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Preface

This book provides a comprehensive description of a method of construct-
ing a statistical model when only incomplete data are available, and then
proposes specific estimation algorithms for solving various individual
incomplete data problems.

In spite of the demand for utilizing data increasingly obtained from
recently compiled socioeconomic databases, the development of statistical
theories is slow in coming when the available data are, for the most part,
incomplete by nature. It is true that independent study results based on an
awareness of individual problems have been reported; however, this is the
first complete work discussing the problems in individual fields from a
broader and unified perspective. In addition to addressing these very is-
sues, the book offers a summary of prior findings and software resources.

The first chapter presents a general discussion of the problems of
incomplete data along with the modeling of generation mechanisms, and
provides conditions and examples of estimation based on obtained data
ignoring valid generationmechanisms, and situations where the generation
mechanisms cannot be ignored. Chapter 2 presents the realistic problems
of the processing of missing values commonly seen in multidimensional
data and the various methods to cope with them, including comparison of
efficiencies in these methods. In this chapter, the maximum likelihood
method is presented as one method and the EM algorithm for this purpose
is introduced. Chapter 3 provides a general theory on the EM algorithm,
the characteristics of each type, and examples of specific algorithm de-
rivations according to respective statistical models. Extending the discus-

iii



sion of the problems of incomplete data, in Chapters 4 and 5 the appli-
cation and utilization methods with the EM algorithm for the estimation
issues of robust models or latent variable models are comprehensively
described.

Chapter 6 presents descriptions and specific application examples of
the recent improvement in the EM algorithm, including the PIEM algo-
rithm. In Chapter 7, the acceleration methods of the EM algorithm are
provided through an explanation of the convergence speed of the EM
algorithm, centering on the comparison of quasi-Newton methods. In
Chapter 8, the interpretation of the EM algorithm from the standpoint of
information geometry and its broad application to neural network models
are explained in detail. Chapter 9 discusses the relationship of the EM
algorithm with the Markov Chain Monte Carlo method, which has been
receiving attention since 1990 as a standard method for the Bayes esti-
mation, wherein the data augmentation algorithm and the Gibbs sampling
algorithm are described in consistent form.

Additionally, the appendixes provide a description of SOLASk
software, which is used for the processing of the EM algorithm with in-
complete data, and the S EM software used for general analysis of the latent
structure models of categorical data with the EM algorithm.

This book will be useful for postgraduate students, statistical re-
searchers, and practitioners.

Michiko Watanabe
Kazunori Yamaguchi

Prefaceiv
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1
Incomplete Data and the
Generation Mechanisms

Michiko Watanabe
Toyo University, Tokyo, Japan

1 INCOMPLETE DATA PROBLEMS

In many cases of actual data analysis in various fields of applications, the
data subject to the analysis are not acquired as initially planned. Data that
have not been obtained in complete form as intended are called incomplete
data. The incompleteness of data may take various forms. For example,
part of the information may be observed, as in cases where the actual
observation being sought may not be completely observed but is known to
be greater than a certain value. On the contrary, no information may be
obtained at all. A typical example of the former is censoring in survival
time data, whereas the latter is treated as missing data.

The enhancements in software tools for statistical analysis for
personal computers in recent years have led to an environment in which
anyone can apply methods of statistical analysis to the process of data
processing relatively easily. However, many statistical software still require
that there are no missing values in the data subject to analysis, i.e., the
completeness of data is a prerequisite for application. Even those that have
missing value processing as an optional function are limited to processing
at simple levels, such as excluding all incomplete observations, or sub-
stituting a missing value with the mean value. Additionally, the prepared-
ness of statistical software for data incompleteness depends on the method

1



of analysis applied, as exemplified for survival analysis; many statistical
software packages are capable of analyzing censored data as well.

However, as stated before, the occurrence of missing data is an inev-
itable problem when collecting data in practice. In particular, as the
number of items subject to survey or experiments increases, the number
of so-called complete observations (cases in which the data is recorded with
respect to all items) decreases. If you exclude all incomplete observations
and then simply conduct statistical analysis only with respect to complete
observations, the estimates obtained as a result will become less efficient
and unexpected biases will arise, severely undermining the reliability of the
analysis results. In other words, it is generally vital to exercisemore caution
with respect to incomplete data, in light of the reliability of analysis results.
This chapter reviews the mechanism by which missing values generate,
which should be considered first in regard to the ‘‘missing’’ problem, which
is the most common among all incomplete data.

How should missing values be processed, and how should the results
be interpreted? When dealing with these questions, it is important to
understand why the values are missing in the first place. Of course, there
are cases in which there is no information as to why the values are missing.
In such cases, it is necessary to employ a method of analysis that is suitable
for cases that lack such information. If the mechanism by which missing
values arise is known, the top priority is to determine whether the mecha-
nism needs to be taken into account or whether it could be ignored when
conducting an analysis.

Consider an ordinary random sample survey as a simple case in
which the mechanism by which missing values generate can be ignored
when conducting an analysis. In this case, the variables to be considered are
those subject to the survey items and a variable defining the sampling
frame. Assuming that the data on these variables in the population are
complete data, the sample data can be regarded as incomplete data in
which all survey variables relating to the subjects of the survey that have
not been included in the sample are missing. The only variable that is
observed completely is the variable that defines the sampling frame.

If sampling is done randomly, there is no need to incorporate those
that have not been observed into the analysis, and it is permissible to
conduct an analysis targeting the sample data only. In other words, the
mechanism by which the missing values arise (= the sampling mechanism)
can be referred to as an ‘‘ignorable’’mechanism upon analysis, because the
missing values arise without any relation to the value of the variables that
might have been observed.

Watanabe2



On the other hand, if you are observing the time taken for a certain
phenomenon (e.g., death, failure, or job transfer) to occur, youmight know
that the phenomenon has not occurred up until a certain point of time, but
not the precise time atwhich it occurred; such data are called censored data.
As the censored data are left with some information, that the phenomenon
occurred after a certain period, it is risky to completely ignore them in the
analysis as it might lead to biased results. In short, themechanism bywhich
missing values arise that derives censored data is a ‘‘nonignorable’’
mechanism.

For another example of a nonignorable mechanism, in a clinical
study on clinical effects conducted over a certain period targeting outpa-
tients, the data on patients who stopped seeing a doctor before the end of
the period cannot simply be excluded as missing data. This is because the
fact that the patient stopped seeing a doctor might contain important
information relating to the effect of the treatment, e.g., the patient might
have stopped seeing the doctor voluntarily because the patient quickly re-
covered, or might have switched to another hospital due to worsening
symptoms. It is also necessary to exercise caution when handling missing
data if the measuring equipment in use cannot indicate values above (or
below) a certain threshold due to its accuracy, and uncollected data if the
data are either adopted or rejected depending on the size of the variables.

In this manner, it is important to determine whether the mechanism
by which missing values arise can be ignored when processing the missing
values. The next section shows a statisticalmodel of such amechanism, and
then strictly defines ‘‘missing at random’’ and ‘‘observed at random’’ based
on this model and explains when the mechanism can be ignored, i.e., sets
forth the conditions for cases in which it is acceptable to exclude the in-
complete observations including missing values and cases in which such
crude exclusions lead to inappropriate analysis results.

2 GENERATION MECHANISMS BY WHICH MISSING
DATA ARISE

Generally, the fact that a value is missing might in itself constitute infor-
mation on the value of the variables that would otherwise have been
observed or the value of other variables. Therefore, the mechanism by
which missing values arise need to be considered when processing incom-
plete data including missing values. Thus, incomplete data including
missing values require the modeling of a mechanism by which missing
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values arise, and the incorporation of the nature ofmissing values as part of
the data in the analysis.

Now, suppose themultivariate data is the observed value of a random
variable vector X = (X1, X1, . . . , Xp)V following a multivariate density
function f(x; h). The objective of analysis for the time being is to estimate a
parameter h that defines the function f. Now, introduce, a new random
variable vector M = (M1, M2, . . . , Mp)V corresponding to observed
variable vector X. M is an index vector indicating whether the elements
X aremissing or observed: that is,Xi is observedwhenMi=1, andXi is not
observed (i.e., missing) whenMi=0. In other words, the observed valuem
of missing index vectorM shows the missingness pattern of observed data.

Modeling of a mechanism by which missing values arise concretely
defines the conditional probability g(m; x,f) of a certain observed valuem
of M, given the observed value x of X. Here, f is a parameter that defines
the mechanism.

If the output variable through the mechanism by which missing data
arise is represented by random variableV=(V1,V2, . . . ,Vp)V, each element
of which is defined as Vi = xi when mi = 1 and Vi = * when mi = 0, the
data acquired is v, which is the observed value of V. This also means that a
missingness pattern m and xV = (xV(0), xV(1)) corresponding thereto are
realized, where x(0) and x(1) indicate the vectors of the missing part and the
observed part, respectively, in X corresponding to m. Estimation of q
should be done based on such v in a strict sense.

If you ignore the mechanism bywhichmissing values arise g(m; x,f),
you assume that the observed part x(1) is an observation from the marginal
densityZ

fðxÞdx 0: ð1Þ

On the other hand, if you take into account the mechanism by which
missing values arise, it is actually from the following density functionZ

ffðx;qÞgðmjx;fÞ=
Z

ffðx;qÞgðm x;fÞdxgdx0j ð2Þ

Themix-up of the two densities in formulae (1) and (2) will give rise to
a nonignorable bias in the estimation of q depending on g(m; x, f).

For example, suppose there is a sample of size n for a variable, and
only values that are larger than the population mean are observed.
Assuming that q is the population mean and f = q, the mechanism by
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which only values that are larger than the population mean are actually
observed is represented by

gðmjx;fÞ ¼
Y
i

dðcðxi � / Þ �mi Þ;

where

dðaÞ ¼ 1; if a ¼ 0; 0; otherwise

dðaÞ ¼ 1 if a ¼ 0
0 otherwise

� �
In this case, if q is estimated based on density function (1) ignoring

g(m; x, /), it is obvious that the estimation will be positively skewed.
Generally, the mechanism by which missing values arise cannot be

ignored. However, if certain conditions are met by the mechanism,
Formulae (1) and (2) become equal such that the mechanism becomes
ignorable. In this regard, Rubin (1976) summarized the characteristics of
the mechanism as follows.

1. Missing at random (MAR). MAR indicates that given the
condition that the observed part x(1) is fixed at any specific value,
for any unobserved part x(0), the mechanism by which missing
values arise becomes the constant, that is,

gðm x;fÞ ¼ cðbxð1Þ /Þ for any xð0Þ����
In other words, MAR means that the missingness pattern m and
the unobserved part x(0) are conditionally independent given the
observed part x(1).

2. Observed at random (OAR). OAR indicates that given the
condition that the unobserved part x(0) is fixed at any specific
value, for any observed part x(1), the mechanism by which
missing values arise becomes the constant, that is,

gðm x;fÞ ¼ cðbxð0Þ /Þ for any xð1Þ����

cðaÞ ¼ 1 ða z 0Þ
0 ða < 0Þ ;

�
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3. f is distinct from q. This indicates that the joint parameter space
of f and q factorizes into each parameter space, and the prior
distribution of f is independent of that of q.

In regard to the above description, Rubin (1976) gives the following
theorems concerning the condition that the mechanism that leads to the
missingness can be ignorable.

Theorem 1. In case that we infer the objective parameter q based on the
sampling distribution for the incomplete data that have missing values,
we can ignore the missingness mechanism g(mjx; f) under the condition
that both MAR and OAR are met, which is called missing completely at
random (MCAR).

In other words, MCAR means that the missingness pattern m and
the objective variable x are unconditionally independent such that the
deletion of all incomplete observations that have missing values, which is
one of the simplest means to process incomplete data, leads no inference
bias.

Theorem 2. In case that we infer the objective parameter q based on the
likelihood for the incomplete data, we can ignore the missingness mech-
anism g(mjx; f) under the condition that MAR and the distinctness of f
from q are satisfied.

Theorem 3. In case that we infer the objective parameter q via a Bayesian
method for the incomplete data, we can ignore the missingness
mechanism g(mjx; f) under the condition MAR and the distinctness of
f from q are satisfied.

In regard to the results given by Rubin (1976) above, it should be em-
phasized that even if the missingness mechanism is not necessarily missing
completely at random, the missingness mechanism can be ignored depend-
ing on the type of analysis provided that the weaker condition ‘‘missing at
random’’ is satisfied. The EM algorithm, which is the main line in this
book, has been widely applied under this MAR situation in making
likelihood or Bayesian estimations.

Example 1.1

Suppose the data record the income and expenditure of each household.
The objective here is to estimate the effect of income on expenditure,
assuming that part of the income data is not observed. If the possibility of
values in the income to go missing is the same for all households regardless
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of the values of income and expenditure, this case is said to beMAR and at
the same time OAR. In other words, it is MCAR.

On the other hand, if the possibility of values in the expenditure to go
missing is affected by the income of the household and if the possibility of
values in the expenditure to go missing is not affected by the values of the
expenditure itself with respect to a household with the same income values,
this case is said to be MAR but not OAR.

In the latter case in Example 1.1 in which the missingness mechanism
is not MCAR but MAR, in an analysis based on a regression model where
the dependent variable is expenditure and the independent variable is
income, themechanism bywhichmissing values arise in expenditure can be
ignored according to Rubin’s results. Of note, Heitjian and Basu (1996)
have explained in detail the difference between MCAR and MAR.

The EM algorithm described in the article by Watanabe and Yama-
guchi (this volume) and the subsequent chapters is an algorithm that
derives ML estimates of the parameters in a model based on incomplete
data including missing values. As a sufficient condition for these methods
to be adequate, the mechanism by which missing values arise must be
ignorable, for which the results of Rubin (1976) referred to here are impor-
tant. Put differently, in the case of missing completely at random, the
mechanism can be ignored without any problem. Even if that is not the
case, the mechanism can be ignored provided that missing at random is
satisfied and there is no relationship between the parameters that need to be
estimated and the parameters determining the mechanism.

A concept based on the extension of these results is ‘‘coarsening at
random.’’ Heitjan and Rubin (1991) defined ‘‘coarsening at random’’ and
obtained results that extend the results of ‘‘missing at random’’ of Rubin
(1976) into ‘‘coursing at random.’’ Furthermore, Heitjan (1993, 1994)
showed specific examples. As pointed out by McLachlan and Krishnan
(1997), in actual analysis, the variables subject to analysis are concerned
with whether they are observed or not, meaning that caution must be
exercised as there are quite a few cases in which the mechanism by which
missing values arise is nonignorable. Little andRubin (1987) referred to the
method of analysis applicable to such cases in their Chapter 11.

In the case of conducting a statistical test on the equivalency of two or
more populations based on data including missing values, the method
based on the Permutation Test theory can be used. For example, Pesarin
(1999) suggested a test method for cases in which the values are missing at
random as well and cases in which the values are not missing at random.
This is discussed in detail by Pesarin (1999) in his Chapter 9.
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1 ANALYSIS OF MULTIVARIATE DATA
WITH MISSING VALUES

In many cases of multivariate data analysis, the values of the mean vector
and the variance–covariance matrix or the correlation matrix are calcu-
lated first. Various methods of multivariate analysis are actually imple-
mented based on these values. Broadly speaking, there are four methods
of processing the missing values, as described below (Little and Rubin,
1987).

1. Exclude all incomplete observations including missing values.
The sample size will be smaller than originally planned, however.
Create a data matrix consisting of only complete observations
and execute the ordinal estimation procedures.

2. Exclude only the missing parts and estimate the mean vector
based on the arithmetic mean of the observed values that exist
with respect to each variable. For the variance–covariancematrix
and the correlation matrix, perform estimation by using all the
observed values of each pair of variables, if any.
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3. Estimate the missing values to create a pseudocomplete data
matrix while retaining the original sample size and execute nor-
mal estimation procedures.

4. Assuming an appropriate statistical model, estimate the maxi-
mum likelihood of necessary parameters based on the marginal
likelihood with respect to all observed values that have been
acquired.

Method 1 for processing missing values is normally taken by many
statistical analysis software. Despite the massive loss of information vol-
ume, it is probably the most frequently used method today because of easy
processing. However, this method should not be applied crudely because
the analysis results might be grossly biased depending on the mechanism
by which missing values arise, as shown in the previous chapter.

Method 2may appear to be effective because the data volume used in
calculations is larger than that in Method 1. However, the results of a
simulation experiment on multiple regression analysis conducted by Hai-
tovski (1968) show that it is less accurate than Method 1. Moreover,
Method 2 does not guarantee the positive definiteness of the estimates of
the variance–covariancematrix or the correlationmatrix. Accordingly, the
danger is that they might not be usable in subsequent analyses. Although
Method 2 is also implemented in some statistical analysis software as an
optional way of calculating correlationmatrices, etc., onemust be cautious
when applying this method because of the aforementioned reasons.

According to some research reports, the method based on either
Method 3 or 4 is more effective than Methods 1 and 2. The next section
discusses the methods of estimating the missing value itself in concrete
terms, and shows how the efficiency of the estimation of target parameters
varies depending on the way in which the missing values are processed.

2 ESTIMATION OF MISSING VALUES

The method of processing missing values referred to in Method 3 in the
previous section makes the incomplete data ‘‘complete’’ expediently by
substituting the missing value itself with an estimate. This method is ex-
pected to inflict a smaller loss of information than Method 1, which ex-
cludes all incomplete observations. It also allows normal statistical analysis
methods to be applied to a complete data matrix in which themissing value
has been complemented, making the analysis itself easier.

Watanabe and Yamaguchi10



There are two typical methods of estimating missing values, as
follows.

Mean value imputation: Substitute the missing value with the mean
of the observed data with respect to each variable correspond-
ing to the missing value.

Regression: Based on a multiple regression model assuming that the
variable corresponding to the missing value is a dependent
variable and the variable portion in which the data is observed
is a group of independent variables, figure out the estimate of
the regression coefficient based on the data matrix of the
portion in which the data is completely observedwith respect to
all missing variables. Estimate the missing values in incomplete
observations based on a regression formula using the estimated
regression coefficient.

In survey statistics such as official statistics, the alternatives include
hot deck, which finds complete observations in which a specified observed
data portion is similar to incomplete observations in the same data and
complements the missing value by using the value of the variable corre-
sponding to the observations, and cold deck. Both of these methods
are used expediently. Recently, multiple imputation advocated by Rubin
(1987) has been attracting a great deal of attention for taking sample
variation into account.

Among the methods of processing missing values (Method 3), this
section reviews mean value imputation and partial regression, in addition
to the exclusion method (the exclusion of all incomplete observations as
referred to inMethod 1 in the previous section), and compares these meth-
ods based on Monte Carlo experiments in light of the estimated parame-
ter efficiency.

2.1 Comparison of Efficiency

Suppose an incomplete data matrix of N � p is X. Here, N indicates the
sample size (the total number of observations), and p represents the num-
ber of variables.

N observations can be divided into n complete observations that do
not include missing values (downsized complete data portion) and m in-
complete observations that include missing values (incomplete data por-
tion). Here, data matrix X consists of n complete observations in the top
row and m incomplete observations in the bottom row.
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In this context, the exclusion Method 1 uses only the downsized
complete data portion, whereas mean value imputation estimates the
missing values in the variables corresponding to the incomplete data
portion based on the sample mean of the variables in the downsized
complete data portion. On the other hand, regression involves the estima-
tion of the regression model of missing variables with respect to observed
variables based on the downsized complete data portion according to the
missing pattern of each observation in the incomplete data portion, and
the estimation of themissing values in the incomplete data according to the
regression formula. In this case, the computational complexity under
partial regression depends on the total number of missing patterns in the
incomplete data portion.

The following is a comparison of the estimator efficiency with re-
spect to the sample mean vector and the sample variance–covariance
matrix resulting from the exclusion method, and the sample mean vector
and the sample variance–covariance matrix calculated based on a pseudo-
complete data matrix that has been ‘‘completed’’ by mean value imputa-
tion and regression.

The criterion for comparison is the relative efficiency (R.E.) with the
estimator of the mean vector based on the complete data assuming that no
values were missing m̃ and the estimator of variance–covariance matrix S̃.

R:E:ðm̂jm̃Þ ¼ E½trðm̃� mÞðm̃� mÞV�
E½trðm̂� mÞðm̂� mÞV� ð1Þ

R:E:ðSb jS̃Þ ¼ E½trðS̃�SÞðS̃�SÞV�
E½trðSb �SÞðSb �SÞV� ð2Þ

where m̂ andSb represent the sample mean vector and the sample variance–
covariance matrix, respectively, which can be acquired by the respective
methods of processing missing values.

Figs. 1 and 2 show the results of simulation experiments conducted
1000 times based onmultivariate normal random numbers. The horizontal
axis depicts an index of the correlation matrix of the four population
distributions used, which is c = (E � 1)/( p � 1) (E is the maximum eigen-
value of the correlation matrix). The vertical axis represents the relative
efficiency.

According to Fig. 1, the twomethods of estimating themissing values
are always more effective than the simple exclusion method as far as the
estimation of mean vector m is concerned. On the other hand, the order of
superiority of the three processing methods in terms of the estimation of

Watanabe and Yamaguchi12



variance–covariance matrixS depends on the number of variables and the
extent to which the variables are correlated to each other, varying from
case to case (refer to Fig. 2). If the number of variables is small, the ex-
clusion method can perform a sufficiently efficient estimation. However, if
there are many variables, its estimation efficiency is inferior to the other
two processing methods of estimating the missing values. Put differently,
the relative efficiency of themethods of estimating themissing values varies
with the extent to which the variables are correlated with each other. This
means that the efficiency of mean value imputation is the highest when

Figure 1 Relative efficiency of estimates of mean vector.
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there is a weak correlation between variables, and, conversely, the effi-
ciency of the regression is high when there is a strong correlation between
variables. Therefore, it is desirable to distinguish the two methods of es-
timating the missing values appropriately when using them, based on an
understanding of the extent to which the variables are correlated with each
other in advance. If this understanding is vague, it would be appropriate to
conduct a preliminary test on the significance of the partial regression
formula estimated based on the downsized complete data portion, and use
either mean value imputation or partial regression based on the results.

Figure 2 Relative efficiency of estimates of covariance matrix.
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Fig. 2 shows the relative efficiency of the methods of estimating
the missing values in cases where the preliminary test is included. Here,
the optimal solution based on minimax criteria is adopted as the critical
value in the test. The relative efficiency of the preliminary test method is
uniformly higher than the exclusion method. This shows that the loss re-
sulting from choosing the wrong method is rectified by conducting a pre-
liminary test.

For partial regression, Frane (1976) made improvements by incor-
porating techniques for selecting variables in a regression model. Also,
Beal and Little (1975) advocated the iteration method, which involves the
further revision of the partial regression formula by using the mean vector
and the variance–covariance matrix estimated by partial regression, and
the iteration of the two processes that update the estimation of missing
values thereby until they converge. The results indicate that they can be
regarded as more or less the same as the results of maximum likelihood
estimation when the data is compliant with multivariate normal distribu-
tion. Fig. 2 also shows the relative efficiency of the maximum likelihood
estimator based on the incomplete data matrix itself assuming a multi-
variate normal model. The maximum likelihood method shows a similar
pattern to the preliminary test method with respect to the correlation
between variables, and its efficiency is higher than the preliminary test
method.

The next section explains the algorithm for deriving the maximum
likelihood estimate from incomplete data.

3 MAXIMUM LIKELIHOOD ESTIMATION BASED
ON INCOMPLETE DATA

If it is possible to assume the distribution with which the data is compliant,
the maximum likelihood estimate of the parameter can be found based on
the data matrix even in cases where there are missing values. Maximum
likelihood methods assuming multivariate normal distribution have been
discussed for a long time, including Anderson (1957) and Trawinski and
Bargmann (1964). However, themissingness pattern in the incomplete data
matrix must show a special aspect called ‘‘nest’’ in order for the mean and
the maximum likelihood estimator of the variance-covariance matrix to be
represented in terms of a positive formula (Rubin, 1974). Nest refers to an
aspect of missingness in an incomplete data matrix such that in cases where
the ith variable (2 V iV p) is observed based on the proper rearrangement
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of the variables and observations, the data of the (i� 1)th variable is always
observed (the opposite may not be true).

Iterative calculation by computer is required to determine the
maximum likelihood estimate of m andS without placing any restrictions
on the missingness patterns. Hartley and Hocking (1971) advocated an
algorithm for directly deriving a likelihood equation from an incomplete
data matrix and determining a standard solution based on the scoring
method. On the other hand, Orchard and Woodbury (1972), Beal and
Little (1975), and Sundburg (1976) derived a method of finding the
maximum-likelihood solution based on an algorithm which later became
generally known as the EM algorithm by Dempster et al. (1977).

3.1 EM Algorithm

The scoring method constructs the likelihood equation for m andS based
on the marginal likelihood of all observed data. However, there is a way
to maximize the marginal likelihood relating to observed data without
using this equation, that is, the EM algorithm. Generally speaking, the
likelihood equation of incomplete data based on the distribution in a ex-
ponential distribution family can be represented as follows, including but
not limited to multivariate normal distribution.

Generally speaking, the likelihood equation of incomplete data
based on the distribution in an exponential distribution family can be
represented as follows, including but not limited to multivariate normal
distribution,

Eðt;qÞ ¼ Eðt jfxð0Þ
i g; qÞ ð3Þ

where q is the parameter to be estimated, and its sufficient statistic is t.
Furthermore, {xi

(0)} represents the observed data portion with respect toN
observations.

The EM algorithm divides the process of solving Eq. (3) into two
steps. The first step is to find the conditional expected value on the left side
of the equation. The second is to solve the equation in concrete terms using
the conditional expected value that has been found.

Now we consider a sample {xi}(i = 1, . . . , N ) from p-dimensional
normal distribution. m and S are parameters to be estimated in the
multivariate normal distribution model. Its sufficient statistics are a
1/2p( p + 3) � 1 column vector consisting of the sum of p variates in the
complete data matrix X, and 1/2p( p+1) values of the sum of squares and
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cross products of variables. The EM algorithm is a method of finding
estimated vectors m̂ and Sb that satisfy Eq. (3) via the estimation of t, and
consists of two steps. The calculation methods of the two steps are de-
scribed in further detail in Chap. 3.

The drawback of the EM algorithm is allegedly the larger number of
iterations generally required to reach convergence than the aforemen-
tioned scoring method. However, it can avoid so-called inverse matrix
calculations. Also, programming is easy because a simple algorithm
normally applied to complete data can be used in the maximization step.
As the merits and demerits of the scoring method and the EM algorithm
are demonstrated on opposite standpoints, the choice must be made on a
case-by-case basis rather than in general terms (refer to Chap. 7).

As for the initial value, it would be reasonable to use the samplemean
and the variance–covariance matrix determined by the complete data
portion in both methods.

The EMalgorithmwill generally be discussed in detail in Chap. 3 and
the subsequent chapters. Themerit of the EM algorithm concept is that the
calculations following the calculation of the conditional expected value
constitute estimations in cases where there are no missing values. With
respect tomany problems, the calculationmethods are already known, and
the calculations can be performed easily without having to worry about the
missingness pattern. Another great merit is that no major inverse matrix
problem has to be solved. As substantial computational complexity is as-
sociated with solving major inverse matrix problems, it will have the edge
in computation time as well. Chap. 7 compares the EM algorithm with
other optimization algorithms in terms of convergence speed, with refer-
ence to estimation problems in linear mixed models and normal mixture
distributions as examples.

4 SUMMARY

This chapter described a few of the key methods of executing multivariate
analysis based on missingness or a data matrix including missing values, in
light of efficient methods of processing the missing values.

As for the method of processing missing values, it is important to
investigate the missingness pattern with respect to each cause, as to why
the missingness or the deficiency occurred. It can be complemented con-
siderably by actively analyzing and modeling the mechanism by which
missing values arise.
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If such mechanism does not particularly exist or can be ignored, the
randomness of the occurrence of missing values must be scrutinized.

In cases where the mechanism by which missing values arise is
ignorable, the missing value itself is normally estimated to make the data
matrix ‘‘complete.’’ Typical methods are mean value imputation and re-
gression, which have opposite merits and demerits depending on the na-
ture of the datamatrix. Accordingly,Watanabe (1982) advocated choosing
between mean value imputation and partial regression depending on the
results of the preliminary test on a priori information, and exemplified the
rationality of compensating the merits and demerits. This chapter also
described that maximum likelihood estimation of the mean vector and the
variance–covariance matrix used in the analysis process can directly be
performed even if it includes missing values, and reviewed the scoring
method and EM algorithm as algorithms for that purpose.

In the former case, estimation of the missing value itself firstly
involves the use of the complete data portion, meaning that the accuracy
will deteriorate as the number of complete data observations decreases.
Under the maximum likelihood method, it is possible to at least estimate
the population even if there is no complete data. From a different per-
spective, caution must be exercised in regard to the fact that the distribu-
tion needs to be known in advance in the maximum likelihood method, in
contrast to the method of estimating the missing values, which is robust
against the distribution of the population generating the data matrix.

This chapter focused on how to process missing and deficient values
inmultidimensional data. Censored, truncated, grouped data, etc., are also
incomplete data that occur on an everyday basis, and are discussed in
Chap. 3.
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1 INTRODUCTION

In 1977, Dempster, Laird, and Rubin (DLR) (Dempster et al., 1997) ad-
vocated a unified algorithm, called the EM algorithm, for deriving max-
imum likelihood estimates from incomplete data and showed its wide scope
of application to various statistical models for the first time. Although
many essays critical of its problems, such as the convergence in the algo-
rithm, were released in the early days, numerous essays have been pub-
lished over the past 20 years, hammering out new methodologies using the
EM algorithm in almost all fields in which statistical analysis is required,
including engineering, medical science, sociology, and business adminis-
tration. According to a survey conducted by Meng and Pedlow (1992), at
least 1700 essays exist on more than 1000 subjects. Moreover, Meng (1997)
pointed out that more than 1000 essays were published in approximately
300 types of magazines in 1991 alone (of which statistics journals ac-
counted for only 15%). These facts clearly indicate that the EM algorithm
has already become amultipurpose tool for building amethod of statistical
analysis based on likelihood, surpassing the Newton–Raphson method
and other substitution methods.
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Why has the EM algorithm gained ground to such an extent? It is
often said that the EM algorithm’s beauty lies in the algorithm’s sim-
plicity and stability. For these reasons, the authors have used the EM
algorithm in studying the latent class model, the proportional hazard
model, the robust factor analysis model, the covariance structure model,
and the Tobit model, and in deriving the maximum likelihood solution in
those models since Watanabe (1989) introduced in a Japanese magazine
the maximum likelihood method based on multidimensional data, in-
cluding missing values with reference to DLR. In the early days, ques-
tions about studies using the EM algorithm at academic conferences, etc.,
were always the same: ‘‘Why does it specifically have to be the EM algo-
rithm?’’ ‘‘What is the point of using the EM algorithm despite its alleged
slow convergence in an environment where optimization software is be-
coming more sophisticated?’’ ‘‘How many iterations were required to
reach convergence?’’

First, in response, an algorithm for performing maximum likelihood
estimation based on multidimensional data, including missing values, was
programmed specifically based on the Newton–Raphson method and the
EM algorithm, and an experiment was conducted to compare the two in
terms of the number of iterations required to reach convergence, central
processing unit (CPU) time, etc., using the same data. The results showed
that the EM algorithm was able to determine a convergence value in all
cases, whereas the application of the simple Newton–Raphson method
failed to achieve convergence in most cases. This is probably why the EM
algorithm is referred to as stable. In addition, the results indicated that
when the two converged on the same maximum likelihood solution, the
EM algorithm was faster in terms of the CPU time taken to reach con-
vergence on the whole: although fewer iterations were required by the
Newton–Raphson method, the CPU time required per iteration was
overwhelmingly shorter for the EM algorithm. The EM algorithm is
generally claimed to suffer from slow convergence, but this alleged draw-
back appears to be no major obstacle in practice. In fact, the simplicity of
the EM algorithm seems to be much more attractive, considering the
relatively high operating efficiency from the stage of formulating the
likelihood to the stages of deriving and programming an algorithm in
concrete terms. A number of improved versions of the EM algorithm,
aimed at accelerating convergence, have been proposed since DLR.
However, they failed to gain wide acceptance because they sacrificed some
aspects of the simplicity and the stability of the original EM algorithm.
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The applications of the EM algorithm are broad because of its
flexibility in interpreting the incompleteness of data subject to analysis,
and the high extensibility of the application model. The missing value
problem, which constitutes the original meaning of incomplete data,
truncated and censored distributions, mixture distributions, random effect
models and mixture models in analyses of variance, robust analyses, latent
variable models, and key statistical models, are within its scope.Moreover,
it is possible to combine models within its scope to build a more complex
model. However, if the problem becomes complex, simple calculations in
Expectation Step (E-step) and Maximization Step (M-step) in the EM
algorithm will not suffice; for example, evaluation may be required based
on the random numbers generated from themodel in E-step, or an iterative
algorithm may have to be included as well, such as the Newton method, in
M-step. The scope of its application to real-life problems has expanded in
recent years, including applications to medical image processing, pattern
recognition, and neural network, as well as in areas where enormous
computational complexity is required. In this regard, the acceleration of
the EM algorithm will have great significance in practice.

In the 1990s, many papers on the systematization of these extensions
to the EM algorithm were released. Rubin (1991) (‘‘EM and Beyond’’)
explains the four typical algorithms based on simulation (Multiple Im-
putation, Data Augmentation Algorithm, Gibbs Sampler, and Sampling/
Importance Resampling Algorithm) in a unified manner based on an
extended EM framework with a random number mechanism. Extensions
that deserve much attention include the ECM and ECME algorithms
advocated by Liu and Rubin (1994, 1995), the AECM advocated byMeng
and Dyk (1997), and the accelerated EM, which does not sacrifice the
simplicity and stability of the original EM. Another publication is the
work of McLachlan and Krishnan (1997), ‘‘The EM Algorithm and Ex-
tension,’’ which covers recent topics relating to them as well. The EM
algorithm was featured in the magazine Statistica Sinica in 1995, followed
by the Statistical Methods in Medical Research in 1997. The essays by
Meng (1997), Meng and Dyk (1997), and Amari (1996) were written in
their respective capacities as guest columnists and tutorial writers for
the magazines.

Today, the EMalgorithm is a familiar statistical tool for solving real-
life problems in various fields of applications. This chapter outlines the key
applications of the EM algorithm in recent years to clarify why it has to be
the EM algorithm.
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2 EM ALGORITHM

2.1 Introduction

Rubin (1991) regarded the EM algorithm as one of the methodologies for
solving incomplete data problems sequentially based on a complete data
framework. The idea on which it is based is simple, as summarized in the
steps shown below, assuming that Yobs is the observed data portion and
Ymis is the missing data portion:

1. If the problem is so difficult that the solution cannot be derived
immediately just from the data at hand Yobs, make the data ‘‘com-
plete’’ to the extent that solving the problem is regarded as easy
and formulate the problem (assuming that the missing data portion
Ymis exists).

2. For example, if the objective for the time being is to derive the
estimate of parameter q, which is q̂, enter a provisional value into
Ymis to determine q̂.

3. Improve Ymis using q̂ and enter the value into Ymis.
4. Repeat the aforementioned two steps until the value of q̂ converges.

In addition to the EM algorithm, methodologies based on this
framework that have been attracting much attention in recent years
include: (a) multiple imputation (Rubin, 1987a), (b) data augmentation
(Tanner and Wong, 1987), (c) Gibbs sampler (Geman and Geman, 1984),
and (d) the SIR algorithm (Rubin, 1987b).

Multiple imputation is discussed in Appendix A in relation to
execution software, and the other three methodologies are explained in
detail in Chapter 9 in relation to MCMC. Therefore, such extensions will
not be addressed in this section. Of note, they are distinguished from the
EM algorithm in terms of how the value is entered in Ymis in Step 2.

2.2 Theory of DLR (1977)

Let x be complete data and let f(x|q) be its probability density function. In
addition, let y be incomplete data and let g(y|q) be a probability density
function of y. We consider two sample spaces XX (a sample space for
complete data) and XY (a sample space for incomplete data). We assume
that there is a mapping of y!y(x) from XX to XY. Then, the probability
density function of y, g( y|q), is:

gðy jqÞ ¼
Z
VYðyÞ

fðx jqÞdx
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where XY ( y) is a subsample space of XX determined by the equation
y=y(x). For missing data problem, DLR assumed that (a) parameters to
be estimated are independent of the missing data process, and (b) missing
data are missing at random (see Chapter 1).

Let LLc(q)=log f(x|q), which is the log likelihood function based on
the complete data, and LL(q)=log g(y|q), which is the log likelihood
function based on the incomplete data. The goal of the EM algorithm is
to find the maximum likelihood estimate of q, which is the point of
attaining the maximum of LL(q).

The EM algorithm approaches indirectly the problem of maximizing
the log likelihood LL(q) based on incomplete data by proceeding iter-
atively in terms of the log likelihood based on the complete data, LLc(q).
Because it is unobservable, it is replaced by the conditional expectation
given the observation and temporary values of parameters:

qðkþ1Þ ¼ arg max
qaH

E½LLcðqÞ j y; qðkÞ� ð1Þ

Eq. (1) can be divided into the E-step and the M-step as follows:

E-step: to calculate the conditional expectation of complete data log
likelihood given the observation y and the kth temporary values of
parameter q(k):

Qðq; qðkÞÞ ¼ E½LLcðqÞ j y; qðkÞ� ð2Þ
M-step: to find q(k+1) to maximize Q(q;q(k) ), calculated in E-step:

Qðqðkþ1Þ;qðkÞÞzQðq; qðkÞÞ ð3Þ
The E-step andM-step are repeated by turns until they converge in a

specified sense. In the EM algorithm:

LLðqðkþ1ÞÞzLLðqðkÞÞ
Therefore we can get the maximum likelihood estimates of q if we select
proper starting values.

If f(x|q) has the regular exponential family form, we have a very
simple characterization of the EM algorithm as follows:

E-step: to calculate the conditional expectation of the complete data,
sufficient statistics t given observation y and q(k) derive:

tðkþ1Þ ¼ E½tðxÞ jy; qðkÞ� ð4Þ
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M-step: to get q(k+1) to solve the following equations:

E½tðxÞq� ¼ tðkþ1Þ ð5Þ
DRL pointed out that Eq. (5) is the familiar form of the likelihood

equations for maximum likelihood estimation given data from a regular
exponential family.

2.3 An Example: Multivariate Normal Data

We have a sample ( y1, . . . , yN) with missing values from p�1 random
vector Y, which follows the multivariate normal distribution with mean
vector m=(l1, . . . ,lp) V and covariance matrix R=(rjk).

Wepartition yi V=( y0i V,y1i V) corresponding tomissing patterns,where
y1i and y0i V are sets of observed values andmissing values, respectively. The
mean vector and covariance matrix are also partitioned corresponding to
yi V=( y0i V,y1i V):

m ¼ m0i

m1i

� �
; S ¼ S00i S01i

S10i S11i

� �
Note that only partitions depend on i.

E-step: to calculate the conditional expectation of (Yi,Yi,Yi V):

byðKþ1Þ
0i ¼ E y0ijy1i;mðkÞ;SðkÞ

� �
ð6Þ

byðKþ1Þ
0i ¼ mðkÞ

0i þSðkÞ
01iS

ðkÞ�1
11i y1i ð7Þ

E y0iy1iVj y1i;mðkÞ;SðkÞ
� �

¼ byðKþ1Þ
0i y1iV

cyyðKþ1Þ
0i

V¼ E y0iy0iVjy1i;mðkÞ;SðkÞ
� �

ð8Þ

cyyðKþ1Þ
0i

V ¼ by ðKþ1Þ
0i by ðKþ1Þ

0i
VþSðkÞ

00 �SðkÞ
01iS

ðkÞ�1
11i SðkÞ

10i ð9Þ

Then:

byðkþ1Þ
i ¼ by0iby1i

� �
;cyy ðKþ1Þ

i
V ¼ cyy ðKþ1Þ

0i
V byðKþ1Þ

0i y1iV

y1iby ðKþ1Þ
0i

V y1i y1iV

 !
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M-step:

mðkþ1Þ ¼ 1

N

Xn
i¼1

byðkþ1Þ
i ð10Þ

Sðkþ1Þ ¼ 1

N

Xn
i¼1

cyy ðKþ1Þ
i

V� mðkþ1Þmðkþ1Þ V ð11Þ

3 PROPERTIES OF THE EM ALGORITHM

This section collectively reviews the characteristics of the EM algorithm
and the results that have been obtained so far in regard to convergence:

1. In the EMalgorithm, the value of LL(q|y) increases in each iteration
process (to be more precise, it does not decrease). This aspect is
useful for debugging on programming in real life. In addition, the
EM algorithm is relatively robust against the initial value.

2. The rate of convergence of the EM algorithm is proportionate to
1�c, where c is the maximum eigenvalue of Îc�1(q;y)Îm(q;y), which
is the ratio of the information matrix of complete data to the
information matrix of incomplete data, and refers to the proportion
of the information volume of the incomplete data in the information
volume of the complete data.

3. In the EM algorithm, the output in each step is statistically
significant especially if the complete data belong to an exponential
distribution family. In other words, the domain and the constraints
of the parameters are naturally fulfilled (refer to Sec. 2), and the
solution can be determined easily by entering the constraints. There
are no so-called improper solutions. For example, in cases where a
variance–covariance matrix needs to be estimated based on a
multidimensional data matrix with missing values, the positive
definiteness of the value ofR

ˆ
determined in each step is guaranteed if

the initial value starts with a positive definite matrix. For the
estimation of incidence, the solution can naturally be determined in
the incidence domain.

4. If the log likelihood LL(q|y) based on incomplete data y is bounded,
the value of the log likelihood in the iteration process {LL(q(k)|y)}
converges to the stationary value of LL(q|y).
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5. In general conditions, if q(k) converges, the convergence value can
be proven to be either the local maximum or the saddle point of
LL(q|y) (Boyles, 1983; Wu, 1983). Therefore, if the likelihood
function is unimodal and the first derivative of functionQ defined in
(Eq. (2)) is continuous with respect to q(k) and q, the EM algorithm
converges to the only local maximum (maximal value). Generally
speaking, however, the likelihood function of the incomplete data is
not necessarily unimodal. Therefore, it is necessary to compare the
values of the log likelihood of the convergence value, starting with
many initial values.

6. If the convergence of the EM algorithm is extremely slow, it implies
that the likelihood function is flat toward that direction.

7. There is no need to evaluate the first and second derivatives of the
log likelihood. Inmany cases, this aspect helps save the CPU time of
each iteration compared to other maximization algorithms. Put
differently, as the alleged drawback (i.e., slow convergence) is based
on the number of iterations required for convergence, if one refers to
the total CPU time as the yardstick, it is impossible to categorically
claim that it is superior/inferior to the Newton–Raphson method,
etc., in terms of the actual speed of convergence, in consideration of
the high-order inverse matrix calculations avoided per iteration.

8. The alleged drawback of the EM algorithm is the lack of evaluation
of the asymptotic variance of the estimate, in contrast with other
iteration methods that use second partial derivatives, such as the
Newton–Raphson method. However, there is a way to evaluate the
asymptotic variance–covariance matrix of MLE within the EM
algorithm framework without evaluating the likelihood of incom-
plete data or the derivatives at all. This is reviewed briefly in Sec. 4
(for the details, refer to Meng and Rubin, 1991; Louis, 1982).

4 ASYMPTOTIC COVARIANCE MATRIX VIA THE EM
ALGORITHM

The EM algorithm does not generate an estimate of the asymptotic
variance–covariance matrix of the estimate as its by-product. However,
a number of approximation methods for the asymptotic variance–cova-
riance matrix have been advocated, while retaining the merit of the EM
algorithm [i.e., there is no need to be directly aware of the log likelihood of
the incomplete data LL(q by)]. In particular, the easiest way is to evaluate
the observed information matrix numerically and find the inverse matrix.
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Efron and Hinkley (1978) recommended its use on the grounds that the
observed information Iy is often more appropriate than Fisher’s informa-
tion criteria.

Louis (1982) derived the following formula to evaluate observed
information matrix I(q

ˆ
;y) from the complete data frames according to the

missing information principle by Orchard and Woodbury (1972):

Iðqb; yÞ ¼ E½Bcðx; qÞ jy; q ¼ qb� � E½Scðx jqÞST
c x jqð Þ jy; q�q¼qb ð12Þ

where Sc(x;q) is the first derivative vector of the log likelihood of complete
data x and �Bc(x;q) is the second derivative matrix.

After finding qb by the EM algorithm, the observed information can
be found by evaluating Eq. (12). The asymptotic variance–covariance
matrix can be derived by calculating the inverse matrix.

Meng and Rubin (1991) derived the following formula on the
grounds of the asymptotic variance–covariance matrix of the incomplete
data (the inverse matrix of the observed information matrix Iy) by adding
the increment due to the existence of missing data to the variance–
covariance matrix of complete data x:

I�1 qb; y� �
¼ Ĩ�1

c q; yð Þ þ DV ð13Þ
where Ĩc(q;y) is the conditional expected value of the informationmatrix of
the complete data, and:

DV ¼ I� J qb� �n o�1

J qb� �
c
q; yð ÞĨ�1

c q; yð Þ ð14Þ

J qb� � ¼ Ĩ
�1

c q; yð ÞĨ�1
m q; yð Þ ð15Þ

Eq. (13) can be solved by calculating Ĩc(q;y) and Jacobian matrix
J(qb). Ĩc(q;y) can easily be solved by a normal formula for complete data.
Moreover, Jacobian matrix J(qb) can be calculated based on the output of
the EM algorithm itself, as its factors are the rates of convergence with
respect to each component of the parameter.

5 INCOMPLETE DATA AND THE EM ALGORITHM

The EM algorithm is applied to a wide range of incomplete data. In
addition to those that are incomplete in the normal sense, such as missing,
truncated, censored, and grouped data, many statistical models that were
conventionally not regarded as incomplete data (such as latent structure
models, mixture distribution models, robust distribution models, variate
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models and mixture models in the analysis of variance, and Bayesian mod-
els) are addressed by the EM algorithm by assuming expedient pseudo-
complete data for the sake of calculation simplicity.

It is also possible to combine models within the scope of the EM
algorithm with normal missing data problems to roll out new extensible
incomplete data problems.

The EMalgorithm’s beauty lies in, more than anything else, its ability
to develop maximum likelihood estimation methods in concrete terms that
are relatively easily in regard to a wide range of models as such. The
method is especially useful in cases where some kind of constraint is
required among parameters to assure the identifiability of the model, as
it can flexibly deal with constraints among parameters.

However, if the structure of incompleteness of the applied statistical
model is complex, it will be difficult to find the maximization of the Q
function—the conditional expected value of the log likelihood inM-step—
by a standard closed formula. In such cases, it is necessary to apply some
kind of optimization algorithm in M-step and perform iterative calcula-
tion. The GEM algorithm, which is an extension of the EM algorithm by
DLR, and other extended versions of the EM algorithmmay be effective in
these cases.

5.1 GEM Algorithm and the Other Extensions

The GEM algorithm replaces M-step in the EM algorithm with a step to
find q(k+1) that satisfies the following formula:

Q q kþ1ð Þ j qðkÞ
� �

zQ qðkÞ j qðkÞ
� �

ð16Þ

This indicates that it is not always necessary to find the maximization of
theQ function inM-step, and that it is sufficient to find q(k+1) that updates
it to a larger value. Therefore, in cases where maximization is sought by
using the Newton–Raphson method, etc., in M-step, it is possible to stop
after just one iteration. Lange (1995) advocated this method as a gradient
algorithm.

Meng and Rubin (1993) adopted the ECM algorithm as a method of
using a conditional maximization matrix in M-step. Also, Liu and Rubin
(1995) advocated the ECME algorithm as an algorithm that switches the
subject of maximization in M-step according to the components of q(k)

from function to the direct log likelihood of observed data.
In cases where there is no simple solution based on a closed formula

in E-step, there are a number of creative ways to handle this, including the
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substitution with approximate distribution (Laird, 1978) and the use of
Laplace expansion (Steel, 1996). Tanner andWong (1987) used the Monte
Carlomethod and the data augmentationmethod for the calculation of the
posterior density of q in cases where there are missing data, based on the
interpretation of extensibility in the EM algorithm framework. Wei and
Tanner (1990) advocated the Monte Carlo EM algorithm to perform
simulations in E-step.

6 EXAMPLES

6.1 Estimation of Survival Function from Data with
Censoring and Truncation: Tu et al. (1993)

It is a well-known fact that data indicating the survival time include
censoring data, and many methods of analysis have been discussed for
this purpose. Turnbull (1976) advocated a method of nonparametric
estimation of the survival function in cases where not only censoring but
also the truncating problem occurs simultaneously. Here, the EM algo-
rithm is applied to the estimation problem regarding the survival function
while tolerating the complex incompleteness associated with the general
time interval data observed based on a truncated distribution on both
sides, including the open intervals on both sides, in addition to the
complete data in which the survival time is observed as a point of time.
Tu et al. (1993) pointed out that such incompleteness has occurred in real
life in the survey data of survival time relating to AIDS and estimated the
survival function using the EM algorithm.

Assume that X is the calendar date on which one is diagnosed with
AIDS, and S is the period between diagnosis and death. F(sjz) is the
cumulative distribution function of S with a given covariate z, and f(sjz) is
the density function. F(s) and f(s) represent the baseline cdf and pdf,
respectively, when covariate Z is 0. The data observed in relation to
individual i are (Ai,Bi,zi). Here, Ai is the censored domain, including the
survival time si of individual i, and Bi is the truncated domain concerning
the observation of individual i. Assuming that x* is the period between the
launch of the survey and the execution of analysis, Bi=[0,x*�xi].

Assuming that Ic is a probability index that equals 1 when saC, and
equals 0 in other cases, the log likelihood of a sample of size N is:

* *
LL ¼

XN
i¼1

log

Z s

0

IAi
f s j zið Þds

� 	
� log

Z s

0

IBi
f s j zið Þds

� 	� �
ð17Þ
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In Eq. (17), the survival time observed in the sample is limited to the
discrete point s0,s1,. . ., sJ(sJ=s*). In this case, it is presumed that
sj=j(0VjVJ) especially because the survival time is observed on a quarterly
basis.

Assuming that nij=1 when jaAi and nij=0 in other cases, and that
gij=1 when jaBi and gij=0 in other cases, Eq. (17) changes as follows:

LL ¼
XN
i¼1

log
X
j

nij f j j zið Þ
" #

� log
X
j

gij f j j zið Þ
" #( )

ð18Þ

If the data are neither censored nor truncated, these become:

LL ¼
XN
i¼1

XJ
j¼1

Iijlog f j j zið Þ
 � ð19Þ

where Iij is an index that equals 1 when s=j in regard to the survival time of
the ith individual, and equals 0 in other cases.

Assume that the discrete proportional hazard model is:

f j j zð Þ ¼
p0...pj�1

� 
exp zThf g
1� p

exp zThf g
j

� �
if 0VjVJ� 1

p0...pj�1

� 
exp zThf g
if j ¼ J

8><>: ð20Þ

where pj=Pr(Szj+1)jSzj) (0VjVJ�1) represents the conditional baseline
probability corresponding to z=0. If aj=log[�log( pj)] (1VjV J�1), the
assumed model indicates that the hazard function h(sjz) is approximately
represented by:

h j j zð Þcexp aj þ zTh

 � ð21Þ

Assuming that q=(�,�), the maximum likelihood estimation is
performed with respect to parameter q based on the EM algorithm. Jij
represents the number of individuals who indicate survival time sj among
the individuals with covariate zi.

E-step: The conditional expectation of Iij for each censored individ-
ual given the previous q(k) and observed data Yobs is:

c
ðkÞ
ij uE Iij j Yobs; qðkÞ

� �
¼ nij

f j j zi; qðkÞ
� �

PJ
r¼0 nirf r j zi; qðkÞ

� � ð22Þ
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for 1ViVN and 0VjVJ. Similarly, for the truncation, we need the condi-
tional expectation of Jij. If we suppose that SJ

r=0(1�gij)Jir follows a
negative binomial distribution:

NB m j ni;P zið Þ½ � ¼ mþ ni � 1
m

� �
1� P zið Þ½ �mP zið Þni ð23Þ

thenfor1ViVN, 0VjV J, and , theconditionalexpectationofJij is:

g
ðkÞ
ij ¼ E Jij j Yobs; qðkÞ

� �
¼

1� gij
� 


f j j zi; qðkÞ
� �

PJ
r¼0 girf r j zi; qðkÞ

� � ; ð24Þ

where P(zi)=SJ
r=0 girf(rjzj,q(k)), ni=SJ

r=0 girJir.
M-step: To update q(k+1) by maximizing the expected complete data

log likelihood:

*LL q j Yobs; c
ðkÞ
ij ; g

ðkÞ
ij

� �
¼
XN
i¼1

XJ
j¼1

c
ðkÞ
ij þ g

ðkÞ
ij

h i
log f j j zi; qðkÞ

� �
ð25Þ

Tu et al. (1993) also gave a method for the calculation of the
asymptotic variance using the method of Louis (1982) or the SEM
algorithm (Meng and Rubin, 1991).

6.2 Repeated-Measures Model for the Data with
Missing Values

In this section, we consider a repeated-measures model for the data with
missing values:

*Yi
fN Xi b;SðqÞð Þði ¼ 1; . . . ; nÞ ð26Þ

whereYi is aT�1 random vector,Xi* is a knownT�p designmatrix, andb
is a T�1 parameter vector [see Table 1 in Jennrich and Schluchter (1986)
for examples of covariance structures model S(q)].

Now, we write Yi V=(yi
(0) V,Yi

(1) V), where Yi
(1) denotes the observed

values and Yi
(0) denotes the missing values.

The error term and covariance matrix are partitioned corresponding
to yi V=(yi(

(o)V,yi(m)V), as follows:

ei ¼
e
ð0Þ
i

e
ð1Þ
i

 !
;S ¼ S00;i S01;i

S10;i S11;i

� �
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The EM algorithm for this model is described as follows:

E-step:

E e
ð0Þ
i j Yð1Þ

i ; xi; yobs; b
ðtÞ;SðtÞ

� �
¼ S01;i S�1

11;i e
ð1Þ
i ube ð0Þi ð27Þ

E e
ð0ÞV
i e

ð0Þ
i j Yð1Þ

i ; xi;bðtÞ;SðtÞ
� �

¼ be ð0ÞVi be ð0Þi þS21;i S12;i ð28Þ

M-step:

bðtþ1Þ ¼
Xn
i¼1

X ViS�1
11;iXi

 !�1Xn
i¼1

X ViS�1
11;iYi ð29Þ

Sðtþ1Þ ¼
Xn
i¼1

be Vi bei þ Rið Þ ð30Þ

where:

be ¼ eð1Þbe ð0Þ
� �

;Ri ¼ 0 0
0 S22;i �S22;iS�1

11;iS12;i

� �
ð31Þ

Using the GEM algorithm, q can be estimated. Jennrich and
Schluchter (1986) used a scoring method in the M-step to get q(k+1) such
that the complete data log likelihood at q(k+1) is larger than that at q(k).

Yamaguchi (1990) proposed a robust model using a scale mixture of
normal distributions assumption for such data. The next chapter describes
such robust model.
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4
Robust Model and the EM Algorithm

Kazunori Yamaguchi
Rikkyo University, Tokyo, Japan

1 LINEAR MODEL WITH HEAVY-TAILED
ERROR DISTRIBUTIONS

Error terms in most statistical models are assumed to be the random var-
iables following the normal distribution and, under this assumption, the
maximum likelihood estimation is performed. In this case, the theoretical
validity of the results is guaranteed only when data satisfy the assumption
of normality. In the general case of applying such a method to actual data,
its robustness becomes a problem.

As a model of error distribution other than the normal distribution,
a scale mixture of normals might be used, which has a relatively heavier
tail than that of the normal and is unimodal and symmetrical in distribu-
tion. The family of scale mixtures of the normal distribution includes, in
particular, t-distribution, double exponential distribution, and logistical
distribution.

The assumption of a heavier-tailed distribution reflects an interest
in estimates, which are relatively unaffected by outliers. In particular, t-
distribution has been frequently used in the analysis of real data (Zellner,
1976; Sutradhar and Ali 1986), when they considered that data included
some outliers. Aitkin and Wilson (1980) treated several types of mixture
models of two normals. In this section, we do not confine the t-family or
contaminated normal family, but instead employ the family of scale mix-
tures of the normals and give a general method for parameter estimation.
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At that time, two problems would arise. One is the identification of error
distribution in the family, and the other is the detection of outliers. As
mentioned in Chapter 1, we treat both problems as model selection with
the help of the AIC.

1.1 Linear Model and Iteratively Reweighted
Least Squares

We begin with the linear model and iteratively reweighted least squares
(IRLS). The data consist of an n�1 response vector Y and an n�m design
matrix X. It is assumed that:

Y ¼ Xbþ e

where b is a vector of parameters and e is a vector such that the com-
ponents si of r�1e are independently and identically distributed with
known density f(si) on �l<si<l. In the context of ordinary least
squares, we do not use the assumption of error distribution. The weighted
least squares estimate of b is chosen to minimize:

ðY� XbÞVWðY� XbÞ ð1Þ
for a particular given W, where W is a positive definite diagonal matrix.
We assume that X VWX is full rank, so that the unique solution that attains
the minimum of Eq. (1) exists and can be written as:

bðWÞ ¼ ðX VWXÞ�1ðX VWYÞ
As the weighted least squares estimate depends on the weight matrixW, we
have to select a proper weight matrix. When the weight matrix is not fixed,
IRLS is used. IRLS is a process of obtaining the sequence b(0),b(1), . . . ,b(l+1)

for l>0 is a weighted least squares estimate corresponding to a weight
matrix W (l ), where W (l+1) depends on b(l ). To define a specific version of
IRLS, we need to define a sequence of weight matrices.

A general statistical justification for IRLS arises from the fact that
it can be viewed as an ML estimation.

The log likelihood is:

‘ðb; sÞ ¼ �n log s
Xn
i¼1

log f ðsiÞ ð2Þ

where

si ¼ ðyi � XibÞ=s
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Let:

wðsÞ �
�df ðsÞ=ds

sf ðsÞ ; for s p 0

� lims!0
dfðsÞ=ds
sfðsÞ ; for s ¼ 0

8>><>>:
9>>=>>; ð3Þ

We assume in Eq. (3) that f(s)>0 for all s, that df(s)/ds exists for zp0, and
thatw(s) has a finite limit as z!0. In addition, becausew(s) is selected as the
weight function, we must assume that df/dsV0 for s>0 and df/dsz0 for
s<0, hence f(s) is unimodal with amode at s=0. Furthermore, to simplify
the theory, we assume that df(0)/ds=0.

Dempster et al. (1980) gave the following lemmas and theorems
concerned with the connection between the IRLS process and the log like-
lihood function (Eq. (2)).

Lemma 1 For (b,r) such that r>0 and w(zi) are finite for all i, the equations
derived from the log likelihood (Eq. (2)) are given by:

X VWY� X VWXb ¼ 0 ð4Þ

and

�ðY� XbÞVW ðY� XbÞ þ ns2 ¼ 0 ð5Þ

where W is a diagonal matrix with elements w(s1),w(s2), . . . ,w(sn).

Lemma 1 suggests an IRLS procedure. BecauseW depends on b and
r, we cannot immediately solve Eqs. (4) and (5). Thus we might derive an
iterative procedure: At each iteration, substitute the temporary values of b
and r into the expression for W; then, holding W fixed, solve Eqs. (4) and
(5) to obtain the next values of b and r, that is, we take:

b̂ðlþ1Þ ¼ ðX VW ðlÞXÞ�1XVW ðlÞY ð6Þ

and

ŝðlþ1Þ ¼ ðY� Xb̂ðlþ1ÞÞVWðlÞðY� Xb̂ðlþ1ÞÞ=n ð7Þ

Theorem 1 If an instance of an IRLS algorithm defined by Eqs. (6) and (7)
converged to (b*,r*), where the weights are all finite and r*>0, then
(b*,r*) is a stationary point of (b,r).
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1.2 Scale Mixtures of Normal Distributions

If u is a standard normal random variable with density:

ð2kÞ�1=2exp � 1

2
u2

� �
ð�l < u < lÞ

and q is a positive random variable distributed independently of u with
distribution functionM(q), then the random variable z=uq�1/2 is called to
have a scale mixture of normal distributions. Andrew et al. (1972) states it
had a normal/independent distribution.

The scale mixtures of normal distributions are a convenient family of
symmetrical distributions for components of error terms. The following
show some familiar examples of these.

Example 1 Contaminated normal distribution

If

MðqÞ ¼
1� y ifq ¼ 1
y ifq ¼ 1
0 otherwise

8<:
then the distribution of z is the contaminated normal distribution with
contaminated fraction y and variance inflation factor k, that is,

zfð1� yÞ �Nð0;SÞ þ y�Nð0;S=kÞ
Example 2 t-distribution
Let m be a constant. If the distribution of m�q is v2 distribution with m
degrees of freedom, then the distribution of z is the t-distribution with m
degrees of freedom. When m=1, it is also called the Cauchy distribution.

Example 3 Double exponential distribution

If

MðqÞ ¼ 1

2
q�2exp

�1

2q

 !

z has the double exponential distribution with the probability density
function:

fðzÞ ¼ 1

2
expð�jzjÞ
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Example 4 Logistic distribution

If

MðqÞ ¼
Xl
k¼1

ð�1Þðk�1Þk2q�2exp � k

2q

� �
z has the logistic distribution with the distribution function:

FðzÞ ¼ ½1þ expð�xÞ��1

Dempster et al. (1980) pointed out a close connection with IRLS.
Knowledge of the scale factors qi

�1/2 in each component ei=ruiqi
�1/2

would lead to the use of weighted least squares with a weight matrix W
whose diagonal elements are q1,q2, . . . ,qn, and treating these weights as
missing data might lead to a statistically natural derivation of IRLS.

The density function of z, f(z), is:

fðzÞ ¼
Z l

0

ð2kÞ�1=2q1=2exp � 1

2
qz2

� �
dMðzÞ ð8Þ

Lemma 2 Suppose that z is a scale mixture random variable of normal
distribution with density function (Eq. (8)). Then for 0<jzj<l:

(i) The conditional distribution of q given z exists.
(ii) E(qkjz)<l, for k>�1/2.
(iii) w(z)=E(qjz).
(iv) dw(z)/dz=�zvar(qjz).
(v)w(z)=w(�z) is finite, positive, and nonincreasing for z>0.
For z=0:
(vi) The conditional distribution of q given z exists if and only if

E(q1/2)<l.
(vii) w(0)z w(z) for z p 0 and w(0) is finite if and only if E(q3/2)

<l.
(viii) dw(0)/dz is finite if and only if E(q5/2)<l.

Lemma 3 Suppose that ufN(0,1) and that q is a positive random variable
distributed independently of u with distribution function M(q). Then:

z ¼ uq�1=2

is equivalent to the conditional distribution of z given q=q0 is N(0,1/q0).
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Lemma 4 The kurtosis of z is never less than that of u.

Proof

Eðz4Þ
Eðz2Þ2 ¼ Eðu4q�2Þ

Eðu2q�1Þ2

¼ Eðu4ÞEðq�2Þ
Eðu2Þ2Eðq�1Þ2

z
Eðu4Þ
Eðu2Þ2

The family of scale mixtures of the normal is heavier-tailed than the
normal distribution in the meaning of the kurtosis. We note that the
condition of the normality of u is not necessary in the above lemma; that is,
even when u is not limited to a normal random variable, the tail becomes
heavier than that of the distribution of the original random variable.

1.3 Multivariate Model

We now consider an extension of the above results to the multivariate case.

Basic Statistics

LetU be a p-component random vector distributed asN(0,S) and let q be a
positive random variable distributed independently of U with distribution
function M( q). Then the random vector Z=Uq�1/2 has a scale mixture
distribution of multivariate normal.

Lemma 5 The density function of Z, f(Z), is

fðZÞ ¼
Z l

0

ð2kÞ�1=2q p=2jSj�1=2exp � 1

2
qZVS�1Z

� �
dMðqÞ ð9Þ

The mean vector and covariance matrix of Z are represented by the
following lemma.

Lemma 6

EðZÞ ¼ 0

CovðZÞ ¼
Z l

0

q�1dMðqÞS
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The next lemma gives the same result as the multivariate case of
Lemma 4. The multivariate kurtosis n2,p is defined by Mardia (1970) as
follows.

Let X be an arbitrary p-dimensional random vector, let m be its p�1
mean vector, and let S be its p�p covariance matrix. Then:

n2;p ¼ E ½ðX� mÞVS�1ðX� mÞ�2
n o

Lemma 7 The multivariate kurtosis of Z is not less than that of U.

Proof

E½Z V EðZZ Vf g�1Z Þ2� ¼ E
Z V
q1=2

E
1

q
ZZ

� �� ��1
Z

q1=2

 !2
24 35

¼ E
1

q
Z V E

1

q

� �
EðZZ VÞ

� ��1

Z

 !2
24 35

¼ E½Z V EðZZ VÞf g�1Z �2E 1

q2

� �
E

1

q

� �� ��2

zE½Z V EðZZ VÞf g�1Z�2

Lemma 8

EðqjZÞ ¼ �Z V
dfðZÞ
dZ

=Z VS�1ZfðZÞ

and if Z VS�1Z=Z0VS�1Z0, then E(qjZ)=E(qjZ0).

Let s2=s2(Z)=Z VS�1Z and w(s2)=E( qjZ) because w has the same
value if s2 is the same.

Lemma 9 w(s2) is finite, positive, and nonincreasing for s2p 0.

Proof

dw

ds2
¼ � 1

2

Rl
0 q2ð2kÞ�1=2q1=2ASA�1=2exp � 1

2
qs2

� 

dMðqÞRl

0 ð2kÞ�1=2q1=2ASA�1=2exp � 1
2 qs

2
� 


dMðqÞ

þ 1

2

Rl
0 qð2kÞ�1=2q1=2ASA�1=2exp � 1

2
qs2

� 

dMðqÞRl

0 ð2kÞ�1=2q1=2ASA�1=2exp � 1
2
qs2

� 

dMðqÞ

( )2

V0

We now consider the multivariate regression to give the relation
between the conditional expectation of q given Z and IRLS.
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Suppose Y1,Y2, . . . ,Yn are a set of n observations, with Yi following
the model:

Yi ¼ bXi þ ei ð10Þ
whereb is a p�mmatrix of parameters,Xi is a known designmatrix, and ei/
r is a vector with the density function f(ei) and SV=r2Ip for the sake of
simplicity. Then the log likelihood function is:

‘ðbÞ ¼ � np

2
logs2 þ

Xn
i¼1

logfðeiÞ ð11Þ

Let:

wij* ¼ � 1

eiffðeiÞ
dfðeiÞ
dei

and

Wi* ¼ diag wi1*;wi2*; . . . ;wip*

 �

where eij is the jth component of ei. Then the likelihood equations from Eq.
(11) are:Xn

i¼1

Wi*eiXi
V ¼ 0

and

nps2 �
Xn
i¼1

eiVWi*ei ¼ 0

Lemma 10 If ei has the density function (Eq. (3)), then:

EðqijeiÞ ¼ eiVWi*ei=eiVei

Although wij* is a weight of the jth component of the ith individual,
E( qijei) might be regarded as a weight of the ith individual, which is
regarded as a weighted average of wij*.

1.4 ML Estimation and EM Algorithm

We now establish a concrete procedure of ML estimation using the EM
algorithm. It is assumed that Yi=bXi+ei (i=1, . . . ,n), and ei is independ-
ently identically distributed from a scale mixture of multivariate normal.
Namely, there exist n mutually independent positive random variables qi,
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which follow the distribution function M( qi) and, conditional on qi, ei
follows N(0,S/qi). According to the method of description of the EM
algorithm by Dempster et al. (1977), {Yi} represents the directly observed
data, called incomplete data because further potential data {qi} that are
not observed are assumed to exist, and we denote a representation of the
complete data by {Oi}={Yi,qi}, including both observed and unobserved
data. The log likelihood of {Oi} is:

‘ðb;SÞ ¼ const� n

2
logjSj � 1

2

Xn
i¼1

qiðYi � bXiÞVS�1ðYi � bXiÞð12Þ

The evaluation of the conditional expectation of W(b,S) (Eq. (12)) is
realized in E-step, and the maximization of E(W|Yi) with respect to the
objective parameters is realized in M-step.

E-step: With the observed data Yi and the temporary values of
parameters b(l) and S(l), the conditional expectation of W is evaluated.
In this case, it is none other than determining the conditional expectation
of qi, which would be determined if M(.) is specified.

M-step: Assuming that qi
(l+1) determined in the E-step was given, the

estimated values of the parameters are renewed such that these values
maximize the temporary log likelihood. In this case:

b̂ðlþ1Þ ¼
Xn
i¼1

q
ðlþ1Þ
i YiXiV

Xn
i¼1

q
ðlþ1Þ
i XiX

V
i

 !�1

Ŝðlþ1Þ ¼
Xn
i¼1

q
ðlþ1Þ
i ðYi � b̂ðlþ1ÞXiÞðYi � b̂ðlþ1ÞXiÞV=n

The above E-step and M-step are repeatedly carried out, taking the
proper initial values, and the ML estimation is obtained. The E-step is
materialized by specifying the distribution of q. Hereafter, several exam-
ples are shown.

Example 5 Contaminated multivariate normal distribution

MðqÞ ¼
1� y if q ¼ 1
y if q ¼ k
0 otherwise

8<:
where k<0 and 0<d<1.

When M( q) is specified as described above, it assumes the distribu-
tion of the mixture of N(o,S) and N(o,S/k) in the ratio of 1�d to d.
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Here, the conditional distribution of qwhenY,X, and the temporary
values of the parametersb(l) and Ŝ(l) are given is concretely evaluated, and:

wðlþ1Þ ¼ Eðqje Þ

¼ 1� yþ yk1þp=2exp ð1� kÞd2=2
 �
1� yþ ykp=2exp ð1� kÞd2=2f g ð13Þ

is obtained, where:

d2 ¼ ðY� ĥðlÞXÞVŜðlÞ�1ðY� ĥðlÞXÞ
Example 6 Multivariate t-distribution
If q�m has a chi-square distribution with m degrees of freedom, the mar-
ginal distribution is the multivariate t-distribution (Cornish, 1954). At
this time:

wðlþ1Þ ¼ Eðqje Þ ð14Þ
¼ ðmþ pÞ=ðmþ d2Þ

Both models downweight observations with large d2. However, the
curve of the weights is quite different for the two models—with the
multivariate t-model producing relatively smoothly declining weights with
increasing d2, and the contaminated normal model tending to concentrate
on the low weights in a few outlying observations.

Estimation of Mixing Parameters

If the model of the distribution function of q includes some unknown
parameters (e.g., the degrees of freedom m for the multivariate t-model, the
contamination fraction d and variance inflation factor k for the contami-
nated normal model, etc.), we have to estimate such parameters.

The distribution of p-variate random vector Y is assumed such that
the conditional distribution of Y given positive random variable q is
N(m,S/q). Let f( q;q) be the probability density function of qwith unknown
parameter vector q (mixing parameters), and let g(Y;m,S) denote the
normal density function with mean vector m and covariance matrix S.
Then the joint density function ofY and q is f( q;q)g(Y;m,S/q). Because q is
not included in g(�) but in f(�), the log likelihood concernedwith q, based on
complete data {(Yi,qi), i=1,2, . . . ,n}, is:

constþ
Xn
i¼1

logfðqi; qÞ ð15Þ
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The ML estimation of q is performed via the EM algorithm: The
evaluation of the conditional expectation of Eq. (15), given observations
{Yi, i=1, . . . ,n} and temporary values of parameters, is realized in E-step.
The maximization of the expected log likelihood obtained in E-step, with
respect to q, is realized in M-step.

We now illustrate a concrete algorithm for the t-model (Lange et al.,
1989). Given lth estimates m(l),S(l), and m(l) in the E-step, we compute wi

(l)

using Eq. (14) with m=m(l) and:

mi ¼ Eðlogqije iÞ
¼ cðmðlÞ=2þ p=2Þ � logðmðlÞ=2þ d2=2Þ

where the digamma function (psi function) is:

cðxÞ ¼ d

dx
log GðxÞf g

In theM-step,we computem(l+1) andS(l+1) and find m(l+1) thatmaximizes:

‘iðmÞ ¼ nm
2
logðm=2Þ � nlog Gðm=2Þf g þ m

2
� 1

� �Xn
i¼1

v
ðlÞ
i � m

2

Xn
i¼1

w
ðlÞ
i

It is easy to find the value of m that maximizes ‘1 using a one dimensional-
search (e.g., Newton’s method).

For the t-model, another method is considered. We calculate the
maximized log likelihood for a fixed m, which is:

‘2 ¼ � 1

2
log j Ŝ j � 1

2
ðmþ pÞlogð1þ d2i =mÞ �

1

2
plogðm=2Þ

þlog½G ðmþ pÞ=2f g=G m=2f g�
We can regard the maximized log likelihood as a function of the degrees of
freedom m, and select the value of m as the estimate, which attains the
maximum over a grid of m values.

The case of the contaminated normal model is more complicated
because the model includes two parameters (Little, 1988a,b). When the
variance inflation factor k is fixed in advance, it is easy to estimate k
simultaneously with l andS by a general method described earlier; that is,
we only have to add the calculation of E{I( qi=k)jei} to the E-step and:

yðlþ1Þ ¼ 1

n

Xn
i¼1

E Iðqi ¼ kÞ j eðlÞi
n o
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to the M-step, where I(.) is an index function and:

E Iðqi ¼ kÞ j Yi; AðlÞ;SðlÞ
n o ykp=2exp ð1� kÞd2=2
 �

1� yþ ykp=2exp ð1� kÞd2=2f g
When k is treated as a parameter, the simultaneous estimation of k

and d with b andS cannot be directly derived because it is meaningless to
estimate k when qi (or wi) is given. Thus the estimation of k is performed
based on the log likelihood ‘3 from the marginal distribution of Yi, which
is:

‘3 ¼ const� n

2
log j S j � 1

2

Xn
i¼1

d2i

þ
Xn
i¼1

log 1� yþ ykp=2exp ð1� kÞd2
i =2


 �h i
Then:

yðlþ1Þ ¼ 1

n

Xn
i¼1

E Iðqi ¼ kðlÞÞ j Yi; Aðlþ1Þ;Sðlþ1Þ
n o

ð16Þ

and k(l+1) is obtained as a solution of the equation:

kðlþ1Þ ¼
p
Xn
i¼1

E I qi ¼ kðlþ1Þ
� �

j Yi; Aðlþ1Þ;Sðlþ1Þ
n o

Xn
i¼1

d
2ðlþ1Þ
i E I qi ¼ kðlþ1Þ

� �
j Yi; Aðlþ1Þ;Sðlþ1Þ

n o ð17Þ

Note that the equation (Eq. (17)) for k(l+1) depends on y(l+1), A(l+1),
and S(l+1), and not on d(l), m(l), and S(l).

On the Convergence Property

Before demonstrating the property of the above method, we briefly rewrite
an outline of the GEM algorithm. Instead of the ‘‘complete data’’ x, we
observe the ‘‘incomplete data’’ y=y(x). Let the density functions of x and y
be f(x;f) and g(y;f), respectively. Furthermore, let k(x|y;f)=f(x;f)/
g(y;f) be the conditional density of x given y. Then the log likelihood
can be written in the following form:

LðbfVÞ ¼ log gðy;fVÞ ¼ QðfV j fÞ �HðfV j fÞ
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where:

Qðf V j fÞ ¼ E log fðx;fVÞ j y;ff g
HðfV j fÞ ¼ E log kðx j y;fVÞ j y;ff g

and these are assumed to exist for any (f,f).
In general,Q(fV|f)�Q(f|f)z0 implies that L(fV)�L(f)z 0. There-

fore, for any sequence {f( p)} generated by GEM algorithm:

Lð/ðpþ1ÞÞzLð/ðpÞÞ ð18Þ
This is essential to the convergence property of GEM algorithm, and the
hybrid GEM algorithm must keep this property.

Let us show that the above method can generate sequences such that
L(f( p+1))zL(f( p)). Let c be unknown parameters, except k. Given c( p)

and k( p), from the step of theGEMalgorithm form andS, and Eq. (16), we
obtain c( p+1). Then clearly:

Qðcðpþ1Þ; kðpÞ j cðpÞ; kðpÞÞzQðcðpÞ; kðpÞ j cðpÞ; kðpÞÞ
which yields:

Lðcðpþ1Þ; kðpÞÞzLðcðpÞ; kðpÞÞ
k( p+1) determined by Eq. (17) satisfies:

Lðcðpþ1Þ; kðpþ1ÞÞzLðcðpþ1Þ; kðpÞÞzLðcðpÞ; kðpÞÞ
and therefore Eq. (18).

2 ESTIMATION FROM DATA WITH MISSING VALUES

Little (1988a) improved the method explained in Sec. 1 so that it can be
used for data sets with missing values.

Now, let yi be the data vector. We write yiV=(yi
(o)V,yi

(m)V), where yi
(o)

denotes the observed values and yi
(m) denotes the missing values.

The mean vector and covariance matrix are partitioned correspond-
ing to yiV=(yi

(o)V,yi
(m)V), as follows:

m ¼ mðoÞ
i

mðmÞ
i

 !
;S ¼ SðooÞ

i SðomÞ
i

SðmoÞ
i SðmmÞ

i

 !
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The log likelihood based on y1, . . . , yn is:

‘ðb;SÞ ¼ const� n

2
log jS j� 1

2

Xn
i¼1

qiðYðoÞ
i �mðoÞ

i ÞVSðooÞ�1ðYðoÞ
i �mðoÞ

i Þ

� 1

2

Xn
i¼1

qiðYðmÞ
i � mðmÞ

i �SðmoÞ
i SðooÞ�1

i ðyðoÞi � mðoÞ
i ÞÞV

S̃ðooÞ�1ðYðmÞ
i � mðmÞ

i �SðmoÞ
i SðmmÞ�1

i ðyðoÞi � mðoÞ
i ÞÞ ð19Þ

where S̃(mm)=S(mm)�S(mo)S(oo)�1S(om). This can be regarded as a linear
combination of q, qy(m), and qy(m)y(m)V. In E-step, we only need to find the
expectations of such statistics to get the expectation of the above log
likelihood based on the complete data.

The E-step then consists of calculating and summing the following
expected values:

Eðqi j yðoÞi ;mðlÞ;SðlÞÞ ð20Þ
EðqiyðmÞ

i j yðoÞi ;mðlÞ;SðlÞÞ ð21Þ
Eðqi j yðmÞ

i y
ðmÞV
i ;mðlÞ;SðlÞÞ ð22Þ

Let wi=E( qi|yi
(o);m,S), then:

EðqiyðmÞ
i j yðoÞi ;m;SÞ ¼ wiŷ

ðmÞ
i ð23Þ

EðqiyðmÞ
i y

ðmÞV
i j yðoÞi ;m;SÞ ¼ wiŷ

ðmÞ
i ŷ

ðmÞV
i þ S̃ðmmÞ

i ð24Þ
where ŷi

(m)=Si
(mo)Si

(oo)�1(yi
(o)�mi

(o)).
It has been shown above that this method is a trial in which both

outliers and missing value problems will be simultaneously solved by using
scale mixture models of normal distributions and EM algorithm.

In addition, such trials have been applied not only to the estimation
of such basic statistics but also to other multivariate analysis models (e.g.,
general linear model, Lange et al. 1989; repeated measures model, Little
1988b, Yamaguchi, 1989; factor analysis model, Yamaguchi and Wata-
nabe, 1991; etc.).

The model of distribution of q, M( q), may include parameters to be
estimated (Kano et al., 1993 called them tuning parameters) (e.g., the
degrees of freedom of the t-model, and mixing parameters of the con-
taminated normal model). Lange et al. (1989) and Yamaguchi (1990) have
given methods to estimate such parameters. In Chapter 6, such methods
are explained as examples of the extension of the EM algorithm.
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In Secs. 3 and 4, we apply the distributionmodel explained here to the
factor analysis model or the Tobit model.

3 ROBUST ESTIMATION IN FACTOR ANALYSIS

Factor Analysis Model

Factor analysis is a branch of multivariate analysis that is concerned with
the internal relationships of a set of variables when these relationships can
be taken to be linear, or approximately so. Initially, factor analysis was
developed by psychometricians and, in the early days, only approximate
methods of estimation were available, of which themost celebrated was the
centroid or simple summation method. The principal factor and minres
methods are more recent approximate methods (see Harman, 1967 and his
references). Efficient estimation procedures were based on the method of
maximum likelihood (Lawley andMaxwell, 1963). Difficulties of computa-
tional nature were experienced, however, and it was not until the advent of
electronic computers and a new approach to the solution of the basic
equations by Jöreskog (1967) that the maximum likelihood approach
became a feasible proposition.

An alternative approach to calculating ML estimates was suggested
by Dempster et al. (1977) and has been examined further by Rubin and
Thayer (1982, 1983) and Bentler and Tanaka (1983). Its use depends on the
fact that if we could observe the factor scores, we could estimate the
parameters by regression methods.

Bentler and Tanaka pointed out some problems on Rubin and
Thayer’s example and the EM algorithm for ML factor analysis. Con-
cerning the slowness of convergence of the EM algorithm, it does not seem
to be so important in recent highly developed circumstances of computers.
On the other hand, the problem of the example of Rubin and Thayer seems
to be due to insufficient implement of the algorithm. In particular, it is
important to determine what kind of criterion for convergence is selected.
In applying the EM algorithm, we have to use strict criterion for con-
vergence, which was also noted by Bentler and Tanaka, because a small
renewal of parameters is performed by one step of the iteration when the
model includes a large number of parameters.

The ordinaryML factor analysis is based on the assumption that the
observations follow the multivariate normal distribution. It is well known
that the analysis under the normality assumption is sensitive to outliers. In
fact, in practical applications of factor analysis, we often meet cases where
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the normality assumption is inappropriate because the data include some
extreme observations. Rubin and Thayer (1982) mentioned that, after
deriving the MLmethod for factor analysis under the multivariate normal
assumption, ‘‘the entire issue of the sensitivity of results to the assumption
of multivariate normality is important for the wise application of the
technique in practice.’’

Inmany fields including social and behavioral sciences, the normality
assumption is sometimes unrealistic. Thus it becomes important to know
how robust the normal theory is to violations of the multivariate normality
assumption. Shapiro and Browne (1987) show that for elliptical distribu-
tions, the maximum likelihood and least square estimates are efficient
within the class of estimates based on the sample covariance matrix, and
Browne (1984) gives asymptotic distribution-free (ADF) methods. How-
ever, their methods are not necessarily efficient within the class of all
possible estimates. In particular, when the kurtosis of the population dis-
tribution is large, they are significantly inefficient. This fact suggests the
necessity of a consideration of more efficient estimates under the distribu-
tion with large kurtosis.

3.2 Robust Model

Suppose Yi=a+bZi+ei (i=1, . . . ,n), where Yi is an observed p-compo-
nent vector, Zi is an unobserved m-component vector of factor scores and
ei is a vector of errors (or errors plus specific factors). a is a vector of means
and the p�m matrix b consists of factor loadings.

In this section, we use scale mixtures of multivariate normal distri-
butions instead of the normality assumption, considering following two
typical backgrounds. In employing such heavier-tailed symmetrical dis-
tributions as underlying distributions, we consider two practical possibil-
ities as follows:

(1) A case where a group is not homogeneous from the beginning,
and the existence of partial subjects that have abnormal capa-
bility is supposed. Namely, both Y and Z are assumed to follow
scale mixtures of normal distributions.

(2) A case where the latent ability itself of a group is homogeneous,
but at the point of time when manifest response Y is observed,
outliers mix. Originally, because specific factors are the result of
the mixture of many factors including errors, the assumption for
the distribution of specific factors in applying scale mixtures of
normal distributions is more realistic than normal distributions.
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Concrete statistical models based on the above two cases are as
follows:

Model 1We assume that, conditional on unobserved qi, ei is normally
distributed withmean 0 and covariancematrixW/qi andZi is also normally
distributed with mean 0 and covariance matrix I/qi, and that ei and Zi are
mutually independent, where W is a diagonal matrix and I is the unit
matrix. qi is a positive random variable with the probability (density)
function M( qi).

Then, conditional on qi,

Yi

Zi

� �
fN

a
0

� �
;Sð1Þ=qi

� �
where:

Sð1Þ ¼ Sð1Þ
YY Sð1Þ

YZ

Sð1Þ
ZY Sð1Þ

ZZ

 !
¼ bb VþW b

b V I

� �
Model 2 Zi is, independently of qi, normally distributed with mean 0

and covariance matrix I. Conditional on qi, ei is normally distributed with
mean 0 and covariance matrix W/qi. Thus, conditional on qi,

Yi

Z i

� �
fN

a
0

� �
;S2

i

� �
where:

S
ð2Þ
i ¼

Sð2Þ
YYi Sð2Þ

YZi

Sð2Þ
ZYi Sð2Þ

ZZi

0@ 1A ¼ bb VþW=qi b
b I

� �

3.3 Estimation of Parameters

In this section, assuming that the number of factors is known, we give the
estimates of parameters by applying the EM algorithm, treating q andZ as
missing data, that iteratively maximizes the likelihood supposing q and Z
were observed. First we consider the estimation under Model 1. The
following lemma enables us to easily handle the log likelihood.

Lemma 11

Sð1Þ�� �� ¼ Wj j
Sð2Þ�� �� ¼ q�p Wj j
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Sð1Þ�1 ¼ W�1 �W�1h
�hVW�1 Im þ hVW�1h

� �
Sð2Þ�1 ¼ qW�1 �qW�1h

�qhVW�1 Im þ qhVW�1h

� �
If Zs and qs are observed in addition to Y, the log likelihood is:

‘ ¼ const� n

2
log Wj j � 1

2

X
i¼1

ntr qi W�1 Yi � að Þ Yi � að ÞVð
�
�2 Yi � að ÞZiVbVþ bZiZiVbVÞg�

and the sufficient statistics areX
qi;

X
qiYi;

X
qiZi;

X
qiYiYiV;

X
qiYiZiV

Let:

SYY SYZ

SZY SZZ

� �
¼

X
qiYi

Y
i
V=q0

X
qiYi

Z
i
V=q0X

qiZi
Y

i
V=q0

X
qiZi

Z
i
V=q0

0@ 1A
CYY CYZ

CZY CZZ

� �
¼ SYY � YY V SYZ � YZV

SZY � ZY V SZZ � ZZV

� �
where:

Y ¼
X

qiY=q0; Z ¼
X

qiZi=q0; q0 ¼
X

qi

then:

â¼ Y� b̂Z ð25Þ
b̂ ¼ CYZC

�1
ZZ

Ŵ¼ diag CYY � CYZC
�1
ZZCZY

� 

q0=n

However, we cannot observe qs and Zs. Thus we must calculate the
conditional expectations of the above sufficient statistics given Ys.

E-step:Wegive the conditional expectations of the sufficient statistics
given Ys as follows. First we let:

wi ¼ E qi j Yið Þ
where the specific form ofwi depends on themodel for the distribution of qi
(i.e., M(.); see examples).

We note that, in this case, we could regard wi as the weight of Yi

in the following procedure. Therefore, we could easily find the extreme
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observations by checking wi (see the results of Mardia et al., 1979 in
Sec. 5.4):

E qiZi j Yið Þ ¼ E qiE Zi j qi;Yið Þ j Yif g

¼ wiẐi

because the conditional expectation of Z given q and Y does not depend
on q:

E qiZiZiV j Yið Þ ¼ E qiE ZiZiV j qi;Yið Þ j Yif g
¼ E qi ẐiẐiVþ Cov Zi j qi;Yið Þ

� �
j Yi

n o
¼ wiẐiẐiVþSZZ

*

where:

Ẑ i
¼ Sð1Þ

ZYS
ð1Þ�1
YY Yi � að Þ

S*
ZZ ¼ Sð1Þ

ZZ �Sð1Þ
ZYS

ð1Þ�1
YY Sð1Þ

YZ

M-step: We compute the update estimates with equations (Eq. (25))
replaced by their conditional expectations from E-step.

We would get the ML estimates by applying repeatedly the E-step
and the M-step until convergence.

Example 6 To consider the contaminated multivariate normal case, let:

MðqiÞ ¼
1� y if qi ¼ 1
y if qi ¼ 1
0 otherwise

8<:
then:

wi ¼
1� yþ yk1þp=2exp 1� kð Þd2

i =2

 �

1� yþ ykp=2exp 1� kð Þd2
i =2


 �
where:

d2
1 ¼ Yi � að ÞVSð1Þ�1

YY Yi � að Þ
Example 7

If qi�m has a the chi-square distribution with m degrees of freedom, the
marginal distribution is the multivariate t-distribution and:

wi ¼ mþ p

mþ d2i

(for examples, see Andrews et al., 1972; Andrews and Mallows, 1974).
We note that wi is decreasing with di in the above two examples. For
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Model 2, we also get the estimates in the same way. But the calculation of
the conditional expectations in E-step is more complicated because
E(Zi|qi,Yi) depends on qi in this case. In the following example, we show
the expectations that would be needed in E-step, in the contaminated
multivariate normal case.

Example 8.M( qi) is the same as that of Example 1; that is, this example is
the contaminated multivariate normal case:

Eðqi j YiÞ ¼
1� yð Þ Sj j�1=2þyk S*

�� ���1=2
D2

1� yð Þ Sj j�1=2þy S*
�� ���1=2

D2
i

¼ w

EðqiZi j YiÞ ¼ hVðh1iS�1 þ khkiS*�1ÞðYi � aÞ
EðqiZiZiV j YiÞ ¼ wiIp þ bV½h1iS�1fIp þ ðYi � aÞðYi � aÞVS�1g

þkhkiS*�1fIp þ ðYi � aÞðYi � aÞVS*�1g�b
where:

h1i ¼ ð1� yÞ j S j�1=2

ð1� yÞ j S j�1=2 þy j S* j�1=2
D2

i

hki ¼ 1� h1i ¼ y j S* j�1=2

ð1� yÞ j S j�1=2 þy j S* j�1=2
D2

i

D2
i ¼ exp

1

2
ðYi � aÞVðS�1 �S*�1ÞðYi � aÞ

� �
S ¼ bVbþW

S ¼ bVbþW=k

3.4 Simulation Study

Our numerical model is based on a two-factor model for the open/closed
book data inMardia et al. (1979). Here, we set the order p of response data
as 5 and the number m of common factors as 2 and made the following
settings for the factor loading matrix and the specific variance matrix:

a ¼ 0

bV ¼ 0:63 0:70 0:89 0:78 0:73
0:37 0:31 0:05 �0:20 �0:20

� 	
W ¼ diagð0:46; 0:42; 0:20; 0:35; 0:43Þ
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This numerical model is based on the maximum likelihood estimates made
by Mardia et al. During the generation of artificial data, we used the
following four distributions for the factor scores Zi and the error terms ei:

(1) Multivariate normal distribution (MN)
(2) Multivariate t-distribution with 10 df (T10)
(3) Multivariate t-distribution with 4 df (T4)
(4) Contaminated multivariate normal distribution (CN):

0:9�N
a
0

� �
;S

� �
þ 0:1�N

a
0

� �
;S=0:0767

� �
For the four sets of artificial data based on different assumptions of

underlying distribution generated from the above models, we calculated
the following four MLEs:

(a) MLE on the assumption of multivariate normal distribution
(normal MLE)

(b) MLE on the assumption of multivariate t-distribution with 10 df
(T10-type MLE)

(c) MLE on the assumption of multivariate t-distribution with 4 df
(T4-type MLE)

(d) MLE on the assumption of contaminated multivariate normal
distribution (contaminated MLE).

Thus, one experiment is enough to calculate a total of 16 estimates
with regard to factor loadingsb and specific variancesW. For each of these
estimates, we calculated the following estimation criteria.

The square root of the root mean squared error (RMSE) with regard
to factor loadings is:Xp

i¼1

Xm
j¼1

ðb̂ij � bijÞ2=pm
( )1=2

where b̂ is rotated to satisfy that b̂VŴb̂ is diagonal.
The square root of the root mean squared error with regard to

specific variances is:Xp
i¼1

Ŵi � ci

� �2
=p

( )1=2

Wemade a simulation with different sample sizes of 200 and 400. The
simulation size was 1000.
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Table 1 shows a summary of RMSEs related to multivariate normal
distribution, contaminated-type multivariate normal distribution, and
multivariate t-distribution. These four distribution patterns are arranged
in the order of small to large kurtosis. Table 2 shows multivariate kurtosis
(Mardia, 1970) of these four distribution patterns, and these can be
arranged in order of multivariate kurtosis as follows:

MN < T10 < CN < T4

In the rows in Table 1, we provided distribution forms of random
values used in the generation of artificial data. In the columns, we provided
distribution forms assumed for the maximum likelihood method. There-
fore, the diagonal cell in the table shows the efficiency of each maximum
likelihood method under the right assumption of underlying distribution
patterns. The nondiagonal cell, on the other hand, shows the efficiency of
eachmaximum likelihoodmethod under wrong assumptions of underlying
distributions. The figures in parentheses show the relative ratios for each
row on the basis that the figure for the diagonal cell is 100. The figure in
parentheses for the final row (mean) indicates the averages of all these
relative rations from all rows. The smaller the relative ratio is, the more ro-
bust a specific distribution pattern is with regard to erroneous regulations.

Table 1 RMSE of Estimates of Unique Variances

Assumed distribution

Data MN T10 CN T4

n=200

MN 72 (100) 74 (103) 72 (101) 78 (108)
T10 79 (107) 74 (100) 81 (109) 76 (103)
CN 115 (153) 75 (101) 75 (100) 76 (101)
T4 108 (142) 78 (103) 87 (114) 76 (100)

Mean (126) (102) (106) (103)
n=400

MN 52 (100) 55 (107) 54 (102) 57 (109)

T10 62 (106) 58 (100) 60 (104) 58 (100)
CN 93 (176) 57 (109) 52 (100) 54 (103)
T4 79 (150) 57 (109) 64 (122) 53 (100)

Mean (133) (106) (107) (103)
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First we discuss the RMSEs of estimates of factor loadings in a
comparison of multivariate normal distribution with contaminated multi-
variate normal distribution in Table 1. With regard to artificial data that
follow the multivariate normal model, the efficiency of contaminated-type
MLE almost corresponds to that of normal-typeMLE. On the other hand,
with regard to artificial data that follow the contaminated-type multi-
variate normal model, the efficiency of the same contaminated-type MLE
far exceeds that of normal-type MLE. That is, when underlying distribu-
tion shifts from normal-type to contaminated-type distributions, normal
MLE loses its efficiency. Contaminated-type MLE, on the other hand,
proves robust with regard to the distribution slippage. This tendency is
similar in estimating specific variances. But an increasing difference in
robustness between the two MLEs in response to a rise in sample size is
even larger than that when estimating factor loadings.

Next we compare RMSEs of estimates of factor loadings with regard
to multivariate normal distribution and multivariate t-distribution. With
regard to artificial data that follow the multivariate normal distribution
model, we can say that the efficiency of normalMLE differs little from that
of multivariate t-typeMLEwith 4 and 10 df. But when the sample size is as
large as 200, the efficiency of multivariate t-type MLE with 4 df is slightly
lower than that of the other two multivariate t-distribution model with 10
df. The efficiency of the multivariate t-type MLE with 10 and 4 df is fairly
high, but the efficiency of normal MLE is comparatively lower. With
regard to artificial data that follow the multivariate t-distribution model
with 4 df, the efficiency of the multivariate t-type MLE with 10 df is lower,
but the efficiency of normal MLE is even lower. On average, MLE
robustness with regard to the slippage of assumptions of underlying
distribution is the highest in the case of multivariate t-type MLE with
4 df, followed by multivariate t-type MLE with 10 df, and then by mul-
tivariate normal MLE. Normal MLE is thus least robust. That is, the
robustness of the resulting maximum likelihood estimator increases in
direct proportion to the multivariate kurtosis of the distribution pattern
assumed in the creation of the maximum likelihood method. This ten-
dency increases as the sample size rises. The same tendency is seen in the

Table 2 Multivariate Kurtosis

Distribution MN T10 CN T4

Multivariate kurtosis 99 128 383 l

Robust Model and the EM Algorithm 59



estimation of specific variances. The increase in difference of MLE robust-
ness according to an increase in sample size is larger than that in the
estimation of factor loadings.

The result of a comparison of the contaminated multivariate normal
distribution with multivariate t-distributions is different from the cases
including the multivariate normal distribution. As in the earlier case, the
RMSE value corresponding to the upper triangular cell is smaller than the
RMSE of the lower triangular cell, with the diagonal cell as the borderline.
That is, we can say that themaximum likelihoodmethod assuming a longer
tail compared with generated data distribution affects the robustness
stemming from erroneous regulations of underlying distribution in the
maximum likelihood method less than the maximum likelihood method,
assuming that there is a distribution pattern with a shorter tail. But, unlike
the earlier example including multivariate normal distribution, the gap
between contaminated-type distribution and multivariate t-distribution is
not so wide.

Generally speaking, MLE under normal distribution is less robust
than MLE that assumes a heavier-tailed distribution.

4 ROBUST TOBIT MODEL

4.1 Introduction

In the field of economics and sociology, we often deal with the non-
negative data such as amount of money, periods of time, number of
persons, ratios (e.g., household expenditure on durable goods), household
income, duration of unemployment or welfare receipt, number of extra-
marital affairs, ratio of unemployed hours to employed hours, etc. (see
Ashenfelter and Ham, 1979).

Tobin (1958) proposed a regression model having such non-negative
dependent variables, where he made several observations showing zero as
the censored data at zero. By the Tobit model, which was proposed by
Tobin (1958), we might get a good fit of a linear regression line to the data
even if the data have a nonlinear relationship. Amemiya (1984) gave a
comprehensive survey of the Tobit model and, concerning non-normality
case, Arabmazar and Schmidt (1982) investigated the consequences of the
misspecification of normality in the Tobit model and stated that the
asymptotic bias of the ML estimators assuming the normal distribution
error can be substantial. Thus, it would be of great importance to develop a
robust estimate for the Tobit model.
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The Tobit model is defined as follows:

yi* ¼ xiVbþ eiði ¼ 1; . . . ;NÞ ð26Þ

yi ¼
yi* if yi* > 0

0 if yi*V0

�
ð27Þ

where ei follows N(0,r2). It is assumed that yi and xi are observed, but yi*
cannot be observed if it is negative.

To make a robust model, we use a scale mixture of normal distribu-
tions as a distribution assumption of ei,:

ei j qifNð0; r2=qiÞ
where qi is a positive random variable that has a known density function.

4.2 ML Estimation by EM Algorithm

In this section, we conduct the ML estimation method for the regression
coefficientb and error variance r2 assuming that the distribution of ei is the
t-distribution with known degrees of freedom.

We regard { yi,xi,qi (i=1,2, . . . ,N )} as the unobservable complete
data. The E-step and M-step are as follows:

E-step: The log likelihood for the above complete data is:

‘ ¼ const� 1

2

XN
i¼1

yi � xibð Þ2qi=r2Þ ð28Þ

The E-step calculates its conditional expectation given the observed data
and current values of parameters. In this case, we have to get the condi-
tional expectations of Sqi, Sqiyi*, and Sqiyi*

2.
M-step: TheM-step computes the updated values of b and r2, which

are obtained as values tomaximize the expectation of the complete data log
likelihood ( ). Then we get:

b̂ ¼ ðX VWXÞ�1X VEðWy*Þ

r̂2 ¼
XN
i¼1

Eðqiyi*2Þ � 2Eðqiyi*ÞxiVb̂þ EðqiÞðxiVb̂Þ2
n o

=N

where W=diag( q1,q2, . . . ,qN).
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Computations in the E-Step

Computations of expectations in the E-step are very complicated.
The Monte Carlo method is recommended. Wei and Tanner (1990) pro-
posed a Monte Carlo E-step. An EM algorithm where the E-step is exe-
cuted byMonte Carlo is known as aMonteCarlo EM (MCEM) algorithm.

Let Y be observed data, let Z be missing data, and let p(.) be the
probability density function. Here, we have to compute:

Qðh; hðkÞÞ ¼
Z

log pðZ;Y j hÞpðZ j Y; hðiÞÞdZ

in the E-step. Wei and Tanner (1990) used the following the Monte Carlo
E-step for this computation:

(1) Draw z1, . . . ,zm from p(Z/Y,hi).
(2) Q̂i+1(h,hi)=Sj=1

m logp(zj,Y/h)/m.

For this algorithm, the monotonicity property is lost, but McLach-
lan and Krishnan (1997) stated that the algorithm with the Monte
Carlo E-step could get close to a maximizer with a high probability (see
also Chan and Ledolter, 1995). McCulloch (1994, 1997) gave other appli-
cations, and Booth and Hobert (1999) discussed stopping rules of the
MCEM algorithm.
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5
Latent Structure Model and the EM
Algorithm

Michiko Watanabe
Toyo University, Tokyo, Japan

1 INTRODUCTION

One way of interpreting the relationship measured between variates in
multidimensional data is to use a model assuming a conceptual, hypo-
thetical variate (latent factor) of a lower dimension mutually related to the
observed variates. Such models are collectively referred to as latent struc-
ture models and have their origin in sociologist Lazarsfeld (7). The latent
class model in sociology, the factor analysis model in psychology, and the
latent trait model in education and ability measurement fields are partic-
ularly common; they have been subjected to many studies historically and
are high in demand in the field of practice.

The objective of this chapter is to uniformly treat the parameter
estimation methods that have been studied so far on an individual basis
with respect to each latent structure model, in light of the EM algorithm by
Dempster et al. (2), and demonstrate the usefulness of the EM algorithm in
latent structure models based on its application to latent class, latent
distance, and latent trait models in concrete terms.
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2 LATENT STRUCTURE MODEL

Let x = (x1,x2,. . .,xp) be an observable random vector and y = ( y1,
y2,. . .,yq) be a latent random vector. We consider the following model:

f x; cð Þ ¼
Z

X yð Þ
p x y; aj Þ/ y bj Þdy;ðð ð1Þ

where f(x; c) and /(y; b) are the probability density functions of manifest
variable x and latent variable y, p(xjy; a) is a conditional density function
of x given y, and a, b, and c are the parameters for these density functions.
X(y) is a sample space of y.

We usually use the assumption of local independence for p(xjy; a) as
follows

p xj y; að Þ ¼ j
p

j¼1
pj xj y; aj Þ;� ð2Þ

where pj is a density function of latent variable xj.
In the latent structure analysis, we assume pj as a proper form and

estimate the latent parameters a and b from the observed data x. The
typical latent structure models are summarized in Table 1.

Conventionally, latent parameter estimation methods have been
studied on an individual basis in regard to latent structure models. Most
of them were directed at algebraically solving the relational equation
(explanatory equation) between manifest parameter c and latent param-
eters a and b determined based on formula (1), and at applying a Newton–
Raphson-type or Flettcher–Powell-type method of iteration to the direct
likelihood of data relating to the manifest variate. However, many prob-

Table 1 Latent Structure Analysis

Model Manifest variable x Latent variable y

Latent class model p categorical
random variables

Multinominal
random variable

Latent distance
model

p ordinal scale
variables

Multinominal ( p+1)
random variable

Latent trait model p ordinal scale

variables

Continuous

random variable
Latent profile
model

p continuous
random variables

Watanabe66



lems were left unsolved in these cases, such as the indefiniteness of the
solution and the generation of improper solutions. On the other hand, the
estimation of latent parameters can generally be reduced to a familiar esti-
mation problem normally employed if the responses to the latent variates
of the subject group have been observed. Also, in regard to improper
solutions being generated, the problem can be avoided by estimation based
on data assumed by the structure of the model itself. Based on this view-
point, the estimation problem in a latent structure model may be substi-
tuted with a parameter estimation problem based on incomplete data, and
the EM algorithm may be applied on the grounds that the data relating to
the latent variates are missing. In the EM algorithm, the missing value is
substituted with its provisional estimate, and the estimate of the target
parameter is repeatedly updated. Accordingly, the aforementioned merit
can be expected to come into full play. The following sections provide an
overview of the EM algorithm and build a method of estimation in con-
crete terms for a latent structure model.

2.1 Problems of EM Algorithm

The EM algorithm has two weaknesses: convergence is slow compared to
other iteration methods that used second partial derivatives, such as the
Newton–Raphson method, and the lack of evaluation of the asymptotic
variance of the estimate. On the other hand, its strengths include stability
until convergence is reached, avoidance of inverse-matrix operations relat-
ing to second partial derivative matrices in each iteration stage, easy
programming due to the reduction of M-step into familiar, conventional
methods, the wide scope of applicable models, etc.

Convergence of the EM algorithm is regarded slow in terms of the
number of iterations required for convergence. Therefore if one refers to
the total calculation time as the yardstick, it is impossible to categorically
claim that convergence of the EM algorithm is faster/slower than the
Newton–Raphson method, etc., in practice, considering the high-order
inverse matrix calculations avoided per iteration. Furthermore, the latter
weakness is not necessarily inherent in the EM algorithm when the
combined use of the aforementioned results is taken into account.

In many cases, the likelihood of incomplete data subject to the EM
algorithm is generally complex in shape, and it is difficult to learn about the
traits of its shape even if it is locally confined as to whether it is unimodal or
multimodal and whether it is asymmetric or symmetric. The EM algorithm
guarantees a single uniform, nondecreasing likelihood trail, from the initial
value to the convergence value. By taking advantage of this characteristic,
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it is possible to learn something about the shape by trying as many initial
values broadly distributed as possible. The EM algorithm’s beauty lies in,
more than anything else, its ability to develop maximum likelihood
estimation methods in concrete terms relatively easily in regard to a wide
range of models. In particular, it can flexibly deal with constraints among
parameters. This method is especially useful in cases where other methods
of estimation by substitution are not final and conclusive, such as the
aforementioned latent structure model, and in cases where some kind of
constraint is required among parameters to assure the identifiability of
the model. A notable example of this is the application of the EM algo-
rithm to a latent structure model in concrete terms.

3 THE EM ALGORITHM FOR PARAMETER ESTIMATION

This section applies the aforementioned EM algorithm by hypothetically
treating data, in which conformity is sought in the latent structure model,
as incomplete data in which the portion corresponding to the latent vari-
ate that should have been observed is missing, and builds a method of
estimating the maximum likelihood of the parameter with respect to a
number of typical models. In particular, the existence of the missing value
will not be limited to the latent variate; its existence will also be tolerated
in portions relating to the manifest variates and will be examined accord-
ingly. Although this extension makes the method of estimation some-
what more complicated, it has the advantage of making the usable data
more practicable.

3.1 Latent Class Model

Latent class analysis is a technique of analysis for the purpose of deter-
mining T heterogeneous latent classes composing a population by using
the response data to p items in a questionnaire. Concretely, the size of
the respective latent classes in a population and the response probability
in the classes for each of the p items are estimated. This method of analy-
sis was proposed for the first time by Lazarsfeld (7), and thereafter, many
researches have been carried out in connection with the technique of esti-
mating the latent probabilities and its evaluation. For instance, from the
viewpoint of algebraically solving the accounting equation system be-
tween the latent probabilities and the manifest probabilities, Anderson (1),
Green (6), Gibson (4), and others have proposed their own methods of

Watanabe68



estimation. However, it has been in the application of these methods of
estimation to actual data where the occurrence of improper solutions be-
comes a problem. Regarding the ML method, also the iterative method
based on the Newton–Raphson technique was given by Lazarsfeld and
Henry (8), but the occurrence of improper solution is unavoidable. As a
countermeasure to the improper solution problem in the ML method,
Formann (3) proposed themethod of transforming the latent probabilities.
Moreover, Goodman (5) gave from the other viewpoint an iterative esti-
mationmethod which derives theMLEs in the range of the proper solution
and showed that under the proper condition, the estimates have the
asymptotic consistency, asymptotic efficiency, and asymptotic normality.

It is assumed that there are pmultichotomous variables, x1,x2,. . .,xp,
which have Ci (i=1,2,. . .,p) categories. Besides, other than these multi-
chotomous variables, the existence of a multichotomous variable y having
T categories is assumed. Respective individuals in a sample show the
response values on the above all variables, but only the response values on
the first p variables can be observed actually and the response values on y
cannot be observed in reality. In this sense, y is called a latent variable, and
the p variables, on which the response values are observed, are called the
manifest variables.

In most cases, the items of a questionnaire, reaction tests, and so on
correspond to themanifest variables, and the latent concept which explains
the association among the manifest variables corresponds to the latent
variable and respective classes which are regarded as heterogeneous with
some scale regarding that latent concept from the T categories of the latent
variable.

The relation among the variable is expressed as the following
equation:

P xjyð Þ ¼ j
p

i¼1
P xi y ¼ tj Þ;ð ð3Þ

which is called as ‘‘local independency.’’
The EM algorithm for computing estimates of P( y=t) (Class size)

and P(xijy=t) (Response probability of each class) is as follows,

� E-step: to compute latent frequencies n*(x,y),

n̂* x yj Þ ¼ E n* x; yð Þ n xð Þ; P yð Þf g; P xi yj Þð gf �j½ð

¼ n xð Þ P x; yð Þ
P xð Þ ; ð4Þ
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where

P x; yð Þ ¼ P yð Þj
p

i¼1
P xi yj Þ;ð

P xð Þ ¼
X
y

P yð Þj
p

i¼1
P xi yj Þ:ð

� M-step: to update P( y=t) and P(xijy=t) based on n̂*(x,y);

P̂ yð Þ ¼
X
x

n̂* x; yð Þ=n; ð5Þ

P̂ xi j yð Þ ¼

X
x1; : : : ;xi�1;xiþ1; : : : ;xp

n̂* x; yð ÞX
x

n̂* x; yð Þ : ð6Þ
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6
Extensions of the EM Algorithm

Zhi Geng
Peking University, Beijing, China

1 PARTIAL IMPUTATION EM ALGORITHM

In this section, we present the partial imputation EM (PIEM) algorithm
which imputes missing data as little as possible. The ordinary EM
algorithm needs to impute all missing data for the corresponding sufficient
statistics. At the E step, the PIEMalgorithm only imputes a part of missing
data. Thus the PIEM algorithm not only reduces calculation for unneces-
sary imputation, but also promotes the convergence.

Let {X1,X2,. . .,XK} denote the set of K random variables. Let
T={t1,t2,. . .,tS} denote an observed data pattern where tS is a subset of
{X1,X2,. . .,XK} and denotes a set of observed variables for a group of
individuals. Fig. 1 describes that variables in t1={X1,X2} are observed
for n1 individuals in group 1, but X3 and X4 are missing; variables in t2=
{X2,X3} are observed for group 2, butX1 andX4 are missing; and variables
in t3={X3,X4} are observed for group 3, but X1 and X2 are missing.

Let Y=(Yobs,Ymis) where Yobs denotes the observed data for all
individuals and Ymis denotes the missing data for all individuals. In Fig. 2,
Yobs denotes all observed data and Ymis denotes all missing data.

Further, let Ymis=(Ymis1,Ymis2) where Ymis1 denotes a part of miss-
ing data that will be imputed at the E step of the PIEM algorithm, and
where Ymis2 denotes the other part of the missing data that will not be
imputed at the E step. In Fig. 3, a monotone data pattern is obtained by
imputing missing data of X1 for individuals in group 2 and missing data of
X1 and X2 for group 3 (i.e., Ymis1). If variable Xk is observed, then missing
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Figure 1 An observed data pattern.

Figure 2 Incompletely observed data.
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values of variables X1,. . .,Xk�1 are imputed such that the observed data
and imputed data construct a monotone data pattern. The likelihood
function for observed data and imputed data can be factorized as

Lð/���Yobs;Ymis1Þ ¼
Y3
k¼1

Y
iagroup k

f x1i; x2i;/12ð Þ
" #

�
Y3
k¼2

Y
iagroup k

fðx3ijx1i; x2i;/3j12Þ
" #

�
Y

iagroup 3

fðx4ijx1i; x2i; x3i;/4j123Þ
" #

;

where xji denotes value of Xj for individual i. If parameters /12, /3j12, and
/4j123 are distinct, then each factor corresponds to a likelihood for com-
plete data, andmaximum likelihood estimates (MLEs) of these parameters
can be obtained by maximizing each factor separately.

In the PIEM algorithm, a monotone data pattern may not be nec-
essary. For example, if variables in X1 are independent of X3 and X4 con-
ditional on X2, then we impute only missing values of X2 for individuals in
group 3 (i.e., YVmis1 in Fig. 4). The likelihood function for observed data
and imputed data can be factorized as

Figure 3 Monotone data pattern obtained by partial imputation.
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Lð/ Yobs;Ymis1Vj Þ ¼
Y3
k¼1

Y
iagroup k

f x2i;/23ð Þ
" #

�
Y

iagroup 1

fðx1ijx2i;/1j2Þ
" #

�
Y3
k¼2

Y
iagroup k

fðx3ijx2i;/3j2Þ
" #

�
Y

iagroup 3

fðx4ijx2i; x3i;/4j23Þ
" #

:

If parameters /2, /1|2, /3|2, and /4|23 are distinct, then each factor corre-
sponds to a likelihood for complete data and MLEs of these parameters
can be obtained by maximizing each factor separately at the M step.

2 CONVERGENCE OF THE PIEM ALGORITHM

Let / be a 1�d parameter vector. The log-likelihood for Yobs is

l / Yobsj Þ ¼ log f Yobs /j Þ:ðð

Figure 4 Nonmonotone data pattern of Yobs and YVmis1.
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Similar to Dempster et al. (2), we have

l /jYobsð Þ ¼ Q* / / tð Þ
��� �

�H* / / tð Þ
��� ���

where /(t) is the current estimate of /,

Q* /j/ tð Þ
� �

¼
Z

l* /jYobs;Ymis1

� �
f Ymis1 Yobs;/

tð Þ
��� �

dYmis1

�
and

H* /j/ tð Þ
� �

¼
Z

log f Ymis1jYobs;/ð Þ
h i

f Ymis1 Yobs;/
tð Þ

��� �
dYmis1;

�
where l*(/jYobs,Ymis1) is the log-likelihood for the observed data and the
imputed data (Yobs,Ymis1).

For exponential families, at the E step of the PIEM algorithm, Ymis1

need not be imputed and only the sufficient statistic s(Yobs,Ymis1) is esti-
mated by

sðtþ1Þ ¼ E s Yobs;Ymis1ð Þ Yobs;/
tð Þ

��� �
:

�
At theM step of the PIEMalgorithm, the likelihood is factored based

on the pattern of imputed data,

l*ð/ Yobs;Ymis1j Þ ¼
X
i

li* /i Yobs;Ymis1j Þ;ð

so that parameters /1,. . .,/I are distinct and each factor l*i (/ijYobs, Ymis1)
corresponds to a log-likelihood for a complete data problem. Thus

Q* /
���/ tð Þ

� �
¼
Z

l* /
���Yobs;Ymis1

� �
f Ymis1

���Yobs;/
tð Þ

� �
dYmis1

¼
X
i

Z
li* /i

���Yobs;Ymis1

� �
f Ymis1

���Yobs;/
tð Þ

� �
dYmis1

¼
X
i

Qi* /i /
tð Þ

��� �
;

�
where Q*i(/ij/(t))=

R
l*i(/ijYobs,Ymis1)f(Ymis1jYobs,/

(t))dYmis1. Thus Q*
(/j/(t)) can be maximized by maximizing each component Q*i(/ij/(t))
separately.
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Theorem 1. At each iteration, the PIEM algorithm monotonically increases
the log-likelihood function l(/jYobs), that is,

l / tþ1ð Þ
���Yobs

� �
zl / tð Þ

���Yobs

� �
:

Proof. By Jensen’s inequality, we have

H* / / tð Þ
��� �

VH* / tð Þ / tð Þ
��� �

:
��

Thus

l / tþ1ð Þ
���Yobs

� �
� l / tð Þ

���Yobs

� �
¼ Q* / tþ1ð Þ

���/ tð Þ
� �

�Q* / tð Þ
���/ tð Þ

� �h i
� H* / tþ1ð Þ / tð Þ

��� �
�H* / tð Þ / tð Þ

��� �� i
z0:

�h
Theorem 1 means that l(/jYobs) is nondecreasing in each iteration of

the PIEM algorithm, and that it is strictly increasing when Q*(/(t+1)j/(t))
>Q*(/(t)j/(t)). The PIEM algorithm has the same general conditions for
convergence as those for the EM algorithm, that is, l(/jYobs) is bounded
above (2,5). Now we compare the convergence rate of the PIEM algorithm
with that of the ordinary EMalgorithm and show that the PIEMalgorithm
has a faster rate of convergence than the EM algorithm. For the PIEM
algorithm, let M*(/) be a mapping from the parameter space to itself so
that each step of the PIEMalgorithm/(t)!/(t+1) is defined by/(t+1)=M*
(/(t)), for t=0,1, . . . . Assume thatM*(/) is differentiable at /̂ and that /(t)

converges to the MLE /̂, that is, M*(/̂)=/̂. Denote

DM* /ð Þ ¼ @Mj* /ð Þ
@/i

� �
;

where M*(/)=(M*
1(/),. . .,M*

d (/)). Applying Taylor expansion to M*
(/(t)) at /̂, we get

/ tþ1ð Þ � /̂ ¼
�
/ tð Þ � /̂

�
DM*

�
/̂
�
þO

�
N/ tð Þ � /̂N

2�
:

The rate of convergence is defined as

R* ¼ lim
t!l

NM* / tð Þ
� �

� /̂N
N/ tð Þ � /̂N

;
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where N�N is the Euclidean norm. Thus the rate of convergence of the
PIEM algorithm is the largest eigenvalue of DM*(/̂), as discussed in Refs.
2 and 4.

For the EM algorithm, Dempster et al. (2) showed that

l /jYobsð Þ ¼ Q / / tð Þ
��� �

�H / / tð Þ
��� ���

where

Q /
���/ tð Þ

� �
¼
Z

l /
���Yobs;Ymis

� �
f Ymis Yobs;/

tð Þ
��� �

dYmis

�
and

H /
���/ tð Þ

� �
¼
Z h

log f Ymis

���Yobs;/
� �i

f Ymis Yobs;/
tð Þ

��� �
dYmis:

�
Let M(/) be the mapping /(t)!/(t+1) for the EM algorithm and R as its
rate of convergence:

R ¼ lim
t!l

OM / tð Þ
� �

� /̂O
O/ tð Þ � /̂O

:

Let D20 denote the second derivative with respect to the first argument, so
that

D20Q* /VVj/Vð Þ ¼ @2

@/ � @/Q* / /Vj Þ /¼/VV;
���

and define

Ic* /jYobsð Þ ¼ �D20Q* /j/ð Þ; Ic /jYobsð Þ ¼ �D20Q /j/ð Þ;
Im* / Yobsj Þ ¼ �D20H* / /j Þ; Im / Yobsj Þ ¼ �D20H / /j Þ;ð���

and

Io* / Yobsj Þ ¼ �D20l / Yobsj Þ:ð�
Then I*o=I*c�I*m. We can show that I*c, Ic, I*m, Im, I*o, and Ic�I*c are sym-
metric and nonnegative definite.

To prove that the convergence of the PIEM algorithm is faster than
the EM algorithm, we first show a lemma about eigenvalues of matrices.
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Let k1[A] be the largest eigenvalue of a matrix A, and let AT denote the
transpose of A.
Lemma 1. If B is a symmetric and positive definite matrix and if A, C, and
B�A are symmetric and nonnegative definite matrices, then k1[(A+C)
(B+C)�1]zk1[AB

�1] with strict inequality if C and B�A are positive
definite.
Proof. Since B is symmetric and positive definite, we can write B�1=B�1/2

B�1/2. From Proposition 1.39 of Eaton (3, p. 48), we get

k1 AB�1
� 
 ¼ k1 AB�1

2B�1
2

� �
¼ k1 B�1

2AB�1
2

� �
:

Since B�1/2AB�1/2 is a Grammian matrix (that is, a symmetric and non-
negative definite matrix), we have from Theorem 5.24 of Basilevsky (1983)

k1 AB�1
� 
 ¼ k1 B�1

2AB�1
2

� �
¼ max

xp0

xTB�1
2AB�1

2x

xTx

 !
:

Let y=B�1/2x. Then

k1 AB�1
� 
 ¼ max

yp0

yTAy

yTBy

� �
:

Substituting A+C for A and B+C for B, we also get

k1 Aþ Cð Þ Bþ Cð Þ�1
h i

¼ max
zp0

zT Aþ Cð Þz
zT Bþ Cð Þz :

It is clear that for any nonnegative constants a, b, and c where aVb
and b>0, we have (a+c)/(b+c)za/b. Thus we obtain, for any vector y p 0,

yT Aþ Cð Þy
yT Bþ Cð Þy ¼ yTAyþ yTCy

yTByþ yTCy
z
yTAy

yTBy
:

Therefore k1[(A+C)(B+C)�1]zk1[AB
�1] with strict inequality if C and

B�A are positive definite.5
Theorem 2. Suppose that I*c(/̂jYobs) is positive definite. Then the PIEM
algorithm converges faster than the EM algorithm, that is, R*VR with strict
inequality if I*o(/̂jYobs) and Ic(/̂jYobs)�I*c(/̂jYobs) are positive definite.
Proof. We can show easily that

Q / /Vj Þ �Q* / /Vj Þ ¼ H / /Vj Þ �H* / /Vj Þ ¼ D / /Vj Þ;ððððð
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where

D /j/Vð Þ ¼
Z

log f Ymis2 Yobs;Ymis1;/j Þð � f Ymis Yobs;/Vj ÞdYmis:ð½

From the definitions of I*m, Im, I*c, and Ic, we can obtain

Im*ð/̂ Yobsj Þ ¼ Imð/̂ Yobsj Þ þD20D /̂ /̂
��� ��

and

Ic*ð/̂ Yobsj Þ ¼ Icð/̂ Yobsj Þ þD20D /̂ /̂
��� �:�

D20D(/̂j/̂) is nonpositive definite since

D20D /̂
���/̂� �

¼ @2

@/2
E log fðYmis2 Yobs;Ymis1;/j Þ

����Yobs; /̂

� 	
/¼/̂

¼ E
@2

@/2
log fðYmis2 Yobs;Ymis1;/j Þ

����
/¼/̂

����Yobs; /̂

" #

¼� E

"
@

@/
log f Ymis2jYobs;Ymis1;/ð Þ

���
/¼/̂

� �

� @

@/
log f Ymis2jYobs;Ymis1;/ð Þ

���
/¼/̂

� �T

Yobs; /̂

#
;

�����
where AT denotes the transpose of matrix A. From Ref. 2, we get

DM /̂
� �

¼ Im /̂jYobs

� �
Ic /̂jYobs

� ��1

:

Similarly, we have

DM* /̂
� �

¼ Im* /̂jYobs

� �
Ic* /̂jYobs

� ��1

:

Thus

DM /̂
� �

¼ Im* /̂jYobs

� �
�D20D /̂ /̂

��� �� ih
� Ic* /̂jYobs

� �
�D20D /̂ /̂

��� �� i�1

:

�
Since �D20D(/̂j/̂) and I*o=I*c�I*m are symmetric and nonnegative definite,
we have from Lemma 1 that k1[DM*(/̂)]Vk1[DM(/̂)], that is, R*VR. If
�D20D(/̂j/̂) and I*o are positive definite, then R*<R.

Let (Yobs,Ymis1) and (Yobs,YVmis1) be two different patterns of im-
puted data so that YVmis1 is contained in Ymis1, that is, (Yobs,YVmis1) has
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fewer imputed data than (Yobs,Ymis1). For example, the imputed missing
data YVmis1 in Fig. 4 are less than those Ymis1 in Fig. 3. In a similar way, we
can show that the PIEM algorithm imputing YVmis1 converges faster than
that imputing Ymis1. This means that imputing fewer variables is prefera-
ble. The less the imputed data are, the faster the convergence is.

3 EXAMPLES

In this section, we give several numerical examples to illustrate the PIEM
algorithm and its convergence.

Example 1. Let X1 and X2 be binary variables. Suppose that X1 and X2

follow multinomial distribution with parameters p(ij)=Pr(X1=i, X2=j)
and the sample size n. Suppose that the observed data pattern is
T={{X1,X2},{X1},{X2}}. The observed data are shown in Table 1 and
sample size n=520. n12(ij)’s, n1(i)’s, and n2( j)’s are observed frequencies
where the subscript A of nA denotes an index set of observed variables.
n12(ij)’s denote completely observed data, and n1(i)’s denote incompletely
observed data for whichX1 is observed butX2 is missing. FromTable 1, we
can see thatX2 ismissingmuchmore often thanX1. TheMLEs p̂(ij)’s of cell
probabilities are shown in Table 2, and the numbers of iterations for the
EM and PIEM algorithms are shown in Table 3.

As shown in Table 3, there are two different methods for imputing
incomplete data. The first method, (a) ‘‘n2( j)!n2(ij),’’ is to impute n2( j) to
n2(ij) as follows:

. the E step:

n̂2 ijð Þ ¼ p̂ tð Þ ijð Þ
p̂ tð Þ þjð Þ n2 jð Þ;

Table 1 Observed Data

n12(ij) j=1 j=2 n1(i)

i=1 5 4 300
i=2 2 1 200

n2( j) 5 3
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. the M step:

p̂ tþ1ð Þ ijð Þ ¼ n12 ijð Þ þ n̂2 ijð Þ
n12 iþð Þ þ n̂2 iþð Þ �

n12 iþð Þ þ n1 ið Þ þ n̂2 iþð Þ
n12 þþð Þ þ n1 þð Þ þ n2 þð Þ :

The second method, (b) ‘‘n1(i)!n1(ij),’’ is to impute n1(i) to n1(ij). We can
see that both of the PIEM algorithms converge faster than the EM
algorithm. The first method converges faster than the second one. A main
reason is that the former imputes less missing data than the latter, but it is
not always true since the imputed data of the former are not a subset of the
latter’s imputed data.

Example 2. Let (X1,X2)
T be a bivariate random vector following a normal

distribution N(l,R). Suppose that the observed data pattern is
T={{X1,X2},{X1},{X2}}. The observed data are shown in Table 4.

The EMalgorithm imputes all missing data of incompletely observed
data. From the properties of the normal distribution, the conditional
distribution of Xi given Xj=xj is also a normal distribution, and its mean
and variance are, respectively,

li þ
rij
rjj

xj � lj
� 


and

rii:j ¼ rii 1� q2
� 


;

Table 3 Numbers of Iteration (jp̂(t+1)(ij)�
p̂ (t)(ij)jV10�5)

Algorithm Iteration number

EM 253

PIEM n2( j)!n2(ij) 11
PIEM n1(i)!n1(ij) 251

Table 2 MLEs of parameters pij

p̂(ij) j=1 j=2

i=1 0.3402 0.2633

i=2 0.2700 0.1265
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where li is the mean of Xi, rij is the covariance of Xi and Xj, and q is the
correlation ofX1 andX2. Thus themissing value ofXi of the individual with
an observed value Xj=xj is imputed by

x̂i ¼ l kð Þ
i þ r kð Þ

ij

r kð Þ
jj

xj � l kð Þ
j

� �
;

where rij
(k) and li

(k) denote the estimates obtained at the kth iteration of the
EM algorithm. The PIEM algorithm imputes only a part of missing data
such that the observed data and imputed data construct a monotone
pattern. There are two ways for imputation: one is imputing the missing
data of the incomplete data with the observed variate set {X1}, and the
other is imputing those with the observed variable set {X2}. The same
MLEs of l and R are obtained by using the EM algorithm and the PIEM
algorithm as follows:

l̂ ¼ 1:3005
1:4163

� �
; R̂ ¼ 0:2371 �1:0478

�1:0478 4:9603

� �
:

Table 5 Convergence of Algorithms

Algorithm Iterations
Rate of

convergence

EM 282 0.9526

PIEM (Impute {X1} to complete) 53 0.7075
PIEM (Impute {X2} to complete) 250 0.9474

Table 4 Observed Data

ts Individual X1 X2

{X1,X2} 1 1.2 2.3

2 1.7 0.1
3 1.6 �0.7

{X1} 4 0.2 ?

5 1.5 ?
{X2} 6 ? �0.2

7 ? 1.6
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The convergence of the EM algorithm and the two PIEM algorithms
are shown in Table 5. Both of the PIEM algorithms converge faster than
the EM algorithm. The first PIEM algorithm treats values of X2 for
individuals 4 and 5 as missing data, but the second PIEM algorithm treats
values of X1 for individuals 6 and 7 as missing data. From the MLE of
covariance matrix, it can be seen that the variance of X1 is much less than
that of X2. Thus the first PIEM algorithm has less missing information
than the second algorithm, and then the first one converges faster than the
second one.
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Convergence Speed and Acceleration
of the EM Algorithm

Mihoko Minami
The Institute of Statistical Mathematics, Tokyo, Japan

1 INTRODUCTION

An attractive feature of the EM algorithm is its simplicity. It is often used
as an alternative to the Newton–Raphson method and other optimization
methods when the latter are too complicated to implement. However, it is
often criticized that the convergence of the EM algorithm is too slow.
Whether its slow convergence is a real problem in practice does depend on
models, data sizes, and situation programs used. Many acceleration
methods have been proposed to speed up the convergence of the EM
algorithm. Also, hybrid methods that would switch from the EM algo-
rithm to other optimization algorithm with faster convergence rate have
been proposed.

This chapter discusses the convergence speed of the EM algorithm
and other iterative optimization methods and reviews the acceleration
methods of theEMalgorithm for finding themaximum likelihood estimate.

2 CONVERGENCE SPEED

We start from the definition of convergence speed and convergence rate of
iterative numerical methods. We denote the vector of parameter values
after the kth iteration by h(k) and its converged point by h*. An iterative
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numerical method is said to converge linearly if it holds that with some
constant c (0<c<1) and positive integer k0,

jjh kþ1ð Þ � h*jjVcjjh kð Þ � h*jj for any kzk0: ð1Þ
The constant c is called the convergence rate. If it holds that with some
sequence {ck} converging to 0 and positive integer k0,

jjh kþ1ð Þ � h*jjVckjjh kð Þ � h*jj for any kzk0; ð2Þ
then themethod is said to converge superlinearly. If it holds that with some
constant c (0<c<1) and positive integer k0,

jjh kþ1ð Þ � h*jjVcjjh kð Þ � h*jj2 for any kzk0; ð3Þ
then the method is said to converge quadratically. A numerical method
with the superlinear or quadratic convergence property converges rapidly
after the parameter value comes close to h*, while a method with the linear
convergence property might take fairly large number of iterations even
after the parameter value comes close to h*.

Hereafter, we denote the incomplete data by y, the incomplete-data
log-likelihood by l(h; y), the observed incomplete-data information matrix
by I(h; y), and the expected complete-data information matrix by I c h; yð Þ.

The EM update can be approximated by (cf. Ref. 1):

EMupdate : h kþ1ð Þch kð Þ þ I�1
c h kð Þ; y
� � @l

@h
h kð Þ; y
� �

: ð4Þ

When the complete data belong to the regular exponential family and the
mean parameterization is employed, the above approximation becomes
exact. It is further approximated by

h kþ1ð Þch kð Þ � I�1
c h kð Þ; y
� �

I h*; yð Þ h kð Þ � h*
� �

h kþ1ð Þ � h*c E� I�1
c h kð Þ; y
� �

I h*; yð Þ
� �

h kð Þ � h*
� �

where E denotes the identity matrix. Thus the EM algorithm converges
linearly and its convergence rate is the largest eigenvalue of E � I�1

c h*; yð Þ
I h*; yð Þ , that is, 1�cwhere c is the smallest eigenvalue of I�1

c h*; yð ÞI h*; yð Þ.
Meng and van Dyk (2) consider speeding up the convergence of the EM
algorithm by introducing a working parameter in their specification of the
complete data. Their idea is to find the optimal data augmentation in a
sense that c is maximized within the specified type of data augmentation.
Their method speeds up the convergence within the framework of the basic
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EM algorithm without affecting its stability and simplicity. However, the
resulting EM algorithm still converges linearly. Moreover, such complete-
data specification might not exist in general.

The Newton–Raphson method approximates the objective function
(the incomplete-data log-likelihood function) by a quadratic function and
takes its maximizer as the next parameter value. Its update formula is:

Newton�Raphson update :

h kþ1ð Þ ¼ h kð Þ þ I�1 h kð Þ; y
� � @l

@h
h kð Þ; y
� �

: ð5Þ

The Newton–Raphson method converges quadratically. The observed
information matrix I(h(k);y) might not be positive definite, especially at
the beginning of iteration. In order to obtain a broader range of con-
vergence, one ought to modify it to be positive definite if it is not.
Moreover, a line search as in the case of quasi-Newton methods described
below would be better to be employed (3).

Quasi-Newton methods do not directly compute the observed infor-
mationmatrix I(h;y) but approximate it in the direction of convergence. Its
update formula is

Quasi �Newton update : h kþ1ð Þ ¼ h kð Þ þ akB
�1
k

@l

@h
h kð Þ; y
� �

ð6Þ

where matrix Bk is updated using only the change in gradient qk=@l/
@h(h(k);y)�@l/@h(h(k�1);y) and the change in parameter value sk=h(k)�
h(k�1). The most popular quasi-Newton update is the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) update:

Bkþ1 ¼ Bk � Bksks
T
kBk

sTkBksk
� qkq

T
k

qTk sk
: ð7Þ

Step length ak is determined by a line search iteration so that it satisfies
the conditions that ensure the convergence of iterates, such as the Wolfe
conditions:

l h kð Þ þ akdk

� �
z l h kð Þ
� �

þ lak
@l

@h
h kð Þ; y
� �T

dk

@l

@h
h kð Þ þ akdk; y
� �T

dk V g
@l

@h
h kð Þ; y
� �T

dk

where dk=B�1
k @l/@h(h(k);y), 0<lV0.5, and lVg<1. Typical values in

practice are l=10�4 and g=0.5. As algorithms converge, a=1 is getting
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to satisfy the conditions. The convergence speed of quasi-Newton algo-
rithms is superlinear. The conjugate gradient method is another well-
known iterative method with superlinear convergence. For more theoret-
ical details for the above numerical methods, see Refs. 4–6.

If we compare simply the numbers of iterations until algorithms
converge, the Newton–Raphson method would take the fewest iterations.
However, the Newton–Raphson method requires the observed informa-
tionmatrix, i.e., the Hessian of the objective function takes more computa-
tional time than the EM update or the gradient of the objective function.
Lindstrom and Bates (3) compared the number of iterations and the
computational time of the EM algorithm and the Newton–Raphson
method for mixed linear model. They reported that the Newton–Raphson
method is as stable as the EMalgorithm if the observed informationmatrix
is modified to be positive definite and a line search is employed. Computa-
tional time per iteration for the Newton–Raphson method takes as three
or four times as the EM algorithm, but the number of iterations is fewer
than 1/10 as that for the EM algorithm. For some dataset, the Newton–
Raphson converged after six iterations, while the EM algorithm did not
converge even after 200 iterations.

An attractive feature of the quasi-Newton methods is that we need
not compute the observed information matrix. Update of Bk is typically of
low rank (1 or 2) and requires quite small computational time. Since the
computational complexity of the gradient of the incomplete-data log-
likelihood function is not much different from that for the EM update in
many models, the computational time per iteration for quasi-Newton
methods is not much more than that for the EM algorithm. It is often
criticized that the quasi-Newton methods perform poorly at the beginning
of iterations. This can be avoided if one uses the expected complete-data
information matrix I c hð Þ as the initial value B0 (7). Then, as Eq. (4)
suggests, the first iteration of the quasi-Newton method is approximately
(exactly withmean parameterization) equal to the EMupdate. In addition,
one can use the EM algorithm for the first several iterations to take
advantage of its good global convergence properties, and then switch to
quasi-Newton methods.

3 COMPARISON OF COMPUTING TIME

In this section, we compare the iteration numbers and computing time by
the EM algorithm and the quasi-Newton method with the BFGS update
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for a mixed linear model and a Gaussian mixture model. For the quasi-
Newton method, we used the EM algorithm for the first three iterations
and switched to the quasi-Newton method with I c h 3ð Þ

� �
as the initial

value B0.

3.1 A Mixed Linear Model

We consider the following mixed linear model:

y ¼ Xbþ Zaþ e ð8Þ
where y is the n�1 vector of observations, X and Z are known design
matrices, b is the p�1 vector of fixed effects, a is the q�1 vector of random
effects, and e is the n�1 vector of errors. Random effects a and errors e are
assumed to follow normal distributions with mean zero. In the field of
animal breeding, mixed linear models are often used to accommodate
genetical relationship among individual animals. In the individual animal
model (IAM) by Saito and Iwasaki (8), the covariance matrix of random
effects a is assumed to be expressed as r2aAwhere matrixA is obtained from
the mating structure of animals, and the covariance matrix of e as r2eI, that
is, afN(0,r2aA) and efN(0,r2eI). Observations y are, for example, amounts
of milk that individual cows produced in a day, b are effects of years
and cowsheds, and a are effects of individual cows. For the estimation of
variance components, the restricted maximum likelihood (REML) esti-
mation is often used. The REML estimation finds the estimate by max-
imizing error contrast MTy where M is a matrix of size n�(n�p) with
full column rank and is orthogonal to X. The REML estimation takes
into account the loss in degrees of freedom by estimating fixed effects.
See Ref. 9 for the REML estimation by the EM algorithm for mixed
linear models.

Table 1 shows computational times for the REML estimation of
variance components r2a and r2e by the EM algorithm and the quasi-
Newton method with BFGS update for the data given in Ref. 8. For
this data, n=q=14 and p=2. Computing times are the averages of
1000 repetitions. Algorithms were terminated when the relative change
in the estimates or the incomplete-data log-likelihood became less than
eps=10�6, 10�7, or 10�8.

The quasi-Newton method converged much faster than the EM
algorithm with much fewer iterations. The quasi-Newton method took
less than 1/10 in computational time and iteration numbers of the EM
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algorithm. Computational time per iteration is almost the same for both
methods. This is because the computational complexity of the derivatives
of the log-likelihood function is almost the same as that of the EM update.
The derivatives of the log-likelihood function are expressed with the EM
map for this model:

@L hð Þ
@r2a

¼ q

2r4a
Ma hð Þ � r2a
� 


@L hð Þ
@r2e

¼ n

2r4e
Me hð Þ � r2e
� 


whereMa(h) andMe(h) denote the EMmap for r2a and r
2
e, respectively. The

convergence rate of the EM algorithm for these data is 0.96. It should be
mentioned that for iterative algorithms with linear convergence, the small
relative change in parameter or the log-likelihood does not imply the
convergence of algorithms. The estimate r2a by the EM algorithm with
eps=10�6 matches only four digits to the one with eps=10�8.

3.2 Gaussian Mixture Model

The second example is a Gaussian mixture model which was also taken as
an example in Dempster et al. (10). We consider a mixture model with two
normal distributions with unknown mean and variance. The mixing
proportion is also assumed to be unknown. Table 2 shows the computa-
tional results for the ash content data given in Ref. 11 and randomly
generated 10 datasets. Among randomly generated datasets, 50 random
values were generated for each distribution for the first 5 datasets, and 200

Table 1 Computing Time of the EM Algorithm and a Quasi-Newton
Method for a Mixed Linear Model

Method eps Iter. Time T/I ĵ 2
a ĵ2

e

EM 10�6 220 1.0191 0.00463 0.64172922 0.73217675
10�7 280 1.2941 0.00462 0.64171389 0.73218902
10�8 340 1.5737 0.00463 0.64171236 0.73219024

QN 10�6 19 0.0916 0.00482 0.64171219 0.73219038
10�7, 10�8 21 0.0998 0.00475 0.64171219 0.73219038

From the left: eps—stopping criteria, iter.—number of iterations, time—total computing

time, T/I—computing time per iteration, and ĵ 2
a and ĵ 2

e—estimates of the variances.
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random values each for the rest. Programs were terminated when the
relative change in the estimates or the incomplete-data log-likelihood
became less than 10�9. The program used double precision for real values.

In spite of the rather strict stopping criteria, the EM algorithm
converges well except for datasets 5, 6, and 11. For finite mixture models,
it is known that the EMalgorithm performs well when the distributions are
well separated (12). For datasets 5, 6, and 11, the EM algorithm did not
satisfy the stopping criteria even after 1000 iterations, while the quasi-
Newton method satisfied it after 49, 54, and 27 iterations, respectively.
When eps=10�6, 10�7, and 10�8, the EM algorithm was terminated after
29, 56, and 101 iterations for dataset 5. The log-likelihood values were
�102.40520, �102.39627, and �102.39481, respectively, whereas the log-
likelihood value after 1000 iterations was �102.38939. The EM algorithm
increases the log-likelihood value, but quite slowly for this dataset.

4 ACCELERATION METHODS

Various authors have proposed methods to speed up the EM algorithm.
Jamshidian and Jennrich (13) classify them into three groups: pure, hybrid,
and EM-type accelerators.

Table 2 Computing Time by the EM Algorithm and the Quasi-Newton Method for
Gaussian Mixture Models

No. Data

EM algorithm Quasi-Newton method

Iter. Time T/I Iter. Time T/I

1 ash content(n=430) 42 0.1369 0.00326 11 0.0386 0.00351
2 50 N(0,1)+50 N(2,4) 89 0.0712 0.00080 22 0.0386 0.00103
3 50 N(0,1)+50 N(2,9) 137 0.1082 0.00079 19 0.0202 0.00106

4 50 N(0,1)+50 N(2,16) 48 0.0385 0.00080 13 0.0132 0.00102
5 50 N(0,1)+50 N(1,4) 1000< – – 49 0.0476 0.00097
6 50 N(0,5)+50 N(2,5) 1000< – – 54 0.0548 0.00101

7 200 N(0,1)+200 N(2,4) 89 0.2740 0.00308 16 0.0531 0.00332
8 200 N(0,1)+200 N(2,9) 58 0.1785 0.00308 17 0.0574 0.00338
9 200 N(0,1)+200 N(2,16) 61 0.1875 0.00307 17 0.0556 0.00327

10 200 N(0,1)+200 N(1,4) 151 0.4610 0.00305 19 0.0632 0.00333
11 200 N(0,5)+200 N(2,5) 1000< – – 27 0.0885 0.00328

Iter.—number of iterations, time—total computing time, and T/I—computing time per iteration.
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Pure accelerators are those that require only the EM algorithm for
their implementation. They include the Aitkin’s acceleration method
(1,10,14) and methods with step lengthening (14). The Aitkin accelerator
uses a generalized secant approximation to the derivative of the EM map.
The Aitkin’s method and its modifications (15) seem to have a problem in
stability and fail to converge fairly often (3,15). Methods of step length-
ening do not change the direction by the EM algorithm, but lengthen the
step size when the convergence is slow. They seem to give only small gains
over the EM algorithm compared with the methods that also change the
direction. Jamshidian and Jennrich (13) proposed a pure accelerator QN1
that uses quasi-Newton methods to find a zero of the EM step. QN1 is
simple to implement and accelerates the EM algorithm well in their
numerical examples, although it is not globally convergent. In short, pure
acceleration methods are relatively simple and easy to implement, but they
might have a problem in stability and they are not globally convergent.

Hybrid accelerators require the EM algorithm but also use other
problem-specific quantities such as the log-likelihood and its gradient. The
conjugate gradient acceleration for the EM algorithm (16) and Jamshidian
and Jennrich’s quasi-Newton acceleration method QN2 (13) are of this
type. Both algorithms require the EM step and the gradient of the
incomplete-data log-likelihood, but do not compute or directly approx-
imate theHessianmatrix. They use a line search and it makes them globally
convergent like the EM algorithm. Jamshidian and Jennrich (13) showed
that both methods accelerate the EM algorithm considerably well. The
conjugate gradient acceleration for the EM algorithm is especially attrac-
tive when the number of parameters is very large.

EM-type accelerators do not actually use the EM algorithm but do
use EM ideas, for example, the derivatives of the complete-data log-
likelihood. Jamshidian and Jennrich categorized the quasi-Newton
method described in the previous section which uses the complete-data
expected information matrix I c

�
ĥ kð Þ; y



as the initial value B0. Louis (17)

proposed an approximate Newton method that uses the observed incom-
plete-data information matrix I�ĥ kð Þ; y



. To deal with the difficulty for

computing I�ĥ kð Þ; y


directly, Louis (17) gave an approximation formula

(see also Ref. 1). However, it has been pointed out that Louis’s approx-
imation can also be difficult to compute in many applications (7,13).

Readers will find more acceleration methods in Refs. 1 and 13.
The EM algorithm is very attractive because of its stability and

simplicity. For accelerating its slow convergence with stability and global
convergence, a line search needs to be employed with any acceleration
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method, then, the method loses simplicity of the EM algorithm. Jamshi-
dian and Jennrich (13) pointed out that

For any algorithm there are two types of cost: thinking costs associated
with deriving and implementing the algorithm and computer costs
associated with the use of computer resources and of our patience in

waiting for output. One is motivated to accelerate the EM algorithm
onlywhen the computer cost is too high. The hope is that a reduction in
computing costs will be worth the increase in thinking cost associated

with the accelerator. This is a personal choice.

If one makes the estimation program which would be used by many
users, the basic EM algorithm would not be the choice. Then, one would
at least need to compute the incomplete-data log-likelihood (the objective
function) and its gradient to get faster convergence speed with stability
and global convergence (cf. Refs. 7, 13, and 16), but would not necessar-
ily need the observed incomplete-data information matrix, i.e., the Hes-
sian matrix of the objective function, or its approximation.
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1 INTRODUCTION

One of the crucial purposes of neural network research is to clarify the
mechanism of biological systems that can intricately adapt to changing
environments, by constructing simple mathematical models. Also, as a
consequence, many applications of neural networks are discussed in
various engineering fields (see, for example, Ref. 1).

Its important characteristics are summarized as follows: the network
is a massive parallel distributed system composed from simple homoge-
neous processing units, and connections between processing units are
adapted by local mutual interactions of units without global information
of the whole network.

Because the models proposed so far are rather simplified ones, the
models are not necessarily adequate from the biological point of view, but
they are preferable for mathematical treatments. It is well known that
multilayered perceptrons can approximate any function with arbitrary
accuracy when the number of hidden units is sufficiently large (e.g., Ref. 2);
accordingly, they are frequently used for practical applications. The learn-
ing procedure based on given examples is optimizing a certain objective
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function, and we can see a similarity to the estimating function method,
namely the neural networks can be regarded as statistical models and
the learning procedures can be regarded as statistical inferences. There-
fore the neural networks are involved with various problems in numer-
ous fields including statistics.

In neural networks, information are usually transmitted from input
units to hidden units which do not interact directly with the outer world;
then, after undergoing transformations, they arrive at output units. In the
learning procedure, the states of hidden units, invisible from the outside,
have to be estimated in some way, then parameter updates are carried out.
These steps are closely related with the EM algorithm; in fact, the con-
trivance of the EM algorithm actually appears in neural network learning
implicitly or explicitly.

In this article, we first review the EM algorithm from the geometri-
cal viewpoint based on the em algorithm proposed in Ref. (7). This geo-
metrical concept is important to interpret various learning rules in neural
networks. Then, we give some examples of neural network models in
which the EM algorithm implicitly appears in the learning process. From
the biological point of view, it is an important problem that the EM algo-
rithm can be appropriately implemented on real biological systems. This
undertaking is usually difficult, and with a special model, the Helmholtz
machine, we briefly discuss the tradeoff between statistical models and
biological models. In the end, we show two models of neural networks
in which the EM algorithm is adopted for learning explicitly. These mod-
els are mainly proposed for practical applications, not for biological
modeling, and they are applied for complicated tasks such as control-
ling robots.

2 EM ALGORITHM AND em ALGORITHM

2.1 Concept of Information Geometry

Before discussing the geometrical structure of the EMalgorithm, we briefly
review the framework of the information geometry. The information
geometry is a new approach for providing a geometrical understanding
to statistical inferences and hypothesis testing—by applying the differen-
tial geometrical method to the space of probability density functions. In
this section, we try to give a naive explanation of the information geom-
etry, and the readers are referred to Refs. (3–6) for more rigorous mathe-
matical treatment.
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Let us consider the estimation problem with a parametric model. Let
S be a space of the probability density function p(x) of a random variable
X. Strictly speaking, the distributions in S are supposed to satisfy certain
regularity conditions, such as strict positivity and differentiability on their
domain; in general, however, here we presume that S contains any proba-
bility density functions including empirical distributions. Let p(x;h) be a
probability density function in S parameterized by h. A set of parametric
models { p(x;h)} constitutes a submanifold in the space S, and we call it a
model manifold M.

From given observations X1, . . . , XT, we can empirically calculate
various statistics, and by using these statistics as a coordinate system of S,
we can specify a distribution in S. Thus a set of observations corresponds
to one point in the space of distributions S; however, this point is not
necessarily included in the model manifold M.

In order to choose a proper parameter of themodel, we have to define
the closest point in the model manifoldM from a point in S in some sense.
This procedure is regarded as a projection from a point in the space S to a
point in the model manifold M (Fig. 1).

If the space is linear and the specified model manifold is a linear
subspace, the closest point can be obtained by an orthogonal projection

Figure 1 Geometrical interpretation of statistical inference.
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from a point to the subspace. However, the space S, which we consider, is
generally a ‘‘curved’’ space. To define a projection in the curved space, we
have to extend the notion of straight lines and have to define the inner
product and the orthogonality of the tangent vectors as follows.

First, let us start from the definition of ‘‘straight’’ lines in S. In the
‘‘curved’’ space, geodesics plays the role of straight lines, but the defini-
tion is not unique. When the Kullback–Leibler divergence is adopted as
a statistical distance for measuring distributions, the m-geodesic and the
e-geodesic play the most important roles. The m-geodesic is defined as
a set of interior points between two probability density functions p(x)
and q(x),

rðx; tÞ ¼ ð1� tÞ � pðxÞ þ t � qðxÞ; 0V tV1: ð1Þ
The e-geodesic is also defined as a set of interior points between p(x) and
q(x), but in the sense of the logarithmic representation

log rðx; tÞ ¼ ð1� tÞlog pðxÞ þ t � log qðxÞ � /ðtÞ 0V tV1; ð2Þ
where /(t) is the normalization term to make r(x;t) a probability density
function, defined by

/ðtÞ ¼ log

Z
pðxÞ1�tqðxÞtdx: ð3Þ

Similar to the definition of ‘‘straight’’ lines, the notion of planes can
be extended as follows. Let us consider a mixture family of distributions
spanned by n distinct probability density functions pi(x),

Mm ¼ pðx; hÞ ¼
Xn
i¼1

hi piðxÞ; hi > 0;
Xn
i¼1

hi ¼ 1

( )
ð4Þ

It is easily seen that anym-geodesic, which connects two arbitrarily chosen
distributions in Mm, is included in Mm. That means the manifold is com-
posed from ‘‘straight’’ lines, and Mm is a ‘‘flat’’ subset of S in the sense of
the straightness induced by m-geodesic.

Similarly, for an exponential family such as

Me ¼ pðx; hÞ ¼ exp
Xn
i¼1

hiriðxÞ � wðhÞ
 !( )

; ð5Þ

any e-geodesic connecting any two points inMe is included inMe, therefore
the subset Me is also ‘‘flat’’ in another sense.
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The above explanation of ‘‘flatness’’ is just intuitive, and the m-
flatness and e-flatness should be rigidly defined by using the connection in
the differential geometry. For more detailed explanation, see textbooks on
information geometry, for example, Refs. (3–6).

Because the concept of ‘‘flatness’’ is introduced in the space S as
mentioned above, we next explain the orthogonal projection by defining
tangent vectors and the inner product. Let a tangent vector be an infini-
tesimal change of the logarithmic probability density function log p(x), and
let us define the inner product by the correlation of tangent vectors

Epð@� log pðXÞ � @b log pðXÞÞ; ð6Þ
where @� is differential along with the direction �. For example, a tangent
vector along a geodesic with a parameter t is defined by

@t log rðx; tÞ ¼ @trðx; tÞ
rðx; tÞ

¼
d
dt
fð1� tÞ � pðxÞ þ t � qðxÞg

rðx; tÞ ð7Þ

¼ qðxÞ � pðxÞ
rðx; tÞ

for m-geodesic, and

@t log rðx; tÞ ¼ d

dt
fð1� tÞ � log pðxÞ þ t � log qðxÞ � /ðtÞ

ð8Þ
¼ log qðxÞ � log pðxÞ � d

dt
/ðtÞ

for e-geodesic. The tangent vectors of the model manifold are naturally
defined by the derivatives with respect to the model parameter h

@hi log pðx; hÞ ¼ @

@hi
log pðx; hÞ

ð9Þ
¼ @hi pðx; hÞ

pðx; hÞ ;

where hi is the i-th element of the parameter h. In the following, we use the
symbol @ to denote the differential operator without notice.

Now let us define two kinds of projections: the m-projection and the
e-projection. Consider them-geodesic from a point q in S to a point p(ĥ) in
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M. When the m-geodesic and the model manifold M is orthogonal at the
point p(ĥ), p(ĥ) is called the m-projection from q onto M. Roughly
speaking, the point p(ĥ) inM is the closest point from q when the distance
is measured by the length of the m-geodesic, and this is equivalently stated
that the Kullback–Leibler divergence from q to p(h)

Dðq; pðhÞÞ ¼
Z

qðxÞlog qðxÞ
pðx; hÞ dx ð10Þ

¼ Eq½log qðXÞ � log pðX; hÞ�
is minimized at ĥ. It is easily checked that at point ĥ, which minimizes the
Kullback–Leibler divergence, all partial derivatives vanish

@hiDðq; pðhÞÞ h¼ĥ ¼ �Eq @hi log pðX; ĥÞ
h i���

ð11Þ¼ 0

and the inner product of the tangent vector along m-geodesic at p (ĥ)

@t log rðx; tÞ
����
t¼0

¼ qðxÞ � pðx; ĥÞ
rðx; tÞ t¼0

����
ð12Þ

¼ qðxÞ � pðx; ĥÞ
pðx; ĥÞ

and the tangent vectors along the model manifold at p(ĥ)

@hi log pðx; hÞ
����
h¼ĥ

¼ @hi pðx; ĥÞ
pðx; ĥÞ

ð13Þ

are calculated as

E
pðĥÞ½@t log rðX; 0Þ � @hi log pðX; ĥÞ�

¼
Z

qðxÞ � pðx; ĥÞ
pðx; ĥÞ

 !
@hi log pðx; ĥÞpðx; ĥÞdx

ð14Þ
¼ Eq½@hi log pðX; ĥÞ� � EpðĥÞ½@hi log pðX; ĥÞ�
¼ 0;

therefore the m-geodesic between q and p(ĥ) is orthogonal to the model
manifold. Note that in the above calculation, we assume that differentials
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and integrals commute under the regularity conditions for the model, and
we use the relation

EpðhÞ½@hi log pðX; hÞ� ¼ @hi

Z
pðx; hÞdx

ð15Þ
¼ 0:

As a special case, when q is the empirical distribution, the m-projection
coincides with the maximum likelihood estimation (Fig. 1).

Meanwhile, the e-projection is also defined in the sense of e-geodesic,
and it is equivalent to seeking the point, which minimizes

DðpðhÞ; qÞ ¼
Z

pðx; hÞlog pðx; hÞ
qðxÞ dx: ð16Þ

Note that the Kullback–Leibler divergence is not symmetric and the m-
projection and e-projection use the Kullback–Leibler divergence in differ-
ent order.

Like the m-projection, the e-geodesic and the model manifold are
orthogonal at p(x;ĥ ) in the case of the e-projection. Knowing that the
tangent vector along e-geodesic is

@t log rðx; tÞ
����
t¼0

¼ log qðxÞ � log pðx; ĥÞ � d

dt
/ðtÞ

����
t¼0

¼ log qðxÞ � log pðx; ĥÞ � EpðĥÞ½log qðXÞ ð17Þ

� log pðX; ĥÞ�;

the inner product of the tangent vectors of the e-geodesic and the model
manifold becomes

EpðĥÞ½@t log rðX ; 0Þ � @hi log pðX; ĥÞ�

¼
Z

@hi pðx; ĥÞ
n
log qðxÞ � log pðx; ĥÞ

ð18Þ
�E

pðĥÞ log qðxÞ � log pðx; ĥÞ
h io

dx

¼
Z
@hi pðx; ĥÞ

n
log qðxÞ � log pðx; ĥÞ

o
dx
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and from the fact that

@hiDð pðhÞ; qÞ
����
h¼ĥ

¼
Z

@hi pðx; ĥÞlog pðx; ĥÞdxþ
Z

@hi pðx; ĥÞdx

�
Z

@hi pðx; ĥÞlog qðxÞdx ð19Þ

¼
Z

@hi pðx; ĥÞðlog pðx; ĥÞ � log qðxÞÞdx

¼ 0;

their orthogonality is confirmed.
Note that the uniqueness of the projection depends on the curvature

of the model manifold. For example, when themodel manifold is e-flat, the
m-projection is uniquely determined. This typical example corresponds to
the situation that in the Euclidean space, the orthogonal projection from a
point to a plane is uniquely determined.

2.2 Geometrical Understanding of EM Algorithm

Let us consider the situation that a part of a random vector X can be
observed and the rest cannot be observed. The visible variables are denoted
by XV the hidden variables are denoted by XH, and all the vectors are
written as X = (Xv,XH). The problem is to determine the parameter h of
the statistical model p(x; h)= p(xV,xH; h) only from the observations {xV,1,
xV,2, . . . ,xV,T). In this section, we consider the parameter estimation
problem with hidden variables from the geometrical point of view.

When there are hidden variables which cannot be observed, it is
impossible to calculate all the statistics needed to specify a point in the
space S only from the observed data. In this case, we first consider the
marginal distribution of the visible variables and gather all the distribu-
tions which have the same marginal distribution with the empirical
distribution of the visible variables. Intuitively speaking, the set of these
distributions conditioned by the marginal distribution represents observed
visible data, and it is called the datamanifoldD (Fig. 2). Here, we introduce
a new parameter g to specify the point in the data manifoldD. Let q(xV) be
the marginal distribution of xV. All the points inD have the same marginal
distribution and any point in D can be represented as

qðxV; xH; gÞ ¼ qðxVÞqðxHAxV; gÞ; ð20Þ
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thereby g can be also regarded as the parameter of the conditional proba-
bility density function q(xHjxV;g).

A natural way of choosing a point in the model manifoldM is adopt-
ing the closest point inM from the data manifold D. It can be achieved by
measuring the statistical distance between a point q(g) inD and a point p(h)
in M with the Kullback–Leibler divergence

DðqðgÞ; pðhÞÞ ¼
Z

qðxV; xH; gÞlog qðxV; xH; gÞ
pðxV; xH; hÞ dxVdxH; ð21Þ

and obtaining the points ĝ and ĥ, which minimize the divergence. The em
algorithm is a method of solving this estimation problem by applying e-
projection and m-projection repeatedly (Fig. 3).

The procedure is composed of the following two steps.

e-step. Apply e-projection from ht (the t-th step estimate of h) to D,
and obtain gt+1 (the t+1-th step estimate of g).

gtþ1 ¼ argmin
g

DðqðgÞ; pðhtÞÞ: ð22Þ

m-step. Apply m-projection from gt+1 to M, and obtain ht+1 (the
t+1-th step estimate of h).

Figure 2 Observation manifold and model manifold.
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htþ1 ¼ argmin
h

Dðqðgtþ 1Þ; pðhtÞÞ: ð23Þ

Starting from an appropriate initial value h0, the procedure is ex-
pected to converge to the optimal value after sufficiently numerous itera-
tions. If the model manifold is e-flat and the data manifold is m-flat, it is
shown that in each step, the projection is uniquely determined (7); how-
ever, there are local minima in general and the algorithm can converge to
the suboptimal point. The uniqueness of the solution is a subject of dis-
cussion depending on the model, such as the EM algorithm.

Note that the procedure in the e-step is equivalent to minimizing

DðqðgÞ; pðhÞÞ ¼
Z

qðxVÞqðxHj; xV; gÞ

� log
qðxVÞqðxHjxV; gÞ

pðxV; htÞpðxHj; xV; htÞ dxVdxH

ð24Þ
¼
Z

qðxVÞlog qðxVÞ
pðxV; htÞ dxV

þ
Z

qðxVÞqðxHj; xV; gÞlog qðxHjxV; gÞ
pðxHjxV; htÞ dxVdxH

Figure 3 The em algorithm.
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¼
Z

qðxVÞlog qðxVÞ
pðxV; htÞ dxV

þ
Z

qðxVÞDðqðxH ; xV; gÞ; pðxH ; xV; htÞÞdxV;jj

and this is reduced to minimizing the conditioned Kullback–Leibler di-
vergence D( q(xHjxV;g), p(xHjxV;ht)); therefore, in usual cases, we can use

qðxHAxV; gtþ1Þ ¼ pðxHAxV; htÞ ð25Þ
because of the positivity of the Kullback–Leibler divergence.

On the other hand, the EMalgorithm consists of the Expectation step
(E-step) and the Maximization step (M-step), and it gives the maximum
likelihood estimate or a locally maximum point of the likelihood function
by alternatively applying these two steps.

Starting from an appropriate initial value h0, and denoting the t-th
step estimate of the parameter by ht, the E-step and the M-step are defined
as follows.

E-step. Calculate Q(h,ht) defined by

Qðh; htÞ¼ 1

T

XT
k¼1

Z
pðxHjxV;k; htÞlog pðxV;k;xH; hÞdxH

�
:

�
ð26Þ

M-step. Find ht+1 which maximizes Q(h,ht) with respect to h,

htþ1 ¼ argmax
h

Qðh; htÞ: ð27Þ

The EM algorithm can be also seen as a motion on the data manifold
and the model manifold (Fig. 4). In theM-step, the estimate is obtained by
the m-projection from a point in the data manifold to a point in the model
manifold, and this operation is equal to the m-step. In the E-step, however,
the conditional expectation is calculated and this operation is slightly dif-
ferent from the e-projection in the e-step.

Let q(xV) be the empirical distribution of the visible variables. Sup-
pose q(xH|xV,gt+1)=p(xH|xV,ht) holds in the e-step, then the objective
function evaluated in the m-step is written as

Dðqðgtþ1Þ; pðhÞÞ

¼
Z

qðxVÞpðxHAxV; htÞ log qðxVÞpðxHAxV; htÞ
pðxV; xH; hÞ dxVdxH
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¼
Z

qðxVÞpðxHAxV; htÞ log qðxVÞpðxHAxV; htÞdxVdxH �Qðh; htÞ:
ð28Þ

This shows that the m-step and the M-step are equivalent if the first term
can be properly integrated. Intuitively speaking, the problems occur when
the integrals including the empirical distribution, which is a sum of delta
functions, are not appropriately defined. In Ref. (7), the case where S is an
exponential family and the model manifold is a curved exponential family
embedded in S is considered, and it is shown that the E-step and the e-step
give different estimates. This result mainly comes from the fact that the
expectation of the hidden variables and the expectation conditioned by the
visible variables do not agree

EqðgÞðXHÞ p EqðgÞðXHAxV ¼ EqðgÞðXVÞÞ: ð29Þ

Actually, this example is artificial and special, and in most practical cases,
the E-step and the e-step coincide.

Figure 4 The EM algorithm.
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3 EM ALGORITHM AS LEARNING RULES

The aim of neural network learning is to adapt the network parameters so
that the network can reproduce well the given input–output examples. This
procedure can be regarded as a statistical inference to estimate the network
parameters. In most cases, neural networkmodels have hidden units which
do not interact directly with the outside world, and to which the teacher
signals are not explicitly given; therefore the states of hidden units can be
regarded as hidden variables. In this section, we focus on the relationship
between the EM algorithm and neural networks with particular structures.

3.1 Back-Propagation Learning

The multilayered perceptron is a typical neural network model with a sim-
ple structure. In this section, we focus on the three-layered perceptron
which has n input units and one output unit, as shown in Fig. 5, and try to
derive the learning algorithm. Let xaRn be an input vector, yaR an out-
put, and zaRm an output vector of hidden units.

The input–output relation of the neural network is denoted by y=
g(x), and is characterized by the relationship among the input, the output
of the hidden units, and the output as

zi ¼ fðPj wijxjÞ
fðuÞ ¼ 1

1þe�u

ð30Þ

Figure 5 Perceptron.
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gðxÞ ¼ v � z ¼
X
j

vjzj: ð31Þ

For given input–output pairs (x1, y1), . . . ,(xT, yT) as examples, the purpose
of learning is to find a parameter W={wij}, v={vk} with which the neural
network can approximate the given examples in the best way possible.
Typically, the sum of squared errors

E ¼ 1

T

XT
k¼1

ðyk � gðxkÞÞ2

is adopted as a loss function, and the parameter which minimizes the loss
function is defined as optimal. In general, this is a nonlinear optimization
problem and it cannot be solved arithmetically, therefore some iterative
methods should be applied. A simple implementation is to use the gradient
descent method, which is called the error back-propagation method. The
parameter update rule is written as

vi; tþ1 ¼ vi; t þ Dvi ð32Þ
wij; tþ1 ¼ wij; t þ Dvi ð33Þ

Dvi~� @E

@vi
¼ �2

1

T

XT
k¼1

ðyk � gðxkÞÞzi ð34Þ

Dwij~� @E

@wij
¼ �2

1

T

XT
k¼1

ðyk � gðxkÞÞvi f V
X
j V

wij Vxj V;k

 !
xj;k: ð35Þ

In the update rule for the weight between the input units and the hidden
units, i.e., Dwij, the term

ðyk � gðxkÞÞvi ð36Þ

corresponds to the pseudoerror of the hidden unit, which is calculated as
a weighted share of output error, and this is why it is called ‘‘error back-
propagate.’’ For multilayered perceptrons, which have more than three
layers, the errors of the hidden units are calculated backward from the
output layer to the input layer.

In the following, we rewrite the problem with statistical formulation,
and derive the error back-propagation from the EM algorithm. To treat zi
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and y as random variables, we introduce additive Gaussian random varia-
bles, as follows

zi ¼ f
X
j

wijxj

 !
þ ni ð37Þ

y ¼ v � zþ n ð38Þ
n1; . . . ; nm; nfN 0; r2

� 

;

then the joint distribution of y, z, and the marginal distribution of y are
written as

pðy; zAx; hÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2�r2

p mþ1
� exp

(
� 1

2r2
ðy� v � zÞ2

ð39Þ
� 1

2r2
Xm
i¼1

zi � f
X
j

wi jxj

 ! !2)

pðyAx; hÞ ¼
Z

pðy; zAx; hÞdz ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð1þ vA2Þr2p

ð40Þ
�exp � 1

2ð1þAvA2Þr2 ðy� gðxÞÞ2
� �

;

where h = (W,v).
Now, we apply the EM algorithm regarding z1, . . . ,zm as the hidden

variables. However, it is not possible to directly solve the parameter that
maximizes Q(h,ht) in the M-step, we use the gradient descent to find the
maxima. Or before completing the maximization of Q, we proceed to the
next E-step as the Generalized EM (GEM) algorithm (8). Knowing that
the conditional distribution of the hidden variables is written as

pðzAy; x; hÞ ¼ pðy; zAx; hÞ
pðyAx; hÞ

ð41Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þAvA2

p
ð2�r2Þm=2

exp � 1

2r2
ðz� rÞTðIþ vvTÞðz� rÞ

� �
r ¼ I� vvT

1þAvA2

� �
ðyv� f Þ; ð42Þ
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f ¼ f
X
j

w1 jxj

 !
; . . . ; f

X
j

wm jxj

 ! !T

; ð43Þ

where T (in superscript) denotes the transpose, the E-step and the M-step,
described as follows.

E-step. Calculate the objective function

Qðh; htÞ ¼ 1

T

XT
k¼1

Z
pðzAyk; xk; htÞðlog pðzAyk;xk; hÞÞdz

��

þ 1

T

XT
k¼1

log pðykAxk; hÞ ð44Þ

¼ 1

Tr2
XT
k¼1

�
ðrt � rÞTðIþ vvT Þðrt � rÞ

þ tr I� vtv
T
t

1þAvtA2

� �
ðIþ vvTÞ

�
ð45Þ

� 1

ð2�ð1þAvA2Þr2Þ1=2
E� 1þm

2
logð2�r 2Þ:

M-step. Update the parameter along with the gradient

Dvi~
@Qðh; htÞ

@vi
¼ � 1

Tr2
XT
k¼1

ðyk � gðxkÞÞ f
X
j

wi jxj;s

 !
ð46Þ

Dwij~
@Qðh; htÞ

@wij
¼ � 1

Tr2
XT
k¼1

ðyk � gðxkÞÞvi f V

�
X
j V

wij Vxj V;s

 !
xj;s: ð47Þ

This update rule coincides with the back-propagation learning rule except
for constant multiplication.

3.2 Boltzmann Machine

The Boltzmann machine is a quite simple neural network designed to
extract a stochastic structure of given data (9,10) (Fig. 6). The model is
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composed of n units and all the units are mutually connected. Each unit
works in probabilistic way and outputs a binary value, 0 or 1. The struc-
ture of the Boltzmann machine is homogeneous and each unit works
identically; however, the units are classified into three groups: the input
units, the hidden units, and the output units. Signals from outside are
relayed to the input units, and computational results are produced from
the output units, and the hidden units do not directly interact with the
external environment.

Let ui be the internal state of the i-th unit, and let xi be its output. The
connection strength between the i-th unit and the j-th unit is denoted bywij,
and we assume there is no self-connection. The internal states are calcu-
lated by the equation

ui ¼
X
j p i

wi jxj � hi; ð48Þ

where hi is a threshold. Specifically, the internal state is determined by the
weighted sum of the outputs of other units. In the following discussion, we
add a special unit x0, which always emits 1, and rewrite wii=0 and wi0=hi;
thus we use the simplified equation

ui ¼
Xn
j¼0

wi jxj ð49Þ

Figure 6 Boltzmann machine.
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to describe the internal state. Each unit works in an asynchronous manner,
which means that at each step, only one unit is updated from xi to xiV
stochastically with the rule

pðx Vi ¼ 1AuiÞ ¼ 1

1þ expð�ui=TÞ
pðx Vi ¼ 0AuiÞ ¼ expð�ui=TÞ

1þ expð�ui=TÞ ;
ð50Þ

where T denotes ‘‘temperature’’ and plays a role of controlling the rate of
stochasticity. At the limit T=0, the units behave deterministically, which
means that, depending on the sign of the internal state, 1 or 0 is emitted as
an output.

The Boltzmannmachine with n units can be regarded as a finite-state
Markov chain with 2n states. It is irreducible because the transition
probability between any two states is not 0 from the definition, and
defining the energy function as

EðxÞ ¼ �
X
i; j

wi jxixj; ð51Þ

where x is the output, the stationary distribution is uniquely written by the
Boltzmann distribution as

pðxÞ ¼ 1

Z
exp � EðxÞ

T

� �
: ð52Þ

This is the reason why it is called ‘‘Boltzmann machine.’’
Let us confirm that the Boltzmann distribution cited above is actually

the stationary distribution. First, assume that at the present step, the i-th
unit is subject to be updated and according to Eq. (50), the output of the
unit changes from xi to xiV. Note that the other units do not change their
outputs. Because the output is subject to the Boltzmann distribution, the
equation

pðxi ¼ 0Þ
pðxi ¼ 1Þ ¼ exp � Eð. . . ; xi ¼ 0; . . .Þ � Eð. . . ; xi ¼ 1; . . .Þ

T

� �
¼ exp �

P
j p i wijxj

T

� �
¼ expð�ui=TÞ
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is derived, and consequently, the relation

pðx Vi ¼ 1Þ ¼ pðx Vi ¼ 1; xi ¼ 1Þ þ pðx Vi ¼ 1; xi ¼ 0Þ

¼ pðx Vi ¼ 1Axi ¼ 1Þpðxi ¼ 1Þ þ pðx Vi ¼ 1Axi ¼ 0Þpðxi ¼ 0Þ

¼ pðx Vi ¼ 1AuiÞpðxi ¼ 1Þ þ pðx Vi ¼ 1AuiÞpðxi ¼ 0Þ

¼ pðx Vi ¼ 1AuiÞ 1þ pðxi ¼ 0Þ
pðxi ¼ 1Þ

� �
pðxi ¼ 1Þ

¼ 1

1þ exp
�
� ui

T

� 1þ exp � ui
T

� �n o
pðxi ¼ 1Þ

¼ pðxi ¼ 1Þ
holds, where

pðx Vi ¼ 1Axi ¼ 1Þ ¼ pðx Vi ¼ 1Axi ¼ 0Þ ¼ pðx Vi ¼ 1AuiÞ ð53Þ

comes from the fact that the Boltzmann machine does not have self-
connections. Therefore, it is confirmed that the Boltzmann distribution is
the stationary distribution of this system.

An important feature of the Boltzmann machine is its learning
mechanism. From given examples, the Boltzmann machine can extract
the stochastic structure via the two-phase learning procedure. Later in this
section, the states of the input units, the output units, and the hidden units
are separately represented by X=(�,b,c).

. Phase I

Pick up an input–output pair from the given examples and clamp
the input units and the output units on the chosen input–output
values, then update the states of the hidden units stochastically.
By repeatedly selecting the example, calculate the probability
that the i-th unit and the j-th unit simultaneously output 1

pi j ¼
X
�;b

qð�; bÞEðxixjA�;bÞ ð54Þ

at the equilibrium state, where q(�,b) is the empirical distribu-
tion based on the given examples.
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With an appropriately small positive number q, increase the
connection weight wij by

Dwij ¼ epij ð55Þ
according to the probability pij.

. Phase II

Choose an input–output pair from the given examples and clamp
only the input units on the chosen input values, then update the
states of the output units and the hidden units stochastically.
Calculate the probability in the same way as Phase I as

p Vij ¼
X
�

qð�ÞEðxixjA�Þ; ð56Þ

where q(�) is the empirical distribution of the inputs.
Decrease the connection weight wij by

Dwij ¼ �ep Vij ð57Þ

according to the probability pijV .

By iterating the above two phases from a certain initial connection
weights, the network can obtain the weight which reproduce the same
input–output distribution with the given examples. This learning proce-
dure is derived from the gradient descent method of minimizing Kullback–
Leibler divergence from the given input–output distribution to the dis-
tribution of the Boltzmann machine. Let q(�,b) be the distribution of the
given examples and p(�,b,c) be the distribution of the states of the Boltz-
mann machine. The Kullback–Leibler divergence is written as

DðwÞ ¼
X
�;b

qð�;bÞlog qð�; bÞ
pð�; bÞ

ð58Þ
¼
X
�;b

qð�; bÞlog qðbA�Þ
pðbA�Þ :

Note that q(�)=p(�) because the input units of the Boltzmann machine
are clamped by the given examples. Taking into account that the station-
ary distribution is represented by the Boltzmann distribution, the differ-
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entials of the Kullback–Leibler divergence with respect to the weights are
calculated as

@

@wij
DðwÞ ¼

X
�;b

qð�; bÞ@pðbA�Þ
pðbA�Þ@wij

¼
X
�;b

qð�; bÞ
pðbA�Þ

@

@wij

X
c

pðb; cA�Þ
 !

¼
X
�;b

qð�; bÞ
pðbA�Þ

@

@wij

X
c

expð�Eðb; cA�Þ=TÞP
bV;c V expð�EðbV; c VA�Þ=TÞ

 !

¼ � 1

T

X
�;b

qð�; bÞ
pðbA�Þ

X
c

pðb; cA�Þxixj � pðbA�Þ
X
bV;cV

pðbV; cVA�Þxixj
( )

¼ � 1

T

X
�;b

qð�; bÞ
X
c

pðcA�; bÞxixj �
X
�

qð�Þ
X
b;c

pðb; cA�Þxixj
( )

¼ � 1

T
f pij � pVijg;

then by changing wij according to

Dwij~� @

@wij
DðwÞ~pij � pVij ð59Þ

the Kullback–Leibler divergence decreases. In the learning procedure,
Phases I and II, pij and pijV are calculated with a variation of the Monte
Carlo method by making the Boltzmann machine work autonomously.

Compared with the EM algorithm, in Phase I, calculation is carried
out with the conditional distribution p(c|�,b), and this phase is equal to the
E-step. Also, in Phase II, the gradient descent direction is calculated in the
end, and the minimization of the Kullback–Leibler divergence is carried
out, then this phase corresponds to theM-step. In comparison with the em
algorithm, this correspondence can also be seen.

The Boltzmann machine is originally proposed as a very simple
model of perceptual mechanism of human beings. For example, in natural
images, there are some specific relations among the pixels in the neigh-
borhood. Therefore even if a given image is smeared by noises, we can
easily surmise the original. The Boltzmann machine is designed to capture
the stochastic structure from data and because of the simple and specific
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structure, the learning is efficiently performed by local interactions. It is
difficult to state that the Boltzmannmachine is a concrete model of a brain,
but it can extract the stochastic structure of the given data by repeating
to memorize (Phase I) and to forget (Phase II) alternatively— thereby it
is highly suggestive for understanding the mechanism of cognition and
remembrance.

3.3 Helmholtz Machine

TheHelmholtz machine is a kind of perceptual model which consists of the
generative model and the recognition model (11–13). The concept of the
Helmholtz machine is quite similar to the factor analysis model; however,
because it generally employs the nonlinear regression and the learning rule
is constructed only by local interaction between directly connected units, it
is not always a natural model from the statistical viewpoint. The learning
rule is called the Wake–Sleep algorithm, and it consists of alternative
updates between the generative model and the recognition model. In the
following, we explain the Wake–Sleep algorithm with a simple linear
regression model as the generative and recognition models to see the mech-
anism (14). First, we describe the detailed model. In this case, the Helm-
holtz machine is equivalent to the factor analysis model.

. Generative model

Let us assume the n-dimensional signal x is generated from the
stochastic model

x ¼ gyþ e; ð60Þ
where y is a random variable which obeys the standard normal
distribution N(0,1), and E is a random noise vector subject to n-
dimensional Gaussian distribution N(0,�), whose mean is 0 and
whose covariance matrix is a diagonal matrix �=diag(ri

2). The
vector g corresponds to the factor loading of the factor analysis
model.

. Recognition model

From an observed signal x, a corresponding y is estimated by the
model

y ¼ rTxþ y; ð61Þ
where d is a random noise subject to N(0,s2).

Murata and Ikeda116



The purpose of the model is to reproduce the given data {x1,
x2, . . . ,xN} by constructing the optimal generative and recognition models.
The Wake–Sleep algorithm consists of the following two phases to learn
the parameters g, �, r, s.

. Wake phase

Pick up x randomly from given examples {xi}, and for each x
generate y by using the recognition model

y ¼ rTt xþ y; yfNð0; s2t Þ; ð62Þ
and collect a number of pairs of (x,y) by repeating this procedure.
Then, update g and � of the generative model by

gtþ1 ¼ gt þ �hðx� gtyÞyi ð63Þ
r2i;tþ1 ¼ br2i;t þ ð1� bÞhðxi � gi;tyÞ2i; ð64Þ

where � and b are positive constants, and b is less than 1, and h�i
denotes the expectation with respect to collected data x and y.

. Sleep phase

Generate y subject to the standard normal distribution, and
produce a pseudodata x by the generative model

x ¼ gtyþ e; efNð0;�tÞ: ð65Þ
Collect a number of pairs of (x,y), and update the parameter r, s2

of the recognition model by

rtþ1 ¼ rt þ �Vhxðy� rTt xÞi ð66Þ
s2tþ1 ¼ bVs2t þ ð1� bVÞhðy� rTt xÞ2i; ð67Þ

where h�i denotes the expectation.
An important feature of this learning rule is that only local informa-

tion is used. For example, gi, the i-th element of g, connects y and xi, the i-th
element of x, and its update is calculated only from the values at both ends
of the weight as

gi;tþ1 ¼ gi;t þ �hðxi � gi;tyÞyi: ð68Þ
This restriction on locality is not necessary for a computational model;
however, it is sometimes required as an information processing model of
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biological systems, because in real biological systems, connections between
information processing units, i.e., neurons, are limited in narrow region,
hence the global information cannot be used and only the local informa-
tion is available.

From the geometrical point of view, the Wake–Sleep algorithm can
be seen as reducing two different Kullback–Leibler divergences alterna-
tively. In the generative model, the joint distribution of x and y is written as

pðy; x; hÞ ¼ exp � 1

2
ðy xTÞA

y

x

0@ 1A� wðhÞ
0@ 1A

A ¼ 1þ gT��1g

���1g

�gT��1

��1

���� ��
ð69Þ

wðhÞ ¼ 1

2

X
log r2i þ ðnþ 1Þlog2�

� �
;

where h =(g,�). Also, in the recognition model, the conditional distribu-
tion of y conditioned by x is the normal distribution N(rTx,s2), and the
distribution of x is the normal distribution N (0,C) where C is calculated
from the given data x1, . . . ,xN by

C ¼ 1

N

XN
s¼1

xsx
T
s ; ð70Þ

therefore the joint distribution of x and y is written as

qðy; x; gÞ ¼ exp �1

2
ðy xTÞB

y

x

0@ 1A� wðgÞ
0@ 1A

B ¼ 1

s2
1

�r

�rT

s2C�1 þ rrT

���� ��
ð71Þ

wðgÞ ¼ 1

2
ðlog s2 þ logACAþ ðnþ 1Þlog 2�Þ;

when g=(r,s2). For these two joint distributions, the Wake phase works
as decreasing

DðqðgÞ; pðhÞÞ ¼ EqðgÞ log
qðy; x; gÞ
pðy; x; hÞ

� �
ð72Þ

with respect to h, and the Sleep-phase works as decreasing
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DðpðhÞ; qðgÞÞ ¼ EpðhÞ log
pðy; x; hÞ
qðy; x; gÞ

� �
ð73Þ

with respect to g. Hence both phases correspond to the m-projection.
In the case of the linear model above, although the dynamics of

learning is different from the EM algorithm and the em algorithm as
shown, the parameter (h,g) converges to the maximum likelihood estimate.
However, for the model, include nonlinear transformations such as

x ¼ fðgyÞ þ e ð74Þ
y ¼ hðrTxÞ þ y; ð75Þ

the Wake–Sleep algorithm does not generally converge to the maximum
likelihood estimate.

The structure of the Helmholtz machine is more complex than that of
the Boltzmann machine, but as a cognitive model, the Helmholtz machine
is attractive because of its clearly separated structure. Mathematically,
some problems remain, such as stability of learning and convergence.

4 MODULE MODELS FOR EM ALGORITHM

In the previous section, we treated models which have hidden units, and
the states of hidden units are regarded as hidden variables. In this sec-
tion, we review some models in which the EM algorithm is explicitly used
for learning.

4.1 Mixtures of Experts

The mixture of experts is a hierarchical neural network model (15,16). It
consists of some modules and the modules cooperate and compete with
each other to process the information.

The model is constructed out of two parts: the expert networks and
the gating networks. The gating networks can be arranged hierarchically
(hierarchical mixtures of experts), but in the following, we consider the
simplest case, as shown in Fig. 7.

. Expert network

Each network receives the input xaRm and generates the output
liaRd.

Ai ¼ fiðx; hiÞ; i ¼ 1; . . . ;K; ð76Þ
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where hi is the parameter to be learned. Although we do not
specify the structure of the network here, linear regression models
and multilayered perceptrons are often used in practical cases.
The parameter hi corresponds to the regression coefficient in the
former case, and the connection weights in the latter case. We
assume that the output includes an additive Gaussian noise, and
the output of the network represents the mean value, namely,

y ¼ Ai þ n ð77Þ
where n is subject to a normal distribution. Then, the conditional
distribution of y is written as

pðyAx; hiÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�ÞdA�iA

q exp

 
� 1

2
ðy� fiðx; hiÞÞT

� ��1
i ðy� fiðx; hiÞÞ

!
:

ð78Þ

Figure 7 Mixtures of experts.
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. Gating network

Using an appropriate function, si (x;h0), a competitive system is
constructed by

giðx; h0Þ ¼
expðsiðx; h0ÞÞPK
j¼1 expðsjðx; h0ÞÞ

: ð79Þ

Frequently, multilayered perceptrons are adopted as si. Knowing
that gi is positive and the sum of gi’s is 1, (gi) can be regarded as a
probability vector. The output of thewhole network is given by an
output of an expert network selected by the probability ( gi), or the
weighted average of all the expert networks.

For given input–output pairs {(x1,y1), . . . ,(xT,yT)}, the learning
rule is derived from the EM algorithm where gi’s are treated as hidden
variables.

In the following, we describe the parameter update rule for linear
regression experts, which are important for practical applications (17).

. E-step

For each input-output example (xk,yk), calculate the conditional
distribution

pðiAx; yÞ ¼ giðx; h0;tÞpðyAx; hi;tÞPn
j¼1 gjðx; h0;tÞpðyAx; hj;tÞ

: ð80Þ

. M-step

Update the parameters by

Si;tþ1 ¼
PT

k¼1 pðiAxk; ykÞðyk � fiðxk; hi;tÞÞðyk � fiðxk; hi;tÞÞTPT
k¼1 pðiAxk; ykÞ

ð81Þ

hi;tþ1 ¼ R�1
i;t ei;t ð82Þ

ei;t ¼
XT
k¼1

pðiAxk; ykÞxk��1
i;t yk

Ri;t ¼
XT
k¼1

pðiAxk; ykÞxk��1
i;t x

T
k
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XT
k ¼

xTk 0 : : : 0

..

.
O ..

.

0 0 : : : xTk

1 0 : : : 0
..
.

O
0 0 : : : 1

..

.

������
1A

0B@
h0;tþ1 ¼ h0;t þ yR�1

0;t e0;t ð83Þ

e0;t ¼
XT
k¼1

XK
i¼1

ðpðiAxk; ykÞ � giðxk; h0;tÞÞ @siðxk; h0;tÞ
@h0

R0;t ¼
XT
k¼1

XK
i¼1

giðxk; h0;tÞ

� ð1� giðxk; h0;tÞÞ @siðxk; h0;tÞ
@h0

@siðxk; h0;tÞT
@h0

:

For mixtures of experts, many variations of update rules are pro-
posed for on-line learning, or improving speed of convergence and
stability.

4.2 Normalized Gaussian Network

The normalized Gaussian network (18) is composed of the first-order
spline functions, which map m-dimensional inputs to d-dimensional out-
puts, and the radial basis function network. Sensory neurons in biological
systems show strong reaction for specific stimuli fromoutside, and show no
reaction for other signals. This domain of sensitive signals is called the
receptive field and the radial basis function network simulates the receptive
field in quite simple manner.

The structure of the normalized Gaussian network is described as

y ¼
XM
i¼1

ðWixþ biÞNiðxÞ

NiðxÞ ¼ GiðxÞPM
j¼1GjðxÞ

ð84Þ

GiðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�ÞmA�

p
iA
exp � 1

2
ðx� AiÞT��1

i ðx� AiÞ
� �

;
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where Ni’s are radial basis functions, and M is the number of units in the
network.

Let us assume that for an input–output pair (x,y), one unit i is chosen,
and let us represent this by (x,y,i). We do not knowwhich unit is chosen, so
the indicator i is regarded as a hidden variable. We assume that the
probability of complete data (x,y,i) is written by

pðx; y; i; hÞ ¼ 1

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�ÞðmþdÞr2di A�iA

q exp � 1

2
ðx� AiÞT��1

i ðx� AiÞ
� �

�exp � 1

2r2i
ðy�Wix� biÞ2

� �
; ð85Þ

where h= {li,�i,ri
2,Wi,bi; i=1, . . . ,M}, and when the unit i is chosen, the

mean value is given byWix+bi and the variance of the output y is ri
2. And

the conditional probability is calculated by

pðyAx; i; hÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2�r2i

p d
exp

1

2r2i
ðy�Wix� biÞ2

� �
ð86Þ

pðyAx; hÞ ¼
XM
i¼1

NiðxÞpðyAx; i; hÞ: ð87Þ

From this, when the input is x, the expectation of output y is given by

EðyAxÞ ¼
Z
ypð yAx; hÞdy ¼

XM
i¼1

ðWixþ biÞNiðxÞ ð88Þ

and this is equal to the output of the network. Therefore the network is
regarded as calculating the expectation of the output.

Regarding the normalized Gaussian network as a stochastic model,
for given input–output examples, the maximum likelihood estimate of the
network parameter can be obtained by an iterative method based on the
EM algorithm (19).

. E-step

Calculate the posterior probability so that the unit i is chosen
under the parameter ht and the given data (x,y) by

p iAx; y; htð Þ ¼ p x; y; i; htð ÞPM
j¼1 p x; y; j; htð Þ : ð89Þ
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. M-step

Define the expectation of the log likelihood for the complete date
by

Qðh; htÞ ¼
XT
k¼1

XM
i¼1

pðiAxk; yk; htÞlog pðiAxk; yk; hÞ ð90Þ

and maximize this with respect to h. By using the weighted
average subject to the posterior distribution defined by

Eið fðx; yÞÞ ¼ 1

T

XT
k¼1

fðxk; ykÞpðiAxk; yk; htÞ; ð91Þ

the solution is given by

Ai;tþ1 ¼
EiðxÞ
Eið1Þ ð92Þ

X
i;tþ1

¼ Eiððx� Ai;tÞðx� Ai;tÞTÞ
Eið1Þ ð93Þ

W̃i;tþ1 ¼ Eiðyx̃TÞEiðx̃x̃TÞ�1 ð94Þ

r2i;tþ1 ¼
1

d

EiðAy� W̃i; tx̃A2Þ
Eið1Þ ; ð95Þ

where

W̃i ¼ ðWi; biÞ; x̃T ¼ ðxT; 1Þ:
In practical applications, on-line learning is often employed, that is,

updating parameters and observing new data are alternatively carried
out. In such cases, the learning system is supposed to follow the changing
environment, and Ei is replaced by a running average, i.e., a low-pass filter.
Practical applications such as controlling robots are found in Ref. (20),
for example.

REFERENCES

1. Rumelhart, D., McClelland, J. L., The PDP Research Group (1986). Parallel
Distributed Processing: Explorations in theMicrostructure of Cognition. Cam-

bridge, MA: The MIT Press.

Murata and Ikeda124



2. Cybenko, G. (1989). Approximation by superpositions of a sigmoid func-
tion. Mathematics of Control, Signals and Systems 2:303–314.

3. Amari, S. (1985). Differential–Geometrical Methods in Statistics. Vol. 28 of

Lecture Notes in Statistics. Berlin: Springer-Verlag.
4. Barndorff-Nielsen, O. (1988). Parametric Statistical Models and Likelihood,

volume 50 of Lecture Notes in Statistics. New York: Springer-Verlag.
5. Murray, M. K., Rice, J. W. (1993). Differential Geometry and Statistics.

London; New York: Chapman & Hall.
6. Amari, S., Nagaoka, H. (2000). Methods of Information Geometry. Transla-

tions of Mathematical Monographs. Providence, RI: AMS, Oxford Univer-

sity Press.
7. Amari, S. (1995). Information geometry of the EM and em algorithms for

neural networks. Neural Networks 8(9):1379–1408.

8. McLachlan, G. J., Krishnan, T. (1997). The EM Algorithm and Extensions.
Wiley series in probability and statistics. New York: John Wiley & Sons, Inc.

9. Hinton, G. E., Sejnowski, T. J. (1983). Optimal perceptual inference. Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 448–453.

10. Ackley, D. H., Hinton, G. E., Sejnowski, T. J. (1985). A learning algorithm
for Bopltzmann machines. Cognitive Science 9:147–169.

11. Dayan, P., Hinton, G. E., Neal, R. M. (1995). The Helmholtz machine.
Neural Computation 7(5):889–904.

12. Hinton, G. E., Dayan, P., Frey, B. J., Neal, R. M. (1995). The ‘‘sake–sleep’’

algorithm for unsupervised neural networks. Science 268:1158–1160.
13. Neal, R. M., Dayan, P. (November 1997). Factor analysis using delta-rule

wake–sleep learning. Neural Computation 9(8):1781–1803.

14. Ikeda, S., Amari, S., Nakahara, H. (1999). Convergence of the Wake–Sleep
algorithm. In: Kearns, M. S., Solla, S. A., Cohn, D. A., eds., Advances in
Neural Information Processing Systems 11. Cambridge, MA: The MIT Press,
pp. 239–245.

15. Jacobs, R. A., Jordan, M. I., Nowlan, S. J., Hinton, G. E. (1991). Adaptive
mixtures of local experts. Neural Computation 379–87.

16. Jordan, M. I., Jacobs, R. A. (1994). Hierarchical mixtures of experts and the

EM algorithm. Neural Computation 6:181–214.
17. Jordan, M. I., Xu, L. (1995). Convergence results for the EM approach to

mixtures of experts architectures. Neural Networks 8(9):1409–1431.

18. Moody, J., Darken, C. (1989). Fast learning in networks of locally-tuned
processing units. Neural Computation 1:289–303.

19. Sato, M., Ishii, S. (2000). On-line EM algorithm for the normalized

Gaussian network. Neural Computation 12:407–432.
20. Doya, K. (1997). Efficient nonlinear control with actor–tutor architecture.

Touretzky, D. S., Mozer, M. C., Hasselmo, M. E., eds., Advances in Neural
Information Processing Systems Vol. 9. Cambridge, MA: The MIT Press,

pp. 1012–1018.

EM Algorithm in Neural Network Learning 125





9
Markov Chain Monte Carlo

Masahiro Kuroda
Okayama University of Science, Okayama, Japan

1 INTRODUCTION

Markov chain Monte Carlo (MCMC) is the generic name of Monte Carlo
integration using Markov chains and is used in Bayesian inference and
likelihood inference such as evaluating the posterior distributions or the
likelihood functions of interesting parameters. MCMC can be roughly
classified by two methods: one is the Metropolis–Hastings (M–H) algo-
rithm and another is the Gibbs Sampling (GS) algorithm. The Gibbs
Sampling algorithm can be also regarded as a particular case of the
Metropolis–Hastings algorithm.

TheMetropolis–Hastings algorithm was developed byMetropolis et
al. (1953) to study equilibrium properties of chemical substances and was
extended to use statistical computations by Hastings (1970). The Gibbs
Sampling algorithm was firstly presented by Geman and Geman (1984) in
the analysis of image processing models. In order to apply to Bayesian
inference for missing data, Tanner and Wong (1987) proposed the Data
Augmentation (DA) algorithm, which is a special version of the Gibbs
Sampling algorithm. In this paper, they demonstrated that the Bayesian
computation, to be infeasible analytically, can be performed by using the
iterative Monte Carlo method. Gelfand and Smith (1990) reviewed the
Data Augmentation and the Gibbs Sampling algorithms and revealed that
their algorithms can be found in the posterior distributions for complex
statistical models and were widely available for the missing data analysis.
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These MCMC methods have become standard Bayesian computational
methods and increasingly popular statistical techniques of the likelihood
inference dealing with missing data.

This chapter is organized as follows. In Sec. 2, we introduce
important properties with Markov chains that have stationary distribu-
tions. In Secs. 3 Secs. 4 Secs. 5, we deal with three MCMC methods: the
Data Augmentation, the Gibbs Sampling, and the Metropolis–Hastings
algorithms. In each of these sections, we show the process to deduce the
computational algorithm and illustrate simple examples to help the readers
understand. Sec. 6 refers to several books and papers for the further study
of MCMC methods.

2 MARKOV CHAINS

In this section, we will briefly summarize some properties with Markov
chains used in MCMC methods. First, we consider Markov chains with
discrete and finite state space S={0,1,2, . . .} and, second, we deal with
continuous state space.

AMarkov chain is a stochastic process {h(t)jtz 0}, which implies that
the future state is independent of the past states given the current state.
Then, by the Markov property, the probability of moving from h(t)=/ to
h(t+1)=h can be expressed by:

Prðhðtþ1Þ ¼ hjhðtÞ ¼ /Þ

¼ Prðhðtþ1Þ ¼ hjhðtÞ ¼ /; hðt�1Þ ¼ /t�1; . . . ; h
ð0Þ ¼ /0Þ ð1Þ

for all states /, haS. When the Markov chain is time-homogeneous such
that Eq. (1) does not depend on t, we can define the transition kernel K(/,h)
by the conditional probability:

Kð/; hÞ ¼ Prðhðtþ1Þ ¼ hjhðtÞ ¼ /Þ; ð2Þ
where K(/,h) is non-negative and satisfies

X
h
Kð/; hÞ ¼ 1. Our attention

is restricted to time-homogeneousMarkov chains. Denoting the transition
kernel over (u+t) steps as:

Kuþtð/; hÞ ¼ PrðhðuþtÞ ¼ hjhðtÞ ¼ /Þ;
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it can be obtained by:

Kuþtð/; hÞ ¼
X
hVaS

KuðhV; hÞKtð/; hVÞ: ð3Þ

Then Eq. (3) is called Chapman–Kolmogorov equation.
In the use of MCMC methods, the fundamental and important

problem is that the distribution of h(t) converges to a stationary distri-
bution after a finite number of iterations. For the distribution of h(t) to
converge to a stationary distribution, the chain must satisfy three prop-
erties: irreducible, aperiodic, and positive recurrent. We will give the out-
lines of these properties. When a Markov chain is irreducible, the chain
starting from a state / can reach a state h with a positive probability by
finite steps,Kt(/,h)>0 for some arbitrary step t>0. For an aperiodicMar-
kov chain, the chain visits a state h without a regular period. The recur-
rence means that the average number of visits to a state h is infinite, that
is,
Xl

t¼0
Ktðh; hÞ ¼ l. If S is finite, the irreducible chain is recurrent. In

addition, the Markov chain is called the positive recurrent if the expected
return time to a state h is finite. When a Markov chain is irreducible,
aperiodic, and positive recurrent, the chain is called ergodic. For the
ergodic Markov chain, there exists a probability distribution p(h) such as:X

/aS

pð/ÞKð/; hÞ ¼ pðhÞ ð4Þ

for all states haS. Then p(h) is said to be the stationary distribution of the
Markov chain {h(t)jtz 0}. The ergodic Markov chain has also the limiting
distribution that satisfies:

pðhÞ ¼ lim
t!l

Ktð/; hÞ ð5Þ

for all states /, haS. In order to generate samples from p(h), MCMC
methods find the transition kernel K(/,h), which satisfies Eqs. (4) and (5).
Moreover, if the chain satisfies time reversibility such that:

pð/ÞKð/; hÞ ¼ pðhÞKðh;/Þ;
for all states /, haS, then it holds:X

/aS

pð/ÞKð/; hÞ ¼
X
/aS

pðhÞKðh;/Þ ¼ pðhÞ:
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Consequently, the time reversibility provides the sufficient condition to
converge to p(h). In the application of MCMCmethods, it is important to
specify a transition kernel with the reversibility that guarantees the
convergence of Markov chains.

For the ergodic Markov chain, the law of large numbers theorem
holds and then guarantees that the ergodic average of a real-valued func-
tion h(h):

hðhÞ ¼ 1

T

XT
t¼1

hðhðtÞÞ;

converges to the expectation E[h(h)]. This result states that even if the
sequence of the chain is not independent, the ergodic average of the chain
values gives strong, consistent estimates of parameters of p(h).

Next, consider Markov chains with continuous state space. Then the
transition density K(/,h) moving from h(t)=/ to h(t+1)=h is given by a
conditional density, instead of the conditional probability (Eq. (2)), and
mK(/,h)dh=1. For any subset AoS, the transition kernel K(/,A) can be
defined by:

Kð/;AÞ ¼
Z
A

Kð/; hÞdh ¼ Prðhðtþ1Þ a AjhðtÞ ¼ /Þ:

The stationary distribution p(h) of the chain with the transition density
K(/,h) must satisfy:

pðhÞ ¼
Z

Kð/; hÞpð/Þd/

for all states /aS. For Markov chains with continuous state space, the
ergodic chains must have irreducible, aperiodic, andHarris recurrent prop-
erties instead of positive recurrent (see Tierney, 1994). Then all of the
convergence results of Markov chains with discrete state space are valid in
Markov chains with continuous state space. For a more technical or
theoretical discussion of Markov chains required in MCMC methods,
see Robert and Casella (1999), Gamerman (1997), and Tierney (1995).

3 THE DATA AUGMENTATION ALGORITHM

The Data Augmentation algorithm is applied to Bayesian inference with
missing data. The DA algorithm is very suitable when the incomplete-data
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posterior distribution has a complicated density but the posterior distri-
bution given the augmented data filled in missing values has a good density
to produce samples.

The basic idea of the DA algorithm is to augment the observed data
by imputing the missing values and to find the posterior distribution in
the framework of complete data case. We write the augmented data
x=(xobs,xmis), where xobs denotes observed data and xmis denotes missing
data. In order to obtain the posterior distribution p(hjxobs), the DA algo-
rithm generates a large number of imputed values from the predictive
distribution f(xmisjxobs) and updates the current posterior distribution p(h/
xobs,xmis) given x by the Monte Carlo method. Then f(xmisjxobs) depends
on p(hjxobs), so that it requires to derive cyclically these distributions.

The DA algorithm is the successive substitution scheme to estimate
the posterior distribution and predictive distribution. The posterior dis-
tribution of h is given by:

pðhjxobsÞ ¼
Z

pðhjxmis; xobsÞfðxmisjxobsÞdxmis; ð6Þ

where p(hjxmis,xobs) denotes the posterior distribution of h given x=
(xobs,xmis), and the predictive distribution of xmis is obtained by:

fðxmisjxobsÞ ¼
Z

fðxmisjxobs;/Þpð/jxobsÞd/; ð7Þ

where f(xmisjxobs,/) is the predictive distribution conditionally on /. Now
substituting Eq. (7) into Eq. (6) and interchanging the integral order, we
can obtain the following integral equation:

pðhjxobsÞ ¼
Z

Kð/; hÞpð/jxobsÞd/; ð8Þ

where

Kð/; hÞ ¼
Z

pðhjxobs; xmisÞfðxmisjxobs;/Þdxmis;

and K(/,h) is the transition kernel. Starting the initial distribution as
p(0)(hjxobs), the posterior distribution at the t-step can be obtained by the
substitutive calculation:

pð1ÞðhjxobsÞ ¼
Z

Kð/; hÞpð0Þð/jxobsÞd/;
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pð2ÞðhjxobsÞ ¼
Z

Kð/; hÞpð1Þð/jxobsÞd/;
..
. ð9Þ

pðtÞðhjxobsÞ ¼
Z

Kð/; hÞpðt�1Þð/jxobsÞd/:

From the above series of equations, the t-step posterior distribution
p(t)(hjxobs) can be calculated by using the successive substitution of the
(t�1)-step posterior distribution p(t�1)(hjxobs). When p(t)(hjxobs) reaches a
stationary distribution that satisfies Eq. (8), we can find the true posterior
distribution p(hjxobs). Because the integration is infeasible analytically, the
Monte Carlo approximation can be applied to the estimation of p(hjxobs).
In order to update the approximate posterior distribution, the DA
algorithm carries out the following iterative scheme:

Initialization: Set the initial distribution p(0)(hjxobs).
Imputation step: Repeat the following steps for l=1, . . . , L to ob-

tain the imputed values of xmis from the predictive distribution
f(xmisjxobs).

1. Generate h* from the current approximated posterior
distribution p(t�1)(hjxobs).

2. Generate the imputed value xmis
(l ) from the condi-

tional predictive distribution f(xmisjxobs,h*), where h*
is obtained by the above step.

Posterior step: Update the current approximation p(t�1)(hjxobs),
given xmis

(l ) for l=1, . . . , L, by the Monte Carlo method:

pðtÞðhjxobsÞ ¼ 1

L

XL
l¼1

pðhjxobs; xðlÞmisÞ:

Until the approximated posterior distribution p(t)(hjxobs) converges to a
stationary distribution p(hjxobs), the Imputation step and the Posterior step
are iterated. The Imputation step performs the calculation of K(/,h) using
sample-based approximation, and the Posterior step does the integration
to obtain p(hjxobs) by the Monte Carlo method. Seeing the iteration
between the Imputation step and the Posterior step, we notice that the
DA algorithm is the iterative simulation version of the EM algorithm: the
former step corresponds to the Expectation step and the latter step
corresponds to the Maximization step.
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With respect to convergence of the DA algorithm, Tanner andWong
(1987) gave the following results under mild regularity conditions:

Result 1 (Uniqueness): The true posterior distribution p(hjxobs) is the
unique solution of Eq. (9).

Result 2 (Convergence): For almost any p(0)(hjxobs), the sequence of
p(t)(hjxobs), for t=1,2, . . . , obtained by Eq. (9), converges
monotonically in L1 to p(hjxobs).

Result 3 (Rate): mjp(t)(hjxobs)�p(hjxobs)jdh!1 geometrically in t.

Example: Genetic Linkage Model

Tanner andWong (1987) applied the DA algorithm to a contingency table
wherein two cells are grouped into one cell. Let 197 animals be categorized
into four cells:

x ¼ ðx1; x2; x3; x4Þ ¼ ð125; 18; 20; 34Þ
with probabilities

h ¼ 1

2
þ 1

4
p;
1

4
ð1� pÞ; 1

4
ð1� pÞ; 1

4
p

� �
:

We suppose that x has the multinomial distribution with h. Then the
likelihood of x can be expressed by a less intractable functional form:

fðxjhÞ~ð2þ pÞx1ð1� pÞx2þx3px4 :

By splitting the first cell x1 into two cells y1 and y2 with probabilities 1/2 and
p/4, we recategorize x such that:

y ¼ ðy1; y2; y3; y4; y5Þ ¼ ðx1 � y2; y2; x2; x3; x4Þ:
Then the likelihood of y can be simplified as:

fðyjhÞ~ py2þy5ð1� pÞy3þy4 :

We assume that the prior distribution of p has the beta distribution with
hyperparameters a=(a1,a2). The predictive distribution of y2 has the
conditional binomial distribution with the parameter p/(2+p). Then each
of the distributions has the density:

pðpjaÞ~pa1�1ð1� pÞa2�1;

fðy2jx1; pÞ~ p

2þ p

� �y2 2

2þ p

� �x1�y2

:
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For this multinomial model, the posterior distribution of p given y can be
found by the DA algorithm:

Initialization: Setting the initial distribution p(0)(pjx)=p(pja).
Imputation step: Repeating the following steps for l=1, . . . , L.

1. Generate p* from p(t�1)(pjx).
2. Generate y2

(l ) from f(y2jx1,p*) and obtain y(l )=(x1�y2
(l ),y2

(l),
y3,y4,y5).

Posterior step: Update the current approximation p(t�1)(pjx) given
y(l ) using the Monte Carlo method:

pðtÞðpjxÞ ¼ 1

L

XL
l¼1

pðpjyðlÞÞ;

where

pðpjyðlÞÞ~pa1þy
ðlÞ
2
þy5�1ð1� pÞa2þy3þy4�1:

The Imputation step and the Posterior step are iterated until the conver-
gence of the DA algorithm. As the prior distribution of p, we select a flat
prior distribution. From the simulated samples 2000 after a burn-in sample
400, we can obtain the posterior mean E[ pjx]=0.6230 as the estimate of p,
and also the posterior variance Var[ pjx]=0.0025. Applying the EM
algorithm, the MLE of p is 0.6268 and the variance is 0.0025 using the
Louis method in Louis (1982).

Example: Highway Safety Research

Kuroda andGeng (2002) applied theDA algorithm to the double sampling
data from Hochberg (1977). The data were the highway safety research
data relating seat belt usages to driver injuries. Themain sample consists of
80,084 accidents that were recorded by police subject to misclassification
errors. The subsample consists of 1796 accidents that were recorded by
both imprecise police reports and precise hospital interviews. By the double
sampling design, the subsample was randomly selected from the main
sample. Thus, the subsample and the main sample have independent and
identical distributions.

The main sample and the subsample in Table 1 were categorized by
four variables X, XV, Y, and YV, where X and Y denote precise personal
survey for seat belt usages and driver injuries, and XV and YV denote im-
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precise police reports for them. We denote the main sample and the sub-
sample by:

n ¼ fnþjþlj ja fYes;Nog; la fYes;Nogg;
m ¼ fmijkljiafYes;Nog; jafYes;Nog; kafYes;Nog; lafYes;Nogg:

For these data, we assume that the main sample data and the sub-
sample data have independent and identical multinomial distributions
with:

hXXVYYV ¼ fpijkljia fYes;Nog; ja fYes;Nog; ka fYes;Nog;
la fYes;Nogg;

where pijkl=Pr(X=i, XV=j, Y=k, YV=l). Thus, each of observed data n
and m has:

fðmjhXXVYYVÞ~
Y
i;j;k;l

p
mijkl

ijkl ;

fðnjhXVYVÞ~
Y
j;l

p
nþjþl

þjþl;

where hXVYV={ p+j+ljja{Yes,No}, la{Yes,No}} and p+j+l=Pr(XV=j,
YV=l). For this model, the prior distribution of hXXVYYV has the Dirichlet
distribution with hyperparameters aXX VYY V={ai jk l jia{Yes,No},
ja{Yes,No}, ka{Yes,No}, la{Yes, No}}:

pðhXXVYYVjaXXVYYVÞ~
Y
i; j;k;l

p
aijkl�1

ijkl :

Table 1 Data of Highway Safety Research

Subsample

Main sample X V=Yes X V=No

YV Y X V=Yes X V=No X=Yes X=No X=Yes X=No

Yes Yes 17 3 10 258

No
1996 13,562

3 4 4 25
No Yes 16 3 25 194

No
7,151 58,175

100 13 107 1,014

Source: Hochberg (1977).
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Utilizing the subsample m in Table 1 as hyperparameters aXXVYYV, the DA
algorithm that augments the incomplete data n is given by the following
scheme:

Initialization: Setting the initial distribution

kð0ÞðuXX VYY V j n;mÞ ¼ kðuXX VYY V j aXX VYY VÞ:
Imputation step: To obtain the imputed data of n such that:

ñ ¼
(
ñijkljia fYes;Nog; ja fYes;Nog; ka fYes;Nog;

la fYes;Nog; nþjþl ¼
X
i;k

ñijkl; ñijkl z 0

)
;

repeating the following steps for l=1, . . . , L.

1. Generate hXX VYY V* from p(t�1)(hXXVYYVjn,m).
2. Generate ñ(l ) from the predictive distribution, which

has the conditional multinomial distribution, given n,
with the density:

fðñjn; fpi;kj j;l* Þ~
Y
i; j;k;l

p*
ñijkl

i;kj j;l;

where pi,kj j,l* =pijkl* /p+j+l* .

Posterior step: Update the current approximation p(t�1)(hXXVYYVj
n ,m), given ñ(l ) for n, by the Monte Carlo method:

pðtÞðhXXVYYVjn;mÞ ¼ 1

L

XL
l¼1

pðhXXVYYVjñðlÞ;mÞ;

where:

pðhXXVYYVjñðlÞ;mÞ~
Y
i;j;k;l

p
mijklþñ

ðlÞ
ijkl

�1

ijkl :

After convergence of the DA algorithm, we estimate the posterior distri-
bution of the marginal probabilities of X and Y:

hXY ¼ fpiþkþjia fYes;Nog; ka fYes;Nogg;
where pi+k+=Pr(X=i, Y=k). To examine the performance of the DA
algorithm, Kuroda and Geng (2002) compared with the exact Bayes
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estimate the EM algorithm and the Fisher scoring algorithm. Table 2
shows the estimates and the standard deviations (SDs) of hXY obtained by
the DA algorithm, and the exact Bayesian calculation, the Fisher scoring
algorithm, and the EM algorithm. The estimates using the DA algorithm
can be found from simulated samples 1,000,000 after a burn-in sample of
10,000 in two chains. The exact values of estimates of hXY using the
Bayesian calculation are given byGeng andAsano (1989) who assumed the
Jeffreys noninformative prior. The estimation using the Fisher scoring
algorithm was carried out with lEM developed by Vermunt (1997). From
these numerical results, it can be seen that the DA algorithm has the
equivalent performance of the EM and the Fisher scoring algorithm in
comparison with these estimates and SDs.

4 THE GIBBS SAMPLING ALGORITHM

The Gibbs Sampling algorithm is a multivariate extension of the DA
algorithm. The GS algorithm is available for statistical models where it is
difficult to draw samples from a joint distribution but easy to generate
samples from the set of full conditional distributions of the joint distribu-
tion. Both algorithms are closely related and are usually applied to the
Bayesian missing data analysis.

Consider the GS algorithm for a model with two parameters
h=(h1,h2). Let p(h) denote the joint distribution of h, and let p(h1jh2) and
p(h2jh1) denote the conditional distributions. Then the marginal distribu-
tion p(h1) can be calculated from

pðh1Þ ¼
Z

pðh1; h2Þdh2 ¼
Z

pðh1jh2Þpðh2Þdh2; ð10Þ

Table 2 Estimates and Their SDs of hXY

Exact Bayes DA Fisher scoring EM

X Y
Posterior
meanFSD

Posterior
meanFSD EstimateFSD

Yes Yes 0.0397F0.0043 0.0389F0.0041 0.0394F0.0045 0.0394
No 0.1293F0.0065 0.1311F0.0073 0.1190F0.0076 0.1294

No Yes 0.2558F0.0079 0.2577F0.0078 0.2563F0.0103 0.2559
No 0.5752F0.0093 0.5722F0.0092 0.5870F0.0116 0.5752
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and the marginal distribution p(h2) can be also derived from:

pðh2Þ ¼
Z

pðh1; h2Þdh1 ¼
Z

pðh2jh1Þpðh1Þdh1: ð11Þ

Similar to the DA algorithm, by substituting Eq. (11) into Eq. (10) and by
interchanging the integration order, we have:

pðh1Þ ¼
Z

pðh1jh2Þ
Z

pðh2j/1Þpð/1Þd/1

� �
dh2

¼
Z

Kð/1; h1Þpð/1Þd/1;

where

Kð/1; h1Þ ¼
Z

pðh1jh2Þpðh2j/1Þdh2 ð12Þ

andK(/1,h1) is the transition kernel. Specifying the initial values (h1
(0),h2

(0)),
the GS algorithm produces the sequence of samples:

hð0Þ1 ; hð0Þ2 ; hð1Þ1 ; hð1Þ2 ; . . . ;

from p(h1jh2(t�1)) and p(h2jh1(t)) for t=1,2, . . . , which forms Eq. (12). For
p(h2), the same argument is applicable. After a sufficient large number of
the sample generation, the distribution of h(t) converges to a stationary
distribution p(h). Then the GS algorithm can simulate the samples from
p(h).

For a general multiparametermodel, we formulate theGS algorithm.
Suppose that a parameter vector q is partitioned into D components:

h ¼ ðh1; h2; . . . ; hDÞ;
where each hd is a scalar or a vector. Let p(h) denote the joint distribution
of h, and let p(hdjh�d) denote the conditional distribution of hd given h�d,
where h�d refers to {hcjc p d, ca{1, . . . ,D}}. Denoting/=(/1, . . . ,/D), the
transition kernel K(/,h) is constructed by the set of full conditional
distributions and can be expressed by:

Kð/; hÞ ¼
YD
d¼1

pðhdjh1; . . . ; hd�1;/dþ1; . . . ;/DÞ:
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The form of K(/,h) indicates that the limiting distribution of h(t) is p(h).
Thus, in order to find p(h) the GS algorithm iterates the following succes-
sive generation:

Step 1: Initialize the parameter vector h(0)=(h1
(0), . . . , hD

(0)).
Step 2: Generate samples from each of conditional distributions:

hðtÞ1 fpðh1jhðt�1Þ
2 ; . . . ; hðt�1Þ

D Þ;

hðtÞ2 fpðh2jhðtÞ1 ; hðt�1Þ
3 ; . . . ; hðt�1Þ

D Þ;
..
.

hðtÞD fpðhDjhðtÞ1 ; . . . ; hðtÞD�1Þ:
Step 3: Repeat Step 2 until convergence is reached.

For the discrete distribution, Geman and Geman (1984) proved that
the following results hold:

Result 1 (Convergence): h(t)=(h1
(t)
,. . .,hD

(t)
)fp(h) as t!l.

Result 2 (Rate): The distribution of h(t) converges to p(h) at an
exponential rate in t using L1 norm.

Next consider the inference of marginal distribution p(hd) associated
with the density estimation and the calculation of the mean and the
variance. After achieving convergence, we produce the samples of h such
that:

hð1Þ ¼ ðhð1Þ1 ; hð1Þ2 ; . . . ; hð1ÞD Þ;

hð2Þ ¼ ðhð2Þ1 ; hð2Þ2 ; . . . ; hð2ÞD Þ;
..
.

hðTÞ ¼ ðhðTÞ1 ; hðTÞ2 ; . . . ; hðTÞD Þ:
Then the density of p(hd) can be calculated by using a kernel density esti-
mator based on T samples of hd. With respect to the mean and the vari-
ance of hd, these estimates can be directly obtained by the Monte Carlo
method:

hd ¼ 1

T

XT
t¼1

hðtÞd ; Var½hd� ¼ 1

T

XT
t¼1

ðhðtÞd � hdÞ2: ð13Þ

Markov Chain Monte Carlo 139



Increasing the value of T, these Monte Carlo estimates are more accurate.
When the calculation of the mean and the variance of hd is available in the
closed forms for p(hdjh�d), the precision of these estimates can be greatly
improved by introducing the idea of Rao–Blackwellization by Gelfand and
Smith (1990) and Liu et al. (1994). The Rao–Blackwellized estimate for
the mean of hd given h�d

(t) , for t=1, . . . , T, takes the form:

h̃d ¼ 1

T

XT
t¼ 1

E½hdjhðtÞ�d� ð14Þ

and then is unbiased for E[hd], because:Z
E½hdjh�d�pðh�dÞdh�d ¼ E½hd�:

The Rao–Blackwell theorem states that it holdsVar½h̄d�zVar½h̃d�, so that h̃d
is more efficient than h̄d in terms of mean square error (MSE). Thus, we
can see that the Rao–Blackwellization yields more precious estimates of hd
than the direct estimation, such as Eq. (13), without increasing the number
of iterations of the GS algorithm. The technique of the Rao–Black-
wellization can also be to applied to the density estimation of p(hd).
Because:

pðhdÞ ¼
Z

pðhdjh�dÞpðh�dÞdh�d;

the Rao–Blackwellized density estimation can be performed by calcu-
lating:

pðhdÞ ¼ 1

T

XT
t¼1

pðhdjhðtÞ�dÞ: ð15Þ

Naturally, it requires that the density of p(hd) is given by the closed form
for p(hdjh�d) We also notice that the Posterior step of the DA algorithm
updates the posterior distributions of interesting parameters by using the
Rao–Blackwellization of Eq. (15).

Example: Genetic Linkage Model (Continued)

Gelfand and Smith (1990) extended to the genetic linkage example and
applied the GS algorithm to inference of interesting parameters. Assume
that the observed data:

x ¼ ðx1; x2; x3; x4; x5Þ ¼ ð14; 1; 1; 1; 5Þ
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have the multinomial distribution with parameters:

h ¼ 1

4
p1 þ 1

8
;
1

4
p1;

1

4
p2;

1

4
p2 þ 3

8
;
1

4
ð1� p1 � p2Þ

� �
:

For this multinomial model, we split x1 and x4 into two cells such that
x1=y1+y2 and x4=y5+y6, and set x2=y3, x3=y4, and x5=y7. Denoting
the augmented data of x as y, the likelihood function of y has the
multinomial distribution with parameters:

hV ¼ 1

4
p1;

1

8
;
1

4
p1;

1

4
p2;

1

4
p2;

3

8
;
1

4
ð1� p1 � p2Þ

� �
and has the density:

fðyjhVÞ~py1þy3
1 py4þy5

2 ð1� p1 � p2Þy7 : ð16Þ
For ( p1,p2), we assume that the prior distribution has the Dirichlet
distribution with hyperparameters a=(a1,a2,a3) and has the density:

pðp1; p2jaÞ~pa1�1
1 pa2�1

2 ð1� p1 � p2Þa3�1: ð17Þ
Multiplying the Dirichlet prior density (Eq. (17)) by the multinomial like-
lihood density (Eq. (16)) produces the posterior density:

pðp1; p2jyÞ~
Xx1

y1¼0

x1!

y1!ðx1 � y1Þ!
Xx4
y5¼0

x4!

y5!ðx4 � y5Þ! p
a1þy1þy3�1
1

� p
a2þy4þy5�1
2 ð1� p1 � p2Þa3þy7�1:

Viewing ( y1,y5) as missing data, we require to simulate the samples of
( p1,p2,y1,y5) using the GS algorithm. Then each of the full conditional
distributions of p1, p2, y1, and y5 is specified as follows:

p1
1� p2

fbetaða1 þ y1 þ y3;a3 þ y7Þ; ð18Þ
p2

1� p1
fbetaða2 þ y4 þ y5;a3 þ y7Þ; ð19Þ

y1fbinomial x1;
2p1

2p1 þ 1

� �
; ð20Þ

y5fbinomial x4;
2p2

2p2 þ 3

� �
; ð21Þ
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The GS algorithm is performed by generating each of the samples from
the full conditional distributions (Eqs. (18) Eqs. (19) Eqs. (20) Eqs. (21))
iteratively.

In this example, we set a=(1,1,1). After 200 burn-in samples, we
simulated 10,000 samples and apply the direct and the Rao–Blackwellized
estimation to obtain estimates of ( p1,p2). Table 3 shows the estimates of the
posterior means and variances, and their standard errors (SEs) in paren-
theses. The exact values of (p1,p2) were also calculated by Gelfand and
Smith (1990) using ‘‘exact numerical methods’’ in Naylor and Smith
(1982). The estimates by the direct estimation are calculated from Eq.
(13). The Rao–Blackwellizied estimation gives the posterior means of
( p1,p2) by the forms:

E½p1jy� ¼ ð1� p2Þ a1 þ y1 þ y3

a1 þ a3 þ y1 þ y3 þ y7
;

E½p2jy� ¼ ð1� p1Þ a2 þ y4 þ y5
a2 þ a3 þ y4 þ y5 þ y7

:

In order to obtain these posterior variances, it requires a less complicated
calculation and has the form:

Var½pijy� ¼ Var½E½pijy�� þ E½Var½pijy��;
for i=1,2. From these numerical results, all of the SEs of the Rao–
Blackwellized estimates are about half of the direct estimates. The histo-
grams and the trace plots of ( p1,p2) in Figs. 1 and 2 also indicate that the
Rao–Balckwellized estimation can give more efficient estimates from the
viewpoint of the reduction of the SEs. These results lead to the conclusion
that the Rao–Blackwellized estimation provides the improvement of
estimates.

Table 3 Estimates of p1 and p2 in the Genetic Linkage Model

Exact values GS

Direct estimate Rao–Blackwell estimate

E [ p1jy] 0.5199 0.5204 (0.0013) 0.5120 (0.0008)
E [ p2jy] 0.1232 0.1234 (0.0008) 0.1230 (0.0004)
Var[ p1jy] 0.0178 0.0178 (0.0006) 0.1777 (0.0003)

Var[ p2jy] 0.0066 0.0066 (0.0002) 0.0063 (0.0001)

Source: Gelfand and Smith (1990).
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Example: Case–Control Studies with Misclassification Error

Kuroda and Geng (2002) compared the estimates obtained by the DA
algorithm with the posterior means using the exact Bayesian calculation
given by Geng and Asano (1987) regarding the data from Diamond and
Lilienfeld (1962) that reported a case–control study concerning the
circumcision status of male partners of woman with and without cervical
cancer. In this example, we apply the GS algorithm for this misclassified
case–control data. The study sample was categorized by cervical cancer
status, X (Case and Control), and self-reported circumcision status, YV
(Yes or No), in the left side of Table 4. In order to gain the information
on the degree of misclassification of circumcision status, the supplemen-
tal sample concerning the relationship between actual circumcision
status, Y (Yes or No), and YV was gathered from the separate population

Figure 1 Histogram of 10,000 simulated values of posterior means of p1 and p2:
(a) direct estimation of p1; (b) direct estimation of p2; (c) Rao–Blackwellized esti-
mation of p1; and (d) Rao–Blackwellized estimation of p2.
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Table 4 Data from Diamond and Lilienfeld (1962) and Hypothetical Prior
Information aXYYV

Study sample Supplement sample Hypothetical prior

X X X

YV Y Case Control Unknown Case Control

Yes Yes
5 14

37 80 10
No 19 20 40

No Yes
95 86

47 40 20

No 89 10 80

Figure 2 Trace of posterior means of p1 and p2: (a) direct estimation of p1; (b)

direct estimation of p2; (c) Rao–Blackwellized estimation of p1; and (d) Rao–
Blackwellized estimation of p2.
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shown in the center of Table 4. We denote the observed data of X and YV,
and Y and YV as:

n ¼ fniþkjia fCase;Controlg; ka fYes;Nogg;
m ¼ fmþjkj ja fYes;Nog; ka fYes;Nogg;

respectively. Let pijk=Pr(X=i, Y=j, YV=k) and:

hXYYV ¼ fpijkjia fCase;Controlg; ja fYes;Nog; ka fYes;Nogg:
We assume that n and m have the multinomial distributions with para-
meters hXYV and hYYV, where:

hXYV ¼ fpiþkjia fCase;Controlg; ka fYes;Nogg;
hYYV ¼ fpþjkj ja fYes;Nog; ka fYes;Nogg;

and pi+k=Pr(X=i, YV=k) and p+jk=Pr(Y=j, YV=k). For this mis-
classified multinomial model, we assume that the prior distribution of
hXYYV has the Dirichlet distribution with hyperparameters aXYYV where:

aXYYV ¼ faijkjia fCase;Controlg; ja fYes;Nog; ka fYes;Nogg;

and write the prior density:

pðhXYYVjaXYYVÞ~
Y
i;j;k

p
aijk�1

ijk

Given n and m, the posterior distribution of h has the mixture Dirichlet
distribution with density:

pðhXYYVjn;mÞ~
Y
i;k

p
niþk

iþk

Y
j;k

p
mþjk

þjk

Y
i;j;k

p
aijk�1

ijk

¼
Y
k

Y
i

X
VðnÞ

niþk!Y
j

ñijk!

Y
j

X
VðmÞ

mþjk!Y
i

m̃ijk!
p
aijk

ijk þ ñijk þ m̃ijk � 1

8>><>>:
9>>=>>;

ð22Þ
where

X
VðnÞ denotes the sum over all possible {ñijk} under the conditions

ñijkz0 for all i, j, and k, and niþk ¼
X

j
ñijk, and

X
VðmÞ denotes the sum

over all possible m̃ijk under the conditions m̃ijkz0 for all i, j, and k, and

mþ jk ¼
X

i
m̃ijk . The GS algorithm is applied to find p(hXYYVjn,m)

and estimate posterior means and variances.
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Geng and Asano (1989) gave the hypothetical prior information
shown in the right side of Table 4. We use their prior information as
hyperparameters. Let the imputed data of n and m be denoted as:

ñ ¼ ñijkjia fCase;Controlg; ja fYes;Nog; la fYes;Nog; niþk

(

¼
X
j

ñijk;ñijkz0

)
;

m̃ ¼ m̃ijkjia fCase;Controlg; ja fYes;Nog; la fYes;Nog;mþjk

(

¼
X
i

m̃ijk;m̃ijkz0

)
:

Then the predictive distributions of ñ and m̃ have the multinomial dis-
tributions conditionally as n and m, and these densities are given by:

fðñjn; pjji;kÞ~
Y
i;j;k

p
ñijk
jji;k;

fðm̃jm; fpij j;kgÞ~
Y
i;j;k

p
m̃ijk

ij j;k;

where pjji,k=pijk/pi+k and pi/ j,jk=pijk/p+jk. For the misclassified multi-
nomial model, theGS algorithm can be described by the following iterative
schemes:

Step 1: Initialize the parameters h(0)XYYV, ñ(0), and m̃(0).
Step 2: Generate each of samples from specified conditional distri-

butions:

hðtÞXYYVfpðhXYYVjñðt�1Þ; m̃ðt�1ÞÞ;
ñðtÞffðñjn; fpðtÞjji;kgÞ;
m̃ðtÞffðm̃jm; fpðtÞijj;kgÞ:

Step 3: Repeat Step 2 until convergence is reached.
Step 4: Find the posterior distribution of model parameter:

hXY ¼ fpijþjia fCase;Controlg; ja fYes;Nogg:
In this numerical experiment, we evaluate the precision of the

estimates using the GS algorithm in comparison with the exact posterior
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means given byGeng andAsano (1989). Table 5 shows the exact values, the
posterior means, the SDs, and the posterior 95% credible intervals (CIs) of
hXY obtained from simulated 10,000 samples after a burn-in of 1000
samples. It can be seen that the estimates have approximately three-digit
precision for the exact values.

5 THE METROPOLIS–HASTINGS ALGORITHM

The Metropolis–Hastings algorithm is the general MCMC method and is
different from the GS algorithm in the procedure to generating samples.
For the statistical model, it is hard to generate samples from the set of full
conditional distributions of a joint distribution p(h); theGS algorithm does
not work well. Then the M–H algorithm is suitable because of drawing of
samples not from p(h) but from a candidate density that dominates or
blankets p(h). Furthermore, the M–H algorithm is applicable to the
situation where p(h) does not have a standard statistical distribution.

Suppose we have a transition density q(hj/) to move from h(t)=/ to
h(t+1)=h, where mq(hj/)dh=1. As described in Sec. 2, if q(hj/) satisfies
time reversibility such that:

pð/Þqðhj/Þ ¼ pðhÞqð/jhÞ ð23Þ
for all / and h, then p(h) is the stationary distribution of theMarkov chain
{h(t)jtz 0}. But it will not be most likely to satisfy the reversible condition.
Thus, our object is how the M–H algorithm finds q(hj/) with the
reversibility. Chib and Greenberg (1995) described in detail the process
of deriving the transition kernel of theM–H algorithm.Wewill provide the
formulation of the kernel according to their exposition.

Table 5 Posterior Means and SDs and 95% CIs Using the DA Algorithm and
the Exact Posterior Means

Exact Bayes DA

X Y Posterior means Posterior meanFSD CI (lower–upper)

Case Yes 0.3794 0.3786F0.0127 0.3512–0.4017
No 0.1116 0.1134F0.0159 0.0838–0.1460

Control Yes 0.0921 0.0927F0.0107 0.0737–0.1142

No 0.4169 0.4152F0.0113 0.3916–0.4364

Source: Geng and Asano (1989).
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Assume that the following inequality holds for any / and h:

pð/Þqðhj/Þ > pðhÞqð/jhÞ: ð24Þ
Then Eq. (24) means that h can be often generated from q(hj/), but /
can be generated from q(/jh), rarely. To correct this inequality, we intro-
duce a probability 0Va(/,h)V1, which refers to the acceptance probability
moving from h(t)=/ to h(t+1)=h. For / p h, the transition density K(/,h)
is given by:

Kð/jhÞ ¼ qðhj/Það/; hÞ: ð25Þ
Then Eq. (24) shows that it is not enough to generate / from q(/jh), so
that a(h,/) should be set to one that is the upper limit. Thus:

pð/Þqðhj/Það/; hÞ ¼ pðhÞqð/jhÞaðh;/Þ ð26Þ
¼ pðhÞqð/jhÞ;

and we have:

að/; hÞ ¼ pðhÞqð/jhÞ
pð/Þqðhj/Þ : ð27Þ

If the inequality in Eq. (24) is reverse, we can set a(/,h)=1 and obtain
a(h,/) by the same way. Introducing a(/,h) and a(h,/) for h p /, we can
find K(/jh) that satisfies the reversible condition. Then a(/,h) must be set:

að/; hÞ ¼ min
pðhÞqð/jhÞ
pð/Þqðhj/Þ ; 1
� 	

; if pð/Þqðhj/Þ > 0;

1; if pð/Þqðhj/Þ ¼ 0:

8><>: ð28Þ

Next we derive the probability r(/) moving from h(t)=/ to h(t+1)=/. For
this transition, there are two events: one is to move back to the same point
and another is not to move. Then r(/) is given by:

rð/Þ ¼ 1�
Z

Kð/; hÞdh ¼ 1�
Z

qðhj/Það/; hÞdh: ð29Þ

Thus, the transition kernel K(/,�) of the M–H algorithm is given by:

Kð/;AÞ ¼
Z
A

qðhj/Það/; hÞdhþ IAð/Þrð/Þ ð30Þ

¼
Z
A

qðhj/Það/; hÞdhþ IAð/Þ 1�
Z

qðhj/Það/; hÞdh
� 	

;
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where A is any subset of parameter space, and IA(/)=1 if /aA and zero
otherwise. Then:Z

Kð/;AÞpð/Þd/ ¼
Z Z

A

qðhj/Það/; hÞdhþ IAð/Þrð/Þ
� �

pð/Þd/

¼
Z
A

Z
qðhj/Það/; hÞpð/Þd/

!
dhþ

Z
A

rð/Þpð/Þd/
 

¼
Z
A

Z
qð/jhÞaðh;/ÞpðhÞd/

!
dhþ

Z
A

rð/Þpð/Þd/
 

¼
Z
A

Z
qð/jhÞaðh;/Þd/

!
pðhÞdhþ

Z
A

rð/Þpð/Þd/
 

¼
Z
A

ð1� rðhÞÞpðhÞdhþ
Z
A

rð/Þpð/Þd/

¼
Z
A

pðhÞdh;

so that there exists the stationary distribution p(h). We note that the GS
algorithm can be regarded as theM–H algorithm for the case that q(hj/)=
p(hj/) and a(/,h)=1 for all / and h. Thus, we see that the GS algorithm
converges to the true joint distribution p(h).

In order to generate samples from p(h), the M–H algorithm can be
accomplished by the following procedures:

Step 1: Set the initialize the parameter h(0).
Step 2: Repeat the following steps for t=1,2, . . . ,T.

1. Generate a candidate sample h from q(hj/), where
h(t)=/.

2. Calculate the acceptance probability a(/,h) from

að/; hÞ ¼ min
pðhÞqð/jhÞ
pð/Þqðhj/Þ ; 1
� 	

:

3. Take

hðtþ1Þ ¼ h; with probability að/; hÞ;
/; with probability 1� að/; hÞ:

(
Step 3: Obtain the samples {h(1), . . . , h(T )}.
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The choice of q(hj/) is critical in applying the M–H algorithm to
statistical models because it is closely related to the efficiency of the al-
gorithm and the convergence speed. Thus, it is required to select a suit-
able candidate density q(hj/). We describe four types of the candidate
density.

A first type is the symmetrical type, where the candidate density is
symmetrical such that q(hj/)=q(/jh), as proposed by Metropolis et al.
(1953). Then we have:

að/; hÞ ¼ min
pðhÞ
pð/Þ ; 1
� 	

:

A second type is the random walk type such that q(hj/)=q(h�/).
Then the candidate value h is obtained from h=/+e, where e is generated
from q(e). Note that the random walk type is identical to the symmetrical
type when q(e)=q(�e).

A third type is the independent type. Hastings (1970) suggested this
typeM–H algorithm. Then the generation of h is independent of/, so that:

að/; hÞ ¼ min
pðhÞqð/Þ
pð/ÞqðhÞ ; 1
� 	

:

A fourth type is the Accept–Reject (A–R) type, which is an extension
of the A–R algorithm andwas developed by Tierney (1994). Suppose that a
constant c>0 is known, and h(h) is a probability density function and is
easy to produce samples. Then the A–R-type M–H algorithm does not
assume that it is always necessary to hold p(h)<ch(h). Define the set
C={hjp(h)<ch(h)} and denote the complement set of C as Cc. Based on
the idea of the A–R algorithm, we can obtain:

qðhj/Þ~pðhÞ=c; if haC;

~ hðhÞ; if haCc:

Then, because h is drawn independently of/, it holds q(hj/)=q(h). For the
A–R-type M–H algorithm, we find a(/,h) that q(hj/)a(/,h) satisfies
reversibility. Because / and h are in C or Cc, there are four possible cases:
(a) /aC, haC; (b) /aCc, haC; (c) /aC, haCc; and (d) /aCc, haCc. For
these cases:

að/; hÞ ¼ min
pðhÞqð/jhÞ
pð/Þqðhj/Þ ; 1
� 	
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¼

1; if /aC; haC or /aC; haCc;

chð/Þ
pð/Þ ; if /aCc; haC;

min
pðhÞhð/Þ
pð/ÞhðhÞ
� 	

; if /aCc; haCc:

8>>>>><>>>>>:
With the detailed derivation of a(/,h) for the A–R-type, refer to Chib and
Greenberg (1995).

Example: Genetic Linkage Model (Continued)

We apply theM–H algorithm to estimating p for the genetic linkage model
illustrated in Sec. 3. For this genetic linkage example, we set:

pðhÞ~ fðxjhÞ~ð2þ pÞx1ð1� pÞx2þx3px4 ;

and generate candidate values from the uniform distribution U(0,1), that
is, q(�jp)=1 on [0,1]. Then theM–H algorithm is described by the following
scheme:

Step 1: Initialize the parameter p(0).
Step 2: Repeat the following steps for t=1, 2, . . . , T.

1. Generate a candidate sample / from q(/jp(t)).
2. Calculate a(p(t),/) from

aðpðtÞ;/Þ ¼ min
pð/Þ
pðpðtÞÞ ; 1
� 	

:

3. Take

pðtþ1Þ ¼ /; with probability aðpðtÞ;/Þ
pðtÞ; with probability 1� aðpðtÞ;/Þ:

(
Step 3: Obtain the samples {p(1), . . . , p(T )}.

After deleting the first 400 observations as burn-in sample, we estimate p
using 2000 simulated samples. Then the estimate of p is 0.6237 and the
variance is 0.0025. As illustrated in Sec. 3, these estimates are similar to
those using the DA algorithm.

Example: Relationship Between the Month of Birthday and Deathday

Table 6 summarizes the month of birthday and deathday for 82 descend-
ants for Queen Victoria by the two-way contingency table. In order to test
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the hypothesis of association between birthday and deathday, the v2 test
for independence is usually applied. Then the v2 test statistic for indepen-
dence is 115.6 on 121 df. In general, in the case that the minimal cell is less
than five, it is well known that the v2 approximation is poor and the exact
calculation such as the Fisher exact test is preferable. However, the Fisher
exact test is computationally infeasible for the case that there exist an
enormous number of enumeration patterns for the contingency table
subject to fixed row sums and column sums. In this example, using the
random walk type of M–H algorithm, we calculate the cumulative
probability of v121

2 (115.6).
Let nij and pij denote the cell frequency and probability for i-th

category of the month of birth and j-th category of the month of death,
respectively. Let ni+ and n+j denote the row sum of i-th category and the
column sum of j-th category. We write the set of cell frequencies, the row,
and the column sums by n={nijj1Vi, jV12}, nr={ni+j1ViV12}, and
nc={n+jj1VjV12}. Then the conditional distribution of n fixed by nr and
nc has the density:

pðnÞ ¼

Y12
i¼1

niþ!Y12
j¼1

nij!

Y12
i;j¼2

p11pij
pi1pj1

� �nij

X
VðmÞ

Y12
i¼1

niþ!Y12
i;j¼1

mij!

Y12
i;j¼2

p11pij
pi1pj1

� �mij
;

whereVðmÞ ¼ mij niþ ¼
X

j
mij; nþj ¼

X
i
mij;mij � 0

��� on
and

X
VðmÞ is the

sum over allmijaX(m). Under the assumption of the independence model
with ( p11pij)/( pi1pj1)=1, the M–H algorithm is performed by iterating the
following steps for t=0,1, . . . , T:

Step 1: Choose a pair r=(i1,i2) of rows and a pair c=( j1, j2) of col-
umns at random and obtain four cells nrc=(ni1 j1,ni1 j2,ni 2 j1,ni2 j2).

Step 2: Generate the candidate values mrc=(mi1 j1
,mi1 j2

,mi2 j1
,mi2 j2

)
from

mi1j1 ¼ ni1j1 þ e11; mi1j2 ¼ ni1j2 þ e12;
mi2 j1 ¼ ni2 j1 þ e21; mi2 j2 ¼ ni2j2 þ e22;
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where

e11 e12
e21 e22

� �
¼ 1 �1

�1 1

� �
or

�1 1
1 �1

� �
with probability 1/2. Obtain the candidate cell frequencies:

m ¼ fmrc; nnnrcg:

Step 3: Calculate a(n,m) from

aðn;mÞ ¼ min
pðmÞ
pðnÞ ; 1
� 	

¼ min
ni1j1ni1j2ni2j1ni2j2

mi1j1mi1j2mi2j1mi2j2

; 1

� 	
:

Figure 3 Histogram of 1,000,000 simulated values of v2 test statistics.

Kuroda154



Step 4: Take

mðtÞ ¼ m; with probability aðn;mÞ;
n; with probability 1� aðn;mÞ

�
Step 5: Calculate the v2 test statistic.

Using the random walk type M–H algorithm makes the calculation of
a(n,m) easy. From simulated 1,000,000 samples, the estimate of the cu-
mulative probability of v121

2 V115.6 is 0.3181 vs. 0.3785 for v2 approxima-
tion.Diaconis and Strumfels (1998) calculated the permutation probability
of v121

2 V115.6 of 0.3208. The estimate of the cumulative probability using
the M–H algorithm is very similar to the permutation probability. The
histogram in Fig. 3 shows the relative frequencies for the simulated values
of v2 statistics obtained by the M–H algorithm. The dashed line also
indicates the theoretical v2 values with 121 df. The estimate using theM–H
algorithm and Fig. 3 shows that the v2 approximation is not accurate for
this spare contingency table.

BIBLIOGRAPHIC NOTES

There are many excellent books to study deeply the theory and the prac-
tical applications of MCMC methods. We will refer to some books. Gilks
et al. (1996), Gamerman (1997), and Robert and Casella (1999) cover all
areas of theory, implementing methods and practical usages needed in
MCMCmethods. Schafer (1997) provides the Bayesian inference using the
EM and the DA algorithms for incomplete multivariate data whose type
are continuous, categorical, and both. All of the computational algorithms
are implemented by S language. Congdon (2001) presents the statistical
modeling using Bayesian approaches with various real data. In this book,
all of the computational programs are coded by WinBUGS, which is the
software for the Bayesian analysis using the GS algorithm developed by
Spiegelhalter et al. (2000).

We do not deal with the convergence diagnostics for MCMC
methods. There exist many methods of convergence diagnostics proposed
in the literature. Cowles and Carlin (1996) and Brooks and Roberts (1998)
provide the comparative reviews and the numerical illustration of many
diagnostic methods. The following four diagnostic methods are easily
available in CODA, which is the S function implemented by Best et al.
(1995). The convergence diagnostic of Gelman and Rubin (1992) is the
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variance ratiomethod based on the analysis of variance that compares with
the within-variance and the between-variance of chains. Their method is
appropriate for multiple chains. Geweke (1991) suggests the convergence
diagnostic using the standard technique from spectral analysis. His
diagnostic is suitable for the case of a single chains. Raftery and Lewis
(1992) propose the convergence diagnostic method that finds the minimum
number of iterations needed to estimate interesting parameters with
desired precision. Their approach is applicable to a single chain and based
on two-stateMarkov chain theory. Heidelberger andWelch (1983) give the
procedure based on Brownian bridge theory and using Cramer–vonMises
statistics. Their diagnostic detects an initial transient in the sequence of
generated single chains.
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Appendix A: SOLASTM 3.0 for Missing
Data Analysis

1 INTRODUCTION

Missing data are a pervasive problem in data analysis. Missing values lead
to less efficient estimates because of the reduced size of the database. In
addition, standard complete-datamethods of analysis no longer apply. For
example, analyses such as multiple regression use only cases that have
complete data. Therefore, including a variable with numerous missing val-
ues would severely reduce the sample size.

When cases are deleted because one or more variables are missing,
the number of remaining cases can be small even if the missing data rate is
small for each variable. For example, suppose your data set has five
variables measured at the start of the study and monthly for 6 months.
You have been told, with great pride, that each variable is 95% complete.
If each of these five variables has a random 5% of the values missing, then
the proportion of cases that are expected to be complete is: 1�(.95)35=
0.13. That is, only 13% of the cases would be complete and you would lose
87% of your data.

Missing data also cause difficulties in performing Intent-to-Treat
(IT) analyses in randomized experiments. Intent-to-Treat analysis dictates
that all cases—complete and incomplete—be included in any analysis.
Biases may exist from the analysis of only complete cases if there are
systematic differences between completers and dropouts. To select a valid
approach for imputing missing data values for any particular variable, it is
necessary to consider the underlying mechanism accounting for missing
data. Variables in a data set may have values that are missing for different

159



reasons. A laboratory value might be missing because of the following
reasons:

It was below the level of detection.
The assay was not done because the patient did not come in for a

scheduled visit.
The assay was not done because the test tube was dropped or lost.
The assay was not done because the patient died, or was lost to

follow-up, or other possible causes.

2 OVERVIEWS OF IMPUTATION IN SOLASTM

Imputation is the name given to any method whereby missing values in a
data set are filled in with plausible estimates. The goal of any imputation
technique is to produce a complete data set that can be analyzed using
complete-data inferential methods. The following describes the single and
multiple imputation methods available in SOLASk 3.0, which are
designed to accommodate a range of missing data scenarios in both
longitudinal and single-observation study designs.

3 SINGLE IMPUTATION OVERVIEW

Single imputation is amethodwhere eachmissing value in a data set is filled
in with one value to yield one complete data set. This allows standard
complete-data methods of analysis to be used on the filled-in data set.
SOLASk 3.0 provides four distinct methods by which you can perform
single imputation: Group Means, Hot-Deck Imputation, Last Value Car-
ried Forward (LVCF), and Predicted Mean Imputation. The single im-
putation option provides a standard range of traditional imputation
techniques useful for sensitivity analysis.

3.1 Group Means

Missing values in a continuous variable will be replaced with the group
mean derived from a grouping variable. The grouping variable must be a
categorical variable that has no missing data. Of course, if no grouping
variable is specified, missing values in the variable to be imputed will be
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replaced with its overall mean. When the variable to be imputed is cat-
egorical, with different frequencies in two or more categories (providing a
unique mode), then the modal value will be used to replace missing values
in that variable. Note that if there is no unique mode (i.e., if there are equal
frequencies in two or more categories) and the variable is nominal, a value
will be randomly selected from the categories with the highest frequency. If
the variable is ordinal, then the ‘‘middle’’ category will be imputed; or if
there are an even number of categories, a value is randomly chosen from
the middle two.

3.2 Hot-Deck Imputation

This procedure sorts respondents and nonrespondents into a number of
imputation subsets according to a user-specified set of covariates. An
imputation subset comprises cases with the same values as those of the
user-specified covariates. Missing values are then replaced with values tak-
en from matching respondents (i.e., respondents who are similar with re-
spect to the covariates). If there is more than one matching respondent for
any particular nonrespondent, the user has two choices:

The first respondent’s value within the imputation subset is used to
impute. The reason for this is that the first respondent’s value
may be closer in time to the case that has the missing value. For
example, if cases are entered according to the order in which
they occur, there may possibly be some kind of time effect in
some studies.

A respondent’s value is randomly selected from within the im-
putation subset. If a matching respondent does not exist in the
initial imputation class, the subset will be collapsed by one level
starting with the last variable that was selected as a sort var-
iable, or until a match can be found. Note that if no matching
respondent is found, even after all of the sort variables have
been collapsed, three options are available:

Respecify new sort variables: where the user can specify up to five
sort variables.
Perform random overall imputation: where the missing value will be
replaced with a value randomly selected from the observed values in
that variable.

SOLASTM 3.0 for Missing Data Analysis 161



Do not impute the missing value: where any missing values for which
no matching respondent is found will not be imputed.

3.3 Last Value Carried Forward

The Last Value Carried Forward technique can be used when the data are
longitudinal (i.e., repeated measures have been taken per subject). The last
observed value is used to fill in missing values at a later point in the study
and therefore makes the assumption that the response remains constant at
the last observed value.

This can be biased if the timing of withdrawal and the and rate of
withdrawal are related to the treatment. For example, in the case of
degenerative diseases, using the last observed value to impute for missing
data at a later point in the study means that a high observation will be
carried forward, resulting in an overestimation of the true end-of-study
measurement. Longitudinal variables are those variables intended to be
measured at several points in time, such as pretest and posttest measure-
ments of an outcome variable made at monthly intervals, laboratory tests
made at each visit from baseline, through the treatment period, and
through the follow-up period.

For example, if the blood pressures of patients were recorded every
month over a period of 6months, we would refer to this as one longitudinal
variable consisting of six repeated measures or periods.

Linear interpolation is another method for filling in missing values in
a longitudinal variable. If a missing value has at least one observed value
before, and at least one observed value after, the period for which it is
missing, then linear interpolation can be used to fill in the missing value.
Although this method logically belongs in the LVCF option, for historical
reasons, it is only available as an imputation method from within the
Propensity Score-Based Method (for further details see the ‘‘Bounded
Missing’’ section).

3.4 Predicted Mean Imputation

Imputed values are predicted using an ordinary least squares (OLS) mul-
tiple regression algorithm to impute themost likely value when the variable
to be imputed is continuous or ordinal. When the variable to be imputed is
a binary or categorical variable, a discriminantmethod is applied to impute
the most likely value.
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3.5 Ordinary Least Squares

Using the least squaresmethod, missing values are imputed using predicted
values from the corresponding covariates using the estimated linear re-
gressionmodels. Thismethod is used to impute all the continuous variables
in a data set.

3.6 Discriminant

Discriminant multiple imputation is a model-based method for binary or
categorical variables.

3.7 Multiple Imputation Overview

SOLASk 3.0 provides two distinct methods for performing multiple im-
putation:

Predictive Model-Based Method.
Propensity Score.

3.8 Predictive Model-Based Method

The models that are available at present are ordinary least squares regres-
sion and a discriminant model. When the data are continuous or ordinal,
theOLSmethod is applied.When the data are categorical, the discriminant
method is applied.

Multiple imputations are generated using a regression model of the
imputation variable on a set of user-specified covariates. The imputations
are generated via randomly drawn regression model parameters from the
Bayesian posterior distribution based on the cases for which the imputa-
tion variable is observed.

Each imputed value is the predicted value from these randomly
drawn model parameters plus a randomly drawn error term. The ran-
domly drawn error term is added to the imputations to prevent over-
smoothing of the imputed data. The regression model parameters are
drawn from a Bayesian posterior distribution to reflect the extra uncer-
tainty due to the fact that the regression parameters can be estimated, but
not determined, from the observed data.
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3.9 Propensity Score Method

The system applies an implicit model approach based on propensity scores
and an Approximate Bayesian Bootstrap to generate the imputations. The
propensity score is the estimated probability that a particular element of
data is missing. The missing data are filled in by sampling from the cases
that have a similar propensity to be missing. The multiple imputations are
independent repetitions from a Posterior Predictive Distribution for the
missing data, given the observed data.

4 MULTIPLE IMPUTATION IN SOLASTM 3.0

Multiple imputation replaces each missing value in the data set with sev-
eral imputed values instead of just one. First proposed by Rubin in the
early 1970s as a possible solution to the problem of survey nonresponse,
the method corrects the major problems associated with single imputation.
Multiple imputation creates M imputations for each missing value, there-
by reflecting the uncertainty about which value to impute (Scheme A.1).

The first set of theM imputed values is used to form the first imputed
data set, the second set of theM imputed values is used to form the second
imputed data set, and so on. In this way,M imputed data sets are obtained.
Each of the M imputed data sets is statistically analyzed by the complete-
data method of choice. This yields M intermediate results. These M
intermediate results are then combined into a final result, from which the

Scheme A.1
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conclusions are drawn, according to explicit formulas. The extra inferen-
tial uncertainty due to missing data can be assessed by examining the
between-imputation variance and the following related measures:

The relative increases in variance due to nonresponse (Rm) and the
fraction of information missing due to missing data (Ym).

5 GENERAL

Before the imputations are actually generated, the missing data pattern is
sorted as close as possible to a monotone missing data pattern, and each
missing data entry is either labeled as monotone missing or nonmonotone
missing, according to where it fits in the sorted missing data pattern.

5.1 Monotone Missing Data Pattern

A monotone missing data pattern occurs when the variables can be or-
dered, from left to right, such that a variable to the left is at least as ob-
served as all variables to the right. For example, if variable A is fully
observed and variable B is sometimes missing, A and B form a monotone
pattern. Or if A is only missing if B is also missing, A and B form a
monotone pattern. IfA is sometimesmissing whenB is observed, andwhen
B is sometimes missing when A is observed, then the pattern is not
monotone (e.g., see Little and Rubin, 1987).

We also distinguish between a missing data pattern and a local mis-
sing data pattern:

A missing data pattern refers to the entire data set, such as a mono-
tone missing data pattern.

A local missing data pattern for a case refers to the missingness for a
particular case of a data set.

A local missing data pattern for a variable refers to the missingness
for that variable.

If two cases have the same sets of observed variables and the same
sets of missing variables, then these two cases have the same local missing
data pattern.

A monotone pattern of missingness, or a close approximation to it,
can be quite common. For example, in longitudinal studies, subjects often
drop out as the study progresses so that all subjects have time 1 measure-
ments, a subset of subjects has time 2 measurements, only a subset of those
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subjects has time 3measurements, and so on. SOLASk sorts variables and
cases into a pattern that is as close as possible to a monotone pattern.
Monotone patterns are attractive because the resulting analysis is flexible
and is completely principled because only observed/real data are used in
the model to generate the imputed values.

6 PREDICTIVE MODEL-BASED METHOD

If Predictive Model-Based Multiple Imputation is selected, then an ordi-
nary least squares regression method of imputation is applied to the
continuous, integer, and ordinal imputation variables, and discriminant
multiple imputation is applied to the nominal imputation variables.

6.1 Ordinary Least Squares Regression

The predictive information in a user-specified set of covariates is used to
impute the missing values in the variables to be imputed. First, the Pre-
dictive Model is estimated from the observed data. Using this estimated
model, new linear regression parameters are randomly drawn from their
Bayesian posterior distribution. The randomly drawn values are used to
generate the imputations, which include random deviations from the
model’s predictions. Drawing the exact model from its posterior distribu-
tion ensures that the extra uncertainty about the unknown true model
is reflected.

In the system, multiple regression estimates of parameters are
obtained using the method of least squares. If you have declared a variable
to be nominal, then you need design variables (or dummy variables) to use
this variable as a predictor variable in a multiple linear regression. The
system’s multiple regression allows for this possibility and will create
design variables for you.

6.2 Generation of Imputations

Let Y be the variable to be imputed, and let X be the set of covariates. Let
Yobs be the observed values inY, and letYmis be themissing values inY. Let
Xobs be the units corresponding to Yobs.

The analysis is performed in two steps:

1. The Linear Regression-Based Method regresses Yobs on Xobs to
obtain a prediction equation of the form: Ŷmis=a+bXmis.
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2. A random element is then incorporated in the estimate of the
missing values for each imputed data set. The computation of the
random element is based on a posterior drawing of the regression
coefficients and their residual variances.

6.3 Posterior Drawing of Regression Coefficients
and Residual Variance

Parameter values for the regression model are drawn from their posterior
distribution given the observed data using noninformative priors. In this
way, the extra uncertainty due to the fact that the regression parameters
can be estimated, but not determined, from Yobs and Xobs is reflected.

Using estimated regression parameters rather than those drawn from
its posterior distribution can produce poor results, in the sense that the
between-imputation variance is underestimated.

6.4 Discriminant Multiple Imputation

Discriminant multiple imputation is a model-based method for imputing
binary or categorical variables.

Let i, . . . ,s be the categories of the categorical imputation variable y.
Bayes theorem is used to calculate the probability that a missing value in
the imputation variable y is equal to its jth category given the set of the
observed values of the covariates and of y.

7 PROPENSITY SCORE

The system applies an implicit model approach based on propensity scores
and an Approximate Bayesian Bootstrap to generate the imputations. The
underlying assumption about Propensity Score Multiple Imputation is
that the nonresponse of an imputation variable can be explained by a set of
covariates using a logistic regression model. The multiple imputations are
independent repetitions from a Posterior Predictive Distribution for the
missing data, given the observed data.

Variables are imputed from left to right through the data set, so that
values that are imputed for one variable can be used in the prediction
model for missing values occurring in variables to the right of it. The
system creates a temporary variable that will be used as the dependent
variable in a logistic regression model. This temporary variable is a re-
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sponse indicator and will equal 0 for every case in the imputation variable
that is missing and will equal 1 otherwise.

The independent variables for themodel will be a set of baseline/fixed
covariates that we believe are related to the variable we are imputing. For
example, if the variable being imputed is period t of a longitudinal variable,
the covariates might include the previous periods (t�1,t�2, . . . ,t�n).

The regression model will allow us to model the ‘‘missingness’’ using
the observed data. Using the regression coefficients, we calculate the pro-
pensity that a subject would have a missing value in the variable in
question. In other words, the propensity score is the conditional proba-
bility of ‘‘missingness,’’ given the vector of observed covariates. Each
missing data entry of the imputation variable y is imputed by values ran-
domly drawn from a subset of observed values of y (i.e., its donor pool),
with an assigned probability close to the missing data entry that is to be
imputed. The donor pool defines a set of cases with observed values for that
imputation variable.

Covariates that are used for the generation of the imputations are
selected for each imputation variable separately. For each imputation
variable, two sets of covariates are selected. One set of covariates is used for
imputing the nonmonotone missing data entries and the other set of
covariates is used for imputing the monotone missing data entries in that
variable. Which missing data entries are labeled as nonmonotone or
monotone is determined after the missing data pattern has been sorted.
For both sets of selected covariates for an imputation variable, a special
subset is the fixed covariates.

Fixed covariates are all selected covariates other than imputation
variables, and are used for the imputation of missing data entries for
monotone and nonmonotone missing patterns. This is only the case for
fixed covariates.

7.1 Defining Donor Pools Based on Propensity Scores

Using the options in the Donor Pool window, the cases of the data sets can
be partitioned into c donor pools of respondents according to the assigned
propensity scores, where c=5 is the default value of c. This is done by
sorting the cases of the data sets according to their assigned propensity
scores in ascending order.

The Donor Pool page gives the user more control over the random
draw step in the analysis. You are able to set the subclass ranges and refine
these ranges further using another variable, known as the refinement
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variable, described below. Three ways of defining the donor pool sub-
classes are provided:

1. You can divide the sample into c equal-sized subsets; the default
will be five. If the value of c results in not more than one case
being available to the selection algorithm, c will decrement by
one until such time as there are sufficient data. The final value of c
used is included in the imputation report output described later in
this manual.

2. You can use the subset of c cases that are closest with respect to
propensity score. This option allows you to specify the number of
cases before and after the case being imputed, which are to be
included in the subclass. About 50% of the cases will be used
before, and 50% of the cases will be used after. The default c will
be 10 and cannot be set to a value less than two. If less than two
cases are available, a value of five will be used for c.

3. You can use the subset of d% of the cases that are closest with
respect to propensity score. This option allows you to specify the
number of cases before and after the case being imputed. This
is the percentage of ‘‘closest’’ cases in the data set to be included
in the subclass. The default for d will be 10.00, and cannot be
set to a value that will result in less than two cases being avail-
able. If less than two cases are available, a d value of five will be
used.

7.2 Refinement Variable

Using the Donor Pool window, a refinement variable w can be chosen. For
each missing value of y that is to be imputed, a smaller subset is selected on
the basis of the association between y and w. This smaller subset will then
be used to generate the imputations.

For each missing value of y, the imputations are randomly drawn
according to the Approximate Bayesian Bootstrap method from the cho-
sen subset of observed values of y. Using this method, a random sample
(with replacement) is randomly drawn from the chosen subset of observed
values to be equal in size to the number of observed values in this subset.
The imputations are then randomly drawn from this sample.

The Approximate Bayesian Bootstrap method is applied in order to
reflect the extra uncertainty about the predictive distribution of themissing
value of y, given the chosen subset of observed values of y. This predictive
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distribution can be estimated from the chosen subset of observed values of
y, but not determined. By drawing the imputations randomly from the
chosen subset of observed values rather than applying the Approximate
Bayesian Bootstrap, this results in improper imputation in the sense that
the between-imputation variance is underestimated.

7.3 Bounded Missing

This type ofmissing value can only occur when a variable is longitudinal. It
is a missing value that has at least one observed value before, and at least
one observed value after, the period for which it is missing. The following
table shows an example of boundedmissing values. The variablesMonth 1
to Month 6 are a set of longitudinal measures:

Linear interpolation can be used to fill in missing values that are
longitudinal variables. So, for example, using linear interpolation, Patient
101’s missing values for Months 2, 3, and 5 would be imputed as follows
(Scheme A.2):

Thus the imputed value for Month 2 will be 13.33, the imputed value
for Month 3 will be 16.67, and the imputed value for Month 5 will be 35.

8 GENERATING MULTIPLE IMPUTATIONS

Once the missing data pattern has been sorted and the missing data entries
have been labeled either as nonmonotone missing or monotone missing,
the imputations are generated in two steps:

1. The nonmonotone missing data entries are imputed first.
2. Then the monotone missing data entries are imputed using the

previously imputed data for the nonmonotone missing data
entries.

The nonmonotone missing data entries are always imputed using
a Predictive Model-Based Multiple Imputation. The monotone missing

Patient Month 1 Month 2 Month 3 Month 4 Month 5 Month 6

101 10 * * 20 * 50
102 20 40 * 30 * *

103 30 * * * * 50

*=missing, shaded=bounded missing

*

*

* *

* *

*

*
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data entries are imputed by the user-specified method, which can be either
the Propensity Score Method or the Predictive Model-Based Method.

8.1 Imputing the Nonmonotone Missing Data

The Nonmonotone missing data are imputed for each subset of missing
data by a series of individual linear regression multiple imputations (or
discriminant multiple imputations) using, as much as possible, observed
and previously imputed data.

First, the leftmost nonmonotone missing data are imputed. Then the
second leftmost nonmonotone missing data are imputed using the pre-
viously imputed values. This is continued, until the rightmost nonmono-
tone missing data are imputed using the previously imputed values for the
other nonmonotone missing data in the same subset of cases.

The user can specify or add covariates for use in the PredictiveModel
for any variables that will be imputed. More information about using
covariates is given in the example below.

Scheme A.2
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8.2 Imputing the Monotone Missing Data

The monotone missing data are sequentially imputed for each set of im-
putation variables with the same local pattern of missing data. First, the
leftmost set is imputed using the observed values of this set and its selected
fixed covariates only. Then the next set is imputed using the observed
values of this set, the observed and previous imputed values of the first set,
and the selected fixed covariates.

This continues until the monotone missing data of the last set are
imputed. For each set, the observed values of this set, the observed and
imputed values of the previously imputed sets, and the fixed covariates
are used. If multivariate Propensity Score Multiple Imputation is select-
ed for the imputation of the monotone missing data, then this method
is applied for each subset of sets having the same local missing data
pattern.

9 SHORT EXAMPLES

These short examples use the data set MI_TRIAL.MDD (located in the
SAMPLES subdirectory). This data set contains the following 11 variables
measured for 50 patients in a clinical trial:

OBS—observation number.
SYMPDUR—duration of symptoms.
AGE—patient’s age.
MeasA_0, MeasA_1, MeasA_2, and MeasA_3—baseline measure-

ment for the response variable MeasA and three postbaseline

measurements taken at Months 1–3.

MeasB_0, MeasB_1, MeasB_2, and MeasB_3—baseline measure-

ment for the response variable MeasB and three postbaseline mea-

surements taken at Months 1–3.

The variablesOBS, SYMPDUR, AGE,MeasA_0, andMeasB_0 are
all fully observed, and the remaining six variables contain missing values.
To view the missing pattern for this data set, do the following:

1. From the datasheet window, select View andMissing Pattern. In
the Specify Missing Data Pattern window, press the Use All

button.
2. From theViewmenu of theMissing Data Pattern window, select

View Monotone Pattern to display the window shown below left
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(Scheme A.3). Note that after sorting the data into a monotone
pattern, the time structure of the longitudinal measures is
preserved, so themissing data pattern in this data set ismonotone
over time.

3. To close theMissing Data Pattern window, select File and Close.

9.1 Predictive Model-Based Method—Example

We will now multiply impute all of the missing values in this data set using
the Predictive Model-Based Method by executing the following steps:

1. From the Analyze menu, select Multiple Imputation and Pre-

dictive Model-Based Method.

Scheme A.3
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2. The Specify Predictive Model window is displayed. The window
opens with two pages or tabs: Base Setup and Advanced Options.
As soon as you select a variable to be imputed, a Nonmonotone

tab and a Monotone tab are also displayed.

9.2 Base Setup

Selecting the Base Setup tab allows you specify which variables you want
to impute, and which variables you want to use as covariates for the
predictive model (Scheme A.4):

1. Drag-and-drop the variables MeasA_1, MeasA_2, MeasA_3,

MeasB_1, MeasB_2, and MeasB_3 into the Variables to Impute
field.

2. Drag-and-drop the variables SYMPDUR, AGE, MeasA_0, and
MeasB_0 into the Fixed Covariates field.

Scheme A.4
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3. Because there is no grouping variable in this data set, we can
leave this field blank.

9.3 Nonmonotone

Selecting the Nonmonotone tab allows you to add or remove covariates
from the predictive model used for imputing the nonmonotone missing
values in the data set. (These can be identified in theMissing Data Pattern

mentioned earlier.) You select the+or� sign to expand or contract the list
of covariates for each imputation variable (Scheme A.5).

For each imputation variable, the list of covariates will bemade up of
the variables specified as Fixed Covariates in the Base Setup tab, and all of
the other imputation variables. Variables can be added and removed from
this list of covariates by simply dragging and dropping the variable from

Scheme A.5
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the covariate list to the variables field, or vice versa. Even though a variable
appears in the list of covariates for a particular imputation variable, it
might not be used in the final model.

The program first sorts the variables so that the missing data pattern
is as close as possible to monotone, and then, for each missing value in the
imputation variable, the program works out which variables, from the
total list of covariates, can be used for prediction.

By default, all of the covariates are forced into the model. If you
uncheck a covariate, it will not be forced into the model, but will be
retained as a possible covariate in the stepwise selection. Details of the
models that were actually used to impute the missing values are included in
the Regression Output, which can be selected from the View menu of the
Multiply ImputedData Pages. These data pages will be displayed after you
have specified the imputation and pressed the OK button in the Specify
Predictive Model window.

9.4 Monotone

Selecting the Monotone tab allows you to add or remove covariates from
the predictive model used for imputing the monotone missing values in the
data set. (These can be identified in the Missing Data Pattern mentioned
earlier.) Again, you select the + or � sign to expand or contract the list of
covariates for each imputation variable (Scheme A.6).

For each imputation variable, the list of covariates will be made up
of the variables specified as Fixed Covariates in the Base Setup tab, and all
of the other imputation variables. Variables can be added and removed
from this list by simply dragging and dropping. Even though a variable
appears in the list of covariates for a particular imputation variable, it
might not be used in the final model. The program first sorts the variables
so that the missing data pattern is as close as possible to monotone, and
then uses only the variables that are to the left of the imputation variable
as covariates. Details of the models that were actually used to impute the
missing values are included in the Regression Output.

9.5 Advanced Options

Selecting the Advanced Options tab displays a window that allows you
to choose control settings for the regression/discriminant mode (Scheme
A.7).
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9.6 Tolerance

The value set in the Tolerance data field controls numerical accuracy. The
tolerance limit is used for matrix inversion to guard against singularity. No
independent variable is used whose R2 with other independent variables
exceeds (1�Tolerance). You can adjust the tolerance using the scrolled
data field.

9.7 Stepping Criteria

Here you can select F-to-Enter and F-to-Remove values from the scrolled
data fields, or enter your chosen value. If you wish to see more variables
entered in the model, set the F-to-Enter value to a smaller value. The
numerical value of F-to-Remove should be chosen to be less than the F-to-
Enter value.

Scheme A.6
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When you are satisfied that you have specified your analysis cor-
rectly, click the OK button. The multiply imputed data pages will be
displayed, with the imputed values appearing in blue. Refer to the sections
‘‘Multiple Imputation Output’’ and ‘‘Analyzing Multiply Imputed Data
Sets—Example’’ for further details about analyzing these data sets and
combining the results.

9.8 Propensity Score Method—Example

We will now multiply impute all of the missing values in the data set using
the Propensity Score-Based Method:

1. From the Analyze menu, select Multiple Imputation and Pro-

pensity Score Method.
2. The Specify Propensity Method window is displayed and is a

tabbed (paged) window. The window opens with two pages or
tabs: Base Setup and Advanced Options. As soon as you select a

Scheme A.7
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variable to be imputed, aNonmonotone tab, aMonotone tab, and
a Donor Pool tab are also displayed.

9.9 Base Setup

Selecting theBase Setup tab allows you specify which variables youwant to
impute, and which variables you want to use as covariates for the logistic
regression used to model the missingness (Scheme A.8):

1. Drag-and-drop the variables MeasA_1, MeasA_2, MeasA_3,
MeasB_1, MeasB_2, and MeasB_3 into the Variables to Impute
field.

2. Drag-and-drop the variables SYMPDUR, AGE, MeasA_0, and
MeasB_0 into the Fixed Covariates field.

3. As there is no grouping variable in this data set, we can leave this
field blank.

Scheme A.8
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9.10 Nonmonotone

Selecting the Nonmonotone tab allows you to add or remove covariates
from the logistic model used for imputing the nonmonotonemissing values
in the data set. (These can be identified in the Missing Data Pattern

mentioned earlier in the Predictive Model example.)
You select the+or� sign to expand or contract the list of covariates

for each imputation variable (Scheme A.9).

The list of covariates for each imputation variable will be made up of
the variables specified as Fixed Covariates in the Base Setup tab, and all of
the other imputation variables. Variables can be added and removed from
this list of covariates by simply dragging and dropping the variable from
the covariate list to the variables field, or vice versa. Even though a variable
appears in the list of covariates for a particular imputation variable, it
might not be used in the final model.

Scheme A.9
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The program first sorts the variables so that the missing data pattern
is as close as possible to monotone, and then, for each missing value in the
imputation variable, the program works out which variables, from the
total list of covariates, can be used for prediction.

By default, all of the covariates are forced into the model. If you
uncheck a covariate, it will not be forced into the model, but will be
retained as a possible covariate in the stepwise selection. Details of the
models that were actually used to impute the missing values are included in
the Regression Output, which can be selected from the View menu of the
Multiply ImputedData Pages. These data pages will be displayed after you
have specified the imputation and pressed the OK button in the Specify
Predictive Model window.

9.11 Monotone

Selecting the Monotone tab allows you to add or remove covariates from
the logistic model used for imputing the monotone missing values in the
data set. (These can be identified in the Missing Data Pattern mentioned
earlier) (Scheme A.10).

Again, you select the + or � sign to expand or contract the list of
covariates for each imputation variable.

The list of covariates for each imputation variable will be made up of
the variables specified as Fixed Covariates in the Base Setup tab, and all of
the other imputation variables. Variables can be added and removed from
this list by simply dragging and dropping the variable from the list of
covariates to the variables field, or vice versa. Even though a variable
appears in the list of covariates for a particular imputation variable, it
might not be used in the final model.

The program first sorts the variables so that the missing data pattern
is as close as possible tomonotone, and then uses only the variables that are
to the left of the imputation variable as covariates. Details of the models
that were actually used to impute the missing values are included in the
Regression Output.

9.12 Donor Pool

Selecting the Donor Pool tab displays the Donor Pool page that allows
more control over the random draw step in the analysis by allowing the
user to define propensity score subclasses (Scheme A.11).
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The following options for defining the propensity score subclasses
are provided:

Divide propensity score into c subsets. The default is 5.
Use c closest cases. This option allows you to specify the number of

cases, before and after the case, being imputed that are to be
included in the subset.

Use d%of the data set closest cases. This option allows you to specify
the number of cases as a percentage.

See ‘‘Defining Donor Pools Based on Propensity Scores’’ section.
You can use one refinement variable for each of the variables being

imputed. Variables can be dragged from the Variables listbox to the
Refinement Variable column. When you use a refinement variable, the
program reduces the subset of cases included in the donor pool to include
only cases that are close with respect to their values of the refinement
variable.

Scheme A.10
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You can also specify the number of refinement variable cases to be
used in the donor pool. For this example, we will use all of the default
settings in this tab.

9.13 Advanced Options

Selecting the Advanced Options tab displays the Advanced Options win-
dow that allows the user to control the settings for the imputation and the
logistic regression (Scheme A.12).

9.14 Randomization

The Main Seed Value is used to perform the random selection within the
propensity subsets. The default seed is 12345. If you set this field to blank,
or set it to zero, then the clock time is used.

Scheme A.11

SOLASTM 3.0 for Missing Data Analysis 183



9.15 Regression Options

The value set in the Tolerance data field controls numerical accuracy. The
tolerance limit is used for matrix inversion to guard against singularity. No
independent variable is used whose R2 with other independent variables
exceeds (1�Tolerance). You can adjust the tolerance using the scrolled
data field.

9.16 Stepping Criteria

Here you can select F-to-Enter and F-to-Remove values from the scrolled
data fields, or enter your chosen value. If you wish to see more variables
entered in the model, set the F-to-Enter value to a smaller value. The
numerical value of F-to-Remove should be chosen to be less than the F-to-
Enter value.

When you are satisfied that you have specified your analysis cor-
rectly, click the OK button. The multiply imputed data pages will be
displayed, with the imputed values appearing in blue. Refer to ‘‘Analyzing

Scheme A.12
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Multiply Imputed Data Sets’’ for further details of analyzing these data
sets and combining the results.

9.17 Multiple Imputation Output

The multiple imputation output, either Propensity Score or the Predictive
Model-Based Method, comprises five (default value) Multiple Imputation
Data Pages. From the View menu of the Data Pages, you can select either
Imputation Report, Regression Output, or Missing Pattern.

When other analyses are performed from theAnalyzemenu of a data
page (see the section ‘‘Analyzing Multiply Imputed Data Sets—Exam-
ple’’), a Combined tab is added to the data page tabs. Selecting this tab
displays the combined statistics for these data pages.

9.18 Data Pages

The multiple imputation output displays five data pages with the imputed
values shown in blue (two of the values are shown here highlighted). The
first data page (page 1) for the above example is shown below (Scheme
A.13).

From the View menu, you can select Imputation Report and Re-

gression Output (examples of both are shown below) or Missing Pattern

(Scheme A.14).
The Imputation Report and a Regression Output (shown in part

above) summarize the results of the logistic regression, the ordinary
regression, and the settings used for the multiple imputation.

Scheme A.13
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9.19 Multiple Imputation Report

The imputation report contains a summary of the parameters that were
chosen for the multiple imputation. For example, the seed value that was
used for the random selection, the number of imputations that were
performed, etc., are all reported. The report shows:

An overview of the multiple imputation parameters.
The equations used to generate the imputations.
Additional diagnostical information that can be used to judge the

quality and validity of the generated imputations.

Conclusions about the statistical analysis can be drawn from the
combined results (see ‘‘Analyzing Multiply Imputed Data Sets—Exam-
ple’’ section). These five pages of completed data results are displayed and
allow the user to examine how the combined results are calculated.

9.20 Analyzing Multiply Imputed Data Sets—Example

This section presents a simple example of analyzing multiply imputed data
sets. It will show how the results of the repeated imputations can be
combined to create one repeated imputation inference.

After you have performed a multiple imputation on your data set,
you will have M complete data sets, each of which can be analyzed using
standard complete-data statistical methods.

Scheme A.14
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Scheme A.15

Scheme A.16

SOLASTM 3.0 for Missing Data Analysis 187



If you select Descriptive Statistics, Regression, t-Test, Frequency
Table, orANOVA from theAnalyzemenu from any data page, the analysis
will be performed on all five data sets. The analysis generates five pages of
output, one corresponding to each of the imputed data sets, and a
Combined page which gives the overall set of results. The tabs at the
bottom of a page allow you to display each data set.

This example uses the imputation results from the data set
MI_TRIAL.MDD that was used in the propensity score example earlier.
Part of data in page 1 for that example is shown below (Scheme A.15):

1. From the data page Analyze menu, select t-Test and Non-

parametric Test to display the Specify t-Test Analysis window
(Scheme A.16).

2. Drag-and-drop the variables MeasA_1 and MeasA_2 to the
Variable 1 and Variable 2 data fields, respectively.

3. Press theOK button to display the data pages, then the Combine

tab to display the combined statistics from the five imputed data
pages (Scheme A.17).

Scheme A.17
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Appendix B: SSSSSSSS EM

S EM is a software for analyzing categorical data, developed by Jeroen K.
Vermunt at Tilburg University. The name S EM stems from ‘‘log-linear
and event history analysis with missing data using the EM algorithm’’

(Vermunt, 1997). As the name suggests, the software is for analysis based
on models expressed as a log-linear model. On the Internet, the soft-
ware is publicized at several websites as a freeware. For example, refer to
the website on latent class analysis software (http://members.xoom.com/
jsuebersax/soft.html).

Two versions of S EM are available: DOS and Windows versions,
both of which require the creation and execution of an input file
according to the syntax of S EM (refer to the next paragraph). The input
file requires a description of data, model, estimation options, output
options, etc.

In the Windows version, three windows appear on the screen, one
each for input, log, and output. In the input window, the data subject to
analysis and the analysis model must be described. If a file that has
already been created is read in, this file will be displayed in that window.
The log window records the log when the commands described in the
input window are executed. This is used when there is an error in the
description of the model and correction is required. The output window
displays the results of executing the commands in the input window. The
output can be changed by using pre-prepared commands and options
(Scheme B.1).

S EM consists of the software program, a 100-page manual and 229
example files. As the manual is a PostScript file, it can be viewed on the
computer screen and printed out from a PostScript file browsing software
such as GSView (Scheme B.2).
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The example files can be directly read in as input files. However, it is
easier to select [Examples] on themenu bar in the startup screen to display a
tree menu, which is more convenient.

The example shown in the next figure reads in an example of a latent
class model. The latent class analysis reviewed in Chap. 5 explains the
relationship among manifest variables by using latent variables assuming
category values, and can be regarded as an analysis based on a log-linear
model in which there is one latent variable (Scheme B.3).

After reading in the input file, select the [Run] option from [File]
on the menu bar. Calculations to estimate the parameter included in the
model will automatically be executed, and various statistics will be out-
putted (Scheme B.4).

As the calculation results are displayed in the output window,
activate the output window to view them (Scheme B.5).

All estimates of the parameters outputted by S EM are maximum
likelihood estimates. Generally, maximum likelihood estimates of param-
eters of hierarchical log-linear models are determined with the use of an
iterative proportional fitting (IPF) algorithm. In cases where latent vari-
ables are included, the latent variables are regarded as missing data and the
EM algorithm is used. In E-step, the conditional expected value of the log
likelihood of the complete data including latent variables is calculated,
whereas in M-step, the parameter value is updated with the use of the IPF
algorithm, etc. S EM uses the ECM algorithm in many cases.

Scheme B.3
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A latent class model is expressed as a log-linear model with one latent
variable. An extension of this model is a log-linear model with more than
one latent variable. S EM can flexibly handle such models as well. Refer to
Hagenaars (1993) for analysis based on such models.
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Wake–Sleep algorithm, 116
Wolfe condition, 87
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