44Þ

to the HFLE. The optimized parameter, which is used to reflect the decision
makers’ risk preferences, is provided by the decision makers.

Motivated by the score function and the variance function of HFS, Liao et al.
(2015c) introduced the score function and the variance function for HFLE.

Definition 1.32 (Liao et al. 2015c). For a HFLE hS ¼ [ sdl2hS sdl jl ¼ 1; . . .; Lf g
where L is the number of linguistic terms in hS, qðhSÞ ¼ 1

L

P
sdl2hS sdl ¼ s1

L

PL

l¼1
dl
is

called the score function of hS.
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Definition 1.33 (Liao et al. 2015c). For a HFLE hS ¼ [ sdl2hS sdl jl ¼ 1; . . .; Lf g
where L is the number of linguistic terms in hS, rðhSÞ ¼ 1

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
sdl ;sdk2hS sdl � sdkð Þ2

q
¼ s

1
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
sdl

;sdk
2hS

dl�dkð Þ2
q is called the variance function of hS.

The relationship between the score function and the variance function of HFLE
is similar to the relationship between mean and variance in statistics. Thus, for two
HFLEs h1S and h2S, the following approach can be used to compare any two HFLEs:

• If qðh1SÞ[ qðh2SÞ; then h1S [ h2S.
• Else if qðh1SÞ ¼ qðh2SÞ; then,

– if rðh1SÞ\rðh2SÞ; then h1S [ h2S;
– else if rðh1SÞ ¼ rðh2SÞ; then h1S ¼ h2S.

Example 1.13 (Liao et al. 2015c). Let S ¼ fs�3 ¼ none; s�2 ¼ very low; s�1 ¼
low; s0 ¼ medium; s1 ¼ high; s2 ¼ very high; s3 ¼ perfectg be a linguistic term
set. The linguistic information obtained by means of the context-free grammar is
/1 ¼ high; /2 ¼ lower than medium; /3 ¼ greater than high; and /4 ¼
between medium and very high: With the transformation function, the above lin-
guistic information can be represented as HS ¼ fh1S; h2S; h3S; h4Sg with h1S ¼ fs1g,
h2S ¼ fs�3; s�2; s�1; s0g, h3S ¼ fs1; s2; s3g and h4S ¼ fs0; s1; s2g. Then, we have
qðh1SÞ ¼ s1, qðh2SÞ ¼ s�1:5, qðh3SÞ ¼ s2, qðh4SÞ ¼ s1. Since qðh3SÞ[ qðh1SÞ ¼
qðh4SÞ[ qðh2SÞ; it yields that MAXðHSÞ ¼ h3S, MINðHSÞ ¼ h2S.

Calculating the variance functions of h1S and h4S, we have rðh1SÞ ¼ s0,
rðh4SÞ ¼ s0:8165. Since rðh1SÞ\rðh4SÞ; then we get h1S [ h4S. Hence, the rank of these
four HFLEs is h3S [ h1S [ h4S [ h2S.
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Chapter 2
Novel Correlation and Entropy Measures
of Hesitant Fuzzy Sets

Correlation is one of the most widely used indices in data analysis, pattern
recognition, machine learning, decision making, etc. It measures how well two
variables move together in a linear fashion. The correlation coefficient, which was
originally appeared in Karl Pearson’s proposal related to statistics, has been
extended into different fuzzy circumstances. Different forms of fuzzy correlation
coefficients have been proposed, such as the fuzzy correlation coefficients, the
intuitionistic fuzzy correlation coefficients, and the hesitant fuzzy correlation
coefficients. Xu and Xia (2011b) defined several correlation coefficients for HFEs.
Afterwards, Chen et al. (2013a) proposed a formula to calculate the correlation
coefficient between two HFSs. In this chapter, we first point out the weaknesses of
the existing correlation coefficients between HFSs, and then introduce some novel
correlation coefficient formulas for HFSs. Some new concepts, such as the mean of
a HFS, the variance of a HFS and the correlation between two HFSs are defined.
Based on these concepts, a novel correlation coefficient formula between two HFSs
is introduced. Afterwards, the upper and lower bounds of the correlation coefficient
are defined. A theorem is given to determine these two bounds. It is stated that the
correlation coefficient between two HFSs should also be hesitant, and thus, the
upper and lower bounds can further help to identify the correlation coefficient
between HFSs. The significant characteristic of the introduced correlation coeffi-
cient is that it lies in the interval [−1, 1], which is in accordance with the classical
correlation coefficient in statistics, whereas all the old correlation coefficients
between HFSs in the literature are within the unit interval [0, 1]. The weighted
correlation coefficient is also proposed to make it more applicable. In order to show
the efficiency of the proposed correlation coefficients, they are implemented in
medical diagnosis and cluster analysis. Some numerical examples are given in this
chapter to illustrate the applicability and efficiency of the proposed correlation
coefficient between HFSs.

Entropy is another important index for fuzzy information, which measures the
degree of uncertainty of a fuzzy set. Usually, there are two aspects of uncertainty
associated with a fuzzy set. One is related to fuzziness, which results from the lack



of clear discrimination between the elements belonging or not belonging to a set.
For classical fuzzy set, Zadeh (1965) first defined the entropy to measure the
fuzziness of a fuzzy set and then many scholars developed different kinds of
entropy formulas for fuzzy set (De Luca and Termini 1972; Kaufmann and
Swanson 1975; Yager 1979; Parkash et al. 2008) and IFS (Burillo and Bustince
1996; Szmidt and Kacprzyk 2001; Wei et al. 2012). The other aspect of uncertainty
associated with a fuzzy set is related to the lack of specificity. Specificity measures
the amount of information contained in a fuzzy set. Yager (1992, 1998) put forward
several specificity measures to quantify the degree that a fuzzy set contains just one
element. Based on three t-norms and a negation, Garmendia et al. (2003) gave a
general expression for specificity measures of a fuzzy set. Later, Yager (2008c)
studied the formula of specificity measures in continuous domain. Pal et al. (2013)
pointed out that there are two types of uncertainty for an IFS, i.e., the fuzzy-type
uncertainty and the non-specificity type uncertainty. As to the entropy measure of
HFS, Xu and Xia (2012) gave the axiomatic definition of entropy for HFEs and
developed several entropy formulas to measure the degree of fuzziness of a HFE.
Later, Farhadinia (2013) also proposed some entropy measures to quantify the
degree of fuzziness of a HFS. In the second subsection of this chapter, we review
the existing entropy measures for HFEs and demonstrate that the existing entropy
measures for HFEs fail to effectively distinguish some apparently different HFEs in
some cases. Then, we give a new axiomatic framework of entropy measures for
HFEs by taking into account two facets of uncertainty associated with a HFE (i.e.,
fuzziness and non-specificity). We adopt a two-tuple entropy model to represent the
two types of uncertainty associated with a HFE. Additionally, we discuss how to
formulate each kind of uncertainty. Several examples are given to illustrate each
method, and the comparisons with the existing entropy measures are also offered.

2.1 Novel Correlation Measures of Hesitant Fuzzy Sets

2.1.1 The Existing Correlation Measures of Hesitant
Fuzzy Sets

As the correlation measure is one of the most important indices in measuring the
relationship between two sets, it has been investigated in-depth within in the
context of fuzzy sets and their extensions. As a representation, in the following, we
just review the advances in correlation coefficient related to fuzzy sets and IFSs.

After discussing various properties which are attributed to “correlation” in
statistics, Murthy et al. (1985) first introduced the correlation coefficient q l1; l2ð Þ,
similar to the correlation coefficient in statistics, between two fuzzy membership
functions. It was proven that the correlation coefficient they defined satisfies many
good properties, including q l1; l2ð Þ 2 ½�1; 1�. In the case that the elements of
fuzzy sets are ranked in terms of memberships, Chaudhuri and Bhattacharya (2001)
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proposed a rank correlation coefficient for fuzzy sets and then compared it with
Murthy et al. (1985)’s correlation coefficient formula. Also adopting the concepts
from conventional statistics, Chiang and Lin (1999) derived another formula of
correlation coefficient in the domain of fuzzy sets. All these three kinds of corre-
lation coefficients over fuzzy sets lie in the interval [−1, 1] and have similar
meaning as that in conventional statistics. On the other hand, Yu (1993) introduced
quite different concepts of correlation and correlation coefficient to measure the
interrelation between fuzzy numbers. The value of correlation coefficient he
introduced is within the interval [0, 1]. That is to say, the correlation coefficient he
proposed can only represent the strength of relationship between fuzzy sets, but
cannot manifest the positive or negative correlation.

It is stated that all the above achievements calculate the correlation coefficient
between fuzzy sets as a crisp number. By using the sup-min convolution, Liu and
Kao (2002) proposed a mathematical programming approach to calculate the cor-
relation coefficient as a fuzzy number. After that, by applying the Tw-based
extension principle, Hong (2006) gave an exact solution of a fuzzy correlation
coefficient without relying on programming.

Regarding to IFSs, many different forms of correlation measures have also been
investigated. Hung (2001) proposed the correlation coefficient for IFSs from statistics
point of view by considering the membership degree and non-membership degree as
two separate fuzzy sets. After that, Szmidt and Kacprzyk (2010) extended his formula
by taking the hesitant degrees of IFSs into account. Mitchell (2004) also proposed an
improved version of correlation coefficient, in which he interpreted the IFSs as the
ensembles of ordinary membership functions. As these correlation coefficients are
motivated from traditional statistics, the correlation coefficients of IFSs they devel-
oped are within the interval [−1, 1]. On the other side, motivated by the information
energy of a fuzzy set, Gerstenkorn and Manko (1991) developed a quite different
form of correlation coefficient for IFSs. Further, Hong and Hwang (1995) extended
this type of correlation coefficient into possibility space in which the set xif g is an
infinite universe of discourse. Moreover, Hung and Wu (2002) improved the corre-
lation coefficient and introduced the so-called centroid-method-based correlation
coefficient for IFSs. As these correlation coefficients cannot guarantee that the cor-
relation coefficient between any two IFSs equals to one if and only if these two IFSs
are the same, Xu (2006b) proposed a new form of correlation coefficient for IFSs and
circumvented this weakness. It should be stated that all the correlation coefficients
proposed in Gerstenkorn and Manko (1991), Hong and Hwang (1995), Huang and
Wu (2002), and Xu (2006b) lie in the unit interval [0, 1].

Some scholars also proposed distinct correlation measures within the context of
HFSs. Xu and Xia (2011b) proposed several correlation coefficients from the point
of HFEs. For two HFEs hA ¼ cA1; cA2; . . .; cAlA

� �
and hB ¼ cB1; cB2; . . .; cBlB

� �
, it is

possible that the values in hA and hB are out of order. In addition, the number of
values, lA and lB, in different HFEs may be different. Thus, to introduce the defi-
nition of correlation coefficient between two HFEs, Xu and Xia (2011b) firstly
supposed that the values in different HFEs were arranged in ascending order;

2.1 Novel Correlation Measures of Hesitant Fuzzy Sets 39



meanwhile, they also assumed that the HFEs have the same length l. Based on these
two assumptions, they proposed five different kinds of correlation coefficients for
HFEs. Here we just set out one as a representation (for more others, readers can
refer to Xu and Xia (2011b)):

q hA; hBð Þ ¼
Pl

k¼1 cArðkÞcBrðkÞPl
k¼1 c

2
ArðkÞ

Pl
k¼1 c

2
BrðkÞ

� �1=2 ð2:1Þ

where r : ð1; 2; . . .; lÞ ! ð1; 2; . . .; lÞ is a permutation satisfying crðkÞ � crðkþ 1Þ;
k ¼ 1; 2; . . .; l� 1. Although Xu and Xia (2011b) stated that c hA; hBð Þj j � 1, it is
obvious that c hA; hBð Þ� 0 as c 2 ½0; 1�, which means c hA; hBð Þ 2 ½0; 1�.

Chen et al. (2013a) proposed a formula to calculate the correlation coefficient
between two HFSs. Let X be a reference set, A ¼ hA xið Þf g and B ¼
hB xið Þf g i ¼ 1; 2; . . .; nð Þ be two HFSs. As the values in HFEs are out of order, and

the number of values in different HFEs may be different, in order to introduce the
correlation coefficient between two HFSs, the following assumptions are given in
advance:

• The values in a HFE are arranged in ascending order.
• The lengths of different HFEs are assumed to have equal length.

The first assumption is easy to be satisfied. For the second one, sometimes the
cardinality of two HFEs are different. In such case, as to Chen et al. (2013a)’s
method, we need to make the lengths of the two HFEs be the same. There are many
different regulations to extend the shorter HFE to the same length as the longer one.
The most representative regulations are the pessimistic principle and the optimistic
principle. For two HFEs hA and hB, let l ¼ max lhA ; lhBf g where lhA and lhB are the
number of values in hA and hB, respectively. When lhA 6¼ lhB , one can extend the
short HFE by adding some values in it until it has the same length with the other. In
terms of the pessimistic principle, the short HFE is extended by adding the mini-
mum value in it until it has the same length with the other HFE; while as to the
optimistic principle, the maximum value of the short HFE should be added till the
HFE has the same length as the longer one. In Chen et al. (2013a)’s definition, they
used the former case and thus the correlation coefficient between two HFSs was
defined as:

q�ðA;BÞ ¼
Pn

i¼1
1
li

Pli
k¼1 cArðkÞ xið Þ � cBrðkÞ xið Þ

� �
Pn

i¼1
1
li

Pli
k¼1 c

2
ArðkÞ xið Þ

� �h i1=2
� Pn

i¼1
1
li

Pli
k¼1 c

2
BrðkÞ xið Þ

� �h i1=2 ð2:2Þ

where cArðkÞ xið Þ and cBrðkÞ xið Þ are the kth value in hA xið Þ and hB xið Þ.
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In summary, the correlation coefficients defined as Eqs. (2.1) and (2.2) have a
few weaknesses:

(1) In Eq. (2.1), the HFEs were assumed to have equal length. This is not in accor-
dance with real cases because it is impossible to make sure that all HFEs have
equal length. As to Eq. (2.2), the pessimistic (or optimistic) principle was applied
to fill the short HFEwith some artificial values. It should be pointed out that filling
some artificial values into a HFE would change its original information.

The following two examples show that the extensional regulations used in Xu
and Xia (2011b) and Chen et al. (2013a) in the process of defining correlation
coefficients between two HFEs or HFSs are not reasonable:

Example 2.1 (Liao et al. 2015b) For two HFEs h1 ¼ 0:1; 0:3f g and
h2 ¼ f0:1; 0:3; 0:8g. In order to calculate the correlation coefficient between h1 and
h2 by Eq. (2.1), according to Xu and Xia (2011b)’s assumptions, we should firstly
extend h1 to make it have equal length with h2. Suppose that the pessimistic
principle is applied to h1, i.e., the minimum element in h1 should be added to h1.
Then, h1 is modified as h01 ¼ f0:1; 0:1; 0:3g. By Eqs. (1.7) and (1.8), we have
�h1 ¼ 0:2; uh1 ¼ 0:1, and �h01 ¼ 0:1667; uh01

¼ 0:0943. It is obvious that the revised

HFE h01 is quite different from the original HFE h1.

Example 2.2 (Liao et al. 2015b) Suppose that we are going to measure the correlation
coefficient between two HFEs h1 ¼ f0:1; 0:8g and h2 ¼ f0:1; 0:2; 0:3; 0:4;
0:5; 0:6; 0:7; 0:8g. Then, according to the pessimistic principle, h1 should bemodified
as h01 ¼ f0:1; 0:1; 0:1; 0:1; 0:1; 0:1; 0:1; 0:8g. Via Eqs. (1.7) and (1.8), we have
�h1 ¼ 0:45, uh1 ¼ 0:35, and �h01 ¼ 0:1875; uh01

¼ 0:2315. It should be noted that the

mean of the revised HFE h01 is more than two times smaller than that of the original
HFE h1; meanwhile, the hesitant degree also changes apparently.

Examples 2.1 and 2.2 reveal that adding some artificial values in a HFE, no
matter by pessimistic principle or by optimistic principle, would change the
information of the original one. Thus, it is not very reasonable to measure the
correlation coefficient between HFEs or HFSs by Eq. (2.1) or Eq. (2.2), and some
new correlation coefficients need to be proposed for HFSs.

(2) The correlation coefficient defined in Xu and Xia (2011b) and Chen et al.
(2013a) is always positive but this ignores the negative situation. In traditional
random variable case, the correlation coefficient lies in ½�1; 1�. For those cor-
relation coefficients defined over fuzzy sets or IFSs, the correlation coefficients
also lie in the interval ½�1; 1�. Hence, it is not adequate to use the always
positive variable to denote the correlation degree between two HFSs. The
positive correlation coefficient can only demonstrate the strength of the rela-
tionship between HFSs, but cannot manifest the positive or negative correlation.

(3) It is not a best choice to use just one crisp number to represent the correlation
degree between two HFEs or HFSs as the HFEs or HFSs per se are hesitant but
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not precise. In other words, the correlation coefficient for HFSs should have
certain degree of hesitance rather than just a fixed value.

2.1.2 Novel Correlation Measures of Hesitant Fuzzy Sets

This subsection introduces some novel correlation coefficients for HFSs. As to
HFS, the following definitions are given:

Definition 2.1 (Liao et al. 2015b). For a reference set X, let A ¼
\x; hA xið Þ[ xi 2 Xjf g be a HFS on X with hA xið Þ ¼ cAi1; cAi2; . . .;f

cAilAig; i ¼ 1; 2; . . .; n. The mean of the HFS A is defined as:

�A ¼ EðAÞ ¼ 1
n

Xn
i¼1

�hA xið Þ ¼ 1
n

Xn
i¼1

1
lAi

XlAi
k¼1

cAik

 !
ð2:3Þ

Definition 2.2 (Liao et al. 2015b). For a reference set X, let A ¼
\x; hA xið Þ[ xi 2 Xjf g be a HFS on X with hA xið Þ ¼ cAi1; cAi2; . . .; cAilAi

� �
;

i ¼ 1; 2; . . .; n. The variance of the HFS A is defined as:

VarðAÞ ¼ 1
n

Xn
i¼1

�hA xið Þ � �Að Þ ð2:4Þ

Definition 2.3 (Liao et al. 2015b). For a reference set X, let A ¼ hA xið Þf g and
B ¼ hB xið Þf g be two HFSs on X, where hA xið Þ ¼ cAi1; cAi2; . . .; cAilAi

� �
;

hB xið Þ ¼ cBi1; cBi2; . . .; cBilBi
� �

; i ¼ 1; 2; . . .; n. Then the correlation between HFSs
A and B is defined as:

CðA;BÞ ¼ 1
n

Xn
i¼1

�hA xið Þ � �A½ � � �hB xið Þ � �B½ �

¼ 1
n

Xn
i¼1

�hA xið Þ � 1
n

Xn
i¼1

�hA xið Þ
" #

� �hB xið Þ � 1
n

Xn
i¼1

�hB xið Þ
" # ð2:5Þ

where

�hA xið Þ ¼ 1
lAi

XlAi
k¼1

cAik; �hB xið Þ ¼ 1
lBi

XlBi
k¼1

cBik; i ¼ 1; 2; . . .; n ð2:6Þ
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Note 2.1 In Definition 2.3, we do not need the HFSs A and B to have the same
length, that is to say, lAi 6¼ lBi is acceptable.

Note 2.2 The correlation above can be positive or negative. So the negative cor-
relation can be modeled too.

Based on Definitions 2.2 and 2.3, it is easy to verify that the correlation coef-
ficient between HFSs satisfies the following theorem:

Theorem 2.1 (Liao et al. 2015b). For a HFS A ¼ \x; h xið Þ[ xi 2 Xjf g on X with
h xið Þ ¼ ci1; ci2; . . .; cili

� �
; i ¼ 1; 2; . . .; n, the following equation holds:

CðA;AÞ ¼ VarðAÞ ð2:7Þ

Now we can define the correlation coefficient for HFSs:

Definition 2.4 (Liao et al. 2015b). For a reference set X, let A ¼ hA xið Þf g and
B ¼ hB xið Þf g be two HFSs on X, where hA xið Þ ¼ cAi1; cAi2; . . .; cAilAi ;

� �
and

hB xið Þ ¼ cBi1; cBi2; . . .; cBilBi
� �

; i ¼ 1; 2; . . .; n. Then the correlation coefficient
between the HFSs A and B is defined as:

qðA;BÞ ¼ CðA;BÞ
CðA;AÞ � CðB;BÞ½ �1=2

ð2:8Þ

Theorem 2.2 reveals the fundamental properties of correlation coefficient
between HFSs:

Theorem 2.2 (Liao et al. 2015b) The correlation coefficient qðA;BÞ between HFSs
A and B satisfies the following properties:

(1) qðA;BÞ ¼ qðB;AÞ.
(2) qðA;AÞ ¼ 1.
(3) q A;Acð Þ ¼ �1, where Ac is defined as Ac ¼ \x; hc xið Þ[ xi 2 Xjf g with

hc xið Þ ¼ 1� ci1; 1� ci2; . . .; 1� cili
� �

; i ¼ 1; 2; . . .; n.
(4) �1� qðA;BÞ� 1.

Proof The proofs of (1), (2) and (3) are obvious according to Definition 2.4.
(4) According to Eq. (2.5), we have

CðA;BÞj j ¼ 1
n

Xn
i¼1

�hA xið Þ � �A½ � � �hB xið Þ � �B½ �
�����

������ 1
n

Xn
i¼1

�hA xið Þ � �A
�� �� � �hB xið Þ � �B

�� ��
Using the Cauchy-Schwarz inequality:

a1b1 þ a2b2 þ � � � þ anbnð Þ2 � a21 þ a22 þ � � � þ a2n
� � � b21 þ b22 þ � � � þ b2n

� �
where ai; bi 2 R; i ¼ 1; 2; . . .;N, it follows that
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CðA;BÞj j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

�hA xið Þ � �A
�� ��2s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

�hB xið Þ � �B
�� ��2s

¼ CðA;AÞ½ �1=2� CðB;BÞ½ �1=2

Thus, we have

qðA;BÞj j ¼ CðA;BÞj j
CðA;AÞ½ �1=2� CðB;BÞ½ �1=2

� 1

Hence, �1� qðA;BÞ� 1, which ends the proof.
In the following, we discuss how to measure the hesitant degree of the corre-

lation coefficient qðA;BÞ between two HFSs A and B.
We first rewrite the definition of correlation coefficient qðA;BÞ between two

HFSs A and B as:

qðA;BÞ ¼
Pn

i¼1
�hA xið Þ � �Að Þ � �hB xið Þ � �Bð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
�hA xið Þ � �Að Þ2

q
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
�hB xið Þ � �Bð Þ2

q ð2:9Þ

Then we define the upper and lower bounds of the correlation coefficient qðA;BÞ
between A and B as follows:

qUðA;BÞ ¼ max
ui 2 hA xið Þ
vi 2 hB xið Þ

i ¼ 1; 2; . . .; n

Pn
i¼1 ui � �Að Þ � vi � �Bð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ui � �Að Þ2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 vi � �Bð Þ2
q ð2:10Þ

qLðA;BÞ ¼ min
ui 2 hA xið Þ
vi 2 hB xið Þ

i ¼ 1; 2; . . .; n

Pn
i¼1 ui � �Að Þ � vi � �Bð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ui � �Að Þ2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 vi � �Bð Þ2
q ð2:11Þ

Theorem 2.3 (Liao et al. 2015b). For two HFSs A ¼ hA xið Þf g and B ¼ hB xið Þf g
on X with hA xið Þ ¼ cAi1; cAi2; . . .; cAi1Ai

� �
, hB xið Þ ¼ cBi1; cBi2; . . .; cBi1Bi

� �
,

i ¼ 1; 2; . . .; n, let hUA xið Þ ¼ max cAi1; cAi2; . . .; cAilAi
� �

, hLA xið Þ ¼ min cAi1; cAi2; . . .;f
cAilAig, hUB xið Þ ¼ max cBi1; cBi2; . . .; cBilBi

� �
and hLB xið Þ ¼ min cBi1; cBi2; . . .; cBilBi

� �
.

Then,
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(1) qLðA;BÞ� qðA;BÞ� qUðA;BÞ.

(2) qUðA;BÞ ¼
Pn

i¼1
hUA xið Þ��Að Þ� hUB xið Þ��Bð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
hUA xið Þ��Að Þ2

q
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
hUB xið Þ��Bð Þ2

q .

(3) qLðA;BÞ ¼
Pn

i¼1
hLA xið Þ��Að Þ� hLB xið Þ��Bð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
hLA xið Þ��Að Þ2

q
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
hLB xið Þ��Bð Þ2

q .

Note 2.3 Once we know qUðA;BÞ and qLðA;BÞ, the difference

DqðA;BÞ ¼ qUðA;BÞ � qLðA;BÞ ð2:12Þ

can be used as an indicator how hesitant the correlation relationship is. The lager
DqðA;BÞ is, the more hesitant the decision maker should be.

To prove the above theorem, a lemma is given first:

Lemma 2.1 (Liao et al. 2015b). Let x be any real number, f ðxÞ ¼ xffiffiffiffiffiffiffiffiffi
x2 þ a

p with

a[ 0. Then, the function f ðxÞ is monotonically increasing.

Proof To prove the above, we only need to prove that f 0ðxÞ[ 0. Since

f 0ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a

p � x � 2x
2
ffiffiffiffiffiffiffiffiffi
x2 þ a

p

x2 þ a
¼ x2 þ a� x2

x2 þ að Þ � ffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a

p ¼ a

x2 þ að Þ � ffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a

p [ 0

then f ðxÞ is monotonically increasing, which competes the proof.
Based on the above lemma, we know for any real numbers x and y, if x� y, then

xffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a

p � yffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ a

p ; a[ 0 ð2:13Þ

In the following, we give the proof of Theorem 2.3.

Proof We only prove the case of qUðA;BÞ. The case for qLðA;BÞ can be proven
similarly.

Let pi ¼ hUA xið Þ � �A and qi ¼ ui � �A. Since hUA xið Þ ¼ max cAi1; cAi2; . . .; cAilAi
� �

and ui 2 hA xið Þ ¼ cAi1; cAi2; . . .; cAilAi
� �

, then we get hUA xið Þ� ui. Thus, pi � qi.

Furthermore, we let ai ¼ ai u1; u2; . . .; ui�1; uiþ 1; . . .; unð Þ, Pn
j ¼ 1
j 6¼ i

uj � �A
� �2

.

Obviously, ai [ 0.
Analogously, for the HFS B, let si ¼ hUB xið Þ � �B; ti ¼ vi � �B, bi ¼ bi v1; v2; . . .;ð

vi�1; viþ 1; . . .; vnÞ,
Pn

j ¼ 1
j 6¼ i

vj � �B
� �2

. We can also obtain si � ti as well as bi [ 0.
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Based on the above transformation, the following equation holds:

Pn
i¼1 hUA xið Þ � �A
� � � hUB xið Þ � �B

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1
j6¼i

uj � �A
� �2 þ hUA xið Þ � �A

� �2r
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1
j6¼i

vj � �B
� �2 þ hUB xið Þ � �Bð Þ2

r

¼
Pn

i¼1 pi � siffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ai þ p2i

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
bi þ s2i

p
According to Eq. (2.13), it follows

Pn
i¼1 pi � siffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ai þ p2i
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
bi þ s2i

p ¼
Xn
i¼1

piffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ai þ p2i

p � siffiffiffiffiffiffiffiffiffiffiffiffiffi
bi þ s2i

p
�
Xn

i¼1

qiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ai þ q2i

p � tiffiffiffiffiffiffiffiffiffiffiffiffiffi
bi þ t2i

p ¼
Pn

i¼1 qi � tiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ai þ q2i

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
bi þ t2i

p
¼

Pn
i¼1 ui � �Að Þ � vi � �Bð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1
j6¼i

uj � �A
� �2þ ui � �Að Þ2

r
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1
j6¼i

vj � �B
� �2 þ vi � �Bð Þ2

r ¼
Pn

i¼1 ui � �Að Þ � vi � �Bð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ui � �Að Þ2

q
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 vi � �Bð Þ2
q

Therefore, we can obtain

Pn
i¼1 hUA xið Þ � �A
� � � hUB xið Þ � �B

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1
j6¼i

uj � �A
� �2 þ hUA xið Þ � �A

� �2r
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1
j6¼i

vj � �B
� �2 þ hUB xið Þ � �Bð Þ2

r

�
Pn

i¼1 ui � �Að Þ � vi � �Bð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ui � �Að Þ2

q
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 vi � �Bð Þ2
q ; for all ui 2 n xið Þ; vi 2 n yið Þ; i ¼ 1; 2; � � � ; n

ð2:14Þ

In the left side of Eq. (2.14), we set vi ¼ hUB xið Þ. Then, it comes

Pn
i¼1 hUA xið Þ � �A
� � � hUB xið Þ � �B

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1
j 6¼i

uj � �A
� �2 þ hUA xið Þ � �A

� �2r
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1
j 6¼i

vj � �B
� �2 þ hUB xið Þ � �Bð Þ2

r

¼
Pn

i¼1 hUA xið Þ � �A
� � � hUB xið Þ � �B

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 hUA xið Þ � �A
� �2q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 hUB xið Þ � �Bð Þ2
q �

Pn
i¼1 ui � �Að Þ � vi � �Bð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ui � �Að Þ2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 vi � �Bð Þ2
q ;

for all ui 2 hA xið Þ; vi 2 hB xið Þ; i ¼ 1; 2; . . .; n ð2:15Þ
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Combining Eqs. (2.9) and (2.15), we can obtain

qUðA;BÞ ¼
Pn

i¼1 hUA xið Þ � �A
� � � hUB xið Þ � �B

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 hUA xið Þ � �A
� �2q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 hUB xið Þ � �Bð Þ2
q

which is to say, (2) in Theorem 2.3 holds.
Additionally, in the right side of the inequality (2.15), let vi ¼ �hB xið Þ, then it

follows

Pn
i¼1 hUA xið Þ � �A
� � � hUB xið Þ � �B

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 hUA xið Þ � �A
� �2q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 hUB xið Þ � �Bð Þ2
q �

Pn
i¼1

�hA xið Þ � �Að Þ � �hB xið Þ � �Bð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�hA xið Þ � �Að Þ2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
�hB xið Þ � �Bð Þ2

q

i.e.,

qUðA;BÞ� qðA;BÞ

This completes the proof.

Definition 2.5 (Liao et al. 2015b). For a reference set X, let A ¼ hA xið Þf g and
B ¼ hB xið Þf g be two HFSs on X, where hA xið Þ ¼ cAi1; cAi2; . . .; cAilAi

� �
, and

hB xið Þ ¼ cBi1; cBi2; . . .; cBilBi
� �

; i ¼ 1; 2; . . .; n. Given the correlation coefficient
qðA;BÞ between A and B being defined as Eq. (2.9), then the hesitant degree of
qðA;BÞ is measured in terms of

uðA;BÞ ¼ qUðA;BÞ � qLðA;BÞ ð2:16Þ

where qUðA;BÞ and qLðA;BÞ are the upper and lower bounds of the correlation
coefficient qðA;BÞ.

It is noted that the value of correlation coefficient qðA;BÞ between the HFSs A
and B defined as Eq. (2.8) is also a crisp value. However, as both A and B are HFSs,
it is not adequate to use just a crisp value to represent their relationship. The
correlation coefficient defined as Eq. (2.8) can only be taken as the expected (or
averaging) correlation coefficient between the HFSs A and B. In order to describe
the correlation coefficient between HFSs more objectively, we can also use the
upper bound qUðA;BÞ, the lower bound qLðA;BÞ, or the hesitant degree uðA;BÞ to
better identify the correlation coefficient between two HFSs A and B.

Consider that in some cases, the objects xi 2 X i ¼ 1; 2; . . .; nð Þ may be assigned
different weights. Liao et al. (2015b) proposed the weighted form of the correlation
coefficient for HFSs.

Definition 2.6 (Liao et al. 2015b). Let w ¼ w1;w2; . . .;wnð Þ be the weight vector
of xi i ¼ 1; 2; . . .; nð Þ with wi 2 ½0; 1�; i ¼ 1; 2; . . .; nð Þ and

Pn
i¼1 wi ¼ 1. For two

HFSs A ¼ hA xið Þf g and B ¼ hB xið Þf g with hA xið Þ ¼ cAi1; cAi2; . . .; cAilAi
� �

, and
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hB xið Þ ¼ cBi1; cBi2; . . .; cBilBi
� �

; i ¼ 1; 2; . . .; n, the following definition can be
developed:

(1) The weighted mean of the HFS A is defined as:

�Aw ¼ 1
n

Xn
i¼1

wi�hA xið Þ ¼ 1
n

Xn
i¼1

wi

lAi

XlAi
k¼1

cAik

 !
ð2:17Þ

(2) The weighted variance of the HFS A is defined as:

VarwðAÞ ¼ 1
n

Xn
i¼1

wi�hA xið Þ � �Awð Þ ð2:18Þ

(3) The weighted correlation between the HFSs A and B is defined as:

CwðA;BÞ ¼ 1
n

Xn
i¼1

wi
�hA xið Þ � �Aw½ � � wi

�hB xið Þ � �Bw½ �

¼ 1
n

Xn
i¼1

wi�hA xið Þ � 1
n

Xn
i¼1

wi�hA xið Þ
" #

� wi�hB xið Þ � 1
n

Xn
i¼1

wi�hB xið Þ
" #

ð2:19Þ

where

�hAðxiÞ ¼ 1
lAi

PlAi
k¼1

cAik, �hBðxiÞ ¼ 1
lBi

PlBi
k¼1

cBik, i ¼ 1; 2; . . .; n

(4) The weighted correlation coefficient between the HFSs A and B is defined as:

qwðA;BÞ ¼
CwðA;BÞ

CwðA;AÞ � CwðB;BÞ½ �1=2

¼
Pn

i¼1 wi
�hA xið Þ � �Awð Þ � wi

�hB xið Þ � �Bwð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 wi

�hA xið Þ � �Awð Þ2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 wi
�hB xið Þ � �Bwð Þ2

q ð2:20Þ

The weighted correlation coefficient qwðA;BÞ between the HFSs A and B also
satisfies the following properties:

(a) qwðA;BÞ ¼ qwðB;AÞ;
(b) qwðA;AÞ ¼ 1;
(c) qw A;Acð Þ ¼ �1, where Ac is defined as Ac ¼ \x; hc xið Þ[ xi 2 Xjf g with

hc xið Þ ¼ 1� ci1; 1� ci2; . . .; 1� cili
� �

; i ¼ 1; 2; . . .; n;
(d) �1� qwðA;BÞ� 1.
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(5) The upper and lower bounds of the weighted correlation coefficient qwðA;BÞ
are defined as:

qUw ðA;BÞ ¼ max
ui 2 hA xið Þ
vi 2 hB xið Þ

i ¼ 1; 2; . . .; n

Pn
i¼1 wiui � �Awð Þ � wivi � �Bwð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 wiui � �Awð Þ2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 wivi � �Bwð Þ2
q ð2:21Þ

qLwðA;BÞ ¼ min
ui 2 hA xið Þ
vi 2 hB xið Þ

i ¼ 1; 2; . . .; n

Pn
i¼1 wiui � �Awð Þ � wivi � �Bwð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 wiui � �Awð Þ2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 wivi � �Bwð Þ2
q ð2:22Þ

The following properties hold as well:

ðaÞ qLwðA;BÞ� qwðA;BÞ� qUw ðA;BÞ:

ðbÞ qUw ðA;BÞ ¼
Pn

i¼1 wihUA xið Þ � �Aw
� � � wihUB xið Þ � �Bw

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 wihUA xið Þ � �Aw
� �2q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 wihUB xið Þ � �Bwð Þ2
q :

(c) qLwðA;BÞ ¼
Pn

i¼1
wihLA xið Þ��Awð Þ� wihLB xið Þ��Bwð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
wihLA xið Þ��Awð Þ2

q
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
wihLB xið Þ��Bwð Þ2

q , where

hUA xið Þ ¼ max cAi1; cAi2; . . .; cAilAi
� �

; hLA xið Þ ¼ min cAi1; cAi2; . . .; cAilAi
� �

hUB xið Þ ¼ max cBi1; cBi2; . . .; cBilBi
� �

; hLB xið Þ ¼ min cBi1; cBi2; . . .; cBilBi
� �

(6) The hesitant degree of qwðA;BÞ is measured in terms of

uðA;BÞw ¼ qUw ðA;BÞ � qLwðA;BÞ ð2:23Þ

2.1.3 Applications of the Correlation Measures of Hesitant
Fuzzy Sets

(1) The application of the correlation coefficients in medical diagnosis
The correlation coefficient can be implemented into many practical applications.

The first case given below is related to medical diagnosis.

Example 2.3 (Liao et al. 2015b). Suppose that a doctor wants to make a proper
diagnosis D = {Viral fever, Malaria, Typhoid, Stomach problem, Chest problem}
for a set of patients P = {Al, Bob, Joe, Ted} with the values of symptoms
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V = {temperature, headache, cough, stomach pain, chest pain}. As in many cases
such as in traditional Chinese medical diagnosis or in emergency case that crisp
measuring instruments cannot be obtained, it is impossible to get the crisp values of
the symptoms but only vague information, which is described in terms of HFEs.
Before starting the diagnosis, a medical knowledge-based data set involving
symptom characteristic of the considered diagnoses is necessary to be constructed
(see Table 2.1). The symptoms of the patients are given in Table 2.2.

To derive a diagnosis for each patient, we can calculate the correlation coeffi-
cient between the symptom characteristic of each diagnose and that of each patient.
Using the correlation coefficient formula shown as Eq. (2.9), the correlation coef-
ficient values are obtained, shown in Table 2.3 and Fig. 2.1. From Table 2.3 and
Fig. 2.1, it is clear to see that Al, Joe and Ted suffer from Malaria, but Bob suffers
from Stomach problem.

Meanwhile, Xu and Xia (2011b) utilized the correlation formula Eq. (2.1) to
calculate the correlation coefficients and yielded their results, illustrated in
Table 2.4 and Fig. 2.2. Table 2.4 and Fig. 2.2 imply that Al and Ted suffer from
viral fever; Bob suffer from stomach problem; Joe suffer from malaria.

Table 2.1 Symptom characteristics for the considered diagnoses in terms of HFSs

Temperature Headache Cough Stomach pain Stomach pain

Viral fever f0:6; 0:4; 0:3g f0:7; 0:5; 0:3; 0:2g f0:5; 0:3g f0:5; 0:4; 0:3; 0:2; 0:1g f0:5; 0:4; 0:2; 0:1g
Malaria f0:9; 0:8; 0:7g f0:5; 0:3; 0:2; 0:1g f0:2; 0:1g f0:6; 0:5; 0:3; 0:2; 0:1g f0:4; 0:3; 0:2; 0:1g
Typhoid f0:6; 0:3; 0:1g f0:9; 0:8; 0:7; 0:6g f0:5; 0:3g f0:5; 0:4; 0:3; 0:2; 0:1g f0:6; 0:4; 0:3; 0:1g
Stomach
problem

f0:5; 0:4; 0:2g f0:4; 0:3; 0:2; 0:1g f0:4; 0:3g f0:9; 0:8; 0:7; 0:6; 0:5g f0:5; 0:4; 0:2; 0:1g

Chest
problem

f0:3; 0:2; 0:1g f0:5; 0:3; 0:2; 0:1g f0:3; 0:2g f0:7; 0:6; 0:5; 0:3; 0:2g f0:9; 0:8; 0:7; 0:6g

Table 2.2 Symptom characteristics for the considered patients in terms of HFSs

Temperature Headache Cough Stomach pain Chester pain

Al f0:9; 0:7; 0:5g f0:4; 0:3; 0:2; 0:1g f0:4; 0:3g f0:6; 0:5; 0:4; 0:2; 0:1g f0:4; 0:3; 0:2; 0:1g
Bob f0:5; 0:4; 0:2g f0:5; 0:4; 0:3; 0:1g f0:2; 0:1g f0:9; 0:8; 0:6; 0:5; 0:4g f0:5; 0:4; 0:3; 0:2g
Joe f0:9; 0:7; 0:6g f0:7; 0:4; 0:3; 0:1g f0:3; 0:2g f0:6; 0:4; 0:3; 0:2; 0:1g f0:6; 0:3; 0:2; 0:1g
Ted f0:8; 0:7; 0:5g f0:6; 0:5; 0:4; 0:2g f0:4; 0:3g f0:6; 0:4; 0:3; 0:2; 0:1g f0:5; 0:4; 0:2; 0:1g

Table 2.3 Correlation coefficient values for each considered patient to the set of possible
diagnoses by using our approach

Viral fever Malaria Typhoid Stomach problem Chest problem

Al 0.4597 0.9187 −0.4288 0.1323 −0.5372

Bob −0.5715 0.2546 −0.3166 0.8074 0.3042

Joe 0.5395 0.9803 −0.1217 −0.1017 −0.4636

Ted 0.7330 0.9082 0.0210 −0.2230 −0.6506
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Fig. 2.1 Correlation coefficient values by using our approach

Table 2.4 Correlation coefficient values for each considered patient to the set of possible
diagnoses by using Xu and Xia (2011b)’s approach

Viral fever Malaria Typhoid Stomach problem Chest Problem

Al 0.9969 0.9929 0.9800 0.9902 0.9878

Bob 0.9900 0.9862 0.9792 0.9921 0.9909

Joe 0.9927 0.9929 0.9677 0.9817 0.9750

Ted 0.9942 0.9899 0.9787 0.9879 0.9772
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Fig. 2.2 Correlation coefficient values by using Xu and Xia (2011b)’s approach
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Comparing the results in Table 2.3 with those in Table 2.4, some interesting
findings can be derived. Firstly, we can find that all the values in Table 2.4 are
positive values within the unit interval [0, 1], but in Table 2.3, there are some
negative values. It is quite strange that all the HFEs are positively correlated even
though all the values over different symptom characteristics are quite different. This
is the first weakness of Xu and Xia (2011b)’s method. For example, let us look into
the symptom characteristics of Typhoid and those of Al. It is obvious that Al’s
symptoms are negative correlated to those of Typhoid. However, according to
Eq. (2.1), the correlation between Typhoid and Al is 0.9800, which implies that it is
highly probable that Al suffers from Typhoid. This is definitely wrong.

In addition, comparing Table 2.3 (or Fig. 2.1) with Table 2.4 (or Fig. 2.2), we
can find that all the correlation coefficients shown in Table 2.4 are quite close and
vary from 0.9677 to 0.9969. These similar values cannot clearly distinguish the
different between different diagnoses. Actually, if we draw a new figure (see
Fig. 2.3) according to Xu and Xia (2011b)’s results but restrict the correlation
coefficient values vary within the same domain as in Fig. 2.1, then it is very hard or
even impossible for us to distinguish the diagnoses. In other words, the results
derived from Table 2.4 are not very convincing (or at least not applicable) espe-
cially when the number of objects is a little large. However, Table 2.3 presents a
striking contrast to Table 2.4 as all the values in it lies between −0.4288 and
0.9803, which shows the differences among the diagnoses significantly. All these
above points imply that the correlation coefficient proposed in this chapter is much
more convincing in medical diagnosis.
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Fig. 2.3 Correlation coefficient values by using Xu and Xia (2011b)’s approach
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It is stated that in this example, we just use Eq. (2.9) as a representation to
describe the correlation coefficient between HFSs and illustrate its advantages over
the existing correlation coefficients for HFSs. In fact, we can also use the upper
bound qUðA;BÞ, the lower bound qLðA;BÞ, or the hesitant degree uðA;BÞ to better
identify the correlation coefficients in the above example.

(2) The application of the correlation coefficients in cluster analysis
To better understand the strength of the novel correlation coefficients, in the

following, we show the applicability of the correlation coefficient between HFSs in
the process of clustering. Cluster analysis, or clustering, is defined as the unsu-
pervised process of group a set of data objects in such a way that objects in the same
group (called a cluster) are somehow more similar to each other than to those in
other groups (clusters) (Jain et al. 1999). It can be applied either as an exploratory
tool (to discover previously unknown pattern in data), or as an input to a decision
making process (Friedman et al. 2007). There are many algorithms for clustering,
which differ significantly in their notion of what constitutes a cluster and how to
efficiently find them. Within the context of hesitant fuzzy information, Chen et al.
(2013a) proposed an algorithm to cluster hesitant fuzzy data into different clusters.
In that algorithm, the correlation coefficient defined as Eq. (2.2) is used to measure
the relationship between different objects. In the following, we do not intend to
propose new clustering algorithm but use that algorithm to illustrate the efficiency
of our proposed correlation coefficient. The algorithm proposed by Chen et al.
(2013a) is described below:

Algorithm 2.1

Step 1. Let A1;A2; . . .;Amf g be a set of HFSs on X. We construct a correlation
matrix C ¼ qij

� �
m�m

where qij ¼ q Ai;Aj
� �

and can be calculated via
Eq. (2.1) or Eq. (2.9) or Eq. (2.20).

Step 2. Check whether the correlation matrix satisfies C2 	C, where C2 ¼ C 
 C
¼ q0ij
� �

m�m
, and q0ij ¼ max

k
min qik; qkj
� �� �

; i; j ¼ 1; 2; . . .;m. If it does

not hold, then we construct the equivalent correlation matrix C2k : C !
C2 ! C4 ! � � � ! C2k ! � � � until C2k ¼ C2ðkþ 1Þ

.
Step 3. For a given confidence level k 2 ½0; 1�, we construct a k-cutting matrix

Ck ¼ qkij

� �
m�m

where qkij is defined as:

qkij ¼
0 if qij\k
1 if qij � k



i; j ¼ 1; 2; . . .;m ð2:24Þ

Step 4. Classify the HFEs by the principle: if all elements of the ith line in Ck are
the same as the corresponding elements of the jth line, then the HFEs Ai

and Aj are supposed as the same type.
Step 5. End.
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An application example concerning the assessment of business failure risk is
utilized to validate the above algorithm and our proposed correlation coefficient for
HFSs. In this example, the weighted correlation coefficient defined as Eq. (2.20) is
used to measure the correlation coefficient between HFSs:

Example 2.4 (Liao et al. 2015b). The assessment of business failure risk, i.e., the
assessment of firm performance and the prediction of failure events has drawn the
attention of many researchers in recent years (Chen et al. 2013a). Suppose that there
are 10 firms Aiði ¼ 1; 2; . . .; 10Þ to be evaluated by several risk evaluation orga-
nizations from different aspects. To get fair assessments for these firms, the risk
evaluation organizations established five criteria: f1 : managers work experience,
f2 : profitability, f3 : operating capacity, f4 : debt-paying ability, and f5 : market
competition, whose weighting vector is set as w ¼ ð0:15; 0:3; 0:2; 0:25; 0:1Þ. As the
risk evaluation organizations have different backgrounds and knowledge, it is
possible that they may get different evaluation values from their perspectives. To
better reflect the opinions established by different organizations, the evaluation
values given by them are represented by HFEs and displayed in Table 2.5.

In the following, we use Algorithm 2.1 and the weighted correlation coefficient
to cluster the firms.

Step 1. By Eq. (2.20), we can calculate the weighted correlation coefficients
between each pair of the alternatives q Ai;Aj

� �
; i; j ¼ 1; 2; . . .; 10:

Cw ¼

1:0000 �0:8347 �0:6840 �0:0619 �0:7198 0:8272 0:4225 �0:6728 �0:2983 �0:3817

�0:8347 1:0000 0:9659 0:5143 0:6062 �0:8432 0:0948 0:5874 0:7511 �0:1724

�0:6840 0:9659 1:0000 0:6586 0:5097 �0:7364 0:3472 0:5766 0:8665 �0:3965

�0:0619 0:5143 0:6586 1:0000 �0:3041 �0:0295 0:7073 �0:0649 0:9365 �0:8463

�0:7198 0:6062 0:5097 �0:3041 1:0000 �0:8852 �0:2776 0:8068 0:0388 0:3949

0:8272 �0:8432 �0:7364 �0:0295 �0:8852 1:0000 0:2176 �0:6119 �0:3648 �0:1863

0:4225 0:0948 0:3472 0:7073 �0:2776 0:2176 1:0000 �0:0034 0:6454 �0:9438

�0:6728 0:5874 0:5766 �0:0649 0:8068 �0:6119 �0:0034 1:0000 0:1741 0:2108

�0:2983 0:7511 0:8665 0:9365 0:0388 �0:3648 0:6454 0:1741 1:0000 �0:7634

�0:3817 �0:1724 �0:3965 �0:8463 0:3949 �0:1863 �0:9438 0:2108 �0:7634 1:0000

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

Table 2.5 The evaluation information for the 5 criteria of 10 firms

f1 f2 f3 f4 f5
A1 {0.3,0.4,0.5} {0.4,0.5} {0.8} {0.5} {0.2,0.3}

A 2 {0.4,0.6} {0.6,0.8} {0.2,0.3} {0.3,0.4} {0.6,0.7,0.9}

A 3 {0.5,0.7} {0.9} {0.3,0.4} {0.3} {0.8,0.9}

A 4 {0.3,0.4,0.5} {0.8,0.9} {0.7,0.9} {0.1,0.2} {0.9,1.0}

A 5 {0.8,1.0} {0.8,1.0} {0.4,0.6} {0.8} {0.7,0.8}

A 6 {0.4,0.5,0.6} {0.2,0.3} {0.9,1.0} {0.5} {0.3,0.4,0.5}

A 7 {0.6} {0.7,0.9} {0.8} {0.3,0.4} {0.4,0.7}

A 8 {0.9,1.0} {0.7,0.8} {0.4,0.5} {0.5,0.6} {0.7}

A 9 {0.4,0.6} {1.0} {0.6,0.7} {0.2,0.3} {0.9,1.0}

A 10 {0.9} {0.6,0.7} {0.5,0.8} {1.0} {0.7,0.8,0.9}
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Step 2. The equivalent correlation matrix is constructed as follows:

C2
w ¼

1:0000 0:0948 0:3472 0:4225 �0:2776 0:8272 0:4225 �0:0034 0:4225 �0:1863

0:0948 1:0000 0:9659 0:7511 0:6062 0:0948 0:6454 0:6062 0:8665 0:3949

0:3472 0:9659 1:0000 0:8665 0:6062 0:2176 0:6586 0:5874 0:8665 0:3949

0:4225 0:7511 0:8665 1:0000 0:5143 0:2176 0:7073 0:5766 0:9365 �0:0649

�0:2776 0:6062 0:6062 0:5143 1:0000 �0:1863 0:3472 0:8068 0:6062 0:3949

0:8272 0:0948 0:2176 0:2176 �0:1863 1:0000 0:4225 �0:0034 0:2176 �0:1863

0:4225 0:6454 0:6586 0:7073 0:3472 0:4225 1:0000 0:3472 0:7073 �0:0034

�0:0034 0:6062 0:5874 0:5766 0:8068 �0:0034 0:3472 1:0000 0:5874 0:3949

0:4225 0:8665 0:8665 0:9365 0:6062 0:2176 0:7073 0:5874 1:0000 0:1741

�0:1863 0:3949 0:3949 �0:0649 0:3949 �0:1863 �0:0034 0:3949 0:1741 1:0000

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

C4
w ¼

1:0000 0:4225 0:4225 0:4225 0:4225 0:8272 0:4225 0:4225 0:4225 0:3472

0:4225 1:0000 0:9659 0:8665 0:6062 0:4225 0:7073 0:6062 0:8665 0:3949

0:4225 0:9659 1:0000 0:8665 0:6062 0:4225 0:7073 0:6062 0:8665 0:3949

0:4225 0:8665 0:8665 1:0000 0:6062 0:4225 0:7073 0:6062 0:9365 0:3949

0:4225 0:6062 0:6062 0:6062 1:0000 0:3472 0:6062 0:8068 0:6062 0:3949

0:8272 0:4225 0:4225 0:4225 0:3472 1:0000 0:4225 0:3472 0:4225 0:2176

0:4225 0:7073 0:7073 0:7073 0:6062 0:4225 1:0000 0:6062 0:7073 0:3949

0:4225 0:6062 0:6062 0:6062 0:8068 0:3472 0:6062 1:0000 0:6062 0:3949

0:4225 0:8665 0:8665 0:9365 0:6062 0:4225 0:7073 0:6062 1:0000 0:3949

0:3472 0:3949 0:3949 �0:0649 0:3949 0:2176 0:3949 0:3949 0:3949 1:0000

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

C8
w ¼

1:0000 0:4225 0:4225 0:4225 0:4225 0:8272 0:4225 0:4225 0:4225 0:3949

0:4225 1:0000 0:9659 0:8665 0:6062 0:4225 0:7073 0:6062 0:8665 0:3949

0:4225 0:9659 1:0000 0:8665 0:6062 0:4225 0:7073 0:6062 0:8665 0:3949

0:4225 0:8665 0:8665 1:0000 0:6062 0:4225 0:7073 0:6062 0:9365 0:3949

0:4225 0:6062 0:6062 0:6062 1:0000 0:4225 0:6062 0:8068 0:6062 0:3949

0:8272 0:4225 0:4225 0:4225 0:4225 1:0000 0:4225 0:4225 0:4225 0:3949

0:4225 0:7073 0:7073 0:7073 0:6062 0:4225 1:0000 0:6062 0:7073 0:3949

0:4225 0:6062 0:6062 0:6062 0:8068 0:4225 0:6062 1:0000 0:6062 0:3949

0:4225 0:8665 0:8665 0:9365 0:6062 0:4225 0:7073 0:6062 1:0000 0:3949

0:3949 0:3949 0:3949 0:3949 0:3949 0:3949 0:3949 0:3949 0:3949 1:0000

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

C16
w ¼

1:0000 0:4225 0:4225 0:4225 0:4225 0:8272 0:4225 0:4225 0:4225 0:3949

0:4225 1:0000 0:9659 0:8665 0:6062 0:4225 0:7073 0:6062 0:8665 0:3949

0:4225 0:9659 1:0000 0:8665 0:6062 0:4225 0:7073 0:6062 0:8665 0:3949

0:4225 0:8665 0:8665 1:0000 0:6062 0:4225 0:7073 0:6062 0:9365 0:3949

0:4225 0:6062 0:6062 0:6062 1:0000 0:4225 0:6062 0:8068 0:6062 0:3949

0:8272 0:4225 0:4225 0:4225 0:4225 1:0000 0:4225 0:4225 0:4225 0:3949

0:4225 0:7073 0:7073 0:7073 0:6062 0:4225 1:0000 0:6062 0:7073 0:3949

0:4225 0:6062 0:6062 0:6062 0:8068 0:4225 0:6062 1:0000 0:6062 0:3949

0:4225 0:8665 0:8665 0:9365 0:6062 0:4225 0:7073 0:6062 1:0000 0:3949

0:3949 0:3949 0:3949 0:3949 0:3949 0:3949 0:3949 0:3949 0:3949 1:0000

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA
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As C16 ¼ C8, then C8 is an equivalent correlation matrix.

Step 3. For a confidence level k, according to Eq. (2.24), we can construct a k-

cutting matrix Ck ¼ qkij

� �
m�m

. Different k produces different k-cutting

matrix Ck ¼ qkij

� �
m�m

.

Step 4. Based on the derived k-cutting matrix Ck ¼ qkij

� �
m�m

, we can classify

these 10 firms Ajðj ¼ 1; 2; . . .; 10Þ into different clusters. The possible
classifications of these firms are shown in Table 2.6.

Chen et al. (2013a) utilized the correlation coefficient formula in the form of
Eq. (2.2) to conduct the cluster analysis and produced a correlation matrix and an
equivalent correlation matrix as well, based on which, some clustering results were
obtained (see Table 2.7).

Comparing our method with that of Chen et al. (2013a), the superiorities are
significant. Firstly, in terms of the correlation matrix, our correlation matrix consists
of different values varying from negative values to positive values; however, in
Chen et al. (2013a)’s correlation matrix, only positive values can be used, which
consequently cannot represent the negative correlation coefficients between the
firms. Secondly, as to the equivalent correlation matrix, the value range in C160 is
from 0.7984 to 1, which is quite narrow, and thus, it may be not quite convincing to
distinguish different clusters. But if using our weighted correlation coefficient, the
values in the produced equivalent correlation matrix vary from 0.3949 to 1, which
is twice wider than that of C160, and thus can better reflect the differences between
different clusters.

Table 2.6 Clustering results with respect to the correlation coefficient

Class Confidence level Clusters

10 0:9659\k� 1 A1f g; A2f g; A3f g; A4f g; A5f g; A6f g; A7f g; A8f g; A9f g; A10f g
9 0:9365\k� 0:9659 A1f g; A2;A3f g; A4f g; A5f g; A6f g; A7f g; A8f g; A9f g; A10f g
8 0:8665\k� 0:9365 A1f g; A2;A3f g; A4;A9f g; A5f g; A6f g; A7f g; A8f g; A10f g
7 0:8272\k� 0:8665 A1f g; A2;A3;A4;A9f g; A5f g; A6f g; A7f g; A8f g; A10f g
6 0:8068\k� 0:8272 A1;A6f g; A2;A3;A4;A9f g; A5f g; A7f g; A8f g; A10f g
5 0:7073\k� 0:8068 A1;A6f g; A2;A3;A4;A9f g; A5;A8f g; A7f g; A10f g
4 0:6062\k� 0:7073 A1;A6f g; A2;A3;A4;A7;A9f g; A5;A8f g; A10f g
3 0:4225\k� 0:6062 A1;A6f g; A2;A3;A4;A5;A7;A8;A9f g; A10f g
2 0:3949\k� 0:4225 A1;A2;A3;A4;A5;A6A7;A8;A9f g; A10f g
1 0� k� 0:3949 A1;A2;A3;A4;A5;A6;A7;A8;A9;A10f g
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2.2 Novel Entropy Measures of Hesitant Fuzzy Sets

2.2.1 The Existing Entropy Measures of Hesitant Fuzzy Sets

Motivated by the axiomatic definition of entropy for fuzzy sets, Xu and Xia (2012)
proposed the principles of entropy measure for HFE in terms of the fuzziness of a
HFE.

Definition 2.7 (Xu and Xia 2012). A real-valued function E : H ! 0; 1½ � is called
an entropy for the HFE a, if it satisfies:

(1) E að Þ ¼ 0 if and only if a ¼ 0f g or a ¼ 1f g.
(2) E að Þ ¼ 1 if and only if arðiÞ þ arðl�iþ 1Þ ¼ 1, for i ¼ 1; 2; . . .; la.
(3) E að Þ�E bð Þ if arðiÞ � brðiÞ for brðiÞ þ brðl�iþ 1Þ � 1 or arðiÞ � brðiÞ for

brðiÞ þ brðl�iþ 1Þ � 1; i ¼ 1; 2; . . .; l.
(4) E að Þ ¼ E acð Þ.

Based on Definition 2.7, Xu and Xia (2012) introduced some entropy measures
for a HFE a.

E1 að Þ ¼ 1

la
ffiffiffi
2

p � 1
� �Xla

i¼1

sin
p ar ið Þ þ ar la�iþ 1ð Þ
� �

4
þ sin

p 2� ar ið Þ � ar la�iþ 1ð Þ
� �

4
� 1

� �

ð2:25Þ

E2 að Þ ¼ 1

la
ffiffiffi
2

p � 1
� �Xla

i¼1

cos
p ar ið Þ þ ar la�iþ 1ð Þ
� �

4
þ cos

p 2� ar ið Þ � ar la�iþ 1ð Þ
� �

4
� 1

� �

ð2:26Þ

Table 2.7 Clustering results with respect to Chen et al. (2013a)’s correlation coefficient

Class Confidence level Clusters

10 0:9515\k� 1 A1f g; A2f g; A3f g; A4f g; A5f g; A6f g; A7f g; A8f g; A9f g; A10f g
9 0:9306\k� 0:9515 A1f g; A2f g; A3f g; A4f g; A6f g; A7f g; A8f g; A9f g; A5;A10f g
8 0:9238\k� 0:9306 A1f g; A2f g; A3f g; A4;A9f g; A6f g; A7f g; A8f g; A5;A10f g
7 0:9104\k� 0:9238 A1f g; A2f g; A3f g; A4;A7;A9f g; A6f g; A8f g; A5;A10f g
6 0:9025\k� 0:9104 A1;A6f g; A2f g; A3f g; A4;A7;A9f g; A8f g; A5;A10f g
5 0:8997\k� 0:9025 A1;A6f g; A2f g; A3f g; A4;A7;A8;A9f g; A5;A10f g
4 0:8520\k� 0:8997 A1;A6f g; A2f g; A3;A4;A7;A8;A9f g; A5;A10f g
3 0:8200\k� 0:8520 A1;A6f g; A2f g; A3;A4;A5;A7;A8;A9;A10f g
2 0:7984\k� 0:8200 A1;A6f g; A2;A3;A4;A5;A7;A8;A9;A10f g
1 0� k� 0:7984 A1;A2;A3;A4;A5;A6;A7;A8;A9;A10f g
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E3 að Þ ¼ � 1
la ln 2

Xla
i¼1

ar ið Þ þ ar la�iþ 1ð Þ
2 lnar ið Þ þ ar la�iþ 1ð Þ

2

�

þ 2�ar ið Þ�ar la�iþ 1ð Þ
2 ln2�ar ið Þ�ar la�iþ 1ð Þ

2

� ð2:27Þ

E4 að Þ ¼ � 1
la 2 1�sð Þt � 1ð Þ

Xla
i¼1

ar ið Þ þ ar la�iþ 1ð Þ
2

� �s

þ 2� ar ið Þ � ar la�iþ 1ð Þ
2

� �s� �t

�1

 �

t 6¼ 0; s 6¼ 1; s[ 0 ð2:28Þ

All the above entropy measures satisfy the conditions in Definition 2.7.
However, if we apply them to the HFEs whose complements are equal to them-
selves, we can get the same entropy degree. This indicates that the entropy mea-
sures introduced by Xu and Xia (2012) cannot correctly discriminate different HFEs
in some cases.

Example 2.5 (Zhao et al. 2015). Let a1 ¼ 0:2; 0:5; 0:8f g and a2 ¼ 0:4; 0:5; 0:6f g
be two HFEs. Obviously, a1 ¼ ac1; a2 ¼ ac2 and the fuzziness of a2 is greater than
that of a1. Applying the entropy measures Ei i ¼ 1; 2; 3; 4ð Þ to the HFEs a1 and a2,
we obtain Ei a1ð Þ ¼ Ei a2ð Þ ¼ 1, for i ¼ 1; 2; 3; 4, which are not consistent with our
intuition.

Based on the distance measure between HFEs (Xu and Xia 2011a), Farhadinia
(2013) gave the following axiomatic definition of entropy to measure the fuzziness
of a HFE.

Definition 2.8 (Farhadinia 2013). Let d a; 0:5f gð Þ be the distance between the
HFE a and 0:5f g. A real function Ed : H ! 0; 1½ � is called a distance-based entropy
for the HFE a, if it satisfies:

(1) Ed að Þ ¼ 0 if and only if a ¼ 0f g or a ¼ 1f g.
(2) Ed að Þ ¼ 1 if and only if a ¼ 0:5f g.
(3) Ed að Þ�Ed bð Þ if d a; 0:5f gð Þ� d b; 0:5f gð Þ.
(4) Ed að Þ ¼ Ed acð Þ.

Theorem 2.4 provided an approach to generate the distance-based entropy
measures for HFEs.

Theorem 2.4 (Farhadinia 2013). Let Z : 0; 1½ � ! 0; 1½ � be a strictly monotone
decreasing real function, and d a; 0:5f gð Þ be the distance between the HFE a and
0:5f g. Then,

Ed að Þ ¼ Z 2d a; 0:5f gð Þð Þ � Z 1ð Þ
Z 0ð Þ � Z 1ð Þ ð2:29Þ

is an entropy measure for the HFE a.
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Xu and Xia (2011a) defined three kinds of distance measures which can be used
to calculate the distance between the HFE a and 0:5f g.

d1k a; 0:5f gð Þ ¼ 1
l

Xl
i¼1

ar ið Þ � 0:5
�� ��k" #1=k

; k ¼ 1; 2 ð2:30Þ

d2k a; 0:5f gð Þ ¼ maxi ar ið Þ � 0:5
�� ��kn o

; k ¼ 1; 2 ð2:31Þ

d3k a; 0:5f gð Þ ¼ 1
l

Xl
i¼1

ar ið Þ � 0:5
�� ��k" #1=k

þ maxi ar ið Þ � 0:5
�� ��kn o8<

:
9=
;; k ¼ 1; 2

ð2:32Þ

Let a be three HFEs f0; 1g, f0g and f1g, respectively. Then by Eqs. (2.30)–
(2.32), we can calculate

d1k 0; 1f g; 0:5f gð Þ ¼ d1k 0f g; 0:5f gð Þ ¼ d1k 1f g; 0:5f gð Þ ¼ 1
2
; k ¼ 1; 2

d2k 0; 1f g; 0:5f gð Þ ¼ d2k 0f g; 0:5f gð Þ ¼ d2k 1f g; 0:5f gð Þ ¼ 1
2

� �k

; k ¼ 1; 2

d3k 0; 1f g; 0:5f gð Þ ¼ d3k 0f g; 0:5f gð Þ ¼ d3k 1f g; 0:5f gð Þ ¼ 1
2

1
2
þ 1

2

� �k
" #

; k ¼ 1; 2

According to Theorem 2.4, we get

Ed1k 0; 1f gð Þ ¼ Ed1k 0f gð Þ ¼ Ed1k 1f gð Þ ¼ 0; k ¼ 1; 2

Ed21 0; 1f gð Þ ¼ Ed21 0f gð Þ ¼ Ed21 1f gð Þ ¼ 0

Ed22 0f gð Þ ¼ Ed22 1f gð Þ ¼ Z 1=2ð Þ � Z 1ð Þ
Z 0ð Þ � Z 1ð Þ 6¼ 0

Ed31 0; 1f gð Þ ¼ Ed31 0f gð Þ ¼ Ed31 1f gð Þ ¼ 0

Ed32 0f gð Þ ¼ Ed32 1f gð Þ ¼ Z 3=8ð Þ � Z 1ð Þ
Z 0ð Þ � Z 1ð Þ 6¼ 0

The above results reveal that no matter which distance measure we employ, the
derived entropies for HFEs do not meet the first condition in Definition 2.8, which
implies that the entropy measure in Eq. (2.29) is unreasonable. Moreover, for any
two HFEs a and b, if d a; 0:5f gð Þ ¼ d b; 0:5f gð Þ, then by Eq. (2.29), we have
E að Þ ¼ E bð Þ. That is to say, different HFEs that have the same distance from the
HFE 0:5f g would yield the same entropy in case we use the entropy measure
proposed in Theorem 2.4. This is definitely unreasonable.
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Particularly, let Z tð Þ ¼ 1� t and d be the hesitant normalized Hamming distance
d11, then the entropy measure in Eq. (2.29) turns out to be:

Ed11 að Þ ¼ 1� 2
la

Xla
i¼1

ar ið Þ � 1
2

����
���� ð2:33Þ

Example 2.6 (Zhao et al. 2015). In a multiple criteria decision making problem,
two decision organizations consider the possible membership degrees of x to the set
M. The experts in the first organization think that the membership degree should be
0.01, while in the second organization, some experts deem it as 0.01, and the others
deem it as 0.99. Then, the membership degree provided by the first organization is
0.01, which is very small, and thus, we can easily deduce that the experts in the first
organization are inclined to consider that x does not belong to the set M. Similarly,
it can be easily deduced that some experts in the second organization tend to think
that x does not belong to the set M, and the others tend to believe that x belongs to
the setM, and the degrees that x belongs to and not to the setM are the same, which
implies that according to the decision information provided by the second decision
organization, we are not sure whether x belongs to the set M or not. Thus, we may
say that the decision information offered by the first organization is more specific
than that offered by the other one. We can use the HFEs a1 ¼ 0:01f g and a2 ¼
0:01; 0:99f g to represent the possible membership degrees of x into M provided by

these two organizations, respectively. Then, by Eq. (2.33), we get Ed11 a1ð Þ ¼
Ed11 a2ð Þ ¼ 0:02, which is unreasonable because these two HFEs are significantly
different in terms of specificity based on the above analysis.

2.2.2 Novel Two-Tuple Entropy Measures of Hesitant
Fuzzy Sets

As mentioned above, the entropy measures proposed by Xu and Xia (2012) and
Farhadinia (2013) are incapable to effectively distinguish HFEs in many cases. In
our opinion, for a HFE, except for the fuzziness, there exists another kind of
uncertainty, i.e., non-specificity. The fuzziness of a HFE is related to the deviation
between the HFE and its nearest crisp set, while the non-specificity is related to the
imprecise knowledge contained in the HFE. Suppose that the membership degrees
of the element x to the set A provided by a decision organization are presented by
the HFE h xð Þ ¼ 0; 1f g. From the HFE h xð Þ ¼ 0; 1f g, we know that the member-
ship degree of x to A may be 0 indicating that x absolutely does not belong to A, and
may be 1 implying that x completely belongs to A. We are not sure whether the
element x belongs to the set A or not. That is to say, this case involves
non-specificity. Non-specificity is another kind of uncertainty associated with a
HFE. In this section, we present a new axiomatic definition of the entropy for HFEs,
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which captures the two types of uncertainty associated with a HFE. Then, we
introduce some methods to construct the entropy measures for HFE.

Definition 2.9 (Zhao et al. 2015). Let EF ;ENS : H ! 0; 1½ � be two real functions.
The pair EF ;ENSð Þ is called a two-tuple entropy measure for the HFE a if EF

satisfies the following axiomatic requirements:

(1) EF að Þ ¼ 0 if and only if a is crisp, that is, a ¼ 0f g or a ¼ 1f g;
(2) EF að Þ ¼ 1 if and only if a ¼ 0:5f g;
(3) EF að Þ ¼ EF acð Þ;
(4) For any i ¼ 1; 2; . . .; l, if arðiÞ � brðiÞ for brðiÞ � 0:5 or if arðiÞ � brðiÞ for

brðiÞ � 0:5, then EF að Þ�EF bð Þ, and ENS satisfies the following axiomatic
requirements:

(5) ENS að Þ ¼ 0 if and only if there is only one value in a, that is, a ¼ uf g with
0� u� 1;

(6) ENS að Þ ¼ 1 if and only if a ¼ 0; 1f g;
(7) ENS að Þ ¼ ENS acð Þ;
(8) ENS að Þ�ENS bð Þ if for any i; j ¼ 1; 2; . . .; l; arðiÞ � arðjÞ

�� ��� brðiÞ � brðjÞ
��� ���.

Definition 2.9 uses a pair EF ;ENSð Þ to represent the two kinds of uncertainty
linked to a HFE where EF , called the fuzzy entropy, is considered as a measure of
fuzziness to quantify how far the HFE is from its closest crisp set, and ENS, called
the non-specific entropy, is proposed to measure the non-specificity of a HFE. It is
noticed that the proposed non-specificity measure differs from that linked to the
fuzzy set or the IFS. The introduced two-tuple entropy measure EF ;ENSð Þ not only
maintains the traditional properties of entropy, i.e., measuring the fuzziness aspect
of uncertainty, but also reflects another aspect of uncertainty, i.e., non-specificity.

(1) Fuzzy entropy EF
In this part, we provide some methods to generate the measures to quantify the

fuzziness of a HFE.

Theorem 2.5 (Zhao et al. 2015). Let R : 0; 1½ �2! 0; 1½ � be a mapping and satisfy:

(1) R x; yð Þ ¼ 0 if and only if x ¼ y ¼ 0 or x ¼ y ¼ 1.
(2) R x; yð Þ ¼ 1 if and only if x ¼ y ¼ 0:5.
(3) R x; yð Þ ¼ R 1� y; 1� xð Þ for all x; y 2 0; 1½ �.
(4) If 0� x1 � x2 � 0:5; 0� y1 � y2 � 0:5, then R x1; y1ð Þ�R x2; y2ð Þ; if 0:5� x1

� x2 � 1, 0:5� y1 � y2 � 1, then R x1; y1ð Þ�R x2; y2ð Þ.
Then the mapping EF : H ! 0; 1½ � defined as

EF að Þ ¼ 2
la la þ 1ð Þ

Xla
i¼1

X
j� i

R arðiÞ; arðjÞ
� � ð2:34Þ

fulfills the axioms (1)–(4) in Definition 2.9.
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Proof

(1) If a ¼ 0f g, then by Eq. (2.34), we get EF 0f gð Þ ¼ R 0; 0ð Þ ¼ 0; if a ¼ 1f g, then
EF 1f gð Þ ¼ R 1; 1ð Þ ¼ 0. Conversely, if EF að Þ ¼ 0, then R arðiÞ; arðjÞ

� � ¼ 0, for
any i; j ¼ 1; 2; . . .; la; j� i. According to the property (1) in Theorem 2.5, we
have arðiÞ ¼ 0 or arðiÞ ¼ 1, for any i ¼ 1; 2; . . .; la. Thus, the condition (1) in
Definition 2.9 holds.

(2) If a ¼ 0:5f g, then according to Eq. (2.34), we obtain EF 0:5f gð Þ ¼ R 0:5;ð
0:5Þ ¼ 1. On the contrary, if EF að Þ ¼ 1, then by Eq. (2.34), we have
R arðiÞ; arðjÞ
� � ¼ 1, for any i; j ¼ 1; 2; . . .; la; j� i. According to the property

(2) in Theorem 2.5, we have arðiÞ ¼ 0:5, for any i ¼ 1; 2; . . .; la. Thus, the con-
dition (2) in Definition 2.9 holds.

(3) By Eq. (2.34), we have EF acð Þ ¼ 2
la la þ 1ð Þ

Pla
i¼1

P
j� i R acrðiÞ; a

c
rðjÞ

� �
. Since

acrðiÞ ¼ 1� ar la�iþ 1ð Þ, for i ¼ 1; 2; . . .; la, then, EF acð Þ ¼ 2
la la þ 1ð Þ

Pla
i¼1

P
j� i

R 1� ar la�iþ 1ð Þ; 1� ar la�jþ 1ð Þ
� �

. According to the property (3) in Theorem 2.5,

we have EF acð Þ ¼ 2
la la þ 1ð Þ

Pla
i¼1

P
j� i R ar la�jþ 1ð Þ; ar la�iþ 1ð Þ

� � ¼ EF að Þ. Thus,
the condition (3) in Definition 2.9 holds.

(4) For any i ¼ 1; 2; . . .; l; arðiÞ � brðiÞ � 0:5, according to the property (4) in

Theorem 2.5, we get R arðiÞ; arðjÞ
� ��R brðiÞ; brðjÞ

� �
; i; j ¼ 1; 2; . . .; l; j� i.

Then according to Eq. (2.34), we gain EF að Þ�EFðbÞ. The other case can be
illustrated in a similar way. Thus, the condition (4) in Definition 2.9 holds.

Remark It is observed that EF að Þ is a fuzzy entropy for the HFE a. By Eq. (2.34),
we have EF 0; 1f gð Þ ¼ 1

3R 0; 1ð Þ 6¼ 0; which shows that the fuzzy entropy of 0; 1f g
is different from those of the HFEs 0f g and 1f g.
Theorem 2.6 (Zhao et al. 2015). Let �R : 0; 1½ �2! 0; 1½ � be a mapping and the
mapping EF : H ! 0; 1½ � defined as:

EF að Þ ¼ 2
la la þ 1ð Þ

Xla
i¼1

X
j� i

�R arðiÞ; arðjÞ
� � ð2:35Þ

satisfies the axioms (1)–(4) in Definition 2.9, then

(1) �R 0; 0ð Þ ¼ 0 and �R 1; 1ð Þ ¼ 0.
(2) �R 0:5; 0:5ð Þ ¼ 1.
(3) If for all x; y 2 0; 1½ �; �R x; yð Þ ¼ �R y; xð Þ, then �R x; yð Þ ¼ �R 1� y; 1� xð Þ for all

x; y 2 0; 1½ �.
(4) If 0� x1 � x2 � 0:5, then �R x1; x1ð Þ� �R x2; x2ð Þ; if 0:5� x1 � x2 � 1, then

�R x1; x1ð Þ� �R x2; x2ð Þ.
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Proof (1) and (2) are easy to check, thus, we here only give the proofs of (3) and
(4).

(3) Suppose that there exist x; y 2 0; 1½ � such that �R x; yð Þ 6¼ �R 1� y; 1� xð Þ.
Without loss of generality, assume that x� y and �R x; yð Þ[ �R 1� y; 1� xð Þ. Given a
HFE a ¼ ar 1ð Þ; ar 2ð Þ

� �
where ar 1ð Þ ¼ x and ar 2ð Þ ¼ y, Then by Eq. (2.35), we get

EF að Þ ¼ 1
3

�R ar 1ð Þ; ar 1ð Þ
� �þ �R ar 1ð Þ; ar 2ð Þ

� �þ �R ar 2ð Þ; ar 2ð Þ
� �� �

and

EF acð Þ ¼ 1
3

�R 1� ar 2ð Þ; 1� ar 2ð Þ
� �þ �R 1� ar 2ð Þ; 1� ar 1ð Þ

� �þ �R 1� ar 1ð Þ; 1� ar 1ð Þ
� �� �

According to the condition (3) in Definition 2.9, we have EF ar 1ð Þ
� �� � ¼

EF 1� ar 1ð Þ
� �� �

and EF ar 2ð Þ
� �� � ¼ EF 1� ar 2ð Þ

� �� �
, that is, �R ar 1ð Þ; ar 1ð Þ

� � ¼
�R 1� ar 1ð Þ; 1� ar 1ð Þ
� �

and �R ar 2ð Þ; ar 2ð Þ
� � ¼ �R 1� ar 2ð Þ; 1� ar 2ð Þ

� �
. Thus,

EF að Þ[EF acð Þ, which contradicts the condition (3) in Definition 2.9. In other
words, the property (3) holds.

(4) Assume that there exist x1; x2 2 0; 0:5½ � with x1 � x2 such that
�R x1; x1ð Þ[ �R x2; x2ð Þ, then by Eq. (2.35), we get EF x1f gð Þ ¼ �R x1; x1ð Þ[
�R x2; x2ð Þ ¼ EF x2f gð Þ, which contradicts the condition (4) in Definition 2.9.
Similarly, the other case can be proven.

It is not easy to look for the bivariate function R in Theorem 2.5. In what
follows, we try to reduce it to a univariate function.

Theorem 2.7 (Zhao et al. 2015). Let u : 0; 1½ � ! 0; 1½ � be a mapping and satisfy:

(1) u xð Þ ¼ 0 if and only if x ¼ 0.
(2) u xð Þ ¼ 1 if and only if x ¼ 0:75.
(3) u is monotone non-decreasing in 0; 0:75½ Þ and monotone non-increasing in

0:75; 1ð �.
Then, the mapping EF : H ! 0; 1½ � defined as

EF að Þ ¼ 2
la la þ 1ð Þ

Xla
i¼1

X
j� i

u 1� arðiÞarðjÞ
� � � u arðiÞ � arðiÞarðjÞ þ arðjÞ

� � ð2:36Þ

fulfills the axioms (1)–(4) in Definition 2.9.

Proof Suppose that u is defined as the above statement and
R x; yð Þ ¼ u 1� xyð Þ � u x� xyþ yð Þ. Then we only need to prove that R x; yð Þ
possesses the properties (1)–(4) in Theorem 2.5.

(1) If R x; yð Þ ¼ 0, that is, u 1� xyð Þ � u x� xyþ yð Þ ¼ 0, then u 1� xyð Þ ¼ 0 or
u x� xyþ yð Þ ¼ 0. If u 1� xyð Þ ¼ 0, then by the condition (1) in this theorem,
we get xy ¼ 1. Thus, x ¼ y ¼ 1. If u x� xyþ yð Þ ¼ 0, then x� xyþ y ¼ 0.
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Therefore, we deduce that x ¼ y ¼ 0. The converse is easy to prove.
Accordingly, the property (1) in Theorem 2.5 holds.

(2) If R x; yð Þ ¼ 1, that is, u 1� xyð Þ � u x� xyþ yð Þ ¼ 1, then we get u 1� xyð Þ ¼
1 and u x� xyþ yð Þ ¼ 1. By the condition (2) in this theorem, we deduce that
xy ¼ 0:25 and x� xyþ y ¼ 0:75, from which we get x ¼ y ¼ 0:5. It is easy to
prove the converse. Then we finish the proof of property (2) in Theorem 2.5.

(3) R 1� y; 1� xð Þ ¼ u 1� 1� yð Þ 1� xð Þð Þ � u 1� y� 1� yð Þ 1� xð Þþ 1� xð Þ
¼ u x� xyþ yð Þ � u 1� xyð Þ ¼ R x; yð Þ

(4) Assume 0� x1 � x2 � 0:5 and 0� y1 � y2 � 0:5, then 0:75� 1� x2y2 � 1�
x1y1 � 1 and 0� x1 � x1y1 þ y1 � x2 � x2y2 þ y2 � 0:75. By the condition (3) in
this theorem, we obtain u 1� x1y1ð Þ�u 1� x2y2ð Þ and u x1 � x1y1 þ y1ð Þ�
u x2 � x2y2 þ y2ð Þ, from which we derive R x1; y1ð Þ�R x2; y2ð Þ. Similarly, the
other case can be illustrated. Thus, the property (4) in Theorem 2.5 holds.

Based on Theorem 2.7, we can set out two entropy measures for HFEs as
illustrative examples.

(1) Let u tð Þ ¼ 1� 1
3 4t � 3j j� �r with r� 1. Obviously, u satisfies the conditions in

Theorem 2.7. Then we get the following entropy measure for HFEs:

Er
F að Þ ¼ 2

la la þ 1ð Þ
Xla
i¼1

X
j� i

1� 1
3
4arðiÞarðjÞ � 1
�� ��� �r� �

�

1� 1
3
4arðiÞ � 4arðiÞarðjÞ þ 4arðjÞ � 3
�� ��� �r� � ð2:37Þ

For the simplicity of calculation, we take r ¼ 1. Then the entropy measure in
Eq. (2.37) becomes

E1
F að Þ ¼ 2

la la þ 1ð Þ
Xla
i¼1

X
j� i

1
9

3� 4arðiÞarðjÞ � 1
�� ��� � � 3� 4arðiÞ � 4arðiÞarðjÞ þ 4arðjÞ � 3

�� ��� �
ð2:38Þ

(2) Let u tð Þ ¼ 2
3 min 2t � 1; 2� 2tð Þþ 1½ �. Then u satisfies the conditions in

Theorem 2.7, and the generated entropy measure for HFEs is

EF að Þ ¼ 2
la la þ 1ð Þ

Xla
i¼1

X
j� i

4
9
min 1� 2arðiÞarðjÞ; 2arðiÞarðjÞ
� �þ 1

� ��
min 1� 2 1� arðiÞ

� �
1� arðjÞ
� �

; 2 1� arðiÞ
� �

1� arðjÞ
� �� �þ 1

� � ð2:39Þ

The following example illustrates that the entropy measures proposed in this
chapter can produce better results than those introduced by Xu and Xia (2012) in
distinguishing HFEs.
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Example 2.7 (Zhao et al. 2015). Consider two HFEs a1¼ 0:4; 0:5; 0:6f g and
a2¼ 0:1; 0:5; 0:9f g. Obviously, a1¼ac1 and a2 ¼ ac2, and intuitively, the fuzziness of
a1 should be greater than that of a2. Utilizing the entropy measures shown in
Eqs. (2.25)–(2.28) to calculate the entropy of the HFE ai i ¼ 1; 2ð Þ, we get
Ej a1ð Þ ¼ Ej a2ð Þ ¼ 1 j ¼ 1; 2; 3; 4ð Þ, which are counter-intuitive. On the contrary, if
we use the entropy measures shown in Eqs. (2.37)–(2.39), we can get different
results presented in Table 2.8.

From Table 2.8, we can find that no matter which entropy measures we use, the
entropy of a1 is always greater than that of a2. This is consistent with our intuition.
In other words, the proposed entropy measures are able to overcome the drawback
of Xu and Xia (2012)’s entropy measures, that is, those measures cannot differ-
entiate the different HFEs which are equal to their complements.

(2) Non-specific entropy ENS

Now we pay attention to the other aspect of uncertainty associated with a HFE,
i.e., the non-specificity, and introduce some measures to quantify the
non-specificity of a HFE.

Let

lah i ¼ 2; la ¼ 1
la la � 1ð Þ; la � 2




Firstly, we give the following general result:

Theorem 2.8 (Zhao et al. 2015). Let F : 0; 1½ �2! 0; 1½ � be a mapping and satisfy:

(1) F x; yð Þ ¼ 0 if and only if x ¼ y.
(2) F x; yð Þ ¼ 1 if and only if 0; 1f g\ x; yf g 6¼ /.
(3) F x; yð Þ ¼ F 1� y; 1� xð Þ for all x; y 2 0; 1½ �.
(4) For x; y; z;w 2 0; 1½ �, if x� yj j � z� wj j, then F x; yð Þ�F z;wð Þ.

Then the mapping ENS : H ! 0; 1½ � defined as:

ENS að Þ ¼ 2
lah i
Xla
i¼1

X
j� i

F arðiÞ; arðjÞ
� � ð2:40Þ

satisfies the axioms (5)–(8) in Definition 2.9.

Table 2.8 The results
obtained by different entropy
measures

Results E1
F aið Þ E2

F aið Þ E3
F aið Þ EF aið Þ

i ¼ 1 0:8696 0:9851 0:9981 0:8696

i ¼ 2 0:5065 0:7385 0:8391 0:5065
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Proof

(1) If there is only one value in the HFE a, that is, a ¼ uf g, then by Eq. (2.40), we
get ENS að Þ ¼ F u; uð Þ ¼ 0.
Conversely, if ENS að Þ ¼ 0, then F arðiÞ; arðjÞ

� � ¼ 0, for any i; j ¼ 1; 2; . . .;
la; j� i. According to the property (1) in this theorem, we deduce that
arðiÞ ¼ arðjÞ, for any i; j ¼ 1; 2; . . .; la; j� i. That is to say, the HFE a has only
one value. Thus, the condition (5) in Definition 2.9 holds.

(2) If a ¼ 0; 1f g, then according to Eq. (2.40) and the property (1) and property
(2) in this theorem, we have ENSðaÞ ¼ F 0; 0ð ÞþF 0; 1ð ÞþF 1; 1ð Þ ¼ 1.
On the contrary, if ENS að Þ ¼ 1 with a ¼ ar 1ð Þ; ar 2ð Þ; . . .; ar lað Þ

� �
; la � 2, then

by Eq. (2.40), we obtain F arðiÞ; arðjÞ
� � ¼ 1, for any i; j ¼ 1; 2; . . .; la; j[ i. If

la ¼ 2, then according to the property (2) in this theorem, we obtain arð1Þ ¼ 0
and arð2Þ ¼ 1, that is, a ¼ 0; 1f g. If la [ 2, for instance, let la ¼ 3, then we get
F arð1Þ; arð2Þ
� � ¼ 1, F arð1Þ; arð3Þ

� � ¼ 1 and F arð2Þ; arð3Þ
� � ¼ 1. By the first two

equations, we deduce that arð1Þ ¼ 0; arð2Þ ¼ 1 and arð3Þ ¼ 1, and by the third
equation, we deduce that arð2Þ ¼ 0 and arð3Þ ¼ 1, which is contradictory. In a
similar way, we can illustrate that it is contradictory when la takes any value
larger than 3. Thus, the condition (6) in Definition 2.9 holds.

(3) The proof of the condition (7) is similar to that of the condition (3) in
Theorem 2.5.

(4) The proof of the condition (8) is straightforward according to the property (4) in
this theorem.

Theorem 2.9 (Zhao et al. 2015). Let �F : 0; 1½ �2! 0; 1½ � be a mapping and let the
mapping ENS : H ! 0; 1½ � defined as:

ENS að Þ ¼ 2
lah i
Xla
i¼1

X
j� i

F arðiÞ; arðjÞ
� � ð2:41Þ

satisfy the axioms (5)–(8) in Definition 2.9, then

(1) �F x; yð Þ ¼ 0 if and only if x ¼ y.
(2) If �F x; yð Þ ¼ �F y; xð Þ, for all x; y 2 ½0; 1�, then (i) �F x; yð Þ ¼ 1 if and only if

0; 1f g\ x; yf g 6¼ /; (ii) �F x; yð Þ ¼ �F 1� y; 1� xð Þ for all x; y 2 0; 1½ �; (iii)
�F x; yð Þ� �F z;wð Þ if x� yj j � z� wj j for x; y; z;w 2 0; 1½ �.

Proof

(1) Assume that there exist x; y 2 ½0; 1� with x 6¼ y such that �F x; yð Þ ¼ 0. Without
loss of generality, suppose x\y. Consider the HFEs b ¼ ar 1ð Þ

� �
and c ¼

ar 2ð Þ
� �

assigned by ar 1ð Þ ¼ x and ar 2ð Þ ¼ y, respectively. Then according to the
requirement (5) in Definition 2.9, we have
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ENS bð Þ ¼ �F ar 1ð Þ; ar 1ð Þ
� � ¼ 0; ENS cð Þ ¼ �F ar 2ð Þ; ar 2ð Þ

� � ¼ 0

For the HFE a ¼ ar 1ð Þ; ar 2ð Þ
� �

, we have

ENS að Þ ¼ �F ar 1ð Þ; ar 1ð Þ
� �þ �F ar 1ð Þ; ar 2ð Þ

� �þ �F ar 2ð Þ; ar 2ð Þ
� � ¼ 0 ð2:42Þ

By the requirement (5) in Definition 2.9, Eq. (2.42) holds if and only if
ar 1ð Þ¼ar 2ð Þ, that is, x ¼ y, which is contradictory. Similarly, the converse can
be proven.

(2) (i) Let a ¼ 0; 1f g, then according to Eq. (2.41) and the requirement (6) in
Definition 2.9, we get ENS að Þ ¼ �F 0; 0ð Þþ �F 0; 1ð Þþ �F 1; 1ð Þ ¼ 1. Since
�F 0; 0ð Þ ¼ �F 1; 1ð Þ ¼ 0, then we obtain �F 0; 1ð Þ ¼ 1. Since �F x; yð Þ ¼ �F y; xð Þ, for
all x; y 2 0; 1½ �, then �F 1; 0ð Þ ¼ 1. Conversely, suppose that there exist x; y 2
0; 1½ � with 0; 1f g\ x; yf g ¼ / such that �F x; yð Þ ¼ 1. Without loss of generality,
assume that x[ y. Let a HFE a be a ¼ ar 1ð Þ; ar 2ð Þ

� �
defined by ar 1ð Þ ¼ y and

ar 2ð Þ ¼ x. Then by Eq. (2.41), we get

ENS að Þ ¼ �F ar 1ð Þ; ar 2ð Þ
� � ¼ �F y; xð Þ ¼ 1 ð2:43Þ

According to the requirement (6) in Definition 2.9, Eq. (2.43) holds if and only
if ar 1ð Þ ¼ 0 and ar 2ð Þ ¼ 1, which is contradictory.
(ii) Suppose that there exist x; y 2 0; 1½ � such that �F x; yð Þ 6¼ �F 1� y; 1� xð Þ.
Without loss of generality, assume that x� y and �F x; yð Þ[ �F 1� y; 1� xð Þ.
Given a HFE a as a ¼ ar 1ð Þ; ar 2ð Þ

� �
, where we assign ar 1ð Þ ¼ x and ar 2ð Þ ¼ y,

then we get

ENS að Þ ¼ �F ar 1ð Þ; ar 2ð Þ
� �

[ �F 1� ar 2ð Þ; 1� ar 1ð Þ
� � ¼ ENS acð Þ

which contradicts the axiomatic requirement (7) in Definition 2.9.
(iii) Suppose that there exist x; y; z;w 2 ½0; 1� with x� yj j � z� wj j such that
�F x; yð Þ\�F z;wð Þ. Without loss of generality, assume that x� y and z�w.
Considering the HFE a ¼ ar 1ð Þ; ar 2ð Þ

� �
defined as ar 1ð Þ ¼ x and ar 2ð Þ ¼ y, and

the HFE b ¼ br 1ð Þ; br 2ð Þ
n o

given by br 1ð Þ ¼ z and br 2ð Þ ¼ w, we obtain

ENS að Þ ¼ �F ar 1ð Þ; ar 2ð Þ
� �

\�F br 1ð Þ; br 2ð Þ
� �

¼ ENS bð Þ

which contradicts the requirement (8) in Definition 2.9. This completes the
proof of Theorem 2.8.

Bustince et al. (2012) introduced the grouping function to measure to what
extent an element belongs to at least one of two given classes.
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Definition 2.10 (Bustince et al. 2012). A grouping function is a mapping G :

0; 1½ �2! 0; 1½ � such that:

(1) G x; yð Þ ¼ G y; xð Þ for all x; y 2 0; 1½ �.
(2) G x; yð Þ ¼ 0 if and only if x ¼ y ¼ 0.
(3) G x; yð Þ ¼ 1 if and only if x ¼ 1 or y ¼ 1.
(4) G is monotonically increasing in both variables.

We can construct the non-specific entropy measure for HFE by means of the
grouping function.

Theorem 2.10 (Zhao et al. 2015). Let G be a grouping function. Then the mapping
ENSG : H ! ½0; 1� shown as:

EFBG að Þ ¼ 2
lah i
Xla
i¼1

X
j� i

G arðiÞ � arðjÞ
�� ��; arðiÞ � arðjÞ

�� ��� �

defines a non-specific entropy measure for the HFE a satisfying the axioms (5)–(8)
in Definition 2.9.

Proof It is observed that the mapping F x; yð Þ ¼ G x� yj j; x� yj jð Þ satisfies the
properties (1)–(4) stated in Theorem 2.8. Thus, EFBG að Þ is a non-specific entropy
measure for a.

If we define G : 0; 1½ �2! 0; 1½ � as G x; yð Þ ¼ xþ y� xy, then G satisfies the
conditions in Definition 2.10. That is to say, G is a grouping function. Thus, based
on Theorem 2.10, we get a non-specific entropy measure:

E1
NSG að Þ ¼ 2

lah i
Xla
i¼1

X
j� i

2 arðiÞ � arðjÞ
�� ��� arðiÞ � arðjÞ

� �2 ð2:44Þ

If we define G : 0; 1½ �2! 0; 1½ � as G x; yð Þ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�xð Þ 1�yð Þ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�xð Þ 1�yð Þ

p
þ 1� 1�xð Þ 1�yð Þ, then G

is a grouping function, and the corresponding non-specific entropy measure is

E2
NSG að Þ ¼ 2

lah i
Xla
i¼1

X
j� i

1� 1� arðiÞ � arðjÞ
�� ��

1þ arðiÞ � arðjÞ
�� ��� arðiÞ � arðjÞ

� �2 ð2:45Þ

Clearly, it is a bit difficult to look for such a bivariate function satisfying the
conditions in Theorem 2.8. Below we attempt to reduce it to a univariate function.

Theorem 2.11 (Zhao et al. 2015). Let g : 0; 1½ � ! 0; 1½ � be a mapping and satisfy:

(1) g xð Þ ¼ 0 if and only if x ¼ 0.
(2) g xð Þ ¼ 1 if and only if x ¼ 1.
(3) g is monotone non-decreasing.

Then the mapping ENS : H ! 0; 1½ � defined as:
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ENS að Þ ¼ 2
lah i
Xla
i¼1

X
j� i

g arðiÞ � arðjÞ
�� ��� � ð2:46Þ

satisfies the axioms (5)–(8) in Definition 2.9.

Proof Let F x; yð Þ ¼ g x� yj jð Þ, then the mapping F x; yð Þ satisfies the properties in
Theorem 2.8.

Below we give several specific examples to illustrate Theorem 2.11.

(1) Let g : 0; 1½ � ! 0; 1½ � be defined as g tð Þ ¼ 2t
1þ t. It satisfies the conditions in

Theorem 2.11. Thus, the corresponding non-specific entropy measure is

E1
NS að Þ ¼ 2

lah i
Xla
i¼1

X
j� i

2 arðiÞ � arðjÞ
�� ��

arðiÞ � arðjÞ
�� ��þ 1

ð2:47Þ

(2) Let g : 0; 1½ � ! 0; 1½ � be g tð Þ ¼ lg 1þ tð Þ
lg2 , then g satisfies the conditions in

Theorem 2.11, and the corresponding non-specific entropy measure is

E2
NS að Þ ¼ 2

lah i
Xla
i¼1

X
j� i

lg 1þ arðiÞ � arðjÞ
�� ��� �
lg2

ð2:48Þ

(3) Let g : 0; 1½ � ! 0; 1½ � be g tð Þ ¼ tet�1, then g satisfies the conditions in
Theorem 2.11, and the corresponding non-specific entropy measure is

E3
NS að Þ ¼ 2

lah i
Xla
i¼1

X
j� i

arðiÞ � arðjÞ
�� ��e arðiÞ�arðjÞj j�1 ð2:49Þ

It can be easily observed that the automorphisms of the unit interval satisfy the
conditions in Theorem 2.11. In the following, we set out several non-specific
entropy measures produced by them.

(4) Let / : 0; 1½ � ! 0; 1½ � be defined as / tð Þ ¼ tr with r[ 0. Then / is an auto-
morphism of the unit interval, i.e., / is continuous, strictly increasing and
satisfies the conditions / 0ð Þ ¼ 0; / 1ð Þ ¼ 1 (Bustince et al. 2003). According
to Theorem 2.11, we obtain the corresponding non-specific entropy measure as:

E1
NSA að Þ ¼ 2

lah i
Xla
i¼1

X
j� i

arðiÞ � arðjÞ
�� ��r ð2:50Þ

Especially, if we take r ¼ 1, then the non-specific entropy measure becomes
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E2
NSA að Þ ¼ 2

lah i
Xla
i¼1

X
j� i

arðiÞ � arðjÞ
�� �� ð2:51Þ

(5) Let / : 0; 1½ � ! 0; 1½ � be defined as / tð Þ ¼ 1� 1� tð Þr with r[ 0. Then / is
an automorphism of the unit interval. Based on Theorem 2.11, we get the
generated non-specific entropy measure:

E3
NSA að Þ ¼ 2

lah i
Xla
i¼1

X
j� i

1� 1� arðiÞ � arðjÞ
�� ��� �r ð2:52Þ

In particular, when r ¼ 2, the non-specific entropy measure becomes

E4
NSA að Þ ¼ 2

lah i
Xla
i¼1

X
j� i

1� 1� arðiÞ � arðjÞ
�� ��� �2 ð2:53Þ

It is noted that the entropy measures introduced by Farhadinia (2013) cannot
discriminate the HFEs having the same distance from the HFE 0:5f g. The following
example shows that our entropy measures can overcome this drawback perfectly.

Example 2.8 (Zhao et al. 2015). Suppose two HFEs a1 ¼ 0:2; 0:8f g and
a2 ¼ 0:1; 0:2; 0:3f g. Clearly, the information expressed by a2 is more specific than
that of a1. Nevertheless, by Eq. (2.33), we get Edhnh a1ð Þ ¼ Edhnh a2ð Þ ¼ 0:4, which is
unreasonable. For a1 and a2, applying the proposed non-specific entropy measures
(2.47)–(2.53), we can get different results, which are listed in Table 2.9.

From Table 2.9, it can be observed that no matter which measure is applied, we
always get that the non-specificity of a1 is greater than that of a2, which is con-
sistent with our intuition. From this example, we can see that our non-specific
entropy measures can distinguish those HFEs that have the same distance from the
HFE 0:5f g, while the entropy measure in Eq. (2.33) cannot.
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Chapter 3
Multiple Criteria Decision Making
with Hesitant Fuzzy Hybrid Weighted
Aggregation Operators

In the process of decision making with multiple experts, in order to select the optimal
alternative(s) from a set of candidate alternatives with multiple attributes, the
aggregation process is essential. In hesitant fuzzy decision making situation, the
aggregation process is also the most significant step in searching the best alternative
(s). Till now, many different kinds of hesitant fuzzy aggregation operators have been
developed. Based on the relationship between the IFS and the HFS, Xia and Xu
(2011a) developed a family of operators to fuse hesitant fuzzy information, such as
the hesitant fuzzy weighted averaging (HFWA) operator, the hesitant fuzzy
weighted geometric (HFWG) operator, the hesitant fuzzy ordered weighted aver-
aging (HFOWA) operator, the hesitant fuzzy ordered weighted geometric (HFOWG)
operator, the generalized hesitant fuzzy weighted averaging (GHFWA) operator, the
generalized hesitant fuzzy weighted geometric (GHFWG) operator, the generalized
hesitant fuzzy ordered weighted averaging (GHFOWA) operator, the generalized
hesitant fuzzy ordered weighted geometric (GHFOWG) operator, the hesitant fuzzy
hybrid averaging (HFHA) operator, the hesitant fuzzy hybrid geometric (HFHG)
operator, the generalized hesitant fuzzy hybrid averaging (GHFHA) operator, and
the generalized hesitant fuzzy hybrid geometric (GHFHG) operator. To aggregate
the hesitant fuzzy information under confidence level, Xia et al. (2011) introduced a
series of confidence induced hesitant fuzzy aggregation operators. Motivated by the
quasi-arithmetic means (Hardy et al. 1934) and the induced idea (Yager and Filev
1999), Xia et al. (2013a) established a sort of induced aggregation operators for
HFSs. Zhu and Xu (2013) and Zhu et al. (2012a) proposed the hesitant fuzzy
Bonferroni means and hesitant fuzzy geometric Bonferroni means to aggregate
hesitant fuzzy information. Motivated by the idea of prioritized aggregation oper-
ators (Yager 2008a), Wei (2012) introduced some prioritized aggregation operators,
and then applied them to develop some models for hesitant fuzzy multiple criteria
decision making problems in which the criteria are in different priority levels. Zhang
(2013) proposed a wide range of hesitant fuzzy power aggregation operators and
investigated their properties and relationships.



It is observed that the HFWA and HFWG operators can be used to weight the
hesitant fuzzy arguments, but ignore the importance of the ordered position of the
arguments, while the HFOWA and HFOWG operators only weight the ordered
position of each given argument, but ignore the importance of the arguments. To
solve this drawback, the hesitant fuzzy hybrid averaging (HFHA) operator and the
hesitant fuzzy hybrid geometric (HFHG) operator were proposed to aggregate
hesitant fuzzy arguments, which weight all the given arguments and their ordered
positions simultaneously. Hence, these two operators have many advantages than
the above mentioned operators in aggregating hesitant fuzzy information. However,
these two operators do not satisfy the basic property named idempotency, which is
desirable for aggregating a finite collection of HFSs. Therefore, in this chapter, we
shall introduce some new hesitant fuzzy hybrid weighted aggregation operators
which not only maintain the advantages of HFHA and HFHG but also keep some
desirable properties, such as idempotency, boundedness, commutativity, etc.
Inspired by the quasi hesitant fuzzy ordered weighted averaging (QHFOWA)
operator proposed in Xia et al. (2013a), we extend our proposed operators to more
general forms. In addition, inspired by the generalized ordered weighted averaging
(GOWA) operator (Yager 2004), we also define a class of generalized hesitant
fuzzy hybrid weighted aggregation operators and their induced forms. Considering
the powerfulness of HFSs in multiple criteria decision making, we give some
procedures with the operators for multiple criteria single person decision making
and multiple criteria group decision making.

3.1 Hesitant Fuzzy Aggregation Operators

In order to export the operations on fuzzy sets to HFSs, Torra and Narukawa (2009)
proposed an aggregation principle for HFEs.

Definition 3.1 (Torra and Narukawa 2009). Let H ¼ h1; h2; . . .; hnf g be a set of
HFEs, H be a function on H, H : 0; 1½ �n! 0; 1½ �; then

HH ¼
[

c2 h1�h2�...�hnf g
HðcÞf g ð3:1Þ

Based on the above extension principle, Xia and Xu (2011a) developed a series
of specific aggregation operators for HFEs:

Definition 3.2 (Xia and Xu 2011a). Let hj (j ¼ 1; 2; . . .; nÞ be a collection of HFEs.
A HFWA operator is a mapping Hn ! H such that

HFWA h1; h2; . . .; hnð Þ ¼ �n
j¼1

xjhj
� � ¼ [

c12h1;c22h2;...;cn2hn
1�

Yn

j¼1
ð1� cjÞxj

n o
ð3:2Þ
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where x ¼ x1;x2; . . .;xnð ÞT is the weight vector of hj j ¼ 1; 2; . . .; nð Þ with xj 2
0; 1½ � and Pn

j¼1 xj ¼ 1. Especially, if x ¼ 1=n; 1=n;. . .; 1=nð ÞT , then the HFWA
operator reduces to the hesitant fuzzy averaging (HFA) operator:

HFA h1; h2; . . .; hnð Þ ¼ �n
j¼1

1
n
hj

� �
¼

[
c12h1;c22h2;...;cn2hn

1�
Yn

j¼1
ð1� cjÞ1=n

n o
ð3:3Þ

Definition 3.3 (Xia and Xu 2011a). Let hj (j ¼ 1; 2; . . .; nÞ be a collection of HFEs.
A HFWG operator is a mapping Hn ! H such that

HFWG h1; h2; . . .; hnð Þ ¼ �n
j¼1

hxj

j ¼
[

c12h1;c22h2;...;cn2hn

Yn

j¼1
cxj

j

n o
ð3:4Þ

where x ¼ x1;x2; . . .;xnð ÞT is the weight vector of hj j ¼ 1; 2; . . .; nð Þ; with xj 2
0; 1½ � and Pn

j¼1 xj ¼ 1: In the case where x ¼ 1=n; 1=n;. . .; 1=nð ÞT , the HFWA
operator reduces to the hesitant fuzzy geometric (HFG) operator:

HFG h1; h2; . . .; hnð Þ ¼ �n
j¼1

h1=nj ¼
[

c12h1;c22h2;...;cn2hn

Yn

j¼1
c1=nj

n o
ð3:5Þ

According to the adjusted operation laws of HFEs given as Definition 1.9, Liao
et al. (2014b) further introduced the following aggregation operators, which do not
increase the dimensions of the HFEs:

Definition 3.4 (Liao et al. 2014b). Let H ¼ h1; h2; . . .; hnf g be a collection of
HFEs. An adjusted hesitant fuzzy weighted averaging (AHFWA) operator is a
mapping Hn ! H such that

AHFWA h1; h2; . . .; hnð Þ ¼ �n
j¼1

xjhj
� � ¼ 1�

Yn

j¼1
ð1� hrðtÞj Þxj

���t ¼ 1; 2; . . .; l
n o

ð3:6Þ

where hrðtÞj is the tth smallest value in hj, and x ¼ x1;x2; . . .;xnð ÞT is the weight
vector of hj j ¼ 1; 2; . . .; nð Þ with xj 2 0; 1½ �; j ¼ 1; 2; . . .; n; and

Pn
j¼1 xj ¼ 1:

Especially, if x ¼ 1=n; 1=n;. . .; 1=nð ÞT , then the AHFWA operator reduces to an
adjusted hesitant fuzzy averaging (AHFA) operator:

AHFA h1; h2; . . .; hnð Þ ¼ �n
j¼1

1
n
hj

� �
¼ 1�

Yn

j¼1
ð1� hrðtÞj Þ1=n

���t ¼ 1; 2; . . .; l
n o

ð3:7Þ
Definition 3.5 (Liao et al. 2014b). Let H ¼ h1; h2; . . .; hnf g be a collection of
HFEs and let AHFWG: Hn ! H; if
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AHFWG h1; h2; . . .; hnð Þ ¼ �n
j¼1

ðhjÞxj ¼
Yn

j¼1
ðhrðtÞj Þxj

���t ¼ 1; 2; . . .; l
n o

ð3:8Þ

then AHFWG is called an adjusted hesitant fuzzy weighted geometric (AHFWG)

operator, where hrðtÞj is the tth smallest value in hj, and x ¼ x1;x2; . . .;xnð ÞT is the
weight vector of hj j ¼ 1; 2; . . .; nð Þ; with xj 2 0; 1½ �; j ¼ 1; 2; . . .; n; andPn

j¼1 xj ¼ 1:

In the case where x ¼ 1=n; 1=n;. . .; 1=nð ÞT , the AHFWA operator reduces to an
adjusted hesitant fuzzy geometric (AHFG) operator:

AHFG h1; h2; . . .; hnð Þ ¼ �n
j¼1

ðhjÞ1=n ¼
Yn

j¼1
ðhrðtÞj Þ1=n

���t ¼ 1; 2; . . .; l
n o

ð3:9Þ
Based on the idea of the ordered weighted averaging (OWA) operator (Yager

1988), the HFOWA and HFOWG operators were defined.

Definition 3.6 (Xia and Xu 2011a). Let hj (j ¼ 1; 2; . . .; nÞ be a collection of HFEs,
hrðjÞ be the jth largest of them, x ¼ x1;x2; . . .;xnð ÞT be the aggregation-associated
vector such that xj 2 0; 1½ � and Pn

j¼1 xj ¼ 1; then

(1) A hesitant fuzzy ordered weighted averaging (HFOWA) operator is a mapping
HFOWA: Hn ! H; where

HFOWA h1; h2; . . .; hnð Þ ¼ �n
j¼1

xjhrðjÞ
� �

¼
[

crð1Þ2hrð1Þ;crð2Þ2hrð2Þ;...;crðnÞ2hrðnÞ
1�

Yn

j¼1
ð1� crðjÞÞxj

n o

ð3:10Þ

(2) A hesitant fuzzy ordered weighted geometric (HFOWG) operator is a mapping
HFOWG: Hn ! H; where

HFOWG h1; h2; . . .; hnð Þ ¼ �n
j¼1

hxj

rðjÞ ¼
[

crð1Þ2hrð1Þ;crð2Þ2hrð2Þ;...;crðnÞ2hrðnÞ

Yn

j¼1
cxj

rðjÞ
n o

ð3:11Þ

In the case where x ¼ 1=n; 1=n;. . .; 1=nð ÞT , the HFOWA operator reduces to the
HFA operator, and the HFOWG operator becomes the HFG operator.

It is noted that the HFWA and HFWG operators only weight the hesitant fuzzy
arguments themselves, but ignore the importance of the ordered positions of the
arguments, while the HFOWA and HFOWG operators only weight the ordered
position of each given argument, but ignore the importance of the arguments. To
solve this drawback, Xia and Xu (2011a) then introduced some hybrid aggregation
operators for hesitant fuzzy arguments, which weight all the given arguments and
their ordered positions:
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Definition 3.7 (Xia and Xu 2011a). For a collection of HFEs hj (j ¼ 1; 2; . . .; nÞ,
k ¼ k1; k2; . . .; knð ÞT is the weight vector of them with kj 2 0; 1½ � andPn

j¼1 kj ¼ 1;
n is the balancing coefficient which plays a role of balance, then we define the
following aggregation operators, which are all based on the mapping Hn ! H with
an aggregation-associated vector x ¼ x1;x2; . . .;xnð ÞT such that xj 2 0; 1½ � andPn

j¼1 xj ¼ 1:

(1) The hesitant fuzzy hybrid averaging (HFHA) operator:

HFHA h1; h2; . . .; hnð Þ ¼ �n
j¼1

xj _hrðjÞ
� �

¼
[

_crð1Þ2 _hrð1Þ; _crð2Þ2 _hrð2Þ;...; _crðnÞ2 _hrðnÞ

1�
Yn

j¼1
ð1� _crðjÞÞxj

n o

ð3:12Þ

where _hrðjÞ is the jth largest of _h ¼ nkkhk (k ¼ 1; 2; . . .; nÞ.
(2) The hesitant fuzzy hybrid geometric (HFHG) operator:

HFHG h1; h2; . . .; hnð Þ ¼ �n
j¼1

€h
xj

rðjÞ ¼
[

€crð1Þ2€hrð1Þ;€crð2Þ2€hrð2Þ;...;€crðnÞ2€hrðnÞ

Yn

j¼1
€c
xj

rðjÞ
n o

ð3:13Þ

where €hrðjÞ is the jth largest of €hk ¼ hnkkk (k ¼ 1; 2; . . .; nÞ.
Especially, if x ¼ 1=n; 1=n;. . .; 1=nð ÞT , then the HFHA operator reduces to the

HFOWA operator, the HFHG operator reduces to the HFOWG operator.
Although the HFHA (HFHG) operator generalizes both the HFWA (HFWG) and

HFOWA (HFOWG) operators by weighting the given importance degrees and the
ordered positions of the arguments, there is a flaw that the operator does not satisfy
the desirable property, i.e., idempotency. An example can be used to illustrate this
drawback.

Example 3.1 (Liao and Xu 2014a). Assume h1 ¼ 0:3; 0:3; 0:3f g; h2 ¼
0:3; 0:3; 0:3f g and h3 ¼ 0:3; 0:3; 0:3f g are three HFEs, whose weight vector is

k ¼ ð1; 0; 0ÞT ; and the aggregation-associated vector is also x ¼ ð1; 0; 0ÞT . Then

_h1 ¼ 3� 1� h1 ¼ 3h1 ¼ 1� ð1� 0:3Þ3; 1� ð1� 0:3Þ3; 1� ð1� 0:3Þ3
� �

¼ 0:657; 0:657; 0:657ð Þ
_h2 ¼ 3� 0� h2 ¼ 0� h2 ¼ 1� ð1� 0:3Þ0; 1� ð1� 0:3Þ0; 1� ð1� 0:3Þ0

� �
¼ 0; 0; 0ð Þ

_h3 ¼ 3� 0� h3 ¼ 0� h3 ¼ 1� ð1� 0:3Þ0; 1� ð1� 0:3Þ0; 1� ð1� 0:3Þ0
� �

¼ 0; 0; 0ð Þ
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Obviously, s _h1
� �

[ s _h2
� � ¼ s _h3

� �
: By using Eq. (3.12), we have

HFHA h1; h2; h3ð Þ ¼ �3
j¼1

xj
_hrðjÞ

� �
¼

[
_crð1Þ2 _hrð1Þ; _crð2Þ2 _hrð2Þ; _crð3Þ2 _hrð3Þ

1� ð1� _crð1ÞÞ1ð1� _crð2ÞÞ0ð1� _crð3ÞÞ0
n o

¼ 0:657; 0:657; 0:657ð Þ 6¼ 0:3; 0:3; 0:3f g

Analogously,

€h1 ¼ h3�1
1 ¼ h31 ¼ 0:33; 0:33; 0:33

� � ¼ 0:027; 0:027; 0:027ð Þ
€h2 ¼ h3�0

2 ¼ h02 ¼ 0:30; 0:30; 0:30
� � ¼ 0; 0; 0ð Þ

€h3 ¼ h3�0
3 ¼ h03 ¼ 0:30; 0:30; 0:30

� � ¼ 0; 0; 0ð Þ

HFHG h1; h2; h3ð Þ ¼ �3
j¼1

€h
xj

rðjÞ ¼
[

€crð1Þ2€hrð1Þ;€crð2Þ2€hrð2Þ;€crð3Þ2€hrð3Þ
€c1rð1Þ€c

0
rð2Þ€c

0
rð3Þ

n o

¼ 0; 0; 0ð Þ 6¼ 0:3; 0:3; 0:3f g

Idempotency is the most important property for every aggregation operator (Lin
and Jiang 2014; Liao and Xu 2014b), but the HFHA and HFWG operators do not
meet this basic property, we need to develop some new hybrid aggregation oper-
ators which also weight the importance of each argument and its ordered position
simultaneously.

3.2 Hesitant Fuzzy Hybrid Weighted Aggregation
Operators

Considering the HFOWA operator given as Eq. (3.10), it is equivalent to the fol-
lowing form:

HFOWA h1; h2; . . .; hnð Þ ¼ �n
j¼1

xeðjÞhj
� � ð3:14Þ

where hj is the eðjÞ th largest element of hj (j ¼ 1; 2; . . .; nÞ. Inspired by this,
supposing the weight vector of the elements is k ¼ k1; k2; . . .; knð ÞT , in order to
weight the positions and the elements simultaneously, we can use such a form as

�n
j¼1

kjxeðjÞhj, which weights both the elements and their positions. After normal-

ization, a new hesitant fuzzy hybrid weighted averaging operator is generated.
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Definition 3.8 (Liao and Xu 2014a). For a collection of HFEs hj (j ¼ 1; 2; . . .; nÞ, a
hesitant fuzzy hybrid weighted averaging (HFHWA) operator is a mapping
HFHWA: Hn ! H; defined by an associated weight vector x ¼ x1;x2; . . .;xnð ÞT
with xj 2 0; 1½ � and Pn

j¼1 xj ¼ 1; such that

HFHWA h1; h2; . . .; hnð Þ ¼
�n
j¼1

kjxeðjÞhjP
n
j¼1kjxeðjÞ

ð3:15Þ

where e : 1; 2; . . .; nf g ! 1; 2; . . .; nf g is the permutation such that hj is the eðjÞth
largest element of the collection of HFEs hj (j ¼ 1; 2; . . .; nÞ, and k ¼
k1; k2; . . .; knð ÞT is the weight vector of the HFEs hj (j ¼ 1; 2; . . .; nÞ, with kj 2
0; 1½ � and Pn

j¼1 kj ¼ 1:

Theorem 3.1 (Liao and Xu 2014a). For a collection of HFEs hj (j ¼ 1; 2; . . .; nÞ,
the aggregated value by using the HFHWA operator is also a HFE, and

HFHWA h1; h2; . . .; hnð Þ ¼
[

c12h1;c22h2;...;cn2hn
1�

Yn

j¼1
ð1� cjÞ

kjxeðjÞPn

j¼1
kjxeðjÞ

8<
:

9=
;

ð3:16Þ

where x ¼ x1;x2; . . .;xnð ÞT is an associated weight vector with xj 2 0; 1½ � andPn
j¼1

xj ¼ 1; e : 1; 2; . . .; nf g ! 1; 2; . . .; nf g is the permutation such that hj is the

eðjÞth largest element of the collection of HFEs hj (j ¼ 1; 2; . . .; nÞ, and k ¼
k1; k2; . . .; knð ÞT is the weight vector of the HFEs hj (j ¼ 1; 2; . . .; nÞ, with kj 2 0; 1½ �
and

Pn
j¼1 kj ¼ 1:

Proof. From the definition of HFS, it is obvious that the aggregated value by using
the HFHWA operator is also a HFE.

By using the operational law (2) given in Definition 1.8, we have

kjxeðjÞP
n
j¼1kjxeðjÞ

hj ¼
[

c2hj 1� ð1� cÞ
kjxeðjÞPn

j¼1
kjxeðjÞ

8<
:

9=
;; j ¼ 1; 2; . . .; n

Summing all these weighted HFEs kjxeðjÞP
n
j¼1kjxeðjÞ

hj (j ¼ 1; 2; . . .; nÞ by using the

operational law (5) given in Definition 1.8, we can derive
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HFHWA h1; h2; . . .; hnð Þ ¼
�n
j¼1

kjxeðjÞhjP
n
j¼1kjxeðjÞ

¼ �n
j¼1

[
c2hj 1� ð1� cÞ

kjxeðjÞPn

j¼1
kjxeðjÞ

8<
:

9=
;

¼
[

f12h01;f22h02;...;fn2h0n
1�

Yn

j¼1
ð1� fjÞ

n o
ð3:17Þ

where

h0j ¼
kjxeðjÞP
n
j¼1kjxeðjÞ

hj; fj ¼ 1� ð1� cÞ
kjxeðjÞPn

j¼1
kjxeðjÞ ; c 2 hj; j ¼ 1; 2; . . .; n ð3:18Þ

Combining Eqs. (3.17) and (3.18), we obtain

HFHWA h1; h2; . . .; hnð Þ ¼
[

c12h1;c22h2;...;cn2hn
1�

Yn

j¼1
1� 1� ð1� cjÞ

kjxeðjÞPn

j¼1
kjxeðjÞ

0
@

1
A

2
4

3
5

8<
:

9=
;

¼
[

c12h1;c22h2;...;cn2hn
1�

Yn

j¼1
ð1� cjÞ

kjxeðjÞPn

j¼1
kjxeðjÞ

8<
:

9=
;

which completes the proof of Theorem 3.1.

Example 3.2 (Liao and Xu 2014a). Let h1 ¼ 0:2; 0:4; 0:5f g; h2 ¼ 0:2; 0:6f g and
h3 ¼ 0:1; 0:3; 0:4f g be three HFEs, whose weight vector is k ¼ ð0:15; 0:3; 0:55ÞT ,
and the aggregation-associated vector is x ¼ 0:3; 0:4; 0:3ð ÞT .

At first, comparing h1, h2 and h3 by using the score function given as Eq. (1.17),
we have

sðh1Þ ¼ 0:2þ 0:4þ 0:5
3

¼ 0:3667; sðh2Þ ¼ 0:2þ 0:6
2

¼ 0:4

sðh3Þ ¼ 0:1þ 0:3þ 0:4
3

¼ 0:2667

Since sðh2Þ[ sðh1Þ[ sðh3Þ; then we obtain h2 [ h1 [ h3. Thus, eð1Þ ¼ 2;
eð2Þ ¼ 1 and eð3Þ ¼ 3: Thus

k1xeð1ÞP3
j¼1 kjxeðjÞ

¼ 0:15� 0:4
0:15� 0:4þ 0:3� 0:3þ 0:55� 0:3

¼ 0:19

k2xeð2ÞP3
j¼1 kjxeðjÞ

¼ 0:286;
k3xeð3ÞP3
j¼1 kjxeðjÞ

¼ 0:524
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By using Eq. (3.16), we can calculate that

HFHWA h1; h2; h3ð Þ ¼
�3
j¼1

kjxeðjÞhjP
n
j¼1kjxeðjÞ

¼
[

c12h1;c22h2;c32h3
1�

Y3

j¼1
ð1� cjÞ

kjxeðjÞP3

j¼1
kjxeðjÞ

8<
:

9=
;

¼
[

c12h1;c22h2;c32h3
1� ð1� c1Þ0:19ð1� c2Þ0:286ð1� c3Þ0:524
n o

¼ f0:1490; 0:1943; 0:2217; 0:2541; 0:2938; 0:3020; 0:3119; 0:3178; 0:3392; 0:3485;
0:3617; 0:3707; 0:3882; 0:4207; 0:4356; 0:4405; 0:4656; 0:4838g

Theorem 3.2 (Liao and Xu 2014a). (Idempotency) If hj ¼ h (j ¼ 1; 2; . . .; nÞ, then
HFHWA h1; h2; . . .; hnð Þ ¼ h:

Proof According to Eq. (3.16), we have

HFHWA h1; h2; . . .; hnð Þ ¼
�n
j¼1

kjxeðjÞhjP
n
j¼1kjxeðjÞ

¼
�n
j¼1

kjxeðjÞhP
n
j¼1kjxeðjÞ

¼ h

P n
j¼1kjxeðjÞP
n
j¼1kjxeðjÞ

¼ h

Thus, HFHWA h1; h2; . . .; hnð Þ ¼ h; which completes the proof of Theorem 3.2.

Example 3.3 (Liao and Xu 2014a). Let us use the HFHWA operator to calculate
Example 3.1, then

HFHWA h1; h2; h3ð Þ ¼
�3
j¼1

kjxeðjÞhjP
n
j¼1kjxeðjÞ

¼
[

c12h1;c22h2;c32h3
1� ð1� c1Þ1ð1� c2Þ0ð1� c3Þ0
n o

¼ f0:3; 0:3; 0:3g ¼ h1 ¼ h2 ¼ h3

which satisfies the property of idempotency. This is also consistent with our intu-
ition. From this example, we can see that the HFHWA operator is more reasonable
than the HFHA operator developed by Xia and Xu (2011a).

Theorem 3.3 reveals that the HFHWA operator has the property of boundedness:

Theorem 3.3 (Liao and Xu 2015a). (Boundedness) For a collection of HFEs

hj ¼ cjtjt ¼ 1; 2; . . .; lhj
	 


(j ¼ 1; 2; . . .; nÞ, let h� ¼ min
n

j¼1
min
lhj

t¼1
cjt

( )
; and hþ ¼

max
n

j¼1
max
lhj

t¼1
cjt

� �
; then, h� �HFHWA h1; h2; . . .; hnð Þ� hþ .
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Proof For the simplicity of presentation, let c� , min
n

j¼1
min
lhj

t¼1
cjt, c

þ , max
n

j¼1
max
lhj

t¼1
cjt,

_h,HFHWA h1; h2; . . .; hnð Þ; and _c, 1�Qn
j¼1 ð1� cjtÞ

kjxeðjÞPn

j¼1
kjxeðjÞ , (t ¼ 1; 2; . . .; lhj ).

Then, h� ¼ c�f g; hþ ¼ cþf g; HFHWA h1; h2; . . .; hnð Þ ¼ _h ¼ S _c2 _h _cf g.

For any j, we have c� ¼ min
n

j¼1
min
lhj

t¼1
cjt � cjt � max

n

j¼1
max
lhj

t¼1
cjt ¼ cþ . Since y ¼ xa

ð0\a\1Þ is a monotonic increasing function when x[ 0; then we get

1�
Yn

j¼1
ð1� c�Þ

kjxeðjÞPn

j¼1
kjxeðjÞ � 1�

Yn

j¼1
ð1� cjtÞ

kjxeðjÞPn

j¼1
kjxeðjÞ

� 1�Qn
j¼1 ð1� cþ Þ

kjxeðjÞPn

j¼1
kjxeðjÞ

which is equivalent to

1� ð1� c�Þ

Pn

j¼1
kjxeðjÞPn

j¼1
kjxeðjÞ � _c� 1� ð1� cþ Þ

Pn

j¼1
kjxeðjÞPn

j¼1
kjxeðjÞ

i.e.,

c� � _c� cþ : ð3:19Þ

According to Eq. (1.17), it follows sð _hÞ ¼ 1
l _h

P
_c2 _h _c , sðh�Þ ¼ 1

lh�
P

c2h� c ¼ c� ,

sðhþ Þ ¼ 1
lhþ

P
c2hþ c ¼ cþ . From Eq. (3.19), we have

c� ¼ 1
l _h

X
c� � 1

l _h

X
_c2 _h

_c� 1
l _h

X
cþ ¼ cþ

Thus

sðh�Þ� sð _hÞ� sðhþ Þ

which implies h� �HFHWA h1; h2; . . .; hnð Þ� hþ . This completes the proof of
Theorem 3.3.

In addition, it is easy to check that the HFHWA operator is also commutative.

Theorem 3.4 (Liao and Xu 2015a). (Commutativity) For two collections of HFEs

hj ¼ cjtjt ¼ 1; 2; . . .; lhj
	 


(j ¼ 1; 2; . . .; nÞ and h0j ¼ c0
jt
jt ¼ 1; 2; . . .; lh0

j

n o
(j ¼ 1; 2; . . .; nÞ, it follows that
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HFHWA h1; h2; . . .; hnð Þ ¼ HFHWA h01; h
0
2; . . .; h

0
n

� �
where h01; h

0
2; . . .; h

0
n

� �
is any permutation of h1; h2; . . .; hnð Þ:

A simple example can be given to illustrate this theorem and hereby the theo-
retical proof is omitted.

Example 3.4 (Liao and Xu 2015a). In Example 3.2, h1 ¼ 0:2; 0:4; 0:5f g; h2 ¼
0:2; 0:6f g and h3 ¼ 0:1; 0:3; 0:4f g are three HFEs, whose weight vector is k ¼

ð0:15; 0:3; 0:55ÞT , and the aggregation-associated vector is x ¼ 0:3; 0:4; 0:3ð ÞT .
We have calculated that

HFHWA h1; h2; h3ð Þ ¼ f0:1490; 0:1943; 0:2217; 0:2541; 0:2938; 0:3020; 0:3119; 0:3178;
0:3392; 0:3485; 0:3617; 0:3707; 0:3882; 0:4207; 0:4356; 0:4405; 0:4656; 0:4838g

Now we consider a permutation of the above three HFEs, for example, h01 ¼
0:2; 0:6f g; h02 ¼ 0:1; 0:3; 0:4f g; and h03 ¼ 0:2; 0:4; 0:5f g: The weight vector is k ¼

ð0:3; 0:55; 0:15ÞT , and the aggregation-associated vector is also x ¼
0:3; 0:4; 0:3ð ÞT . Then, it is easy to obtain that eð1Þ ¼ 1; eð2Þ ¼ 3; eð3Þ ¼ 2; thus,
k1xeð1ÞP3

j¼1
kjxeðjÞ

¼ 0:286; k2xeð2ÞP3

j¼1
kjxeðjÞ

¼ 0:524; k3xeð3ÞP3

j¼1
kjxeðjÞ

¼ 0:19: It follows that

HFHWA h01; h
0
2; h

0
3

� � ¼ �3
j¼1

kjxeðjÞhjP
n
j¼1kjxeðjÞ

¼
[

c12h1;c22h2;c32h3
1�

Y3

j¼1
ð1� cjÞ

kjxeðjÞP3

j¼1
kjxeðjÞ

8<
:

9=
;

¼
[

c12h1;c22h2;c32h3
1� ð1� c1Þ0:286ð1� c2Þ0:524ð1� c3Þ0:19
n o

¼ f0:1490; 0:1943; 0:2217; 0:2541; 0:2938; 0:3020; 0:3119; 0:3178; 0:3392; 0:3485;
0:3617; 0:3707; 0:3882; 0:4207; 0:4356; 0:4405; 0:4656; 0:4838g

¼ HFHWA h1; h2; h3ð Þ

By using the different manifestation of weight vector, the HFHWA operator can
be reduced into some special cases. For example, if the associated weight vector
x ¼ 1=n; 1=n;. . .; 1=nð ÞT , then the HFHWA operator reduces to the HFWA
operator; if k ¼ 1=n; 1=n;. . .; 1=nð ÞT , then the HFHWA operator reduces to the
HFOWA operator. It must be pointed out that the weighting operation of the
ordered positions can be synchronized with the weighting operation of the given
importance by the HFHWA operator. This characteristic is different from the HFHA
operator.

Analogously, we also can develop the HFHWG operator for HFEs:

Definition 3.9 (Liao and Xu 2014a). For a collection of HFEs hj (j ¼ 1; 2; . . .; nÞ, a
hesitant fuzzy hybrid weighted geometric (HFHWG) operator is a mapping
HFHWG: Hn ! H; defined by an associated weight vector x ¼ x1;x2; . . .;xnð ÞT
with xj 2 0; 1½ � and Pn

j¼1 xj ¼ 1; such that
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HFHWG h1; h2; . . .; hnð Þ ¼ �n
j¼1

hj
� � kjxeðjÞP

n
j¼1

kjxeðjÞ ð3:20Þ

where e : 1; 2; . . .; nf g ! 1; 2; . . .; nf g is the permutation such that hj is the eðjÞth
largest element of the collection of HFEs hj (j ¼ 1; 2; . . .; nÞ, and k ¼
k1; k2; . . .; knð ÞT is the weight vector of the HFEs hj (j ¼ 1; 2; . . .; nÞ, with kj 2
0; 1½ � and Pn

j¼1 kj ¼ 1:

Theorem 3.5 (Liao and Xu 2014a). For a collection of HFEs hj (j ¼ 1; 2; . . .; nÞ,
the aggregated value by using the HFHWG operator is also a HFE, and

HFHWG h1; h2; . . .; hnð Þ ¼
[

c12h1;c22h2;...;cn2hn

Yn

j¼1
c

kjxeðjÞPn

j¼1
kjxeðjÞ

j

8><
>:

9>=
>; ð3:21Þ

where x ¼ x1;x2; . . .;xnð ÞT is an associated weight vector with xj 2 0; 1½ � andPn
j¼1 xj ¼ 1; e : 1; 2; . . .; nf g ! 1; 2; . . .; nf g is the permutation such that hj is the

eðjÞ th largest element of the collection of HFEs hj(j ¼ 1; 2; . . .; nÞ, and k ¼
k1; k2; . . .; knð ÞT is the weighting vector of the HFEs hj (j ¼ 1; 2; . . .; nÞ, with kj 2
0; 1½ � and Pn

j¼1 kj ¼ 1:

Proof Similar to Theorem 3.1, the aggregated value by using the HFHWG operator
is also a HFE.

By using the operational law (1) given in Definition 1.8, we have

hj
� � kjxeðjÞP

n
j¼1

kjxeðjÞ¼
[

c2hj c

kjxeðjÞPn

j¼1
kjxeðjÞ ; j ¼ 1; 2; . . .; n:

According to the operational law (6) given in Definition 1.8, we can derive

HFHWG h1; h2; . . .; hnð Þ ¼ �n
j¼1

hj
� � kjxeðjÞP

n
j¼1

kjxeðjÞ¼
[

n12h001 ;n22h002 ;...;nn2h00n

Yn

j¼1
nj

n o
ð3:22Þ

where

h00j ¼ hj
� � kjxeðjÞP

n
j¼1

kjxeðjÞ ; nj ¼ c

kjxeðjÞPn

j¼1
kjxeðjÞ ; c 2 hj; j ¼ 1; 2; . . .; n ð3:23Þ
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Combining Eqs. (3.22) and (3.23), we can obtain

HFHWG h1; h2; . . .; hnð Þ ¼
[

c12h1;c22h2;...;cn2hn

Yn

j¼1
c

kjxeðjÞPn

j¼1
kjxeðjÞ

j

8><
>:

9>=
>;

This completes the proof of the theorem.

Example 3.5 (Liao and Xu 2014a). Let us use the HFHWG operator to fuse the
HFEs h1 , h2 and h3 in Example 3.3. According to Eq. (3.21), we have

HFHWG h1; h2; h3ð Þ ¼
[

c12h1;c22h2;...;cn2hn

Y3

j¼1
c

kjxeðjÞP3

j¼1
kjxeðjÞ

j

8><
>:

9>=
>;

¼
[

c12h1;c22h2;c32h3
c0:191 c0:2862 c0:5243

	 

¼ f0:1391; 0:1587; 0:1655; 0:1904; 0:2172; 0:2266; 0:2473; 0:2822; 0:2876; 0:2944;
0:3281; 0:3387; 0:3423; 0:3863; 0:3938; 0:4031; 0:4492; 0:4686g

Theorem 3.6 (Liao and Xu 2014a). (Idempotency) If hj ¼ h (j ¼ 1; 2; . . .; nÞ, then
HFHWG h1; h2; . . .; hnð Þ ¼ h:

Proof. Since hj ¼ h; then cj ¼ c . Hence, according to Eq. (3.21), we have

HFHWG h1; h2; . . .; hnð Þ ¼
[

c12h1;c22h2;...;cn2hn

Yn

j¼1
c

kjxeðjÞPn

j¼1
kjxeðjÞ

j

8><
>:

9>=
>;

¼
[

c12h1;c22h2;...;cn2hn
c

Pn

j¼1
kjxeðjÞPn

j¼1
kjxeðjÞ

8><
>:

9>=
>; ¼

[
c2h cf g ¼ h

Thus, HFHWG h1; h2; . . .; hnð Þ ¼ h; which completes the proof of the theorem.

Example 3.6 (Liao and Xu 2014a). Let us use the HFHWG operator to calculate
Example 3.1, then we have

HFHWG h1; h2; h3ð Þ ¼ �n
j¼1

hj
� � kjxeðjÞP

n
j¼1

kjxeðjÞ¼
[

c12h1;c22h2;c32h3
c11c

0
2c

0
3

	 

¼ f0:3; 0:3; 0:3g ¼ h1 ¼ h2 ¼ h3

which means the HFHWG operator satisfies idempotency. In other words, the
HFHWG operator is more reasonable than HFHG operator.
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Theorem 3.7 (Liao and Xu 2015a). (Boundedness) For a collection of HFEs

hj ¼ cjtjt ¼ 1; 2; . . .; lhj
	 


(j ¼ 1; 2; . . .; nÞ, let h� ¼ min
n

j¼1
min
lhj

t¼1
cjt

( )
; hþ ¼

max
n

j¼1
max
lhj

t¼1
cjt

� �
; then, h� �HFHWG h1; h2; . . .; hnð Þ� hþ .

Proof For the simplicity of presentation, let c� , min
n

j¼1
min
lhj

t¼1
cjt , c

þ , max
n

j¼1
max
lhj

t¼1
cjt ,

€h,HFHWG h1; h2; . . .; hnð Þ; and €c,
Qn
j¼1

c

kjxeðjÞPn

j¼1
kjxeðjÞ

jt (t ¼ 1; 2; . . .; lhj ). Then, h
� ¼

c�f g; hþ ¼ cþf g; HFHWG h1; h2; . . .; hnð Þ ¼ €h ¼ S€c2€h €cf g .
For any j, we have c� � cjt � cþ . Since y ¼ xa; ð0\a\1Þ is a monotonic

increasing function when x[ 0; then we get

Yn
j¼1

c�

kjxeðjÞPn

j¼1
kjxeðjÞ �

Yn
j¼1

c

kjxeðjÞPn

j¼1
kjxeðjÞ

jt �
Yn
j¼1

cþ

kjxeðjÞPn

j¼1
kjxeðjÞ

which is equivalent to

c� ¼ c�

Pn

j¼1
kjxeðjÞPn

j¼1
kjxeðjÞ �€c� cþ

Pn

j¼1
kjxeðjÞPn

j¼1
kjxeðjÞ ¼ cþ

Thus, we have

c� ¼ 1
l€h

X
c� � 1

l€h

X
€c2€h €c�

1
l€h

X
cþ ¼ cþ

i.e.,

sðh�Þ� sð€hÞ� sðhþ Þ

which implies h� �HFHWG h1; h2; . . .; hnð Þ� hþ . This completes the proof of the
theorem.

Theorem 3.8 (Liao and Xu 2015a). (Commutativity) For two collections of HFEs

hj ¼ cjtjt ¼ 1; 2; . . .; lhj
	 


(j ¼ 1; 2; . . .; nÞ and h0j ¼ c0
jt
jt ¼ 1; 2; . . .; lh0

j

n o
(j ¼ 1; 2; . . .; nÞ, it follows that

HFHWG h1; h2; . . .; hnð Þ ¼ HFHWG h01; h
0
2; . . .; h

0
n

� �
where h01; h

0
2; . . .; h

0
n

� �
is any permutation of h1; h2; . . .; hnð Þ:
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Especially, if the associated weight vector x ¼ 1=n; 1=n;. . .; 1=nð ÞT , then the
HFHWG operator reduces to the HFWG operator; if k ¼ 1=n; 1=n;. . .; 1=nð ÞT , then
the HFHWG operator reduces to the HFOWG operator. With the HFHWG oper-
ator, the weighting operation of the ordered position also can be synchronized with
the weighting operation of the given importance, while the HFHG operator does not
have this characteristic.

Lemma 3.1 (Xu 2000). If xj [ 0; xj [ 0; j ¼ 1; 2; . . .; n; and
Pn

j¼1 xj ¼ 1; thenQn
j¼1 x

xj

j � Pn
j¼1 xjxj , with equality if and only if x1 ¼ x2 ¼ � � � ¼ xn .

Theorem 3.9 reveals the relationship between the HFHWA and HFHWG
operators:

Theorem 3.9 (Liao and Xu 2015a). For a collection of HFEs hj ¼
cjtjt ¼ 1; 2; . . .; lhj
	 


(j ¼ 1; 2; . . .; nÞ, then

HFHWG h1; h2; . . .; hnð Þ�HFHWA h1; h2; . . .; hnð Þ
Proof For any c1 2 h1; c2 2 h2; . . .; cn 2 hn; according to Lemma 3.1, it follows

Yn
j¼1

c

kjxeðjÞPn

j¼1
kjxeðjÞ

j �
Xn
j¼1

kjxeðjÞPn
j¼1 kjxeðjÞ

cj

¼ 1�
Xn
j¼1

kjxeðjÞPn
j¼1 kjxeðjÞ

1� cj
� �� 1�

Yn
j¼1

ð1� cjÞ
kjxeðjÞPn

j¼1
kjxeðjÞ

ð3:24Þ

Combining Eqs. (3.16), (3.21) and (3.24), we can derive HFHWG
h1; h2; . . .; hnð Þ�HFHWA h1; h2; . . .; hnð Þ: This completes the proof.

3.3 Quasi Hesitant Fuzzy Hybrid Weighted Aggregation
Operators

Combining the HFOWA operator with the quasi-arithmetical average (Fodor et al.
1995), Xia et al. (2013a) developed the QHFOWA operator:

Definition 3.10 (Xia et al. 2013a). Let hj (j ¼ 1; 2; . . .; nÞ be a collection of HFEs
and hqðjÞ be the jth largest of them. Let QHFOWA: Hn ! H; if

hj
��j ¼ 1; 2; . . .; n

� � ¼ [
cqðjÞ2hqðjÞ;j¼1;2;...;n

g�1
Xn

j¼1
xjgðcqðjÞÞ

� �n o
ð3:25Þ
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then QHFOWA is called a quasi hesitant fuzzy ordered weighted averaging
(QHFOWA) operator, where gðcÞ is a strictly continuous monotonic function, x ¼
x1;x2; . . .;xnð ÞT is the associated weight vector with

Pn
j¼1 xj ¼ 1; and xj 	 0;

j ¼ 1; 2; . . .; n:
Similarly, we can propose the QHFOWG operator as follows:

Definition 3.11 (Liao and Xu 2014a). Let hj (j ¼ 1; 2; . . .; nÞ be a collection of
HFEs and hqðjÞ be the jth largest of them. Let QHFOWG: Hn ! H; if

QHFOWG hj
��j ¼ 1; 2; . . .; n

� � ¼ [
cqðjÞ2hqðjÞ;j¼1;2;...;n

g�1
Y

n
j¼1g

xjðcqðjÞÞ
� �n o

ð3:26Þ

then QHFOWG is called a quasi hesitant fuzzy ordered weighted geometric
(QHFOWG) operator, where gðcÞ is a strictly continuous monotonic function, x ¼
x1;x2; . . .;xnð ÞT is the associated weight vector with

Pn
j¼1 xj ¼ 1; and xj 	 0;

j ¼ 1; 2; . . .; n:
Motivated by Definitions 3.10 and 3.11, if we replace the arithmetical average

and the geometric average in Definitions 3.8 and 3.9 with the quasi arithmetical
average, respectively, then the QHFHWA and QHFHWG operators will be
obtained, which are in mathematical forms as follows:

Definition 3.12 (Liao and Xu 2014a). For a collection of HFEs hj (j ¼ 1; 2; . . .; nÞ,
k ¼ k1; k2; . . .; knð ÞT is the weight vector of them with kj 2 0; 1½ � andPn

j¼1 kj ¼ 1;
then we define the following aggregation operators, which are all based on the
mapping Hn ! H with an aggregation-associated vector x ¼ x1;x2; . . .;xnð ÞT
such that xj 2 0; 1½ � andPn

j¼1 xj ¼ 1; and a continuous strictly monotonic function
gðcÞ:
(1) The quasi hesitant fuzzy hybrid weighted averaging (QHFHWA) operator:

QHFHWA h1; h2; . . .; hnð Þ ¼ g�1
�n
j¼1

kjxeðjÞg hj
� �

P
n
j¼1kjxeðjÞ

0
B@

1
CA

¼
[

c12h1;c22h2;...;cn2hn
g�1 1�

Yn
j¼1

ð1� gðcjÞÞ
kjxeðjÞPn

j¼1
kjxeðjÞ

0
@

1
A

8<
:

9=
;

ð3:27Þ
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(2) The quasi hesitant fuzzy hybrid weighted geometric (QHFHWG) operator:

QHFHWG h1; h2; . . .; hnð Þ ¼ g�1 �n
j¼1

gðhjÞ
� � kjxeðjÞP

n
j¼1

kjxeðjÞ

0
@

1
A

¼
[

c12h1;c22h2;...;cn2hn
g�1

Yn
j¼1

ðgðcjÞÞ
kjxeðjÞPn

j¼1
kjxeðjÞ

0
@

1
A

8<
:

9=
;

ð3:28Þ

where e : 1; 2; . . .; nf g ! 1; 2; . . .; nf g is the permutation such that hj is the eðjÞ
th largest element of the collection of HFEs hj (j ¼ 1; 2; . . .; nÞ.
Note that when assigning different weight vectors of x or k or choosing different

types of functions of gðcÞ; the QHFHWA and QHFHWG operators will reduce to
many special cases, which can be set out as follows:

(1) If the associated weight vector x ¼ 1=n; 1=n;. . .; 1=nð ÞT , then the QHFWA
operator reduces to the QHFWA operator shown as:

QHFHWA h1; h2; . . .; hnð Þ ¼ g�1 �n
j¼1

kjg hj
� �� �

¼
[

c12h1;c22h2;...;cn2hn
g�1 1�

Yn
j¼1

ð1� gðcjÞÞkj
 !( )

while the QHFWG operator reduces to the QHFWG operator shown as:

QHFHWG h1; h2; . . .; hnð Þ ¼ g�1 �n
j¼1

gðhjÞ
� �kj� �

¼
[

c12h1;c22h2;...;cn2hn
g�1

Yn
j¼1

ðgðcjÞÞkj
 !( )

(2) If the arguments’ weight vector k ¼ 1=n; 1=n;. . .; 1=nð ÞT , then the QHFHWA
operator reduces to the QHFOWA operator, while the QHFHWG operator
reduces to the QHFOWG operator.

(3) If gðcÞ ¼ c , then the QHFHWA operator reduces to the HFHWA operator,
while the QHFHWG operator reduces to the HFHWG operator.

(4) If gðcÞ ¼ ln c , then the QHFHWA operator reduces to the HFHWG operator,
while the QHFHWG operator reduces to the HFHWA operator. The derivation
can be shown as below:
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QHFHWA h1; h2; . . .; hnð Þ ¼ e

�n
j¼1

kjxeðjÞ ln hjð ÞP
n
j¼1

kjxeðjÞ ¼ e
�n
j¼1

kjxeðjÞ ln hjð Þ
 !1=

P
n
j¼1kjxeðjÞ

¼ �n
j¼1

hj
� � kjxeðjÞP

n
j¼1

kjxeðjÞ¼ HFHWG h1; h2; . . .; hnð Þ

while,

QHFHWG h1; h2; . . .; hnð Þ ¼ e
�n
j¼1

lnðhjÞð Þ
kjxeðjÞP
n
j¼1

kjxeðjÞ
¼ e

�n
j¼1

lnðhjÞð ÞkjxeðjÞP
n
j¼1kjxeðjÞ

¼
�n
j¼1

kjxeðjÞhjP
n
j¼1kjxeðjÞ

¼ HFHWA h1; h2; . . .; hnð Þ

Some other special cases can also be constructed by choosing different types of
the functions of gðcÞ for the QHFHWA and QHFHWG operators, such as gðcÞ ¼ ck

, gðcÞ ¼ 1� ð1� cÞk , gðcÞ ¼ sinððp=2ÞcÞ; gðcÞ ¼ 1� sinððp=2Þð1� cÞÞ; gðcÞ ¼
cosððp=2ÞcÞ; gðcÞ ¼ 1� cosððp=2Þð1� cÞÞ; gðcÞ ¼ tanððp=2ÞcÞ; gðcÞ ¼
1� tanððp=2Þð1� cÞÞ; gðcÞ ¼ kc , gðcÞ ¼ 1� b1�c , and so on.

Theorem 3.10 (Liao and Xu 2014a). (Idempotency) If hj ¼ h (j ¼ 1; 2; . . .; nÞ, then
QHFHWA h1; h2; . . .; hnð Þ ¼ h; QHFHWG h1; h2; . . .; hnð Þ ¼ h:

Proof According to Definition 3.12, we can obtain

QHFHWA h1; h2; . . .; hnð Þ ¼ g�1
�n
j¼1

kjxeðjÞg hj
� �

P
n
j¼1kjxeðjÞ

0
B@

1
CA ¼ g�1

�n
j¼1

kjxeðjÞg hð ÞP
n
j¼1kjxeðjÞ

0
B@

1
CA

¼ g�1 g hð ÞP n
j¼1kjxeðjÞP

n
j¼1kjxeðjÞ

 !
¼ g�1 g hð Þð Þ ¼ h

QHFHWG h1; h2; . . .; hnð Þ ¼ g�1 �n
j¼1

gðhjÞ
� � kjxeðjÞP

n
j¼1

kjxeðjÞ

0
@

1
A ¼ g�1 �n

j¼1
gðhÞð Þ

kjxeðjÞP
n
j¼1

kjxeðjÞ

0
@

1
A

¼ g�1 gðhÞð Þ

P
n
j¼1

kjxeðjÞP
n
j¼1

kjxeðjÞ

0
B@

1
CA ¼ g�1 g hð Þð Þ ¼ h

This completes the proof of the theorem.
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Theorem 3.11 (Liao and Xu 2015a). (Boundedness) For a collection of HFEs

hj ¼ cjtjt ¼ 1; 2; . . .; lhj
	 


(j ¼ 1; 2; . . .; nÞ, let h� ¼ min
n

j¼1
min
lhj

t¼1
cjt

( )
; hþ ¼

max
n

j¼1
max
lhj

t¼1
cjt

� �
; then, h� �QHFHWA h1; h2; . . .; hnð Þ� hþ , h� �QHFHWG

h1; h2; . . .; hnð Þ� hþ .

Proof

(1) For the simplicity of presentation, let c� , min
n

j¼1
min
lhj

t¼1
cjt, c

þ , max
n

j¼1
max
lhj

t¼1
cjt ,

�h,QHFHWA h1; h2; . . .; hnð Þ; and �c, g�1 1� Qn
j¼1

ð1� gðcjtÞÞ
kjxeðjÞPn

j¼1
kjxeðjÞ

0
@

1
A;

(t ¼ 1; 2; . . .; lhj ). Then, h
� ¼ c�f g; hþ ¼ cþf g; QHFHWA h1; h2; . . .; hnð Þ ¼

�h ¼ S�ct2�h �cf g .

As we have pointed out in the proof of Theorem 3.3 that for any j, c� � cjt � cþ .
Since y ¼ xað0\a\1Þ is a monotonic increasing function when x[ 0; then we get

1�
Yn
j¼1

ð1� c�Þ
kjxeðjÞPn

j¼1
kjxeðjÞ � 1�

Yn
j¼1

ð1� cjtÞ
kjxeðjÞPn

j¼1
kjxeðjÞ � 1�

Yn
j¼1

ð1� cþ Þ
kjxeðjÞPn

j¼1
kjxeðjÞ

ð3:29Þ

Meanwhile, it is noted that gðcÞ is a continuous strictly monotonic function,
which implies that g�1ðcÞ is also a continuous strictly monotonic function, and they
are in the same trend of increasing or decreasing. Thus, combined by Eq. (3.29), we
have

g�1 1�
Yn
j¼1

ð1� gðc�ÞÞ
kjxeðjÞPn

j¼1
kjxeðjÞ

0
@

1
A� g�1 1�

Yn
j¼1

ð1� gðcjtÞÞ
kjxeðjÞPn

j¼1
kjxeðjÞ

0
@

1
A

� g�1 1�
Yn
j¼1

ð1� gðcþ ÞÞ
kjxeðjÞPn

j¼1
kjxeðjÞ

0
@

1
A

which is equivalent to

c� ¼ g�1 1� ð1� gðc�ÞÞð Þ��c� g�1 1� ð1� gðcþ ÞÞð Þ ¼ cþ
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i.e.,

c� ��c� cþ

Then according to Eq. (1.17) and similar to the proving process of Theorem 3.3,
we have

sðh�Þ� sð�hÞ� sðhþ Þ

which implies h� �QHFHWA h1; h2; . . .; hnð Þ� hþ .

(2) Let c� , min
n

j¼1
min
lhj

t¼1
cjt , c

þ , max
n

j¼1
max
lhj

t¼1
cjt , ~h,QHFHWG h1; h2; . . .; hnð Þ; and

~c, g�1 Qn
j¼1

ðgðcjtÞÞ
kjxeðjÞPn

j¼1
kjxeðjÞ

0
@

1
A (t ¼ 1; 2; . . .; lhj ). Then, h� ¼ c�f g; hþ ¼

cþf g; QHFHWG h1; h2; . . .; hnð Þ ¼ ~h ¼ S~c2~h ~cf g .

For any j, we have c� � cjt � cþ . According to Theorem 3.7, we get

Yn
j¼1

c�

kjxeðjÞPn

j¼1
kjxeðjÞ �

Yn
j¼1

c

kjxeðjÞPn

j¼1
kjxeðjÞ

jt �
Yn
j¼1

cþ

kjxeðjÞPn

j¼1
kjxeðjÞ

Since gðcÞ and g�1ðcÞ are both continuous strictly monotonic functions and they
have the same trend of increasing or decreasing, then we can derive

g�1
Yn
j¼1

ðgðc�ÞÞ
kjxeðjÞPn

j¼1
kjxeðjÞ

0
@

1
A� g�1

Yn
j¼1

ðgðcjtÞÞ
kjxeðjÞPn

j¼1
kjxeðjÞ

0
@

1
A� g�1

Yn
j¼1

ðgðcþ ÞÞ
kjxeðjÞPn

j¼1
kjxeðjÞ

0
@

1
A

i.e.,

c� ¼ g�1 gðc�Þð Þ�~c� g�1 gðcþ Þð Þ ¼ cþ

Thus, we have

c� ¼ 1
l~h

X
c� � 1

l~h

X
~c2~h ~c�

1
l~h

X
cþ ¼ cþ

i.e.,

sðh�Þ� sð~hÞ� sðhþ Þ

92 3 Multiple Criteria Decision Making with Hesitant …

http://dx.doi.org/10.1007/978-981-10-3265-3_1


which implies h� �QHFHWG h1; h2; . . .; hnð Þ� hþ . This completes the proof of
the theorem.

Theorem 3.12 (Liao and Xu 2015a). (Commutativity) For two collections of HFEs

hj ¼ cjtjt ¼ 1; 2; . . .; lhj
	 


(j ¼ 1; 2; . . .; nÞ and h0j ¼ c0
jt
jt ¼ 1; 2; . . .; lh0

j

n o
(j ¼ 1; 2; . . .; nÞ, it follows that

QHFHWA h1; h2; . . .; hnð Þ ¼ QHFHWA h01; h
0
2; . . .; h

0
n

� �
QHFHWG h1; h2; . . .; hnð Þ ¼ QHFHWG h01; h

0
2; . . .; h

0
n

� �
where h01; h

0
2; . . .; h

0
n

� �
is any permutation of h1; h2; . . .; hnð Þ:

Theorem 3.13 (Liao and Xu 2015a). For a collection of HFEs hj ¼
cjtjt ¼ 1; 2; . . .; lhj
	 


(j ¼ 1; 2; . . .; nÞ, then

QHFHWG h1; h2; . . .; hnð Þ�QHFHWA h1; h2; . . .; hnð Þ

3.4 Generalized Hesitant Fuzzy Hybrid Weighted
Aggregation Operators

Combining the OWA operator with the generalized mean operator (Dyckhoff and
Pedrycz 1984), Yager (2004) proposed the generalized OWA (GOWA) operator:

Definition 3.13 (Yager 2004). A GOWA operator of dimension n is a mapping
GOWA: In ! I; which has the following form:

GOWAxða1; a2; . . .; anÞ ¼
Xn

j¼1
xjb

p
j

� �1=p
ð3:30Þ

where p 6¼ 0; x ¼ ðx1;x2; . . .;xnÞT is the weight vector of ða1; a2; . . .; anÞ; with
xj 2 ½0; 1�; j ¼ 1; 2; . . .; n; and

Pn
j¼1 xj ¼ 1; bj is the jth largest of ai , I ¼ ½0; 1�:

When p ¼ 1; the GOWA operator reduces to the OWA operator; when x ¼
ð1=n; 1=n; . . .; 1=nÞT , the GOWA operator reduces to the generalized mean oper-
ator. Inspired by the GOWA operator, Xia and Xu (2011a) proposed a family of
generalized hesitant fuzzy aggregation operators, such as the GHFWA, GHFWG,
GHFOWA, GHFOWG, GHFHA and GHFHG operators. Similarly, as for the
hesitant fuzzy hybrid weighted aggregation operators, Liao and Xu (2015a)
extended them into the generalized forms.
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Definition 3.14 (Liao and Xu 2015a). For a collection of the HFEs hj
(j ¼ 1; 2; . . .; nÞ, a generalized hesitant fuzzy hybrid weighted averaging
(GHFHWA) operator is a mapping GHFHWA: Hn �! H , defined by an associated
weight vector x ¼ ðx1;x2; . . .;xnÞT with xj 2 0; 1½ � andPn

j¼1 xj ¼ 1; such that

GHFHWA h1; h2; . . .; hnð Þ ¼
�n
j¼1

kjxeðjÞh
p
jP

n
j¼1kjxeðjÞ

0
B@

1
CA

1=p

ð3:31Þ

where e : 1; 2; . . .; nf g ! 1; 2; . . .; nf g is the permutation such that hj is the eðjÞth
largest element of the collection of HFEs hj (j ¼ 1; 2; . . .; nÞ; k ¼ k1; k2; . . .; knð ÞT
is the weight vector of the HFEs hj (j ¼ 1; 2; . . .; nÞ, with kj 2 0; 1½ � andPn

j¼1 kj ¼
1; p is a parameter such that p 2 ð�1; þ1Þ: Especially, if p ¼ 1; then the
GHFHWA operator reduces to the HFHWA operator.

Theorem 3.14 (Liao and Xu 2015a). For a collection of HFEs hj (j ¼ 1; 2; . . .; nÞ,
the aggregated value by using the GHFHWA operator is also a HFE, and

GHFHWA h1; h2; . . .; hnð Þ ¼
[

c12h1;c22h2;...;cn2hn
1�

Yn
j¼1

ð1� cpj Þ
kjxeðjÞPn

j¼1
kjxeðjÞ

0
@

1
A

1=p
8><
>:

9>=
>;

ð3:32Þ
Proof: From the definition of HFS, it is obvious that the aggregated value by using
the GHFHWA operator is also a HFE.

According to the operational law of HFEs, we have

hpj ¼
[

cj2hj
cpj
n o

ð3:33Þ

Then, combining Eqs. (3.16), (3.32) and (3.33), it follows that

GHFHWA h1; h2; . . .; hnð Þ ¼
[

c12h1;c22h2;...;cn2hn
1�

Yn
j¼1

ð1� cpj Þ
kjxeðjÞPn

j¼1
kjxeðjÞ

0
@

1
A

1=p
8><
>:

9>=
>;

This completes the proof.
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Definition 3.15 (Liao and Xu 2015a). For a collection of the HFEs hj
(j ¼ 1; 2; . . .; nÞ, a generalized hesitant fuzzy hybrid weighted geometric
(GHFHWG) operator is a mapping GHFHWG: Hn ! H; defined by an associated
weight vector x ¼ x1;x2; . . .;xnð ÞT with xj 2 0; 1½ � and Pn

j¼1 xj ¼ 1; such that

GHFHWG h1; h2; . . .; hnð Þ ¼ �n
j¼1

hpj
� � kjxeðjÞP

n
j¼1

kjxeðjÞ

0
@

1
A

1=p

ð3:34Þ

where e : 1; 2; . . .; nf g ! 1; 2; . . .; nf g is the permutation such that hj is the eðjÞ th
largest element of the collection of HFEs hj (j ¼ 1; 2; . . .; nÞ; k ¼ k1; k2; . . .; knð ÞT
is the weight vector of the HFEs hj (j ¼ 1; 2; . . .; nÞ, with kj 2 0; 1½ � andPn

j¼1 kj ¼
1; p is a parameter such that p 2 ð�1; þ1Þ: Especially, if p ¼ 1; then the
GHFHWG operator reduces to the HFHWG operator.

Theorem 3.15 (Liao and Xu 2015a). For a collection of HFEs hj (j ¼ 1; 2; . . .; nÞ,
the aggregated value by using the GHFHWG operator is also a HFE, and

GHFHWG h1; h2; . . .; hnð Þ ¼
[

c12h1;c22h2;...;cn2hn

Yn
j¼1

c

pkjxeðjÞPn

j¼1
kjxeðjÞ

j

0
B@

1
CA

1=p8><
>:

9>=
>; ð3:35Þ

Proof: The proof is similar to the proof of Theorem 3.14.
It is easy to check that the following theorems hold for both the GHFHWA

operator and the GHFHWG operators.

Theorem 3.16 (Liao and Xu 2015a). Both the GHFHWA operator and the
GHFHWG operator satisfy the properties of idempotency, boundedness and
commutativity.

Theorem 3.17 (Liao and Xu 2015a). For a collection of HFEs hj ¼
cjtjt ¼ 1; 2; . . .; lhj
	 


(j ¼ 1; 2; . . .; nÞ, then

GHFHWG h1; h2; . . .; hnð Þ�GHFHWA h1; h2; . . .; hnð Þ ð3:36Þ

Theorem 3.17 reveals the relationship between the GHFHWA operator and the
GHFHWG operator. Similar to the QHFHWA and QHFHWG operators, the fol-
lowing operators can be developed immediately:

Definition 3.16 (Liao and Xu 2015a). For a collection of HFEs hj (j ¼ 1; 2; . . .; nÞ,
k ¼ k1; k2; . . .; knð ÞT is the weight vector of them with kj 2 0; 1½ � andPn

j¼1 kj ¼ 1;
then we define the following aggregation operators, which are all based on the
mappingHn ! Hwith an aggregation-associated vectorx ¼ x1;x2; . . .;xnð ÞT such
that xj 2 0; 1½ � andPn

j¼1 xj ¼ 1; and a continuous strictly monotonic function gðcÞ:
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(1) The generalized quasi hesitant fuzzy hybrid weighted averaging (GQHFHWA)
operator:

GQHFHWA h1; h2; . . .; hnð Þ ¼ g�1
�n
j¼1

kjxeðjÞg hpj
� �

P
n
j¼1kjxeðjÞ

0
B@

1
CA

0
B@

1
CA

1=p

¼
[

c12h1;c22h2;...;cn2hn
g�1 1�

Yn
j¼1

ð1� gðcpj ÞÞ
kjxeðjÞPn

j¼1
kjxeðjÞ

0
@

1
A

1=p
0
B@

1
CA

8><
>:

9>=
>;
ð3:37Þ

(2) The generalized quasi hesitant fuzzy hybrid weighted geometric (GQHFHWG)
operator:

GQHFHWG h1; h2; . . .; hnð Þ ¼ g�1 �n
j¼1

gðhpj Þ
� � kjxeðjÞP

n
j¼1

kjxeðjÞ

0
@

1
A

0
@

1
A

1=p

¼
[

c12h1;c22h2;...;cn2hn
g�1

Yn
j¼1

ðgðcpj ÞÞ
kjxeðjÞPn

j¼1
kjxeðjÞ

0
@

1
A

0
@

1
A

1=p
8><
>:

9>=
>;

ð3:38Þ

where e : 1; 2; . . .; nf g ! 1; 2; . . .; nf g is the permutation such that hj is the eðjÞ
th largest element of the collection of HFEs hj (j ¼ 1; 2; . . .; nÞ; p is a parameter
such that p 2 ð�1; þ1Þ:
Especially, if p ¼ 1; then the GQHFHWA (GQHFHWG) operator reduces to the

QHFHWA (QHFHWG) operator. If gðcÞ ¼ c , then the GQHFHWA operator
reduces to the GHFHWA operator, while the GQHFHWG operator reduces to the
GHFHWG operator.

Theorem 3.18 (Liao and Xu 2015a). The GQHFHWA operator and the
GQHFHWG operator also satisfy the properties of idempotency, boundedness and
commutativity.

Theorem 3.19 (Liao and Xu 2015a). For a collection of HFEs hj ¼
cjtjt ¼ 1; 2; . . .; lhj
	 


(j ¼ 1; 2; . . .; nÞ, then

GQHFHWG h1; h2; . . .; hnð Þ�GQHFHWA h1; h2; . . .; hnð Þ ð3:39Þ

96 3 Multiple Criteria Decision Making with Hesitant …



3.5 Induced Hesitant Fuzzy Hybrid Weighted
Aggregation Operators

As an extension of the OWA operator, the induced OWA (IOWA) operator was
introduced by Yager and Filev (1999). The main difference between the OWA and
IOWA operators is that the reordering step of the IOWA operator is carried out with
order-inducing variables rather than depending on the values of the arguments
(Merigó and Gil-Lafuente 2009). The IOWA operator can be used to aggregate
tuples of the form ðvj; ajÞ; where vj is called the order inducing value and aj is called
the argument value.

Definition 3.17 (Yager and Filev 1999). An IOWA operator of dimension n is a
mapping IOWA: In ! I defined by an aggregation-associated vector
x ¼ x1;x2; . . .;xnð ÞT such that xj 2 0; 1½ � and Pn

j¼1 xj ¼ 1; and a set of order
inducing variables vj , by a formula of the following form:

IOWAxð\v1; a1 [ ;\v2; a2 [ ; . . .;\vn; an [ Þ ¼
Xn
j¼1

xjbj ð3:40Þ

where bj is simply ða1; a2; . . .; anÞ reordered in decreasing order of the values of vj ,
vj is the order inducing value, aj is the argument value, and I ¼ ½0; 1�:

The IOWA operator is monotonic, bounded, idempotent and commutative
(Yager and Filev 1999). Motivated by the IOWA operator, Liao and Xu (2015a)
extended the hesitant fuzzy hybrid weighted aggregation operators to the induced
forms with the difference that the reordering step of these operators is not defined
by the values of the argument aj , but by the order inducing value vj . These induced
hesitant fuzzy hybrid weighted aggregation operators are more general, and thus
can be used to handle more complex cases.

Definition 3.18 (Liao and Xu 2015a). For a collection of HFEs hj (j ¼ 1; 2; . . .; nÞ,
k ¼ k1; k2; . . .; knð ÞT is the weight vector of the HFEs hj (j ¼ 1; 2; . . .; nÞ, with
kj 2 0; 1½ � and Pn

j¼1 kj ¼ 1; then the following aggregation operators are defined,
which are all based on the mapping Hn ! H with the aggregation-associated vector
x ¼ x1;x2; . . .;xnð ÞT such that xj 2 0; 1½ � and Pn

j¼1 xj ¼ 1 :

(1) An induced hesitant fuzzy hybrid weighted averaging (IHFHWA) operator:

IHFHWA \v1; h1 [ ;\v2; h2 [ ; . . .;\vn; hn [ð Þ ¼
�n
j¼1

kjxeðjÞhjP
n
j¼1kjxeðjÞ

¼
[

c12h1;c22h2;...;cn2hn
1�

Yn
j¼1

ð1� cjÞ
kjxeðjÞPn

j¼1
kjxeðjÞ

8<
:

9=
;

ð3:41Þ
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(2) An induced hesitant fuzzy hybrid weighted geometric (IHFHWG) operator:

IHFHWG \v1; h1 [ ;\v2; h2 [ ; . . .;\vn; hn [ð Þ ¼ �n
j¼1

hj
� � kjxeðjÞP

n
j¼1

kjxeðjÞ

¼
[

c12h1;c22h2;...;cn2hn

Yn
j¼1

c

kjxeðjÞPn

j¼1
kjxeðjÞ

j

8><
>:

9>=
>;

ð3:42Þ

(3) An induced generalized hesitant fuzzy hybrid weighted averaging (IGHFHWA)
operator:

IGHFHWA \v1; h1 [ ;\v2; h2 [ ; . . .;\vn; hn [ð Þ ¼
�n
j¼1

kjxeðjÞh
p
jP

n
j¼1kjxeðjÞ

0
B@

1
CA

1=p

¼
[

c12h1;c22h2;...;cn2hn
1�

Yn
j¼1

ð1� cpj Þ
kjxeðjÞPn

j¼1
kjxeðjÞ

0
@

1
A

1=p
8><
>:

9>=
>;

ð3:43Þ

(4) An induced generalized hesitant fuzzy hybrid weighted geometric (IGHFHWG)
operator:

IGHFHWG \v1; h1 [ ;\v2; h2 [ ; . . .;\vn; hn [ð Þ ¼ �n
j¼1

hpj
� � kjxeðjÞP

n
j¼1

kjxeðjÞ

0
@

1
A

1=p

¼
[

c12h1;c22h2;...;cn2hn

Yn
j¼1

c

pkjxeðjÞPn

j¼1
kjxeðjÞ

j

0
B@

1
CA

1=p8><
>:

9>=
>;

ð3:44Þ

where e : 1; 2; . . .; nf g ! 1; 2; . . .; nf g is the permutation such that vj is the
eðjÞth largest element of the collection of vj (j ¼ 1; 2; . . .; nÞ, vj is the order
inducing value and it can be represented in any different forms, and p is a
parameter such that p 2 ð�1; þ1Þ:
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Example 3.7 (Liao and Xu 2015a). Given the following collection of tuples
\John; 0:2; 0:4; 0:5f g[ , \Smith; 0:2; 0:4f g[ and \Frank; 0:1; 0:2; 0:4f g[ ,
whose weight vector is k ¼ ð0:2; 0:3; 0:5Þ; and the aggregation-associated vector is
x ¼ 0:4; 0:3; 0:3ð ÞT . By using a lexicographic ordering of these tuples by the first
argument, we obtain the ordered tuples:

\Frank; 0:1; 0:2; 0:4f g[ ; \John; 0:2; 0:4; 0:5f g[ ; \Smith; 0:2; 0:4f g[
Thus, eð1Þ ¼ 2; eð2Þ ¼ 3; eð3Þ ¼ 1: Then

k1xeð1ÞP3
j¼1 kjxeðjÞ

¼ 0:2� 0:3
0:2� 0:3þ 0:3� 0:3þ 0:5� 0:4

¼ 0:17

k2xeð2ÞP3
j¼1 kjxeðjÞ

¼ 0:26;
k3xeð3ÞP3
j¼1 kjxeðjÞ

¼ 0:57

If we use the IHFHWA operator to fuse these tuples, then, by Eq. (3.41), we
have

IHFHWA \John; h1 [ ;\Smith; h2 [ ;\Frank; h3 [ð Þ
¼
[

c12h1;c22h2;c32h3
1� ð1� c1Þ0:17ð1� c2Þ0:26ð1� c3Þ0:57
n o

¼ f0:1444; 0:1853; 0:2000; 0:2061; 0:2101; 0:2382; 0:2440; 0:2577; 0:2614; 0:2671; 0:2931;
0:3147; 0:3210; 0:3534; 0:3699; 0:3731; 0:4000; 0:4183g:

If we use the IHFHWG operator to fuse these tuples, then, using Eq. (3.42), we
have

IHFHWG \ohn; h1[ ;\Smith; h2[ ;\Frank; h3 [ð Þ
¼
[

c12h1;c22h2;c32h3
c0:171 c0:262 c0:573

	 

¼ f0:1347; 0:1516; 0:1574; 0:1613; 0:1815; 0:1885; 0:2000; 0:2250; 0:2337; 0:2395; 0:2694;
0:2799; 0:2969; 0:3340; 0:3470; 0:3555; 0:4000; 0:4155g:

According to Eq. (1.17), we can compute

s IHFHWA \John; h1 [ ;\Smith; h2 [ ;\Frank; h3 [ð Þð Þ ¼ 0:2810

s IHFHWG \John; h1 [ ;\Smith; h2 [ ;\Frank; h3 [ð Þð Þ ¼ 0:2540

and thus,

IHFHWA \John; h1 [ ;\Smith; h2 [ ;\Frank; h3 [ð Þ
\IHFHWG \John; h1 [ ;\Smith; h2 [ ;\Frank; h3 [ð Þ
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Definition 3.19 (Liao and Xu 2015a). For a collection of HFEs hj (j ¼ 1; 2; . . .; nÞ,
k ¼ k1; k2; . . .; knð ÞT is the weight vector of them with kj 2 0; 1½ � andPn

j¼1 kj ¼ 1;
then the following aggregation operators are defined, which are all based on the
mapping Hn ! H with an aggregation-associated vector x ¼ x1;x2; . . .;xnð ÞT
such that xj 2 0; 1½ � andPn

j¼1 xj ¼ 1; and a continuous strictly monotonic function
gðcÞ :
(1) An induced quasi hesitant fuzzy hybrid weighted averaging (IQHFHWA)

operator:

IQHFHWA \v1; h1 [ ;\v2; h2 [ ; . . .;\vn; hn [ð Þ ¼ g�1
�n
j¼1

kjxeðjÞg hj
� �

P
n
j¼1kjxeðjÞ

0
B@

1
CA

¼
[

c12h1;c22h2;...;cn2hn
g�1 1�

Yn
j¼1

ð1� gðcjÞÞ
kjxeðjÞPn

j¼1
kjxeðjÞ

0
@

1
A

8<
:

9=
;

ð3:45Þ

(2) An induced quasi hesitant fuzzy hybrid weighted geometric (IQHFHWG)
operator:

IQHFHWG \v1; h1 [ ;\v2; h2 [ ; . . .;\vn; hn [ð Þ ¼ g�1 �n
j¼1

gðhjÞ
� � kjxeðjÞP

n
j¼1

kjxeðjÞ

0
@

1
A

¼
[

c12h1;c22h2;...;cn2hn
g�1

Yn
j¼1

ðgðcjÞÞ
kjxeðjÞPn

j¼1
kjxeðjÞ

0
@

1
A

8<
:

9=
;

ð3:46Þ

(3) An induced generalized quasi hesitant fuzzy hybrid weighted averaging
(IGQHFHWA) operator:

IGQHFHWA \v1; h1 [ ;\v2; h2 [ ; . . .;\vn; hn [ð Þ ¼ g�1
�n
j¼1

kjxeðjÞg hpj
� �

P
n
j¼1kjxeðjÞ

0
B@

1
CA

0
B@

1
CA

1=p

¼
[

c12h1;c22h2;...;cn2hn
g�1 1�

Yn
j¼1

ð1� gðcpj ÞÞ
kjxeðjÞPn

j¼1
kjxeðjÞ

0
@

1
A

1=p
0
B@

1
CA

8><
>:

9>=
>;

ð3:47Þ
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(4) An induced generalized quasi hesitant fuzzy hybrid weighted geometric
(IGQHFHWG) operator:

IGQHFHWG \v1; h1 [ ;\v2; h2 [ ; . . .;\vn; hn[ð Þ ¼ g�1 �n
j¼1

gðhpj Þ
� � kjxeðjÞP

n
j¼1

kjxeðjÞ

0
@

1
A

0
@

1
A

1=p

¼
[

c12h1;c22h2;...;cn2hn
g�1

Yn
j¼1

ðgðcpj ÞÞ
kjxeðjÞPn

j¼1
kjxeðjÞ

0
@

1
A

0
@

1
A

1=p
8><
>:

9>=
>;

ð3:48Þ

where e : 1; 2; . . .; nf g ! 1; 2; . . .; nf g is the permutation such that vj is the
eðjÞ-th largest element of the collection of vj (j ¼ 1; 2; . . .; nÞ, vj is the order
inducing value and it can be represented in any different forms, and p is a
parameter such that p 2 ð�1; þ1Þ:
The following theorems hold for the induced hesitant fuzzy hybrid weighted

aggregation operators.

Theorem 3.20 (Liao and Xu 2015a). All the induced hesitant fuzzy hybrid
weighted aggregation operators, including the IHFHWA, IHFHWG, IGHFHWA,
IGHFHWG, IQHFHWA, IQHFHWG, IGQHFHWA and IGQHFHWG operators
satisfy the properties of idempotency, boundedness and commutativity.

Theorem 3.21 (Liao and Xu 2015a). For a collection of HFEs hj ¼
cjtjt ¼ 1; 2; . . .; lhj
	 


(j ¼ 1; 2; . . .; nÞ, then

IHFHWG \v1; h1 [ ;\v2; h2 [ ; . . .;\vn; hn [ð Þ
� IHFHWA \v1; h1 [ ;\v2; h2 [ ; . . .;\vn; hn [ð Þ ð3:49Þ

IGHFHWG \v1; h1 [ ;\v2; h2 [ ; . . .;\vn; hn [ð Þ
� IGHFHWA \v1; h1 [ ;\v2; h2 [ ; . . .;\vn; hn [ð Þ ð3:50Þ

IQHFHWG \v1; h1 [ ;\v2; h2 [ ; . . .;\vn; hn [ð Þ
� IQHFHWA \v1; h1 [ ;\v2; h2 [ ; . . .;\vn; hn [ð Þ ð3:51Þ

IGQHFHWG \v1; h1 [ ;\v2; h2 [ ; . . .;\vn; hn [ð Þ
� IGQHFHWA \v1; h1 [ ;\v2; h2 [ ; . . .;\vn; hn [ð Þ ð3:52Þ

To be easily understood, the hesitant fuzzy hybrid weighted aggregation oper-
ators can be classified in Fig. 3.1.
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3.6 Multiple Criteria Decision Making with Hesitant
Fuzzy Hybrid Weighted Aggregation Operators

Since it was originally proposed by Torra (2010), the HFS has been investigated by
many scholars from different points of view. It also has been applied to multiple
criteria decision making problems and shows many advantages than other extended
forms of fuzzy sets due to its particular powerfulness and efficiency in representing
uncertainty and vagueness. The HFE is very close to the human’s cognitive process

HFHWA
HFHWG

(HFHWG≤HFHWA)

QHFHWA
QHFHWG

(QHFHWG≤QHFHWA)

Quasi forms

Idempotency, Boundedness, Commutativity

GHFHWA
GHFHWG

(GHFHWG≤GHFHWA)

GQHFHWA
GQHFHWG

(GQHFHWG≤GQHFHWA)

Quasi forms

Idempotency, Boundedness, Commutativity

Generalized forms

IHFHWA
IHFHWG

(IHFHWG≤IHFHWA)

IQHFHWA
IQHFHWG

(IQHFHWG≤IQHFHWA)

Quasi forms

Idempotency, Boundedness, Commutativity

IGHFHWA
IGHFHWG

(IGHFHWG≤IGHFHWA)

IGQHFHWA
IGQHFHWG

(IGQHFHWG≤IGQHFHWA)

Quasi forms

Generalized forms

Induced forms

Idempotency, Boundedness, Commutativity

Fig. 3.1 Classification and relationships between the hesitant fuzzy hybrid weighted aggregation
operators
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when evaluating the candidate alternatives, because it can assign a set of possible
values of membership degree of an element to a given set, while other extended
forms of fuzzy set, like IFS, interval-valued IFS, linguistic fuzzy set, cannot be used
to represent this situation in case people have several possible evaluation values at
the same time. In addition, the HFE can be applied to maintain all the original
assessments provided by the groups of decision makers, while all the other
extended forms of fuzzy sets cannot be used to depict this situation exactly.
Moreover, in practical group decision making problems, the anonymity is needed in
order to protect the privacy of the decision makers or ensure non-interference
opinions accumulated. Thus, it is natural to consider all the assessments so as to get
more reasonable decision making results. This also can only be represented by
HFEs.

Since the HFE can be used not only in multiple criteria single person decision
making, but also in multiple criteria group decision making, in the following, we
illustrate how to apply the hesitant fuzzy hybrid weighted aggregation operators to
multiple criteria single person decision making and multiple criteria group decision
making, respectively.

3.6.1 Hesitant Fuzzy Multiple Criteria Decision Making
with Single Decision Maker

When a decision maker intends to evaluate a set of alternatives A ¼
fA1;A2; . . .;Amg with respect to a set of the predetermined criteria C ¼
fC1;C2; . . .;Cng , he/she may find that it is hard to give a single value or a single
interval for the membership degree of an element to a given set but a set of possible
values due to the complexity of the problem and the incomplete information. For
example, suppose that a person wants to buy a laptop, there are several brands for
him/her to choose, such as ThinkPad, Apple, Acer, HP and so forth. The person
finds that it is hard for him/her to decide which is the best even only over a single
criterion named, for instance, appearance, because if he/she prefers the color of the
alternative a to that of the alternative b with the membership degree 0.7, the design
of the alternative b may be better than that of the alternative a with the membership
degree 0.8. In this case, the decision maker cannot represent the judgments of the
alternative a to the alternative b over the criterion “appearance”, which consists of
“color” and “design” as sub-criteria, in traditional fuzzy set but only in the HFE as
f0:7; 0:8g . This case is common in our daily life. Hence, we need to develop some
decision making models within the context of HFEs to aid the decision maker.
Based on the hesitant fuzzy hybrid weighted aggregation operators, Liao and Xu
(2014a) proposed a procedure for a decision maker to select the best choice with
hesitant fuzzy information, which involves the following steps:
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Algorithm 3.1

Step 1. Construct the hesitant fuzzy decision matrix. The decision maker deter-
mines the relevant criteria of the alternatives and gives the evaluation
information of the alternatives with respect to the criteria in the form of
HFEs. When the decision maker is asked to compare the alternatives over
criteria, he/she may have several possible values regarding to the subcri-
teria. In this situation, it is natural to set out all the evaluation values given
by the decision maker for an alternative under a criterion and represent
them as HFE. The decision maker also determines the importance degrees
kjðj ¼ 1; 2; . . .; nÞ for the relevant criteria according to his/her preferences.
Meanwhile, since different alternatives may have different focuses and
advantages, to reflect this issue, the decision maker also gives the ordering
weights xjðj ¼ 1; 2; . . .; nÞ for different criteria.

Step 2. Utilize the hesitant fuzzy hybrid weighted aggregation operators to obtain
the HFEs hi ði ¼ 1; 2; . . .;mÞ for the alternatives Ai ði ¼ 1; 2; . . .;mÞ:
Taking the HFHWA operator as an example, we have

hi ¼ HFHWA hi1; hi2; . . .; hinð Þ

¼
[

ci12hi1;ci22hi2;...;cin2hin
1�

Yn
j¼1

ð1� cijÞ
kjxeðijÞPn

j¼1
kjxeðijÞ

8<
:

9=
;; i ¼ 1; 2; . . .;m

ð3:53Þ

Step 3. Compute the score values sðhiÞ ði ¼ 1; 2; . . .;mÞ of hi ði ¼ 1; 2; . . .;mÞ by
Eq. (1.17) and the variance values vðhiÞ ði ¼ 1; 2; . . .;mÞ of hi ði ¼
1; 2; . . .;mÞ by Eq. (1.19).

Step 4. Get the rank of the alternatives Ai ði ¼ 1; 2; . . .;mÞ according to sðhiÞ and
vðhiÞ ði ¼ 1; 2; . . .;mÞ:

We now use a decision making problem to illustrate Algorithm 3.1.

Example 3.8 (Liao and Xu 2014a). Consider a customer who intends to buy a car.
There are four alternatives A1;A2;A3;A4 under consideration and the customer
takes three criteria into account to determine which car to buy:

C1 : Quality of the car, which consists of three sub-criteria: S1 (safety), S2 (aerod.
degree), and S3 (remedy for quality problems).

C2 : Overall cost of the product, which consists of four sub-criteria: S4 (product
price), S5 (fuel economy), S6 (tax), and S7 (maintenance costs).

C3 : Appearance of the car, which consists of three sub-criteria: S8 (design), S9
(color), and S10 (comfort).

As mentioned above, it is appropriate for the customer to represent his/her
assessments in HFEs to maintain the original evaluation information adequately,
which are shown in the hesitant fuzzy decision matrix H ¼ hij

� �
4�3 (see Table 3.1).

Note that the criteria have two different types, i.e., benefit type and cost type. The
customer should take this into account in the process of determining the preference
values.
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The weight information of these three criteria is also determined by the customer
as k ¼ ð0:5; 0:3; 0:2ÞT . In addition, consider the fact that different cars may focus
on different properties; for example, some cars are prominent in security with high
price, while some cars are cheap but with low appearance. To reflect this concern,
the customer gives another weight vector x ¼ ð0:6; 0:2; 0:2ÞT for the criteria, which
denotes that the most prominent feature of the car assigns more weight while the
remainders assign less weights.

To select the most desirable car, the hesitant fuzzy hybrid weighted aggregation
operators can be used to aggregate the decision information. Suppose that we utilize
the HFHWA operator to obtain the HFEs hi (i ¼ 1; 2; 3; 4Þ for the cars
A1;A2;A3;A4 . Taking A2 as an example, we have

h2 ¼ HFHWA h21; h22; h23ð Þ
¼ HFHWA 0:7; 0:9f g; 0:4; 0:5; 0:8; 0:9f g; 0:4; 0:8f gð Þ

Since

s h21ð Þ ¼ ð0:7þ 0:9Þ
2

¼ 0:8; s h22ð Þ ¼ ð0:4þ 0:5þ 0:8þ 0:9Þ
4

¼ 0:65

s h23ð Þ ¼ ð0:4þ 0:8Þ
2

¼ 0:6

then h21 [ h22 [ h23 , which implies eð21Þ ¼ 1; eð22Þ ¼ 2; eð23Þ ¼ 3: Thus,

k1xeð21ÞP3
j¼1 kjxeð2jÞ

¼ 0:5� 0:6
0:5� 0:6þ 0:3� 0:2þ 0:2� 0:2

¼ 0:75

k2xeð22ÞP3
j¼1 kjxeð2jÞ

¼ 0:15;
k3xeð23ÞP3
j¼1 kjxeð2jÞ

¼ 0:1

By using Eq. (3.16), we can calculate

h2 ¼ HFHWA h21; h22; h23ð Þ ¼ HFHWA 0:7; 0:9f g; 0:4; 0:5; 0:8; 0:9f g; 0:4; 0:8f gð Þ
¼
[

c212h21;c222h22;c232h23
1� ð1� c21Þ0:75ð1� c22Þ0:15ð1� c23Þ0:1
n o

¼ f0:6423; 0:6529; 0:6848; 0:6890; 0:6974; 0:7273; 0:7289; 0:7557; 0:8435;
0:8477; 0:8598; 0:86360:8673; 0:8804; 0:8811; 0:8928g

Table 3.1 Hesitant fuzzy decision matrix

C1 C2 C3

A1 0:6; 0:7; 0:9f g 0:6; 0:8f g 0:3; 0:6; 0:9f g
A2 0:7; 0:9f g 0:4; 0:5; 0:8; 0:9f g 0:4; 0:8f g
A3 0:6; 0:8f g 0:6; 0:7; 0:9f g 0:3; 0:5; 0:7f g
A4 0:6; 0:8; 0:9f g 0:7; 0:9f g 0:2; 0:4; 0:7f g
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Similarly, we can calculate different results for other alternatives A1; A3; and A4

by using the HFHWA operator.
Finally, we compute the score values sðhiÞ ði ¼ 1; 2; 3; 4Þ and the variance

values vðhiÞ ði ¼ 1; 2; 3; 4Þ of hi ði ¼ 1; 2; 3; 4Þ: Since sðh1Þ ¼ 0:7329;
sðh2Þ ¼ 0:6953, sðh3Þ ¼ 0:716, and sðh4Þ ¼ 0:7782; then we get
sðh4Þ[ sðh1Þ[ sðh3Þ[ sðh2Þ; and thus, h4 
 h1 
 h3 
 h2; i.e., the car A4 is the
most desirable choice for the customer.

If we use Xia and Xu (2011a)’s HFHA operator to solve this problem, then we
have

h1 ¼ HFHA h11; h12; h13ð Þ ¼ HFHA 0:6; 0:7; 0:9f g; 0:6; 0:8f g; 0:3; 0:6; 0:9f gð Þ
¼ f0:6438; 0:6670; 0:7180; 0:6856; 0:7060; 0:7511; 0:7251; 0:7429; 0:7823; 0:7573;

0:7731; 0:8079; 0:8977; 0:9044; 0:9190; 0:9097; 0:9156; 0:9285g

h2 ¼ HFHA h21; h22; h23ð Þ ¼ HFHA 0:7; 0:9f g; 0:4; 0:5; 0:8; 0:9f g; 0:4; 0:8f gð Þ
¼ f0:7097; 0:7456; 0:7191; 0:7538; 0:7618; 0:7912; 0:7897; 0:8157; 0:8920; 0:9053;

0:8955; 0:9084; 0:9114; 0:9223; 0:9218; 0:9314g

h3 ¼ HFHA h31; h32; h33ð Þ ¼ HFHA 0:6; 0:8f g; 0:6; 0:7; 0:9f g; 0:3; 0:5; 0:7f gð Þ
¼ f0:6438; 0:6579; 0:6783; 0:6618; 0:6752; 0:6945; 0:7225; 0:7335; 0:7493; 0:8091;

0:8167; 0:8276; 0:8188; 0:8259; 0:8363; 0:8513; 0:8572; 0:8657g

h4 ¼ HFHA h41; h42; h43ð Þ ¼ HFHA 0:6; 0:8; 0:9f g; 0:7; 0:9f g; 0:2; 0:4; 0:7f gð Þ
¼ f0:6564; 0:6680; 0:6945; 0:7180; 0:7276; 0:7493; 0:8158; 0:8221; 0:8363; 0:8489;

0:8540; 0:8657; 0:9013; 0:9047; 0:9123; 0:9190; 0:9218; 0:9280g

Since sðh1Þ ¼ 0:7908; sðh2Þ ¼ 0:8359; sðh3Þ ¼ 0:7625; and sðh4Þ ¼ 0:8191;
then we get sðh2Þ[ sðh4Þ[ sðh1Þ[ sðh3Þ; and thus, h2 
 h4 
 h1 
 h3 . With the
HFHA operator, the car A2 turns out to be the most desirable choice for the
customer, and all the other cars are in the same rank as that in the above result.
Meanwhile, when using the HFHA operator, we need to calculate _h ¼ nkkhk first
and compare them, and then calculate xj _hrðjÞ , after which, we shall compute the

aggregation values with �n
j¼1

xj
_hrðjÞ

� �
: Since the computation with HFEs is very

complex, the results derived by the HFHA operator is hard to be obtained. As for
the HFHWA operator, the weighting operation of the ordered positions is syn-
chronized with the weighting operation of the given importance, which is in the
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mathematical form as kjxeðjÞ . Since both kj and xeðjÞ are crisp numbers, we only

need to calculate �n
j¼1

kjxeðjÞhj


P n
j¼1kjxeðjÞ; which makes the HFHWA operator

easier to calculate than the HFHA operator.

Example 3.9 (Liao and Xu 2015a). Consider that a person is interested in investing
his money to any one of the four portfolios: bank deposit (BD, A1), debentures (DB,
A2), government bonds (GB, A3), and shares (SH, A4). Out of these portfolios he
has to choose only one based on four criteria: return (C1), risk (C2), tax benefits
(C3), and liquidity (C4). After some evaluations, the decision maker finds that it is
hard for him/her to decide which portfolio should be invested due to his/her limited
knowledge. Thus, he/she uses HFEs to represent his/her preference assessments to
maintain the original evaluation information adequately, shown in the hesitant
fuzzy decision matrix H ¼ hij

� �
4�4 (see Table 3.2). Note that the criteria have two

different types such as benefit type and cost type. The customer should take this into
account in the process of determining the preference values.

The weight information of these four criteria is determined by the decision
maker as k ¼ ð0:5; 0:2; 0:2; 0:1ÞT . In addition, since different portfolios may focus
on different points, the person gives another weight vector x ¼ ð0:4; 0:2; 0:2; 0:2ÞT
for each criterion. To select the most desirable portfolio, the hesitant fuzzy hybrid
weighted aggregation operators can be used to aggregate the decision information
adequately. Hereby we utilize the GHFHWG operator as an example to obtain the
HFEs hi (i ¼ 1; 2; 3; 4Þ for the portfolios A1;A2;A3;A4 .

Take A3 as an example and let p ¼ 1: Since s h31ð Þ ¼ 0:7; s h32ð Þ ¼ 0:73;
s h33ð Þ ¼ 0:55; and s h34ð Þ ¼ 0:4; then h32 [ h31 [ h33 [ h34 . Thus, eð31Þ ¼
2; eð32Þ ¼ 1; eð33Þ ¼ 3; eð34Þ ¼ 4: It follows

k1xeð31ÞP4
j¼1 kjxeð3jÞ

¼ 0:4167;
k2xeð32ÞP4
j¼1 kjxeð3jÞ

¼ 0:3333

k3xeð33ÞP4
j¼1 kjxeð3jÞ

¼ 0:1667;
k4xeð34ÞP4
j¼1 kjxeð3jÞ

¼ 0:0833

Table 3.2 Hesitant fuzzy decision matrix

C1 C2 C3 C4

A1 0:6; 0:7; 0:9f g 0:6; 0:8f g 0:3; 0:6; 0:8f g 0:4; 0:6f g
A2 0:7; 0:8f g 0:5; 0:7; 0:9f g 0:4; 0:8f g 0:6; 0:7f g
A3 0:6; 0:8f g 0:6; 0:7; 0:9f g 0:4; 0:7f g 0:3; 0:4; 0:5f g
A4 0:6; 0:7; 0:8f g 0:7; 0:9f g 0:2; 0:5; 0:7f g 0:2; 0:4f g
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Thus, by Eq. (3.35), we can calculate

h3 ¼ GHFHWG 0:6; 0:8f g; 0:6; 0:7; 0:9f g; 0:4; 0:7f g; 0:3; 0:4; 0:5f gð Þ
¼
[

c312h31;c322h32;c332h33;c342h34
c0:416731 c0:333332 c0:166733 c0:083334

	 

¼ f0:5293; 0:5422; 0:5523; 0:5811; 0:5952; 0:6063; 0:5572; 0:5707; 0:5815; 0:6117; 0:6266;

0:6383; 0:6059; 0:6206; 0:6323; 0:6652; 0:6813; 0:6941; 0:5967; 0:6112; 0:6227; 0:6551;

0:6710; 0:6836; 0:6282; 0:6434; 0:6555; 0:6896; 0:7063; 0:7196; 0:6831; 0:6997; 0:7128;

0:7499; 0:7681; 0:7825g:

Similarly, the results for the alternatives A1; A2; and A4 can be calculated by the
GHFHWG operator:

h1 ¼ GHFHWG h11; h12; h13; h14ð Þ
¼ f0:5324; 0:5470; 0:5840; 0:6000; 0:6068; 0:6235; 0:5533; 0:5684; 0:6068; 0:6235; 0:6305;

0:6478; 0:5901; 0:6063; 0:6472; 0:6649; 0:6725; 0:6909; 0:6131; 0:6300; 0:6725; 0:6909;

0:6988; 0:7179; 0:6977; 0:7168; 0:7653; 0:7862; 0:7952; 0:8170; 0:7250; 0:7449; 0:7952;

0:8170; 0:8263; 0:8489g:

h2 ¼ GHFHWG h21; h22; h23; h24ð Þ
¼ f0:6148; 0:6212; 0:6743; 0:6813; 0:6430; 0:6497; 0:7053; 0:7126; 0:6649; 0:6718; 0:7293;

0:7368; 0:6721; 0:6790; 0:7371; 0:7448; 0:7029; 0:7102; 0:7710; 0:7789; 0:7269; 0:7344;

0:7972; 0:8055g;

h4 ¼ GHFHWG h41; h42; h43; h44ð Þ
¼ f0:4799; 0:5085; 0:5591; 0:5924; 0:5914; 0:6266; 0:5219; 0:5529; 0:6080; 0:6441; 0:6431;

0:6813; 0:5118; 0:5422; 0:5962; 0:6317; 0:6306; 0:6681; 0:5565; 0:5896; 0:6483; 0:6869;

0:6857; 0:7265; 0:5411; 0:5732; 0:6304; 0:6678; 0:6667; 0:7063; 0:5883; 0:6233;

0:6854; 0:7262; 0:7250; 0:7681g:

Finally, we can compute the score values sðhiÞ ði ¼ 1; 2; 3; 4Þ and the variance
values vðhiÞ ði ¼ 1; 2; 3; 4Þ of hi ði ¼ 1; 2; 3; 4Þ: Since sðh1Þ ¼ 0:6590; sðh2Þ ¼
0:7069; sðh3Þ ¼ 0:6436; and sðh4Þ ¼ 0:6218; we get sðh2Þ[ sðh1Þ[
sðh3Þ[ sðh4Þ: Thus, h2 
 h1 
 h3 
 h4 , i.e., the portfolio A2 (debentures) is the
most desirable choice for the decision maker.

In Example 3.9, the decision maker’s judgments are represented in HFEs, which
is suitable to express the vague and uncertain information of the decision maker.
Especially at the beginning of evaluation, the decision maker may hesitate among
the different values of membership degree. Using HFEs to represent his/her pref-
erence assessments can maintain his original evaluation information adequately. In
addition, in Example 3.9, we use two weight vectors to show the importance of
different criteria from different aspects. The first weight vector k is used to weight
the hesitant judgments, while the latter one x is used to weight the positions of
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these judgments. Based on the proposed hesitant fuzzy hybrid weighted aggregation
operators, we can fuse the hesitant fuzzy evaluating information more compre-
hensively, taking both of the two weight vectors into account. Thus, this approach
is very useful in tackling some complicated decision making problems. It should be
stated that although here we only implement the approach in evaluating candidate
portfolios, our approach and the proposed hesitant fuzzy hybrid weighted aggre-
gation operators can be applied into quite a wide range of practical complicated
multiple criteria decision making problems.

3.6.2 Hesitant Fuzzy Multiple Criteria Decision Making
with Multiple Decision Makers

For a group decision making problem under uncertainty, let A ¼ fA1;A2; . . .;Amg
be the set of alternatives, C ¼ fC1;C2; . . .;Cng be the set of criteria and E ¼
fe1; e2; . . .; epg be the set of decision makers. Suppose that the decision maker ek
provides all the possible evaluated values under the criterion Cj for the alternative

Ai denoted by a HFE hðkÞij and constructs the decision matrix Hk ¼ ðhðkÞij Þm�n. He/she

also determines the importance degrees kðkÞj ðj ¼ 1; 2; . . .; nÞ for the relevant criteria
according to his/her preferences. Meanwhile, since different alternatives may have
different focuses and advantages, to reflect this issue, the decision maker also gives

the ordering weights xðkÞ
j ðj ¼ 1; 2; . . .; nÞ for different criteria. Suppose that the

weight vector of the decision makers is r ¼ ðr1; r2; . . .; rpÞT . Then, based on the
hesitant fuzzy hybrid weighted aggregation operators, Liao and Xu (2014a)
developed a method for group decision making with hesitant fuzzy information,
which involves the following steps:

Algorithm 3.2

Step 1. Utilize the HFWA (or HFWG) operator to aggregate all the individual

hesitant fuzzy decision matrix Hk ¼ ðhðkÞij Þm�n (k ¼ 1; 2; . . .; pÞ into the
collective hesitant fuzzy decision matrix H ¼ ðhijÞn�n, where

hij ¼
[

cðkÞij 2hðkÞij ;k¼1;2;...;p

1�
Yp

k¼1
ð1� cðkÞij Þrk

n o
i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n

or

hij ¼
[

cðkÞij 2hðkÞij ;k¼1;2;...;p

Yp

k¼1
ðcðkÞij Þrk

n o
; i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n

ð3:55Þ
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Step 2. Utilize the hesitant fuzzy hybrid weighted aggregation operators, such as
the QHFHWA (or QHFHWG) operator to obtain the HFEs hi ði ¼
1; 2; . . .;mÞ for the alternatives Ai ði ¼ 1; 2; . . .;mÞ; where
hi ¼ QHFHWA hi1; hi2; . . .; himð Þ

¼
[

cij2hij;j¼1;2;...;n
g�1 1�

Yn
j¼1

ð1� gðcjÞÞ
kjxeðjÞPn

j¼1
kjxeðjÞ

0
@

1
A

8<
:

9=
;; i ¼ 1; 2; . . .;m

ð3:56Þ

or

hi ¼ QHFHWG h1; h2; . . .; hnð Þ

¼
[

cij2hij;j¼1;2;...;n
g�1

Yn
j¼1

ðgðcjÞÞ
kjxeðjÞPn

j¼1
kjxeðjÞ

0
@

1
A

8<
:

9=
;; i ¼ 1; 2; . . .;m

ð3:57Þ

Step 3. Compute the score values sðhiÞ ði ¼ 1; 2; . . .;mÞ of hi ði ¼ 1; 2; . . .;mÞ by
Eq. (1.17) and the variance values vðhiÞ ði ¼ 1; 2; . . .;mÞ of hi ði ¼
1; 2; . . .;mÞ by Eq. (1.19).

Step 4. Get the rank of the alternatives Ai ði ¼ 1; 2; . . .;mÞ according to sðhiÞ and
vðhiÞ ði ¼ 1; 2; . . .;mÞ:

We now consider a multiple criteria group decision making problem that con-
cerns evaluating and ranking the safety of work systems to illustrate the method:

Example 3.10 (Liao and Xu 2014a). Maintaining the safety of work systems in
workplace is one of the most important components of safety management within
an effective manufacturing organization. There are many factors which affect the
safety system simultaneously. According to the statistical analysis of the past work
accidents in a manufacturing company in Ankara, Turkey, Dağdeviren and Yüksel
(2008) found that there are four sorts of factors which affect the safety system:

C1: Organizational factors, which involve job rotation, working time, job
completion pressure, and insufficient control.

C2: Personal factors, which consist of insufficient preparation, insufficient
responsibility, tendency of risky behavior, and lack of adaptation.

C3: Job related factors, which can be divided into job related fatigue, reduced
operation times due to dangerous behaviors, and variety and dimension of job
related information.

In addition, it is not possible to assume that the effects of all factors of work
safety are the same in all cases. Hence, by using the fuzzy analytic hierarchy
process method, Dağdeviren and Yüksel (2008) constructed a hierarchical structure
to depict the factors and sub-factors, and then determined the weight vector of these
three factors, which is k ¼ ð0:388; 0:3; 0:312ÞT .
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Three experts e1; e2; e3 from different departments, whose weight vector is r ¼
ð0:4; 0:3; 0:3ÞT , are gathered together to evaluate three candidate work systems
A1;A2;A3 according to the above predetermined factors Cjðj ¼ 1; 2; 3Þ: However,
since these factors have non-physical structures, it is hard for the experts to rep-
resent their preferences by crisp fuzzy numbers. HFEs are appropriate for them to
use in expressing these preferences since they may have a set of possible values
when evaluating these behavioral and qualitative factors. Thus, the hesitant fuzzy

judgment matrices Hk ¼ ðhðkÞij Þ3�3 (k ¼ 1; 2; 3Þ were constructed by the experts,
shown as Tables 3.3, 3.4 and 3.5. Furthermore, we consider the fact that different
experts are familiar with different research fields, and meanwhile, different work
systems may focus on different partitions, the experts may want to give more
weights to the criterion which is more prominent. Hence, another weight vectors are
determined by the experts according to their preferences, which are xð1Þ ¼
ð0:4; 0:3; 0:3ÞT , xð2Þ ¼ ð0:5; 0:3; 0:2ÞT and xð3Þ ¼ ð0:4; 0:4; 0:2ÞT .

To get the optimal work system, the following steps can be given:

Step 1. Utilize the aggregation operator to fuse all the individual hesitant fuzzy

decision matrices Hk ¼ ðhðkÞij Þ3�3 (k ¼ 1; 2; 3Þ into the collective hesitant
fuzzy decision matrix H ¼ ðhijÞ3�3 . Here we use the HFWA operator to
fuse the individual hesitant fuzzy decision matrix. Thus, we have

hij ¼
[

cðkÞij 2hðkÞij ;k¼1;2;3

1�
Y3

k¼1
ð1� cðkÞij Þrk

n o
; i ¼ 1; 2; 3; j ¼ 1; 2; 3

Table 3.3 The hesitant fuzzy
decision matrix Hð1Þ C1 C2 C3

A1 {0.6} {0.7} {0.4,0.5}

A2 {0.6,0.8} {0.5,0.9} {0.7}

A3 {0.4,0.5} {0.3} {0.6}

Table 3.4 The hesitant fuzzy
decision matrix Hð2Þ C1 C2 C3

A1 {0.2,0.4} {0.3,0.5} {0.4}

A2 {0.8} {0.7} {0.6,0.7}

A3 {0.4} {0.3,0.6} {0.5,0.7}

Table 3.5 The hesitant fuzzy
decision matrix Hð3Þ C1 C2 C3

A1 {0.5} {0.3,0.4} {0.6}

A2 {0.7,0.9} {0.8} {0.5,0.6}

A3 {0.3,0.4} {0.4,0.5} {0.8}
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Here we take h23 as an example:

h23 ¼
[

cðkÞ23 2h
ðkÞ
23 ;k¼1;2;3

1�
Y3

k¼1
ð1� cðkÞ23 Þrk

n o

¼ f0:619; 0:644; 0:65; 0:673g

Similarly, other fused values can be obtained, and then the collective
hesitant fuzzy matrix can be derived as follows:

H ¼
f0:473; 0:517g f0:501; 0:524; 0:549; 0:57g f0:469; 0:506g

f0:702; 0:774; 0:786; 0:838g f0:674; 0:829g f0:619; 0:644; 0:65; 0:673g
f0:372; 0:4; 0:442; 0:416g f0:332; 0:367; 0:435; 0:465g f0:653; 0:702g

0
@

1
A

Step 2. Utilize the aggregation operator (such as the QHFHWA or QHFHWG
operator) to obtain the HFEs hi ði ¼ 1; 2; 3Þ for the alternatives Ai ði ¼
1; 2; 3Þ: Here we use the QHFHWA operator to fuse the collective HFEs
and let gðcÞ ¼ c , and then we get

h1 ¼ f0:4825; 0:4913; 0:493; 0:4983; 0:5012; 0:5017; 0:5068; 0:5084; 0:5098; 0:5113;
0:5164; 0:5168; 0:5197; 0:5247; 0:5262; 0:5343g

h2 ¼ f0:6811; 0:685; 0:686; 0:6898; 0:7269; 0:7302; 0:7303; 0:731; 0:7336; 0:7343; 0:7344;
0:7351; 0:7383; 0:7391; 0:7377; 0:7423; 0:769; 0:7718; 0:7725; 0:7733; 0:7753; 0:776;

0:7761; 0:7768; 0:7787; 0:7794; 0:7795; 0:7821; 0:8083; 0:8106; 0:8112; 0:8135g
h3 ¼ f0:4894; 0:4942; 0:4999; 0:5043; 0:5046; 0:506; 0:509; 0:5107; 0:5145; 0:5162; 0:5171;

0:5191; 0:5204; 0:5208; 0:5217; 0:525; 0:5271; 0:5303; 0:5312; 0:5316; 0:5329; 0:5348;

0:5357; 0:5373; 0:5409; 0:5425; 0:5453; 0:5465; 0:5468; 0:5508; 0:5558; 0:5601g

The computational process of h2 can be illustrated as an example. Since
s h21ð Þ ¼ 0:775; s h22ð Þ ¼ 0:7515; s h23ð Þ ¼ 0:6465; then, h21 [ h22 [ h23 .
Thus, eð21Þ ¼ 1; eð22Þ ¼ 2; eð23Þ ¼ 3; and

k1xeð21ÞP3
j¼1 kjxeð2jÞ

¼ 0:56;
k2xeð22ÞP3
j¼1 kjxeð2jÞ

¼ 0:2598;
k3xeð23ÞP3
j¼1 kjxeð2jÞ

¼ 0:1801

Therefore, by using Eq. (3.27), we can calculate

h2 ¼ QHFHWA h21; h22; h23ð Þ ¼
[

c212h21;c222h22;c232h23
1� ð1� c21Þ0:56ð1� c22Þ0:2598ð1� c23Þ0:1801
n o

¼ f0:6811; 0:685; 0:686; 0:6898; 0:7269; 0:7302; 0:7303; 0:731; 0:7336; 0:7343; 0:7344;
0:7351; 0:7383; 0:7391; 0:7377; 0:7423; 0:769; 0:7718; 0:7725; 0:7733; 0:7753; 0:776;

0:7761; 0:7768; 0:7787; 0:7794; 0:7795; 0:7821; 0:8083; 0:8106; 0:8112; 0:8135g
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Step 3. Compute the score values sðhiÞ ði ¼ 1; 2; . . .; nÞ of hi ði ¼ 1; 2; . . .; nÞ by
Eq. (1.17), and then we have sðh1Þ ¼ 0:5089; sðh2Þ ¼ 0:7534; and
sðh3Þ ¼ 0:5257:

Step 4. Since sðh2Þ[ sðh3Þ[ sðh1Þ; then we get h2 
 h3 
 h1 , which means that
C2 is the most desirable work system.
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Chapter 4
Hesitant Fuzzy Multiple Criteria Decision
Making Methods with Complete Weight
Information

Multiple criteria decision making takes place in many areas of operations research
and management sciences. Generally, a multiple criteria decision making problem
involves several alternatives, criteria and the ratings of these alternatives with
respect to different criteria. Sometimes the weights of criteria are completely given
while sometime are not. Different methods have been proposed regarding to dif-
ferent scenarios to obtain the final optimal solutions for the multiple criteria deci-
sion making problems. In this chapter, we introduce two methods for multiple
criteria decision making problems in which the ratings of alternatives over the
criteria are given as HFEs and the weights of criteria are completely known.

The VIKOR (vlsekriterijumska optimizacija i kompromisno resenje in serbian,
meaning multicriteria optimization and compromise solution) method is an efficient
tool to find a compromise solution from a set of conflicting criteria. It has been
applied widely in many fields. Recently, Park et al. (2011) extended the VIKOR
method to develop an approach to solve the multiple criteria decision making
problems with interval-valued intuitionistic fuzzy numbers (Xu and Yager 2009).
For the situations where the criteria values take the form of intuitionistic trapezoidal
fuzzy numbers, Du and Liu (2011) developed three extensions of the VIKOR
method based on the expected values of the intuitionistic trapezoidal fuzzy num-
bers, the distances between the intuitionistic trapezoidal fuzzy numbers and the
distances between the interval numbers, respectively. As HFS is suitable and
powerful in describing uncertainty and vagueness, in this chapter, we address the
VIKOR method for multiple criteria decision making under hesitant fuzzy envi-
ronments. The hesitant fuzzy group utility measure, the hesitant fuzzy individual
regret measure, and the hesitant fuzzy compromise measure are introduced. Based
on these new measures, the hesitant fuzzy VIKOR (HF-VIKOR) method with
complete weight information is provided. A practical example is provided to show
that the HF-VIKOR method is very effective in solving multiple criteria decision
making problems with hesitant fuzzy information.

The ELECTRE (ELimination Et Choix Traduisant la REalité) method is another
popular method for multiple criteria decision making. In this chapter, we introduce



two hesitant fuzzy ELECTRE (HF-ELECTRE) approaches which combine the HFS
with the ELECTRE methods to efficiently handle different opinions of group
members that are frequently encountered when handling the multiple criteria
decision making problems. We define the concepts of hesitant fuzzy concordance
and discordance sets and construct the strong and weak outranking relations which
are employed to decide the ranking for a set of alternatives. Numerical examples are
presented to exhibit the applications of the proposed methods. Furthermore, some
comparison analyses between the HF-ELECTRE methods and the aggregation
operator based method as well as the fuzzy group ELECTRE approach are pro-
vided. After that, some Algorithms based on the HF-ELECTRE methods are
constructed to aid decision making, and the prominent characteristics of the
HF-ELECTRE methods and future research challenges are also discussed.

4.1 Hesitant Fuzzy VIKOR Method for Multiple Criteria
Decision Making

4.1.1 Multiple Criteria Decision Making and the VIKOR
Method

A multiple criteria decision making problem can be interpreted simply as selecting
the best alternative(s) from a set of alternatives to attain a goal (or goals). Each
alternative has several criteria. The multiple criteria decision making procedure
consists of five steps: ① defining a goal (or goals), ② generating alternatives, ③
establishing criteria and weighs regarding to the criteria, ④ evaluating alternatives
with respect to different criteria, ⑤ ranking the alternatives and determining the
acceptable choice. Duckstein and Opricovic (1980) divided the multiple criteria
decision making process into two levels: managerial level and engineering level.
The managerial level defines the goal to attain and chooses the final optimal
solution, while the alternatives are generated and the consequences of implementing
any one of them are also pointed out with respect to various criteria in engineering
level. The weights of criteria are obtained and the ranking of alternatives is also
performed in this level. In other words, the managerial level is in charge of the first
and final steps of the multiple criteria decision making process, while the engi-
neering level takes responsibility for the middle three of them.

At the beginning of multiple criteria decision making, the goal (or goals) should
be established according to the preference structure provided by the managerial
level. If there are a set of conflicting goals which cannot be achieved simultane-
ously, the handling methodology should be in another way, which is called
multi-objective decision making (Ribeiro 1996). This book only considers the
issues where there is only a single goal to attain. After the goal is established, the
engineering level then sets out to formulate the alternatives, which are usually
physical elements, actions, objects or likely scenarios, such as places for facility to
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locate or a specific policy to implement. Generating alternatives is a complex
process as all the constraints must be satisfied. They sometimes only depend on the
experts’ experiences and the experiments about the existing system or other similar
systems because no general procedure or mathematical model could replace human
creativity in generating alternatives. The ratings of alternatives are based on the
relative merits of the criteria. The criteria in different problems are quite different.
For example, if we are going to buy a car, the criteria can be formulated as price,
maximum velocity and comfort; while if we are planning to choose a school for
children, the criteria would be distance, price, teaching quality and fame of the
school. So the criteria should be established according to the reality of the problem
itself. A large quantity of research has been done on the evaluation of alternatives
and many different tools have been proposed, such as the non-fuzzy methods, the
fuzzy hierarchical aggregation methods, the conjunction implication methods, the
weighted average aggregation methods, and so on. Riberio (1996) reviewed and
compared all these methods in details. After all these work was done, it is needed to
rank the alternatives and choose the one with the highest degree of satisfaction for
the multiple criteria decision making problem.

However, in many cases, the criteria involved in the multiple criteria decision
making problem conflict with each other, and thus, there perhaps is no solution
satisfying all criteria simultaneously, which makes the ranking process very
intractable. One common example is the relationship between the development
possibility and the protection of environment. The desirable solution is the one
where both objectives are maximized; however, this alternative is impossible or
infeasible in most cases. Pareto optimal solution is proposed to illustrate this sit-
uation, which has the property that if one criterion is to be improved, at least one
other criterion has to be made worse (Pareto 1986). Since the Pareto optimal
solution is a set of non-inferior alternatives, it cannot satisfy our initial purpose
which is to select one alternative from a set of alternatives to implement. Although
in more cases, we can aid the decision maker by making comprehensive analysis
and listing the important characterization of the Pareto optimal solutions for
interactive decision making, it is time consuming and not practicable. We prefer to
find a unique solution which maximally achieves the overall criteria. By defining
the concept of compromise solution, Yu (1973) overcame this problem and gave the
method to find the compromise solution by using compromise programming.

The classical compromise programming is based on the distance measure which
determines the closeness of a particular solution to the ideal/infeasible solution.
Based on the compromise programming proposed by Yu (1973), many multiple
criteria decision making methods have been investigated, such as the TOPSIS
(technique for order preference by similarity to an ideal solution) method (Hwang
and Yoon 1981), the VIKOR method (Opricovic 1998), the PROMETHEE (pref-
erence ranking organization method for enrichment evaluations) method (Liao and
Xu 2014c), the ELECTRE (elimination et choice translating reality) method (Chen
et al. 2015), and so on. After comparing the TOPSIS method and the VIKOR
method in terms of aggregation functions and normalization effects, Opricovic and
Tzeng (2004) pointed out that although both the TOPSIS method and the VIKOR
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method are on the basis of the distance of an alternative to the ideal solution, the
VIKOR method determines a compromise solution which is established by mutual
concessions, while the TOPSIS method determines a solution with the shortest
distance from the ideal solution and the farthest distance from the negative-ideal
solution, but it does not consider the relative importance degrees of these distances.
Furthermore, Opricovic and Tzeng (2007) extended the VIKOR method with a
stability analysis determining the weight stability intervals and with trade-offs
analysis, and also compared it deeply with the TOPSIS method, the PROMETHEE
method and the ELECTRE method. According to the comparisons, it is obvious
that the VIKOR method has many advantages in handling the multiple criteria
decision making problems especially when there are conflicting and noncommen-
surable criteria. Based on the analytic hierarchy process (AHP) (Saaty 1980), Kaya
and Kahraman (2011) proposed an integrated VIKOR-AHP method, in which the
weights of the criteria are derived by fuzzy pairwise comparison matrices of
AHP. Up to now, the VIKOR method has been applied widely in many fields, such
as the mountain destination choosing problem (Opricovic and Tzeng 2004), the
alternative hydropower system evaluation problem (Opricovic and Tzeng 2004), the
forestation and forest preservation problem (Kaya and Kahraman 2011), the
post-earthquake sustainable reconstruction problem (Opricovic 2002), and so forth.

The VIKOR method is based on the particular measure of “closeness” to the
“ideal” solution. It was firstly introduced by Opricovic (1998). The VIKOR method
is an efficient tool to find a compromise solution from a set of conflicting criteria.
The basic measure for compromise ranking is developed from the Lp—metric used
as an aggregation function in the compromise programming (Yu 1973). Suppose
that the ratings of the alternatives Aiði ¼ 1; 2; . . .;mÞ regarding to the criteria Cjðj ¼
1; 2; . . .; nÞ are given as fijði ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nÞ. Mathematically, the
discrete form of Lp—metric distance measure over the alternatives Aiði ¼
1; 2; . . .;mÞ in compromise programming can be given as:

Lp;i ¼
Xn
j¼1

xj
f �j � fij
f �j � f�j

 !p !1=p

; 1� p�1; i ¼ 1; 2; . . .;m ð4:1Þ

where xjðj ¼ 1; 2; . . .; nÞ are the corresponding weights of criteria, f �j ¼ maxi fij and
f�j ¼ mini fij are the best and worst values of Ai over the benefit-type criterion Cj,
respectively. The parameter p plays an important role and has different meanings
with respect to different values. Varying the parameter p from 1 to infinity is to
move from minimizing the sum of individual regrets to minimizing the maximum
regret. If p ¼ 1; then all deviations are weighted equally; if p ¼ 2; then the devi-
ations are weighted according to their magnitudes; if p ¼ 1, then the deviations
can be interpreted as the maximum individual regret. This is just the critical idea of
the VIKOR method, which uses L1;i and L1;i to formulate group utility and indi-
vidual regret of the opponent.
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The compromise ranking procedure of the VIKOR method can be set out as
follows:

(1) Find f �j and f�j .
(2) Compute the values of group utility and individual regret over the alternatives

Aiði ¼ 1; 2; . . .;mÞ by the equations:

Si ¼ L1;i ¼
Xn
j¼1

xj
f �j � fij
f �j � f�j

ð4:2Þ

Ri ¼ L1;i ¼ max
j

xj
f �j � fij
f �j � f�j

 !
ð4:3Þ

(3) Calculate the values of Qiði ¼ 1; 2; . . .;mÞ by the relation:

Qi ¼ t
Si � S�

S� � S�
þ ð1� tÞ Ri � R�

R� � R� ð4:4Þ

where S� ¼ mini Si, S� ¼ maxi Si, R� ¼ mini Ri, R� ¼ maxi Ri, and t is the
weight of the strategy of the majority of criteria or the maximum group utility.
Without loss of generality, it takes the value 0.5.

(4) Rank the alternatives Aiði ¼ 1; 2; . . .;mÞ according to the values of Si, Ri and
Qi. The results are three ranking lists.

(5) Determinate the best solution or a compromise solution.

It is clear that the smaller the value of Qi is, the better the solution should be. To
ensure the uniqueness of the final alternative, the following two qualifications must
be satisfied simultaneously:

C1: Q að2Þ
� �� Q að1Þ

� �� 1
m�1 ; where a

ð1Þ and að2Þ are the alternatives with the first
and second positions in the ranking list, respectively;
C2: að1Þ should also be the best ranked by Si and Ri.

Unfortunately, these two conditions often cannot be attained simultaneously.
Thus, a set of compromise solutions are derived, which is of the most critical
significance for the VIKOR method.

If the condition C1 is not satisfied, then we shall explore the maximum value of
M according to the equation:

Q aðMÞ
� �

� Q að1Þ
� �

\
1

m� 1
ð4:5Þ

All the alternatives aðiÞði ¼ 1; 2; . . .;MÞ are the compromise solutions.
If the condition C2 is not satisfied, then the alternatives að1Þ and að2Þ are the

compromise solutions.
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4.1.2 Hesitant Fuzzy VIKOR Method for Multiple Criteria
Decision Making

In many situations, the decision makers may be unwilling to give their preference
information in just a single value, but a set of values, especially at the beginning of
evaluation. Additionally, in the situation where a decision making problem solved
by many people from different areas, it usually cannot achieve a consentaneous
preference value over the considered alternative with respect to a criterion. Thus, it
is more suitable to represent the rating information by HFE. However, handling
hesitant fuzzy information is a tough work because it contains many evaluation
values, and as pointed by Theorem 1.1, with the calculation going on, the
dimension of the HFE will be larger and larger, which will increase the compu-
tational complexity as well. Although some methods have been proposed to fuse
hesitant fuzzy information (Liao et al. 2014b; Liao and Xu 2015c; Xia and Xu
2011a), how to deal with the hesitant fuzzy preferences without loss any original
information is still an open question. In what follows, we shall apply the VIKOR
method to solve the multiple criteria decision making problems with hesitant fuzzy
information.

Consider a multiple criteria decision making problem with a discrete set of
m alternatives, A ¼ fA1;A2; . . .;Amg, and let C ¼ fC1;C2; . . .;Cng be the set of all
criteria. The evaluation value of the ith alternative on the criterion Cj is represented
as the HFE hij with hij ¼ fcj0� c� 1g, i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n: hij indicates
the possible membership degrees of the ith alternative Ai under the j th criterion Cj.
The hesitant fuzzy decision matrix H can be written as:

H ¼
h11 h12 � � � h1n
h21 h22 � � � h2n
..
. ..

. . .
. ..

.

hm1 hm2 � � � hmn

2
6664

3
7775 ð4:6Þ

The weights xjðj ¼ 1; 2; . . .; nÞ of criteria represent the relative importance
degrees of the criteria, where 0�xj � 1; j ¼ 1; 2; . . .; n; and

Pn
j¼1 xj ¼ 1:

Since the traditional VIKOR method is based on the particular distance measure
of closeness to the ideal solution, in order to derive the HF-VIKOR method, firstly,
we need to find the so called ideal solution. For the benefit-type criterion, the ideal
solution is the maximum value in each column of the hesitant decision matrix, while
for the cost-type criterion, it is the minimum one. We need to find both of them for
the next step of computation. To do so, we only need to calculate the score function
and the variance function of each HFE in the hesitant fuzzy decision matrix H; and
then apply the comparison law of HFEs, which is given in Sect. 1.1.3. The outputs of
this step are h�j ¼ maxi hij and h�j ¼ mini hij, which are the best and worst values of
Ai over the benefit-type criterion Cj, respectively. The best and worst values of Ai

over the cost-type criterion can be derived similarly.
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Xu and Xia (2011a) defined several distance measures for HFEs. Here we use
the Manhattan distance of two HFEs hM and hN as a representation, which is in the
mathematical form as follows:

dðhM ; hNÞ ¼ 1
l

Xl
k¼1

hrðkÞM � hrðkÞN

��� ��� ð4:7Þ

where hrðkÞM and hrðkÞN are the kth largest values in hM and hN , respectively.

Example 4.1 (Liao and Xu 2013). Let h1 ¼ ð0:7; 0:8; 0:9Þ and h2 ¼ ð0:5; 0:6; 0:8Þ
be two HFEs. Then, l ¼ 3: The Manhattan distance of h1 and h2 is

dðhM ; hNÞ ¼ 1
l

Xl
k¼1

hrðkÞM � hrðkÞN

��� ���
¼ 1

3
0:7� 0:5j j þ 0:8� 0:6j j þ 0:9� 0:8j jð Þ ¼ 0:1667

From Example 4.1, we can draw a very interesting conclusion. Although h1 and
h2 are HFEs, the values of their Manhattan distance are crisp numbers. This is a
good way to convert two HFEs into a crisp number, which is very important in
developing the hesitant fuzzy VIKOR method.

The ideal solution is always infeasible because the conflicting criteria cannot be
satisfied simultaneously. Thus, we need to find the compromise solution, i.e., the
closest solution to the ideal solution. Compromise solution is established by mutual
concessions, and in the VIKOR method, it integrates with the maximum group
utility and the minimum individual regret of the opponent. The group utility and the
individual regret of the opponent are formulated by L1;i and L1;i. Due to the fact
that the evaluation values are HFEs, the computations of L1;i and L1;i will be very
difficult. Motivated by the adjusted operation laws of HFEs given in Definition 1.9
and the hesitant distance given as Eq. (4.7), the traditional discrete form of Lp—
metric distance measure over the alternatives Aiði ¼ 1; 2; . . .;mÞ in compromise
programming given as Eq. (4.1) can be generalized into hesitant fuzzy
environments.

Definition 4.1 (Liao and Xu 2013). The Manhattan Lp—metric of HFEs over the
benefit-type criterion is in terms of the following form:

eLp;i ¼
Xn
j¼1

xj
dðh�j ; hijÞ
dðh�j ; h�j Þ

 !p !1=p

; 1� p�1; i ¼ 1; 2; . . .;m ð4:8Þ

where xjðj ¼ 1; 2; . . .; nÞ are the corresponding weights of criteria, and satisfy

0�xj � 1; j ¼ 1; 2; . . .; n; and
Pn

j¼1 xj ¼ 1: d h�j ; hij
� �

is the Manhattan distance

between h�j and hij, which is in the following mathematical form:
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dðh�j ; hijÞ ¼
1
lj

Xlj
k¼1

h�rðkÞj � hrðkÞij

��� ��� ð4:9Þ

where h�rðkÞj and hrðkÞij are the kth largest values in h�j and hij, respectively, and

l ¼ max lh�j ; lhij

n o
: d h�j ; h

�
j

� �
can also be defined similarly.

It is similar to derive the Manhattan Lp—metric of HFSs over the cost-type
criterion. There is one thing we need to point out. In the conventional VIKOR
method, the normalization is needed because there are many noncommensurable
(different units) criteria values. Under hesitant fuzzy circumstances, all criteria
values are in [0, 1]; however, the normalization is also needed. The reason for this is
that for different criteria, the cognitions and preferences of people over the same
alternative may be different. For example, if we plan to buy a house, generally, we
may be more sensitive to the price but less sensitive to the comfortableness or
location (different people still may have different preferences because of their
particular demands). Thus, the HFEs over price would be varied largely while the
preference values of the criterion comfortableness or location may be closer. Hence,
in order to eliminate the influence over different criteria, we still need to normalize
the distance.

Based on Definitions 4.1, the hesitant fuzzy group utility and the individual
regret of the opponent are formulated easily. For simplicity, in the following, we
take the Manhattan Lp—metric of HFEs as an example to derive the HF-VIKOR
method. Considering the original explanations of L1;i and L1;i in the classical
VIKOR method under crisp environments, the hesitant fuzzy group utility and the
individual regret of the opponent can be measured obviously.

Definition 4.2 (Liao and Xu 2013). The hesitant fuzzy group utility measurement
over the benefit-type criterion is based on the formula:

eSi ¼ eL1;i ¼
Xn
j¼1

xj

d h�j ; hij
� �

d h�j ; h
�
j

� � ð4:10Þ

where xjðj ¼ 1; 2; . . .; nÞ are the corresponding weights of criteria satisfying

0�xj � 1; j ¼ 1; 2; . . .; n;
Pn

j¼1 xj ¼ 1; d h�j ; hij
� �

and d h�j ; h
�
j

� �
can be deter-

mined through Eq. (4.9).

Definition 4.3 (Liao and Xu 2013). The hesitant fuzzy individual regret measure
over the benefit-type criterion is based on the relationship:

eRi ¼ eL1;i ¼ max
j

xj

d h�j ; hij
� �

d h�j ; h
�
j

� �
0
@

1
A ð4:11Þ
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where xj(j ¼ 1; 2; . . .; nÞ are the corresponding weights of criteria satisfying

0�xj � 1; j ¼ 1; 2; . . .; n;
Pn

j¼1 xj ¼ 1;d h�j ; hij
� �

and d h�j ; h
�
j

� �
can be deter-

mined through Eq. (4.9).

Definition 4.4 (Liao and Xu 2013). The hesitant fuzzy compromise measure is
based on the relationship:

eQi ¼ t
eSi � eS�eS� � eS� þ 1� tð Þ

eRi � eR�

eR� � eR� ð4:12Þ

where ~S� ¼ mini ~Si, ~S� ¼ maxi ~Si, ~R� ¼ mini ~Ri, ~R� ¼ maxi ~Ri, and t is the weight
of the strategy of the majority of criteria or the maximum overall utility. The larger
the value of t, the preferences of the decision maker over different criteria will be
more average. Without loss of generality, it also takes the value 0:5:

From Eq. (4.12), we can see that the hesitant fuzzy compromise measure inte-
grates two parts: the former is the distance in terms of group utility; the latter is the
distance in terms of individual regret. The smaller the value of hesitant fuzzy
compromise measure, the better the alternative will be. So we need to pick out the
smallest one among ~Qiði ¼ 1; 2; . . .;mÞ:

For the convenience of application, the procedure of the HF-VIKOR method can
be described as follows:

Algorithm 4.1

Step 1. Construct the hesitant fuzzy decision matrix. The decision makers deter-
mine the relevant criteria of the potential alternatives and give the evalu-
ation information in the form of HFEs of the alternatives with respect to
the criteria. When the decision makers are asked to compare the alterna-
tives over criteria, different people may have different preferences.
Meanwhile, anonymity is required in order to protect the decision makers’
privacy or avoid influencing each other. Thus, it is natural to set out all the
possible evaluations given by the decision makers for an alternative under
certain criteria, which are represented as HFEs. They also determine the
importance degrees xjðj ¼ 1; 2; . . .; nÞ for the relevant criteria according to
his/her preferences.

Step 2. Calculate the score function and the variance function for the evaluation
values of the considered alternatives over different criteria in the form of
HFEs according to Eqs. (1.17) and (1.18) or Eq. (1.19). Then we choose
the ideal values h�j ¼ maxi hij and h�j ¼ mini hij, which are the best and
worst values of Ai over the benefit criterion Cj, respectively. The best and
worst values of Ai over the cost criterion are h�j ¼ mini hij and
h�j ¼ maxi hij. Go to Step 3.
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Step 3. Compute the values of ~Si, ~Ri and ~Qiði ¼ 1; 2; . . .;mÞ for different alter-
natives according to Eqs. (4.10), (4.11) and (4.12), and then go to the next
step. ~Si indicates the hesitant fuzzy group utility value as it fuses the
normalized distances between the ideal and each actual evaluation value
determined by the decision makers with respect to each criterion. ~Ri rep-
resents the hesitant fuzzy individual regret value by using the weighted
normalized Manhattan distances between the ideal and each actual eval-
uation value determined by the decision makers. The hesitant fuzzy
compromise measure ~Qi is the summation of the normalized hesitant fuzzy
group utility value and the normalized hesitant fuzzy individual regret
value.

Step 4. Rank the alternatives according to the values of ~Si, ~Ri and ~Qiði ¼
1; 2; . . .;mÞ: The desirable solution must satisfy the following two
conditions:

C1: eQ Að2Þ� �� eQ Að1Þ� �� 1
m�1 ; where Að1Þ and Að2Þ are the alternatives

with the first and second positions in the ranking list, respectively;
C2: Að1Þ should also be the best ranked by ~Si and ~Ri.

The condition C1 is called as an acceptable advantage, while the condition
C2 is called as an acceptable stability. If these two conditions are not
satisfied simultaneously, then go to the next step.

Step 5. Derive the compromise solutions:
If the condition C1 is not satisfied, then we explore the maximum value of
M according to the equation:

eQ AðMÞ
� �

� eQ Að1Þ
� �

\
1

m� 1
ð4:13Þ

All the alternatives AðiÞði ¼ 1; 2; . . .;MÞ are the compromise solutions.

If the condition C2 is not satisfied, then the alternatives Að1Þ and Að2Þ are the
compromise solutions.

4.1.3 Application of the Hesitant Fuzzy VIKOR Method
in Airline Service Quality Evaluation

We now consider a decision making problem that concerns the evaluation of the
service quality among domestic airlines to illustrate our method:

Example 4.2 (Liao and Xu 2013). Due to the development of high-speed railroad,
the domestic airline market has faced a stronger challenger in Taiwan. Especially
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after 2008 the global economic downturn, more and more airlines have attempted to
attract customers by reducing price. Unfortunately, they soon found that it was a
no-win situation and only service quality is the critical and fundamental element to
survive in this highly competitive domestic market. In order to improve the service
quality of domestic airline, the civil aviation administration of Taiwan (CAAT)
wants to know which airline is the best in Taiwan and then calls for the others to
learn from it. So the CAAT constructs a committee to investigate the four major
domestic airlines, which are UNI Air, Transasia, Mandarin, and Daily Air and four
major criteria are given based on the research of Liou et al. (2011) to evaluate these
four domestic airlines. These four main criteria are:

C1: Booking and ticketing service, which involves convenience of booking or
buying ticket, promptness of booking or buying ticket, courtesy of booking or
buying ticket.
C2: Check-in and boarding process, which consists of convenience check-in, effi-
cient check-in, courtesy of employee, clarity of announcement and so on.
C3: Cabin service, which can be divided into cabin safety demonstration, variety of
newspapers and magazines, courtesy of flight attendants, flight attendant willing to
help, clean and comfortable interior, in-flight facilities, and captain’s announcement.
C4: Responsiveness, which consists of fair waiting-list call, handing of delayed
flight, complaint handing, and missing baggage handling.

After the survey about passengers’ importance and perception for service criteria
done by Liou et al. (2011), they found that cabin service is considered the most
important factor of service quality, which can be interpreted easily because cabin
service occupies more of a passenger’s travelling time than other aspects.
Meanwhile, booking and ticketing service is less important due to the fact that these
works are mainly done by a computer. Therefore, the weight vector of the criteria is
x ¼ ð0:1; 0:2; 0:4; 0:3ÞT , which is consistent with the result of the survey done by
Liou et al. (2011). Suppose that the committee gives the rating values by HFEs, and
then the hesitant fuzzy decision matrix is presented in Table 4.1.

Table 4.1 Hesitant fuzzy decision matrix for Example 4.1

C1 C2 C3 C4

UNI Air 0:6; 0:7; 0:9f g 0:6; 0:8f g 0:3; 0:6; 0:9f g 0:4; 0:5; 0:9f g
Transasia 0:7; 0:8; 0:9f g 0:5; 0:8; 0:9f g 0:4; 0:8f g 0:5; 0:6; 0:7f g
Mandarin 0:5; 0:6; 0:8f g 0:6; 0:7; 0:9f g 0:3; 0:5; 0:7f g 0:5; 0:7f g
Daily Air 0:6; 0:9f g 0:7; 0:9f g 0:2; 0:4; 0:7f g 0:4; 0:5f g

Table 4.2 Score values
obtained by the score function

C1 C2 C3 C4

UNI air 0.7333 0.7000 0.6000 0.6000

Transasia 0.8000 0.7333 0.6000 0.6000

Mandarin 0.6333 0.7333 0.5000 0.6000

Daily air 0.7500 0.8000 0.4333 0.4500
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In the following, we use the HF-VIKOR method to solve this problem.

Step 1. Construct the hesitant fuzzy decision matrix, see Table 4.1.
Step 2. The values of the score function and the variance function for the pref-

erence values of the considered alternatives over different criteria in the
form of HFEs can be calculated easily according to Eqs. (1.17) and (1.18),
which are set out in Tables 4.2 and 4.3, respectively. Since the purpose of
computing variance values is to find the best and worst values of domestic
airlines over the criterion Cj, to simplify the computation, we only cal-
culate the variance values of those HFEs which may be the best or worst
value of Cj and have equal score value in each column.
Since all the criteria are benefit, the best and worst values of domestic
airlines over the criterion Cj can be found easily by the operators h�j ¼
maxi hij and h�j ¼ mini hij. Now we take the first column as an example:

sðh11Þ ¼ 0:6þ 0:7þ 0:9
3

¼ 0:7333; sðh21Þ ¼ 0:7þ 0:8þ 0:9
3

¼ 0:8000

sðh31Þ ¼ 0:5þ 0:6þ 0:8
3

¼ 0:6333; sðh41Þ ¼ 0:6þ 0:9
2

¼ 0:7500

Since sðh21Þ[ sðh41Þ[ sðh11Þ[ sðh31Þ; according to the scheme in
Sect. 1.1.3, there is no need to calculate the variance values and we can
derive that h21 � h41 � h11 � h31. Since C1 is a benefit-type criterion, then
we obtain h�1 ¼ h21 ¼ 0:7; 0:8; 0:9f g and h�1 ¼ h31 ¼ 0:5; 0:6; 0:8f g:
If we take the last column as an example, then

Table 4.3 Variance values
obtained by the variance
function

C1 C2 C3 C4

UNI air – – 0.7348 0.6481

Transasia – – 0.4000 0.2449

Mandarin – – – 0.2000

Daily air – – – –

Table 4.4 Weighted distance
ratios

C1 C2 C3 C4

UNI air 0.004 0.2 0.3 0.2

Transasia 0 0.0667 0 0.0667

Mandarin 0.1 0.3 0.2 0

Daily air 0.078 0 0.4 0.3
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sðh14Þ ¼ 0:4þ 0:5þ 0:9
3

¼ 0:6000; sðh24Þ ¼ 0:5þ 0:6þ 0:7
3

¼ 0:6000

sðh34Þ ¼ 0:5þ 00:7
2

¼ 0:6000; sðh44Þ ¼ 0:4þ 0:5
2

¼ 0:4500

Since sðh14Þ ¼ sðh24Þ ¼ sðh34Þ[ sðh44Þ; then according to the scheme in
Sect. 1.1.3, we need to calculate the variance values of h14, h24 and h34:

vðh14Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:12 þ 0:42 þ 0:52

p

3
¼ 0:6481

vðh24Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:12 þ 0:12 þ 0:22

p

3
¼ 0:2449

vðh34Þ ¼
ffiffiffiffiffiffiffiffiffi
0:22

p

2
¼ 0:2000

Because vðh14Þ[ vðh24Þ[ vðh34Þ; then h34 � h24 � h14 � h44. Since C4

is a benefit-type criterion, then we obtain h�4 ¼ h34 ¼ 0:5; 0:7f g and
h�4 ¼ h44 ¼ 0:4; 0:5f g:

Step 3. Compute the values of ~Si, ~Ri and ~Qiði ¼ 1; 2; 3; 4Þ for different alternatives
according to Eqs. (4.10), (4.11) and (4.12), and the weighted distance
ratios with the equation:

rij ¼ xj

d h�j ; hij
� �

d h�j ; h
�
j

� � ð4:14Þ

are shown in Table 4.4. Below we take the fourth alternative as an
example. According to Example 4.1, we have

d h�1; h
�
1

� � ¼ 1
3

0:7� 0:5j j þ 0:8� 0:6j j þ 0:9� 0:8j jð Þ ¼ 0:1667

Similarly, we can obtain

d h�2; h
�
2

� � ¼ 0:1; d h�3; h
�
3

� � ¼ 0:1333; d h�4; h
�
4

� � ¼ 0:15; d h�1; h41
� � ¼ 0:1333;

d h�2; h42
� � ¼ 0; d h�3; h43

� � ¼ 0:1333; d h�4; h44
� � ¼ 0:15:
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Hence,

eS4 ¼X4
j¼1

xj

d h�j ; h4j
� �

d h�j ; h
�
j

� �
¼ 0:1� 0:1333

0:1667
þ 0:1� 0

0:1
þ 0:1� 0:1333

0:1333
þ 0:1� 0:15

0:15
¼ 0:778

eR4 ¼ max
j

xj

d h�j ; h4j
� �

d h�j ; h
�
j

� �
0
@

1
A ¼ 0:4

Similarly, we can get

eS1 ¼ 0:704; eS2 ¼ 0:1334; eS3 ¼ 0:6; eR1 ¼ 0:3; eR2 ¼ 0:0667 and eR3 ¼ 0:3

So

eS� ¼ min
i
eSi ¼ 0:1334; eS� ¼ max

i
eSi ¼ 0:778

eR� ¼ min
i
eRi ¼ 0:0667; eR� ¼ max

i
eRi ¼ 0:4

Then,

eQ4 ¼ t
eS4 � eS�eS� � eS� þ 1� tð Þ

eR4 � eR�

eR� � eR�

¼ 0:5� 0:778� 0:1334
0:778� 0:1334

þ 0:5� 0:4� 0:0667
0:4� 0:0667

¼ 0:5

Similarly,

eQ1 ¼ 0:7926; eQ2 ¼ 0; eQ3 ¼ 0:7119

Therefore, eQ2\eQ4\eQ3\eQ1, eS2\eS3\eS1\eS4, and eR2\eR3 ¼ eR1

\eR4. In order to be clear at a glance, the overall computation process can
be displayed in Table 4.5.

Step 4. Rank the alternatives according to the values of eSi, eRi andeQi(i ¼ 1; 2; 3; 4Þ.
Step 5. Derive the compromise solutions. Due to the fact that eQ2\eQ4\eQ3\eQ1,eS2\eS3\eS1\eS4, and eR2\eR3 ¼ eR1\eR4, meanwhile, eQ2 � eQ4 ¼
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0:5[ 1
4�1 ¼ 0:3333; we can see that it satisfies the two conditions given in

Algorithm 4.1. That is to say, Transasia is the best alternative, which
means its service quality is with the highest satisfaction degree.

4.2 Hesitant Fuzzy ELECTRE II Methods for Multiple
Criteria Decision Making

4.2.1 Main Characteristics of the ELECTRE Methods

As a major category of multiple criteria decision making, outranking can be used to
select which alternative is preferable, incomparable or indifferent by pairwise
comparisons between alternatives under each criterion. The advantages of the
outranking method lies in that it is able to take into account purely ordinal scales,
and in that indifference and preference thresholds can be considered when modeling
the imperfect knowledge of data. Among the outranking methods, the ELECTRE
method is the most popular one, whose main characteristic is the utilization of
outranking relations (Wang and Triantaphyllou 2008). Since the first version of the
ELECTRTE method, referred as the ELECTRE I (Roy 1968), was introduced, the
ELECTRE approach has been generalized into a number of variants, including the
ELECTRE II, III and IV as well as the ELECTRE-A and the ELECTRE TRI
methods, which constitute a family of ELECTRE methods (Figueira et al. 2005).
The ELECTRE method has been further developed to treat groups with imprecise
information on parameter values (Dias and Clímaco 2005), to solve inconsistencies
among constraints on the parameters (Mousseau and Dias 2004), to assist a group of
decision makers with different value systems (Leyva and Fernandez 2003), and to
incorporate the ideas of concordance and discordance for group ranking problems
(Fernandez and Olmedo 2005), etc. In addition, the ELECTRE method has been
applied to project selection (Buchanan and Vanderpooten 2007), transportation
(Roy et al. 1986) and environment management (Salminen et al. 1998).

Intensive efforts have been made to deal with various types of fuzzy multiple
criteria decision making problems with different kinds of ELECTRE methods. For
example, Hatami-Marbini and Tavana (2011) proposed the extended ELECTRE I
method to take account of the uncertain linguistic assessments. Hatami-Marbini
et al. (2013) further applied an integrated fuzzy group ELECTRE method to safety
and health assessments in hazardous waste recycling facilities. Wu and Chen (2011)
adopted a similar approach to solve the multiple criteria decision making problems
under intuitionistic fuzzy environments. Vahdani et al. (2010, 2013) performed an
extension of the ELECTRE I for multiple criteria group decision making problems
with IFSs and interval-valued fuzzy sets.

The ELECTRE I method is suitable to construct a partial prioritization and to
choose a set of promising alternatives. Different from the ELECTRE I, the
ELECTRE II method considers several concordance and discordance levels, which
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can be used to construct two embedded outranking relations (i.e., strong and weak
outranking relations). With these relations, the strong and weak graphs can be
depicted and the ranking of alternatives is finally derived.

The prominent features of the ELECTRE method include the four binary rela-
tions, the preference modeling through outranking relations, and the concepts of
concordance and discordance.

Definition 4.5 (Figueira et al. 2010). For a pair ða; bÞ 2 A� A; to compare the two
actions a and b, four binary relations are defined on A� A:

• P denotes the strict preference relation, and aPb means that ‘‘a is strictly pre-
ferred to b”;

• I denotes the indifference relation, and aIb means that ‘‘a is indifferent to b”;
• Q denotes the weak preference relation, and aQb means that ‘‘a is weakly

preferred to b, which expresses hesitation between the indifference (I) and the
preference (P);

• R denotes the incomparability relation, and aRb means that ‘‘a is not comparable
to b”.

Definition 4.6 (Figueira et al. 2010). Modeling preference in the ELECTRE
method is via the comprehensive binary outranking relation S, whose meaning is “at
least as good as”. In general, S ¼ P[Q[ I: Considering two actions ða; bÞ 2
A� A; four cases appear:

(i) aSb and not bSa; i.e., aPb (a is strictly preferred to b).
(ii) bSa and not aSb; i.e., bPa (b is strictly preferred to a).
(iii) aSb and bSa; i.e., aIb (a is indifferent to b).
(iv) Not aSb and not bSa; i.e., aRb (a is incomparable to b).

Definition 4.7 (Figueira et al. 2010). All outranking based methods rely on the
concepts of concordance and discordance which represent the reasons for and
against an outranking situation:

(i) Concordance: To validate an outranking aSb; a sufficient majority of criteria in
favor of this assertion must occur;

(ii) Non-discordance: The assertion aSb cannot be validated if a minority of cri-
teria is strongly against this assertion.

4.2.2 The HF-ELECTRE I Method

In this section, we extend the ELECTRE I method to solve the multiple criteria
decision making problems under hesitant fuzzy environments.

Now we consider a multiple criteria decision making problem with a discrete set
of alternatives A ¼ fA1;A2; . . .;Amg whose assessment information on the criteria
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set C ¼ fC1;C2; . . .;Cng is represented by hAiðCjÞ ¼ c c 2 hAiðCjÞ; 0� c� 1
��� 	

;

i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n: hAiðCjÞ represents the possible membership degree
of the ith alternative Ai satisfying the jth criterion Cj and can be expressed as a HFE
hij. Given that each criterion has different importance, the weight vector of all
criteria is defined as x ¼ ðx1;x2; . . .;xnÞT , where 0�xj � 1 and

Pn
j¼1 xj ¼ 1

with xj denoting the importance degree of the criterion Cj.
The ELECTRE methods are composed of the construction and exploitation of

one or several outranking relation(s). The construction is based on the comparison
between each pair of actions on the criteria, through which the concordance and
discordance indices are obtained and they are further used to analyze the outranking
relations among different alternatives. In traditional ELECTRE methods, each cri-
terion over different alternatives can be divided into two different subsets: con-
cordance set and discordance set. The former is composed of all criteria for which
Ak is preferred to Al, and the latter is the complementary subset. Under hesitant
fuzzy environments, according to the concepts of score function and deviation
function, we can compare different alternatives on the criteria and classify different
types of hesitant fuzzy concordance (discordance) sets as the hesitant fuzzy con-
cordance (discordance) set and the weak hesitant fuzzy concordance (discordance)
set. A better alternative has the higher score or the lower deviation degree in case
the alternatives have the same score.

For a pair of the alternatives Ak and Alðk; l ¼ 1; 2; . . .;m and k 6¼ lÞ, the hesitant
fuzzy concordance set JCkl is the sum of all those criteria where the performance of
Ak is superior to Al. It can be formulated as:

JCkl ¼ j sðhkjÞ
�� � sðhljÞ and rðhkjÞ\rðhljÞ

� 	 ð4:15Þ

where J ¼ j j ¼ 1; 2; . . .; njf g represents a set of subscripts of all criteria. The weak
hesitant fuzzy concordance set JC0

kl
is defined as:

JC0
kl
¼ j sðhkjÞ

�� � sðhljÞ and rðhkjÞ� rðhljÞ
� 	 ð4:16Þ

The main difference between JCkl and JC0
kl
lies in the deviation function. The

lower deviation values reflect that the opinions of decision makers have a higher
consistency degree. So JCkl is more concordant than JC0

kl
.

Similarly, the hesitant fuzzy discordance set JDkl , which is composed of all
criteria for which Ak is inferior to Al, can be formulated as:

JDkl ¼ j sðhkjÞ
�� \sðhljÞ and rðhkjÞ� rðhljÞ

� 	 ð4:17Þ

If sðhkjÞ\sðhljÞ and the deviation value rðhkjÞ\rðhljÞ; then we define this
circumstance as the weak hesitant fuzzy discordance set JD0

kl
, which is expressed as:
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JD0
kl
¼ j sðhkjÞ

�� \sðhljÞ and rðhkjÞ\rðhljÞ
� 	 ð4:18Þ

Obviously, JDkl is more discordant than JD0
kl
.

Below we construct the corresponding matrices for different types of the hesitant
fuzzy concordance sets and the hesitant fuzzy discordance sets.

The hesitant fuzzy concordance index is the ratio of the sum of the weights
related to criteria in the hesitant fuzzy concordance sets to that of all criteria. The
concordance index ckl of Ak and Al in the HF-ELECTRE I method is defined as:

ckl ¼
kC � P

j2JCkl
xj þ kC0 � P

j2JC0
kl

xj

Pn
j¼1

xj

¼ kC �
X
j2JCkl

xj þ kC0 �
X
j2JC0

kl

xj ð4:19Þ

where kC and kC0 are respectively the weights of the hesitant fuzzy concordance sets
and the weak hesitant fuzzy concordance sets, which are depended on the attitudes
of the decision makers. The index ckl reflects the relative importance of Ak with
respect to Al. Obviously, 0� ckl � 1: The big value of ckl indicates that the alter-
native Ak is superior to the alternative Al. We can thus construct the asymmetrical
hesitant fuzzy concordance matrix C:

C ¼

� � � � c1l � � � c1ðm�1Þ c1m
..
. . .

. ..
. . .

. ..
. ..

.

ck1 � � � ckl � � � ckðm�1Þ ckm

..

. . .
. ..

. . .
. ..

. ..
.

cm1 � � � cml � � � cmðm�1Þ �

2
6666664

3
7777775

ð4:20Þ

Different from the hesitant fuzzy concordance index, the hesitant fuzzy discor-
dance index is reflective of relative difference of Ak with respect to Al in terms of
discordance criteria. The discordance index is defined as:

dkl ¼
max

j2JDkl [ JD0
kl

kD � dðxjhkj;xjhljÞ; kD0 � dðxjhkj;xjhljÞ
� 	

max
j2J

dðxjhkj;xjhljÞ ð4:21Þ

where kD and kD0 denote the weights of the hesitant fuzzy discordance set and the
weak discordance set, respectively, which are depended on the decision makers’
attitudes, and dðxjhkj;xjhljÞ is the distance measure between the HFEs xjhkj and
xjhlj, defined as Eq. (4.7).

The hesitant fuzzy discordance matrix is established by the hesitant fuzzy dis-
cordance index for all pairwise comparisons of alternatives:
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D ¼

� � � � d1l � � � d1ðm�1Þ d1m
..
. . .

. ..
. . .

. ..
. ..

.

dk1 � � � dkl � � � dkðm�1Þ dkm

..

. . .
. ..

. . .
. ..

. ..
.

dm1 � � � dml � � � dmðm�1Þ �

2
6666664

3
7777775

ð4:22Þ

As seen in Eqs. (4.18) and (4.20), the elements of C differ substantially from
those of D, making the two matrices have complementary relationship; that is, the
matrix C represents the weights resulted from hesitant fuzzy concordance indices,
whereas the asymmetrical matrix D reflects the relative difference of xjhij for all
hesitant fuzzy discordance indices. Note that the discordance matrix reflects limited
compensation between alternatives. When the difference of two alternatives on a
criterion arrives at a certain extent, compensation of the loss on a given criterion by
a gain on another one may not be acceptable for the decision makers (Figueira et al.
2005). Due to this reason, the discordance matrix is established differently from the
establishment of the concordance matrix.

The hesitant fuzzy concordance dominance matrix can be calculated according
to the cut-level of hesitant fuzzy concordance indices. If the hesitant fuzzy con-
cordance index ckl of Ak relative to Al is over a minimum level, then the superiority
degree of Ak to Al increases. The hesitant fuzzy concordance level can be defined as
the average of all hesitant fuzzy concordance indices, which is in mathematical
terms of

�c ¼
Xm
k¼1

Xm
l¼1;l6¼k

ckl
mðm� 1Þ ð4:23Þ

Based on the concordance level, the concordance dominance matrix F (i.e., a
Boolean matrix) can be expressed as:

F ¼

� � � � f1l � � � f1ðm�1Þ f1m
..
. . .

. ..
. . .

. ..
. ..

.

fk1 � � � fkl � � � fkðm�1Þ fkm
..
. . .

. ..
. . .

. ..
. ..

.

fm1 � � � fml � � � fmðm�1Þ �

2
6666664

3
7777775

ð4:24Þ

whose elements satisfy

fkl ¼ 1; if ckl ��c
fkl ¼ 0; if ckl\�c



ð4:25Þ

The element 1 in the matrix F indicates that the alternative is preferable to the
other one.

134 4 Hesitant Fuzzy Multiple Criteria Decision Making Methods …



Likewise, the elements of the hesitant fuzzy discordance matrix are also mea-
sured by the discordance level �d; which can be defined as the average of the
elements in the hesitant fuzzy discordance matrix:

�d ¼
Xm
k¼1

Xm
l¼1;l6¼k

dkl
mðm� 1Þ ð4:26Þ

Then, based on the discordance level, the discordance dominance matrix G can
be constructed as:

G ¼

� � � � g1l � � � g1ðm�1Þ g1m
..
. . .

. ..
. . .

. ..
. ..

.

gk1 � � � gkl � � � gkðm�1Þ gkm
..
. . .

. ..
. . .

. ..
. ..

.

gm1 � � � gml � � � gmðm�1Þ �

2
6666664

3
7777775

ð4:27Þ

where

gkl ¼ 1; if dkl � �d
gkl ¼ 0; if dkl [ �d



ð4:28Þ

The elements of the matrix G measure the degree of the discordance. Hence, the
discordant statement would be no longer valid if the element value dkl � �d: That is
to say, the elements of the matrix G, whose values are 1, show the dominant
relations among the alternatives.

The aggregated dominance matrix E is constructed from the elements of the
matrix F and the matrix G through the following formula:

E ¼ F 	 G ð4:29Þ

where each element ekl in E is derived by

ekl ¼ fkl � gkl ð4:30Þ

Finally, we exploit the outranking relations aiming at elaborating recommen-
dations from the results obtained in previous construction of the outranking rela-
tions. By means of binary relations presented in Definition 4.5, we can construct a
graph, from which the preferable alternative is selected. Specific details are depicted
in Fig. 4.1. If ekl ¼ 1; then Ak is strictly preferred to Al or Ak is weakly preferred to
Al; If ekl ¼ 1 and elk ¼ 1; then Ak is indifferent to Al; If ekl ¼ 0 and elk ¼ 0; then Ak

is incomparable to Al.
We summarize the HF-ELECTRE I method in the following steps.
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Algorithm 4.2

Step 1. A group of decision makers determine the criteria of the alternatives and
give the evaluation information of the alternatives with respect to the
criteria in HFEs and thus construct the hesitant fuzzy decision matrix.
They also determine the importance vector x ¼ðx1;x2; . . .;xnÞT for the
criteria, and the relative weight vector k ¼ ðkC; kC0 ; kD; kD0 ÞT of different
types of hesitant fuzzy concordance sets and hesitant fuzzy discordance
sets.

Step 2. Calculate the score function and the deviation function of each HFEs
according to Eqs. (1.17)–(1.20).

Step 3. Construct the hesitant fuzzy concordance sets and the weak hesitant fuzzy
concordance sets using Eqs. (4.15) and (4.16).

Step 4. Construct the hesitant fuzzy discordance sets and the weak hesitant fuzzy
discordance sets using Eqs. (4.17) and (4.18).

Step 5. Calculate the hesitant fuzzy concordance indexes using Eq. (4.19) and
obtain the hesitant fuzzy concordance matrix using Eq. (4.20).

Step 6. Calculate the hesitant fuzzy discordance indexes using Eq. (4.21) and
obtain the hesitant fuzzy discordance matrix using Eq. (4.22).

Step 7. Identify the concordance dominance matrix using Eqs. (4.23)–(4.25).
Step 8. Identify the discordance dominance matrix using Eqs. (4.26)–(4.28).
Step 9. Construct the aggregation dominance matrix using Eqs. (4.29) and (4.30).

Step 10. Draw a decision graph and choose the preferable alternative.
Step 11. End.

4.2.3 The HF-ELECTRE II Method

In this section, we introduce the HF-ELECTRE II method to solve the multiple
criteria decision making problem under hesitant fuzzy environment.

For each pair of the alternatives Ak and Alðk; l ¼ 1; 2; . . .;m and k 6¼ lÞ, the
hesitant fuzzy concordance sets of Ak and Al are the sum of all those criteria where
the performance of Ak is superior to Al. Here we classify them into three types:

lAkA
k lA IA

1 and 1kl lke e= =lAkA
ork l k lA PA A QA

1kle =

lA
k lA RA

0 and 0kl kle e= =kA

Fig. 4.1 A graphical representation of the binary relations
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• The hesitant fuzzy strong concordance set JCkl :

JCkl ¼ j sðhkjÞ
�� [ sðhljÞ and rðhkjÞ\rðhljÞ

� 	 ð4:31Þ

• The hesitant fuzzy medium concordance set JC0
kl
:

JC0
kl
¼ j sðhkjÞ

�� [ sðhljÞ and rðhkjÞ� rðhljÞ
� 	 ð4:32Þ

• The hesitant fuzzy weak concordance set JC00
kl
:

JC00
kl
¼ j sðhkjÞ

�� ¼ sðhljÞ and rðhkjÞ\rðhljÞ
� 	 ð4:33Þ

The three types of hesitant fuzzy concordance sets exhibit the different degrees
that Ak is superior to Al. It is the deviation function that reflects the main difference
between JCkl and JC0

kl
. Moreover, a lower deviation value shows that the opinions of

the decision makers have a higher consistency degree. Thus, JCkl is more concordant
than JC0

kl
. Relative to the deviation function, the score function plays a greater role

in determining the magnitudes of HFEs. Hence JC0
kl
having a higher score value is

more concordant than JC00
kl
.

In analogous, the hesitant fuzzy discordance sets can be categorized into three
types:

• The hesitant fuzzy strong discordance set JDkl :

JDkl ¼ j sðhkjÞ
�� \sðhljÞ and rðhkjÞ[ rðhljÞ

� 	 ð4:34Þ

• The hesitant fuzzy medium discordance set JD0
kl
:

JD0
kl
¼ j sðhkjÞ

�� \sðhljÞ and rðhkjÞ� rðhljÞ
� 	 ð4:35Þ

• The hesitant fuzzy weak discordance set JD00
kl
:

JD00
kl
¼ j sðhkjÞ

�� ¼ sðhljÞ and rðhkjÞ[ rðhljÞ
� 	 ð4:36Þ

Apart from the above mentioned hesitant fuzzy concordance (discordance) sets,
if sðhkjÞ ¼ sðhljÞ and rðhkjÞ ¼ rðhljÞ; then we define this case as a hesitant fuzzy
indifferent set:

J¼kl ¼ j sðhkjÞ
�� ¼ sðhljÞ and rðhkjÞ ¼ rðhljÞ

� 	 ð4:37Þ

The concordance index ckl of Ak and Al in the HF-ELECTRE II method are
computed as:

4.2 Hesitant Fuzzy ELECTRE II Methods 137



ckl ¼
kC � P

j2JCkl
xj þ kC0 � P

j2JC0
kl

xj þ kC00 � P
j2JC0

kl

xj þ kJ¼ � P
j2J¼kl

xj

Pn
j¼1

xj

¼ kC �
X
j2JCkl

xj þ kC0 �
X
j2JC0

kl

xj þ kC00 �
X
j2JC0

kl

xj þ kJ¼ �
X
j2J¼kl

xj

ð4:38Þ

Here kC, kC0 ,kC00 and kJ¼ are the attitude weights of hesitant fuzzy strong,
medium and weak concordance sets and the hesitant fuzzy indifferent sets, which
are all depended on the attitudes of the decision makers. ckl shows the relative
importance of Ak with respect to Al and 0� ckl � 1: The hesitant fuzzy concordance
matrix C can thus be constructed.

The hesitant fuzzy discordance index reflects the relative difference of Ak with
respect to Al in terms of discordance criteria and is defined as:

dkl ¼
maxj2JDkl [ JD0

kl
[ JD00

kl
kD � dðxjhkj;xjhljÞ; kD0 � dðxjhkj;xjhljÞ; kD00 � dðxjhkj;xjhljÞ
� 	

maxj2J dðxjhkj;xjhljÞ
ð4:39Þ

Here kD, kD0 and kD00 are respectively the weights of three types of hesitant fuzzy
discordance sets, which depend on the decision makers’ attitudes. dðxjhkj;xjhljÞ is
distance measure defined as Eq. (4.7). With the hesitant fuzzy discordance indices
for all pairwise comparisons of alternatives, the hesitant fuzzy discordance matrix
D can be formulated.

The ELECTRE II method takes into account the notion of two embedded
outranking relations. After computing the concordance and discordance indices for
each pair of alternatives, two types of outranking relations, a strong relationship SF

and a weak relationship S f are constructed by comparing these indices with the
concordance and discordance levels.

A strong relationship leads to a better discrimination between alternatives and
thus yields a more refined and stricter ranking procedure than the weak relationship
(Duckstein and Gershon 1983; Hokkanen et al. 1995). To define the two rela-
tionships, let c�; c0 and c� be three decreasing levels of concordance, which are
denoted by 0\c�\c0\c�\1: Also, let d0 and d� represent two increasing levels
of discordance satisfying 0\d0\d�\1: With these specifications, AkSFAl is
defined if and only if one or both of the following sets of conditions hold:

ðIÞ
CðAk;AlÞ� c�

DðAk;AlÞ� d�

CðAk;AlÞ�CðAl;AkÞ

8<
:
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ðIIÞ
CðAk;AlÞ� c0

DðAk;AlÞ� d0

CðAk;AlÞ�CðAl;AkÞ

8<
: ð4:40Þ

The weak relationship AkS f Al is defined if and only if the following conditions
hold:

CðAk;AlÞ� c�

DðAk;AlÞ� d�

CðAk;AlÞ�CðAl;AkÞ

8<
: ð4:41Þ

As a result of the two pairwise outranking relationships, the strong graphs and
the weak graphs are respectively constructed for the strong relationship and for the
weak relationship. These graphs will be used in an iterative procedure to obtain the
desired ranking of the alternatives. Specifically, the ranking procedure consists of a
forward ranking m0, a reverse ranking m00 and an average ranking mðAiÞ ¼ m0 þ m00

2 ðAiÞ
� �

:

We rank the alternatives according to the values of mðAiÞ: This process produces the
final ranking. For more details, please refer to Duckstein and Gershon (1983) and
Hokkanen et al. (1995).

We summarize the proposed HF-ELECTRE II method in Algorithm 4.3.

Algorithm 4.3

Step 1. Determine the matrix H; the weight vector ðx1;x2; . . .;xnÞT of criteria,
and the relative attitude weight vector ðkC; kC0 ; kC00 ; kD; kD0 ; kD00 ; kJ¼ÞT of
different types of hesitant fuzzy concordance, discordance and indifferent
sets.

Step 2. Calculate sðhÞ and rðhÞ of the evaluation value h of each alternative with
respect to each criterion according to Eqs. (1.17)–(1.20).

Step 3. Construct the hesitant fuzzy strong, medium and weak concordance sets
by Eqs. (4.31)–(4.33), respectively.

Step 4. Construct the hesitant fuzzy strong, medium and weak discordance sets
by Eqs. (4.34)–(4.36), respectively.

Step 5. Construct the hesitant fuzzy indifferent set by means of Eq. (4.37).
Step 6. Calculate the hesitant fuzzy concordance index by Eq. (4.38) and obtain

the concordance matrix.
Step 7. Calculate the weighted distance between any two alternatives with respect

to each criterion by Eq. (4.7).
Step 8. Calculate the hesitant fuzzy discordance index by Eq. (4.39) based on the

weighted distance and obtain the discordance matrix.
Step 9. Construct the outranking relations from the given concordance and dis-

cordance levels by Eqs. (4.40) and (4.41).
Step 10. Draw the strong and weak outranking graphs and obtain the final ranking

of all alternatives.
Step 11. End.
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4.2.4 Application of the HF-ELECTRE Methods in Multiple
Criteria Decision Making

(1) Application of the HF-ELECTRE I Method

In the following, we use a numerical example to illustrate the details of the
HF-ELECTRE I method:

Example 4.3 (Chen et al. 2015) Suppose the board with five directors of an
enterprise is planning the development of four large projects (strategy initiatives)
Aiði ¼ 1; 2; 3; 4Þ in the following 5 years. It is necessary to compare these projects
to select the most important one from them as well as order them from the point of
view of their importance, taking into account four criteria suggested by the balanced
scorecard methodology (Kaplan and Norton 1996): C1, financial perspective; C2,
the customer satisfaction; C3, internal business process perspective; and C4:
learning and growth perspective. It should be noted that all of them are of the
maximization type. In order to avoid psychic contagion, the decision makers are
required to provide their preferences in anonymity. Suppose that the weight vector
of the attributes is x ¼ 0:2; 0:3; 0:15; 0:35ð ÞT , and the hesitant fuzzy decision
matrix is presented as:

C1 C2 C3 C4

A1 f0:2; 0:4; 0:7g f0:2; 0:6; 0:8g f0:2; 0:3; 0:6; 0:7; 0:9g f0:3; 0:4; 0:5; 0:7; 0:8g
A2 f0:2; 0:4; 0:7; 0:9g f0:1; 0:2; 0:4; 0:5g f0:3; 0:4; 0:6; 0:9g f0:5; 0:6; 0:8; 0:9g
A3 f0:3; 0:5; 0:6; 0:7g f0:2; 0:4; 0:5; 0:6g f0:3; 0:5; 0:7; 0:8g f0:2; 0:5; 0:6; 0:7g
A4 f0:3; 0:5; 0:6g f0:2; 0:4g f0:5; 0:6; 0:7g f0:8; 0:9g

Step 1. The hesitant fuzzy decision matrix and the weight vector of the attributes
are given above. The decision makers also give the relative weights of the
hesitant fuzzy concordance sets, the weak hesitant fuzzy concordance sets,
the hesitant fuzzy discordance sets and the weak hesitant fuzzy discor-
dance sets, respectively as k ¼ ðkC; kC0 ; kD; kD0 ÞT ¼ 1; 2=3; 1; 2=3ð ÞT

Step 2. Calculate the score and the deviation values of each evaluation information
of alternatives on the criteria. The results are presented in Tables 4.6 and
4.7.

Table 4.6 Score values
obtained by the score function

C1 C2 C3 C4

A1 0.4333 0.5333 0.54 0.54

A2 0.55 0.3 0.55 0.7

A3 0.525 0.425 0.575 0.5

A4 0.4667 0.3 0.6 0.85
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Step 3. Construct the hesitant fuzzy concordance sets and the weak hesitant fuzzy
concordance sets:

JC ¼
� � 4 �
3; 4 � 4 �
1; 3 2; 3 � �
1; 3; 4 2; 3; 4 3; 4 �

2
664

3
775; JC0 ¼

� 2 2 2
1 � 1 1; 2
� � � 1; 2
� � � �

2
664

3
775

For example, since sðh14Þ[ sðh34Þ and rðh14Þ\rðh34Þ; then JC13 ¼ f4g.
In addition, since sðh12Þ[ sðh32Þ and rðh12Þ[ rðh32Þ; then JC0

13
¼ f2g.

Step 4. Construct the hesitant fuzzy discordance sets and the weak hesitant fuzzy
discordance sets:

JD ¼
� 3; 4 1; 3 1; 3; 4
� � 2; 3 3; 4
4 4 � 3; 4
� � � �

2
664

3
775; JD0 ¼

� 1 � �
2 � � �
2 1 � �
2 1 1; 2 �

2
664

3
775

Step 5. Calculate the hesitant fuzzy concordance indices and the hesitant fuzzy
concordance matrix:

C ¼ ðcklÞ4�4 ¼
� 0:2 0:55 0:2

0:6333 � 0:4833 0:3333
0:35 0:45 � 0:3333
0:7 0:8 0:5 �

2
664

3
775

Step 6. Calculate the hesitant fuzzy discordance indices and the hesitant fuzzy
discordance matrix:

D ¼ ðdklÞ4�4 ¼
� 0:7778 0:3429 1

0:6667 � 0:5357 1
0:6667 1 � 1
0:3361 0:3265 0:1143 �

2
664

3
775

Table 4.7 Deviation values
obtained by the deviation
function

C1 C2 C3 C4

A1 0.2055 0.2494 0.2577 0.1855

A2 0.2693 0.1581 0.2291 0.1581

A3 0.1479 0.1479 0.1920 0.1871

A4 0.1247 0.1 0.0816 0.05
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For example,

d31 ¼
max

j2JD31 [ JD0
31

kD � dðxjh3j;xjh1jÞ; kD0 � dðxjh3j;xjh1jÞ
� 	

max
j2J

dðxjh3j;xjh1jÞ

¼ max 1� 0:028; 23 � 0:0525
� 	

0:0525
¼ 0:035

0:0525
¼ 0:6667

where

dðx1h31;x1h11Þ ¼ 1
4
� 0:2� 0:2� 0:3j j þ 0:4� 0:5j j þ 0:7� 0:6j j þ 0:7� 0:7j jð Þ ¼ 0:015

dðx2h32;x2h12Þ ¼ 0:0525; dðx3h33;x3h13Þ ¼ 0:018; dðx4h34;x4h14Þ ¼ 0:028:

Step 7. Calculate the hesitant fuzzy concordance level and identify the concor-
dance dominance matrix, respectively, which are

�c ¼
Xm
k¼1

Xm
l¼1;l 6¼k

ckl
mðm� 1Þ ¼ 0:4611; F ¼

� 0 1 0
1 � 1 0
0 0 � 0
1 1 1 �

2
664

3
775

Step 8. Calculate the hesitant fuzzy discordance level and identify the discordance
dominance matrix, respectively, which are

�d ¼
Xm
k¼1

Xm
l¼1;l6¼k

dkl
mðm� 1Þ ¼ 0:6472; G ¼

� 0 1 0
0 � 1 0
0 0 � 0
1 1 1 �

2
664

3
775

Step 9. Construct the aggregation dominance matrix:

E ¼ F 	 G ¼
� 0 1 0
0 � 1 0
0 0 � 0
1 1 1 �

2
664

3
775

Step 10. As it can be seen from the aggregation dominance matrix, A1 is preferred
to A3, A2 is preferred to A3 and A4 is preferred to A1, A2 and A3. Hence, A4

is the best alternative. The results are depicted in Fig. 4.2.

(1) Comparison with the aggregation operator based approach
Example 4.3 was also considered by Xia and Xu (2011a), who used the

aggregation operators to fuse the hesitant fuzzy information and made the ranking
of projects. We find that the average aggregation operators and the HF-ELECTRE I

142 4 Hesitant Fuzzy Multiple Criteria Decision Making Methods …



method give a consistent result, which illustrates the validity of the HF-ELECTRE I
method. These two approaches are complementary when solving different types of
the multiple criteria decision making problems. When the number of criteria in a
multiple criteria decision making problem is not larger than 4, the aggregation
operator based approach is a suitable tool because of the simple solving processes.
However, when the number of criteria exceeds 4 for hesitant fuzzy information,
which often appears in some actual multiple criteria decision making problems, the
aggregation operator based approach might encounter a barrier in applications
because of the need for tremendous computation. For such cases, the
HF-ELECTRE I method is particularly useful, which is logically simple and
demands less computational efforts. In what follows, we shall illustrate its appli-
cation for the selection of investments where the number of criteria arrives at 6.

Example 4.4 (Chen et al. 2015). Assume that an enterprise wants to invest money
in another country. A group composing of four decision makers in the enterprise
considers five possible investments: A1, invest in the Asian market; A2, invest in the
South American market; A3, invest in the African market; A4, invest in the three
continents; and A5, do not invest in any continent. When analyzing the investments,
the decision makers considered the following general characteristics: C1, risks of
the investment; C2, benefits in the short term; C3, benefits in the midterm; C4,
benefits in the long term; C5, difficulty of the investment; and C6, other aspects.
After a careful analysis of these characteristics, the decision makers gave the fol-
lowing information in the form of HFEs shown in Table 4.8.

Suppose that the weight vector of the criteria is 0:25; 0:2; 0:15; 0:1; 0:2; 0:1ð ÞT ,
the decision makers also gave the relative weights of the hesitant fuzzy concordance

3A

4A

1A

2A

Fig. 4.2 Decision graph of
Example 4.3

Table 4.8 Hesitant fuzzy decision matrix for Example 4.4

A1 A2 A3 A4 A5

C1 {0.5, 0.6, 0.7} {0.2, 0.3, 0.6, 0.7} {0.3, 0.4, 0.6} {0.2, 0.3, 0.6} {0.4, 0.5, 0.6, 0.7}

C2 {0.4, 0.6, 0.7, 0.9} {0.5, 0.6, 0.8} {0.7, 0.8} {0.3, 0.4, 0.6, 0.7} {0.7, 0.9}

C3 {0.3, 0.6, 0.8, 0.9} {0.2, 0.4, 0.6} {0.3, 0.6, 0.7, 0.9} {0.2, 0.4, 0.5, 0.6} {0.5, 0.7, 0.8, 0.9}

C4 {0.4, 0.5, 0.6, 0.8} {0.3, 0.6, 0.7, 0.8} {0.2, 0.3, 0.5, 0.6} {0.1, 0.3, 0.4} {0.3, 0.5, 0.6}

C5 {0.2, 0.5, 0.6, 0.7} {0.3, 0.6, 0.8} {0.3, 0.4, 0.7} {0.2, 0.3, 0.7} {0.4, 0.5}

C6 {0.2, 0.3, 0.4, 0.6} {0.1, 0.4} {0.4, 0.5, 0.7} {0.2, 0.5, 0.6} {0.2, 0.3, 0.7}
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(weak hesitant fuzzy concordance) sets and the hesitant fuzzy discordance (weak
hesitant fuzzy discordance) sets as ðkC; kC0 ; kD; kD0 ÞT ¼ 1; 3=4; 1; 3=4ð ÞT . Similar to
the solving procedure used in Example 4.3, we obtain the aggregation dominance
matrix:

E ¼ F 	 G ¼

� 1 0 1 0
0 � 0 1 0
0 0 � 1 0
0 0 0 � 0
0 1 0 1 �

2
66664

3
77775

and a decision graph shown as Fig. 4.3.
From Fig. 4.3, three preference relations are obtained, which are (1) A1 � A2 � A4;

(2) A5 � A2 � A4; (3) A3 � A4. In contrast, if adopting the hesitant fuzzy aggregation
operators to aggregate the present hesitant information, the amount of data is extre-
mely huge. For example, the number of computed data after aggregating A1 reaches
3� 45 ¼ 3072: If we aggregate all Aiði ¼ 1; 2; 3; 4; 5Þ; then the corresponding
number of computed data is 6677. The number will grow rapidly with the increasing
of the number of alternatives and criteria. In the HF-ELECTR I method, the value for
the number of calculation is 462. To determine the trends of the computation com-
plexity for the two methods, we generate a great number of n� n hesitant fuzzy
decision matrices H ¼ðhijÞn�n (as an example, here we take the number of values for
each hij to be (4) by the Matlab Optimization Toolbox. The calculation times for the
HF-ELECTRE I method and the hesitant fuzzy aggregation operator based method
are ð5n3 þ 9n2 � 10nþ 4Þ
2 and nð4n þ 1Þ; respectively. To be clearer, we choose
the cases of n = 4, 5, 10, 15, 20 to demonstrate the trends of the computation com-
plexity with increasing n for these two methods. The results are given in Table 4.9.

(2) Outranking relations for different number of alternatives and criteria
In Example 4.3, only four alternatives are considered. To check possible influ-

ence arisen from the number of alternatives, we compare the outranking relation for
different number of alternatives (i.e., N = 4, 5, 6 and 7) under the same criteria. For
this purpose, we perform a calculation with the Matlab Optimization Toolbox based
on the HF-ELECTRE I method.

(i) N = 5

5A

4A1A

2A 3A

Fig. 4.3 Decision graph of
Example 4.3
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We use the same calculation procedure as that in Example 4.3.

Step 1. Give the hesitant fuzzy decision matrix for the case of N = 5. Note that the
former four alternatives are the same as those in Example 4.3.

C1 C2 C3 C4

A1 f0:2; 0:4; 0:7g f0:2; 0:6; 0:8g f0:2; 0:3; 0:6; 0:7; 0:9g f0:3; 0:4; 0:5; 0:7; 0:8g
A2 f0:2; 0:4; 0:7; 0:9g f0:1; 0:2; 0:4; 0:5g f0:3; 0:4; 0:6; 0:9g f0:5; 0:6; 0:8; 0:9g
A3 f0:3; 0:5; 0:6; 0:7g f0:2; 0:4; 0:5; 0:6g f0:3; 0:5; 0:7; 0:8g f0:2; 0:5; 0:6; 0:7g
A4 f0:3; 0:5; 0:6g f0:2; 0:4g f0:5; 0:6; 0:7g f0:8; 0:9g
A5 f0:4; 0:6; 0:7; 0:9g f0:3; 0:4; 0:6g f0:3; 0:4; 0:5; 0:8g f0:6; 0:7; 0:9g

Step 2. Calculate the score values and the deviation values of the evaluation
information of the alternative A5 on criteria. The results are listed in
Table 4.10.

Step 3. Construct the hesitant fuzzy concordance sets and the weak hesitant fuzzy
concordance sets:

JC ¼

� � 4 � �
3; 4 � 4 � �
1; 3 2; 3 � � �
1; 3; 4 2; 3; 4 3; 4 � 3; 4

1; 4 1; 2; 4 2; 4 � �

2
6666664

3
7777775
; JC0 ¼

� 2 2 2 2; 3

1 � 1 1; 2 3

� � � 1; 2 3

� � � � �
� � 1 1; 2 �

2
6666664

3
7777775

Step 4. Construct the hesitant fuzzy discordance sets and the weak hesitant fuzzy
discordance sets:

JD ¼

� 3; 4 1; 3 1; 3; 4 1; 4
� � 2; 3 3; 4 1; 2; 4
4 4 � 3; 4 2; 4
� � � � �
� � � 3; 4 �

2
666664

3
777775; JD0 ¼

� 1 � � �
2 � � � �
2 1 � � 1
2 1 1; 2 � 1; 2
2; 3 3 3 � �

2
666664

3
777775

Table 4.9 Calculation times of the HF-ELECTRE I method and the aggregation operator method

Method n = 4 n = 5 n = 10 n = 15 n = 20

The HF-ELECTRE I method 214 402 2902 9377 21,702

The aggregation operator method 1028 5125 1.05 × 107 1.61 × 1010 2.19 × 1013

Table 4.10 Score and
deviation values of A5

A5 C1 C2 C3 C4

Score values 0.65 0.4333 0.5 0.7333

Deviation values 0.1803 0.1247 0.1871 0.1247
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Step 5. Calculate the hesitant fuzzy concordance indices and the hesitant fuzzy
concordance matrix:

C ¼ ðcklÞ5�5 ¼

� 0:2 0:55 0:2 0:3
0:6333 � 0:4833 0:3333 0:1
0:35 0:45 � 0:3333 0:1
0:7 0:8 0:5 � 0:5
0:55 0:85 0:7833 0:3333 �

2
66664

3
77775

Step 6. Calculate the hesitant fuzzy discordance indices and the hesitant fuzzy
discordance matrix:

D ¼ ðdklÞ5�5 ¼

� 0:7778 0:3429 1 1
0:6667 � 0:5357 1 1
0:6667 1 � 1 1
0:3361 0:3265 0:1143 � 0:4285
0:3663 0:0952 0:0779 1 �

2
66664

3
77775

As it can be seen from Step 3 to Step 6, adding the alternative A5 does not
change the hesitant fuzzy concordance (discordance) sets, the weak hesitant
fuzzy concordance (discordance) sets, the hesitant fuzzy concordance (dis-
cordance) indices, and the hesitant fuzzy concordance (discordance) matrix
of the former four alternatives. Its role is to add the last column and the last
line of the resulting corresponding matrices. Similar situations also appear
when the number of the alternatives is N = 6 and N = 7, respectively.

Step 7. Calculate the hesitant fuzzy concordance level and identify the concor-
dance dominance matrix, respectively:

�c ¼
Xm
k¼1

Xm
l¼1;l 6¼k

ckl
mðm� 1Þ ¼ 0:4525; F ¼

� 0 1 0 0
1 � 1 0 0
0 0 � 0 0
1 1 1 � 1
1 1 1 0 �

2
66664

3
77775

Step 8. Calculate the hesitant fuzzy discordance level and identify the discordance
dominance matrix, respectively:

�d ¼
Xm
k¼1

Xm
l¼1;l6¼k

dkl
mðm� 1Þ ¼ 0:6367; G ¼

� 0 1 0 0
0 � 1 0 0
0 0 � 0 0
1 1 1 � 1
1 1 1 0 �

2
66664

3
77775
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Step 9. Construct the aggregation dominance matrix:

E ¼ F 	 G ¼

� 0 1 0 0
0 � 1 0 0
0 0 � 0 0
1 1 1 � 1
1 1 1 0 �

2
66664

3
77775

Step 10. As it can be seen from the aggregation dominance matrix, A1 is preferred
to A3; A2 is preferred to A3; A4 is preferred to A1 A2, A3 and A5; A5 is
preferred to A1, A2 and A3. The results are depicted in Fig. 4.4.

(ii) N = 6

Results obtained in Steps 1 and 2 regarding to the alternative A6 are listed in
Tables 4.11 and 4.12, respectively.

When the number of alternatives arrives at 6, the results obtained from Step 3 to
Step 6 can be expressed with the 6� 6 matrix in which except the data of the 6th
line and the 6th column, other data are the same as those in 5� 5 matrix when the
number of alternatives is 5. Thus, we only list in Table 4.13 the data of the 6th line
and the 6th column of the 6� 6 matrix, which are the hesitant fuzzy concordance
set JCkl , the weak hesitant fuzzy concordance set JC0

kl
, the weak hesitant fuzzy

discordance set JDkl , the hesitant fuzzy discordance set JD0
kl
, the hesitant fuzzy

concordance indexes ckl, and the hesitant fuzzy discordance indexes dkl,
respectively.

1A

3A

5A

4A

2A

Fig. 4.4 Decision graph of
five alternatives

Table 4.11 Hesitant fuzzy decision information for A6

C1 C2 C3 C4

A6 {0.5, 0.7, 0.9} {0.4, 0.5, 0.7, 0.9} {0.5, 0.8} {0.4, 0.5, 0.8}
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Steps 7 and 8. Calculate the hesitant fuzzy concordance level and discordance
level:

�c ¼
Xm
k¼1

Xm
l¼1;l6¼k

ckl
mðm� 1Þ ¼ 0:4489; �d ¼

Xm
k¼1

Xm
l¼1;l 6¼k

dkl
mðm� 1Þ ¼ 0:6167

Step 9. Construct the aggregation dominance matrix:

E ¼

� 0 1 0 0 0
0 � 1 0 0 0
0 0 � 0 0 0
1 1 1 � 1 0
1 1 1 0 � 0
1 1 1 0 0 �

2
6666664

3
7777775

Step 10. As it can be seen from the aggregation dominance matrix, A1 is preferred
to A3; A2 is preferred to A3; A4 is preferred to A1, A2, A3 and A5; A5 is
preferred to A1, A2 and A3; A6 is preferred to A1, A2 and A3 (see Fig. 4.5).

(iii) N = 7

Analogous to the case of N = 6, main results obtained from Step 1 to Step 6 are
summarized in Tables 4.14, 4.15 and 4.16.

Table 4.12 Score values and deviation values of A6

A6 C1 C2 C3 C4

Score values 0.7 0.625 0.65 0.5667

Deviation values 0.1633 0.1920 0.15 0.1700

Table 4.13 Data of JCkl , JC0
kl
, JDkl , JD0

kl
, ckl and dkl of the 6th line and the 6th column for N = 6

JCkl JC0
kl

JDkl JD0
kl

ckl dkl

k = 1, l = 6 – – 1, 2, 3, 4 – 0 1

k = 2, l = 6 4 – 1, 3 2 0.35 0.6667

k = 3, l = 6 – – 3, 4 1, 2 0 0.7292

k = 4, l = 6 4 – – 1, 2, 3 0.35 0.5238

k = 5, l = 6 4 – 1, 3 2 0.35 0.5786

k = 6, l = 1 1, 2, 3, 4 – – – 1 0

k = 6, l = 2 1, 3 2 4 – 0.55 0.2692

k = 6, l = 3 3, 4 1, 2 – – 0.8333 0

k = 6, l = 4 – 1, 2, 3 4 – 0.4333 1

k = 6, l = 5 1, 3 2 4 – 0.55 1
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Steps 7 and 8. Calculate the hesitant fuzzy concordance level and the discordance
level:

�c ¼
Xm
k¼1

Xm
l¼1;l6¼k

ckl
mðm� 1Þ ¼ 0:4258

�d ¼ Pm
k¼1

Pm
l¼1;l6¼k

dkl
mðm�1Þ ¼ 0:5520

Step 9. Construct the aggregation dominance matrix:

E ¼

� 0 1 0 0 0 1
0 � 1 0 0 0 1
0 0 � 0 0 0 1
1 1 1 � 1 0 1
1 1 1 0 � 0 1
1 1 1 0 0 � 1
0 0 0 0 0 0 �

2
666666664

3
777777775

Step 10. As it can be seen from the aggregation dominance matrix, A1 is preferred
to A3 and A7; A2 is preferred to A3 and A7; A3 is preferred to A7; A4 is
preferred to A1, A2, A3, A5 and A7; A5 is preferred to A1, A2, A3 and A7; A6

is preferred to A1, A2, A3 and A7 (see Fig. 4.6).

1A

3A

5A

4A

2A

6A
Fig. 4.5 Decision graph of
six alternatives

Table 4.14 Hesitant fuzzy decision information for A7

C1 C2 C3 C4

A7 {0.2, 0.3, 0.4} {0.2, 0.3, 0.4, 0.7} {0.3, 0.5, 0.6, 0.7} {0.2, 0.3, 0.4, 0.5}

Table 4.15 Scores and deviations of A7

A7 C1 C2 C3 C4

Score values 0.3 0.4 0.525 0.35

Deviation values 0.0816 0.1871 0.1479 0.1118
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To see the possible influence resulted from the change of numbers of alterna-
tives, the outranking relations obtained for the cases of N = 4, 5, 6 and 7 are listed
in Table 4.17.

It can be seen from Table 4.17 that varying the number of alternatives does not
change the outranking relations in Example 4.3 and the result shows that A4 is a
non-outranked alternative. It can be explained as follows: Firstly, when the number
of alternatives is respectively 5, 6 and 7, the hesitant fuzzy concordance (discor-
dance) indices given in Example 4.3 are not changed. Secondly, although a vari-
ation in the number of alternatives slightly modifies the hesitant fuzzy concordance
level �c and discordance level �d (see Table 4.17), but the changes in �c and �d are still
within the sensitivity range of Example 4.3 in which the parameter changes will not
affect the set of the non-outranked alternatives. Specifically, in Example 4.3, �c ¼
0:4611 and �d ¼ 0:6472: A decrease (increase) in �c ð�dÞ cannot bring about a change
in the set of alternatives that are not outranked by other alternatives. Thus, �c could

Table 4.16 Data of JCkl , JC0
kl
, JDkl , JD0

kl
, ckl and dkl of the 7th line and the 7th column for N = 7

JCkl JC0
kl

JDkl JD0
kl

ckl dkl

k = 1, l = 7 – 1, 2, 3, 4 – – 0.6667 0

k = 2, l = 7 – 1, 3, 4 – 2 0.4667 0.1633

k = 3, l = 7 2 1, 3, 4 – – 0.7667 0

k = 4, l = 7 3,4 1 – 2 0.6333 0.1088

k = 5, l = 7 2 1, 4 3 – 0.6667 0.0756

k = 6, l = 7 – 1, 2, 3, 4 – – 0.6667 0

k = 7, l = 1 – – – 1, 2, 3, 4 0 0.6667

k = 7, l = 2 – 2 – 1, 3, 4 0.2 0.6667

k = 7, l = 3 – – 2 1, 3, 4 0 0.6667

k = 7, l = 4 – 2 3, 4 1 0.2 1

k = 7, l = 5 3 – 2 1, 4 0.15 0.6667

k = 7, l = 6 – – – 1, 2, 3, 4 0 0.6667

1A

3A

5A

4A

2A

6A

7A

Fig. 4.6 Decision graph of 7
alternatives
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be lowered to zero and �d could be raised to 1. Moreover, we note from the hesitant
fuzzy concordance (discordance) matrices (given in Step 5 (Step 6) in Example 4.3)
that when �c is increased above 0.55, the alternative A3 is no longer outranked by
any other alternative. For the alternative A1ðA2Þ; the corresponding value is 0.7
(0.8), as for �c\ 0:7ð�c\ 0:8Þ it remains outranked by the alternative A4. The first
change in the set of the non-outranked alternatives occurs when �c is increased to
0.55. A similar analysis can be performed for the discordance level. When �d is
lowered below 0.3361, A1 is no longer outranked. The corresponding value for
A2ðA3Þ is 0.3265 (0.1143), so the lower bound for �d is thus given by 0.3361. When
the parameters satisfy 0\�c\ 0:55 and 0:3361\ �d\ 1; the set of the
non-outranked alternatives will not be affected.

In the following, we survey outranking relations for different numbers of criteria.
To this end, we increase the numbers of criteria by 5 and 6 respectively (see
Table 4.18).

Because the weights of all criteria satisfy the normalization constraint
Pn

j¼1 xj ¼
1; varying the number of criteria inevitably changes the original weights of criteria.
This will affect the outranking relations. As an illustration, we list in Table 4.19 the
corresponding results for outranking relations within the HF-ELECTRE I frame-
work and the comparison with the case that the number of criteria is 4. As it can be
seen in Table 4.19, the results of outranking relations for different numbers of
criteria calculated with the HF-ELECTRE I method are consistent with general
expectation.

In order to further evaluate the HF-ELECTRE I method, a simulation with
randomly generated cases is made in a direct and transparent way. Random data are
generated to form multiple criteria decision making problems with all possible
combinations of 4, 6, 8, 10 alternatives and 4, 6, 8, 10 criteria. So, 16 different
instances are examined in this study. We find that the preferred choice of alter-
natives in each instance is the alternative A1 within the framework of
HF-ELECTRE I (see below for details).

In the following, the cases corresponding to the combinations of 4 alternatives
(i.e., A ¼ fA1;A2;A3;A4g ) with 4, 6, 8, 10 criteria are employed to illustrate our
simulation process. Under the environment of group decision making, the

Table 4.17 Comparison of the outranking relations for different number of alternatives

Number of alternatives �c �d Results

N = 4 0.4611 0.6472 A1 � A3; A2 � A3; A4 � A1;A2;A3

N = 5 0.4525 0.6367 A1 � A3; A2 � A3; A4 � A1;A2;A3;A5;
A5 � A1;A2;A3

N = 6 0.4489 0.6167 A1 � A3; A2 � A3; A4 � A1;A2;A3;A5;
A5 � A1;A2;A3; A6 � A1;A2;A3

N = 7 0.4258 0.5520 A1 � A3;A7;A2 � A3;A7;A3 � A7;
A4 � A1;A2;A3;A5;A7;
A5 � A1;A2;A3;A7;A6 � A1;A2;A3;A7
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performance of each alternative on each criterion can be considered as a HFE, hij,
which indicates the possible satisfaction degrees of the criterion Cj to the alternative
Ai. The characteristic of satisfaction degrees assigned to these 4 alternatives is as
follows: For c 2 h1j; c
Uð0:8; 1Þ; for c 2 h2j; c
Uð0:5; 0:8Þ; for c 2
h3j; c
Uð0:3; 0:5Þ; for c 2 h4j; c
Uð0; 0:3Þ; where Uða; bÞ means the uniform
distribution on the interval ½a; b�: In this way, we simulate 100 times corresponding
to each instance with the number of criteria being 4, 6, 8 and 10, respectively. In
each simulation, the number of c in each hij and the weights of criteria are also
randomly generated. Consequently, all quantities calculated by the HF-ELECTRTE
I fluctuate in each simulation. Figure 4.7 displays the scores of hij of 4 alternatives
on a criterion, which shows an obvious variation for different simulations.

Following the steps of the HF-ELECTRE I method outlined previously, our
simulation results demonstrate that the outranking relations are consistent with the
expectation. That is, the alternative A1 is the best choice due to a larger role of the
performance of alternatives in influencing the outranking relations as compared to
the weights and threshold values. This consistency further indicates the validity of
the HF-ELECTRE I method.

(3) Comparison with the ELECTRE III and ELECTRE IV methods

There exist several other types of ELECTRE methods, such as ELECTRE III
(Figueira et al. 2005; Buchanan and Vanderpooten 2007) and ELECTRE IV (Roy
and Hugonnard 1982). It is interesting to compare the results obtained by using
these different methods to see the ranking differences among them. To facilitate the
comparison, the same example (Example 4.3) used to illustrate the HF-ELECTRE I
method is also considered for the ELECTRE III and ELECTRE IV methods, which
is composed of the construction and the exploitation of the outranking relations.

Firstly, the ELECTRE III method is described briefly as follows (for more details
see Figueira et al. (2005) and Buchanan and Vanderpooten (2007)):

Table 4.18 Hesitant fuzzy information of the 5th and 6th criteria

A1 A2 A3 A4

C5 {0.3, 0.6, 0.7} {0.2, 0.4, 0.5, 0.6} {0.3, 0.7, 0.8} {0.4, 0.5, 0.7, 0.9}

C6 {0.4, 0.5, 0.7, 0.8} {0.5, 0.7, 0.9} {0.3, 0.4, 0.6, 0.9} {0.5, 0.6, 0.8}

Table 4.19 Comparison of outranking relations for different numbers of criteria

Number of
criteria

Weight Results

4 x ¼ 0:2; 0:3; 0:15; 0:35ð ÞT A1 � A3; A2 � A3; A4 � A1;A2;A3

5 x ¼ 0:2; 0:3; 0:15; 0:2; 0:15ð ÞT A2 � A1; A3 � A1; A4 � A1;A2;A3

6 x ¼ 0:2; 0:15; 0:15; 0:2; 0:15; 0:15ð ÞT A1 � A3;A2 � A1;A3;A3 � A1;A4 � A1;A2;A3
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Let two alternatives Ak and Al belong to a given set of actions, and yjðAkÞ and
yjðAlÞ be the performances of Ak and Al in terms of the criterion Cj. We denote
indifference, preference and veto thresholds on the criterion Cj determined by the
decision makers as qj, pj and vj, respectively, where j ¼ 1; 2; . . .; n: The partial
concordance index cjðAk;AlÞ for each criterion Cj is defined as:

cjðAk;AlÞ ¼
1 if yjðAkÞþ qj � yjðAlÞ;
0 if yjðAkÞþ pj � yjðAlÞ; j ¼ 1; . . .; n

ðpj þ yjðAkÞ � yjðAlÞÞ=ðpj � qjÞ otherwise:

8><
>:

ð4:42Þ

Let xj be the weight of the criterion Cj. The overall concordance index CðAk;AlÞ
is defined as:

CðAk;AlÞ ¼
Xn
j¼1

xjcjðAk;AlÞ ð4:43Þ

The discordance index djðAk;AlÞ for the criterion Cj is calculated as:

djðAk;AlÞ ¼
0 if yjðAkÞþ pj � yjðAlÞ
1 if yjðAkÞþ vj � yjðAlÞ

ðyjðAlÞ � yjðAkÞ � pjÞ otherwise

8<
: ð4:44Þ

The credibility degree SðAk;AlÞ for the pair ðAk;AlÞ is defined as:
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Fig. 4.7 Score values of hij in 100 times simulations. From top to bottom, they correspond to A1

(yellow line), A2 (blue line), A3 (green line) and A4 (red line), respectively
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SðAk;AlÞ ¼ CðAk;AlÞ if djðAk ;AlÞ�CðAk ;AlÞ;8 j
CðAk ;AlÞ�

Q
j2J:

djðAk ;AlÞ[CðAk ;AlÞ
1�djðAk ;AlÞ
1�CðAk ;AlÞ

otherwise
(

ð4:45Þ

The ELECTRE III model is “exploited” to produce a ranking of alternatives
from the credibility matrix. In what follows, we use the ELECTRE III method to
tackle the problem in Example 4.3.

Step 1. Construct the fuzzy group decision matrix. To derive the group decision
matrix, we aggregate the decision makers’ individual decision information
by the averaging operator, which is defined as ~hij ¼ 1

lhij

P
c2hij c. As it can

be easily seen that the results obtained from the formula are just the score
function values of HFEs, which have been given in Table 4.6. So, the
fuzzy group decision matrix eH ¼ ð~hijÞ4�4 is obtained.

Step 2. Indifference, preference and veto threshold values on the criterion Cj are
introduced by the decision makers, as shown in Table 4.20.

Step 3. Calculate the partial concordance index cjðAk;AlÞ with Eq. (4.42). The
results are given in Table 4.21.

Step 4. Calculate the overall concordance index CðAk;AlÞ with Eq. (4.43). The
results are set out in Table 4.22.

Step 5. Calculate the discordance index djðAk;AlÞ with Eq. (4.44). The results are
given in Table 4.23.

Step 6. Calculate the credibility degree SðAk;AlÞ with Eq. (4.45). The results are
set out in Table 4.24.

Step 7. Perform the exploiting procedure with the credibility matrix. Two
pre-orders are obtained via a descending and ascending distillation process
respectively (see Fig. 4.8). Based on these two pre-orders, the result of
outranking is A4 � A2 � A1 � A3.

We next analyze the calculations with the ELECTRE IV method. Let yjðAkÞ and
yjðAlÞ be the performance of two alternatives Ak and Al on the criterion Cj.
J þ ðAk;AlÞ and J�ðAk;AlÞ represent respectively the sums of all those criteria on
which the performance of Ak is superior and inferior to Al:

J þ ðAk;AlÞ ¼ j 2 J j : yjðAlÞþ qjðyjðAlÞÞ
�� \yjðAkÞ

� 	 ð4:46Þ

J�ðAk;AlÞ ¼ j 2 J j : yjðAkÞþ qjðyjðAkÞÞ
�� \yjðAlÞ

� 	 ð4:47Þ

Table 4.20 Three types of
threshold values

Threshold values C1 C2 C3 C4

qj 0.02 0.05 0.02 0.02

pj 0.1 0.1 0.05 0.1

vj 0.3 0.3 0.2 0.3
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Table 4.21 Partial
concordance index for each
criterion

A1 A2 A3 A4

c1(Ak, Al) A1 1 0 0.1038 0.8325

A2 1 1 1 1

A3 1 0.9375 1 1

A4 1 0.2088 0.5213 1

c2(Ak, Al) A1 1 1 1 1

A2 0 1 0 1

A3 0 1 1 1

A4 0 1 0 1

c3(Ak, Al) A1 1 1 0.5 0

A2 1 1 0.8333 0

A3 1 1 1 0.8333

A4 1 1 1 1

c4(Ak, Al) A1 1 0 1 0

A2 1 1 1 0

A3 0.75 0 1 0

A4 1 1 1 1

Table 4.22 Concordance
matrix

A1 A2 A3 A4

A1 1 0.45 0.7458 0.4665

A2 0.7 1 0.6750 0.5

A3 0.6125 0.6375 1 0.6250

A4 0.7 0.8418 0.6043 1

Table 4.23 Discordance
index for each criterion

A1 A2 A3 A4

d1(Ak, Al) A1 0 0.0835 0 0

A2 0 0 0 0

A3 0 0 0 0

A4 0 0 0 0

d2(Ak, Al) A1 0 0 0 0

A2 0.6665 0 0.125 0

A3 0.0415 0 0 0

A4 0.6665 0 0.125 0

d3(Ak, Al) A1 0 0 0 0.0667

A2 0 0 0 0

A3 0 0 0 0

A4 0 0 0 0

d4(Ak, Al) A1 0 0.3 0 1

A2 0 0 0 0.25

A3 0 0.5 0 1

A4 0 0 0 0
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The ELECTRE IV method contains two levels of outranking relations, i.e., the
strong outranking relation ðSFÞ and the weak outranking relation ðS f Þ; which are
defined as:

AkS
FAl , 8j; yjðAkÞþ pjðyjðAkÞÞ� yjðAlÞ and J þ ðAk;AlÞk k[ J�ðAk;AlÞk k

ð4:48Þ

AkS
f Al , 8 j; yjðAkÞþ pjðyjðAkÞÞ� yjðAlÞ

or
9 l; ylðAkÞþ vlðylðAkÞÞ� ylðAlÞ[ ylðAkÞþ plðylðAkÞÞ
and j : yjðAkÞ � yjðAlÞ[ pjðyjðAkÞÞ
�� ��� n=2

(
ð4:49Þ

where Jk k denotes the number of elements in the set J.
The ELECTRE IV exploiting procedure is the same as that of the ELECTRE III.

The detailed steps of using the ELECTRE IV method to deal with Example 4.3 are
given as follows:

Step 1. The process is the same as that in ELECTRE III method.
Step 2. The indifference, preference and veto threshold values on the criterion j are

the same as those given in Table 4.20.
Step 3. Calculate J þ ðAk;AlÞ and J�ðAk;AlÞ with Eq. (4.46) and (4.47). The

results are summarized in Table 4.25.
Step 4. Calculate the outranking relation S between alternatives with Eqs. (4.48)

and (4.49). The results are also displayed in Table 4.25. From Table 4.25,
we know A1 �S f A3, A2 �S f A1, A4 �S f A1, and A4 �SF A2.

Table 4.24 Credibility
matrix

A1 A2 A3 A4

A1 1 0.45 0.7458 0

A2 0.7 1 0.6750 0.5

A3 0.6125 0.6375 1 0

A4 0.7 0.8418 0.6043 1

2A
1A

3A
4A 4A 2A 1A 3A

(a) (b)

Fig. 4.8 a Descending distillation. b Ascending distillation
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Step 5. Draw the strong and weak outranking graphs, shown as Fig. 4.9. With the
exploiting procedure, the final outranking is A4 � A2 � A1 � A3.

It is observed that the conclusions obtained from the ELECTRE III and
ELECTRE IV methods are partially consistent with that derived with the
HF-ELECTRE I method, whereas a difference in the outranking relations is also
noticed. In the ELECTRE III and ELECTRE IV group outranking methods, only
information involving the average opinions of all decision makers is considered,
whereas in the HF-ELECTRE I method, in addition to that consideration, the
deviation degrees which reflect the difference in opinions between the individual
decision makers and their averages are also accounted for. It should be pointed out
that the ELECTRE III and ELECTRE IV methods can give the ranking of all
alternatives, which is different from the HF-ELECTRE I method that gives the
partial outranking relations. Thus, these two kinds of group decision making
approaches are complementary.

(2) Application of the HF-ELECTRE II Method

Below, we use some numerical examples to illustrate the details of the
HF-ELECTRE II method.

Example 4.5 (Chen and Xu 2015). A battery industry involved in the recycling
process desires to select a suitable 3rd-party reverse logistics provider (3PRLP) to
perform the reverse logistics activities. A committee of three experts has been
formed to select the most suitable 3PRLP. They evaluate the performance of each
3PRLP from seven aspects: (1) C1: quality; (2) C2: delivery; (3) C3: reverse

Table 4.25 J þ ðAk;AlÞ;J�ðAk ;AlÞ and the outrankings

A1 A2 A3 A4

J þ J� S J þ J� S J þ J� S J þ J� S

A1 2 1, 4 2, 4 1, 3 Sf 2 1, 3, 4

A2 1, 4 2 Sf 1, 4 2, 3 1 3, 4

A3 1, 3 2, 4 2, 3 1, 4 1, 2 3, 4

A4 1, 3, 4 2 Sf 3, 4 1 SF 3, 4 1, 2

2A

4A

4A
3A1A

2A
(a) (b)

Fig. 4.9 a Strong outranking graph. b Weak outranking graph
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logistics cost; (4) C4: rejection rate; (5) C5: technical capability; (6) C6: ability to
meet future requirement; (7) C7: willingness and attitude. The hierarchical structure
of the decision making problem is depicted in Fig. 4.10.

To avoid psychic contagion, the experts are required to provide their preferences
in anonymity. Suppose that the weight vector of the attributes is x ¼
0:2; 0:2; 0:15; 0:1; 0:1; 0:15; 0:1ð ÞT and the hesitant fuzzy decision matrix is pre-
sented in Table 4.26.

Step 1. The decision makers assign the relative attitude weights of strong, medium
and weak hesitant fuzzy concordance, discordance and indifferent sets as:
k ¼ ðkC; kC0 ; kC00 ; kD; kD0 ; kD00 ; kJ¼ÞT ¼ 1; 0:9; 0:8; 1; 0:9; 0:8; 0:7ð ÞT .

Step 2. Calculate the score value and the deviation value of each HFE (see
Tables 4.27 and 4.28).

Step 3. Construct the hesitant fuzzy strong, medium and weak concordance sets:

GOAL

Quality

C1

A1 A5A3A2 A4

Delivery

C2

Reverse
logistics cost

C3

Rejection
rate
C4

Technical
capability

C5

Ability to meet 
future requirement

C6

Willingness
and attitude

C7

Fig. 4.10 Hierarchical structure of decision problem

Table 4.26 Hesitant fuzzy decision matrix

A1 A2 A3 A4 A5

C1 {0.7, 0.8, 0.9} {0.7, 0.8} {0.7, 0.9} {0.6, 0.8} {0.9, 1}

C2 {0.6, 0.7} {0.2, 0.3, 0.6} {0.6, 0.7, 0.8} {0.3, 0.4, 0.5} {0.8, 0.9}

C3 {0.2, 0.3} {0.2, 0.3} {0.1, 0.3, 0.4} {0.3, 0.5} {0.2, 0.5, 0.6}

C4 {0.5, 0.6, 0.7} {0.4, 0.5} {0.7, 0.8, 1} {0.5, 0.6, 0.7} {0.7}

C5 {0.7, 0.8, 1} {0.5, 0.7} {0.5, 0.7} {0.6, 0.8, 0.9} {0.8, 0.9, 1}

C6 {0.2, 0.3} {0.3, 0.4, 0.6} {0.3, 0.5} {0.3, 0.5} {0.4, 0.6}

C7 {0.6, 0.9} {0.2, 0.3} {0.4, 0.6, 0.7} {0.4, 0.5, 0.6} {0.7, 0.8, 0.9}

158 4 Hesitant Fuzzy Multiple Criteria Decision Making Methods …



JC ¼

� 2 � 1; 2 �
� � � 1 �
� 2 � � �
� 2 3 � �

1; 4; 5; 7 2; 4; 5; 6 1; 2; 5; 7 1; 2; 4; 5 �

2
66664

3
77775

JC0 ¼

� 1; 4; 5; 7 5; 7 5; 7 �
6 � 6 6 �

2; 3; 4; 6 1; 3; 4; 7 � 1; 2; 4; 7 4
3; 6 3; 4; 5; 7 5 � �
2; 3; 6 1; 3; 7 3; 6 3; 6; 7 �

2
66664

3
77775

JC00 ¼

� � 1 � �
� � � � �
� � � � �
� � � � �
� � � � �

2
66664

3
77775

For instance, since sðh12Þ[ sðh22Þ and rðh12Þ\rðh22Þ; then JC12 ¼ f2g.
Step 4. Construct the hesitant fuzzy strong, medium and weak discordance sets:

Table 4.27 Score values obtained by the score function

C1 C2 C3 C4 C5 C6 C7

A1 0.8 0.65 0.25 0.6 0.8333 0.25 0.75

A2 0.75 0.3667 0.25 0.45 0.6 0.4333 0.25

A3 0.8 0.7 0.2667 0.8333 0.6 0.4 0.5667

A4 0.7 0.4 0.4 0.6 0.7667 0.4 0.5

A5 0.95 0.85 0.4333 0.7 0.9 0.5 0.8

Table 4.28 Deviation values obtained by the deviation function

C1 C2 C3 C4 C5 C6 C7

A1 0.0816 0.05 0.05 0.0816 0.1247 0.05 0.15

A2 0.05 0.17 0.05 0.05 0.1 0.1247 0.05

A3 0.1 0.0816 0.1247 0.1247 0.1 0.1 0.1247

A4 0.1 0.0816 0.1 0.0816 0.1247 0.1 0.0816

A5 0.05 0.05 0.17 0 0.0816 0.1 0.0816
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JD ¼

� � � � 1; 4; 5; 7
2 � 2 2 2; 4; 5; 6
� � � 3 1; 2; 5; 7
1; 2 1 � � 1; 2; 4; 5
� � � � �

2
66664

3
77775

JD0 ¼

� 6 2; 3; 4; 6 3; 6 2; 3; 6
1; 4; 5; 7 � 1; 3; 4; 7 3; 4; 5; 7 1; 3; 7
5; 7 6 � 5 3; 6
5; 7 6 1; 2; 4; 7 � 3; 6; 7
� � 4 � �

2
66664

3
77775

JD00 ¼

� � � � �
� � � � �
1 � � � �
� � � � �
� � � � �

2
66664

3
77775

For example, since sðh22Þ\sðh32Þ;rðh22Þ[ rðh32Þ; then JD23 ¼ f2g.
Step 5. Construct the hesitant fuzzy indifferent set by using Eq. (4.37):

J¼ ¼

� 3 � 4 �
3 � 5 � �
� 5 � 6 �
4 � 6 � �
� � � � �

2
66664

3
77775

For example, since sðh13Þ ¼ sðh23Þ;rðh13Þ ¼ rðh23Þ; then J¼12 ¼ f3g.
Step 6. Calculate the hesitant fuzzy concordance index and construct concor-

dance matrix:

C ¼ ðcklÞ5�5 ¼

� 0:755 0:34 0:65 0
0:24 � 0:205 0:335 0
0:54 0:765 � 0:645 0:09
0:34 0:605 0:345 � 0
0:95 0:955 0:87 0:96 �

2
66664

3
77775

For example, c12 ¼ 0:2þ 0:5� 0:9þ 0:15� 0:7 ¼ 0:755:
Step 7. Calculate the weighted distance between any two alternatives with respect

to each criterion by using Eq. (4.7), see Table 4.29.
Step 8. Calculate the hesitant fuzzy discordance index and construct the discor-

dance matrix:
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D ¼ ðdklÞ5�5 ¼

� 0:375 0:9 0:3799 0:9
1 � 1 0:9 1
0:9 0:1349 � 0:4167 1
1 0:4292 0:9 � 1
0 0 0:3595 0 �

2
66664

3
77775

For instance,

d21 ¼
max

j2JD21 [ JD0
21

[ JD00
21

kD � dðxjh2j;xjh1jÞ; kD0 � dðxjh2j;xjh1jÞ; kD00 � dðxjh2j;xjh1jÞ
� 	g

max
j2J

dðxjh2j;xjh1jÞ

¼ max 1� 0:06; 0:9� 0:05f g
0:06

¼ 0:06
0:06

¼ 1:

Step 9. Construct the outranking relations following the given concordance and
discordance levels. Here the concordance and discordance levels for the
strong and weak outranking relations are chosen by the experts as
ðc�; c0; c�Þ ¼ ð0:5; 0:6; 0:75Þ and d0 ¼ 0:4; d� ¼ 0:45: According to
Eqs. (4.40) and (4.41), the outranking relations are derived as shown in
Table 4.30.

Step 10. Draw the strong and weak outranking graphs in Fig. 4.11.

Table 4.30 Outranking
relations

A1 A2 A3 A4 A5

A1 – SF SF

A2 –

A3 SF – Sf

A4 Sf –

A5 SF SF SF SF –

1A

3A

5A
(a)(a) (b)(b)

4A

2A

3A 4A 2A

Fig. 4.11 a Strong outranking graph. b Weak outranking graph
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Now we consider the strong and weak outranking graphs plotted in Fig. 4.11.
The forward ranking v0, the reverse ranking v00 and the average ranking �v are
deduced and summarized in Table 4.31. From Table 4.31, the ranking of the
alternatives is A5 � A3 
A1 � A4 � A2.

To survey the performance of the algorithm introduced for the HF-ELECTRE II
approach for a larger group, we extend the number of decision makers from three
assumed in Example 4.5 to ten, and other initial conditions are the same as those in
Example 4.5. Table 4.32 lists the hesitant fuzzy decision matrix constructed for the
larger group with ten experts.

For the larger group, we still use the same steps displayed in Example 4.5.
Specifically speaking, after the score values and the deviations are calculated, the
hesitant fuzzy strong, medium and weak concordance sets and the discordance sets
as well as indifferent sets are constructed. The concordance and discordance
matrices are then obtained as:

Table 4.31 Results of
ranking

A1 A2 A3 A4 A5

Forward ranking v0 3 5 2 4 1

Reverse ranking v00 2 5 3 4 1

Average ranking �v 2.5 5 2.5 4 1

Table 4.32 Hesitant fuzzy decision matrix

A1 A2 A3

C1 {0.3, 0.35, 0.45, 0.5, 0.55, 0.6,
0.7, 0.8}

{0.55, 0.6, 0.75, 0.85, 0.9} {0.25, 0.45, 0.65, 0.7, 0.75,
0.85}

C2 {0.1, 0.2, 0.3, 0.45} {0.1, 0.15, 0.2, 0.3, 0.35, 0.4,
0.45, 0.6, 0.7, 0.75}

{0.25, 0.3, 0.4, 0.6, 0.65, 0.7,
0.8}

C3 {0.15, 0.2, 0.3, 0.35, 0.4, 0.6} {0.6, 0.8, 0.9} {0.1, 0.2, 0.25, 0.4, 0.55, 0.6,
0.65, 0.7, 0.95, 1}

C4 {0.2, 0.3, 0.35, 0.45, 0.5, 0.55,
0.7, 0.85}

{0.3, 0.45, 0.5, 0.55, 0.65, 0.7,
0.75, 0.8, 0.95, 1}

{0.15, 0.2, 0.4}

C5 {0.3, 0.35, 0.4, 0.45} {0.45, 0.5, 0.6, 0.7, 0.9} {0.1, 0.35, 0.4, 0.5, 0.55, 0.75,
0.8, 0.85}

C6 {0.4, 0.55, 0.65, 0.85, 0.9,
0.95}

{0.1, 0.2, 0.25, 0.3, 0.35, 0.45,
0.5, 0.6, 0.65, 0.75}

{0.2, 0.4, 0.6}

C7 {0.35, 0.4, 0.5, 0.65, 0.7, 0.75,
0.8, 0.9, 0.95, 1}

{0.1, 0.2, 0.4, 0.45} {0.45, 0.5, 0.65, 0.75, 0.9,
0.95}

A4 A5

C1 {0.1, 0.25, 0.3, 0.4, 0.5, 0.65, 0.7, 0.85, 0.95, 1} {0.45, 0.7, 0.8}

C2 {0.3, 0.5, 0.6, 0.75, 0.9} {0.5, 0.6, 0.65, 0.7, 0.85, 0.9, 0.95}

C3 {0.2, 0.3, 0.35, 0.5} {0.15, 0.25, 0.3, 0.35, 0.4, 0.5, 0.55, 0.7}

C4 {0.45, 0.6, 0.75, 0.8, 0.85} {0.2, 0.45, 0.5, 0.55, 0.7}

C5 {0.15, 0.25, 0.3, 0.45, 0.5, 0.65, 0.7, 0.75, 0.8, 0.9} {0.25, 0.3, 0.45, 0.65, 0.7, 0.75, 0.8}

C6 {0.6, 0.7, 0.85, 0.95} {0.4, 0.6, 0.65, 0.7, 0.8, 0.85, 0.95}

C7 {0.3, 0.4, 0.45, 0.65, 0.7, 0.75, 0.95} {0.35, 0.65, 0.7, 0.75, 0.85, 0.9}
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C ¼ ðcklÞ5�5 ¼

� 0:24 0:225 0:09 0:225
0:71 � 0:675 0:435 0:54
0:665 0:29 � 0:435 0:135
0:85 0:54 0:51 � 0:25
0:685 0:44 0:805 0:735 �

2
66664

3
77775

D ¼ ðdklÞ5�5 ¼

� 1 0:9 0:9 0:9
0:79 � 0:8 1 1

0:7884 1 � 1 1
0:0508 0:8797 0:7590 � 1
0:9 0:8438 0:3587 0:4038 �

2
66664

3
77775

Based on these matrices, the strong and weak outranking relations are con-
structed with ðc�; c0; c�Þ ¼ ð0:5; 0:6; 0:7Þ and d0 ¼ 0:5; d� ¼ 0:8; as shown in
Table 4.33.

With the exploration procedure, we deduce the forward ranking v0, the reverse
ranking v00 and the average ranking �v and present them in Table 4.34. From
Table 4.34, we know that the final ranking of the five alternatives is A5 � A2 �
A4 � A3 � A1.

In the following, one real case is considered to further illustrate our method:

Example 4.6 (Chen and Xu 2015). Owing to the great convenience provided by
online shopping, Electronic Commence (e-Commerce) has attracted great attention.
To enable the online shopping to make success, it is critical to help customers to
reduce their time spent on searching for products that are suitable for their
requirements. In this context, a recommendation system is required. The system
attempts to find some interesting sets of products from individual evaluation of
multiple features characterizing the products. Multiple criteria decision making
models can therefore be effectively utilized because they provide a method for
evaluating decision alternatives with a finite number of features or criteria. When

Table 4.33 Outranking
relations

A1 A2 A3 A4 A5

A1 –

A2 SF – Sf

A3 Sf –

A4 SF Sf –

A5 SF SF –

Table 4.34 Results of
ranking

A1 A2 A3 A4 A5

Forward ranking v0 4 1 3 2 1

Reverse ranking v00 4 2 3 2 1

Average ranking �v 4 1.5 3 2 1
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one buys a laptop, in terms of his/her requirements (including price, quality,
appearance, running speed and customer service) for this product, the recommen-
dation system will recommend a kind of laptop that is most suitable for the cus-
tomer according to evaluation information provided by those customers who had
ever bought similar products. In general, these different customers could give dif-
ferent evaluations for a certain feature of the product. HFEs are particularly suitable
for denoting the difference.

Suppose that the recommendation system suggests a suitable laptop to the
customer from six candidate products (alternatives) Ai i ¼ 1; 2; 3; 4; 5; 6ð Þ and each
of these alternatives is evaluated by considering a set of five criteria C ¼
C1;C2; . . .;C5f g representing price (C1), quality (C2), appearance (C3), running

speed (C4) and customer service (C5) whose weight vector is
x ¼ 0:3; 0:2; 0:15; 0:15; 0:2ð ÞT . The evaluation information is denoted by a hesitant
fuzzy matrix as shown in Table 4.35.

Step 1. This step is given as Table 4.35. We start our calculation from Step 2
directly.

Steps 2–3. Give score and deviation values of hesitant fuzzy decision matrix in
Tables 4.36 and 4.37.

Steps 3–6. Construct the concordance matrix based on hesitant fuzzy strong,
medium and weak concordance sets:

Table 4.35 Hesitant fuzzy decision matrix for Example 4.6

C1 C2 C3 C4 C5

A1 {0.2, 0.5, 0.6,
0.7}

{0.4, 0.5, 0.6, 0.8,
0.9}

{0.3, 0.4, 0.6, 0.8,
0.9}

{0.4, 0.6, 0.7,
0.9}

{0.5, 0.6, 0.7,
0.8}

A2 {0.3, 0.6, 0.7, 0.8,
0.9}

{0.3, 0.6, 0.8,
0.9}

{0.2, 0.4, 0.6,
0.7}

{0.5, 0.6, 0.8,
0.9}

{0.2, 0.3, 0.6, 0.7,
0.8}

A3 {0.3, 0.4, 0.7} {0.2, 0.3, 0.5, 0.6,
0.7}

{0.4, 0.6, 0.7, 0.8,
0.9}

{0.7, 0.8, 0.9, 1} {0.3, 0.4, 0.6,
0.7}

A4 {0.2, 0.3, 0.4, 0.6,
0.7}

{0.1, 0.2, 0.3,
0.4}

{0.2, 0.4, 0.5,
0.6}

{0.3, 0.4, 0.6,
0.7}

{0.2, 0.3, 0.5, 0.6,
0.7}

A5 {0.4, 0.5, 0.7, 0.8,
0.9}

{0.3, 0.5, 0.6,
0.7}

{0.5, 0.6, 0.7, 0.8,
0.9}

{0.7, 0.8, 0.9} {0.4, 0.5, 0.6,
0.8}

A6 {0.2, 0.3, 0.4,
0.6}

{0.1, 0.3, 0.4} {0.4, 0.5, 0.7} {0.2, 0.5, 0.6, 0.7,
0.9}

{0.2, 0.3, 0.7, 0.8,
0.9}

Table 4.36 Score values obtained by the score function

A1 A2 A3 A4 A5 A6

C1 0.5 0.66 0.4667 0.44 0.66 0.375

C2 0.64 0.65 0.46 0.25 0.525 0.2667

C3 0.6 0.475 0.68 0.425 0.7 0.5333

C4 0.65 0.7 0.85 0.5 0.8 0.58

C5 0.65 0.52 0.5 0.46 0.575 0.58
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C ¼ ðcklÞ5�5 ¼

� 0:335 0:65 0:92 0:38 0:935
0:6 � 0:63 0:9 0:18 0:6
0:3 0:3 � 0:965 0:135 0:735
0 0 0 � 0 0:27
0:6 0:74 0:82 0:95 � 0:735
0 0:33 0:18 0:645 0:18 �

2
6666664

3
7777775

Steps 7–8. Construct the discordance matrix based on the weighted distance that is
formulated by using the corresponding discordance sets:

D ¼ ðdklÞ5�5 ¼

� 0:9 0:8333 0 1 0
0:8889 � 0:5 0 1 0:2083
0:9 0:9 � 0 0:9 0:48
0:9 0:9 1 � 0:9 0:9375

0:4167 0:8333 0:1125 0 � 0:3
0:9 0:9 1 0:25 0:9 �

2
6666664

3
7777775

Step 9. Construct the strong and weak outranking relations with ðc�; c0; c�Þ ¼
ð0:6; 0:7; 0:9Þ and d0 ¼ 0:5; d� ¼ 0:6: The outranking relations are given
in Table 4.38.

Step 10. Draw the strong and weak outranking graphs in Fig. 4.12.

The forward ranking v0, the reverse ranking v00 and the average ranking �v are
derived and shown in Table 4.39.

From Table 4.39, we obtain the final ranking as A2 
A5 � A1 
A3 � A6 � A4.

Table 4.37 Deviation values obtained by the deviation function

A1 A2 A3 A4 A5 A6

C1 0.1871 0.2059 0.1700 0.1855 0.1855 0.1479

C2 0.1855 0.2291 0.1855 0.1118 0.1479 0.1247

C3 0.2280 0.1920 0.1720 0.1479 0.1414 0.1247

C4 0.1803 0.1581 0.1118 0.1581 0.0816 0.2315

C5 0.1118 0.2315 0.1581 0.1855 0.1479 0.2786

Table 4.38 The outranking relations

A1 A2 A3 A4 A5 A6

A1 – SF SF

A2 – Sf SF Sf

A3 – SF SF

A4 –

A5 Sf SF SF – SF

A6 Sf –
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Fig. 4.12 a Strong outranking graph. b Weak outranking graph

Table 4.39 Results of
ranking

A1 A2 A3 A4 A5 A6

Forward ranking v0 2 1 2 4 1 3

Reverse ranking v00 2 1 2 4 1 3

Average ranking �v 2 1 2 4 1 3
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Chapter 5
Hesitant Fuzzy Multiple Criteria Decision
Making Methods with Incomplete Weight
Information

In Chap. 4, we discuss the multiple criteria decision making problems in which the
evaluation values of alternatives over different criteria are given as the hesitant
fuzzy decision matrix H (shown as Eq. (5.1)) and the weight information of the
criteria are completely known. However, in many cases, the weight information is
not completely known. It is important for us to develop some procedures to handle
hesitant fuzzy multiple criteria decision making problems with incomplete weights.

H ¼
h11 h12 � � � h1n
h21 h22 � � � h2n
..
. ..

. . .
. ..

.

hm1 hm2 � � � hmn

2
6664

3
7775 ð5:1Þ

To simplify the representation, let X be the set of all known weight information
provided by the decision makers. Once the weight information in X is contradic-
tory, X becomes an empty set and it should be reconsidered by the decision maker
until there is no contradiction. Without loss of generality, the structure of the
weights in X would be in the following forms (Liao and Xu 2014a):

(1) A weak ranking: fxi �xjg;
(2) A strict ranking: fxi � xj [ aig, where faig are non-negative constants;
(3) A ranking of differences: fxi � xj �xk � xlg, for j 6¼ k 6¼ l;
(4) A ranking with multiples: fxi � aixjg, where faig are non-negative constants;
(5) An interval form: fai �xi � ai þ eig, where faig and feig are non-negative

constants.

In the context of multiple criteria decision making with incomplete weight
information, the first thing we shall do is to determine the weights of criteria under
the restricted domain X. Some scholars have noticed this and carried out a series of

http://dx.doi.org/10.1007/978-981-10-3265-3_4


studies on it. Xia et al. (2013) proposed the hesitant fuzzy quasi-arithmetic means
and utilized the Choquet integral to obtain the weights of criteria. Xu and Zhang
(2013) constructed a programming model to get the weights of criteria. Observing
that in the course of decision making, the decision makers sometimes want to
interact with the analysts by modifying their preference information gradually, in
the first part of this chapter, we introduce a satisfaction degree based interactive
decision making method for hesitant fuzzy multiple criteria decision making with
incomplete weight information. We propose the hesitant fuzzy positive ideal
solution and the hesitant fuzzy negative ideal solution. Then, we definite the sat-
isfaction degree of an alternative, based on which several optimization models are
developed to determinate the weights of criteria. Subsequently, in order to make a
reasonable decision, we introduce an interactive method based on some optimiza-
tion models for multiple criteria decision making with hesitant fuzzy information.
A practical example on evaluating the service quality of airlines is provided to
illustrate the models and method.

Note that the methods in Xia et al. (2013) and Xu and Zhang (2013) are based on
the objective information of alternatives over criteria. However, in some cases, the
decision makers would like to provide some subjective preferences to the alterna-
tives in advance. Consequently, when determining the weights of criteria, we
should consider both the objective information (manifested as criteria values) and
subjective preferences provided by the decision makers. In the second part of this
chapter, we consider this scenario and propose a method to derive the weights of
criteria by minimizing the deviations between the subjective and objective prefer-
ences. We also extend the method to IVHFSs. A numerical example on energy
policy selection is conducted to demonstrate the effectiveness of the models and
methods.

The third part of this chapter discusses the multiple stages multiple criteria
decision making problems where the judgments are collected from different stages
and represented in HFEs. The key to handle the multiple stages multiple criteria
decision making problem is to determine the dynamic weight vector of different
stages. After assigning the weights to different stages, it is easy to aggregate the
dynamic hesitant information by the developed operators and then rank the alter-
natives. Therefore, after introducing the definition of hesitant fuzzy variable and
giving some basic operational laws and aggregation operators, we introduce some
novel methods to determine the weights of hesitant fuzzy variables from different
stages.
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5.1 Satisfaction Degree Based Interactive Decision Making
Methods for Hesitant Fuzzy Multiple Criteria Decision
Making with Incomplete Weight Information

5.1.1 A Satisfaction Degree Based Method for Hesitant
Fuzzy Multiple Criteria Decision Making
with Incomplete Weight Information

According to the aggregation operators presented in Chap. 3, it is easy to calculate
the overall values giði ¼ 1; 2; . . .;mÞ of the alternatives Aiði ¼ 1; 2; . . .;mÞ over the
criteria Cjðj ¼ 1; 2; . . .; nÞ. Taking the AHFWA operator (see Definition 3.4) as an
illustration, the overall value of the alternative Ai with the weight vector x can be
obtained as:

giðxÞ ¼ AHFWA hi1; hi2; . . .; hinð Þ ¼ �n
j¼1

xjhij
� �

¼ 1�
Yn
j¼1

ð1� hrðtÞij Þxj

�����t ¼ 1; 2; . . .; l; l ¼ maxflhi1 ; lhi2 ; . . .; lhing
( ) ð5:2Þ

It is observed that the alternative whose ratings over criteria are all full sets is
ideal and desirable, and similarly the alternative whose evaluation values over
criteria are all empty sets is negative and undesirable. If all ratings of the alternative
Ai over the criteria Cjðj ¼ 1; 2; . . .; nÞ are full sets, then the overall value of Ai can
be calculated as:

gþ ¼ AHFWAðf1g; f1g; . . .; f1gÞ ¼ �n
j¼1

xjf1g
� �

¼ 1�
Yn
j¼1

ð1� 1Þxj

�����t ¼ 1; 2; . . .; l

( )
¼ f1g ð5:3Þ

Analogously, if all evaluation values of the alternative Ai over the criteria Cjðj ¼
1; 2; . . .; nÞ are empty sets, then the overall value of Ai can be calculated as:

g� ¼ AHFWAðf0g; f0g; . . .; f0gÞ ¼ �n
j¼1

xjf0g
� �

¼ 1�
Yn
j¼1

ð1� 0Þxj

�����t ¼ 1; 2; . . .; l

( )
¼ f0g ð5:4Þ
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Definition 5.1 (Liao and Xu 2014b). Gþ ¼ ðf1g; f1g; . . .; f1gÞ is called the
hesitant fuzzy positive ideal solution and G� ¼ ðf0g; f0g; . . .; f0gÞ is called the
hesitant fuzzy negative ideal solution.

For the alternative Ai with the ratings hi ¼ ðhi1; hi2; . . .; hinÞ, based on the dis-
tance measure of HFEs (taking the hesitant normalized Manhattan distance shown
as Eq. (4.7) as an illustration), we can calculate the distance between the alternative
Ai and the hesitant fuzzy positive ideal solution Gþ and also the distance between
the alternative Ai and the hesitant fuzzy negative ideal solution G�, respectively.

dhnm hi;G
þ� � ¼ 1

l

Xl
t¼1

1�
Yn
j¼1

ð1� hrðtÞij Þxj

 !
� 1

�����
����� ¼ 1

l

Xl
t¼1

Yn
j¼1

ð1� hrðtÞij Þxj

ð5:5Þ

dhnm hi;G
�� � ¼ 1

l

Xl
t¼1

1�
Yn
j¼1

ð1� hrðtÞij Þxj

 !
� 0

�����
�����

¼ 1
l

Xl
t¼1

1�
Yn
j¼1

ð1� hrðtÞij Þxj

 !
ð5:6Þ

where l ¼ maxflhi1 ; lhi2 ; . . .; lhing.
Since giðxÞ ¼ 1� Qn

j¼1
ð1� hrðtÞij Þxj

�����t ¼ 1; 2; . . .; l; l ¼ maxflhi1 ; lhi2 ; . . .; lhing
( )

, then

we can see that dhnm hi;G�� � ¼ sðgiÞ, i.e., the distance between hi and G� equals to
the score function value of gi, which is just a coincidence.

Ostensibly, all of these derivations seem to be quite easy. However, we may
ignore an importance precondition, i.e., the weight information is partially known
and we cannot get the crisp weights corresponding to different criteria.
Consequently, it is hard or impossible to calculate the distance between the alter-
natives Aiði ¼ 1; 2; . . .;mÞ and the hesitant fuzzy positive ideal solution Gþ and the
distance between the alternatives Aiði ¼ 1; 2; . . .;mÞ and the hesitant fuzzy negative
ideal solution G� by Eqs. (5.5) and (5.6), respectively. To determinate the weights
is a difficult or insurmountable question due to the fact that the unknown parameters
xjðj ¼ 1; 2; . . .; nÞ are in the exponential term. Hence, we need to find a novel way
to solve this issue.

Below we reconsider the main idea of what we have done above. We first fuse
the values hijðj ¼ 1; 2; . . .; nÞ of the alternative Ai over the criteria Cjðj ¼
1; 2; . . .; nÞ into an overall value gi, and then calculate the distance between the
derived overall value gi and Gþ or G�. What about changing the order of these two
steps? If we first calculate the distance between each rating and the hesitant fuzzy
positive ideal point or the hesitant fuzzy negative ideal point, and then fuse the
distances with respect to the criteria Cjðj ¼ 1; 2; . . .; nÞ, the computational com-
plexity will be changed significantly, which makes the problem easy to handle.
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Since

dhnmðhij; hþ
ij Þ ¼

1
l

Xl
t¼1

hrðtÞij � 1
��� ��� ¼ 1

l

Xl
t¼1

1� hrðtÞij

� �
¼ 1� 1

l

Xl
t¼1

hrðtÞij ¼ 1� sðhijÞ

ð5:7Þ

dhnmðhij; h�ij Þ ¼
1
l

Xl
t¼1

hrðtÞij � 0
��� ��� ¼ 1

l

Xl
t¼1

hrðtÞij ¼ sðhijÞ ð5:8Þ

then we can fuse the distances with respect to different criteria by some developed
operators. These operators are not limited by the hesitant fuzzy aggregation oper-
ators but all the classical operators because the distance dhnmðhij; hþ

ij Þ and
dhnmðhij; h�ij Þ are all crisp values. Taking the weighted averaging (WA) operator as
an example, the overall distance between the alternative Ai and the hesitant fuzzy
positive ideal solution Gþ and also the distance between the alternative Ai and the
hesitant fuzzy negative ideal solution G� can be derived respectively as:

d0hnmðhi;Gþ Þ ¼
Xn
j¼1

xj 1� sðhijÞ
� � ¼ 1�

Xn
j¼1

xjsðhijÞ ð5:9Þ

d0hnmðhi;G�Þ ¼
Xn
j¼1

xjsðhijÞ ð5:10Þ

Intuitively, the smaller the distance d0hnmðhi;Gþ Þ is, the better the alternative
should be; while the larger the distance d0hnmðhi;G�Þ is, the better the alternative
should be. Motivated by the TOPSIS method, we shall take both the distance
d0hnmðhi;Gþ Þ and the distance d0hnmðhi;G�Þ into consideration rather than consider
them individually. Then we can derive the definition of satisfaction degree
naturally.

Definition 5.2 (Liao and Xu 2014b). A satisfaction degree of the alternative Ai over
the criteria Cjðj ¼ 1; 2; . . .; nÞ with the weight vector x ¼ ðx1;x2; . . .;xnÞT 2 X is
defined as:

rðhiðxÞÞ ¼ d0hnmðhi;G�Þ
d0hnmðhi;Gþ Þþ d0hnmðhi;G�Þ ð5:11Þ

where 0�xj � 1; j ¼ 1; 2; . . .; n, and
Pn

j¼1 xj ¼ 1.
Combining Eqs. (5.9), (5.10) and (5.11), we have
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rðhiðxÞÞ ¼ d0hnmðhi;G�Þ
d0hnmðhi;Gþ Þþ d0hnmðhi;G�Þ ¼

Pn
j¼1 xjsðhijÞ

1�Pn
j¼1 xjsðhijÞþ

Pn
j¼1 xjsðhijÞ

¼
Xn
j¼1

xjsðhijÞ

ð5:12Þ

From Eqs. (5.10) and (5.12), we can see that the satisfaction degree reduces to the
distance between the alternative Ai and the hesitant fuzzy negative ideal solution G�,
which is a coincidence. In order not to lose much information and make our method
more applicable, we introduce a parameter h, which denotes the risk preference of
the decision maker: h[ 0:5 means the decision maker is pessimist and the further
the distance between the alternative and the positive ideal solution, the better the
choice; while h\0:5 means the opposite. The value of the parameter h is provided
by the decision maker in advance. Consequently, the satisfaction degree becomes

rðhiðxÞÞ ¼
1� hð ÞPn

j¼1 xjsðhijÞ
h 1�Pn

j¼1 xjsðhijÞ
� �

þ 1� hð ÞPn
j¼1 xjsðhijÞ

ð5:13Þ

It is obvious that 0� rðhiðxÞÞ� 1, for any h 2 ½0; 1�, i ¼ 1; 2; . . .;m. As our
purpose is to select the alternative with the highest satisfaction degree, the fol-
lowing multiple objective optimization model can be generated naturally.

Model 5.1

max rðh1ðxÞÞ; rðh2ðxÞÞ; . . .; rðhmðxÞÞ
s: t:x ¼ ðx1;x2; . . .;xnÞ 2 X

0�xj � 1; j ¼ 1; 2; . . .; nXn
j¼1

xj ¼ 1

We change Model 5.1 into a single objective optimization model by using the
equal weighted summation method (French et al. 1983).

Model 5.2

max
Xm
i¼1

rðhiðxÞÞ

s: t:x ¼ ðx1;x2; . . .;xnÞ 2 X

0�xj � 1; j ¼ 1; 2; . . .; nXn
j¼1

xj ¼ 1
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Combining Eq. (5.13) and Model 5.2, we obtain

Model 5.3

max
Xm
i¼1

1� hð ÞPn
j¼1 xjsðhijÞ

h 1�Pn
j¼1 xjsðhijÞ

� �
þ 1� hð ÞPn

j¼1 xjsðhijÞ
s: t:x ¼ ðx1;x2; . . .;xnÞ 2 X

0�xj � 1; j ¼ 1; 2; . . .; nXn
j¼1

xj ¼ 1

This model can be solved by using many efficient algorithms (Terlaky 1996) or
using the MATLAB or the Lingo mathematic software package. Suppose that the
optimal solution of Model 5.3 is x� ¼ ðx�

1;x
�
2; . . .;x

�
nÞT , then we can calculate the

overall value gi of each alternative Ai according to Eq. (5.2). Subsequently, the
ranking order of alternatives can be derived by the comparison method in Sect. 1.1.3.

Let us reconsider the satisfaction based method again deeply. In general, in the
process of decision making with incomplete weight information of criteria, the
basic thing we should do is to find the weights that are as adequate as possible to the
opinions of decision makers. Does our proposed model reflect the decision makers’
opinions? The answer is “yes”. Actually, starting from calculating the overall
distance between the alternative Ai and the hesitant fuzzy positive ideal solution
Gþ and the distance between the alternative Ai and the hesitant fuzzy negative ideal
solution G� by Eqs. (5.9) and (5.10), respectively, the decision makers’ opinions
have been taken into account. The aim of introducing the satisfaction degree is also
to model the decision makers’ opinions more comprehensive since it includes both
of the above two distances. In addition, the parameter h, which denotes the risk
preferences of the decision makers, is also used to enhance the reflection of the
decision makers’ ideas. Since the unknown weight information cannot be obtained
directly, maximizing those satisfaction degrees simultaneously is a good choice to
find a solution which does not show any discrimination to certain alternative(s), and
meanwhile reflects the decision makers’ opinions comprehensively. Certainly we
can also minimize those satisfaction degrees simultaneously if we want to select the
worst alternative(s).

5.1.2 An Interactive Method for Hesitant Fuzzy Multiple
Criteria Decision Making with Incomplete Weight
Information

Section 5.1.1 presents a satisfaction degree based method to handle multiple criteria
decision making problem whose weight information is partially known. However,
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by using this method, the satisfaction degrees of certain alternatives are sometimes
too high and others are simultaneously too low. Satisfaction degrees with a wide
range may match with some decision makers’ requirement, but, in many cases, the
decision makers may want to modify their satisfaction degrees slightly in order to
provide new preference information or modify the previous preference information.
Interacting with the decision makers gradually is an acceptable and applicable way
for doing so in reality. In the following, we propose an interactive method for
multiple criteria decision making with hesitant fuzzy information.

The main idea of this method can be clarified easily. Firstly, the decision makers
give the lower bounds of the satisfaction degrees with respect to each alternative,
and then according to these lower bounds, we can establish the weights of different
criteria. Once we have determined the different weights, the satisfaction degrees of
different alternatives can be calculated and the analysts then ask the decision makers
whether they want to reconsider the satisfaction degrees or not. If the decision
makers are not satisfied with the derived satisfaction degrees, then the analysts shall
inform the decision makers to reconsider their lower bounds of the satisfaction
degrees and then go to do iteration till acceptable.

In order to help the decision makers establish the lower bounds of the alterna-
tives, motivated by the max-min operator developed by Zimmermann and Zysno
(1980), we derive Model 5.4.

Model 5.4

max s

s:t: rðhiðxÞÞ� s

x ¼ ðx1;x2; . . .;xnÞT 2 X

0�xj � 1; j ¼ 1; 2; . . .; n;Xn
j¼1

xj ¼ 1

Solving Model 5.4, we obtain the initial optimal weight vector xð0Þ ¼
ðxð0Þ

1 ;xð0Þ
2 ; . . .;xð0Þ

n ÞT and the initial satisfaction degrees rðhiðxð0ÞÞÞði ¼ 1; 2; . . .;mÞ
of the alternatives Aiði ¼ 1; 2; . . .;mÞ. Then the decision makers can provide the

lower bounds sð0Þi ði ¼ 1; 2; . . .;mÞ of the satisfaction degrees of the alternatives
Aiði ¼ 1; 2; . . .;mÞ according to rðhiðxð0ÞÞÞ ði ¼ 1; 2; . . .;mÞ. Once we obtain the
lower bounds, the criteria weights can be re-established by Model 5.5.
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Model 5.5

max
Xm
i¼1

si

s: t: rðhiðxÞÞ� si � sð0Þi ; i ¼ 1; 2; . . .;m

x ¼ ðx1;x2; . . .;xnÞ 2 X

0�xj � 1; j ¼ 1; 2; . . .; nXn
j¼1

xj ¼ 1

Solving Model 5.5 we can get a new weight vector

xð1Þ ¼ ðxð1Þ
1 ;xð1Þ

2 ; . . .;xð1Þ
n ÞT . If Model 5.5 has no optimal solution, this means that

some lower bounds are greater than the corresponding initial satisfaction degrees.
Hence it needs to be reconsidered till the optimal solution is obtained.

For the convenience of application, the procedure of the interactive method for
multiple criteria decision making under hesitant fuzzy environment with incomplete
weight information can be described as follows:

Algorithm 5.1

Step 1. Construct the hesitant fuzzy decision matrix, and then go to the next step.

Step 2. Use Model 5.4 to determinate the initial weight vector xð0Þ ¼
ðxð0Þ

1 ;xð0Þ
2 ; . . .;xð0Þ

n Þ and the initial satisfaction degrees
rðhiðxð0ÞÞÞði ¼ 1; 2; . . .;mÞ of the alternatives Aiði ¼ 1; 2; . . .;mÞ, and
then go to the next step.

Step 3. The decision makers provide the lower bounds sðtÞi ði ¼ 1; 2; . . .;mÞ of the
satisfaction degrees of the alternatives Aiði ¼ 1; 2; . . .;mÞ according to
rðhiðxð0ÞÞÞ ði ¼ 1; 2; . . .;mÞ. Let t ¼ tþ 1, then go to the next step.

Step 4. Solve Model 5.5 to determinate the weight vector xðtÞ ¼
ðxðtÞ

1 ;xðtÞ
2 ; . . .;xðtÞ

n ÞT and the satisfaction degrees
rðhiðxðtÞÞÞði ¼ 1; 2; . . .;mÞ of the alternatives Aiði ¼ 1; 2; . . .;mÞ, and then
go to the next step.

Step 5. If the model has an optimal solution, then go to Step 6; Otherwise go to
Step 3.

Step 6. Calculate the overall values giðxðtÞÞði ¼ 1; 2; . . .;mÞ of the alternatives
Aiði ¼ 1; 2; . . .;mÞ and rank the alternatives according to the comparison
law, and then choose the best one(s). Go to the next step.

Step 7. End.
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5.1.3 Application of the Approaches in Domestic Airline
Service Quality Evaluation

We now consider the same example concerning the domestic airline service quality
evaluation as shown in Example 4.2 to illustrate the satisfaction based method.

Example 5.1 (Liao and Xu 2014b). In Example 4.2, the weight vector of the criteria
is given directly as x ¼ ð0:1; 0:2; 0:4; 0:3ÞT . This is somehow subjective. Here we
suppose that the weight information is incomplete. All the information regarding to
the weights of criteria is X ¼ fx3 �x4 �x2 �x1 � 0:1; 0:5�x3 � 0:4;
x2 � 2x1;

P4
j¼1 xj ¼ 1g. Below we use the satisfaction based method to solve this

problem:
Firstly, we calculate the distance between each rating and the hesitant fuzzy

positive ideal solution and the hesitant fuzzy negative ideal solution by using
Eqs. (5.7) and (5.8). To do so, we only need to compute the score function value
matrix S:

S ¼
0:7333 0:7 0:6 0:6
0:8 0:7333 0:6 0:6

0:6333 0:7333 0:5 0:6
0:75 0:8 0:4333 0:45

2
664

3
775

Take h ¼ 0:4 as an illustration. Based on the score function value matrix S and
the partially known weight information X, motivated by Model 5.3, we can con-
struct Model 5.6:

Model 5.6

max
0:6 0:7333x1 þ 0:7x2 þ 0:6x3 þ 0:6x4ð Þ

0:4 0:2667x1 þ 0:3x2þ 0:4x3 þ 0:4x4ð Þþ 0:6 0:7333x1 þ 0:7x2þ 0:6x3 þ 0:6x4ð Þ
þ 0:6 0:8x1 þ 0:7333x2þ 0:6x3 þ 0:6x4ð Þ

0:4 0:2x1 þ 0:2667x2 þ 0:4x3 þ 0:4x4ð Þþ 0:6 0:8x1 þ 0:7333x2 þ 0:6x3 þ 0:6x4ð Þ
þ 0:6 0:6333x1 þ 0:7333x2 þ 0:5x3 þ 0:6x4ð Þ

0:4 0:3667x1 þ 0:2667x2þ 0:5x3 þ 0:4x4ð Þþ 0:6 0:6333x1 þ 0:7333x2 þ 0:5x3 þ 0:6x4ð Þ
þ 0:6 0:75x1 þ 0:8x2 þ 0:4333x3 þ 0:45x4ð Þ

0:4 0:25x1þ 0:2x2þ 0:5667x3þ 0:55x4ð Þþ 0:6 0:75x1 þ 0:8x2 þ 0:4333x3 þ 0:45x4ð Þ
s:t: x3 �x4�x2 �x1 � 0:1

0:5�x3 � 0:4; x2 � 2x1

x1 þx2 þx3 þx4 ¼ 1

The objective function can be simplified as:

max
0:44x1 þ 0:42x2 þ 0:36x3 þ 0:36x4

0:5467x1 þ 0:54x2 þ 0:52x3 þ 0:52x4
þ 0:48x1 þ 0:44x2 þ 0:36x3 þ 0:36x4

0:56x1 þ 0:5467x2 þ 0:52x3 þ 0:52x4

þ 0:38x1 þ 0:44x2 þ 0:3x3 þ 0:36x4

0:5267x1 þ 0:5467x2 þ 0:5x3 þ 0:2x4
þ 0:45x1 þ 0:48x2 þ 0:26x3 þ 0:27x4

0:55x1 þ 0:56x2 þ 0:4867x3 þ 0:49x4

178 5 Hesitant Fuzzy Multiple Criteria Decision Making Methods …

http://dx.doi.org/10.1007/978-981-10-3265-3_4
http://dx.doi.org/10.1007/978-981-10-3265-3_4


Solving this model, we get the optimal solution: x� ¼ð0:12; 0:24; 0:4; 0:24ÞT .
According to Eq. (5.2), the overall value of each domestic airline can be

obtained as:

g1ðx�Þ ¼ f0:4485; 0:5293; 0:8819g; g2ðx�Þ ¼ f0:4942; 0:6335; 0:8282g
g3ðx�Þ ¼ f0:4578; 0:5694; 0:7805g; g4ðx�Þ ¼ f0:4571; 0:5161; 0:7716g

Hence, the score function values of the overall values giðx�Þði ¼ 1; 2; 3; 4Þ are

s g1ðx�Þð Þ ¼ 0:6199; s g2ðx�Þð Þ ¼ 0:6520; s g3ðx�Þð Þ ¼ 0:6026;

s g4ðx�Þð Þ ¼ 0:5816

Since s g2ðx�Þð Þ[ s g1ðx�Þð Þ[ s g3ðx�Þð Þ[ s g4ðx�Þð Þ, then we can rank these
four domestic airlines in descending order as g2ðx�Þ 	 g1ðx�Þ 	 g3ðx�Þ 	 g4ðx�Þ,
where “	” denotes “be prior to”. That is to say, the service quality of Transasia is the
best among the service quality of domestic airline in Taiwan.

To show the applicability of the interactive method and its corresponding
Algorithm 5.1, let us use the same example in Example 5.1 as an illustration:

Example 5.2 (Liao and Xu 2014b). In this example, we also take h ¼ 0:4 as an
illustration. Based on Model 5.4, we can establish Model 5.7:

Model 5.7

max s

s: t:
0:44x1 þ 0:42x2 þ 0:36x3 þ 0:36x4

0:5467x1 þ 0:54x2 þ 0:52x3 þ 0:52x4
� s

0:48x1 þ 0:44x2 þ 0:36x3 þ 0:36x4

0:56x1 þ 0:5467x2 þ 0:52x3 þ 0:52x4
� s

0:38x1 þ 0:44x2 þ 0:3x3 þ 0:36x4

0:5267x1 þ 0:5467x2 þ 0:5x3 þ 0:2x4
� s

0:45x1 þ 0:48x2 þ 0:26x3 þ 0:27x4

0:55x1 þ 0:56x2 þ 0:4867x3 þ 0:49x4
� s

x3 �x4 �x2 �x1 � 0:1

0:5�x3 � 0:4; x2 � 2x1

x1 þx2 þx3 þx4 ¼ 1

Solving this model, we get the initial weight vector xð0Þ ¼
ðxð0Þ

1 ;xð0Þ
2 ; . . .;xð0Þ

n ÞT ¼ ð0:2; 0:2; 0:4; 0:2ÞT and the initial satisfaction degrees

rð0Þ ¼ rð0Þðh1Þ; rð0Þðh2Þ; rð0Þðh3Þ; rð0Þðh4Þ
� �T¼ð73:3%; 75%; 78:3%; 66:84%ÞT

on these four domestic airlines.
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Suppose that the decision makers provide the lower bounds of the satisfaction

degrees on these four domestic airlines as sð0Þ ¼ ðsð0Þ1 ; sð0Þ2 ; sð0Þ3 ; sð0Þ4 ÞT¼ ð70%;

75%; 80%; 70%ÞT . Model 5.5 becomes the following optimal programming
problem:

Model 5.8

max ðs1 þ s2 þ s3 þ s4Þ
s: t:

0:44x1 þ 0:42x2 þ 0:36x3 þ 0:36x4

0:5467x1 þ 0:54x2 þ 0:52x3 þ 0:52x4
� s1 � 0:7

0:48x1 þ 0:44x2 þ 0:36x3 þ 0:36x4

0:56x1 þ 0:5467x2 þ 0:52x3 þ 0:52x4
� s2 � 0:75

0:38x1 þ 0:44x2 þ 0:3x3 þ 0:36x4

0:5267x1 þ 0:5467x2 þ 0:5x3 þ 0:2x4
� s3 � 0:8

0:45x1 þ 0:48x2 þ 0:26x3 þ 0:27x4

0:55x1 þ 0:56x2 þ 0:4867x3 þ 0:49x4
� s4 � 0:7

x3 �x4 �x2 �x1 � 0:1

0:5�x3 � 0:4; x2 � 2x1

x1 þx2 þx3 þx4 ¼ 1

Solving Model 5.8, we find that there is no feasible solution. This may result
from the fact that some of the lower bounds of the satisfaction degrees given by the
decision makers are too high. We appeal to the decision makers and then they
modify some of their lower bounds of the satisfaction degrees referring to the initial
satisfaction degrees. Suppose that the modified lower bounds are

sð0Þ ¼ ðsð0Þ1 ; sð0Þ2 ; sð0Þ3 ; sð0Þ4 ÞT ¼ð70%; 72%; 80%; 65%ÞT , then we modify Model
5.8 to Model 5.9.

Model 5.9

max ðs1 þ s2 þ s3 þ s4Þ
s: t:

0:44x1 þ 0:42x2 þ 0:36x3 þ 0:36x4

0:5467x1 þ 0:54x2 þ 0:52x3 þ 0:52x4
� s1 � 0:7

0:48x1 þ 0:44x2 þ 0:36x3 þ 0:36x4

0:56x1 þ 0:5467x2 þ 0:52x3 þ 0:52x4
� s2 � 0:72

0:38x1 þ 0:44x2 þ 0:3x3 þ 0:36x4

0:5267x1 þ 0:5467x2 þ 0:5x3 þ 0:2x4
� s3 � 0:8

0:45x1 þ 0:48x2 þ 0:26x3 þ 0:27x4

0:55x1 þ 0:56x2 þ 0:4867x3 þ 0:49x4
� s4 � 0:65

x3 �x4 �x2 �x1 � 0:1

0:5�x3 � 0:4; x2 � 2x1

x1 þx2 þx3 þx4 ¼ 1
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Solving Model 5.9, we get xð1Þ ¼ ðxð1Þ
1 ;xð1Þ

2 ;xð1Þ
3 ;xð1Þ

4 ÞT¼ ð0:12; 0:24;
0:4; 0:24ÞT and the satisfaction degrees rð1Þ ¼ rð1Þðh1Þ; rð1Þðh2Þ; rð1Þðh3Þ; rð1Þ

�
ðh4ÞÞT ¼ 72:73%; 74:1%; 80:83%; 65:93%ð ÞT on these four domestic airlines. If
the decision makes are not satisfied with these results, they can further modify the
lower bounds of the satisfaction degrees. Suppose that the decision makes are
satisfied with these results, then we go to the next step.

We further calculate the overall values giðxð1ÞÞði ¼ 1; 2; 3; 4Þ of these four
domestic airlines and rank them according to the comparison law in Sect. 1.1.3. In
analogy to Example 5.1, we can obtain g2ðxð1ÞÞ 	 g1ðxð1ÞÞ 	 g3ðxð1ÞÞ 	 g4ðxð1ÞÞ,
where “	” denotes “be prior to”, i.e., the service quality of Transasia is best among
the service quality of domestic airline in Taiwan. But from the satisfaction degrees,
we can see r3ðxð1ÞÞ 	 r2ðxð1ÞÞ 	r1ðxð1ÞÞ 	 r4ðxð1ÞÞ. The reason for this is that
when deriving the satisfaction degree, in order not to decrease the computational
complexity, we use Eqs. (5.9) and (5.10) to substitute Eqs. (5.5) and (5.6),
respectively. So, after we obtain the weights of the criteria, in order not to lose
much information, we shall calculate the satisfaction degree by Eq. (5.11) instead
of Eq. (5.12).

5.2 Minimum Deviation Methods for Hesitant Fuzzy
Multiple Criteria Decision Making with Incomplete
Weight Information

5.2.1 Minimum Deviation Methods for Hesitant Fuzzy
Multiple Criteria Decision Making with Incomplete
Weight Information

In practical decision making problems, people are often difficult to give the explicit
weight information. Sometimes even there is an extreme case that the weights are
completely unknown. Meanwhile, the decision maker often has particular subjec-
tive preference to the alternatives. How to solve this kind of decision making
problem becomes a necessary and interesting thing. In view of this situation, Xu
(2004) proposed a method based on the minimum deviation between the subjective
and objective preferences. But this method is useful for triangular fuzzy informa-
tion. In the following, we introduce some minimum deviation methods for hesitant
fuzzy multiple criteria decision making in which the weights of criteria are not
really sure and the decision maker has preferences over all the alternatives.

1. Method Based on Hesitant Fuzzy Expected Values and Minimum
Deviations

In the following, we first define the concept of hesitant fuzzy expected value,
which includes the risk preference of the decision maker:
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Definition 5.3 (Zhao et al. 2016). Let h be a HFE and h ¼ c1; c2; . . .clf g, then the
expected value of h is

hðTÞ ¼ 1
l� 1

1� Tð ÞcrðlÞ þ crðl�1Þ þ . . .þ crð2Þ þ Tcrð1Þ
h i

ð5:14Þ

where crðtÞ is the tth largest number of ck k ¼ 1; 2; . . .; lð Þ, T is a real number lying
between 0 and 1.

The choice of T depends on the risk attitude of the decision maker. T [ 0:5
shows that the decision maker prefers to risk; T ¼ 0:5 implies that the decision
maker is risk neutral; T \ 0:5 means the decision maker is risk-averse. In fact, crð1Þ
and crðlÞ in Eq. (5.14) reveal the most optimistic attitude and the most pessimistic
attitude of the decision maker. Thus, by Eq. (5.14), a medium value between crð1Þ
and crðlÞ can be derived. Obviously, Definition 5.3 is just a special case of the
expected value of probability theory but reflects the risk preference clearly.

We can use Eq. (5.14) to calculate the expected values h Tð Þ
ij of all evaluation

values hij i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nð Þ and get the hesitant fuzzy expected value
decision matrix HðTÞ ¼ hðTÞij

� �
m
n

. If the subjective preference si to the ith alter-

native Ai given by the decision maker is a HFE, we can also compute its expected

value sðTÞi .
In the following, we introduce a hesitant fuzzy multiple criteria decision making

method based on the hesitant fuzzy expected value and deviations, where the
weights of criteria are completely unknown or incompletely known and the decision
maker has subjective preferences over the alternatives.

(1) Case with completely unknown weight information on criteria

Due to various constraints, there usually is a certain deviation between the
subjective and objective preferences. Suppose that the deviation between the

expected values hðTÞij and the subjective preference values sðTÞi given by the decision

maker is denoted as rij ¼ hðTÞij � sðTÞi , then r2ij ¼ hðTÞij � sðTÞi

� �2
. Thus, the devia-

tions between all the expected values hðTÞij j ¼ 1; 2; . . .; nð Þ of the ith alternative Ai

and the ith subjective preference value sðTÞi can be expressed by

r2i ¼
Pn

j¼1 rijxj
� �2. In order to make the decision result more scientific and rea-

sonable, the weights of criteria should minimize the total deviation between the
subjective preferences and the objective ones. Therefore, we construct the following
single objective optimization model:
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Model 5.10

min rðxÞ ¼
Xm
i¼1

Xn
j¼1

r2ijx
2
j

s:t: xj � 0;
Xn
j¼1

xj ¼ 1

To solve the model, we construct the Lagrange function as:

r x; kð Þ ¼
Xm
i¼1

Xn
j¼1

r2ijx
2
j þ 2kð

Xn
j¼1

xj � 1Þ ð5:15Þ

Computing the partial derivative and let

@r
@xj

¼ 2
Xm
i¼1

r2ijxj þ 2k ¼ 0; j ¼ 1; 2; . . .; n ð5:16Þ

@r
@k

¼
Xn
j¼1

xj � 1 ¼ 0 ð5:17Þ

From Eq. (5.16), we can get

xj ¼ �kPm
i¼1 r

2
ij
; j ¼ 1; 2; . . .; n ð5:18Þ

Substituting Eq. (5.18) into Eq. (5.17), we obtain

k ¼ �1=
Xn

j¼1
1=
Xm

i¼1
r2ij ð5:19Þ

Then we get

xj ¼ 1Pn
j¼1 1

.Pm
i¼1 r

2
ij

,Xm

i¼1
r2ij; j ¼ 1; 2; . . .; n ð5:20Þ

Using the weight vector x ¼ x1;x2 � � � ;xnð ÞT and the weighted average
method:

hðTÞi ¼
Xn
j¼1

hðTÞij xj; i ¼ 1; 2; . . .;m ð5:21Þ
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we can compute the overall expected value hðTÞi of all the alternatives
Ai i ¼ 1; 2; . . .;mð Þ. Then we can sort the alternatives and choose the best one(s)

according to the value of hðTÞi i ¼ 1; 2; . . .;mð Þ.
(2) Case with partly known weight information on criteria

Sometimes people can provide partly weight information when making deci-
sions. If the criterion weight vector x ¼ x1;x2 � � � ;xnð ÞT satisfies the constraints
0� aj �xj � bj, j ¼ 1; 2; . . .; n, where aj and bj are the upper and lower bounds of
xj, respectively. In this situation, we give another minimum deviation method to
determine the criterion weight vector.

Model 5.11

min rðxÞ ¼
Xm
i¼1

Xn
j¼1

r2ijxj

s:t: 0� aj �xj � bj; j ¼ 1; 2; . . .; nXn
j¼1

xj ¼ 1

Using the MATLAB or LINGO mathematic software package, we can solve this
model and get the optimal criterion weight vector. Next, we use Eq. (5.21) to obtain
the overall criterion expected values of all the alternatives and give their rankings.

Taking into account the above two cases, we propose the following hesitant
fuzzy decision method:

Algorithm 5.2

Step 1. Construct the hesitant fuzzy decision matrix H, and then go to the next
step.

Step 2. Assume that the decision maker has subjective preference over the alter-
native Ai i ¼ 1; 2; . . .;mð Þ and all the preference values si i ¼ 1; 2; . . .;mð Þ
are HFEs. Then we utilize Eq. (5.14) to calculate the expected values

sðTÞi i ¼ 1; 2; . . .;mð Þ of all the subjective preference values

si i ¼ 1; 2; . . .;mð Þ and the expected values hðTÞij i ¼ 1; 2; . . .;m; j ¼
1; 2; . . .; n of hij i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nð Þ. After that, we construct

the hesitant fuzzy expected value decision matrix HðTÞ ¼ hðTÞij

� �
m
n

and

go to the next step.
Step 3. If the information of the criterion weights is completely unknown, then we

use Eq. (5.20) to obtain the optimal weight vector x ¼ x1;x2 � � � ;xnð ÞT ;
otherwise, go to Step 4.

Step 4 If we know the information of the criterion weights in part, then we can
solve Model 5.11 to get the criterion weight vector x ¼ x1;x2 � � � ;xnð ÞT ,
and go to the next step.

184 5 Hesitant Fuzzy Multiple Criteria Decision Making Methods …



Step 5. Use Eq. (5.21) to get the overall expected values hðTÞi i ¼ 1; 2; . . .;mð Þ of
the alternatives Ai i ¼ 1; 2; . . .;mð Þ, then we can obtain the ranking of the
alternatives, and go to the next step.

Step 6. End.

(2) Method Based on Distances and Minimum Deviations

Algorithm 5.2 uses the expected values to characterize the deviations between the
subjective and objective preferences. It is simple and clear. When the demand of
precision is not very high, it is a good method. Moreover, it can reflect the attitudes of
the decision makers by the parameter T. However, this algorithm needs to change the
HFEs into real numbers first. This conversion process may lose some information. To
reduce the loss of the information as much as possible, in the following, we introduce
another method in which we directly use the hesitant fuzzy distance between the
subjective and objective preferences to represent the deviations between them.

1) Case with completely unknown weight information on criteria

Here we use the distance to characterize the subjective and objective deviations
and then construct a goal programming model to determine the optimal weight
vector of criteria in hesitant fuzzy environment. If we use the hesitant normalized

hamming distance dij ¼ 1
l

Pl
k¼1

hrðkÞij � srðkÞi

��� ��� to express the deviation between the

values hij and si, then the deviations between the ith alternative and the subjective
preference values si is

di xð Þ ¼
Xn
j¼1

xjdij; i ¼ 1; 2; . . .;m ð5:22Þ

The total deviation of all the alternatives to all the subjective preference values is

d xð Þ ¼
Xm
i¼1

Xn
j¼1

xjdij ð5:23Þ

To make the decision result reasonable, the total deviation should be minimal.
Motivated by this idea, we construct the following single objective programming
model:

Model 5.12

min dðxÞ ¼
Xm
i¼1

Xn
j¼1

xjdij

s:t: xj � 0; j ¼ 1; 2; . . .; n;
Xn
j¼1

x2
j ¼ 1
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Note that in Model 5.12, we use the unification condition of a vector, i.e.,Pn
j¼1 x

2
j ¼ 1 instead of the above mentioned normalization condition

Pn
j¼1 xj ¼ 1

so that Model 5.12 can be solved easily by the Lagrange method.
To find the optimal solution of Model 5.12, we construct the following Lagrange

function:

Lðx; kÞ ¼
Xm
i¼1

Xn
j¼1

xjdij þ k
2

Xn
j¼1

x2
j � 1

 !
ð5:24Þ

where k is a real number, called Lagrange multiplier variable. Computing the partial
derivatives of the function Lðx; kÞ, we get

@L
@xj

¼
Xm
i¼1

dij þ kxj ¼ 0; j ¼ 1; 2; . . .; n ð5:25Þ

@L
@k

¼ 1
2

Xn
j¼1

x2
j � 1

 !
¼ 0 ð5:26Þ

It follows from Eq. (5.25) that

xj ¼ �Pm
i¼1 dij
k

; j ¼ 1; 2; . . .; n ð5:27Þ

Taking Eq. (5.27) into Eq. (5.25), we have

k ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

Xm
i¼1

dij

 !2
vuut ð5:28Þ

Therefore, we obtain

xj ¼
Pm

i¼1 dijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1

Pm
i¼1 dij

� �2q ; j ¼ 1; 2; . . .; n ð5:29Þ

Because the criterion weights should satisfy the normalization condition, we get
the weights of the criteria as:
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x�
j ¼

xjPn
j¼1 xj

; j ¼ 1; 2; . . .; n ð5:30Þ

We can see that Models 5.10 and 5.12 consider the deviations between sub-
jective and objective information. But there are some differences. Model 5.10 uses
the hesitant fuzzy expected values to construct the objective function, while Model
5.12 computes the deviations by the distances measures. Thus, Model 5.10 may
lead to the loss of information. However, it can reflect the risk preference of the
decision maker according to the parameter T.

2) Case with partly known weight information on criteria

If the weights of criteria satisfy the constraint conditions 0� aj �xj � bj;
j ¼ 1; 2; . . .; n, and

Pn
j¼1 xj ¼ 1, where aj and bj are the upper and lower bounds

of xj, respectively, then we construct the following model to get the optimal weight
vector of criteria:

Model 5.13

min dðxÞ ¼
Xm
i¼1

Xn
j¼1

xjdij

s:t: 0� aj �xj � bj; j ¼ 1; 2; . . .; nXn
j¼1

xj ¼ 1

Using the MATLAB or LINGO mathematic software package, we can get the
optimal weight vector x ¼ x1;x2 � � � ;xnð ÞT of criteria.

Using Models 5.12 and 5.13, we can easily obtain the criterion weights no matter
the weight information is completely unknown or partially known. Next we can use
the hesitant fuzzy aggregating operators in Chap. 3 to aggregate the decision
information and gain the overall value of each alternative, and then select the best
one(s). Based on these analysis, we introduce Algorithm 5.3 for multiple criteria
decision making problems where the criterion values (objective preference values)
and the subjective preference values of the decision maker are all HFEs and the
criterion weight information is completely unknown or incompletely known.

Algorithm 5.3

Step 1. Construct the hesitant fuzzy decision matrix H. Meanwhile, the decision
makers give the subjective preference values of the ith alternative by si,
i ¼ 1; 2; . . .;m, which are also HFEs, and then go to the next step.

Step 2. If we do not know the weight information of the criteria completely, then
the optimal criteria weights can be obtained by Eq. (5.30) and we can turn
to Step 4; Otherwise, go to the next step.
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Step 3. If we know the possible range of criteria weights, then the best criterion
weights could be obtained by solving Model 5.13, and go to the next step.

Step 4 Use Eq. (3.2) to compute the overall value hi of each alternative Ai, and
then go to the next step.

Step 5. Rank the alternatives according to their overall values hi i ¼ 1; 2; . . .;mð Þ
and select the best one(s), then go to the next step.

Step 6. End.

5.2.2 Minimum Deviation Methods for Interval-Valued
Hesitant Fuzzy Multiple Criteria Decision Making
with Incomplete Weight Information

In practical decision making problems, the decision makers may have difficulty in
giving the precise assessments and thus provide the value ranges of membership
degrees. For this reason, Chen et al. (2013) introduced the notation of IVHFS, in
which the membership degrees of an element to a given set are expressed by
intervals. If the evaluation values of alternatives with respect to criteria are repre-
sented as IVHFEs, then we can construct the interval valued hesitant fuzzy decision
matrix eH shown as:

eH ¼

~h11 ~h12 � � � ~h1n
~h21 ~h22 � � � ~h2n
..
. ..

. . .
. ..

.

~hm1 ~hm2 � � � ~hmn

2
6664

3
7775 ð5:31Þ

Similar to the previous analysis, we shall give two interval-valued hesitant fuzzy
multiple criteria decision making methods based on the deviations of subjective and
objective preferences.

(1) Method Based on Interval-Valued Hesitant Fuzzy Expected Values and
Minimum Deviations

We first introduce the concepts of interval-valued hesitant fuzzy expected value
and interval-valued hesitant fuzzy expected value decision matrix.

Definition 5.4 (Zhao et al. 2016). Let ~h ¼ ~c1;~c2; . . .~clf g be an IVHFE, where
~ck ¼ ~cLk ; ~c

U
k

� 	
k ¼ 1; 2; . . .; lð Þ. The interval-valued hesitant fuzzy expected value of

~h is defined as:
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~hðTÞ ¼ 1
l� 1

1� Tð Þ�crðlÞ þ �crðl�1Þ þ . . .þ�crð2Þ þ T�crð1Þ
h i

ð5:32Þ

where �crðtÞ is the tth largest number of �ck k ¼ 1; 2; . . .; lð Þ and �ck ¼ ~cLk þ~cUk
2 ; T is a real

number lying between 0 and 1. When ~cLk ¼ ~cUk , for all k ¼ 1; 2; . . .; l, Eq. (5.32)
turns into Eq. (5.14). Similarly, the value of T reveals the risk attitude of the
decision maker. If the decision maker is risk pursuing, then T [ 0:5; if the decision
maker is risk neutral, then T ¼ 0:5; if the decision maker is risk averse, then
T\ 0:5.

If the decision maker’s subjective preference ~si to the ith alternative Ai is an

IVHFE, then we can use Eq. (5.32) to compute the expected values ~sðTÞi of ~si ,
i ¼ 1; 2; . . .;m. We also can calculate the expected values of the criterion values ~hij
ði ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nÞ in the interval-valued hesitant fuzzy decision
matrix eH . Thus, interval-valued hesitant fuzzy expected value decision matrixeH ðTÞ ¼ ~hðTÞij

� �
n
m

can be determined.

1) Case with completely unknown weight information on criteria

As the decision maker’s subjective preference ~si and objective preference ~hij are
all IVHFEs, we first compute the interval-valued hesitant fuzzy expected values
~hðTÞij ði ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nÞ of the criterion values ~hij i ¼ 1; 2; . . .;m;ð j ¼
1; 2; . . .; nÞ and the expected values ~sðTÞi ði ¼ 1; 2; . . .;mÞ of the subjective prefer-
ences ~si i ¼ 1; 2; . . .;mð Þ by Eq. (5.32). Then we can calculate the deviation

between the objective preference value ~hðTÞij and the subjective preference value ~sðTÞi ,

denoted as ~rij ¼ ~hðTÞij � ~sðTÞi . The overall deviation between the subjective and the
objective preference should be minimal. For this purpose, we construct the fol-
lowing optimization model:

Model 5.14

min ~rðxÞ ¼
Xm
i¼1

Xn
j¼1

~r2ijx
2
j

s:t: xj � 0;
Xn
j¼1

xj ¼ 1

We first establish the Lagrange function:

~r x; kð Þ ¼
Xm
i¼1

Xn
j¼1

~r2ijx
2
j þ 2kð

Xn
j¼1

xj � 1Þ ð5:33Þ

and then compute its partial derivatives and let
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@~r
@xj

¼ 2
Pm
i¼1

~r2ijxj þ 2k ¼ 0; j ¼ 1; 2; . . .; n

@~r
@k ¼

Pn
j¼1

xj � 1 ¼ 0

8>><
>>: ð5:34Þ

Solving these equations, we obtain

xj ¼ 1Pn
j¼1 1

.Pm
i¼1 ~r

2
ij

=
Xm

i¼1
~r2ij; j ¼ 1; 2; . . .; n ð5:35Þ

Then, the overall expected values of all alternatives are calculated by

~zðTÞi ¼
Xn
j¼1

~hðTÞij xj; i ¼ 1; 2; . . .;m ð5:36Þ

Thus, we can sort the alternatives by the values of ~zðTÞi i ¼ 1; 2; . . .;mð Þ and then
select the best one(s).

2) Case with partly known weight information on criteria

If the decision makers provide the ranges of the criterion weights as
0� aj �xj � bj with aj and bj being the upper and lower bounds of xj,
j ¼ 1; 2; . . .; n, then we construct the following model to obtain the criterion weight
vector x:

Model 5.15

min ~rðxÞ ¼
Xm
i¼1

Xn
j¼1

~r2ijxj

s:t: 0� aj �xj � bj; j ¼ 1; 2; . . .; nXn
j¼1

xj ¼ 1

Solving Model 5.15 with the MATLAB or LINGO mathematical software
package, we can get the optimal criterion weight vector x. After that, we compute
the overall expected values of all alternatives by Eq. (5.36) and choose the best
alternative(s).

Based on the above analyses, we introduce the following minimum deviation
based algorithm to solve the interval-valued hesitant fuzzy decision making
problems:
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Algorithm 5.4

Step 1. Construct the interval-valued hesitant fuzzy decision matrix eH .
Meanwhile, we ask the decision maker to give the subjective preference ~si
as IVHFE to each alternative, and then go to the next step.

Step 2. Use Eq. (5.32) to calculate the interval-valued hesitant fuzzy expected

values ~sðTÞi , ~hðTÞij of ~si, ~hij, respectively, and get the interval-valued hesitant

fuzzy expected decision matrix eH ðTÞ ¼ ~hðTÞij

� �
m
n

, then go to the next

step.
Step 3. If the weight information of the criteria is completely unknown, then we

use Eq. (5.35) to obtain the optimal weight vector x ¼ x1;x2; . . .;xnð ÞT
and go to Step 5; Otherwise, go to the next step.

Step 4. If the weight information of the criteria is partly known as 0� aj �xj � bj,
j ¼ 1; 2; . . .; n, then we solve Model 5.15 and get the weight vector
x ¼ x1;x2; . . .;xnð ÞT , and go to the next step.

Step 5. Calculate the overall expected values ~zðTÞi i ¼ 1; 2; . . .;mð Þ by Eq. (5.36)

and then sort the alternatives by the values of ~zðTÞi i ¼ 1; 2; . . .;mð Þ, and go
to the next step.

Step 6. End.

(2) Method Based on Interval-Valued Distances and Minimum Deviations

Chen et al. (2013) introduced a family of distance measures between two
IVHFEs ~h1 and ~h2. Taking the interval-valued hesitant normalized Hamming dis-
tance as an example, it is in mathematical term of

~dð~h1; ~h2Þ ¼ 1
2l

Xl
k¼1

hrðkÞL1 � hrðkÞL2

��� ���þ hrðkÞU1 � hrðkÞU2

��� ���� �
ð5:37Þ

where l ¼ maxfl ~h1
� �

; l ~h2
� �g, hrðkÞp is the kth largest interval in ~hp p ¼ 1; 2ð Þ, and

hrðkÞp ¼ hrðkÞLp ; hrðkÞUp

h i
p ¼ 1; 2; k ¼ 1; 2; . . .; lð Þ.

Below we introduce an interval-valued hesitant fuzzy multiple criteria decision
making method based on the distance and the minimum deviation.

1) Case with completely unknown weight information on criteria

Since the decision makers have subjective preference ~si over each alternative,
we can build an optimization model by minimizing the deviations between the
subjective and objective preferences to obtain the optimal criterion weight vector.
Firstly, we use the interval-valued hesitant normalized Hamming distance to cal-
culate the deviation between the assessment ~hij and the subjective preference ~si,
which is in form of
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~dij ¼ 1
2l

Xl
k¼1

~hrðkÞLij � ~srðkÞLi

��� ���þ ~hrðkÞUij � ~srðkÞUi

��� ���� �
ð5:38Þ

where ~hrðkÞij and ~srðkÞi are the kth intervals in ~hij and ~si , respectively,

~hrðkÞij ¼ ~hrðkÞLij ; ~hrðkÞUij

h i
, ~srðkÞi ¼ ~srðkÞLi ; ~srðkÞUi

h i
.

Then, the overall deviation between the alternative Ai and the subjective pref-
erence value ~si is

~di xð Þ ¼
Xn
j¼1

xj
~dij; i ¼ 1; 2; . . .;m ð5:39Þ

Furthermore, the total deviation between the subjective and objective prefer-
ences of all the alternatives is yielded as:

~d xð Þ ¼
Xm
i¼1

Xn
j¼1

xj
~dij ð5:40Þ

and the total deviation should be minimal. Thus, we establish the following pro-
gramming model:

Model 5.16

min ~dðxÞ ¼
Xm
i¼1

Xn
j¼1

xj
~dij

s:t: xj � 0; j ¼ 1; 2; . . .; nXn
j¼1

x2
j ¼ 1

Solving this model, we get the optimal solution:

xj ¼
Pm

i¼1
~dijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1

Pm
i¼1

~dij
� �2q ; j ¼ 1; 2; . . .; n ð5:41Þ

As xjðj ¼ 1; 2; . . .; nÞ satisfy the constrained conditions in Model 5.16, we
normalize the weights of criteria as:

x�
j ¼

xjPn
j¼1 xj

; j ¼ 1; 2; . . .; n ð5:42Þ
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2) Case with partly known weight information on criteria

Consider that sometimes the decision makers may give the value ranges of the
criterion weights. Thus, we need to build another model to acquire the criterion
weights. Suppose that the criterion weights satisfy 0� aj �xj � bj with aj and bj
being the upper and lower bounds of xj, j ¼ 1; 2; . . .; n. Then we construct the
following model to obtain the criterion weight vector x:

Model 5.17

min ~dðxÞ ¼
Xm
i¼1

Xn
j¼1

xj
~dij

s:t: 0� aj �xj � bj; j ¼ 1; 2; . . .; nXn
j¼1

xj ¼ 1

The optimal criterion weight vector x ¼ x1;x2 � � � ;xnð ÞT can be derived by
solving Model 5.17. Then we can integrate the interval-valued hesitant fuzzy
decision information for each alternative by the interval-valued hesitant fuzzy
aggregating operators (Chen et al. 2013). Finally, the best alternative(s) is selected
by the integrated values.

According to the above discussion, the following algorithm is given to tackle the
interval-valued hesitant fuzzy multiple criteria decision making problems in which
the evaluation values and the subjective preferences to the alternatives are all
IVHFEs and the information about the criterion weights is incomplete.

Algorithm 5.5

Step 1. Construct the interval-valued hesitant fuzzy decision matrix eH .
Meanwhile, we ask the decision maker to give the subjective preference ~si
for each alternative as IVHFE, then go to the next step.

Step 2. If there is no any information about the criterion weights, then we calculate
the optimal criterion weights by Eq. (5.42), and go to Step 4; Otherwise,
go to the next step.

Step 3. If the weight information of criteria is partly known as 0� aj �xj � bj
j ¼ 1; 2; . . .; nð Þ, then we solve Model 5.17 to obtain the optimal criterion
weights, and go to the next step.

Step 4. Use the interval-valued hesitant fuzzy aggregating operator, such as the
IVHFWA operator shown as Eq. (5.43), to compute the overall values
~hi i ¼ 1; 2; . . .;mð Þ of the alternatives Ai i ¼ 1; 2; . . .;mð Þ, and then go to
the next step.

~hi ¼ IVHFWA ~hi1; ~hi2; . . .; ~hin
� � ¼ �n

j¼1
xj
~hij

� �
¼ 1�

Yn

j¼1
ð1� ~cLj Þxj ; 1�

Yn

j¼1
ð1� ~cUj Þxj

h i
~c1 2 ~h1;~c2 2 ~h2; . . .;~cn 2 ~hn
��n o

ð5:43Þ
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Step 5. Rank of the alternatives according to the overall values ~hi i ¼ 1; 2; . . .;mð Þ
and select the best one(s), then go to the next step.

Step 6. End.

5.2.3 Application of the Minimum Deviation Methods
in Energy Policy Selection

In this section, we present an illustrative example concerning the selection of
optimal energy policies. Energy is always an essential factor to the economic and
social development of society. A good energy policy will affect the economic
development and environment. How to choose an optimal energy policy is a major
concern for the government. In the following, we use the example adapted from Xu
and Xia (2011) to demonstrate the effectiveness of our methods. After pre-selection,
five energy projects Aiði ¼ 1; 2; 3; 4; 5Þ are evaluated, and four criteria involved in
are C1: technological, C2: environmental, C3: socio-political and C4: economic.
Suppose that the experts have subjective preferences over each alternative and the
preference values are represented as HFEs. We rank the five energy projects under
four different scenarios.

Example 5.3 (Zhao et al. 2016) Assume that the evaluation values of the alterna-
tives under the criteria are provided as a hesitant fuzzy decision matrix (see
Table 5.1), and the decision maker has subjective preferences over all the alter-
natives, which are: s1 ¼ 0:6; 0:5; 0:2f g, s2 ¼ 0:5; 0:4f g, s3 ¼ 0:4; 0:3; 0:2f g, s4 ¼
0:5; 0:3f g and s5 ¼ 0:9; 0:5f g, respectively.
Next, we use Algorithm 5.2 to select the best alternative(s).

(1) If the weight information of the criteria is completely unknown, then the
following steps are conducted to choose the best alternative(s):

Assuming T ¼ 0:5, we use Eq. (5.14) to compute the expected values of the

subjective preference values si i ¼ 1; 2; 3; 4; 5ð Þ and get sðTÞ1 ¼ 0:45, sðTÞ2 ¼ 0:45,

sðTÞ3 ¼ 0:3, sðTÞ4 ¼ 0:4, sðTÞ5 ¼ 0:7. Then we calculate the hesitant fuzzy expected
values of each element in Table 5.1 and obtain the hesitant fuzzy expected value
decision matrix HðTÞ as shown in Table 5.2.

Table 5.1 Hesitant fuzzy decision matrix

C1 C2 C3 C4

A1 {0.5, 0.4} {0.7} {0.5, 0.4, 0.2} {0.6, 0.5}

A2 {0.5, 0.3} {0.7, 0.6, 0.5} {0.5, 0.1} {0.4}

A3 {0.7, 0.6} {0.9, 0.6} {0.5, 0.3} {0.6, 0.4}

A4 {0.7, 0.4} {0.7, 0.4, 0.2} {0.8, 0.1} {0.8}

A5 {0.6, 0.3, 0.1} {0.6, 0.4} {0.8, 0.7} {0.6}
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Using Eq. (5.20), we obtain the optimal weight vector x ¼ 0:0933; 0:0925;ð
0:6775; 0:1367ÞT . Then we calculate the overall expected values of the alternatives

by Eq. (5.21) and obtain zðTÞ1 ¼ 0:4361, zðTÞ2 ¼ 0:3508, zðTÞ3 ¼ 0:4741, zðTÞ4 ¼
0:5049, and zðTÞ5 ¼ 0:6667. Thus, the ranking of the alternatives is A5 	 A4 	 A3

	 A1 	 A2. So A5 is the best one.

(2) If the value ranges of the criterion weights are given as 0:2�x1 � 0:3,
0:3�x2 � 0:4, 0:2�x3 � 0:3, 0:2�x4 � 0:3, then according to Model 5.11,
we construct the following linear programming model to solve the optimal
criteria weights:

Model 5.18

min r0ðxÞ ¼ 0:327x1 þ 0:3296x2 þ 0:045x3 þ 0:223x4

s:t: 0:2�x1 � 0:3

0:3�x2 � 0:4

0:2�x3 � 0:3

0:2�x4 � 0:3

x1 þx2 þx3 þx4 ¼ 1

By the LINGO mathematics software package, we get the optimal criterion
weight vector x ¼ 0:2; 0:3; 0:3; 0:2ð ÞT . With Eq. (5.21), the overall expected value

of each alternative are obtained as hðTÞ1 ¼ 0:5225, hðTÞ2 ¼ 0:43, hðTÞ3 ¼ 0:585,

hðTÞ4 ¼ 0:5325, and hðTÞ5 ¼ 0:56. This implies that the ranking of the alternatives is
A3 	 A5 	 A4 	 A1 	 A2.

Below we use Algorithm 5.3 to solve the problem in Example 5.3:
We first compute the hesitant normalized hamming distances between the values

hij (i ¼ 1; 2; 3; 4; 5; j ¼ 1; 2; 3; 4) and si i ¼ 1; 2; 3; 4; 5ð Þ. The results are set out in
Table 5.3. To get the best criterion weight vector x ¼ x1;x2;x3;x4ð ÞT , the total
deviation between the subjective and objective preferences should be minimal.

(1) If the weight information of the criteria is completely unknown, then by
Eq. (5.30), we get the normalized criterion weights as w�

1 ¼ 0:2589; w�
2 ¼

0:3125; w�
3 ¼ 0:1831; and w�

4 ¼ 0:2455. Then, we calculate the overall values
of the alternatives by Eq. (3.2) and the results are as follows:

Table 5.2 Hesitant fuzzy
expected value decision
matrix

C1 C2 C3 C4

A1 0.45 0.7 0.375 0.55

A2 0.4 0.6 0.3 0.4

A3 0.7 0.75 0.4 0.5

A4 0.55 0.425 0.45 0.8

A5 0.325 0.5 0.75 0.6
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h1 ¼
0:5130; 0:5355; 0:5380; 0:5390; 0:5532; 0:5593; 0:5602; 0:5626; 0:5738; 0:5770;

0:5828; 0:5965

 !

h2 ¼
0:3647; 0:4075; 0:4177; 0:4295; 0:4569; 0:4584; 0:4679; 0:4771; 0:5036; 0:5123;

0:5137; 0:5543

 !

h3 ¼
0:5105; 0:5397; 0:5456; 0:5568; 0:5727; 0:5833; 0:5886; 0:6132; 0:6826; 0:7015;

0:7054; 0:7126; 0:7230; 0:7300; 0:7333; 0:7492

 !

h4 ¼
0:4601; 0:5065; 0:5488; 0:5876; 0:5901; 0:6026; 0:6253; 0:6574; 0:6679; 0:6869;

0:6983; 0:7479

 !

h5 ¼
0:4686; 0:5021; 0:5067; 0:5319; 0:5377; 0:5614; 0:5654; 0:5693; 0:5927; 0:6001;

0:6205; 0:6477

 !

By Eq. (1.17), the score values of hi i ¼ 1; 2; 3; 4; 5ð Þ are calculated as
s h1ð Þ ¼ 0:5576, s h2ð Þ ¼ 0:4636, s h3ð Þ ¼ 0:6405, s h4ð Þ ¼ 0:6150, and
s h5ð Þ ¼ 0:5587, respectively. Thus, the ranking of the alternatives is
A3 	 A4 	 A5 	 A1 	 A2, which implies A3 is the best energy policy.

(2) Given the weight information of the criteria is partly known as 0:2�x1 � 0:3,
0:3�x2 � 0:4, 0:2�x3 � 0:3, and 0:2�x4 � 0:3, to get optimal weight
vector, we construct the following linear programming model according to
Model 5.13:

Model 5.19

min dðxÞ ¼ 0:9666x1 þ 1:1667x2 þ 0:6834x3 þ 0:9167x4

s:t: 0:2�x1 � 0:3

0:3�x2 � 0:4

0:2�x3 � 0:3

0:2�x4 � 0:3

x1 þx2 þx3 þx4 ¼ 1

Table 5.3 Hesitant
Hamming distances between
the subjective and objective
preferences

h1j h2j h3j h4j
s1 0.1333 0.2667 0.0667 0.1

s2 0.05 0.1667 0.15 0.05

s3 0.3333 0.4 0.0667 0.1667

s4 0.15 0.1333 0.25 0.4

s5 0.3 0.2 0.15 0.2
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Solving Model 5.19, we get the optimal weights as: x1 ¼ 0:2; x2 ¼ 0:3; x3 ¼
0:3; and x4 ¼ 0:2. Then we use Eq. (3.2) to obtain the overall value of each
alternative. The results are set out as follows:

h1 ¼
0:4877; 0:5061; 0:5101; 0:5276; 0:5301; 0:5469; 0:5506; 0:5551; 0:5667; 0:5710;

0:5745; 0:5898

 !

h2 ¼
0:3384; 0:3812; 0:3814; 0:4215; 0:4324; 0:4453; 0:4693; 0:4812; 0:4814; 0:5150;

0:5241; 0:5551

 !

h3 ¼
0:4869; 0:5156; 0:5269; 0:5362; 0:5533; 0:5621; 0:5723; 0:5962; 0:6615; 0:6804;

0:6879; 0:6940; 0:7053; 0:7111; 0:7178; 0:7336

 !

h4 ¼
0:4070; 0:4561; 0:4838; 0:5265; 0:5582; 0:6154; 0:6224; 0:6536; 0:6712; 0:6984;

0:7186; 0:7551

 !

h5 ¼
5126; 0:5365; 0:5685; 0:5685; 0:5856; 0:5896; 0:5896; 0:6179; 0:6331; 0:6331;

0:6366; 0:6751

 !

After that, we calculate the score values of the overall values with Eq. (1.17) and
obtain s h1ð Þ ¼ 0:5430, s h2ð Þ ¼ 0:4522, s h3ð Þ ¼ 0:6213, s h4ð Þ ¼ 0:5972, and
s h5ð Þ ¼ 0:5956. Thus, the ranking of these alternatives is A3 	 A4 	 A5

	 A1 	 A2.

Example 5.4 (Zhao et al. 2016). In Example 5.3, if the decision makers give their
subjective preferences over the alternatives Aiði ¼ 1; 2; 3; 4; 5Þ by the following
IVHFEs:

~s1 ¼ 0:5; 0:7½ �; 0:5; 0:6½ �; 0:2; 0:3½ �f g; ~s2 ¼ 0:3; 0:5½ �; 0:3; 0:4½ �f g
~s3 ¼ 0:3; 0:5½ �; 0:3; 0:4½ �; 0:2; 0:3½ �f g; ~s4 ¼ 0:5; 0:6½ �; 0:3; 0:4½ �f g
~s5 ¼ 0:8; 0:9½ �; 0:4; 0:5½ �f g

and they give their evaluation values for each alternative with respect to each
criterion by IVHFE, then we can construct an interval-valued hesitant fuzzy deci-
sion matrix as shown in Table 5.4:

In the following, we use Algorithm 5.4 to choose the best alternative(s).

(1) If the weight information of the criteria is completely unknown, then we let
T ¼ 0:5 and use Eq. (5.32) to compute the interval-valued hesitant fuzzy

expected values of the subjective preference ~si and get: ~sðTÞ1 ¼ 0:4875,

~sðTÞ2 ¼ 0:375, ~sðTÞ3 ¼ 0:3375, ~sðTÞ4 ¼ 0:45, and ~sðTÞ5 ¼ 0:65. The expected val-
ues of the evaluation values ~hijði ¼ 1; 2; 3; 4; 5; j ¼ 1; 2; 3; 4Þ can also be
calculated, which are listed in Table 5.5.

Using Eq. (5.35), we get the optimal criterion weights as x1 ¼ 0:1272,
x2 ¼ 0:1072, x3 ¼ 0:5893, and x4 ¼ 0:1763. Afterwards, by Eq. (5.36), we get

the overall expected values of all the alternatives, which are ~zðTÞ1 ¼ 0:3853,
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~zðTÞ2 ¼ 0:3477, ~zðTÞ3 ¼ 0:4329, ~zðTÞ4 ¼ 0:5159, and ~zðTÞ5 ¼ 0:6006. Therefore, the
ranking of these alternatives is A5 	 A4 	 A3 	 A1 	 A2.

(2) If the decision makers partly give the information about the weights of criteria
as 0:2�x1 � 0:3, 0:3�x2 � 0:4, 0:2�x3 � 0:3, and 0:2�x4 � 0:3, then
according to Model 5.15, we can construct the following mathematical model:

Model 5.20

min ~r0ðxÞ ¼ 0:176x1 þ 0:209x2 þ 0:038x3 þ 0:127x4

s:t: 0:2�x1 � 0:3

0:3�x2 � 0:4

0:2�x3 � 0:3

0:2�x4 � 0:3

x1 þx2 þx3 þx4 ¼ 1

Utilizing the LINGO mathematical software package, we can get the optimal
criterion weight vector as: x1 ¼ 0:2, x2 ¼ 0:3, x3 ¼ 0:3, and x4 ¼ 0:2. Utilizing
Eq. (5.36), we get the overall expected criteria values of all the alternatives, which

are ~zðTÞ1 ¼ 0:4588, ~zðTÞ2 ¼ 0:385, ~zðTÞ3 ¼ 0:5125; ~zðTÞ4 ¼ 0:505; and ~zðTÞ5 ¼ 0:5225.
This implies that the ranking of the alternative is A5 	 A3 	 A4 	 A1 	 A2.

Table 5.4 Interval-valued hesitant fuzzy decision matrix

C1 C2 C3 C4

A1 {[0.3, 0.5], [0.3,
0.4]}

{[0.6, 0.7]} {[0.3, 0.5], [0.3,
0.4], [0.1, 0.2]}

{[0.4, 0.6],
[0.4, 0.5]}

A2 {[0.2, 0.5], [0.2,
0.3]}

{[0.6, 0.7], [0.4,
0.6], [0.4, 0.5]}

{[0.4, 0.5], [0.1,
0.3]}

{[0.3, 0.4]}

A3 {[0.5, 0.7], [0.5,
0.6]}

{[0.7, 0.9], [0.5,
0.6]}

{[0.4, 0.5], [0.2,
0.3]}

{[0.5, 0.6],
[0.3, 0.4]}

A4 {[0.6, 0.7], [0.3,
0.4]}

{[0.6, 0.7], [0.3,
0.4], [0.1, 0.2]}

{[0.7, 0.8], [0.1,
0.3]}

{[0.7, 0.8]}

A5 {[0.5, 0.6], [0.2,
0.4], [0.1, 0.3]}

{[0.5, 0.6], [0.3,
0.4]}

{[0.7, 0.8], [0.6,
0.7]}

{[0.5, 0.6]}

Table 5.5 Interval-valued
hesitant fuzzy expected value
decision matrix

C1 C2 C3 C4

A1 0.375 0.65 0.3125 0.475

A2 0.3 0.525 0.325 0.35

A3 0.575 0.675 0.35 0.45

A4 0.5 0.375 0.475 0.75

A5 0.3375 0.45 0.7 0.55
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We now use Algorithm 5.5 to solve the problem in Example 5.4.
First of all, we compute the interval-valued hesitant hamming distances between

each criterion values ~hij and each subjective values ~si by Eq. (5.38). The results are
listed in Table 5.6.

(1) If there is no any information about the weights of criteria, then by Eq. (5.42),
we obtain the criteria weights as x�

1 ¼ 0:2453; x�
2 ¼ 0:3073; x�

3 ¼ 0:2075;
and x�

4 ¼ 0:2399. Thus, by Eq. (5.43), we can calculate the overall values
~hj j ¼ 1; 2; 3; 4; 5ð Þ. Then the score values of the alternatives are calculated by
Eq. (1.24), which are s ~h1

� � ¼ 0:4219; 0:5150½ �, s ~h2
� � ¼ 0:3298; 0:4753½ �,

s ~h3
� � ¼ 0:4828; 0:6357½ �, s ~h4

� � ¼ 0:5073; 0:6243½ �, and s ~h5
� � ¼ 0:4660;½

0:5820�. By the probability degree function shown in Eq. (1.23), we compare
the score values and get A4 	 A3 	 A5 	 A1 	 A2.

(2) Suppose that the weight information of criteria is partly known as
0:2�x1 � 0:3, 0:3�x2 � 0:4, 0:2�x3 � 0:3, and 0:2�x4 � 0:3. Based on
Model 5.17, we establish the following linear programming model:

Model 5.21

min ~d xð Þ ¼ 0:7583x1 þ 0:95x2 þ 0:6417x3 þ 0:7416x4

s:t: 0:2�x1 � 0:3

0:3�x2 � 0:4

0:2�x3 � 0:3

0:2�x4 � 0:3

x1 þx2 þx3 þx4 ¼ 1

Solving the abovemodel by the LINGOmathematics software package, we gain the
optimal criterion weight vector as x ¼ 0:2; 0:3; 0:3; 0:2ð ÞT . Then we use Eq. (5.43)
to obtain the overall value of each alternative and calculate the score values of them as
s ~h1
� � ¼ 0:4112; 0:5098½ �, s ~h2

� � ¼ 0:3288; 0:4738½ �, s ~h3
� � ¼ 0:4695; 0:6213½ �,

s ~h4
� � ¼ 0:4945; 0:6151½ �, and s ~h5

� � ¼ 0:4928; 0:6068½ �. Using the probability
degree function shown in Eq. (1.23), we get A4 	 A3 	 A5 	 A1 	 A2.

Table 5.6 Interval-valued
hesitant Hamming distances
between the subjective and
objective preferences

~h1j ~h2j ~h3j ~h4j
~s1 0.1667 0.1833 0.1667 0.1333

~s2 0.075 0.1667 0.1 0.025

~s3 0.2333 0.3 0.05 0.0833

~s4 0.05 0.1 0.175 0.3

~s5 0.2333 0.2 0.15 0.2
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5.3 Hesitant Fuzzy Multiple Stages Multiple Criteria
Decision Making with Incomplete Weight Information

In the previous chapters, we discussed the problems where all the hesitant fuzzy
decision information is collected at the same period or stage. However, in many
cases, such as multiple stages investment, medical diagnosis, personal dynamic
examination, and ecosystem efficiency dynamic evaluation, etc., we often need to
make decision with multiple stages preference information. It is reasonable and
realistic that the assessment values provided by the decision makers are changed
regularly regarding dynamic external factors such as knowledge or meteorological
condition. The dynamic decision making environment is now more and more
common in our daily life. Particularly, the spread of e-services and wireless or
mobile devices has increased accessibility to data, which, in turn, influences the
way in which the users make decisions (Perez et al. 2011). Users even can make
real-time decisions based on the most up-to-date data accessed via wireless devices,
such as portable computer, mobile phone or other electronic products. Considering
the powerfulness of HFS in representing vagueness and uncertainty, it is necessary
to develop some methods to handle multiple stages decision making problems
where the judgments are collected from different stages and represented in HFEs.
Hence, in this chapter, we shall develop some methods for hesitant fuzzy multiple
stages multiple criteria decision making (MSMCDM) problems.

As to the MSMCDM problems where the information is given in fuzzy set or its
extended forms such as IFS, many scholars have developed some decision making
methods. As to theMSMCDMproblemwith fuzzy set, Xu (2008) defined the concept
of dynamicweighted averaging (DWA) operator, and introduced somemethods, such
as the arithmetic series based method, the geometric series based method and the
normal distribution based method, to obtain the weights of the DWA operator. As for
the decision information expressed in multiplicative linguistic labels at different
stages, Xu (2009) introduced the dynamic linguistic weighted geometric (DLWG)
operator and used theminimumvariancemodel to derive the time series weights of the
DLWG operator, based on which, they then developed an approach to MSMCDM
with linguistic assessments. Considering the MSMCDM problem with intuitionistic
fuzzy information, Xu and Yager (2008) proposed some methods, including the basic
unit-interval monotonic (BUM) function basedmethod, the normal distribution based
method, the exponential distribution based method and the average age method, to
determine the weight vector of the developed operators. Based on the definition of
distancemeasure between triangular intuitionistic fuzzy numbers, Chen and Li (2011)
used the entropy method to determine the weight vector, which is a new way to
generate the weight vector. After reviewing the literature, we can find that the key
point in handling the MSMCDM problem is to determine the dynamic weight vector.
After assigning the weights to different stages, it is easy to aggregate the dynamic
hesitant fuzzy information by the developed operators and then rank the alternatives.
Hence, in this section, we propose some novel methods to determine the weights of
hesitant fuzzy variables at different stages.
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5.3.1 Hesitant Fuzzy Variable and Dynamic Hesitant Fuzzy
Aggregation Operators

In the literature, scholars have paid great attention to the problems where all
hesitant fuzzy data were collected at a fixed stage. However, in many practical
problems, the evaluation information is usually collected over different stages. For
example, considering a scenario of investigating the preferences of a group of target
customers where the environment is dynamic and the customers are variable, the
decision maker may be interested in finding how the group’s preferences change
over time (Chen and Cheng 2010). In such a case, the preference information of the
customers is collected from different stages. In order to represent the information
from multiple stages, Liao et al. (2014) introduced the concept of hesitant fuzzy
variable (HFV).

Definition 5.5 (Liao et al. 2014). Let t be a time instant and X be a given set. Then
hAðxðtÞÞ is called a HFV at the time t, where hAðxðtÞÞ is a set of some possible
values in ½0; 1� at the time t, denoting the possible membership degrees of the
element x 2 X to the given set A�X at the time t.

For a hesitant fuzzy variable hAðxðtÞÞ (we herein and thereafter denote it as htx for
short), if t ¼ ðt1; t2; . . .; tpÞT , then ht1x ; h

t2
x ; . . .; h

tp
x indicate p HFEs of the element

x 2 X collected from p different stages. That is to say, the values of a HFV are
HFEs. For simplicity, let V be the set of all HFVs for short.

It should be noted that the HFV, the HFS and the HFE are three different
concepts, but they are closely related. The relationships of them are as follows: the
HFS is a set of HFEs and the HFE is the element of a HFS, whereas the HFE is the
value of a HFV. The HFV is somehow like the random variable in probability
theory. The value of a HFV varies over time. The significant characteristic of the
HFV is that it involves the dimension of time. The reason for introducing the
concept of HFV is to represent the changes of people’s evaluating values on the
given alternatives over criteria regarding to different time instants in the process of
MSMCDM. MSMCDM is common in our daily life. For example, in the websites
such as Youtube, Yahoo and Blogger, different customers are invited to provide the
ratings of the most popular videos, movies and songs over time. In this example, the
preference htij of the criterion Cj (for instance, the plot of a movie) is a HFV, while
the preference value, such as htij ¼ f0:3; 0:4g is a HFE which denotes the preference
for the alternative Ai at the stage t.

It is worthy pointing out that if omitting the parameter t, the HFV can be
mathematically taken as the HFE. That is to say, all the operational laws and
properties on HFEs also hold for HFVs. For the simplicity of future presentation,
below we just set out some prominent properties for HFVs.

Property 5.1 (Liao et al. 2014). Let htx, h
t1
x , h

t2
x and htkx be HFVs defined as above.

Then
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(1) htx
� �k¼ [ c2htxfckg, k[ 0.

(2) khtx ¼ [ c2htxf1� ð1� cÞkg, k[ 0.
(3) ht1x � ht1x ¼ [ cðt1Þ2ht1x ;cðt2Þ2ht1x fcðt1Þþ cðt2Þ � cðt1Þcðt2Þg.
(4) ht1x �ht2x ¼ [ cðt1Þ2ht1x ;cðt2Þ2ht2x nf g, where

n ¼
cðt1Þ�cðt2Þ
1�cðt2Þ ; if cðt1Þ� cðt2Þ and cðt2Þ 6¼ 1
0; otherwise



(5) ht1x 
 ht2x ¼ [ cðt1Þ2ht1x ;cðt2Þ2ht2x fcðt1Þcðt2Þg.
(6) ht1x �ht2x ¼ [ cðt1Þ2ht1x ;cðt2Þ2ht2x nf g, where

n ¼
cðt1Þ
cðt2Þ ; if cðt1Þ� cðt2Þ and cðt2Þ 6¼ 0
1; otherwise



.

(7) �p
k¼1

htkx ¼ [ cðtkÞ2htkx f1�
Qp
k¼1

ð1� cðtkÞÞg.

(8) 
p
k¼1

htkx ¼ [ cðtkÞ2htkx f
Qp
k¼1

cðtkÞg.

Property 5.2 (Liao et al. 2014). Let htx, h
t1
x , h

t2
x and ht3x be four HFVs, and k, k1 and

k2 be three positive real numbers. Then htx
� �k

, khtx, h
t1
x � ht1x and ht1x 
 ht2x are HFVs,

and

(1) ht1x � ht1x ¼ ht2x � ht1x .
(2) ht1x 
 ht2x ¼ ht2x 
 ht1x .
(3) ½ht1x � ht2x � � ht3x ¼ ht1x � ½ht2x � ht3x �.
(4) ½ht1x 
 ht2x � 
 ht3x ¼ ht1x 
 ½ht2x 
 ht3x �.
(5) kðht1x � ht2x Þ ¼ kht1x � kht2x .

(6) ht1x 
 ht2x
� �k¼ ht1x

� �k
 ht2x
� �k

.
(7) k1htx � k2htx ¼ ðk1 þ k2Þhtx.
(8) htx

� �k1
 htx
� �k2¼ htx

� �k1 þ k2 .

Chapter 3 introduced a series of aggregation operators for HFEs. But all these
operators can only be used to deal with time-independent hesitant fuzzy arguments.
If the time t is taken into account, the aggregation operators and their associated
weights should not be static. Since the values of a HFV are HFEs, those aggregation
operators in time independent hesitant fuzzy circumstances can be easily extended
into the multiple stages hesitant fuzzy environment. We hereby just extend those
time-independent hesitant fuzzy aggregation operators into to the multiple stages
circumstance.

Definition 5.6 (Liao et al. 2014). Let ht1x ; h
t2
x ; . . .; h

tp
x be a collection of HFVs col-

lected at p different stages tk ðk ¼ 1; 2; . . .; pÞ, and kðtÞ ¼ ðkðt1Þ; kðt2Þ; . . .; kðtpÞÞT be
the weight vector of the stages tk ðk ¼ 1; 2; . . .; pÞ, where kðtkÞ indicates the impor-
tance degree of htkx satisfying kðtkÞ 2 ½0; 1�, k ¼ 1; 2; . . .; p, and

Pp
k¼1 kðtkÞ ¼ 1. Then

we call
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DHFWAkðtÞðht1x ; ht2x ; . . .; htpx Þ ¼ �p
k¼1

kðtkÞhtkx
� �

¼ [ cðt1Þ2ht1x ;cðt2Þ2ht2x ;...;cðtpÞ2htpx 1�
Yp
k¼1

ð1� cðtkÞÞkðtkÞ
( )

ð5:44Þ

a dynamic hesitant fuzzy weighted averaging (DHFWA) operator. Especially, if
kðtÞ ¼ ð1=p; 1=p; . . .; 1=pÞT , then the DHFWA operator reduces to the dynamic
hesitant fuzzy averaging (DHFA) operator:

DHFAðht1x ; ht2x ; . . .; htpx Þ ¼ �p
k¼1

1
p
hðtkÞ

� �

¼ [ cðt1Þ2ht1x ; cðt2Þ2ht2x ; ...; cðtpÞ2htpx 1�
Yp
k¼1

ð1� cðtkÞÞ1=p
( )

ð5:45Þ

Definition 5.7 (Liao et al. 2014). Let ht1x ; h
t2
x ; . . .; h

tp
x be a collection of HFVs

collected at p different stages tk ðk ¼ 1; 2; . . .; pÞ, and kðtÞ ¼
ðkðt1Þ; kðt2Þ; . . .; kðtpÞÞT be the weight vector of the stages tk ðk ¼ 1; 2; . . .; pÞ,
where kðtkÞ indicates the importance degree of htkx satisfying kðtkÞ 2 ½0; 1�,
k ¼ 1; 2; . . .; p, and

Pp
k¼1 kðtkÞ ¼ 1. Then we call

DHFWGkðtÞðht1x ; ht2x ; . . .; htpx Þ ¼ �p
k¼1

ðhtkx ÞkðtkÞ
� �

¼ [ cðt1Þ2ht1x ;cðt2Þ2ht2x ;...;cðtpÞ2htpx
Yp
k¼1

cðtkÞkðtkÞ
( )

ð5:46Þ

a dynamic hesitant fuzzy weighted geometric (DHFWG) operator. Especially, if
kðtÞ ¼ ð1=p; 1=p; . . .; 1=pÞT , then the DHFWG operator reduces to the dynamic
hesitant fuzzy geometric (DHFG) operator:

DHFGðht1x ; ht2x ; . . .; htpx Þ ¼ 
p
k¼1

htkx
� �1=p� �

¼ [ cðt1Þ2ht1x ;cðt2Þ2ht2x ;...;cðtpÞ2htpx
Yp
k¼1

cðtkÞ1=p
( )

ð5:47Þ

Definition 5.8 (Liao et al. 2014). Let ht1x ; h
t2
x ; . . .; h

tp
x be a collection of HFVs

collected at p different stages tk ðk ¼ 1; 2; . . .; pÞ, and kðtÞ ¼
ðkðt1Þ; kðt2Þ; . . .; kðtpÞÞT be the weight vector of the stages tk ðk ¼ 1; 2; . . .; pÞ,
where kðtkÞ indicates the importance degree of htkx satisfying kðtkÞ 2 ½0; 1�,
k ¼ 1; 2; . . .; p, and

Pp
k¼1 kðtkÞ ¼ 1. Suppose that h

trð1Þ
x ; h

trð2Þ
x ; . . .; h

trðpÞ
x is the per-

mutation of ht1x ; h
t2
x ; . . .; h

tp
x where h

trðkÞ
x is the kth largest of ht1x ; h

t2
x ; . . .; h

tp
x . Then
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(1) A dynamic hesitant fuzzy ordered weighted averaging (DHFOWA) operator is
a mapping DHFOWA: Vn ! V , where

DHFOWA ht1x ; h
t2
x ; . . .; h

tp
x

� � ¼ �p
k¼1

kðtkÞhtrðkÞx

� �

¼ [
cðtrð1ÞÞ2h

trð1Þ
x ;cðtrð2ÞÞ2h

trð2Þ
x ;...;cðtrðpÞÞ2h

trðpÞ
x

1�
Yp
k¼1

ð1� cðtrðkÞÞÞkðtkÞ
( )

ð5:48Þ
(2) A dynamic hesitant fuzzy ordered weighted geometric (DHFOWG) operator is

a mapping DHFOWG: Vn ! V , where

DHFOWG ht1x ; h
t2
x ; . . .; h

tp
x

� � ¼ 
p
k¼1

h
trðkÞ
x

� �kðtkÞ

¼ [
cðtrð1ÞÞ2h

trð1Þ
x ;cðtrð2ÞÞ2h

trð2Þ
x ;...;cðtrðpÞÞ2h

trðpÞ
x

Yp
k¼1

cðtrðkÞÞ
� �kðtkÞ( )

ð5:49Þ

In the case where kðtÞ ¼ ð1=p; 1=p; . . .; 1=pÞT , the DHFOWA operator reduces
to the DHFA operator, and the DHFOWG operator reduces to the DHFG operator.

Definition 5.9 (Liao et al. 2014). Let ht1x ; h
t2
x ; . . .; h

tp
x be a collection of HFVs

collected at p different stages tkðk ¼ 1; 2; . . .; pÞ, and kðtÞ ¼
ðkðt1Þ; kðt2Þ; . . .; kðtpÞÞT be the weight vector of the stages tk ðk ¼ 1; 2; . . .; pÞ,
where kðtkÞ indicates the importance degree of htkx satisfying kðtkÞ 2 ½0; 1�,
k ¼ 1; 2; . . .; p, and

Pp
k¼1 kðtkÞ ¼ 1. p is the balancing coefficient which plays a

role of balance. Then we define the following aggregation operators, which are all
based on the mapping Vn ! V with an aggregation-associated vector wðtÞ ¼
ðwðt1Þ;wðt2Þ; . . .;wðtpÞÞ such that wðtkÞ 2 ½0; 1�, k ¼ 1; 2; . . .; p, andPp

k¼1 wðtkÞ ¼ 1:

(1) The dynamic hesitant fuzzy hybrid averaging (DHFHA) operator:

DHFHA ht1x ; h
t2
x ; . . .; h

tp
x

� � ¼ �p
k¼1

wðtkÞ _hrðkÞ
� �

¼ [ _crð1Þ2 _hrð1Þ; _crð2Þ2 _hrð2Þ;...; _crðpÞ2 _hrðpÞ 1�
Yp
k¼1

ð1� _crðkÞÞwðtkÞ
( ) ð5:50Þ

where _hrðkÞ is the kth largest of _h ¼ pkðtkÞhtkx ðk ¼ 1; 2; . . .; pÞ:
(2) The dynamic hesitant fuzzy hybrid geometric (DHFHG) operator:

DHFHG ht1x ; h
t2
x ; . . .; h

tp
x

� � ¼ 
p
k¼1

€h
wðtkÞ
rðkÞ

� �

¼ [ €crð1Þ2€hrð1Þ;€crð2Þ2€hrð2Þ;...;€crðpÞ2€hrðpÞ
Yp
k¼1

€cwðtkÞrðkÞ

( )

ð5:51Þ
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where €hrðkÞ is the kth largest of €h ¼ htkx
� �pkðtkÞ k ¼ 1; 2; . . .; pð Þ.

Especially, if kðtÞ ¼ ð1=p; 1=p; . . .; 1=pÞT , then the DHFHA operator reduces to
theDHFOWAoperator, and theDHFHGoperator reduces to the DHFOWGoperator.

It is noted that the DHFWA and DHFWG operators only weight the hesitant
fuzzy arguments, but ignore the importance of the order positions, while the
DHFOWA and DHFOWG operators only weight the order positions, but ignore the
importance degrees of the arguments. The DHFHA and DHFHG weight all the
given arguments and their order positions.

5.3.2 Methods to Determine the Weight Vector of Multiple
Stages

As we have pointed out previously, the crucial process of tackling the MSMCDM
problem is to determine the weight vector kðtÞ ¼ ðkðt1Þ; kðt2Þ; . . .; kðtpÞÞT for the
values of a HFV htx over the stages tk ðk ¼ 1; 2; . . .; pÞ. After assigning the weights
to different stages, it is easy to aggregate the multiple stages hesitant fuzzy infor-
mation by the dynamic hesitant fuzzy aggregation operators. The following process
of ranking and selecting the alternatives can be conducted by the comparison
scheme, which is very easy. Thus, in this subsection, we shall pay attention to
develop some novel methods to derive the multiple stages weight vector.

(1) The Improved Maximum Entropy (IME) Method

Let us first analyze the minimum variance model in Xu (2008). By introducing
the measure of “orness” (Yager 1988) associated with the time series weight vector
kðtÞ ¼ ðkðt1Þ; kðt2Þ; . . .; kðtpÞÞT , Xu (2008) improved the minimum variance model
(Fullér and Majlender 2003) to derive the time series weights kðtkÞ ðk ¼ 1; 2; . . .; pÞ.
Model 5.22

minD2 kðtÞð Þ ¼
Xp
k¼1

1
p

kðtkÞ � EðkðtkÞÞð Þ2 ¼ 1
p

Xp
k¼1

kðtkÞð Þ2 � 1
p2

s:t: orness kðtÞð Þ ¼ 1
p� 1

Xp
k¼1

ðp� kÞkðtkÞ ¼ a; 0� a� 1

kðtkÞ� 0; k ¼ 1; 2; . . .; pXp
k¼1

kðtkÞ ¼ 1
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where E kðtkÞð Þ ¼ 1
p

Pp
k¼1 kðtkÞ stands for the arithmetic mean of the weights kðtkÞ

ðk ¼ 1; 2; . . .; pÞ, and a ð0� a� 1Þ is the given level of orness, which depicts the
degree to which the aggregation is like an “or” operation.

Solving the above constrained mathematical programming problem, the time
series weights kðtkÞ ðk ¼ 1; 2; . . .; pÞ can be obtained in terms of

kðtkÞ ¼ ð6p� 12kþ 6Þa� 2pþ 6k � 2
pðpþ 1Þ ; k ¼ 1; 2; . . .; p ð5:52Þ

under the condition:

p� 2
3p� 3

� a� 2p� 1
3p� 3

ð5:53Þ

It should be pointed out that the time series weights derived from Model 5.22
under the given orness level a are monotonic increasing with p�2

3p�3 � a\ 1
2 and are

monotonic decreasing with 1
2\a� 2p�1

3p�3. Particularly, if a ¼ 1=2, then all the

derived time series weights are equal. However, the time series weights which were
determined by Xu (2008)’s method, to some extent, cannot reflect the real situation
in the temporal environment, especially if we use it to aggregate the multiple stages
hesitant fuzzy information with the purpose of selecting the best alternative. In the
multiple stages decision making problem, the data may be updated with the time
going on. In other words, new readings are obtained constantly. Hence, we shall not
treat all the observations over different stages as the same. More weights should be
assigned to the latest data, which means, we ought to have preference to the weight
vector as kðtiÞ[ kðtjÞ, for i[ j. However, as presented in Xu (2008)’s method,
when 1

2\a� 2p�1
3p�3, kðtkÞ is monotonic decreasing and when a ¼ 1=2, all the derived

time series weights are equal, which both contradict the real temporal situation.
Actually, Model 5.22 is invalid or cannot reflect the underlying information exactly
in the dynamic circumstance due to the fact that our purpose of determining the
weight vector is not to forecast but to select the best alternative. Especially, if we
take all the kðtkÞ ¼ 1=p, k ¼ 1; 2; . . .; p, it satisfies the minimum variance, but the
dynamic information may not reach its maximum utilization. Hence, Xu (2008)’s
method is not appropriate to solve the MSMCDM problem.

It is noted that we shall prefer to the fresh data. Some old data may be out of date
and we would not use it any more. To measure the average age of the data, Yager
(2008) introduced the definition of AGE.

Definition 5.10 (Yager 2008). Let tp be the current time, then the age of the piece
of data xk is AGEðtkÞ ¼ p� k. Using this, we get the average age of the data as:

AGE ¼
Pp

k¼1 kðtkÞAGEðkÞð ÞPp
k¼1 kðtkÞ

¼
Xp
k¼1

kðtkÞðp� kÞð Þ ¼ p�
Xp
k¼1

kkðtkÞð Þ ð5:54Þ
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where kðtkÞ ðk ¼ 1; 2; . . .; pÞ is the weight vector of the stages tk ðk ¼ 1; 2; . . .; pÞ
such that kðtkÞ 2 ½0; 1�, k ¼ 1; 2; . . .; p, and

Pp
k¼1 kðtkÞ ¼ 1.

In order to obtain the weight vector to aggregate the past observations for
prediction, Yager (2008) viewed the process as a time series smoothing problem
and the OWA aggregation problem simultaneously, and then proposed some
methods to determine the weight vector. Nevertheless, all these weight determining
methods also take the minimum variance as an objective function and simultane-
ously minimize the AGE of the data. As we have pointed out that the aim of our
study is to find the most desirable alternatives from a discrete set of feasible
alternatives with respect to a finite set of criteria but not to predict, the minimum
variance cannot be taken as an objective function any more. In addition, in Yager
(2008), the variance is obtained under the assumption that the observations are not
correlative. However, since we are investigating the same alternatives over different
periods, the observations may be with some autocorrelations. From the above
analysis, we can see that both Xu (2008)’s and Yager (2008)’s methods are not
appropriate to generate the multiple stages weight vector. Thus, we need to find
other ways to determine the weights for the MSMCDM problem within the context
of hesitant fuzzy information.

The concept of entropy was introduced into the OWA operator to depict the
completeness of utilizing the original information in the aggregated value (Yager
1988). It is suitable to derive the multiple stages weight vector (Nasibova and
Nasibov 2010) and can be mathematically shown as
E kðtÞð Þ ¼ �Pp

k¼1 kðtkÞ ln kðtkÞð Þ, where kðtÞ ¼ ðkðt1Þ; kðt2Þ; . . .; kðtpÞÞT is the
time series weight vector. Based on that, O’Hagan (1988) developed a model to
generate the weights, which has maximum entropy under a given level of orness,
shown as follows:

Model 5.23

maxE kðtÞð Þ ¼ �
Xp
k¼1

kðtkÞ ln kðtkÞð Þ

s:t: orness kðtÞð Þ ¼ 1
p� 1

Xp
k¼1

ðp� kÞkðtkÞð Þ ¼ a; 0� a� 1

kðtkÞ� 0; k ¼ 1; 2; . . .; pXp
k¼1

kðtkÞ ¼ 1

Using the Lagrange multiplier to solve this model, Filev and Yager (1995)
obtained an analytic form for the weight vector and described some of its properties.
Later, Fuller and Majlender (2000) solved this constrained optimization problem
analytically as well by using the Lagrange multiplier and derived a polynomial
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equation to determine the optimal weight vector, which is quite different from that
of Filev and Yager (1995). Furthermore, based on the concept of parametric entropy
(Rényi 1961), Majlender (2005) extended the maximal entropy model. All these
entropy models used in the above literature do not consider the dynamic nature of
the data, which leads to some limitations in practical application. Hence, in the
following, we shall improve the maximum entropy model to make it more objective
to the time series circumstance.

In the MSMCDM problem, there is no doubt that we shall not want the
observations in adjacent stages changed significantly. Hence, if the deviations of
observations in adjacent stages change largely, we should certainly assign small
weights to them. In other words, the entropy of the deviations between the adjacent
observations multiplied the corresponding weights should achieve its maximum
value. Inspired by this, Liao et al. (2014) introduced the definition of the improved
entropy.

Definition 5.11 (Liao et al. 2014). The improved entropy of the multiple stages
hesitant fuzzy information htkx (k ¼ 1; 2; . . .; p) with the time series weight vector
kðtÞ ¼ ðkðt1Þ; kðt2Þ; . . .; kðtpÞÞT , where kðtkÞ 2 ½0; 1�, k ¼ 1; 2; . . .; p, andPp

k¼1 kðtkÞ ¼ 1 can be formulated as:

IEp kðtÞð Þ ¼ �
Xp
k¼2

kðtkÞsðDhtkx Þ ln kðtkÞsðDhtkx Þ
� �� � ð5:55Þ

where sðDhtkx Þ ¼ sðhtkx Þ � sðhtk�1
x Þ, k ¼ 2; . . .; p, and sðhðtkÞÞ is the score function of

htkx .
It is appropriate to take kðt1Þ ¼ kðt2Þ because the preferences to the initial

observations would be smaller and smaller with the increase of t. In order to get a
consistent formulation, we can take sðDhðt1ÞÞ ¼ sðDhðt2ÞÞ as a definition. Then, the
improved entropy of the multiple stages hesitant fuzzy information can be
expressed in terms of the following mathematical form:

IEp kðtÞð Þ ¼ �
Xp
k¼1

kðtkÞsðDhtkx Þ ln kðtkÞsðDhtkx Þ
� �� � ð5:56Þ

where sðDhtkx Þ ¼ sðhtkx Þ � sðhtk�1
x Þ, k ¼ 1; . . .; p, and sðDht1x Þ ¼ sðDht2x Þ.

The value of the improved entropy depends not only on the weight vector but
also on the deviation between the adjacent evaluation values. Hence, the improved
entropy can represent the actual dynamic situation more objectively.

As preferring to fresh data or youthful data in the process of MSMCDM, in order
to derive the reasonable result, we should maximize the improved entropy of the
hesitant fuzzy variables and minimize the average age of the data simultaneously in
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the process of determining the multiple stages weight vector. Hence, Model 5.24
can be obtained:

Model 5.24

max IEp kðtÞð Þ ¼ �
Xp
k¼1

kðtkÞsðDhtkx Þ ln kðtkÞsðDhtkx Þ
� �� 	

min AGE ¼
Xp
k¼1

kðtkÞðp� kÞð Þ ¼ p�
Xp
k¼1

kkðtkÞð Þ

s:t:
Xp
k¼1

kðtkÞ ¼ 1; kðtkÞ� 0; k ¼ 1; 2; . . .; p

Since both of the two objectives have the same degree, we can transfer the above
multiple objective programming model into the single objective programming
model as:

Model 5.25

min Tp kðtÞð Þ ¼
Xp
k¼1

kðtkÞsðDhtkx Þ ln kðtkÞsðDhtkx Þ
� �� 	þ p�

Xp
k¼1

kkðtkÞð Þ

s:t:
Xp
k¼1

kðtkÞ ¼ 1; kðtkÞ� 0; k ¼ 1; 2; . . .; p

To solve this model, the following Lagrange function is constructed:

L kðtÞ; kð Þ ¼
Xp
k¼1

kðtkÞsðDhtkx Þ ln kðtkÞsðDhtkx Þ
� �� �þ p�

Xp
k¼1

kkðtkÞð Þþ kð
Xp
k¼1

kðtkÞ
� 1Þ

ð5:57Þ
Differentiating Eq. (5.57) with respect to kðtkÞ ðk ¼ 1; 2; . . .; pÞ and k, and set-

ting these partial derivatives equal to zero, the following equations can be obtained
easily:

@L
@kðtkÞ ¼ sðDhtkx Þ ln kðtkÞsðDhtkx Þ

� �þ s Dhtkx
� �� kþ k ¼ 0; k ¼ 1; 2; . . .; p ð5:58Þ

@L
@k

¼
Xp
k¼1

kðtkÞ � 1 ¼ 0 ð5:59Þ

Solving Eq. (5.58), we get
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kðtkÞ ¼ 1
s Dhtkx
� � e k�k

s Dh
tk
xð Þ�1

; k ¼ 1; 2; . . .; p ð5:60Þ

Combining Eqs. (5.59) and (5.60), the following normal equation regarding to k
can be derived:

Xp
k¼1

1
s Dhtkx
� � e k�k

s Dh
tk
xð Þ�1

¼ 1 ð5:61Þ

Since k is the only unknown parameter in the normal equation, we can solve it to
get the value of k. Thus, the weight vector can be calculated according to
Eq. (5.60).

In the following, let us compare our solution of the improved maximum entropy
(IME) method with the result of Filev and Yager (1995). Filev and Yager (1995)
gave the solution of Model 5.23 like this:

kj ¼ eb
p�j
p�1Pp

k¼1 e
bp�k
p�1

ð5:62Þ

where b 2 �1; þ1ð Þ is a parameter dependent upon the value of a. Specifically,
they pointed out that b ¼ n� 1ð Þ ln gð Þ, where g is a positive solution of the
equation:

Xp
j¼1

p� jð Þ= p� 1ð Þ � að Þ gp�j ¼ 0 ð5:63Þ

Comparing Eq. (5.60) with Eq. (5.62), we can see that both of them have one
parameter which can be calculated by Eqs. (5.61) and (5.63), respectively. The
difference between them is that the weight vector determined by Eq. (5.60) contains
the variety of the adjacent periods whereas the later one determined by Eq. (5.62)
does not consider the decision information at multiple stages. Hence, the improved
maximum entropy method can obtain a more objective weight vector than the
original model.

Although our IME method has many advantages over Xu (2008)’s method,
Yager (2008)’s method, O’Hagan (1988)’s method and Filev and Yager (1995)’s
method in determining the weights under dynamic environment, it also has a flaw.
It is very hard to obtain the value of the parameter k by solving the normal equation
especially when k is very large. This requires a numerical method to obtain the roots
of a polynomial equation, which is the same as Filev and Yager (1995) have
pointed out. Fortunately, Darroch and Ratcliff (1972) solved this problem by using
the GIS (Generalized Iterative scaling) method. Berger et al. (1996) also proposed
an IIS (improved iterative scaling) algorithm, which is elegant in calculating the
parameter k. In addition, Yager (2009) developed a new way to get the ordinary
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maximum entropy weight vector based on the weight-generating function. In the
following, we do not want to give some algorithms to show how to derive the
solution of the parameter k, but to develop another easier model to determine the
weight vector.

(2) The Minimum Average Deviation (MAD) Method

In the above subsection, we have indicated that the deviation of the observations
in adjacent stages should not be changed largely. Once the observations vary lar-
gely at certain stage, a small weight should be assigned to that stage. Inspired by
Definitions 5.10 and 5.11, Liao et al. (2014) introduced a definition to measure the
average deviation of the hesitant fuzzy observations over different stages.

Definition 5.12 (Liao et al. 2014). The average deviation (AD) of the multiple
stages hesitant fuzzy variables htkx ðk ¼ 1; 2; . . .; pÞ with the time series weight
vector kðtÞ ¼ ðkðt1Þ; kðt2Þ; . . .; kðtpÞÞT where kðtkÞ 2 ½0; 1�, k ¼ 1; 2; . . .; p, andPp

k¼1 kðtkÞ ¼ 1, can be formulated as:

AD ¼
Pp

k¼1 kðtkÞsðDhtkx Þ
� �Pp
k¼1 kðtkÞ

¼
Xp
k¼1

kðtkÞsðDhtkx Þ
� � ð5:64Þ

where sðDhtkx Þ ¼ sðhtkx Þ � sðhtk�1
x Þðk ¼ 2; . . .; pÞ, denoting the deviation between the

adjacent periods, sðhtkx Þ is the score function of htkx . For k ¼ 1, let sðDht1x Þ ¼ sðDht2x Þ
and kðt1Þ ¼ kðt2Þ.

Motivated by Xu (2008), Yager (2008) and the IME method, the following
model is constructed:

Model 5.26

min AD ¼
Xp
k¼1

kðtkÞsðDhtkx Þ
� �2

min AGE ¼
Xp
k¼1

kðtkÞðp� kÞð Þ ¼ p�
Xp
k¼1

kkðtkÞð Þ

s:t:
Xp
k¼1

kðtkÞ ¼ 1; kðtkÞ� 0; k ¼ 1; 2; . . .; p

The main idea of Model 5.26 is to minimize the average deviation of the hesitant
fuzzy variables and minimize the average age of the data. This model is named as
the minimum average deviation (MAD) method. Since both of the two objectives
have the same degree, we can transfer the above multiple objective programming
model into the single objective programming model.
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Model 5.27

min
Xp
k¼1

kðtkÞsðDhtkx Þ
� �2 þ p�

Xp
k¼1

kkðtkÞð Þ

s:t:
Xp
k¼1

kðtkÞ ¼ 1; kðtkÞ� 0; k ¼ 1; 2; . . .; p

To solve this single programming model, the following Lagrange function is
introduced:

L kðtÞ; kð Þ ¼
Xp
k¼1

kðtkÞsðDhtkx Þ
� �2 þ p�

Xp
k¼1

kkðtkÞð Þþ kð
Xp
k¼1

kðtkÞ � 1Þ ð5:65Þ

Differentiating Eq. (5.65) with respect to kðtkÞ ðk ¼ 1; 2; . . .; pÞ and k, and set-
ting these partial derivatives equal to zero, the following equations can be obtained
easily:

@L
@kðtkÞ ¼ 2s2ðDhtkx ÞkðtkÞ � kþ k ¼ 0; k ¼ 1; 2; . . .; p ð5:66Þ

@L
@k

¼
Xp
k¼1

kðtkÞ � 1 ¼ 0 ð5:67Þ

Solving Eq. (5.66), it follows

kðtkÞ ¼ k � k

2s2 Dhtkx
� � ; k ¼ 1; 2; . . .; p ð5:68Þ

Combining Eqs. (5.67) and (5.68), the following normal equation regarding to k
can be derived:

Xp
k¼1

k � k

2s2 Dhtkx
� � ¼ 1 ð5:69Þ

There is only one parameter in this equation, and we always can solve it easily.
Comparing Eq. (5.61) with Eq. (5.69), we can see that although both of these

two normal equations have only one parameter, solving Eq. (5.69) is far easier than
solving Eq. (5.61). Thus, it has more effectiveness in practical applications.
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5.3.3 Approach to Hesitant Fuzzy Multiple Stages Multiple
Criteria Decision Making and Its Application
in Ecosystem Management

A hesitant fuzzy MSMCDM problem can be described as follows: let A ¼
fA1;A2; . . .;Amg be a finite set of alternatives, C ¼ fC1; C2; . . .; Cng be the set of
criteria, and tk k ¼ 1; 2; . . .; pð Þ be p different periods, whose weight vector is kðtÞ ¼
ðkðt1Þ; kðt2Þ; . . .; kðtpÞÞT , where kðtkÞ� 0, k ¼ 1; 2; . . .; p,

Pp
k¼1 kðtkÞ ¼ 1, and x ¼

ðx1;x2; . . .;xnÞT be the weight vector of the criteria, where xj � 0, j ¼ 1; 2; . . .; n,
and

Pn
j¼1 xj ¼ 1. Let HðtkÞ ¼ ðhtkij Þm
n (i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n;

k ¼ 1; 2; . . .; p) be the hesitant fuzzy decision matrices over p different stages,
where htkij denotes the HFE of the alternative Ai on the criterion Cj at the stage tk.
Based on the proposed weight determining method, we can develop an algorithm to
solve the hesitant fuzzy MSMCDM problem.

Algorithm 5.6

Step 1. Use the HFWA operator:

htki ¼HFWA ðhtki1; htki2; . . .; htkinÞ ¼ �n
j¼1

xjh
tk
ij

� �
; i ¼ 1; 2; . . .;m;

k ¼ 1; 2; . . .; p
ð5:70Þ

to calculate the overall values of the alternatives Ai(i ¼ 1; 2; . . .;m) at the
stages tk(k ¼ 1; 2; . . .; p). Then go to the next step.

Step 2. Construct a model via Model 5.25 or Model 5.27 and derive the weight
vector kðtÞ of different stages for the alternatives Ai(i ¼ 1; 2; . . .;m) by
using the IME method or the MAD method. Then go to the next step.

Step 3. Utilize the DHFWA operator:

hi ¼ DHFWAkðtÞðht1i ; ht2i ; . . .; htpi Þ ¼ �p
k¼1

kðtkÞhtki
� �

; i ¼ 1; 2; . . .;m ð5:71Þ

to aggregate the overall values htki (k ¼ 1; 2; . . .; p) collected from
p different periods, and get the overall value hi of the alternative
Ai(i ¼ 1; 2; . . .;m), then go to the next step.

Step 4. Rank the alternatives Aiði ¼ 1; 2; . . .;mÞ according to the overall values
hii ¼ 1; 2; . . .;mð Þ by using the comparison law given in Sect. 1.1.3, then
go the next step.

Step 5. Pick out the best alternative(s) and the procedure ends.

In what follows, let us present a numerical example concerning the selection of
suitable plan for rangeland area to validate our proposed models and illustrate how
to implement the approach in hesitant fuzzy MSMCDM:
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Example 5.5 (Liao et al. 2014) The rangeland is a complex ecosystem which
provides many ecological, social and economic services, including food, water
supply, wildlife diversity, recreational facilities, animal husbandry, climate regu-
lation, erosion control as well as ethical and social services. The rangeland has
attracted a large number of social groups’ attentions. Basically, there are six social
groups involved: ranchers, citizens, NGOs, environmental managers, watershed
managers, range managers and nomad management departments (Zendehedl et al.
2009). Different groups have different interests over the rangelands. For example,
the ranchers aim to increase animal grazing rate to extend their profits, whereas
other social groups, such as local citizens and environmental agencies, would like to
minimize the ranchers’ activities to support biodiversity. In order to establish a
sustainable policy, four alternative plans have been formulated:

A1 (Livestock control): Reduce the livestock by 40% in the area, and introduce
new legislation to facilitate grazing license transaction;

A2 (Rangeland rehabilitation): Introduce hand planting, seedling and a grazing
system (no change in the number of animals);

A3 (Watershed management): Harvest water through contour furrow, gabion,
bio-mechanical treatment, and reduce the livestock by 20% in the area;

A4 (Environmental preservation): Change the area into a national park without
any ranchers, and implement a number of plans for ecotourism and wildlife
diversity.

Suppose that the six social groups cannot persuade each other to reach a con-
sensus plan. In order to select an appropriate policy to ensure that those services
will be available for generations to come, the government decided to test each of the
plans for three years in four rangelands under similar conditions, and then choose
the best one to implement in the future. Every year the government evaluated the
four rangelands Ai ði ¼ 1; 2; 3; 4Þ over three different kinds of criteria Cjðj ¼
1; 2; 3Þ and got some evaluation values. The weights of the three criteria were
established as x ¼ ð0:3; 0:3; 0:4ÞT . A set of rules were employed to help evaluate
these four rangelands over the three criteria (shown as Table 5.7).

Since many of the rules are qualitative, it is suitable for the decision maker to use
fuzzy set to express their assessments. Meanwhile, the traditional fuzzy set cannot
express more than one rule simultaneously, but HFS is suitable to express such
information. For instance, if we want to measure the ecological criterion, there are
three rules, so it is hard to represent the evaluation values of the ecological criteria
with the ordinary fuzzy numbers, but it can be done using HFEs. In other words, it
is adequate to take the criteria of these four plans as HFVs. Once all the 3-year

Table 5.7 The rules for different criteria

Criteria Rules

Ecological criterion C1 Climate regulation Soil conservation Species diversity

Social criterion C2 Cultural criteria Social education Recreation

Economic criterion C3 Part-time job Water supply Cost of plan
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evaluation values were determined, three hesitant fuzzy matrices were obtained,
shown as Tables 5.8, 5.9 and 5.10.

In this example, the evaluation values of the four plans Ai ði ¼ 1; 2; 3; 4Þ over
the criteria Cjðj ¼ 1; 2; 3Þ are collected from three years. It can be seen as a
MSMCDM problem. In addition, as presented above, it is appropriate to take the
criteria of these four plans as HFEs. Thus, this is a hesitant fuzzy MSMCDM
problem. Hence, we can use Algorithm 5.6 to solve the problem and then obtain the
appropriate policy.

Step 1 Firstly, the three hesitant fuzzy matrices at different stages can be
rewritten as:

Hðt1Þ ¼
f0:5; 0:6g f0:4; 0:6; 1g f0:1; 0:3; 0:4g
f0; 0:6; 0:7g f0:1; 0:3; 0:5g f0:05; 0:6g
f0; 0:4; 0:6g f0:1; 0:3; 0:5g f0:2; 0:3; 0:5g

f0:6g f0; 0:7; 0:8g f0:15; 0:9; 1g

2
664

3
775

Hðt2Þ ¼
f0:65; 0:7g f0:4; 0:7; 1g f0:2; 0:4; 0:5g

f0; 0:65; 0:75g f0:15; 0:4; 0:6g f0:1; 0:7g
f0; 0:45; 0:7g f0:15; 0:4; 0:6g f0:4; 0:6g
f0:65; 0:8g f0; 0:8; 0:9g f0:3; 0:95; 1g

2
664

3
775

Table 5.8 The evaluation
values of the four plans in 1st
year (t ¼ 1)

C1 C2 C3

A1 {0.6, 0.5, 0.6} {1, 0.6, 0.4} {0.4, 0.1, 0.3}

A2 {0, 0.7, 0.6} {0.1, 0.3, 0.5} {0.6, 0.05, 0.6}

A3 {0, 0.4, 0.6} {0.1, 0.5, 0.3} {0.5, 0.2, 0.3}

A4 {0.6, 0.6, 0.6} {0, 0.7, 0.8} {1, 0.15, 0.9}

Table 5.9 The evaluation
values of the four plans in 2nd
year (t ¼ 2)

C1 C2 C3

A1 {0.7, 0.65, 0.65} {1, 0.7, 0.4} {0.5, 0.2, 0.4}

A2 {0, 0.75, 0.65} {0.15, 0.4, 0.6} {0.7, 0.1, 0.7}

A3 {0, 0.45, 0.7} {0.15, 0.6, 0.4} {0.6, 0.4, 0.4}

A4 {0.65, 0.65, 0.8} {0, 0.8, 0.9} {1, 0.3, 0.95}

Table 5.10 The evaluation
values of the four plans in 3rd
year (t ¼ 3)

C1 C2 C3

A1 {0.8, 0.65, 0.7} {1, 0.8, 0.6} {0.6, 0.3, 0.5}

A2 {0, 0.8, 0.7} {0.2, 0.5, 0.7} {0.8, 0.15, 0.8}

A3 {0, 0.5, 1} {0.2, 0.7, 0.5} {0.7, 0.6, 0.5}

A4 {0.7, 0.7, 1} {0, 0.9, 1} {1, 0.45, 1}
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Hðt3Þ ¼
f0:65; 0:7; 0:8g f0:6; 0:8; 1g f0:3; 0:5; 0:6g
f0; 0:7; 0:8g f0:2; 0:5; 0:7g f0:15; 0:8g
f0; 0:5; 1g f0:2; 0:5; 0:7g f0:5; 0:6; 0:7g
f0:7; 1g f0; 0:9; 1g f0:45; 1g

2
664

3
775

Then, via Eq. (5.70), we can aggregate the HFEs by the HFWA operator. The
results are set out as follows:

h1ðt1Þ ¼ f0:3319; 0:3752; 0:3958; 0:4084; 0:4319; 0:4349; 0:4467; 0:4650; 0:4687; 0:4970;
0:4996; 0:5296; 1g

h2ðt1Þ ¼ f0:0508; 0:1197; 0:2042; 0:2789; 0:3284; 0:3313; 0:3385; 0:3772; 0:3866; 0:3955;
0:4370; 0:4455; 0:4898; 0:5269; 0:5320; 0:5660; 0:5723; 0:6077g

h3ðt1Þ ¼ f0:1138; 0:1599; 0:1782; 0:2209; 0:2398; 0:2571; 0:2657; 0:2793; 0:2950; 0:2957;
0:3190; 0:3268; 0:3316; 0:3618; 0:3627; 0:3700; 0:3757; 0:3844; 0:3958; 0:4082;

0:4158; 0:4357; 0:4422; 0:4650; 0:4719; 0:4827; 0:5324g

h4ðt1Þ ¼ f0:2882; 0:5040; 0:5608; 0:6976; 0:7893; 0:8134; 1g
h1ðt2Þ ¼ f0:4273; 0:4532; 0:4896; 0:5126; 0:5255; 0:5349; 0:5469; 0:5559; 0:5854; 0:6041;

0:6146; 0:6320; 1g

h2ðt2Þ ¼ f0:0869; 0:1775; 0:2717; 0:3336; 0:3976; 0:3997; 0:4116; 0:4573; 0:4685; 0:4700;
0:5195; 0:5307; 0:5706; 0:6118; 0:6132; 0:6503; 0:6575; 0:6904g

h3ðt2Þ ¼ f0:2236; 0:3006; 0:3398; 0:3511; 0:3807; 0:4053; 0:4155; 0:4482; 0:4590; 0:4734;
0:4824; 0:5030; 0:5126; 0:5400; 0:5599; 0:5685; 0:5856; 0:6331g

h4ðt2Þ ¼ f0:3672; 0:4650; 0:6095; 0:6699; 0:6829; 0:7319; 0:7798; 0:8138; 0:8641; 0:8851;
0:8896; 0:9067; 1g

h1ðt3Þ ¼ f0:5193; 0:5410; 0:5798; 0:5936; 0:5988; 0:6095; 0:6157; 0:6272; 0:6331; 0:6448;
0:6587; 0:6699; 0:6741; 0:6751; 0:6879; 0:7020; 0:7115; 0:7361; 1g

h2ðt3Þ ¼ f0:1236; 0:2389; 0:3470; 0:3893; 0:4592; 0:4696; 0:5087; 0:5304; 0:5450; 0:5733;
0:5971; 0:6339; 0:6576; 0:6969; 0:7027; 0:7367; 0:7449; 0:7741g
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h3ðt3Þ ¼ f0:2912; 0:3517; 0:3844; 0:4222; 0:4243; 0:4370; 0:4719; 0:4734; 0:4982; 0:5000;
0:5170; 0:5307; 0:5427; 0:5695; 0:5710; 0:5924; 0:6077; 0:6503; 1g

h4ðt3Þ ¼ f0:4514; 0:7250; 1g

Step 2. Use the MAD method to calculate the weight vector kðtÞ for different
stages. By Eq. (1.17), we can calculate:

s h1ðt1Þð Þ ¼ 0:4834; s h2ðt1Þð Þ ¼ 0:3882; s h3ðt1Þð Þ ¼ 0:3403; s h4ðt1Þð Þ ¼ 0:6648

s h1ðt2Þð Þ ¼ 0:5755; s h2ðt2Þð Þ ¼ 0:4621; s h3ðt2Þð Þ ¼ 0:4546; s h4ðt2Þð Þ ¼ 0:7435

s h1ðt3Þð Þ ¼ 0:6567; s h2ðt3Þð Þ ¼ 0:5405; s h3ðt3Þð Þ ¼ 0:5177; s h4ðt3Þð Þ ¼ 0:7255

Thus, we have

s Mh1ðt1Þð Þ ¼ s Mh1ðt2Þð Þ ¼ 0:0923; s Mh1ðt3Þð Þ ¼ 0:0810

s Mh2ðt1Þð Þ ¼ s Mh2ðt2Þð Þ ¼ 0:0739; s Mh2ðt3Þð Þ ¼ 0:0784

s Mh3ðt1Þð Þ ¼ s Mh3ðt2Þð Þ ¼ 0:1143; s Mh1ðt3Þð Þ ¼ 0:0631

s Mh4ðt1Þð Þ ¼ s Mh4ðt2Þð Þ ¼ 0:0787; s Mh4ðt3Þð Þ ¼ 0:0180

Using Eq. (5.69), we can obtain the values of the parameter k. Then the
associated dynamic weight vectors for different alternatives can be cal-
culated according to Eq. (5.68), which are k1 ¼ ð0:0953; 0:2860;
0:6186ÞT , k2 ¼ ð0:1184; 0:3553; 0:5262ÞT , k3 ¼ ð0:0490; 0:1470;
0:8040ÞT , and k4 ¼ ð0:0101; 0:0301; 0:9598ÞT .

Step 3. Utilize the DHFWA operator to aggregate the overall values
hiðtkÞ(k ¼ 1; 2; 3), and get the overall values hi(i ¼ 1; 2; 3; 4) for the plans
Ai ði ¼ 1; 2; 3; 4Þ.

Step 4. The score function values of hi (i ¼ 1; 2; 3; 4) are s h1ð Þ ¼ 0:6207; s h2ð Þ ¼
0:4973; s h3ð Þ ¼ 0:5013; and s h4ð Þ ¼ 0:7255. Since s h4ð Þ[ s h1ð Þ[ s h3ð Þ
[ s h2ð Þ, the ranking of these four plans is A4 	 A1 	 A3 	 A2, where
“	” denotes “prior to”. That is to say, changing the area into a National
Park without any ranchers and implementing a number of plans for eco-
tourism and wildlife diversity is the most appropriate plan for such a
rangeland.

In Example 5.5, the most important criterion is the Economic criterion C3. Let us
look back to the judgment values in Tables 5.8, 5.9 and 5.10. We can find that in
each year, the HFE of the fourth alternative is higher than those of the other three
alternatives. In addition, as to the criteria C1 and C2, the HFEs of the fourth
alternative are also slightly higher than the others. Thus, it is intuitive that the fourth
alternative A4 is the best one. That is to say, the result derived from our approach is
consistent with our intuition.
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Chapter 6
Decision Making with Hesitant Fuzzy
Preference Relation

In the process of decision making, the decision maker may be more rational and
suitable to express his/her preferences by comparing each pair of objects and
constructs a preference relation. The preference relation, as the most common and
paramount representation of information, has attracted great attention from scholars
and has been widely applied, especially in multiple criteria decision making. Up to
now, many different types of preference relations have been proposed, such as the
fuzzy preference relation (Tanino 1984), the multiplicative preference relation
(Saaty 1980), the linguistic preference relation (Herrera and Herrera-Viedma 2000;
Xu 2006), the intuitionistic fuzzy preference relation (Xu 2007; Xu and Liao 2014),
the intuitionistic multiplicative preference relation (Xia et al. 2013), and the
interval-valued intuitionistic preference relation (Xu and Ygaer 2009). However,
most of the existing preference relations do not consider the hesitant fuzzy infor-
mation which allows the decision makers to provide all the possible values when
comparing two alternatives (or criteria). To solve this drawback, Liao et al. (2014b)
introduced the definition of hesitant fuzzy preference relation (HFPR) and inves-
tigated its distinctive properties. This chapter explores the properties of the HFPR
and introduces the concepts of multiplicative consistency, perfect multiplicative
consistency and acceptable multiplicative consistency for a HFPR, based on which,
two algorithms are given to improve the inconsistency degree of a HFPR.

As the consistency index of a HFPR determines the accuracy and reliability, in
order to improve the accuracy in checking the multiplicative consistency of a
HFPR, we then provide a method to determine the values of the consistency index
for the HFPRs with different orders. We point out the weaknesses of the existing
method in checking the multiplicative consistency of a HFPR. As there is no any
theoretical evidence to support the given consistency threshold, we investigate the
density function of the consistency index of a HFPR in the second part of this
chapter and introduce an algorithm to determine the value of the multiplicative
consistency index of a HFPR. Based on some simulations, a value table of critical
values of the multiplicative consistency index of a HFPR is determined, whose
elements vary with respect to the order of the HFPR and the measure used on



distance calculations. Finally, we study the consensus reaching process of group
decision making based on the HFPRs. Several illustrative examples are given to
demonstrate the practicality of the algorithms. In the following parts of this chapter,
we apply the HFPR to group decision making problems and investigate its
interval-valued forms.

6.1 Hesitant Fuzzy Preference Relation and Its
Multiplicative Consistency

In the process of decision making, in order to avoid the influence of the limited
ability of human thinking and obtain the best ranking result, people prefer to take
pairwise comparison of one alternative over another and construct a preference
relation. Therefore, the preference relations turn out to be the most common rep-
resentation formats for expressing the decision makes’ preferences. Let A ¼
fA1;A2; . . .;Ang be a set of alternatives, then R ¼ ðrijÞn�n is called a fuzzy pref-
erence relation on A� A with the condition that rij � 0, rij þ rji ¼ 1,
i; j ¼ 1; 2; . . .; n, where rij denotes the degree to which the alternative Ai is prior to
the alternative Aj. The values in a fuzzy preference relation are certain values
between 0 and 1. However, when people establish the preference degree of one
object over another, they may have a set of possible values but not one single value
due to the complexity of the decision making problem, the lack of knowledge about
the problem domain, and so on. In such cases, it is very suitable and reasonable to
represent the preference information by HFEs, which permit the membership degree
of an element to a set represented by several possible values. Thus, Liao et al.
(2014b) defined the HFPR:

Definition 6.1 (Liao et al. 2014b). Let A ¼ fA1;A2; . . .;Ang be a fixed set, a HFPR
H on A is presented by a matrix H ¼ ðhijÞn�n � A� A with hij being a HFE
indicating all the possible degrees to which Ai is preferred to Aj. Moreover, hij
should satisfy the following conditions:

hrðtÞij þ h
rðlhji�tþ 1Þ
ji ¼ 1; hii ¼ f0:5g; lhij ¼ lhji ; i; j ¼ 1; 2; . . .; n ð6:1Þ

where hrðtÞij is the tth smallest value in hij, t ¼ 1; 2; . . .; lhij .
With Definition 6.1, we can easily derive the following results:

Theorem 6.1 (Liao et al. 2014b). The transpose HT ¼ ðhTij Þn�n of the HFPR H ¼
ðhijÞn�n is also a HFPR, where hTij ¼ hji, i; j ¼ 1; 2; . . .; n.

Theorem 6.2 (Liao et al. 2014b). Let H ¼ ðhijÞn�n be a HFPR, then, if we remove
the ith row and the ith column, then the remaining matrix H ¼ ðhijÞðn�1Þ�ðn�1Þ is
also a HFPR.
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When the decision maker evaluates the alternatives, he/she may provide
inconsistent preference values, and consequently constructs the inconsistent pref-
erence relation due to the complexity of the considered problem or other reasons.
The investigation on consistency of a preference relation generally involves two
phases: (1) judge whether the preference relation considered is consistent or not;
(2) adjust or repair the inconsistent preference relation until it is with acceptable
consistency. As for the first phase, the concept of consistency was traditionally
defined in terms of transitivity, such as weak transitivity, max-max transitivity,
max-min transitivity, restricted max-min transitivity, restricted max-max transitiv-
ity, additive transitivity, and multiplicative transitivity. Based on the above tran-
sitivity properties, some methods to measure the consistency of a preference
relation can be developed. Saaty (1980) firstly derived a consistency ratio for
multiplicative preference relation and developed the concept of perfect consistency
and acceptable consistency. He further pointed out that the multiplicative preference
relation is of acceptable consistency if its consistency ratio is less than 0.1.
However, the more common situation in practice is the preference relation pos-
sessing unacceptable consistency, which may mislead the ranking results.
Therefore, we need to repair the inconsistent preference relation, which is the target
of the second phase.

The HFPR H ¼ ðhijÞn�n should satisfy the following transitivity properties:

(1) If hik � hkj � hij, for all i; j; k ¼ 1; 2; . . .; n, then we say H satisfies the triangle
condition.

(2) If hik �f0:5g, hkj �f0:5g, then hij �f0:5g, for all i; j; k ¼ 1; 2; . . .; n, then we
say H satisfies the weak transitivity property.

(3) If hij �minfhik; hkjg, for all i; j; k ¼ 1; 2; . . .; n, then we say H satisfies max-min
transitivity property.

(4) If hij �maxfhik; hkjg, for all i; j; k ¼ 1; 2; . . .; n, then we say H satisfies
max-max transitivity property.

(5) If hik �f0:5g, hkj �f0:5g, then hij �minðhik; hkjÞ, for all i; j; k ¼ 1; 2; . . .; n,
then we say H satisfies the restricted max-min transitivity property.

(6) If hik �f0:5g, hkj �f0:5g, then hij �maxðhik; hkjÞ, for all i; j; k ¼ 1; 2; . . .; n,
then we say H satisfies the restricted max-max transitivity property.

The weak transitivity is the usual and basic property which can be interpreted as
follows: If the alternative Ai is preferred to Ak, and Ak is preferred to Aj, then Ai

should be preferred to Aj. If the person who is logic and consistent does not want to
draw inconsistent conclusions, he/she should first ensure that the HFPR satisfies the
weak transitivity. However, the weak transitivity is the minimum requirement
condition to make sure that the HFPR is consistent. There are another two condi-
tions named additive transitivity and multiplicative transitivity which are more
restrictive than weak transitivity and can imply reciprocity.

Associated with the study of transitivity properties, Herrera-Viedma et al. (2004)
proposed the additive transitivity property of fuzzy preference relation as a new
characterization of the consistency property. Gong et al. (2010) investigated the
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property of additive consistent intuitionistic fuzzy preference relation. Ma et al.
(2006) presented two methods derived from graph theory to judge whether a fuzzy
preference relation has weak transitivity or not, and then via a synthesis matrix
which reflects the relationship between the fuzzy preference relation with additive
consistency and the original one given by the decision maker, an algorithm was
developed to repair the inconsistent fuzzy preference relation. Many scholars have
applied the additive transitivity property of fuzzy preference relations to practice.
But as the additive transitivity property of a fuzzy preference relation P ¼ ðpijÞn�n
is represented as pij ¼ pik þ pkj � 0:5, i; j; k ¼ 1; 2; . . .; n, where pij, pik and pkj are
the preference information on the alternatives Ai;Aj and Ak, if we take pik ¼ 0:8 and
pkj ¼ 0:9 as an example, then, pij ¼ 1:2[ 1, which does not belong to the unit
closed interval [0,1] and thus is unreasonable. To solve this problem, based on the
multiplicative consistency of the fuzzy preference relation P ¼ ðpijÞn�n, which is
represented as pij pjk pki ¼ pik pkj pji, i; j; k ¼ 1; 2; . . .; n, where pij; pik and pkj are the
preference values given by the decision maker, Chiclana et al. (2009a) developed a
method to construct the consistent fuzzy preference relation from a set of n� 1
preference values. Xia and Xu (2011a) proposed a new method which can get the
complete consistent fuzzy preference relation quickly without any transformation
based on the multiplicative consistency of a fuzzy preference relation. Xia and Xu
(2011b) also developed some methods to get the perfect multiplicative consistent
interval reciprocal relation from the inconsistent one and estimate the missing
values from an incomplete interval reciprocal relation. Liao et al. (2014a) investi-
gated the multiplicative consistency of interval-valued intuitionistic fuzzy prefer-
ence relations. In the following, we utilize the multiplicative consistency to
investigate the consistency of HFPR.

The additive transitivity can be generalized to accommodate the HFPR in terms
of ðhik � f0:5gÞ � ðhkj � f0:5gÞ ¼ ðhij � f0:5gÞ, for all i; j; k ¼ 1; 2; . . .; n. The
multiplicative transitivity is an important property of the fuzzy preference relation
P ¼ ðpijÞn�n, which was firstly introduced by Tanino (1984) and shown as:

pji
pij

� pkj
pjk

¼ pki
pik

ð6:2Þ

where pij denotes a ratio of preference intensity for the alternative Ai to that for Aj.
In other words, Ai is pij times as good as Aj, and pij 2 ½0; 1�, for all i; j ¼ 1; 2; . . .; n.

Even though both additive transitivity and multiplicative transitivity can be used
to measure the consistency, the additive consistency may produce the unreasonable
results as discussed above. Thus, we shall take the multiplicative transitivity to
verify the consistency of a HFPR. The condition of multiplicative transitivity can be
rewritten as follows:

pij pjk pki ¼ pik pkj pji ð6:3Þ

In the case where ðpik; pkjÞ 62 ð0; 1Þ; ð1; 0Þf g, Eq. (6.3) is equivalent to
(Chiclana et al. 2009b):
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pij ¼ pik pkj
pik pkj þð1� pikÞð1� pkjÞ ð6:4Þ

and if ðpik; pkjÞ 2 ð0; 1Þ; ð1; 0Þf g, we stipulate pij ¼ 0.
Inspired by Eq. (6.4), Liao et al. (2014b) defined the concept of multiplicative

consistent HFPR:

Definition 6.2 (Liao et al. 2014b). Let H ¼ ðhijÞn�n be a HFPR on a fixed set
A ¼ fA1;A2; . . .;Ang, then H ¼ ðhijÞn�n is multiplicative consistent if

hrðtÞij ¼
0; ðhik; hkjÞ 2 f0g; f1gð Þ; f1g; f0gð Þf g

hrðtÞik hrðtÞkj

hrðtÞik hrðtÞkj þð1�hrðtÞik Þð1�hrðtÞkj Þ ; otherwise

8<
: ; i	 k	 j

ð6:5Þ

where hrðtÞik and hrðtÞkj are the tth smallest values in hik and hkj, respectively.
For the convenience of checking whether a HFPR is consistent or not, based on

Definition 6.2, we can introduce the corresponding perfect multiplicative consistent
HFPR for any HFPR:

Definition 6.3 (Liao et al. 2014b). Let H ¼ ðhijÞn�n be a HFPR on a fixed set
A ¼ fA1;A2; . . .;Ang, then we call H ¼ ð�hijÞn�n a prefect multiplicative consistent
HFPR, where

�hrðtÞij ¼

1
j�i�1

Pj�1

k¼iþ 1

hrðtÞik hrðtÞkj

hrðtÞik hrðtÞkj þð1�hrðtÞik Þð1�hrðtÞkj Þ; iþ 1\j

hrðtÞij ; iþ 1 ¼ j
f0:5g; i ¼ j
1� �hrðtÞji ; i[ j

8>>>>><
>>>>>:

ð6:6Þ

and �hrðtÞij , hrðtÞik and hrðtÞkj are the tth smallest values in �hij, hik and hkj, respectively,
t ¼ 1; 2; . . .; l, l ¼ maxflhik ; lhkjg.
Definition 6.4 (Liao et al. 2014b). Let H ¼ ðhijÞn�n be a HFPR on a fixed set
A ¼ fA1;A2; . . .;Ang, then we call H ¼ ðhijÞn�n an acceptable multiplicative con-
sistent HFPR, if

dðH;HÞ\s ð6:7Þ

where τ is the consistency threshold. Without loss of generality, we usually let
s ¼ 0:1 in practice (the values of τ will be discussed in-depth in Sect. 6.2). dðH;HÞ
is the distance measure between H and H which can be calculated by using the
hesitant normalized Hamming distance measure:
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dhnhðH;HÞ ¼ 1
ðn� 1Þðn� 2Þ

Xn
i¼1

Xn
j¼1

1
lhij

Xlhij
t¼1

hrðtÞij � �hrðtÞij

��� ���
2
4

3
5 ð6:8Þ

or the hesitant normalized Euclidean distance measure:

dhneðH;HÞ ¼ 1
ðn� 1Þðn� 2Þ

Xn
i¼1

Xn
j¼1

1
lhij

Xlhij
t¼1

hrðtÞij � �hrðtÞij

��� ���2
2
4

3
5

1
2

ð6:9Þ

The hesitant normalized Hamming distance and the hesitant normalized
Euclidean distance are drawn on the well-known Hamming distance and the
Euclidean distance. The difference of them takes place in the power of the absolute

distance hrðtÞij � �hrðtÞij

��� ���.
Theorem 6.3 (Liao et al. 2014b). Any HFPR H ¼ ðhijÞ2�2 is multiplicative
consistent.

Proof Suppose that h12 ¼ fhrð1Þ12 ; hrð2Þ12 ; . . .; hrðnÞ12 g, then, h21 ¼ f1� hrðnÞ12 ; 1�
hrðn�1Þ
12 ; . . .; 1� hrð1Þ12 g. Thus,

0:5hrð1Þ12

0:5hrð1Þ12 þ 0:5ð1� hrð1Þ12 Þ
¼ 0:5hrð1Þ12

0:5
¼ hrð1Þ12

Similarly,

0:5hrð2Þ12

0:5hrð2Þ12 þ 0:5ð1� hrð2Þ12 Þ
¼ 0:5hrð2Þ12

0:5
¼ hrð2Þ12

..

.

0:5hrðnÞ12

0:5hrðnÞ12 þ 0:5ð1� hrðnÞ12 Þ
¼ 0:5hrðnÞ12

0:5
¼ hrðnÞ12

which satisfies Eq. (6.5), additionally, when h12 ¼ f0g, Eq. (6.5) also holds. Thus,
H ¼ ðhijÞ2�2 is multiplicative consistent, which completes the proof of
Theorem 6.3. □

Theorem 6.3 reveals that any two-order HFPR is multiplicative consistent.
However, when the order of a HFPR is greater than two, the HFPR constructed by
an expert is sometimes unacceptably consistent, which means dðH; �HÞ[ s. Thus,
we need to adjust the elements in the HFPR to improve its consistency degree till it
accomplishes the required consistency. Below we propose an iterative algorithm to
repair the consistency degree of a HFPR.
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Algorithm 6.1

Step 1. Suppose that p is the number of iterations, d is the step size, 0	 n ¼
pd	 1 and s is the consistency threshold. Let p ¼ 1, and construct the

prefect multiplicative consistent HFPR H ¼ ð�hijÞn�n from HðpÞ ¼ ðhðpÞij Þn�n

by Eq. (6.6).
Step 2. Calculate the deviation dðHðpÞ;HÞ between H and HðpÞ by

dhnhðHðpÞ;HÞ ¼ 1
ðn� 1Þðn� 2Þ

Xn
i¼1

Xn
j¼1

1
lhij

Xlhij
t¼1

hðpÞrðtÞij � h
rðtÞ
ij

��� ���
2
4

3
5 ð6:10Þ

or

dhneðHðpÞ;HÞ ¼ 1
ðn� 1Þðn� 2Þ

Xn
i¼1

Xn
j¼1

1
lhij

Xlhij
t¼1

hðpÞrðtÞij � �hrðtÞij

��� ���2
0
@

1
A

1=2

ð6:11Þ

where hðpÞrðtÞij and �hrðtÞij are the tth smallest values in hðpÞij and �hij,

respectively. If dðHðpÞ;HÞ \s, then output HðpÞ; Otherwise, go to the next
step.

Step 3. Repair the multiplicative inconsistent HFPR HðpÞ to H
_ ðpÞ

¼ ðhðpÞij Þn�n by
using the following equations:

h
_ðpÞrðtÞ
ij ¼ ðhðpÞrðtÞij Þ1�nð�hrðtÞij Þn

ðhðpÞrðtÞij Þ1�nð�hrðtÞij Þn þð1� hðpðpÞrðtÞij Þ1�nð1� �hrðtÞij Þn
;

i; j ¼ 1; 2; . . .; n

where h
_ðpÞrðtÞ
ij , hðpÞrðtÞij and �hrðtÞij are the tth smallest values in h

_ðpÞ
ij , hðpÞij and

�hij, respectively. Let Hðpþ 1Þ ¼ H
_ ðpÞ

and p ¼ pþ 1, then go to Step 2.

In Algorithm 6.1, the parameter δ is an iteration step size. Such a step size
controls the speed of convergence of this algorithm. That is to say, by setting
different values of δ, the acceptable multiplicative consistent HFPR can be obtained
in different time. One special case is to set the step size d ¼ 1=N, where N is the
maximum number of iteration. Then after pð¼ NÞ times of iteration,

n ¼ pd ¼ N � 1=Nð Þ ¼ 1, thus, H
_ pð Þ

¼ �H, which is of perfect multiplicative con-
sistency. In other words, the above algorithm is convergent.
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It should also be noted that in Algorithm 6.1, the repaired HFPR shares the same
perfect multiplicative consistent HFPR with the original HFPR H. This can be
formulated into the following theorem:

Theorem 6.4 (Liu et al. 2016). For a HFPR H ¼ hij
� �

n�n on a fixed set

A ¼ fA1;A2; . . .;Ang, let H ¼ �hij
� �

n�n be the corresponding perfect multiplicative

consistent HFPR of H, and H
_ ¼ h

_

ij

� �
n�n

be the repaired HFPR of H through

Algorithm 6.1 within limited times of iteration. Then the corresponding perfect

multiplicative consistent HFPR of H
_

is H as well.

Proof We first define X: {HFPR} 7! {HFPR}, X Hð Þ ¼ H; where H ¼ hij
� �

n�n is
any fixed HFPR, and H ¼ �hij

� �
n�n is the corresponding perfect multiplicative

consistent HFPR of H.

Then we define P: {HFPR} 7! {HFPR}, P H
_ ðkÞ� �

¼ H
_ kþ 1ð Þ

, where k 2 N þ ,

and H
_ kð Þ

¼ h
_ðkÞ
ij

� �
n�n

is the repaired HFPR of H by Algorithm 6.1 for k iterations,

and define φ: un x; yð Þ ¼ x1�nyn

x1�nyn þ 1�xð Þ1�n 1�yð Þn, where x; y; n 2 0; 1ð Þ. Now we

illustrate that for any HFPR H:

P 
 XðHÞ ¼ X 
PðHÞ ð6:13Þ

Owing to the fact that XðHÞ ¼ H is a perfect multiplicative consistent HFPR,

P 
 X Hð Þ ¼ X Hð Þ ¼ H: While PðHÞ ¼ H
_ ¼ h

_

ij

� �
n�n

. For i ¼ 1; 2; . . .; n,

�hii ¼ 0:5, and for i ¼ 1; 2; . . .; n� 1 and t ¼ 1; 2; . . .; lhiðiþ 1Þ , �hiðiþ 1Þ ¼ hiðiþ 1Þ.

Hence, for i ¼ 1; 2; . . .; n, h
_

ii ¼ 0:5, and for i ¼ 1; 2; . . .; n� 1 and

t ¼ 1; 2; . . .; lhiðiþ 1Þ , h
_rðtÞ
iðiþ 1Þ ¼ u hrðtÞiðiþ 1Þ; �h

rðtÞ
iðiþ 1Þ

� �
¼ hrðtÞiðiþ 1Þ. Thereby in

H0 ¼ X 
PðHÞ, h0rðtÞiðiþ 1Þ ¼ hrðtÞiðiþ 1Þ, i ¼ 1; 2; . . .; n� 1. Notice the point that the

transformation Ω keeps the elements of diagonal and secondary diagonal remain,
and the else elements determined by the ones of secondary diagonal, so X 

PðHÞ ¼ H: Therefore, the assumption P 
 XðHÞ ¼ X 
PðHÞ is true. For the

repaired HFPR H
_

, 9P0 2 N
þ , where Nþ is the set of all natural numbers, such that

H
_ ¼ H P0ð Þ, where H P0ð Þ ¼ h P0ð Þ

ij

� �
n�n

is the operated HFPR of H by Algorithm 6.1

for P0 times. Now we use mathematical induction to further prove the proposition:

(1) When P0 ¼ 1, H
_ ¼ Hð1Þ ¼ H. Therefore, it holds that H and H

_

share the same
perfect multiplicative consistent HFPR H:
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(2) For k 2 N
þ , 1\k\P0, suppose that H

ðkÞ ¼ H; where H
ðkÞ ¼ �h kð Þ

ij

� �
n�n

is the

corresponding perfect multiplicative consistent HFPR of H kð Þ ¼ h kð Þ
ij

� �
n�n

,

then

X H kþ 1ð Þ
� �

¼ X 
P H kð Þ
� �

¼ P 
 X H kð Þ
� �

¼ P H
kð Þ� �

¼ P H
� � ¼ H ð6:14Þ

To sum up, the repaired HFPR shares the same perfect multiplicative consistent
HFPR with the original HFPR H. This completes the proof of Theorem 6.2.□

Example 6.1 (Liao et al. 2014b). Suppose that a decision maker provides his/her
preference information over a set of alternatives A1;A2;A3;A4 in HFEs and con-
structs the following HFPR:

H ¼
f0:5g f0:1; 0:4g f0:1; 0:2g f0:4; 0:5; 0:6g

f0:6; 0:9g f0:5g f0:3; 0:8g f0:3; 0:6g
f0:8; 0:9g f0:2; 0:7g f0:5g f0:2; 0:7g

f0:4; 0:5; 0:6g f0:4; 0:7g f0:3; 0:8g f0:5g

0
BB@

1
CCA

Firstly, let p ¼ 1 and Hð1Þ ¼ H, then we construct the prefect multiplicative
HFPR H ¼ ð�hijÞn�n from Hð1Þ by Eq. (6.6). Taking �h14 as an example, we have

�hrð1Þ14 ¼ 1
2
ð hrð1Þ12 hrð1Þ24

hrð1Þ12 hrð1Þ24 þð1� hrð1Þ12 Þð1� hrð1Þ24 Þ
þ hrð1Þ13 hrð1Þ34

hrð1Þ13 hrð1Þ34 þð1� hrð1Þ13 Þð1� hrð1Þ34 Þ
Þ

¼ 1
2
ð 0:1� 0:3
0:1� 0:3þð1� 0:1Þð1� 0:3Þ þ

0:1� 0:2
0:1� 0:2þð1� 0:1Þð1� 0:2ÞÞ ¼ 0:036

�hrð2Þ14 ¼ 1
2
ð hrð2Þ12 hrð2Þ24

hrð2Þ12 hrð2Þ24 þð1� hrð2Þ12 Þð1� hrð2Þ24 Þ
þ hrð2Þ13 hrð2Þ34

hrð2Þ13 hrð2Þ34 þð1� hrð2Þ13 Þð1� hrð2Þ34 Þ
Þ

¼ 1
2
ð 0:4� 0:6
0:4� 0:6þð1� 0:4Þð1� 0:6Þ þ

0:2� 0:7
0:2� 0:7þð1� 0:2Þð1� 0:7ÞÞ ¼ 0:434

In the similar way, we can obtain

H ¼
f0:5g f0:1; 0:4g f0:046; 0:727g f0:036; 0:434g

f0:6; 0:9g f0:5g f0:3; 0:8g f0:097; 0:903g
f0:273; 0:954g f0:2; 0:7g f0:5g f0:2; 0:7g
f0:566; 0:964g f0:097; 0:903g f0:3; 0:8g f0:5g

0
BB@

1
CCA

Then, we use Eq. (6.10) to calculate the hesitant normalized Hamming distance
between Hð1Þ and H :
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dhnhðHð1Þ;HÞ ¼ 1
6

X4
i¼1

X4
j¼1

1
lxij

Xlxij
t¼1

hrðtÞHð1Þ ðxijÞ � hrðtÞ
H

ðxijÞ
��� ���

2
4

3
5

¼ 1
6
½1
2
ðj0:1� 0:046j þ j0:2� 0:727jÞ þ 1

3
ðj0:4� 0:036j þ j0:5� 0:434j þ j0:6� 0:5jÞ

þ 1
2
ðj0:3� 0:097j þ j0:6� 0:903jÞ þ 1

2
ðj0:8� 0:273j þ j0:9� 0:954jÞ þ 1

3
ðj0:4� 0:5j

þ j0:5� 0:566j þ j0:6� 0:964jÞ þ 1
2
ðj0:4� 0:097j þ j0:7� 0:903jÞ� ¼ 0:2401

Without loss of generality, let s ¼ 0:1, then dhnhðHð1Þ;HÞ ¼ 0:2401[ s , which
means that Hð1Þ is not a multiplicative consistent HFPR. Therefore, it is needed to

repair the multiplicative inconsistent HFPR Hð1Þ according to H
_ ð1Þ

by Eq. (6.12).
We hereby let n ¼ 0:8, then

H
_ ð1Þ

¼

f0:5g f0:1; 0:4g f0:054; 0:624g f0:062; 0:447; 0:52g
f0:6; 0:9g f0:5g f0:3; 0:8g f0:124; 0:866g

f0:376; 0:946g f0:2; 0:7g f0:5g f0:2; 0:7g
f0:48; 0:553; 0:938g f0:134; 0:876g f0:3; 0:8g f0:5g

0
BBB@

1
CCCA

Let Hð2Þ ¼ H
_ ð1Þ

and p ¼ 2, then the hesitant normalized Hamming distance
between Hð2Þ and H can be calculated, i.e., dhnhðHð2Þ;HÞ ¼ 0:039\0:1: Since the
hesitant normalized Hamming distance is less than the given consistency threshold,
we can draw a conclusion that Hð2Þ is the repaired multiplicative consistent HFPR
of H.

In Example 6.1, we can also use Eq. (6.11) to calculate the hesitant normalized
Euclidean distance instead of the hesitant normalized Hamming distance, and both
of them can get the same result.

Beside Algorithm 6.1, the most directive method to repair the inconsistent HFPR
is returning the multiplicative inconsistent HFPR to the decision maker to recon-
sider and construct a new HFPR according to his/her new comparisons until it has
acceptable consistency. This algorithm can be described in details as follows:

Algorithm 6.2

Step 1. Same as that in Algorithm 6.1.
Step 2. Same as that in Algorithm 6.1.
Step 3. Return the multiplicative inconsistent HFPR HðpÞ to the decision maker to

reconsider and construct a new HFPR Hðpþ 1Þ according to the new
judgments. Let p ¼ pþ 1, then go to Step 2.

Example 6.2 (Liao et al. 2014b). Suppose the analyst does not repair the multi-
plicative inconsistent HFPR Hð1Þ in Example 6.1 by Eq. (6.12), but returns it to the
decision maker to reconsider their opinions with reference to the prefect
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multiplicative HFPR H: After re-evaluation, the decision maker provides a new
HFPR Hð1Þ as:

Hð2Þ ¼
f0:5g f0:1; 0:4g f0:1; 0:7g f0:1; 0:4g

f0:6; 0:9g f0:5g f0:3; 0:8g f0:1; 0:9g
f0:3; 0:9g f0:2; 0:7g f0:5g f0:2; 0:7g
f0:6; 0:9g f0:1; 0:9g f0:3; 0:8g f0:5g

0
BB@

1
CCA

Afterwards, we use Eq. (6.6) to construct the prefect multiplicative HFPR H
0

from Hð2Þ. It is also the same as H in Example 6.1. Then, we use Eq. (6.10) to
calculate the hesitant normalized Hamming distance between Hð2Þ and H

0
:

dhnhðHð2Þ;H0Þ ¼ 1
6

X4
i¼1

X4
j¼1

1
lxij

Xlxij
t¼1

hrðtÞHð2Þ ðxijÞ � hrðtÞ
H

0 ðxijÞ
��� ���

2
4

3
5

¼ 1
6
½1
2
ðj0:1� 0:046j þ j0:7� 0:727jÞ þ 1

2
ðj0:1� 0:036j þ j0:4� 0:434jÞ

þ 1
2
ðj0:1� 0:097j þ j0:9� 0:903jÞ þ 1

2
ðj0:3� 0:273j þ j0:9� 0:954jÞ

þ 1
2
ðj0:6� 0:566j þ j0:9� 0:964jÞ þ 1

2
ðj0:1� 0:097j þ j0:9� 0:903jÞ� ¼ 0:0308

Since the hesitant normalized Hamming distance is less than the consistency
threshold, i.e., dhnhðHð2Þ;H0Þ ¼ 0:0308\0:1; we can draw a conclusion that Hð2Þ is
the multiplicative consistent HFPR of H.

Both of Algorithms 6.1 and 6.2 can transfer the multiplicative inconsistent
HFPR to the acceptable consistent HFPR. But in practice, we usually use Algorithm
6.1 because the latter one wastes a lot of time and resources.

6.2 The Multiplicative Consistency Index of Hesitant
Fuzzy Preference Relation

6.2.1 The Necessity to Derive the Consistency Index Value
for Hesitant Fuzzy Preference Relation

It is noted that there are some weaknesses in Algorithm 6.1. In view of Definition
6.4, H is regarded as an acceptable multiplicative consistent HFPR if dðH;HÞ\s.
Practically, Algorithm 6.1 suggested that s ¼ 0:1 can be taken as a consistency
threshold without providing any theoretical reasons. Absolutely we can promise the
consistency checking of a HFPR to be more effective if we limit dðH;HÞ to a much
smaller scale. Although in most occasions it works in checking the consistency of a
HFPR, setting consistency index to be 0.1 is lack of theoretical foundation and
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sometimes it may be unreasonable. In addition, if we just limit dðH;HÞ to a small
value τ, taking s ¼ 0:1 as an example, we have no idea what a statistical degree of
the consistency threshold 0.1 can provide. The following practical example con-
cerning project evaluation (adapted from Ngwenyama and Bryson (1999)) illus-
trates the drawbacks of setting the consistency threshold to be 0.1.

Example 6.3 (Liu et al. 2016). Consider a complicated decision making problem
that the information management steering committee of Midwest American
Manufacturing Corp. (MAMC) needs to prioritize a sort of information technology
improvement projects, which are proposed by area managers, for development and
implementation. In order to rank these projects from high to low potential contri-
bution to the firm’s strategic goal of gaining competitive advantage in the industry,
the committee divided this problem into a multiple criteria decision making prob-
lem and three main factors C ¼ fC1;C2;C3g = {productivity, differentiation,
management} are constructed as criteria in the process of assessing these projects,
where

(1) the productivity factor assesses the potential of a proposed project to increase
the effectiveness and efficiency of the firm’s manufacturing and service
operations;

(2) the differentiation factor assesses the potential of a proposed project to fun-
damentally differentiate the firm’s products and services from its competitors,
and to make them more desirable to its customers;

(3) the management factor assesses the potential of a proposed project to assist
management in improving their planning, controlling and decision making
activities.

In order to rank these projects, we should first determine the weights of these
factors. To do so, the pairwise comparisons over these three factors are conducted.
Different individuals in the committee may provide different assessments over these
factors and we can use HFEs to maintain all the possible preference values. To
simplify the presentation, suppose that the committee provides their preference
information over the three factors by a HFPR:

H ¼
0:5f g 0:53; 0:54f g 0:46; 0:47f g

0:46; 0:47f g 0:5f g 0:52; 0:53f g
0:53; 0:54f g 0:47; 0:48f g 0:5f g

0
@

1
A

By Definition 6.3, the corresponding perfect multiplicative consistent HFPR of
H is determined as:

H ¼
0:5f g 0:53; 0:54f g 0:55; 0:57f g

0:46; 0:47f g 0:5f g 0:52; 0:53f g
0:43; 0:45f g 0:47; 0:48f g 0:5f g

0
@

1
A
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The distance between H and H can be calculated by Eq. (6.8), and then we
obtain

dhnh H;H
� � ¼ 1

ð3� 1Þ � ð3� 2Þ
1
2
� 0:46� 0:55j j þ 0:47� 0:57j jð Þ

�

þ 1
2
� 0:53� 0:43j j þ 0:54� 0:45j jð Þ

�
¼ 0:095\0:1

Therefore, according to Definition 6.4, H is supposed to be a multiplicative
consistent HFPR.

Considering three HFEs of H: h12 ¼ 0:53; 0:54f g, h23 ¼ 0:52; 0:53f g and
h13 ¼ 0:46; 0:47f g, by Eq. (1.17), we have s h12ð Þ ¼ 0:535, which indicates that
A1 � A2, i.e., A1 is preferred to A2; s h23ð Þ ¼ 0:525, which indicates that A2 � A3.
To guarantee H to be consistent enough, at least we expect that A1 � A3. As
�h13 ¼ 0:55; 0:57f g, whose every single preference is greater than 0.5, we get the
score s �h13ð Þ ¼ 0:56. It makes our expectation reasonable. However, s h13ð Þ ¼ 0:465
fails what we expect. Combing the distance dhnh H;H

� � ¼ 0:095 provided from the
perspective of distribution of dhnh H;H

� �
; it is not persuadable enough to accept

H as a multiplicative consistent HFPR.
Though the method for consistency checking process on HFPR provided in

Algorithm 6.1 is efficient in most time, from the discussion above,we can see that it still
presents some weaknesses. One disadvantage is that in some cases a HFPR may be
accepted as a multiplicative consistent HFPR, but it is somehow unreasonable or not
persuadable enough. Another problem is that by simply taking 0.1 or any other constant
as a consistent threshold, we have no idea what a percentile of consistency degree the
value of consistency index equals to. For example, if we set 0.1 as the consistency index
of three-order HFPR, actually we can see in the later of this section that the three-order
HFPR which satisfies the condition that dhnhðH;HÞ\0:1 takes 45.4 % of the whole
three-order HFPRs. It is so big a percentile that can barely be reliable.

From the discussion above, it is definitely essential to do some more research on
the consistency index of a HFPR and to provide more reasonable consistency index
values for a HFPR. In the following, we will study the HFPR’s consistency index
from the statistical point of view and then present a novel method to derive the
critical value of consistency index varying the orders of HFPR from 3 to 14. This
novel method allows the decision makers to decide the consistency level on which a
HFPR is accepted or rejected in particular cases.

6.2.2 Density Function of the Consistency Index
of a Hesitant Fuzzy Preference Relation

For a HFPR H ¼ hij
� �

n�n on a fixed set A ¼ fA1;A2; . . .;Ang, Liao et al. (2014b)
suggested to use dðH;HÞ as a consistency checking index, where H ¼ �hij

� �
n�n is
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the corresponding perfect multiplicative consistent HFPR of H. Motivated by this
idea, naturally, if we can find out the distribution of such consistency checking
index values, we can value the consistency checking index from the perspective of
statistics. To do so, first of all, we need to determine the density function of
dðH;HÞ: For convenience, we give the definition of error coefficient.

Definition 6.5 (Liu et al. 2016). Let H ¼ hij
� �

n�n be a HFPR on a fixed set A ¼
fA1;A2; . . .;Ang, and H ¼ �hij

� �
n�n be the corresponding perfect multiplicative

consistent HFPR, then dij ¼ hij � �hij
�� �� is called an error coefficient.

There are two commonly used distance measures for HFPRs: the hesitant nor-
malized Hamming distance presented as Eq. (6.8) and the hesitant normalized
Euclidean distance presented as Eq. (6.9). If we calculate the distance between
H and �H by Eq. (6.8), then

dij ¼ hij � �hij
�� �� ¼ 1

lhij

Xlhij
t¼1

hrðtÞij � �hrðtÞij

��� ��� ð6:15Þ

and if we use Eq. (6.9) to calculate the distance, then

dij ¼ hij � �hij
�� �� ¼ 1

lhij

Xlhij
t¼1

hrðtÞij � �hrðtÞij

��� ���2
2
4

3
5
1=2

ð6:16Þ

Technically, for the calculations of both hesitant normalized Hamming distance
and hesitant normalized Euclidean distance, time consuming is a big problem. From
the expression of hesitant normalized Hamming distance:

dhnhðH;HÞ ¼ 1
ðn� 1Þðn� 2Þ

Xn
i¼1

Xn
j¼1

1
lhij

Xlhij
t¼1

hrðtÞij � �hrðtÞij

��� ���
2
4

3
5 ð6:17Þ

we can see that the expression is linear and the computational complexity is n,
which is a small scale. For the hesitant normalized Euclidean distance, which is

dhneðH;HÞ ¼ 1
ðn� 1Þðn� 2Þ

Xn
i¼1

Xn
j¼1

1
lhij

Xlhij
t¼1

hrðtÞij � �hrðtÞij

��� ���2
2
4

3
5
1=2

ð6:18Þ

the computational complexity is n3. So theoretically, the time consuming concern is
more or less a small one. In a decision making process in practice, the number of
elements from the alternatives set is usually limited to a small scale, which the
computer can handle easily.
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Combing Eqs. (6.15) and (6.17), we have

dhnhðH;HÞ ¼ 1
ðn� 1Þðn� 2Þ

Xn
i¼1

Xn
j¼1

hij � �hij
�� �� ¼ 1

ðn� 1Þðn� 2Þ
Xn
i¼1

Xn
j¼1

dij

ð6:19Þ

Combing Eqs. (6.16) and (6.18), we have

dhneðH;HÞ ¼ 1
ðn� 1Þðn� 2Þ

Xn
i¼1

Xn
j¼1

hij � �hij
�� �� ¼ 1

ðn� 1Þðn� 2Þ
Xn
i¼1

Xn
j¼1

dij

ð6:20Þ

For the simplicity of presentation, we unify dhnh H;H
� �

and dhne H;H
� �

by the
same expression dðH;HÞ when there is unnecessary to distinguish them. Then it
follows

dðH;HÞ ¼ 1
ðn� 1Þðn� 2Þ

Xn
i¼1

Xn
j¼1

dij ð6:21Þ

where dðH;HÞ can be regarded as the summation of numbers of independent
identically distributed random variables multiplied by a constant.

Although a perfect multiplicative consistent HFPR is hard to achieve in practice,
the fact is that people’s subjective judgment is tending to consistency, which arises
two notes:

Firstly, when a HFPR provided by a group of experts is returned to them for
repairing repeatedly, the repaired HFPR is tending to a perfect multiplicative
consistent one. Secondly, a lot of HFPRs on the same issue is tending to the
consistent one on distribution.

Based on these two notes, dij is tending to 0 at low side of values. It is obvious
that dij 2 ½0; 1�. Let

d0ij ¼
1

1� dij
ð6:22Þ

and d0ij 2 ½1; þ1Þ. Therefore, without loss of generality, it is appropriate to assume
that d0ij satisfies a half-normal distribution, whose density function is:

f ðxÞ ¼ 2
r
ffiffiffiffi
2p

p e�
x�1ð Þ2
2r2 ; x� 1

0; x\1

(
ð6:23Þ
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The density function of dij can be derived from Eqs. (6.22) and (6.23):

gðxÞ ¼
ffiffi
2

pffiffi
p

p
r 1�xð Þ2 e

� x2

2r2 x�1ð Þ2 ; x 2 ½0; 1�
0; else

(
ð6:24Þ

To estimate the threshold of the consistency index of dðH;HÞ; we can integrate
the density function of dðH;HÞ from 0 to the threshold, which is the definite value
we are trying to achieve. To present the exact expression of the density function of
dðH;HÞ; we have to see the fact that dðH;HÞ can be regarded as the summation of

n2 numbers of dij
ðn�1Þðn�2Þ (see Eq. (6.21)). From Eq. (6.24), we can get the density

function of dij
ðn�1Þðn�2Þ as:

g1ðxÞ ¼
ffiffi
2

p
n�1ð Þ n�2ð Þffiffi

p
p

r 1� n�1ð Þ n�2ð Þxð Þ2 e
� n�1ð Þ2 n�2ð Þ2x2

2r2 1� n�1ð Þ n�2ð Þxð Þ2 ; x 2 ½0; 1
n�1ð Þ n�2ð Þ�

0; else

(
ð6:25Þ

Hence, the density function of dðH;HÞ is ðn� 1Þðn� 1Þ-dimensional convo-
lution of g1ðxÞ, which is shown as:

g2ðxÞ ¼ g1ðxÞ � g1ðxÞ � � � � � g1ðxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðn�1Þðn�2Þ

ð6:26Þ

Up to now, theoretically we can achieve the exact expression of the density
function of dðH;HÞ; but it should be very complicated. In fact, there is no need for
us to determine the exact expression of the density function of dðH;HÞ: In the
following, let us pay our attention to the expectation and variance of dðH;HÞ: For
simplicity, suppose that the density function of dðH;HÞ is given in form of

g2ðxÞ ¼ mðxÞ; x 2 ½0; 1�
0; else

�
ð6:27Þ

According to Eqs. (6.24)–(6.27), the following results can be easily derived:

Theorem 6.5 (Liu et al. 2016). The expectation of dðH;HÞ can be presented as
follows:

E d H;H
� �� � ¼ Z þ1

�1
tg2ðtÞdt ¼

Z 1

0
tmðtÞdt ð6:28Þ
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E d H;H
� �� � ¼ 1

ðn� 1Þðn� 2Þ
Xn
i¼1

Xn
j¼1

E dij xð Þ� �

¼ n2

ðn� 1Þðn� 2Þ
Z 1

0

ffiffiffi
2

p
tffiffiffi

p
p

r 1� tð Þ2e
� t2

2r2ð1�tÞ2dt

ð6:29Þ

Proof According to the definition of expectation, E d H;H
� �� � ¼ R þ1

�1 tg2ðtÞdt;
and with the density function of d H; �Hð Þ given by Eq. (6.27), we haveR þ1
�1 tg2ðtÞdt ¼

R 1
0 tmðtÞdt. Owing to Eq. (6.21), it follows

E d H;H
� �� � ¼ E

1
ðn� 1Þðn� 2Þ

Xn
i¼1

Xn
j¼1

dij xð Þ
 !

¼ 1
ðn� 1Þðn� 2Þ

Xn
i¼1

Xn
j¼1

E dij xð Þ� �

Notice that the density function of dij is given by Eq. (6.24). Then,

E dij
� � ¼ Z 1

0

ffiffiffi
2

p
tffiffiffi

p
p

r 1� tð Þ2e
� t2

2r2ð1�tÞ2dt:

Thus,

1
ðn� 1Þðn� 2Þ

Xn
i¼1

Xn
j¼1

E dij
� � ¼ n2

ðn� 1Þðn� 2Þ
Z 1

0

ffiffiffi
2

p
tffiffiffi

p
p

r 1� tð Þ2e
� t2

2r2ð1�tÞ2dt

This completes the proof of the theorem. □

Theorem 6.6 (Liu et al. 2016). The variance D d H;H
� �� �

can be obtained as:

D d H;H
� �� � ¼ Z þ1

�1
t � E d H;H

� �� �� �2
g2ðtÞdt ¼

Z 1

0
t2mðtÞdt � E2 d H;H

� �� �
ð6:30Þ

D d H;H
� �� � ¼ 1

ðn� 1Þ2ðn� 2Þ2
Xn
i¼1

Xn
j¼1

D dij
� �

¼ n2

ðn� 1Þ2ðn� 2Þ2
Z 1

0

ffiffiffi
2

p
t2ffiffiffi

p
p

rð1� tÞ2 e
� t2

2r2ð1�tÞ2dt � E2 dij
� � !

ð6:31Þ
Proof According to the definition of variance, it follows
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D d H;H
� �� � ¼ Z þ1

�1
t � E d H;H

� �� �� �2
g2ðtÞdt

Furthermore, with the result of Theorem 6.3, we have

Z þ1

�1
t � E d H;H

� �� �� �2
g2ðtÞdt

¼
Z þ1

�1
t2g2ðtÞdt � 2

Z þ1

�1
tE d H;H

� �� �
g2ðtÞdtþ

Z þ1

�1
E d H;H

� �� �2
g2ðtÞdt

¼
Z 1

0
t2mðtÞdt � 2E d H;H

� �� �2Z þ1

�1
tg2ðtÞdtþE d H;H

� �� �2Z þ1

�1
g2ðtÞdt

¼
Z 1

0
t2mðtÞdt � 2E d H;H

� �� �2 þE d H;H
� �� �2

¼
Z 1

0
t2mðtÞdt � E d H;H

� �� �2

Owing to Eq. (6.21), it yields

D d H;H
� �� � ¼ D

1
ðn� 1Þðn� 2Þ

Xn
i¼1

Xn
j¼1

dij

 !
¼ 1

ðn� 1Þ2ðn� 2Þ2
Xn
i¼1

Xn
j¼1

D dij
� �

Similarly, we have

D dij xð Þ� � ¼ Z 1

0

ffiffiffi
2

p
t2ffiffiffi

p
p

rð1� tÞ2 e
� t2

2r2ð1�tÞ2dt � E2 dij
� �

Hence,

1

ðn� 1Þ2ðn� 2Þ2
Xn
i¼1

Xn
j¼1

D dij
� �

¼ n2

ðn� 1Þ2ðn� 2Þ2
Z 1

0

ffiffiffi
2

p
t2ffiffiffi

p
p

rð1� tÞ2 e
� t2

2r2ð1�tÞ2dt � E2 dij
� � !

This completes the proof of the theorem. □
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6.2.3 Methods to Determine the Value of Consistency Index
of a Hesitant Fuzzy Preference Relation

The definition of consistency level of a HFPR is introduced as follows:

Definition 6.6 (Liu et al. 2016). Let H ¼ hij
� �

n�n be a HFPR on a fixed set A ¼
fA1;A2; . . .;Ang and H ¼ �hij

� �
n�n be the corresponding perfect multiplicative

consistent HFPR, assume that the density function of d H;H
� �

is gðxÞ, a percentage
q is called consistency level, which is given by the decision makers and meanwhile
it satisfies that

R s
0 gðtÞdt ¼ q, where s is the consistency index of HFPRs.

Note: It is noted that the consistency level q and the consistency index s present
the consistency degree from different perspectives. Consistency level is a per-
centage and it is given by decision makers to show the consistency degree from the
perspective of statistics, which makes the consistency degree more intuitive. While
consistency index is the measure of d H;H

� �
and it is the definite value that we try

to achieve. When the consistency level q is given, theoretically we integrate the
density function of d H;H

� �
from 0 up to a number until the integrations is q, then

the number is the value of consistency index s.
Technically, there are three methods which can be used to achieve the critical

value of consistency index. The first one is to integrate the density function of
d H;H
� �

from 0 to some value until the integration reaches the consistency level.
The second one is to make use of the Chebyshev inequality to estimate the critical
value of consistency. The last one is to calculate the critical value by generating a
great numbers of points satisfying the distribution of d H;H

� �
:

(1) Integrating the density function
Since the density function of d H;H

� �
has been given by Eqs. (6.25) and (6.26),

a direct idea is to integrate g2 xð Þ from 0 to the critical value of consistency index
until reaching the consistency level. However, as the expression of the density
function of d H;H

� �
is very complicated, this method is very hard to be imple-

mented especially when the order n is large. In addition, the difficulty of convo-
lution operation and the further large calculation cost of integration also suggest that
it is not a good idea to integrate Eq. (6.26) directly in practice.

(2) Estimating the consistency index by Chebyshev inequality
Instead of integrating the density function of d H;H

� �
; this method makes use of

the mean value and the mean square deviation of d H;H
� �

to estimate the consis-
tency index.
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Suppose that h xð Þ is a transformation of g2 xð Þ, where

h xð Þ ¼
1
2 g2 xð Þ; x 2 0; 1½ �

1
2 g2 2� xð Þ; x 2 1; 2½ �

0; else

8<
: ð6:32Þ

Then, the following theorem is obtained:

Theorem 6.7 (Liu et al. 2016). There exists a probability space H;F;Pð Þ, where P,
the probability measure, has total mass 1, and a random variable n xð Þ whose
density function is h xð Þ.
Proof Assume that H ¼ ½0; 2�, F contains every Borel subset of H and P is the
Lebesgue measure of line. Defining h xð Þ ¼ 2x, then h xð Þ is a random variable from
H;F;Pð Þ. Hence, for any x 2 0; 2½ �, P h xð Þ\xð Þ ¼ P x 2 0; x½ Þð Þ ¼ 1

2 x and h xð Þ has
a uniform distribution on 0; 2½ �. In particular, the corresponding distribution function
is given by H xð Þ ¼ R x�1 hðtÞdt. Since hðtÞ is non-negative, then H xð Þ is monotonic
increasing. Furthermore, we have HðxÞ ¼ 0 when x 2 �1; 0ð � and HðxÞ ¼ 1 when
x 2 2; þ1½ Þ. Therefore, we can define H�1 yð Þ ¼ inf x : HðxÞ[ yf g as the invers
function of HðxÞ and similarly it is monotonic, so it is Borel function. Letting
n xð Þ ¼ H�1 h xð Þð Þ, we get the random variable n xð Þ from H;F;Pð Þwith the density
function hðxÞ. This completes the proof of Theorem 6.5.

Assume that n is a random variable with the density function h xð Þ, then its mean
value E nð Þ and the mean square deviation D nð Þ are given as:

E nð Þ ¼
Z þ1

�1
th tð Þdt ¼ 1

D nð Þ ¼
Z þ1

�1
t � E nð Þð Þ2h tð Þdt ¼

Z þ1

�1
t2h tð Þdt�1

Note that the density function hðxÞ of n is symmetric at x ¼ 1. In view of the
Chebyshev inequality: P n� E nð Þj j � k

ffiffiffiffiffiffiffiffiffiffi
D nð Þp� �	 1

k2, the following result can be
inferred:

P 0	 n	 1� D nð Þð Þ	 1
2k2

ð6:33Þ

Equation (6.33) can be transformed into

Z 1�k
ffiffiffiffiffiffiffi
D nð Þ

p

0
h tð Þdt	 1

2k2
ð6:34Þ
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Therefore,

Z 1�k
ffiffiffiffiffiffiffi
D nð Þ

p

0
2h tð Þdt ¼

Z 1�k
ffiffiffiffiffiffiffi
D nð Þ

p

0
g2 tð Þdt	 1

k2
ð6:35Þ

So the following conclusion can be inferred:

P 0	 d H;H
� �	 1� kD nð Þ� �	 1

k2
ð6:36Þ

Hence, we can use 1� kD nð Þ to estimate the consistency index, and the con-
sistency level q ¼ 1

k2. This is absolutely a brief method to estimate the consistency
index. However, the drawback is that Eq. (6.36) is an inequality instead of an
equality, and simply using 1� kD nð Þ to estimate the consistency causes the error
existing in Chebyshev inequality.

(3) Generating points to fit the distribution of d H;H
� �

If the density function of d H;H
� �

is a randomly given density function, it will
be difficult to find such points that fit it. It is noted that the density function of
d H;H
� �

is based on the assumption that d0ij xð Þ satisfies the half-normal distribution
and Eqs. (6.21)–(6.24) show the exact process to achieve it. As a result, a large
number of discrete points fitting the density function of dðH;HÞ can be generated.
Supposing that N points are generated fitting the density of d H;H

� �
; to calculate

the corresponding consistency index, we can just value it by qNb c, where q is the
consistency level and qNb c rounds qN down. Actually it can be proven that
ignoring the error brought by the assumption to infer the density function of
d H;H
� �

; this method can ensure the calculation error as small as required by
increasing the number of the points.

Comparing the three methods discussed above and concerning the difficulty and
complexity in practice as well as the calculation errors, we choose the third method
to achieve the value of consistency index.

Before generating the point range obeying the density function of dðH;HÞ; we
first give an algorithm to obtain the table of r depending on the order of HFPRs:

Algorithm 6.3

Step 1. Generate the large numbers of HFPRs H1;H2; . . .;HN randomly with the
fixed order n and calculate the corresponding perfect multiplicative con-
sistent HFPR H1;H2; . . .;HN by Eq. (6.6), then go to the next step.

Step 2. Calculate the error coefficient di11; d
i
12; . . .; d

i
1n; d

i
21; . . .; d

i
2n; . . .; d

i
nn,

i ¼ 1; 2; . . .;N, by Eq. (6.15) or Eq. (6.16), then go to the next step.
Step 3. Transform di11; d

i
12; . . .; d

i
1n; d

i
21; . . .; d

i
2n; . . .; d

i
nn, i ¼ 1; 2; . . .;N, from the

interval ½0; 1� to the interval ½1; þ1Þ by Eq. (6.22), then go to the next
step.
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Step 4. For any d0ij, if ðiþ jÞ is an odd number, then we update d0ij by using
d0ij ¼ 2� d0ij, else if ðiþ jÞ is an even number, then d0ij remains, and go to
the next step.

Step 5. Calculate the standard deviation ri of di
0
11; d

i0
12; . . .; d

i0
1n; d

i0
21; . . .; d

i0
2n; . . .; d

i0
nn,

i ¼ 1; 2; . . .;N, and let rn ¼PN
i¼1 r

i
�
N, where n is the order of HFPRs

H1;H2; . . .;HN , then go to the next step.
Step 6. Range n from 3 to 14 and derive r3; r4; . . .; r15 for the HFPR of different

order respectively. This ends the algorithm.

To verify the above algorithm, 240,000 HFPRs are generated by Fortran
Software Package, among which 120,000 are operated by the hesitant normalized
Hamming distance and the other 120,000 by the hesitant normalized Euclidean
distance, with 10,000 matrices for each order respectively, from 3 to 14, whose
HFEs are generated randomly using a uniform distribution. By applying the
algorithm above to the generated HFPRs, a table of r varying the order of HFPRs
from 3 to 14 are established, which can be seen in Table 6.1.

In this part, we can give the point ranges to fit the density function of dðH;HÞ
varying the order from 3 to 14, and with these point ranges obtaining the density
distribution of dðH;HÞ and the consistency level provided by the decision maker,
we can finally calculate the critical value of the consistency index s. Actually,
Eqs. (6.21)–(6.24) have told the method to gain the point ranges and the only
unknown r has been valued as listed in Table 6.1. Firstly, we can generate the point
ranges obeying the normal distribution with r valued in Table 6.1. Then, applying
Eq. (6.22) to every single point from point ranges above and implement Eq. (6.21)
to each point range derived, we can finally generate the point ranges which enjoy
the distribution of dðH;HÞ:

Without loss of generality, here we set the consistency level q ¼ 20%. So the
critical value of consistency index s satisfies that

R s
0 g2ðxÞdx ¼ 0:2 where g2ðxÞ is

the density function of dðH;HÞ: As a result, we take H as an acceptable multi-
plicative consistent HFPR when dðH;HÞ belongs to the top 20 % distribution of the
corresponding-order- HFPRs scaling by the increase of dðH;HÞ from 0 to 1, which
is equivalent to d H;H

� �
\s .

Now with the method introduced above, the consistency index values si ði ¼
3; 4; . . .; 14Þ respectively using Eqs. (6.15) and (6.16) with the order of H varying

Table 6.1 The standard deviation r depending on the number of alternatives

Order n 3 4 5 6 7 8

rhnh 0.184 0.223 0.260 0.298 0.310 0.370

rhne 0.188 0.298 0.332 0.352 0.396 0.402

Order n 9 10 11 12 13 14

rhnh 0.375 0.378 0.384 0.427 0.460 0.474

rhne 0.408 0.420 0.422 0.434 0.452 0.462
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from 3 to 14 can be derived, which are listed in Table 6.2. All the calculations are
accomplished by Matlab software package.

From Table 6.2, we can get the following conclusions:
Firstly, the critical value of consistency index value appears to increase mono-

tonically with the order of H increasing from 3 to 14 and the fixed consistency level
q ¼ 20%.

Secondly, the average occasion is that the critical value of consistency index of
different orders by the hesitant normalized Euclidean distance is bigger than the
corresponding one by the hesitant normalized Hamming distance, which can be
explained by the mean value inequality combined with the definition of two dis-
tance definitions.

Thirdly, the critical value of the consistency index in Table 6.2 is based on the
assumption that the consistency level is 20 %. In fact, this chapter is not only aimed
to get the critical value of consistency index, but also to provide a different method
to calculate it. So the decision makers can resize the consistency level greater or
smaller depending on specific situations.

Last but not the least, we can see that most critical values of consistency index
are less than 0.1, except when the order values are 13 and 14, which indicates that
setting the critical value of consistency as 0.1 is not appropriate in most occasions,
especially when the order is not so large in practice. Actually when the order n ¼ 3,
to reach the original consistency index value 0.1, the consistency level should reach
45.4 %, which is such a large percentage that it can hardly absolutely to guarantee
the consistency of a HFPR whose order is 3. Therefore, in some certain occasions,
the original critical consistency index valued as 0.1 is not restrictive enough. To see
this more clearly, we use a similar method to achieve the table of the consistency
level when the consistency index of different-order-HFPR values 0.1 as usual,
which can be seen in Table 6.3.

Comparing the assumptions in this paper that the consistency level q ¼ 20:0%
with the consistency level in Table 6.3, we can see that in most occasions the
consistency level when setting the consistency index s ¼ 0:1 is much bigger than
q ¼ 20:0%. This reflects that the result of consistency checking by simply setting
s ¼ 0:1 is usually not strict enough in the perspective of statistics.

Let us go back to Example 6.3. dhnhðH;HÞ ¼ 0:095[ shnhð3Þ ¼ 0:045 indicates
that the HFPR is not a multiplicative consistent HFPR. Actually, in our method,
H will not be accepted as a multiplicative consistent HFPR until the decision maker
sets the consistency level up to 43.1 %.

Table 6.2 The new derived critical values of the consistency index s

Order n 3 4 5 6 7 8

shnh 0.045 0.054 0.062 0.070 0.072 0.086

shne 0.046 0.070 0.077 0.082 0.091 0.093

Order n 9 10 11 12 13 14

shnh 0.087 0.088 0.089 0.097 0.104 0.107

shne 0.094 0.096 0.097 0.099 0.102 0.105
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Now we give two examples to see exactly how the new critical value table of
consistency index works.

Example 6.4 (Liu et al. 2016). Assume that a decision maker gives his/her pref-
erence information over a collection of alternatives A1; A2; A3; A4; and A5 in HFEs
and construct the following HFPR:

H ¼

0:5f g 0:6; 0:7f g 0:6; 0:8f g 0:3; 0:9f g 0:4; 0:8f g
0:3; 0:4f g 0:5f g 0:4; 0:7f g 0:2; 0:7f g 0:1; 0:8f g
0:2; 0:4f g 0:3; 0:6f g 0:5f g 0:2; 0:6f g 0:2; 0:6f g
0:1; 0:7f g 0:3; 0:8f g 0:4; 0:8f g 0:5f g 0:3; 0:4f g
0:2; 0:6f g 0:2; 0:9f g 0:4; 0:8f g 0:6; 0:7f g 0:5f g

0
BBBB@

1
CCCCA

The corresponding perfect multiplicative consistent HFPR of H can be obtained
by Eq. (6.6), and it follows

H ¼

0:5f g 0:6; 0:7f g 0:5; 0:845f g 0:2; 0:891f g 0:097; 0:845f g
0:3; 0:4f g 0:5f g 0:4; 0:7f g 0:143; 0:778f g 0:067; 0:7f g
0:155; 0:5f g 0:3; 0:6f g 0:5f g 0:2; 0:6f g 0:097; 0:5f g
0:109; 0:8f g 0:222; 0:857f g 0:4; 0:8f g 0:5f g 0:3; 0:4f g
0:155; 0:903f g 0:3; 0:933f g 0:5; 0:903f g 0:6; 0:7f g 0:5f g

0
BBBBBB@

1
CCCCCCA

Then, the hesitant normalized Hamming distance between H and H can be
calculated as:

dhnhðH;HÞ ¼ 1
12

X5
i¼1

X5
j¼1

1
lxij

Xlxij
t¼1

hrðtÞij ðxÞ � �hrðtÞij

��� ���
2
4

3
5 ¼ 0:0894

According to Algorithm 6.1, dhnhðH;HÞ ¼ 0:0894\0:1; which means that H is
a multiplicative consistent HFPR. While according to Table 6.2, the consistency
index value is 0.062 with the order 5 and the hesitant normalized Hamming distance
measure. Then dhnhðH;HÞ ¼ 0:0894[ 0:062 indicates that H is not a multiplica-
tive consistent HFPR. Utilizing the similar process to approach the critical value of
consistency index, we can calculate that it has to take as much as top 29.4 %

Table 6.3 The consistency levels when the consistency index value is 0.1

Order n 3 4 5 6 7 8

qhnh 45.4 % 38.2 % 33.0 % 29.2 % 28 % 23.6 %

qhne 44.6 % 29.0 % 26.2 % 24.8 % 22.2 % 21.8 %

Order n 9 10 11 12 13 14

qhnh 23.4 % 23.2 % 22.8 % 20.6 % 19.0 % 18.6 %

qhne 21.4 % 20.8 % 20.7 % 20.2 % 19.4 % 19.0 %
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HFPRs of all over the 5-order ones in the increasing order of dhnh H;H
� �

from 0 to
1.

To repair the multiplicative inconsistent HFPR H above, an effective choice is to
return it to the decision makers repeatedly so that they can adjust the preference
information until the HFPR H is multiplicative consistent. While in certain occa-
sions, the preference information cannot be returned to the original decision makers,
we can apply Algorithm 6.1 on H to improve its consistency level.

In Algorithm 6.1, the correction factor n ¼ pd actually shows the original

information retention ratio. When n ¼ 0, h
_ pð Þr tð Þ
ij ¼ h pð Þr tð Þ

ij , which indicates that it
totally saves the original information, and the original information retention ratio is

100 %. Similarly, when n ¼ 1, h
_ pð Þr tð Þ
ij ¼ �h pð Þr tð Þ

ij , which means that the original
information is totally replaced by the derived information from the corresponding
perfect multiplicative consistent HFPR H: So the closer the correction factor n
approaching 0, the more the original information saved. Hereby, we let n ¼ 0:3,
and the repaired HFPR is given by Algorithm 6.1 as:

H
_ ¼

0:5f g 0:6; 0:7f g 0:571; 0:814f g 0:267; 0:897f g 0:278; 0:814f g
0:3; 0:4f g 0:5f g 0:4; 0:7f g 0:181; 0:72f g 0:088; 0:772f g

0:186; 0:429f g 0:3; 0:6f g 0:5f g 0:2; 0:6f g 0:162; 0:57f g
0:103; 0:733f g 0:28; 0:819f g 0:4; 0:8f g 0:5f g 0:3; 0:4f g
0:186; 0:722f g 0:228; 0:912f g 0:43; 0:838f g 0:6; 0:7f g 0:5f g

0
BBBBBB@

1
CCCCCCA

Furthermore, dhnhðH
_

;HÞ ¼ 0:059\ 0:062; and now the repaired HFPR H
_

from
the HFPR H is multiplicative consistent.

Example 6.5 (Liu et al. 2016). Suppose that the decision maker gives the prefer-
ence information in HFE and constructs a HFPR as:

H ¼
0:5f g 0:3; 0:7f g 0:5; 0:7f g 0:2; 0:6f g

0:3; 0:7f g 0:5f g 0:5; 0:7f g 0:4; 0:8f g
0:3; 0:5f g 0:3; 0:5f g 0:5f g 0:6; 0:7f g
0:4; 0:8f g 0:2; 0:6f g 0:3; 0:4f g 0:5f g

0
BB@

1
CCA

Then, the corresponding perfect multiplicative consistent HFPR is calculated as:

H ¼
0:5f g 0:3; 0:7f g 0:3; 0:845f g 0:391; 0:927f g

0:3; 0:7f g 0:5f g 0:5; 0:7f g 0:6; 0:845f g
0:155; 0:7f g 0:3; 0:5f g 0:5f g 0:6; 0:7f g

0:073; 0:609f g 0:155; 0:4f g 0:3; 0:4f g 0:5f g

0
BB@

1
CCA

Instead of the hesitant normalized Hamming distance measure, here we measure
the distance between H and H by the hesitant normalized Euclidean distance and we
have dhneðH;HÞ ¼ 0:203: From Table 6.2, we can see that the critical value of the
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consistency index with the order 4 and the hesitant normalized Euclidean distance is
0.070, which illustrates H inconsistent. Using Algorithm 6.1 to repair H, and let
n ¼ 0:7, then we can get the repaired HFPR:

H
_ ¼

0:5f g 0:3; 0:7f g 0:3559; 0:8087f g 0:3261; 0:87f g
0:3; 0:7f g 0:5f g 0:5; 0:7f g 0:5405; 0:8324f g

0:1913; 0:6441f g 0:3; 0:5f g 0:5f g 0:6; 0:7f g
0:13; 0:6739f g 0:1676; 0:4595f g 0:3; 0:4f g 0:5f g

0
BBB@

1
CCCA

The hesitant normalized Euclidean distance betweenH
_

andH can be calculated as
dhneðH;HÞ ¼ 0:051\ 0:070: Thus, the repaired HFPR is multiplicative consistent.

6.3 Approaches to Group Decision Making with Hesitant
Fuzzy Preference Relations

In our daily life, in order to choose the most desirable and reasonable solution(s) for
a decision making problem, people prefer to form a commitment or organization
constructed by several decision makers coming from different aspects instead of
single decision maker for the sake of avoiding the limited knowledge, personal
background, private emotion, and so on (Liao et al. 2015). As mentioned above,
people may provide the preference information by pairwise comparisons and thus
construct the preference relations. If people in the commitment or organization
express their preference values in HFEs, then some HFPRs can be constructed.

The group decision making problem in hesitant fuzzy circumstance can be
described as follows. Suppose that A ¼ fA1;A2; . . .;Ang is a discrete set of alter-
natives; dkðk ¼ 1; 2; . . .;mÞ are the decision organizations (each of which contains a
collection of decision makers), and x ¼ðx1;x2; . . .;xmÞT is the weight vector of
the decision organizations with

Pm
k¼1 xk ¼ 1, xk 2 ½0; 1�, k ¼ 1; 2; . . .;m. The

decision organization dk provides all the possible preference values for each pair of

alternatives, and constructs a HFPR HðkÞ ¼ ðhðkÞij Þn�n.

Definition 6.7 (Liao et al. 2014b). Let Hk ¼ ðhðkÞij Þn�n(k ¼ 1; 2; . . .;m) be a col-

lection of m HFPRs on a fixed set A ¼ fA1;A2; . . .;Ang, and x ¼ ðx1;x2; . . .;xmÞT
be the weight vector of Hk(k ¼ 1; 2; . . .;m), where

Pm
k¼1 xk ¼ 1 and 0	xk 	 1.

Then we call H ¼ ðhijÞn�n a collective HFPR of Hk (k ¼ 1; 2; . . .;m), where hij is
obtained by the AHFWA or AHFWG operator, i.e.,

hij ¼ �m
k¼1

xkh
ðkÞ
ij

� �
¼ 1�

Ym

k¼1
ð1� hðkÞrðtÞij Þxk jt ¼ 1; 2; . . .; l

n o
; i; j ¼ 1; 2; . . .; n

ð6:37Þ
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and

hij ¼ 
m
k¼1

ðhðkÞij Þxk ¼
Ym

k¼1
ðhðkÞrðtÞij Þxk jt ¼ 1; 2; . . .; l

n o
; i; j ¼ 1; 2; . . .; n ð6:38Þ

with hðkÞrðtÞij being the tth smallest value in hðkÞij .
Different experts (or decision makers) can have different preferences and then it

is needed to propose some consensus reaching methods. There are many researches
on consensus of preference relations (Xu 2005; Fan et al. 2006; Herrera-Viedma
et al. 2007; Alonso et al. 2009; Xu and Cai 2011; Liao and Xu 2014a, 2015; Xu and
Liao 2015). However, no work has done on HFPRs. In the following, based on the
multiplicative consistency, we also develop two consensus reaching processes for
HFPRs in group decision making.

6.3.1 Automatic Consensus Reaching Process

As to the other preference relations, many scholars have proposed some automatic
consensus improving procedures (Liao and Xu 2014b). Based on two soft con-
sensus criteria—a consensus measure and a proximity measure, Tapia García et al.
(2012) presented a consensus model for group decision making problems with
interval fuzzy preference relations. They also designed an automatic feedback
mechanism to help the decision makers in consensus reaching process. Cabrerizo
et al. (2009) developed a consensus model for group decision making problems
with unbalanced fuzzy linguistic information based on the above two soft con-
sensus criteria. In a multigranular fuzzy linguistic context, Mata et al. (2009)
proposed an adaptive consensus support model for group decision making prob-
lems, which increases the convergence toward the consensus and reduces the
number of rounds to reach it. These works are all automatic which transform the
decision makers’ opinions themselves, without the decision makers’ interactivity.
Below we propose an automatic consensus reaching process for HFPRs.

Algorithm 6.4

Step 1. Let ðHðkÞÞðpÞ ¼ ððhðkÞij Þn�nÞðpÞðk ¼ 1; 2; . . .;mÞ and p ¼ 1. We construct the

prefect multiplicative consistent HFPRs ð�HðkÞÞðpÞ ¼ ðð�hðkÞij Þn�nÞðpÞ from

ðHðkÞÞðpÞ ¼ ððhðkÞij Þn�nÞðpÞ by Algorithm 6.1 (or Algorithm 6.2), then go to
the next step.

Step 2. Aggregate all the individual prefect multiplicative consistent HFPRs

ðHðkÞÞðpÞ ¼ ðð�hðkÞij Þn�nÞðpÞ into a collective HFPR ðHÞðpÞ ¼ ðð�hijÞn�nÞðpÞ by
the AHFWA or AHFWG operator, where
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�hij ¼ �m
k¼1

wk
�hðkÞij

� �
¼ 1�

Ym

k¼1
ð1� �hðkÞrðtÞij Þwk jt ¼ 1; 2; . . .; l

n o
; i; j ¼ 1; 2; . . .; n

ð6:39Þ

and

�hij ¼ 
m
k¼1

ð�hðkÞij Þwk ¼
Ym

k¼1
ð�hðkÞrðtÞij Þwk jt ¼ 1; 2; . . .; l

n o
; i; j ¼ 1; 2; . . .; n

ð6:40Þ

with �hðkÞrðtÞij being the tth smallest value in �hðkÞij , then go to the next step.

Step 3. Calculate the deviation between each individual HFPR ðHðkÞÞðpÞ ¼
ðð�hðkÞij Þn�nÞðpÞ and the collective HFPR H

ðpÞ ¼ ðð�hijÞn�nÞðpÞ , i.e.,

dhnhððHðkÞÞðpÞ;HðpÞÞ ¼ 1
ðn� 1Þðn� 2Þ

Xn
i¼1

Xn
j¼1

1
l�hij

Xl�hij
t¼1

�hðkÞðpÞrðtÞij � �hðpÞrðtÞij

��� ���
2
4

3
5

ð6:41Þ

or

dhneððHðkÞÞðpÞ;HðpÞÞ ¼ 1
ðn� 1Þðn� 2Þ

Xn
i¼1

Xn
j¼1

1
lhij

Xlhij
t¼1

hðkÞðpÞrðtÞij � �hðpÞrðtÞij

��� ���2
0
@

1
A

1=2

ð6:42Þ

If dððHðkÞÞðpÞ;HðpÞÞ 	 s� , for all k ¼ 1; 2; . . .;m, where s� is the consensus
threshold, then go to Step 5; Otherwise, go to the next step.

Step 4. Let ðHðkÞÞðpþ 1Þ ¼ ðð�hðkÞij Þn�nÞðpþ 1Þ , where

�hðkÞðpþ 1ÞrðtÞ
ij ¼ ð�hðkÞðpÞrðtÞij Þ1�nð�hðpÞrðtÞij Þn

ðhðkÞðpÞrðtÞij Þ1�nð�hðpÞrðtÞij Þnþð1� hðpðkÞðpÞrðtÞij Þ1�nð1� �hðpÞrðtÞij Þn
; i; j ¼ 1; 2; . . .; n

ð6:43Þ

�hðkÞðpþ 1ÞrðtÞ
ij , �hðkÞðpÞrðtÞij and �hðpÞrðtÞij are the tth smallest values in �hðkÞðpþ 1Þ

ij ,
�hðkÞðpÞij and �hðpÞij , respectively. Let p ¼ pþ 1, then go to Step 2.

Step 5. Let H ¼ H
ðpÞ

, and employ the AHFA or AHFG operator to fuse all the
hesitant preference values hij(j ¼ 1; 2; . . .; n) corresponding to the object Ai

into the overall hesitant preference value hi, i.e.,
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hi ¼ AHFA hi1; hi2; . . .; hinð Þ ¼ �n
j¼1

1
n
hij

� �
¼ 1�

Yn

j¼1
ð1� hrðtÞij Þ1=njt ¼ 1; 2; . . .; l

n o
ð6:44Þ

or

hi ¼ AHFG hi1; hi2; . . .; hinð Þ ¼ 
n
j¼1

ðhijÞ1=n

¼
Yn

j¼1
ðhrðtÞij Þ1=njt ¼ 1; 2; . . .; l

n o
ð6:45Þ

where hrðtÞij is the tth smallest values in hij, then go to the next step.
Step 6. Rank all the objects corresponding to the methods given in Sect. 1.1.3, and

then go to the next step.
Step 7. End.

This consensus reaching process can be interpreted like this. Firstly, we con-
struct the prefect multiplicative consistent HFPRs for the individual HFPRs given
by the different decision organizations. Then, a collective HFPR can be obtained by
aggregating the constructed prefect multiplicative consistent HFPRs. Afterwards,
we can easily calculate the distance between each individual HFPR and the col-
lective HFPR respectively. If the distance is greater than the given consensus level,
we need to improve it; otherwise, it is acceptable. To improve the individual HFPR,
we fuse it with the collective HFPR by using Eq. (6.43), and then get some new
individual HFPRs. We can iterate until all the individual HFPRs are acceptable.

We now consider a group decision making problem that concerns the evaluation
and ranking of the main factors of electronic learning to illustrate our procedure.

Example 6.6 (Liao et al. 2014b). The electronic learning (e-learning) not only can
provide expediency for learners to study courses and professional knowledge
without the constraint of time and space especially in an asynchronous distance
e-learning system, but also may save internal training cost for some enterprises
organizations in a long-term strategy. Meanwhile, it also can be used as an alter-
native self-training for assisting or improving the traditional classroom teaching.
The e-learning becomes more and more popular along with the advancement of
information technology and has played an important role in teaching and learning
not only in different levels of schools but also in various commercial or industrial
companies. Many schools and businesses invest manpower and money in e-learning
to enhance their hardware facilities and software contents. Thus, it is meaningful
and urgent to determinate which is the most important among the main factors
which influence the e-learning effectiveness. Based on the research of Tzeng et al.
(2007), there are four key factors (or criteria) to evaluate the effectiveness of an
e-learning system, which are
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C1: the synchronous learning;
C2: the e-learning material;
C3: the quality of web learning platform;
C4: the self-learning.

In order to rank the above four factors, a committee comprising three decision
makers dlðl ¼ 1; 2; 3Þ (whose weight vector is x ¼ ð0:3; 0:4; 0:3ÞT ) is founded.
After comparing pairs of the factors (or criteria) Ciði ¼ 1; 2; 3; 4Þ, the decision
makers dlðl ¼ 1; 2; 3Þ give their preferences using HFEs, and then obtain the
HFPRs as follows:

H1 ¼

f0:5g f0:2; 0:3; 0:4g f0:4; 0:5; 0:6g f0:3; 0:7g
f0:6; 0:7; 0:8g f0:5g f0:5; 0:6g f0:3; 0:4g
f0:4; 0:5; 0:6g f0:4; 0:5g f0:5g f0:4; 0:5g
f0:3; 0:7g f0:6; 0:7g f0:5; 0:6g f0:5g

0
BBB@

1
CCCA

H2 ¼

f0:5g f0:3; 0:4g f0:5; 0:6; 0:7g f0:3; 0:4; 0:6g
f0:6; 0:7g f0:5g f0:4; 0:7g f0:4; 0:6g

f0:3; 0:4; 0:5g f0:3; 0:6g f0:5g f0:6; 0:7g
f0:4; 0:6; 0:7g f0:4; 0:6g f0:3; 0:4g f0:5g

0
BBB@

1
CCCA

H3 ¼

f0:5g f0:2; 0:4g f0:4; 0:7g f0:3; 0:6; 0:7g
f0:6; 0:8g f0:5g f0:5; 0:7g f0:3; 0:6g
f0:3; 0:6g f0:3; 0:5g f0:5g f0:4; 0:6g

f0:3; 0:4; 0:7g f0:4; 0:7g f0:4; 0:6g f0:5g

0
BBB@

1
CCCA

To solve this problem, the following steps are given according to Algorithm 6.4.

Step 1: Let ðHðkÞÞðpÞ ¼ Hk and p ¼ 1. We first construct the prefect multiplicative

consistent HFPRs ðHðkÞÞð1Þ ¼ ðð�hðkÞij Þn�nÞð1Þ (k ¼ 1; 2; 3) from ðHðkÞÞð1Þ ¼
ððhðkÞij Þn�nÞð1Þ (k ¼ 1; 2; 3) by Algorithm 6.1, respectively.

H
ð1Þ� �ð1Þ

¼

f0:5g f0:2; 0:3; 0:4g f0:2; 0:3; 0:5g f0:202; 0:361; 0:5g
f0:6; 0:7; 0:8g f0:5g f0:5; 0:6g f0:4; 0:6g
f0:5; 0:7; 0:8g f0:4; 0:5g f0:5g f0:4; 0:5g

f0:5; 0:639; 0:798g f0:4; 0:6g f0:5; 0:6g f0:5g

0
BBB@

1
CCCA

H
ð2Þ� �ð1Þ

¼

f0:5g f0:3; 0:4g f0:222; 0:609g f0:361; 0:596; 0:672g
f0:6; 0:7g f0:5g f0:4; 0:7g f0:5; 0:845g

f0:391; 0:778g f0:3; 0:6g f0:5g f0:6; 0:7g
f0:328; 0:404; 0:639g f0:155; 0:5g f0:3; 0:4g f0:5g

0
BBB@

1
CCCA

H
ð3Þ� �ð1Þ

¼

f0:5g f0:2; 0:4g f0:2; 0:609g f0:202; 0:639g
f0:6; 0:8g f0:5g f0:5; 0:7g f0:4; 0:778g

f0:391; 0:8g f0:3; 0:5g f0:5g f0:4; 0:6g
f0:361; 0:798g f0:222; 0:6g f0:4; 0:6g f0:5g

0
BBB@

1
CCCA
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Step 2. Fuse the individual prefect multiplicative consistent HFPRs ðHðkÞÞð1Þ ¼
ðð�hðkÞij Þn�nÞð1Þ into a collective prefect HFPR ðHÞð1Þ ¼ ðð�hijÞn�nÞð1Þ by the
AHFWA or AHFWG operator. We hereby take the AHFWA operator, i.e.,
Eq. (6.39), as an example, and then we obtain

H
ð1Þ ¼

f0:5g f0:242; 0:372; 0:472g f0:209; 0:447; 0:579g f0:27; 0:506; 0:617g
f0:532; 0:633; 0:765g f0:5g f0:462; 0:673g f0:442; 0:771g
f0:426; 0:571; 0:792g f0:332; 0:543g f0:5g f0:49; 0:619g
f0:394; 0:514; 0:745g f0:256; 0:563g f0:396; 0:53g f0:5g

0
BBB@

1
CCCA

Step 3 Calculate the deviation between each individual prefect multiplicative

consistent HFPR ðHðkÞÞð1Þ ¼ ðð�hðkÞij Þn�nÞð1Þ and the collective HFPR

H
ð1Þ ¼ ðð�hijÞn�nÞð1Þ. In this example, we use Eq. (6.41), i.e., the hesitant

normalized Hamming distance, as a representation, and then

dhnhððHð1ÞÞð1Þ;Hð1ÞÞ ¼ 0:162; dhnhððHð2ÞÞð1Þ;Hð1ÞÞ ¼ 0:128;
dhnhððHð3ÞÞð1Þ;Hð1ÞÞ ¼ 0:07

Without loss of generality, we let the consensus level s� ¼ 0:1. We can see

that both dhnhððHð1ÞÞð1Þ;Hð1ÞÞ and dhnhððHð2ÞÞð1Þ;Hð1ÞÞ are bigger than 0.1,
and thus, we need to improve these individual prefect multiplicative
consistent HFPRs.

Step 4. Let n ¼ 0:7, and by Eq. (6.43), we can construct respectively the new

individual HFPRs ðHðkÞÞð2Þ ¼ ðð�hðkÞij Þn�nÞð2Þ(k ¼ 1; 2; 3) as follows:

H
ð1Þ� �ð2Þ

¼

f0:5g f0:229; 0:35; 0:45g f0:206; 0:401; 0:556g f0:248; 0:461; 0:583g
f0:553; 0:654; 0:78g f0:5g f0:473; 0:652g f0:429; 0:725g
f0:445; 0:612; 0:794g f0:352; 0:53g f0:5g f0:463; 0:584g
f0:425; 0:552; 0:762g f0:296; 0:574g f0:427; 0:551g f0:5g

0
BBB@

1
CCCA

H
ð2Þ� �ð2Þ

¼

f0:5g f0:259; 0:38; 0:48g f0:213; 0:463; 0:588g f0:296; 0:533; 0:634g
f0:522; 0:623; 0:747g f0:5g f0:443; 0:681g f0:459; 0:796g
f0:412; 0:55; 0:788g f0:322; 0:56g f0:5g f0:523; 0:644g
f0:374; 0:481; 0:715g f0:222; 0:544g f0:366; 0:491g f0:5g

0
BBB@

1
CCCA

H
ð3Þ� �ð2Þ

¼

f0:5g f0:229; 0:38; 0:48g f0:206; 0:463; 0:588g f0:248; 0:504; 0:624g
f0:522; 0:623; 0:776g f0:5g f0:473; 0:681g f0:429; 0:773g
f0:412; 0:55; 0:794g f0:322; 0:53g f0:5g f0:463; 0:613g
f0:384; 0:51; 0:762g f0:246; 0:574g f0:397; 0:551g f0:5g

0
BBB@

1
CCCA

Let p ¼ 2, then go back to Step 2. We fuse the individual HFPRs

ðHðkÞÞð2Þ(k ¼ 1; 2; 3) into a collective HFPR ðHÞð2Þ ¼ ðð�hijÞn�nÞð2Þ by the
AHFWA operator:
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H
ð2Þ ¼

f0:5g f0:241; 0:371; 0:471g f0:209; 0:445; 0:579g f0:268; 0:504; 0:616g
f0:532; 0:633; 0:766g f0:5g f0:461; 0:673g f0:442; 0:77g
f0:422; 0:57; 0:792g f0:331; 0:542g f0:5g f0:488; 0:618g
f0:393; 0:512; 0:744g f0:252; 0:562g f0:394; 0:528g f0:5g

0
BBB@

1
CCCA

Thus, the hesitant normalized Hamming distance between each individual

prefect multiplicative consistent HFPR ðHðkÞÞð2Þ and the collective HFPR

H
ð2Þ

can be calculated as:

dhnhððHð1ÞÞð2Þ;Hð2ÞÞ ¼ 0:048; dhnhððHð2ÞÞð2Þ;Hð2ÞÞ ¼ 0:039;

dhnhððHð3ÞÞð2Þ;Hð2ÞÞ ¼ 0:02

Now all dhnhððHðkÞÞð2Þ;Hð2ÞÞ\0:1 (k ¼ 1; 2; 3), then go to Step 5.

Step 5. Let H ¼ H
ð2Þ
, and employ the AHFA or AHFG operator to fuse all the

hesitant preference values hij(j ¼ 1; 2; . . .; n) corresponding to the object Ci

into the overall hesitant preference value hi. We hereby use the AHFA
operator to fuse the information. By Eq. (6.44), we have

h1 ¼ f0:315; 0:458; 0:545g; h2 ¼ f0:485; 0:537; 0:694g
h3 ¼ f0:444; 0:519; 0:633g; h4 ¼ f0:391; 0:503; 0:597g

Step 6. Using Eq. (1.17), we can get sðh1Þ ¼ 0:439, sðh2Þ ¼ 0:572,
sðh3Þ ¼ 0:532, and sðh4Þ ¼ 0:495. As sðh2Þ[ sðh3Þ[ sðh4Þ[ sðh1Þ, we
can draw a conclusion that C2 � C3 � C4 � C1, which denotes that the
e-learning material is the most important factor influencing the affectivity
of e-learning.

Surely, in this example, we can use the AHFWG and AHFG operators to fuse
the HFEs in Steps 2 and 5, and also can use the hesitant normalized Euclidean
distance to calculate the deviation between each individual prefect multiplicative
consistent HFPR and the collective prefect multiplicative consistent HFPR in
Step 3.

In addition, from Step 3, we can see that if we take the consensus level within
the interval 0:07	 s� 	 0:128, the result will keep the same. In other words, if the
consensus level is fixed, small error measurements perhaps do not cause a complete
different output, which is to say, our procedures are robust. For example, suppose
that the third decision maker gives his/her preferences with another HFPR as:

_H3 ¼
f0:5g f0:2; 0:4g f0:4; 0:7g f0:3; 0:6; 0:7g

f0:6; 0:8g f0:5g f0:6; 0:8g f0:3; 0:6g
f0:3; 0:6g f0:2; 0:4; g f0:5g f0:4; 0:6g

f0:3; 0:4; 0:7g f0:4; 0:7g f0:4; 0:6g f0:5g

0
BB@

1
CCA
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In the following, we begin to check whether the output will be changed or not.

Step 1. The prefect multiplicative consistent HFPRs of the third decision maker
can be calculated easily, which is

ð _Hð3ÞÞð1Þ ¼

f0:5g f0:2; 0:4g f0:2; 0:609g f0:202; 0:639g
f0:6; 0:8g f0:5g f0:6; 0:8g f0:4; 0:778g
f0:391; 0:8g f0:2; 0:4g f0:5g f0:4; 0:6g
f0:361; 0:798g f0:222; 0:6g f0:4; 0:6g f0:5g
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Step 2. The collective prefect HFPR can be derived by the AHFWA operator as:

_H
ð1Þ ¼

f0:5g f0:242; 0:372; 0:472g f0:209; 0:447; 0:579g f0:27; 0:506; 0:617g
f0:532; 0:633; 0:765g f0:5g f0:497; 0:710g f0:442; 0:771g
f0:426; 0:571; 0:792g f0:332; 0:543g f0:5g f0:49; 0:619g
f0:394; 0:514; 0:745g f0:256; 0:563g f0:396; 0:53g f0:5g
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Step 3. Calculate the deviation between each individual prefect multiplicative

consistent HFPR and the collective HFPR _H
ð1Þ

:

dhnhððHð1ÞÞð1Þ; _Hð1ÞÞ ¼ 0:162; dhnhððHð2ÞÞð1Þ; _Hð1ÞÞ ¼ 0:130;

dhnhðð _Hð3ÞÞð1Þ; _Hð1ÞÞ ¼ 0:093

Since the consensus level s� ¼ 0:1, then we can see that both

dhnhððHð1ÞÞð1Þ; _Hð1ÞÞ and dhnhððHð2ÞÞð1Þ; _Hð1ÞÞ are bigger than 0.1. Thus, we
need to improve these individual prefect multiplicative consistent HFPRs.

Step 4. Let n ¼ 0:7, then we can construct respectively the new individual HFPRs

ð _HðkÞÞð2Þ(k ¼ 1; 2; 3) as:

ð _Hð1ÞÞð2Þ ¼

f0:5g f0:229; 0:35; 0:45g f0:206; 0:401; 0:556g f0:248; 0:461; 0:583g
f0:553; 0:654; 0:78g f0:5g f0:498; 0:679g f0:429; 0:725g
f0:445; 0:612; 0:794g f0:332; 0:512g f0:5g f0:463; 0:584g
f0:425; 0:552; 0:762g f0:296; 0:574g f0:427; 0:551g f0:5g
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ð _Hð2ÞÞð2Þ ¼

f0:5g f0:259; 0:38; 0:48g f0:213; 0:463; 0:588g f0:296; 0:533; 0:634g
f0:522; 0:623; 0:747g f0:5g f0:468; 0:707g f0:459; 0:796g
f0:412; 0:55; 0:788g f0:303; 0:542g f0:5g f0:523; 0:644g
f0:374; 0:481; 0:715g f0:222; 0:544g f0:366; 0:491g f0:5g
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ð _Hð3ÞÞð2Þ ¼

f0:5g f0:229; 0:38; 0:48g f0:206; 0:463; 0:588g f0:248; 0:504; 0:624g
f0:522; 0:623; 0:776g f0:5g f0:528; 0:739g f0:429; 0:773g
f0:412; 0:55; 0:794g f0:270; 0:482g f0:5g f0:463; 0:613g
f0:384; 0:51; 0:762g f0:246; 0:574g f0:397; 0:551g f0:5g
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Let p ¼ 2, then go back to Step 2. The individual HFPRs ð _HðkÞÞð2Þ
(k ¼ 1; 2; 3) can be fused into a collective HFPR ð _HÞð2Þ by the AHFWA
operator:
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_H
ð2Þ ¼

f0:5g f0:241; 0:371; 0:471g f0:209; 0:445; 0:579g f0:268; 0:504; 0:616g
f0:532; 0:633; 0:766g f0:5g f0:496; 0:709g f0:442; 0:77g
f0:422; 0:57; 0:792g f0:302; 0:516g f0:5g f0:488; 0:618g
f0:393; 0:512; 0:744g f0:252; 0:562g f0:394; 0:528g f0:5g
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Then, the hesitant normalized Hamming distance between each individual

prefect multiplicative consistent HFPR ð _HðkÞÞð2Þ and the collective HFPR
_H
ð2Þ

can be calculated as:

dhnhðð _Hð1ÞÞð2Þ; _Hð2ÞÞ ¼ 0:056; dhnhðð _Hð2ÞÞð2Þ; _Hð2ÞÞ ¼ 0:039;

dhnhðð _Hð3ÞÞð2Þ; _Hð2ÞÞ ¼ 0:023

Now all dhnhðð _HðkÞÞð2Þ; _Hð2ÞÞ\0:1 (k ¼ 1; 2; 3), then go to Step 5.

Step 5. Let _H ¼ _H
ð2Þ
, and employ the AHFA operator to fuse all the hesitant

preference values hij(j ¼ 1; 2; . . .; n) corresponding to the object Ci into the
overall hesitant preference value hi:

h1 ¼ f0:315; 0:458; 0:545g; h2 ¼ f0:494; 0:537; 0:703g
h3 ¼ f0:433; 0:519; 0:628g; h4 ¼ f0:391; 0:503; 0:597g

Step 6. Using the score function Eq. (1.17), we can get sðh1Þ ¼ 0:439,
sðh2Þ ¼ 0:578, sðh3Þ ¼ 0:527, and sðh4Þ ¼ 0:495. As sðh2Þ[ sðh3Þ[
sðh4Þ[ sðh1Þ, we can draw a conclusion that C2 � C3 � C4 � C1, which
denotes that the e-learning material is also the most important factor
influencing the affectivity of e-learning.

From the above example, it can be seen that although the third decision maker
slightly changes his/her preference, the output of our procedure also keeps the
same. Thus, our algorithm is robust and practicable.

6.3.2 Interactive Consensus Reaching Process

From Example 6.6, we can see Algorithm 6.4 is automatic and easy to implement.
However, since it does not interact with the experts when changing the preference
values in Step 4, this method sometimes may reach a false or unrealistic consensus
degree due to that the experts could not agree with the changes proposed by the
system. Indeed, the most directive method for repairing the consensus is returning
the preference relations to the experts to reconsider constructing new preference
relations according to their new comparison until they have acceptable consensus.
Therefore, it is reasonable for us to investigate some interactive consensus reaching
processes for HFPRs.
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Although Algorithm 6.4 does not focus on feedback mechanism, it provides a
good way to reach group consensus. Inspired by this, we can develop an interactive
consensus reaching procedure.

Algorithm 6.5

Step 1. See Algorithm 6.4.
Step 2. See Algorithm 6.4.
Step 3. See Algorithm 6.4.

Step 4. Return the inconsistent multiplicative HFPRs ðHðkÞÞðpÞ to the experts to

reconsider constructing a new HFPR ðHðkÞÞðpþ 1Þ according to their new
judgments. In this case, they can refer to our new constructed individual

HFPRs ðHðkÞÞðpÞ ¼ ðð�hðkÞij Þn�nÞðpÞ (k ¼ 1; 2; . . .;m). Let p ¼ pþ 1, then go
to Step 2.

Step 5. See Algorithm 6.4.
Step 6. See Algorithm 6.4.

Here we do not want to illustrate this algorithm by numerical examples. The
schematic diagram of this algorithm is provided in Fig. 6.1.

Comparing the automatic consensus reaching process (Algorithm 6.4) and
interactive consensus reaching process (Algorithm 6.5), we can find both of the two
algorithms have advantages and disadvantages:

(1) The automatic Algorithm 6.4 is easy to implement and can save a lot of time. It
also can give a quick response to urgent situations. In some settings, if the
decision makers do not want to interact with the experts, or if they cannot find
the initial experts to re-evaluate and alter their preferences, or if consensus must
be urgently obtained, the automatic Algorithm 6.4 is a good choice to derive a
consensus solution for group decision making, which involves most initial
information. But, sometimes, the results may not reflect the realistic opinions of

Begin

( ) ( )( )k pH ( ) ( )( )k pH ( )( ) pH ( ) ( ) ( )(( ) , )k p pd H H

Reconsider
Process

p=p+1

*d

Rank ( )( ) pHStop

Step 1 Step 2 Step 3

Step 4 No

Yes

Fig. 6.1 Schematic diagram of interactive procedure
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the experts due to that the experts may not agree with the changes proposed by
the automatic system.

(2) Interacting with the decision makers frequently during the consensus reaching
process is very reliable and accurate. However, the feedback mechanism wastes
a lot of time and sometimes this ideal consensus is just a utopian consensus
which is difficult to achieve.

6.4 Group Decision Making with Interval-Valued Hesitant
Fuzzy Preference Relations

6.4.1 Interval-Valued Hesitant Fuzzy Preference Relation

Xu (2004) introduced the concept of interval-valued fuzzy preference relation to
express the uncertainty and vagueness.

Definition 6.8 (Xu 2004). Let A ¼ fA1;A2; . . .;Ang be a discrete set of alternatives.
An interval-valued fuzzy preference relation (IVFPR) ~R on the set A is defined as
~R ¼ ð~rijÞn�n, which satisfies

~rij ¼ ½~rLij ;~rUij �; ~rUij �~rLij � 0; ~rLij þ~rUji ¼ ~rUij þ~rLji ¼ 1; ~rLii ¼ ~rUii ¼ 0:5

for all i; j ¼ 1; 2; . . .; n
ð6:46Þ

where ~rij shows the interval-valued preference degree of the alternative Ai over Aj,
and ~rLij and ~rUij are the lower and upper bounds of ~rij, respectively.

The IVFPRs can be used in group decision making by aggregating the individual
IVFPRs into collective one. However, this may lead to the loss of information. As
the IVFPRs are unable to directly incorporate the different opinions of different
decision makers, it is adequate to introduce the interval-valued HFPR (IVHFPR),
whose elements are characterized by several interval values, to depict the group
decision making problems under hesitant fuzzy environments. The IVHFPR avoids
performing information aggregation and directly reflects the different preference
information between different decision makers.

Consider a decision organization with m experts provides some interval-valued
fuzzy preference values to describe the degrees that the alternative Ai is superior to
Aj, which are denoted as ~h1ij, ~h

2
ij, ~h

3
ij; . . .;

~hmij . Then the preference information ~hij, i.e.,

Ai is preferred to Aj, can be considered as an IVHFE ~hij ¼ f~hkij; k ¼ 1; 2; . . .;mg. All
~hijði; j ¼ 1; 2; . . .; nÞ constitute an IVHFPR, which is defined as follows:

Definition 6.9 (Chen et al. 2013). Let A ¼ fA1;A2; . . .;Ang be a fixed set.
An IVHFPR on A is denoted by a matrix ~H ¼ ð~hijÞn�n, where ~hij ¼ f~hkij; k ¼
1; 2; . . .; l~rijg is an IVHFE, indicating all possible degrees to which Ai is preferred to
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Aj with l~rij representing the number of intervals in an IVHFE. Moreover, ~hij should
satisfy

inf ~hrðtÞij þ sup ~h
rðl~rji �tþ 1Þ
ji ¼ sup ~hrðtÞij þ inf ~h

rðl~rji �tþ 1Þ
ji ¼ 1

~hii ¼ 0:5; 0:5½ �; i; j ¼ 1; 2; . . .; n
ð6:47Þ

where the elements in ~hij are arranged in ascending order, and ~hrðtÞij is the tth

smallest value in ~hij. inf ~h
rðtÞ
ij and sup ~hrðtÞij denote the lower and upper bounds of

~hrðtÞij , respectively.
We use an example originated from a practical decision making problem to

illustrate how to construct the IVHFPRs,

Example 6.7 (Chen et al. 2013). Supply Chain Management (SCM) has received
considerable attention in industry. Establishing an effective SCM system can reduce
supply chain risk, maximize revenue, optimize business processes, etc. Therefore,
how to determine suitable suppliers in the supply chain has become a crucial issue.
Suppose that a high technique company which manufactures electronic products
intends to select the most appropriate supplier of USB connectors. To evaluate three
alternative suppliers A1, A2 and A3, a committee composed of three decision makers
e1, e2 and e3 is formed. These decision makers provide their evaluation information
from three aspects, i.e., finance, performance and technique. The decision makers
provide their pairwise preference degrees over the alternatives by interval-valued
fuzzy values, which are shown as:

e1 : ~h
1
11 ¼ ~h122 ¼ ~h133 ¼ 0:5; 0:5½ �; ~h112 ¼ 0:4; 0:7½ �; ~h121 ¼ 0:3; 0:6½ �; ~h113 ¼ 0:5; 0:6½ �;
~h131 ¼ 0:4; 0:5½ �; ~h123 ¼ 0:4; 0:5½ �; ~h132 ¼ 0:5; 0:6½ �;

e2 : ~h
2
11 ¼ ~h222 ¼ ~h233 ¼ 0:5; 0:5½ �; ~h212 ¼ 0:2; 0:3½ �; ~h221 ¼ 0:7; 0:8½ �; ~h213 ¼ 0:3; 0:4½ �;
~h231 ¼ 0:6; 0:7½ �; ~h223 ¼ 0:5; 0:8½ �; ~h232 ¼ 0:2; 0:5½ �;

e3 : ~h311 ¼ ~h322 ¼ ~h333 ¼ 0:5; 0:5½ �; ~h312 ¼ 0:4; 0:5½ �; ~h321 ¼ 0:5; 0:6½ �; ~h313 ¼ 0:6; 0:7½ �;
~h331 ¼ 0:3; 0:4½ �; ~h323 ¼ 0:4; 0:6½ �; ~h332 ¼ 0:4; 0:6½ �;

Using the data ~hkij ~hkij ¼ ~hkij
� �L

; ~hkij
� �U
 �� �

, i; j; k ¼ 1; 2; 3, the IVFPRs ~Hk ¼
ð~hkijÞ3�3 are got, which satisfy the complementary properties defined in Eq. (6.46).

Moreover, from ~H1, ~H2 and ~H3, we construct the IVHFPR ~H ¼ ð~hijÞ3�3:

~H ¼
0:5; 0:5½ �f g 0:2; 0:3½ �; 0:4; 0:5½ �; 0:4; 0:7½ �f g 0:3; 0:4½ �; 0:5; 0:6½ �; 0:6; 0:7½ �f g

0:3; 0:6½ �; 0:5; 0:6½ �; 0:7; 0:8½ �f g 0:5; 0:5½ �f g 0:4; 0:5½ �; 0:4; 0:6½ �; 0:5; 0:8½ �f g
0:3; 0:4½ �; 0:4; 0:5½ �; 0:6; 0:7½ �f g 0:2; 0:5½ �; 0:4; 0:6½ �; 0:5; 0:6½ �f g 0:5; 0:5½ �f g

0
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1
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where ~hij denotes the group preference degree that the alternative Ai is superior to
the alternative Aj. Here we take ~h12 as an example. Since ~h12 represents all possible
interval-valued fuzzy preference degrees to which A1 is preferred to A2, its values
come from ~h112 ¼ 0:4; 0:7½ �ð Þ, ~h212 ¼ 0:2; 0:3½ �ð Þ and ~h312 ¼ 0:4; 0:5½ �ð Þ which is pro-
vided by the decision makers e1; e2 and e3, respectively. So, we can denote ~h12 by
~h112; ~h

2
12;

~h312
� �

and consider it as an IVHFE. Similarly, we can denote the sym-

metric element of ~h12, i.e., ~h21, by ~h121; ~h
2
21;

~h321
� �

. Other symmetric elements ~hij and
~hji in ~H are got in an analogous way and they satisfy the complementary properties
defined in Eq. (6.47). Also, when i ¼ j, ~hii represents the preference degree to
which Ai is preferred to itself; that is, it is equally preferred, so
~hii ¼ 0:5; 0:5½ �f gði ¼ 1; 2; 3Þ. Through the above procedure, we can construct the
IVHFPR ~H.

It needs to be mentioned that if accounting for the weight vector k ¼
k1; k2; k3ð ÞT of the decision makers e1, e2 and e3 with the conditions kk [ 0 andP3
k¼1 kk ¼ 1, we can still construct the IVHFPR by replacing the data of ~hkijðk ¼

1; 2; 3Þ given in the previous matrix ~H by kk~hkij kk~hkij ¼ kk ~hkij
� �L

; kk ~hkij
� �U
 �

;

�
k ¼ 1; 2; 3Þ.

6.4.2 Operators to Aggregate Interval-Valued Hesitant
Fuzzy Preference Information

In the following, we introduce a series of specific aggregation operators for
IVHFEs.

Definition 6.10 (Chen et al. 2013). Let ~hj(j ¼ 1; 2; . . .; n) be a collection of
IVHFEs, x ¼ x1;x2 � � �xnð ÞT be the weight vector of ~hj j ¼ 1; 2; . . .; nð Þ with
xj 2 0; 1½ �, Pn

j¼1 xj ¼ 1 and k[ 0, then

(1) An interval-valued hesitant fuzzy weighted averaging (IVHFWA) operator is a
mapping IVHFWA: ~Hn ! ~H, where

IVHFWA ~h1; ~h2; . . .; ~hn
� � ¼ �n

j¼1
xj~hj
� �

¼ 1�
Yn

j¼1
ð1� ~cLj Þxj ; 1�

Yn

j¼1
ð1� ~cUj Þxj

h i
~c1 2 ~h1;~c2 2 ~h2; . . .;~cn 2 ~hn
��n o

ð6:48Þ

(2) An interval-valued hesitant fuzzy weighted geometric (IVHFWG) operator is a
mapping IVHFWG: ~Hn ! ~H, where
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IVHFWG ~h1; ~h2; . . .; ~hn
� � ¼ 
n

j¼1
~hxj

j

¼
Yn

j¼1
ð~cLj Þxj ;

Yn

j¼1
ð~cUj Þxj

h i
~c1 2 ~h1;~c2 2 ~h2; . . .;~cn 2 ~hn
��n o ð6:49Þ

(3) A generalized interval-valued hesitant fuzzy weighted averaging (GIVHFWA)
operator is a mapping GIVHFWA: ~Hn ! ~H, where

GIVHFWAk
~h1; ~h2; . . .; ~hn
� � ¼ �n

j¼1
xj
~hkj

� �� �1=k

¼ 1�
Yn

j¼1
ð1� ð~cLj ÞkÞxj

� �1=k
; 1�

Yn

j¼1
ð1� ð~cUj ÞkÞxj

� �1=k
 �
~c1 2 ~h1;~c2 2 ~h2; . . .;~cn 2 ~hn
��� �

ð6:50Þ

(4) A generalized interval-valued hesitant fuzzy weighted geometric (GIVHFWG)
operator is a mapping ~Hn ! ~H, where

GIVHFWGk
~h1; ~h2; . . .; ~hn
� � ¼ 1

k

n
j¼1

ðk~hjÞxj

� �

¼ 1� 1�
Yn
j¼1

1� ð1� ~cLj Þk
� �xj

 !1=k

; 1� 1�
Yn
j¼1

1� ð1� ~cUj Þk
� �xj

 !1=k
2
4

3
5 ~c1 2 ~h1;~c2 2 ~h2; . . .;~cn 2 ~hn
��

8<
:

9=
;

ð6:51Þ

If k ¼ 1, then the GIVHFWA and GIVHFWG operators reduce to the IVHFWA
and IVHFWG operators, respectively. In particular, if x ¼ 1=n; 1=n; � � � ; 1=nð ÞT ,
the IVHFWA and IVHFWG operators respectively become the interval-valued
hesitant fuzzy averaging (IVHFA) operator:

IVHFA ~h1; ~h2; . . .; ~hn
� � ¼ �n

j¼1

1
n
~hj

� �

¼ 1�
Yn

j¼1
ð1� ~cLj Þ1=n; 1�

Yn

j¼1
ð1� ~cUj Þ1=n

h i
~c1 2 ~h1;~c2 2 ~h2; . . .;~cn 2 ~hn
��n o

ð6:52Þ

and the interval-valued hesitant fuzzy geometric (IVHFG) operator:

IVHFG ~h1; ~h2; . . .; ~hn
� � ¼ 
n

j¼1
~h1=nj

¼
Yn

j¼1
ð~cLj Þ1=n;

Yn

j¼1
ð~cUj Þ1=n

h i
~c1 2 ~h1;~c2 2 ~h2; . . .;~cn 2 ~hn
��n o ð6:53Þ

Example 6.8 (Chen et al. 2013). Let ~h1 ¼ ½0:1; 0:3�; ½0:4; 0:5�f g and ~h2 ¼
½0:3; 0:4�; ½0:4; 0:6�; ½0:5; 0:7�f g be two IVHFEs, and x ¼ ð0:2; 0:8ÞT be the weight

vector of them. Using Definition 6.10, we have
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GIVHFWA1 ~h1; ~h2
� � ¼ IVHFWA ~h1; ~h2

� �
¼ �2

j¼1
xj~hj
� � ¼ 1�

Y2

j¼1
ð1� ~cLj Þxj ; 1�

Y2

j¼1
ð1� ~cUj Þxj

h i
~c1 2 ~h1;~c2 2 ~h2
��n o

¼ 0:2639; 0:3812½ �f ; 0:3493; 0:5526½ �; 0:4376; 0:6446½ �; 0:3213; 0:4215½ �;
0:4; 0:5817½ �; 0:4814; 0:6677½ �g

GIVHFWG1ð~h1; ~h2Þ ¼ IVHFWGð~h1; ~h2Þ
¼ 
2

j¼1
~hxj

j ¼
Y2

j¼1
ð~cLj Þxj ;

Y2

j¼1
ð~cUj Þxj

h i
~c1 2 ~h1;~c2 2 ~h2
��n o

¼ 0:2408; 0:3776½ �f ; 0:3031; 0:5223½ �; 0:3624; 0:5909½ �; 0:3178; 0:4183½ �;
0:4; 0:5785½ �; 0:4782; 0:6544½ �g

GIVHFWA4 ~h1; ~h2
� � ¼ �2

j¼1
xj
~h4j

� �� �1=4

¼ 1�
Y2

j¼1
ð1� ð~cLj Þ4Þxj

� �1=4
; 1�

Y2

j¼1
ð1� ð~cUj Þ4Þxj

� �1=4
 �
~c1 2 ~h1;~c2 2 ~h2
��� �

¼ 0:2840; 0:3857½ �f ; 0:3786; 0:5713½ �; 0:4737; 0:6675½ �; 0:3284; 0:4265½ �;
0:4; 0:5843½ �; 0:4848; 0:6749½ �g

GIVHFWG4 ~h1; ~h2
� � ¼ 1

4

2
j¼1

ð4~hjÞxj

� �

¼ 1� 1�
Y2

j¼1
1� ð1� ~cLj Þ4
� �xj

� �1
4
; 1� 1�

Y2

j¼1
1� ð1� ~cUj Þ4
� �xj

� �1
4


 �
~c1 2 ~h1;~c2 2 ~h2
��� �

¼ 0:23; 0:3747½ �f ; 0:2744; 0:4804½ �; 0:3053; 0:5060½ �; 0:3158; 0:4157½ �;
0:4; 0:5735½ �; 0:4744; 0:6276½ �g

From Example 6.8, we can find that

GIVHFWG4 ~h1; ~h2
� �	 IVHFWG ~h1; ~h2

� �	 IVHFWA ~h1; ~h2
� �	GIVHFWA4 ~h1; ~h2

� �

In fact, the above fact can be revealed by Theorem 6.8.

Theorem 6.8 (Chen et al. 2013). Assume that ~hj(j ¼ 1; 2; . . .; n) are a collection of

IVHFEs, x ¼ x1;x2 � � �xnð ÞT is the weight vector of them with xj 2 0; 1½ � andPn
j¼1 xj ¼ 1, then

IVHFWG ~h1; ~h2; . . .; ~hn
� �	 IVHFWA ~h1; ~h2; . . .; ~hn

� � ð6:54Þ

Proof For any ~c1 2 ~h1; ~c2 2 ~h2; . . .; ~cn 2 ~hn, based on Lemma 3.1, we have
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Yn

j¼1
ð~cLj Þxj 	

Xn
j¼1

xjð~cLj Þ ¼ 1�
Xn

j¼1
xjð1� ~cLj Þ	 1�

Yn

j¼1
ð1� ~cLj Þxj

ð6:55Þ

Similarly, we have

Yn

j¼1
ð~cUj Þxj 	

Xn
j¼1

xjð~cUj Þ ¼ 1�
Xn

j¼1
xjð1� ~cUj Þ	 1�

Yn

j¼1
ð1� ~cUj Þxj

ð6:56Þ

Given Eq. (1.23), Eqs. (6.55) and (6.56) imply 
n
j¼1

~hxj

j

� �
	 �n

j¼1
xj
~hj

� �
, which

completes the proof of Theorem 6.8. □

Theorem 6.9 (Chen et al. 2013). Let ~hj(j ¼ 1; 2; . . .; n) be a collection of IVHFEs,

whose weight vector is x ¼ x1;x2 � � �xnð ÞT with xj 2 0; 1½ � and Pn
j¼1 xj ¼ 1,

k[ 0, then

IVHFWG ~h1; ~h2; . . .; ~hn
� �	GIVHFWAk

~h1; ~h2; . . .; ~hn
� � ð6:57Þ

Proof For any ~c1 2 ~h1; ~c2 2 ~h2; . . .; ~cn 2 ~hn, by Lemma 3.1, we have

Yn

j¼1
ð~cLj Þxj ¼

Yn

j¼1
ðð~cLj ÞkÞxj

� �1=k
	
Xn

j¼1
xjð~cLj Þk

� �1=k
¼ 1�

Xn

j¼1
xjð1� ð~cLj ÞkÞ

� �1=k
	 1�

Yn

j¼1
ð1� ð~cLj ÞkÞxj

� �1=k
ð6:58Þ

Likewise, we have

Yn

j¼1
ð~cUj Þxj ¼

Yn

j¼1
ðð~cUj ÞkÞxj

� �1=k
	
Xn

j¼1
xjð~cUj Þk

� �1=k
¼ 1�

Xn

j¼1
xjð1� ð~cUj ÞkÞ

� �1=k
	 1�

Yn

j¼1
ð1� ð~cUj ÞkÞxj

� �1=k
ð6:59Þ

Combining Eqs. (6.58) and (6.59), it follows 
n
j¼1

~hxj

j

� �
	 �n

i¼1
xj~hkj
� �� �1=k

. This

completes the proof of Theorem 6.9. □

Theorem 6.10 (Chen et al. 2013). For a collection of IVHFEs ~hj(j ¼ 1; 2; . . .; n),
x ¼ x1;x2. . .xnð ÞT is the weight vector with xj 2 0; 1½ � andPn

j¼1 xj ¼ 1, k[ 0,
then
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GIVHFWGk
~h1; ~h2; . . .; ~hn
� �	 IVHFWA ~h1; ~h2; . . .; ~hn

� � ð6:60Þ

Proof Let ~c1 2 ~h1; ~c2 2 ~h2; . . .; ~cn 2 ~hn, then based on Lemma 3.1, we obtain

1� 1�
Yn

j¼1
1� ð1� ~cLj Þk
� �xj

� �1=k
	 1� 1�

Xn

j¼1
xj 1� ð1� ~cLj Þk
� �� �1=k

¼ 1�
Xn

j¼1
xjð1� ~cLj Þk

� �1=k
	 1�

Yn

j¼1
ðð1� ~cLj ÞkÞxj

� �1=k
¼ 1�

Yn

j¼1
ð1� ~cLj Þxj

ð6:61Þ

Similarly,

1� 1�
Yn

j¼1
1� ð1� ~cUj Þk
� �xj

� �1=k
	 1� 1�

Xn

j¼1
xj 1� ð1� ~cUj Þk
� �� �1=k

¼ 1�
Xn

j¼1
xjð1� ~cUj Þk

� �1=k
	 1�

Yn

j¼1
ðð1� ~cUj ÞkÞxj

� �1=k
¼ 1�

Yn

j¼1
ð1� ~cUj Þxj

ð6:62Þ

We can see Theorem 6.10 still holds with Eq. (1.23). □
Based on Definition 6.10 and motivated by the idea of the OWA operator (Yager

1988), the OWA operators for IVHFEs can be defined.

Definition 6.11 (Chen et al. 2013). Let ~hj(j ¼ 1; 2; . . .; n) be a collection of
IVHFEs, ~hrðjÞ be the jth largest of them, x ¼ x1;x2 � � �xnð ÞT be the associated
vector such that xj 2 0; 1½ �, Pn

j¼1 xj ¼ 1 and k[ 0, then

(1) An interval-valued hesitant fuzzy ordered weighted averaging (IVHFOWA)
operator is a mapping IVHFOWA: ~Hn ! ~H, where

IVHFOWA ~h1; ~h2; . . .; ~hn
� � ¼ �n

j¼1
xj
~hrðjÞ

� �
¼ 1�

Yn

j¼1
ð1� ~cLrðjÞÞxj ; 1�

Yn

j¼1
ð1� ~cUrðjÞÞxj ~crð1Þ 2 ~hrð1Þ;~crð2Þ 2 ~hrð2Þ; . . .;~crðnÞ 2 ~hrðnÞ

���h i
ð6:63Þ

(2) An interval-valued hesitant fuzzy ordered weighted geometric (IVHFOWG)
operator is a mapping IVHFOWG: ~Hn ! ~H, where

IVHFOWG ~h1; ~h2; . . .; ~hn
� � ¼ 
n

j¼1
~hxj

rðjÞ

¼
Yn

j¼1
ð~cLrðjÞÞxj ;

Yn

j¼1
ð~cUrðjÞÞxj

h i
~crð1Þ 2 ~hrð1Þ;~crð2Þ 2 ~hrð2Þ; . . .;~crðnÞ 2 ~hrðnÞ
���n o

ð6:64Þ

(3) A generalized interval-valued hesitant fuzzy ordered weighted averaging
(GIVHFOWA) operator is a mapping GIVHFOWA: ~Hn ! ~H, where
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GIVHFOWAk
~h1; ~h2; . . .; ~hn
� � ¼ �n

j¼1
xj
~hkrðjÞ

� �� �1=k

¼ 1�
Yn

j¼1
ð1� ð~cLrðjÞÞkÞxj

� �1=k
; 1�

Yn

j¼1
ð1� ð~cUrðjÞÞkÞxj

� �1=k
 �
~crð1Þ 2 ~hrð1Þ; . . .;~crðnÞ 2 ~hrðnÞ
���� �

ð6:65Þ

(4) A generalized interval-valued hesitant fuzzy ordered weighted geometric
(GIVHFOWG) operator is a mapping GIVHFOWG: ~Hn ! ~H, where

GIVHFOWGk
~h1; ~h2; . . .; ~hn
� � ¼ 1

k

n
j¼1

ðk~hrðjÞÞxj

� �

¼ 1� 1�
Yn

j¼1
1� ð1� ~cLrðjÞÞk
� �xj

� �1=k
; 1� 1�

Yn

j¼1
1� ð1� ~cUrðjÞÞk
� �xj

� �1=k
 ��

j~crð1Þ 2 ~hrð1Þ; . . .;~crðnÞ 2 ~hrðnÞ
o

ð6:66Þ

In the case where x ¼ 1=n; 1=n;. . .; 1=nð ÞT , the IVHFOWA and IVHFOWG
operators reduce to the IVHFA and IVHFG operators, respectively. For the case
where k ¼ 1, the GIVHFOWA and GIVHFOWG operators become the
IVHFOWA and IVHFOWG operators.

Example 6.9 (Chen et al. 2013). Let ~h1 ¼ ½0:1; 0:3�; ½0:4; 0:5�f g and ~h2 ¼
½0:3; 0:4�; ½0:4; 0:6�; ½0:5; 0:7�f g be two IVHFEs, and x ¼ ð0:4; 0:6ÞT be the weight

vector of them.
We firs compute the score values of ~h1 and ~h2 using Eq. (1.24) and obtain

s ~h1
� � ¼ ½0:25; 0:4�, s ~h2

� � ¼ ½0:4; 0:85�. Since s ~h2
� �

[ s ~h1
� �

, then we have ~hrð1Þ ¼
~h2 ¼ ½0:3; 0:4�; ½0:4; 0:6�; ½0:5; 0:7�f g, and ~hrð2Þ ¼ ~h1 ¼ ½0:1; 0:3�; ½0:4; 0:5�f g.
According to Definition 6.11, we get

GIVHFOWA1 ~h1; ~h2
� � ¼ IVHFOWA ~h1; ~h2

� � ¼ �2
j¼1

xj
~hrðjÞ

� �
¼ 1�

Y2

j¼1
ð1� ~cLrðjÞÞxj ; 1�

Y2

j¼1
ð1� ~cUrðjÞÞxj

h i
~crð1Þ 2 ~hrð1Þ;~crð2Þ 2 ~hrð2Þ
���n o

¼ 0:1861; 0:3419½ �f ; 0:3618; 0:4622½ �; 0:2347; 0:4404½ �; 0:4; 0:5427½ �;
0:2886; 0:5012½ �; 0:4422; 0:5924½ �g:

GIVHFOWA4 ~h1; ~h2
� � ¼ �2

j¼1
xj
~h4rðjÞ

� �� �1=4

¼ 1� ð1� ð~cL2Þ4Þ0:4ð1� ð~cL1Þ4Þ0:6
� �1

4
; 1� ð1� ð~cU2 Þ4Þ0:4ð1� ð~cU1 Þ4Þ0:6
� �1

4


 �
~c1 2 ~h1;~c2 2 ~h2
��� �

¼ 0:2398; 0:3508½ �f ; 0:3695; 0:4679½ �; 0:3192; 0:4920½ �; 0:4; 0:5476½ �;
0:3998; 0:5738½ �; 0:4487; 0:6095½ �g:
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GIVHFOWG1 ~h1; ~h2
� � ¼ IVHFOWG ~h1; ~h2

� � ¼ 
2
j¼1

~hxj

rðjÞ

¼ 0:1552; 0:3366½ �f ; 0:3565; 0:4573½ �; 0:1741; 0:3959½ �; 0:4; 0:5378½ �;
0:1904; 0:4210½ �; 0:4373; 0:5720½ �g:

GIVHFOWG4 ~h1; ~h2
� � ¼ 1

4

2
j¼1

ð4~hrðjÞÞxj

� �
¼ 0:1477; 0:3332½ �f ; 0:3527; 0:4524½ �; 0:1585; 0:3669½ �; 0:4; 0:5321½ �;

0:1649; 0:3729½ �; 0:4330; 0:5497½ �g:

It is observed that the IVHFWA, IVHFWG, GIVHFWA and GIVHFWG
operators weight the IVHFEs, and the IVHFOWA, IVHFOWG, GIVHFOWA and
GIVHFOWG operators only weight the ordered position of each given IVHFE. But
the hybrid aggregation operators developed here for IVHFEs weight both all the
given IVHFEs and their ordered positions.

Definition 6.12 (Chen et al. 2013). For a collection of IVHFEs ~hj(j ¼ 1; 2; . . .; n),
k ¼ k1; k2 � � � knð ÞT is the weight vector of them with kj 2 0; 1½ � andPn

j¼1 kj ¼ 1, n

is a balancing factor. Aggregation operators are the mapping ~Hn ! ~H with an
associated vector x ¼ x1;x2 � � �xnð ÞT such that xj 2 0; 1½ � and Pn

j¼1 xj ¼ 1:

(1) The interval-valued hesitant fuzzy hybrid averaging (IVHFHA) operator:

IVHFHA ~h1; ~h2; . . .; ~hn
� � ¼ �n

j¼1
xj

_~hrðjÞ
� �

¼ 1�
Yn

j¼1
ð1� _~cLrðjÞÞxj ; 1�

Yn

j¼1
ð1� _~cUrðjÞÞxj

h i
_~crð1Þ 2 _~hrð1Þ; . . .; _~crðnÞ 2 _~hrðnÞ
���n o

ð6:67Þ

where _~hrðjÞ is the jth largest of _~h ¼ nkk~hk(k ¼ 1; 2; . . .; n).
(2) The interval-valued hesitant fuzzy hybrid geometric (IVHFHG) operator:

IVHFHG ~h1; ~h2; . . .; ~hn
� � ¼ 
n

j¼1

€~h
xj

rðjÞ

¼
Yn

j¼1
ð€~cLrðjÞÞxj ;

Yn

j¼1
ð€~cUrðjÞÞxj

h i
€~crð1Þ 2 €~hrð1Þ; . . .;€~crðnÞ 2 €~hrðnÞ
���n o

ð6:68Þ

where €~hrðjÞ is the jth largest of €~hk ¼ ~hnkkk (k ¼ 1; 2; . . .; n).
(3) The generalized interval-valued hesitant fuzzy hybrid averaging (GIVHFHA)

operator:
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GIVHFHAk
~h1; ~h2; . . .; ~hn
� � ¼ �n

j¼1
xj

_~h
k
rðjÞ

� �� �1=k

¼ 1�
Yn

j¼1
ð1� ð _~cLrðjÞÞkÞxj

� �1=k
; 1�

Yn

j¼1
ð1� ð _~cUrðjÞÞkÞxj

� �1=k
 �
_~crð1Þ 2 _~hrð1Þ; . . .; _~crðnÞ 2 _~hrðnÞ
���� �

ð6:69Þ

where k[ 0, _~hrðjÞ is the jth largest of _~h ¼ nkk~hk(k ¼ 1; 2; . . .; n).
(4) The generalized interval-valued hesitant fuzzy hybrid geometric (GIVHFHG)

operator:

GIVHFHGk
~h1; ~h2; . . .; ~hn
� � ¼ 1

k

n
j¼1

k€~hrðjÞ
� �xj

� �

¼ 1� 1�
Yn

j¼1
1� ð1� €~cLrðjÞÞk
� �xj

� �1=k
; 1� 1�

Yn

j¼1
1� ð1� €~cUrðjÞÞk
� �xj

� �1=k
 ��

j€~crð1Þ 2 €~hrð1Þ; . . .;€~crðnÞ 2 €~hrðnÞ
o
:

ð6:70Þ

where k[ 0, €~hrðjÞ is the jth largest of €~hk ¼ ~hnkkk (k ¼ 1; 2; . . .; n).

Example 6.10 (Chen et al. 2013). Let ~h1 ¼ ½0:1; 0:3�; ½0:4; 0:5�f g and ~h2 ¼
½0:3; 0:4�; ½0:4; 0:6�; ½0:5; 0:7�f g be two IVHFEs. Suppose that their weight vector

and position vector are k ¼ 0:2; 0:8ð ÞT and x ¼ ð0:4; 0:6ÞT , respectively. With
Definition 6.12, we obtain

_~h1 ¼ 1� ð1� 0:1Þ2�0:2; 1� ð1� 0:3Þ2�0:2
h i

; 1� ð1� 0:4Þ2�0:2; 1� ð1� 0:5Þ2�0:2
h in o

¼ 0:0413; 0:1330½ �; 0:1848; 0:2421½ �f g
_~h2 ¼ 1� ð1� 0:3Þ2�0:8; 1� ð1� 0:4Þ2�0:8

h i
; 1� ð1� 0:4Þ2�0:8; 1� ð1� 0:6Þ2�0:8
h i

;
n
1� ð1� 0:5Þ2�0:8; 1� ð1� 0:7Þ2�0:8
h io

¼ 0:4349; 0:5584½ �; 0:5584; 0:7692½ �; 0:6701; 0:8543½ �f g

Since s _~h1
� �

¼ 0:1131; 0:1876½ �, s _~h2
� �

¼ 0:5545; 0:7273½ �, we have

s _~h2
� �

[ s _~h1
� �

. Thus, _~hrð1Þ ¼ _~h2 ¼ 0:4349; 0:5584½ �; 0:5584; 0:7692½ �; 0:6701;½f
0:8543�g, _~hrð2Þ ¼ _~h1 ¼ 0:0413; 0:1330½ �; 0:1848; 0:2421½ �f g.
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Similarly, we have

GIVHFHA1 ~h1; ~h2
� � ¼ IVHFHA ~h1; ~h2

� � ¼ �2
j¼1

xj
_~hrðjÞ

� �
¼ 1� ð1� _~cL2Þ0:4ð1� _~cL1Þ0:6; 1� ð1� _~cU2 Þ0:4ð1� _~cU1 Þ0:6

h i
_~c2 2 _~h2; _~c1 2 _~h1
���n o

¼ 0:2240; 0:3381½ �; 0:2959; 0:3894½ �; 0:2969; 0:4894½ �; 0:3621; 0:5290½ �;f
0:3743; 0:5752½ �; 0:4323; 0:6081½ �g:

GIVHFHA4 ~h1; ~h2
� � ¼ �2

j¼1
xj

_~h
4
rðjÞ

� �� �1=4

¼ 1� ð1� ð _~cL2Þ4Þ0:4ð1� ð_~cL1Þ4Þ0:6
� �1=4

; 1� ð1� ð_~cU2 Þ4Þ0:4ð1� ð _~cU1 Þ4Þ0:6
� �1=4
 �

_~c2 2 _~h2; _~c1 2 _~h1
���� �

¼ 0:3468; 0:4480½ �; 0:3509; 0:4529½ �; 0:4475; 0:6309½ �; 0:4493; 0:6325½ �;f
0:5417; 0:7158½ �; 0:6791; 0:7167½ �g:

If we make use of the GIVHFHG operators to aggregate the IVHFEs ~h1, ~h2, then

€~h1 ¼ 0:12�0:2; 0:32�0:2� �
; 0:42�0:2; 0:52�0:2� �� � ¼ 0:3981; 0:6178½ �; 0:6931; 0:7579½ �f g

€~h2 ¼ 0:32�0:8; 0:42�0:8� �
; 0:42�0:8; 0:62�0:8� �

; 0:52�0:8; 0:72�0:8� �� �
¼ 0:1457; 0:2308½ �; 0:2308; 0:4416½ �; 0:3299; 0:5651½ �f g

As s €~h1
� �

¼ 0:5456; 0:6879½ �, s €~h2
� �

¼ 0:2355; 0:4125½ �, we have

s €~h1
� �

[ s €~h2
� �

. Thus,

€~hrð1Þ ¼ €~h1 ¼ 0:3981; 0:6178½ �; 0:6931; 0:7579½ �f g
€~hrð2Þ ¼ €~h2 ¼ 0:1457; 0:2308½ �; 0:2308; 0:4416½ �; 0:3299; 0:5651½ �f g

Using Definition 6.12, we have

GIVHFHG1 ~h1; ~h2
� � ¼ IVHFHG ~h1; ~h2

� � ¼ 
2
j¼1

€~h
xj

rðjÞ

¼ ð€~cL1Þ0:4ð€~cL2Þ0:6; ð€~cU1 Þ0:4ð€~cU2 Þ0:6
h i

€~c1 2 €~h1;€~c2 2 €~h2
���n o

¼ 0:2178; 0:3422½ �; 0:2870; 0:5051½ �; 0:3557; 0:5856½ �; 0:2719; 0:3714½ �;f
0:3583; 0:5481½ �; 0:4440; 0:6355½ �g:

GIVHFHG4 ~h1; ~h2
� � ¼ 1

4

2
j¼1

4€~hrðjÞ
� �xj

� �
¼ 0:2042; 0:3042½ �; 0:2791; 0:4901½ �; 0:3540; 0:5837½ �; 0:2208; 0:3083½ �;f

0:3071; 0:5034½ �; 0:4001; 0:6107½ �g:
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6.4.3 An Approach to Group Decision Making
with Interval-Valued Hesitant Fuzzy Preference
Relations

Suppose that the elements in IVHFE are arranged in ascending order. Let
~hrðiÞ(j ¼ 1; 2; . . .; n) be the ith smallest value in ~h. The distance measures for
IVHFEs are given by

d1ð~a; ~bÞ ¼ 1
2l

Xl

i¼1
ð ~aLrðiÞ � ~bLrðiÞ
��� ���þ ~aUrðiÞ � ~bUrðiÞ

��� ���Þ ð6:71Þ

d2ð~a; ~bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2l

Xl

i¼1
ð ~aLrðiÞ � ~bLrðiÞ
��� ���2 þ ~aUrðiÞ � ~bUrðiÞ

��� ���2Þ
r

ð6:72Þ

Equations (6.71) and (6.72) can be considered as the extension of the
well-known Hamming distance and Euclidean distance under the interval-valued
hesitant fuzzy environment. They satisfy the following properties:

(1) 0	 dð~a; ~bÞ	 1.
(2) dð~a; ~bÞ ¼ 0 if and only if ~a ¼ ~b.
(3) dð~a; ~bÞ ¼ dð~b; ~aÞ.

Based on the above analysis, below we develop a group decision making
approach with IVHFPRs:

Algorithm 6.6

Step 1. Let A ¼ fA1;A2; . . .;Ang be a discrete set of alternatives, O ¼
O1;O2; . . .;Omf g be the set of decision organizations composed of several

experts, and x ¼ ðx1;x2; . . .;xmÞ be the weight vector of the organiza-
tions with

Pm
k¼1 xk ¼ 1 and xk � 0, k ¼ 1; 2; . . .;m. Each expert in an

organization provides interval preference for each pair of alternatives, so

for each organization its IVHFPR is constructed with ~HðkÞ ¼ ð~hðkÞij Þn�n. We

utilize the GIVHFA (or GIVHFG) operator to aggregate all ~hðkÞij ðj ¼
1; 2; . . .; nÞ that correspond to the alternative Ai. We get the IVHFE ~hðkÞi of
the alternative Ai over all the other alternatives for the organization Ok.

Step 2. To make our approach have large feasibility and wide practicability, the
weights of decision organizations are also properly incorporated into the
group decision making problem. If the weight vector x ¼
ðx1;x2; . . .;xmÞT of all organizations is known, then go to Step 3;
Otherwise, the weight of each organization needs to be accounted for. The
smaller the difference between the preference information offered by one
organization with that offered by the rest organizations, the more precise
the preference information. Consequently, a larger weight is assigned to
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the organization. Calculate the weights of decision organizations proceeds
as follows. We first compute the differences between any two organiza-
tions Ol and Ok using distance measure given by Eq. (6.71) or Eq. (6.72),
and obtain

Dlk ¼ dðlkÞij

� �
n�n

¼ d ~hðlÞij ; ~h
ðkÞ
ij

� �� �
n�n

; l; k ¼ 1; 2; . . .;m ð6:73Þ

where (1) dðlkÞij � 0, especially, if l ¼ k; then dðlkÞij ¼ 0; i; j ¼ 1; 2; . . .; n;

(2) dðlkÞij ¼ 0, i ¼ j; (3) dðlkÞij ¼ dðlkÞji . Dlk is a symmetric matrix and the
values of diagonal elements are zero. Then, we compute the average value
of the matrix Dlk by

�dlk ¼ 1
n2
Xn
i¼1

Xn
j¼1

dðlkÞij ð6:74Þ

Afterwards, let �dl ¼
Pm

k¼1;k 6¼l

�dlk ¼ 1
n2
Pm

k¼1;k 6¼l

Pn
i¼1

Pn
j¼1

dðlkÞij , which denotes the

deviation of the organization Ol from the rest organizations. The smaller
the �dl, the closer the preference information given by Ol and the rest
organizations, and hence, the more valuable the preference information
coming from the organization Ol. It means that Ol should be given a large
weight wl, which is written as

wl ¼ ð�dlÞ�1

Pm
l¼1

ð�dlÞ�1
; l ¼ 1; 2; . . .;m ð6:75Þ

Step 3. Utilize the GIVHFWA (or the GIVHFWG) operator to aggregate all
~hðkÞi ðk ¼ 1; 2; . . .;mÞ into a collective IVHFE ~hi for the alternative Ai.

Step 4. Compute the score functions of ~hiði ¼ 1; 2; . . .; nÞ by Eq. (1.24), and rank
all the alternatives Aiði ¼ 1; 2; . . .; nÞ according to sðAiÞ ði ¼ 1; 2; . . .; nÞ.

In the following, a large project of Jiudianxia reservoir operation is employed to
demonstrate the validity of our approach:

Example 6.11 (Chen et al. 2013). The reservoir is designed for many purposes, such
as power generation, irrigation, total water supply for industry, agriculture, residents
and environment, etc. Because of different requirements for the partition of the
amount of water, four reservoir operation schemes A1;A2;A3 and A4 are suggested.

A1: maximum plant output, enough supply of water used in the Tao River basin,
higher and lower supply for society and economy.
A2: maximum plant output, enough supply of water used in the Tao River basin,
higher and lower supply for society and economy, lower supply for ecosystem.
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A3: maximum plant output, enough supply of water used in the Tao River basin,
higher and lower supply for society and economy, total supply for ecosystem and
environment, whose 90 % is used for flushing sands at low water period.
A4: maximum plant output, enough supply of water used in the Tao River basin,
higher and lower supply for society and economy, total supply for ecosystem and
environment, whose 50 % is used for flushing sands at low water period.

To select the best scheme, the government assigns three decision organizations
Okðk ¼ 1; 2; 3Þ to evaluate the four competing schemes. Due to uncertainties, the
decision makers in each organization give their preference information over alter-
natives in the form of interval values. Taking O2 as an example, the decision
makers evaluate the degrees to which A1 is preferred to A2. Some give ½0:2; 0:3� and
the others give ½0:5; 0:6�. Consider that these decision makers in the organization O2

cannot be persuaded each other, the preference information that A1 is preferred to
A2 provided by the decision organization O2 can be considered as an IVHFE, i.e.,
f½0:2; 0:3�; ½0:5; 0:6�g. The preference information of these three organizations is
listed in Tables 6.4, 6.5 and 6.6, respectively.

To get the optimal alternative, the following steps are adopted:

Step 1. Compute the averaged IVHFE ~hðkÞi of the alternative Ai over all the other
alternatives for the organization Okðk ¼ 1; 2; 3Þ by the GIVHFA (let
k ¼ 1) operator. All the aggregation results are listed in Table 6.7.

Table 6.4 The preference relation of the decision organization O1

A1 A2 A3 A4

A1 {[0.5,0.5]} {[0.4,0.5],
[0.7,0.9]}

{[0.5,0.6],
[0.8,0.9]}

{[0.3,0.5]}

A2 {[0.1,0.3],
[0.5,0.6]}

{[0.5,0.5]} {[0.4,0.5]} {[0.6,0.8]}

A3 {[0.1,0.2],
[0.4,0.5]}

{[0.5,0.6]} {[0.5,0.5]} {[0.3,0.4],
[0.5,0.6]}

A4 {[0.5,0.7]} {[0.2,0.4]} {[0.4,0.5],
[0.6,0.7]}

{[0.5,0.5]}

Table 6.5 The preference relation of the decision organization O2

A1 A2 A3 A4

A1 {[0.5,0.5]} {[0.2,0.3], [0.5,0.6]} {[0.5,0.6],
[0.7,0.9]}

{[0.2,0.4]}

A2 {[0.4,0.5],
[0.7,0.8]}

{[0.5,0.5]} {[0.5,0.8]} {[0.3,0.5], [0.6,0.7],
[0.8,0.9]}

A3 {[0.1,0.3],
[0.4,0.5]}

{[0.2,0.5]} {[0.5,0.5]} {[0.4,0.5], [0.7,0.8]}

A4 {[0.6,0.8]} {[0.1,0.2], [0.3,0.4],
[0.5,0.7]}

{[0.2,0.3],
[0.5,0.6]}

{[0.5,0.5]}
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Step 2. Derive the weights of the decision organizations. We first use Eq. (6.71) to

compute d ~hðlÞij ; ~h
ðkÞ
ij

� �
; i; j ¼1; 2; . . .; 4; l; k ¼ 1; 2; 3. The difference matrix

Dlk ¼ dðlkÞij

� �
n�n

can thus be obtained:

D12 ¼ D21 ¼

0 0:225 0:025 0:1

0:225 0 0:2 0:1667

0:025 0:2 0 0:15

0:1 0:1667 0:15 0

0
BBB@

1
CCCA;

D13 ¼ D31 ¼

0 0:025 0:15 0:125

0:025 0 0:05 0:05

0:15 0:05 0 0:1167

0:125 0:05 0:1167 0

0
BBB@

1
CCCA

D23 ¼ D32 ¼

0 0:2 0:125 0:225

0:2 0 0:15 0:1833

0:125 0:15 0 0:1167

0:225 0:1833 0:1167 0

0
BBB@

1
CCCA; D11 ¼ D22 ¼ D33 ¼

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0
BBB@

1
CCCA

Compute the average values of the difference matrix by Eq. (6.74):

�d12 ¼ �d21 ¼ 0:1083; �d13 ¼ �d31 ¼ 0:0646; �d23 ¼ �d32 ¼ 0:125

Using Eq. (6.75), we obtain x1 ¼ 0:38; x2 ¼ 0:28; x3 ¼ 0:34.
Step 3. Compute a collective IVHFE ~hiði ¼ 1; 2; 3Þ of the alternative Ai over all

the other alternatives by using the GIVHFWA (let k ¼ 1) operator ~hi ¼
IVHFWA(~hð1Þi ; ~hð2Þi ; ~hð3Þi ).

Step 4. Compute the score functions of ~hiði ¼ 1; 2; . . .; nÞ, and rank all the alter-
natives Aiði ¼1; 2; . . .; nÞ according to the values of sð~hiÞði ¼ 1; 2; . . .; nÞ:

sð~h1Þ ¼ ½0:5105; 0:6324�; sð~h2Þ ¼ ½0:5063; 0:6359�
sð~h3Þ ¼ ½0:4304; 0:5368�; sð~h4Þ ¼ ½0:4247; 0:5462�

Table 6.6 The preference relation of the decision organization O3

A1 A2 A3 A4

A1 {[0.5,0.5]} {[0.4,0.5],
[0.7,0.8]}

{[0.6,0.7]} {[0.3,0.5], [0.6,0.7]}

A2 {[0.2,0.3],
[0.5,0.6]}

{[0.5,0.5]} {[0.4,0.6]} {[0.7,0.8]}

A3 {[0.3,0.4]} {[0.4,0.6]} {[0.5,0.5]} {[0.3,0.4], [0.5,0.7],
[0.8,0.9]}

A4 {[0.3,0.4],
[0.5,0.7]}

{[0.2,0.3]} {[0.1,0.2], [0.3,0.5],
[0.6,0.7]}

{[0.5,0.5]}
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Using Eq. (1.23), we get sð~h1Þ[ sð~h2Þ[ sð~h4Þ[ sð~h3Þ, then
A1 � A2 � A4 � A3, which shows the scheme A1 is the best among these
four schemes.

From Example 6.11, we can see that the IVHFPRs are useful in tackling large
group decision making problems, because they intuitively express the uncertain
preference information provided by the decision makers in each decision
organization.

In the approach to group decision making with IVFPRs, the pairwise comparison
values on alternatives are first aggregated and correspondingly only the average
interval-valued preference information is obtained. However, with IVHFPRs, there
is no need to perform such an aggregation process. Thus, we can provide more
comprehensive description on the opinions of these decision makers. In order to
compare the results obtained by IVHFPRs and those by IVFPRs, we present the
detailed calculation process of solving the problem in Example 6.11 with IVFPR.

Step 1. Compute interval-valued fuzzy preferences by averaging the individual
decision makers’ preference opinions in each decision organization. The
results obtained on the basis of the data in Tables 6.4, 6.5 and 6.6 are
summarized in Tables 6.8, 6.9 and 6.10, respectively. For example, for O1,
~hð1Þ12 ¼ 1

2 0:4; 0:5½ � þ 0:7; 0:9½ �ð Þ ¼ 0:55; 0:7½ �.
Step 2. Compute the averaged ~hðkÞi of the alternative Ai over all the other alter-

natives corresponding to the organization Okðk ¼ 1; 2; 3Þ by the arithmetic
average (AA) operator:

Table 6.7 The aggregation results of the decision organization Okðk ¼ 1; 2; 3Þ
The aggregation results of the decision organization

O1 ~hð1Þ1
{[0.4308,0.5271], [0.5473,0.6656], [0.5213,0.6838], [0.6193,0.7764]}

~hð1Þ2
{[0.4267,0.5675], [0.5051,0.6239]}

~hð1Þ3
{[0.3700,0.4434], [0.4209,0.4970], [0.4308,0.5051], [0.4767,0.5528]}

~hð1Þ4
{[0.4114,0.5394], [0.4682,0.5946]}

O2 ~hð2Þ1
{[0.3675,0.4616], [0.4434,0.6193], [0.4377,0.5319], [0.5051,0.6690]}

~hð2Þ2
{[0.4308,0.6024], [0.5051,0.6500], [0.5838,0.7341], [0.5213,0.6838],
[0.5838,0.7217], [0.6500,0.7885]}

~hð2Þ3
{[0.3183,0.4561], [0.4267,0.5675], [0.3840,0.5000}, [0.4820,0,6024]}

~hð2Þ4
{[0.3840,0.5135], [0.4523,0.5771], [0.4215,0.5473], [0.4856,0.6064],
[0.4682,0.6193], [0.5271,0.6690]}

O3 ~hð3Þ1
{[0.4616,0.5599], [0.5319,0.6127], [0.5473,0.6500], [0.6064,0.6920]}

~hð3Þ2
{[0.4820,0.5909], [0.5394,0.6443]}

~hð3Þ3
{[0.3808,0.4820], [0.4308,0.5644], [0.5473,0.6690]}

~hð3Þ4
{[0.2915,0.3598], [0.3346,0.4308], [0.4215,0.4990], [0.3486,0.4616],
[0.3883,0.5213], [0.4682,0.5787]}
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~hðkÞi ¼ AAð~hðkÞi1 ; ~hðkÞi2 ; ~hðkÞi3 ; ~hðkÞi4 Þ ¼ 1
n

Xn
j¼1

~hðkÞij ð6:76Þ

The aggregation results of the decision organization Okðk ¼ 1; 2; 3Þ are:
O1: ~hð1Þ1 ¼ 0:5; 0:6125½ �, ~hð1Þ2 ¼ 0:45; 0:5625½ �, ~hð1Þ3 ¼ 0:4125; 0:4875½ �,
~hð1Þ4 ¼ 0:425; 0:55½ �;
O2: ~h

ð2Þ
1 ¼ 0:4125; 0:525½ �, ~hð2Þ2 ¼ 0:5292; 0:6625½ �, ~hð2Þ3 ¼ 0:375; 0:5125½ �,

~hð2Þ4 ¼ 0:4375; 0:5458½ �;
O3: ~hð3Þ1 ¼ 0:525; 0:6125½ �, ~hð3Þ2 ¼ 0:4875; 0:5875½ �, ~hð3Þ3 ¼ 0:4333;½
0:5417�, ~hð3Þ4 ¼ 0:3583; 0:4542½ �.

Step 3. Utilize the weighted average (WA) operator to aggregate all ~hðkÞi ðk ¼
1; 2; 3Þ into a collective ~hi of the alternative Ai over all the other
alternatives:

Table 6.8 The interval-valued fuzzy preference relation of the decision organization O1

A1 A2 A3 A4

A1 [0.5,0.5] [0.55,0.7] [0.65,0.75] [0.3,0.5]

A2 [0.3,0.45] [0.5,0.5] [0.4,0.5] [0.6,0.8]

A3 [0.25,0.35] [0.5,0.6] [0.5,0.5] [0.4,0.5]

A4 [0.5,0.7] [0.2,0.4] [0.5,0.6] [0.5,0.5]

Table 6.9 The interval-valued fuzzy preference relation of the decision organization O2

A1 A2 A3 A4

A1 [0.5,0.5] [0.35,0.45] [0.6,0.75] [0.2,0.4]

A2 [0.55,0.65] [0.5,0.5] [0.5,0.8] [0.5667,0.7]

A3 [0.25,0.4] [0.2,0.5] [0.5,0.5] [0.55,0.65]

A4 [0.6,0.8] [0.3,0.4333] [0.35,0.45] [0.5,0.5]

Table 6.10 The interval-valued fuzzy preference relation of the decision organization O3

A1 A2 A3 A4

A1 [0.5,0.5] [0.55,0.65] [0.6,0.7] [0.45,0.6]

A2 [0.35,0.45] [0.5,0.5] [0.4,0.6] [0.7,0.8]

A3 [0.3,0.4] [0.4,0.6] [0.5,0.5] [0.5333,0.6667]

A4 [0.4,0.55] [0.2,0.3] [0.3333,0.4667] [0.5,0.5]
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~hi ¼ WAð~hð1Þi ; ~hð2Þi ; ~hð3Þi Þ ¼
X3
k¼1

xi~h
ðkÞ
i ð6:76Þ

In order to be consistent with Example 6.11, the same weights for the
decision organizations are assigned as x1 ¼ 0:38; x2 ¼ 0:28; x3 ¼ 0:34.
Then, the calculated results are:

~h1 ¼ 0:484; 0:588½ �; ~h2 ¼ 0:4849; 0:599½ �;
~h3 ¼ 0:4091; 0:5129½ �; ~h4 ¼ 0:4058; 0:5163½ �

Step 4. Rank these interval numbers by Eq. (1.23), and get A2 � A1 � A4 � A3.
From the results of calculations, one can find that the ranking results
derived by these two approaches are different. The reason is that in the later
approach, the group members’ preference values are aggregated and such
an aggregation process actually amounts to perform a transformation of
IVHFE into interval-valued fuzzy numbers. As a result, it leads to the loss
of information, which affects the final ranking results. In other words, the
comparison shows the benefits of the proposed group decision making
approaches based on IVHFPRs.
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