
Fuzzy Sets and Systems 138 (2003) 221–254
www.elsevier.com/locate/fss

A complete fuzzy decision tree technique
Cristina Olaru∗, Louis Wehenkel

University of Liege, Department of Electrical Engineering and Computer Science, Monte�ore Institute, B28,
B-4000, Liege, Belgium

Received 5 February 2002; received in revised form 29 January 2003; accepted 18 February 2003

Abstract

In this paper, a new method of fuzzy decision trees called soft decision trees (SDT) is presented. This
method combines tree growing and pruning, to determine the structure of the soft decision tree, with re4tting
and back4tting, to improve its generalization capabilities. The method is explained and motivated and its
behavior is 4rst analyzed empirically on 3 large databases in terms of classi4cation error rate, model complexity
and CPU time. A comparative study on 11 standard UCI Repository databases then shows that the soft decision
trees produced by this method are signi4cantly more accurate than standard decision trees. Moreover, a global
model variance study shows a much lower variance for soft decision trees than for standard trees as a direct
cause of the improved accuracy.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Learning; Approximate reasoning; Fuzzy decision tree; Data mining; Soft split; Pruning; Global optimization;
Regression tree; Neural network

1. Introduction

In almost every real-life 4eld one is confronted with growing amounts of data coming from
measurements, simulations or simply, from manual data registration and centralization procedures,
and, most often, it would be a waste not to take advantage of these data. Recent developments in
data storage devices, database management systems, computer technologies and automatic learning
techniques make data analysis tasks easier and more e?cient. In this context, data mining is a
modern concept beginning to be widely used. The general purpose of data mining is to process
the information embedded in data so as to develop better ways to handle data and support future
decision-making. Machine learning, association rules, clustering methods, arti4cial neural networks,
statistical and visualization tools are common techniques used in data mining. The perfect data

∗ Corresponding author. Tel.: +32-4-3662718; fax: +32-43662984.
E-mail addresses: ana.olaru@ulg.ac.be (C. Olaru), l.wehenkel@ulg.ac.be (L. Wehenkel).

0165-0114/03/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0165-0114(03)00089-7

mailto:ana.olaru@ulg.ac.be
mailto:l.wehenkel@ulg.ac.be

222 C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254

mining technique would simultaneously: be able to manage large amounts of data, be accurate, be
interpretable and comprehensible, be e?cient when training and using it, be a problem-independent
tool that manages to automatically extract the most relevant features for a given problem and to 4x
its parameters and its model complexity with minimal human intervention.

In the spirit of solving our-days-needs of learning methods, this paper proposes a method called
soft decision trees (SDT), i.e. a variant of classical decision tree inductive learning using fuzzy
set theory. Decision tree techniques have already been shown to be interpretable, e?cient, problem-
independent and able to treat large scale applications. But they are also recognized as highly unstable
classi4ers with respect to minor perturbations in the training data, in other words, methods presenting
high variance. Fuzzy logic brings in an improvement in these aspects due to the elasticity of fuzzy
sets formalism. The proposed method has been studied in detail and compared with alternative crisp
methods and the results show a much improved prediction accuracy, explainable by a much reduced
model variance. Also, more stability at the parameters level (almost 50% less parameter variance
than for classical decision trees) leads to better interpretability.

The paper is organized as follows: Section 2 presents the proposed method. Section 3 reports
simulation results. Section 4 mentions possible extensions of the method and further work, discusses
three fundamental reasons for increased accuracy of soft decision trees and mentions related work.
Finally, Section 5 concludes this work by pointing out the speci4c contributions of the proposed
method. Appendix A collects mathematical and algorithmic details.

2. Proposed algorithm

2.1. Learning problem

We consider a supervised learning problem from examples, that may be generically formulated as:
given a set of examples (the learning set LS) of associated input=output pairs, derive a general rule
representing the underlying input=output relationship, which may be used to explain the observed
pairs and/or predict output values for any new input. We use the term attribute to denote the
parameters that describe the input information and the term object to denote an input=output pair.
In a given database, a column is usually associated with an attribute or with an output and a row
with an object.

Let U denote the universe of all possible objects for a given problem. A fuzzy set S ⊂ U of
objects is characterized by a membership function �S :U → [0; 1] which associates with each object
o of U a number �S(o) in the interval [0; 1] representing the degree of a?liation of the object o
to S.

2.2. Soft decision trees versus crisp regression trees

We present intuitively the formal representation of a soft decision tree by explaining 4rst the
regression tree (RT) type of induction. Regression trees and soft decision trees are extensions of
the decision tree induction technique, predicting a numerical output, rather than a discrete class.
Both trees may be used in regression problems given their output (numerical by de4nition), or in
classi4cation problems, by a priori de4ning symbolic classes on the numerical output. Fig. 1 shows

C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254 223

(a). RT

T1 :100

D1: 51 Y

0.05

T2: 49N

T3: 28 Y

T4: 18 Y

L1: 3
Y

0.00

D2: 15N

0.34

0.28

Pu < 1054

T5: 10
N

0.68

0.43

Pu < 1197

D5: 21N

0.87

0.62

Qu > -26

0.33

Pu < 1028

(b). SDT

T1 :100

T2: 64
<959

T3: 60
>-238

L1: 53
<1046

0.02

L2: 7
>1046

0.13

0.01

Pu (1046,0)

L3: 19
<-530

0.32

0.02

Qu (-384,292)

T4: 61
>1097

L4: 42
>214

0.44

L5: 32
<-266

1.00

0.66

Qu (-26,480)

0.33

Pu (1028,138)

α
α−β/2 α+β/2β

Fig. 1. Regression tree versus soft decision tree.

0.155 CCT 0.155 CCT

0.110

crisp class fuzzy class

1

0

1

0
insecure

securesecure

insecure

0.5

Fig. 2. Example of a crisp class and a fuzzy class for omib data.

a crisp regression tree (left part (a)) and a soft decision tree (right part (b)). Both were built
for an illustrative electric power system security problem (the so-called omib database described in
Section 3.1.1). The input space is here de4ned by two attributes characterizing the system state,
denoted respectively by “Pu” and “Qu” (active and reactive powers of the (single) synchronous
generator of this system). The output is in both cases numerical and reMects the security level of the
electric power system. We formulated it as a fuzzy class based on a parameter called critical clearing
time (CCT) of the system state (see Fig. 2). The trees predict the membership degree of instances
to this fuzzy class. In a crisp decision (see Fig. 2), the system could be considered “insecure” if the
CCT is smaller than 155ms, “secure” otherwise (classi4cation problem). In a soft decision, there is a
transition region of 110ms (as we de4ned it) in which the system is neither ”secure” nor “insecure”
(regression problem). Next, signi4cant diNerences between soft and crisp trees are pointed out on
the OMIB example.

224 C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254

attribute

Piecewise linear

1

0

0.5

α
β

Fig. 3. Example of discriminator function: piecewise linear.

2.2.1. Crisp regression tree
The regression tree in Fig. 1(a) has four test nodes and 4ve terminal nodes. Each node box is

stamped with the local estimation of the output. Under each test node, the selected test appears as
a condition on a single attribute at a time, regarding a single threshold and having two possible
answers: yes or no (left or right). The local input space is thus split into two (in our case of binary
trees) non-overlapping subregions of objects. The objects in one such subregion should ideally have
the same output value. The tree may be translated into an equivalent set of mutually exclusive rules,
each one corresponding to a path from the top node to a terminal node. To classify a new instance,
one starts at the top node and applies sequentially the dichotomous tests encountered to select the
appropriate successor. Finally, a unique path is followed, a unique terminal node is reached and the
output estimation stored there is assigned to this instance.

Example. In the case of an instance with attributes Pu= 1100MW and Qu= −40MVar, the terminal
node D5 is reached and the tree estimation of the membership degree to the stability class for this
case is 0.87, i.e. the system is insecure with the degree of 0.87. We may also express the result in
a crisp way (see crisp class of Fig. 2): since degree 0.87 corresponds to a CCT value smaller than
155ms, the conclusion is that the class estimated by the regression tree is “insecure”. By translating
the tree into a rule base, the rule extracted from the tree 4red by our instance looks like:

If Pu¿1028MW and Qu6− 26MVar, then degree 0.87.

2.2.2. Soft decision tree
The soft decision tree in Fig. 1(b) has also four test nodes and 4ve terminal nodes. Each node is

also marked with its local estimation of the output. Under each test node, the selected test appears as
a condition on a single attribute at a time, regarding a pair of two parameters (values in brackets).
These two parameters characterize the function called discriminator needed to fuzzily split the local
set of objects of a given current test node. A widely used shape of discriminator function is the
piecewise linear one (see Fig. 3). The two parameters de4ning it are: �, which is the location of
the cut-point and corresponds to the split threshold in a test node of a decision or a regression tree,
and � which is the width, the degree of spread that de4nes the transition region on the attribute
chosen in that node. With such a piecewise linear discriminator function, the local input space of a
node is split (fuzzy partitioned) into two overlapping subregions of objects. Some objects go only
to the left successor, some only to the right one, and the objects in the overlap region go to both
successors. The larger the transition region in a test node, the larger the overlap and the softer the
decision in that node. In consequence, any given instance is in general propagated through the tree by
multiple decision paths in parallel: in the simplest case through one path, in the most complex case,

C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254 225

BACKFITTING

REFITTING

GS U PS

GS U PS

GS PS

TS

GROWING PRUNING

TESTING

GS, PS, TS - mutually exclusive

Fig. 4. The procedure of building a soft decision tree.

through all the paths. This given instance does not eNectively belong to a node it passes through,
but has a membership degree attached to that node. Thus, the node may be seen as a fuzzy set.
Finally, the given instance reaches multiple terminal nodes and the output estimations given by all
these terminal nodes are aggregated through some defuzzi4cation scheme in order to obtain the 4nal
estimated membership degree to the target class.

Example. In the case of the instance with attributes Pu= 1100MW and Qu= − 40MVar, only
two paths are followed: T1-T4-L4 and T1-T4-L5. The membership degree of our instance to the
fuzzy set of test node T4 equals 1.0 as far as all the objects with Pu= 1100MW go only to right
(1100MW ¿ 1097MW) (see Fig. 1(b)). Since −40MVar is in between −266MVar and 214MVar,
the instance goes both to left and right successors of T4, thus reaching leaf L4 with membership
degree of 0.43 and leaf L5 with membership degree of 0.57. Finally, by aggregating the two paths,
the tree estimation of the membership degree to the stability class for the given instance is 1:0 ∗
0:43 ∗ labelL4 + 1:0 ∗ 0:57 ∗ labelL5 = 1:0 ∗ 0:43 ∗ 0:44 + 1:0 ∗ 0:57 ∗ 1:00 = 0:76 (compare this result
with the one obtained by the crisp tree). The result expressed in a crisp way says that the system is
“insecure”, since degree 0.76 corresponds to a CCT value smaller than 155 ms. The rules 4red by
our instance correspond to the two identi4ed paths:

If Pu¿959MW and Qu¿− 266MVar, then degree 0.44
If Pu¿959MW and Qu6214MVar, then degree 1.00.

2.3. Building a soft decision tree

Fig. 4 presents an overview of the complete procedure for building a soft decision tree. The
process starts by growing a “su?ciently large” tree using a set of objects called growing set GS.
Tree nodes are successively added in a top-down fashion, until stopping criteria are met. Then the
grown tree is pruned in a bottom-up fashion to remove its irrelevant parts. At this stage, a cross-
validation technique is used which makes use of an another set of objects, called the pruning set
PS. Next, a third step could be either a re�tting step or a back�tting step. Both consist of tuning
certain parameters of the pruned tree model in order to improve its approximation capabilities further.
These steps use the whole learning set: LS =GS ∪PS. At the end of every intermediate stage, the

226 C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254

Fig. 5. Fuzzy partitioning of a node in a soft decision tree.

obtained trees (fully developed, pruned, re4tted or back4tted) may be tested in order to quantify
their generalization capability. A third sample, independent from the learning set, called test set TS,
is used to evaluate the predictive accuracy of these trees.

Thus, a given dataset is split initially into two disjoint parts, the learning set LS and the test set
TS. The learning set is then used to create two other disjoint sets: the growing GS and the pruning
PS sets. Growing, pruning and test sets are (normally) composed of mutually independent samples,
as far as one can assume that this is the case for the original dataset. We now describe the basic
principles of each step of this method. Technical details are provided in Appendix A.

2.4. SDT growing

By analogy with the CART method of decision and regression tree building [9], the procedure for
growing a soft decision tree relies on three basic items: a method to select a (fuzzy) split at every
new node of the tree, a rule for determining when a node should be considered terminal, and a rule
for assigning a label to every identi4ed terminal node.

2.4.1. Soft tree semantics
A soft tree is an approximation structure to compute the degree of membership of objects to a

particular class (or concept), as a function of the attribute values of these objects. Let us denote by
C the output class, be it crisp (0=1) or fuzzy, by �C(o) the degree of membership of an object o
to this class, and by �̂C(o) this membership degree as estimated by a tree. We also assume that all
the attribute values are numerical and normalized in [0; 1].

Fig. 5 shows the split of a tree node corresponding to a fuzzy set S into two fuzzy subsets, SL
the left one and SR the right one, based on the chosen attribute a at the node S (�S , �SL and �SR
denote the membership functions of fuzzy sets S, SL and SR, respectively). In general, a discriminator
function �(a(o); �; �; � : : :)→ [0 : : : 1] is attached to the node. It determines the node’s fuzzy dichotomy
based on the attribute and on the values taken by several parameters (�; �; � : : :). In what follows we
restrict our discussion to piecewise linear discriminator templates (see Fig. 3); these are de4ned by a
threshold � and width parameter �. Then, the membership degree of an object to the left successor’s
subset SL is determined in the following way:

�SL(o) = �S(o)�(a(o); �; �): (1)

We say that an object goes (or belongs) to the left successor if �SL(o) is strictly positive. Since in
a piecewise linear discriminator function �(a(o); �; �) = 0 for all objects for which a(o) ¿ � + �=2,

C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254 227

only those objects of S such that a(o)6� + �=2 go towards the left successor SL. Similarly, the
objects directed toward the right successor SR are weighted by the complement of the discriminator
function value:

�SR(o) = �S(o)(1 − �(a(o); �; �)); (2)

and correspond to the condition a(o)¿�− �=2.
In a tree, all nodes, except the root node, are successors of their (single) parent node. The

membership degree of any object to the fuzzy subset 1 of any node S in the tree is thus de4ned
recursively as a function of attribute values, parameters de4ning the discriminator functions used at
the diNerent ancestors of this node, and its membership degree to the root node. As concerns the
root node (let us denote it by R) of the tree, the membership degree �R(o), may have a priori user
de4ned values. But usually �R(·) = 1:0, since in most databases all objects are equally weighted at
the beginning. Nevertheless, the possibility to give diNerent weights to objects may be of interest in
the context of certain data mining applications.

Let j denote a node of a tree, let Lj denote a numerical value (or label) attached to this node, and
let SLj be the fuzzy subset corresponding to this node. Then, the membership degree to C estimated
by a tree for a certain object o is the average of all the labels Lj attached to the leaves, weighted
by the membership degrees of the object to the fuzzy subsets of these leaves, �SLj (o):

�̂C(o) =

∑
j∈leaves �SLj (o)Lj∑
j∈leaves �SLj (o)

; (3)

where leaves denotes the set of indices of the terminal nodes of the considered tree. Notice that∑
j∈leaves �SLj (o) is equal to the degree of membership of the object to the root node �R(o), and is

normally equal to 1. In the rest of this paper we will make this assumption so as to simplify our
notations.

2.4.2. Automatic fuzzy partitioning of a node
Some fuzzy decision tree induction methods assume that the discriminator functions are a priori

de4ned. In our method, on the other hand, soft decision tree growing implies the automatic generation
of the best fuzzy split of the most discriminating attribute at each new developed node of the tree.
The procedure used to achieve this goal is further detailed below.

Objective: Given S, fuzzy set in a soft decision tree, 4nd attribute a(·), threshold � and width �
(parameters de4ning the discriminator function �) together with successors labels LL and LR, so as
to minimize the squared error function

ES =
∑
o∈S

�S(o)[�C(o) − �̂′C(o)]2 (4)

where

�̂′C(o) = �(a(o); �; �)LL + (1 − �(a(o); �; �))LR; (5)

1 In our notations we use the same symbol to denote a node and the (fuzzy) subset of objects which corresponds to
this node.

228 C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254

Fig. 6. E=E(�; �) surface for the fuzzy class of omib database.

depending non-linearly on � and �, and linearly on LL and LR. A motivation for using this kind
of error function is the fact that it does not present the pathological character of preferring a crisp
partitioning to the fuzzy ones, as other measures do [6,32,38,44] and as [6] proves is the case of
convex measures.

Strategy: The local search is decomposed as follows (Section A.1 of Appendix A gives mathe-
matical and algorithmic details):

• Searching for the attribute and split location. With a 4xed �= 0 (crisp split) we search among all
the attributes for the attribute a(·) yielding the smallest crisp ES , its optimal crisp split threshold �,
and its corresponding (provisional) successors labels LL and LR, by using crisp heuristics adapted
from CART regression trees.

• Fuzzi�cation and labeling. With the optimal attribute a(·) and threshold � kept frozen, both
already chosen in the foregoing step, we search for the optimal width � by Fibonacci search;
for every new � value, the two successors labels LL and LR are automatically updated to every
candidate value of � by explicit linear regression formulas.

Justi�cation: A systematic search in the space of the four free parameters was performed by
plotting the error function ES of Eq. (4) in the particular case of a SDT with a single test node,
with the aim of understanding the shape of the function we want to minimize so as to settle the best
way of searching for its minimum [34]. Fig. 6 presents the error surface in terms of two of the four
parameters (� and �). Concerning the other two parameters (labels in successors), we already know
that the error function depends linearly on them. The graphic scans values of �∈ (0:0; 1:0) and values
of �∈ [0:0;min(2�; 2(1− �))] with small enough step size and a piecewise linear discriminator. One
can notice from Fig. 6 that for any given �, the minimum value of ES is reached for the same �
value. That is, the value of � corresponding to the ES minimum for any � is generally close to the
value of � corresponding to the global minimum. The a?rmation is true also for �= 0. Thus it is
possible to decompose the search in the space of the four parameters. As result, all four parameters
are more e?ciently found than if a non-linear optimization technique were used for simultaneous
search of all the parameters.

C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254 229

2.4.3. Stop splitting
Splitting should be stopped as soon as it is almost certain that further development of a node

would be useless. Because the grown trees are pruned afterwards, these stopping conditions have
little inMuence on the accuracy of the tree, with the remark that too crude conditions would lead
to excessively small trees suNering from high bias. On the other hand, over-relaxed thresholds of
the stopping conditions could generate unnecessarily large trees that take unneeded time to build.
Nevertheless, this is the price we prefer to pay in order to obtain accurate trees after pruning. Hence,
we adopt less drastic conditions so as to obtain at this stage large enough trees. The conditions are:
(i) limitation of the cardinality of the local growing set de4ned as

∑
o∈S �S(o); (ii) limitation of the

node squared error computed as
∑

o∈S �S(o)[�C(o) − LS]2; where LS represents the label of fuzzy
node S; (iii) limitation of the squared error reduction provided by the best splitting of the node.

2.4.4. Multiple classes
The soft decision tree approach is suited for having a single output class C, the result for the

complementary class being deduced as �̂ SC(o) = 1− �̂C(o) (in the given example, “insecure” with the
degree 0.76 means “secure” with the degree 0.24). For problems with more than two classes, a forest
of SDTs is built, each tree being dedicated to the recognition of a single class against the union of all
the other classes [33]. Suppose each tree from the forest returns a value of the membership degree to
one single class Ci for a given object o, �̂Ci(o), and suppose also that the costs of misclassi4cation
are independent of the type of error, then the overall elected class for object o is the one with the
maximal degree �̂Ci(o) over the forest (majority vote): C∗ = arg maxCi �̂Ci(o).

In the more general case where misclassi4cation costs are not uniform, we could adapt this scheme
by interpreting these class-membership degrees as (estimates of) conditional probabilities to belong
to the diNerent classes and by choosing the class that minimizes the expected misclassi4cation cost
estimated for a given object.

2.5. SDT pruning

Pruning is a standard procedure within tree-based models. Its goal is to provide a good compromise
between a model’s simplicity and its predictive accuracy, by removing irrelevant parts of the model.
By pruning a tree, the new complexity of the model is automatically identi4ed without the need to a
priori establish thresholds for the stopping conditions which could be sensitive to problem speci4cs.
Pruning also enhances the interpretability of a tree, a simpler tree being easier to interpret. The
pruning algorithm which is an important part of our SDT method is further detailed below.

Objective: Given a complete SDT and a pruning sample of objects PS, 4nd

arg min
subtrees of SDT

MAEPS (6)

i.e. 4nd the subtree of the given SDT with the best mean absolute error (MAE) on the pruning set
among all subtrees that could be generated from the complete SDT.

A subtree of an SDT is a tree obtained from it by contracting one or several of its test nodes,
i.e. by replacing these nodes by a terminal node. The total number of diNerent subtrees of a given
tree grows exponentially with the tree complexity, which makes an exhaustive search to 4nd the
best subtree impossible in most practical applications. We therefore apply a classical strategy used in

230 C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254

tree pruning, which consists in considering as candidate subtrees only a sequence of nested subtrees.
Note that the number of candidate trees in such a nested sequence is necessarily bounded by the
number of test nodes of the complete tree, i.e. is linear in the tree complexity.

Strategy: The pruning procedure takes the following three steps:

• Test nodes sorting by increasing order of their relevance. The relevance of a test node S labeled
LS is assessed by the squared error estimate computed at the growing stage with ES =

∑
o∈S �S(o)

[�C(o)− LS]2. Each node preceded in this ordered list by one of its parents is removed from the
sequence, since a node is pruned together with the pruning of its parents. The list is invariably
closed by the root node.

• Subtrees sequence generation. The previous list gives the order in which the critical nodes are
contracted. There will be as many trees in the sequence as there are critical nodes in the list.
At each step, the 4rst node in the list is removed and contracted, and the resulting tree is stored
in the trees sequence. Finally, we obtain a sequence of trees in decreasing order of complexity.
During this process, we start with the complete tree which is 4rst tested on the PS to compute its
MAE. Subsequently, each time a new tree is inserted in the sequence, we use e?cient incremental
formulas to update its MAE. Thanks to these formulas, the computational complexity of the
pruning algorithm is essentially linear in the complexity of the initial tree (see Section A.2 of
Appendix A).

• Best subtree selection. We use the so-called “One-standard-error-rule” [9,57] to select a tree from
the pruning sequence. This rule consists of evaluating the predictive accuracy of each tree in
the sequence in some fashion (in our case, we use the PS to get an unbiased estimate of the
MAE, together with its standard error estimate), and then selecting among the trees not the one
of minimal MAE but rather the smallest tree in the sequence whose MAE is at most equal to
min{MAE}+ $MAE , where $MAE is the standard error of MAE estimated from the PS. Notice that,
if the PS size is very large this rule tends to select the tree of minimal MAE (since $MAE → 0
with pruning sample size). On the other hand, for small size of PS, this rule tends to slightly
over-prune the tree.

2.6. SDT tuning

Tree growing together with tree pruning may be seen as a structure identi4cation phase. A pa-
rameter identi4cation phase may also be provided in order to improve the generalization capabilities
of the 4nal tree. During structure identi4cation phase, tree parameters are determined locally on the
basis of the information available in the local growing samples. A global approach may better tune
them, aiming at a global minimum. We developed two optimization procedures respectively, called
re4tting and back4tting. Based on linear least squares, re4tting optimizes only terminal nodes pa-
rameters being very e?cient and accurate. Based on a Levenberg-Marquardt non-linear optimization
technique, back4tting optimizes all model free parameters, thus being more time consuming and in
principle more accurate.

2.6.1. Tree re�tting
Let us consider the vector [qj] =Lj of all the labels of the terminal nodes of the tree, j= 1 : : : K+1,

where K represents the number of tree test nodes (in a binary tree, the number of terminal nodes is

C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254 231

always the number of test nodes plus one). We also note [Ŷi] = �̂C(oi), [Yi] = �C(oi) and [Mij] = �SLj (oi)
with i= 1 : : : ‖RS‖, j= 1 : : : K+1, where RS represents the set of objects used for the re4tting stage.
Objective: Given SDT and a re4tting sample of objects RS, 4nd SDT parameters q∗ so as to

minimize the squared error function

‖Y − Ŷ‖2; (7)

where [Ŷ] = [M][q] in conformity with Eq. (3) and q denotes the labels in SDT terminal nodes.
Solution: This optimization problem may be solved by matrix inversion. The solution is

[q∗] = [[M]T[M]]−1[M]T[Y]: (8)

This is a way of tuning only the labels in terminal nodes. It is global but still suboptimal, because
not all the free parameters of the model are updated. It is fast, since the re4tting set RS is composed
of objects used for growing and pruning, for which membership degrees in test nodes have already
been computed, thus matrix [M] is already settled. Note that [M]T[M] is a (K+1)× (K+1) matrix.
All in all, the computation of the solution is in principle cubic with respect to the complexity of
the pruned tree and linear in the sample size. Nevertheless, in the case of small to moderate tree
complexities the dominating term corresponds to the computation of the [M]T[M] matrix, which is
only quadratic with respect to the tree complexity.

2.6.2. Tree back�tting
Objective: Given SDT (q) and a back4tting sample of objects BS, 4nd the set of parameters q∗

so as to minimize the squared error function

E(q) =
∑
o∈BS

[�C(o) − �̂C(o; q)]2; (9)

where q denotes all 3K + 1 free parameters of the SDT (q), namely: (i) the parameters de4ning the
soft transition region at every test node fuzzy partitioning, i.e. threshold �i and width �i, i= 1 : : : K ,
and; (ii) the labels in all the terminal nodes, i.e. Lj, j= 1 : : : K + 1.
Strategy: According to Eq. (3), the model �̂C is linear in its terminal nodes parameters (labels)

and nonlinear in its test nodes parameters (thresholds and widths). The model is continuous and
diNerentiable with respect to its free parameters almost everywhere in the case of piecewise linear
discriminators. We implemented Levenberg-Marquardt non-linear optimization technique, considered
the standard of non-linear least squares functions minimization [35]. It has the advantage of needing
only the computation of the output gradients with respect to parameters. They can be obtained
e?ciently using back-propagation. Mathematical details of the method are presented in Section A.3
of Appendix A together with the algorithm.

The output gradients with respect to parameters are given by formulas like

@�̂C(o)
@Lj

= �SLj (o); j = 1 : : : K + 1; (10)

@�̂C(o)
@�i

;
@�̂C(o)
@�i

= f
(
@�̂C(o)
@�i

)
; i = 1 : : : K: (11)

232 C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254

Fig. 7. Computation of partial derivatives.

The most delicate part of the optimization procedure is the computation of the partial derivatives
@�̂C(o)=@�i, i= 1 : : : K . Fig. 7 presents intuitively the two stages of the back-propagation algorithm
for one object o: forward and backward. At the forward stage, we start from the root node, and
for every test node Ti we compute discriminator �i(a(o)) based on current parameters q. We send
this information to the two successors, so as to compute �SiL (o) = �i(a(o))�Si(o) at left successor
TiL , and �SiR (o) = [1 − �i(a(o))]�Si(o) at right successor TiR , in conformity to the tree semantics. At
the backward stage, we start from the terminal nodes and we send backward the labels. Every non-
terminal node Ti thus receives @�̂C(o)=@�SiL from its left successor TiL (which equals label LL if this
successor is a terminal node) and @�̂C(o)=@�SiR from its right successor TiR (which equals label LR if
this successor is a terminal node). Ti node also disposes of �Si(o) and �i(a(o)) computed at forward
stage. Thus, we may calculate the partial derivative we searched for at node Ti

@�̂C(o)
@�i

= �Si(o)

[
@�̂C(o)
@�SiL

− @�̂C(o)
@�SiR

]
; and (12)

@�̂C(o)
@�Si

= �i(a(o))
@�̂C(o)
@�SiL

+ [1 − �i(a(o))]
@�̂C(o)
@�SiR

: (13)

Eq. (13) represents the quantity that node Ti sends at upper nodes for further computations. In this
way, partial derivatives are obtained in a time complexity of O(‖BS‖·K), thus linearly in the size of
the back4tting set and in the tree complexity. Note that the presented formulas are also applicable
to non-binary trees and are independent of the discriminator shape.

2.7. Variance and bias studies

If one adopts a regression algorithm and a squared-error type function, then the expected value
of the model error can be decomposed in three components [19,20,57]: the residual error term, i.e.
the lower bound on the expected error of the learning algorithm given the learning task, called also

C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254 233

the Bayes error, the squared bias term reMecting the persistent or systematic error that the learning
algorithm is expected to make on average when trained on sets of the same size, and the variance
term measuring the sensitivity of the learning algorithm to changes in the training data and capturing
random variation in the algorithm from one learning set to another of the same size. The 4rst term
is linked to the analyzed data, since it is the expected error of the best possible model (called Bayes
model) and cannot be inMuenced by a change in the learning algorithm. However, modifying the
learning algorithm in some way aNects the other two terms, bias and variance, generally in opposite
directions. Decision trees are recognized as learning algorithms with low bias and high variance.
Increasing tree complexity will decrease bias and increase variance. Reducing variance translates in
improved accuracy, provided that it is not obtained at the expense of a much higher bias.

Objective: From this point of view, the behavior of our SDT algorithm has been studied in detail.
The experiments included two diNerent variance studies: (i) a global variance study, in order to see
how the variance changes in the SDT case and to compare it to the crisp regression tree case; (ii)
threshold parameter variance and bias studies versus crisp trees, as a measure of the variability of
the threshold in a particular test node of the SDT.

De�nitions: In the following we use a probabilistic framework, in which U (the universe of all
possible objects) denotes the sample-space on which a probability measure is de4ned, and where the
attributes ai and output �C are considered as random variables (respectively, continuous and discrete).
Similarly, the output computed by a fuzzy tree is also a random variable de4ned on U , speci4ed as a
function of the attributes. Moreover, we consider that a LS used in order to construct a fuzzy tree is
a sample of independent and identically distributed objects drawn from this probability space. Let us
then denote by �̂C;LS(o) the output estimated by a SDT built from a random learning set LS of size
N at a point o∈U of the universe, leaving the fact that actually �̂C;LS(o) = �̂C;LS(a1(o); : : : ; an(o))
implicit. We notice that this output is “doubly” random, in the sense that it depends both on o and
on the random LS. Then the global variance of the SDT learning algorithm can be written as

VarSDT = EU{ELS{(�̂C;LS(o) − ELS{�̂C;LS(o)})2}} (14)

where the innermost expectations are taken over the set of all learning sets of size N and the
outermost expectations over the whole input space. This quantity reMects the variability of the model
induced by the randomness of the learning set used.

Denoting by �LS the threshold parameter at a given node of a SDT built from a random learning
set LS of size N , the parameter bias of the SDT represents the error the parameter is having in
average when SDT is trained on learning sets of the same size, whereas the parameter variance of
the SDT reMects the variability of the parameter induced by the randomness of the learning set used.
They can be written as

b� = ELS{�LS} − �asymptotic; Var� = ELS{(�LS − ELS{�LS})2} (15)

where �asymptotic is a reference value.
Experiments: In order to compute the expectations over LS, ELS , we should draw an in4nite

number of learning sets of the same size and build SDTs on them. We make the compromise of
randomly sampling without replacement the available learning set LS into a number of q learning
samples LSi of the same size, i= 1; : : : ; q. Notice that the size of the sub-samples LSi should be

234 C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254

Table 1
Datasets—Part I

Dataset # Attributes # Classes # Samples ‖LS‖ ‖TS‖ PeBayes

Omib 6 2 5000 4000 1000 0.0
Twonorm 20 2 3998 3000 998 2.3
Waveform 21 3 5000 4000 1000 13.2

signi4cantly smaller than the size of the LS from which they are drawn. For the expectation over
the input space EU we choose to sum up over the whole test set TS.

3. Empirical results

In order to consistently validate our method, we report here two complementary protocols of
results. Part I studies the behavior of the proposed SDT method on 3 large databases of several
thousand objects since in data mining analyses we are confronted with large amounts of data.
Model accuracies are estimated by averaging multiple holdout estimates. Global model variance
and parameter variance and bias studies are also done on these datasets. Part II applies SDT method
on 11 well known datasets from the UCI Repository and its performance is evaluated using multiple
10-fold cross-validations and statistical signi4cance tests. Here the goal is to compare SDT with
standard methods on standard datasets, since from the point of view of data mining these databases
present little interest, being very small, not bigger than hundreds of objects.

We compare the soft decision tree with three interpretable tree-structured-inductive methods: stan-
dard C4.5 [37] decision trees of Quinlan, standard CART [9] regression trees of Breiman and
Wehenkel’s method of decision trees published in [57,58], called in what follows ULG method.
The last two methods are implemented at University of Liege, Belgium and the 4rst one is C4.5
Release 8, taken from the http address: www.cse.unsw.edu.au/∼quinlan/. CART and ULG trees were
completely grown and then pruned. ULG method uses an optimally backward post-pruning in con-
formity with [55]. CART and SDT were trained for a regression goal. Afterwards, the results were
translated in a crisp classi4cation. ULG and C4.5 were trained directly on the crisp classi4cation
goal. For multiple-class datasets, forests of CART and SDT were built. The compared methods are
all run on the same machine and programming language (lisp), with identical growing, pruning
and test samples, excepting C4.5 which is written in C language and does not need a pruning set
PS, since its pruning is based on estimates of the error rate on unseen cases computed on GS
(see [37]).

3.1. Part I

3.1.1. Data sets
Table 1 describes the 4rst 3 datasets used. The last column gives the Bayes error rate, i.e

the minimal error one can hope to obtain given the learning task on every dataset. The attributes
in datasets are all numerical. The three datasets investigated and the associated classi�cation

C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254 235

tasks are:

(i) Omib [57] is an electric power system database simulated at University of LiVege, Belgium,
already described in Section 2.2. It does a security assessment task. The input space is de4ned
by 6 attributes representing pre-fault operating conditions of the OMIB system. The output
reMects the system security state after a short-circuit fault occurrence. The continuous output is
de4ned as the fuzzy class of Fig. 2.

(ii) Twonorm [8] is a database with two classes and 20 attributes. Each class is drawn from a
multivariate normal distribution with unit covariance matrix. The optimal separating surface is
an oblique plane, hard to approximate by the multidimensional rectangles used in a crisp tree.
We formulated the numerical output as a 0=1 function.

(iii) Waveform [9] is an arti4cial three-class problem based on three waveforms. Each class consists
of a random convex combination of two waveforms sampled at integer values with noise added.
21 numerical attributes are explaining the output. Each class is learned against the union of the
other two. The numerical output is de4ned for every subproblem as a 0=1 function. Then the
results are aggregated as shown in Section 2.4.4 and a 4nal symbolic class is pulled out.

3.1.2. Protocol
For the omib and twonorm data sets, the reported results (complexity, error rate, global variance,

parameter variance and bias) were obtained by averaging over a number of q= 20 trees built on
randomly chosen (GS; PS) pairs, where GS and PS are mutually exclusive sets of identical size
drawn from the complete LS (see Table 1). For waveform data, only results concerning single forest
building on a single (GS; PS) pair are reported. In order to study also the evolution of SDT with the
learning set size, experiments were conducted on diNerent GS sizes. Note that we considered equally
sized growing and pruning sets, i.e. ‖GS‖= ‖PS‖, thus ‖LS‖= 2‖GS‖, since there is a su?ciently
large number of instances for the three databases that allows to not limit us to sets ‖GS‖¿‖PS‖.

3.1.3. Comparing soft decision tree with other methods
Table 2 reports results for C4.5, ULG, CART, re4tted SDT(R) and back4tted SDT(B), in terms

of model complexity (the number of test nodes) after pruning and test set error rate. Certainly, SDTs
are the most accurate among the investigated inductive learning tools, be it in the form of re4tted or
back4tted version. The most complex are CART for omib, SDT for twonorm and C4.5 for waveform
and the less complex is ULG in all three cases. The SDT error gain is the most evident compared
with the other methods for twonorm data. For all three datasets, SDTs built for small growing sets
(of 250 objects for example) give more accurate results than C4.5, ULG or CART built for the
largest growing sets (of 1500 or respectively 2000 objects).

3.1.4. Accuracy
Table 3 shows the impact of the four stages of SDT building, i.e. growing (G), pruning (P),

re4tting (R), back4tting (B), on the method accuracy and on the model complexity. The 4rst part
of Table 3 displays test set error rates and the following observations can be made. Pruning does
not have a positive eNect on the accuracy for omib and twonorm datasets contrary to waveform
dataset. Re4tting always improves the accuracy. Back4tting has diNerent eNects on the SDT results,
depending on the database. In the case of omib and waveform databases there is small improvement

236 C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254

Table 2
Comparing complexity and classi4cation error rate

DB GS size Complexity Error rate (%)

C4.5 ULG CART SDT C4.5 ULG CART SDT (R) SDT (B)

50 3.8 1.4 3.4 20.2 19.5 21.6 19.2 12.2 11.6
250 12.4 7.7 22.2 52.1 11.2 11.9 11.0 4.9 4.7

Omib 500 20.1 12.2 45.9 52.5 10.1 10.5 9.2 4.6 4.2
1000 33.8 24.1 93.0 54.9 8.3 8.1 7.6 4.2 4.0
1500 46.0 37.5 164.0 60.2 7.4 7.9 7.1 4.3 3.9
2000 56.6 40.4 223.8 59.2 7.0 7.0 6.5 4.4 4.1

50 3.6 1.6 2.9 9.8 28.7 32.3 29.3 24.7 24.8
250 14.6 9.1 13.2 53.1 22.9 24.1 23.2 14.8 14.7

Two 500 28.1 17.5 26.1 71.5 20.4 22.4 20.7 10.3 10.5
Norm 750 39.4 33.7 38.2 81.7 19.0 19.9 19.9 8.3 7.6

1000 51.9 41.7 53.9 83.4 18.1 19.8 19.0 7.3 6.1
1500 74.5 56.4 77.9 88.7 17.4 19.5 18.5 6.4 4.1

50 9 2 2 2 48.0 36.0 29.5 25.6 28.2
250 22 10 4 25 26.4 28.4 26.3 21.0 21.9

Wave 500 43 13 12 24 33.4 28.8 23.9 19.9 19.2
form 1000 66 50 26 44 26.1 26.3 25.4 18.0 17.8

1500 113 21 35 38 25.9 26.3 21.6 17.5 16.8
2000 135 25 52 50 24.0 28.0 23.4 17.9 16.6

Table 3
SDT accuracy and complexity (before and after pruning)

DB GS size Error rate (%) Complexity

G P R B Before After

50 12.5 12.9 12.2 11.6 61.0 20.2
250 7.5 8.1 4.9 4.7 110.0 52.1

Omib 500 6.7 7.1 4.6 4.2 113.1 52.5
1000 6.0 6.7 4.2 4.0 121.7 54.9
1500 5.5 6.3 4.3 3.9 124.2 60.2
2000 5.5 6.3 4.4 4.1 126.2 59.2

50 23.6 25.6 24.7 24.8 41.9 9.8
250 16.1 17.1 14.8 14.7 159.0 53.1

Twonorm 500 13.2 13.6 10.3 10.5 229.4 71.5
750 11.2 11.2 8.3 7.6 256.7 81.7

1000 9.7 10.0 7.3 6.1 254.1 83.4
1500 8.9 9.1 6.4 4.1 245.3 88.7

50 30.7 25.5 25.6 28.2 58 2
250 23.2 22.4 21.0 21.9 104 25

Waveform 500 22.5 21.0 19.9 19.2 170 24
1000 19.6 19.6 18.0 17.8 192 44
1500 20.9 18.8 17.5 16.8 176 38
2000 19.7 18.5 17.9 16.6 201 50

C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254 237

Table 4
Comparing CPU times

DB GS CPU time cy
size CART ULG SDT(R) SDT(B)

50 1:4 s 0:8 s 9:0 s 10:0 s 18
250 2:5 s 1:7 s 25:0 s 2:2 m 32

Omib 500 6:2 s 2:5 s 40:0 s 5:9 m 50
1000 10:2 s 4:3 s 1:3 m 6:8 m 23
1500 16:3 s 6:3 s 2:0 m 6:6 m 28
2000 26:0 s 7:6 s 3:3 m 13:1 m 31

50 0:5 s 1:0 s 8:7 s 25:0 s 51
250 1:1 s 2:5 s 36:6 s 2:6 m 51

Twonorm 500 2:0 s 4:4 s 1:7 m 9:6 m 50
750 2:5 s 6:6 s 3:4 m 10:0 m 50

1000 5:4 s 11:6 s 4:2 m 14:6 m 50
1500 5:6 s 16:0 s 9:8 m 22:2 m 46

50 1:5 s 1:0 s 12:0 s 16:9 s 22
250 3:0 s 2:5 s 44:5 s 3:3 m 41

Waveform 500 10:0 s 5:3 s 2:0 m 3:1 m 18
1000 10:8 s 9:2 s 4:1 m 14:2 m 31
1500 15:4 s 14:0 s 6:4 m 12:6 m 22
2000 29:8 s 18:7 s 9:6 m 28:1 m 29

with respect to re4tted tree results. In the case of twonorm data, the global optimization clearly
contributes a lot to the accuracy improvement with respect to re4tting at large growing samples
(compare 4.1% with the 2.3% Bayes minimum). At smaller growing samples back4tting worsens
accuracy, due to an over4tting phenomenon. The evolution of performance with the growing sample
size is evident for the three sets of data. As expected, the larger the learning sample, the better
the performance. However, the improvement of the trees error rate saturates for large values of
growing sample sizes. Notice that even without any re4tting or back4tting optimization, SDT results
are signi4cantly more accurate than crisp trees results (compare columns G and P of Table 3 with
C4.5, ULG and CART columns of Table 2).

3.1.5. Model complexity
The second part of Table 3 displays SDT complexities before and after pruning. As a multi-class

problem, for the waveform data, the complexities displayed are the average over the forest built
in every case. One may observe the drastic reduction of tree complexity after pruning. Correlating
this with the results concerning accuracy, we conclude that the pruned trees are always preferable
to completely grown ones, since they oNer much reduced complexity and comparable predictive
accuracy. Of course, during the re4tting and back4tting tree stages the tree complexity remains
frozen, since the model structure is not adjusted anymore at this stage.

3.1.6. CPU times
Table 4 gives an idea about CPU times of CART, ULG, re4tted (R) and back4tted (B) SDT.

They are linked to a Unix Pentium III, 1:0GHz, 512MB machine and to Lisp programming language

238 C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254

Table 5
Example of CPU times when building a SDT for Omib, ‖GS‖= 2000

Growing Testing Pruning Testing Re4tting Back4tting Testing

94 s 5 s 32 s 2 s 48 s 10:1 m 2 s

Fig. 8. How accuracy and complexity diNer with cardinality threshold parameter for omib, ‖GS‖= 2000.

and represent a single typical run. For waveform data the time needed to get the whole forest is
indicated. The CPU time results reMect a big gap between SDTs and the other methods. This is the
price paid for having a more accurate and still interpretable tool in the same time. The number of
cycles of non-linear optimization needed to back4t the tree in every case (cy) is also reported. By
cycle we denote every passing through the forward step of the optimization procedure. For waveform
data, the average number of cycles over the whole forest is indicated. We observe that the back4tting
does not need many iterations to converge toward a satisfactory solution. Optimizing by re4tting
takes less time than back4tting optimization, but as Table 3 shows, the precision is generally better
for back4tting. This leads to the idea of a compromise one has to make between the accuracy and
the e?ciency for a given problem when using SDTs, since more optimal solutions are more costly
in terms of CPU times. This compromise is especially valuable when the data we analyze seem to
positively respond to the global optimization process, as in the case of the twonorm database, i.e.
when the possible gain in precision could cover the time loss. Table 5 provides an example of the
distribution of the CPU times for the diNerent tasks when building a soft decision tree, for omib
data and a growing set size of 2000 objects.

3.1.7. Choice of algorithm parameters
The results reported in this article are obtained for soft decision trees using piecewise linear

shape of discriminators. The parameters for the stopping conditions are: (i) the cardinality of a local
growing set in a terminal node is limited to 1% of the GS size; (ii) the node squared error is limited
to 10−4 in absolute value; (iii) the squared error reduction provided by the best next splitting of the
current node is limited to 10−2.

The 4rst threshold is the one with the greatest inMuence on the complexity of the grown tree.
In order to avoid troubles in choosing it, one should leave it relaxed as we did. Fig. 8 shows the

C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254 239

Table 6
Comparing global variance

DB GS size VarCART VarSDT (R) VarSDT (B)

50 0.043301 0.055054 0.024785
250 0.023058 0.005354 0.004777

Omib 500 0.017687 0.002559 0.002264
1000 0.013400 0.001253 0.001000
1500 0.011501 0.000971 0.000835
2000 0.009871 0.000825 0.000540

50 0.144617 0.093214 0.102976
250 0.132754 0.056538 0.057105

Twonorm 500 0.123566 0.035461 0.035188
750 0.120671 0.026806 0.024246

1000 0.116515 0.020694 0.018158
1500 0.113813 0.016644 0.010020

inMuence of this cardinality threshold parameter on accuracy and complexity, at 4xed GS, PS, TS sets,
with ‖GS‖= 1000 objects, for the grown (G), pruned (P), re4tted (R) and back4tted (B) versions
of the SDT and omib data. As we see, below value 10 of the cardinality threshold (corresponding
to 1%‖GS‖), there is no signi4cant accuracy improvement after back4tting or re4tting optimization,
whereas the model complexity starts suddenly increasing around that value.

The other two thresholds for stopping have little inMuence on the tree complexity or accuracy as
the empirical studies show. The number of evaluations in Fibonacci search was 5. The parameters
of the Levenberg-Marquardt algorithm were: 10−3 for the starting value of the algorithm factor /init,
10 for its step of adjustment /step, 10−5‖BS‖ for the threshold value of the error gain WEmin, 50 for
the maximum allowed number of cycles. Increasing the number of evaluations in Fibonacci search
or decreasing WEmin in Levenberg-Marquardt algorithm would produce slower algorithms with only
slightly improved results, whereas the opposite case could make the algorithms suboptimal.

3.1.8. Global variance
Table 6 displays global variance for SDT and CART regression trees, for omib and twonorm

datasets. Both re4tted (R) and back4tted (B) versions of SDT present signi4cantly much smaller
global variance than CART regression trees (almost one order of magnitude). Back4tted SDTs
present the smallest global variance, with some exceptions for twonorm dataset at small growing
sets, where an over4tting phenomenon has already been detected in Table 3. We may conclude that
the better accuracy oNered by a SDT comes from a reduced overall tree variance. Moreover, the
global variance reduces drastically with the growing set size, in strong contrast with the behavior of
CART.

3.1.9. Parameter variance and bias
Two diNerent runs of a tree learning algorithm on similar data may happen to choose diNerent

attributes in the root node, or diNerent cut points on the same attribute. Refs. [21,22,56] show that
classical discretization methods of decision trees actually lead to very high variance of the cut point
parameter, even for large training sample sizes, and also that, there is a large variability of the

240 C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254

Table 7
Trade-oN bias-variance for the cutting point parameter �. Omib data, attribute Pu

GS size $� (MW) b� (MW)

ULG CART SDT(R) SDT(B) ULG CART SDT(R) SDT(B)

50 89 74 74 72 57 21 21 19
250 64 36 36 40 38 15 15 20
500 40 22 22 33 25 24 24 9

1000 48 29 29 44 47 22 22 10
1500 29 15 15 27 47 27 27 11
2000 28 13 13 32 35 20 20 5

decision tree structure, visible principally through the variation of the chosen attribute in a particular
node. Our simulations on omib and twonorm data reveal that the same two behaviors are encountered
at back4tted SDT. Firstly, concerning the variability of the model structure, for twonorm dataset,
GS = 1000 and 20 attributes, from a total of 20 trees, 35% of the trees have chosen the attribute A18
in the root node, 25% of the trees have chosen attribute A3 and the rest of the trees, attributes A0,
A7, A8, A9, A13 and A19. In the same circumstances, 30% of crisp ULG decision trees have chosen
attribute A9 at root node, 25%—attribute A18, 15%—attribute A7 and the rest of trees—attributes
A0, A3, A4, A8, A19. On the other hand, omib database presents almost no variation at root node,
i.e. from a total of 20 trees built on a small growing set of size 50, both ULG and SDT have chosen
19 times the same Pu attribute out of the 6 attributes in the root node. Thus this structure variability
seems to depend strongly on the data we analyze and on the problem. Secondly, concerning the
variability of the chosen threshold in a particular node of the tree, Table 7 presents the variance
(standard deviation) of the cutting point � parameter in the root node $�, together with its bias b�, for
ULG, CART, re4tted (R), back4tted (B) SDT and omib database. Given the variability of the model
structure, the same statistics could not be done equally on twonorm database. The asymptotic value
for attribute Pu threshold in the root node has been determined by a ULG decision tree built on the
whole available dataset of 5000 objects: Puasymptotic = 1060:5MW . Note that the range of variation of
attribute Pu is 600MW and its standard deviation $Pu is 169MW .

Due to the adopted fuzzy partitioning approach, the chosen attribute in the root node of a non-
back4tted soft decision tree and its � value will always coincide with the ones chosen in the root node
of a CART regression tree. For this reason, the variance $� as well as the bias b� are identical for
CART and re4tted soft decision trees (see columns CART and SDT(R) of Table 7). Once back4tted,
a soft decision tree changes its thresholds in all the tree nodes, and thus also its parameter variance
and bias (see columns SDT(B) of Table 7). One may observe that a non-back4tted soft decision
tree, identically to a CART regression tree, presents less parameter variance (almost 50%) and
less parameter bias than a ULG decision tree. By back4tting, parameter variance increases whereas
parameter bias decreases. The explanation resides in the fact that by globally optimizing, the location
parameters are not any more restricted to fall in the range (0;1) and therefore they are more variable
with respect to the average. In fact, back4tting may be seen as a relaxation of the hypothesis space,
that generally lowers the parameter bias, i.e. the systematic error the model transmits to the location
parameter. Nevertheless, back4tted soft decision trees present generally less parameter variance than

C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254 241

Table 8
Datasets—Part II

Dataset # Attributes # Classes # Samples

Balance 4 3 625
Glass 9 6 214
Heart 13 2 270
Ionosphere 34 2 351
Iris 4 3 150
Monks-1 6 2 432
Monks-2 6 2 432
Monks-3 6 2 432
Pima 8 2 768
Sonar 60 2 208
Wine 13 3 178

Table 9
Classi4cation error rates and standard deviations for a 10 times 10-fold cross-validation

Database C4.5 ULG CART SDT (R) SDT (B)

Balance (−)21:74 ± 0:8 (−)22:29 ± 0:7 (−)21:01 ± 0:8 14:33 ± 0:5 17:10 ± 0:9
Glass (−)31:42 ± 2:0 31:22 ± 2:4 (−)32:27 ± 1:6 28:91 ± 1:5 29:09 ± 2:2
Heart (+)21:98 ± 2:1 (−)27:78 ± 2:0 (−)27:19 ± 2:0 25:81 ± 2:0 25:59 ± 1:9
Ionosphere 10:65 ± 1:3 9:96 ± 0:8 11:05 ± 0:9 10:56 ± 1:0 10:36 ± 1:1
Iris 4:94 ± 0:6 (−)6:13 ± 0:8 (−)6:47 ± 0:8 4:73 ± 0:9 5:00 ± 0:5
Monks-1 (−)25:01 ± 0:0 (−)5:75 ± 2:0 (−)11:65 ± 3:2 17:56 ± 4:3 1:95 ± 2:1
Monks-2 (−)10:56 ± 1:5 (−)3:01 ± 1:3 (−)3:15 ± 0:8 2:61 ± 1:4 1:53 ± 1:2
Monks-3 0:00 ± 0:0 0:00 ± 0:0 0:00 ± 0:0 0:00 ± 0:0 0:00 ± 0:0
Pima 25:68 ± 1:7 (−)30:22 ± 0:9 (−)29:89 ± 1:2 26:43 ± 1:3 25:57 ± 1:2
Sonar 26:45 ± 2:3 (+)25:27 ± 2:9 (−)29:19 ± 2:0 26:72 ± 1:9 27:44 ± 2:1
Wine (−)7:27 ± 1:1 (−)6:58 ± 1:1 (−)10:66 ± 1:4 3:52 ± 0:8 3:53 ± 0:7

ULG decision trees. Thus both non-back4tted and back4tted versions of soft decision trees are more
stable from the point of view of the chosen parameters in the test nodes than a crisp decision tree.
A smaller parameter variance makes the tree easier to interpret. Back4tting a soft decision tree could
inMuence negatively this interpretability.

3.2. Part II

3.2.1. Experiments
For the second part of experiments, designated to compare the predictive accuracy of soft decision

trees with respect to C4.5 and ULG decision trees and CART regression trees, we have chosen 11
datasets from the UCI Repository. They are summarized in Table 8. All of them were previously
used in other comparative studies. The attributes in datasets are all numerical with no missing val-
ues. Table 9 shows comparatively accuracy of C4.5 decision trees, ULG decision trees and CART
regression trees, and re4tting (R) and back4tting (B) versions of our SDT method. For each pair

242 C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254

Table 10
Results of paired t-tests (p= 0:05). x=y indicates method in row is signi4cantly better x times
and signi4cantly worse y times than method in column, from a total of 11 datasets

C4.5 ULG CART

SDT (R) 5=1 6=1 7=1
SDT (B) 5=1 7=1 9=0

algorithm—dataset, the mean error rate is reported, averaged over ten times 10-fold non-strati4ed
cross-validation runs and also standard deviations of the ten are shown. Comparisons between al-
gorithms have been performed across all the datasets using a paired two-sided t-test [17] with
signi4cance set at the 5% level. Relative to each algorithm, a +(−) sign means that the error rate
of this algorithm is signi4cantly better (worse) than the error rate of the back4tted (B) SDT, ac-
cording to this signi4cance test. Pruning has been done by all methods directly on the growing set
(PS =GS).

3.2.2. Discussion of results
Since databases are small this time, there is a risk of over4tting, which can be seen at certain

datasets (balance, glass, iris, sonar) where back4tting worsens accuracy with respect to re4tting. In
spite of this, both re4tting and back4tting SDTs oNer the best results overall. Table 10 displays results
of the statistical tests. x=y indicates method in row is signi4cantly better x times and signi4cantly
worse y times than method in column. These results show that classi4ers based on soft decision
trees generated by our method, be it re4tted or back4tted, are signi4cantly more accurate than C4.5
decision trees, ULG decision trees and CART regression trees. Also, between re4tting and back4tting
results there are some visible diNerences, but they are not signi4cant. Thus, we may conclude that
overall, for small datasets, back4tting may not be necessary, since with re4tting which is faster we
obtain already signi4cantly better results than C4.5, CART or ULG ones.

4. Discussions

4.1. Possible extensions

The fuzzy discriminator used at the fuzzy partitioning step has an a priori chosen shape. We
considered in our simulations the piecewise linear shape, but sigmoidal, Gaussian or triangular shapes
may equally be employed (see Fig. 9). Note that in the case of ordered attributes, monotonic
discriminator templates are preferred since they yield trees which are easier to interpret. Simulations
were conducted on sigmoidal discriminators and test results are comparable to those reported here.

We assumed through the presented algorithm that all the attribute values are numerical. A possible
extension of the method would be toward the handling of qualitative attributes. Supposing aq quali-
tative attribute with m diNerent values, aq :U →{s1; : : : ; sm}, the fuzzy partitioning approach searches
for a discriminator function � : {s1; : : : ; sm}→ [0 : : : 1]; � = [�1; : : : ; �m], that minimizes the same error
function as in the numerical attribute case, but instead of two parameters there are m parameters
to optimize: �1; : : : ; �m. A non-linear optimization technique or a clustering approach may be used

C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254 243

1

0

1

0

1

0
 attribute attribute attribute

Sigmoidal Gaussian Triangular

α
β

α
β

α
β

Fig. 9. Example of other discriminator functions.

in order to optimize the m parameters de4ning �, or they may be determined by simple estimated
conditional probabilities in the considered node, as �i =P(C|si) and 1 − �i = P(SC|si).

4.2. Further work

Given the obtained results, there are four directions in which the algorithm could be improved.
One is the pruning approach, given that after pruning, the model accuracy does not seem to improve
for omib and twonorm data. The relevance measure we use for pruning does not guaranty at all that
the obtained sequence of trees includes the best possible sub-trees of the complete tree. Other pruning
criteria for sorting test nodes could be: set as relevance measure the total error amelioration produced
by the node S; ES−ESL−ESR , or the global error on the subtree of node, ETS , where TS is the subtree
rooted at node S, or simply the local growing sample size of the node, knowing that estimates based
on small samples are potentially unreliable (thus we eliminate the node whose error estimate is
potentially the least reliable [46]). A second direction for further investigation is the optimal fuzzy
partitioning. As the parameter variance study shows, the soft decision trees have, at least in the
root node, the same behavior as regression trees concerning the variability of the threshold and the
variability of the chosen attribute in a node. Due to the decomposition of the parameters search at
the optimal splitting stage, the attribute in a node together with its threshold � are chosen based on
a crisp split as in the regression tree case. We could try to simultaneously 4nd all the parameters
de4ning the split by a non-linear optimization technique instead of decomposing the search. A third
investigation would concern the re4tting during pruning approach, which re4ts every tree from the
sequence of pruned trees, before choosing the best pruned one. So far, experiments reMect accuracy
improvement. In this respect, further work should be done in terms of computational complexity, so
as to reduce the amount of computations which then becomes quadratic in terms of model complexity
before pruning. The last direction for further work concerns CPU times: improvements can be done
on the implementation side so as to render the whole method more e?cient.

4.3. Three fundamental reasons for increased accuracy of soft decision trees with respect to crisp
decision trees

An explanation of why a soft decision tree would give a priori better results than a crisp tree
lies in the possibility of overlapping instances. In a crisp tree, the cut-point test performs badly
on examples with attribute values close to the cut point [11,19,20]. Two objects that are close to
each other in the space of the attributes may happen to be split on separate branches and therefore
situated “faraway” one of each other in the output space. On the contrary, within a soft decision

244 C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254

600
800

1000
1200

1400

 -1000

 -500

0

500

1000
 -0.2

0

0.2

0.4

0.6

0.8

1

1.2

Pu
Qu

600
800

1000
1200

1400

 -1000

 -500

0

500

1000
0

0.2

0.4

0.6

0.8

1

Pu
Qu

Fig. 10. Regression tree versus soft decision tree output.

tree, two examples close to each other in the space of the attributes are treated in a similar fashion.
In this way, soft decision trees decrease bias near the region boundaries and thus the tree errors. As
a correlated factor, the noise possibly present in the training data may aggravate this phenomenon,
leading to models sensitive to noise. By softening the split threshold, the noise inMuence becomes
less signi4cant for the generalization capabilities of the model.

Another aspect of recursive partitioning of crisp decision trees is the fast decrease of local growing
samples when going down into the tree. The local decisions may become too particular to the data,
thus leading to over4tting and to high variance [20]. In soft decision trees, the local growing sets
are allowed to keep more instances, even if the instances are not all strictly belonging to those
sets. Thus, local decisions are more stable in a node as they are established on richer information
and the variance linked to this aspect is less signi4cant. The larger the degree of fuzziness in a
node, the larger the local growing sets of its successors. See for example, how the soft tree in
Fig. 1(b) presents 61 instances in node T4, whereas the regression tree has only 49 instances in the
corresponding node T2.

An immediate eNect of this growth of local samples size is that a soft tree gives surprisingly good
results for very small learning sets, as the empirical studies show, highly out-running thus the crisp
trees. Another eNect of the increase of the local growing samples is the improvement of the stability
of the learner, as [49] states, i.e. the improvement of the ability of the algorithm to produce similar
results with respect to small variations in the training set. Decision tree algorithm is a very unstable
learning algorithm [18,20] and this may cause the users loss of con4dence in the tool as soon as
perturbations in data lead to diNerent trees and diNerent understandings of the analyzed problem,
even if the trees present high predictive accuracy. Empirical results of Section 3.1.8 showed that
soft decision trees present much less global variance than crisp regression trees. Hence, indeed, the
stability of the learner is improved.

The third reason for a better accuracy is linked to the continuity of the soft decision tree output.
Fig. 10 shows the discontinuous (staircase) character of a regression tree output (left part) versus
the smooth output surface of a soft decision tree (right part), both designed for the fuzzy de4ned
class of OMIB database. Soft partitioning together with the way the terminal nodes are aggregated
assure the continuity of the soft decision tree output. As a consequence, the tree may be seen as

C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254 245

a smooth parametric model and global optimization techniques may be applied in order to further
improve the predictive accuracy of the tree.

4.4. Related work

What we call a soft decision tree is in fact what people brought out in the early nineties under
the generic name of fuzzy decision tree inductive learning. The 4rst fuzzy decision tree reference is
attributed to Chang and Pavlidis [12], in 1977. Since then, there are more than thirty references on
this kind of algorithm.

To make a distinction, the introduction of the fuzzy framework in the decision tree technique
is based on two premises. Firstly, one wants to enable the use of decision trees to manage fuzzy
information in the form of fuzzy inputs, fuzzy classes, or fuzzy rules. Secondly, one realized that the
use of fuzzy logic in many learning techniques could improve their predictive accuracy. Fuzzy sets
are tools to enforce the predictive accuracy with respect to a classic decision tree, while preserving
the interpretability character.

Considering the literature about the construction of fuzzy decision trees, chronologically, the fol-
lowing principal directions have been addressed. First, there are crisp decision trees that soften the
threshold in a node and the 4nal decision, by means that do not use fuzzy sets, but rather prob-
abilistic frameworks [10,11,31,37], or neural implementations [41]. Then, the fuzzy logic starts to
show up as fuzzy decision rules obtained by fuzzi4ng the crisp rules extracted from a crisp decision
tree [13,23,39,45]. Later, fuzzy decision trees appear, either as methods that prefer starting with a
crisp tree and once the tree architecture has been obtained, searching for the degree of softness in
every node of the built tree [30,44], or as fuzzy decision trees that directly integrate fuzzy techniques
during the growing phase [1,4,5,7,15,24,27,28,29,33,38,42,47,48,50–54,59,60]. The induction process
sets the node fuzziness as a new node of the tree is being developed. The method presented in this
paper belongs to this last category.

In this context, we should also mention another two representative groups of methods that originate
in tree-structured inductive ones and are situated in the neighborhood of the fuzzy trees approaches:
the fuzzy neural networks or neuro-fuzzy approaches obtained by transforming a crisp decision tree
into a neural network which is then fuzzi4ed [16,25], and neural networks derived from crisp decision
trees [2,14,26,40,51], approaches useful at the optimization phase of a fuzzy decision tree.

Concerning fuzzy decision trees, many approaches start from the ID3 decision tree algorithm [36]
which is not anymore the state of the art. They inherit its weak points. The attributes may be only
of symbolic type, they require an a priori partitioning at the beginning or user de4ned fuzzy sets,
stopping criteria do not bother about 4tting the tree structure to data, etc.

Pruning is rarely provided and in most cases is not meant to cover large databases applications.
Ref. [27] provides a kind of pruning based on Akaike information criterion. Ref. [59] proposes a
rule simpli4cation technique applied on the rules obtained by transforming the tree in a rule base
and based on the truth level of a fuzzy rule. On the other hand, [3] provides pruning based on
grouping words (labels of a linguistic variable), words generated when partitioning the attribute.
In [52] one proposes a branch merging algorithm based on a fuzzy value clustering of branches,
and [42] performs pruning based on the minimum description length principle. Finally, [4] settles
a complete pruning procedure that works well on a large scale application, but at a cost of rather
high computational requirements.

246 C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254

Due to the non-continuity and non-diNerentiability of the model error function, many of the present
fuzzy decision tree methods cannot implement a global training or a global 4nal optimization after
identifying the model structure. However, there are global optimizations based on genetic algo-
rithms [43], similarity measures [53], or backpropagation of neural networks [15,27,44,47]. In this
last case the decision tree initially determines the structure of a neural net (important inputs, net-
work complexity) and then the free parameters are globally optimized within the neural network. The
back4tting step we implemented here comes from an idea presented but not implemented in [7]. For
the re4tting step also we inspired us from [7], there being presented as a sub-step of their global
optimization process. And in our knowledge, no other fuzzy decision tree approach implemented
such an optimization step.

5. Summary and conclusions

The aim of this paper was to give a global overview of a new soft decision tree methodology.
The presented method comes with the following speci4c contributions:

• It allows the handling of fuzzy classes and numerical valued attributes.
• It works for regression and for classi4cation problems.
• In accord with nowadays data mining practices, the algorithm is conceived to be properly used on

high dimensional real world problems, with multiple attributes and training samples, with respect
to time required, accuracy and interpretability (the software behind the implementation of soft
decision trees has a module for soft decision trees visualization).

• The best degree of fuzziness in every new node of the tree is automatically found as the node
comes up, by means of a local optimization procedure. This gives more accurate results than
the algorithms with a priori 4xed (ID3-based algorithms) or limited choice of the degree of
fuzziness.

• A backward pruning technique is implemented for the soft decision tree as a tradeoN between the
accuracy of the tree and its complexity. The model complexity is in this way adapted to the data.

• An algorithm for globally re4tting the labels at terminal nodes of the tree is presented as a way
of e?ciently increasing the generalization capabilities of the tree.

• A global optimization procedure is established in order to optimize not only the labels in ter-
minal nodes but also the two parameters characterizing every internal node splitting (threshold
and width), with the eNect of further increasing tree accuracy, but more time consuming. Ex-
periments show that in the speci4c case of “small” datasets, back4tting does not come with a
signi4cant improvement in accuracy with respect to re4tting and may even worsen the accuracy
due to over4tting. In the case of “large” datasets, back4tting may contribute signi4cantly to the
accuracy improvement with respect to re4tting. In all cases, re4tting, a simple and new way of
tree optimization, gives enough good accuracy with respect to standard crisp trees, demanding
much less CPU time than back4tting.

• From a computational point of view, the method is intrinsically slower than crisp tree induction.
This is the price paid for having a more accurate but still interpretable classi4er.

• A global variance study is conducted for the soft decision tree. We have no knowledge of previous
literature that estimates quantitatively variance on fuzzy decision trees. Simulations show that

C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254 247

in practice, the improved accuracy of a SDT with respect to a crisp CART regression tree is
explainable by a much lower prediction variance.

• The parameter variance study shows that a non-back4tted soft decision tree presents 50% less
parameter variance than a ULG decision tree and also that tree back4tting inMuences negatively
the tree parameter variance.

Finally, two aspects should be kept in mind about soft decision trees. Primarily, they inherit the
most attractive quality of crisp decision tree induction: the interpretability. Secondly, they can be
signi4cantly more accurate than standard decision and regression trees, as shown by the empirical
tests carried out in this paper.

Appendix A.

A.1. SDT growing

A.1.1. Searching for the split location � in a SDT, when �= 0
As long as the split in a soft decision tree node is considered temporarily crisp, (with �= 0), the

procedure of choosing the threshold � follows the same way of discretizing used in regression trees.
The same squared error reduction is used as score function, the only diNerence being the permanent
weighting by membership degrees.

Crisp splitting rule: Given S fuzzy set in a soft decision tree, the best crisp partition for S
maximizes over all the possible partitions of all attributes the normalized squared error reduction

max
[
1 − ESL

ES
− ESR

ES

]
;

where ES , ESL and ESR are the squared error functions at nodes S, SL and SR respectively.
When �= 0, the two sets of objects SL and SR of Fig. 5 are mutually exclusive, the piecewise

linear discriminator �(·) of Fig. 3 becomes crisp, and the error function ES of Eq. (4) can be written
based on Eq. (5)

ES =
∑
o∈SL

�S(o)[�C(o) − LL]2 +
∑
o∈SR

�S(o)[�C(o) − LR]2

=ESL + ESR:

To minimize the error ES translates thus in minimizing the two errors ESL and ESR .
Therefore,

@ESL
@LL

= 0 and
@ESR
@LR

= 0;

−2
∑
o∈SL

�S(o)[�C(o) − LL] = 0;

−2
∑
o∈SR

�S(o)[�C(o) − LR] = 0;

248 C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.058

0.06

0.062

0.064

0.066

0.068

0.07

0.072

0.074

beta

E
(M

W
)

Fig. 11. ES =ES(�) for the optimal value of � (�= 0:65). Omib database.

and 4nally, the two successors labels are estimated as

LL =

∑
o∈SL �S(o)�C(o)∑

o∈SL �S(o)
; LR =

∑
o∈SR �S(o)�C(o)∑

o∈SR �S(o)
; (A.1)

i.e. as weighted average values of the membership degrees to the output class. Introducing these
labels estimates in ESL and ESR , we get the incremental formulas for computing the errors:

EA =
∑
o∈A

�S(o)�2
C(o) − (

∑
o∈A �S(o)�C(o))2∑

o∈A �S(o)
;

where A stands for SL or SR. All the sums
∑

o∈SL and
∑

o∈SR that intervene in the preceding formulas
are updated once an object changes the part of the split. For example, when the location � changes,
there are some objects that are deleted from the left sum

∑
o∈SL and are added to the right sum∑

o∈SR . This avoid computing the two sums from scratch every time � changes.

A.1.2. Fibonacci search for � width
Fibonacci search is an optimal univariate optimization strategy that 4nds the minimum of a func-

tion on an interval only by functions evaluations at points placed according to a Fibonacci se-
quence, without making use of any function derivatives. The algorithm stops when an a priori
imposed number N of function evaluations is accomplished. It is worthy to notice that the Fi-
bonacci search minimizes the number of evaluations needed to 4nd the minimum of a function on
a given set of points. The only restriction the function to be minimized on interval [a; b] has to
encounter when using Fibonacci search, is to be unimodal, i.e. to strictly decrease between a and
the minimum, and to strictly increase between the minimum and b. This is the case in all the ef-
fectuated empirical studies: Fig. 11 presents the function to be minimized of Fig. 6 ES =ES(�)
in terms of � once the optimal � location has been settled, in this case �= 0:65, for OMIB
database.

C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254 249

A.1.3. Optimizing the successor labels at �xed � and �
In order to minimize the error function of Eq. (4), we settle

@ES
@LL

= 0 and
@ES
@LR

= 0:

In conformity with Eq. (5)

−2
∑
o∈S

�S(o)�(a(o)){�C(o) − [�(a(o))LL + (1 − �(a(o)))LR]} = 0;

−2
∑
o∈S

�S(o)(1 − �(a(o))){�C(o) − [�(a(o))LL + (1 − �(a(o)))LR]} = 0:

Solving this linear system in LL and LR, we get the formulas for updating labels at every new width
� as

LL =
c(o)d(o) − e(o)b(o)
b(o)2 − a(o)c(o)

LR =
a(o)e(o) − b(o)d(o)
b(o)2 − a(o)c(o)

where all the terms generically noted a(o); b(o); c(o); d(o) are sums computed in terms of �S(o),
�C(o) and �(a(o)):

a(o) =
∑
o∈S

�S(o)�(a(o))2 b(o) =
∑
o∈S

�S(o)�(a(o))(1 − �(a(o)))

c(o) =
∑
o∈S

�S(o)(1 − �(a(o)))2 d(o) = −
∑
o∈S

�S(o)�C(o)�(a(o))

e(o) = −
∑
o∈S

�S(o)�C(o)(1 − �(a(o))):

We could have settled the labels directly by formulas of type (A.1) without making an optimization
on them, but any a priori de4ned formula for the labels would introduce a bias on the 4nal result,
thus would conduct to sub-optimality. [7] already observed that using weighted average leads to
over-smoothing.

A.1.4. Computational complexity of tree growing
The complexity of SDT growing is upper bounded by O(‖a‖·K ·‖GS‖·log‖GS‖+const ·K ·‖GS‖),

where K is the complete tree complexity, ‖GS‖ is the number of growing instances and ‖a‖ the
number of candidate attributes. We say it is bounded due to the fact that in the worst case all
the GS objects are propagated through all the test nodes. The 4rst part of the expression refers to
the search of the location parameters in all the test nodes of the tree, the second part to the search
of the width parameter together with the successors labels for all the test nodes of the tree. The
constant const is proportional to the given maximum number of evaluations in Fibonacci search.
Note that for a crisp decision tree, the growing complexity is also O(‖a‖ · K · ‖GS‖ · log ‖GS‖).
However, the constant factors are much higher in the case of fuzzy trees than crisp ones.

250 C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254

A.2. SDT pruning

A.2.1. Subtrees error computation
At the beginning of the pruned trees generation procedure, some operations are done. The PS

objects are propagated forward through the complete tree and for every object o and every tree node
S the membership degree of the object to the node �S(o) is computed and the products membership
degree—node label �S(o)LS are stored. Also, the output estimation �̂C(o) for the complete tree is
assessed for every object by summing up these products linked to the terminal nodes as in Eq. (3).

Then every time a node NX from the sorted list of irrelevant nodes is pruned, the output of the
new tree for every object belonging to this node is recursively updated by removing from �̂C(o) the
terms corresponding to the disappeared old terminal nodes and by adding the term corresponding
with node NX which has become a new terminal node, i.e.

a. ∀Lj below node NX and ∀o ∈ SLj set �̂C(o) = �̂C(o) − �SLj (o)Lj
b. ∀o ∈ SNX set �̂C(o) = �̂C(o) + �SNX (o)LNX .

This arti4ce makes the second (and in practice most time consuming) step of the pruning algorithm
linear in the number of the test nodes, thus in the model complexity. The procedure stops when
there are no more nodes candidate for pruning in the sorted list.

A.2.2. Computational complexity of tree pruning
Since for test node sorting, the squared errors for all the test nodes are evaluated based on already

known membership degrees computed for the growing set, this step is upper bounded in complexity
by O(K · ‖PS‖ + const · K · logK), where K is the complete tree complexity and ‖PS‖ denotes the
pruning set size. The pruned tree sequence generation has also a bounded computational complexity
of O(K · ‖PS‖) due to the use of updating formulas. The tree selection is only proportional with the
number of pruned trees obtained in the sequence which is upper bounded by K .

A.3. SDT back�tting

A.3.1. Levenberg-Marquardt optimization
Suppose we are currently at point q0 in the parameters space and we move to point q0 +7q, where

7q represents the increment of parameter q at the current iteration. If this displacement 7q is small
we can expand the gradient of the error function in a Taylor series keeping only two terms:

∇qE(q)|q0+7q = ∇qE(q)|q0 + ∇2
qE(q)|q07q: (A.2)

∇qE(q)|q0+7q = 0 if q0 +7q is the point corresponding to the minimum of E function. Thus Eq. (A.2)
translates in

[A][7q] = [B]; (A.3)

where we noted

A =
1
2
∇2
qE(q)|q0 and B = −1

2
∇qE(q)|q0 :

C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254 251

On the other hand, as (A.2) may be a poor approximation, the Steepest Descent method proposes
to take a step down the gradient and to jump with the increment

[7q] = constant ∗ [B]: (A.4)

Combining Eqs. (A.3) and (A.4), Levenberg-Marquardt algorithm proposes a factor / that governs
the step size and alters only the diagonal elements of the matrix [A], i.e. for all p= 1 : : : 3K + 1

[App] = [App](1 + /): (A.5)

A.3.2. Deducing involved matrices
The two matrices [A] and [B] are deduced as

[Apl] =
∑
o∈BS

@�̂C(o)
@qp

@�̂C(o)
@ql

; p; l = 1 : : : 3K + 1; (A.6)

[Bp] =
∑
o∈BS

[�C(o) − �̂C(o)]
@�̂C(o)
@qp

; p = 1 : : : 3K + 1: (A.7)

They only need 4rst derivatives of the model in order to be computed (Eqs. (10) and (11)). In
the Levenberg-Marquardt method, the second derivative terms for matrix A are considered canceled
when summarizing over all the objects in BS.

A.3.3. Back�tting algorithm
Given the nonlinear dependencies, the minimization of the error function must proceed iteratively.

The starting values for the parameters are the values available in the tree nodes after the structure
identi4cation phase. They are improved at every new trial and the procedure ends when the error
function stops decreasing or almost, i.e. when the error gain WE=E(q) − E(q + 7q) is less than
a threshold WEmin. Also, if the algorithm did not converge in a certain number of cycles to the
imposed WEmin, the process stops, but never after a negative WE, because this shows that / has
not yet adjusted itself optimally. The all-in-all optimization algorithm that search for the set q∗ of
all the free parameters such that E(q∗) = min E(q) given the set BS of objects, the tree SDT (q)
corresponding to set q of parameters, the threshold value for the error gain WEmin, the starting value
for the algorithm factor /init and its step for adjustment /step is:

1 set /= /init

2 Forward: compute E(q) with Eq. (9)
3 Backward: compute 4rst derivatives @�̂C(o; q)=@qp with Eqs. (10) and (11) and
set matrices [A] and [B] with Eqs. (A.6) and (A.7)
4 alter matrix [A] with Eq. (A.5)
5 solve linear system [A][7q] = [B] by Gauss elimination
6 Forward: compute E(q+ 7q) with Eq. (9)
7 compute gain WE(q) =E(q) − E(q+ 7q)
8 if 0:06WE(q)6WEmin then q∗ = q+ 7q; go to 11 (end)
9 if WE(q)¡0:0 then /= / ∗ /step; go to 4 (alter)
10 if WE(q)¿WEmin then /= /=/step; q= q+ 7q; go to 3 (backward)
11 Update all others SDT parameters (tests in nodes, : : :)

252 C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254

References

[1] B. Apolloni, G. Zamponi, A.M. Zanaboni, Learning fuzzy decision trees, Neural Networks 11 (1998) 885–895.
[2] R. Araya, P. Gigon, Segmentation trees: a new help building expert systems and neural networks, Proceedings of

Stats, 1992, pp. 119–124.
[3] J.F. Baldwin, J. Lawry, T.P. Martin, Mass assignment based induction of decision trees on words, in: Proceedings of

the Information Processing and Management of Uncertainty in Knowledge-Based Systems, Vol. 1, July 6–10, Paris,
1998, pp. 524–531.

[4] X. Boyen, Design of fuzzy logic-based decision trees applied to power system transient stability assessment, Master’s
Thesis, University of LiVege, 1995.

[5] X. Boyen, L. Wehenkel, Fuzzy decision tree induction for power system security assessment, Proceedings of
SIPOWER’95, IFAC Symposium on Control of Power Plants and Power Systems, Cancun, Mexico, December
1995, pp. 151–156.

[6] X. Boyen, L. Wehenkel, On the Unfairness of Convex Discriminator Quality Measures for Fuzzy Partitioning in
Machine Learning, Technical Report, University of Liege, 1995.

[7] X. Boyen, L. Wehenkel, Automatic induction of fuzzy decision trees and its applications to power system security
assessment, Fuzzy Sets and Systems 1 (102) (1999) 3–19.

[8] L. Breiman, Arcing classi4ers, Ann. Statist. 26 (3) (1998) 801–849.
[9] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classi4cation and Regression Trees, Chapman & Hall,

New-York, 1984.
[10] W. Buntine, Learning classi4cation trees, Statist. Comput. 2 (1992) 63–73.
[11] C. Carter, J. Catlett, Assessing Credit Card Applications Using Machine Learning, IEEE Expert, Fall 1987,

pp. 71–79.
[12] R.L.P. Chang, Th. Pavlidis, Fuzzy decision tree algorithms, IEEE Trans. Systems Man, Cybern. SMC-7 (1) (1977)

28–35.
[13] Z. Chi, H. Yan, ID3-Derived fuzzy rules and optimized defuzzi4cation for handwritten numeral recognition, IEEE

Trans. Fuzzy Systems 4 (1) (1996) 24–31.
[14] K.J. Cios, N. Liu, A machine learning method for generation of a neural network architecture: a continuous ID3

algorithm, IEEE Trans. Neural Networks 3 (2) (1992) 280–291.
[15] K.J. Cios, L.M. Sztandera, Continuous ID3 algorithm with fuzzy entropy measures, Proceedings of The First IEEE

Conference on Fuzzy Systems, San Diego, 1992, pp. 469–476.
[16] K.J. Cios, L.M. Sztandera, Ontogenic neuro-fuzzy algorithm: F-CID3, Neurocomputing 14 (1997) 383–402.
[17] T.G. Dietterich, Approximate statistical tests for comparing supervised classi4cation learning algorithms, Neural

Comput. 10 (7) (1998) 1895–1924.
[18] T.G. Dietterich, Ensemble methods in machine learning, in: J. Kittler, F. Roli (Eds.), First International Workshop

on Multiple Classi4er Systems, Cagliari, Italy, Lecture Notes in Computer Science, Vol. 1857, Springer, Berlin,
2000, pp. 1–15.

[19] T.G. Dietterich, E.B. Kong, Machine Learning Bias, Statistical Bias, and Statistical Variance of Decision Tree
Algorithms, Technical Report, Department of Computer Science, Oregon State University, 1995.

[20] J.H. Friedman, Local Learning Based On Recursive Covering, Technical Report, Dept. of Statistics, Standford
University, August 1996.

[21] P. Geurts, C. Olaru, L. Wehenkel, Improving the bias/variance tradeoN of decision trees: towards soft tree induction,
Eng. Intelligent Syst. 9 (4) (2001) 195–204.

[22] P. Geurts, L. Wehenkel, Investigation and reduction of discretization variance in decision tree induction, Proceedings
of 11th European Conference on Machine Learning, ECML 2000, Barcelona, Spain, May/June 2000, pp. 162–170.

[23] L.O. Hall, P. Lande, Generating fuzzy rules from decision trees, Proceedings of International Fuzzy Systems
Association of World Congress, Vol. 2, Prague, 1997, pp. 418–423.

[24] I. Hayashi, J. Ozawa, L.C. Jain, Generation of Fuzzy Decision Trees by Fuzzy ID3 with Adjusting Mechanism of
AND/OR Operators, IEEE 1998.

[25] A.P. Heinz, Learning and generalization in adaptive fuzzy logic networks, in: H.-J. Zimmermann (Ed.), EUFIT’94,
Proceedings of the Second European Congress on Intelligent Techniques and Soft Computing, Aachen, Germany,
20–23 September 1994, pp. 1347–1351.

C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254 253

[26] A.P. Heinz, Pipelined neural tree learning by error forward-propagation, ICNN’95, Proceedings of the IEEE
International Conference on Neural Networks, Vol. I, Perth, Western Australia, 27 November–1 December, 1995,
pp. 394–397.

[27] H. Ichihashi, T. Shirai, K. Nagasaka, T. Miyoshi, Neuro-fuzzy ID3: a method of inducing fuzzy decision trees
with linear programming for maximizing entropy and an algebraic method for incremental learning, Fuzzy Sets and
Systems 81 (1996) 157–167.

[28] A. Ittner, J. Zeidler, R. Rossius, W. Dilger, M. Schlosser, Feature space partitioning by non-linear and fuzzy decision
trees, Proceedings of International Fuzzy Systems Association World Congress, Vol. 2, Prague, 1997, pp. 394–398.

[29] C.Z. Janikow, Fuzzy decision trees: issues and methods, IEEE Trans. Systems Man, Cybernetics—Part B: Cybernetics
28 (1) (1998) 1–14.

[30] B. Jeng, Y.-M. Jeng, T.-P. Liang, FILM: a fuzzy inductive learning method for automated knowledge acquisition,
Decision Support Systems 21 (1997) 61–73.

[31] M.I. Jordan, A statistical approach to decision tree modeling, in: M. Warmuth (Ed.), Proceedings of the Seventh
Annual ACM Conference on Computational Learning Theory, ACM Press, New York, 1994.

[32] C. Marsala, Apprentissage inductif en pr]esence de donn]ees impr]ecises: construction et utilisation d’arbres de d]ecision
Mous, ThVese de doctorat, Universit]e Paris 6, 1998.

[33] C. Marsala, B. Bouchon-Meunier, Forests of fuzzy decision trees, Proceedings of the International Fuzzy Systems
Association World Congress, Vol. 2, Prague, 1997, pp. 369–374.

[34] C. Olaru, Fuzzy Decision Tree Induction using Square Error Type of Criterion, Internal Report, University of Liege,
Department of Electrical and Computer Engineering, Belgium, October 1998.

[35] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C. The Art of Scienti4c
Computing, 2nd Edition, Cambridge University Press, Cambridge, 1994.

[36] J.R. Quinlan, Induction of decision trees, Machine Learn. 1 (1986) 81–106.
[37] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, Inc., San-Mateo, 1993.
[38] M. Ramdani, SystVeme d’induction formelle Va base de connaissances impr]ecises, ThVese de doctorat, Universit]e Paris

VI, Paris, France, February 1994.
[39] J.-S. Roger Jang, Structure determination in fuzzy modeling: a fuzzy CART approach, Proceedings of the Third

IEEE International Conference on Fuzzy Systems, Vol. 1, June 26–29, Orlando, Florida, 1994, pp. 480–485.
[40] I.K. Sethi, Entropy nets: from decision trees to neural networks, Proc. IEEE 78 (10) (1990) 1605–1613.
[41] I.K. Sethi, Neural implementation of tree classi4ers, IEEE Trans. Systems Man Cybernetics 25 (8) (1995)

1243–1249.
[42] G.H. Shah Hamzei, D.J. Mulvaney, On-line learning of fuzzy decision trees for global path planning, Eng. Appl.

Arti4cial Intelligence 12 (1999) 93–109.
[43] T. Shibata, T. Abe, K. Tanie, M. Nose, Motion planning of a redundant manipulator based on criteria of skilled

operators using fuzzy-ID3 and GMDH, Proceedings of Sixth IFSA World Congress, Vol. 1, Sao Paulo, Brazil, July
21–28, 1995, pp. 613–616.

[44] A. Suarez, F. Lutsko, Globally optimal fuzzy decision trees for classi4cation and regression, IEEE Trans. Pattern
Anal. Machine Intelligence 21 (12) (1999) 1297–1311.

[45] T. Tani, M. Sakoda, K. Tanaka, Fuzzy modeling by ID3 algorithm and its application to prediction of heater outlet
temperature, Proceedings of the First IEEE Conference on Fuzzy Systems, San Diego, 1992, pp. 923–930.

[46] L. Torgo, Inductive Learning of Tree-based Regression Models, Ph.D. Thesis, Department of Computer Science,
Faculty of Sciences, University of Porto, September 1999.

[47] E.C.C. Tsang, X.Z. Wang, Y.S. Yeung, Improving learning accuracy of fuzzy decision trees by hybrid neural
networks, IEEE Trans. Fuzzy Systems 8 (5) (2000) 601–614.

[48] T. Tsuchiya, T. Maeda, Y. Matsubara, M. Nagamachi, A fuzzy rule induction method using genetic algorithm,
Internat. J. Industrial Ergonomics 18 (1996) 135–145.

[49] P. Turney, Technical note: bias and quanti4cation of stability, Machine Learn. 20 (1995) 23–33.
[50] M. Umano, H. Okamoto, I. Hatono, H. Tamura, Fuzzy Decision Trees by fuzzy ID3 algorithm and its application

to diagnosis systems, Proceedings of The Third IEEE Conference on Fuzzy Systems, Vol. 3, June 26–29, Orlando,
FL, 1994, pp. 2113–2118.

[51] P.E. UtgoN, Perceptron trees: a case study in hybrid concept representations, Connect. Sci. 1 (4) (1989) 377–391.

254 C. Olaru, L. Wehenkel / Fuzzy Sets and Systems 138 (2003) 221–254

[52] X.Z. Wang, B. Chen, G. Qian, F. Ye, On the optimization of fuzzy decision trees, Fuzzy Sets and Systems 112 (1)
(2000) 117–125.

[53] Q.R. Wang, C.Y. Suen, Large tree classi4er with heuristic search and global training, IEEE Trans. Pattern Anal.
Machine Intelligence PAMI-9 (1) (1987) 91–102.

[54] R. Weber, Fuzzy ID3: a class of methods for automatic knowledge acquisition, Proceedings of the 2nd International
Conference on Fuzzy Logic and Neural Networks, Iizuka, Japan, July 17–22, 1992, pp. 265–268.

[55] L. Wehenkel, An information quality based decision tree pruning method, Proceedings of the IPMU’92 Conference,
Palma de Mallorca, Spain, July 6–10, 1992.

[56] L. Wehenkel, Discretization of continuous attributes for supervised learning. Variance evaluation and variance
reduction, Proceedings of the Seventh IFSA World Congress (invited paper), Vol. 2, Prague, June 25–29, 1997, pp.
381–388.

[57] L. Wehenkel, Automatic Learning Techniques in Power Systems, Kluwer Academic, Boston, 1998.
[58] L. Wehenkel, M. Pavella, Decision tree approach to power system security assessment, Electrical Power Energy

Systems 15 (1) (1993) 13–36.
[59] Y. Yuan, M.J. Shaw, Induction of fuzzy decision trees, Fuzzy Sets and Systems 69 (1995) 125–139.
[60] J. Zeidler, M. Schlosser, Continuous-valued attributes in fuzzy decision trees, Proceedings of Information Processing

and Management of Uncertainty in Knowledge-Based Systems, Granada, 1996, pp. 395–400.

	A complete fuzzy decision tree technique
	Introduction
	Proposed algorithm
	Learning problem
	Soft decision trees versus crisp regression trees
	Crisp regression tree
	Soft decision tree

	Building a soft decision tree
	SDT growing
	Soft tree semantics
	Automatic fuzzy partitioning of a node
	Stop splitting
	Multiple classes

	SDT pruning
	SDT tuning
	Tree refitting
	Tree backfitting

	Variance and bias studies

	Empirical results
	Part I
	Data sets
	Protocol
	Comparing soft decision tree with other methods
	Accuracy
	Model complexity
	CPU times
	Choice of algorithm parameters
	Global variance
	Parameter variance and bias

	Part II
	Experiments
	Discussion of results

	Discussions
	Possible extensions
	Further work
	Three fundamental reasons for increased accuracy of soft decision trees with respect to crisp decision trees
	Related work

	Summary and conclusions
	Appendix A.
	SDT growing
	Searching for the split location alpha in a SDT, when beta=0
	Fibonacci search for beta width
	Optimizing the successor labels at fixed alpha and beta
	Computational complexity of tree growing

	SDT pruning
	Subtrees error computation
	Computational complexity of tree pruning

	SDT backfitting
	Levenberg-Marquardt optimization
	Deducing involved matrices
	Backfitting algorithm

	References

